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Abstract
In this thesis we present our contribution in the field of post-quantum cryptography.
We introduce a new notion of weakly Random-Self-Reducible public-key cryptosystem
and show how it can be used to implement secure Oblivious Transfer. We also show
that two recent (Post-quantum) cryptosystems can be considered as weakly Random-
Self-Reducible. We introduce a new problem called Isometric Lattice Problem and
reduce graph isomorphism and linear code equivalence to this problem. We also show
that this problem has a perfect zero-knowledge interactive proof with respect to a
malicious verifier; this is the only hard problem in lattices that is known to have this
property.



Résumé
Dans cette thèse nous exposons nos contributions au domaine de la cryptographie
post-quantique. Nous présentons d’abord la nouvelle notion de système cryptogra-
phique aléatoirement-auto-réductible au sens faible et démontrons comment elle
peut être utilisée afin d’obtenir une version sécurisée du transfert inconscient. Nous
démontrons ensuite que deux systèmes cryptographiques (post-quantiques) récents
peuvent être considérés comme exemples de systèmes aléatoirement-auto-réductibles
au sens faible. De plus, nous présentons un nouveau problème cryptographique de
� treillis isométriques � auquel nous réduisons le problème d’� isomorphisme de
graphes � et celui d’� équivalence de codes linéaires �. Nous montrons enfin que
ce nouveau problème possède une preuve interactive à connaissance nulle parfaite
par rapport à tous les vérificateurs (malveillants) ; celui-ci est le seul problème de
treillis connu possédant une telle propriété.
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Chapter 1
Introduction

The security of many known public-key cryptosystems is based on the presumed

hardness of factoring a composite number or computing a discrete log of a cyclic group

(e.g RSA [2], ElGamal encryption [3] etc). Both of these problems can be solved in

polynomial time on a quantum computer [1]. Thus, most of the current cryptographic

primitives will become insecure once quantum computers are built. Post-quantum

cryptography refers to research on cryptographic primitives that are believed to

be secure against quantum attacks. Currently Post-quantum cryptography is mostly

focused on three different approaches:

1. Lattice based cryptography.

2. Code based cryptography.

3. Hash based digital signature schemes.

Lattice based cryptography is considered as one of the most viable options in the

Post-quantum world. First of all it is extremely versatile and rich, leading to a large

number of applications ranging from public-key encryption schemes [6, 14], digital

signature schemes [7, 7, 8, 9], fully homomorphic encryption schemes [10, 13, 15, 16,

17, 18, 20], hierarchical identity-based encryption [21, 22, 23], zero-knowledge proofs

[30] to collision-resistant hash functions [24]. From the security point of view, the

best attacks on the underlying problems run in exponential time 2Ω(n), in the security
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parameter n, for both classical and quantum algorithms. Moreover, lattice based

cryptography has very strong security proofs based on worst-case hardness. From

the point of view of efficiency and implementation, the lattice based cryptographic

primitives are relatively simple and efficient to implement.

1.1 Our Contribution

Our contribution is mainly in the area of Lattice based cryptography. More

precisely,

– We formalize the results of [25], which relied on the Random-Self-Reducible en-

cryption (RSR) property of certain number theoretic assumptions in order to

introduce a new notion of weakly Random-Self-Reducible encryption scheme

(wRSR). We then show how it is possible to construct a secure Oblivious

Transfer under the sole assumption that a secure wRSR encryption scheme

exists. We then show that two recent (Post-quantum) computational assump-

tions have [13, 14] this weak property.

– We propose a new hard problem in lattices called Isometric Lattice problem

(ILP). We provide interactive proof systems for ILP. These proofs are ma-

licious verifier perfect zero-knowledge and have efficient provers. We reduce

graph isomorphism (GI) and linear code equivalence (LCE) to this problem.

We also show that ILP cannot be NP-complete, unless polynomial hierar-

chy collapses. We do this by constructing a constant round interactive proof

systems for coILP, the complementary problem of ILP.
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1.2 Organization of the Thesis

The thesis is as self-contained as possible. Chapter 2 presents the notations and

background material required in order to understand the remaining chapters. Chap-

ter 3 introduces the notion of Oblivious Transfer and a formal definition of Random-

Self-Reducible. The notion of weakly Random-Self-Reducible encryption schemes,

concrete examples of wRSR is also the subject of chapter 3. In this chapter we also

show that how one can obtain a secure Oblivious Transfer under the sole assumption

that wRSR scheme exists. Chapter 4 introduces a new hard problem in lattices.

The reduction from GI and LGE to ILP and Zero-Knowledge proofs are also part

of this chapter. The summary is given in Chapter 5.
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Chapter 2
Preliminaries

In this chapter we introduce the notation that we will use throughout the thesis,

we also provide some background material and definitions from lattices, coding theory

and cryptography.

2.1 Notations

– For any matrix A, we denote its transpose by At.

– O(n,R) = {Q ∈ Rn×n : Q · Qt = I} denote the group of n × n orthogonal

matrices over R.

– e =
∞∑
n=0

1
n!

denote the base of the natural logarithm.

– GLk(Z) denote the group of k × k invertible (unimodular) matrices over the

integers.

– For any a ∈ R we denote the nearest integer to a by �a�.

– GLk(Fq) denote the set of k × k invertible matrices over the finite field Fq.

– Pn denote the set of n× n permutation matrices.

– σn is the set of all permutations of {1, . . . , n}. For π ∈ σn, we denote Pπ the

corresponding n× n permutation matrix.

– P(n,Fq) denote the set of n × n monomial matrices (there is exactly one

nonzero entry in each row and each column) over Fq.

– Dεn is the set of diagonal matrices Dε = diag(ε1, . . . , εn), εi = ±1 for i =

1, . . . , n.
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Negligible Function

A function negl : N → R+∪{0} is negligible, if for any positive polynomial p(n),

there exists a positive integer n0 such that for all n > n0

negl(n) <
1

p(n)
.

One-Way function & Hard-Core Predicate

A function f : {1, 0}∗ → {1, 0}∗ is one-way if

1. (Easy to compute:) If f can be computed in polynomial time in the size of the

input.

2. (Hard to invert:) For every probabilistic polynomial-time algorithm A, every

positive polynomial p(n) and for uniformly picked x ∈ {0, 1}n

Pr[f(A(f(x))) = f(x)] <
1

p(n)

i.e. given f(x) it is computationally hard (on average) to recover x.

A function b : {0, 1}∗ → {0, 1} is a hardcore predicate of a one-way function f if

b can be computed in polynomial time, and for every probabilistic polynomial time

algorithm A, and uniformly distributed x ∈ {0, 1}n and given f(x) the probability

Pr[A(f(x)) = b(x)] ≤ 1

2
+ negl(n).

In simpler words there is no probabilistic polynomial-time algorithm that computes

b(x) from f(x) with probability significantly greater than one half over random choice
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of x. Goldreich and Levin proved that given any one-way function f we can construct

a different one-way function g with a hardcore predicate bg for g.

2.2 Norms

For a real vector v = (v1, . . . , vn) we denote its Euclidean norm by ‖v‖

‖v‖ =
√
v21 + · · ·+ v2n

and max-norm ‖v‖∞

‖v‖ = maxn
i=1|vi|.

We denote the norm of a matrix B = [b1|b2| . . . |bk] ∈ Rn×k

‖B‖ = maxn
i=1‖bi‖.

For any ordered set of linearly independent vectors {b1,b2, . . . ,bk}, we de-

note {b̃1, b̃2, . . . , b̃k}, its Gram-Schmidt orthogonalization. Note that maxn
i=1‖b̃i‖ ≤

maxn
i=1‖bi‖.

2.3 Lattices

Let Rn be an n-dimensional Euclidean space and let B ∈ Rn×k be a matrix of

rank k. A lattice L(B) is the set of all vectors

L(B) =
{
Bx : x ∈ Zk

}
.

The integer n and k are called the dimension and rank of L(B). A lattice is called full

dimensional if k = n. Two lattices L(B1) and L(B2) are equivalent if and only if there

exists a unimodular matrix U ∈ Zk×k such that B1 = UB2. The dual of a Lattice

L(B), denoted as L(B)∗ is the set of all vectors v ∈ span(B) such that 〈v,u〉 ∈ Z

for all u ∈ L(B). Note that L(B)∗ is also a lattice, with basis B∗ = B(BtB)−1. The

determinant of a lattice L(B), denoted as det(L(B)) =
√

det(BtB), is the volume
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of the fundamental parallelepiped {Bx : 0 ≤ xi < 1}. The determinant is lattice

invariant, i.e., it does not depend on the particular basis used to compute it.

Hermite Normal Form

Let B ∈ Zk×n and [B] = {UB : U ∈ GLk(Z)}. There exists a unique k × n

matrix H ∈ [B] such that

– There exists a sequence of integers j1 < j2 < ... < jn such that for all 0 ≤ i ≤ n

we have hi,j = 0 for all j < ji (row echelon structure).

– For 0 ≤ k < i ≤ n we have 0 ≤ hl,ji < hi,ji (i.e the pivot element is the

greatest along its column and the coefficient above are nonnegative).

The matrix H is called the Hermite normal form of B denoted as HNF(B) [44].

It is easy to see that for any rational matrix B′ ∈ Qk×n, there also exists a unique

canonical form under unimodular matrices GLk(Z). Let r denote the least common

multiple of the denominators of entries in B′, notice that r ·B′ in an integer matrix.

HNF(B′) =
1

r
HNF(r ·B′).

q-ary Lattices

A lattice L is called q-ary, if it satisfies qZn ⊆ L ⊆ Zn for a positive integer

q. In other words, the membership of a vector v ∈ L is given by v mod q. Let

G = [g1| . . . |gk] ∈ Fn×k
q for some positive integers n, k, q with n ≥ k. We define

below two important families of q-ary lattices in cryptography

Λq(G) = {y ∈ Zn : y ≡ G · s mod q, for some vector s ∈ Zk}

Λ�
q (G) = {y ∈ Zn : y ·G ≡ 0 mod q}.
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A basis B of Λq(G) is

B = [g1| . . . |gk|bk+1| . . . |bn] ∈ Zn×n

where bj = (0, ..., q, ..., 0) ∈ Zn is a vector with its j-th coordinate equal to q and all

other coordinates are 0, k + 1 ≤ j ≤ n. A basis of Λ�
q is given by

q · (B−1)t.

Hence, these lattices are dual to each other up to normalization; i.e Λq(G) = q·Λ�
q (G)

and Λ�
q (G) = q · Λq(G).

Gaussian distribution and standard tail inequality

For any real number β > 0 the Gaussian distribution with mean 0 is the distri-

bution on R having density function Dβ(x) =
1
β
exp(−π(x/β)2), for all x ∈ R.

A random variable with normal distribution lies within ± t·β√
2π

of its mean, except

with probability at most 1
t
· exp(−t2/2).

Discrete Gaussian distribution over Zq

For any integer q ≥ 2, the discrete Gaussian distribution ψβ(q) over Zq with

mean 0 and standard deviation ± q·β√
2π

is obtained by drawing y ← Dβ and outputting

�q · y� (mod q).

Fact: Let β > 0 and q ∈ Z, let the vector x ∈ Zn
q be chosen as x ← ψβ(q)

n. Let

x ∈ Zn be an arbitrary vector and let g = ω
(√

log n
)
. Then with overwhelming

probability ‖〈x,y〉‖ ≤ βq · ‖y‖ (see [14]).
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Discrete Gaussian distribution on Lattices

For any s > 0, c ∈ Rn, we define a Gaussian function on Rn centered at c with

parameter s.

∀x ∈ Rn, ρs,c(x) = e
−π||x−c||

s2 .

Let L be any n dimensional lattice and ρs,c(L) =
∑
y∈L

ρs,c(y).We define a Discrete

Gaussian distribution on L

∀x ∈ L, Ds,c,L =
ρs,c(x)

ρs,c(L)
.

The subscript c = 0 when omitted.

Statistical Distance and Indistinguishability

Let X and Y be two random variables over some countable set Ω. The statistical

distance between X and Y is

Δ(X, Y ) = 1
2

{∑
ω∈Ω |Pr[X(ω)]− Pr[Y (ω)]|

}
.

We say that two probability ensembles X = {Xk}k∈N and Y = {Yk}k∈N are

statistically close (X ∼ Y) if Δ(Xk, Yk) is a negligible function in k.

Theorem 1 Let n be the security parameter and t(n) ∈ ω(
√
log n) be some fixed

function (say t(n) = log n.) For any r(n) ∈ ω(
√
log n), c ∈ R, the algorithm SampleZ

samples in PPT according to a distribution that is statistically close to the discrete

Gaussian distribution Dr(n),c,Z over the one dimensional integer lattice Z.

Proof (see [21]).

Theorem 2 Given a basis B = [b1| . . . |bk] ∈ Rn×k of an n-dimensional lattice L

a parameter s ≥ ‖B̃‖ · ω(
√
log n) and a center c ∈ Rn, the algorithm SamplePoint

outputs a sample from a distribution that is statistically close to Ds,c,L.
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Algorithm 1 SampleZ.

– Input security parameter (n, c, r(n), t(n))

1. Pick an integer z uniformly from Z ∩ [c− r(n) · t(n), c+ r(n) · t(n)].
2. Output z with probability ρr(n)(z − c).

3. Otherwise Repeat.

Algorithm 2 SamplePoint.

– Input (B, c, s, t(n))

1. vk ← 0 and ck ← c.

2. For i from k to 1 do

(a) c′i ←
〈ci,b̃i〉
‖b̃i‖2 and s′i ← s

‖b̃i‖ .

(b) Pick zi ← SampleZ(n, c′i, s
′
i, t(n)).

(c) ci−1 ← ci − zibi and vi−1 ← vi − zibi.

3. Output v0.

Proof (see [21]).

Theorem 3 There is a deterministic polynomial-time algorithm that, given an arbi-

trary basis {b1, . . . ,bk} of an n-dimensional lattice L and a set of linearly indepen-

dent lattice vectors S = [s1|s2 . . . |sk] ∈ L with ordering ‖s1‖ ≤ ‖s2‖ ≤ · · · ≤ ‖sk‖,

outputs a basis {r1 . . . rk} of L such that ‖r̃i‖ ≤ ‖s̃i‖ for 1 ≤ i ≤ k.

ProofWe will only provide a sketch of the proof. For details see [19], page 129. Write

S = [s1| . . . |sk] and B = [b1| . . . |bk]. Since {s1 . . . sk} ⊂ L, we can write S = BQ for

some non-singular integer matrix Q ∈ Zk×k. Suppose that Q /∈ GLk(Z) (otherwise S

is a basis of L). Find U ∈ GLk(Z), such that T = UQ ∈ Zk×k is an upper triangular

matrix and write R = BU−1. This can easily be achieved by performing elementary
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row operations. 1 Since U ∈ GLk(Z) we also have U−1 ∈ GLk(Z). Hence R = BU−1

is a basis of L.

Orthogonal Matrices and Givens Rotations A Givens rotation is an orthogonal

n× n matrix of the form

G(i,j,θ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 · · · 0 · · · 0 · · · 0

...
. . .

...
...

...

0 · · · c · · · −s · · · 0

...
...

. . .
...

...

0 · · · s · · · c · · · 0

...
...

...
. . .

...

0 · · · 0 · · · 0 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, i �= j

where c = cos(θ) and s = sin(θ). The non-zero elements of Givens matrix is

given by

gk,k = 1 for k �= i, j

gi,i = c and gj,j = c

gi,j = s and gj,i = −s if i < j

gi,j = −s and gj,i = s if i > j.

1. We are only allowed to multiply a row by −1, add an integer multiple to another row and
row switching.
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The product G(i,j,θ) ·v represents a counter clockwise rotation of the vector v in

(i, j) plane by angle θ. Moreover, only the i-th and j-th entries of v are affected and

the rest remains unchanged. Any orthogonal matrix Q ∈ Rn×n can be written as a

product of n(n−1)
2

Givens matrices and a diagonal matrix Dε ∈ Dεn

Q = Dε

(
G(1,2,θ1,2) ·G(1,3,θ1,3) · · ·G(1,n,θ1,n)

)
·
(
G(2,3,θ2,3) · · ·G(2,n,θ2,n)

)
· · ·

(
G(n−1,n,θn−1,n)

)
.

The angles θi,j ∈ [0, 2π], 1 ≤ i < j ≤ n are called angles of rotation.

Properties of Givens Matrices

1. Additivity: For angles {θ, φ ∈ [0, 2π]} and any vector v ∈ Rn

G(i,j,φ) ·G(i,j,θ)v = G(i,j,φ+θ)v.

2. Commutativity: For angles {θi,j, θj,i, θy,z} ∈ [0, 2π] and {i, j} ∩ {y, z} = ∅ or

{i, j} = {y, z}.

G(i,j,θi,j) ·G(j,i,θj,i)v = G(j,i,θj,i) ·G(i,j,θi,j)v

G(i,j,θi,j) ·G(x,y,θx,y)v = G(x,y,θx,y) ·G(i,j,θi,j)v.

3. Linearity: For any Givens matrix Gi,j, any vector v ∈ Rn and any permutation

π ∈ σn

G(π(i),π(j),θi,j)Pπ · v = PπG(i,j,θi,j) · v

Pπ is the corresponding permutation matrix of π.
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2.4 Linear Codes

Let Fq be a finite field of order q. A [k, n] linear code C over Fq is a k dimensional

subspace of Fn
q . The code C has qk elements (called codewords) and 1

k!

∏k−1
i=1 (q

k − qi)

distinct bases. Given a basis

G ∈ Fn×k
q ,

for C each codeword c can be written uniquely as a linear combination,

c = Gu ∈ Fn
q ,

The Hamming distance between two codewords c1, c2 ∈ C, denoted by d(c1, c2) is the

number of places at which c1 and c2 differ. If c1 = (x1, . . . , xn) and c2 = (y1, . . . , yn),

then

d(c1, c2) = d(x1, y1) + . . .+ d(xn, yn)

where d(xi, yi) = 0 if and only if xi = yi and d(xi, yi) = 1 otherwise. The minimum

distance of a code C = [k, n], denoted by d(C)

d(C) = min{d(c1, c2) : c1, c2 ∈ C & c1 �= c2}.

The (Hamming) weight of a codeword c, denoted by wt(c), is defined to be the

number of nonzero coordinates in c. The minimum (Hamming) weight of C, denoted

wt(C), is the smallest of the weights of the nonzero codewords of C and is equivalent

to the minimum distance of the code

wt(C) = d(C).
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2.4.1 Hard Problems in Coding theory and Graph Theory

Definition 1 (Permutation Code Equivalence PCE): We say that two [k, n]

linear codes C1 and C2 with generators G1,G2 ∈ Fn×k
q are permutation equivalent if

there exists an invertible matrix N ∈ Fk×k
q and a permutation matrix P ∈ Pn such

that G2 = PG1N.

• The Decision Problem: Given generator matrices G1,G2 ∈ Fk×n
q , decide

whether they are permutation equivalent.

Definition 2 (Linear Code Equivalence LCE): We say that two [k, n] linear

codes C1 and C2 are linearly equivalent, if there exists an invertible matrix N ∈ Fk×k
q

and an n× n monomial matrix P ∈ P(n,Fq), such that G2 = PG1N.

• The Decision Problem: Given generator matrices G1,G2 ∈ Fn×k
q , decide

whether they are linearly equivalent.

Definition 3 (Graph Isomorphism GI): Let G = (V,E) and G′ = (V,E ′) be two

graphs. We say G and G′ are isomorphic if there exists a permutation π : V → V

such that (v, u) ∈ E if and only if (π(v), π(u)) ∈ E ′, for all u, v ∈ V.

• The Decision Problem: Given graphs G = (V,E) and G′ = (V,E ′) decide

whether they are isomorphic.
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Chapter 3
Oblivious Transfer from weakly Random-Self-Reducible Encryption

Oblivious Transfer is a protocol in which a sender transfers one of potentially

many pieces of information to a receiver, but remains oblivious as to what piece has

been transferred. It is a very important cryptographic primitive, with applications

ranging from Oblivious function evaluation, Commitment schemes, two-party com-

putation, private information retrieval and to zero-knowledge proofs. The concept

of OT first appeared in the seminal paper of Stephen J. Wiesner entitled Conju-

gate Coding. However, the paper was rejected by IEEE Transactions on Information

Theory and was eventually published years later in 1983 in SIGACT News [4]. The

notion of OT was introduced to the world of cryptography by Rabin in 1981 [37].

In this variant, a sender sends a message to a receiver who receives the message

with probability 1/2. The protocol ensures that the sender remains oblivious as to

whether or not the receiver received the message.

Even, Goldreich and Lempel introduced another variant of oblivious transfer

called One-out-of-Two oblivious transfer denoted as
(
2
1

)
-OT [38]. In this variant

a sender inputs two ordered bits b0, b1 and a receiver inputs a choice bit c. The

protocol sends bc to the receiver, without the sender learning c, while the receiver

learns nothing other than bc. Both of these variants were shown to be equivalent by

Crépeau [35]. The early implementations of Oblivious Transfer were very innovative

but did not offer very strong security [37, 38]. The very first OT protocols that may
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be considered secure were introduced by Berger, Peralta and Tedrick [36] and Ficher,

Micali and Rackoff [39].

Later, two methodologies where introduced. A first set of results by Brassard,

Crépeau and Robert [25] relied on Random-Self-Reducibility (RSR for short) of cer-

tain number theoretic assumptions such as the Quadratic Residuosity assumption,

the RSA assumption or the Discrete log assumption. These results were not extended

to very general computational assumptions because the RSR property, which was

at the heart of the construction, is not very common. In a second set of results

by Goldreich, Micali and Wigderson [26], secure Oblivious Transfer protocols were

constructed from the generic assumption that (enhanced) 1 Trap-door One-Way per-

mutations exist.

Unfortunately, all constructions that are used to implement secure OT under

either of these methodologies fall apart when faced with a quantum computer [1]:

none of the so-called Post-Quantum Cryptosystems can directly implement secure

OT under these methodologies. Nevertheless, some small modifications to the GMW

methodology have led to proposals for OT under the Learning with error LWE as-

sumption [33, 21]. Similarily, Dowsley, van de Graaf, Müller-Quade and Nascimento

[31] as well as Kobara, Morozov and Overbeck [32] have proposed Oblivious Transfer

protocols based on assumptions related to the McEliece public-key cryptosystem.

Both of these papers use generalization of the GMW methodology. However both

1. The enhanced property is not very restrictive, but some examples of candidates Trap-door
One-Way permutations seem to escape it [27].
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of them also require an extra computational assumption on top of McEliece’s to

conclude security. Those were the first proposals for OT protocols believed secure

against a quantum computer 2 .

More recently, a new methodology has been proposed by Peikert, Vaikuntanathan

and Waters [34] using the notion of dual-mode cryptosystems. Their approach can

be instantiated using several number theoretic assumptions, and LWE in the Post-

Quantum case. This approach leads to universally composable protocols and requires

the presence of a Common Reference String.

In this chapter, we first formalize the results by Brassard, Crépeau and Robert

[25] which relied on the RSR property of certain number theoretic assumptions in

order to introduce a new notion of weakly random-self-reducible encryption scheme

wRSR. We then show how it is possible to construct a secure Oblivious Transfer

under the sole assumption that a secure wRSR encryption scheme exists. We show

that encryption schemes from two (Post-Quantum) computational assumptions [14,

13] have this weak property. We hope that in the future, our methodology may be

used for various new computational assumptions as well.

3.1 Random-Self-Reducible Encryption Scheme

Informally speaking an encryption scheme is Random-Self-Reducible RSR if

an arbitrary ciphertext c may be efficiently transformed to a uniformly distributed

ciphertext c′ by a user who only knows the public-key from that system. Moreover,

2. Earlier results accomplished a similar security level using only a One-Way function and
Quantum Communication. The motivation of the papers cited above and of the current work is to
avoid quantum communication altogether [11].
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upon learning the decryption m′ of c′, the user is able to efficiently compute m, the

decryption of c, from knowledge of the relation between c and c′.

Definition 4 Let ξ = (KeyGen,Enc,Dec,M, C) be a public-key cryptosys-

tem and λ be the security parameter. The cryptosystem ξ is random-self-

reducible if there exists a set M̂, a pair of probabilistic polynomial-time al-

gorithms (S,S ′) , together with a polynomial-time algorithm D̂ec, such that

for a key pair (sk, pk) ← KeyGen(1λ) and uniformly picked string R from

M̂,

1. Spk : M̂ × C → C, S ′
pk : M̂ × M̂ → M, and D̂ecsk : C → M̂,

2. Spk(R, c) is uniformly distributed over C, for all c ∈ C,

3. S ′
pk(R, D̂ecsk(Spk(R, Encpk(m)))) = m, for all messages m ∈ M.

3.1.1 Examples of RSR Cryptosystem

There are several cryptosystems that satisfy the RSR property. For example

RSA [2], Goldwasser-Micali [40] and Paillier cryptosystems [41] are all random self-

reducible.

Goldwasser-Micali Cryptosystem

Let (x, n) and (p, q) denote the public/private keys and (Enc,Dec) denote the

encryption/decryption algorithms.

1. M̂ = {0, 1}, D̂ec = Dec

2. Spk(R, Enc(b)) = Enc(R) · Enc(b) mod n = Enc(R ⊕ b), where bit R is uni-

formly chosen.
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3. S ′
pk(R, b) = R⊕ b.

Semantically secure RSA Cryptosystem

Let (e, n) and d denote the public and private keys and
(
Enc := (lsb−1(b))

e
mod n,Dec := lsb(md m

denote the encryption/decryption algorithms, where lsb−1(b) is a random element r

in Z∗
n such that lsb(r) = b.

1. M̂ = Z∗
n, D̂ec(m) = md mod n

2. Spk(R, Enc(b)) = Re · Enc(b) mod n = (R · lsb−1(b))
e
mod n where R is uni-

formly chosen from the message space M̂ .

3. S ′
pk(R,m) = lsb (R−1 ·m mod n) .

3.2
(
2
1

)
-OT from a RSR Public-Key Cryptosystem

Let ξ = (KeyGen,Enc,Dec,M, C) be aRSR public-key cryptosystem and λ be

the security parameter. Let (sk, pk) ← KeyGen(1λ) be sender’s private and public-

keys. The sender encodes his bits so that Encpk(b0) and Encpk(b1) are semantically

secure encryptions of b0, b1.

Protocol 1
(
2
1

)
-OT from RSR Cryptosystem.

1: The sender computes c0 ← Encpk(b0) and c1 ← Encpk(b1).

2: The sender sends the ordered pair (c0, c1) to the receiver.

3: The receiver picks a string R uniformly from C and computes c ← Spk(R, ci) for

its choice bit i and sends c to the sender.

4: The sender computes m̂ ← D̂ecsk(c) and sends m̂ to the receiver.

5: The receiver obtains the bit bi ← S ′
pk(R, m̂).
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Correctness

We first observe that this protocol correctly computes
(
2
1

)
-OT.

S ′
pk(R, m̂) = S ′

pk(R, D̂ecsk(c)) = S ′
pk(R, D̂ecsk(Spk(R, ci)))

= S ′
pk(R, D̂ecsk(Spk(R, Encpk(bi)))) = bi by definition 4.

Theorem 4 Protocol 1 is a secure oblivious transfer in the semi-honest model.

Proof. We will present a simulator for each party. These simulators are given the

local input (which also includes the security parameter λ) and the local output of

the corresponding party. The following schematic depiction of the information flow

in protocol 1 may be useful towards the constructions of the simulators.

Sender Receiver

input
(
(b0, b1), 1

λ
)

input
(
i, 1λ

)
(sk, pk) ← KeyGen(1λ)

pk−−−−−−−−−−−−−−−−−−→

c0 := Encpk(b0), c1 := Encpk(b1)
(c0,c1)−−−−−−−−−−−−−−−−−−−−→

c←−−−−−−−−−−−−−−−−− c := Spk(R, ci)

m̂ ← D̂ecsk(c)
m̂−−−−−−−−−−−−−−−−−−→

output ε output bi := S ′
pk(R, m̂)

Simulator for the sender’s view: We will first present a simulator for the sender’s

view. On input
(
(b0, b1), 1

λ, ε
)
, this simulator uniformly picks c′ from C and outputs(

(b0, b1), 1
λ, c′

)
. Clearly this output distribution is identical to the view of the sender

in the real execution. This hold because c′ is uniformly distributed over the ciphertext

space C. Therefore, the receiver’s security is perfect.
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Simulator for the receiver’s view: On input
(
i, bi, 1

λ
)
, this simulator gener-

ates (sk′, pk′) ← KeyGen(1λ) as in protocol 1. It computes c′i ← Encpk′(bi) and

c′1−i ← Encpk′(b) (for some b ∈ M) The simulator then picks a string R′ uniformly.

It then computes c′ ← Spk′(R
′, c′i) and m̂′ ← D̂ecsk′(c

′). The simulator outputs(
i, 1λ, pk′, c′0, c

′
1, m̂

′) . Note that except for c′1−i, this output distribution is identical

to the view of the receiver in the real execution. Moreover, since ξ is a semantically

secure encryption scheme, it is impossible to distinguish between the encryption of

b1−i and b for any probabilistic polynomial time adversary except with negligible

probability. Therefore, the sender’s security is computational.

Malicious adversaries: Of course we are not only interested in the semi-honest

case but also to the situation with malicious adversaries. To handle these cases, zero-

knowledge proofs are used by the sender to demonstrate that c0, c1 are well formed

encryptions and by the receiver to demonstrate that c is indeed constructed from a

single ci and not a combination of both. We leave it as an exercise to demonstrate

the full result including zero-knowledge proofs [27]:

Theorem 5 Protocol 1 may be compiled to a secure oblivious transfer in the mali-

cious model.

Proof (see [27, 5]).

3.3 weakly Random Self-Reducible Encryption

The current state of affairs is that we don’t know of any RSR cryptosystem

believed to be resistant to quantum attacks. The RSR property may be considered

too strong in its uniformity requirement of the output of S. One can weaken this

property to statistical indistinguishability for some pair of probabilistic polynomial
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distributions and can still obtain a secure OT protocol provided we have cryptosys-

tems satisfying this weaker property.

In this section we define the notion of weakly Random-Self-Reducibile public-key

cryptosystem. Informally speaking a public-key cryptosystem is weakly Random-Self-

Reducible if it is possible efficiently (using the public key) to re-encrypt a ciphertext

ci in a way to make it unrecognizable, regardless of the plaintext it carries. After

obtaining decryption of the re-encrypted ciphertext ĉ, it is possible to recover the

plaintext hidden by the original encryption ci. We accept that the unrecognizability

property be statistical indistinguishability instead of perfect indistinguishability as

in RSR .

Our definition is motivated by the fact that many post-quantum encryption

schemes use random errors in the process of encrypting the plaintext. Many of these

schemes provide a fair amount of flexibility in choosing the size of the error for a

fixed pair of public and private keys. Due to this flexibility, one can easily convert

these cryptosystem into a wRSR scheme. The encryption algorithm Enc involves

relatively small errors, while the re-encryption process uses relatively large errors

that will hide the original error. The definition is formally stated below.
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Definition 5 A public-key cryptosystem ξ = (KeyGen,Enc,Dec,M, C) is

weakly random-self-reducible if there exist sets M̂, Ĉ, a pair of probabilistic

polynomial-time algorithms (S,S ′) , together with a probabilistic polynomial-

time algorithm D̂ec, and a probabilistic-polynomial time distribution χ on Ĉ

such that for all c1, c2 ∈ C, key pair (sk, pk) ← KeyGen
(
1λ

)
and R

χ←− Ĉ:

1. Spk : Ĉ × C → Ĉ, S ′
pk : Ĉ × M̂ → M and D̂ecsk : Ĉ → M̂,

2. Spk(R, c1) and Spk(R, c2) are statistically indistinguishable,

3. S ′
pk

(
R, D̂ecsk (Spk(R, Encpk (m)))

)
= m, for all messages m ∈ M.

Note that RSR is the sub-case of wRSR where M̂ = C, χ is the uniform

distribution over Ĉ and Spk(R, c) is uniformly distributed over C. In section 3.3.2 we

show that one can construct a weakly Random-Self-Reducible encryption schemes

based on the Approximate Integer GCD assumption [14] or the Learning with Errors

assumption [13].

3.3.1
(
2
1

)
-OT from a wRSR Cryptosystem

Let ξ = (KeyGen,Enc,Dec,M, C) be a wRSR public-key cryptosystem and

λ be the security parameter. Let (sk, pk) ← KeyGen(1λ) be the sender’s private

and public-keys. The sender encodes his bits so that Encpk(b0) and Encpk(b1) are

semantically secure encryptions of b0, b1.
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Protocol 2
(
2
1

)
-OT from wRSR Cryptosystem.

The sender computes c0 ← Encpk(b0) and c1 ← Encpk(b1).

2: The sender sends the ordered pair (c0, c1) to the receiver.

The receiver picks a string R
χ←− Ĉ and computes ĉ ← Spk(R, ci), where i is the

receiver’s choice bit.

4: The receiver sends ĉ to the sender.

The sender computes m̂ ← D̂ecsk(ĉ) and sends m̂ to the receiver.

6: The receiver obtains the bit bi ← S ′
pk(R, m̂).

Correctness. We first observe that this protocol correctly computes
(
2
1

)
-OT.

D̂ecsk(ĉ) = D̂ecsk(Spk (R, ci)) = D̂ecsk(Spk(R, Encpk(bi))).

=⇒ S ′
pk(R, D̂ecsk(ĉ)) = S ′

pk(R, m̂) = bi (by property 3).

Theorem 6 The Protocol 2 is a secure oblivious transfer between the sender and the

receiver, provided both parties follow the protocol honestly.

Simulator for the sender’s view: The simulator is very similar to the RSR

case. On input
(
(b0, b1), 1

λ, ε
)
, the simulator picks S

χ←− Ĉ and arbitrary ciphertext

c ∈ C. The simulator computes â ← Spk(S, c) and outputs
(
(b0, b1), 1

λ, â
)
. The output

distribution is statistically close to the view of the sender in the real execution. This

holds because the statistical distance between â and ĉ is negligible.

Simulator for the receiver’s view: The simulator is very similar to the RSR

case. On input
(
i, bi, 1

λ
)
, the simulator computes (sk′, pk′) ← KeyGen(1λ), xi ←

Encpk′(bi), x1−i ← Encpk′(b) (for some b ∈ M) and x̂ ← Spk(S, xi) where S
χ←− Ĉ.

The simulator then computes ŵ ← D̂ecsk′(x̂) and outputs
(
i, 1λ, pk′, x0, x1, ŵ

)
. The
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output is computationally indistinguishable from the view of the receiver in the real

execution. This is because except for x1−i, this output distribution is identical to the

view of the receiver in the real execution. Furthermore since ξ is semantically secure,

no probabilistic polynomial-time adversary can distinguish between the encryption

of b1−i and b except with negligible probability. Therefore, the sender’s security is

computational.

Malicious adversaries: We handle the case of malicious adversaries in a similar

way as the RSR case. However, due to the nature of the cryptosystems used to

implement wRSR, a zero-knowledge proof that c0, c1 ∈ C is also necessary. We leave

it as an exercise to demonstrate the full result including zero-knowledge proofs:

Theorem 7 Protocol 2 may be compiled to a secure oblivious transfer in the mali-

cious model.

3.3.2 Instantiation of wRSR public-key Cryptosystems

In this section we provide concrete instantiations of wRSR schemes from two

different post-quantum assumptions.

1. Approximate Integer GCD problem (AIGP)[13].

2. Learning with Errors (LWE)[33].

More precisely we show that one can easily construct a wRSR from the cryptosys-

tems presented in [13, 14]. Please note that for these encryption schemes, operation

(a mod n) means mapping integer a into the interval [−�n/2�, �n/2�], (where n is

an odd positive integer).

3.3.3 Approximate Integer GCD problem

Let p be a large η-bit odd integer and xi’s are defined as follows
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xi = qip+ ri, 0 ≤ i ≤ τ

where xi is a γ-bit number which is much larger than p and ri is a ρ-bit error-

term which is much smaller than p in absolute value. W.l.o.g. assume that x0 is the

largest of them, and that x0 is odd. Under the Approximate Integer GCD assumption

the function

fx(s, z, b) =

(
2z + b+ 2

τ∑
i=1

xisi

)
mod x0

is one-way for anyone who does not know p, where b ∈ {0, 1}, s ∈ {0, 1}τ is a random

binary vector and z is a random error term of appropriate size (see below).

public-key Cryptosystem from AIGCD Problem

Van Dijk, Gentry, Halevi and Vaikuntanathan constructed a fully homomorphic

encryption scheme based on the problem of finding an approximate integer gcd [13].

The construction below has many parameters, controlling things like the number of

integers in the public-key and the bit-length of the various components. Specifically,

we use the following five parameters (all polynomial in the security parameter λ):

– η is the bit-length of the secret key p.

– γ is the bit-length of the integers xi in the public-key.

– ρ is the bit-length of the noise ri.

– ρ′ is the bit-length of the random error z.

– τ is the number of integers in the public-key, (contrary to the other parame-

ters, this is not a bit-size.)

These parameters must be set under the following constraints:

– ρ ∈ ω(log λ), to protect against brute-force attacks on the noise.

– ρ′ = Ω(ρ+ log τ) (τ is a polynomial is λ, e.g τ = λ).
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– η ≥ ρ · Θ(λ log2 λ) and should satisfy 2η−2 > 2ρ
′
+ τ · 2ρ, to avoid sums of

errors passing p/2.

– γ ∈ ω(η2 log λ), to thwart various lattice-based attacks on the underlying

approximate-gcd problem.

– τ ≥ γ + ω(log λ), in order to use the leftover hash lemma in the reduction to

approximate gcd.

The public-key is the vector x = (x0, x1, . . . , xτ ) and the private key is the η bit

integer p. To encrypt a bit b ∈ {0, 1} under the public-key x.

– Encx(b)

1. Pick uniformly a random bit string s1, · · · , sτ and pick uniformly a ρ-bit

error-term z.

2. Output the ciphertext c ←
(
2z + b+ 2

τ∑
i=1

xisi

)
mod x0.

– Decp(c)

1. c′ ← c mod p.

2. Output bit b ← c′ mod 2.

The decryption works, provided the overall distance to the nearest multiple of

p does not exceed p/2, that is 2(z +
τ∑

i=1

risi) is less than p/2 in absolute value. For

the above choice of parameters this will always be the case. We rely on the work

of [13] to assess that the resulting cryptosystem is a semantically secure encryption

scheme.

weakly RSR based on Approximate Integer GCD

The cryptosystem based on AIGCD can easily be converted to a wRSR en-

cryption scheme. Keeping the same notations as above we set
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• ρ = 2
√
λ (is the size of ri

′s in the public key).

• ρ′ = 2ρ (size of the error term Z in Spk)

• ρ = ρ/2 (size of the error term z in Enc).

• η = Θ(λ) (size of the private key).

• γ ∈ ω(η2 log λ).

• τ = γ + ρ (number of xi
′s in public-key x).

• I =
{
[−2ρ

′
,−2ρ

′−1] ∪ [2ρ
′−1, 2ρ

′
]
}
∩ Z.

• R′ =

{
2Z + 2

τ∑
i=1

xiwi mod x0 : Z ∈ I, wi ∈ {0, 1}
}
.

• M̂ = {0, 1} and Ĉ = C × M̂.

• The distribution χ is induced by picking r
uniform←−−−−− R′, e

uniform←−−−−− M̂ and

outputting R = (r, e).

• Spk(R, c) := (r+ e+ c) mod x0.

• D̂ecsk := Decsk.

• S ′
pk(R, b̂) := (e+ b̂) mod 2.

wRSR Encryption Scheme from AIGCD

wRSR Properties(Semi-Honest Case). The scheme clearly satisfies the first and

the third properties for the above choice of parameters. For the second property let

Spk(R, c) =

(
2Z + e+ 2

τ∑
i=1

xiwi

)
+ c mod x0

Spk(R, c′) =

(
2Z + e′ + 2

τ∑
i=1

xiwi

)
+ c′ mod x0.

Since c, c′ ∈ C, there exist ρ bit integers z, z′, vectors s, s′ ∈ {0, 1}τ and bits b, b′ ∈

{0, 1} such that

28



c =

(
2z + b+ 2

τ∑
i=1

xisi

)
mod x0 & c′ =

(
2z′ + b′ + 2

τ∑
i=1

xis
′
i

)
mod x0

Note that Spk(R, c) and Spk(R, c′) are perfectly indistinguishable if r + b + e and

r + b′ + e lie in the interval I. Also note that both r + b + e and r + b′ + e can at

most be 2ρ
′+1 + 2ρ+1 + τ · 2ρ+2 + 2 in the absolute value and are guaranteed to lie in

I as far as Z or Z ′ do not lie in

Z ∩
{
[−2ρ

′
, (2ρ+1 + τ2ρ+2 + 2)− 2ρ

′
] ∪ [2ρ

′ − (2ρ+1 + τ2ρ+2 + 2), 2ρ
′
]
}
.

Note that ρ is ρ/2 bits, ρ = 2
√
λ and τ = Õ(λ2). The probability of Z or Z ′ lie in

this interval is

2×
(

2ρ+1+τ ·2ρ+1+2
22ρ−1

)
=

(
2
√
λ+1+τ ·22

√
λ+1+2

24
√

λ−3

)
< 2−

√
λ · τ

which is negligible in the security parameter λ. Hence, Spk(R, c) and Spk(R, c′) are

statistically indistinguishable.

3.3.4 Learning with Errors (LWE)

Let n, q ≥ 2 be positive integers and χ be a distribution on Zq. For a uni-

formly chosen vector s ∈ Zn
q we obtain a distribution As,χ on Zn

q × Zq by choosing

a vector a ∈ Zn
q uniformly at random and a noise x ← χ and outputting

(
a, aT s+ x

)
.

Definition (LWE). For an integer q = q(n) and a distribution χ on Zq, the

goal of the (average case) LWE problem is defined as follows : given m indepen-

dent samples from As,χ (for some uniformly chosen fixed vector s ∈ Zn
q ) output s

with non-negligible probability. The Decision version LWE problem denoted as

distLWEn,m,q,χ is to distinguish (with non-negligible advantage) from the m sam-

ples chosen according to As,χ, from m samples chosen uniformly from Zn
q × Zq.
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In [33] Regev proved that the search version LWE is at least as hard as quan-

tumly approximating certain lattice problems in the worst case. Formally Regev

proved the following theorem.

Theorem 8 Let n, q be integers and α ∈ (0, 1) be such that q > 2
√
n. If there

exists an efficient algorithm that solves LWE then there exists an efficient quan-

tum algorithm that approximates the decision version of the shortest vector prob-

lem (GAPSVPγ) and the shortest independent vectors problem (SIVP) to within

Õ(n/α) in the worst case.

A Simple BGN-Type Cryptosystem

The BGN-Type cryptosystem is a semantically secure public-key cryptosystem,

whose security is equivalent to the hardness of the LWE problem [14]. It supports

polynomially many additions and one multiplication without increasing the cipher-

text size.

– n is the security parameter and c = c(n) > 0 be any function of n.

– q > 220(c+ 4)3n3c+4 log5 n is a prime modulus.

– The message space is the set M = {B ∈ Zm×m
2 : m = �8n log q�}.

– β = 1
27n1+(3c/2)√qm logn log q

specify a discrete normal distribution ψβ(q) over Zq.

The public-key is a matrix A ∈ Zm×n
q and the private key is a matrix T ∈ Zm×m

q ,

such that

– A is statistically close to uniform distribution over Zm×n
q .

– T ·A mod q = 0 and T is invertible over Z.

– The Euclidean norm of all the rows in T is bounded by O(n log q).

To encrypt a binary m×m matrix B under the public-key A:
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– Encpk(B)

1. Pick a matrix S ∈ Zn×m
q uniformly and an error matrix X ∈ Zm×m

q with

each entry in X is chosen independently according to the distribution

ψβ(q).

2. Output the ciphertext C ← AS+ 2X+B (mod q) ∈ Zm×m
q .

– Decsk(C)

1. Set D ← TCTt mod q = T(2X+B)Tt mod q.

2. Output the plaintext B ← T−1D (Tt)−1 (mod 2) ∈ Zm×m
2 .

To see that the decryption works, recall that T · A mod q = 0, therefore

TCTt ≡ T(2X+B)Tt mod q. Moreover, for the above choice of parameters each

entry in T(2X+B)Tt will be much smaller than q/2 in the absolute value with over-

whelming probability [14]. Hence, we have T(2X+B)Tt mod q = T(2X+B)Tt

over the integers.

wRSR from LWE Problem

The encryption scheme is very similar to the BGN-Type cryptosystem. The

main constraints on the parameters are given by the correctness requirement and

hardness requirements (β should be large enough such that we can invoke above

theorem).

• q ∈
(
24(logn)

2−1, 24(logn)
2
)
is a prime modulus.

• Entries of the error matrix X in Encpk are chosen independently according to

ψβ(q), where

β =
2−2(logn)2

20m · (log2 n− 1) · (20n log2 q)
2
.
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• I =
{
[−23(logn)

2
,−23(logn)

2−1] ∪ [23(logn)
2−1, 23(logn)

2
)]
}
∩ Z.

• R′ = {AW + 2X mod q : X ∈ Im×m,W ∈ Zn×m
q }.

These parameters yield an approximation factor of Õ(n/α) = Õ(nO(logn)), for

lattice problems such as (GAPSVPγ). The best known algorithms for (GAPSVPγ)

for γ = Õ(nO(logn)), runs in 2Ω̃(n).

• M̂ = M, Ĉ = C × M̂.

• The distribution χ on Ĉ is induced by picking r
uniform←−−−−− R′, B′ uniform←−−−−− M̂

and outputting R = (r,B′).

• Spk(R,C) := (r+B′ +C) mod q.

• D̂ecsk := Decsk.

• S ′
pk

(
R, B̂

)
:=

(
B′ + B̂

)
mod 2.

wRSR Encryption Scheme from LWE

Theorem 9 Let n > 339 be any integer, q ∈
(
24(logn)

2−1, 24(logn)
2
)
be any prime and

β = 2−2(logn)2

20m·(log2 n−1)·(20n log2 q)
2 . Then D̂ecsk correctly decrypts with overwhelming proba-

bility. Furthermore the above LWE construction is a wRSR encryption scheme.

Proof D̂ecsk(Spk(R,C)) will decrypt to (B+B′) mod 2, as long as

‖T(2(X+X′) + (B+B′))Tt‖∞ < q/2.

With overwhelming probability every entry of T(X) and T(B +B′) is at most

40βq(log2 n− 1)n log2 q and 40n log2 q. Therefore with overwhelming probability

‖T(2(X+X′) + (B′ +B))Tt‖∞ < m(40n log2 q)
2 ·

(
βq(log2 n) + 23(logn)

2
)
.

from tail inequality βq(log2 n) < 22(logn)
2
, with overwhelming probability and m =

�8n log q� and log q = 4(log n)2, therefore
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‖T(2(X+X′) + (B′ +B))Tt‖∞ < n3(16 log n)6 ·
(
22(logn)

2
+ 23(logn)

2
)
.

But (40n)6 log2 n ·
(
22(logn)

2
+ 23(logn)

2
)
< q/2 for all n > 339, hence

‖T(2(X+X′) + (B′ +B))Tt‖∞ < 2n−1 < q
2
.

wRSR Properties (Semi-Honest Case). The scheme clearly satisfies the first

property. The scheme also satisfies the third property whenever D̂ecsk is correct,

which will be the case with overwhelming probability for above choice of parameters.

To prove the construction satisfies the second property let Spk(R,C) = AW + E +

2Z + C mod q, and Spk(R
′,C′) = AW′ + E′ + 2Z′ + C′ mod q. Since, C and C′

are in the ciphertext space, there exist matrices S,S′ ∈ Zn×m
q , B,B′ ∈ Zm×m

2 and

X,X′ ∈ Zm×m
q , such that

C = AS+B+ 2X mod q and C′ = AS′ +B′ + 2X′ mod q

note that as far as each entry in 2(Z+X) + (E+B) and 2(Z′ +X′) + (E′ +B′) lie

in the interval I, Spk(R,C) and Spk(R
′,C′) remain perfectly indistinguishable. The

probability that each entry in 2(Z+X) + (E+B) and 2(Z′ +X′) + (E′ +B′) does

not lies in I = {[−23(logn)
2
,−23(logn)

2−1] ∪ [23(logn)
2−1, 23(logn)

2
)]} ∩ Z is(

23(logn)2−(23(logn)2+‖X‖∞+2)

23(logn)2−1
+ 23(logn)2−(23(logn)2+‖X′‖∞+2)

23(logn)2−1

)
= ‖X‖∞+‖X′‖∞+4

23(logn)2−1
.

Furthermore with overwhelming probability ‖X‖∞ and ‖X′‖∞ are at most 22(logn)
2
,

therefore with overwhelming probability

‖X‖∞+‖X′‖∞+4

23(logn)2−1
= 22(logn)2+1+4

23(logn)2−1
< 2−(logn)2+1

which is negligible in n. Therefore Spk(R,C) and Spk(R
′,C′) are statistically indis-

tinguishable.
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Chapter 4
Zero-Knowledge Interactive Proof Systems for Lattice Problems

4.1 Interactive Proof Systems

Speaking informally, an Interactive Proof System (IP) is a challenge-response

protocol between two parties in which one party, called the prover, tries to prove a

certain statement to the other party, called the verifier [28]. Initially, both parties

are given an input x. The objective of the IP is for the prover to convince the verifier

that x satisfy some specified property. For example, x belongs to some language L.

An IP consist of a specified (any polynomially in the size of x) number of rounds.

During each round, the prover and the verifier alternately do the following:

1. Receive a message from the other party.

2. Perform a private computation.

3. Send a message to the other party.

A typical round of an IP consists of a challenge from the receiver and a response

by the prover. At the end of the protocol the verifier either accepts or rejects the

claim. The IP must satisfy two properties:

– Completeness: The verifier always accepts the proof if the statement is true

and both parties follow the protocol correctly.

– Soundness: If the statement is false, no prover can convince the verifier that

it is true, except with some small probability.

34



Definition 6 An interactive proof system with soundness error s ∈ [0, 1] and com-

pleteness c ∈ [0, 1], for a language L ⊆ {0, 1}∗ is a pair of algorithms: a prover P

(possibly computationally unbounded) and a probabilistic polynomial-time verifier V,

with the following properties.

– Completeness: For all inputs x in L, the verifier after interacting with the

prover ([P (x) ↔ V (x)]) accepts the proof (i.e. outV [P (x) ↔ V (x)] = 1) with

probability at least c

∀x ∈ L, Pr[outV [P (x) ↔ V (x)] = 1] ≥ c.

– Soundness: For every computationally unbounded P ∗,

∀x /∈ L, Pr [outV [P
∗(x) ↔ V (x)] = 1] ≤ s.

It is easy to verify that the interactive proof system, for the linear code equiv-

alence problem, defined below has perfect completeness (c = 1) and soundness

error s = 2−l. Note that, if G1 and G2 are not equivalent then the only way for the

prover to deceive the verifier is for him to guess correctly the verifier’s choice j.

An IP for Linear Code Equivalence Problem (LCE).

Input: Generating matrices G1, G2 ∈ Fk×n
q .

1. Repeat the following steps for 1 ≤ i ≤ l.

(a) Prover picks uniformly an invertible matrix Ni ∈ Fk×k
q and a mono-

mial matrix Pi ∈ P(n,Fq).

(b) Prover computes Hi → NiG1Pi and sends Hi to the verifier.
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(c) Verifier picks uniformly ji ∈ {1, 2} and sends it to the prover.

(d) Prover sends a non-singular matrix Mi ∈ Fk×k
q and a matrix P ′

i ∈

P(n,Fq).

i. If ji = 1, then Mi = Ni and P ′
i = Pi.

ii. Else Mi = NiN
−1 and P ′

i = P−1Pi, where N ∈ Fk×k
q is an

invertible matrix and P ∈ P(n,Fq) such that G2 = NG1P.

2. Verifier will accept the proof if for all l rounds Hi = MiGjiP
′
i .

4.2 Zero-Knowledge Property

For cryptographic applications it is useful for interactive proof systems to have

the zero-knowledge property. Speaking informally an interactive proof is zero-knowledge

if the verifier cannot not learn anything as a result of the protocol, except the va-

lidity of the statement. Moreover at the end of the proof the verifier will have no

idea of how to prove himself that the statement is true. Zero-knowledge interac-

tive proofs have many applications in cryptography, such as identification schemes,

multiparty computations, etc. We formally prove the zero-knowledge property of

an IP by a technique known as simulation. Before we give the formal definition of

zero-knowledge interactive proof systems (ZKIP), we will briefly study the above

IP for LCE. What the verifier learns as a result of this proof can be represented as

the following transcript

T = ((G1, G2); (H1, j1,M1, P
′
1); . . . ; (Hl, jl,Ml, P

′
l )) .
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The IP for LCE will be zero-knowledge if there exits a probabilistic polynomial-time

algorithm (simulator) that without participating in the proof can forge transcripts

that look like real transcripts. The fact that a simulator can forge transcripts

has a very important consequence. Anything that the verifier computes can also be

computed from a forged transcript. Therefore, participating in the proof system does

not enable the verifier to prove that x is in L. Hence, the verifier cannot convince

someone else by showing him the transcript T, since anyone can forge a transcript

that looks like a real transcript.

4.2.1 Zero-Knowledge Interactive Proofs

Definition 7 Suppose that we have a polynomial-time interactive proof system [P ↔ V ]

for a language L ⊆ {0, 1}∗. Let V ∗ denote a (possibly cheating) verifier. Let T (V ∗, RV ∗ , x)

be the set of all possible transcripts that could be produced as the result of an interac-

tive proof [P ↔ V ∗] on input x ∈ L and RV ∗ be its random coins. Suppose for every

such V ∗, there exists an expected polynomial-time simulator S and let T (S,RS, x)

denote the set of all possible simulated transcripts that could be produced by S. Let

PrV ∗(T ) denote the probability distribution on T (V ∗, RV ∗ , x) as a result of [P ↔ V ∗] ,

and PrS(T ) be the probability distribution on T (S,RS, x) induced by S. If the dis-

tributions PrS(T ) = PrV ∗(T ), then we define the interactive proof to be perfect

zero-knowledge (PZKIP) and if the distributions PrS(T ) and PrV ∗(T ) are statis-

tically close (in the size of the input x) then we define the interactive proof to be

statistical zero-knowledge (SZKIP).
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4.2.2 Interactive Proofs with Efficient Provers

The definition of IP allows the prover to be unbounded. However, for the real

world applications, we would like the prover to be efficient. Of course, if the prover

is given just the same inputs as the verifier, then it cannot accomplish anything

that the verifier cannot accomplish itself. But in many proof systems, the prover

can be made efficient by giving it some extra knowledge. For example in the LCE

proof, the prover can be made efficient by giving him the matrices N ∈ Gk(Fq) and

P ∈ P(n,Fq).

4.3 Lattices and Zero-Knowledge Interactive Proofs

The first IP for lattice problems was presented by Goldreich and Goldwasser

[42]. They show that the complement problems coGapCVPγ and coGapSVPγ

have constant round interactive proofs. However, these proofs are only honest verifier

perfect zero-knowledge and known to have inefficient provers. Micciancio and Vadhan

[29] presented interactive proofs for GapCVPγ and GapSVPγ. These proofs are

statistical zero-knowledge and have efficient provers as well.

4.4 Isometric Lattice Problem ILP

In this section we introduce a new hard problem called ISOMETRIC LAT-

TICE PROBLEM (ILP). We present IP systems for the ILP. These proof systems

are perfect zero-knowledge and have efficient provers. We show that ILP is at least

as hard as Graph Isomorphism and Linear Code Equivalence over Fp. This is

the only hard problem known in lattices that has a malicious verifier perfect zero-

knowledge IP system with an efficient prover. We also show that ILP is unlikely

to be NP-complete. To do this we present a constant round IP system for the
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complementary problem (co-ILP) of ILP. Furthermore, the proof system for the

complementary problem is honest verifier perfect zero-knowledge.

4.4.1 Isometric Lattices

Definition 8 Let B1,B2 ∈ Rn×k be two bases of rank k. We say that two lattices

L(B1) ∼= L(B2) are isometric if there exists a matrix U ∈ GLk(Z) and a matrix

Q ∈ O(n,R) such that

B2 = QB1U.

Decision Problem ILP:Given two matricesB1,B2 ∈ Rn×k, decide whether L(B1) ∼=

L(B2).

4.5 Variants of ILP

Let

S(B1,B2) = {B ∈ Rn×k : L(B) ∼= L(B1)&L(B) ∼= L(B2)}

be the set of bases that are isometric to B1 and B2. The ILP seems to be very

similar to LCE. Therefore, it is natural to ask if one can obtain a PZKIP for ILP

by mimicking the LCE proof system. 1 However, if we try to mimic the proof system

for LCE we will face with following problems. Recall that a proof system is zero-

knowledge if there exists a probabilistic polynomial time simulator that can forge

transcripts that are distributed identically (or statistically close to) real transcripts.

– In the LCE proof system the prover picks uniformly and independently in-

vertible matrices from Fk×k
q . In comparison the corresponding set (GLk(Z))

1. The IP for LCE is PZKIP with an efficient prover see appendix A.
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in ILP is countably infinite. Therefore there exists no uniform distribution

on GLk(Z).

– Computationally it is not possible to work over reals as they required infi-

nite precision and almost all elements in O(n,R), have infinite representation.

Whereas in LCE every element in the corresponding set P(n,Fq) can be rep-

resented with O(n2 log q) bits. Note that in theory the uniform distribution

exists on O(n,R)[43, 50], but computationally it is not possible to pick uni-

formly from O(n,R) as this would require infinite computational power.

A natural solution would be to define some finite subsets GLk(Z), O(n,R) of

GLk(Z), O(n,R) and pick uniformly from GLk(Z) and O(n,R). However, this so-

lution may not preserve the zero-knowledge property of the proof system. To see

this let B2 = QB1U, be two isometric bases that can be represented finitely, where

Q ∈ O(n,R) and U ∈ GLk(Z).

[B1] =
{
Q

′
B1U

′
: Q

′ ∈ O(n,R) and U
′ ∈ GLk(Z)

}
[B2] =

{
Q

′
B2U

′
: Q

′ ∈ O(n,R) and U
′ ∈ GLk(Z)

}
.

1. The prover picks uniformly i ∈ {1, 2}.

2. The prover picks uniformly B ∈ [Bi] and sends B to the receiver.

3. The verifier uniformly picks j ∈ {1, 2} and sends j to the verifier.

Note that the zero-knowledge property requires that from B the verifier should

not be able to learn i except with probability 1
2
(for perfect zero-knowledge) or

1
2
+ negl (for statistical zero-knowledge). This implies that [B1] = [B2] (for perfect

zero-knowledge) or |[B1]∪[B2]|−|[B1] ∩ [B2]| = negl (for statistical zero-knowledge).

Note that any B ∈ [B1] can only be in [B2] if and only if Q
′ · QT ∈ O(n,R) and
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U
−1 · U ′ ∈ GLk(Z). Similarly, any B ∈ [B2] can only be in [B1] if and only if

Q
′ · Q ∈ O(n,R) and U · U−1 ∈ GLk(Z). Therefore sets O(n,R) and GLk(Z) must

be a group under multiplication. But this seems unlikely to happen in general. To

see this lets try to construct a finite subgroup O(n,R) ≤ O(n,R).

– Let Q ∈ O(n,R). We add Q in O(n,R)

O(n,R) ← O(n,R) ∪ {Q}.

– Since O(n,R) has to be a multiplicative group, we must add Q ·Q and QT to

it. Hence

O(n,R) ← O(n,R) ∪ {Q ·Q} ∪ {QT}.

– By the same argument Q ·Q ·Q and QT ·QT must also be added to O(n,R).

Hence, this process may never end and O(n,R) will become an infinite set.

Similarly if we try to construct a finite subgroup GLk(Z) ≤ GLk(Z) we will

face the same problem.

In order to deal with these issues we will present two variants of isometric lattice

problems. We will show that these variants are at least hard as GI and LCE.

We further show that these variants are unlikely to be NP-complete unless the

polynomial hierarchy collapses [45, 46].

4.5.1 Isometric Lattices over Z

Definition 9 Let B1,B2 ∈ Zn×k be two bases of rank k. We say that two lattices

L(B1) ∼=Z L(B2) are isometric over integers if there exists a matrix U ∈ GLk(Z)

and a matrix Q ∈ O(n,Z) such that

B2 = QB1U.
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Decision Problem ILPZ: Given two matrices B1,B2 ∈ Zn×k, decide whether

L(B1) ∼=Z L(B2).

4.5.2 Isometric Lattices over RQ ⊂ R

Definition 10 Let B1,B2 ∈ Rn×k
Q be two bases of rank k. We say that two lattices

L(B1) ∼=RQ L(B2) are isometric over RQ if there exists a matrix U ∈ GLk(Z) and a

matrix Q ∈ O(n,RQ) such that

B2 = QB1U.

Decision Problem ILPRQ : Given two matrices B1,B2 ∈ Rn×k
Q , decide whether

L(B1) ∼=RQ L(B2).

Note that sets RQ and O(n,RQ) are defined in section 4.6.

4.6 The Set RQ

Computationally it is not possible to work over arbitrary real numbers as they

require infinite precision. However, there are reals that can be represented finitely

and one can add and multiply them without losing any precision. For example we

can represent numbers
√
7 and 4

√
5 as < 2, 7 > and < 4, 5 > . In, general, a real

number r that has the following form

r = a1
n11

√
x11 +

n21

√
x21 + · · ·+ nk1

√
xk1 + a2

n12

√
x12 +

n22

√
x22 + · · ·+ nk2

√
xk2

+ · · ·+ al
n1l

√
x1l +

n2l

√
x2l + · · ·+ nkl

√
xkl.

where aj’s, nij’s ∈ Q, xij ’s ∈ Q+ ∪ {0} and l, k1 · · · kl ∈ N; can be represented as
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r = a1 < n11, x11+ < n21, x21 + · · ·+ < nk1, xk1 >> · · · > +

a2 < n12, x12+ < n22, x22 + · · ·+ < nk2, xk2 >> · · · > +

· · ·+ al < n1l, x1l+ < n2l, x2l + · · ·+ < nkl, xkl >> · · · > .

We call such numbers rational radicands and denote the set of all rational radi-

cands RQ. 2

4.6.1 The Set O(n,RQ)

Let O(n,RQ) denote a set of n× n orthogonal matrices over RQ. In this section

we will define a subset O(n,RQ) ⊂ O(n,RQ) that has the following properties.

– Any orthogonal matrix Q ∈ O(n,RQ) has finite representation.

– If O(n,RQ), then QT ∈ O(n,RQ).

– O(n,RQ) is a finite set.

Let P be any desired publicly known positive polynomial in the size of the input

bases B1,B2 ∈ O(n,RQ) and δ = π
2P . We denote C the set of angles

C = {0, δ, 2δ, . . . , θ, . . . , 2π − δ}

We denote O(n,RQ) to be the set of n×n orthogonal matrices corresponding to

C that can be written as a product of commuting Givens rotations. More, precisely

O(n,RQ) = {G(1,2,θ1) ·G(3,4,θ2) · · ·G(x−1,x,θx) : θi ∈ C, 1 ≤ i ≤ x}.

2. In this notation any rational number x can be represented as ± < 1, x > .
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where x = n
2
if n is even, otherwise x = n−1

2
. Clearly O(n,RQ) is a finite set, since C

is a finite set. Furthermore for any integer P ≥ 2,

sin
(

π
2P

)
= 1

2
< 2, 2− < 2, 2 + · · ·+ < 2, 2 >> · · · >︸ ︷︷ ︸

P−1

cos
(

π
2P

)
= 1

2
< 2, 2+ < 2, 2 + · · ·+ < 2, 2 >> · · · >︸ ︷︷ ︸

P−1

.

For any integer 0 ≤ n ≤ 2P sin(nπ
2P ) and cos(nπ

2P ) can be computed in O(P) time

(see appendix B). Let Q ∈ O(n,RQ),

Q = G(1,2,θ1) ·G(3,4,θ2) · · ·G(x−1,x,θx) for some θi ∈ C, 1 ≤ i ≤ x.

We will show that QT ∈ O(n,RQ). Let

Q′ = G(1,2,2π−θ1) ·G(3,4,2π−θ2) · · ·G(x−1,x,2π−θx).

Clearly if θi ∈ C, then 2π − θi ∈ C. Therefore, it follows that Q′ ∈ O(n,RQ).

Q ·Q′ =
(
G(1,2,θ1)G(1,2,2π−θ1)

)
·
(
G(3,4,θ2)G(3,4,2π−θ2)

)
· · ·

(
G(x−1,x,θx)G(x−1,x,2π−θx)

)
= G(1,2,θ1+2π−θ1) ·G(3,4,θ2+2π−θ2) · · ·G(x−1,x,θx+2π−θx)

= G(1,2,2π) ·G(3,4,2π) · · ·G(x−1,x,2π)

but G(i,j,2π) = I

⇒ G(1,2,2π) ·G(3,4,2π) · · ·G(x−1,x,2π) = I.

Hence, Q′ = QT.

4.7 Interactive Proof for Isometric Lattice Problem over Integers ILPZ

The set of n × n orthogonal matrices over integers O(n,Z) is finite and of car-

dinality 2n · n!. In fact the set O(n,Z) is exactly equal to the set of n × n signed

permutation matrices. Therefore, any element Q ∈ O(n,Z) can be written as a prod-

uct Q = D ·P for some D ∈ Dεn and P ∈ Pn. Furthermore, for any matrix B ∈ Zk×n
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the Hermite normal form HNF(B) only depends on the lattice L(B) generated by

B and not on a particular lattice basis. Moreover, one can compute HNF(B′) from

any basis B′ of L in polynomial time [44]. Since HNF(B) = HNF(B′), the Her-

mite normal form does not give any information about the input basis. This will

completely bypass the need for picking random elements from the set GLk(Z).

An Interactive Proof for ILPZ

– Input B1,B2 ∈ Zn×k.

1. Repeat for l := poly(|B1|+ |B2|) rounds.

(a) Prover picks uniformly an orthogonal matrix Q′ ∈ O(n,Z).

(b) Prover computes H ← HNF(Q′B1) and sends it to the verifier.

(c) Verifier randomly picks c ∈ {1, 2} and sends it to the prover.

(d) Prover sends the verifier an orthogonal matrix P ∈ O(n,Z).

i. if c = 1 then P = Q′.

ii. if c = 2 then P = Q′QT.

2. Verifier will accept the proof if for all l rounds H = HNF(PBc).

Theorem 10 The proof system for ILPZ is a malicious verifier perfect-zero knowl-

edge interactive proof with an efficient prover.

Proof:

Completeness: Clearly, if L(B1) and L(B2) are isometric lattices over the integers,

then the prover will never fail convincing the verifier.
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Soundness: If L(B1) andd L(B2) are not isometric over integers, then the only

way for the prover to cheat is to guess j correctly in each round. Since, j is chosen

uniformly and independently from {1, 2}, the probability of prover guessing j in all

round is 2−l. Note that verifier’s computations are done in polynomial time.

Efficient Prover: The steps 1a and 1d can be done efficiently. The Hermite normal

forms can be computed in polynomial time using the algorithm presented in [44].

Therefore the expected running time of the prover is polynomial.

Zero-Knowledge: Let V ∗ be any probabilistic polynomial time (a possiblly ma-

licious) verifier. Let T (V ∗) denote the set of all possible transcripts that could be

produced as a result of the prover P and V ∗ carrying out the interactive proof with

a yes instance (B1,B2) of ILPZ. Let S denote the simulator, which will produce the

possible set of forged transcripts T (S). We denote PrV ∗(T ) the probability distribu-

tion on T (V ∗) and we denote PrS(T ) the probability distribution on T (S). We will

show that:

1. The expected running time of V ∗ and S is polynomial.

2. PrV ∗(T ) = PrS(T ) i.e. the two distributions are identical.

Input: B1,B2 ∈ Zn×k such that L(B1) ∼=Z L(B2).

1. T = (B1,B2).

2. for j = 1 to l = poly(|B1|+ |B2|) do

(a) old state ← state(V ∗)

(b) repeat
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i. Pick uniformly i ∈ {1, 2}.
ii. Pick uniformly Q′

j from O(n,Z).

iii. Compute H′
j ← HNF(Q′

jBi).

iv. Call V ∗ with input H′
j and obtain c′.

v. if i = c′ then

– Concatenate
(
H′

j, i, Q
′
j

)
to the end of T.

else

– Set state(V ∗) ← old state.

vi. until i = c′

Simulator S for ILPZ.

Clearly V ∗ runs in expected polynomial and the probability i = c′ is 1/2. There-

fore, on average S will generate two triples
(
H′

j, i, Q
′
j

)
for every triple it concatenates

to the transcript T. Hence, the average running time of S is polynomial .

Using induction we will show that PrV ∗(T ) = PrS(T ). Let PrV ∗(Tj) and

PrS(Tj) denote the probability distributions on the partial set of transcripts that

could occur at the end of the j-th round.

Base case: If j = 0, then in both case T = (H1,H2), hence both probabilities

are identical.

Inductive Step: Suppose both distributions PrV ∗(Tj−1) and PrS(Tj−1) are

identical for some j ≥ 1.

Now let’s go back and see what happens at the j-th round of our interactive

proof for ILPZ. The probability that at this round V ∗ picks c = 1 is some number
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0 ≤ p ≤ 1 and the probability that c = 2 is 1 − p. Moreover, the prover picks an

orthogonal matrix Q′ with probability

1

2nn!
.

This probability is independent of how the verifier picks c ∈ {1, 2}. Therefore the

probability that at the j-th round
(
H′

j, i, Q
′
j

)
is on the transcript of the IP if c = 1

is

p

2nn!

and if c = 2

1− p

2nn!

The simulator S in any round will pick an orthogonal matrix Q′
j with probability

1

2nn!
.

The probability that i = 1 and c′ = 1 is

p

2

and the probability i = 2 and c′ = 2 is

1− p

2
.

In both cases the corresponding triple
(
H′

j, i, Q
′
j

)
will be written to the tran-

script. Note with probability 1/2 nothing is added to the transcript. The probability

that
(
H′

j, 1, Q
′
j

)
is written on the transcript in j-th round during the m-th iteration
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of the repeat loop is

p

2m × (2nn!)
.

Therefore the total probability that
(
H′

j, 1, Q
′
j

)
is written on the transcript in the

j-th round is

p

2× (2nn!)
+

p

22 × (2nn!)
+ ...+

p

2m × (2nn!)
+ ...+ ...

=
p

2× (2nn!)

(
1 +

1

2
+

1

4
+ ...+

1

2m−1
+ ....+ ....

)
=

p

2nn!
.

Similarly the total probability that
(
H′

j, 2, Q
′
j

)
is written on the transcript in the j-th

round is 1−p
2nn!

. Hence, by induction, the two probability distributions are identical

PrV ∗(T ) = PrS(T ).

4.8 Sampling a Lattice Basis in Zero-Knowledge and ILPRQ

Suppose B ∈ Rn×k is a basis of some lattice L(B). Recall that B′ is a basis

of L(B) if and only if B′ ∈ {BU : U ∈ GLk(Z)} and the algorithm SamplePoint

(chapter 2) takes an input basis B = [b1|b2| . . . |bk] ∈ Rn×k an appropriate param-

eters s ∈ R and c ∈ Rn and outputs a lattices point v ∈ L(B) that is distributed

according to the discrete Gaussian distribution Ds,c,L (chapter 2). SampleBasis is

zero-knowledge in a sense that the output point v leaks al most no information

about the input basis B except the bound s with overwhelming probability [21].

Furthermore, for an n dimensional L if we pick V = {v1,v2, . . . ,vn2} lattice points

independently according to Ds,L, then V contain a subset of k linearly independent

vectors, except with negl(n) probability ([33], Corollary 3.16).
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Let B = {b1, · · · ,bk} be a basis of a lattice L and suppose S = {s1, · · · , sk} is

a set of linearly independent vectors that belong to L. There exists a deterministic

polynomial time algorithm that will output a basis T = {t1, · · · , tk} of L such that

||ti||2 ≤ ||si||2 for 1 ≤ i ≤ k (chapter 2).

Using the above two algorithms we will present a probabilistic polynomial time

algorithm SampleL that will take an input basis B = {b1, . . . ,bk} of some lattice

L, c ∈ Rn, a parameter s ≥ ω(
√
log n) · ||B̃|| and outputs a basis T, such that T

leaks no information about the basis B, except s (the bound on the norm of B) with

overwhelming probability.

Algorithm 5 SampleL
Input

(
B ∈ Rn×k

Q , k, n, s
)

1. Set t(n) = log n.

2. Sample V = {v1,v2, . . . ,vn2} points independently using the algorithm
SamplePoint(B, 0, s, t(n)).

3. Pick S = {s1, s2, . . . , sk} ⊂ V, such that S is a set of linearly independent
vectors.

4. Using the deterministic algorithm output the basis T, such that L(T) = L(B).

It is easy to see that if B ∈ Rn×k
Q then so T ∈ Rn×k

Q . Since T and B are bases of

the same lattice, there exists a U ∈ GLk(Z) such that

T = BU.
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4.9 An Interactive Proof for ILPRQ

– Input B1,B2 ∈ Rn×k
Q such that L(B1) ∼=RQ L(B2).

1. Prover set s = log n ·max{||B̃1||, ||B̃2||}.

2. for i = 1 to l = poly(|B1|+ |B2|) rounds do.

(a) Prover picks uniformly an orthogonal matrix Q′
j ← O(n,RQ).

(b) Prover picks B′
j ← SampleL

(
Q′

jB1, k, n, s
)
.

(c) Prover sends the basis B′
j to the verifier.

(d) Verifier randomly picks cj ∈ {1, 2} and sends it to the prover.

(e) Prover sends the verifier an orthogonal matrix Pj ∈ O(n,RQ).

i. if cj = 1, then Pj = Q′
j.

ii. if cj = 2 then Pj = Q′
jQ

T, where Q ∈ O(n,RQ) is such that

L(B2) = L(QB1).

3. Verifier will accept the proof if for all l rounds L(B) = L(PjBcj).

Theorem 11 The proof system for ILPRQ is a statistical zero-knowledge interactive

proof with an efficient prover.

Proof:
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Completeness: If L(B1) and L(B2) are isometric lattices, then B2 = QB1U for

some Q ∈ O(n,RQ) and U ∈ GLk(Z). Clearly,

L(Q′
jB1) = L(B) = L(Q′

jQ
TB2)

since B′
j = Q′

jB1U
′
j and B′

j = Q′
jQ

TB2UU ′
j for some U ′

j ∈ GLk(Z). Therefore, the

prover will always be able to convince the verifier.

Soundness: If L(B1) and L(B2) are not isometric over RQ, then the only way for

the prover to deceive the verifier is for him to guess correctly cj in each round. Since

cj is chosen uniformly from {1, 2}, the probability of the prover guessing cj in all

rounds is 2−l. Hence, the protocol is sound.

Efficient Prover: Clearly the prover can perform steps 1, 2a, 2c and 2e in expected

polynomial-time. In step 2b the prover picks a lattice basis using SampleL, which

runs in expected polynomial time. Hence the total expected running time of the

prover is polynomial.

Zero-Knowledge: Let V ∗ be any probabilistic polynomial time (possibly malicious)

verifier. Let T (V ∗) denote the set of all possible transcripts that could be produced

as a result of P and V ∗ carrying out the interactive proof on a yes instance (B1,B2)

of ILPRQ . Let SRQ denote the simulator, which will produce the possible set of forged

transcripts T (SRQ). We denote PrV ∗(T ) the probability distribution on T (V ∗) and

we denote PrSRQ
(T ) the probability distribution on T (SRQ). We will prove that:

1. SRQ is polynomial.

2. PrV ∗(T ) ∼ PrSRQ
(T ) i.e the two distributions are statistically close.
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Input: B1,B2 ∈ RQn×k such that L(B1) ∼=RQ L(B2).

1. Set s = log n ·max{||B̃1||, ||B̃2||}.

2. T = (B1,B2).

3. for j = 1 to l = poly(|B1|+ |B2|) do

(a) old state ← state(V ∗)

(b) repeat

i. Pick uniformly ij ∈ {1, 2}.

ii. Pick uniformly Q′
j from ∈ O(n,RQ).

iii. Compute H′
j ← SampleL

(
Q′

jBij , k, n, s
)
.

iv. Call V ∗ with H′
j and obtain i′.

v. if ij = i′ then

– Concatenate
(
H′

j, ij, Q
′
j

)
to the end of T.

else

– Set state(V ∗) ← old state.

vi. until ij = i′.

Simulator SRQ for ILPRQ .

Running time of the simulator : What is the probability that ij = i′? In other words,

on average how many triples
(
H′

j, ij, Q
′
j

)
will the simulator SRQ generate for every

triple it concatenates to T? We note that Q′QT and Q′ are uniformly distributed

over O(n,RQ), and L(Q′B1) = L(Q′QTB2) therefore the probability that the lattice
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L(H′
j) is obtained by rotating the lattice L(B1) is equal to the probability that it is

obtain by rotating L(B2). Furthermore the algorithm SampleL ensures that as far as

the parameters are chosen appropriately, H′
j will leak almost no information (apart

from the bound s) about the input basis except with negligible probability. Hence,

on the average the simulator will generate roughly 2 triples for every triple it adds to

T. Therefore the expected running time of SRQ is roughly twice the running time of

V ∗. By definition V ∗ runs in probabilistic polynomial time. Hence the running time

of SRQ is also expected polynomial time.

We will prove that the two probability distributions PrV ∗(T ) and PrSRQ
(T ) are

statistically close as follows. We first prove that the two distributions are statistically

close for one round (l = 1). Then we will invoke the sequential composition lemma

4.3.11 on page 216 of [27], which implies that an interactive proof which is zero-

knowledge for one round remains zero-knowledge for polynomially many rounds.

Case l = 1: Let (B′
1, c1, P

′
1) denote a transcript produced as a result of an interactive

proof and (H′
1, i1, Q

′
1) denote a transcript produced by the simulator. In the inter-

active proof P picks uniformly P ′
1 over O(n,RQ) and SRQ also picks Q′

1 uniformly

over O(n,RQ). Hence both P ′
1 and Q′

1 are identically distributed. Also B′
1 and H′

1

computed by SampleL. Therefore they are almost identically distributed.

Let p be the probability that V ∗ picks c1 = 1 and 1− p be the probability that

it picks c1 = 2 in the interactive proof. The probability may depend on the state of

V ∗. The simulator picks i1 ∈ {1, 2} uniformly and independent of how V ∗ picks i′.

Also given H′
1, the probability that V ∗ can guess the index i1 is at most 1

2
+ negl.
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Therefore probability that V ∗ picks i′ = 1 is nearly p and i′ = 2 is nearly 1 − p

respectively. This means that i1 and c1 have nearly the same distributions.

Therefore, it follows that (B′
1, c1, P

′
1) and (H′

1, i1, Q
′
1) are statistically close.

Hence for one round the two distributions are statistically close. Hence, by lemma

4.3.11 for any polynomially many rounds we have

PrV ∗(T ) ∼ PrSRQ
(T ).

4.10 Isometric Lattice Problem is not Easy

In this section we will show that ILP is at least as hard as (Linear Code Equiv-

alence problem) over prime fields Fp and Graph Isomorphism.

Theorem 12 ILP is at least as hard as LCE (Linear Code Equivalence problem)

over prime fields Fp.

Proof Let G = [g1| . . . |gk] ∈ Fn×k
p be a basis of some [k, n] linear code C

ψ : C −→ Λ2(G)

G −→ B

where Λ2(G) be the corresponding p-ary lattice. Recall from chapter 2 that B =

[g1| . . . |gk|bk+1| . . . |bn] ∈ Zn×n is a basis of Λp(G). Where bj = (0, ..., p, ..., 0) ∈

Zn and the j-th coordinate is equal to p, for k + 1 ≤ j ≤ n. Clearly the map ψ

can be computed in polynomial time. Let G1 = [g11| . . . |g1k] ∈ Fn×k
p and G2 =

[g21| . . . |g2k] ∈ Fn×k
p be two code generators.

=⇒ Suppose G1 and G2 generate linearly equivalent codes i.e G2 = PG1M

for M ∈ GLk(Fp) and monomial matrix P ′ ∈ P(n,Fq). Note that we can write P ′

as a product of a permutation matrix P ∈ Pn and an invertible diagonal matrix

55



D ∈ Fn×k
p . Write G2 = PG′

1M, where G′
1 = DG1 and let Λp(G

′
1) and Λp(G2) be

corresponding lattices.

For any v ∈ Λp(G2) ⇐⇒ v ≡ G2 · s (mod p), for some s ∈ Zk

=⇒ v ≡ PG′
1M · s (mod p) ≡ PG′

1 · s′ (mod p), s′ = Ms ∈ Zk

=⇒ v ∈ Λp(PG′
1)

Hence, Λp(G2) ⊆ Λp(PG′
1). Since, PG′

1 = G2M
−1, by the same argument

Λp(PG′
1) ⊆ Λp(G2), we have Λp(PG′

1) = Λp(G2). Therefore, there exists a U ∈

GLk(Z) such that

ψ(G2) = ψ(PG′
1)U

ψ(G2) = Pψ(G′
1)U

⇐= Now suppose G1 and G2 are not linearly equivalent and suppose ψ(G2) =

Qψ(G1)U for Q ∈ O(n,Z) and U ∈ GLk(Z). Note we can write any Q ∈ O(n,Z) as

Q = PDε, for some Dε ∈ Dεn and P ∈ Pn. But P
′ = PDε (mod p) is a monomial

matrix. Further U is also non-singular over Fp. Therefore,

ψ(G2) = Qψ(G1)U

=⇒ G2 = P ′(G1)M (mod p) for some M ∈ GLk(Fp) and M ≡ U mod p

This contradicts the assumption that G1 and G2 are not linearly equivalent.

Therefore ILP is at least as hard as LCE.

Theorem 13 ILPZ is at least as hard as the GI (Graph Isomorphism) problem.

Proof Petrank and Roth [47] reduced GI to PCE (Permutation Code Equiva-

lence). More precisely they provided a polynomial time mapping φ from the set of

all graphs to the set of generator matrices over F2 such that two graphs G1 and G2

are isomorphic if and only if φ(G1) and φ(G2) are permutation equivalent codes. We
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will prove that ILP is at least as hard as GI, by reducing the PCE over F2 to ILP.

Let G = [g1| . . . |gk] ∈ Fn×k
2 be a basis of some [k, n] linear code C

ψ : C −→ Λ2(G)

G −→ B

where Λ2(G) is the corresponding 2-ary lattice. Recall from chapter 2 that B =

[g1| . . . |gk|bk+1| . . . |bn] ∈ Zn×n is a basis of Λ2(G). Where bj = (0, ..., 2, ..., 0) ∈ Zn

and the j-th coordinate is equal to 2, for k + 1 ≤ j ≤ n. Clearly the map ψ

can be computed in polynomial time. Let G1 = [g11| . . . |g1k] ∈ Fn×k
2 and G2 =

[g21| . . . |g2k] ∈ Fn×k
2 be two code generators and Λ2(G1) and Λ2(G2) be correspond-

ing lattices.

=⇒) Suppose G1 and G2 are permutation equivalent i.e. G2 = PG1M for

M ∈ GLk(F2) and P ∈ Pn. Let G
′
1 = PG1. Therefore we can write G2 = G′

1M. By

definition for any v ∈ Λ2(G2), there exists an s ∈ Zk such that

v ≡ G2 · s ≡ G′
1M · s (mod 2).

=⇒ v ≡ PG1 · s′ (mod 2), where s′ = M · s ∈ Zk.

=⇒ v ∈ Λ2(PG1).

Hence, Λ2(G2) ⊆ Λ2(PG1). Since, PTG2M
−1 = G1 by the same argument

Λ2(PG1) ⊆ Λ2(G2). Hence, there exist a U ∈ GLk(Z) such that

ψ(G2) = ψ(PG1)U

=⇒ B2 = PB1U

⇐=) Now suppose G1 and G2 are not permutation equivalent and suppose

ψ(G2) = Qψ(G1)U for Q ∈ O(n,Z) and U ∈ GLk(Z). Note that Q ≡ P (mod 2),
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for some P ∈ Pn. For every v ∈ Λ2(G2) we have

v ≡ G2u (mod 2) for some u ∈ Zk.

Since, Λ2(QG1) = Λ2(G2), we also have

v ≡ (QG1)u ≡ (PG1)u (mod 2) for some u ∈ Zk.

This means that PG1 and G2 have the same span over F2. This contradicts the

assumption that G1 and G2 are not permutation equivalent. This proves that ILP

is at least as hard as GI.

4.10.1 ILP is unlikely to be NP-complete

In this section we show that ILPS is unlikely to be NP-complete (where S = Z

or S = RQ see section 4.5). We do this by constructing a constant round interactive

proof for the Non-Isometric Lattice problem (co-ILPS), i.e. the complementary

problem of ILPS. Then we invoke results from the field of complexity theory, implying

that if the complement of a problem Π has a constant round interactive proof and

Π is NP-complete then the polynomial hierarchy collapses [45, 46]. It is widely

believed that the polynomial hierarchy does not collapse, therefore we end up with

the conclusion that ILP is unlikely to be NP-complete.

Constant Round IP for co-ILPS

– Input B1,B2 ∈ Sn×k bases such that L(B1) �S L(B2).

1. Verifier sets l = poly(|B1|+ |B2|).

2. Verifier picks uniformly j1, . . . , jl ∈ {1, 2}.
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3. If S = Z then the verifier picks independent random orthogonal

matrices

Q1, . . . , Ql ∈ O(n,Z).

Else verifier picks independently random orthogonal matrices

Q1, . . . , Ql ∈ O(n,RQ).

4. For 1 ≤ i ≤ l, verifier computes a basis H′
i for the lattice L(QiBji).

If S = Z, then H′
i ← HNF(QiBji), otherwise H′

i is computed using

algorithm SampleL from section 4.8.

5. For 1 ≤ i ≤ l, the all-powerful prover sends j′i such that H′
i and Bj′i

are isometric.

6. Verifier accepts the proof if ji = j′i for all 1 ≤ i ≤ l.

Completeness: Clearly, if L(B1) and L(B2) are non-isometric lattices then the

prover will never fail convincing the verifier.

Soundness: Suppose L(B1) and L(B2) are isometric lattices. The probability that

prover can guess (i1, ..., il) given (H′
1, ...,H

′
l) is 2

−l if S = Z and 2−l+negl if S = RQ.
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Chapter 5
Conclusion and Future Work

The objective of this thesis has been to study and construct cryptographic prim-

itives under the assumption that an adversary has the power of quantum computing.

We proposed a new notion of weakly Random-Self-Reducible encryption scheme and

show that one can obtain a secure OT, under a sole assumption that a of wRSR

encryption scheme exits. We provided concrete instantiation of wRSR from two

different post quantum assumptions:

– Approximate Integer GCD.

– Learning with Errors.

We also presented a new hard problem from lattices called the Isomteric Lattice

Problem ILP. We showed that ILP is at least as hard as Graph Isomorphism and

Linear Code Equivalence. We presented two variants of ILP (one over the integers

and other over rational radicands and proved that these variants have a Perfect

Zero-knowledge and a Statistical Zero-Knowledge interactive proof systems with an

efficient prover for ILP. Interestingly this is the only problem known from integer

lattices to have a Perfect Zero-Knowledge interactive proof system with an efficient

prover. We further showed that this problem is unlikely to be NP-complete unless

the polynomial hierarchy collapses.

The research I have completed thus far has raised some interesting questions,

such as whether the wRSR property is more general than the Dual mode property
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[34]? Are there secure encryption schemes based on linear codes that satisfy the

wRSR property? I would like to continue my research to investigate these questions

further.

I would also like to explore the possibility of constructing a public-key encryp-

tion scheme whose security is as hard as the problem of decoding random linear

codes: The fundamental security assumption in present code-based cryptosystems is

that decoding a random linear code is hard on average, but there is no known proof

that breaking current code-based encryption schemes is as hard as the assumption.

And perhaps it may very well be the case that breaking code-based systems is easier

than decoding random linear codes. The code-based cryptosystems are constructed

from particular families of codes that have efficient decoding algorithms and good dis-

tances. Hence, breaking these schemes would not necessarily imply breaking schemes

whose security is equal to general decoding of linear codes.
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Appendix A
A Perfect Zero-Knowledge Interactive Proof for LCE

An IP for Linear Code Equivalence Problem (LCE).

Input: Generating matrices G1, G2 ∈ Fk×n
q .

1. Repeat the following steps l times.

(a) Prover picks uniformly matrices Ni ∈ Gk(Fq) and Pi ∈ P(n,Fq).

(b) Prover computes Hi → NiG1Pi and sends Hi to the verifier.

(c) Verifier picks uniformly c ∈ {1, 2} and sends to the prover.

(d) Prover sends a non-singular matrix W ∈ Fk×k
q and a matrix T ∈

P(n,Fq).

i. If c = 1, then W = Ni and T = Pi.

ii. Else W = UiN
−1 and T = PiP

−1.

2. Verifier will accept the proof if for all l rounds Hi = WGjT.

Theorem 14 The proof system for (LCE) is a malicious verifier perfect-zero

knowledge interactive proof with an efficient prover.
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Proof Let V ∗ be any probabilistic polynomial time (possibly malicious)

verifier. Let T (V ∗) denote the set of all possible transcripts that could be pro-

duced as a result of the prover P and V ∗ carrying out the interactive proof on a

yes instance (G1,G2) of LCE. Let S denote the simulator, which will produce

the possible set of forged transcripts T (S). We denote PrV ∗(T ) the probability

distribution on T (V ∗) and we denote PrS(T ) the probability distribution on

T (S).

Input: Two generating matrices G1, G2 ∈ Fk×n
q , such that G2 = NG1P, for

N ∈ Fk×k
q and P ∈ P(n,Fq).

1. T = (G1,G2).

2. for j = 1 to l do

(a) old state ← state(V )

(b) repeat

i. Pick uniformly i ∈ {1, 2}.

ii. Pick uniformly matrices N′ ∈ Fk×k
q and P ′ from P(n,Fq).

iii. Compute H′ ← N′GiP
′.

iv. Call V with input H′ and obtain i′.

v. if i = i′ then

– Concatenate (H′, i,N′, P ′) to the end of T.

else

– Set state(V ) ← old state.
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vi. until i = i′

Simulator S for LCE.

By definition V ∗ is PPT and the probability that i = i′ is 1/2. Therefore, on

the average S will generate two quadruples (H′, i,N′, P ′) for every quadruple

it concatenates to the transcript T. Hence, the average running time of S is

polynomial.

Using induction we will show that PrV ∗(T ) = PrS(T ). Let PrV ∗(Tj) and

PrS(Tj) denote the probability distributions on the partial set of transcripts

that could occur at the end of the j-th round.

Base case: If j = 0, then in both case T = (G1,G2), hence both probabilities

are identical.

Inductive Step: Suppose both distributions PrV ∗(Tj−1) and PrS(Tj−1) are

identical for some j ≥ 1.

Now let see what happens at the j-th round of our interactive proof. The

probability that at this round V ∗ picks c = 1 is some number 0 ≤ p ≤ 1 and

the probability that c = 2 is 1 − p. Moreover, the prover picks Hi uniformly

(denote the probability by u) over its space.

This probability is independent of how verifier picks c ∈ {1, 2}. Therefore the

probability that at the j-th round (H′, i,N′, P ′) is on the transcript of the IP
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if c = 1 is

p · u

and if c = 2

1− p

u

The simulator S in any round will pick an orthogonal matrix H′ with proba-

bility u.

The probability that i = 1 and i′ = 1 is

p

2

and the probability i = 2 and i′ = 2 is

1− p

2
.

In both cases the corresponding triple (H′, i,N′, P ′) will be written on the

transcript. Note that with probability 1/2 nothing is added to the transcript.

The probability that (H′, 1,N′, P ′) is written on the transcript in j-th round

during the m-th iteration of the repeat loop is

p · u
2m

.
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Therefore the total probability that (H′, 1,N′, P ′) is written on the transcript

in the j-th round is

p · u
2

+
p · u
22

+ ...+
p · u
2m

+ ...+ ...

=
p · u
2

(
1 +

1

2
+

1

4
+ ...+

1

2m−1
+ ....+ ....

)
=

p · u
2

.

Similarly the total probability that
(
H′

j, 2, Q
′
j

)
is written on the transcript in

the j-th round is (1−p)·u
2

. Hence, by induction, the two probability distributions

are identical

PrV ∗(T ) = PrS(T ).

Clearly, P the expected running time of the prover is polynomial.



Appendix B
Computing sine and cosine efficiently

Let p(n) be any desired publicly known positive polynomial. Recall that

sin
( π

2p(n)

)
=

1

2
<

1

2
, 2− <

1

2
, 2 + · · ·+ <

1

2
, 2 >> · · · >︸ ︷︷ ︸

p(n)−1

cos
( π

2p(n)

)
=

1

2
<

1

2
, 2+ <

1

2
, 2 + · · ·+ <

1

2
, 2 >> · · · >︸ ︷︷ ︸

p(n)−1

.

Suppose we have to compute sin
(

l·π
2p(n)

)
for some 0 ≤ l ≤ 2p(n).

sin(α + β) = sin(α) cos(β) + sin(β) cos(α)

cos(α + β) = cos(α) cos(β)− sin(α) sin(β)

Write l =
∑k

i=0 xi · 2i, xi ∈ {0, 1} and k ≤ p(n). WLOG we can assume that l

is not even.

sin
(

l·π
2p(n)

)
= sin

(
π

2p(n)−k + · · ·+ π
2p(n)

)
= sin

(
π

2p(n)−k

)
cos

(
[
∑k−1

i=0 xi2
i]π

2p(n)

)
+ sin

(
[
∑k−1

i=0 xi2
i]π

2p(n)

)
cos

(
π

2p(n)−k

)
.

Note that sin
(

π
2p(n)−k

)
and cos

(
π

2p(n)−k

)
can be computed directly. Now we

can recursively compute cos

(
[
∑k−1

i=0 xi2
i]π

2p(n)

)
and sin

(
[
∑k−1

i=0 xi2
i]π

2p(n)

)
. But since
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sin(θ)2 = 1 − cos2(θ), in recursion we will only have to compute either

cos

(
[
∑k−1

i=0 xi2
i]π

2p(n)

)
or sin

(
[
∑k−1

i=0 xi2
i]π

2p(n)

)
.

Clearly depth of the recursion is k ≤ p(n) and for with each recursive step we

will have four values, with each value is of size O(p(n)). Hence in total running

time is at most O(p(n)) operations. Similarly, one can show that cos
(

l·π
2p(n)

)
for

any 0 ≤ l ≤ 2p(n), can be computed in polynomial time.


