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| 1. INTRODUCTION 

!•!• An infinite series such as 

oo 

/ fen) n~ (i) 
*» = » 

is called a Dirichlet series. It is completely determined by the sequence 

of coefficients f(n), which may be regarded as a function of n. The series 

(i), if convergent, is itself a function of 6; as such it is called the 

generating function of f(n). Numerical functions which are generated by 

Dirichlet series are of great importance in the multiplicative theory of 

numbers. 

If we multiply two Dirichlet series together, we obtain another 

series of the same type. Thus, leaving aside questions of convergence, 

we have: ^ oo 
00 **° ~^ 

( 21 f<n) n'$ J ( 2. q<n)n~*J =: L_ km) n ~s , 
/)s/ i n nml 

where kin) - JL f(d)€t(5) (ii) 
»-dS ° 

the latter sum extending over all the pairs of positive integers (d, 0 ) 

such that do = n. 

1,2. Instead of (ii) we shall write symbolically: h = f o g, and 

call o the Dirichlet operation. This turns out to be an associative and 

commutative operation, as will be shown in § 3, and greatly serves to 

simplify both statement and demonstration of many a familiar identity in 

the theory of numbers, as will be illustrated in a fewitaamples. First, 

however, let us collect here some of the numerical functions that occur 

most frequently in the literature: 
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V (n) . , . the number of divisors of n; 

6 (n) . . . the sum of divisors of n; 

(P (n) . . . the number of positive integers less than and prime to n; 

fJ> (n) . . . the Moebius function, which is 0 if n contains a square 

other than 1, and is (-1) if n contains V distinct prime factors; 

l\ (n) . . . which vanishes unless n is the power of a prime p, in 

which case A (n) = log p. 

Let us abbreviate 

/__ fid) as Z_ fed) 

meaning that the sum extends over all the divisors of n. Of the following 

theorems, all but one follow immediately from the definitions; the last 

requires some argument, but is so well established that we need not prove 

it here 

dl> 
u id) — i if n = 1, = 0 otherwise; 

y ) = T(n) 
elf** 

J~_ c( - d(n) 
df" 

y Aid) - Log * ; 

21 a>(cl) = n. 
off-* 

In order to put these theorems into symbolic form, we must define 

a few more numerical functions of a very simple nature: 

£ ( n) ~ * for all n; 

Cj (n) « / if n = 1, : 0 otherwise; 

ry (n) * 1 ; 
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In our notation the above theorems then become: 

It will be noticed that w is the unit element for the Dirichlet 

operation o; thus f o w = f, for any numerical function f. Suppose now 

that f o € « g. Hence, using the associative property of o, we have: 

f=fow = fo€ou = gou. 

This result, if written in non-symbolic fora, constitutes, of course, the 

well known Moebius inversion formula. In particular, the equations in 

1.21 may be inverted to give: 

1.22. 6 « T- oJLl , y~d»JUL , A = L o^u. , f - ^ O^L 

Again, if these be written out in ordinary notation, familiar results 

will be recognized. 

It is by no means necessary to confine attention to cases where one 

of the operants is 6 or u (in these cases we have what is sometimes 

referred to as numerical integration and differentiation). Thus it can 

easily be verified algebraically that 

1.23. Vo cf> « 6 , d o (j> = ¥i o y , rj oT = e o d 

1,3. To exemplify the condensation of theory afforded by use of the 

Dirichlet operation o, we shall briefly consider an interesting, though 

well known, application to the function f x J (read: greatest integer 

in x). 

We defined g = f o € to mean: 

Now 

g(n) = £_^ ted) 6 it) = j~ f(d) (i) 

/ if d In , = O if dJtn. , 
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so that (i) may be written: 

8™ =£([*]-[¥])?<*> (ii) 
4-1 

Replacing n by k in (ii), and summing from k = 1 to k • n, we obtain the 

following theorem: 

hJL. L (foe) (k) - Z f<H> f-̂ -J . 
k-i H-i 

An alternate way of proving this is to show that both sides can be written: 

L f<d> • 
d8±n 

By taking f = y., <p , 6 / „ f /\ in 1.3^ we obtain: 

z fT] -1 *-<»' > 

f>sm 

identities which are frequently made use of in the analytic theory of 

numbers. If we put n • / I p ; the last equation implies that: 

whence it follows that the highest power of p in LH is / L*^' P J 
s = i 

1.4. The matter set forth so far has been extensively discussed 

by various writers (e.g* Hardy and Bell). As far as we have been able 

to ascertain, all these authors refer to the Dirichlet operation o as a 

type of multiplication, presumably because it gives rise to formal multi­

plication of Dirichlet series. However, we shall endeavour to show 
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presently that the Dirichlet operation should be interpreted as a type of 

addition. It may be argued that it cannot possibly make any difference 

whether we write h or c. for K o ' , as long as we recognize the 

abstract properties of the operation, such as associativity and commu-

tativity; yet terminology greatly influences our unconscious outlook, it 

enables us to re-interpret known theorems and to envision new ones. 

If we desire to introduce (define) addition and multiplication of 

numerical functions (as distinct from their values), we may proceed in an 

"obvious" fashion. Thus we may write: 

h>* f +g if ken) •= f<m + g(r\) for all n; 

W^f-S if H<w) = f <*i>. <y<n) for all n. 

Addition thus defined has one great disadvantage: Except in rare instances 

(one of which will be encountered later), it serves no purpose but that of 

formally completing the algebraic system of numerical functions. As Prof. 

Bell remarks: "It is reasonable to expect nothing natural when we introduce 

addition, which is now done merely for completeness." If this "obvious" 

definition of addition is nevertheless adopted, we are forced to look at 

the Dirichlet operation o as a species of multiplication; for, as may 

easily be verified, we have a distributive law: 

fo(g + h) = (fo3) + (f-k) • 

On the other hand, the "obvious" multiplication cannot be avoided, since, 

as later examples will show, "obvious" products of numerical functions 

are frequently required. Hence, if we also accept a "Dirichlet" multi­

plication, two species of multiplication will exist side by side, to the 

confusion of everybody concerned. 
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l^ls. We shall now consider three examples that will indicate a 

road of escape from this muddle. 

Ex. 1. We have: 

2. *7 id) V)(E) * 2. d nr ^ n. 2_ ' = nc^DTCrW , 

or symbolically: r) o r? ̂  xr y . Substituting for f , this becomes: 

to o n •= r> (e © 6 ) . 

Let us tentatively replace o by +- , then 

Bearing in mind that £ is the unit under multiplication, we immediately 

recognize this as an instance of the distributive law. 

Ex. 2. Again we have: 

J~ ncd) u(S) y(S) =• 2_ nyuftfj - n 2_ A^i " *» a/^KJl = <^ n ); 

for w(n) vanishes unless n - 1. Symbolically: 

n o ju rp = co . 

If again we replace o by f , this becomes: 

n + /u q = co < 

But w is the zero under addition, thus defined, hence we may write this 

tentatively: - *7 ~ /* Y ~ 

Now € + ju •= cu , so that u = -e. , whence 

- ? - <-*>>? , 
which again is a plausible result. 

Ex. 3. Uspensky states as an example: 

T vhd) = (2>«W" 
Symbolically this would be written: € o T = (eoxr) 

Writing 4- for o, and substituting for r* , we obtain: 

a result which reminds us of the arithmetical theorem that I +-Z = 3 . 
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l^cu Our course of action is now clear. Let us discard as useless 

ballast the "obvious" addition defined above, call the Dirichlet operation 

addition, and retain the "obvious" multiplication. This decision having 

been made, one question calls for immediate attention. Will the distri­

butive law, of which we have now seen three striking instances, be true 

in general? If it were, we should have: 

jm xr - ju(t + e) -yue *-jue ^yu +yu 

(i) 

For the argument n = 4, the L.H.S. of (i) takes the value a C4) r(4J = O , 

whereas the R.H.S. becomes yu M ) u (4) +ju(2)<u(Z) ±yu (4)yUC D ~ I . 

Equation (i) is, therefore, false, and we are forced to conclude: The 

distributive law, under which in any orthodox algebraic system, addition 

and multiplication enter into postulational wedlock, is absent from our 

calculus of numerical functions, even though many instances of it are true. 

We are thus compelled to investigate a novel variant of ordinary 

algebra, a system in which the distributive law does not necessarily hold. 

In want of a better name, we shall refer to such a system, subject to 

certain restrictions to be enumerated in § 2, as a calculus. 
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4-2^ SOME ABSTRACT PROPERTIES OF CALCULI. 

2.1. A set jj will be called a calculus with respect to two 

operations, which we shall call addition and multiplication, provided 

the following postulates are satisfied: 

I. 

II. 

III. 

n is closed under addition. 

Addition is associative and commutative in K • 

yx has an element w such that a-f-w = a for all of a of fi . 

f[ is closed under multiplication. 

Multiplication is associative and commutative in K-

n has an element e such that a-€ = a for all of a of fi 

w as defined above has the property that w ( a * b ) = w a *-o/fc> 

w for all a, b belonging to ^ . 

2.11. w and £ are unique. 

For suppose there was another element w' such that a-#-wf = a for 

all a of ^ , then 

w » s w* -h w = W4-W' « w. 

Similarly £ is seen to be unique. 

We shall call w and £ the zero and unity of ft . 

2<i2. If a belongs to R, and there is an element b of ^ such 

that a+b=w f SLb ~ £ J , then b is unique. 

For suppose a + b = w, a + b = w, 

then b' * b'+*» - t>'+*+t> = W + b -b . 

The same argument holds if addition is replaced by multiplication. 

For a given element a of £ , if b exists in £ such that a • b = w 

[ab-eJ,we shall call b the negative [reciprocalJ of a, and we shall 
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write b z - a Lb*a,~'J . Whenever convenient, we shall replace ' at + C-b) 

by a-b and *£ b ' ' by — . *-e ' will be abbreviated as yu . 

Since a*-b -SL-b * a-a ^ b - b - co + OJ = <O , 

and since QL + (-3L)*0J .'. -(-<£) * SL , 

and since Cc> -*- a; « C*J, .'. - UJ « cO . 

Three corresponding identities may be derived for multiplication. These 

results can be summarized as follows: 

2.13. Those elements of a calculus which possess negatives 

[reciprocals] form an Abelian group under addition [multiplicationj . 

An element a of ^ will be called distributive in ^ , if a(b*c ) = 

&b + ac for all b,C of ft . Postulate III then simply states that 

w is distributive. 

2.14. The set of distributive elements in K satisfies all the 

postulates of an Abelian group under multiplication, except (of course) 

that reciprocals will only pertain to this set if they exist in K 

We have to prove three statements regarding closure under multipli-

cation, unity, and the existence of admissable inverses. 

If a,b are distributive elements, c, d any two elements of K , 

then GLb (c-+d) - Si (be* be/) = abcf AbJ, 

hence ©lb is also distributive. (Closure). 

Since &(8L+b) = &-*-b = £61* 6 b , € is distributive. (Unity). 

If a is distributive, and 6l~* exists in K , then 

a~'tb+c) = a"(et>f6c) - oVYaa-'b + asr'c) 

= a-'a(a"'t> *-cr<c) = 6(a-'b*<a-'c) 

« oT'b +• or C 

whence it follows that GC* is distributive. (Inverse) This completes 

the proof of our theorem. 
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2*2. If R is a calculus with zero w and unity 6 9 then a 

subset ^ f of K will be called a sub-calculus of fi , provided 

it is a calculus and contains w and e . It follows that w and c are 

also the zero and unity of n, . 

In a calculus ^ it is not true in general that w a = w. 

However, we shall prove: 

2.21. If K| is the set of all elements a of f? such that 

w a = w, then R, is a sub-calculus of K , and moreover the 

negative [reciprocalj of an element of ^ will also belong to fit if 

it belongs to ^ 

For if ci and b are in K, , then 

U> <& + b) * cudL + ou b = ou + cu = ~J , 

hence a*b belongs to yt, . (Closure under addition.) 

Since cucv = a)x * o;lf^ = oo(w+6) - cue - co , 

therefore w belongs to K, . (Zero.) 

If a is in $?, and -a exists in ^ then CJ C-SL) - u>SL*u}(-a.) - o>(A-dL)?i* =o 

hence -a belongs to ^ f . (Negative.) 

If a and b are elements of K, , then a>©lb = <o b - CO , 

so that a b belongs to Rt . (Closure under multiplication.) 

w £ = w . (Unity) 

If a belongs to ^ and &"' exists in R f then 

Q-U) = a.~'<SL<o - eoj = OJ , 

hence ST* belongs to ^ , . (Reciprocal.) Q.E.D. 

2.22. A distributive element of ^ belongs to ft, if it has a 

negative in XV 

For let a be distributive, then 
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If -a exists, add it to both sides of (i) so that 

co* - a + a - - 3n- a ̂ aau * w + a<o = a. co , 

whence it follows that a is in ^ 

2*23« if a is distributive and possesses a negative then -a = yU. a . 

For by 2.22, w a r w, hence 

~ a - co - a_ - co a - a - (e +pm)di - SL 

- e*L +/*SL - a = pUSi 4- 3L-SL * JU 3L 4-CO ^ /* dL . 

2^ A calculus ^ will be called a subtraction calculus if it 

is closed under subtraction, i.e. if in addition to postulates I to III 

it satisfies the following: 

IV. Every element of ^ has a negative. 

Theorems 2.22 and 2.23 then give rise to the following obvious 

corollary: 

2.31. If a is a distributive element of a subtraction calculus $C , 

then w a « w and -a = ii a. 

It might be thought natural to define a division calculus in an 

analogous manner. The following theorem will show why such an attempt 

would yield trivial results. 

2.32. If w has a reciprocal in K then w = € . 

For suppose there is an element a of R such that w a = C . 

By 2.21, w1 = w, so that £ = ^ a ^ „*& = co(cosi) -cue = CO . 

In general, however, there is a much larger class of elements which 

cannot have reciprocals. We shall say that a divides b (or a/b ) in ft 

if there is a c in ^ such that a c = b. To say that a possesses a 

reciprocal is the same as stating that a/€. We shall suy th^t a is u zero-

divisor if there is a b in J? such that w ^ b and a b = w. 
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2*3i». The z©ro-divisors of a calculus have no reciprocals. 

Suppose a/£ • Then there exists a c in ^ such that c a = 6 . If b 

be any element of ^ such that Zlb^co, then 

b = e b = c a b * c co 7 
so that co J b . Hence a cannot be a zero-divisor. ;.E.D. 

The converse of this theorem is not true in general. If it is we 

shall speak of a regular calculus. Hence ^ is a regular calculus if 

in addition to postulates I to III it satisfies the following: 

V. Every element of ft is either a zero-divisor or else possesses 

a reciprocal in K 

2.4. It is not true in general that (-€)(-€) - e. Yet this 

would be true if the distributive law were to hold. Whenever two members 

of a non-distributive cafculus K would be equal under the distributive 

law, we shall say that they are similar in R . Unfortunately no 

scrutinizing logician would accept the previous statement as a definition. 

We shall go into some length to establish a rigorous basis for our 

intuitive concept of similarity. 

A relation 1̂  is called an equivalence-relation in a calculus Ŷ  , 

provided: 

(l) 'R is transitive, symmetric, reflexive. 

(2) If a, b, c are elements of ^ such that a R b ; then ( 3 K ) R 

( b - f - c ) a n d ( a c ) ft ( b c ). 

Clearly equality is a trivial equivalence relation, and so is the 

relation which treats all elements of ^ as equivalent. 7/e shall prove 

two simple properties of equivalence relations: 

2.41. If R is an equivalence relation in a calculus r\ , and 

a, b, c, d are members of ff such that a R b and c R d, then 
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We need only prove this for addition. 

By (2) U f c ) R ( b f c ; , (b+-c) R (b-r-d) , 

hence by transitivity (a*c)R (b+-cL) • Q.E.D. 

2«42* If -a> -b f &'', b"] exist in ^ , and if a R b, then 

-*• R • - b f *-Rb"J . 
Again it will suffice to prove this for negatives only. If a R b, 

then by repeated application of (2): 

-b= <-*> + a. * f-b) • R- (~JL) ± b *- l-b) '-at, 
Q.E.D. 

We shall say that an equivalence relation R in 8 is distributive if 

a ( b* c ) • R • afc^ac 

for all a, b, c of ft . At last we are in a position to define 

similarity. Two elements a, b of ^ are said to be similar in fi , 

provided a R b for all distributive equivalence relations R of ^ . We 

write a S b. 

2.43. Similarity is a distributive equivalence relation in K 

The proof of this theorem is quite simple; but to write it out in 

full would be rather a laborious task, unless we were to use the facilities 

of symbolic logic. It will suffice to prove transitivity of S here, whence 

it will become apparent how to show that S satisfies the other conditions doman 

demanded of an equivalence relation. 

Suppose a S b and b S c. Then, if R be any distributive equivalence 

relation in ^ , a R b and b R c. But R is transitive and, therefore, 

a R c. This is true for all distributive equivalence relations R of H 

whence a S c. 

We have thus shown that S is transitive. 3.E.D. 
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We shall prove one more theorem concerning similarity: 

2«44* If ^/ is a sub-calculus of ^ , then elements of £, 

which are similar in ^ are also similar in ^ 

Suppose a, b are members of ^, such that a 5 b in ^, , i.e. 

a R b for all distributive equivalence relations R of ftt . Now 

every distributive equivalence relation R of ^ gives rise to a distri­

butive equivalence relation R, of ^, , R, being obtained from R by 

deleting all those pairs (x, y) from R, for which x and y do not both 

belong to \A. J . (A relation, it will be remembered, is a set of pairs.) 

Hence, a fortjMCiori, a R b for all distributive equivalence relations R 

of $ , i.e. a S b in r? . Q.E.D. 
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§ 3. THE CALCULUS 3) . 

^U By a D-function we shall understand a numerical function which 

assigns to each positive integer a unique complex number. In general we 

shall assume that a D-function is undefined for arguments that are not 

positive integers, but we will not commit ourselves to this point of view; 

for, on occasion, a proof may be technically facilitated by stipulating 

that a D-function merely vanishes for an argument that is not a positive 

integer. Considered as an entity, a numerical function must be disting­

uished from its value for a variable argument (if this means anything); 

it should rather be construed as a relation which pairs off all positive 

integers with certain complex numbers. 

Since functions are thus essentially different from their values, 

we cannot talk about sums and products of functions, unless we introduce 

such operations by special definitions. We shall be concerned with two 

conventions in particular, as to what these operations may mean with regard 

to D-functions. 

Convention A: 

Convention B: 

means 

means 

means 

1 ken) = fcv\) 1-CgCn) } 

%CYI) - X fed) V<6) \ 
r>-dS ^ 

Xox) « H f(d)g(f) ' ; 
h*d5 *k- f*ar 

\ s f . g ' means ^<*i -
 f(w,lS(n) ' ' 

For reasons indicated in § 1, we shall adopt Convention 5 from now 

on, unless otherwise stated. 
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3.2. Let 3) be the class of all D-functions. Then we have the 

following theorem: 

3.21. 2) is a calculus with respect to addition and multiplication 

(as defined by Convention B). 

To prove this, we have to show that postulates I to III are satisfied. 

(1) It is obvious that 2) is closed under addition, and that the 

latter is commutative. To prove the associative law: 

f*(g + M - (f + g)+l* > 

we must show that 

Z ffdj [Z SCcU Kcd>}) " Z! (£ fcdt)g;(dj)h(d,) , 
**d,S S*dtds

 n:Sd> **<<>< 

which is, of course, true since both sides simplify to: 

y fed,) g(dx) kid3) , 
h zd,elxd3 

the sum extending over all triplets of positive integers ( dx , cix , el3) 

such that n = d, d± d3 . 

The zero of addition is given by the function w, defined in 1.2. 

For if we put g = f*CU so that 

CTCn) - 21 fcd)w(S) - f(ri) cod) - F-ivi) , 

whence <f = f -

(2) It is obvious that £> is closed under multiplication, and that 

the latter is associative and commutative in D . The unit of multipli­

cation is given by the function £ also defined in 1.2. 

(3) It remains to show that w is distributive in D , i.e. that 

oj(f + % ) = "I- * cog 

for all D-functions f and g. The functions represented by both sides of 

this equation take the value f (1) g (D for n = 1, and vanish otherwise. 

Hence the identity holds for all f and g, and our theorem is proved. 
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If f is any D-function such that f (n) / 0 for all positive integers 

n, we may define a function g such that f (n) g (n) = 1 i.e. f - = 

so that g is a reciprocal of f. AS such it is unique (2.12), whence we 

may write g - f -' . The following theorem has thus been proved: 

3«22« A D-function f/ias a reciprocal if and only if f (n) j. 0 for 

all positive integers n. 

If f is any D-function such that f (1) ;£ o, we can step by step solve 

the system of equations: 

f (1) g (D = 1 

f (1) g (2) + f (2) g (1) = 0 

Z? f Cd ) g (S) = CO (~n) 
h:d$ 

for g (n). Hence f+g = w, and g is a unique negative of f. We are 

justified in putting g = - f. On the other hand, if f (l) = 0, we cannot 

even solve for g (1). Hence: 

3.23. A D-function f has a negative if and only if f (1) / 0. 

We know l^iready from 1.21 that - € = M . In general, -f may be 

calculated, as will be shown in 3.4. The following theorem is self-evident: 

3.24. If f is a function in 3) , then w f = w if and only if f (1) = 1 

3.3. We shall say that a D-function f is multiplicative provided 

f Cd) f(S) = f(<*5) 

for all positive integers d, d . 

Clearly £ and w, the product of two multiplicative functions, and 

the reciprocal of a multiplicative function (if it exists in 2) ) are 

multiplicative. Hence all the conditions stated in 2.4 are satisfied, and 

we should not be surprised at the following theorem: 



- 18 -

3Q1* Every multiplicative D-function is a distributive element 

of 5) > and conversely. 

In order to prove this theorem, we shall consider four lemmas: 

3.32 - 3-35. 

3.32. Every multiplicative D-function is distributive in 5 ) . 

Suppose f is multiplicative. Then 

X! fed) %Cd) fcS) h.iS) = fen) 21 Q;Cd)l\c6) , 

!-e- f-g + f-h = f • (gfh), 

where g and h are arbitrary functions of 3) . Hence our first lemma. 

For the purpose of stating our next lemma, we shall introduce a 

function S2 , such that Sc (n) = 0 for all n (not to be confused with w, 

the zero of addition, for which w (1) z 1). Si has the peculiar property 

that fi v f . a , Q f - Q , 

for any D-function f. It follows that Q is distributive in 3) , and 

we shall prove: 

3.33. The only distributive element f of 2) for which f (1) = 0 

is f = Q 

Consider the function g K f °
r which <£K(

n) = 1 if h • n, • 0 otherwise 

Let f be a distributive element of 5) such that f (1) =0. Then 

i.e. 
f(n) Z %k(d) = L f(d>$* td) ftt) 

In particular, when n = k, this becomes: 

But fen =0 , gA (H) « ' , so that f<*> = o . 

The argument may be repeated for other values of K , whence f (n) : c for 

all n, i.e. f = Q • Q.E.D. 
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iiii^ If f is a distributive element of S) , such that f (1) / 0, 

then f < D - / , fcrt) = fcp,)fcp^ .. fcpH) , 

n being the product of k distinct primes p, , p v , ... pk 

To prove this, consider the divisor function xr - 6 +-e , which was 

mentioned in 1.2. Let f be any distributive element of .'̂T- , f (1) / 0, 

then f -c - f f <e +- <s ; ~ fe + f e - f +- f • 

This means, of course: 

f(n)rcn) = 21 ffcH ^o"; . ... 

If in (i) we take n = 1, we obtain fcnr-H) =• foj fo) ; but 

f ( 0 ^ 0 F XT i \ ) = I f s o that f (1) = 1. Next let 

i\ * p. p* ••• p * y the ̂ >i being all distinct primes. We want to prove 

that 

f c m - fcp,)tcfK)>.'fcph) (ii) 

This is easily accomplished by induction. For k - 1, (ii) is trivially 

satisfied. Let us assume then that (ii) holds for all k ^- i , say, 

where I > I . It remains to prove (ii) for k = L . Taking n - p*f>*. pi > 

equation (i) becomes: 

2LfCn) -Zfcnf(Yi) *- ]L'fed) f(f) f (iii) 

the primed sum extending over all ordered factorizations n z exo , with 

neither d nor 5" = n. It follows that in each term of 2_ tne d and <> 

both contain less than i (distinct) prime factors, whence by our induction 

hypothesis I-/ 

27 t«*> rfJ) = H (r) ftp.) ••• fcpj 
r x i 

= (2l-2.) fcp>> ••• f(pd 
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Substituting this into (iii), in virtue of the fact that f (1) =1, 

we obtain: 

(ZL-Z) f\m - (Zl-Z) fcp.y ... fcpL) . 

Since L r I we may divide by 2 l - 2, whence the required result. This 

completes the proof of our third lemma. 

3.35. If f is distributive in £) , then f is multiplicative. 

If f (1) = 0, f = Q (by 3.33), so that this is trivial. Let us 

assume then that f (1) / 0, hence f (1) =1, and 

f<p,pi-pk) - fcp>)fipx) • • • f (pK) . 

As follows, we shall define a function f , which will also be of 

importance later: 

f*(t).l , f*<m*TTf<p«) for n = 7 T > " . 

Clearly then f and f have the same values for square-free arguments, 

so that 

/*f ^ A f ^ ' (i) 

u being the Moebius function of 1.2. Now f is distributive by assumption, 

f (1) = 1; hence by 3.24: 

W - f w « f(e-r-J^) - ft+f/A = f+ S*f > 

so that juf=~f. (We could have quoted 2.23 here.) On the other hand 

f * is multiplicative by definition, and therefore distributive by 3.32; 

whence similarly yu f * - - ( . Hence (i) becomes: 

-f - -f" (ID 

If we add f 4- (•* on both sides of (ii), we see that f •= f * . But /» 

is multiplicative, and therefore f is, which proves lemma 3.35-

3.32, 3.33, and 3.35 together make up 3.31, which has thus been 

demonstrated. 
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3?4t In a field repeated addition can always be replaced by 

multiplication. Thus x+x = 2x. In a non-distributive calculus, we 

still have x+ x a ( e * € ) x, provided x is a distributive element; but 

in general such notational economy is unwarranted. Yet it would be 

useful to have some short-hand device of indicating repeated addition. 

Let us write: 

f <*' r* f +f +. . - . + {• ( ^ t e m s ) 

We might therefore define by induction: 

f<«.f , r—• - f"' + f , (i) 

whence f will be determined for all positive r. The question arises, 

can we find an interpretation for f("* when r is zero or negative? To fit 

in with (i), we must have 

If f has a negative, upon adding -f on both sides, we find f <0) = w. 

Similarly fH,r -f , and in general f c~*}» - ('". 

Now if r > O j 

f("(n> - Z fcdjfe^i ... f(d^) , 

the sum extending over all ordered factorizations >7«c/,c/L ••• dr . Can 

we find a formula that will enable us to calculate f 'r' (n) even when r 

is negative? This is clearly a generalization of the problem which arose 

in 3.23. We shall state the theorem: 

3.41. f<~<n, - Z.IV *""<»> fr'l(,) > 
S-0 

where f/CS\n) - Z'fcd,)fcdJ ... f-Cds) , 

the primed sum extending over all permutations ( d% , c/t ,...,<** ) such that 

n s d, cft ... ds , no factor being unity. 

A few remarks are in order: 
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(1) Theorem 3.41 is always valid for r > 0, in which case, of course, 

it is redundant. 

(2) For r <: 0 the theorem is only meaningful provided f (1) / 0. 

(3) The sum in 3.41 is only infinite in appearance. For positive r, 

(s) will vanish for s > r; but, at any rate, f/tf,(n) will vanish, once 

s exceeds the total number of prime factors of n. 

In the particular case where r = - 1, we obtain as a corollary a 

formula for -f = f (~l) • 

CO 

iiL. fl-'(n> - J- (-') f "*Vn> f "\n . 
5-0 

[This was stated and proved as a theorem by Prof. Bell in the Tohoku 

Mathematical Journal, in 1920. Its enunciation there, however, involves 

a slight error.J 

We shall now proceed to prove theorem 3.41. For the purpose of this 

proof only, let us abandon convention B, and adopt convention A instead. 

Hence, within this proof, 

f f+. g = A. ' means ' f r*i; 4-g Cn) - A.C>i) , 

<f . cr ^ K} means ' H fcd)%<3) = k(n) ' . 

It is easily seen that ^) forms a commutative algebra of infinite basis 

with respect to these two operations. The zero of addition is Sc , the 

unity of multiplication is w. If k is any complex number, let 'k f = g' 

mean that g (n) = k f (n). Hence f + f : 2 f etc. The operator k behaves 

like the function k w. Repeated multiplication is indicated by powers; 

thus f * s ff ... f (r terms). If f (l) /o, we have f ° = w and f "r« ~ 

division being defined in an obvious manner. It is seen that i here has 
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the same meaning as f under convention A. 

Now let f be obtained from f by suppressing f (1). Then 

f ' - f - CO fci) } f^CjL>fci)+-f' 

and ' 
f r « (to ft,) +-f')r. 

Since all the laws of ordinary algebra hold true in T) , we may expand 

the R.H.S. by means of the binomical theorem. Thus 

fr= z«>y-sfcr-s(Z) es 

- Z (s) *" f(i> ts r y-s 

since w : w is the unit under multiplication. If we now return to 

convention B, we must change f T to f c*\ whence 

But f /rs) (n) : 2L f- ' (di) f '<*d*) ••• ('(<*;) , the sun 

extending over all ordered factorizations n » d{ d± * - ds . From the 

definition of f ; it is seen that this is the same as ^ffed,) f(dj... fcds) , 

the sum extending over all ordered factorizations n = d% c/x -d% such that 

none of the d^ = 1. 

This completes the proof of 3.41, or rather what would have been the 

proof of 3.41, had we replaced the phrase: "Since all the laws of ordinary 

algebra hold true in ,5) , we may expand the R.H.S. by means of the 

binomical theorem," by an actual demonstration of the fact. 

A rigorous proof of 3.41, involving no switch from convention B to A, 

is indeed quite simple, but not very illustrating. Using the recurrence -

formula f'('"\n) = Z' ^ id) (""<*) , 

and putting g. (-) = I (D /"V» T"Vn) , 

we may show by straight forward calculation that 
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whence it follows from the definition of f Cv' that g = f (r) 

3.5. We have seen in 3.23 that all D-functions f possess an inverse 

under addition, unless f (1) = 0. Functions having this latter character, 

though being exduded from many important properties, are by no means un­

interesting. 

Ex. 1. Let TC (n) r 1 if n is the positive power of a prime, = 0 

otherwise. It follows that (yUr T£ ) (n) r 1 if n is a prime, = 0 otherwise. 

Neither of the functions 7C and JJLXTC possess a negative, yet they give 

rise to interesting combinations. Let 6 +~ *T - £ , €-4-/*>xrc -= tf • 

If n = p* p^ --- pr*
r j then 

\ (n) and V* (n) are known in the literature as the multiplicity and 

manifoldness of n respectively. 

Ex. 2. Let /\-L*-u where L(n) = log n. It is clearly verified 

that 
A (n) z loq p if v)=p* , p Prine , « >0 , 

z 0 otherwise 

However, the vast majority of D-functions that occur in the theory of 

numbers have the property that f (1) 4 0. We shall denote their totality 

by &t . 

3,51, The set 3), , of all D-functions f, such that f (l) / 0, forms 

a regular subtraction sub-calculus of £> . 

We note that 6 and w belong to 2), . Either h = f + g or h = f-g 

implies that h (1) - f (1) g (1), so that 3), , is closed under both addition 

and multiplication. 

Furthermore, subtraction is always possible by theorem 3.23. Indeed 

f '~° (D - « / f d) , so that - f = f'""belongs to ,5), if f does. This 
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proves that 3), is a subtraction calculus. 

It remains to show that 3), is regular, A zero-divisor f in 3), 

is characterized by the existence of a function g such that w y g and 

f.g « w. g must satisfy the conditions g (1) jl o, g (n) /o for some 

n 7* 1. But f (n) g (n) =0, so that f (n) = 0 for this particular value 

of n. A non-zero-divisor f then has the property that f (n) ^ 0 for all 

positive integers n. 

Such a function, however, has a reciprocal f ~* by theorem 3.22; and 

it is clear that f "' will again be in 3), ; for f "(i) * • /fe<) ^0 . 

Q.E.D. 

If f is any function in 2), , we may always define a function f 7, 

such that f (n) = f ^ (n) f (1), whence, by taking n = 1, it follows that 

f (l) z 1. We should hardly have lost in generality, had we restricted 

f in the first place to satisfy the condition f (1) = 1. Let us consider 

such functions, and denote their totality by 2)^ . 

3.52. The set 3)^ of all D-functions f, such that f (1) z 1, 

forms a regular subtraction sub-calculus of ^)t 

By 3.24, w f = w if and only if f (1) =1. Hence 3)2 stands in the 

same relation to 3), as ^, stood to ft in 2.2. The present 

theorem is then merely a corollary of 2.21. 

It is obvious that the argument used in the proof of 3.31 will still 

be valid for ^)f and J)z , with the simplification that the function fl 

is now excluded from consideration altogether. Te conclude that the 

distributive elements of either calculus are the multiplicative functions 

4 Q . However, we shall have to consider other sub-calculi of 

and it will become wearisome to repeat the inevitable theorem regarding 
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distributive elements. We shall, therefore, state once and for all: 

3.53. If (£ is any subtraction calculus of D-functions with 

unity 6 and zero w, then the set of all its distributive elements co­

incides with the set of all multiplicative functions pertaining to it. 
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£ 4. FACTORABLE FUNCTIONS 

4.1. We shall say that f is a factorable function, provided 

f (d S ) = f (d) f (J ) whenever ( d, g ) « l. Hence n « TTp* 

implies that f (n) = T\ f Cp J , so that all the values of f can 

be determined when we know its values for prime arguments. To prove that 

two factorable functions f and g are equal, it will, therefore, suffice 

to show that f ( p ) = g ( p ) for all primes p and all non-negative 

integers ox . 

Factorable functions are of great importance in connection with 

Dirichlet series. For, when f is factorable, then the corresponding 

generating function can also be factored, thus: 

n --/ P ot --0 

So that the Dirichlet Series which generates f can be expressed as a product, 

extending over all primes p, of power-series in p~ . This, however, is a 

purely analytic matter, into which we shall not enter here, except by way of 

illustration. 

It turns out that the great majority of numerical functions, which 

are used in the multiplicative theory of numbers, are factorable. In fact, 

of the functions for which we have so far introduced special symbols in 

this paper, Q, L, A , rt , X, and f are the only ones that do not 

fall into this category. The reader is probably familiar with the formulae: 

if not he should now be able to prove them. 
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4.2. Before investigating the set of all factorable functions as a 

calculus, we shall consider a more general type of functions. These may 

be characterized by any one of the following three equivalent statements: 

(1) u f is factorable. 

(2) if d S is square-free, then f idS! ** {(d) f<S) 

(3) if. n • pi px - •• p* ) the pL being distinct primes, 

then f (Kt> = f epj fcpj ••• f epK, . 

We are interested in the totality of all such functions. From the algebraic 

point of view, it is, however, convenient to exclude functions f for which 

f (1) a 0. It follows that f (1) = 1. The resulting set will be called J£)^ 

4.21. The set j£)3 of all functions f, such that u f is factorable, 

and f (1) 4 0, forms a regular subtraction sub-calculus of x)z 

(1) Clearly w belongs to Q^ • Let f and s be in ^3 ' and 

h s f +• g. If n = d S is square-free, then 

kid) keS) = zif <d,)g(dj L feSt)qJx) 
uidx * S*lh 

- Jl f(dt^)g(dxSJ 

If we put Jt8, = d' , ^ cft - 8' it is clear that n*d'S' and d' 

runs through all the divisors of n. 

kid) h(S) - JLtf(dng(S
§) - hem- hcdS) . 

n-d <5 

Hence h will also belong to £>3 and postulate I is satisfied. 

(2) Evidently /***/* is factorable, so that € belongs to D3 . 

If f and g are members of C; , and dS is square-free, then 

= (fg )(d) ((•%)(&) = Ud)<$<d)(tS)2(S) 

^ f idS) g (dS) 

= (fq) (dS), 
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so that f g belongs to 2S . Hence postulate II is satisfied. 

(3) Let f be a member of 2>3 , such that f " exists. Then for 

square-free do 
f'(d5) - [f<d3,r = tfcd)f(S)]~'= ?-'cd)f''(S), 

so that f -1 belongs to 5?3 . Hence postulate V is satisfied. 

(4) Next let f be any member of Q3 . Since f (1) = 1, we have 

by 3.42: /<"%) - Z (-0 s f"s'<n>, 

where f'f»(n.) - Z'M) • • f(ds) . 

Let f * be defined as before (3.35). Then for square-free n, f (n) = f*(n). 

But if n is square-free, so are all the divisors of n, whence 

f en) - h Cn) , 

and consequently 
f in) ' t (n) - ju en) f wivu 

by 2.23. Put n = dS 

f '"cd) f'~"eS) z jued) (*id)/*id)f*i6) 

z juedS) f*(dS) 

Hence - f = f (~l also belongs to 3i , and postulate IV is satisfied. This 

completes the proof of 4.21. 

We are able to prove a rather interesting result about elements which 

are similar in #c^ . 

4.22. Two elements f and g of 2)3 are similar in 3)^ if and only 

(1) Since S is a distributive equivalence-relation, we have: 

i.e. co - S ' /u+ A1 

€ S ' yu2 

(i) 



- 30 -

Now suppose /uf - MQ 

But by (i) f-S'^f and g . S - puzg f whence f • S • g . 

(2) Let us write ' f - M • g ' for ' jut = ju g ' . 

Then clearly, M is transitive, symmetric, and reflexive. Now assume that 

f M g, i.e. jx f - )x g. If p be any prime, it follows that f (p) - g (p). 

Let h be any other element of 2 X . Then 

fep)hkcp) ^ <gcp)-hkcp) 

i.e. (f -h kjep) = ( g +- k) ep) 

[/*(f-±L)]cp)= [y(<$^)]ep> . 

But u ( p* ) z 0 for CL y 1, hence 

LJUL (f+kflCpVcCfCgi-Mjlp"); 

and therefore ju ( { + k) ^ /x(34-k), 

since both sides are factorable. That is, ( f+ k) M (g ± h.) 9 and 

similarly it can be shown that (f h) M (g h). It follows that U is an 

equivalence relation. 

Furthermore, since 

fcp)(^ep)4-ktp)) « (cpx^cp) j-fcp)k(p) , 

i.e. [f(y+k)](p) = [tg +tk]cp) , 

we may infer by a similar argument that f Cq-t-n.) S5 

Hence Li is a distributive equivalence-relation in 3/5 

(3) Now suppose that f S g in D3 . By definition, this means that 

every distributive equivalence-relation in £>3 holds between f and g. 

But we have just shown that fci is one such relation, hence :' I', g. 

By (1) and (3), it follows that, in S)3 > f
 l[ S if ^nd only if 

f S g, i.e. Hi = S, which proves the theorem 4.22. 
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In the preceding argument we have used the fact that if f is in 3) 
3 } 

then^i f is factorable; but we never had to resort to the converse of 

this. To avoid future duplication, we may, therefore, state once and 

for all: 

4.23. If <§, is any subtraction sub-calculus of 3) , then 

two elements f and g of (£ are similar in <£ if and only if 

/* f =/i g. 

As was already shown in the proof of 3.34, if f is in 3X , we 

have ix f — ii f = - f , where f * is multiplicative and, therefore, 

distributive. Hence f S f * in ^3)3 . On the other hand f *" is the 

only distributive element of j£)3 which is similar to f; for suppose 

-it-

f S g, with g distributive. Then yu f Z yu g - - g, so that - f z - g. 

Adding f + g on both sides, we find that g = f . Hence we may sum up: 

4.24. A function f of ,3X is similar to precisely one distributive 

element f * of jj) , where f * z - jx f. 

It is obvious that the argument used here will apply equally well to 

any subtraction sub-calculus (§, °f i/3 which still contains all the 

distributive elements of 2)3 . Hence in general: 

4.25. If (£ is a subtraction sub-calculus of 3/3 which contains 

all multiplicative functions other than i<- , then a function f of Q is 

similar to precisely one distributive element f of (J, , where f • - 11 f. 

4^ We shall now turn to factorable functions. Again we find it 

convenient to exclude from consideration such functions f for which f (l)z 0. 

It follows that f (1) z 1. 

4.31. The set 3X of all factorable functions f such that f (1) ji 0 

is a regular subtraction sub-calculus of ^3 . 
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To show that it is a regular calculus, we proceed as in the proof 

of 4.21; except the condition that d O is square-free must now be replaced 

by (&,S ) = 1. Sinceyu is factorable, factorability of f implies that 

of u f. Hence any element of jS)^ is an element of j2) , so that the 

former becomes a sub-calculus of the latter. It remains to show that it 

is closed under subtraction. 

Let f be a member of Q . Let g (n) r 77 f '"'ip*) for n -Up^ 

which is clearly factorable. Put h = f 4-g, then 

kcp*) = Z f(p^) g(pf) = Zfcp^) f<m'lp*) -coep*) . 

Both h and w are factorable; hence h = f +> g « w, and g = - f, so that - f 

is factorable and consequently belongs to J3X . Q.E.D. 

As an example of a factorable function let us consider the function 

£ , which in reference to 3.4 is defined by induction on k: 

e ^ e , e = c- 4- c (i) 

This yields for positive k: 6'*'= 6 + • •• + £ f 6 '"*' = -£"° , C-'°^co , 

k terms 

which immediately implies that € is factorable. 

There is a neat formula which enables us to calculate ^ (n; for 

all integers k, viz: 

c*+'K v -T~r~ l k*-<* \ TT~" «• 
4.32. 6 (n) = / / ( oc J , where n = / / p -

To prove this, let us put preliminarily 

S, (n) = TT(5) * i * *<n> -

<r = 6 . <"> 

Then 

so that 

Also [ S„„ +/*](fl = K>, <f> ~ **~ <f-'> 

= rr; -iHT') 
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since both sides are factorable, whence 

0K^f =• Sk +e . (iii) 

But (ii) and (iii) together make up (i), with € <ky replaced by Sk , •'. e
€M*SH , 

which was to be proved. 

In particular: 

pin\ -ec'ncn) - TT I**1) , rcro re<zi*t;= TT('?*)= IT(*+<*) . 

As a further example, consider the three functions e w> n 

defined for positive integers k as follows: 

€k(n) =f if n- Q
k
 } a integral; - 0 otherwise; 

O^f-nl ^ I if ph y rt , p prime; = 0 otherwise; 

Ki^iri)- (-/) if n-b* , b square-free; * 0 otherwise. 

By inspection we see that these functions are factorable. There exist 

certain relationships between them, which may be condensed as follows: 

Clearly there is only one way in which n can be factored in the 

form n = a K b, such that b is not divisible by the kth power of a prime. 

Hence (et+CJjCn.) -21 e„(d)cok(J) =6k C*
k>Vk(b> -l=6<n) 

Furthermore, (co^ + JLL )<p") * cu« CP°L) " <*>* </>""'J , 

which is / if oC-0 —I if oC-= fc y and 0 otherwise. But this 

is precisely Mkip*) . Hence *>k */•< =/** '
 since both sides are f-ctorable-

^^A ^ ^fC* +/* =e+"' * aJt as was to be proved. 

In particular: tot « co , 6, ~ ^ / /
u'^/c>' 



- 34 -

It is clear that two elements of £) are similar in 3)^ if and 

only if they are similar in £>3 , i#e. if and only if u f zr » gw This, 

indeed, follows from 4.23. We are going to prove a more specific though 

less useful result. 

Since 2)^ is a subtraction-calculus, we can replace 

4 f S g ' by '(f - g) S w.' 

Now h S w means that ^h:^w:w, so that h (n) = 0 for all square-free 

n / 1. If h is factorable, this is the same as saying that h (p) = 0 for 

all primes p. Let us introduce the function k such that k (n) denotes the 

number of ways in which n can be factored in the form n = a* b such that 

b is square-free. Clearly k (n) = 1 or 0 for all n. K is seen to be 

factorable; in fact, it is quite easy to show that r\ - 6Z + f* /*5 • 

Clearly k cpu) = / for oe -£ I , Kep) =0. 

It follows that h S w if and only if k/h. 

Hence *f S g in Q ' could be written: k \ f -g , orf^g (mod*) 

4,4. We have seen the important position held by multiplicative 

functions, for they constitute the distributive elements of our calculus 

of numerical functions. Their totality unfortunately does not itself form 

a calculus, or we should have been able to exhibit a distributive calculus 

of numerical functions. However, we may consider the smallest regular 

subtraction calculus which contains all multiplicative functions other than 

Q ; we shall call this l2)5 . Clearly then 3)r is the set of all 

D-functions which may be obtained from multiplicative functions * \l 

by a finite number of applications of the four, rational operations -

(addition, subtraction, multiplication, division). It follows that all 

the elements of £> are factorable, so that J)s is a sub-calculus of £>„ 
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We may further restrict the admissable operations to addition and 

subtraction only, in which case we obtain a set £) ' which is included 

in 2)5 . If we can show that £)-' is also a calculus, it will follow 

that it is the smallest subtraction calculus containing all multiplicative 

functions 4 Sc ; i.e. it will be the smallest calculus satisfying the 

conditions of theorem 4.25. In other words: 3X- is the set of all 

functions f such that 
f = a, i-Uz. *- «- Uit - \/"( - fi_ - -- - ̂ V > 

where a•, Vt are multiplicative functions ^ Q . We shall try to find 

some practicable criterion by means of which it can be decided whether or 

not a given numerical function belongs to JD^ , and furthermore we shall 

endeavour to prove that £L is a subtraction-calculus. 

4.41. A factorable function f can be expressed in the form 

f ^ - yt -v/ -•-• - V ir if and only if fcp^)-Q for every 

prime p and every integer oc > iS~, 

(1) Suppose f - - i/, - fi - - V V 

i.e. f = p* v, +fiv^-h +f*Vr . 

ir 

f < p*) - Z TT/tcp*1) Vi ip*) j (i) 
i-i 

the sum extending over all ordered sets (. (X, , °c± , • , <**) such that 

ot = oC, -h^-h - *- crf^ . In order that in a given product none of the 

fx ( p*' ) should vanish, we must have «; = 0 or = 1. This is impossible 

when <* >t^. Hence f ( p"*" ) = 0 for o/ >«^. 

(2) On the other hand, suppose f ( p* ) does vanish when * exceeds 0- . 

In order that equation (i) should hold, we have to satisfy V equations of 

the type: 
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which may be combined as: 

x"V fcp) xr-+ . + fcp+y s 0 . (ii) 

The V solutions for x are to be interpreted as vt cp> , Vm.tp> , ••• w> <P' 

This process applies to all primes p, and the functions vf are determined 

by vy (n) = 77 Vjip)* for n = 77 p*. it should be noticed, however, 

that the V£ are not unique, since for a given p the order of the various 

v x* (p) is not laid down. 

As an example, consider the function coH , which was defined in the 

paragraph preceding 4.33. COk is factorable, and furthermore 

vk cp*) =/ if u ^ k , = 0 if <* .> k . 

Hence, by 4.41 we should expect a decomposition 

since V • k - 1 in this case. Equation (ii) becomes: 

whence V*cp) = e
2*t5/"# If we write e (n) - e 

we may put V5 = £ 
'/* ,iA . .. _ e <r*',/* . 

coK = - 6 - £ 

Furthermore 6K « ^ - ^* = ^ ^ ^ ^ ^ *-•--*- t-

4.42. A factorable function f can be expressed in the form: 

f =r ut+-. *~ u-rc ~ V, - --
vir (i) 

if and only if for every prime p there exist It constants u (p ,oc ) 

((X^/,2,... 7c) such that 

fcp~)4-uiP,i)W') *• -• * «ir>rr>f<p°"V=o (ii) 

for all tOxf. [Ii U^K we interpret fCjf1'"') as 0. J 

(1) Equation (i) can be written: u *- f = V , 

where - v = vt * ... +- v ^ , - " "
 u< * " -* u * ' 
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By 4.41 it follows that vip«) = 0 for *>i/, Uip*) = 0 for R >TT . 

Putting u(p*) = "(p,f*)9 these two conditions imply (ii). 

(2) On the other hand, if (ii) holds, we define u(pa) = uCp,£) 

for £< 1tJ = 0 for /3>7t . Moreover we define v = u + f so that by (ii) 

Vip«) = O for all U>\T. By 4.41;-u and -v are the sums of re and tr 

multiplicative functions respectively, whence f = v - u is of the form (i). 

As an example let us consider the function c (our notation) due to 

Cantor, which is defined as follows: 

ecu = / , ccn) * ottOLi >•• for n= p.^'p^ "' * I -

The formula o( - 2. (ot-1) 4- ect-Z) -O 

gives rise to: CCp*) - 2 cCp*") + ccpu~L) - o , for oe >£ / 

which is condition (ii) of theorem 4.42 with rr - V - X , u cp, /;•=/, 

u(p,Z) = X • 

Hence there exists a decomposition 
C - v- u , - u = i*> + u^ , - V = ss, +- i/%_ . 

Putting U ip,oi) = u.Lpu) y equation (ii) of 4.41 becomes: 

whence x - I ? ,\ u, cp) •= Ut_CfO) ^ ' -€Cp) . We may take 

If we now put v : c + u, we calculate vip> = ccp?+ u cp> = ;-2 --/ ; 

vep1) = CC/?V -h ccpy IMp) +• uipV •= L-Z +-I = I , 

so that equation (ii) of 4.41 yields for v: 

whence V, Cp) = ezni/6 , VL cp) - e
 l071c/° We may take v, = e %/° , W = € r/6 

The required decomposition is therefore: c 

This result may be thrown into another form. Clearly 

.LI / '/* , L/*) - ((- *-e t/s +• "' +- £ s/s) 

C =r ^ ^ x ^ 3 ^ 6 
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If $cs) is the generating function of 6 , then 6K has generating functi 

so that 

y ci^l) ^ T^)yczs)^e3s) 
/ n* r-f c c ) } 

S ^ 0 5 ^ a result mentioned by Bachmann. 
4«43» f belongs to, 3/^- if and only if for every prime p there 

exist constants Ft cp) and polynomials T± Cp,oc) in <* of degree /Tt , 

such that 

tip*) = Z F* <P><*) ^Cp)^ (i) 

for all oC ;>0 , d being some constant independent of p. 

In theorem 4.42 we developed a necessary and sufficient condition 

(ii) for f to be a member of ^e)^ . This can be written: 

tcpn+P) +- uep,i) tip"**-/ 4 ••- +- Licp,u) fcpPj^o, 

for all (Z p- V-TC and all primes p. For a given p this constitutes a 

difference equation in B; and, according to the theory of such equations, 

we must factor the operator _ __ r-rr-* 
£K h u Cp,,) E +- "' ucp,rc) 

in the form TT ( b - ̂ i(p>) **' / Z rrt = fir } 

f(p") - Z F< <P'<*> Ei<f» ) and then write P 

where f^i Co, c* ) is a polynomical of degree rr, in cv . 

Putting S^ V-lt , we obtain our theorem. The polynomials ^if,*) may 

be calculated from the first T equations (i), * ranging from Z+i to ir. 

Clearly each Ek coincides with 7^ of the u, of the previous theorem. 

4.44. The set «£>£- is a subtraction sub-calculus of Q . 

In virtue of what was stated at the beginning of 4.4, it only remains 

to show that the set under consideration is closed under multiplication. 

We use the expansion (i) of theorem 4.43. Clearly the product of two 

functions which allow of such an expansion will again be of the same type. *.E.O. 
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4,^ The expression for the product of two functions in ^ which 

was indicated in the proof of 4.44 is, of course, not very practical. In 

special cases much simpler results may be obtained. In the following, 

let 'u, ' and ' V, ' always denote multiplicative functions ^ Q , so 

that Uc cp ) * Ui Cp) . If it is understood that we confine attention 

to some particular prime p, we shall abbreviate u • (p) as u • , under 

which convention Uj will stand for u t (p °* ). 

4.51. ( u, - v, ) ( uv - \z^ ) - ut ut +- u e LLt v^ +• vt uL ~ i/. is*. ) . 

For the argument n = p , the L.H.S. becomes: 

but this is clearly the R.H.S. for the same argument. Since both sides are 

factorable, the theorem is proved. 

If u, V|_ + v, ut • 5 - v/, \/t , then /U (u, vt *- i/, ut -i/, vt ) - a; . 

Hence we may state as a corollary: 

4.52. If U , Vx + V, Ua -5- uii/^then (u, -t/( Ifu.-l/J = u,u2 . 

Ex. 1. Since 
Y) u* + €f* • S ~ ? +f '= • M ' S • *M* , 

we have by theorem 4.52: 

(-7 -6)(f*-f) = If* > 

i.e. y, ( f *• ft) ~ ? f* -

Since f Sf*, .: ># « ^ , hence, on dividing by 5?*", which 

is distributive . zv1-, 

i.e. € *~ KO ~~ IE ' 

or 
T~ / £ _ •=• **'— an example jiven by b'spensky. 

j „„+= +Vio <5um of the k powers of the 
Ex. 2. It is customary to deno.e the sum a. f 

^ , <> +v,o+ 6 = 6+0*. I" p-rticul'-r 60=^,
 <5, =6 

divisors of n by dk (n), so that O K <= / s 
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Since <SH * /** + €?* • 5 • -*k +?*-=• /x • S • ZM~, 

therefore by theorem 4.52: 

(6H*-€)(i*-M*) = trk*y
H , 

As above Ajr = /—^ • hence, on dividing by n* 6k*} 

which is distributive: 

or 
^ <fk(d) Z_ "5V - / . 
dt* «* di •n 

4 53 Vi. 
*'**' (u, f u J C ^ j f u j = a, M 3 f uz u^ + u, uv f- u2u3 ̂ -yû  (u,t^ a3 c<v ) 

where /^x ~ /*• ^f* 

We need not worry about any ambiguity in sign in the l^st term of 

the R.H.S., since JU 2 (n) vanishes whenever n is not a square. In f net, 

u. Cpu) = I/ -1 f or 0 , according as CC-0,2,, or otherwise. 

Let us put x u^ ^ ^ = UUH/ z.U|Uww=ufcu3 , U-jc-y **,-*,. 

The R.H.S. for the argument n z p may then be written 

UCP") - -zip) \*/ip) L(p*_a). 

Abbreviating x (p) as x etc., as before,we now have: 

U<p~) z Z (x. +xc-'y +• ••• + yi)(z'"i+ ... + w""V 
i = 0 

where V(p") = I (i;«'-> f ••^(z"^ - ^-'J 
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Henc e R.H.S. ( 0* ) = U cp*) - ZW U (p*'1) 

ex 

L (xt+*i"y + -+yi)(z*-i+v,*-:)-(x*+- +y*) 

i, <• r, - r 3 ; say . 

Now Zt - Z lu.u*)' l«*u+)L J(u,uJ 

U, uz
 J us u 

> J 

with two conditions: i ̂  oc , j 4 i . Put *'-i +j = K , so that ('- cx+j -k 

may be eliminated. The two conditions then become: j <= K / K^oc . Hence 

c* K 

Z, : I I u,-u/-*u/u.-' 

«r K 

^7 = A_ 2- ̂ / u^"J U3
K U(°" Similarly ^1 = Z- 4- ' U i U^ uu , 

z 2_ u- u* M^ u* 

HS ~ I -I "J. = ( Z Z ^Z Z ~Z J K V u / C 

oC oc 
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which is, of course, the L.H.S. for n - n * Q ^ ^ ^ K + U -A 
7 • .w. xui n - p . bmce both sides are 

factorable, the identity is therefore proved. 

As an application take u = n a U - nb u - lt ^ 

Then *a <^ « € ^ 7 a ^ ? b * ? * * 6 ^ > u 1 ?
r**W/i 

<a*byi 
since Y is distributive, and ^ * - ^ . In terms of generating 

functions, this is a result due to Ramanujan. If ^Vs> = Z n $ is t h e 

generating function of £ , then yK has fis-k) and £ 2p* has 7^ (l(s-k)) 

as generating function. Hence the above identity becomes: 

6*('*)6b<-yL) ^cs) X<s-a.yfis-b) fts-<st-b) 

I ns £* (2 s -Si - b) 

In particular we obtain in this manner: 

Suppose a, b, c, d are multiplicative functions other than Q . 
Then by 4.53 we have: t/z 

(A+b)(c4-d) = ac^- bd +acl +• be -hjux (abed) 

and ( a^c ) ( b+d ) - Sib *- cd ±ad 4-cb *-/UL (eicbd)' 

Subtracting, we obtain: 

4.54. If a, b, c, d are multiplicative functions ^ \c , then 

(a + b)(cfd! - (sn-c)(b+d) = sec 4-bd -<̂ fc> -cd . 

This can be furthermore expressed as 

aCc-b) v- d(h-c) or coa-d) * b(d-a) 

but is in general ^ (a-d) (c-b). 
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S U M M A R Y 

The Dirichlet operation, which combines numerical functions, 

corresponding to the product of Dirichlet series, has been studied from 

an algebraic point of view, without reference to analytic questions, 

such as convergence of the series concerned. A new outlook was obtained 

by interpreting it as a species of addition rather than of multiplication, 

the latter operation being defined in an obvious manner, A calculus, 

such as the above calculus of numerical functions, is an algebraic system 

in which the distributive law is absent. In the investigation of calculi, 

two questions arose among others. (1) What instances of the distributive 

law do occur in a calculus? (2) What elements of a calculus would merge 

if the distributive law were to hold? 

In abstract calculi, the answers to these two questions entailed 

two novel concepts: that of distributive elements, and that of similarity. 

We were able to decide what elements are distributive in the calculus of 

numerical functions associated with Dirichlet series; the second question 

was answered for certain of its sub-sets, in particular, for the calculus 

of factorable functions. Several interesting identities were developed 

for the smallest calculus that contained all multiplicative functions and 

is closed under subtraction. 

It is our opinion that all this only touches the surface of a 

large field that still calls for investigation. 
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