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Abstract :  
Background: Uveal Melanoma is the most common primary intraocular malignancy in 
adults, but despite effective local treatments, outcomes have not improved in decades. 
Because of this, new methods for monitoring the disease are necessary, as well as new 
avenues to explore for adjuvant treatments. Liquid biopsy – the analysis of biofluids 
such as blood, saliva, and urine – has the potential to track tumour features non-
invasively, and without the need for a primary tumour to sample. 
Methods: Genetic and epigenetic data for 80 UM cases from the Cancer Genome Atlas 
(TCGA) was analysed using Minfi and Limma in order to determine significantly 
differentially methylated loci. Differentially methylated loci were mapped to a human 
genome assembly, and differentially methylated genes were analysed for changes in 
DAVID gene ontology and KEGG pathways between cases. 4 UM cell lines were grown 
in the presence of increasing doses of azacytidine. The effects of azacytidine on each of 
the cell lines was monitored by incucyte live cell imaging and CCK8 assays. Genomic 
and cell free DNA from cells with and without azacytidine (0, 1, 5, and 20 μM) was 
extracted using the Qiagen DNA mini kit and Qiagen cell free nucleic acid kits, and 
methylation was analysed using the Illumina MethylationEPIC arrays.  
Results: Hierarchical clustering divided UM patients into two distinct groups based on 
methylation pattern. These groups differed significantly in terms of clinical outcomes, 
with metastatic disease present almost exclusively in one group. The differentially 
methylated cases showed differences in levels of methylation at specific genes that are 
known to be important in cancer progression and cell signaling. Treatment of UM cells 
with azacytidine led to changes in the pattern of methylation, with different alterations 
seen depending on the cell line. UM cell lines show different patterns of methylation 
based on their molecular profiles, especially BAP1 protein expression, and matched 
primary and metastatic UM tumours additionally showed similar patterns of DNA 
methylation. 
Conclusion: UM cases can be highly differentially methylated depending on clinical and 
genomic characteristics. Targeting these changes in methylation may be an appropriate 
method to develop neoadjuvant treatments for metastatic UM, by altering the pathways 
that are significantly affected in cases that have poor outcomes.   
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Résumé : 
Contexte : Le Mélanome Uvéal (MU) est la tumeur maligne intraoculaire primitive la plus 
commune chez les adultes, mais malgré des traitements locaux efficaces, les résultats a long-
terme ne se sont pas améliorés au cours des dernières décennies. À cause de cela, de nouvelles 
méthodes de suivi de la maladie sont nécessaires, ainsi que de nouvelles pistes à explorer pour 
des traitements adjuvants. La biopsie liquide - l'analyse des biofluides tels que le sang, la salive 
et l'urine - a le potentiel de suivre les caractéristiques tumorales de manière non invasive et 
sans la nécessité de prélever une tumeur primaire. 
Méthodes : Les données génétiques et épigénétiques de 80 cas d'UM du Cancer Genome Atlas 
(TCGA) ont été analysées à l'aide des programmes Minfi et Limma afin de déterminer des 
régions méthylées de manière significativement différente. Des régions à méthylation 
différentielle ont été alignées sur un assemblage de génome humain, et les gènes à méthylation 
différentielle ont été analysés pour les changements dans le programme DAVID et les voies 
KEGG entre les cas. 4 lignées cellulaires MU ont été cultivées en présence de doses croissantes 
d'azacytidine. Les effets de l'azacytidine sur chacune des lignées cellulaires ont été surveillés 
par imagerie de cellules à temps réel incucytes et dosages de CCK8. L'ADN génomique et 
acellulaire de cellules avec et sans azacytidine (0, 1, 5 et 20 μM) a été extrait à l'aide du kit 
A.D.N. mini de Qiagen et des kits d'acide nucléique sans cellule de Qiagen. Le degré de 
méthylation a été analysée à l'aide des puces Illumina MethylationEPIC. 
Résultats : Le regroupement hiérarchique a divisé les patients atteints du MU en deux groupes 
distincts en fonction de leurs motifs de méthylation. Ces groupes différaient significativement 
en ce qui concerne les résultats cliniques, avec une maladie métastatique présente presque 
exclusivement dans un groupe. Les cas de méthylation différentielle ont montré des 
différences dans les niveaux de méthylation au niveau de gènes spécifiques qui sont 
importants dans la progression du cancer et la signalisation cellulaire. Le traitement des 
cellules MU avec de l'azacytidine a mené à des changements dans le motif de méthylation, 
avec différentes altérations observées selon la lignée cellulaire. Les lignées cellulaires MU 
présentent différents motifs de méthylation en fonction de leurs profils moléculaires - en 
particulier l'expression de la protéine BAP1 - et les tumeurs MU primaires et métastatiques 
correspondantes ont montré un motif similaire de méthylation de l'ADN. 
Conclusion : les cas de MU peuvent être fortement méthylés de manière différentielle en 
fonction des caractéristiques cliniques et génomiques. Cibler ces changements dans la 
méthylation pourrait être une méthode appropriée pour développer des traitements 
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néoadjuvants pour le MU métastatique, en modifiant les voies qui sont significativement 
affectées dans les cas qui ont un risque élevé de métastases. 
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(A) Mean detection P values are shown across all samples. (B) Quality control plot is 
shown for all samples. (C) Comparison of Beta Values to M values for all samples, 
coloured by cell line. (D) Comparison of raw beta values to SWAN normalised beta 
values for all samples, coloured by concentration of azacytidine. 
Figure 6. Hierarchical clustering revealed similarities between cell lines. (A) A heat map 
represents the hierarchical clustering conducted on the SWAN normalised methylation 
array data for all samples: MP41, MP46, Mel270, and OMM2.5, including cfDNA and 
gDNA for 0, 1, 5, and 20μM azacytidine. (B) Principal component analysis for samples, 
coloured by cell line. 
Figure 7. Large scale changes in important molecular pathways were seen between cell 
lines that differed in BAP1 status, while matched primary and metastatic samples 
maintain similar degrees of methylation across the genome (A) Plot of differentially 
methylated regions across chromosomes for the MP41 cell line compared to the MP46 cell 
line. (B) Plot of differentially methylated regions across chromosomes for the OMM2.5 
cell line compared to the Mel270 cell line. (C) Selected significantly altered KEGG 
pathways (Bonferroni p<0.05) for the top 20000 hypomethylated probes between MP41 
and MP46 (measured probes with an adjusted p<0.05 with the greatest log fold change 
between samples) (D) Selected significantly altered KEGG pathways (Bonferroni p<0.05) 
for the top 20000 hypermethylated probes between MP41 and MP46 (measured probes 
with an adjusted p<0.05 with the greatest log fold change between samples).  
Figure 8. Treatment with azacytidine leads to alterations in methylation patterns that is 
generally not associated with a reduction in overall mean methylation (A) Comparison 
of mean methylation of samples for each cell type at the 4 concentrations of azacytidine 
tested (0, 1, 5, and 20μM) for cfDNA (CF for cfDNA) and genomic DNA (G for gDNA). 
(B) Plot of methylation beta values by concentration of azacytidine. (C) Comparison of 
mean Genomic DNA methylation at each concentration of azacytidine, by cell line. 
Figure 9. Multiple genomic regions and important molecular pathways are affected by 
azacytidine treatment. Number of regions found to be differentially methylated 
depending on type of genomic region (includes non-significant regions) for (A) 0 vs 20μM 
azacytidine, (B) 1 vs 5μM azacytidine, and (C) 1 vs 20μM azacytidine. (D) Selected KEGG 
pathways found to be significantly differentially methylated between all 0 and 20μM 
samples (Bonferroni p<0.05). 
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Figure S1. Figure S1. Hierarchical clustering of differentially methylated probes for 4 
cell lines (Mel270, OMM2.5, MP41, and MP46, labeled on graph) compared to 80 
primary UM cases from the TCGA database using SWAN normalized Beta Values, with 
dark red indicating a locus is fully hypermethylated and dark blue indicating a locus is 
fully hypomethylated. 
Figure S2. Uniform Manifold Approximation and Projection (UMAP) along the YZ axis, 
showing the differences in this dimension between genomic DNA from the 4 cell lines 
(MP41, MP46, Mel270, and OMM2.5) for 80 UM patients from the TCGA database  
Figure S3. Significantly differentially methylated regions across the genome based on 
dose for all samples, with sample type and cell line as covariates with venn diagrams 
for the genomic locations found to be significantly differentially methylated for (A) the 
Mel270 and OMM2.5 cell lines and (B) The MP41 and MP46 cell lines, and (C) All cell 
lines using a lower cutoff value. 
Figure S4. Significantly differentially methylated regions across the genome based on 
dose for all samples, with sample type and cell line as covariates with venn diagrams 
for the genomic locations found to be significantly differentially methylated between 
cell-free and genomic DNA based on A) chromosomal location and B) type of genomic 
region 
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1. Introduction 
1.1. Uveal Melanoma 

1.1.1. Overview of Uveal Melanoma 
Uveal Melanoma (UM) is a rare intraocular malignancy with an annual incidence 

of 3.75 cases per million per year in Canada [1]  and 5.1 per million per year in the US 
[2]. UM arises in the choroid, ciliary body, or iris. It occurs more frequently in people 
with fair skin, light eyes, ocular melanocytosis, ocular nevi, and familial BRCA1-
associated protein 1 (BAP1) mutations [3]. Unlike with cutaneous melanoma, exposure 
to ultraviolet (UV) radiation is not associated with UM incidence, though occupational 
exposure to blue light has been associated with increased development of UM [4, 5]. 
While effective local disease management is available – commonly with radiotherapy 
but potentially also through surgical techniques including resection and enucleation – 
almost 50% of UM cases will lead to metastatic disease, which is fatal [2, 6]. Metastatic 
disease in UM is mostly to the liver but can also occur in the lungs and bones, and even 
when receiving treatment for metastases, median survival in patients with diagnosed 
metastatic disease is 1.07 years [7]. There are currently no effective treatments that allow 
for long term survival of patients with metastatic UM. 

1.1.2 Current treatment options for UM 
Treatment of primary UM includes radiation – notably plaque brachytherapy for 

medium tumours and external beam radiotherapy for large tumours – and either local 
resection or enucleation as surgical options [8]. Since data has shown similar rates in 
metastasis and death between patients undergoing local radiation or enucleation, the 
most common first line treatment for primary UM is radiation therapy [6, 8, 9]. While 
local control is generally achieved, treatments targeting metastatic UM have been 
largely unsuccessful, though some options can extend survival by a few months. 
Specifically, liver targeted treatments have the potential to improve patient outcomes; 
hepatic resection, hepatic intra-arterial chemotherapy, and hepatic arterial 
chemoembolization are used in patients given the overwhelming predilection of UM 
metastases for the liver [10]. More recent clinical trials include the use of combined 
immune checkpoint inhibitors which, while effective for some cutaneous melanomas, 
have not shown similar improvements in outcome in UM [11]. Other treatments that 
have been tried in UM include Mitogen-activated protein kinase kinase (MEK) 
inhibitors, which were not shown to be effective, and drugs including tebentafusp, as 
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well as liver directed therapies [11]. Of all options available for metastatic UM, liver 
directed therapies currently are the only option that seem to potentially prolong 
survival, though limited conclusive data exists, and patient survival remains short [12]. 
Despite attempts at improving survival for patients with liver metastasis, the current 
guidelines encourage clinical trials for patients with metastatic UM, as there are no 
treatments that have been shown to improve significantly survival [8].  

1.1.3 Driver events 
UM is characterized by initiating mutations in the Gα11/Q pathway, with 57% of UM 
tumours showing hotspot mutations in Guanine nucleotide-binding protein G(q) 

subunit 𝛼 (GNAQ) and 41% of tumours having Guanine nucleotide-binding protein 
subunit alpha 11 (GNA11) mutations. In samples that do not contain these hotspot 
mutations in GNAQ or GNA11, there are usually mutations in other genes related to 
the same pathway, generally Phospholipase C Beta 4  (PLCB4) or Cysteinyl Leukotriene 
Receptor 2 (CYSLTR2) [13]. These mutations are present in almost all UM cases and are 
unrelated to the likelihood of developing metastatic disease. Additionally, these 
mutations are also seen in ocular nevi that do not progress to melanoma, and 
transfection with GNAQ in melanocytes has been shown to be insufficient in inducing 
anchorage independent growth in UM cells, suggesting that these mutations are not 
sufficient for malignant transformation in UM [14, 15]. On the other hand, there are 
three mutations in UM that have been associated with the likelihood of developing 
metastatic disease: BRCA1-associated protein 1 (BAP1), Splicing Factor 3b Subunit 1 
(SF3B1), and Eukaryotic Translation Initiation Factor 1A X-Linked (EIF1AX). These are 
associated with a high risk of early metastasis, a moderate risk of generally late 
metastasis, and a low risk of metastasis, respectively [16]. These mutations have 
additionally been associated with different gene expression profiles across UM cases 
[17]. Inactivating BAP1 mutations in UM can occur as single nucleotide polymorphisms 
(SNPs) or insertions/deletions (indels) along with more distant mutations affecting the 
regulation of BAP1 expression, with alterations often being long or complex [18]. Loss 
of BAP1 protein expression as well as confirmed loss-of-function BAP1 mutations are 
highly associated with metastasis in UM, and are associated with a molecular profile 
that is accompanied by a high risk of metastasis [18, 19]. Due to its localization on 
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chromosome 3 (3p21.1), the loss of BAP1 protein expression is also highly associated 
with monosomy 3, a frequent genomic event seen in metastasizing UMs. 

1.1.4 Important molecular pathways in UM 
There are many cancer-associated pathways that have been found to be 

commonly altered in UM, including the Ras-Raf-MEK-Extracellular signal Regulated 
Kinase- Mitogen Activated Protein Kinase (Ras-Raf-MEK-ERK-MAPK) cascade, which 
is important in the regulation of cell growth and proliferation. Along with this, there are 
also alterations in G-protein coupled receptor-related cascades, with mutations causing 
constitutive activation of signaling leading to the increased transcription downstream, 
including through ERK1/2, Rho/Rac/ Yes-associated protein (YAP), and 
Phosphoinositide 3-kinase (PI3K)/Akt pathways [20]. The initiating mutations in UM 
involving constitutive activation of G-protein-alpha subunits leads to activation of the 
Ras/Raf/MEK/ERK signaling pathway, which promotes cellular proliferation and 
tumour progression [10]. In general, the retinoblastoma tumour suppressor pathway 
and p53 pathway can be disrupted in UM cases – though rarely through mutations – 
leading to decreased ability to block cell cycle progression, along with constitutive 
activation of the PI3K/Akt and Ras/Raf/MEK/ERK pathways, which promote cell 
proliferation [14].These factors all play into the ability of these tumours to grow and 
eventually spread, as is the case in other malignancies.  Along with this, more recent 
evidence has suggested that YAP signaling may also play a role in the progression of 
UM independently of GNAQ/11 mutations [21]. 
 
1.2. BAP1 mutations 

1.2.1 Importance of BAP1 mutations in cancer 
BAP1 mutations were first found to be related to cancer through a correlation of 

increased susceptibility in some families of developing mesothelioma, along with a 
number of other malignancies including atypical spitz tumours as well  as uveal and 
cutaneous melanomas [22, 23]. These families were later discovered to share germline 
mutations in the BAP1 gene, leading to a loss of BAP1 protein expression [24]. 
Following this, in 2010, Harbour et al. reported that loss of function mutations in the 
gene encoding for the BAP1 protein were a common occurrence in metastasizing UM 
[19]. Because of this, loss of function BAP1 mutations were found to not only be present 
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in familial cancer syndromes, but indeed also seem to play a large role in the 
development of metastatic UM. 

1.2.2 Role of BAP1 in tumour suppression and epigenetic regulation 
BAP1 was first discovered due to its interaction with the Really Interesting New Gene 
(RING) finger domain of Breast and Overian Cancer Susceptibility Protein 1 (BRCA1), 
hence its name BRCA1-associated protein 1 [22]. Despite this, further work in 
elucidating the roles of BAP1 have shown that the BAP1 protein has larger roles as a 
deubiquitylase. It also regulates many cellular functions, with negative effects on cell 
viability and growth [22, 25]. In lung cancer cells, this protein has been shown to have 
tumour suppressor activity, with cells expressing wild type BAP1 showing signs of 
early apoptosis and late apoptosis/necrosis independently of BRCA1 [25]. While BAP1 
mutations are a very strong indicator of poor outcome in UM, these alterations in the 
BAP1 sequence are often long or complex, making them potentially difficult to detect in 
samples as they do not occur as point mutations such as those seen with GNAQ or 
GNA11 [18]. As a response to this, BAP1 protein staining has been looked at as an 
alternative method of determining which UM samples have lost BAP1 expression, 
though this is only relevant in cases where samples of the tumour are available [26].  
 
1.3. Epigenetic Changes 
 1.3.1 Overview of epigenetic changes 

For the last few decades, epigenetic changes – heritable alterations in gene 
expression that do not affect the DNA sequence itself – have been shown to occur to a 
great degree in cancer. These changes can include additions to histones such as 
methylation and acetylation on specific histone tails, but also can occur directly onto 
DNA, as is the case with DNA methylation [27]. DNA methylation occurs through the 
addition of methyl groups directly onto cytosine residues by DNA methyltransferases 
[28]. Methylation in promoter regions of genes is known to alter gene expression by 
directly preventing the binding of transcription factors from their binding sites or by 
recruiting chromatin protein complexes that hinder transcription [29]. Both these factors 
can lead to the same final effect, which is to prevent transcription and eventually alter 
gene expression. While methylation at CpG islands has been repeatedly shown to block 
gene expression, its effect in the rest of the genome is not as clear; DNA methylation in 
the gene body, unlike methylation at transcription start sites, has the potential to 
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stimulate transcriptional elongation and potentially affect splicing, while methylation in 
repeat regions plays an important role in genomic stability overall [30]. 

1.3.2 Alterations in methylation across cancer 
Tumour cells are marked by an overall pattern of global hypomethylation along 

with specific hypermethylation of certain genes [31, 32]. In humans, cytosines that 
precede guanosines in DNA sequences – known as CpG dinucleotides – can be 
methylated to form methylcytosine by DNA methyltransferases (DNMTs) [33]. Specific 
hypermethylation is seen in cancer at CpG islands, which are present at transcription 
start sites; this hypermethylation is known to block transcription at these sites, 
influencing gene expression [32, 33]. Cytosine methylation in promoter regions has 
specifically been shown to lead to the inactivation of both tumour suppressor genes and 
DNA repair genes in certain types of cancer, which can lead to tumour progression and, 
alongside other events, potentially act as a “second hit” in cancer development [29, 34]. 
On the other hand, the global pattern of hypomethylation in cancer occurs largely at 
repeat sequences such as retrotransposons and endogenous retroviruses, and promotes 
heterochromatin decondensation and DNA recombination at repeat sequences [32].  

1.3.3 Role of methylation in gene expression changes 
In cancer cells, DNA methylation has also been shown to be associated with 

certain histone modifications, wherein reversing hypermethylation at promoter regions 
using DNMT inhibitors can also lead to alterations in histone modifications [35]. 
Overall, this points to an interdependence of histone modifications on DNA 
methylation, and shows that some changes in gene expression are specifically related to 
the alterations in promoter methylation [35]. Since histone modifications additionally 
play an important role in heterochromatin formation, this relationship between DNA 
methylation and histone alterations furthers the idea that DNA methylation plays an 
important role in the regulation of gene expression in normal tissues as well as in 
disease processes [36]. Alongside this, hypermethylation at CpG islands near 
transcription start sites is known to cause loss of gene expression by blocking the 
initiation of transcription [30]. 

1.3.4 Specific methylation changes associated with cancer 
Numerous specific changes in methylation have been seen across tumours, many 

of which share the common characteristics of contributing to effects in pathways that 
are related to the hallmarks of cancer described by Hanahan and Weinberg [37, 38]. 
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These changes include effects on genes involved in cell cycle regulation, DNA repair, 
promotion of apoptosis, or signaling cascades involved in tumour progression [39]. 
Additionally, there are many promoters that have been investigated in cancer 
specifically, such as O-6-methylguanine-DNMT (MGMT), which has been shown to be 
silenced through hypermethylation in many carcinomas [40]. Additionally, p16INK4a and 
p15INK4A

 are important in cell cycle regulation are can often be silenced through DNA 
methylation in cancer [40, 41]. Overall, depending on the tumour type, there are 
numerous genes that can be inactivated by hypermethylation. Depending on the case, 
these methylation changes can potentially be used for prognostication or monitoring of 
various malignancies.  

1.3.5 Detection of DNA methylation changes for cancer monitoring  
Alterations in methylation have already been used for the monitoring of cancer in a 
number of malignancies, both in solid tumours as well as in blood. In glioblastoma 
multiforme (GBM), both single point DNA methylation – in this case at the MGMT 
promoter – as well as array based techniques have been used to stratify cases [42]. 
Indeed, since DNA methylation occurs early in tumour development and remains 
stable over the disease course, it is often possible in tumours with a large epigenetic 
component to detect important methylation patterns that are indicative of outcomes in 
disease [43, 44]. This has been done across many tumour types, where either specific 
tumour suppressor genes or global patterns of methylation can give insight into patient 
prognosis, and may help guide treatment along with other factors. 

1.3.6 Use of DNA demethylating agents in cancer treatment 
Since alterations in DNA methylation can have such a profound effect on the 

behaviour of cells, including tumour cells, reversing these alterations has the potential 
to make a tumour easier to treat. The use of DNA demethylating agents, which are 
generally nucleoside analogs of cytidine, lead to promoter demethylation, gene re-
expression, and changes in the histone code [35]. Indeed, DNMT inhibitors are currently 
used in the treatment of acute myelogenous leukemia (AML) and myelodysplastic 
syndrome, where they increase patient survival with relatively minimal side effects and 
improved quality of life [45, 46]. They have also been tested in other tumours including 
UM, where they have been shown to improve the efficacy of MEK inhibitor treatment in 
patients [47]. 
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1.3.7 Methylation changes in UM 
Over the past few years, there has been some work into the epigenetic alterations 

in UM, including DNA methylation. First, as in many other tumours, specific changes 
in methylation were examined, including hypermethylation of hTERT , Ras association 
domain family member 1A (RASSF1A), and Embryonic fyn-associated substrate (EFS), 
amongst other genes, being seen across UM tumours [48-50]. Following this, the cancer 
genome atlas (TCGA) study of UM showed that monosomy 3 tumours showed a 
unique pattern of global methylation, and that disomy 3 tumours showed some 
differences in methylation depending on the mutations present within the tumour [18]. 
Additionally, they observed that these methylation changes led to alterations in gene 
expression, including for microRNAs (miRNA) [18].  In cell lines, BAP1 loss was then 
shown to be associated with methylomic repatterning in UM cells, with alterations in 
genes involved in axon guidance and melanogenesis [51]. Overall, these works have 
pointed to a role of large-scale epigenetic changes occurring in the progression of UM, 
and to a role of the BAP1 protein in these alterations. Additionally, work showing that 
RASSF1 hypermethylation can be reverted using azacytidine [52], as well as data that 
has shown that the DNMTi decitabine limits escape from MEK inhibition in UM cells 
[47] suggests that altering methylation patterns may be a viable technique to explore in 
the treatment of UM.  
 
1.4. Liquid Biopsy 
 Genetic and epigenetic profiling of tumours generally requires either a biopsy or 
surgical specimen, which can be especially difficult to access in tumours such as UM. 
Additionally, since metastatic UM often occurs as micrometastases in the absence of a 
primary tumour – with the primary tumour often being removed years prior – 
obtaining specimens can be especially difficult [10]. For this reason, less invasive 
methods such to monitor these genetic and epigenetic alterations would be of great use 
in these cases where there biopsies are not feasible. 

1.4.1 Challenges in molecular analysis of biopsies 
Traditionally, biopsy techniques such as fine needle aspiration (FNA) have been 

used to diagnose and guide treatment of tumours [53]. Biopsies have been of great use 
because they allow for histological analysis, and in more recent history, have given us 
the opportunity to perform genetic profiling of tumour cells [54].  In the last decades, 
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the availability of cost-effective sequencing techniques has allowed us to examine the 
cancer genome as a whole, and has consequently led to a new era in work on 
personalized medicine based on specific genomic alterations [55]. Despite these 
advances, there are issues in using mutation-specific pharmacological treatments, as 
single biopsies can only give an image of the tumour in one location and at one time. 
Specifically, it has been shown that 63-69% of all somatic mutations are not detectable 
across every region within a tumour, which can lead to biopsies showing an incomplete 
picture of the tumour at the time of sampling [56]. In addition, since tumours change 
over time, it would be ideal to obtain samples from multiple regions within tumours at 
different time points across treatment, but this is not feasible due to the discomfort for 
patients, associated risks, and economic considerations in capturing serial biopsies [54]. 
This is especially relevant in the context of biopsies that are in locations that are more 
difficult to sample. For example, in UM, biopsies are typically not performed for 
diagnosis and are instead only used in specialized centers for prognostication [8, 57]. 
Instead, follow up for patients will not involve serial biopsies, but will instead be 
largely centered around liver imaging as it is the most common site for metastasis [8].   

1.4.2 Liquid biopsy 
Because of this, liquid biopsy – the examination of bodily fluids to monitor 

characteristics of systemic disease – is an ideal option for non-invasively capturing a 
picture of the disease landscape as a whole in real time.  

1.4.3 Liquid biopsy in cancer monitoring 
Depending on the tumour of interest, liquid biopsy in cancer can involve many 

different biofluids, including blood, urine, saliva, and cerebrospinal fluid, amongst 
others. Liquid biopsy has the potential for being better at guiding treatment options 
than traditional biopsy because of its non-invasiveness, and because it is not 
confounded by intra- and inter-tumour heterogeneity in the same way as traditional 
biopsies [56]. Additionally, there are many features of tumour DNA that can be 
interrogated through liquid biopsy, such as mutations, methylation patterns, and 
detection of viral DNA, all of which can be used in different tumour types to monitor 
cancer progression [58]. Along with these specific changes in the genome, cell free DNA 
within cancer patients will differ from cell free DNA in healthy individuals in features 
such as fragment length, with cancer patients showing more fragmented patterns of 
cfDNA [59]. 
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1.4.4 Detection of circulating tumour DNA using liquid biopsy 
Cell-free DNA (cfDNA) are short segments of nucleic acids that are released 

from cells into circulation and have a very short half-life in circulation, making them an 
up to date picture of DNA release into circulation. Circulating tumour DNA (ctDNA) is 
a form of circulating cell free DNA that has been reported as lasting an hour or less in 
blood – allowing for a real-time assessment of tumour DNA release at the time of 
sample collection [60]. cfDNA is believed to be released from cells through apoptosis, 
necrosis, and potentially active secretion, and this DNA will maintain genetic and 
epigenetic modifications present on their cell of origin [61]. Overall, the data on cfDNA 
indicates that these short fragments will reflect cell turnover processes at the time of 
sampling. 

1.4.5 Methylation to detect differences in cells of origin for tumour monitoring 
As discussed with other liquid biopsy assays, dying cells release pieces of 

fragmented DNA into circulation which retain the features of the cell of origin. Since all 
cell types have unique methylation patterns which remain stable even in cancer, there is 
the potential to determine the cell of origin on the basis of the methylation pattern of 
cell free DNA [59, 62]. In recent years, there has been more exploration into this field, 
using computational techniques to determine cell types of origin based on methylation 
patterns within samples. Cell type deconvolution algorithms can exploit the 
differentially methylated regions between cell types in order to infer the proportions of 
different cell types present within a sample [63]. Because tumour cells will maintain 
unique features depending on their origin, it is possible to use deconvolution in order to 
determine which cell types are shedding a higher proportion of circulating DNA. This 
has been shown in prostate cancer where patients who have successful treatment will 
show decreases in the levels of prostate cell free DNA compared to pre-treatment levels 
[64]. In addition to this, it has been shown that plasma cell free DNA methylation – 
when analysed by Methylated DNA Immunoprecipitation Sequencing (MeDIP-Seq) – 
can show enrichment in the same sites that are known to be hypermethylated in 
primary tumours of the same type, including pancreatic ductal adenocarcinoma 
(PDAC), colorectal carcinoma (CRC), AML, and breast, lung, renal, and bladder cancers 
[65]. Because cells have characteristic methylation patterns that relate to their cellular 
identity, changes in the methylation patterns of cell free DNA could therefore show a 



25 
 

wide array of issues within the body; deviations from the normal cellular composition 
can be an indicator of an increase in cell death originating from any part of the body, 
and can therefore determine the likely site of origin of a number of health issues [64]. 
Additionally, since these methods of cell type deconvolution give predictions of the 
proportion of circulating DNA originating from different cell types, they can be useful 
in estimating tumour burden [59]. Still, these methods which look at full methylation 
patterns of cells can be expensive and can sometimes require larger amounts of starting 
DNA. Therefore, using fewer loci for the analysis of methylation in ctDNA would be a 
more cost-effective and potentially clinically relevant method for monitoring ctDNA 
through methylation profiles.  
 
Aims: 
Given the current lack of treatment options for metastatic UM, as well as well as the 
potential importance of methylation in tumour growth and dissemination, we aimed to 
gain insight into the specific methylation events that may be driving UM towards 
metastasis, and to determine the ways in which methylation patterns may be important 
in determining outcomes in UM. The goal of this work was to offer new avenues for 
potential treatments in UM, along with determining whether these changes might be 
detectable in cell free DNA, which would allow us to monitor patients long after 
primary tumour treatment.  
In part 1 of this work, we aimed to detect the methylation changes that were occurring 
in UM patients, to see whether specific alterations might be associated with poor 
outcome.  
In part 2 of this project, the goal was to determine if the changes that were seen in UM 
patients could be recapitulated in UM cell lines. Further to this, we aimed to see 
whether changes induced by the DNA demethylating agent azacytidine were occurring 
in pathways that could be targeted pharmacologically in other ways, in order to open 
up new avenues to revisit for the treatment of metastatic UM. 
Finally, the goal was to see whether the changes in genomic DNA methylation could be 
tracked in cell free DNA from UM cells, and whether treatment with azacytidine had an 
effect on global methylation patterns in either genomic or cell free DNA.  
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Chapter 2. 
 
Ferrier, S. T., & Burnier, J. V. (2020). Novel Methylation Patterns Predict Outcome in 
Uveal Melanoma. Life, 10(10), 248. 
 
Linker to Article #1 
For this first portion of the project, we were interested in seeing whether there were 
specific changes in methylation that might promote metastasis and tumour progression 
in UM. We hypothesized that, because UM has a relatively low mutational burden, 
methylation events may be responsible for driving metastatic progression in this 
disease, and that UM cases that develop into metastatic disease would show a different 
pattern of DNA methylation. To examine this, we studied data from the TCGA 
database, which contains genetic, epigenetic, and transcriptomic data for many tumour 
types, including 80 UM samples. The idea behind this was to compare the methylation 
across UM cases to see whether methylation pattern alone is a good predictor of disease 
outcome, and if these changes led to alterations in gene expression. Finally, the goal of 
this work was to see whether there were potential pathways that are affected by 
methylation in UM that might point to therapeutic targets. In this work, we looked into 
specific genes and pathways modified by methylation in UM patients to see whether 
these particular changes could potentially allow for more targeted treatment of high-
risk UM, as well as to see whether a small number of methylation loci could stratify 
cases based on patient outcomes. 
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Abstract: Uveal melanoma (UM) is the most common intraocular tumour in adults. 
Despite effective local treatments, 50% of patients develop metastasis. Better ways to 
determine prognosis are needed as well as new therapeutic targets. Epigenetic changes 
are important events driving cancer progression; however, few studies exist on 
methylation changes in UM. Our aim was to identify methylation events associated 
with UM prognosis. Matched clinical, genetic, and methylation data for 80 UM cases 
were obtained from The Cancer Genome Atlas (TCGA). Top differentially methylated 
loci were sorted through hierarchical clustering based on methylation patterns, and 
these patterns were compared to tumour characteristics, genomic aberrations, and 
patient outcome. Hierarchical clustering revealed two distinct groups. These 
classifications effectively separated high and low-risk cases, with significant 
differences between groups in patient survival (p < 0.0001) and correlation with known 
prognostic factors. Major differences in methylation of specific genes, notably NFIA, 
HDAC4, and IL12RB2, were also seen. The methylation patterns identified in this study 
indicate potential novel prognostic indicators of UM and highlight the power of 
methylation changes in predicting outcome. The methylation events enriched in the 
high-risk group suggest that epigenetic modulating drugs may be useful in reducing 
metastatic potential, and that specific differentially methylated loci could act as 
biomarkers of therapeutic response. 
Keywords: epigenetics; DNA methylation; uveal melanoma; BAP1; prognostic 

markers; metastasis 
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1. Introduction 
Uveal melanoma (UM) is the most common primary intraocular tumour in adults and 
the most common non-skin form of melanoma, with a reported incidence of 5.1 cases per 
million in the US [1]. Unlike cutaneous melanoma (CM), UM arises from melanocytes 
located in the uveal tract, most commonly in the choroid, and displays different genomic 
mutations and molecular profile than the more common CM [2]. Despite effective 
methods for treating the primary tumour–either through local radiotherapy or less 
commonly enucleation [3]–there is currently no effective treatment for metastatic disease, 
which occurs in approximately 50% of patients regardless of primary ocular treatment 
[4]. Unfortunately, metastatic UM is associated with high mortality within 6–12 months. 
Prognostic factors of UM include features such as cell type, with a poorer prognosis in 
patients with epithelioid cell tumours and better prognosis for spindle cell tumours as 
well as tumour size. Additionally, tumours with increased mitotic activity, closed 
vascular loops in the tumour, increased tumour-infiltrating lymphocytes, and 
extrascleral extension all show poorer outcomes [5]. Genetically, UM is characterized by 
a set of chromosomal aberrations and somatic mutations. Most notably, monosomy in 
chromosome 3 is an important prognostic marker related to metastasis [5,6]. Copy 
number variations in chromosome 6 and 8 are also observed, with gain of chromosome 
8q being associated with poor prognosis [7]. More than 80% of UMs harbour mutually 
exclusive mutations in GNAQ or GNA11, which lead to constitutive activation of 
signaling pathways such as the Ras-ERK and PI3K/Akt/mTOR pathways. GNAQ and 
GNA11 mutations are initiating mutations in UM, and despite their presence in almost 
all of these tumours, the presence of these mutations is not generally related to the 
development of metastasis or to prognosis [8]. There are three mutations that have been 
shown to be associated with prognosis in UM; EIF1AX, SF3B1, and BAP1 mutations can 
be used to classify UMs into low, intermediate, and high-risk, respectively. EIF1AX 
mutations are generally an indicator of good prognosis and are associated with low risk 
of metastasis. SF3B1 mutations have been associated with late metastases, while BAP1 
mutations are associated with the development of early metastases [9]. While there is 
research on the genetic changes that underlie metastasis in UM, little is known about the 
mechanisms by which systemic progression occurs, and more work is needed to uncover 
the mechanisms through which the genetic aberrations seen in UM lead to metastasis. 
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DNA methylation is an important and well-studied epigenetic modification in mammals 
that is normally responsible for the regulation of gene expression, especially in 
developing cells. This process is regulated by DNA methyltransferases, which are 
responsible for maintaining DNA methylation on the genome. DNA methylation is 
associated with alterations in chromatin structure, and methylation occurring specifically 
on CpG islands is highly associated with the silencing of gene expression [10]. DNA 
methylation is recognized as an important event in cancer, where a pattern of global 
hypomethylation leading to genomic instability is often seen [11]. Along with this, many 
tumour types also show a specific pattern of hypermethylation at CpG islands which can 
be important in tumour progression, for example leading to the silencing of tumour 
suppressor genes [12]. While the mechanisms underlying tumour methylation are not 
fully understood, changes in methylation are maintained throughout cell replication and 
play an important role in the progression of multiple tumour types [13,14]. Because 
epigenetic processes such as DNA methylation are mitotically heritable, they can play 
similar roles as genetic alterations in the development of cancer, making them an 
important target in both prognostication and drug development. This is especially 
important as epigenetic events can confer growth advantages to cells by disrupting gene 
expression similarly to genetic events, but can exert its effects much more rapidly than 
mutations [15]. 
In UM, several known changes in promoter methylation have been studied, such as on 
the RASSF1A gene [16], and a global pattern of methylation has been associated with 
molecular subtype and overall prognosis [16,17]. Additionally, a recent study has shown 
that BAP1 knockdown in UM cells is associated with methylomic reprogramming in 
these cells, pointing to a link between the genetic mutations seen in UM and large scale 
changes in methylation pattern [18]. Despite these observations, few studies have 
investigated whether the changes in methylation pattern may contribute to the metastatic 
phenotype. As such, further investigation into the specific changes in methylation seen 
in these tumours are needed to more completely uncover the events that dictate outcome 
in UM and to uncover new therapeutic targets. Given the promise that epigenetic-
targeting agents have shown in many tumour types, either through targeting specific 
modifications directly or through targeting epigenetic regulators, the reversal of 
epigenetic alterations may be a promising avenue for preventing metastasis in UM 
[19,20]. Furthermore, monitoring the specific changes in UM methylation that are 
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associated with a high risk of metastasis would indicate tumour response to different 
therapeutic agents. This is particularly important given the high rate of metastasis in UM 
and its poor prognosis. 
In this study, we sought to investigate in detail potential epigenetic biomarkers in UM 
that could be related to prognosis. Using the Cancer Genome Atlas (TCGA) data, we were 
able to differentiate two groups with prognostically significant patterns of methylation, 
and to highlight some potential targets for high risk of metastasis in UM. We demonstrate 
the importance of specific methylation changes in UM on tumour progression by looking 
at both the overall promoter methylation pattern as well as at specific loci which are 
highly differentially methylated depending on the risk level of the patient. The data 
represents an important step in determining promising targets for better prognostication 
and treatment in this deadly ocular malignancy. 
 
2. Methods 
2.1. Dataset 
Raw methylation intensity values from the Illumina 450k methylation array were 
obtained directly from the TCGA legacy archive for 80 UM cases. Along with this, the 
TCGA biolinks package was used to extract extended clinical data, RNAseq, and copy 
number variation (CNV) files. The Illumina 450k array annotation was obtained with the 
information from hg19 human genome assembly to map the loci on the array to their 
genomic location. 
2.2. Removal of Poor-Quality Probes 
The Minfi program was used to read the raw IDAT files and to calculate the detection p 
value for every genomic position in each of the 80 samples. Positions with p values >0.01 
were discarded from further analysis to remove any probes where both the methylated 
and unmethylated channels reported background signal level, as determined by the 
negative control positions in the array. The mean detection p values across all samples 
were also calculated in order to ensure that there were no poor quality samples [21]. 
Probes that failed in one or more samples were removed from further analysis (total of 
6480 removed), as well as probes on sex chromosomes, in order to remove some of the 
variation in methylation pattern caused by sex differences (11,004 removed). A total of 
467,668 probes were kept for further analysis. 
 



31 
 

2.3. Normalization of Samples 
The normalization was performed through both Quantile and SWAN normalization for 
further comparison [22,23]. These values were compared to the raw data, obtained using 
the preprocessRaw function, which brings together the methylated and unmethylated 
channels into beta values without further normalization. Quality Control reports were 
produced using Minfi and the different methods of normalization were visually 
compared using these reports. 
2.4. Hierarchical Clustering of the Top Differentially Methylated Probes (DMPs) 
The standard deviation across samples for each probe was calculated, and they were 
subsequently sorted by degree of differential methylation, as defined by the points which 
had the highest standard deviation across samples. The top 10,000 of these DMPs were 
selected for further analysis. These probes were inputted into Minfi in order to perform 
hierarchical clustering. 
The results of this hierarchical clustering were compared to selected clinical and genetic 
data in order to determine whether the groups were clustering based on prognostically 
relevant data. The two groups were compared based on the sex and age of the 
individuals, survival and the development of metastatic UM, GNAQ, GNA11, and BAP1 
mutations, and CNVs. 
2.5. Analysis of DMPs between the Two Groups 
DMPs were also analysed using limma, which compared these DMPs across the 
previously determined groups from the hierarchical clustering, with the probes aligned 
to the hg38 human genome assembly. The highly differentially methylated probes, 
considered as those with a log fold change of ±1.5 or more in between the groups, were 
submitted into the DAVID Functional Annotation Clustering Tool. 
Custom JavaScript code was used to separate CpGs for genes of interest in order to gather 
the quantile normalized beta values for all DMPs on the CpGs associated with these genes 
in all cases. 
 
3. Results 
3.1. Similar Levels of Overall Methylation Are Seen in 80 Cases of UM through 
Analysis of TCGA Data 
A total of 80 UM cases from the TCGA were analysed for methylation profiling. Patient 
characteristics can be seen in Table 1. After removal of poor-quality probes and 
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normalization of data, the overall level of methylation at the remaining sites was 
analysed. Overall, the cases showed very similar levels of overall methylation, with an 
average ratio of intensities between methylated and unmethylated alleles (beta value) of 
0.48 (range = 0.42–0.5) (Figure 1). This suggests that any differences between these 
samples are not due to higher or lower overall methylation at all probes, but instead are 
caused by hypermethylation and hypomethylation at specific CpG islands. Of the probes 
studied, 1708 probes were found to have a log fold change value of at least 2.0 (range = 
2.00 to 4.73), while 785 probes were found to have log fold change values of -2.0 or less 
(range = -2.00 to 4.17). 
 

Table 1. Patient characteristics. 
Number of Patients 80 

Sex (M:F) 45:35 
Number of Deaths 24 

Age at diagnosis (average, years (range)) 62 (22–86) 
Follow up (average, days (range)) 767 (4–2600) 
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Figure 1. Total mean DNA methylation values for each patient sample (n = 80) as 
calculated by mean methylation beta values (ratio of intensities between methylated and 
unmethylated alleles) for all probes in the Illumina 450k methylation array. 

 
 

3.2. Unsupervised Clustering Analysis Reveals Two Main Methylation Patterns in 
This Cohort 
As overall degree of methylation was similar across cases (Figure 1), we aimed to 
determine whether patterns of methylation at specific sites would reveal important 
differences in the patient cohort. Unsupervised clustering of these 80 cases of UM based 
on the pattern of differential methylation revealed two major groups as shown in a heat 
map (Figure 2A) and principal component analysis (Figure 2B). 
 

 
Figure 2. Unsupervised clustering analysis of 80 Uveal Melanoma (UM) cases from 
TCGA. (A) Heatmap showing the top 10,000 loci for all the patients using quantile 
normalized beta values, with dark red being fully hypermethylated and dark blue being 
fully hypomethylated for each locus. (B) Principal component analysis for cases, labeled 
by case number and risk group (as determined by hierarchical clustering). 
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3.3. Methylation Patterns Are Significantly Associated with Outcome and Effectively 
Stratify Patients into High and Low Risk Groups 
Upon further investigation into these groups, no statistically significant differences were 
seen in clinical features that are generally prognostically insignificant, with similar M:F 
sex ratios (p = 0.822) and mean age at diagnosis (59 vs. 65 years, p = 0.423). In contrast, 
the two groups identified by unsupervised clustering analysis differed significantly in 
terms of outcome, and we therefore termed them “high-risk” and “low-risk” based on 
the clinical outcomes of the patients in each group (Table 2). Importantly, overall survival 
varied very significantly between the two groups as shown by a Kaplan-Meier curve 
(Figure 3). While 23 (58%) of the 40 high risk patients developed metastasis, only 4 (10%) 
of the low risk patients did (p < 0.00001, Table 2). Of these 4 patients, only 1 died, while 
22 of 23 metastatic patients in the high-risk group died (p < 0.00001; average survival of 
1.79 years before death from metastatic UM, Table 2). 
 
 

Table 2. Patient characteristics by group. 
 Low-Risk High-Risk  

Number of Patients 40 40 
 

Sex (M:F) 22:18 23:17 * Χ2: 0.0508, p = 
0.822 

Age at diagnosis (average, years 
(range)) 

59 (22–79) 65 (41–86) ** p = 0.423 

Follow up (average, days (range)) 973 (6–
2600) 

560 (4–
1862) 

 

Metastasis 4 23 * Χ2: 20.18, p < 
0.00001 

Death (from metastasis or 
unspecified) 

1 23 * Χ2: 28.81, p < 
0.00001 

* Chi Square test: n = 80 df = 1, ** Fisher’s exact test. 
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Figure 3. Comparison of the two groups of patients determined by hierarchical 
clustering. Kaplan–Meier survival function for the patients based on methylation risk 
groupings. 

 
3.4. The High and Low-Risk Groups Differed in Clinical and Histopathological 
Features of the Ocular Tumours 
Like in many malignancies, clinical and histopathological features correlate with patient 
outcome. In UM, increasing ocular tumour size has been shown to be associated with 
decreased survival [5]. Moreover, UM can be classified according to cell type: epithelioid, 
spindle, or mixed cell tumours. While spindle cell tumours have better prognosis, 
tumours composed of epithelioid cells are associated with worse prognosis [5]. As such, 
metastatic UM tumours tend to be predominately composed of epithelioid- or mixed-cell 
populations. Here, the two groups identified in the methylation analysis were compared 
on the basis of tumour features, including size and cell type. In terms of cell type, the 
clinical information from TCGA was classified by approximate percentages for each cell 
type as well as by the number of epithelioid or spindle cell predominant tumours in each 
group. While both groups contained epithelioid and spindle tumours, the high-risk 
group showed a higher proportion of epithelioid cell type tumours (20 vs. 3 epithelioid 
or epithelioid-predominant tumours). In terms of tumour size, tumours of the low-risk 
group were smaller in both thickness (average thickness = 9.99 mm, range = 5–15.5 vs. 
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10.85 mm, range = 4–16) and average basal diameter (average diameter = 16.15 mm, range 
= 7.8–23.6 vs. 17.72 mm, range = 10.6–25), with only diameter showing significance 
between groups (p < 0.05, Table 3). The number of tumours with closed connective loops 
were also significantly different between groups (p < 0.0005, Table 3). 
 

Table 3. Tumour characteristics by group. 
 

Low-Risk  High-Risk  Significance 
Tumour thickness (mm) 9.99 10.9 p = 0.171 
Tumour diameter (mm) 16.15 17.72 p = 0.044 

Cell type (% spindle:epithelioid) ~80:20 ~50:50  
Presence of closed connective loops 13 30 X2 = 14.5, p = 0.00013 

Extraocular extension 2 5 X2 = 1.4, p = 0.23 

 

 

3.5. Methylation Stratification Highly Correlated with Genomic Factors Associated 
with Metastasis 
Given the relatively short follow up (average of 2.35 years for the patients who did not 
succumb to metastasis), it is not possible to determine which patients would develop 
metastasis. Because of this, we compared our methylation groups to known markers of 
poor prognosis, such as mutations and chromosomal aberrations, to determine the 
likelihood of metastasis (Figure 4A). 
The occurrence of GNAQ and GNA11 mutations, which are initiating events in UM and 
not generally believed to be prognostically significant, differed between the two groups, 
with more GNAQ mutations in the low risk group (25 vs. 15, p < 0.05) and slightly more 
GNA11 mutations in the high risk group (22 vs. 14, p = 0.07, Table 4). BAP1 mutations are 
the most prognostically significant genomic alteration in UM, and are associated with 
high risk of metastasis [24]. The presence of a BAP1 mutation was significantly associated 
with survival in this cohort (p = 0.00022, Figure 4B). The two groups differed by the 
number of cases with presence/absence of a BAP1 mutation (p < 0.00001), with all 
confirmed BAP1 mutations (24/80) found in the high-risk group (Figure 4A). 
In addition to BAP1 mutations, chromosomal changes are significantly associated with 
risk of metastasis and survival in UM [7]. Monosomy 3 is associated with high risk of 
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metastasis and is the strongest cytogenetic indicator to predict UM metastasis [6,7]. 
Indeed, loss of chromosome 3 was significantly associated with survival (Figure 4B). Loss 
of chromosome 3 was significantly more common in the high-risk group than in the low 
risk group (35 cases vs. 3 cases, p < 0.00001) (Table 4, Figure 4A). 
Moreover, amplification of chromosome 8q, which is found in 40% of UMs, is also 
associated with poor prognosis [6]. Cases with gains in chromosome 8q in this cohort 
were associated with high-risk grouping (p < 0.00001), while gain of chromosome 6p were 
associated with the low-risk grouping (p < 0.00001), Table 4). Another frequent alteration 
is chromosome 1p loss (found in 25% of UMs), which occurs frequently with monosomy 
3. Loss of chromosome 1p is not associated with decreased disease-free survival except 
in instances where this loss is combined with a loss of chromosome 3 [7]. Loss of 
chromosome 1 was similar between risk groupings (Table 4), although it was more 
commonly seen alongside a loss of chromosome 3 in the high-risk group (10 cases of 
concurrent loss of chromosomes 1 and 3 in the high-risk group vs. 1 case in the low-risk 
group). 
 
 

Table 4. Mutations and chromosomal aberrations by group. 
Genetic Alteration Low-Risk  High-Risk  Significance 

GNAQ mutations 25 15 * Χ2: 5, p = 0.0253 
GNA11 mutations 14 22 * Χ2: 3.23, p = 0.0722 

BAP1 mutation 0 35 ** p < 0.00001  
Chromosome 3 loss 3 35 * Χ2: 51.33, p < 0.00001 

Chromosome 6p gain 33 12 * Χ2: 22.4, p < 0.00001 
Chromosome 8q gain 23 37 * Χ2: 13.06 p = 0.0003 
Chromosome 1 loss 7 11 * Χ2: 1.147, p = 0.284 

*Chi Square test: n = 80 df = 1, **Fisher’s exact test. 
 
 
 

Importantly, all cases in the high-risk group had at least one important marker of poor 
outcome (either chromosome 3 loss, confirmed BAP1 mutation, and/or development of 
metastasis) (Figure 4A) [7,24]. Additionally, the methylation groupings were more 
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accurate in predicting death from metastasis in this cohort than other known prognostic 
indicators of UM, including chromosome 3 loss, BAP1 mutations, and clinical features 
(Figure 4B). 
 

 
Figure 4. (A) Prognostic factors (BAP1 mutation, chromosome 3 loss, and development 
of metastasis) separated by risk grouping. Total number of these prognostically 
significant factors present for each patient represented in yellow scale. Death (due to 
confirmed metastatic disease or deaths with no specified cause) is also shown. Dark grey 
represents the occurrence of the event. (B) Comparison of survival for major prognostic 
factors BAP1 (p = 2.47 × 10−6), chromosome 3 loss (p = 2.98 × 10−6), and methylation risk 
groupings (p = 5.35 × 10−8). 

 
 
 

3.6. Gene Ontology (GO) Analysis Reveals Enrichment for Genes Involved in Signal 
Transduction Pathways in the High-Risk Group 
We conducted a GO analysis to determine gene classes that were commonly differentially 
methylated between the two risk groups. Our analysis revealed that the most significant 
DMPs were especially enriched for genes involved in signal transduction, including 
genes associated with pathways in cancer (KEGG pathways) (Figure 5A, Table S1) and in 
tumour suppressor genes (Figure 5A, Table S2). In the high-risk group, DAVID GO 
revealed that many of the genes with the highest log fold change in methylation levels 
between the two groups were involved in signal transduction such as for mTOR 
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signaling, PI3K/Akt signaling, and Ras signaling (Figure 5B, Tables S3–S5). Along with 
this, the analysis showed hypermethylation of a number of genes involved in the negative 
regulation of ERK1/2 in the high-risk group, as seen by analysis of DAVID biological 
process GO (Table S6). This category includes the hypermethylation of 10 probes 
associated with in the PTEN gene in the high-risk group (Table S7).  
 

 
Figure 5. Selected list from the most highly affected Gene Ontology (GO) pathways 
between the two groups based on differentially methylated genes (log fold change of 1.5× 
or more between the high and low risk groups) for (A) KEGG pathways and (B) GO 
biological process classes. Pathways sorted by number of genes in each class, analysis 
done in DAVID using EASE score of 0.05. 

 
 
 

3.7. Hypermethylation of Tumour Suppressor Genes and Transcriptional and 
Epigenetic Regulators Are Seen in the High-Risk Group 
Among the many DMPs, several tumour suppressor genes and transcriptional regulators 
appear to be methylated in the high-risk group. Additionally, genes coding for one of the 
IL12 receptor subunits, IL12RB2, were found to be hypermethylated in the high-risk 
group (Table S8). Of interest, a high degree of differential methylation between the two 
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groups was seen at nine probes (with a log fold change of more than ±1.5) thought to be 
involved in coding of NFIA (Figure 6A, Table S9). RASSF1, a gene known to be 
inactivated through methylation in UM, was also found to be highly differentially 
methylated at multiple probes between the high- and low-risk groups (Table S10). 
Similarly, hypermethylation in the high-risk group in multiple ZNF genes, especially in 
ZNF358 (three probes with a log FC > 1.5, range: 3.49–4.37, Figure 6B) and ZNF532 (nine 
probes with a log FC > 1.5, range: 1.63–4.04) was seen (Tables S11 and S12). 
 
 
 

 
Figure 6. Box and whisker plots of average Beta values for all cases across selected highly 
differentially methylated probes, separated by high and low risk group, for (A) the NFIA 
gene (designated in blue and orange), (B) the ZNF358 gene (designated in blue, orange, 
and grey) (C) the HDAC4 gene (designated in blue, orange, and grey). Full list of 
differentially methylated probes for each of these genes available in supplementary 
Tables S9, S11, and S13. 
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3.8. Changes in Methylation are Found in Genes with a Role in Epigenetic 
Modifications 
HDAC inhibitors are currently being investigated in UM for their potential to reverse the 
phenotypic effects of loss of BAP1 expression [25]. Interestingly, 49 probes associated 
with HDAC were found to be hypomethylated in the high-risk group, including probes 
with a log fold change of up to 4.08 between the two risk groups (sample of differentially 
methylated CpGs, Figure 6C, Table S13). 
Moreover, we assessed the RNA sequencing data to determine if methylation at these 
genes may be associated with differences in gene expression, which showed that for 
certain CpG sites for these genes, hypermethylation was associated with reduced 
expression (Figure 7). 
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Figure 7. Degree of methylation at selected loci across all cases (n = 80), sorted in order 
of increasing gene expression (lowest to highest gene expression) for (A) the NFIA gene 
(B) the HDAC4 gene and (C) the IL12RB2 gene. For each probe, *p < 0.05, **p < 0.01, ***p 
< 0.001. Selected methylation beta values vs. mRNA expression z-scores relative to all 
samples (mRNA expression data obtained through the cBioPortal for Cancer Genomics 
as log RNA Seq V2 RSEM) for (D) the NFIA gene (E) the HDAC4 gene, and (F) the IL12RB2 
gene. 

 
 

4. Discussion 
In this study, we conducted an analysis to investigate potential epigenetic biomarkers in 
UM that could be related to prognosis. Unsupervised clustering analysis of 80 UM cases 
showed separation of patients into two groups based on methylation changes. These 
groups were very significantly associated with outcome, highlighting the importance of 
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methylation profiling in this tumour type. The data suggest that differential methylation 
may act as a predictor of prognosis in UM (Figure 3). 
A loss of function mutation in BAP1 is a very strong predictor of metastasis, and was 
found in 24 cases of this cohort, all of which were placed into the high-risk group. All 
cases in the high-risk group had one or more important markers of poor outcome (either 
confirmed metastatic UM, chromosome 3 loss, and/or confirmed BAP1 mutation), 
suggesting that these cases all show high metastatic potential as compared to the cases 
designated into the low-risk group (Figure 4). 
Additionally, the methylation groupings were more accurate in predicting the 
development of metastasis in this cohort than other significant markers of UM 
progression, including chromosome 3 loss, BAP1 mutations, and tumour features used 
to predict prognosis (Figure 4B). This is clinically significant because of the limitations of 
known prognostic markers in UM. BAP1 mutations are difficult to detect as they can 
occur on multiple locations in the gene, therefore requiring whole-gene sequencing. 
While immunohistochemistry has been used for BAP1 protein expression profiling, 
further work remains to be done in this field to confirm the usefulness of BAP1 IHC for 
prognostication in UM [26]. Additionally, while there are clinical features such as 
epithelioid cell type, presence of lymphocytic infiltrate, increased mitotic activity, and 
tumour size that are useful in prognostication, these features can show intra-tumour 
heterogeneity and depend on the biopsy specimen that is analysed [27]. As such, 
methylation patterns may provide a powerful alternative or complementary biomarker 
of prognosis, requiring small amounts of input DNA. Furthermore, techniques such as 
liquid biopsy are gaining more interest in detection of tumour biomarkers, and even with 
fragmented and low abundance DNA, can be used to detect methylation patterns [28]. 
Our group is currently developing such an approach in UM. In recent years, gene 
expression profiling (GEP)-based testing has become more important for prognostication 
of UM, based on the development of a 15-gene panel validated by Onken et al. This test 
has been shown to be a strong indicator of prognosis, dividing 446/459 of studied 
patients into class 1 and class 2 GEP, with 1.1% of class 1 patients and 25.9% of class 2 
patients developing metastases after a median follow-up of 17.4 months [29]. 
Three of the four patients in the low-risk group who developed metastasis were alive as 
of the most recent updates in the TCGA database. One of these three patients did not 
have metastasis at the time of the study, although they had developed metastasis at the 
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time of the latest update. The fourth patient was the only patient in the low-risk group 
who died from metastatic disease. Incidentally, this patient did not show either a BAP1 
or SF3B1 mutation, nor did they have any changes in copy number for chromosome 3, all 
of which would be expected signs of poor prognosis. For the remaining three patients in 
the low risk group who developed metastasis, two showed SF3B1 mutations, which have 
been associated with the development of late metastases, suggesting that methylation 
patterns are altered in patients who develop earlier metastases, but may be different in 
patients who will develop later metastases. Supporting this, 15 of the 18 patients with 
SF3B1 mutations were classified in the low-risk group. As none of the patients in the low-
risk group who developed metastasis showed BAP1 mutations or copy number 
alterations at chromosome 3, other factors may be contributing to metastasis in these 
patients and warrant further examination. 
For the patients in the high-risk grouping, metastasis tended to occur early (average of 
1.86 years), and was generally, but not always, associated with the presence of alterations 
in chromosome 3 or BAP1 mutations. As these features are associated with early 
metastasis, this is a potential indicator that there are alterations in methylation that may 
promote the development of metastasis through changes in gene expression. 
Additionally, as inactivating BAP1 mutations can occur across multiple regions of the 
gene, it is possible that not all BAP1 mutations have been detected in this study, and that 
changes in methylation in the high risk group may be related to changes in the BAP1 gene 
that were not discovered in the TCGA study. 
We conducted a GO analysis to determine which genes are most commonly differentially 
methylated in the high-risk group. Differential methylation at a number of genes 
involved in cancer (KEGG pathways) and for tumour suppressors (Tables S1 and S2) may 
point to differential regulation of cell proliferation and tumour dissemination occurring 
through changes in methylation in UM in genes that are not mutated. Our analysis 
revealed differential methylation in multiple signaling pathways that have specifically 
been involved in UM progression (Figure 5), including the PI3K/Akt signaling pathway 
(Figure 5A, KEGG pathways, Table S4), which has been implicated in UM [30]. 
Particularly of interest was the hypermethylation of a number of genes involved in the 
negative regulation of ERK1/2 in the high-risk group (Figure 5), and the 
hypermethylation of 10 probes associated with the PTEN gene in the high-risk group 
(Table S7). PTEN has previously been demonstrated to act as a tumour suppressor in UM, 
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and is known to have a role in the regulation of both the PI3K/Akt and ERK1/2 pathways 
[31]. While previous data has suggested that genomic alterations are responsible for 
changes in PTEN signaling in UM, methylation may also play a role in regulating PTEN 
expression [32]. While the MAPK pathway has been shown to be commonly activated in 
UM, this effect does not occur through mutations in Ras genes [33]. Instead, the 
constitutive activation of GNAQ/GNA11 is believed to lead to the activation of this 
signaling cascade [34]. Despite the lack of mutations in Ras family genes, the differential 
methylation at numerous genes involved in Ras signaling (Figure 5A, Table S5) indicate 
a potential impact of methylation on signaling in this pathway in UM. In the same vein, 
the GNAQ/GNA11 mutations in UM lead to increased phosphorylation of ERK, driving 
growth in UM cells through the Ras/Raf/MEK/ERK pathway [35]. The 
hypermethylation of multiple genes involved in the negative regulation of ERK1/2 
signaling in the high-risk group implies the existence of alternative mechanisms that 
might also be working to increase ERK activation in UM. Along with this, UM cells show 
upregulation of PI3K/Akt/mTOR pathway, and the methylation of genes involved in 
mTOR and PI3K signaling (Figure 5A, Tables S3 and S4) points to yet another example of 
a signaling pathway known to be altered in UM potentially being epigenetically 
regulated to some extent. Additionally, genes coding for one of the IL12 receptor 
subunits, IL12RB2, were found to be hypermethylated in the high-risk group. IL12RB2 
forms a receptor with high affinity for IL12 along with IL12RB1, leading to activation of 
signaling. IL12RB2 is the subunit in the IL12 receptor that is required for IL12-dependent 
signaling [36]. Hypermethylation at these sites in the high-risk group may suggest 
decreased receptor activity in the high-risk cases, especially given that hypermethylation 
was associated with reduced gene expression in these cases (Figure 7C,F). IL-12 has 
shown anti-tumour activity in other cancer types. In lung cancer cell lines that are 
negative for IL12RB2, use of the demethylating agent 5-aza-deoxycytidine was able to 
restore expression of the receptor [36]. Additionally, IL12RB2 knockout mice have been 
shown to develop spontaneous tumours (B cell and lung epithelial), and restoring the 
IL12RB2 leads to reduction of these tumours (in terms of proliferation, size, and 
microvessel formation) [37]. Endogenous IL-12 was shown to exert antitumour effects 
only in IL12RB2+ tumours, suggesting that changes in gene expression associated with 
DNA methylation may also have an impact on host antitumour response mechanisms. 
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Hypermethylation at genes encoding its receptor could point to a new therapeutic avenue 
in UM [38]. 
While large-scale epigenetic changes have been documented in UM tumours, and these 
changes have been significantly related to prognosis, there are currently no approved 
treatments using these agents in UM. In vitro, treatment with epigenetic modifying drugs 
has been shown to reduce growth and invasiveness in UM cell lines, and decitabine (a 
DNMT inhibitor) in combination with MEK inhibition has been shown to suppress 
growth in UM cells [39,40]. Additionally, decitabine has been used safely in clinical trials 
via hepatic arterial infusion in patients with unresectable liver metastases 
(NCT02316028), which is promising in the context of high risk UM patients [41]. 
While these agents hold promise, identification of the exact methylation events 
responsible for development of metastatic disease are needed to uncover clinical targets. 
Methylation of specific genes likely has significant impact on gene expression in UM, 
either through direct silencing or through affecting different pathways such as histone 
acetylation or ubiquitination. For example, hypermethylation of apoptosis-related genes 
and hypomethylation of growth promoting genes in the high-risk group may indicate 
potential targets for therapeutic avenues to explore. In our study, the specific DMPs 
associated with NFIA, HDAC4, and IL12RB2 correlated with the level of gene expression 
of these genes as seen on RNA sequencing data (Figure 7), with hypermethylation at these 
probes being associated with lower expression of transcripts for these genes [42,43]. 
Additionally, genes with very consistent differences in methylation between the two 
groups in this study such as NFIA and HDAC4 may be useful prognostic indicators for 
UM, and their methylation and expression patterns warrant further study. Because these 
genes appear to be epigenetically regulated in UM, the use of epigenetic modifying drugs 
could be a powerful strategy. This is consistent with the findings of Field et al. [18], 
showing that many specific genes and functional pathways are altered through 
methylation in certain UM cases, and that this information may help in the future to find 
potential therapeutic avenues for UM patients that have a high risk of developing 
metastases. As suggested, BAP1 mutations seem to be importantly associated with the 
altered methylation patterns, though the lack of BAP1 mutations in some patients in the 
high-risk group implies that there are also potentially other events that can lead to the 
same downstream effects on methylation patterns. 
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Among the many DMPs, one of the most highly differentially methylated genes was 
found to be NFIA. Since this gene is ubiquitously expressed in many tissues [44], this 
significant difference in methylation is of interest. We identified hypermethylation at 
CpG shores and islands along with hypomethylation at CpG shelves in the high-risk 
cases, suggesting that methylation may be impacting gene expression of NFIA (Figure 
7A,D). The NFIA gene encodes a member of the nuclear factor 1 (NF1) family of 
transcription factors, and has been associated with cancer prognosis in some cancers, 
such as astrocytomas [45], and may be associated positively or negatively with prognosis 
depending on the tumour type [46]. NF1 family genes have been shown to play a role in 
epigenetic regulation, via remodeling of chromatin structure to alter gene expression. 
Depending on the tumour type, NF1 genes may act as either an oncogene or tumour 
suppressor, potentially through their regulatory effects on gene expression [46]. The high 
degree of differential methylation of this gene in the high-risk group suggests 
methylation of the NFIA gene as both a potential biomarker and therapeutic target in 
UM. In this cohort, the most highly differentially methylated NFIA probes were also fully 
segregated based on risk group, highlighting that methylation of this single gene may be 
able to classify patients into high and low-risk groups (Figure 6A). Our data show that, 
for these two loci, all cases in the high-risk group had methylation beta values above 0.5, 
and all cases in the low-risk group had methylation beta values below 0.5 (average of 0.83 
vs. 0.23 for the first DMP and average of 0.83 vs. 0.31 for the second DMP). 
RASSF1 was also found to be highly differentially methylated at multiple probes between 
the high and low-risk groups (Table S10). This gene has been investigated in UM and has 
been shown to be inactivated through methylation. Induction of RASSF1 expression has 
been shown to reduce tumorigenicity of UM cells in vitro [47]. Previously, 5-aza-2-
deoxycytidine was shown to reverse RASSF1 methylation in a UM cell line, suggesting 
that the presence of hypermethylation in this region is a potentially reversible change that 
increases tumorigenicity in UM [47]. 
Zinc finger (ZNF) proteins are gaining interest in cancer studies due to their potential 
roles as either tumour suppressors or oncogenes [48]. In the present study, 
hypermethylation was seen in multiple ZNF genes in the high-risk group, especially 
ZNF358 (three probes with a log FC > 1.5, range: 3.49–4.37) and ZNF532 (nine probes 
with a log FC > 1.5, range: 1.63–4.04). ZNFs can function as tumour suppressors, and are 
inactivated in some tumour types through promoter hypermethylation [49]. ZNF358 
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specifically is expressed in neural folds during neural crest differentiation, and acts as a 
transcription factor [50]. Similarly to NFIA, multiple probes for ZNF358 segregate very 
strongly by risk groupings (Figure 6B). Overall, these large-scale differences in 
methylation of sites associated with these ZNFs suggest the potential of methylation at 
these sites as a biomarker of disease progression, as well as a target for epigenetic 
modifying drugs. 
HDAC inhibitors are currently of strong clinical interest in UM due to their potential to 
reverse the phenotypic effects of loss of BAP1 expression, specifically inducing growth 
arrest and differentiation in UM [25]. Additionally, recent work by Kuznetsov et al. noted 
a relationship between BAP1 loss and HDAC4, where BAP1 mutant UM cells showed a 
change in HDAC4 expression pattern from cytoplasmic to nuclear. It was hypothesized 
that this change was at least partially responsible for restricting the function of HDAC4 
in these cells [51]. This furthers the idea that HDAC4 specifically might be an important 
histone deacetylase in UM progression. In our analysis, 49 probes associated with HDAC 
were found to be hypomethylated in the high-risk group, including probes with a log 
fold change of up to 4.08 between the two risk groups (sample of differentially 
methylated CpGs, Figure 6C). Of note, hypomethylation of several sites associated with 
HDAC4 was also seen. While current studies involving use of valproic acid, an HDAC 
inhibitor, as adjuvant therapy in UM are underway (NCT02068586), inhibitors which 
selectively target HDAC4 should also be investigated to determine whether all HDAC 
inhibitors are equally promising options as possible adjuvant treatments in UM. 
Given the relatively short patient follow up, this study was not able to show a pattern of 
methylation that predicts late metastasis. Further studies with longer follow up times 
should be performed to determine whether late metastasis shows a separate methylation 
pattern. 
 
 
5. Conclusions 
To conclude, patterns of DNA methylation in this cohort were significantly related to 
prognosis. Our analysis reveals that hierarchical clustering of methylation values 
separates 80 UM cases into two major groups that differ very significantly in terms of the 
development of metastasis and overall survival. Additionally, there are very significant 
differences between the two groups in methylation of specific genes known to be 
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important in UM and in cancer progression in general, including PTEN, NFIA, IL12RB2, 
RASSF1, and HDAC4. These observed changes point to a role of methylation analysis, 
both for wide scale changes and for individual loci, as being potentially useful for 
prognostication of patients as well as offering insight into the potentially reversible 
changes that are driving UM towards a metastatic phenotype. Furthermore, the 
observation that specific loci were able to effectively separate the two groups in the same 
manner as the hierarchical clustering based on 10,000 loci suggests that changes in 
methylation may be observable in samples that contain very small amounts of DNA. 
Given the high rate of metastasis and its associated poor prognosis, such data provide 
important insight into novel and clinically useful biomarkers and therapeutic targets in 
UM. 
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Chapter 3. 
 
Linker to Article #2 
In Chapter 2, we presented compelling evidence for a correlation between methylation 
patterns and patient outcome in UM. Our next goal was twofold: (1) to see whether 
these changes could be potentially monitored in patients through liquid biopsy, and (2) 
to determine whether specific changes in methylation could be reversed using DNA 
demethylating agents. To address these questions, we sought to determine whether 
changes in genomic DNA methylation could be successfully tracked using cell free 
DNA in an in-vitro system, and whether the methylation changes occurred in specific 
pathways that may indicate potential therapeutic targets. Changes in methylation were 
observed by treating the cells with different doses of Azacytidine (an epigenetic 
modifier), and then analyzing genomic and cell free DNA using methylation arrays. To 
represent different patient populations, the in-vitro work was performed in a panel of 
four human UM cells: a primary UM cell line that expresses the BAP1 protein (MP41), a 
primary cell line with loss of BAP1 protein expression (MP46), and a set of paired 
primary and metastatic UM cell lines (Mel270 and OMM2.5, respectively). Methylation 
profiling was using Illumina MethylationEPIC arrays (Genome Quebec), and changes in 
our in vitro model were compared to the data generated in Chapter 2. Ultimately we 
aimed to determine whether the DNA methylation patterns examined in patients were 
recapitulated in cell lines, and whether these changes could be reverted to “lower risk” 
patterns through treatment with DNMT inhibitors. Finally, the goal of this work was to 
see whether DNMT inhibitor treatment would elucidate further avenues for UM 
treatment with drugs targeting the specific altered molecular pathways. 
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Abstract:  
Background: Uveal melanoma (UM) is the most common primary intraocular tumour in 
adults, but despite effective local treatment, patient outcomes have not improved in 
many decades. Approximately 50% of patients develop metastasis, which is often 
associated with loss of BAP1 expression in the tumour. Epigenetic changes are an 
important factor in cancer progression, potentially leading to major alterations in gene 
expression. We have previously demonstrated differential methylation profiles 
associated with metastatic risk in UM patients, and separately shown that cell-free DNA 
(cfDNA) from a blood-based liquid biopsy can be tracked in patients. Here, we aimed to 
determine whether the specific changes in methylation profiles could be altered using a 
DNA methyltransferase (DNMT) inhibitor in UM cell lines, and whether these could be 
tracked through cfDNA.  
Methods: To determine the effect of an epigenetic modifying drug, four primary and 
metastatic UM cell lines (primary: MP41, MP46; matched primary and metastatic: 
Mel270, and OMM2.5) were treated with different concentrations of azacytidine 
(DNMT inhibitor) and analysed for cell proliferation, colony formation, and BAP1 
protein expression. Genomic and cfDNA methylation from untreated and treated cells 
was profiled by Illumina MethylationEPIC arrays, and results of the arrays were 
analysed using hierarchical clustering, principal component analysis, and bumphunter 
to uncover alterations in methylation patterns across the genome.  
Results: In all UM cell lines, azacytidine treatment resulted in a dose-dependent 
reduction in proliferation at higher concentrations. Low concentrations of azacytidine  
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significantly affected colony formation in all cell lines except for the metastatic 
OMM2.5, which only showed significant effects at higher doses. Methylation profiling 
revealed differences in methylation patterns between cell lines depending on BAP1 
expression status, while matched primary and metastatic cell lines from the same 
patient showed very similar patterns. Azacytidine treatment led to significant changes 
in methylation at higher concentrations, and alterations were seen in pathways known 
to be important in UM progression, such as PI3K/Akt signaling and MAPK signaling, 
as well as in pathways involved in cancer progression more generally, such as in the 
regulation of stemlike potential and pathways regulating cell motility and invasion. 
Finally, cfDNA maintained the same pattern of methylation seen in genomic DNA.  
Conclusion: Azacytidine treatment resulted in anti-proliferative and anti-clonogenic 
effects on primary and metastatic UM cells. Moreover, methylation profiling revealed 
changes affecting pathways important in UM cell proliferation and tumorigenesis. 
Importantly, the methylation patterns in genomic DNA were maintained in cfDNA, 
suggesting that liquid biopsy-based methylated ctDNA monitoring could reflect the 
changes seen in the tumour cell of origin. The effects in cell lines combined with the 
specific changes in methylation of molecular pathways points to the potential for 
DNMT inhibitors to be used in combination with other treatments targeting specific 
pathways in UM.  
 
1. Introduction  
Uveal Melanoma (UM) is the most common primary intraocular tumour in adults, and 
the most common non-cutaneous melanoma, with a reported incidence of 5.1 cases per 
million per year in the US and 3.75 cases per million in Canada [1, 2]. While effective 
local treatments – including radiation, resection, and enucleation – exist for the primary 
tumour, there is currently no effective treatment for UM metastasis, which occurs in 
almost 50% of patients and is fatal [2]. UM metastasis occurs most frequently to the 
liver, with ~90% of patients having liver metastases at the time of death from metastatic 
disease, but can also occur in the lungs and bones [3]. While many attempts have been 
made to manage metastatic UM, including various chemotherapeutic agents, liver-  
directed therapies, and MEK inhibitors amongst others, there is currently no treatment 
for UM that can extend life significantly once metastasis has occurred [3, 4].  
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UM is characterized by initiating mutations in the GNAQ or GNA11 genes in the 
majority of patients, with alterations in the Ras-Raf-MEK-ERK-MAPK cascade leading 
to proliferation of tumour cells [3, 5]. Additionally, there are also mutations associated 
with prognosis, such as in EIF1AX, SF3B1, and BAP1, which are linked to low, moderate 
and high risk of metastasis, respectively [6]. As UM tumours are associated with a 
relatively low mutational burden – especially when compared to their cutaneous 
counterpart – there are likely other genomic events that are driving tumour progression 
and metastasis in UM [7]. Indeed, alterations in methylation have been demonstrated to 
be associated with outcome in UM patients, and we have previously shown that specific 
pathways are altered through methylation in UM and may be useful for developing 
targeted therapies [8].  
Methylation – the addition of a methyl group to cytosine residues that precede 
guanosines in DNA sequences – is an epigenetic modification that has a profound 
impact on gene expression and is known to be significantly altered in many cancers [9]. 
Cancer is often marked by a pattern of global hypomethylation leading to genomic 
instability paired with specific hypermethylation of certain genes such as tumour 
suppressors [10]. Hypermethylation at CpG islands within the promoter regions of 
genes, specifically at transcription start sites, is highly associated with transcriptional 
silencing [9, 11]. In tumours, this can lead to decreased expression of tumour suppressor 
genes along with other genes, leading to unregulated cellular proliferation and 
potentially triggering genomic events that drive tumour growth and dissemination [12]. 
DNA methylation is catalyzed by DNA methyltransferases (DNMTs), which are 
responsible for regulating the methylation levels on the DNA sequence. This action may 
be altered through the use of drugs known as DNMT inhibitors, which can act on the 
different classes of DNMTs to reduce DNA methylation. Included in this list is 
azacytidine, a nucleoside analog of cytidine that acts as a general DNMT inhibitor, 
blocking all classes of DNMTs.  
Previous work has shown that there are large scale alterations in methylation in UM 
associated with outcome [6]. Indeed, our recent study revealed patterns that are 
associated with prognosis and specific genomic pathways altered in UM patients  
through methylation [6, 8]. However, it remains unclear how treatment with DNMT 
inhibitors may impact UM cells, as different epigenetic and genetic profiles in these 
cells may lead to different treatment responses. Specifically, loss of BAP1 protein 
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expression has also been associated with large changes in methylation profile in UM, 
and work by Field et. al has suggested that BAP1 may be epigenetically regulated in 
UM [13].  
While DNMT inhibitors in isolation are not an effective treatment option for UM [14], 
they may have the potential to alter methylation profiles in a manner that makes these 
tumours more amenable to pre-existing therapies. Understanding the molecular 
mechanisms underlying the epigenetic changes associated with DNMT inhibitor 
treatment may allow us to identify specific combinations of drugs that could be used in 
conjunction with DNMT inhibition. Indeed, decitabine – a DNMT inhibitor – has 
recently been shown to limit escape from MEK inhibition in UM cell lines, pointing to 
the possibility of DNMT inhibition in combination with MEK inhibition as adjuvant 
treatment in UM [15].  
Cell-free DNA (cfDNA) is a form of circulating DNA that has a very short half-life in 
circulation [16] . This DNA can originate as a result of cell death or through active 
secretion from normal cells or from tumour cells, where it is referred to as circulating 
tumour DNA (ctDNA) [17]. ctDNA can be isolated from blood and other fluids (liquid 
biopsy), offering an important alternative to traditional tissue biopsy. In UM, serial 
biopsies are not routinely performed and disease progression is often detected only 
after macroscopic signs of metastatic disease; as such, non-invasive liquid biopsy-based 
sampling could provide very powerful way to detect and monitor disease. ctDNA has 
been detected in multiple tumour types to monitor disease progression and treatment 
response even in cases with relatively low disease burden (reviewed in Nature Reviews 
Clinical Oncology and Molecular Diagnosis and Therapy) [18, 19], and indeed our 
group has shown that tracking ctDNA based on initiating mutations in GNAQ and 
GNA11 may be a biomarker in UM [20]. However, these initiating mutations are not 
related to patient outcomes [21], and the presence of metastasis-promoting mutations, 
such as BAP1 mutations are difficult to target as they occur at multiple regions 
throughout the gene and even at distant regulatory sites [6]. Due to these difficulties in 
tracking specific markers, and given the potential role of epigenetic changes in tumour 
growth and dissemination, we sought to examine changes in methylation that may be 
maintained in cell free DNA and could eventually be tracked in liquid biopsy. 
Identifying the specific changes in methylation that are associated with increased risk in 
UM, as well as gaining insight into the molecular pathways altered with DNMT 
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inhibitor treatment, has the potential to guide neoadjuvant treatment in this difficult 
disease.  
 
2. Methods  
2.1 Cell lines  
Four human UM cell lines were used: MP41 (primary), MP46 (primary), Mel270 
(primary), and OMM 2.5 (metastatic matched to Mel270). MP41 and MP46 were 
purchased from American Type Culture Collection (ATCC). Mel270 and OMM2.5 were 
kindly provided by Dr. Vanessa Morales (University of Tennessee). All cells were 
grown in RPMI-1640 media (Gibco, cat. 11875093) supplemented with 10% fetal bovine 
serum, 2mM GlutaMAX, 1mM sodium pyruvate, 10mM HEPES, 0.1% 10 U/mL 
penicillin and 10 μg/mL streptomycin, and 10μg/mL insulin. Cell media was changed 
every 48-72 hours and cells were split using 0.05% trypsin-EDTA when they reached 80- 
90% confluency.  
2.2 Azacytidine treatment  
Azacytidine was fully dissolved in warmed dimethyl sulfoxide (DMSO) to a 
concentration of 40mM, then mixed with complete media to obtain final concentrations 
between 0.5-80 μM by serial dilution. DMSO concentrations in the cell culture medium 
were equalized to 0.05% by adding additional DMSO depending on the drug 
concentration. Cells were treated in 96 well plates, with triplicates for each 
concentration for each cell line (0.5μM, 1μM, 2.5μM, 5μM, 10μM, 20μM, 40μM, 80μM). 
Treatment was conducted for 72 hours before cellular assays and/or DNA extraction.  
2.3 Cell viability and proliferation  
Cell viability after treatment was examined using the CCK8 assay – with relative 
metabolic activity being used as a stand-in for cell proliferation – as well as a confluence 
mask from the Incucyte live cell imaging system over the course of a 72-hour treatment. 
The effect of azacytidine was assessed based on relative cell confluency after one 
doubling time. Cells were plated in order to have equivalent cell densities with a  
final confluency of ~90% at the time of DNA extraction, calculated based on the 
respective doubling rates of the cell lines in culture.  
2.4 Cell preparation and DNA extraction  
After 72 hours of Azacytidine treatment, supernatant from the cells was transferred to 
tubes and centrifuged at 2000g for 15 min to separate any potential cells from the cell 
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free DNA. Cells were washed with PBS and then treated with 0.05% trypsin for 3-5 min, 
until they detached. Trypsin was neutralized with complete media containing 10% FBS. 
Cells were spun at 230g for 5 min, and cells were resuspended in PBS for DNA 
extraction.  
Genomic DNA was extracted using the Qiagen DNA mini kit, according to the standard 
protocol. DNA was eluted using 30μL buffer AVE followed by a second elution of 
20μL. For each elution step, buffer AVE was added to the samples and then left for 10 
minutes before spinning for 2 minutes at 20000g.  
Cell free DNA was extracted with the Qiagen Circulating Nucleic Acid Kit using a 
modified version of the protocol for extraction of DNA from 5mL serum or plasma, as 
routinely performed in our lab [20], with alterations to allow for extraction of larger 
quantities of cell free DNA from supernatant. Briefly, each sample was treated with 100 
μL proteinase K per mL of supernatant (~2mL per sample), and then mixed with 16mL 
Buffer ACL with carrier RNA before being pulse vortexed for 30 seconds. Samples were 
incubated for 30 min at 60°C. Each sample was removed from heat and divided into 4 
tubes. 9mL buffer ACB was added to each sample tube, and then incubated on ice for 5 
min. Samples were pulled through QIAamp Mini columns using a vacuum connector 
with a 20 mL tube extender. The 4 tubes for each sample were run sequentially through 
the same column in order to collect the total DNA from each sample onto a single 
membrane. DNA was extracted using a two-step elution, first with 20 μL buffer AVE 
followed by 10 μL buffer AVE. For each elution step, elution buffer was left in the tubes 
for 20 minutes and then spun for 2 minutes at 20000g.  
Genomic and Cell free DNA quantification was performed using the Qbit fluorometer. 
DNA samples were briefly vortexed and centrifuged before quantification using 1uL of 
DNA.  
2.5 Methylation arrays for genomic and cell free DNA:  
Genomic and cell free DNA were analysed using the Illumina MethylationEPIC array. 
For this array, DNA was quantified using PicoGreen (Quant-iTTM PicoGreen® dsDNA 
Products, Invitrogen, P-7589) and read on the SpectraMAX GeminiXS 
Spectrophotometer. From this, bisulfite conversion was performed with 500ng of DNA 
using the EZ-96 DNA Methylation-Gold Kit (Zymo Research, D5007). Cells and 
treatments were randomized in the array positioning to reduce the effects on intra-array 
variability on results. The Illumina Methylation 850K kit was used as described by the 
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manufacturer’s protocol, except that 8μl of bisulfate converted material was utilized to 
initiate the amplification step. An Illumina Hybridization oven was used for incubating 
amplified DNA (37°C) and for BeadChips hybridization (48°C). A Hybex incubator was 
used for the fragmentation (37°C) and for the denaturation (95°C) steps. The X-stain 
step was carried out with a Tecan Freedom evo robot with a Te-Flow module. Arrays 
were scanned with an Illumina iScan Reader. Arrays were analysed using the Minfi 
package.  
2.6 Cell staining for BAP1 expression:  
Azacytidine treated cells were plated on 8 well glass slides at a concentration of 15,000 
cells/well. 24 hours after plating, concentrations of 0μM, 1μM, 5μM, and 20μM were 
administered for 72 hours for MP41, MP46, Mel270, and OMM2.5 cells. After the drug 
treatment was finished, cells were fixed in 4% paraformaldehyde for 30 minutes, and 
then immunocytochemistry was performed using the Vector Laboratories ImmPRESS 
HRP staining kit with the anti-BAP1 antibody (C-4) from SCBT (cat. sc-28383) at 
concentrations of 1:200 and 1:2000.  
2.7 Colony formation assay:  
Cells were plated in triplicates in 6 well plates with 1000 cells/well (2000 cells/well for 
MP46) with and without azacytidine (1μM, 5μM, and 20μM) and grown for ~6 
doubling cycles (9 days for MP41, Mel270, and OMM2.5, and 27.5 days for MP46). 
Media was added as needed during the experiment, in equal amounts to both the 
azacytidine treated and untreated wells. Cells were stained by crystal violet and 
number of colonies was counted manually in all plates, with a colony being defined as a 
group of 50+ cells. For MP46, colonies were counted as groups of 30+ cells.  
2.8 Radiosensitivity assay:  
UM cells (MP41, MP46, Mel270, OMM2.5) were plated in 24 well plates and treated 
with azacytidine (0, 1, and 2μM) for 72 hours before being exposed to 20Gy of radiation 
(MultiRad225, 0.5mm Al filter, 225.0 kV(Max), 13.0 mA, exposure time 3:57 min). 96 
hours after exposure to irradiation, relative cell viability was measured using the CCK8 
assay (100uL/well), with absorbance at 450nm being measured after 3 hours of 
incubation.  
2.9 Sample and probe quality control for Illumina MethylationEPIC arrays  
The Minfi program [22] with an additional function to adapt the package to the 
Illumina MethylationEPIC arrays [23] was used to read the raw IDAT files and to 
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calculate the detection p value for every genomic position in each of the 32 samples. 
Positions with p values >0.01 were discarded from further analysis to remove any 
probes where both the methylated and unmethylated channels reported background 
signal level, as determined by the negative control positions in the array. The mean 
detection p values across all samples were also calculated in order to ensure that there 
were no poor quality samples. Probes that failed in one or more samples were removed 
from further analysis. Raw mean methylation values were calculated as the arithmetic 
mean after removing the poor quality probes. SWAN normalization was used on 
samples in order to decrease the effect of technical variation present in the Illumina 
arrays, as it reduce the technical variability between Infinium type I and II probes and 
allows for better detection of differential methylation [24].  
Normalization was performed using Quantile, SWAN, and functional normalization 
(funnorm). These values were compared to the raw data, obtained using the 
preprocessRaw function. Normalization methods were visually compared using quality 
control reports generated through Minfi.  
CpG sites from the MethylationEPIC arrays were aligned to the hg19 human genome 
annotation (IlluminaHumanMethylationEPICanno.ilm10b4.hg19). β Values, defined as 
β = M/(M+U+100), where M and U are the raw methylated and unmethylated 
intensities from the array were used for plotting and illustrative purposes. Mvalues, 
defined as log(M/U) were used for statistical analysis, as they are preferred for these 
purposes due to the heteroscedasticity of β values [25].  
For statistical analysis, three variables were included for the samples: type of sample 
(genomic vs cell-free DNA), concentration of azacytidine (0, 1, 5, and 20μM), and cell 
line (MP41, MP46, Mel270, and OMM2.5). Type was analysed as a binary variable, cell- 
line was dummy coded, and drug concentration was analysed as a continuous variable.  
2.10 Analysis of differentially methylated regions  
The bumphunter algorithm in the minfi package was applied to samples to find 
candidate differentially methylated regions, using Mvalues. This program is used to 
detect differentially methylated regions (DMRs) from genomics data while modelling 
batch effects by surrogate variable analysis [26]. This function assumes continuous 
coefficients of the variable of interest (continuous or binary) while accepting other 
covariates. Smoothing should therefore improve the precision of this analysis [27]. The 
cutoff of the algorithm is the minimum percentage difference (above or below) required 
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for candidate regions of the outcome of interest. The algorithm then computes the 
statistical quantities for the candidate regions with bootstrapping. The algorithm starts 
with a cutoff of 0.1 (10% difference), with increases of 0.05 until the number of 
candidate regions is below 30,000 [22]. The coefficients of the outcome of interest are 
smoothed by local regression smoothing with gaussian kernel. The number of 
bootstraps was set to 1000 for analysis. Candidate regions were filtered by a maximum 
of 5% family-wise error rate for the region.  
2.11 Analysis of differentially methylated probes  
Hierarchical clustering was performed using the Minfi program for the probes with the 
highest degree of standard deviation in methylation values across samples. The top 
10000 differentially methylated probes (DMPs) were then inputted into minfi to 
perform hierarchical clustering.  
The global methylation profiles of samples were then compared using the limma 
program for linear models to compare different groups within the sample. These 
groups were then compared using principal component analysis (PCA). PCA was 
performed based on the global methylation pattern to compare samples by sample type 
(genomic vs. cell free DNA), cell type (MP41, MP46, Mel270, and OMM2.5), and 
concentration of azacytidine (0, 1, 5, and 20μM)  
2.12 Differential Methylation of KEGG pathways  
For comparisons that showed differential methylation in limma analysis, differentially 
methylated CPGs were mapped to the hg19 human genome assembly, and genes with 
an adjusted p<0.05 were sorted by log fold change. The top 20000 probes with the 
highest log fold of differential methylation (both hypomethylation and 
hypermethylation, logFC: -10.23 - -2.79 and 4.0 - 9.79) were analysed by DAVID 
Functional Annotation. Probes that were not mapped to any gene as well as duplicate 
genes were removed (3780 hypomethylated genes and 2841 hypermethylated genes 
submitted for final DAVID analysis)  
 
3. Results  
3.1 Azacytidine treatment resulted in significant decreases in UM cell proliferation 
and viability  
In our previous study, we demonstrated differential patterns of methylation associated 
with overall survival in UM patients [8]. Here, we aimed to determine whether a 
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DNMT inhibitor, azacytidine, affected cellular behaviour in a panel of human primary 
and metastatic UM cells (Table 1). Cells were examined by Incucyte live cell imaging, 
over the course of 72-120 hours to determine the effect of treatment on the rate of 
cellular proliferation. Additionally, a colorimetric assay in which reduction of water-
soluble tetrazolium salt (WST-8) produces orange formazan, was utilized as a means to 
determine metabolic activity of UM cells upon treatment, acting as a stand-in for 
relative cell proliferation at the time of the assay. Azacytidine treatment caused dose-
dependent reduction in cell proliferation (Figure 1A-D) and in cellular dehydrogenase 
activity (Figure 1E) in all cell lines tested at concentrations of 5μM and higher. Reduced 
effects of azacytidine on proliferation was noted in the MP46 cell line. While MP41, Mel 
270, and OMM2.5 have a doubling time in the range of 30-36 hours, MP46 only doubles 
once every ~104 hours. Since azacytidine is incorporated into DNA upon cell division, 
the global effects on cell proliferation may only be captured after longer periods of time.  
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Figure 1. Azacytidine treatment inhibits proliferation and reduces viability of UM 
cells in a concentration-depending manner. A-D Growth curves obtained 
through Incucyte live cell imaging system, tracking cellular confluency over 3-5 days 
(depending on the doubling time of the cell line) after treatment with 0-80μM 
Azacytidine. E. Graph represents the level of viability as detected via a CCK8 
colorimetric assay by relative percent metabolic activity, measured after 72 hours and 
calculated as absorbency of the treated samples by the absorbency of the untreated 
samples. CCK8 data was analysed using two-way ANOVA, while Incucyte data was 
analysed using repeated measured ANOVA with Tuckey’s post-hoc test. Differences 
between the treatments were additionally calculated using a t-test for the effect of the 
drug at one doubling time, with p<0.05 being considered as significant in all cases. 
Graphs represent assays done with 3 replicates, including standard error across wells. 

 

 
Table 1. Selected genomic characteristics of MP41 and MP46 cell lines [28] and the 
Mel270 and OMM2.5 cell lines [29].  
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3.2 Effects of azacytidine on colony formation in UM cells  
The ability of cancer cells to form colonies represents an important characteristic of 
carcinogenesis, as it measures their ability to show limitless replicative potential – a 
major hallmark of cancer [30, 31]. The measurement of colony formation in response to 
drug treatment has long been used as a method to screen anti-cancer drugs, offering 
valuable insight into the potential of these drugs to affect the replication of tumour cells 
[32]. Azacytidine treatment at both cytotoxic (5μM and 20μM) and non-cytotoxic (1μM) 
concentrations led to reduced clonogenic potential for all UM cell lines, with increasing 
reductions seen at higher concentrations (Figure 2A). Primary UM cell lines MP41 and 
Mel270 showed significantly reduced number of colonies at concentrations of 1μM, 
5μM, and 20μM (MP41 1μM: p =  0.046, 5μM: p = 0.012, 20μM: p = 0.0015, Mel270 1μM: 
p =  0.010, 5μM: p = 0.0036, 20μM: p = 0.00027) , while metastatic OMM2.5 showed a 
significant reduction of colonies at concentrations of 5μM and 20μM (p = 0.015, p = 
0.0027) (Figure 2B). MP46 showed a trend of reduction in colonies at every dose, but 
this effect was not significant (Figure 2B). This may be due to the much longer doubling 
time of this cell line (Table 1). As primary UM tumours are often treated with radiation 
as a first line therapy, treatments that enhance the radiosensitivity of UM cell lines may 
be useful as adjuvants at the time of primary tumour treatment [33, 34]. All cell lines 
showed reduced proliferation in response to irradiation when treated with sublethal 
doses of Azacytidine (1μM and 2μM), though this effect was only significant in the 
MP41 and MP46 cell lines (Figure 2C). MP46 cells formed colonies at a lower rate (27.5 
days for colony formation in MP46 cells vs. 9 days for the other three cell lines). Despite 
this, MP46 maintained the trend of reduction of cell clonogenicity seen in other cell 
lines.  
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Figure 2. Azacytidine treatment leads to reduced clonogenic potential and increased 
radiosensitivity in UM cells. A) Comparison of colony formation across all four cell 
lines at doses of 1, 5, and 20 μM, calculated as percent of colonies formed relative 
control. p<0.01: MP41 20μM, Mel270 5μM Mel270 20μM p<0.05: MP41 5μM, 1μM, 
Mel270 1μM, OMM2.5 5μM, 20μM B) Response to irradiation in all cell lines measured 
using level of viability as detected via a CCK8 colorimetric assay. C) Colony formation 
in each cell line at doses of 1, 5, and 20 μM, calculated as percent colonies formed 
relative control. Graphs represent assays done with 5 replicates, including standard 
error across wells. P values were calculated using t-test, legend: * = p<0.05, ** = p<0.01  

 
3.3 BAP1 protein expression is not reverted by the use of DNA demethylating agents  
Loss of expression mutations in BAP1 are an important determinant of metastatic risk in 
UM, and are highly associated with epigenomic alterations in UM [13, 35]. While BAP1 
mutations are thought to be early events, data suggests that epigenetic regulation of 
BAP1 may be responsible for some cases of loss of BAP1 expression, and also contribute 
to metastatic risk in the same manner as mutations in this gene [13]. Here, we aimed to 
determine whether treatment with azacytidine could restore loss of BAP1 expression in 
the MP46 cell line, which has shown loss of BAP1 protein expression with no 
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discovered BAP1 mutations (Table 1). Three of our cell lines (MP41, Mel270, and 
OMM2.5) have been reported to express BAP1 expression by immunocytochemistry [28,  
29], while MP46 has a loss of BAP1 expression [28]. Here, we tested the presence of 
BAP1 protein expression immunocytochemically in all cells before and after 72 hour 
treatment. All cell lines maintained their reported BAP1 status; MP41, Mel270, and 
OMM2.5 were BAP1 positive (Figure 3A-C) while MP46 was BAP1 negative (Figure 
3D). Treatment with azacytidine did not affect BAP1 protein expression in any of these 
cell lines up to concentrations of 20μM.  

 

 
Figure 3. Azacytidine treatment did not impact BAP1 protein expression. 
Representative immunocytochemistry images for anti-BAP1 monoclonal antibody 
(1:2000) staining for MP41 for (A), Mel270 (B), and OMM2.5 (C), and MP46 (D) at a 
dilution of 1:2000 following 72-hour Azacytidine treatments of 0, 5 and 20 μM. Images 
taken at 10x magnification using the (Invitrogen EVOS XL Core Imaging System). 
Negative control performed using the same staining procedure with normal horse 
serum in place of primary antibody. 
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3.4 Methylation profiling indicates that cell-line specific differences are the most 
impactful determinant of methylation profile based on unsupervised clustering  
To determine the impact of azacytidine treatment on the methylation profile of UM 
cells, we conducted methylation profiling using the Illumina MethylationEPIC arrays 
on four human UM cell lines (MP41, MP46, Mel270, and OMM2.5) following treatment 
with four concentrations of azacytidine (0, 1, 5, and 20 μM). Moreover, as our goal was 
to also examine the potential use of cfDNA for monitoring methylation patterns, we 
extracted DNA from both the cells and cell-free conditioned media (Figure 4).  

 

Figure 4. Schematic representing the assay design for extraction and analysis of cell free and 

genomic DNA from samples treated with different doses of azacytidine 

 
Quality control for the Illumina arrays indicated that all samples were of high quality 
based on the control probes included in the array, and that the large majority of probes 
were of sufficient quality to be used in the final analysis. Based on the detection p-value, 
22,949 low quality probes with p>0.01 were removed from further analysis, with an 
overall mean detection p-value below 0.003 for most samples (Figure 5A). As such, a 
total of 842,910 probes were deemed to be high quality and were included for the final 
analysis. Moreover, all samples (cell-free and genomic DNA for all four cell lines across 
all four azacytidine treatments) were found to be of good quality, with no failed reads 
in the quality control step, therefore leaving 32 samples for final analysis (Figure 5B). 
M-values mapped as expected to beta values (Figure 5C). SWAN normalization – which 
is performed to reduce the technical variability between Infinium type I and II probes to 
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allow for better detection of differential methylation [24] – maintained differences 
present between samples seen in the raw beta values. Because of this, M-values and 
SWAN normalised beta values were used for final analysis. This method was selected 
as a final normalization step due to unexpected changes in overall beta values being 
seen with the use of functional normalization.  
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Figure 5. Methylation arrays yielded high quality samples with few low-quality 
probes (A) Mean detection P values shown across all samples. (B) Quality control plot 
shown for all samples. (C) Comparison of Beta Values to M values for all samples, 
coloured by cell line. (D) Comparison of raw beta values to SWAN normalised beta 
values for all samples, coloured by concentration of azacytidine.  
 
Hierarchical clustering analysis was conducted in Minfi with the aim of identifying 
similarities and differences in methylation profiles across samples. Samples from the 
same cell line clustered together regardless of the origin of the DNA (genomic or cell- 
free) or the concentration of azacytidine used, as shown in a heat map (Figure 6A) and 
in a principal component analysis (Figure 6B). These data demonstrated that different 
cell types clustered separately, with different sample types and treatments maintaining 
the differences between these cell types (Figure 6A). Mel270 and OMM2.5, the matched 
primary and metastatic UM cell lines, showed a high degree of similarity, branching 
together in the hierarchical clustering (Figure 6A). Moreover, principal component 
analysis showed a higher degree of similarity between Mel270 and OMM2.5, while 
MP41 and MP46 clustered separately from the other cell lines (Figure 6B).  
In order to determine whether the methylation pattern of cells was similar to those seen 
in patients, the methylation patterns of untreated genomic DNA samples were 
compared to the patterns from methylation arrays for 80 primary human UM samples 
from The Cancer Genome Atlas (TCGA) study. As shown in our previous work, UM 
samples cluster into two distinct groups depending on methylation pattern, with these 
groups being highly associated with outcome in patients [8]. When compared to patient 
samples, UM cell lines clustered separately from both groups of patients (high vs low 
risk), though they showed some similarities in methylation patterns (Figure S1). When 
examined by Uniform Manifold Approximation and Projection (UMAP), the differences 
between patient samples and cell lines were seen to be similar in some dimensions, with 
cell lines clustering along with patient samples for certain dimensions (Figure S2)  
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Figure 6. Hierarchical clustering revealed similarities between cell lines. (A) Heat 
map representing the hierarchical clustering conducted on SWAN normalised 
methylation array data for all samples: MP41, MP46, Mel270, and OMM2.5, including 
cfDNA and gDNA for 0, 1, 5, and 20μM azacytidine. (B) Principal component analysis 
for samples, coloured by cell line.  
 
Further analysis by bumphunter showed that MP41 and MP46 had many dissimilarities 
in methylation patterns across the genome (2855 significantly differentially methylated 
regions, Figure 7A), while OMM2.5 and Mel270 were highly similar (192 significantly  
differentially methylated regions, Figure 7B). The differences between both these pairs 
of samples were seen across introns, exons, and intergenic regions for these samples 
(Figure 7A and 7B). When the most significantly differentially hypermethylated and 
hypomethylated genes between the MP41 and MP46 cell lines were submitted to 
DAVID gene ontology analysis (DAVID GO, KEGG Pathways), we found that the 
differentially methylated genes between the two groups were related to a number of 
signaling, cell survival, and cell motility regulation pathways (Figure 7C and 7D). The 
differences between MP41 and MP46 cell lines included a pattern of both 
hypomethylation and hypermethylation in genes related to pathways with a known 
importance in UM progression and cancer progression more generally. 
Hypomethylation was seen in the MP41 cell line for genes related to general cancer-
related pathways, focal adhesion, regulation of the actin cytoskeleton, and axon 
guidance amongst others (Figure 7C). Hypermethylation in the MP41 cell line was seen 
in many signaling pathways such as PI3K/Akt, RAP1, cyclic adenosine monophosphate 
(cAMP), and MAPK, along with changes in pathways related to neuroactive ligand-
receptor interactions, cell adhesion molecules, axon guidance, and extracellular matrix 
(ECM) interaction, along with pathways regulating the pluripotency of stem cells, 
amongst others (Figure 7D).  
Interestingly, given that the epigenetic regulation of BAP1 in UM has been suggested 
but not yet shown, 38 probes associated with BAP1 were found to be differentially 
methylated between MP41 and MP46. Additionally, our previous work demonstrated 
that NFIA and HDAC4 were highly differentially methylated depending on patient 
outcomes, with differentially methylated probes for these genes being sufficient to 
separate patients based on their relative risk of metastasis [8]. Along with these results 
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in patients, this alteration was maintained in cell lines between the MP41 and MP46 
samples, with 88 probes associated with NFIA and 241 probes associated with HDAC4 
being significantly differentially methylated in between MP41 and MP46 (adjusted 
p<0.05).  

 
Figure 7. Large scale changes in important molecular pathways were seen between 
cell lines that differed in BAP1 status, while matched primary and metastatic samples 
maintain similar degrees of methylation across the genome (A) Plot of differentially 
methylated regions across chromosomes for the MP41 cell line compared to the MP46 
cell line. (B) Plot of differentially methylated regions across chromosomes for the 
OMM2.5 cell line compared to the Mel270 cell line. (C) Selected significantly altered 
KEGG pathways (Bonferroni p<0.05) for the top 20000 hypomethylated probes between 
MP41 and MP46 (measured probes with an adjusted p<0.05 with the greatest log fold 
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change between samples) (D) Selected significantly altered KEGG pathways 
(Bonferroni p<0.05) for the top 20000 hypermethylated probes between MP41 and MP46 
(measured probes with an adjusted p<0.05 with the greatest log fold change between 
samples).  
3.5 Drug treatment affects methylation patterns across genomic regions  
Unsurprisingly, treatment with azacytidine showed large-scale changes in terms of 
DMRs across cell lines, though many of the alterations were not statistically significant, 
with only two DMRs found overall depending on concentration (cell line included as a 
covariate). When the samples were separated, OMM2.5 and Mel270 showed 95 DMRs 
(p<0.05) in response to azacytidine treatment (Figure S3 A and C). On the other hand, 
when the MP41 and MP46 samples were analysed separately, there were only two 
significant DMRs (p<0.05) that remained (Figure S3 B and D), implying that the DMRs 
induced by treatment may differ between these cell lines. These alterations appear to be 
occurring across the genome, with many changes not reaching statistical significance. 
This effect is likely due to the cutoff used in bumphunter, which may conceal more 
minor changes in methylation induced by treatment. Given the lack of changes in the 
overall mean methylation (Figure 8A), these changes were likely to include a number of 
alterations in methylation across the genome including hypermethylation at certain 
sites and hypomethylation at other sites.  
Additionally, the effect of azacytidine can be seen in the density plots of beta values 
(Figure 8B), wherein increasing concentrations of azacytidine shifted the methylation 
curves downwards and to the left, indicating alterations in the methylation of the cells 
across the genome. This effect was most prominent in MP41 cells (Figure 8C), which 
additionally showed the strongest response to azacytidine in terms of reduction in cell 
proliferation after treatment (Figure 1A). Despite these alterations, there was no clear 
pattern of reduced mean DNA methylation with azacytidine treatment in any of the cell 
lines (Figure 8A), with cell lines showing both decreases and increases in degree of 
methylation depending on the locus, though MP41 cells once again showed a slight 
reduction in mean methylation at all concentrations (1, 5, and 20μM).  
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Figure 8 Treatment with azacytidine leads to alterations in methylation patterns that 
is generally not associated with a reduction in overall mean methylation (A) 
Comparison of mean methylation of samples for each cell type at the 4 concentrations of 
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azacytidine tested (0, 1, 5, and 20μM) for cfDNA (CF for cfDNA) and genomic DNA (G 
for gDNA). (B) Plot of methylation beta values by concentration of azacytidine. (C) 
Comparison of mean Genomic DNA methylation at each concentration of azacytidine, 
by cell line.  
 
3.6 Azacytidine treatment causes significant effects in major signaling pathways  
Azacytidine resulted in significant large scale genomic effects in terms of differentially 
methylated probes at high drug concentration (20μM). Overall, 10842 CpG sites were 
significantly differentially methylated between the 0μM and 20μM concentrations 
(adjusted p<0.05), with both hypermethylation and hypomethylation seen in response 
to treatment (log fold change: -2.52 – 2.49).  
High dose azacytidine was associated with alterations in genomic pathways associated 
with many important features in cancer, including general pathways in cancer,  
signaling pathways including PI3K/Akt, RAP1, MAPK, Wingless-related integration 
site  (Wnt), and AMP-activated protein kinase (AMPK), and pathways regulating the 
pluripotency of stem cells amongst others (KEGG pathways, Figure 9D).  
Interestingly, such large scale changes were not seen at 5 and 10 μM. However, while 
not many significant changes were seen at low doses, there were a very large number of 
non-significant regions that were found in bumphunter between the untreated samples 
and the samples treated at 1μM. Moroever, far fewer differences were seen amongst the 
treated samples (5143 non-significant regions altered between 1 and 5μM and 120 non- 
significant regions altered between 1 and 20μM), implying that the changes that are 
seen at 20uM may be occurring to a lesser extent at the lower doses of azacytidine 
(Figure 9 A-C). This is reinforced by the fact that altering the cutoff for candidate 
regions led to an increase in the number of significant DMRs, showing 49 DMRs 
(p<0.05) occurring in cell lines with azacytidine treatment.  
In our previous study revealing a strong correlation between methylation patterns and 
patient survival, we showed that methylation at specific genes was sufficient to separate 
patients into high and low risk group [8]. Here, we wanted to determine if specific 
genes were highlighted in our cell culture model. Interestingly, treatment with 
azacytidine led to alterations in methylation at specific genes including HDAC4 (39 CpG 
sites with adjusted p<0.05), which was also identified in our previous study.  
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Figure 9. Multiple genomic regions and important molecular pathways are affected 
by azacytidine treatment. Number of regions found to be differentially methylated 
depending on type of genomic region (includes non-significant regions) for (A) 0 vs 
20μM azacytidine, (B) 1 vs 5μM azacytidine, and (C) 1 vs 20μM azacytidine. (D) 
Selected KEGG pathways found to be significantly differentially methylated between all 
0 and 20μM samples (Bonferroni p<0.05).  

 
3.7 Genomic and cell free DNA maintain similar patterns of methylation  
Cell free DNA is a promising analyte within liquid biopsy that has the potential to 
provide real time information of cancer cells. Indeed, we have previously demonstrated 
that blood-based ctDNA detected through UM-driver mutations can be used to monitor 
disease in vitro, in an animal model and in patient samples [20]. Here, our goal was to 
determine whether cfDNA maintained methylations events of the tumour, and whether 
it could potentially be a liquid biopsy-based method to detect tumour epigenetic 
changes. We analysed methylation data from cell free DNA extracted from the 
conditioned media compared to genomic DNA of UM cells, across cell lines and 
treatment concentrations. Our data demonstrated very similar methylation profiles  
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between gDNA and cfDNA from the same cell lines (Figure 6B). Only 9 significantly 
differentially methylated regions across the genome were found between matched 
genomic and cell free DNA samples across any of the cell lines (MP41, MP46, Mel270, 
OMM2.5) or concentrations (0, 1, 5, and 20 μM). (Figure S4) (considered as regions that 
are significantly differentially methylated at p<0.05, with cell line and drug 
concentration as covariates)  

 
4. Discussion 

Methylation changes have been shown to be associated with outcome in UM [6]. 
Indeed, our previous study showed that methylation of specific genes and in specific 
signaling pathways is altered depending on outcome in UM patients [8]. In this study, 
we aimed to assess the direct effects of DNA demethylating agents – specifically 
azacytidine – on the functionality and methylation profile of a panel of primary and 
metastatic human UM cells. Moreover, we sought to determine whether cfDNA 
reflected the methylation profile of gDNA with and without drug treatment. Overall, 
this work aimed to determine whether certain genomic pathways involved in UM 
progression may be specifically altered with azacytidine treatment, which might allow 
for the potential of combining DNMT inhibitors with medications that affect these 
pathways, amplifying their overall effects.  
Epigenetic modifiers have been investigated in the context of UM with DNMT 
inhibitors showing moderate anti-tumorigenic effects on their own in primary UM cell 
lines [36], and synergistic effects when used in combination with other treatments 
including IFN- γ and the MEK inhibitor trametinib [15, 37]. Additionally, DNMT 
inhibitors have been shown to be safe to administer to UM patients with unresectable 
liver metastases [38]. Here, we showed significant reduction in viability and 
proliferation of all primary and metastatic UM cells following treatment with 
azacytdine, as well as a reduction in clonogenic potential and increased response to 
radiotherapy at sublethal doses. This is in line with previous studies showing that 
azacytidine exerts anti-tumour effects both through direct cytotoxicity at higher doses 
as well as through modulation of methylation leading to alterations in gene expression 
which affect the tumorigenic potential of cells [39].  
While the response to azacytidine treatment was variable across UM cell lines, 
reduction in viability was seen in all cell lines studied, indicating that this drug is 
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capable of affecting a range of UM subtypes, including metastatic UM cells. Despite 
significant effects on proliferation only being seen at concentrations 5μM and higher in 
all cell lines, effects on colony formation and radiosensitivity at 1μM suggest anti-
tumour effects at even sublethal doses of the drug. This implies that, while the higher 
doses of azacytidine used may be potentially affecting cells through the direct cytotoxic 
action of the drug, the specific effects of azacytidine on DNA methylation in UM cells 
can cause anti-tumour effects. Importantly, the metastatic OMM2.5 cell line was the 
only cell line that did not show significant reductions in colony formation at 1μM 
azacytidine, but did show effects at higher concentrations, suggesting that these cells 
are also sensitive to treatment but may require higher doses.  
Loss of function in the BAP1 gene is a major factor leading to metastasis in UM tumours 
[6, 35]. While mutations have been identified, they occur across the BAP1 gene, making 
their detection challenging. Moreover, previous work by Field et al. implied that BAP1 
may be epigenetically regulated in UM, which could potentially be a cause of loss of 
BAP1 expression in tumours without a BAP1 mutation [13]. In our current study, DNA 
methylating agent azacytidine did not revert BAP1 expression in MP46 cells, regardless 
of drug concentration (1, 5, and 20μM). However, despite this lack of effect, differences 
in BAP1 methylation between the MP41 and MP46 cell lines suggest that BAP1 
expression may indeed be regulated by DNA methylation. In support of this, 38 DMPs 
associated with BAP1 expression were found to be differentially methylated between 
these cell lines. This could be an important feature to explore in tumours with no 
confirmed BAP1 mutations but lacking BAP1 protein expression and sharing outcomes 
with BAP1-mutant tumours.  
Overall, while the effects in methylation pattern upon azacytidine treatment only 
became significant are higher drug concentrations, the large degree of non-significant 
changes between the 0 and 1μM concentrations imply potential wide-scale effects that 
potentially differed between cell lines so as to make each individual change non- 
significant. Changes became more consistent at 20μM, showing many significant 
differences between the treated and untreated samples for both DMRs and DMPs. 
Because azacytidine acts as a general DNMT inhibitor, the lack of effect at lower doses 
is more likely to be related to the relatively low number of cell types studied  as 
opposed to a lack of effect on DNA methylation. Interestingly, when we analysed the 
specific genes that were differentially methylated, alterations were seen in genes 
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involved in Wnt signaling, as well as in pathways regulating the pluripotency of stem 
cells. Such genes are likely to be partially  
responsible for the changes in colony-forming capabilities of these cell lines after 
treatment, showing a reduction in the stem-like property of self-renewal [40].  
In order to determine similarities in our cell line data and patient samples, we 
compared the methylation profiles from our in vitro model to those of patients reported 
in the TCGA [6].While we did not find that UM cell lines and UM cases clustered 
together, this effect was largely to be expected as cells in culture can undergo global 
alterations in degree of methylation. Nonetheless, we found that the BAP-negative cell 
lines MP46 clustered separately from the BAP-positive cells, which is in agreement with 
the patient data we previously reported showing that BAP1 mutations are a major 
factor affecting the methylation patterns of UM cells [8]. Additionally, the similar 
pattern of methylation between the matched primary and metastatic cell lines (Mel270 
and OMM2.5) points towards a largely maintained pattern of methylation in UM 
metastases with regards to the primary tumour in the same patient. Because of this, it 
would appear that treatment based on epigenetic modifications found in the primary 
tumour could be useful not only as an adjuvant at the time of primary tumour removal, 
but also as a method for controlling the development of metastatic disease. This has 
previously been seen in UM, where Decitabine, another DNMT inhibitor, was shown to 
limit escape from MEK inhibitor treatment in UM cell lines [15]. While MEK inhibitors 
had previously been a promising avenue for treatment in UM, they were found to have 
only minor effects on improving progression-free survival in patients and no effects on 
overall survival [41]. However, in the present study, alterations in several central 
signaling cascades were noted upon DNMT inhibitor treatment, lending support for the 
combination targeting of key signaling cascades. For example, azacytidine treatment 
impacted genes involved in MAPK signaling, which is in agreement with recent data by 
Gonçalves et al. that alterations upstream in this signaling cascade may increase the 
effect of MEK inhibition on UM cells [15]. In the same vein, other signaling pathways 
shown to be affected by azacytidine treatment may offer insight into pathways that 
could be targeted along with DNMT inhibitor treatment, including PI3k/Akt, Wnt, 
Rap1 and MAPK signaling pathways.  
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PI3K/Akt has been previously implicated in UM oncogenesis, with previous findings 
showing activation of this pathway in at least 50% of UM [42, 43]. Our data showed 
hypermethylation of genes related to PI3K/Akt in MP41 cells compared to MP46 cells.  
As the major difference between MP46 and the other cell lines is its lack of BAP1 protein 
expression, it additionally points to the idea that these pathways might have different 
degrees of importance depending on the UM subtype.  
Importantly, Wnt plays a central role in cell differentiation, polarization, and migration 
in normal cells, and mutations in the Wnt gene have been found across cancers [44, 45]. 
In UM, previous data has shown the potent effects of artesunate, a drug which inhibits 
Wnt/β- catenin pathway signaling, in reducing viability, colony formation, and 
migration of UM cells [46]. The effect of azacytidine treatment on this pathway points to 
a potential impact of epigenetic regulation of Wnt signaling in UM, which could help to 
revert cells towards a less migratory, less stemlike phenotype.  
Rap1 signaling is additionally an important pathway in cancer progression, acting as a 
regulator of functions including formation and control of cell adhesions and junctions, 
cellular migration, and cell polarization, giving it an important potential role in cell 
migration events leading to metastasis [47]. Rap1 has also been shown to have effects on 
many other pathways which can potentially drive tumour invasion and metastasis, 
including integrin or cadherin-mediated cell adhesion, activation of PI3K/Akt 
signaling, and activation of ERK [48]. Effects on genes involved in Rap1 signaling 
further suggests the potential differential regulation of signaling cascades depending on 
molecular subtype in UM, as well as the potential impact of azacytidine treatment on 
these pathways.  
Additionally, signaling in PI3K/Akt, MAPK, and mTOR signaling are known to be 
altered in UM, and targeted therapies against these pathways have been attempted in 
the treatment of UM metastases [49]. While these strategies have shown promising 
results in vitro, none of these treatments were found to be effective clinically against 
metastatic UM [3, 28]. Because the activation of these molecular pathways is associated 
with the development of UM, it is possible that combination therapy with DMNT 
inhibition would enhance the efficacy of these drugs and provide novel treatment 
options.  
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Overall, the modulation of these pathways through specific targeting drugs could 
potentially be enhanced by DNMT inhibitor treatment, as was shown through the 
synergistic effects of DNMT inhibition with other therapies in UM cells [15, 37]. This is a  
promising approach given the regulation of GPCR signaling in UM patients has largely 
been unsuccessful to date [5] despite the central role of constitutive activation of this 
pathway in UM oncogenesis. Taken together, the data in this paper reveal new avenues 
for potential combination approaches that could benefit this patient population.  
Importantly, the data presented herein revealed that DNA methylation patterns were 
similar in cfDNA and gDNA, regardless of treatment. This reinforces existing studies 
showing that cfDNA mimics epigenetic patterns in the parental cell [17]. Previously, 
cfDNA methylation has been used to monitor different tumour types, and has been 
shown to be able to identify cell type of origin as well as monitoring treatment response 
in different tumour types [50]. cfDNA is a promising analyte that can be isolated from 
liquid biopsy such as blood, allowing it to monitor disease non-invasively. Given the 
lack of intraocular biopsies required for diagnosis, other less invasive means of 
determining prognosis are needed in UM. Moreover, with the alarming 50% rate of 
metastasis, monitoring of patients and early diagnosis of disseminated disease is 
essential to improve outcome. The use of cfDNA to identify changes in methylation 
could be a powerful approach to monitor patients through blood-based liquid biopsy. 
Indeed, we have previously demonstrated that ctDNA monitoring through driver UM 
mutations is feasible and correlates with clinical disease [20]. The potential for the 
discovery of not only these driver mutations, but also alterations in methylation which 
appear to be highly related to outcomes in UM could allow for better methods to track 
response to treatment and potential recurrence in patients in a non-invasive manner.  
 
5. Conclusions 
In this study, we showed strong inhibitory cellular effects of a DNMT inhibitor on a 
panel of primary and metastatic cells. Azacytidine treatment resulted in anti- 
proliferative and anti-clonogenic effects in UM cells of different genomic backgrounds, 
as well as epigenetic regulation of genes involved in signaling, proliferation and 
migration of cells, especially in pathways related to stem-like properties. Our data 
strongly suggests that UM cell lines have alterations in DNA methylation that, as we 
have previously demonstrated in patient samples, impact major cancer-related 
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signaling pathways. These alterations point to the use of azacytidine as a potential 
adjuvant treatment – to be used with other drugs targeting the affected pathways – in 
the management of UM. Moreover, results in the OMM2.5 and Mel270 cell lines suggest  
a high degree of maintenance of methylation patterns in matched primary and 
metastatic tumours. Finally, highly similar methylation profiles in gDNA and cfDNA 
lend support for the use of liquid biopsy-based cfDNA as a tool to monitor UM.  
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Supplementary Figures:  

 

 
Figure S1. Figure S1. Hierarchical clustering of differentially methylated probes for 4 
cell lines (Mel270, OMM2.5, MP41, and MP46, labeled on graph) compared to 80 
primary UM cases from the TCGA database using SWAN normalized Beta Values, with 
dark red indicating a locus is fully hypermethylated and dark blue indicating a locus is 
fully hypomethylated. 
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Figure S2. Uniform Manifold Approximation and Projection (UMAP) along the YZ axis, 
showing the differences in this dimension between genomic DNA from the 4 cell lines 
(MP41, MP46, Mel270, and OMM2.5) for 80 UM patients from the TCGA database  

 

 
Figure S3. Significantly differentially methylated regions across the genome based on 
dose for all samples, with sample type and cell line as covariates with venn diagrams 
for the genomic locations found to be significantly differentially methylated for (A) the 
Mel270 and OMM2.5 cell lines and (B) The MP41 and MP46 cell lines, and (C) All cell 
lines using a lower cutoff value.  
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Figure S4. Significantly differentially methylated regions across the genome based on 
dose for all samples, with sample type and cell line as covariates with venn diagrams 
for the genomic locations found to be significantly differentially methylated between 
cell-free and genomic DNA based on A) chromosomal location and B) type of genomic 
region  
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Chapter 4. 
General Discussion 
DNA methylation, along with other epigenetic modifications, are gaining interest in the 
study of many malignancies because of their potential to be modified, along with their 
profound impact on gene expression and the behaviour of tumour cells. In this 
extremely difficult to treat disease, new adjuvant treatments for UM metastasis could 
help bring hope for people who otherwise do not have treatment options.  
As discussed previously, primary UM tumours can be treated effectively, but treatment 
options become very limited once the tumour has disseminated. Additionally, evidence 
suggests that tumour spread can occur early on in the disease process [66], making it 
unlikely to catch the primary tumour before haematogenous dissemination has 
occurred. Because of this, there is a direct need for options both in the monitoring of 
metastatic progression, as well as new treatment avenues based on the specific 
molecular changes that are occurring. 
While UM has a relatively low mutational burden when compared to other cancer types 
including cutaneous melanoma, we show the presence of large-scale differences in 
methylation patterns in genes related to cancer progression. Moreover, our data shows 
a strong correlation between methylation patterns and outcome in analysis of TCGA 
data from 80 patients. Such changes in DNA methylation may be contributing to 
tumour progression, potentially through the inactivation of tumour suppressors or the 
activation of pathways that increase tumour spread and growth. The analysis of these 
pathways may be an important strategy in understanding the processes underlying 
tumour progression and the development of metastasis. This hypothesis is strongly 
supported by our results (Chapter 2) showing that a number of genes with roles in 
cancer progression were differentially methylated according to patient outcome in UM; 
alterations were seen in specific genes such as NFIA, IL12RB2, and RASSF1, along with 
several genes related to signaling cascades such as PI3K/Akt, mTOR, ErbB, and Wnt. 
Together, these data point to methylation events as potentially important for driving 
UM progression. Combined with the in vitro experimental data (Chapter 3) showing 
that DNMT inhibition has effects on some of these same pathways, this acts as a further 
indication that epigenetic modulation might be a very useful adjuvant in the treatment 
of UM. 
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Additionally, as we know, tumours can change across time and express different 
molecular profiles depending on the location sampled within the tumour. Because of 
this, liquid biopsy approaches may offer a more representative and real-time means of 
monitoring the disease. Our lab has previously demonstrated an example of ctDNA 
isolation by liquid biopsy using tumour-specific mutations [67]. This work adds to the 
field by investigating the methylation patterns in an in vitro model of ctDNA.  Indeed, 
in this thesis, I have shown that methylation patterns can be maintained in cfDNA, 
representing the patterns of the parental cells. This data provides compelling evidence 
for the tracking of methylation using liquid biopsy to monitor disease progression in 
UM patients.  
Overall, we saw alterations in many important signaling and metastasis-related genes 
in UM cells upon treatment with a DNMT inhibitor. The methylation profiles and 
corresponding gene expression changes seen in UM patients in Chapter 2 – combined 
with the changes in signaling pathways seen in UM cells in Chapter 3 –  suggest that 
methylation-mediated inactivation of genes related to tumour progression could 
potentially be reversed by methylation-targeting treatments. Additionally, our analysis 
revealed specific pathways affected by DNA demethylating agents, giving insight into 
potential targets for adjuvant treatment in UM. For example, in UM cells, MEK 
inhibitors were shown to be most effective when used in combination with DNMT 
inhibitors, which may be due to the effects of the DNA demethylating agents on the 
Ras-Raf-MEK-ERK-MAPK cascade [47]. In the same vein, our data showing changes in 
methylation on genes coding for histone deacetylases or interleukins point to the 
potential of DNMT inhibitors for use in combination therapy; DNMT inhibitors could 
potentially reactivate or inactivate a pathway synergistically with a separate targeted 
drug such as an HDAC inhibitor or immune modulating drug. This is reinforced by our 
cell culture data pointing to alterations in many signaling pathways with DNMT 
inhibitor treatment. While many of the pathways seen in our analyses have been shown 
in other studies to be altered in UM, the mechanism behind these alterations was 
previously unclear. Our data suggests that DNA methylation may be responsible for 
many of the alterations in gene expression and signaling seen in UM cases. For this 
reason, it would be of great value in future studies to examine the impact of DNMT 
inhibitors on the expression of different genes within signaling cascades in order to 
elucidate the exact effects of DNMT inhibition on signal transduction in UM. 
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Our analysis of patient data pointed to a strong correlation between methylation 
patterns and gene expression levels. Such changes in gene expression caused by DNMT 
inhibition alters the molecular profile of the tumour cells. This means that the 
alterations in gene expression induced by DNMT inhibition within tumour cells could 
allow us to re-examine a number of treatments that have been ineffective in UM, but to 
which the cells may now by sensitised. Given that many treatments have been 
unsuccessful for this malignancy, the potential for synergistic action of other 
medications with DNMT inhibitors greatly expands the number of avenues that can be 
explored. In depth knowledge about the exact effects of DNMT inhibitors on these cells 
shows us which tumour-related pathways might be altered. This in turn reveals targets 
for combination with methylation-altering treatments. For example, we identified 
changes in the PI3K/Akt, Rap1, MAPK, Wnt, and mTOR signaling pathways, which are 
known to be very important in UM progression. The targeting of such pathways offers 
the potential for many new treatment modalities for UM. 
Especially interesting are the alterations in HDAC4 that we saw in both the TCGA 
patient data as well as the cell culture model, suggesting epigenetic events related to 
patterns of histone acetylation mediated specifically by HDAC4. These patterns may 
indeed also have widespread effects and require further study to assess HDAC 
inhibitors that block different classes of histone deacetylases for their potential to 
reduce the spread of UM. While changes in chromatin modifications have not been 
greatly studied in UM, our results in both patient samples and cell lines point to this 
being a topic that warrants future exploration. 
Importantly, our data are the first to demonstrate the corroboration of methylation 
patterns in cell-free DNA and genomic DNA in UM. This points to a useful clinical 
application of methylation detection in UM through liquid biopsy. In most UM patients 
who develop metastases, this progression of the disease occurs years after diagnosis 
and treatment of the primary tumour, making it difficult to predict. Since we showed 
that 1) DNA methylation differs in patients according to outcome and risk of metastasis, 
and 2) methylation patterns are maintained in cell free DNA, such patterns could be 
used to predict metastasis and monitor patients after removal of the primary tumour. 
This finding is especially relevant for disease monitoring because high levels of 
differentially methylated DNA may indicate a higher disease burden. Earlier detection 
of relapse in high risk patients is important despite the current lack of systemic 
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treatment options, as it gives them more time to enroll in clinical trials or attempt 
neoadjuvant treatment options. Additionally, the high degree of similarity between the 
methylation patterns in the matched primary and metastatic UM cell lines may indicate 
that these methylation changes could be targeted in metastatic disease as well as at the 
time of diagnosis. 
Interestingly, we noted a lack of major differences in mean methylation levels across 
patient samples, as well as across cell lines and treatment conditions. Moreover, we 
found many sites of differential methylation across the genome. These observations 
demonstrate patterns of hypermethylation and hypomethylation which are likely to 
lead to specific downstream effects on gene expression in these tumours. While 
azacytidine acts as a DNMT inhibitor, we found similar levels of mean methylation 
across treatments, as well as a pattern of both hypomethylation and hypermethylation. 
This indicates that, at the probes studied, azacytidine is having specific effects on UM 
cells as opposed to more general demethylation, fitting with a previous report in colon 
cancer and leukemic cell lines [68]. This has important implications for cancer therapy, 
as specific changes can be targeted, whereas more general alterations in methylation 
levels may require different approaches. The results from differentially methylated 
probe analysis show that these specific changes are occurring in pathways that regulate 
signaling in cancer and pathways in cancer more generally, as well in multiple genes 
that regulate the movement of cells. Reverting these changes in methylation could 
reduce the motility and metastatic capabilities of these cells, potentially playing a role in 
preventing the development of metastatic disease. 
Finally, in the analysis of TCGA data, we saw a strong relationship between BAP1 
mutation status and differential methylation patterns. This effect was recapitulated in 
our cell culture model, where the BAP1 negative cell line MP46 clustered separately 
from the BAP1 positive cell lines. Overall, these findings suggest that loss of BAP1 
expression is related to major changes in methylation patterns that may be driving 
tumour dissemination. These differences may once again point to therapeutic avenues, 
as BAP1 loss is associated with especially aggressive disease in UM; changes seen in the 
BAP1 negative cells in signaling cascades such as ErbB, cAMP, PI3K/Akt, and Rap1 
signaling, as well as alterations in cell motility and adhesion, suggest useful targets. 
Many of these alterations were also amongst those most affected by DNMT inhibition, 
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implying  that the changes seen in high risk UM are potentially reversible with 
treatment.  
 
Conclusion 
To conclude, we aimed to understand the role of methylation patterns in UM. Herein, 
we showed that methylation patterns at specific genes in UM are highly correlated to 
patient outcome, as well as to other recognized markers of prognosis. These genes are 
relevant in cell signaling, as well as in other genetic pathways that are important in 
cancer progression and development of metastasis, including cell adhesion and 
regulation of cell proliferation. Along with the differences seen between patients, 
human UM cell lines that recapitulate different facets of the disease were shown to 
differ in terms of methylation patterns. Moreover, treatment with the DNMT inhibitor 
azacytidine affected these patterns, through both hypomethylation and 
hypermethylation. In cell lines, pathways related to cell adhesion and motility, as well 
as signaling pathways such as MAPK, PI3K/Akt, RAP1, and mTOR were affected by 
DNMT inhibitor treatment, pointing to the potential clinical relevance of combining 
DNMT inhibitors with medications that are also relevant in these pathways. 
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