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ABSTRACT

The main result of this thesis is a proof of the failure of the finitely generated

intersection property of ascending HNN extensions of non-cyclic finite rank free

groups. This class of group consists of free-by-cyclic groups and properly ascending

HNN extensions of free groups. We also give a sufficient condition for the failure of

the FGIP in the context of relative hyperbolicity, we apply this to the free-by-cyclic

groups of exponential growth.

ABRÉGÉ

Le résultat principal de cette thèse est une démonstration de l’échec de la propriété

Howson dans le cas d’extension HNN de groupes libres non-cyclique de génération

finie. Cette classe de groupe consiste des groupes ayant un sous-groupe normal libre

dont le quotient est cyclique, ainsi que les groupes d’extension HNN propre. Nous

donnons une condition suffisante pour l’échec de la propriété de Howson dans le

context d’hyperbolicité relative, nous utilisons ce resultat dans le cas où l’extension

HNN est un automorphism de croissance exponentielle.
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1. Introduction

Definition 1.1. A group has the finitely generated intersection property (FGIP) if

the intersection of any two finitely generated subgroups is also finitely generated.

The most famous class of groups having the FGIP are locally quasiconvex word-

hyperbolic groups [27]. This generalizes the fact that free groups have the FGIP

which was proven by Howson [17], and indeed the FGIP is sometimes referred to as

the Howson property.

The purpose of this thesis is to examine the FGIP for ascending HNN extensions

of finitely generated free groups. We show the failure of the finitely generated inter-

section property (FGIP) for ascending HNN extensions of non-cyclic finite rank free

groups.

Definition 1.2 (Ascending HNN extension of a free group). Let φ : F → F be a

monomorphism from a free group to itself. Its associated ascending HNN extension

is the group G = 〈F, t | tft−1 = φ(f) : ∀f ∈ F 〉. If φ is surjective then G is

free-by-cyclic and we denote G by F oφ Z. If φ is not surjective then G is a proper

ascending HNN extension.

Our main goal is the following result which is new for proper HNN extensions:

Theorem 1.3. Any ascending HNN extension G of a finitely generated non-cyclic

free group F fails to have the FGIP.

The failure of the FGIP for F ×Z was first proved in [23]. The failure for free-by-

cyclic groups was later proved in [8]. The authors were unfortunately oblivious to the

work of Burns and Brunner and formulated an argument of the free-by-cyclic case

which is separated into the polynomially growing and exponentially growing cases in

Sections 5 & 6. These use Bestvina-Feighn-Handel relative train track maps [4, 5]

which are recalled in Section 4. We believe our argument to be similar to [8] in

nature, but hopefully less oblique as it relies less on combinatorial group theory and
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more on geometric intuition but at the expense of a powerful tool. In Theorem 3.1,

the properly ascending case of Theorem 1.3 is proved using elementary methods.

When G is hyperbolic Theorem 1.3 has a much crisper explanation using the ping

pong lemma (see Section 7.1). The idea is that for any f ∈ F −{1G}, the ping pong

lemma provides a free subgroup K = 〈fm, tm〉 and the intersection F ∩ K is not

finitely generated. We develop this idea further in Section 7 and obtain the following

sufficient condition for the failure of the FGIP in the relative hyperbolic framework:

Theorem 1.4. Let G be hyperbolic relative to a collection of proper subgroups. Let

N ⊂ G be a finitely generated subgroup. Suppose tNt−1 ⊂ N for some infinite order

t /∈ N . Suppose there is an infinite order w ∈ N such that t, w do not lie in the

same parabolic or virtually cyclic subgroup. Then G fails to have the FGIP.

We combine this result with recent powerful statements concerning relative hyper-

bolicity of free-by-cyclic groups [12, 13, 14] to provide a unified proof of the failure

of the FGIP for exponentially growing free-by-cyclic groups. This explanation is

complex since it depends upon a constellation of deep results, but it is interesting

to see how the exponential case fits into general framework via Theorem 1.4. We

expect this unity to prevail as relatively hyperbolic structures are constructed for

general ascending HNN extensions. Note that the exponentially growing case is the

main case since failure in the polynomially growing case is a simple consequence of

the failure for F × Z.

Finitely generated subgroups of ascending HNN extensions of rank 1 free groups

are easily shown to be either trivial, cyclic or of finite index (see e.g. [21]). Inter-

secting a subgroup H with a finite index subgroup K yields a finite index subgroup

of H. Hence if H is finitely generated so is H ∩K. We therefore focus on ascending

HNN extensions of a free group F with rank(F ) ≥ 2.
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2. The Finitely Generated intersection property

In this section we survey known results on the FGIP [29]. It is also called the

Howson property since Howson first proved that free groups have the FGIP [17].

Moldavansky later proved that F×Z does not have the FGIP and that the Baumslag

Solitar group BS(1, n) has the FGIP [23].

Greenberg proved that fundamental groups of compact surfaces have the FGIP

[15]. Soma studied the FGIP for geometric 3 manifolds, giving examples of 3-

manifolds with and without the FGIP [28]. In particular, hyperbolic 3-manifolds of

infinite volume have the FGIP and closed hyperbolic 3-manifolds do not. Polycyclic-

by-finite groups have the FGIP [1].

Baumslag proved that the FGIP is preserved under free products [3], this was

generalized by Cohen to amalgamated products and HNN-extensions over finite

subgroups [9]. Burns proves that amalgamated products of free groups along infinite

cyclic subgroups have the FGIP if and only if the cyclic subgroup is maximal cyclic

in both factors [7].

A right angled Artin group A(Γ) has the FGIP iff every connected component of

Γ is complete [26].

Dahmani proved that limit groups have the FGIP [11].

A large class of groups, including many of the above, having the FGIP are locally

quasi-convex groups, a proof can be found in [27]. Wise and McCammond used the

previous result to prove that many small cancellation groups have the FGIP [22].

Using these techniques, Schupp proved that many Coxeter groups have the FGIP

[25]. One relator groups of form G = 〈x1, · · ·xm|rn = 1〉 where n ≥ |r| are locally

quasi-convex and therefore also have the FGIP [18]. Kapovich gives examples of one-

relator groups that fail the FGIP [19], note that many ascending HNN extensions

of free groups are one relator groups, for example 〈a, b, t : tat−1 = b, tbt−1 =

abab〉 ∼= 〈b, t : tbt−1 = t−1btbt−1btb〉.

The Grigorchuk group does not have the FGIP [24].
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A “generic” m-generator, n-relator group has the FGIP [2].

The wreath product Z o Z does not have the FGIP [20].

The question of whether SL(3,Z) has the FGIP remains open. Note that SL(n,Z)

where n > 3 has F × Z subgroups where F is free of rank 2 so fails to have the

FGIP.

3. Proper ascending HNN extension

In this section we prove the following theorem:

Theorem 3.1. Any proper ascending HNN extension of a non-cyclic finitely gen-

erated free group fails to have the FGIP.

Lemma 3.2. Let H ⊂ F be a finitely generated infinite index subgroup of a free

group. There exists f such that 〈f,H〉 = 〈f〉 ∗H.

Proof. Regard F as π1(B, b), where B is a bouquet of circles. Let (B̂, b̂)→ (B, b) be

a based covering map with H = π1(B̂, b̂). Since H is finitely generated, we can chose

a finite based subgraph (C, b̂) ⊂ (B̂, b̂) whose inclusion induces a π1-isomorphism.

We claim that it is possible to add an edge e to C to obtain an immersion D → B.

Note that π1(D, b) = 〈f〉 ∗ H for some nontrivial f ∈ π1(B, b). We now prove the

claim: Since B̂ is not a finite cover of B, there is an edge â of B̂−C that is incident

with C at a vertex v. Suppose â maps to the edge a of B. Observe that, as it is

finite, C has the same total number of incoming and outgoing a-edges at its vertices.

So if â is incoming/outgoing at v, there is a missing outgoing/incoming a-edge at

some vertex u of C. We may thus attach an edge e mapping to a at the vertices

u, v. �

Lemma 3.3. Let φ : G→ G be group automorphism. The following are equivalent

for w ∈ G.

(1) {φi(w), i ∈ Z} form a basis for a free subgroup.

(2) {φi(w), i ∈ N} form a basis for a free subgroup.
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Proof. (1) ⇒ (2) is clear, so we focus on (2) ⇒ (1). If a product
∏k
i=1 φ

ni(w) where

ni ∈ Z represents the identity then φmax(|ni|)(
∏k
i=1 φ

ni(w)) = e, so
∏k
i=1 φ

mi(w)

where mi = max(|ni|) + ni ∈ N represents the identity. �

Corollary 3.4. Let G be a group and t, w ∈ G. The following are equivalent:

(1) {tiwt−i, i ∈ Z} form a basis for a free subgroup.

(2) {tiwt−i, i ∈ N} form a basis for a free subgroup.

Proof. Apply Lemma 3.3 to the inner automorphism consisting of conjugation by

the element t. �

Lemma 3.5. Let H be a group generated by elements w and t, and let ρ : H → Z

be a homomorphism with ρ(t) = 1 and ρ(w) = 0. Then ker(ρ) = 〈〈w〉〉 = 〈tnwt−n :

n ∈ Z〉.

We use the notation 〈〈w〉〉 for the normal closure of w.

Proof. Let J be the free group on w and t. We get a homomorphism J → Z by

composing J → H → Z. Its kernel is the normal closure of w ∈ J , since w is mapped

to 0 and J/〈〈w〉〉 ∼= Z. Realizing J as the fundamental group of a bouquet of circles

on w and t and considering the associated cyclic covering space one sees that the

normal closure of w in J is generated by conjugates of w by tn for n ∈ Z.

The kernel of J → Z maps surjectively on the kernel of H → Z. The image

under J → H of the normal closure of w in J is the normal closure of w in H

and the image of conjugates of w by tn in J are conjugates of w by tn in H, so

ker(ρ) = 〈〈w〉〉 = 〈tnwt−n : n ∈ Z〉. �

Corollary 3.6. In the setting of Lemma 3.5, if {tiwt−i, i ∈ Z} forms a basis for a

free subgroup then H is free of rank 2.

Proof. If {tiwt−i, i ∈ Z} forms a basis for a free subgroup of H, then J → H

restricts to an isomorphism on the kernels of the homomorphisms to Z. Apply the

five lemma to the two short exact sequences to get J ∼= H. �
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Lemma 3.7. Let H ⊂ F be a nontrivial subgroup of a free group and let f ∈ F be

such that fHf−1 ⊂ H but fn /∈ H for any n > 0. Then H is not finitely generated.

Proof. Realize F as π1 of a bouquet of circles (B, p). Let (B̂, p̂) be a based covering

space corresponding to H. Considering the covering transformation action of F on

the vertices of B̂. If fmp̂ = fnp̂ then fm−np̂ = p̂ which implies fm−n ∈ H, which

implies m = n by assumption, therefore {fnp̂, n ∈ Z} is infinite. By non-triviality

of H, let σ be a nontrivial cycle. Using that fn /∈ H for any n > 0, we can find

a sequence of elements {fni p̂} such that the lifts of σ starting at fni p̂ are pairwise

disjoint. Hence H is not finitely generated since H1(B̂) is not finitely generated. �

The following corollary is used in the free-by-cyclic case.

Corollary 3.8. Let F be a free group and H ⊂ F a normal subgroup of infinite

index, then H is not finitely generated.

Proof. Suppose towards a contradiction that H is finitely generated. By Lemma 3.2

there is an element f ∈ F −H such that fn /∈ H for any n > 0. Since H is normal,

fHf−1 ⊂ H so H is not finitely generated by Lemma 3.7. �

Proof of Theorem 3.1. We first observe that [F, φ∗(F )] = ∞. Indeed, if (B̂, b̂) is a

degree d cover of a bouquet of r ≥ 2 circles, then χ(B̂) = dχ(B) = d(1 − r). Thus

χ(H) < χ(F ) for any proper finite index subgroup H of F . So F is not isomorphic

to a proper finite index subgroup of itself, and therefore φ∗(F ) is of infinite index.

By Lemma 3.2 there exists an f ∈ F − φ(F ) such that 〈f, φ(F )〉 = 〈f〉 ∗ φ(F ).

Therefore 〈f, φ(f), φ2(F )〉 = 〈f〉 ∗ 〈φ(f), φ2(F )〉 = 〈f〉 ∗ 〈φ(f)〉 ∗ φ2(F ), and thus

〈φi(f), i ∈ N〉 = ∗i∈N〈φi(f)〉. In particular Lemma 3.3 tells us that {tift−i, i ∈ Z}

forms a basis for a free subgroup. By Corollary 3.6 where H = 〈f, t〉 and ρ from the

HNN structure, H is free of rank 2. To conclude, H ∩F is conjugated into itself by

t, and tn /∈ F for any n > 0, so H ∩ F is not finitely generated by Lemma 3.7. �
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4. Relative train track maps

In this section we review the theory of train track maps developed in [5] and

[4]. A marked graph is a graph V together with a homotopy equivalence to the

bouquet Rn of n petals, π1V can therefore be identified with the free group of rank

n up to inner automorphism. A homotopy equivalence Φ : V → V of a marked

graph is a topological representative of the outer automorphism it induces on the

free group. Note that every outer automorphism has a topological representative,

but that topological representatives are not unique. In [5], particularly nice repre-

sentatives called relative train track maps are defined. An algorithm exists turning

a homotopy equivalence into a relative train track map inducing the same outer

automorphism ([5], Thm 5.12). Any automorphism therefore has a relative train

track map as a topological representative, this means that the homotopy enjoys the

following properties:

Definition 4.1. The tightening [[w]] of a combinatorial path w in V is the immersed

path in V that is path-homotopic to w. By a reduced path we mean a path equal to

its tightening. By a cyclically reduced path we mean a path w such that [[w]][[w]] =

[[w2]].

Definition 4.2. A path w = e1 · · · ek in V is legal if Φn(ej) and Φn(e−1
j+1) have

distinct initial edges for all n ≥ 0. The path w = e1 · · · ek in V is r-legal if for all

n ≥ 1, the paths Φn(ej) and Φn(e−1
j+1) have distinct initial edge e unless e ⊂ V r−1.

Definition 4.3 (Relative train track map). Let ∅ = V 0 ( V 1 ( ... ( V k = V be

a filtration of V by subgraphs and let Sr = Cl(V r − V r−1). Let Φ : V → V be a

tight relative train track map in the sense of [5]. This means that Φ sends vertices

to vertices and edges to combinatorial paths, and that each of the following holds:

(1) Each V r is Φ-invariant.

(2) For each edge e in an exponentially growing stratum Sr ⊂ V r, the path Φ(e)

starts and ends with an edge of Sr.
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(3) For each exponentially growing Sr+1 and each non-trivial immersed path

P → V r starting and ending in Sr+1 ∩V r, the path Φ(P ) is essential, in the

sense that [[Φ(P )]] is non-trivial.

(4) For each exponentially growing Sr and each legal path P → Sr the path

Φ(P ) is r-legal.

If e1, e2, ..., em is the collection of edges in some stratum Sr, the transition matrix

of Hr is the non-negative m×m matrix Mr whose ij-th entry is the number of times

the φ-image of ej crosses ei, regardless of orientation. Mr is irreducible if for every

tuple 1 ≤ i, j ≤ m there is some exponent n > 0 such that the ij-th entry of Mn
r

is non-zero. We may assume that the filtration in Definition 4.3 is maximal in the

sense that every transition matrix is irreducible or the zero matrix since otherwise,

a further reduction is possible. In the irreducible case, let λr ≥ 1 be the largest

eigenvalue of Mr, also known as the Perron-Frobenius eigenvalue. If λr > 1 we say

Sr is exponentially growing. If λr = 1, we say Sr is polynomially growing. Otherwise,

Mr = 0 and we say Sr is a zero stratum.

In Section 5, we enjoy some addition properties on topological representatives,

namely some properties of improved relative train track map in the sense of [4, Thm

5.1.5.]. Any outer automorphism has an improved relative train track representative.

We define the properties of such maps that we use.

Definition 4.4 (Improved relative train track map). The relative train track map

Φ : V → V is improved if:

(1) If Sr is a zero stratum, then Sr+1 is exponentially growing.

(2) If Sr is a zero stratum, then it is the union of contractible components of

V r

(3) If Sr is a polynomially growing stratum, then Sr consists of a single edge e,

and Φ(e) = eP , where P is a closed path in V r−1 whose initial point is fixed

by Φ. If P is trivial, then e is a periodic edge.
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4.1. Mapping Tori. Lurking behind the discussions in Sections 5 and 6 is the

following geometric realization whose description is a continuation of Definition 1.2.

Definition 4.5 (Mapping tori). Let Φ : V → V be a map from a connected graph

to itself. The mapping torus MΦ of Φ is the 2-complex: MΦ = V × [0, 1]/{(v, 0) ∼

(Φ(v), 1) : ∀v ∈ V }. When Φ is basepoint preserving, it induces a homomorphism

φ : π1V → π1V , otherwise we identify π1(V, p) with π1(V,Φ(p)) in the usual way

to get a homomorphism φ : π1V → π1V . The group G is an ascending HNN

extension of a free group if G = π1(MΦ) with φ : π1V → π1V injective. If φ is an

automorphism then G is free-by-cyclic and we denote G by F oφ Z where F = π1V .

If φ is not surjective then G is a proper HNN extension. (Note that this depends on

the choice of the decomposition of G.)

Remark 4.6. If two free group automorphisms φ and φ′ belong to the same outer

class (they differ by conjugation by a group element), then F oφ Z ∼= F oφ′ Z.

Therefore Theorem 3.1, Theorem 5.4, and Theorem 6.1 partition Theorem 1.3.

5. Polynomially growing case

In this section we study free-by-cyclic groups that are ascending HNN extensions

over train track maps with no exponential stratum. This is usually called the poly-

nomial case, since the growth of |Φn(w)| is bounded by a polynomial for each path

w ⊂ V . The method used consists of either finding a F × Z subgroup which fails

the FGIP as proved in [23], or finding a free subgroup of rank= 2 surjecting onto

the Z factor.

Theorem 5.1. F × Z fails to have the FGIP, when F is a non-cyclic finitely gen-

erated free group.

Proof. Let H = 〈(f0, 0), (f1, 1)〉 and suppose J = 〈f0, f1〉 is not a cyclic subgroup

of F . Since J is non-cyclic, [f0, f1] 6= id. Hence H ∩ (F{0}) is nontrivial, since

[(f0, 0), (f1, 1)] ∈ F × {0}.
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However [H : H ∩ F ] =∞ because (f1, 1) has image 1 under the homomorphism

to Z. The result follows from Corollary 3.8. �

The explanation in the polynomial case is simplified by considering an improved

relative train track representative of the automorphism. By Definition 4.4.(1) there

can only be a zero stratum at the highest stratum, in which case we may ignore it by

Definition 4.4.(2). We therefore assume all of our strata to be of polynomial growth.

A hierarchy for the group is obtained by means of Definition 4.4.(3). This gives an

increasing sequence of mapping tori MΦi where Φi = Φ|V i : each stage is obtained

from the previous by an HNN extension whose stable letter en conjugates Pnt to t,

as described in Definition 4.4.(3). Each inclusion MΦi ↪→MΦ are π1-injective, so it

suffices to show that MΦ2 fails to have the FGIP.

In fact, MΦ2 has a very simple structure:

Lemma 5.2. π1(MΦ2) splits as an HNN extension of Z2 over cyclic subgroups.

Proof. Each strata is polynomially growing by assumption. Let ei be the unique

edge in Si, and Pi be the closed path in V i−1 such that φ(ei) = eiPi as in Defini-

tion 4.4.(3). Since V 0 = ∅, we must have φ(e1) = e1. So π1(Mφ1) is isomorphic to

Z2. Moreover since V 1 contains only e1, P2 = en1 for some n ∈ Z so φ(e2) = e2e
n
1 .

Thus π1(Mφ1) is isomorphic to the group 〈e1, e2, t | te1t
−1e−1

1 , te2t
−1e1

ne2〉. This

is an HNN extension of the subgroup 〈e1, t〉 ∼= Z2 over cyclic subgroups 〈e1
nt〉 and

〈t〉 with stable letter e2 sending generator to generator. �

Remark 5.3. In addition to the existing HNN extension structure on π1(MΦ2) with

stable letter t, the previous lemma provides another HNN extension structure on

π1(MΦ2) with stable letter e2. Each such structure comes with a homomorphism

onto Z, we denote them by homomorphisms to 〈t〉 and 〈e2〉 respectively, induced by

the retracts to the stable letters.

We conclude this section with the proof of
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Theorem 5.4. Any ascending HNN extension of a non-cyclic finite rank free group

over an improved relative train track map with no exponential stratum fails to have

the FGIP.

Proof of Theorem 5.4. We focus on the subgroup π1(MΦ2) ∼= 〈e1, t, e2 | [e1, t], e2e1
nte−1

2 =

t〉 where n ∈ Z as in the proof of Lemma 5.2. If n = 0 then π1(MΦ2) ∼= F ×Z which

was resolved in Lemma 5.1. If n 6= 0, we find a nontrivial finitely generated free

subgroup K such that K ∩ F is not finitely generated. Since n 6= 0, words in

〈e1, e2te2
−1〉 do not have subwords of form e2

−1te2 or e2e1
nte2

−1. By Britton’s

Lemma K = 〈e1, e2te2
−1〉 is free of rank 2. Moreover K ∩ F is nontrivial since

e1 ∈ K, and [K,K ∩ F ] =∞ because e2te2
−1 has image t in the homomorphism to

〈t〉 introduced in Remark 5.3. The conclusion follows from Corollary 3.8. �

6. The exponential case

In this section, we prove the following:

Theorem 6.1. Any ascending HNN extension of a non-cyclic finite rank free group

over a relative train track map with an exponential stratum fails to have the FGIP.

Remark 6.2. Throughout this section we will possibly raise Φ to a positive expo-

nent Φp. We then prove failure of FGIP in π1(MΦp), which can be identified with

the finite index subgroup obtained as the kernel of the composition of the projection

onto the Z factor with Z→ Z/pZ.

Definition 6.3. An edge e ∈ Sr is an r-edge. The r-length |w|r of a path w is the

number of r-edges in w.

Lemma 6.4. Let Φ : V → V be a relative train track map. After possibly replacing

Φ by Φp, for any `-legal path w ⊂ V ` and exponential stratum S`, we have 2|w|` ≤

|Φ(w)|`. Consequently, 2|Φn(e)|` ≤ |Φn+1(e)|` for each edge e of S` and any n > 0.

Proof. Since the transition matrix of the `-stratum is irreducible with eigenvalue

strictly larger than 1, for each edge e in S`, there is a positive integer ne such that
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|Φne(e)|` > 1. Replacing Φ by Φ
∏

e∈S` ne ensures that |Φ(e)|` ≥ 2 for all e ∈ S`.

Condition 4.3.(2) further ensures that 2|w|` ≤ |Φ(w)|` since w is `-legal. �

Definition 6.5. For a reduced and cyclically reduced closed path w, define w+∞

to be the infinite path containing wn as an initial subpath for each n ∈ N.

Definition 6.6. If w, u are path with same initial/terminal vertex v, the ini-

tial/terminal overlap is the maximal common subpath starting/ending at v.

Lemma 6.7. Let Φ : V → V be a relative train track map. After replacing Φ by

a positive power Φp, the following holds for any exponential stratum S`. There is a

closed path w → V such that:

(1) w is cyclically reduced; so w → V is an immersed cycle.

(2) 〈w〉 is a maximal cyclic subgroup.

(3) The first edge of w is an `-edge.

(4) wm is `-legal for each m ∈ N.

(5) [[w]] and [[Φ(w)]] have nontrivial initial overlap and terminal overlap.

(6) [[ΦN (w±1)]]+∞ 6= [[ΦM (w±1)]]+∞ if N 6= M .

Proof. Consider Φ from Lemma 6.4 . By the pigeonhole principle, since |Φn(e)|`

diverges as n→∞ there is an n0 such that Φn0(e) contains two copies of the same

`-edge. Let w be the subpath of Φn0(e) starting with the repeating `-edge and

ending at the initial vertex of the second occurrence of the repeating `-edge, giving

Conditions (1) and (3). Condition (4) is ensured since length 2 subpath of w∞

appears in Φn0(e), and Φn0(e) is `-legal by Definition 4.3.(4).

Consider {Φn(w), n > 0}, find n0 and n1 such that Φn0(w) and Φn1(w) have

nontrivial initial overlap, in particular they are based at the same point p. Change

Φ to Φn1−n0 and w to Φn0(w) . Do the same for to ensure that w−1 and Φ(w−1)

have nontrivial initial overlap. This ensures Condition (5) and does not alter Con-

ditions (1)-(4).
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Condition (6) is verified by considering the action of π1(V, p) on the universal

cover Ṽ associated to a basepoint p̃ ∈ Ṽ . Let ˜[[ΦN (w)]]+∞ be the lift of [[ΦN (w)]]+∞

at p̃. Condition (2) ensures Stab( ˜[[ΦN (w)]]∞) = 〈ΦN (w)〉 ∼= Z. So [[ΦN (w±1)]]+∞ =

[[ΦM (w±1)]]+∞ implies 〈ΦN (w±1)〉 = 〈ΦM (w±1)〉, which itself implies ΦN (w±1) =

ΦM (w±1) by maximality of the subgroups. However this is only possible if N = M ,

since otherwise |ΦN (w±1)|` 6= |ΦM (w±1)|` by Lemma 6.4. �

Definition 6.8. The length |w| of a path w is the number of edges in w.

The final tool we introduce is bounded cancellation, we refer the reader to [10]

for a proof of the following:

Definition 6.9. Let a, b be words in a graph V , define the cancellation between a

and b to be the maximal common initial subword of a−1 and b denoted by cab.

Lemma 6.10 (Bounded cancellation). Let Φ be a homotopy equivalence of a finite

graph. Then there exists a constant CΦ such that if |w1w2| = |w1| + |w2| then

|Φ(w1)Φ(w2)| − 2cΦ(w1)Φ(w2) ≥ |Φ(w1)|+ |Φ(w2)| − CΦ.

Corollary 6.11. Let σz and σr be words in a graph V such that |σz| = |σ|+ |z| and

|σr| = |σ| + |r| and Φ : V → V a homotopy equivalence with bounded cancellation

CΦ. Write Φ(σz) as a reduced word σ′z′ where σ′ is the maximal initial subpath of

[[Φ(σz)]] and [[Φ(σr)]]. Then |z′| > |Φ(z)| − CΦ.

Proof. We consider cΦ(σ)Φ(z), cΦ(σ)Φ(r) and cΦ(z)−1Φ(r), notice that for any choice

of words and Φ, at least two of these three words have to be equal. Consider

three cases, the first when |cΦ(σ)Φ(z)| ≥ |cΦ(σ)Φ(r)| = |cΦ(z)−1Φ(r)|, in which case

z′ = [[cΦ(σ)zΦ(z)]]. The second when |cΦ(σ)Φ(r)| ≥ |cΦ(σ)Φ(z)| = |cΦ(z)−1Φ(r)|, in which

case z′ = [[cΦ(σ)rΦ(z)]]. The last case when |cΦ(z)−1Φ(r)| ≥ |cΦ(σ)Φ(z)| = |cΦ(σ)Φ(r)|,

in which case z′ = [[cΦ(σ)rΦ(z)]]. In each case we obtain z′ by pre-composing [[Φ(z)]]

with a word of length smaller than CΦ therefore getting the desired inequality. �

We now turn to the main goal of this section:



18

Proof of Theorem 6.1. Let w and Φ be the path and map provided by Lemma 6.7.

We claim there exists p > 0 such that for every i ∈ N, [[Φi(wp)]] is not a prefix of

[[Φi+1(wp)]] but that they share a nontrivial prefix as in Lemma 6.7.(5). Moreover p

can be chosen such that the same holds for [[Φi(w−p)]] and [[Φi+1(w−p)]].

As Figure 1 illustrates, this provides an increasing sequence of subgraphs θ0 ⊂

θ1 ⊂ θ2 ⊂ · · · with χ(θn) = −n, and immersions θn → V , with π1-image 〈Φi(w2p) :

0 ≤ i ≤ n〉. Thus 〈Φi(w2p) | i ∈ N〉 = ∗i∈N〈Φi(w2p)〉. By Lemma 3.5 the kernel of

〈w2p, t〉 → Z is 〈Φi(w2p) | i ∈ Z〉 which is not finitely generated by Lemma 3.3.

Figure 1. Nontrivial zis in θ2.

To find p, first find p0 such that [[w]]p0 is not a prefix of [[Φ(w)]]p0 , this is possible

by Lemma 6.7.(6). Write [[Φi(w)]]p0 as a reduced word σizi where σi is the maximal

common initial subpath of [[Φi(w)]]p0 and [[Φi+1(w)]]p0 . Our goal is now to show

that a choice of p0 ensures that |zi| > 0 for each i ≥ 0. We may assume that

|z0|` > CΦ, since increasing p0 adds copies of [[w]] to z0 which increases the `-length

by Lemma 6.7.(3)&(4).

The following induction argument shows that our choice of p0 ensures |zi| > 0

for all i. If |zi|` > CΦ, then |Φ(zi)|` > 2CΦ by Lemma 6.4, and so |Φ(zi)| > 2CΦ.

Using Corollary 6.11 on z′ = zi+1, u = σi and r = [[σ−1
i Φi+1(wp0)]] we also have

|zi+1| > |Φ(zi)| − CΦ. Combining these, if |zi|` > CΦ then |zi+1| > CΦ completing

our induction.
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Similarly, pick p1 such that the same holds true for Φi+1(w−p1) and Φi(w−p1).

We may fix p = max(p0, p1) and wp will be the desired word. �

Remark 6.12. Notice that by Lemma 3.5 the elements w2p and t generate a free

subgroup of rank 2 .

7. Failure of the FGIP for certain relatively hyperbolic groups

In this section we propose a short argument explaining the failure of the FGIP for

certain relatively hyperbolic groups. We then combine this result with a powerful

result on relative hyperbolicity of free-by-cyclic groups with exponentially growing

automorphism [13, 14, 12] to give a second explanation of the failure of the FGIP

for these groups.

7.1. Ping-pong. We recall the relatively hyperbolic generalization of Gromov’s ap-

plication of the ping pong lemma [16] to a hyperbolic group acting as a convergence

group on its boundary.

Lemma 7.1. Let G be a relatively hyperbolic group. Let w, t ∈ G be infinite order

elements with no common fixed point in ∂G. Then there exists m > 0 such that

〈wm, tm〉 is free of rank 2.

We use the action of G as a convergence group on its boundary ∂G. [6]

Proof. Let {a, b} and {x, y} be the points stabilized respectively by w and t. Let

Na, Nb, Nx, Ny be pairwise disjoint open neighborhoods of a, b, x, y respectively un-

less x = y or a = b in which case Nx = Ny and Na = Nb. By compactness

we may assume that the closure of these neighborhoods are disjoint. Since G

acts as a convergence group and w, t have {a, b} and {x, y} as attracting/repelling

points respectively. There is a constant M such that tm(N̄a ∪ N̄b) ⊂ Nx ∪ Ny and

wm(N̄x ∪ N̄y) ⊂ Na ∪ Nb whenever |m| > M . Applying the ping pong lemma on

N̄a ∪ N̄b and N̄x ∪ N̄y gives us the desired result. �
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7.2. Relative hyperbolicity and the FGIP.

Theorem 7.2. Let G be hyperbolic relative to a collection of proper subgroups. Let

N ⊂ G be a finitely generated subgroup. Suppose tNt−1 ⊂ N for some infinite order

t /∈ N . Suppose there is an infinite order w ∈ N such that t, w do not lie in the

same parabolic or virtually cyclic subgroup. Then G fails to have the FGIP.

Remark 7.3. The hypotheses on w, t are equivalent to being (infinite order) para-

bolic and/or loxodromic elements without common fixed points on ∂G. In particular

this always holds when one is parabolic and the other loxodromic. [6, Lem 2.2]

Proof. By Lemma 7.1, there exists m ∈ Z such that wm, tm generate a rank 2

free subgroup F . Observe that K = N ∩ F is nontrivial since wm ∈ N ∩ F , and

tKt−1 ⊂ K but tm /∈ N ∀ m ∈ Z. By Lemma 3.7, K is not finitely generated. �

The hyperbolic case simplifies to the following.

Corollary 7.4. Let G be hyperbolic, let N ⊂ G be an finitely generated infinite

subgroup, and suppose tNt−1 ⊂ N for some infinite order t with 〈t〉 ∩ N trivial.

Then G fails to have the FGIP.

7.3. Exponential growth free-by-cyclic. Combining Theorem 7.2 with recent

powerful results on relative hyperbolicity of mapping tori, we obtain an alternate

explanation of Theorem 6.1.

Corollary 7.5. If φ : F → F is an exponentially growing automorphism of a finitely

generated free group. Then the free-by-cyclic group F oφ Z fails to have the FGIP.

Proof. From [12, Thm 3.5] , FoφZ is hyperbolic relative to mapping tori of maximal

polynomially growing subgroups. These are the conjugacy classes of finitely many

subgroups of form 〈H, gt〉 where H < F is polynomially growing, g ∈ F and t is the

stable letter of the decomposition.

Let w ∈ F be an exponentially growing element. Observe that w is loxodromic

in the above relatively hyperbolic structure. Note that the semi direct structure
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ensures that w and t do not lie in the same cyclic subgroup. Hence Remark 7.3

ensures that the criterion Theorem 7.2 applies with N = F . �
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