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ABSTRACT

Robotic micromanipulation is a widely used experimental technique to physically interact with

a microscale sample under a microscope, and has found important applications in cell microinjec-

tion, mechanical characterization of biomaterials, and assembly of micro-parts. Force sensing and

control play important roles in robotic micromanipulation. For instance, monitoring the contac-

t force in cell injection indicates the moment of cell membrane penetration, and controlling the

grasping force of a microgripper allows accurate characterization of the mechanical properties of

a material being manipulated. Recently, force-controlled robotic micromanipulation has found its

new application in studying the neuron-level mechanobiology of Drosophila larvae. Specifically,

the capability of accurately applying millinewton-level touch stimuli to a Drosophila larva and si-

multaneously observing resultant fluorescence signal transmissions in its mechanosensitive neurons

will enable novel research on mechanisms of the animals mechanotransductive neural circuitries.

The conventional method is to conduct the experiment manually, which is time consuming and

requires extensive training for operators. A robotic micromanipulation system designed for this

type of experiments could greatly facilitate the mechanobiology research on Drosophila with much

higher accuracy, efficiency, and repeatability.

In this thesis, a force-controlled robotic micromanipulation system is developed for simulta-

neously applying accurate mechanical stimuli and quantifying fluorescence neuron transmission

signals in Drosophila larvae. The system employs an elastomeric microdevice for immobilizing in-

dividual larvae on a substrate, and a microelectromechanical systems (MEMS) piezoresistive force

sensor for applying a closed-loop controlled touch stimulus to a larva. A micromanipulator and a

microscope XY stage are coordinately servoed using orchestrated position and force control laws

for automatic operations. The system performs force-controlled larva touching and fluorescence

imaging at a speed of four larvae per minute, with a success rate of 92.5%. A new force control
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architecture, including a compensation-prediction scheme and a switched fuzzy to proportional-

integral-derivative (fuzzy-PID) controller, is also proposed to effectively improve the dynamics of

the force control system. The compensation-prediction scheme is employed to accommodate force

measurement noise, system modelling errors, time delays and lack of position feedback from the

micromanipulator. The switched fuzzy-PID controller is proposed to ensure the fast convergence

and small steady-state oscillation of the system. Compared to conventional PID control scheme,

the proposed architecture reduces the force overshoot to <5% and settling time to <0.2% s.

To verify the effectiveness of the developed system, it is used to apply mechanical stimuli

to Drosophila larva with fluorescence-labelled class III ddaA neurons (which is known to be re-

sponsible to mechanical stimulation). Similar responses of the neural transmissions are acquired

compared to those reported in the literature (obtained by manual operations), and significantly

improved accuracy and efficiency are demonstrated. Leveraging the systems capability of accu-

rately controlling the stimulation force, Mechanical stimuli were applied at different force levels

(0.25-2 mN) to the larva samples, and experimentally determined, for the first time, the minimal

force level to which the class III ddaA neurons of a Drosophila larva start to respond. This robot-

ic system will greatly facilitate the dissection of mechanotransduction mechanisms of Drosophila

larvae, and the proposed force control architecture could also be readily applied to other robotic

micromanipulation systems to improve their dynamic performance.
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RÉSUMÉ

Micromanipulation robotique est une technique d’interagir physiquement avec un échantillon

sous un microscope, où un niveau de précision du mouvement est nécessaire qui ne peut être at-

teint par la main de l’homme sans aide. Cette technique est couramment utilisé dans l’injection

de cellules, propriété mécanique caractérisation des matériaux et l’assemblage de pices sous mi-

crométrique, etc.

Le sensoriel et le contrôle de la Force jouent des rôles importants dans la micromanipulation

robotique. Par exemple, la surveillance de la force de contact à l’injection de cellules peut indiquer

le moment de la pénétration de la membrane cellulaire, et à commander la force de préhension

d’une micropince pourrait caractériser précisément les propriétés mécaniques d’un matériau.

Récemment, force contrôlée micromanipulation robotique a trouvé sa nouvelle application

dans l’étude du comportement danger-fuite de Drosophila larves. La capacité d’appliquer avec

précision stimuli niveau de millinewton tactiles à Drosophila larves et en observant simultanément

leurs réponses de fluorescence résultantes dans la transmission des neurones mécanosensible per-

mettra de nouvelles études de circuits mécanotransduction neuronal. Le procédé classique consiste

à réaliser l’expérience manuellement, ce qui prend du temps et nécessite une formation complète

pour les opérateurs. Un systme de micromanipulation robotique capable d’appliquer avec précision

des stimuli mécaniques pourrait grandement faciliter la recherche de mécanobiologie sur Drosophi-

la, et peut éventuellement mener à de nouvelles découvertes dans mécanotransduction des circuits

de neurones.

Des efforts considérables ont été faits dans le domaine de la micromanipulation robotique force

contrôlée. Cependant, les systèmes existants de micromanipulation forces contrôlées sont toujours

sujettes au bruit de mesure, erreur de modélisation, la temporisation et la rétroaction insuffisante.

Pas de solutions universelles à ces questions ont été proposées. Dans cette thèse, un régime
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d’indemnisation-prédiction est proposée pour résoudre le bruit de mesure, erreur de modélisation,

la temporisation et la rétroaction insuffisante tout à fait. Un contrôleur flou-PID commuté est

proposé pour garantir la convergence rapide et petite oscillation d’état stable. L’idée de cette

architecture de contrôle se résume comme suit: le inobservabilité causé par des retours insuffisants

est résolu par une transformation mathématique des variables d’état de combiner deux termes

inconnus dans un terme inconnu équivalent, puis une extension à gain élevé observateurs de bruit

insensible (EHGO) estimations ce terme inconnu équivalent, ce qui rend le systme dépourvu de

termes inconnus. Enfin, un prédicteur de Smith pour compenser le retard de temps. Le contrôleur

flou converge la force de contact à la valeur objective à la vitesse maximale possible. Le système

passe alors au contrôleur PID lorsqu’un seuil est atteint pour minimiser l’oscillation d’état stable.

Les expériences montrent que cette architecture de commande réduit le temps de dépassement et

de régler de manire significative, en dépit de la présence d’erreurs de modélisation, bruit de mesure,

temps de retard, et la rétroaction insuffisante.

Le système utilise également une caméra de fluorescence qui pourrait observer les réponses

de fluorescence dans la transmission des neurones mécanosensible de Drosophila larve. fonction-

nalité de téléoperation supplémentaires, telles que manipulation via clavier, est également adopté

pour faciliter davantage la procédure expérimentale. Les expériences biologiques montrent que la

force de contact contrôlé avec précision pourrait stimuler les larves pour afficher le changement

correspondant de l’intensité de fluorescence. Par rapport au fonctionnement manuel, ce systme

améliore considérablement l’efficacité et réduit la formation requise pour les opérateurs.
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CHAPTER 1
Introduction
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1.1 Robotic Micromanipulation Systems for Biomedical Research

Robotic micromanipulation refers to the robotic science and technology for physically inter-

acting with microscale objects, which is typically performed under a microscope. Examples of

micromanipulation tasks for which robotic technologies can be used include micro-assembly of mi-

croelectrochemical systems (MEMS) parts, orientation, transfer, and microinjection of biological

cells, mechanical stimulation of small organisms, just to name a few. Robotic micromanipulation

systems are systems that benefit from technologies in a variety of fields such as automation, optics,

computer vision, and sensory to facilitate micromanipulation tasks, which would be less effective

or less accurate if done manually. Robotic micromanipulation systems of bio-samples and soft

materials (e.g. cells, tissues, small organisms, PDMS (Polydimethylsiloxane) and hydrogel, etc.)

are crucial in biological, material and medical research. In the past two decades, numerous robotic

systems capable of specific micromanipulation tasks such as single-cell transportation [1, 2, 3],

high-throughput cell injection [4, 5, 6, 7, 8, 9, 10], cutting [11], grasping [12, 13, 14, 15], deposition

[16, 17], and orientation [18, 19, 20], cell/tissue mechanical characterization [21, 22, 23], and whole

organism injection [24], to name a few. These robotic systems operate efficiently and consistently,

and thus could significantly improve the reproducibility and throughput of the biomanipulation

procedures and even enable new types of studies that cannot be fulfilled by conventional techniques.

Contact force is involved in a wide range of micomanipulating interactions (i.e. microgripper

and test subject, glass pipette and cell membrane, etc.). Force sensing and control are essential

technologies in robotic micromanipulation [25, 26]. Measurement of interaction forces in a real-

time manner between a biological sample and an end-effector serves as an additional feedback to

the manipulation procedure, and could improve the robustness and the dexterity of robotic micro-

manipulation systems. For instance, the measurement of indentation forces during cell injection

could precisely predict the moment of penetration of cell membrane and thus initialize injecting

the material [27, 28, 6]. Closed-loop control of grasping force levels during robotic cell pick-place

using a microelectromechanical systems (MEMS) microgripper guarantees secured grasping while

avoiding cell damage by overlarge forces [12].
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Accurate contact force regulating has been proven useful for applying mechanical stimuli

to in-vivo bio-samples and studying their mechanotransduction responses [29, 30, 31, 32]. Given

that most biomanipulation tasks require optical microscopes, advanced optical imaging techniques

could be conveniently implemented on a robotic micromanipulation system to visualize real-time

mechanotransduction responses of bio-samples.

Drosophila is one of the most popular model organisms for studying sensory mechanotransduc-

tion and the related molecular and cellular mechanisms [33]. Its behavior at presence of mechanical

stimuli has been thoroughly studied [34, 35, 36]. A recent research proved that under millinewton-

level touches at anterior segments of body, Drosophila larvae tend to reorient and select a new

path for further movement [34]. Follow-up genetic and neural experiments showed that a set of

∼50 interconnected neurons expressing the cell-surface protein Turtle (Tutl) are responsible for the

reorientation. These interesting discoveries partially unveiled the unknown underlying mechanisms

governing navigation patterns in response to mechanical stimuli, and further more, the biological

explanation of larvae’s survival instinct at the presence of environmental danger. However, despite

these merits, all current study applied forces to the Drosophila larvae manually, resulting in errors

due to human involvement: In manual operations, the touch force is measured through visual esti-

mation under an optical microscope [34]. The stiffness of a hair is first calibrated with a weighing

scale, and the deformation of the hair under the desired amount of force is recorded. When the

biological experiment is conducted, the operator visualizes the deformation of the hair under the

microscope, and manually controls the touch force to reach the desired level through human-eye

visualization of the hair deformation [34]. This technique is inaccurate, and may cause significant

variations in the biological results. An automated system capable of regulating touching force is

highly desired.

Paralleling mechanical stimuli upon Drosophila larvae and fluorescent calcium imaging of spe-

cific neural networks (i.e. class III dda A, tutl, etc.) will enable the investigation of roles of neurons

in governing the touch-induced reactions. However, at current level of study, experimental setups
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previously employed [34, 35, 36] lack in-vivo immobilizing Drosophila larvae for fluorescent imag-

ing. In addition, the gentle touch was applied manually using a fine hair [34] or an eye lash [35],

resulting in inaccurate open-loop force. Single level touch force was applied, so the relationship

between touch force and fluorescence intensity could not be obtained. A robotic micromanipula-

tion system capable of high-resolution touch force control and quantitative fluorescent imaging is

highly desired. Biological experiments may require large quantities of samples to be tested, which

may lead to a heavy workload for a human operator and possible cause large variations in experi-

mental results due to human fatigue and inconsistency. Therefore, high throughput is a desirable

characteristic of the micromanipulation system to be developed.

1.2 Thesis Objective

The overall objective of my Ph.D. research is to develop an automated robotic micromanip-

ulation system with advanced touch force controller for studying the touch-related neural circuits

in Drosophila larvae. The detailed objectives are listed as follows:

1. To design the architecture and integrate the hardware of a robotic micromanipulation sys-

tem, including two micromanipulators (microrobots), a fluorescent microscope, and a digital

camera.

2. To develop the system control interface using Visual C++, which can display the camera

video in real time (≥ 30 Hz) and control the motions of the two microrobots via GUI buttons.

3. To develop a polymer-based microdevice for immobilizing Drosophila larva in an array to

facilitate the robotic micromanipulation.

4. To design and implement an advanced force control law that includes a switched fuzzy-PID

controller and a noise-insensitive EHGO (extended high gain observer), which overcomes the

inherent control challenges of the system such as nonlinearity, unknown modeling terms, and

measurement noise.

5. To perform biological experiments using the robotic system and study the signal transduction

of the Tutl-positive neural circuits in response to force-regulated touches.
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1.3 Thesis Organization

This thesis is organized as follow:

Chapter 1 describes the objective of this research; Chapter 2 gives a brief introduction to

the current research and common issues of force controlled robotic micromanipulation; Chapter

3 describes the general layout and setup of a robotic micromanipulation platform, with a simple

PID controller integrated into the system; Chapter 4 gives a new switched fuzzy-PD controller

that significantly improves system performance; Chapter 5 give a compensation-prediction scheme

as a solution to the common issues (time delay, measurement noise, modeling error and insufficient

feedback) with the micromanipulation systems; and Chapter 6 demonstrates the biological results

on Drosophila larvae samples.
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Robotic systems improve the efficiency and accuracy of micromanipulation tasks over conven-

tional manual operations. Force control has been widely involved in robotic micromanipulation

systems to provide better performance. However, the characteristics that differ interaction forces

at microscale from that at macroscale make closed-loop force control in robotic micromanipulation

a challenging task. In this paper, we review the state of the art of force-controlled robotic micro-

manipulation techniques. We first present typical robotic micromanipulation tasks for biological

samples. Commonly used force sensing and actuation tools for robotic micromanipulation are then

discussed, and their advantages and disadvantages are pointed out. Force control design techniques

and applications in various types of robotic micromanipulation tasks are presented. The influence

of major difficulties in force controller design, including modeling error, time delay, measurement

noise, insufficient feedback, and nonlinearity are outlined. Current control architectures and their

limitations are summarized finally.

Index Terms-Robotic micromanipulation, force control, microscale, biological samples, Drosophi-

la larva, control architecture
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2.1 Introduction

Robotic micromanipulation is an important experimental approach for physical interactions

with biological cells and small organisms. It has resulted in novel capabilities for biological and

biomedical research, and found important applications in numerous domains such as genetics,

development, pathology, and pharmaceutics, to name a few. Combining techniques in robotics,

automation, and micro-electro-mechanical systems (MEMS), robotic micromanipulation systems

is becoming increasingly accurate, intelligent, and efficient; and are able to manipulate a wide

range of biological samples, from small organisms, to single cells, and to subcellular organelles.

Since late 1990s, a variety of effective robotic micromanipulation systems have been developed to

tackle various problems, aiming to automate the micromanipulation processes and provide much

improved manipulation precision, efficiency, and consistency.

When performing micromanipulation tasks, the operator always needs to position and physi-

cally interact (with force) with small objects. Mature techniques already exit to solve the position-

ing problem. Successful microscale positioning is demonstrated in various robot-assisted operations

[1, 2, 3, 4]. However, only positioning capability under microscope is not adequate for more sophis-

ticated micromanipulation tasks, such as operations that require high degree of dexterity, because

microscale objects are usually fragile and easy to damage. Thus, position-only strategies may not

ensure sample integrity and thus cause the manipulation task to eventually fail. This is the reason

why force control is critical in many robotic micromanipulation tasks. In addition, obtaining the

interaction force information is also one of the major objectives for certain applications such as

mechanical property characterisation of bio-samples. However, the material’s properties at the mi-

croscale set obstacles for designing a satisfactory force controller. For instance, the adhesion force

between a sample and an end effector becomes dominant at the microscale, which adds additional

uncertainties to the system model; the interaction force is also at the micronewton to nanonewton

range, making the force feedback signal noisy. These factors and make it particularly challenging

to perform the force control in robotic micromanipulation.
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In this review, typical robotic micromanipulation tasks for bio-samples are presented. Com-

monly used force sensing and actuation tools for robotic micromanipulation are discussed. Force

control design techniques and applications are reviewed. Major difficulties in force controller design

are analysed. Current control architectures and their limitations are reviewed in detail.

2.2 Robotic Micromanipulation of biological Samples

2.2.1 Robotic Micromanipulation for Cell Injection

Cell injection is a method to deliver foreign material into target single cells with a glass

pipette. Among various experimental methods that could introduce foreign materials into single

cells, including virus vectors [5, 6], lipofection [7], electroporation [8, 9, 10], and microinjection

[11], microinjection is advantageous for the following reasons. Virus vectors and lipofection rely

heavily on engineered molecules to introduce foreign molecules into cells. Electroporation and

microinjection both belong to the same category of physical methods, which use electrical and

mechanical forces respectively to make the foreign material cross over the cell membrane [8]. Cell

injection punctures directly the cell membrane with a glass pipette and introduce the material by

applying a well controlled pressure pulse. Fig. 2–1 shows a photograph of injecting a mouse embryo.

Electroporation may cause less damage to cell compared to microinjection. However, microinjection

has an edge that the quantity of the material delivered can be controlled by regulating the duration

and amplitude of the pressure pulse applied. In addition, microinjection could target specific

intracellular locations (e.g., nucleus and cytoplasm) to deposit the material. Compared with other

experimental methods, microinjection is applicable to many types of cells and materials, which

makes it a universal solution.

Cell immobilization is a method to immobilize target cells which could significantly simplify

cell search/positioning tasks. Four cell immobilization methods have been reported. The first

method immobilizes a cell with a holding pipette [12]. The second method immobilizes multiple

cells in a pattern via vacuum suction [13, 14, 15]. The third method utilizes half circular grooves

with cavities to immobilize cells [16]. The last method attaches a single cell on a substrate by

gluing [17, 18, 19]. Note that all these methods require certain amount of manual operations.
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Figure 2–1: Cell injection of a mouse embryo, adapted from [12].

2.2.2 Robotic Transfer of Biological Samples

Another important application of robotic micromanipulation is bio-sample transfer. By trans-

ferring bio-samples from one place to another, several tasks, such as cell sorting and isolation [20],

cell-cell communication [21] and cell fusion [22], could be conducted. Specific tools have been de-

veloped to fulfill different tasks, including mechanical microgrippers, transfer pipettes, laser traps,

and untethered microrobots.

Microgrippers are end effectors that utilize two or more arms to conduct manipulation tasks

such as grasping, releasing, transferring, and even surgery [23, 24, 25, 26, 27]. Transfer pipettes

employ a pressure unit connected to a glass micropipette to aspirate and push cells [28, 29, 30].

Laser trapping is a technique based on the property that when a cell is illuminated by a focus

low-power laser on one side, the cell will overcome the viscosity force and move to the centre of

the laser beam [31]. Magnetically actuated microrobots are made from ferromagnetic materials

with the surrounding magnetic field regulated by currents in coils of external circuitry to act as

micromanipulators [32, 33].

2.2.3 Robotic Micromanipulation of Drosophila Larvae

Drosophila larva, as shown in Fig. 2–2, is a popular model organism for studying animal

behaviors, sensory mechanotransduction, and their underlying molecular and cellular mechanisms
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Figure 2–2: (A) Photograph of Drosophila larva in bright field, adapted from [37]. (B) Photograph
of Drosophila larva in fluorescence, adapted from [39]

[34, 35]. Increasing interests arise upon the fact that a Drosophila larva tends to turn/roll at the

presence of touch [36, 37, 38], which is the basis of their danger-escaping behaviors and is critical

for this creature to survive.

Numerous neuron types have been investigated to determine the relationship between the

mechanical touch stimuli and the neuronal responses. Even though most of the neuron types

found in the Drosophila larval body wall remain unexplored [38], it has been demonstrated that

Class I to IV neurons are nociceptive and related to larval locomotion, among which the Class III

md neurons contribute to the larval response to gentle touch, and can be activated by force stimuli

[38]. Therefore, Class III neurons have drawn increasing attentions in biological study [38, 39, 37],

and will be thoroughly investigated by our robotic micromanipulation system.

One method to investigate Class III neurons is to visualize their calcium signal transmission

through fluorescence imaging when mechanical stimuli are applied. In [38, 39, 37], eye lashes

were attached to a micromanipulator to control the depth of touch. In [36], human hairs were

used instead of eye lashes to perform the same type of experiments. The time-lapse history of

consecutive images of fluorescence intensity is given in [38]. Even though these experiments are

performed with open-loop controlled forces, biological advances have been made. The neuron that

shows significant change in fluorescence intensity has been identified to be Class III ddaA [38].
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2.3 Force Sensing and Actuating Tools

2.3.1 Force Sensors

Force sensing at the microscale becomes different from that at the macroscale [40, 41]. Two

types of force sensors are commonly used force measurement at the microscale level, including

piezoelectric and piezoresistive sensors.

2.3.1.1 Piezoelectric Sensor

Piezoelectric force sensors are known for its versatility in various applications. It is a mature

measurement technique with outstanding inherent reliability. Its basic mechanism is related to the

electric dipole moments inside a piezoelectric material, and the polarization changes at the presence

of mechanical stress. The reversible and linear piezoelectric effect manifests as the production of

a charge (voltage) upon application of stress (direct effect) and/or as the production of strain

(stress) upon application of an electric field [42]. Fig. 2–3 shows a piezoelectric sensor containing

multiple layers. Piezoelectric materials have good electromechanical properties for fabricating

micromachined sensors [43]: the piezoelectric phenomenon does not exhibit failure mode associated

with charge storage; it is reversible and typically linear [44]. Numerous studies have been conducted

on piezoelectric sensors. Piezoelectric microbalances have been developed as sensitive biological

and chemical sensors [45]. Piezoelectric effect is also proved to be useful in fabricating strain gauges

[46]. Piezoelectric transducers are used as muscle movement detectors for medical purpose [47].

Ultrasonic piezoelectric sensors are used in acoustic emission detection [48].

2.3.1.2 Piezoresistive Sensor

Piezoresistive sensors are among the earliest MEMS devices [50]. They are easy to fabricate

and provide relatively high accuracy of measurement (some are at nanonewton level) and the

readout circuit is simple (usually a Wheatstone Bridge), which facilitates its use in robotic micro-

manipulation systems. The piezoresistive effect describes the change in the electrical resistivity

of a material (usually a semiconductor or a metal) at presence of mechanical strain. Unlike the

piezoelectric effect, the piezoresistive effect only causes electrical resistance to change. The change

in resistance is mainly due to two factors: the change in geometry and the change in resistivity.
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Figure 2–3: Schematic drawing of a piezoelectric sensor containing multiple layers, adapted from
[49].

Figure 2–4: Schematic drawing of a paper based piezoresistive force sensor, adapted from [53].

For metal, the change in geometry has a much higher influence than the change in resistivity. But

for semiconductor, it is the latter that contributes to the change in resistance (50-100 times more

than the geometry part) [50]. Fig. 2–4 shows the schematic of a paper based piezoresistive force

sensor. This fact manifests as the principle of piezoresistive force sensors with a very high coeffi-

cient of sensitivity, making it a better choice for MEMS than metallic material [51, 52]. Silicon is

a common material for piezoresistive sensing.

Silicon piezoresistors have been widely used for various sensors including pressure sensors,

accelerometers, cantilever force sensors, inertial sensors, and strain gauges, among which cantilever

force sensors and strain gauges are extensively used in microrobotics [50]. Cantilever beams are

simple in structure and inexpensive to build [54]. They form a variety of practical applications

of piezoresistive sensors, commonly used for force, displacement and mass sensing [50]. Several
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schemas have been proposed [55, 56, 57, 58, 59]. Besides these applications, cantilever beam sensors

are also widely used in environmental [60], chemical [61] and biological sensing [62, 63, 64]. Strain

measurement is another important application in microrobotics. Interests in semiconductor strain

sensing was generated since the discovery of the piezoresistive effect in silicon and germanium in

[65]. An increasing number of recent studies focus on integrating rosette patterns into silicon die for

integrated circuit packaging stresses measurement [66]. 3D sensing capability is also demonstrated

when implemented with planar arrangements of pseudo-hall effect [67]. In a word, piezoresistive

sensing provides sensitive, accurate and easy-to-use measurement, as well as low cost. These

key characteristics make piezoresistive sensing an effective and reliable choice for force sensing in

robotic micromanipulation.

2.3.1.3 Force Sensor Based on Hall Effect

The Hall effect allows the detection of changes in magnetic field, which has been fully ex-

ploited in fabrication of force sensors, angular velocity sensors and displacement sensors, and so

on. Force sensors based on Hall effect provides high sensitivity and repeatability, small footprint,

low power consumption, and high corrosion resistance [68, 69, 70]. Hall-effect force sensors also

have certain limitations. For instance, the Hall-effect sensing components are more susceptible to

temperature change, and have relatively low linearity. Single-chip Acorn RISC Machine (ARM)

based temperature compensation methods have been investigated in [71].

2.3.2 Actuators

2.3.2.1 Micromanipulator with Step or DC Motor

In conventional optics domain, motorized micromanipulators integrated into translational or

rotational stages are classic motion control tools. These devices usually employ a stepper or DC

(direct current) motor, and an anti-backlash screw-and-nut mechanism to translate linearly the

rotation of motor into the movement of stage. DC motors generate smooth and continuous motion,

while stepper motors rotate in discrete steps at response to electrical pulses [72].

Micromanipulators with stepper motors work by the principle of magnetic attraction. By

alternately injecting current into the individual windings in the motor stator, a turning and a
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Figure 2–5: A photograph of MP-285 stepper motor based micromanipulator.

holding torque are created which turns and stops a permanent magnet and/or an iron rotor,

respectively. Unlike DC motors, a stepper motor has an inherent holding torque that maintain

the position of the device during the power-off state for a short period of time. The discrete

characteristic of this device enables it intrinsic position feedback by simply counting the number

of pulses it receives. Advanced commercial systems, such as MP-285 (Sutter Instrument, Fig.

2–5), could achieve over 20 mm range while maintaining a resolution better than 1 µm. However,

stepper motors have the risk of losing steps, which requires careful operation and maintenance.

Micromanipulators with DC motors are characterized by smooth and continuous motions and

wide speed ranges. They do not have build-in position feedback; however, if used with an encoder,

these devices could provide sub-micrometer accuracy. When an electric current is applied into

the coil of wire inside a permanent magnetic field, the coil interacts with the magnetic field and

starts to turn. The property of DC motor does not allow it maintain position without electric

power or external break, so it does not posses the ”set and hold” function as a step motor. It

consumes energy when holding a position and generates heat. On top of that, even with an

incorporated encoder that provides position feedback, it may suffer from additional oscillation due

to the hysteresis effect.
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2.3.2.2 Micromanipulator using Magnetic Levitation

Micromanipulators based magnetic levitation technology have been investigated in the last

decade [73, 74, 75, 76]. These devices do not require tethering structures, which allow them to be

implemented and operated under environments which could not be accessed by other methods, such

as blood vessels and hazardous environments [74]. This characteristic also eliminates vibrations of

the micromanipulation systems, which are usually caused by structural compliance [74].

However, magnetic-levitation-based (MagLev) micromanipulators have relatively poor posi-

tioning resolution compared to mechanical micromanipulators, such as motor-driven micromanip-

ulators. The positioning resolution of the MagLev micromanipulators is on the order of magnitude

of 0.1 mm [74, 75], while conventional mechanical micromanipulators could achieve sub-micrometer

resolution. Moreover, the performance of MagLev micromanipulators is sensitive to its payload.

Different levels of payload result in different positioning resolution values [74].

2.3.2.3 Micropositioner

A micropositioner is a device that controls the position and the movement of an object at

the precision of micron level, with a certain amount of degrees of freedom (DOF) [77]. This is

extremely practical when position and attitude control under disturbance are required. Originally

patented in 1980s, micropositioners have gone through rapid development and have held substan-

tial importance in robotic micromanipulation, with ever improving performance, including speed,

precision, stability, DOF and minimization. Many practical designs have been proposed in recent

studies, with different design objectives. Some designs aim to extend the DOF, which allows for

full 6-DOF (3 translational and 3 rotational) manipulation [78, 79]. Extended travel range, ground

plate-free structure and immunity from levitation are analyzed in [80]. Mass balancing concept is

adopted for vibration rejection [81]. Simple planar structure with low electricity consumption is

tested in [82].

Despite these differences, current designs share the following characteristics. Their mecha-

nisms are mostly rotory/joint parallel kinetic mechanism (PKM) because PKM facilitates design

and fabrication. Most designs are actuated by comb drive since comb drive actuation theories are
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mature and easy to realize. Most of them are fabricated from silicon on insulator (SOI), silicon

bulk or poly silicon because these operations could be done through traditional microfabrication

processes.

Some disadvantages still exist. These designs have limited motion ranges, and their linear

ranges is even more limited. Pull-in effect is hard to avoid for comb-drive actuators. Some require-

ments (e.g., structural simplicity and DOF) contradict one another, and thus compromises must be

made. Despite these negative factors, micropositioners remain irreplaceable in position/attitude

control.

2.4 Force-Controlled Robotic Micromanipulation and its Applications

2.4.1 Force Control Strategies in Robotic Micromanipulation

The purpose of current force-controlled micromanipulation tasks could fall into two categories

[83]. One is to regulate the impact force between sample and end effector [2, 84, 85], and the other

is to maintain a certain force level for secured micrograsping [86, 87].

In the case of the impact force regulation, both position and force information are needed. One

common approach is to switch between position control and force control [84, 85]. The switching

signal is usually based on position and force signals to avoid causing damage to the sample or

to the end effector. These two signals also serve as the input of controllers. The controller

switch is triggered when the end effector is close enough to the sample, or the interactive force

exceeds a threshold value. In addition to this conventional strategy, position-force hybrid control

is investigated in [88].

In the case of gripping force control, position feedback may not be needed, but model-based

analysis of the sample is imperative to achieve satisfying control performance and to avoid dam-

aging the sample. Frequency domain analysis is adopted [89] where the principal component is

acquired via step response, then the controller could be designed with mature linear system theo-

ries. Time domain analysis is another useful approach when the system demonstrates nonlinearity

[87] and uncertainty [90]. The advance in nonlinear and time dependent system theories in the last

few decades significantly helped to tackle robotic micromanipulation systems that could not be
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treated as linear time invariant systems, such as thermally actuated grippers [91] and actuators

with hysteresis effects [92].

One fact to notice is that force feedback alone is not enough for force control. Position signal

is used in a variety of control architectures [93, 94, 95]. Different methods are developed to acquire

position signal. Direct vision position feedback via microscope cameras is straightforward and

is commonly used [15, 96, 14]. Ultrasonic measurement is employed when vision is difficult to

implement [97], but the equipment is usually costly. When using a micromanipulator with stepper

motor or encoded DC motor, position feedback could be directly acquired by assuming that the

deformation of end effector could be neglected. End effector deformation could be indirectly

measured via displacement augmentation approach such as by measuring the deflection angle of

laser reflected from a cantilever beam [98], or by calculating the position signal from force signal

[99] if the mechanical model of the system is reliable.

2.4.2 Applications of Force-Controlled Micromanipulation

2.4.2.1 Force-Controlled Micro and Nanoassembly

Micro and nanoassmbly represent a typical example of force-controlled robotic micromanip-

ulation. The major objective of the control task in micro and nanoassembly is position control.

However, the force control serves as an important inner loop to push an micro-object to a desired

location. Pushing directly in an open-loop manner always cause the object to be damaged. In

[100, 84], AFM cantilever tips are employed to push nanoparticles with traditional linear analysis

in frequency domain. In [88], hybrid control is adopted for successful insertion. Given the lack

of position feedback due to the difficulty in implementing a position sensor, multi-probe approach

was investigated in [101]. In [102], active force control is implemented to guide a particle along a

desired trajectory.

2.4.2.2 Force-Controlled MEMS Grasping Tools

MEMS grasping tools such as micro and nanogrippers, featuring two gripping arms, guar-

antee more reliable and controlled manipulation when operating in air and liquid environments

[103]. With microfabricated position and force sensors, the relative displacement of arms and the
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Figure 2–6: Force control result of a MEMS grasping tool, adapted from [106].

resultant force could be measured, from which the mechanical parameters of the object being ma-

nipulated could even be deducted. Early designs of MEMS grippers usually do not include force

sensors [104, 105]. Recently, for more dexterous manipulation of fragile micro-objects, especially

for soft materials, some new ideas emerge to perform closed-loop force control on MEMS grippers,

and force sensing ranges from micronewton [103] to nanonewton level [26, 106]. The steady state

oscillation could be as small as 10 nN (Fig. 2–6). Two-axis force-controlled gripper for shear

and compressive force control are realized in [86], for elastic and viscoelastic characterization of

soft materials. In addition to soft materials, closed-loop force control for hard material is stud-

ied in [95]. Conventionally, only elastic properties are analyzed. However, viscoelastic properties

are being paid increasing attention and are successfully extracted in [86]. Besides force control,

closed-loop positioning control are investigated in [107] to minimize tip gaps.

2.4.2.3 Automated Cell Microinjection with Injection Force Control

Cell injection plays an important role in biological studies, with applications in various areas

such as in vitro fertilization, sperm injection and drug development. Continuous efforts have been

made to automate the cell injection process. Manual injection efficiency relies heavily on operators’

skills and experience. The early stage of automated injection was focused on improving efficiency

over manual injection [108, 109]. Commercial open loop injection systems were introduced to

the market for adherent cells but survival rate of injected cells was not satisfactory [12]. Since
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2000, more attentions have been placed on improving the survival rate. Open-loop visual-assisted

monitoring and closed-loop force control are used in [12, 110] to improve the survival rate of

suspended cells after robotic injection. Sensorless force control using reaction torque observer is

demonstrated in [111] to reduce overall cost.

2.5 Issues with Force Control in Robotic Micromanipulation

Despite the wide application of force control in robotic micromanipulation systems, the com-

plexity of micromanipulation generates several difficulties that makes the force controller barely

work perfectly. The major difficulties are summarized as follows.

2.5.1 Modeling Error

Modeling error is defined as the difference between a real model and the ideal model. Modeling

errors have multiple origins. For thermal actuators, errors could come from system linearization

because some actuators are nonlinear [112]. Parameter inaccuracy also contributes to the total

modeling errors [113]. Environmental disturbance often results in periodic errors [114]. Model

deterioration provokes slow varying errors, such as applying a pure elastic model on viscoelastic

system [115]. Modeling errors make model based control schemes, such as MPC (model predictive

control) [116] and feed forward compensation [94] less effective.

2.5.2 Time Delay

Time delay is defined as the time interval between the control input and the response of the

system. Typical sources of time delay could be attributed to the data transfer through comports,

the back lash of mechanics, and the physical properties of test subjects [112], and so on. Time delay

deteriorates control system performance, and even destabilizes the system completely. Note that

failure to accurately measure the time delay could also be treated as an inaccuracy of parameter,

making some overlap between time delays and modeling errors.

2.5.3 Insufficient Feedback

Modern controllers may require multiple feedback modalities. For instance, H-infinity con-

troller requires the displacement of end effector [99]. Such information may not be viable due to

lack of position feedback in some robotic micromanipulation systems. This lack of information
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also reduces the controllability and observability of the system [117]. Some advanced actuators

have built-in sensors but its cost is also significantly increased, which is not viable through normal

commercial silicon based fabrication services. Solving this problem is meaningful for academic and

commercial purposes.

2.5.4 Measurement Noise

Measurement noise is defined as the white noise (whose average is 0) in the measurement.

Measurement noise is always generated by hardware and environmental disturbance. Measurement

noise makes calculating the time derivative of signal difficult, while the time derivative is often

used in controllers, such as PID controller, MPC controller and fuzzy controller.

2.5.5 Nonlinearity

Real control problems always include non-linearity. In this case, the system dynamics could

not be written in linear differential equations, transfer functions do not exist, and methods based

on frequency domain could not be applied.

2.6 Commonly Used Force Control Architectures

The common issues (modeling error, time delay, measurement noise and insufficient feedback)

always appear in the same control problem simultaneously. Some approaches have been investi-

gated to tackle some of these issues when others do not exist, but no approach could tackle all

these issues simultaneously.

The most common way is to ignore details of the system model and implement a simple

proportional-integral-derivative (PID) controller, which guarantees zero static error. However,

because the system dynamics is not considered in the controller design and the time delay exists,

the PID controller usually leads to large overshoots [86]. By tuning the PID coefficients, the

overshoot may be reduced but settling time is also sacrificed [118]. The Smith predictor is ideal to

treat the time-delay effect of control systems which a secondary loop to neutralize the effect of the

delay block e−Ls, but requires a precise time invariant model [119, 120], which is unsuitable for

our case here because unknown modeling errors exist in the robotic micromanipulation systems.

Another method is to ignore modeling errors completely to obtain a simplified linear system, and
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analyze it in frequency domain [121]. However, this method leads to long settling time and static

state oscillations.

Another common method to compensate for unknown system parameters and modeling errors

is to implement an extended high gain observer (EHGO) [122]. Conventional EGHOs are difficult

to use for force control in robotic micromanipulation, because small force signals are always noisy

whereas conventional EHGOs are very sensitive to noise in feedback [123, 124].

Advanced control schemes have also been proposed for a variety of robotic micromanipulation

systems. H-infinity and µ-synthesis were investigated in [99] to account for modeling errors of

piezoelectric microactuators. These methods require the feedback of the actuator output, which

can not be implemented in systems with sensorless actuators. Gain scheduling was adopted in [113]

to adaptively compensate for system nonlinearity, but modeling errors were neglected in this study.

In [125], unknown terms were estimated during the initial step of control system. This method

could only treat constant modeling errors, and causes large overshoot during each estimation. In

[93], an iterative procedure, based on an eigenstructure assignment methodology coupled with

auto-scheduling, was proposed to treat model uncertainties.

In [94], a fuzzy-PID controller with feedforward compensation was adopted to account for

model uncertainties. However, in these two systems [93, 94], only simulations were conducted and

no real control experiments were demonstrated. In [95], a sliding mode controller was employed

for a gripper system to compensate for uncertainties, but the system was only tested on a hard

material (copper) without any effect of the material compliance (e.g., elasticity and viscoelasticity).

In our case, soft materials are manipulated and the slow dynamics of these soft materials will bring

in additional uncertainties in the control system. Besides, this work does not involve time delay.

Passive bilateral control was investigated in [126] to account for time delays, but this approach

showed large steady state errors. Moreover, all control methods introduced above fail to account

for time-varying modeling errors, time delays, and feedback measurement noises simultaneously.
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Due to the aforementioned issues commonly existing in force control for robotic microma-

nipulation, new control schemes are highly desired to tackle these challenges simultaneously and

improve the control system performance.

2.7 Conclusion

Robotic micromanipulation systems significantly improve the efficiency and accuracy of ma-

nipulation tasks compared to manual operations. Force sensing and control are widely used to

improve system performance for increasingly demanding micromanipulation tasks, such as micro-

and nanoassembly, force-controlled grasping, and automated cell injection. Due to the complexity

of micromanipulation systems, there are several factors that hinder the force control performance,

including modeling error, time delay, measurement noise, insufficient feedback and nonlinearity.

No existing control strategies could tackle all these problems altogether, and new control schemes

are highly desired.
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The connection between Chapter 2 and Chapter 3

In Chapter 2, existing robotic micromanipualtion techniques and associated force control

strategies were reviewed. In the rest of this thesis, a novel force-controlled robotic micromanipu-

lation system and will be developed for mechanical stimulation and calcium fluorescence imaging

of Drosophila larvae. In Chapter 3, the entire micromanipulation system will be described, and a

conventional proportional-integral-derivative (PID) controller will be implemented for regulating

the touch force. The system is able to immobilize four larvae samples in an array. Two microma-

nipulators are coordinated to apply force-controlled mechanical stimuli to larva samples one after

another. This system also features a fluorescence camera which allows for real-time imaging of

larva samples.
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CHAPTER 3
An Automated Force-Controlled Robotic Micromanipulation System

for Mechanotransduction Studies of Drosophila Larvae
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The capability of accurately applying millinewtonlevel touch stimuli to Drosophila larvae and

simultaneously observing their resultant fluorescence responses in mechanosensitive neuron trans-

mission will enable novel studies of mechanotransduction neural circuitry. This paper presents

an automated robotic micromanipulation system capable of force-controlled mechanical stimula-

tion and quantitative fluorescence imaging of Drosophila larvae, which significantly improves the

force regulation accuracy and operation consistency over conventional manual operations. An elas-

tomeric microdevice is developed for efficient immobilization of an array of larvae for subsequent

forcecontrolled touching. A microelectromechanical systems (MEMS) based force sensor is inte-

grated into the robotic system for closedloop force control of larva touching at a resolution of 300

N. Two micromanipulators are coordinately servoed using orchestrated position and force control

laws for automatic operations. The system performs simultaneous force-controlled larva touch-

ing and fluorescence imaging at a speed of four larvae per minute, with a success rate of 92.5%.

This robotic system will greatly facilitate the dissection of mechanotransduction mechanisms of

Drosophila larvae at both molecular and cellular levels.

Index Terms-Robotic micromanipulation, force control, calcium imaging, Drosophila larva,

MEMS force sensor, neural circuitry, mechanotransduction.

43



3.1 Introduction

Robotic micromanipulation of biological samples (e.g., cells, tissues, and small organisms)

has found important applications in biological and medical research. Significant efforts have been

spent on developing robotic systems capable of performing specific biomanipulation tasks such as

high-throughput cell injection [1, 2, 3, 4, 5, 6, 7], single-cell transportation [8, 9, 10], grasping [11,

12, 13, 14], cutting [15], orientation [16, 17, 18] and deposition [19, 20], cell/tissue mechanical

characterization [21, 22, 23], and whole organism injection [24], to name just a few. These robotic

systems operate in a highly consistent and efficient manner, and thus could significantly improve

the reproducibility and throughput of the biomanipulation procedures and even enable new types

of studies that cannot be fulfilled by conventional techniques.

Force sensing and control have played critical roles in robotic micromanipulation [25, 26].

Real-time measurement of interaction forces between a robotic end-effector and a biological sample

provide an additional feedback of the ongoing manipulation, and could improve the dexterity and

robustness of biomanipulation systems. For instance, the detection of indentation forces during cell

injection can accurately predict the penetration of cell membrane and thus trigger the subsequent

material deposition [27, 28, 3]. Closed-loop control of grasping force levels during robotic cell pick-

place using a microelectromechanical systems (MEMS) microgripper guarantees secured grasping

while avoiding cell damage by overlarge forces [11].

The capability of accurately regulating interaction forces during robotic micromanipulation

may also prove useful for applying well-controlled mechanical stimulation to living cells or organ-

isms and studying their mechanotransduction responses and pathways [29, 30, 31, 32]. Since most

biomanipulation tasks are performed under optical microscopes, it is convenient to implement

advanced optical imaging techniques on a micromanipulation system to probe the instantaneous

mechanotransduction responses of bio-samples.
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Figure 3–1: A bright-field snapshot of an immobilized Drosophila larva being touched by a glass
pipette at the force level of 5 mN.

Drosophila is a popular model organism for studying sensory mechanotransduction and the un-

derlying molecular and cellular mechanisms [33, 34]. A recent study demonstrated that millinewton-

level touches at anterior segments of Drosophila larvae induced the larva’s reorientation and se-

lection of a new path for forward movement [35]. Follow-up genetic analysis and neural circuit

breaking experiments revealed that a set of ∼50 interconnected neurons expressing the cell-surface

protein Turtle (Tutl) are involved in the adjustment of moving direction. These exciting findings

shed light on the unknown mechanisms controlling navigational behaviors in response to mechan-

ical stimulation, and the further dissection of the Tutl -positive neural circuitry is needed.

Simultaneous mechanical stimulation of Drosophila larvae and fluorescent calcium imaging

of transmissions in Tutl -positive neural circuits will enable the investigation of roles of individual

Tutl -positive neurons in regulation of the touch-induced movement adjustments. To mimic the

real scenario where an object hits the larva body, a simple one-dimensional touch applied with a

fine hair was performed. However, the experimental setup previously employed [35] cannot carry

out this type of experiments because it lacks an effective mechanism for immobilizing Drosophila

larvae for fluorescence imaging. In addition, the gentle touch was applied manually using a fine

hair, and inconsistent touch locations and less accurate touch force regulations led to variations

in results obtained from different experiments and by different operators. A micromanipulation

system capable of high-resolution touch force control and quantitative fluorescent imaging is highly

desired. The system should be able to mimic the real object-hitting scenario by automatically
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applying one-dimensional touches (mechanical stimuli), to perform in-situ fluorescence calcium

imaging, and to guarantee a force range of 1-11 mN (a typical range adopted in manual operation)

and a resolution better than 1 mN (the smallest force required to discern changes in larva’s danger-

escaping behavior).

This paper reports the development of the first automated robotic Drosophila larva manip-

ulation system featuring closed-loop touch force control, microdevice-based larva immobilization,

and in-situ fluorescence calcium imaging upon stimulation. A microfabricated elastomeric device

is created to securely immobilize an array of larvae for subsequent force-controlled touching and

fluorescence imaging, and a MEMS piezoresistive force sensor is integrated into the system for

closed-loop force control at a resolution of 300 µN. An image processing algorithm is developed to

identify the larva and touch pipette tip. Two micromanipulators are coordinately controlled based

on microscopic vision feedback to apply quantitative mechanical stimulation to the immobilized

larva (Fig. 3–1), and touch-induced calcium level changes in Tutl -positive neurons are accurately

measured. Experimental results demonstrate that this micromanipulation system is capable of

simultaneous mechanical stimulation and fluorescence imaging of Drosophila larvae in an accu-

rate and consistent manner, which could enable a wide variety of mechanotransduction studies in

Drosophila.

3.2 Robotic Micromanipulation System Setup

3.2.1 System Architecture

As shown in Fig. 3–2(A), the robotic system employs a stereo fluorescence microscope (SZX-

16, Olympus), two three-degree-of-freedom (3-DOF) micromanipulators (MP-285, Sutter), a poly-

dimethylsiloxane (PDMS) larva immobilization device carried by micromanipulator 1 (left), and

an assembly of a glass pipette (tip size: 25 µm) and a MEMS piezoresiseive force sensor (AE801,

Kronex) mounted on micromanipulator 2 (right). Each of the two micromanipulators moves along

three orthogonal axes, with a motion range of 25 mm and a resolution of 40 nm. A fluorescence cam-

era (EXi-Blue, QImaging) is mounted on the microscope for high-sensitivity fluorescence imaging.

A host computer (Quad-Core 3.00GHz CPU and 6 GB memory), mounted with a motion-control
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Figure 3–2: Robotic micromanipulation system setup. (A) System setup photo. (B) Coordinate
frames associated with the robotic system. (C) Image projection model between the camera
coordinate frame and the image plane.
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card (PCIe-6259, National Instruments), is used to run algorithms of force data acquisition, imag-

ing processing, and motion/force control. The control program is implemented in Visual C++.

The sensor/pipette assembly is mounted with a tilting angle of 10◦. The whole system is placed

on an anti-vibration table to minimize vibrations.

Fig. 3–2(B) shows coordinate frames associated with the two micromanipulators (Xt-Yt-Zt

and Xe-Ye-Ze) and the camera (Xc-Yc-Zc), and Fig. 3–2(C) illustrates the image projection model

between the camera frame c and the image plane i. Denote the coordinate of a point P in frame

c by cP = (xc, yc), and the coordinate of the correspondingly mapped point p in image frame i by

ip = (u, v). The equation of scaled orthographic projection is:

 sx 0

0 sy


 u

v

 =

 xc

yc

 (3.1)

where sx and sy are the pixel sizes along the horizontal and vertical directions of the image plane,

which are calibrated off-line.

3.2.2 MEMS Piezoresistive Force Sensor

The MEMS piezoresistive force sensor (AE801, Kronex) was chosen for the following reasons.

First, it is an off-the-shelf commercial sensor which could save our effort of device fabrication.

Second, we need a measurement range of at least 0-11 mN and a resolution better than 1 mN

as discussed in the introduction, both of which can be satisfied by the chosen model. Last but

not least, the price of AE801 is affordable to allow for spare sensors in case of any damage. This

sensor is fabricated from a 150 µm thick silicon cantilever with two doped piezoresistors located at

its root (one on the top and one on the bottom). A Wheatstone bridge circuit is used to convert

resistance changes of the piezoresistors into voltage signals. After attaching the glass pipette to

the free end of the force sensor (Fig. 3–3(A)), the sensor/pipette assembly was calibrated using

a precision balance (MXX-123, Denver Instrument; force resolution: 10 µN). The sensor/pipette

assembly was controlled to contact a precision balance vertically (along Ze in Fig. 3–3(C)), and

readings of the balance (which represents the vertical component of the contact force Fo) and
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Figure 3–3: (A) Photograph of the piezoresistive force sensor with a glass pipette attached to the
free end. (B) Calibration curve of the sensor/pipette assembly. (C) A schematic of calibration
setup.
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Figure 3–4: PDMS Larva immobilization device. (A) Schematic of the device with four separate
immobilization modules. (B) Dimensions of the microchannel in each module. (C) Microscopic
photo of four immobilized larvae in the device.

output voltages of the Wheatstone bridge circuit were recorded. The calibration data are shown

in Fig. 3–3(B), which are average values of 5 measurements. The standard deviation of each data

point is below 0.22 mV. The measurement range, resolution and sensitivity of the sensor/pipette

assembly were determined to be 0-80 mN, 50 µN, and 0.93 mV/mN, respectively.

Only vertical component of the touch force is studied in this research, because previous studies

have shown that the vertically-applied touch force to a larva has a positive correlation with it

turning angle during the danger-escaping behaviour [35, 36]. The reason for using this piezoresistive

force sensor is that it uses semiconductor as piezoresistive material, which results in high gauge

factor and thus high sensitivity. Besides, this sensor also demonstrates high linearity throughout

the measurement range.

3.2.3 Larva Immobilization Device

Fluorescence imaging of Drosophila larvae requires their body to be firmly immobilized. To

observe Tutl -positive neurons inside the larva body, it is preferred to mechanically compress the
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larva body to a smaller thickness so that the fluorescence light could pass the body tissues more

efficiently. The conventional dissection approach [37] for immobilizing larvae is time-consuming

and invasive, and the dissection procedure adds additional mechanical disturbance to the mechan-

otransduction studies.

Microfluidic devices have been recently applied to Drosophila larvae immobilization and fluo-

rescence imaging [38, 39]. However, these devices fixed the larva in enclosed microfluidic chambers,

and do not allow a pipette to reach the the anterior segment (nose) of larva body. In this research,

a simple design was conceived and implemented for rapidly immobilizing single larvae with their

noses exposed outside the device for mechanical stimulation. Fig. 3–4(A) shows the schematic

of a PDMS device for larva immobilization. It includes four separated immobilization modules

for fixing four third-instar larvae. Each module includes a microchannel fabricated using soft

lithography, and the thickness of the microchannel was set to be 130 µm (Fig. 3–4(B)) so that

the microchannel could firmly compress the body of a third-instar larva (0.8-1 mm thick) upon

bonding with a glass substrate. Each microchannel has a 0.75 mm opening which is formed via

manual cutting after soft lithography. The standard deviation of the opening size was ±0.08 mm

(n=4).

The fabrication of the PDMS device consists of three steps. First, a piece of 130 µm thick

plastic film is cut to the desired shape of microchannels (Fig. 3–4(B)) with a laser cutter. The

plastic film serves as the mold and is placed at the bottom of a petri dish. Uncured PDMS (w/w

mixing ratio: 10:1) is then poured into the petri dish to reach a thickness of 3 mm. The peri dish

is finally put into an oven and baked at 60 ◦C for 4 hours. The solidified PDMS is final peeled off

to complete the fabrication process.

The larva immobilization process is performed manually, which is summarized as follows. A

double-sided transparent tape is first attached to the glass substrate, and four larvae are then

transferred to the tape using a pair of tweezers. The adhesive tape significantly reduces the larva

locomotion and facilitates the subsequent immobilization. Individual PDMS module is manually

aligned with a larva and placed onto the adhesive tape to fix the larva. The low height of the
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Figure 3–5: Overall control sequence of robotic operations.

microchamber presses and flattens the larva body. The adhesion between the tape and the PDMS

module bottom surface is strong enough to securely immobilize the larva without further bonding

treatments (e.g., oxygen plasma). The four modules are arranged on the substrate side by side to

form an array of four fixed larvae with a spacing of 4.5±0.8 mm (n=4). This regular array greatly

simplifies the robotic larva positioning task during operations. The PDMS device is reusable after

washing and sterilization. Fig. 3–4(C) shows four immobilized larvae in the device with the touch

needle suspended close to the first target larva. The whole larva immobilization process can be

completed within two minutes.

3.3 Force-Controlled Larva Stimulation and Fluorescence Imaging

3.3.1 Overall Control Sequence

After immobilization, the PDMS device with the larva samples is placed onto the supporting

plate of micromanipulator 1 (Fig. 3–2), with the first target larva in the field of view of the

microscope. The pipette tip is also brought into the field of view, and its initial position is
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manually adjusted as follows. The initial in-plane image coordinates (in frame i) of the pipette tip

is set to close to but not overlapping with the larva nose, and the initial out-of-plane coordinate

(along Ze) of the pipette tip is set to make the pipette tip visible (not necessarily in focus) in the

field of view and high enough to avoid collision with the target larva. The coordinates of this initial

position in (Xe-Ye-Ze) serves as the home position H (Fig. 3–4(A)(C)) of the pipette tip during

operations. Small variations in this manually-set home position do not affect the subsequent visual

recognition of the pipette tip and robotic manipulation.

The control sequence, as shown in Fig. 3–5, starts from visual recognition of the image co-

ordinates of the pipette tip and the touch location on the larva nose (described in Section 3.3.2).

The larva nose is then brought to the center of the field of view. In the meanwhile, the pipette

tip is moved in-plane (along Xe and Ye) to the image coordinates of the touch location (a position

right above the touch location on the larva nose), during which coordinate transformation from

the image frame i to the micromanipulator 2 frame e is performed (see Section III-C). After that,

the pipette tip is lowered vertically along Ze at a constant speed of 500 µm/s (the maximum speed

of the micromanipulator) toward the larva nose, and the voltage signal from the force sensor is

monitored constantly to determine the initial contact between the pipette tip and the larva nose

(described in Section 3.3.4). Upon the contact being detected, the control of micromanipulator 2 is

switched from the position control mode to the force control mode (Fig. 3–7), and the touch force

is regulated by a proportional-integral-derivative (PID) controller. Once the force-controlled larva

stimulation is started, the camera is switched from bright-field imaging to fluorescence imaging for

quantifying calcium levels in Tutl -positive neurons in the immobilized portion of the larva body.

After the completion of the mechanical stimulation and fluorescence imaging, the pipette tip is

lifted up, then moved backed to the home position, and meanwhile the next larva is brought into

the field of view. This operation sequence is repeated until all the four larvae are touched and

observed.
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Figure 3–6: Image processing sequence of identifying the pipette tip and the touch location on the
larva nose.

3.3.2 Visual Recognition of Pipette Tip and Touch Location

An image processing algorithm is developed to identify the pipette tip and the nose of target

larva. An image, including an immobilized larva and the pipette, is read from the camera into

the host computer in RGB format and converted into eight-bit grayscale format, as shown in

Fig. 3–6(A). The resultant image is binarized into a black-white image (Fig. 3–6(B)) using Otsu’s

adaptive thresholding method [40]. Based on the connectivity of the white areas, the two biggest

areas, corresponding to the larva (connected with the channel walls) and the pipette, are identified

and removed from the image to create a ‘background’ image that just includes noise features. This

‘background’ image is subtracted from the original binary image to leave only the two biggest areas

(Fig. 3–6(C)). In the current setup, the pipette area is always smaller than the larva connected

with the channel walls. Thus, for the biggest area (larva and channel walls), the image coordinates

of rightmost pixel are identified and regarded as the tip of the larva nose, and the touch location

is set to be the point 400 µm away on the left of the larva nose (red point in Fig. 3–6(D)). In the

second biggest area (pipette), the image coordinates of the leftmost pixel are found and saved as

the pipette tip (blue point in Fig. 3–6(D)). The vertical coordinate (along Xe) of the pipette tip is

not needed in operations since the force sensor is able to detect the initial contact while lowering

the pipette. The imaging processing algorithm takes 15 ms on the host computer.
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3.3.3 Control Architecture and Coordinate Transformations

As shown in Fig. 3–7, the robotic control system includes an image space task planner (for

implementing the control sequence in Fig. 3–5), two PID closed-loop position controller for reg-

ulating the motions of the two micromanipulators, and one PID closed-loop force controller for

adjusting the touch force applied to Drosophila larvae. Visual feedback is used to provide the two

micromanipulators with image coordinates of the pipette tip (ipt) and the touch location (ipl) and

guide the robotic manipulation, forming a vision-guided ‘look-then-move’ system.

During automatic operations, an image-based task planner receives real-time visual feedback

of two image coordinates (ipt and ipl), plans the motions of two micromanipulators, and generates

reference signals (p1 and p2) for the two PID position controllers. The motion regulation of

micromanipulator 2 is transited from position control to force control once the initial touch is

detected (the virtual switch K is thrown from state 1 to state 2).

Since the visual feedback is always expressed in the image frame i, the task planner needs to

conduct coordinate transformations between: (i) image frame i and micromanipulator 1 frame t

(transformation #1); and (ii) image frame i and micromanipulator 2 frame e (transformation #2).

Denote by tRc ∈ R2×2 the rotation matrix of frame c with respect to (w.r.t.) frame t. Denote

by ttc ∈ R2 the origin location of the frame c w.r.t. the frame t. Transformations #1 and #2 can

be expressed by

tP = tRc
cP +ttc

eP = eRc
cP +etc

(3.2)

Rewriting (3.1) as

Sip = cP (3.3)

where

S =

sx 0

0 sy


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Figure 3–7: Schematic diagram of the system control architecture.

and substituting (3.3) into (3.2) yields

tP = tRcS
ip+ttc (3.4)

eP = eRcS
ip+etc (3.5)

As defined in Fig. 3–2, the coordinate frames t, e, and i have the following rotation matrices:

tRc =

1 0

0 −1

 , eRc =

1 0

0 1

 (3.6)

The discussion above clarifies the relationship between the pixel coordinates and the coordi-

nates used in micromanipulators, which is used in the space task planner for implementing the

control sequence in Fig. 3–5.

3.3.4 Contact Detection and Force Control

Before the closed-loop control of touch forces, the initial contact between the pipette tip and

the larva nose is detected by monitoring the feedback from the force sensor. The output signal

of the force sensor were sampled at 500 Hz. The average changing rate of the force signal in

the past 0.2 seconds was adopted as an indicator of initial contact, which is robust to zero drifts

and noises of the force sensor data. For a speed of 100 µm/s at which the pipette was lowered,

a threshold of 2.5 mN/s of the average changing rate of the force signal was used to trigger the

transition from position control to force control (virtual switch K from position 1 to position 2 in

Fig. 3–7). This threshold value was determined through trial-and-error experiments; it should be
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high enough to prevent the control system from being triggered by noises in force measurement

data before contact, and meanwhile low enough to quickly trigger the controller transition right

after the initial contact. A smooth controller transition is desired, and effective methods have

been proposed in recent years [41]. In this work, the smooth controller transition is achieved by

maintaining the voltage control signal of the z-axis of the micromanipulator 2 at the same level

during the transition. Before the transition (position control), micromanipulator 2 moves down

at the maximum speed (500 µm) and the voltage control signal reaches its maximum. Once the

transition is triggered (force control), the high gain of the three PID coefficients also results in a

saturated voltage control signal. Thus, the z-axis velocity of micromanipulator 2 remains constant

at the transition point.

The PID closed-loop force controller receives the instruction of desired touch force (Fd in

Fig. 3–7) from the task planner, compares it with the force feedback (Fo in Fig. 3–7), and computes

voltage signals as inputs for micromanipulator 2 based on the PID control law. The force controller

can be expressed by

Vc = Kpef (t) +Ki

∫
ef (t) +Kdėf (t) (3.7)

where Vc denotes the voltage control signal for micromanipulator 2, and ef (t) = Fo (t) − Fd.

Kp, Ki, and Kd are the three gains of the PID controller. The derivative component acts as a

dampening term which could improve the dynamic performance of the system [42]. To minimize

the effect of measurement noises of the feedback signal on the derivative component, the term ėf

was calculated using a noise-insensitive differentiator [43].

3.4 Experimental Results and Discussion

The larvae used in the experiments are transgenically encoded with green fluorescent proteins

(GFP) in Tutl -positive neurons. Third-instar larvae were immobilized in the PDMS device, and

the whole immobilization process took less than 2 minutes. A 3.2× objective (NA=0.15) was used

for both bright-field and fluorescence imaging, and the horizontal and vertical pixel sizes were

57



Figure 3–8: Experimental data of detecting the initial contact between the pipette tip and the
larva nose before closed-loop force control. Contact is detected once average force changing rate
of the past 0.2 seconds reaches the threshold.

calibrated to be sx = sy = 0.5 µm. The camera frame rates for bright-field and fluorescence

imaging are 25 Hz and 2.5 Hz (fluorescence exposure time: 400 ms), respectively.

3.4.1 Closed-Loop Force Control

As described in Section 3.3.4, the average changing speed of the force feedback over the past

0.2 s (100 consecutive data points) was used as an indicator to detect the initial contact between

the pipette tip and the larva nose. Fig. 3–8 shows the experimental results of the average force

changing speed as a function of time. A threshold of 2.5 mN/s (red line) indicates the transition

point for the micromanipulator 2 from position control to force control.

Four parameters of the PID force controller were optimized through extensive trail-and-error

experiments. Besides the three PID gains (Kp, Ki, Kd), the limit of the voltage control input for

the z-axis motor of micromanipulator 2, Vmax, was also considered. The inequalities |Vc| ≤ Vmax

was implemented in the controller to limit the maximum speed and to protect the fragile MEMS

force sensor.

Based on the results from a previous study [35], the touch force for larva stimulation was

controlled in the range of 1-11 mN. Fig. 3–9(A) shows the experimental results of the step response
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Figure 3–9: Experimental results of touch force control. (A) Step responses of the PID force
controller with different combinations of controller parameters (Kp, Ki, Kd, Vmax). (B) Tracking
response of a multi-step force.
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curves of the PID controller at different combinations of the four parameters. The combination

of Kp = 150, Ki = 50000, Kd = 2, and Vmax = 1.5 was chosen for the subsequent larva touch

experiments since it yielded the fastest dynamic response with a short rise time of 612 ms and an

acceptable overshoot of 20%. Fig. 3–9(B) shows the tracking response of a multi-step force using

the five controller parameters selected above.

3.4.2 Larva Stimulation and Fluorescence Imaging

After the force controller was optimized, larva stimulation and fluorescence imaging experi-

ments were performed. The two micromanipulators moved the larva samples and the pipette at

a speed of 500 µm/s during closed-loop position control, and the touch force was accurately con-

trolled to be 5 mN (which matches the typical order of touch force magnitude used in a previous

study[35] where manual operation was involved to mimic the object-hitting scenario). The whole

manipulation process of a single larva (from positioning the larva into the field of view to comple-

tion of touching and imaging) took 15 s, yielding a speed of 4 larvae/minutes. In comparison, a

proficient human operator typically has a speed of 1 larva per 5 minutes. The operation speed of

the robotic system can be further improved by adopting micromanipulators with a faster speed.

40 samples (10 arrays) have been tested, out of which 37 samples were successfully touched and

imaged, with a success rate of 92.5%. The operation of a larva is judged to be successful if the w-

hole larva touching and imaging process is conducted automatically without any failure. The most

critical parts are the recognition of touch point, the force control and the acquisition of fluorescent

imaging data. The reason of failure was that, in rare cases, the head of a larva was curved in the

image plane, but the image processing algorithm assumed that the larva’s spine is horizontally

straight. This caused the pipette tip to miss the ideal touch location and thus invalidated the

fluorescence imaging data. This failure mode can be avoid by changing the imaging processing

algorithm to extract the larva spine and determine the touch location along it.

Figs. 3–10(A)(B) show the fluorescent photos taken before and after a 5 mN touch. The

glowing spots in the larva body are the GFP-expressing Tutl -positive neurons. We quantified

fluorescence intensity values of three groups of Tutl -positive neurons (the ones in areas 1-3). Areas
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Figure 3–10: Fluorescence imaging results measured before and after robotic touching at the level
of 5 mN. (A)(B) Fluorescent images of a Drosophila larva taken (A) before and (B) after the
5 mN touch. The average fluorescence intensity values of areas 1-3 that included Tutl -positive
neurons were quantified off line. (C) Consecutive image frames and fluorescence intensity values
showing dynamic change in the calcium signal of area 1 upon touching. (D) Quantitative data of
the average fluorescence intensity values of area 1-3 measured from five consecutive image frames
before and after touching (n=5). *p <0.05 as compared to the intensity values measured before
touching.
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1-3 were chosen as they include neuron groups with typically observable fluorescence expressions.

Note that the quantification of calcium fluorescence signals in Fig. 3–10 is preliminary and just

for proof-of-concept demonstrations. Further biological experiments are underway to obtain more

biologically meaningful data. Figs. 3–10(C) shows the dynamic changes in florescence intensity

in area 1 in six consecutive frames (exposure time: 400 ms) upon touching (photograph at t = 0

was taken right after touching). One can observe that, once the force is applied, the fluorescent

intensity in area 1 starts to change and stabilizes after 2 sec. Fig. 3–10(D) shows the average

fluorescence intensity values of the three areas which were calculated based on the fluorescence

intensity values of area 1 in five consecutive image frames (n=5) of the same larva right after

touch.

The robotic system has several advantages over the conventional manual operation, including

the high force control accuracy, the unique capability of simultaneous larva touching and calci-

um fluorescence imaging, and the elimination of human-induced errors. The force controller has

a resolution of 300 µN and a rising time of 612 ms, which cannot be achieved by manual oper-

ation. By integrating a larva immobilization device, the robotic system is capable of applying

well-controlled mechanical stimulation and, at the same time, imaging neural signal transmissions

via fluorescence calcium imaging. In contrast, a human operator has to dissect the larva body for

performing fluorescent imaging [35], which is a tedious and more invasive process. The robotic

system manipulates an array of Drosophila larvae in an automated fashion, and not human in-

volvement is required during the touching/imaging process. This avoids potential uncertainties of

data acquisition caused by manual operations.

3.5 Conclusion

An automated robotic micromanipulation system with force-control capability was developed

for mechanotransduction studies of Drosophila larvae. Using a PDMS immobilization device,

Drosophila larvae were securely immobilized into an array for robotic manipulation. An image

processing algorithm was developed for recognizing the pipette tip and the touch location on the

larva, providing vision feedback for closed-loop position control. A MEMS force sensor, mounted
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with a glass pipette, was controlled to touch a larva, during which the touch force was regulated

using a closed-loop controller. The force controller was optimized to provide good dynamic response

and reliable force-regulated touching. The fluorescence imagining results proved the feasibility of

using the system for studying transmission responses of Tutl -positive neurons to mechanical stimuli.

This chapter investigates using a simple PID controller without precisely modeling the system.

The performance of force control still has room to improve. We will tackle this problem in the

next chapter.
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The connection between Chapter 3 and Chapter 4

The system reported in Chapter 3 features a conventional PID controller, whose performance

was experimentally characterized. However, to mimic a sudden touch a Drosophila larva expe-

riences in biological experiments, rapid dynamic response of the force control system is desired.

The current dynamics of the PID controller cannot meet this requirement. To this end, Chapter

4 will present a switched fuzzy-PD controller for implementation on the developed micromanip-

ulation system, which provides significantly improved dynamic performance. Two major factors

that hinder the controller performance are modeling errors and force measurement noise. A noise-

insensitive extended high gain observer (EHGO) is proposed to estimate the modeling errors and

handle the noisy force feedback signal. The switched fuzzy-PD controller combines the fast con-

vergence property of a fuzzy controller and the small steady-state oscillation of a PD controller.

Compared to the PID controller, the settling time and overshoot of the switched fuzzy-PD con-

troller are significantly reduced.
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CHAPTER 4
Switched Fuzzy-PD Control of Contact Forces in Robotic

Micro-Biomanipulation
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Force sensing and control are of paramount importance in robotic micromanipulation. A

contact force regulator capable of accurately applying mechanical stimuli to a live Drosophila

larva could greatly facilitate mechanobiology research on Drosophila and may eventually lead to

novel discoveries in mechanotransduction mechanisms of neuronal circuitries. In this paper, we

present a novel contact force control scheme implemented in an automated Drosophila larvae mi-

cromanipulation system, featuring a switched fuzzy-PD controller and a noiseinsensitive extended

high gain observer (EHGO). The switched fuzzy-PD control law inherits the fast convergence of

fuzzy control and overcomes its drawbacks such as large overshoot and steady-state oscillation.

The noise-insensitive EHGO can reliably estimate system modeling errors, and is robust to force

measurement noises, which is advantageous over conventional high gain observers (sensitive to

signal noises). Force control experiments show that, compared to a PID controller, this new force

control scheme significantly enhances the system dynamic performance in terms of rising time,

overshoot, and oscillation. The developed robotic system and the force control scheme will be

applied to mechanical stimulation and fluorescence imaging of Drosophila larvae for identifying

new mechanotransduction mechanisms.

Index Terms-robotic micromanipulation, force control, switched fuzzy-PD control, extended

high gain observer, fluorescence imaging, Drosophila larva, mechanotransduction, neural basis of

behavior.
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4.1 Introduction

Force sensing and control have played critical roles in robotic micromanipulation [1, 2, 3, 4,

5]. Force-controlled robotic systems are capable of performing micromanipulation tasks with high

dexterity [1], and can also facilitate mechanobiology studies in which accurately-regulated force

stimulation needs to be applied to cells or small organisms for probing possible mechanotransduc-

tion pathways [6]. For instance, a recent study illustrates that Drosophila larva, an excellent model

organism for neuroscience, orients and reselects its path of forward movement upon the application

of millinewton-level touch forces to its head [7]. Further study of neural circuitries responsible for

this touch-induced behavior could decipher the neural basis of these danger-escaping behaviors.

Targeting this interesting problem, we have developed a force-controlled robotic system (Fig.

4–1) for mechanical stimulation of Drosophila larvae and in-situ fluorescence imaging of the touch-

induced neural signal transduction [8]. We have demonstrated that, compared to manual operation,

this robotic system significantly improves the manipulation accuracy, consistency, throughput, and

success rate. The system initially employed a conventional proportional-integral-differential (PID)

force controller with a rising time of 0.612 s (sampling frequency: 500 Hz). Because the mechanical

stimulation is typically applied to a larva in a stepwise fashion to mimic sudden touches a larva

may experience during forward locomotion [7, 9], it is highly desired for the force controller to have

rising time as short as possible. The objective of this work is to develop an advanced force control

scheme to further improve the dynamic response of the contact force regulation during robotic

manipulation of Drosophila larvae.

A number of force control strategies have been proposed for robotic micromanipulation. The

most straightforward and widely used approach is PID control [10], or PI control [1] when the

time derivative is hard to acquire due to measurement noise. PID control works satisfactorily

for linear systems, but usually yields poor dynamic response when the system includes nonlinear

components and undetermined parameters. To address this issue, system linearization methods

were implemented for control of cell injection forces [11]. This type of approaches require the system

terms to be determined. Impendence control is another approach used in micromanipulation,
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Figure 4–1: (A) Robotic system setup. (B) A glass pipette attached to a silicon piezoresistive force
sensor for touching Drosophila larvae.

but it also requires precise dynamic models for feedforward [12]. An advanced control scheme,

gain scheduling, was investigated in [13] to adaptively compensate for system nonlinearity, but

modeling errors were neglected in this study. Scheduling technique designed for fault tolerance

was investigated in [14], but it requires a partially known jump rate of fault. Switched Fuzzy-

PID controller with feed forward compensation was investigated in [15], which does not require a

known jump rate or mathematical model of model uncertainties, and thus represents a possible

solution. However in this study, only simulations were conducted and no real experiments were

demonstrated.

One common method to compensate for unknown system parameters and modeling errors is

to implement an extended high gain observer (EHGO) [16]. Conventional EGHOs are difficult to

use for force control in robotic micromanipulation, because small force signals are always noisy

whereas conventional EHGOs are very sensitive to noise in feedback [17, 18]. To improve the

system dynamics, fuzzy logic controllers have been illustrated to have excellent transient state of

step response [19, 20] and thus could reduce the rising time of the force control system. A fuzzy

controller is composed of a set of IF-THEN rules summarized from human experience, and thus

has higher robustness than traditional PID controllers. In spite of these merits, fuzzy control often
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leads to oscillation of the system response in the steady state, because of its sensibility to the

feedback when operating around the equilibrium point.

In this article, we propose a novel control scheme integrating a switched fuzzy-PD controller

and a noise-insensitive EHGO, and apply it to force-controlled robotic manipulation of Drosophila

larvae. The major contribution of this work lies in the development of the force control scheme

which is applicable to a variety of robotic micromanipulation tasks requiring high-performance force

control. The control scheme utilizes the fast convergence of fuzzy control for nonlinear systems and

overcomes its steady-state oscillations by switching fuzzy control to PD control as the contact force

approaches the steady state (which is called switched fuzzy-PD control). The control scheme also

integrates a revised noise-insensitive EHGO to compensate for the undetermined system terms.

Although the conventional EHGOs have been combined with fuzzy controllers [21, 22], the control

scheme we propose here integrates, for the first time, a noise-insensitive EHGO with the switched

fuzzy-PD control for system parameter estimation/compensation. By adding the first and second

derivative of force to the extended state vector and saturating the derivative of the estimated

error, the proposed EHGO guarantees fast convergence and reduced peaking phenomenon despite

measurement noise. This EHGO could be easily modified to work for other observable single

output system with measurement noise, and the parameter tuning technique is shown in detail.

In comparison, the proposed observer-controller scheme has shorter rising time, less overshoot and

oscillation than PID control.

4.2 System Setup and Operation Procedure

The robotic micromanipulation system has been reported previously [8], and the focus of

this paper is to design and implement a novel control scheme to regulate the contact forces during

robotic manipulation of Drosophila larvae. To make this article self-contained, we briefly introduce

the system setup and the automated manipulation procedure. As shown in Fig. 4–1(A), the robotic

system employs a fluorescence microscope (SZX-16, Olympus), two three-degree-of-freedom (3-

DOF) micromanipulators (MP-285, Sutter), a custom-made larva immobilization device, and a

glass pipette mounted on a micro-electro-mechanical systems (MEMS) piezoresistive force sensor
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Figure 4–2: (A) Larva immobilization device with 4 larvae immobilized. (B) The pipette tip and
the target touch location on larva head are identified using an imaging processing algorithm.

(AE801, Kronex; Fig. 4–1(B)). Micromanipulator-1 moves different larvae under the microscope,

and micromanipulator-2 controls the pipette tip for larva touching. The force measurement range,

resolution, and sensitivity of the pipette/sensor assembly are 0-120 mN, 50 µN, and 0.67 mV/mN,

respectively. The force feedback data were sampled at 500 Hz, because the corresponding sampling

interval (0.002 s at 200 Hz) needs to be significantly shorter than the characteristic time of the

system, which will be measured in Section 4.6.3.

Before the system starts the automated larva manipulation, four larvae are immobilized in a

row using the immobilization device (Fig. 4–2(A); see details in [8]). The system then visually

recognizes the pipette tip and the centroid of the first larva head (target location for touching)

outside the immobilization device (Fig. 4–2(B)). After that, the pipette tip is moved in-plane

to the image coordinate of the larva head centroid, and then downward towards the larva head

(along z -axis in Fig. 4–3(A)) until a contact is detected from the force feedback. Upon contact

being detected, the microscopy is automatically switched from bright field to fluorescence and the

control law of the z -axis of micromanipulator-2 is switched from position control to switched fuzzy-

PD force control until the desired contact force level is achieved. During touching, fluorescence
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Figure 4–3: (A) Linear larva touch model. (B)(C) Micromanipulator calibration curve of the input
voltage vs. output speed.

images were obtained from a fluorescence camera (EXi-Blue, QImaging). After the first larva is

stimulated, the microscope is switched back to bright field and the next larva is brought into the

field of view. The same operation procedure is repeated until all the four larvae are manipulated.

4.3 Larva Touch System Modeling

To design the switched fuzzy-PD controller, the larva touch model was first established. To

be consistent with the previous biological study [7], the vertical component of the contact force

was measured and controlled, a linear touch model exists (Fig. 4–3):

f = K (∆z −∆z′) = K (z − z0 −∆z′) (4.1)

where f is the contact force, z the vertical position of micromanipulator-2, z0 the initial touching

position, ∆z′ the larva head deformation, and K the spring constant of the force sensor. During

touching, the vertical (z -axis) speed of micromanipulator-2, ż, is controlled by an input voltage u.
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The static relationship between ż and u is:

ż = H (u) (4.2)

We calibrated H (u) to be nonlinear in the whole speed control range of -1000 µm/s to 1000

µm/s (Fig. 4–3(B)(C)), which is purposely designed by the vendor to maintain relatively low

speeds (thus high positioning accuracy) in the major range of control voltage (1∼4 V). In practice,

we manually saturated H (u) between ±500 µm/s as speed limit to avoid large overshoots of the

contact force.

The calibration was performed with following steps: A constant voltage was applied for 2

s to allow the micromanipulator to reach its constant speed, and the constant speed was then

approximated by calculating the average speed during the 2 s interval, because 2 s is significantly

longer than the characteristic time of the micromanipulator.

Note that H (u) is in fact the steady-state speed of the z -axis of micromanipulator-2 under a

given input voltage. Due to the dynamics of the micromanipulator, there is a time delay between

the application of the input voltage and the achievement of the steady-state speed. In addition,

there are other factors that contribute to the time-delay characteristic of the entire contact force

regulation system, including transmission time of control commands, response time of the force

sensor, calculation time of the control law, and dynamics of the larva body upon touching. Previous

research on control of time-delay systems showed that the controller could be designed based on

a simplified deadtime-free system model and the ignored time-delay effect could be taken into

account, after the controller is designed, by implementing a Smith-like predictor [23]. Thus, we

first established the switched fuzzy-PD controller by ignoring the time-delay characteristic of the

contact force regulation system and assuming the manipulator immediately reaches its steady-state

speed once an input voltage is applied. The compensation for the system’s time-delay effect, which

corresponds to the predictor block in Fig. 4–4, will be discussed in Section 4.6.3 after the controller

is designed.
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Figure 4–4: Control system architecture.

Combining (4.2) with the time derivative of (4.1), and including the calibration error (em) of

H (u) yield the final system model:

ḟ = KH (u)−K∆ż′ + em (4.3)

Combining the unknown K∆ż′ and em into an overall modeling error δ, the system model

becomes:  ḟ = KH (u) + δ

y = f + ξ
(4.4)

where y is the measured contact force and equals the real force f plus the noise ξ. The time

derivative of δ was assumed to be bounded. Sources of the modeling error include calibration error

of the force sensor, disturbance from the live larva, and calibration error of the micromanipulator.

One may notice that the material properties of larva head is not explicitly shown in (4.4), but

but it has been included in the overall unknown term δ = K∆ż′ + em (in which the ż′ reflects the

mechanical property of the larva head). This consideration avoids the necessity of measuring the

heads mechanical property, which is cumbersome to measured and different in quantity from one

larva to another. Once the mechanical property of the larva head is treated as a part of the total

unknown term δ, it could always be estimated by the proposed noise-insenstive EHGO.
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4.4 Overall Control Architecture

The proposed system control architecture is shown in Fig. 4–4. Denote KH (u) + δ as υ, the

first equation of (4.4) becomes a linear form (marked as “integral element from υ to f” in Fig.

4–4)

ḟ = υ (4.5)

where υ is a virtual control input. Once υ is determined by the fuzzy or PD control law, the real

control input u could be calculated by (marked as “inverse map” in Fig. 4–4)

u = H−1

(
υ − δ
K

)
(4.6)

where δ is obtained by a noise-insensitive revised EHGO. Note that H (u) is not strictly monotone

at dead zone. Therefore, we additionally define H−1 (0) = 2.5 to make H (u) reversible (the motor

of the micromanipulator has a zero speed at an input of 2.5 V).

To compensate the time-delay effect of the force regulation system, a Smith-like predictor is

used to estimate the difference between the delayed and non-delayed forces. The feedback force is

then compensated to be non-delayed but with measurement noise, denoted by fpred in Fig. 4–4.

This value is then injected into the noise insensitive EHGO to produce an estimation of the system

modeling error δ̂, which is finally used to generate the real control input u.

4.5 Observer Design and Simulation

4.5.1 Observer Design

If the measured contact force y was denoised, a conventional EHGO could guarantee a fast

estimation of δ: 
˙̂
f = KH (u) + δ̂ − k1

ε

(
f̂ − y

)
˙̂
δ = −k2

ε2

(
f̂ − y

) (4.7)

where f̂ and δ̂ are estimations of f and δ, k1 and k2 are gains, and ε is a small number to make

the two gains high. This conventional EHGO works well if the contact force y does not include

measurement noise. However, the small forces in robotic micromanipulation y) are always noisy,
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Figure 4–5: Simulation results of the conventional and revised EHGOs. (A) Input force signal
with white noise. (B) Estimation results.
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and the data noise (ξ in (4.4)) will be also amplified by the high gain of the EHGO and eventually

destabilize the system. Here, we propose a revised noise-insensitive EHGO by substituting y with

its smooth (differentiable) estimation g1:



˙̂
f = KH (u) + δ̂ − k1

ε

(
f̂ − g1

)
˙̂
δ = −k2

ε2

(
f̂ − g1

)
ġ1 = g2

ġ2 = g3

ġ3 = 1
α3h (g1 − y, αg2, α

2g3)

(4.8)

where h (x) is a function that satisfies the continuity assumption (Assumption 4 in [24]), and α is

a parameter that affects the noise attenuation performance of EHGO. The function h (x) used in

the revised EHGO is

h
(
g1 − y, αg2, α

2g3

)
= −4 · 2

3
5

(
g1 − y + (αg2)

9
7

) 1
3

− 4 ·
(
α2g3

) 3
5 (4.9)

This observer also requires that α and δ̇ (the time derivative of true modeling error δ) do not

exceed the bounds, as defined in the Theorem 4 in [25]. These assumptions are necessary to make

a lemma hold [26] to prove this observer. g1 and its derivatives g2 and g3 form a subsystem acting

as a filter and differentiator of y. The observer parameters (k1, k2, ε, and α) were determined

through simulations in MATLAB SIMULINK (see Section 4.5.2), and their final values used in

our experiments are: k1 = 50, k2 = 1000, ε = 0.1, and α = 0.14.

The idea of proving the observer is summarized as follows, and the detailed proof is provided

in the Appendix. The difference between g1 and f could be bounded by Lyapunov analysis. Then,

by discussing the stability of the equation governing g1− f̂ , the observer can be proved. The order

of estimation errors are |δ − δ̂| = O(αm−1) and |f − f̂ | = O(αm), where m ≥ 3. In principle, the

parameter m can be designed arbitrarily large by choosing appropriate h(x) [25], to achieve higher

noise attenuation. However, this will also slow down the convergence of the EHGO and make it
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less sensitive to rapidly varying modeling errors. To reach a good compromise, we chose the lower

bound of m to be 3 [24], because, under this condition (m ≥ 3), the subsystem formed by g1, g2

and g3 has been verified to have good estimation performance [24, 26]. This ensures g1 to serve as

a good substitute for y, which is injected into the observer to replace y.

4.5.2 Observer Simulation and Parameter Determination

The observer parameters k1, k2, ε and α were calibrated via simulations conducted in MAT-

LAB SIMULINK to optimize its performance. It is a common practice to firstly determine the

values of k1, k2 and ε by assuming a denoised contact force y and conducting simulations of the

conventional EHGO (4.7). The input of the conventional EHGO is the denoised force measure-

ment (f) and the output is the estimated modeling error δ̂. We chose values of k1, k2, and ε that

provided fast convergence (rising time less than 0.01 s for a step force input y), no overshoot, and

no steady-state oscillation (simulation results not shown). The determined parameter values are:

k1 = 50, k2 = 1000 and ε = 0.1.

The second step was to simulate the noise-insensitive EHGO to determine the value of α. We

performed the simulation in the worst case scenario, in which the modeling error was set as a three-

step form (Fig. 4–5(B)) and varied at large amplitudes and stepwise changes. The input force

signal (y) for simulating the revised EHGO has high-level noises (Fig. 4–5(A)), and the simulation

output was the estimated modeling error δ̂. We compared the estimated value by the EHGO with

the true value δ, and evaluated the EHGO performance. We used the values of parameters k1, k2

and ε that were determined in the simulation of the conventional EHGO, and adjusted the value

of α to achieve satisfactory performance of the revised EHGO in the simulations. Fig. 4–5(B)

shows the simulation results of the estimated errors ε̂ with different values of α. We found that a

smaller α made the EHGO respond faster but oscillate more, and vise versa. Finally, we choose

α = 0.14 as a compromise between response time and smoothness of the error estimation. Another

issue we identified in the simulation was the peaking phenomenon which leads to high overshoot

of the estimation. To reduce it, the slope of δ̂ was saturated at ±2500 mN/s. As shown in Fig.

4–5(B), with the slope saturation, the estimated error from the revised EHGO converged to the
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Figure 4–6: Membership functions of the fuzzy sets used in the fuzzy controller design.

Table 4–1: Fuzzy Control Rules

NB(ec) NM(ec) NS(ec) ZO(ec) PS(ec) PM(ec) PB(ec)
NB(e) PB PB PB PM PM ZO ZO
NM(e) PB PB PB PM PM ZO ZO
NS(e) PM PM PM ZO ZO NS NS
NO(e) PM PM PS ZO NS NM NM
PO(e) PM PM PS ZO NS NM NM
PS(e) PS PS ZO NM NM NM NM
PM(e) ZO ZO NM NB NB NB NB
PB(e) ZO ZO NM NB NB NB NB

true value within 0.1 s with significantly reduced peaking phenomenon, while the conventional

EHGO does not converge for the first two steps because of the force measurement noise. With

the determined observer parameters, the performance of the revised EHGO is satisfying under the

worst case scenario. These parameter values are then fixed throughout the experiments.

4.6 Switched Fuzzy-PD Control

In this section, the fuzzy control algorithm and the switch between the fuzzy and PD control

laws are discussed in detail. The basic idea of fuzzy control can be described as follows. The

controller translates a vague description (such as “high error and high error changing rate”) into

numerical values via membership functions, then searches the corresponding vague control input

from a look-up table of control rules based on human experience (such as “the higher the error

and its changing rate are, the higher the control input is”), and finally translates the vague control

input back into a numerical value using a defuzzification method. For conciseness, we denote

e = fr − f̂ and ec = ė = ḟr − ˙̂
f , where e is the system error signal (Fig. 4–4).
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4.6.1 Fuzzy Control

The error e and error change rate ec are described by fuzzy sets (NB, NM, NS, NO, PO, PS,

PM, PB) and (NB, NM, NS, ZO, PS, PM, PB), respectively. The membership functions of all

the concerned fuzzy sets are shown in Fig. 4–6, with a universe of [−6, 6]. Then, as illustrated in

Table 4–1, a fuzzy controller of 56 control rules are adopted in this research to improve the system

performance. According to Table 4–1, we can formulate the fuzzy control rules as the following

fuzzy relationships.

R1 = [NB(e)× PB(υ)] · [NB(ec)× PB(υ)]

R2 = [NB(e)× PB(υ)] · [NM(ec)× PB(υ)]

...

R56 = [PB(e)×NB(υ)] · [PB(ec)×NB(υ)] (4.10)

By fuzzy inference, the result ῡ(τ) is consequently represented as

ῡ(τ) = ῡ1(τ) + ῡ2(τ) + ῡ3(τ) + · · ·+ ῡ56(τ) (4.11)
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where

ῡ1(τ) = ē(τ) · [NB(e)× PB(υ)] · ēc(τ)

· [NB(ec)× PB(υ)]

ῡ2(τ) = ē(τ) · [NB(e)× PB(υ)] · ēc(τ)

· [NM(ec)× PB(υ)]

...

ῡ56(τ) = ē(τ) · [PB(e)×NB(υ)] · ēc(τ)

· [PB(ec)×NB(υ)]

ē(τ) ,


0,

1,

0,

τ ∈ [−6, e)

τ = e

τ ∈ (e, 6]

ēc(τ) ,


0,

1,

0,

τ ∈ [−6, ec)

τ = ec

τ ∈ (ec, 6]

(4.12)

Then, adopting the centroid defuzzification method, we can denote the fuzzy control input υF as

υF =

∫ 6

−6
ῡ(τ)τdτ∫ 6

−6
ῡ(τ)dτ

(4.13)

4.6.2 Fuzzy-PD Switching

The objective of developing the switched control scheme is to avoid the steady-state oscilla-

tion of fuzzy control. The control system makes the switching from fuzzy control to PD control

according to the touch force response. Note that the desired touch forces (fr in Fig. 4–4) for

larva manipulation are usually stepwise signals. Thus, the steady state detection is much easier.

Denote index σ(t) = | e(t)
fr−f0 | × 100%, where f0 is the initial state of system response. The switched

fuzzy-PD controller is as follows:

84



υ =

 υF ,

υPD,

σ(t) > β

otherwise

where

υPD = kpe+ kdec

represents the PD control algorithm. The term β is a switch threshold whose value was chosen

from trial-and-error experiments (see data in Section 4.7).

Remark 1: PD controller is adopted here instead of PID controller, because PD controller is

already sufficient for eliminating the steady state error of step response when regulating an integral

element as (4.5).

Remark 2: Here, the PD controller in the switched fuzzy-PD control algorithm is not the

previous PID controller [8] with the integral term stripped off. In this research, we use the virtual

input υ as the PD input, whereas in our previous PID controller, the real input u was the PID

input.

4.6.3 Time-Delay Compensation

As described in Section 4.3, the time-delay effect of the whole system was ignored during

controller design. We now address the time-delay effect by implementing a Smith-like predictor.

The Smith predictor is a critical part of our proposed control scheme, without which the system

is prone to significant overshoot and oscillation, as we demonstrated using pure PID control (see

data in Fig. 4–8(A)). An important parameter in designing the predictor is the deadtime. To

determine its value, response curves of the contact force to open-loop stepwise voltage inputs of

4.1-4.5 V was experimentally obtained from five larvae, and two of which are shown in Fig. 4–7.

The different input voltages resulted in different manipulator speeds ranging 25-500 µm/s (Fig.

4–3(B)(C)), thus different force response curves. Despite the different voltage inputs, the deadtime

of the force regulation system remains relatively constant, which was measured to be 0.058±0.09 s

(N = 5). The average value of 0.058 s was therefore used as the deadtime parameter for designing
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Figure 4–7: System deadtime test with step input.

the predictor. It has been also shown previously that the Smith-like predictor has a certain level

of robustness against the uncertainty of deadtime [23].

A Smith-like predictor was then implemented to calculate the compensation value δf , as

shown by the green dashed box in Fig. 4–4. The Smith-like predictor simulates

˙̂
fdead time free = KH (u) + δ̂

˙̂
fdead time = KH [u (t− td)] + δ̂ (t− td)

δf = f̂dead time free − f̂dead time (4.14)

and the prediction is given by:

fpred = y + δf (4.15)

The prediction fpred is then substituted for y and is injected into the EHGO (Fig. 4–4).

4.7 Experimental Results and Discussions

The larva we used were transgenetically encoded with green fluorescent proteins (GFP) in a

group of interconnected neurons expressing the cell-surface protein Turtle (Tutl). The change in

fluorecence intensity inside these neurons reflects the transmission of neural signals. The Tutl-

positive neurons have been shown to get involved in adjustment of the moving direction of a

Drosophila larva, when a touch stimulus is applied to the larva’s head [7]. This is a typical danger-

escaping behavior of the Drosophila larva. We will use the developed micromanipulation system to
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Figure 4–8: Comparison of step tracking performance of different control laws. (A) Single-step
tracking results of the switched fuzzy-PD control with EHGO, the pure fuzzy control with EHGO,
and the pure PID control. (B) Multi-step tracking results of the switched fuzzy-PD control and
the PID control. The parameters of all the controllers were optimized, through trial-and-error
experiments, before the presented tracking results were collected.
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Table 4–2: Comparison of different controllers

Performance
PID Fuzzy-PD Fuzzy-PD Fuzzy-PD

appropriate threshold threshold too high threshold too low
Value Value (improvement) Value (improvement) Value (improvement)

Rising Time 0.612 0.11 (82%) 0.42 (31%) 0.11 (82%)
Overshoot 27.8% 0% (100%) 0% (100%) 14% (49%)
IAEd 6.02/Medium 1.49/High (75%) 2.11/High (65%) 1.56/High (74%)

perform touch stimulation and calcium fluorescence imaging of immobilized larvae simultaneously,

which could shed light on the possible neuron-level mechanisms that regulate this danger-escaping

behavior.

We performed the force-controlled touching and fluorescence imaging simultaneously on eight

third-instar larvae (4.5–5 mm long and 0.8–1 mm thick), and the operation success rate was

100%. Fig. 4–8(A) shows the step response curves of the system regulated by the switched

fuzzy-PD control with EHGO with different thresholds, the pure fuzzy control with EHGO, and

pure PID control. The switch threshold was determined in the following way. We wanted the

switch threshold as small as possible to make full use of the fast convergence property of the fuzzy

controller. However, the threshold should not be set too small either, otherwise the PD controller

will become ineffective and the steady state oscillation could not be attenuated (Fig. 4–8(A)).

We started with the value of 45% (sufficiently high) and gradually tuned down the threshold until

a satisfying experimental result was achieved. The switch threshold was eventually determined

to be β = 13.6% (control results shown in Fig.4–8(A)). One can observe that, compared to the

PID control, the fuzzy control with EHGO provided a significantly shorter rise time of 0.11 s (vs.

0.612 s in PID control), but the oscillation at steady state was inevitable. The switched fuzzy-

PD control with EHGO combined the advantages of fuzzy and PD control, demonstrating fast

response (0.11 s) and negligible overshoot/oscillation. Overshoot neutralization was also shown

in the comparison of multistep force tracking curves obtained from the switched fuzzy-PD control

(with 13.6% threshold) and the PID control (Fig. 4–8(B)).

To quantify the performance improvement of the switched fuzzy-PD controller over the con-

ventional PID controller, we adopted a standardized index for controller assessment, which is
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denoted as IAEd [27]. This index was developed to evaluate the step-response performance of a

control system, and is defined as

IAEd =

integration of absolute value of tracking error

absolute value of step command × system deadtime

(4.16)

IAEd evaluates the overall performance of a controller. A smaller value of the IAEd reflects better

performance of the controller because short rising time, small overshoot and small oscillation all

contribute to the reduction of IAEd. A controller with IAEd < 2.8 is usually considered to have

high performance, and one with IAEd = 2.8− 6.3 is considered to have medium performance [27],

and one with IAEd > 6.3 is considered to have low performance.

The major performance parameters of the switched fuzzy-PD controller and the PID controller

were compared and summarized in Table 4–2. Based on the values of IAEd, even with a threshold

value too high (α = 45%) or too low (α = 5%), the fuzzy-PD controller demonstrates shorter

rising time and achieves better IAEd index compared to the PID controller. This is due to the

introduction of fuzzy logic that always tries to converge at the maximum speed. However, fuzzy

logic generates significant steady-state oscillation, which requires the switch to the PD controller

to restrain the oscillation. Failure to choose a proper switch threshold α may result in longer

rising time (threshold too high) or greater steady state oscillation (threshold too low). Table 4–2

shows that, with an appropriate swith threshold (α = 13.6%), the switched fuzzy-PD controller

has significant shorter rising time (82% improvement), zero overshoot (100% improvement), and

much better overall performance (75% improvement) than the conventional PID controller.

We also performed preliminary biological experiments for simultaneous force-controlled touch-

ing and calcium fluorescence imaging of a Drosophila larva. The system run the switched fuzzy-PD

controller to touch an immobilized larva twice at typical force levels of 2 mN and 4 mN (Fig. 4–

9(B)) [7]. Each stimulus lasted for 4 s to simulate a touch in the real danger-escaping scenario, and

a period of 56 s was arranged between two touch stimuli to make sure the larva recovered from the

previous stimulus. Fig. 4–9(A) shows the fluorescence photograph of an immobilized larva before
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touching. The red circle represents the location where fluorescence measurements were performed.

During larva touching, the fluorescence camera recorded images at 2 frames per second. Fig. 4–

9(C) shows time-lapse sequences of fluorescence images including an area of interest (AOI) for

fluorescence measurement during the application of both stimuli. To quantify the calcium signal

change, the average grayscale intensities of the AOI in all the images were measured and plotted

in Fig. 4–9(D) as a function of time. The results reveal that the calcium fluorescence intensity

inside the area of interest ramped up to its peak values in 1.5–2 s after the touch force was applied.

Once the stimulus was removed, the fluorescence signal started to decrease and finally returned to

its baseline levels in 3.5–4 s. The observed increasing and decreasing periods of the neural calcium

signals in response to mechanical stimulation agree well with the results in [9]. The peak values of

the calcium fluorescence in response to the 2 mN and 4 mN stiumli revealed no obvious difference.

This demonstration confirms the feasibility of using the micromanipulation system, together with

the force control scheme presented here, for studying transient signal transmission responses of the

Tutl -positive neural circuitry to mechanical stimuli.

The main challenge we have tackled in this research was to provide fast and stable touching

force to the larva with the existence of nonlinearity, disturbance, and feedback noise in the control

loop. By adopting the noise-insensitive EHGO, we were able to estimate the uncertain errors on line

with respect to the proposed model and compensate for the system nonlinearity and disturbance.

The EHGO also served as a filter and reduced the measurement noise in the feedback. As a result,

the control plant was transformed to a pure integral element (Fig. 4–4) that was amenable to high

performance controllers. As shown in our experimental results (Fig. 4–8), the conventional fuzzy

controller often led to steady state oscillations because of its high sensitivity to system feedback

which magnified the influence of measurement noise. The proposed switched fuzzy-PD controller

utilized the fuzzy control initially to achieve fast transient response and the PD control to rapidly

reach the steady response without oscillation. The switched fuzzy-PD controller provided a rise

time of 0.11 s and an zero overshot, which is much better than these of pure fuzzy controller (0.11

s and 28.7%) and PID controller (0.612 s and 27.8%). With the improved dynamic response, the
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Figure 4–9: Experimental results of simultaneous touch stimulation and calcium fluorescence imag-
ing of a Drosophila larva, at force levels of 2 mN and 4 mN. (A) A fluorescence image of the larva
before touching. (B) The force curve of the two touch stimuli sequentially applied to the larva.
(C) Consecutive fluorescence frames including an area of interest (AOI) for fluorecence imaging,
during the application of two touch stimuli. (D) Average grayscale values of the fluorescence inside
the AOI under the two stimuli.
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robotic system will be applied to examining the neural mechanisms responsible for the danger-

escaping behavior of Drosophila larvae. As many micromanipulation tasks require the control of

interaction forces and the robotic systems usually have nonlinear components, external disturbance,

and noisy force feedback [12, 13, 28], the control scheme we developed is also applicable to many

other micromanipulation tasks requiring force control with rapid dynamic response.

4.8 Conclusion

This paper presented a novel switched fuzzy-PD control scheme for regulating contact forces

during automated robotic mechanical stimulation of Drosophila larvae. The controller also em-

ployed an improved EHGO to compensate for undetermined system parameters and modeling

errors. A simplified larva contact model was developed, whose modeling errors were compensat-

ed for by the observer. The observer overcome the disadvantage of conventional extended high

gain observer (high sensitivity to measurement noise). The switched fuzzy-PD force controller

inherited the fast dynamic response of a fuzzy controller, while overcoming its large overshoot

and steady-state oscillation via the fuzzy-to-PD switch once the system reached the steady state.

With the proposed control scheme, we demonstrated significantly improved dynamic performance

of the robotic system over a conventional PID controller. Preliminary biological experiments of

simultaneous touch stimulation and calcium fluorescence imaging of Drosophila larvae was also

conducted.
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Appendix

Theorem 1: Suppose δ̇ and α do not exceed the bounds defined in [25], the proposed observer

(4.8) guarantees the following estimation error for the system described by (4.4):∣∣∣f̂ − f ∣∣∣ = O (αm)∣∣∣δ̂ − δ∣∣∣ = O
(
αm−1

)
where m ≥ 3.

Proof : We have

ġ1 = ḟ + ġ1 − ḟ

= KH (u) + δ + ġ1 − ḟ (4.17)

Let

eo1 = f̂ − g1

eo2 = δ̂ − δ + ḟ − ġ1

From (4.4), (4.8) and (4.17), it is easy to verify that

ėo = Aoeo + Loσ (4.18)

where

eo = [eo1 eo2]T

Ao =

 −k1
ε

1

−k2
e2

0


Lo =

 0

−1


σ = δ̇ + g̈1 − f̈
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Note that the last three equations in (4.8) forms a subsystem presented in [24]. According to the

noise-attenuation effect proven in [26],
∣∣gi − f (i−1)(t)

∣∣ = O (αm−i+1) , where m ≥ 3 and could be

designed arbitrarily by choosing appropriate h(x). The term σ is thus bounded:

‖σ‖ =
∥∥∥δ̇∥∥∥+O (α) (4.19)

The general solution of (4.18) is

eo (t) = eAoteo (0) +

∫ t

0

eAo(t−τ)Loσdτ

The logarithmic norm of the solution could be bounded by

‖eo (t)‖ ≤ eλ1t ‖eo (0)‖+ lb

∫ t

0

eAo(t−τ)dτ

≤ eλ1t ‖eo (0)‖+ lb

∫ t

0

eλ1(t−τ)dτ

= eλ1t ‖eo (0)‖+
lb
−λ1

(
1− eλ1t

)
(4.20)

where λ1 is the largest eigenvalue (or the one that has the smallest absolute value because λ1 is

negative) of matrix Ao, and lb is the upper bound of ‖Loσ‖ . With (4.19), the bound of (4.20) could

be expressed as:

‖eo (t)‖ ≤ eλ1t ‖eo (0)‖+
sup(

∥∥∥δ̇∥∥∥) +O (α)

−λ1

(
1− eλ1t

)
(4.21)

where sup(
∥∥∥δ̇∥∥∥) denotes the least upper bound of

∥∥∥δ̇∥∥∥. By choosing sufficient large values of k1

and k2, one can readily verify that λ1 → −∞, so ‖eo (t)‖ → 0. Finally, we have∣∣∣f̂ − f ∣∣∣ → |g1 − f | = O (αm) (4.22)∣∣∣δ̂ − δ∣∣∣ → ∣∣∣ġ1 − ḟ
∣∣∣ = O

(
αm−1

)
(4.23)

This concludes the proof.

94



References

[1] Z. Lu, P. C. Chen, and W. Lin, “Force sensing and control in micromanipulation,” IEEE

Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 36, no. 6, pp. 713–724, 2006.

[2] X. Liu, Y. Sun, W. Wang, and B. M. Lansdorp, “Vision-based cellular force measurement

using an elastic microfabricated device,” J. Micromech. Microeng., vol. 17, no. 7, p. 1281,

2007.

[3] X. Y. Liu, K. Kim, Y. Zhang, and Y. Sun, “Nanonewton force sensing and control in

microrobotic cell manipulation,” Int. J. Robot. Res., vol. 28, no. 8, pp. 1065–1076, 2009.

[4] Y. Xie, D. Sun, H. Y. G. Tse, C. Liu, and S. H. Cheng, “Force sensing and manipula-

tion strategy in robot-assisted microinjection on zebrafish embryos,” IEEE/ASME Trans.

Mechatron., vol. 16, no. 6, pp. 1002–1010, 2011.

[5] A. Bolopion, H. Xie, D. S. Haliyo, and S. Régnier, “Haptic teleoperation for 3-d microassem-
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The connection between Chapter 4 and Chapter 5

Chapter 4 was mainly focused on an advanced force controller, which does not consider the

dynamics of the micromanipulator. Further accommodating the micromanipulator dynamics could

further improve the system performance, especially after the switch to PD control since the PD

controller is model dependent. In Chapter 5, the micromanipulator dynamics will be taken into

account, and several associated challenges, including insufficient feedback, measurement noise,

and time delay, will be tackled by using a new compensation-prediction control scheme. This

approach is applicable to any type of controllers. To highlight the effectiveness new scheme, the

conventional PID controller is implemented together with the proposed scheme, and experimental

comparisons are made with and without the scheme. The experimental results demonstrate that

the improvement of control performance is purely enabled by the proposed scheme.
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CHAPTER 5
A Model Compensation-Prediction Scheme for Control of
Micromanipulation Systems with a Single Feedback Loop
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Many micromanipulation systems employ sensor- less actuators and possess unknown mod-

eling errors, feedback measurement noise, and time delays. Conventional model-based control

schemes ignore some of these uncertainties, and thus sacrifice the control system performance.

This paper presents a new model compensation-prediction scheme for micromanipu- lation systems

that can be described by two-dimensional state- space models, estimate the unknown modeling

errors from noisy single feedback measurement, and predict and compensate the system time de-

lay. This approach combines two modeling errors into a single equivalent modeling error through

mathematical transformation, and estimates the combined term using a noise- insensitive extended

high-gain observer (EHGO). After removing the unknown term, the system is then transformed

into a time invariant form, and a Smith predictor is implemented to predict and compensate the

time delay. The effectiveness of the proposed compensation-prediction scheme is demonstrated by

both numer- ical simulation and experiments of two typical micromanipulation systems, namely

a robotic biosample stimulator and a material characterization microgripper. The results show

that this method is able to significantly improve the control performance of a conventional PID

controller, by simultaneously reducing the settling time and overshoot of the micromanipulation

systems.

Index Terms-First order actuator, Modeling error, Measure- ment noise, Time delay, Com-

pensation, Prediction, Performance index.
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5.1 Introduction

Many micromanipulation systems employ large-scale or microelectromechanical systems (MEM-

S) based actuators to generate microscale motions and interact with micro-objects [1, 2, 3, 4, 5, 6,

7, 8, 9, 10]. Typical actuators used in micromanipulation include high-precision stepper motors [2,

5] and MEMS electrostatic and electrothermal actuators [3, 7], and these actuators usually do not

have integrated position sensors for feedback control. Therefore, other feedback modalities, such

as vision [2, 4, 5, 11, 6, 8] and force [3, 7, 12], have been utilized for guidance and/or closed-loop

control of the micromanipulation systems. Additionally, the dynamics of these actuators need-

s to be considered in the control system, and is always coupled with the time-delay effect [13].

The control of micromanipulation systems is also prone to modeling errors and feedback measure-

ment noise [14], making it difficult to implement model-based control methods (e.g., feed-forward

compensation, model predictive control, and H-infinity control) to optimize performance.

This paper aims at developing a new control scheme for micromanipulation systems with single

force feedback loop, which considers actuator dynamics and nonlinearity, time delays, unknown

modeling errors, and measurement noises. Many micromanipulation systems with a single feedback

loop can be described by a two-dimensional space-state model (2D systems). The first state

variable is the system output to be controlled (e.g., interaction forces in demonstration experiments

of this work), and the second state variable is the output of the actuator (which could be the

displacement or speed). In principle, the modeling errors, which are reflected by two small terms

in the differential equations of the 2D system, can be estimated from the feedback signal using an

observer. However, because the force feedback is not directly coupled with output of actuator (i.e.,

the second state variable), the original 2D space-state model of the micromanipulation system is

unobservable.

To address this problem, the most common way is to ignore details of the system model

and implement a simple proportional-integral-derivative (PID) controller, which guarantees zero

static error. However, because the system dynamics is not considered in the controller design

and the time delay exists, the PID controller usually leads to large overshoots [15]. By tuning
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the PID coefficients, the overshoot may be reduced but settling time is also sacrificed [16]. The

Smith predictor is ideal to treat the time-delay effect of control systems but requires a precise time

invariant model [17], which is unsuitable for our case here because unknown modeling errors exist

in the micromanipulation systems. Another method is to ignore modeling errors completely to

obtain a simplified linear system, and analyze it in frequency domain [18]. However, this method

leads to long settling time and static state oscillations.

Advanced control schemes have also been proposed for a variety of micromanipulation systems.

H-infinity and µ-synthesis were investigated in [14] to account for modeling errors of piezoelec-

tric microactuators. These methods require the feedback of the actuator output, which can not

be implemented in systems with sensorless actuators. Gain scheduling was adopted in [19] to

adaptively compensate for system nonlinearity, but modeling errors were neglected in this study.

In [20], unknown terms were estimated during the initial step of control system. This method

could only treat constant modeling errors, and causes large overshoot during each estimation. In

[21], an iterative procedure, based on an eigenstructure assignment methodology coupled with

auto-scheduling, was proposed to treat model uncertainties. In [22], a fuzzy-PID controller with

feedforward compensation was adopted to account for model uncertainties. However, in these two

systems [21, 22], only simulations were conducted and no real control experiments were demon-

strated. In [23], a sliding mode controller was employed for a gripper system to compensate for

uncertainties, but this method is unable to tackle time delay. Besides, the system was only tested

on a hard material (copper) without any effect of the material compliance (e.g., elasticity and

viscoelasticity). In our case, soft materials are manipulated and the slow dynamics of these soft

materials will bring in additional uncertainties in the control system. Passive bilateral control was

investigated in [24] to account for time delays, but this approach showed large steady state errors.

Moreover, all control methods introduced above fail to account for time-varying modeling errors,

time delays, and feedback measurement noises simultaneously.

In this paper, we present a new model compensation-prediction scheme for control of microma-

nipulation systems with single force feedback loop. The proposed scheme describes the system in a
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Figure 5–1: Architecture of the compensation-prediction scheme.

2D state-space model, and combines modeling error terms from the two differential equations of the

2D system into a single equivalent error term, making the system observable. A noise-insensitive

extended high-gain observer (EHGO) is used for estimating the combined error term from the sin-

gle force feedback loop. After compensating this unknown term by the EHGO, the system is then

transformed into a time invariant form, and a Smith predictor is implemented to compensate the

time-delay effect. It is finally proved that this approach is equivalent to adding a compensation to

the conventional Smith predictor. We illustrate the effectiveness of this compensation-prediction

scheme with numerical simulations, and then test it on two typical force-controlled micromanip-

ulation systems: a robotic biosample stimulator and a microelectromechanical systems (MEMS)

based microgripper. Both the simulation and experimental results demonstrate that the proposed

scheme is effective in reducing settling time and system overshoot simultaneously, despite the

presence of modelling errors, feedback measurement noises, and time delays.

5.2 Compensation-Prediction Scheme Overview

A general architecture of the model compensation-prediction scheme is show in Fig. 5–1. The

actuator in the micromanipulation system causes a time delay due to its dynamics, backlash of

the transmission mechanism, signal transmission delays, and so on. The system output, x1, is the

interaction force between the end-effector and the target micro-object, and its objective (reference)

value is denoted by x1 obj. Note that only single and multi-step force commands are used because

most of the force control tasks in robotic micromanipulation only involves the regulation of stepwise

forces [3, 12, 15, 20]. The tracking error of x1 is denoted by e1(t) = x1 obj(t+td)−x1(t). Note that we
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use x1 obj(t+ td) instead of x1 obj(t) as reference to highlight the fact that the time-delayed system

will always response td later than the step command. The system has two unknown modeling errors

(δ1 and δ2) in the two differential equations of the 2D state-space model respectively (see Section

5.3), and these errors are time-varying because they are affected by external disturbances. To make

the system observable from the single force feedback loop, we combine them into an equivalent

modeling error (δeq in Fig. 5–1) through mathematical transformation, and then estimate δeq

using a modified EHGO insenstive to the force measurement noise (ξ in Fig. 5–1). The EHGO

also provides a denoised value (g1) of the force measurement y. A Smith predictor is implemented

to calculate a correction (δx1eq) to the tracking error caused by the system time delay. Based on

the estimation (δeq) of the equivalent modeling error, a compensation is added to further correct

the tracking error, and the corrected error (eeq) is then injected into a controller to calculate the

control input u.

5.3 Modeling

To simplify the description, here we define two types of models: The term ”real model” is

defined as the equations that represent the true dynamics of the system [25, 26] (including the

modeling errors). The term ”ideal model” is defined as the real model without the modeling error

terms. This is equivalent to say that the real could always be written as an ideal model plus

modeling errors.

The real model of the micromanipulation system contains time delay, unmeasurable actuator

output (due to the lack of displacement feedback), time-varying modeling errors, and feedback

measurement noise. We establish a 2D state-space model in a general form as follows:

 ẋ1 = ax1 + bx2 + cu(t− td) + δ1

ẋ2 = 1
Tm

[u(t− td)− x2] + δ2

(5.1)

where x1 and x2 are state variables, and u is the control input and is time-delayed by td. The second

differential equation describes the actuator (treated as a first-order model) with unmeasurable

output x2, where Tm is the actuator time constant and can be quantified via step-input testing

104



of the actuator [13]. Note that there are also some actuators in micromanipulation systems with

second-order behaviors (MEMS electrostatic actuators), and the proposed compensation-prediction

scheme is only limited to actuators with first-order behaviors. The terms δ1 and δ2 represent the

total unknown modeling errors in each equation. The parameters a, b, c, and td are constants

related to the system’s physical parameters and can be estimated or measured from the system.

The system model (5.1) is robust to the estimation/measurement errors of these parameters since

these errors can be always included in the total modeling errors (δ1 and δ2). These errors are

dependent on x1, x2 and u. Assumption 1: It is assumed that δ1, δ2, and the time derivative

of δ1 are all bounded; and a ≤ 0. The restriction on a is valid for the two case studies in our

investigation.

One may notice that, since the statistic property of the real model is unknown, the distribution

laws of δ1 and δ2 are thus undetermined. However, Assumption 1 is the mathematical constraint

on δ1 and δ2, and we will prove in Section 5.4.1 that Assumption 1 is sufficient to make the EHGO

to work properly.

Physically, the variables x1 and x2 are the force and the output of the actuator, respectively.

The system model (5.1) is a generalized form of typical force controlled micromanipulation systems,

as given by (5.23) and (5.25) to be discussed in Section 5.6. Note that not all parameters of in

(5.1) will appear in experimental cases since (5.1) is a generalize form. For instance, in the first

experimental study described with (5.23), we have a = c = 0.

Note that there are also some actuators in micromanipulation systems with second-order

behaviors (MEMS electrostatic actuators), and the proposed compensation-prediction scheme is

only limited to actuators with first-order behaviors. DC motors and thermal actuators can be well

approximated with first-order model [27, 28].

Note that in some cases, the control input must be linearized with a one-to-one mapping H(u),

if the actuator is nonlinear. For instance, a MEMS V-beam thermal actuator has a nonlinear

relationship between its control voltage and output displacement [3]. If the actuator displacement

is used as the control input, a one-to-one mapping, determined by the actuator calibration data, is
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needed to convert the control voltage (output from the controller) into the actuator displacement

(control input of the 2D state-space model). The actuator displacement can be described with a

first-order linear system, and the second equation of (5.1) in this case could be written as

ẋ2 =
1

Tm
{H[u(t− td)]− x2}+ δ2 (5.2)

5.4 Model Transformation

5.4.1 Combination of Unknown Terms

One major difficulty of directly using the 2D model is that the system only has single feedback

loop, thus making it impossible to estimate both unknown modeling errors (δ1and δ2). Our idea is

to combine two unknown terms into an equivalent single term δeq via mathematical transformation.

We start the conversion with decomposing δ2 into:

δ21 = δ2 − 1
Tm
e−

t
Tm

∫ t
0
δ2e

τ
Tm dτ

δ22 = 1
Tm
e−

t
Tm

∫ t
0
δ2e

τ
Tm dτ

(5.3)

where δ2 = δ21 + δ22, and that

d

dt
(x2 − Tmδ22) =

1

Tm
[u(t− td)− (x2 − Tmδ22)] (5.4)

The second state variable x2 could be replaced by x2−Tmδ22 because this term could be considered

as a whole. A change of variable could be applied. Let:

x2eq = x2 − Tmδ22

δeq = δ1 + be−
t
Tm

∫ t
0
δ2e

τ
Tm dτ

(5.5)

It is easy to show that  ẋ1 = ax1 + bx2eq + cu(t− td) + δeq

ẋ2eq = 1
Tm

[u(t− td)− x2eq]
(5.6)
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Now only one combined unknown term δeq exists in (5.6), which is a combination of δ1 and δ2.

With Assumption 1, it is obvious that δeq and its time derivative are bounded. Next step will be

to estimate δeq with a noise-insensitive EHGO to make the system free of unknown terms.

5.4.2 Noise-Insensitive EHGO

If the force measurement y is denoised, a traditional EHGO is able to estimate δeq. However,

measurement noise is inevitable in the feedback signal. The noise will also be magnified by the

high gain of the EHGO and may eventually destabilize the system. Here, a modified EHGO is

adopted to estimate δeq[29]:

˙̂x1 = ax̂1 + bx̂2eq + cu(t− td) + δ̂eq − k1
ε

(x̂1 − g1)

˙̂x2eq = 1
Tm

[u(t− td)− x̂2eq]− k2
ε2

(x̂1 − g1)

˙̂
δeq = −k3

ε3
(x̂1 − g1)

ġ1 = g2

ġ2 = g3

ġ3 = 1
α3h (g1 − y, αg2, α

2g3)

(5.7)

where h (x) is a function that satisfies the continuity assumption in [30], and g1, g2, and g3

are extended state variables of a subsystem to attenuate the measurement noise [30]. It has

been proven that the order of the estimation error is determined by
∣∣∣δeq − δ̂eq∣∣∣ = O (αm−1) and∣∣∣δ̇eq − ˙̂

δeq

∣∣∣ = O (αm−2) , where the lower bound of the parameter m is 3 [31]. The term g1 is also a

filtered/denoised value of the feedback measurement y, and thus could serve as the estimation of

x1. The term g2 is an estimation of ẋ1, and will be used for controller implementation.

The parameters used in the EHGO are: k1 = 50, k2 = 1000, ε = 0.1 [29] and α = 0.04 [30].

h (x) used in this research is [30]:

h
(
g1 − y, αg2, α

2g3

)
= −4 · 2

3
5

(
g1 − y + (αg2)

9
7

) 1
3

− 4 ·
(
α2g3

) 3
5 (5.8)
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With the selected parameters and h (x), the EHGO has been verified to have good performance

[29].

5.4.3 Smith Predictor for Time-Delay Compensation

The system is now time-delayed and has no unknown terms. However, the system is time

variant due to the presence of δeq. One can implement a Smith predictor by ignoring δeq (this

approach will be compared with our compensation-prediction scheme in the simulation and ex-

periments), or with the estimation δ̂eq in (5.7). The latter is not recommended because the

Smith predictor requires δ̂eq(t + td) instead of δ̂eq(t). Even one could estimate δ̂eq(t + td) with

linear interpolation, it is easy to show that such approximation will cause a tracking error of∫ t
0
(
˙̂
δeq − δ̇eq)tddτ =

∫ t
0
O (αm−2) tddτ which could not be bounded. In contrast, our proposed

method has a bounded tracking error, as will be shown in Section V.

We first reform the system and express it into a time-invariant system. Let:

x1eq = x1 − eat
∫ t

0

δeqe
−aτdτ (5.9)

It is easy to verify that  ẋ1eq = ax1eq + bx2eq + cu(t− td)

ẋ2eq = 1
Tm

[u(t− td)− x2eq]
(5.10)

Now, the system representation is free of modeling errors, and the state vector variables have been

changed to x1eq and x2eq. The conversion from old variables (x1 and x2) to new variables (x1eq and

x2eq) is shown in (5.5) and (5.9). The Smith predictor simulates
˙̂x1eq f = ax̂1eq f + bx̂2eq f + cu

˙̂x2eq f = 1
Tm

(u− x̂2eq f )
(5.11)


˙̂x1eq = ax̂1eq + bx̂2eq + cu(t− td)

˙̂x2eq = 1
Tm

[u(t− td)− x̂2eq]
(5.12)

δx1eq = x̂1eq f − x̂1eq (5.13)
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where x̂1eq and x̂1eq f are the estimations of x1eq with and without dead time. The corrected

feedback is

x′1eq = x1eq + δx1eq (5.14)

5.5 Controller Implementation

The objective of this research is to develop a new scheme for compensating modeling errors and

predicting time delays from a single feedback loop, which could enhance the control performance

of the micromanipulation system without the need to tune the controller. Thus, the conventional

PID controller was implemented as an example, but the method is also applicable to other types

of controllers.

Note that the corrected feedback x′1eq(t) is the estimated feedback at t + td, which equals

to x1eq(t + td). Therefore, the objective value from which x′1eq is subtracted should also be at

t + td. Use (5.9) and suppose we want to stabilize x1 at x1 obj, and the command given by the

compensation-prediction model is

x1eq obj(t+ td) = x1 obj(t+ td)− ea(t+td)

∫ t+td

0

δeqe
−aτdτ (5.15)

Note that the integration in (5.15) requires the value of δeq in the time period [t, t+ td] to be

known. We use linear interpolation to estimate the value of δeq in [t, t+ td]:

δeq (t+ ∆t) = δeq (t) + ∆t
˙̂
δeq (5.16)

where
˙̂
δeq is the estimated time derivative of δeq in Eq. 5.7. The PID controller is expressed as

u = Kpeeq +KI

∫
eeqdt+Kdėeq (5.17)

where Kp, KI and Kd are PID coefficients, and

eeq(t) = x1eq obj(t+ td)− x′1eq(t) (5.18)
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Remark 1: It is easy to show that

eeq =x1 obj − (x1 + δx1eq)

+ eat
∫ t

0

δeqe
−aτdτ − ea(t+td)

∫ t+td

0

δeqe
−aτdτ

(5.19)

Note that when δ1 = δ2 = 0, we have δeq = 0 and eeq = x1 obj − (x1 + δx1eq). In this case eeq is the

conventional tracking error with Smith predictor correction. (5.19) indicates that, even with the

presence of the modeling error, we could still implement a Smith predictor as if we had the precise

model, except for adding a supplementary correction of eat
∫ t

0
δeqe

−aτdτ − ea(t+td)
∫ t+td

0
δeqe

−aτdτ to

compensate for the modeling error (which corresponds to the “calculation of compensation” block

in Fig. 5–1). This significantly simplifies the implementation of the entire model compensation-

prediction scheme.

With Assumption 1, it is straightforward to prove that the compensation term is bounded.

Note that when a = 0, (5.9) is not bounded. However, since x1eq is an intermediate term which

is not used in calculating the compensation, the compensation term is still bounded. It is also

straightforward to prove that, both the estimation error caused by the observer and the error

caused by the linear interpolation (5.16) will contribute to the error of the compensation. The

former is at the order of O(αm−1td), and the latter is at the order of O(αm−2t2d), making the total

tracking error at the order of O(αm−1td + αm−2t2d) (m ≥ 3). It is desirable that td does not exceed

the order of magnitude of α to constrain the total tracking error at the order of O(αm−1td).

Remark 2: When implementing the PID controller, ėeq can be obtained by taking time

derivative of (5.19), and then substituting (5.11), (5.12), (5.13) and (5.16) into ėeq to express it

with known terms.

5.6 Simulation Results

5.6.1 Simulation with Modeling Errors Induced by Parameter Inaccuracy and Con-
stant Disturbance

In the first step, we simulate a common scenario where modeling errors are induced by in-

accuracy of model parameters. Thus, two models (one real model and one ideal model) need to
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be formulated, and the modeling errors are the difference between these two models. Constant

disturbances are added to the real model. The real model is: ẋ1 = 1.5x2 + 0.2u(t− 0.1) + 10

ẋ2 = 1
0.15

[u(t− 0.1)− x2] + 10
(5.20)

while the ideal model is:  ẋ1 = −0.15x1 + x2 + 0.15u(t− 0.05)

ẋ2 = 1
0.1

[u(t− 0.05)− x2]
(5.21)

Thus, the modeling errors (δ1 and δ2) are not only the constant disturbance, but also includes the

contributions from parameter inaccuracy, i.e. the difference between the two differential equations

in the real and ideal models. The feedback signal is y = x1 + ξ, and the measurement noise ξ has

a standard deviation of 1. The simulation and the experimental case studies were performed at a

sampling frequency of 200 Hz. This frequency was lower than the one used in our previous studies

[31], which was due to the hardware limitation as the control system required additional resources

of the host computer to calculate the compensation term. However, the sampling interval of 0.005

s at 200 Hz is still significantly shorter than the characteristic time of the system, which has the

same order of magnitude of the system dead time and the time constant of the first order actuator.

The model system presented above is suitable for demonstrating the effectiveness of the model

compensation-prediction scheme, for the following reasons. First, all model parameters (including

the time delay) are inaccurate. The conventional PID controller will inevitably generate large

overshoots of the output, and the conventional Smith predictor will work improperly. Second, the

time constant of the actuator and the dead time of the system are at the same order of magnitude

as these of real micromanipulation systems.

For comparison, we first simulated PID control of the system without the model compensation-

prediction scheme, and tuned the controller parameters to achieve the best step-response perfor-

mance (in terms of the shortest settling time) with the Ziegler-Nichols method [32]. Note that

the same method was also adopted for subsequent experiments. The final controller parameters
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Figure 5–2: (A) Simulation results of a system with parameter inaccuracy and constant disturbance
induced modeling errors. (B) Verification of Assumption 1.
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are Kp = 3, KI = 5.5, and Kd = 0.2. Then, we integrated the compensation-prediction scheme

into the same PID controller (PID parameters unchanged). We also simulated performance of

the PID controller with Smith predictor alone (PID parameters unchanged). Fig. 5–2 (A) shows

the simulation results. The settling time of the model compensation-prediction scheme decreased

from 2.21 s to 1.71 s compared to no-compensation-prediction scheme, and decreased from 2.02

s to 1.71 s compared to the prediction-only scheme. The overshoot of the model compensation-

prediction scheme decreased from 70% to 40% compared to no-compensation-prediction scheme,

and decreased from 52% to 40% compared to the prediction-only scheme. Fig. 5–2 (B) shows that

δ1, δ2 and δ̇1 are all bounded, and Assumption 1 thus is satisfied.

5.6.2 Simulation with Modeling Errors Induced by Parameter Inaccuracy and Sinu-
soidal Disturbance

The environmental disturbance (e.g., low-frequency oscillations of an anti-vibration table on

which a micromanipulation system is placed) may also play a part in the total modeling errors.

To simulate this effect and test the disturbance attenuation ability of the compensation-prediction

scheme in the worst case scenario, two sinusoidal disturbances with high magnitudes are added to

the real model:  ẋ1 = 1.5x2 + 0.2u(t− 0.1) + 30 cos(2πt)

ẋ2 = 1
0.15

[u(t− 0.1)− x2] + 30 cos(2πt)
(5.22)

and the ideal model remains unchanged from (5.21). The frequency of the disturbance (1 Hz)

is the same order of magnitude of an anti-vibration table, which is one of the primary sources

of disturbance in our experimental setups. The magnitude of 30 is exaggerated to show the

effectiveness of our control scheme.

For comparison, we first simulated PID control of the system without the model compensation-

prediction scheme, and tuned the controller parameters to achieve the best step-response perfor-

mance. In this case, the best performance refers to step-wise response with minimum steady state

oscillations. The final controller parameters are Kp = 3.7, KI = 4.9, and Kd = 0.25. Then, we

integrated the compensation-prediction scheme into the same PID controller, then integrated the
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Figure 5–3: Simulation results of a system with parameter inaccuracy and heavy sinusoidal dis-
turbance induced modeling errors.

Smith predictor alone, with the controller parameters unchanged. Simulation results are shown in

Fig. 5–3. Steady state oscillation is inevitable in the output due to the heavy sinusoidal distur-

bance, but the implementation of compensation-prediction scheme reduced steady state oscillation

from ±14% to ±10% compared to that of the compensation-prediction scheme, and from ±12%

to ±10% compared to that of the prediction-only scheme.

5.7 Case Study Experiments and Discussion

5.7.1 Robotic Biosample Stimulator

We performed the first case study experiment of the model compensation-prediction scheme

on a robotic biosample stimulator, as shown in Fig. 5–4(A). This system was developed for

automatically applying force-controlled contact stimulation to the head of an immobilized live

Drosophila larva to study its neural mechanisms of behavior responses to mechanical stimulation

[29]. The system employs a glass needle, attached to a MEMS piezoresistive force sensor (AE801,

Kronex), to touch the larva head, and a stepper-motor-driven micromanipulator (MP-285, Sutter)

to move the needle vertically for larva touching. During operation, the micromanipulator moves the

needle vertically towards the larva head (Fig. 5–4(B)) until a contact is established and detected

by the force sensor. Then, the vertical position of the micromanipulator, z, is controlled to regulate
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Figure 5–4: (A) General layout of the robotic biosample stimulator. (B) Simplified schematic
of the robotic biosample stimulator with the variables used in the modeling. (C) and (D) The
calibration of the function H (u), which describes the voltage-maximum speed mapping of the
manipulator.
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the contact force. The vertical speed of the micromanipulator (vz = ż) is controlled by the input

voltage applied to the z -axis stepper motor. The force is converted into a voltage output by the

force sensor, which provides the only force feedback loop in the system. The force sensor has a

linear calibration curve of the output voltage vs. the input force.

The larva head can be safely assumed to be elastic. Thus, f = K∆z, where f is the contact

force, K is the spring constant of the larva head, and ∆z is the z-axis displacement of the micro-

manipulator. The time derivative of f = K∆z leads to ḟ = Kvz. Set the contact force f and vz

as the two state vector variables, and the state-space model of the system can be expressed by
ḟ = Kvz + δ1

v̇z = 1
Tm
{H [u (t− td)]− vz}+ δ2

y = f + ξ

(5.23)

where the second equation is a time-delayed, first-order model governing the z-axis of the micro-

manipulator. Note that the z-axis of the micromanipulator was calibrated to have a nonlinear

relationship between its input voltage and output speed (Fig. 5–4(C)(D)). Therefore, a one-to-

one mapping function H (u), determined by the nonlinear calibration curve of the z-axis of the

micromanipulator, was used for system linearization, which converted the real input (the control

voltage u) into a virtual input (the vertical speed vz). After the calculation of the virtual input vz

by the controller, the real input u is obtained via the inverse map of H (u).

We implemented the PID control of the robotic stimulator with and without the model

compensation-prediction scheme, and the parameters of the system model are K = 200 N/m,

Tm = 0.01 s, and td = 0.05 s. The modeling errors δ1 and δ2 primarily arise from the estimation

errors of the larva head compliance (K), and the calibration error of the function H (u). The

system was first tuned without the compensation-prediction scheme to achieve the best possible

result (by minimizing settling time first, then minimizing overshoot without influencing settling

time) for the single-step response, and the controller parameters were determined to be: Kp = 150,

KI = 200 and Kd = 2. Large overshoot is inevitable due to the presence of time delay [12]. Then
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the controller parameters are inherited for the compensation-prediction and the prediction-only

schemes. The red, black and pink curves in Fig. 5–5(A) show the single-step response of the sys-

tem in three different schemes. A settling time of 0.8 s and an overshoot of 27% were achieved by

the no-compensation-prediction scheme, and the integration of the model compensation-prediction

scheme reduced the settling time to 0.3 s (62.5% improvement) and the overshoot to 5% (81.5%

improvement). Compared with the prediction-only scheme (settling time 0.39 s, overshoot 11%),

the improvements are 23.1% and 54.5%, respectively. The multi-step response of the system also

shows similar improvements, as illustrated in Fig. 5–5(B).

5.7.2 Force-Controlled MEMS Microgripper

The second case study was demonstrated on a force-controlled MEMS microgripper [15], as

shown in Fig. 5–6. The microgripper has an active gripping arm (the left arm in Fig. 5–6(B))

driven by a V-beam thermal actuator, and a force sensing arm (the right arm in Fig. 5–6(B))

attached to a capacitive force sensor. The device was used as a soft material microtester [15], for

which a microscale soft object was grasped between the two gripping arm tips, and the gripping

force and the induced deformation of the object were measured and used to calculate elastic or

viscoelastic properties of the material. In this case study experiment, we grasped soft micro-cubes

made from polydimethylsiloxane (PDMS), and demonstrated control of the grasping force using

the model compensation-prediction scheme.

Taking the microgripper as the plant, the control input (u) is the actuation voltage applied

to the thermal actuator, which regulates the displacement of the left arm tip (∆x in Fig. 5–

6(B)). Once a micro-object was grasped between the two tips, the grasping force was controlled by

adjusting the control input u. The force was measured by the capacitive force sensor and finally

converted into a voltage signal with a capacitance readout circuit [15]. This system also requires

linearization because the voltage-displacement mapping H (u) of the thermal actuator is nonlinear

(Fig. 5–6(C)). The virtual input is thus the displacement of the active arm, and the real input

can be obtained via the inverse map of H (u).
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Figure 5–5: Experimental results of PID control of the robotic biosample stimulator with and
without the compensation-prediction scheme. (A) Single step response. (B) Multi-step response.
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Figure 5–6: (A) Scanning electron microscopy (SEM) photograph of the microgripper. (B) Sim-
plified schematic of the microgripper. (C) The calibration of the function H (u), which describes
the voltage-maximum displacement mapping of the movable arm.
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Denote the deformation of the sample by xdef , the displacement of the force-sensing arm (due

to the grasping force) by ∆x′, and the gripping force by f , and the following relationship exists:
xdef = ∆x′ −∆x

ḟ = − 1
α
f + kẋdef

∆̇x = 1
Tm
{H [u (t− td)]−∆x}+ δ2

(5.24)

The second equation of (5.24) is the Maxwell viscoelastic model of PDMS, where k and α are

parameters characterizing the viscoelastic property of the sample. The third equation is a time-

delayed, first-order model governing the thermal actuator. Then, we converted (5.24) into the form

of (5.1): 
ḟ = − 1

α
f + k

Tm
∆x− k

Tm
H [u (t− td)] + δ1

∆̇x = 1
Tm
{H [u (t− td)]−∆x}+ δ2

y = f + ξ

(5.25)

Note that ∆x′ is much smaller than ∆x; thus, the time derivative of ∆x′ can be integrated into δ1.

The PDMS material parameters used for controller implementation are α = 0.3 s and k = 0.0225

N/m, which are extracted from previous experiments [33]. Other parameters are estimated to be

Tm = 0.00075 s and td = 0.022 s. The time constant (Tm) was estimated based on the experimental

data in [28], and the time-delay (td) was obtained by conducting open-loop step input tests following

the method in [13]. The system was first tuned without the compensation-prediction scheme to

achieve the best possible result for single step response, and the final controller parameters were:

Kp = 1, KI = 50 and Kd = 0. These parameters were kept the same for the compensation-

prediction and the prediction-only schemes. Fig. 5–7(A) shows the single-step responses of the

controller with the three different schemes. A settling time of 0.3 s and an overshoot of 35%

were achieved by the no- compensation-prediction scheme. In contrast, integrating the model

compensation-prediction scheme yielded a much shorter settling time of 0.15 s (50% improvement

vs. pure PID control) and a much smaller overshoot of 10% (71.4% improvement). Compared to

the prediction-only scheme, the compensation-prediction scheme shows 14.1% improvement (0.15
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Table 5–1: Comparison of results after the implementation of the compensation-prediction scheme.

Performance No compensation- Prediction Compensation Improvement Rating
prediction only & prediction

Simulation
Settling time 2.21 s 2.02 s 1.71 s 22.6% / 15.3%
Overshoot 70% 52% 40% 42.9% / 23.1%
IAEd 5.96 5.44 4.86 15.6% / 10.6% Medium/Medium/Medium

Robotic biosample stimulator
Settling time 0.8 s 0.39 s 0.3 s 62.5% / 23.1%
Overshoot 27% 11% 5% 81.5% / 54.5%
IAEd 7.15 4.55 3.49 51.2% / 23.3% Poor/Medium/Medium

Microgripper
Settling time 0.3 s 0.174 s 0.15 s 50% / 14.1%
Overshoot 35% 18.41% 10% 71.4% / 45.7%
IAEd 5.59 1.76 1.49 73.3% / 15.3% Medium/High/High

s vs. 0.174 s) in settling time and 45.7% improvement (10% vs. 18.4%) in overshoot. Fig. 5–7(B)

shows the multi-step force control response of the control system with the compensation-prediction

scheme, revealing similar improvements over the pure PID control.

Note that researchers have also developed microgrippers with on-chip actuation position sen-

sors [23, 34]. However, integrating both actuation position sensors and force sensors on the same

chip increases the complexity of the device microfabrication and readout circuit development, and

many microgripper designs [3, 35] do not include actuation position sensors. Therefore, the control

scheme presented in this work is still meaningful for controlling these sensorless microgrippers with

improved performance.

5.7.3 Discussion

For time-delayed systems, the Smith predictor cannot be directly applied to them if they are

time variant and have unknown terms. When the system was regulated with PID controllers,

our simulation and experimental results showed that large overshoots are inevitable, especially

in the case that short settling time is required. With the implementation of the compensation-

prediction scheme, the control performance was significantly improved. However, compared with

the prediction-only scheme, our propose scheme may not have advantage in terms of the set-

tling time, but the overshoot could be deduced further. We quantitatively assessed the control

performance of the three schemes (no-compensation-prediction, prediction only, and compensation-

prediction) using a standardized index conceived for single step responses (denoted as IAEd) [36].

A lower index indicates better control performance, and three levels of the control performance
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Figure 5–7: Experimental results of PID control a MEMS microgripper with and without the
compensation-prediction scheme. (A) Single step response. (B) Multi-step response.
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(i.e., poor, medium, and high) can be determined based on the index value. The performance

comparison data for both the separate control parameters (settling time and overshoot) and the

overall performance index are summarized in Table 5–1.

5.8 Conclusions

In this paper, we presented a new model compensation-prediction scheme for micromanipu-

lation systems (which were described by unobservable 2D state-space models) with a first-order

sensorless actuators, single force feedback loop, unknown modeling errors, feedback measurement

noise, and time delays. This approach combined two modeling errors into one equivalent term,

thus making the system observable by a noise-insensitive EHGO. The scheme removed the system

unknown terms and enabled the implementation of a Smith predictor for time-delay prediction

and compensation. Through the implementation of the proposed scheme on two typical micro-

manipulation systems, this method was proven to be effective in reducing the settling time and

overshoot of the systems’ step-input responses. The improvement of the control performance by

the proposed scheme was finally quantified by a standardized control performance index.
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The connection between Chapter 5 and Chapter 6

In Chapters 4 and 5, the improvement of force control performance of the micromanipulation

system were achieved through two different ways. In Chapter 4 an advanced controller was adopted

without modifying the control scheme, while in Chapter 5 a new compensation-prediction control

scheme was utilized in combination with a conventional PID controller. The objective of Chapter

6 are two fold. On one hand, I will combine the switched fuzzy-PD controller with the advanced

compensation-prediction scheme to achieve even better force control performance. On the other

hand, I will use the final force control system to performance biological experiments and quantify,

for the first time, the relationship between the touch force level and the transmission signal intensity

of Class III ddaA neurons in Drosophila larvae.
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CHAPTER 6
Quantifying the Relationship between Touch Force and Signal
Transmission of Class III ddaA Neurons in Drosophila Larvae
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The responses of stimuli of Drosophila larvae have drawn increasing interacts from researchers

because it is a good representative of creatures’ danger-escaping behaviors. By applying mechanical

stimuli and studying the mechanotransduction under microscope, the fluorescence intensity of

Class III ddaA neurons of certain genotypes have been demonstrated to have strong correlation

with the mechanical stimulation. However, these experiments were performed under a fixed force

level, and the force measurement approaches introduced relatively large errors. It is intuitive to

assume that there exists a quantitative relationship between the touch force level and the calcium

fluorescence intensity of the class III ddaA neurons. However, due to the lack of capability of

accurate force control in previous experimental setup, this relationship has not been quantified.

In this paper, we present a robotic mciromanipulation system which is capable of applying closed-

loop force-controlled mechanical stimuli to Drosophila larvae and fluorescence image recording. we

combined two of our previous works together and obtained a compensation-prediction+switched

fuzzy-PID control architecture, which demonstrates a settling time of 0.15 s, no overshoot and

a resolution better than 0.05 mN. By applying mechanical stimuli ranging from 0.25 mN-2 mN,

we obtained, for the first time, the quantitative relationship between the applied force level and

the change in calcium fluorescence signal. The threshold force level at which the neuron starts to
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get activated was determined to be 0.3 mN. This work may contribute to new findings on sensory

mechanotransduction in Drosophila larvae.

Index Terms-Robotic micromanipulation, Closed-loop, Control architecture, Calcium fluores-

cence imaging, Quantitative correlation.
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6.1 Introduction

The sense of stimuli is the basis of danger-escaping behaviors and is critical for a creature

to survive. Drosophila larva is a common biological model for studying mechanisms of sensory

neurons responsive to external stimulation. For instance, a Drosophila larva tends to turn/roll at

the presence of a touch stimulus [1, 2, 3]. Increasing interests arise in larval sensory mechanotrans-

duction and the underlying neuronal mechanisms. Even though functions of most neuron types

found in the Drosophila larval body walls remain unexplored [3], it has been investigated that

Class I to IV neurons are nociceptive and related to larval locomotion, among which the Class III

md neurons contribute to the larval response to gentle touches and can be activated by a touch

force [3].

Calcium ions generate versatile intracellular signals that control key functions in all types of

neurons [4], which makes the neuronal calcium signal a good indictor of neuron activities. Calcium

fluorescence intensity of a variety of neurons of Drosophila larvae can be influenced by environ-

mental stimulation [2, 5, 6, 7], among which the fluorescence intensity of Class III ddaA neurons

of certain genotypes have been demonstrated to have strong correlation with the mechanical stim-

ulation [3]. One straightforward method to investigate this correlation is to visualize the change in

fluorescence intensity at presence of mechanical stimuli under microscope. Previous studies have

confirmed this phenomenon with a constant force applied to the larval body. In [3, 8], experiments

were performed at the force level of 1 mN. The time history of fluorescence intensity of the neuronal

calcium signal was provided in [3]. The neuron that shows significant change in fluorescence inten-

sity has been identified to be Class III ddaA [3]. Even though the selected Drosophila larvae are of

a specific genotype, their locomotion behavior at the presence mechanical stimuli (danger-escaping

behavior) shows no difference compared to that of non-mutated larvae [3, 2, 8], which makes them

good representative of ordinary Drosophila larvae.

Despite the promising results previously obtained, these experiments were performed under

a fixed force level, and the force measurement approaches (e.g., by visually measuring the deflec-

tion of an eyelash) introduced relatively large errors. In addition, it is intuitive to speculate that
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there exists a quantitative relationship between the touch force level and the calcium fluorescence

intensity of the class III ddaA neurons; however, due to the lack of capability of accurate force

control in previous experimental setup, this relationship has not been quantified. We have de-

veloped a force-controlled robotic micromanipulation system capable of simultaneous mechanical

stimulation and calcium fluorescence imaging of Drosophila larvae [9], and also proposed new force

control approaches for improving the system’s force control performance [10, 11].

Controlling the touch force applied to a Drosophila larva is a challenging task. Main difficul-

ties of touch force control include modeling error, measurement noise, time delay and insufficient

feedback. In [10], we developed a switched fuzzy to proportional-derivative (PD) controller with-

out considering the dynamics of the micromanipulator, which demonstrated fast convergence speed

and reduced steady state oscillation. The fuzzy controller is not model dependant, but the PD

controller is. Ignoring the dynamics of the micromanipulator has an negative impact on the system

performance after the switch to PD control. Therefore, it is intuitive to further improve the perfor-

mance by considering manipulator dynamics. In [11], we tried to account for the micromanipulator

dynamics and tackled the associated new challenge: since an additional state vector is added to the

system, the single force feedback is insufficient to make the system observable. Coupled with oth-

er problems, including modeling error, measurement noise and time delay, a new control scheme

is needed to solves these problems altogether. We proposed a compensation-prediction scheme

[11] and tested it with a conventional proportional-integral-derivative (PID) controller. With the

proposed scheme implemented, the overshoot and settling time of the system’s step response were

both reduced. In this paper, we will combine our previous work to form a compensation-prediction

control architecture with a switched fuzzy-PID controller. This approach combines the advantage

of both control methods previously developed and will further improve the system control perfor-

mance.
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Remark : The result of combining switched fuzzy-PD controller and compensation-prediction

control scheme is compensation-prediction+switched fuzzy-PID (instead of PD) control architec-

ture, because in [11], a PID (instead of PD) controller was optimized for compensation-prediction

scheme.

Here, we report a force-controlled robotic micromanipulation system with an advanced force

control architecture and apply the system to quantifying the relationship between the touch force

applied to a Drosophila larva and the larva’s transmission signal in its Class III ddaA neurons. The

force control architecture combines the compensation-prediction scheme and the switched fuzzy-

PID control. Biological experiments are performed to visualize and record the change in calcium

fluorescence intensity of Class III ddaA neuron at different force levels. We obtained, for the first

time, the quantitative relationship between the relative change in calcium fluorescence intensity of

Class III ddaA neurons and the touch force level applied to the larva, and determined the minimum

force level at which the Class III ddaA neurons of a Drosophila larva start to respond.

6.2 System Setup and Operation Procedure

6.2.1 System Components

The experimental setup of the robotic micromanipulation system is shown in Fig. 6–1(A).

An inverted microscope (BX61W1, Olympus) is used with 4X, 10X and 20X objectives, and could

switch between different objectives with a motorized turret. A high-speed fluorescence camera

(Zyla, Andor) is mounted to the end of an optical spitter (OPTALSPLIT II, Cairn). The camera

is capable of capturing fluorescence images with satisfying quality (clear enough to observe ddaA

neurons) at eight frames per second. The optical splitter is employed to split two components of

recorded images at specific emission wavelength and thus acquire GFP (509 nm) and RFP (583

nm) fluorescence signals emitted from the same neuron simultaneously. Since the larva samples

are immobilized and flattened (immobilized body thickness: 130 m) with PDMS devices [10], most

of the neurons are largely in the horizontal plane of the substrate. The larvae are placed on

a motorized stage, whose horizontal movement could be controlled via keyboard input. A glass

pipette is glued onto a piezoresistive force sensor (AE801, SensorOne). The pipette-sensor assembly
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Figure 6–1: (A) Experimental setup of the micromanipulation system. (B) Zoomed-in photograph
of four larva samples immobilized by PDMS devices. (C) Schematic of the control system model.
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is attached to an iron rod, which is fixed onto a micromanipulator (MP-285, Sutter Insturments).

The force data is read with a home-made Wheatstone bridge circuit, and is acquired with a data

acquisition board (USB 6343, National Instruments).

Fig. 6–3(B) is the photograph of four immobilized larvae and the glass pipette. Larvae are

immobilized by the PDMS devices with only heads exposed for touch stimulation. Fig. 6–3(C)

is the schematic of a simplified mechanical model of lava touching with the assumption of linear

elasticity of the larva body.

6.2.2 System Operation Procedure

Compared to the system reported in our previous work [12], this system employs an inverted

microscope and a faster and more sensitive fluorescence camera to quantify the calcium fluorescence

signals from single neuron cells, and to record fluorescence images at a higher frame rate. Note

that the stimulation of a single neuron cell requires that the pipette tip and the neuron are in the

same field of view under 20× magnification [3]. Thus, we must stimulate and observe neuron cells

immobilized within the PDMS device but close to the device side wall (see Fig. 6–2(B)). In our

previous setup [12], the automated operations were performed under a 4× objective and cannot

quantify fluorescence signal of a single neuron with satisfactory resolution. Therefore, in this work

we operate the system through teleoperation by a user on a computer screen. The system allows

an operator to perform all the operations under a 20× objective via keyboard inputs.

Fig. 6–2 illustrates major steps of the system teleoperation. Once an experiment begins,

the first step is to move the correct neuron to the field of view under fluorescence mode (20×

magnification), as shown in Fig. 6–2(B). Then the system switches to bright-field mode (Fig.

6–2(C)) and the operator moves the pipette tip to the vicinity of the neuron via keyboard control

(Fig. 6–2(D)). Note that the pipette tip is not very clear but still discernible (indicated by the

dashed lines in 6–2(C)(D)). After that, the system switches back to the fluorescence mode, and

a closed-loop controlled touch force is applied to the larva and the fluorescence images recorded

simultaneously. A user can perform all these steps through keyboard inputs, and do not need to

leave the computer screen.
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Figure 6–2: System operation steps. (A) to (B): A neuron is moved into field of view under the
fluorescence mode. (B)(C) The pipette tip is moved to the vicinity of the neuron under the bright
field mode. (C) Closed-loop controlled touch stimulus is applied and the fluorescence images of
the neuron are recorded.
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One reason for having these specific operation steps is that the non-fluorescent pipette tip is

not observable in the fluorescence mode. To make sure the pipette tip and the neuron are both

in the same field of view under 20× magnification, the system switches to the bright field mode

(from Figs. 6–2(B) to 6–2(C)) to visualize the pipette tip and to make sure it does not contact the

PDMS device boundary (which is still in the imaging field and indicated by the vertical dashed

line in Fig. 6–2). The pipette tip is blocked by larval body and is out of focus, making its image

blurred but still visible in the bright field mode. We can see that the pipette tip is on the left

side of the PDMS device boundary, which does not contact the PDMS device and could be moved

freely. The neuron is on the right side of the PDMS device boundary, which is immobilized inside

the PDMS device.

6.3 Closed Loop Force Control

6.3.1 System Modeling

The control architecture is the combination of the compensation-prediction scheme and the

fuzzy-PID controller, both have been presented in our previous work [10, 11]. To make this paper

self-contained, we briefly introduce the combined control architecture of the robotic micromanip-

ulation system. The system is modeled as a two-dimensional (2D) state-space model:


ẋ1 = Kx2 + δ1

ẋ2 = 1
Tm
{H [u (t− td)]− x2}+ δ2

y = x1 + ξ

(6.1)

The variables x1 and x2 are the contact force (the variable to be controlled) and the vertical

speed of the micromanipulator, respectively, as shown in Fig. 6–1(C). The first equation is the

time derivative of a linear spring touch model [10, 11], where K is the spring constant. The second

equation is a time-delayed first-order dynamic model of the micromanipulator, where Tm is the

time constant of the first-order dynamic model, and the function H(u) is the calibrated mapping

of maximum z-axis speed vs. input voltage of the micromanipulator [11]. The parameters were

experimentally determined to be K = 200 N/m, Tm = 0.01 s, and td = 0.05 s [11].
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Figure 6–3: Control system architecture.

6.3.2 Control Flow Overview

The force control architecture is the combination of the compensation-prediction scheme [11]

and the switched fuzzy-PID controller [10], which is effective to treat problems with measurement

noise, time delay, modeling error and insufficient feedback. As shown in Fig. 6–3, the z-axis of the

micromanipulator could be treated as a first order actuator. The system is time delayed by td due

to the dynamics of the micromanipulator and other delay times of the system (e.g., the delay of

command transmission and the mechanical backlash). The system output is x1, and its objective

(reference) value is denoted by x1 obj. Note that only step inputs are used for control performance

validation, as they mimic sudden mechanical stimuli applied to the larva [3, 8].

The tracking error of x1 is denoted by e1(t) = x1 obj(t + td) − x1(t). Note that we use

x1 obj(t+ td) instead of x1 obj(t) as reference to highlight the fact that the time-delayed system will

always respond to an step input with a time delay of td. The system has two unknown modeling

errors (δ1 and δ2) in the two differential equations of the 2D state-space model Eq. 6.1. These

errors are supposed to be time-varying. To make the system observable from the single force

feedback loop, we combine them into an equivalent modeling error (δeq) through mathematical

transformation, and then estimate δeq using a modified EHGO insenstive to the force measurement

noise (ξ). The EHGO also provides a denoised value (g1) of the force measurement y. A Smith

predictor is implemented to calculate a correction (δx1eq) to the tracking error caused by the

system time delay. Based on the estimation (δeq) of the equivalent modeling error, a compensation

is added to further correct the tracking error, and the corrected error (eeq) is then injected into a

139



controller to calculate the control input u. The selection of controller is summarized as follows:

once the force command is set, the system employs the fuzzy controller first to take advantage

of its fast converging speed. Since the fuzzy controller is not model dependant, it does not need

any modification compared to [10]. Once the tracking error reaches a threshold of 13.6% [10],

the system switches to PID controller with optimized PID paramters (Kp = 150, KI = 200 and

Kd = 2) [11] under compensation-prediction scheme.

Important equations are summarized as follows. For simplicity, we mark υ(t) = H [u(t)]. First

of all, a noise-insensitive EHGO [11] is adopted to calculate an equivalent modeling error δeq and

an estimation of the time-derivative of x1:



˙̂x1 = Kx̂2eq + δ̂eq − k1
ε

(x̂1 − g1)

˙̂x2eq = 1
Tm

[υ(t− td)− x̂2eq]− k2
ε2

(x̂1 − g1)

˙̂
δeq = −k3

ε3
(x̂1 − g1)

ġ1 = g2

ġ2 = g3

ġ3 = 1
α3h (g1 − y, αg2, α

2g3)

(6.2)

The parameters are k1 = 50, k2 = 1000, ε = 0.1 and α = 0.04 [11]. h (x) used in this research is

[13]:

h
(
g1 − y, αg2, α

2g3

)
= −4 · 2

3
5

(
g1 − y + (αg2)

9
7

) 1
3

− 4 ·
(
α2g3

) 3
5 (6.3)

Then a traditional Smith predictor is implemented as if the system is devoid of modeling errors

[11]: 
˙̂x1eq f = ax̂1eq f + bx̂2eq f + cu

˙̂x2eq f = 1
Tm

(υ − x̂2eq f )
(6.4)
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
˙̂x1eq = ax̂1eq + bx̂2eq + cu(t− td)

˙̂x2eq = 1
Tm

[υ(t− td)− x̂2eq]
(6.5)

δx1eq = x̂1eq f − x̂1eq (6.6)

where x̂1eq and x̂1eq f are the estimations of x1eq with and without dead time. The term δx1eq

is a traditional Smith predictor correction. A conventional tracking error with Smith predictor

correction is

eeq =x1 obj − (x1 + δx1eq) (6.7)

However, given the presence of modeling error, a compensation-prediction scheme is adopted

to further rectify eeq. According to the discussion in [11], the compensation-prediction scheme is

equivalent to implementing a Smith predictor as if we had the precise model, except for adding a

supplementary correction of eat
∫ t

0
δeqe

−aτdτ − ea(t+td)
∫ t+td

0
δeqe

−aτdτ to compensate for the model-

ing error (which corresponds to the “calculation of compensation” block in Fig. 6–3). The tracking

error injected into the controller is:

eeq =x1 obj − (x1 + δx1eq)

+ eat
∫ t

0

δeqe
−aτdτ − ea(t+td)

∫ t+td

0

δeqe
−aτdτ

(6.8)

This concludes the compensation-prediction scheme. It treats modeling error, time delay, measure-

ment noise and insufficient feedback altogether. The next step is to inject the equivalent tracking

error eeq into an appropriate controller. Two candidate controllers could be chosen from: the fuzzy

controller and the PID controller. These two controllers are summarized as follows:

When eeq is higher than a threshold set by user [10], eeq and its time-derivative ėeq (calculated

with the method described in [11]) are evaluated with a fuzzy logic lookup table, from “positive

big” (PB) to “negative big” (NB). Then a fuzzy control input is derived from the lookup table

consisting 56 control rules [10]:

ῡ(τ) = ῡ1(τ) + ῡ2(τ) + ῡ3(τ) + · · ·+ ῡ56(τ) (6.9)
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Finally, a numerical control input is calculated from centroid defuzzification method [10]:

υ = υF =

∫ 6

−6
ῡ(τ)τdτ∫ 6

−6
ῡ(τ)dτ

(6.10)

When eeq is inferior to the threshold, a conventional PID controller is used, whose parameters are

inherited from [11]:

υ = υPID = Kpeeq +KI

∫
eeqdt+Kdėeq (6.11)

Note that υ is virtual input due to the nonlinear relationship between the real input u and the

maximum vertical speed H(u). The real input u is derived from an inversion u = H−1(υ).

6.4 Experimental Methods

6.4.1 Larvae Preparation

NOMPC (No mechanoreceptor potential C) is a mechanotransduction channel subunit for

gentle-touch sensation [8], and Class III ddaA dendritic arborization neurons function in gentle-

touch sensation. 3rd instar Drosophila larvae are larvae close sexual maturity. Their size, shape and

neuron network make them ideal test subjects for mechanotransduction studies [14, 15, 16, 17].

We chose 3rd instar nompC1/nompC3, UAS-nompC/CyO, weep; GAL4 [19-12]/UAS-GCaMP6

(nompC rescue) as the genotype of the experimental group, and 3rd instar GAL4 [19-12]/UAS-

GCaMP6 as the control group [8]. The notation of genotype is defined as the location and the

identifier of the inserted gene. For instance, GAL4 [19-12]/UAS-GCaMP6 signifies the GAL4 gene

at the cytological location 19-12 that encodes the yeast transcription activator protein GAL4, and

the UAS (Upstream Activation Sequence) is an enhancer to which GAL4 specifically binds to

activate gene transcription. GCaMP6 is an ultrasensitive protein calcium sensor. Note that we

used GCaMP6 instead of the GCaMP5 marker in [8] due to a recent upgrade of marker of our

supplier.

The larvae preparation procedure is summarized as follows. Original larvae lines were provided

by Younger S of UCSF School of Medicine. These larvae lines were in four genotypes:

1. nompC3, UAS-nompC; Gal4[19-12]
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2. nompC1/CyO,weep; UAS-GCaMP5

3. GAL4 [19-12]

4. UAS-GCaMP5

To get a desired genotype, line 1 and line 2 were crossed for experimental group, and line 3 and

line 4 were crossed for control group.

Original larvae lines were raised in Drosophila agar with apple juice under room temperature.

The number of eggs were limited to less than 200 per dish. It took about 11-12 days for the eggs

to go through embryo, 1st-3rd instar larva, pupa stage, and eventually adults emerged from the

pupa cases. Immediately after the Eclosion, virgin larvae were picked out for crossing to minimize

the possibility of mutated gene. The offsprings were kept in the same Drosophila agar.

6.4.2 Experimental procedure

For simplicity of the description, the term ”applying mechanical stimuli” is defined as touching

the imaging field of the neuron for 1 s [3]. The experiment was designed to be three steps.

First of all, select one Class III ddaA neuron of a drosophila larva of the experimental group.

Apply mechanical stimuli of 1 mN for 5 times and observe the changes in fluorescence intensity

of the neuron. This is to verify that the response to touch is repetitive, and each experiment is

independent.

Secondly, apply mechanical stimuli of 2 mN, 1 mN, 0.5 mN and 0.25 mN to larvae from the

experimental group. Each force level is applied for 30 times on 3 larvae (2 neurons per larva, 5

times of stimulation per force level, and thus 10 sets of fluorescence signal data per larva). This is

to quantify the fluorescence response of neurons under different force levels, and to find a threshold

under which no significant fluorescence response is displayed (the threshold force level to activate

the Class III ddaA neuron).

Finally, apply mechanical stimuli of 2 mN to control group. This experiment is also performed

for 30 times. This is to verify that the control group is unable to display significant change in

fluorescence intensity even under the highest force level.
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The interval between each stimulus was > 10 s, which is long enough to allow the larva to

completely recover from each stimulation.

After each stimulus, fluorescence image frames of the neuron are collected. Fluorescence

intensity is measured by calculating the average grayscale value within a 5 µm × 5 µm block that

contains the brightest part of the neuron, as shown in Fig. 6–6. Suppose the intensities of RFP

and GFP are Frfp and Fgfp respectively. Using Frfp as reference, the normalized intensity Fn is

defined as:

Fn =
Fgfp
Frfp

(6.12)

The relative increment ∆Fn
Fn

is defined as the indicator of neuron response to mechanical stimuli.

6.5 Experimental Results

6.5.1 Validation of Force Control Performance

To demonstrate the advantage of this combined control architecture, the step-response data

of three different control architectures are compared. Note that the data of switched fuzzy-PD

controller is not the same as these from the experiment in [10] as new noise-attenuation methods

(e.g., electromagnetic shielding and force sensor signal amplification) were implemented [11]. To

make the results more comparable, we performed all the experiments with same noise-attenuation

conditions, and the results are shown in Fig. 6–4. By comparing the performance of the PID

controller with the compensation-prediction scheme with that of the switched fuzzy-PD controller,

one can clearly see the advantage of the fuzzy controller: the logic of the fuzzy controller always

tries to converge at its maximum speed [10], resulting in shorter raising time and shorter settling

time. However, the performance of switched fuzzy-PD controller still has room to improve after the

switch from fuzzy to PD control, because when the control loop becomes model-dependent after the

switch, a more accurate model with smaller modeling errors allows the observer to provide faster

estimation [11]. Combining the compensation-prediction+PID scheme with the fuzzy controller to

form a complete compensation-prediction switched fuzzy-PID scheme, the settling time is as short
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Figure 6–4: Comparison of force control results from three control architectures. By combing two
the compensation-prediction scheme and the switched fuzzy-PID controller, the system inherits
the fast convergence characteristic of fuzzy controller before reaching the switching threshold, and
converge faster than the PD controller after reaching the switching threshold. (A) Single step
response. (B) Multi-step response.
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Figure 6–5: (A) Comparison of responses to 1 mN mechanical stimuli 5 times on the same Class III
ddaA neuron. (B) Student’s-t test of ensuing touches and single touches. No significant difference
is found. (C) Comparison of responses to mechanical stimuli of different force levels. Each stimulus
is applied 30 times. (D) Linear interpolation of the peak ∆Fn

Fn
between 0.25 mN and 0.5 mN of

experimental group. It intersects with the peak ∆Fn
Fn

of control group at 0.3 mN.

as 0.15 s without overshoot, and the force control resolution is lower than 0.05 mN. Compared to

the switched fuzzy-PD controller, our proposed architecture has the same initial convergence speed,

but converges faster after the controller switch, which could be attributed to the compensation-

prediction scheme. Compared to the compensation-prediction scheme with a PID controller, our

proposed architecture displays faster initial convergence speed due to the fuzzy controller.

6.5.2 Independence of Neuronal Response to Repeated Stimuli

To illustrate that the response of each mechanical stimulus is independent, one Class III ddaA

neuron of a Drosophila larva from the experimental group was selected. A mechanical stimulus of

1 mN was applied for 5 times with a time interval of at least 1 min between each touch, resulting in
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Figure 6–6: GFP ans RFP image stacks of a Class III ddaA neuron of experimental group (A) and
those of control group (B).

4 ensuing touches. The relative increment in normalized fluorescence intensity (∆Fn
Fn

) of the Class

III ddaA neuron is plotted in Fig. 6–5(A). To demonstrate that the 4 ensuing consecutive touches

have no significant difference with the first touch, a Student’s-t test was conducted to compare

the peak ∆Fn
Fn

response of the 4 consecutive touches and that of 4 singles touches, as shown in Fig.

6–5(B). The p value is determined to be 0.31, which is much higher than the threshold (p = 0.05)

to reject the hypothesis that the difference is considered to be statistically significant. Therefore,

the independence of the neuron’s response to repeated stimuli is confirmed.

6.5.3 Responses to Stimuli of Different Force Levels

The response of Class III ddaA neurons to mechanical stimuli at different levels are plotted

in Fig. 6–5(C). For the experimental group, the peak of ∆Fn
Fn

in response to 2 mN, 1 mN, 0.5

mN and 0.25 mN are 32.2%, 21.4%, 5.1% and 2.4%, respectively. For the control group, the peak

of ∆Fn
Fn

for 2 mN stimuli is 2.55%, which is much lower than that of the experimental group at

2 mN. To determine the minimum force level at which the neuronal fluorescence signal starts to

respond, we used linear interpolation of the peak values of ∆Fn
Fn

between 0.25 mN and 0.5 mN of

the experimental group, and analyzed its intersection with the peak value of the control group.

The horizontal coordinate of the intersection is 0.3 mN, which indicates the minimum force level

required.
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6.6 Discussion

The proposed force control architecture combines the advantages of the fuzzy controller (fast

convergence before reaching the threshold) and the compensation-prediction scheme (capability of

handling force measurement noise, modeling error, time delay, and insufficient feedback modality).

The achieved high force control performance allowed the robotic micromanipulation system to

replicate the sudden touch stimuli applied to Drosophila larvae during experiments [3]. Under 1

mN stimuli, both [3] and our system verified a 21% increment in the calcium fluorescence intensity

of the Class III ddaA neurons. Furthermore, with the closed-loop force control capability and a

control resolution better than 0.05 mN, we run the test under different force levels and decreased

the applied force to as small as 0.25 mN. Quantitative relationship between the applied force level

and the change in calcium fluorescence signal was acquired for the first time. The threshold force

level at which the neuron started to get activated was determined to be 0.3 mN. The fluorescence

camera we used took images at a higher frame rate than that of the previous work [3] without

sacrificing the imaging quality, making calcium fluorescence measurement more accurate. The

teleoperated experimental procedure reduced the training required for an operator and improved

the overall operation efficiency.

Given that the calcium signal is a good indictor for the activities of the Class III ddaA neu-

rons under mechanical stimulation [4], and our experimental results demonstrate strong positive

correlation between the neuronal activities and the applied force level [3], the qualitative relation-

ship between the fluorescence change and the force level suggests that the larva may display few

danger-escaping behavior at a stimulus below 0.3 mN. This was not revealed in previous studies

because of the lack of force control capability at the level below 1 mN [1]. Our work may contribute

to new findings on sensory mechanotransduction in Drosophila larvae.

6.7 Conclusion

This paper reported a robotic approach for applying close-loop controlled mechanical stimuli

to Drosophila larvae. Different force levels were accurately controlled in a closed-loop manner. The

teleoperated touching and imaging procedure alleviated the workload for system operators. The
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combination of switched fuzzy-PID controller and compensation-prediction scheme successfully ad-

dressed challenges such as measurement noise, modeling error, time delay and insufficient feedback

modality altogether, providing fast convergence of force control both before and after reaching the

switching threshold. Settling time and overshoot have been both reduced. The quantitative rela-

tionship between the calcium fluorescence change and the force level was experimental determined.

The threshold above which the neuron started to respond to the stimulus was determined to be 0.3

mN. This system enabled accurate mechanical stimulation of Drosophila larvae, which may lead

to novel biological discoveries in the mechanotrasduction mechanisms in Drosophila larvae.
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CHAPTER 7
Conclusion and Future Work

7.1 Summary of Accomplishments and Contributions

Robotic systems offer high efficiency and high precision in micromanipulation that could not

be achieved manually. Contact force is involved in a wide range of micromanipulation tasks,

which is why force control is of paramount importance in robotic micromanipulation. The increas-

ing interests in the study of danger-escaping behavior of Drosophila larvae raise new questions

for force-controlled micromanipulation systems. Many force control architectures have been pro-

posed, but given the complexities and difficulties in micromanipulation, traditional force control

architectures are unable to tackle measurement noise, time delay, modeling error and insufficient

feedback modality all at the same time. This thesis contributes to the field by devoting efforts

in four aspects. First of all, a robotic micromanipulation system for mechanical stimulation and

calcium fluorescence imaging of Drosophila larvae is developed. Secondly, a switched fuzzy-PD

controller to account for modeling error and measurement noise is designed and implemented.

Thirdly, a compensation-prediction force control scheme to account for time delay and insufficient

feedback modality is designed and implemented. Last but not least, the developed micromanip-

ulation system together with the proposed force control architecture is developed to accurately

apply mechanical stimuli to Drosophila larva samples, and the quantitative relationship between

the applied force level and the change in calcium fluorescence response of the Class III ddaA neu-

rons are acquired. Through the process, new techniques and insights are discovered, as organized

below.

• Custom-made PDMS devices for effective immobilization of Drosophila larvae are designed

and fabracated. It utilized a thin channel to press larval body for firm immobilization. The

best height of the channel was determined to be 0.13 mm so that it could guarantee secured
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immobilization and high survival of the larva samples. The flattened larval body also gained

additional transparency for clearer observation under microscope.

• The first robotic micromanipulation system for mechanical stimulation and calcium fluores-

cence imaging of Drosophila larvae is developed. The system incorporated customized image

processing and control software capable of real-time fluorescence imaging and teleoperated

manipulation on Drosophila larvae. The software is written in C++ language and could be

easily maintained.

• A novel switched fuzzy-PD controller for closed-loop force control in micromanipulation of

Drosophila larvae is proposed and developed. The controller includes a noise-insensitive

extended high gain observer (EHGO) to estimate the modelling errors of the robotic system

based on the noisy force feedback. One key property of switched fuzzy-PD controller is

that it combines the fast-convergence property of fuzzy controller and the small steady-state

oscillation of PD controller.

• A new compensation-prediction scheme for force control in robotic micromanipulation to

tackle challenges such as modeling errors, measurement noise, time delay and insufficient

feedback modality is developed, which is applicable to a variety of micromanipulation sys-

tems. To simplify the implementation, I have proven that this method is equivalent to

implementing a Smith predictor as if there is no modeling error and adding an additional

correction term to the tracking error (which is calculated from a noise-insensitive extended

high gain observer (EHGO) estimation). This scheme effectively deals with the compensa-

tion and prediction of the system model and can be used with any type of model dependent

controllers. The scheme has been demonstrated to significantly improve the system’s overall

control performance.

• The first quantitative study of the relationship between the force stimulus level and the

change in calcium transmission fluorescence signal in Class III ddaA neurons of Drosophila

larvae is investigated. The developed micromanipulation system was used to apply force-

controlled mechanical stimuli to individual larvae at different force levels and simultaneously
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quantify the corresponding time history of the calcium fluorescence intensity of the target

Class III ddaA neuron. Based on the experimental result, the minimum force level at which

the neuron starts to respond was determined to be 0.3 mN.

7.2 Future Work

During the course of the presented research, new ideas of developing the micromanipulation

systems were realized, new approaches of contact force control were conceived and carried out in

biological experiments. These efforts contribute to improving micromanipulation system perfor-

mance and quantifying biological results. Along the pathway, some aspects have been found that

they could be pursued to further boost these accomplishments.

• The current control software utilizes the standard communication protocol of the microma-

nipulator which lacks certain functions, such as updating the coordinates of the microma-

nipulator in real time. The software can be further developed to add another low-level layer

of the micromanipulator protocol for real-time coordinate communication.

• The mechanical setup of the micromanipulation system still has room to improve. The

current connection mechanism for holding the piezoresistive force sensor and glass pipette

was custom-made, and including an iron rod and a pipette holder. This can be improved by

implementing a single-piece metallic extension without screw connections.

• The noise-insensitive EHGO works well for our current system. However, due to its non-

linearity, it requires manual tuning of the parameters via trial-and-error experiments. The

nonlinearity comes from the function h(x) of the system. If this function is replaced with

a linear function, the EHGO will be linear and its parameters could be tuned with mature

methods automatically.

• This thesis has demonstrated the use of the compensation-prediction scheme for our current

system which is a two-dimensional state-space system. However, the variable-changing tech-

nique is universal and could be applied to systems with higher dimensions as well. Additional

mathematical analysis is needed to extend this approach to systems with higher dimensions.
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