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Abstract

In this manuscript we discuss several aspects of conformally covariant oper-

ators from a spectral theory point of view. We consider operators acting on

sections of a bundle or on scalar functions. For operators that are elliptic and

formally self-adjoint we obtain results on the continuity and multiplicity of

their eigenvalues. In particular, we prove that the eigenvalues of the GJMS

operators are continuous and simple for a residual set of metrics. We also

introduce several new conformal invariants that arise from considering eigen-

values and nodal sets of null-eigenvectors. As an application of our results we

address a scalar curvature prescription problem.
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Résumé

Dans cette thèse, nous traiterons de divers aspects concernant les opérateurs

covariants conformes, et ce du point de vue de la géométrie spectrale. Nous

considérons tout au long de cette thèse des opérateurs agissant sur des sec-

tions d’un fibré ou encore sur des fonctions scalaires. Dans le cas d’opérateurs

elliptiques et formellement auto-adjoints, nous obtenons des résultats sur la

continuité et sur la multiplicité de leurs valeurs propres. En particulier, nous

prouvons que les valeurs propres des opérateurs de type GJMS sont contin-

ues et simples pour un ensemble résiduel de métriques. Nous introduisons

également plusieurs nouveaux invariants conformes qui surgissent lorsque nous

considérons des valeurs propres et des domaines nodaux de certaines fonctions

propres. Nos résultats ont notamment comme application de permettre la

résolution d’un certain problème de courbure scalaire prescrite.
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CHAPTER 1

Introduction

Conformally covariant operators (see Definition 3.1) are known to play a key

role in Physics and Spectral Theory. In the past few years, much work has

been done on their systematic construction, understanding, and classification

[3, 8, 6, 7, 21, 26, 27, 36, 42]. In Physics, the interest for conformally covariant

operators started when Bateman [4] discovered that the classical field equations

describing massless particles (like Maxwell and Dirac equations) depend only

on the conformal structure. These operators are also important tools in String

Theory and Quantum Gravity where they are used to relate scattering matrices

on conformally compact Einstein manifolds with conformal objects on their

boundaries at infinity [28]. In Spectral Geometry, the purpose is to relate

global geometry of a manifold to the spectrum of some natural operators. For

example, the nice behavior of conformally covariant operators with respect to

conformal deformations of a metric yields a closed expression for the conformal

variation of the determinants leading to important progress in the lines of

[8, 9, 15].

Not many statements can be proved simultaneously for all conformally covari-

ant operators, even if self-adjointness and ellipticity are enforced. Some of

these operators act on functions, others act on bundles. For some of them the

maximum principle is satisfied, whereas for others, is not. Some of them are
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bounded below while others are not. We therefore emphasize that most of the

techniques in this manuscript work for the whole class of conformally covariant

operators.

When it comes to perturbing a metric to deal with any of the problems de-

scribed above, it is often much simpler to work under the assumption that

the eigenvalues of a given operator are a smooth, or even continuous, function

of a metric perturbation parameter. But reality is much more complicated,

and usually, when possible, one has to find indirect ways of arriving to the de-

sired results without such assumption. However, it is generally believed that

eigenvalues of formally self-adjoint operators with positive leading symbol are

generically simple. And, as Branson and Ørsted point out in [14, pag 22],

since many of the quantities of interest are universal expressions, the generic

case is often all that one needs. In many cases, it has been shown that the

eigenvalues of metric dependent, formally self-adjoint, elliptic operators are

generically simple. In 1976, Uhlembeck showed that several families of second

order, self-adjoint, elliptic operators have generically simple eigenvalues [40].

The main example is the Laplace operator on smooth functions on a compact

manifold, see [40, 39, 2, 5]. The simplicity of eigenvalues has also been shown,

generically, for the Hodge-Laplace operator on forms on a compact manifold

of dimension 3 (see [22]). Besides, in 2002, Dahl proved such result for the

Dirac operator on spinors of a compact spin manifold of dimension 3; see [20].

It seems to be the case that in the class of conformally covariant operators

the latter is the only situation for which the simplicity of the eigenvalues has

generically been established. The purpose of this thesis is to shed some light

in this direction.

Conformally covariant operators also provide the opportunity to generate con-

formal invariants, and hence better understand the space of Riemannian met-

rics over a given manifold. In this manuscript we study conformal invariants

arising from nodal sets and negative eigenvalues of GJMS operators (probably

the most well known ones among the class of conformally covariant operators).

We prove that the number of negative eigenvalues is a conformal invariant. We

also show that nodal sets of null-eigenfunctions are conformal invariants too.

To our knowledge this is the first time that nodal sets have been considered

generally in the setting of conformal geometry. We then study in detail all our
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invariants for the Conformal Laplacian. In addition, we give some applications

of our invariants to curvature prescription problems.

1.A. Convention

Unless stated otherwise, throughout the manuscript we work under the follow-

ing assumptions.

• (M, g) is a compact connected Riemannian manifold of dimension n.

• Eg is a smooth bundle over M with product on the fibers ( , )x. We write

Γ(Eg) for the space of smooth sections of the bundle and denote by 〈 , 〉g
the global inner product 〈u, v〉g =

∫
M

(u(x), v(x))xdvolg, for u, v ∈ Γ(Eg).

• Pg : Γ(Eg) → Γ(Eg) is an elliptic, formally self-adjoint, conformally

covariant operator of order m.

• The space M of Riemannian metrics over M is endowed with the C∞-

topology.

1.B. Statement of the results

In Chapter 2 we introduce basic definitions and tools in Spectral Geometry

that we shall use in the rest of the manuscript.

In Chapter 3 we introduce the class of conformally covariant operators and

provide multiple examples.

We dedicate Chapter 4 to discuss continuity results of the eigenvalues of Pg

in the C∞-topology of metrics (Theorem 4.1). In particular, we prove that if

Pg is strongly elliptic, then all its eigenvalues are continuous functions in the

metric parameter (Corollary 4.2).

Among the main results of Chapter 5 are:

− Suppose Pg : Γ(Eg) → Γ(Eg) has no rigid eigenspaces (see Definition 5.2).

Then the set of functions f ∈ C∞(M,R) for which Pefg has only simple

non-zero eigenvalues is a residual set in C∞(M,R) (Theorem 5.4).
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− If Pg : Γ(Eg) → Γ(Eg) has no rigid eigenspaces for a dense set of metrics,

then all non-zero eigenvalues are simple for a residual set of metrics in M
(Corollary 5.5).

− Suppose Pg : Γ(Eg)→ Γ(Eg) satisfies the unique continuation principle for a

dense set of metrics inM. Then the multiplicity of all non-zero eigenvalues

is smaller than the rank of the bundle for a residual set of metrics in M
(Corollary 5.8).

− As an application, if Pg acts on C∞(M) (e.g. GJMS operators), then its non-

zero eigenvalues are simple for a residual set of metrics in M (Proposition

5.16 combined with Corollary 5.5).

In Chapter 6 we look at conformal invariants that arise from eigenvalues and

nodal sets of null-eigenfunctions of Pg. Among the main results are

− The number of negative eigenvalues is a conformal invariant (Theorem 6.2).

− The sign of the first eigenvalue is a conformal invariant (Theorem 6.3).

− Nodal sets and nodal domains of any null-eigenfunction of a conformally

covariant operator are conformal invariants (Proposition 6.4).

The purpose of Chapter 7 is to extend and apply the results in Chapter 6 to

the Conformal Laplacian P1,g = ∆g + n−2
4(n−1)

Rg, where ∆g = δgd and Rg is the

scalar curvature.

− If P1,g has m negative eigenvalues, then every null-eigenfunction has at most

m+ 1 nodal domains (Theorem 7.1).

− The number of negative eigenvalues of P1,g can become arbitrarily large as

the conformal class varies (Theorem 7.2).

− Let u be any null-eigenfunction of P1,g and consider any nodal domain Ω of

u. If Rĝ is the scalar curvature of some metric ĝ in the conformal class of g,

then Rĝ must be negative somewhere on Ω (Corollary 7.8).



CHAPTER 2

Differential operators on vector

bundles

2.A. Basic concepts

We start this chapter introducing the notion of a vector bundle. A vector

bundle of rank k can be thought of as a family of vector spaces isomorphic to

Ck (or Rk) parametrized by a given manifold in the following sense:

Definition 2.1. (Vector bundle) Let E and M be differentiable manifolds

and π : E →M a differentiable map. (E, π,M) is said to be a complex (resp.,

real) differential vector bundle of rank k if

1. For all x ∈M the fiber Ex := π−1(x) is a k-dimensional C- vector space

(resp., R- vector space).

2. For all x ∈ M there exists an open neighborhood U of x and a diffeo-

morphism ϕ : π−1(U)→ U × Ck (resp., U × Rk) so that for all y ∈ U

ϕ|Ey : Ey → {y} × Ck (resp., {y} × Rk)

is an isomorphism.
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E is called the total space, M the base space, π : E → M the projection map,

and (ϕ,U) as above, is called a bundle chart.

A vector bundle is locally a product of base and fibers. When this statement

can be made global, that is, when E is isomorphic to M ×Ck (resp., M ×Rk),

the bundle is said to be trivial. A simple example of a trivial vector bundle is

E = M × C.

Definition 2.2. (Bundle homomorphism) Fix two bundles (E1, π1,M)

and (E2, π2,M) over M . A differentiable map κ : E1 → E2 is said to be a

bundle homomorphism if π2 ◦ κ = π1 and the fiber maps κ|E1x
: E1x → E2x

are homomorphisms for all x ∈M .

Definition 2.3. (Section of a bundle) Let (E, π,M) be a vector bundle. A

differentiable section of E is a differentiable map u : M → E with π◦u = idM .

The space of smooth sections is denoted by Γ(E).

For the trivial vector bundle E = M × C, one has Γ(E) ∼= C∞(M).

Given a manifold M with local coordinates (x1, . . . , xn), and given α ∈ Zn+, we

write ∂α

∂xα
:= ∂|α|

∂
α1
x1
...∂αnxn

for |α| =
∑n

i=1 αi.

Definition 2.4. (Differential operator) Let M be a compact manifold

and let E,F be differentiable complex (resp. real) vector bundles over M . Let

rank(E) = ` and rank(F ) = k. A differential operator of order m on M is a

linear map P : Γ(E)→ Γ(F ) that can be written in the form

P =
∑
|α|≤m

Aα
∂α

∂xα

where the matrix valued functions Aα : M →Mk×`(C) (resp., Mk×`(R)) are

smooth, and Aα 6= 0 for some α with |α| = m. Here, Mk×`(C) denotes the

complex valued k × ` matrices.

Let (x1, . . . , xn) be local coordinates on M , x ∈ M and ξ ∈ T ∗xM . Write

ξ =
∑n

i=1 ξi dxi|x, and for α ∈ Zn+ write ξα = ξα1
1 . . . ξαnn .
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Definition 2.5. (Elliptic operator) Let P : Γ(E)→ Γ(F ) be a differential

operator of order m on M . For each x ∈M and ξ ∈ T ∗xM consider

σP (ξ) : Ex → Fx, σP (ξ) = im
∑
|α|=m

ξαAα(x).

We say that P is elliptic whenever for all x ∈M and each non-zero cotangent

vector ξ ∈ T ∗xM the map σP (ξ) is invertible.

Definition 2.6. (Bundle metric) Let (E, π,M) be a complex (resp. real)

vector bundle. A bundle metric is given by a family of hermitian (resp. scalar)

inner products ( , )x on the fibers Ex, depending smoothly on x ∈M .

If (M, g) is a compact Riemannian manifold and (E, π,M) is a vector bundle

equipped with a bundle metric, then, the smooth sections Γ(E) inherit an

inner product

〈u, v〉g :=

∫
M

(u(x), v(x))x dvolg u, v ∈ Γ(E).

In this case we often write Γ(Eg) instead of Γ(E). The completion of Γ(Eg)

with respect to 〈, 〉g is a Hilbert space denoted ΓL2(Eg).

Definition 2.7. (Formally self-adjoint operator) A differential operator

P : Γ(Eg)→ Γ(Eg) is said to be formally self-adjoint provided

〈Pu, v〉g = 〈u, Pv〉g ∀u, v ∈ Γ(Eg).

Definition 2.8. (Strongly elliptic operator) Let P : Γ(Eg)→ Γ(Eg) be a

differential operator of order m on M . P is said to be strongly elliptic provided

there exists ε > 0 such that

Re (σP (ξ)η, η)x ≥ ε |ξ|mg(x)(η, η)x

for all x ∈M , ξ ∈ T ∗xM , η ∈ (Eg)x.

If P is strongly elliptic and formally self-adjoint, then there exists β ∈ R for

which

Re 〈Pu, u〉g ≥ β‖u‖g for all u ∈ Γ(Eg).

In particular, the eigenvalues of P are real and bounded below.
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Definition 2.9. (Cm- topology on the space of metrics) Given a com-

pact manifold M , write M for the space of Riemannian metrics over M . Fix

a background metric g ∈ M, and define the distance dmg between two metrics

g1, g2 ∈M by

dmg (g1, g2) := max
k=0,...,m

‖∇k
g (g1 − g2)‖∞.

The topology induced on M by dmg is independent of the background metric

and it is called the Cm-topology of metrics on M .

Definition 2.10. (Continuity of metric dependent coefficients) Let M

be a compact manifold and consider a map P that to every Riemannian metric

g over M associates a differential operator Pg : Γ(Eg)→ Γ(Eg) of order m. We

say that the coefficients of P are continuous in the Cm-topology of metrics if

for every metric g0 there is an open neighborhoodW of g0 in the Cm-topology

of metrics, so that for every metric g ∈ W there is an isomorphism of vector

bundles τg : Eg → Eg0 with the property that the coefficients of the differential

operator

τg ◦ Pg ◦ τ−1
g : Γ(Eg0)→ Γ(Eg0)

depend continuously on g.

2.B. Spectral Theory
(of formally self-adjoint, elliptic operators)

We start this section by recalling the definition of the Schwartz space. Through

this section we assume all functions take values in Ck, but every statement can

be restated in terms of Rk. The Schwartz space is the space of smooth functions

S =

{
u ∈ C∞(Rn) : ∀α, `, ∃Cα,` so that

∣∣∣∣ ∂α∂xαu(x)

∣∣∣∣ ≤ Cα,`
(1 + |x|)`

∀x ∈ Rn

}
If u ∈ S, its Fourier transform is the function û ∈ S given by

û(ξ) :=
1

(2π)n/2

∫
Rn
e−i〈x,ξ〉u(x)dx.

If s ∈ R and u ∈ S, the Sobolev s-norm of u is defined by

‖u‖2
s :=

∫
Rn

(1 + |ξ|)2s |û(ξ)|2dξ.

Let (M, g) be a compact Riemannian manifold and let Eg be a vector bundle

over M equipped with a bundle metric. Since M is compact, there exist closed
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coordinate sets Uj, j = 1, . . . , N with coordinate charts yj : Uj → {y : ‖y‖ ≤
1} ⊂ Rn satisfying that M = ∪Nj=1Bj for Bj := y−1

j ({y : ‖y‖2 < 1
2
}). For

each j = 1, . . . , N set xj :=
yj√

1−‖yj‖2
and observe that xj(int Uj) = Rn and

xj(Bj) = {x : ‖x‖ < 1}. Fix {χj}Nj=1 a smooth partition of unity subordinate

to the covering {Bj}Nj=1.

Over each set Uj choose a bundle chart (ϕj, Uj) possessing a smooth extension

to an open neighborhood of Uj. Given a smooth section u ∈ Γ(Eg), since

ϕj ◦ χju |Uj : Uj → Uj × Ck is the identity in the first coordinate, we identify

it with the function ϕj ◦ χju : Uj → Ck. We further consider the function

ũj = ϕj ◦ χju ◦ x−1
j : Rn → Ck.

Observe that by our construction ũj is supported on {x ∈ Rn : ‖x‖ < 1}, so

the function
∣∣ ∂α
∂xα

ũj(x)
∣∣ (1 + |x|)` is bounded for all α and `, giving ũj ∈ S.

We define the Sobolev s-norm on Γ(Eg) by

‖u‖s :=
N∑
j=1

‖ũj‖s.

The completion of Γ(Eg) in this norm is the Sobolev Space ΓL2
s
(Eg). Note that

we have been writing ΓL2(Eg) for the Hilbert space ΓL2
0
(Eg).

The following are well known results that we shall use in our arguments. For

a reference see Chapter III of the book by Lawson and Michelsohn [33].

Theorem 2.11. (Sobolev embedding Theorem) Let s, s′ ∈ R and k ∈ N.

1. The inclusion ΓL2
s′

(Eg) ⊂ ΓL2
s
(Eg) is compact for s′ > s.

2. There is a continuous embedding ΓL2
s
(Eg) ⊂ ΓCk(Eg) for all s > n

2
+ k.
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Proposition 2.12. (Bounded elliptic extensions) Suppose (M, g) is a

compact Riemannian manifold. Let P : Γ(Eg)→ Γ(Eg) be a differential oper-

ator of order m.

1. P extends to a bounded linear operator P : ΓL2
s
(Eg)→ ΓL2

s−m
(Eg) for all

s ∈ R. If P is elliptic, then the extension is a Fredholm map (its kernel

and cokernel are finite dimensional, and its range is closed).

2. If P is elliptic, then the norms ‖·‖s and ‖·‖s−m+‖P (·)‖s−m are equivalent

for all s. In particular, there exists c0 > 0 such that

‖u‖m ≤ c0(‖u‖0 + ‖Pu‖0) ∀u ∈ ΓL2
m

(Eg).

Theorem 2.13. (Spectral decomposition) Let (M, g) be a compact Rie-

mannian manifold. Suppose P : Γ(Eg) → Γ(Eg) is a formally self-adjoint

elliptic differential operator of order m. Then,

• The spectrum of P , Spec(P ), consists of eigenvalues that are discrete

and real.

• The multiplicities of the eigenvalues are finite, i.e., dim ker(P−λI) <∞
for all λ ∈ Spec(P ).

• The eigensections are smooth, i.e., ker(P − λI) ⊂ Γ(Eg) for all λ ∈
Spec(P ).

• The Hilbert space ΓL2(Eg) can be decomposed as

ΓL2(Eg) =
⊕

λ∈Spec(P )

ker(P − λI).



CHAPTER 3

Conformally Covariant Operators (CCO)

As explained in the Introduction, conformally covariant operators play an im-

portant role in Physics and Spectral Geometry. In this Chapter we state their

definition and give multiple examples.

Let g be a Riemannian metric over M and Pg : C∞(M)→ C∞(M) a (metric

dependent) differential operator of order m. Pg is said to be a conformally

covariant operator of bidegree (a, b) -for a, b ∈ R- if for any conformal pertur-

bation of the reference metric, g → efg with f ∈ C∞(M,R), the operators

Pefg and Pg are related by the formula

Pefg = e−
bf
2 ◦ Pg ◦ e

af
2 .

When considering operators acting on vector bundles the definition becomes

more involved. Let M be a compact manifold and Eg a vector bundle over M

equipped with a bundle metric.
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Definition 3.1. (Conformally covariant operator) Let a, b ∈ R. A

conformally covariant operator P of order m and bidegree (a, b) is a map that

to every Riemannian metric g over M associates a differential operator

Pg : Γ(Eg)→ Γ(Eg) of order m, in such a way that

1. For any two conformally related metrics, g and efg with f ∈ C∞(M,R),

there exists a bundle isomorphism

κ : Eefg → Eg

that preserves length fiberwise and for which

Pefg = κ−1 ◦ e−
bf
2 ◦ Pg ◦ e

af
2 ◦ κ.

2. The coefficients of Pg depend continuously on g in the C∞-topology of

metrics (see Definition 2.10).

For a more general formulation see [1, pag. 4]. It is well known that for all

these operators one always has a 6= b.

3.A. Examples

We proceed to introduce some examples of operators to which our results can

be applied; see [1, pag 5], [13, pag 253], and [41, pag 285] for more.

Conformal Laplacian. On surfaces, the Laplace operator ∆g is conformally

covariant and has bidegree (0, 2). In higher dimensions its generalization is

the second order, elliptic operator, named Conformal Laplacian:

P1,g = ∆g +
n− 2

4(n− 1)
Rg (3.1)

Here ∆g = δgd and Rg is the scalar curvature. P1,g is a conformally covariant

operator of bidegree
(
n−2

2
, n+2

2

)
.

Paneitz Operator. On compact 4 dimensional manifolds, Paneitz discovered

the 4th order, elliptic operator

P2,g = ∆2
g + δg

(
2

3
Rg g − 2Ricg

)
d
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acting on C∞(M). Here Ricg is the Ricci tensor of the metric g and both Ricg

and g are acting as (1, 1) tensors on 1-forms. P2,g is a formally self-adjoint,

conformally covariant operator of bidegree (0, 4). See [36].

GJMS Operators. On compact manifolds of dimension n Graham-Jenne-

Mason-Sparling constructed formally self-adjoint, elliptic, operators Pk,g that

act on C∞(M). For k ≤ n
2

when n is even, and for all non-negative integers

k when n is odd, there is a conformally invariant operator Pk,g of biweight(
n
2
− k, n

2
+ k
)

such that

Pk,g = ∆k
g + lower order terms.

Pk,g is a conformally covariant operator of order 2k that generalizes the Con-

formal Laplacian, P1,g, and the Paneitz operator, P2,g, to higher even orders.

See [27].

Dirac Operator. Let (M, g) be a compact Riemannian spin manifold of

dimension n, with spinor bundle Eg. The Dirac operator acts on Γ(Eg), and

is formally self-adjoint, conformally covariant, and elliptic. Its order is 1 and

it has bidegree
(
n−1

2
, n+1

2

)
. See [25, pag. 9].

Rarita-Schwinger Operator. In the setting of the previous example, let Tg

denote the twistor bundle. The Rarita-Schwinger operator acts on Γ(Tg) and

has order 1. It is elliptic, formally self-adjoint, conformally covariant, and has

bidegree
(
n−1

2
, n+1

2

)
. See [11].

Conformally Covariant Operators on forms. In 1982 Branson introduced

a general second order conformally covariant operator D(2,k),g on differential

forms of arbitrary order k. It has leading order term (n − 2k + 2)δgd + (n −
2k − 2)dδg for n 6= 1, 2 being the dimension of the manifold. Later, Branson

generalized it to a fourth order operator D(4,k),g with leading order term (n−
2k + 4)(δgd)2 + (n − 2k − 4)(dδg)

2 for n 6= 1, 2, 4. Both D(2,k),g and D(4,k),g

are formally self-adjoint, conformally covariant operators and their leading

symbols are positive provided k < n−2
2

and k < n−4
2

respectively. On functions,

D(2,0),g = P1,g and D(4,k),g = P2,g. See [12, pag 276], [13, pag 253]. For recent

results and higher order generalizations see [10] for example.





CHAPTER 4

Local continuity of eigenvalues

It is often simplifying to work under an assumption that the eigenvalues of a

given operator are continuous functions of a metric parameter. Most of the

time this is not the case and usually one has to find indirect ways of arriving

to the desired results without such assumption. However, in this chapter we

prove that the eigenvalues of conformally covariant operators, that are strongly

elliptic and formally self-adjoint, depend continuously in the metric parameter.

Throughout this chapter we work under the assumptions described in Section

1.A..

For c ∈ R, consider the set

Mc := {g ∈M : c /∈ Spec(Pg)} .

For g ∈Mc, let

µ1(g) ≤ µ2(g) ≤ µ3(g) ≤ . . .

be all the eigenvalues of Pg in (c,+∞) counted with multiplicity. Note that it

may happen that there are only finitely many µi(g)’s. We prove

Theorem 4.1. The setMc is open and the maps µi :Mc → R are continuous

in the C∞-topology of metrics.
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If Pg is strongly elliptic, its spectrum is bounded below. It can be shown (see

Lemma 4.5) that for a fixed metric g0 there exists c ∈ R and a neighborhood

V of g0 so that Spec(Pg) ⊂ (c,+∞) for all g ∈ V . An immediate consequence

is

Corollary 4.2. If Pg : Γ(Eg) → Γ(Eg) is strongly elliptic, then all its eigen-

values are continuous for g ∈M in the C∞-topology.

The arguments we present in this section are an adaptation of the proof of The-

orem 2 in [32] by Kodaira and Spencer; they prove similar results to Theorem

4.1 for strongly elliptic operators that have coefficients that depend continu-

ously on a parameter t ∈ Rn in the C∞-topology.

From now on fix a Riemannian metric g0. By the continuity of the coefficients

of Pg (see Definition 2.10), there exists Wg0 neighborhood of g0 in the C∞-

topology of metrics, so that for every metric g ∈ Wg0 there is an isomorphism

of vector bundles τg : Eg → Eg0 with the property that the coefficients of the

differential operator

Qg := τg ◦ Pg ◦ τ−1
g : Γ(Eg0)→ Γ(Eg0) (4.1)

depend continuously on g ∈ Wg0 .

Since Pg is elliptic and formally self-adjoint, its spectrum Spec(Pg) is real and

discrete. Note that the spectrum of Pg and Qg coincide. Indeed, u is an

eigensection of Pg with eigenvalue λ if and only if τgu is an eigensection of Qg

with eigenvalue λ. Fix ξ ∈ C and define

Qg(ξ) := Qg − ξ : Γ(Eg0)→ Γ(Eg0).

We repeatedly use that Qg(ξ) admits a bounded extension Qg(ξ) : ΓL2
m

(Eg0)→
ΓL2

0
(Eg0), see Proposition 2.12. In particular, because of the continuity of

the coefficients of Qg(ξ) as functions of g and ξ, one obtains that ‖Qg(ξ)u‖0

depends continuously on g and ξ for all u ∈ ΓL2
m

(Eg0).

It is well known that Qg(ξ) is surjective provided ξ belongs to the resolvent

set of Qg (i.e. ξ /∈ spec(Pg)). For ξ0 in the resolvent set of Pg0 , set

bg0 := inf
λ∈spec(Pg0 )

|λ− ξ0|.
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We then know

‖Qg0(ξ0)u‖0 ≥ bg0‖u‖0 ∀u ∈ ΓL2
m

(Eg0).

Lemma 4.3. There exists δ > 0 and V ⊂ Wg0 neighborhood of g0 so that the

resolvent operator Rg(ξ) := Qg(ξ)
−1 exists for g ∈ V and |ξ − ξ0| < δ. In

addition, for every u ∈ Γ(Eg0) the section Rg(ξ)u depends continuously on ξ

and g in the ‖ · ‖0 norm.

Proof. We first prove the injectivity of Qg(ξ). It follows from Proposition 2.12

and the continuity of the coefficients of Qg(ξ) -in both g and ξ- that there

exists an open neighborhood W of g0, δ0 > 0 and c0 > 0, such that for all

g ∈ W and |ξ − ξ0| < δ0,

‖u‖m ≤ c0(‖Qg(ξ)u‖0 + ‖u‖0) ∀u ∈ ΓL2
m

(Eg0). (4.2)

To prove the injectivity statement it suffices to show that for all ε > 0 there

exists δ > 0 and V ⊂ W such that for all u ∈ Γ(Eg0)

‖Qg(ξ)u‖0 ≥ (bg0 − ε)‖u‖0,

for g ∈ V and |ξ− ξ0| < δ. We proceed by contradiction. Suppose there exists

ε > 0 together with a sequence {(δi,Vi, ui, ξi)}i, with δi
i→ 0, Vi shrinking

around g0, ui ∈ Γ(Eg0), and |ξi − ξ0| < δi, such that

‖Qgi(ξi)ui‖0 < (bg0 − ε)‖ui‖0

for gi ∈ Vi and |ξi−ξ0| < δi. Without loss of generality assume ‖ui‖0 = 1. From

(4.2) we know ‖ui‖m ≤ c0(bg0−ε+1) for all i = 1, 2, . . . , and by the continuity

in g of the coefficients of Qg, it follows that ‖(Qgi(ξi)−Qg0(ξ0))ui‖0 → 0.

On the other hand,

‖(Qgi(ξi)−Qg0(ξ0))ui‖0 ≥ ‖Qg0(ξ0)ui‖0 − ‖Qgi(ξi)ui‖0 ≥ bg0 − (bg0 − ε) = ε.

We obtain the desired contradiction.

To prove the continuity statement notice that

bg0‖Rg(ξ)u−Rg0(ξ0)u‖0 ≤ ‖Qg(ξ)Rg(ξ)u−Qg(ξ)Rg0(ξ0)u‖0

= ‖u−Qg(ξ)Rg0(ξ0)u‖0

= ‖Qg0(ξ0)Rg0(ξ0)u−Qg(ξ)Rg0(ξ0)u‖0

≤
(
‖
(
Qg0 −Qg

)
(Rg0(ξ0)u)‖0 + |ξ − ξ0|‖(Rg0(ξ0)u)‖0

)
,
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and use the continuity in g of the coefficients of Qg.

Let g0 ∈ M and continue to write Wg0 for the neighborhood of g0 for which

the vector bundle isomorphism τg : Eg → Eg0 is defined for all g ∈ Wg0 . Let

C be a differentiable curve with interior domain D ⊂ C. For g ∈ Wg0 , write

Fg(C) for the linear subspace

Fg(C) := span
{
τgu : u ∈ ker(Pg − λI) for λ ∈ D ∩ Spec(Pg)

}
⊂ Γ(Eg0).

Note that

dim Fg(C) =
∑

λ∈D∩Spec(Pg)

dim ker(Pg − λI). (4.3)

Proposition 4.4. If C meets none of the eigenvalues of Pg0, then there exists

a neighborhood V ⊂ Wg0 of g0 so that for all g ∈ V

dim Fg(C) = dim Fg0(C). (4.4)

Proof. We divide the proof in three steps.

Step 1. For g ∈ Wg0 , define the spectral projection operator Fg(C) : Γ(Eg0)→
Γ(Eg0) to be the projection of Γ(Eg0) onto Fg(C). Since C meets none of the

eigenvalues of Pg0 , by Lemma 4.3 there exist a neighborhood C ′ of the curve

C and a neighborhood V ′ ⊂ Wg0 of g0 so that none of the eigenvalues of Pg

belong to C ′ for g ∈ V ′. By holomorphic functional calculus

Fg(C)u = − 1

2πi

∫
C

Rg(ξ)u dξ u ∈ Γ(Eg).

By Lemma 4.3 it follows that Fg(C)u depends continuously on g ∈ V ′.

Step 2. Let d = dim Fg0(C) and uλ1(g0), . . . , uλd(g0) be the eigenfunctions of

Pg0 spanning Fg0(C) with respective eigenvalues λ1(g0) ≤ · · · ≤ λd(g0). Since

Fg(C)u depends continuously on g ∈ V ′, for all u ∈ Γ(Eg0) we know that

lim
g→g0

∥∥Fg(C) [uλj(g0)]− uλj(g0)

∥∥
0

= 0, for j = 1, . . . , d,

and therefore there exists V ⊂ V ′ neighborhood of g0 so that

Fg(C) [uλ1(g0)], . . . , Fg(C) [uλd(g0)]

are linearly independent for g ∈ V . We thereby conclude,

dim Fg(C) ≥ dim Fg0(C) for g ∈ V . (4.5)
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Step 3. By possibly shrinking V , the continuity of Fg(C) on g gives that

Id− Fg(C) is invertible on (ker(Id− Fg0(C)))c for all g ∈ V . Therefore

dim Fg(C) = dim ker(Id− Fg(C)) ≤ dim ker(Id− Fg0(C)) = dim Fg0(C).

Thereby, for g ∈ V , equality (4.4) follows from the previous inequality and

(4.5).

Proof of Theorem 4.1

For c ∈ R, we continue to write Mc = {g ∈ M : c /∈ Spec(Pg)}. Also, for

g ∈Mc, we write

µ1(g) ≤ µ2(g) ≤ µ3(g) ≤ . . .

for the eigenvalues of Pg in (c,+∞) counted with multiplicity. We recall that

it may happen that there are only finitely many µj(g)’s.

To see that Mc is open, fix g0 ∈ Mc. Let δ > 0 be so that the circle Cδ

centered at c of radius δ contains no eigenvalue of Pg0 . By Proposition 4.4

there exists V1 ⊂ Wg0 , a neighborhood of g0, so that for all g ∈ V1

dim Fg(Cδ) = dim Fg0(Cδ) = 0.

It follows that V1 ⊂Mc.

We proceed to show the continuity of the maps

µi :Mc → R, g 7→ µi(g).

We first show the continuity of g 7→ µ1(g) at g0 ∈Mc. Fix ε0 > 0 and consider

0 < ε < ε0 so that the circle Cε centered at µ1(g0) of radius ε contains only

the eigenvalue µ1(g0) among all the eigenvalues of Pg0 . Let δ > 0 be so that

there is no eigenvalue of Pg0 in [c−δ, c]. Consider a differentiable curve C that

intersects transversally the x-axis only at the points c− δ and µ1(g0)− ε/2.

By Proposition 4.4 there exists V2 ⊂ Wg0 , a neighborhood of g0, so that for all

g ∈ V2

dim Fg(C) = dim Fg0(C) and dim Fg(Cε) = dim Fg0(Cε).
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Since dim Fg0(C) = 0, it follows that no perturbation µi(g), i ≥ 1, belongs to

[c, µ1(g0) − ε/2]. Also, since the dimension of Fg(Cε) is preserved, it follows

that there exists j so that |µj(g)− µ1(g0)| < ε for j 6= 1. Since

µ1(g0)− ε < µ1(g) ≤ µj(g) ≤ µ1(g0) + ε,

it follows that for g ∈ V2 we have |µ1(g)− µ1(g0)| < ε as wanted.

The continuity of g 7→ µi(g), for i ≥ 2, follows by induction. One should

consider a circle of radius ε centered at µi(g0) and a circle C that intersects

transversally the x-axis only at the points c− δ and µi(g0)− ε/2.

As described at the beginning of this chapter, the following lemma is all one

needs to establish Corollary 4.2.

Lemma 4.5. Suppose Pg0 : Γ(Eg0)→ Γ(Eg0) is strongly elliptic. Then, there

exists c ∈ R and an open neighborhood V of g0 such that for all g ∈ V

Spec(Pg) ⊂ (c, +∞) .

Proof. Since Pg0 is strongly elliptic, we can choose β ∈ R so that Pg0 > β.

Then, for u ∈ Γ(Eg0) normalized,

Re〈Qgu, u〉g0 = Re〈Pg0u, u〉g0 +Re〈(Qg − Pg0)u, u〉g0
≥ β − ‖(Qg − Pg0)u‖0.

Since the coefficients of Qg are continuous in the C∞-topology, given ε > 0

there exists an open neighborhood V of g0 such that ‖(Qg − Pg0)u‖0 ≤ ε for

all g ∈ V .

Let u be so thatQgu = λu with λ < 0 and ‖u‖0 = 1. ThenRe〈Qgu, u〉g ≥ β−ε,
and so Spec(Qg) ⊂ (β− ε,+∞). Since Pg and Qg have the same spectrum the

result follows.



CHAPTER 5

Multiplicity of eigenvalues of CCO

It is believed that eigenvalues of formally self-adjoint, elliptic operators are

generically simple. One of the main contributions to this conjecture was done

by Uhlembeck [40] in 1976; she showed that for several interesting families

of second order, self-adjoint, elliptic operators (for example the Laplacian)

the spectrum is generically simple. In 2002, Dahl proved such result for the

Dirac operator on spinors of a compact spin manifold of dimension 3; see [20].

It seems to be the case that in the class of conformally covariant operators

the latter is the only situation for which the simplicity of the eigenvalues

has generically been established. In this chapter we study this problem for

conformally covariant operators.

There are many ways of splitting the spectrum of an operator. The main ideas

presented in this chapter are inspired by the constructive methods of Bleecker

and Wilson [5]. Throughout this chapter we work under the assumptions de-

scribed in Section 1.A., unless stated otherwise.

Given a topological space X, a subset A ⊂ X is said to be residual if it is the

intersection of countably many open sets. On a Fréchet space, a residual set is

the complement of a meager set. In particular, on Fréchet spaces residual sets

are dense. We take this opportunity to mention that both C∞(M,R) and the
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space of Riemannian metrics M are Fréchet spaces when endowed with the

C∞-topology. On the other hand, the spaceM endowed with the Cm-topology

is not complete for any m ∈ N. In what follows the main results of this chapter

are stated.

Theorem 5.1. Suppose Pg acts on smooth functions, Pg : C∞(M)→ C∞(M).

Then the set of functions f ∈ C∞(M,R) for which all the non-zero eigenvalues

of Pefg are simple is a residual set in C∞(M,R).

To obtain a generalization of Theorem 5.1 for operators acting on bundles we

introduce the following definition.

Definition 5.2. (Rigid eigenspace) An eigenspace of Pg : Γ(Eg)→ Γ(Eg)

is said to be a rigid eigenspace if it has dimension greater or equal than two,

and for any two eigensections u, v with ‖u‖g = ‖v‖g = 1 then

‖u(x)‖x = ‖v(x)‖x ∀x ∈M.

By the polarization identity this condition is equivalent to the existence of a

function cg on M so that for all u, v in the eigenspace

(u(x), v(x))x = cg(x)〈u, v〉g ∀x ∈M.

Remark 5.3. In Proposition 5.16 we show that operators acting on C∞(M)

(e.g. GJMS operatos) have no rigid eigenspaces.

We establish the following generalizations to operators acting on bundles.

Theorem 5.4. If Pg : Γ(Eg) → Γ(Eg) has no rigid eigenspaces, the set of

functions f ∈ C∞(M,R) for which all the non-zero eigenvalues of Pefg are

simple is a residual set in C∞(M,R).

As a consequence of Theorem 5.4 (or Theorem 5.1) we obtain the following

result.

Corollary 5.5. Suppose Pg : Γ(Eg) → Γ(Eg) has no rigid eigenspaces for a

dense set of metrics inM, or that it acts on C∞(M). Then, the set of metrics
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g ∈M for which all non-zero eigenvalues of Pg are simple is a residual subset

of M.

Of course, one would like to get rid of the “non rigidity” assumption. Probably,

this assumption cannot be dropped if we restrict ourselves to conformal defor-

mations only. However, it is likely that a generic set of deformations should

break the rigidity condition. We thereby make the following conjecture.

Conjecture 5.6. Pg has no rigid eigenspaces for g in a dense subset of M.

If we remove the “non rigidity” condition and require the operator to satisfy

the unique continuation principle we obtain

Theorem 5.7. If Pg : Γ(Eg)→ Γ(Eg) satisfies the unique continuation prin-

ciple, the set of functions f ∈ C∞(M,R) for which all the non-zero eigenvalues

of Pefg have multiplicity smaller than rank(Eg) is a residual set in C∞(M,R).

In particular for line bundles the unique continuation principle gives simplicity

of eigenvalues, for a generic set of conformal deformations.

Corollary 5.8. Suppose Pg : Γ(Eg)→ Γ(Eg) satisfies the unique continuation

principle for a dense set of metrics in M. Then, the set of metrics g ∈M for

which all non-zero eigenvalues of Pg have multiplicity smaller than the rank of

the bundle is a residual subset of M.

Observation. All the results stated above hold for non-zero eigenvalues.

Given a non-zero eigenvalue of multiplicity greater than 1, we use conformal

transformations of the reference metric to reduce its multiplicity. This cannot

be done for zero eigenvalues since their multiplicity, dim ker(Pg), is a conformal

invariant (see Remark 6.1).

Acknowledgement. One of the main results of this chapter, Theorem 5.4,

is a generalization to the whole class of conformally covariant operators of the

results presented by Dahl in [20], for the Dirac operator on 3-manifolds. In an

earlier version of this manuscript, part of the argument in Dahl’s paper was

being reproduced (namely, the first two lines of the proof of Proposition 3.2

in [20]). In June 2012, Raphaël Ponge visited McGill University and started

working with the author on an extension of the results in this paper to the
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class of pseudodifferential operators. While doing so, R. Ponge realized there

was a mistake in Dahl’s argument which was reproduced in the earlier version

of this manuscript. The author is grateful to Raphaël Ponge for pointing out

the mistake.

5.A. Background on perturbation theory

In this section we introduce the definitions and tools we need to prove our

main results. We follow the presentation in Rellich’s book [38], and a proof

for every result stated can be found there.

Let H be a Hilbert space with inner product 〈 , 〉 and U a dense subspace of

H. A linear operator A on U is said to be formally self-adjoint, if it satisfies

〈Au, v 〉= 〈u,Av 〉 for all u, v ∈ U . A formally self-adjoint operator A is said

to be essentially self-adjoint if the images of A + i and A− i are dense in H;

if these images are all of H we say that A is self-adjoint.

If A is a linear operator on U , its closure is the operator Ā defined on U as

follows: U is the set of elements u ∈ H for which there exists a sequence

{un} ⊂ U with limn un = u and Aun converges. Then Āu := limnAun. We

note that if A is formally self-adjoint, so is Ā.

A family of linear operators A(ε) on U indexed by ε ∈ R is said to be regular in

a neighborhood of ε = 0 if there exists a bounded bijective operator U : H → U
so that for all v ∈ H, A(ε)[U(v)] is a regular element, in the sense that it is

a power series convergent in a neighborhood of ε = 0. Finding the operator

U is usually very difficult. Under certain conditions on the operators, proving

regularity turns out to be much simpler. To this end, we introduce the following

criterion.

Criterion 5.9. ([38, page 78]) Suppose that A(ε) on U is a family of for-

mally self-adjoint operators in a neighborhood of ε = 0. Suppose that A(0) =

A(0) is essentially self-adjoint, and there exist formally self-adjoint operators

A(1), A(2), . . . on U such that for all u ∈ U

A(ε)u = A(0)u+ εA(1)u+ ε2A(2)u+ . . .
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Assume in addition that there exists a ≥ 0 so that

‖A(k)u‖ ≤ ak‖A(0)u‖, for all k = 1, 2, . . .

Then, on U , A(ε) is essentially self-adjoint and A(ε) on U is regular in a

neighborhood of ε = 0.

For the purpose of splitting non-zero eigenvalues, the next proposition plays a

key role.

Proposition 5.10. ([38, page 74]) Suppose that B(ε) on U is a family of

regular, formally self-adjoint operators in a neighborhood of ε = 0. Suppose

that B(0) = B(0) is self-adjoint. Suppose that λ is an eigenvalue of finite

multiplicity ` of the operator B(0), and suppose there are positive numbers

d1, d2 such that the spectrum of B(0) in (λ− d1, λ+ d2) consists exactly of the

eigenvalue λ.

Then, there exist power series λ1(ε), . . . , λ`(ε) convergent in a neighborhood of

ε = 0 and power series u1(ε), . . . , u`(ε), satisfying

1. ui(ε) converges for small ε in the sense that the partial sums converge in

H to an element in U , for i = 1 . . . `.

2. B(ε)ui(ε) = λi(ε)ui(ε) and λi(0) = λ, for i = 1, . . . , `.

3. 〈ui(ε), uj(ε)〉 = δij, for i, j = 1, . . . , `.

4. For each pair of positive numbers d′1, d
′
2 with d′1 < d1 and d′2 < d2, there

exists a positive number δ such that the spectrum of B(ε) in [λ−d′1, λ+d′2]

consists exactly of the points λ1(ε), . . . , λ`(ε), for |ε| < δ.

We note that since B(ε)ui(ε) = λi(ε)ui(ε), differentiating with respect to ε

both sides of the equality we obtain

〈B(1)(ε)ui(ε), uj(ε)〉+ 〈u′i(ε),B(ε)uj(ε)〉 =

= 〈λ′i(ε)ui(ε), uj(ε)〉+ 〈u′i(ε), λi(ε)uj(ε)〉.

When i = j the above equality translates to

λ′i(ε) = 〈B(1)(ε)ui(ε), ui(ε)〉. (5.1)

Also, evaluating at ε = 0 we get

λ′i(0) = 〈B(1)(0)ui(0), ui(0). (5.2)
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5.B. Perturbation theory of CCO

Consider a conformal change of the reference metric g → eεfg for f ∈ C∞(M)

and ε ∈ R. Since Pg : Γ(Eg) → Γ(Eg) is a conformally covariant operator

of bidegree (a, b), there exists κ : Eeεfg → Eg, a bundle isomorphism that

preserves the length fiberwise, so that

Peεfg = κ−1 ◦ e−
bεf
2 ◦ Pg ◦ e

aεf
2 ◦ κ. (5.3)

We work with a modified version of Peεfg. For c := a+b
4

set

η := c− b

2
=
a

2
− c

and define

Af (ε) : Γ(Eg)→ Γ(Eg), Af (ε) := eηεf ◦ Pg ◦ eηεf .

The advantage of working with these operators is that, unlike Peεfg, they are

formally self-adjoint with respect to 〈 , 〉g. Note that η 6= 0 for a 6= b, and

observe that

Af (ε) = eηεf ◦ Pg ◦ eηεf

= ecεfe−
bεf
2 ◦ Pg ◦ e

aεf
2 e−cεf

= κ ◦ ecεf ◦ Peεfg ◦ e−cεf ◦ κ−1.

Remark 5.11. Af (ε) and Peεfg have the same eigenvalues. Indeed, u(ε) is

an eigensection of Peεfg with eigenvalue λ(ε) if and only if κ(ecεfu(ε)) is an

eigensection for Af (ε) with the same eigenvalue.

Af (ε) is a deformation of Pg = Af (0) that has the same spectrum as Peεfg and

is formally self-adjoint with respect to 〈, 〉g. Note also that Af (ε) is elliptic so

there exists a basis of ΓL2(Eg) of eigensections of Af (ε).

Lemma 5.12. The operators A
(k)
f (ε) := 1

k!
dk

dεk
Af (ε) are formally self-adjoint

and ∥∥∥A(k)
f (ε)u

∥∥∥
g
≤ (2 |η| ‖f‖∞)k

k!
‖Af (ε)u‖g ∀u ∈ Γ(Eg). (5.4)

Proof. Since Af (ε) is formally self-adjoint, so is A
(k)
f (ε). Indeed, for u, v ∈

Γ(Eg), 〈Af (ε)u, v〉g − 〈u,Af (ε)v〉g = 0. Hence,

0 =
dk

dεk
(〈Af (ε)u, v〉g − 〈u,Af (ε)v〉g)

∣∣
ε=0

= k!(〈A(k)
f u, v〉g − 〈u,A(k)

f v〉g).
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For the norm bound, observe that

dk

dεk

[
Af (ε)(u)

]
= ηk

k∑
l=0

(
k

l

)
fk−lAf (ε)(f

lu), (5.5)

and notice that from the fact that Af (ε) is formally self-adjoint it also follows

that ‖Af (ε)(hu)‖g ≤ ‖h‖∞‖Af (ε)u‖g for all h ∈ C∞(M).

In the following Proposition we show how to split the multiple eigenvalues of

Pg. From now on we write A
(k)
f := A

(k)
f (0).

Proposition 5.13. Suppose λ is a non-zero eigenvalue of Pg. Write Vλ for

the corresponding eigenspace of eigenvalue λ and Π the orthogonal projection

onto it. With the notation of Proposition 5.10, if Π ◦A(1)
f |Vλ is not a multiple

of the identity, there exists ε0 > 0 and a pair (i, j) for which λi(ε) 6= λj(ε) for

all 0 < ε < ε0.

Proof. Assume the results of Proposition 5.10 are true for B(ε) = Af (ε),

and note that since there is a basis of ΓL2(Eg) of eigensections of Af (ε), the

eigensections of Af (ε) and Af (ε) coincide. By relation (5.2), λ′1(0), . . . , λ′`(0)

are the eigenvalues of Π ◦ A(1)
f |Vλ . Since Π ◦ A(1)

f |Vλ is not a multiple of the

identity, there exist i, j with λ′i(0) 6= λ′j(0) and this implies that λi(ε) 6= λj(ε)

for small ε, which by Remark 5.11 is the desired result. We therefore proceed

to show that all the assumptions in Proposition 5.10 are satisfied for B(ε) =

Af (ε), U = Γ(Eg) and H = ΓL2(Eg).

Af (0) = Pg is self-adjoint: This follows from the fact that Pg is essentially self-

adjoint, and the closure of an essentially self-adjoint is a self-adjoint operator.

To see that Af (0) = Pg is essentially self-adjoint, note that since there is

a basis of ΓL2(Eg) of eigensections of Pg, it is enough to show that for any

eigensection φ of eigenvalue λ there exist u, v ∈ Γ(Eg) for which Pgu+ iu = φ

and Pgv − iv = φ. Thereby, it suffices to set u = 1
λ+i

φ and v = 1
λ−iφ.

Af (ε) is regular on Γ(Eg): From Lemma 5.12 and Criterion 5.9 applied to

A(ε) = Af (ε), we obtain that Af (ε) is a family of operators on Γ(Eg) which

are essentially self-adjoint and their closure Af (ε) on Γ(Eg) is regular.
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Splitting non-zero eigenvalues

Recall from Definition 5.2 that an eigenspace of Pg is said to be a rigid

eigenspace if it has dimension greater or equal than two, and for any two

eigensections u, v with ‖u‖g = ‖v‖g = 1 one has

‖u(x)‖x = ‖v(x)‖x ∀x ∈M.

Being an operator with no rigid eigenspaces is the condition that allows us

to split eigenvalues. For this reason, at the end of this section we show that

operators acting on C∞(M) have no rigid eigenspaces (see Proposition 5.16).

Our main tool is the following proposition.

Proposition 5.14. Suppose Pg has no rigid eigenspaces. Let λ be a non-zero

eigenvalue of Pg of multiplicity ` ≥ 2. Then, there exists a function f ∈
C∞(M,R) and ε0 > 0 so that among the perturbed eigenvalues λ1(ε), . . . , λ`(ε)

of Peεfg there exists a pair (i, j) for which λi(ε) 6= λj(ε) for all 0 < ε < ε0.

Proof. Since Pg has no rigid eigenspaces, there exist u, v ∈ Γ(Eg) linearly

independent normalized eigensections in the λ-eigenspace so that ‖u(x)‖2
x 6=

‖v(x)‖2
x for some x ∈M . For such sections there exists f ∈ C∞(M,R) so that

〈fu, u〉g 6= 〈fv, v〉g. To prove our result, by Proposition 5.13 it would suffice

to show that

〈A(1)
f u, u〉g 6= 〈A(1)

f v, v〉g.

Using that Pg is formally self-adjoint and evaluating equation (5.5) at ε = 0

(for k=1) we have

〈A(1)
f u, u〉g = η 〈fPg(u) + Pg(fu), u〉g = 2η λ〈fu, u〉g,

and similarly, 〈A(1)
f v, v〉g = 2η λ〈fv, v〉g. The result follows.

A weaker but more general result is the following

Proposition 5.15. Suppose Pg : Γ(Eg) → Γ(Eg) satisfies the unique con-

tinuation principle. Let λ be a non-zero eigenvalue of Pg of multiplicity ` >

rank(Eg). Then, there exists ε0 > 0 and a function f ∈ C∞(M,R) so that

among the perturbed eigenvalues λ1(ε), . . . , λ`(ε) of Peεfg there is a pair (i, j)

for which λi(ε) 6= λj(ε) for all 0 < ε < ε0.
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Proof. Let {u1, . . . , u`} be an orthonormal basis of the λ-eigenspace. If for

some i 6= j there exists x ∈ M for which ‖ui(x)‖x 6= ‖uj(x)‖x we proceed as

in Proposition 5.14 and find f ∈ C∞(M,R) for which 〈fui, ui〉g 6= 〈fuj, uj〉g.
We show that under our assumptions this is the only possible situation.

Suppose that for any two normalized eigensections u, v ∈ Γ(Eg) of eigenvalue

λ one has ‖u(x)‖2
x = ‖v(x)‖2

x for all x ∈M . Then by the polarization identity

(see remark in Definition 5.2) we would obtain (ui(x), uj(x))x = 0 for all i 6= j

and x ∈ M . By the rank condition, for some i = 1, . . . , ` the section ui has

to vanish on an open set. Indeed, for each x ∈ M there exists i ∈ {1, . . . , `}
such that ui(x) = 0 and so M = ∪`i=1{x : ui(x) = 0}. It follows that there

exists i ∈ {1, . . . , `} for which int({x : ui(x) = 0}) is nonempty, and so ui

vanishes on an open set. By the unique continuation principle ui must vanish

everywhere, and this is not possible.

We finish this section translating the previous results to the setting of smooth

functions.

Proposition 5.16. Operators acting on C∞(M) have no rigid eigenspaces.

Proof. Let ũ, ṽ be two linearly independent, orthonormal eigenfunctions of Pg

with eigenvalue λ. Set D := {x ∈ M : ũ(x) 6= ṽ(x)}. If there is x ∈ D with

ũ(x) 6= −ṽ(x), the functions u = ũ and v = ṽ break the rigidity condition. If

for all x ∈ D we have ũ(x) = −ṽ(x), the functions u = ũ+ṽ
‖ũ+ṽ‖g and v = ũ−ṽ

‖ũ−ṽ‖g
do the job. Indeed, v = 0 on Dc and there exists x ∈ Dc for which u(x) 6= 0

because otherwise ũ ≡ −ṽ and this contradicts the independence.

5.C. Multiplicity for conformal deformations

In this section we address the proofs of Theorems 5.1, 5.4 and 5.7.

Proof of Theorems 5.1 and 5.4.

Given α ∈ N, and g ∈M consider the set

Fg,α :=
{
f ∈ C∞(M,R) : λ is simple

for all λ ∈ Spec(Pefg) ∩
(
[−α, 0) ∪ (0, α]

)}
.
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The set of functions f ∈ C∞(M,R) for which all the non-zero eigenvalues of

Pefg are simple coincides with the set
⋂
α∈N Fg,α. To show that the latter is a

residual subset of C∞(M,R), we prove that the sets Fg,α are open and dense

in C∞(M,R). Here C∞(M,R) is endowed -as usual- with the C∞-topology.

Remark 5.17. Since the eigenvalues of Pg are continuous on g in the Cm-

topology of metrics, the sets Fg,α are open in the Cm-topology on C∞(M).

We note that for conformal metric deformations, the multiplicity of the zero

eigenvalue remains fixed. Indeed, according to (5.3), for u ∈ Γ(Eg) and f ∈
C∞(M,R), we know

Pg(u) = 0 if and only if Pefg(κ
−1(e−

af
2 u)) = 0.

Throughout this subsection we assume the hypothesis of Theorems 5.1 or The-

orem 5.4 hold.

Fg,α is dense in C∞(M,R).

Fix f0 /∈ Fg,α and letW be an open neighborhood of f0. Since at least one of the

eigenvalues in [−α, 0)∪ (0, α] has multiplicity greater than two, we proceed to

split it. By Proposition 5.14 (and Proposition 5.16 when the operator acts on

C∞(M)) there exists f1 ∈ C∞(M,R) for which at least two of the eigenvalues

of Peε1f1 (ef0g) in [−α, 0) ∪ (0, α] are different as long as ε1 is small enough.

Moreover, those eigenvalues that were simple would remain being simple for

such ε1. Also, for ε1 small enough, we can assume that none of the eigenvalues

that originally belonged to [−α, α]c have perturbations belonging to [−α, α].

Let ε1 be small as before and so that ε1f1+f0 belongs to W . If ε1f1+f0 belongs

to Fg,α as well, we are done. If not, in finitely many steps, the repetition of

this construction will lead us to a function εNfN + · · ·+ ε1f1 + f0 in W ∩Fg,α.

Hence, Fg,α is dense.

Fg,α is open in C∞(M,R).

Fix f0 ∈ Fg,α. In order to show that Fg,α is open we need to establish how

rapidly the eigenvalues of Af (ε) grow with ε. From now on we restrict ourselves

to perturbations of the form eεf (ef0g) for f ∈ C∞(M,R) with ‖f‖∞ < 1. Let

u(ε) be an eigensection of Af (ε) with eigenvalue λ(ε). Equation (5.1) gives
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|λ′(ε)| ≤ ‖A(1)
f (ε)u(ε)‖g for j = 1, . . . , α. Putting this together with inequality

(5.4) for k = 1 we get

|λ′(ε)| ≤ 2|η| ‖Af (ε)u(ε)‖g = 2|η| |λ(ε)|.

The solution of the differential inequality leads to the following bound for the

growth of the perturbed eigenvalues:

|λ(ε)− λ| ≤ |λ|
(
e2|η| |ε| − 1

)
, |ε| < δ.

Write λ1 ≤ λ2 ≤ · · · ≤ λκ for all the eigenvalues (repeated according to

multiplicity) of Pef0g that belong to [−α, 0) ∪ (0, α]. Let d1, . . . , dκ be so that

the intervals [λj − dj, λj + dj] for j = 1, . . . , κ, are disjoint. Write λβ− for the

biggest eigenvalue in (−∞,−α) and λβ+ for the smallest eigenvalue in (α,+∞).

We further assume that λβ− /∈ [λ1 − d1, λ1 + d1] and λβ+ /∈ [λκ − dκ, λκ + dκ].

λβ−

−α
λ1 λj λκ

α

λβ+

dj λβ+−λκ−dκ

λj(ε)

In order to ensure that for each j = 1, . . . , α the perturbed eigenvalue λj(ε)

belongs to [λj − dj, λj + dj], select 0 < δ1 ≤ δ, so that whenever |ε| < δ1 we

have that |λj(ε)− λj| ≤ |λj|
(
e2|η| |ε| − 1

)
≤ dj for all j = 1, . . . , κ.

To finish our argument, we need to make sure that none of the perturbations

of the eigenvalues that initially belonged to (−∞,−α)∪(α,+∞) coincide with

the perturbations corresponding to λ1, . . . , λκ. To such end, it is enough to

choose 0 < δ2 ≤ δ so that for |ε| < δ2,

|λβ+|
(
e2|η| |ε| − 1

)
< min{λβ+ − λκ − dκ, λβ+ − α},

and

|λβ−|
(
e2|η| |ε| − 1

)
< min{λ1 − d1 − λβ− , −α− λβ−}.

Summing up, if ‖f‖∞ < 1 and |ε| < min{δ1, δ2}, then εf + f0 ∈ Fg,α. Or in

other words, {f0 + f : ‖f‖∞ < ε} ⊂ Fg,α, so Fg,α is open.
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Proof of Theorem 5.7.

The set of functions f ∈ C∞(M,R) for which all the eigenvalues of Pefg have

multiplicity smaller than rank(Eg) can be written as ∩α∈NF̂g,α where

F̂g,α :=
{
f ∈ C∞(M,R) : dim ker(Pefg − λ) ≤ rank(Eg)

for all λ ∈ Spec(Pefg) ∩
(
[−α, 0) ∪ (0, α]

)}
.

F̂g,α is dense in C∞(M,R) by the same argument presented in the proof of

Theorems 5.1 and 5.4, using Proposition 5.15 to find the fi’s. The proof that

F̂g,α is open in C∞(M,R) is analogue to the one for Fg,α.

5.D. Multiplicity for general deformations

In this section we give the proofs of Corollaries 5.5 and 5.8.

Proof of Corollary 5.5

For δ ∈ (0, 1) and α ∈ (0,+∞) with δ < α, consider the sets

Gδ,α :=
{
g ∈M : λ is simple for all λ ∈ Spec(Pg) ∩

(
[−α,−δ] ∪ [δ, α]

)}
.

(5.6)

Assumming the hypothesis of Theorem 5.4 hold, we prove in Proposition 5.18

that the sets Gδ,α are open and dense inM with the C∞-topology. Let {δk}k∈N
be a sequence in (0, 1) satisfying limk δk = 0, and let {αk}k∈N be a sequence in

(0,+∞) satisfying limk αk = +∞ and δk < αk for all k. Then

∞⋂
k=1

Gαk,δk

is a residual set in M that coincides with the set of all Riemannian metrics

for which all non-zero eigenvalues are simple. For the proof of Corollary 5.5

to be complete, it only remains to prove the following result.

Proposition 5.18. Suppose that Pg : Γ(Eg)→ Γ(Eg) has no rigid eigenspaces

for a dense set of metrics. Then, the sets Gδ,α are open and dense in the C∞-

topology.
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Proof. We first show that the sets Gδ,α are open. Consider g0 ∈ Gδ,α and write

λ1(g0), . . . , λd(g0) for all the eigenvalues of Pg0 in [−α,−δ] ∪ [δ, α], which by

definition of Gδ,α are simple. Assume further that the eigenvalues are labeled

so that

−α ≤ λ1(g0) < · · · < λk(g0) ≤ −δ and δ ≤ λk+1(g0) < · · · < λd(g0) ≤ α.

Consider ε1 > 0 small so that no eigenvalue of Pg0 belongs to

[−α− ε1,−α) ∪ (−δ,−δ + ε1] ∪ [δ − ε1, δ) ∪ (α, α + ε1].

For all 1 ≤ i ≤ k − 1 let pi := 1
2
(λi(g0) + λi+1(g0)), and for k + 2 ≤ i ≤ d let

pi := 1
2
(λi−1(g0)+λi(g0)). We also set p0 := −α−ε1, pk := δ+ε1, pk+1 := δ−ε1

and pd+1 := α + ε1.

For all 1 ≤ i ≤ k (resp. k + 1 ≤ i ≤ d), let Ci be a differentiable curve that

intersects the real axis transversally only at the points pi−1 and pi (resp. pi

and pi+1). In addition, let ε2 > 0 be so that for each 1 ≤ j ≤ k − 1 and

k + 2 ≤ j ≤ d, the circle Ĉj centered at pj of radius ε2 does not contain any

eigenvalue of Pg0 .

−α −δ 0 δ α

p0 p1 p2 p3 p4 p5λ1 λ2 λ3 λ4

Ĉ1 Ĉ4

C2C1 C3 C4

By Proposition 4.4 there exists an open neighborhood V ⊂ Wg0 of g0 in the

C∞-topology so that for all g ∈ V and all i, j for which Ci and Ĉj were defined,

dim Fg(Ci) = dim Fg0(Ci) = 1 and dim Fg(Ĉj) = dim Fg0(Ĉj) = 0.

(5.7)

Since [−α,−δ] ∪ [δ, α] is contained in the union of all Ci’s and Ĉj’s, it then

follows from (4.3) and (5.7) that for all g ∈ V ,

dim ker(Pg − λI) = 1 ∀λ ∈ Spec(Pg) ∩
(
[−α,−δ] ∪ [δ, α]

)
.

Since V ⊂ Gδ,α, it follows that Gδ,α is open.
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We proceed to show that the sets Gδ,α are dense. Let g0 /∈ Gδ,α and O be an

open neighborhood of g0. Our assumptions imply that there exists g ∈ O so

that the hypotheses of Theorem 5.4 are satisfied for Pg. It then follows that

there exist a function f ∈ C∞(M) so that the metric efg ∈ O and all non-zero

eigenvalues of Pefg are simple. Therefore, efg ∈ O ∩ Gδ,α.

Remark 5.19. We note that our proof actually yields that the sets Gδ,α are

dense in the C∞-topology of metrics in M.

Proof of Corollary 5.8

For δ ∈ (0, 1) and α ∈ (0,+∞), consider the sets

Ĝδ,α :=
{
g ∈M : dim ker(Pg − λI) ≤ rank(Eg)

for all λ ∈ Spec(Pg) ∩
(
[−α,−δ] ∪ [δ, α]

)}
Using the same argument in Proposition 5.18 it can be shown that the sets

Ĝδ,α are open. To show that the sets Ĝδ,α are dense, one carries again the same

argument presented in Proposition 5.18, using the hypothesis of Theorem 5.7

to find the metric g. Let {δk}k∈N be a sequence in (0, 1) satisfying limk δk = 0,

and let {αk}k∈N be a sequence in (0,+∞) satisfying limk αk = +∞ and δk <

αk. Then ∩kĜαk,δk is a residual set in M that coincides with the set of all

Riemannian metrics for which all non-zero eigenvalues of Pg have multiplicity

smaller than the rank of the bundle Eg. This completes the proof of Corollary

5.5.



CHAPTER 6

Conformal invariants from CCO

In this chapter we discuss several new conformal invariants that arise from

eigenvalues and nodal sets of null-eigenfunctions of conformally covariant op-

erators.

6.A. Conformal invariants from eigenvalues

Throughout this section we work under the assumptions described in Section

1.A., and in addition we assume that Pg : Γ(Eg) → Γ(Eg) is strongly elliptic.

For such operators the spectrum consists of a sequence of real eigenvalues

converging to∞. We thus can order the eigenvalues of Pg as a non-decreasing

sequence,

λ1(Pg) ≤ λ2(Pg) ≤ · · · ,

where each eigenvalue is repeated according to multiplicity. We start this

section with a natural remark that was already discussed in Chapter 5.

Remark 6.1. (dim(kerPg) is a conformal invariant) We recall that for

zero eigenvalues it is easy to see that their number determines a conformal in-

variant. Indeed, if u belongs to the kernel of Pg, and ĝ = efg, then κ−1(e−
a
2
fu)

belongs to the kernel of Pĝ, for Pg of biweight (a, b) and κ : Eĝ → Eg the



36 Conformal invariants from CCO

bundle isomorphism in Definition 3.1.

We next show that the number of negative eigenvalues defines a conformal

invariat too. For any g ∈M, we define

ν(Pg) := #{j ∈ N; λj(Pg) < 0}.

Theorem 6.2. (ν(Pg) is a conformal invariant)

For g ∈M, ν(Pg) is an invariant of the conformal class [g].

Proof. Let g ∈ M, and set m = ν(Pg) and l = dim kerPg. Thus λj(Pg) < 0

for j ≤ m, and λj(Pg) = 0 for j = m + 1, · · · ,m + l, and λj(Pg) > 0 for

j ≥ m+ l + 1.

Let δ > 0 be so that 0 is the only eigenvalue of Pg in [−δ, δ]. Then, by Corollary

4.2 there exists an open neighborhood W of g such that for all ĝ ∈ W one has

λj(Pĝ) ∈ (−∞,−δ) j ≤ m, and λm+l+1(Pĝ) ∈ (δ,+∞).

By Remark 6.1 λm+j(Pĝ) = 0 for j = 1, . . . , l. Then, for ĝ ∈ W it follows that

ν(Pĝ) = m. All this shows that the map g → ν(Pg) is locally constant when

restricted to the conformal class [g]. As [g] is a connected subset of M (since

[g] is the image of C∞(M,R) under f → efg), we deduce that ν(Pg) is actually

constant along the conformal class [g]. This proves the Theorem.

A result of Kazdan-Warner [30, Theorem 3.2] asserts that the sign of the first

eigenvalue λ1(P1,g) is an invariant of the conformal class [g]. We generalize it

to the following result.

Theorem 6.3. (sgn(λ1(Pg)) is a conformal invariant)

The sign of λ1(Pg) is an invariant of the conformal class [g].

Proof. Notice that

• λ1(Pg) < 0 if and only if ν(Pg) ≥ 1.

• λ1(Pg) = 0 if and only if dim kerPg ≥ 1 and ν(Pg) = 0.

• λ1(Pg) > 0 if and only if dim kerPg = ν(Pg) = 0.

Therefore, the result follows from the conformal invariance of dim kerPg and

ν(Pg).
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6.B. Conformal invariants from KerPg

Throughout this section, we assume that (M, g) is a compact, connected, Rie-

mannian manifold of dimension n and that Pg : C∞(M) → C∞(M) is a

conformally covariant operator of biweight (a, b).

Let ug ∈ KerPg. Note that since Pg is a conformally covariant operator of

biweight (a, b), we know that for a conformal change of the metric g 7→ efg

then e−
af
2 ug ∈ KerPefg. Therefore, throughout this section we shall regard

ug as conformal density of weight −a, that is, a family (uĝ)ĝ∈[g] ⊂ C∞(M)

parametrized by the conformal class [g] in such way that

uefg = e−
af
2 ug ∀f ∈ C∞(M,R).

We observe that if (uĝ)ĝ∈[g] is a conformal density, then its nodal set

N (uĝ) := {x ∈M : uĝ(x) = 0}

is independent of the metric ĝ ∈ [g], and hence is an invariant of the conformal

class [g]. Applying this observation to the null-eigenvectors of Pg we then get

Proposition 6.4. (Nodal sets are conformal invariants)

1. If dim kerPg ≥ 1, and ug ∈ kerPg\{0}, then the nodal sets N (uĝ), ĝ ∈
[g], are invariants of the conformal class [g]. Their complements, the

nodal domains, are invariants too.

2. If dim kerPg ≥ 2, then intersections of nodal sets of null-eigenvectors

ug ∈ kerPg and their complements are invariants of the conformal class [g].

Remark 6.5. A connected component N of an intersection of p nodal sets

should generically be a co-dimension p submanifold of M , and in the case it is,

the corresponding homology class in Hn−p(M) would be a conformal invariant.

Further interesting conformal invariants should arise from considering the

topology of M \ N . For example, if dimM = 3 and dim kerPg = 2, and

ug, vg ∈ kerPg, then N (ug) ∩N (vg) defines a “generalized link” in M , and all

topological invariants of that set and its complement in M would be conformal

invariants.

The next remark is then natural.
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Remark 6.6. The kernel of Pg contains a nowhere vanishing eigenfunction if

and only if there is a metric ĝ in the conformal class [g] such that Pĝ(1) = 0.

Indeed, if u ∈ kerPg and u(x) > 0 for all x ∈ M , then for ĝ = e
2
a

lnu we

have Pĝ(1) = e−b lnuPg(e
lnu) = 0. On the other hand, if Pĝ(1) = 0 for some

ĝ = efg ∈ [g], then Pg(e
−af

2 1) = 0 and so u(x) = e−
af(x)

2 does the job.

If Pg is a conformally covariant operator of biweight (0, b), then all the level

sets {x ∈M ; ug(x) = λ}, λ ∈ C, are independent of the representative metric

g:

Proposition 6.7. If a = 0, all the level sets of any non-constant eigenvector

in kerPg are invariants of the conformal class [g].

We continue to assume that Pg is a conformally covariant operator of biweight

(a, b). When a 6= 0 we prove the following result.

Proposition 6.8. (Invariants from norms) Suppose a 6= 0. Let ug ∈
kerPg and let us regard it as a conformal density of weight −a. Then the

integral ∫
M

|ug(x)|
n
a dvolg(x)

is an invariant of the conformal class [g].

Proof. Let ĝ = efg, f ∈ C∞(M,R), be a metric in the conformal class [g].

Then ∫
M

|uĝ(x)|
n
a dvolĝ(x) =

∫
M

∣∣∣e−af2 (x)ug(x)
∣∣∣na enf2 (x) dvolg(x)

=

∫
M

|ug(x)|
n
a dvolg(x).

This proves the result.



CHAPTER 7

Conformal Laplacian

In this chapter we focus on the Conformal Laplacian. We translate most of

the results in Chapter 6 to this setting. Let (M, g) be a compact, connected,

Riemannian manifold of dimension n. We start by recalling from (3.1) that

the Conformal Laplacian is defined by

P1,g = ∆g +
n− 2

4(n− 1)
Rg,

where ∆g = δgd and Rg is the scalar curvature. P1,g is a conformally covariant

operator of bidegree
(
n−2

2
, n+2

2

)
. We continue to order the eigenvalues of Pg as

a non-decreasing sequence,

λ1(P1,g) ≤ λ2(P1,g) ≤ · · · ,

where each eigenvalue is repeated according to multiplicity.

7.A. Conformal invariants

The results in the previous chapter can all be applied to the Conformal Lapla-

cian. In particular, the sign of the first eigenvalue, the number of negative

eigenvalues, and the nodal sets of null-eigenvectors give rise to conformal in-

variants. In this section we discuss in more detail some of their features.
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Sign of first eigenvalue. Let g0 be a metric of constant scalar curvature in

the conformal class of a reference metric g. As the nullspace of the Laplacian

consists of constant functions, λ1(P1,g0) = n−2
4(n−1)

Rg0 . Therefore, the sign of

λ1(P1,g) agrees with that of the constant scalar curvature Rg0 . We also see that

λ1(Pk,g) = 0 if and only if Rg0 = 0. Furthermore, in that case kerP1,g0 consists

of constant functions and kerP1,g is spanned by a single positive function.

Nodal sets of null-eigenfunctions. Since nodal sets of null-eigenfunctions

of conformally covariant operators are conformal invariants, it seems natural

to introduce the following version of Courant’s Nodal Domain Theorem.

Proposition 7.1. Assume that the Conformal Laplacian, P1,g, has m negative

eigenvalues, m ≥ 1. Then any null eigenfunction of P1,g has at most m + 1

nodal domains.

Proof. By Proposition 6.4 the nodal domains of P1,g are conformal invariants.

Therefore, without any loss of generality we may assume that the scalar cur-

vature Rg is constant. Then the eigenvalues of P1,g are obtained by adding
n−2

4(n−1)
Rg to the eigenvalues of the Laplacian ∆g and the corresponding eigen-

functions agree.

Let u ∈ kerP1,g. By assumption P1,g has m negative eigenvalues, so the

eigenvalue λ = 0 is the j-th eigenvalue of P1,g for some j ≥ m. It then follows

that u is an eigenfunction of ∆g for its j-th eigenvalue. Applying Courant’s

Nodal Domain Theorem then shows that u has at most m+ 1 nodal domains

and completes the proof.

Large number of negative eigenvalues. The question that naturally arises

is whether the number of negative eigenvalues of P1,g can be arbitrary large as

g ranges over metrics on M .

Theorem 7.2. For every m ∈ N, there is a metric g on M for which P1,g has

at least m negative eigenvalues counted with multiplicity.

Proof. By a result of Lohkamp [34, Theorem 2], given λ > 0, there is a metric

g on M such that

(i) The m first positive eigenvalues of the Laplacian ∆g counted with mul-

tiplicity are equal to λ.
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(ii) The volume of (M, g) is equal to 1.

(iii) The Ricci curvature of g is ≤ −m2.

The condition (iii) implies that Rg ≤ −nm2. Combining this with (ii) shows

that, for all u ∈ C∞(M), we have

〈P1,gu, u〉 = 〈∆gu, u〉+
(n− 2)

4(n− 1)

∫
M

Rg(x)|u(x)|2 dvolg(x)

≤ 〈∆gu, u〉 −
(n− 2)

4(n− 1)
nm2‖u‖2

2. (7.1)

Assume λ < (n−2)
4(n−1)

nm2 and denote by Vλ the eigenspace of ∆g associated to λ.

Notice that Vλ is a subspace of C∞(M) and has dimension k ≥ m. Moreover,

if u a unit vector in Vλ, then (7.1) shows that 〈P1,gu, u〉 ≤ λ− (n−2)
4(n−1)

nm2 < 0.

Combining this with the min-max principle we see that λm(P1,g) ≤ λk(P1,g) <

0. Thus, P1,g has at least m negative eigenvalues counted with multiplicity.

The proof is complete.

7.B. Scalar curvature prescription problems

The problem of prescribing the curvature (Gaussian or scalar) of a given com-

pact manifold is very classical and is known as the Kazdan-Warner problem

(see [30] and the references therein). In this chapter we apply the results on

the invariance of the nodal sets of eigenfunctions in the kernel of the Conformal

Laplacian to Scalar curvature prescription problems.

We next make some observations about
∫
M
Rgu dvolg for u ∈ ker(P1,g).

Proposition 7.3. Assume that the scalar curvature Rg is constant and let us

regard ug ∈ kerP1,g as a conformal density of weight −n
2

+ 1 Then

〈Rĝ, uĝ〉ĝ = 0 ∀ĝ ∈ [g].

Proof. Note that if the curvature Rg is constant, then u is an eigenfunction of

the (positive) Laplacian ∆g with eigenvalue λ = − n−2
4(n−1)

Rg.

• If Rg = 0, then the integral vanishes.

• If Rg 6= 0 and Rg is constant, then u is orthogonal to the constant

eigenfunction, and so again we find that
∫
M
Rgu dvolg = 0.
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• Assume Rg is constant and Rĝ 6≡ Rg, for ĝ = efg. Using the formula for

the transformation of the scalar curvature we obtain∫
M

Rĝe
−n−2

4
fu dvolĝ =

∫
M

(
4(n−1)
n−2

e−
n+2
4
fP1,g(e

n−2
4
f )
)
e−

n−2
4
fu e

n
2
fdvolg.

Since P1,g is formally self-adjoint, we can rewrite the right hand side as

4(n−1)
n−2

∫
M

e
n−2
4
fP1,g(u) dvolg = 0.

We conclude that∫
M

Rĝe
−n−2

4
fu dvolĝ = 0, u ∈ ker(P1,g). (7.2)

Next, we consider the scalar curvature restricted to nodal domains.

Theorem 7.4. Let u ∈ ker(P1,g) and let Ω be a nodal domain of u. Then, for

all v ∈ C∞(M), ∫
Ω

|u|P1,g(v) dvolg = −
∫
∂Ω

v ‖∇gu‖g dσg,

where σg is the surface-area measure of ∂Ω.

Remark 7.5. The intersection of the critical and nodal sets of u has locally

finite (n-2)-Hausdorff dimension (see [29]). Therefore, ∂Ω admits a normal

vector almost everywhere, and hence the surface measure dσg is well-defined.

Proof. Observe that u has constant sign on Ω. In addition, let ν be the outward

unit normal vector to the hypersurface ∂Ω. Then ∂νu agrees with −‖∇gu‖g
(resp., ‖∇gu‖g) on ∂Ω in case u is positive (resp., negative) on Ω. Therefore,

upon replacing u by −u if needed, we may assume that u is positive on Ω.

Let v ∈ C∞(M). As P1,gu = 0 and the Conformal Laplacian agrees with the

Laplacian ∆g up to a the multiplication by a function, we have∫
Ω

|u|P1,g(v) dvolg =

∫
Ω

(uP1,gv − vP1,gu) dvolg =

∫
Ω

(u∆gv − v∆gu) dvolg.

Using the divergence theorem we see that∫
Ω

|u|P1,g(v) dvolg = −
∫
∂Ω

(u ∂νv − v ∂νu) dσg = −
∫
∂Ω

v ‖∇gu‖g dσg,
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where we have used the fact that u = 0 and ∂νu = −‖∇gu‖g on ∂Ω. The proof

is complete.

Decomposing the manifold into a disjoint union of positive nodal domains,

negative nodal domains and the nodal set of u, and applying Theorem 7.4 we

obtain

Corollary 7.6. For all u ∈ kerP1,g and v ∈ C∞(M),∫
M

|u|P1,g(v) dvolg = −2

∫
N (u)

v ‖∇gu‖g dσg,

where N (u) is the nodal set of u.

Theorem 7.7. Let R ∈ C∞(M) be the scalar curvature of some metric in the

conformal class [g]. Then, there is a positive function ω ∈ C∞(M), such that,

for any u ∈ ker(P1,g) with non-empty nodal set and any nodal domain Ω of u,∫
Ω

R |u|ω dvolg < 0.

Proof. By assumption R = Rĝ for some metric ĝ = efg with f ∈ C∞(M,R).

Thus P1,ĝ(1) = n−2
4(n−1)

Rĝ = n−2
4(n−1)

R. Let u ∈ ker(P1,g) and let Ω be nodal

domain of u. In addition, set ω = n−2
4(n−1)

e
n+2
4
f and û = e

2−n
4
fu. Then∫

Ω

R|u|ω dvolg = n−2
4(n−1)

∫
Ω

|û|R dvolĝ =

∫
Ω

|û|P1,ĝ(1) dvolĝ. (7.3)

Since û ∈ kerP1,ĝ and Ω is a nodal domain for û we can apply Theorem 7.4 to

û and v = 1 and using (7.3) get∫
Ω

R|u|ω dvolg =

∫
Ω

|û|P1,ĝ(1) dvolĝ = −
∫
∂Ω

‖∇ĝu‖ĝ dσĝ.

As the intersection of the critical and nodal sets of u has locally finite (n− 2)-

Hausdorff dimension, the integral
∫
∂Ω
‖∇ĝu‖ĝ dσĝ must be positive.

Theorem 7.7 seems to be new. Since 1 ∈ KerP1,ĝ for some ĝ ∈ [g], there is

always a non vanishing eigenfunction in KerP1,ĝ. Therefore, we remark that

when dim ker(P1,g) ≥ 2 Theorem 7.7 gives infinitely many constraints on Rĝ.

Corollary 7.8. Let u ∈ ker(P1,g) with non-empty nodal set and let Ω be a

non-empty nodal domain of u. Then, for any metric ĝ in the conformal class

[g], the scalar curvature Rĝ cannot be everywhere positive on Ω.
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Let u ∈ ker(P1,g) and let Ω be nodal domain of u. Given any metric ĝ = efg,

f ∈ C∞(M,R), in the conformal class [g] we define

T (u,Ω, ĝ) := − 4(n−1)
n−2

∫
∂Ω

e
2−n
4
f‖∇ĝû‖ĝ dσĝ,

where we have set û = e
2−n
4
fu.

Proposition 7.9. For all metrics ĝ in the conformal class [g],

T (u,Ω, ĝ) =

∫
Ω

|u|Rg dvolg.

Proof. Let ĝ = efg, f ∈ C∞(M,R), be a metric in the conformal class [g]. Set

û = e
2−n
4
fu and v = e

2−n
4
f . As pointed out in the proof of Theorem 7.7, û lies

in kerP1,ĝ and Ω is a nodal domain. Applying Theorem 7.4 to û and v then

gives

n−2
4(n−1)

T (u,Ω, ĝ) = −
∫
∂Ω

v‖∇ĝû‖ĝ dσĝ =

∫
Ω

|û|P1,ĝv dvolĝ.

As P1,ĝv = e−
n+2
4
fP
(
e
n−2
4
f · e 2−n

4
f
)

= e−
n+2
4
fP1,g(1) = n−2

4(n−1)
e−

n+2
4
fRg, we get

T (u,Ω, ĝ) =

∫
Ω

|û|e−
n+2
4
fRg dvolĝ

=

∫
Ω

e
2−n
4
f |u|e−

n+2
4
fRg e

nf
2 dvolg

=

∫
Ω

|u|Rg dvolg.

The result is proved.

Proposition 7.9 provides us with some conserved quantities for the conformal

class. In particular, if Rg is constant, we obtain

T (u,Ω, ĝ) = Rg||u||L1(Ω) ∀ĝ ∈ [g].
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