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Abstract 

Sustained growth of commercially viable applications for integrated photonic technologies 

requires the performance of core optical components be improved without sacrificing manufacturability 

or introducing unreasonable design lead times. In this thesis, the geometries of two fundamental 

components of photonic integrated circuits were optimized under a wide variety of design conditions, and 

the results of these optimizations were studied to improve our understanding of the interplay between 

waveguide geometry and electromagnetic mode conversion at small scales. First, the concept of a constant 

loss inverted taper was presented and its geometry for common nanoscale waveguide structures was 

studied using coupled mode theory. The underlying concepts behind this device were also revisited 

and further investigated through functional analysis. A new normalization and fitting procedure 

was presented, which led to a global equation for the constant loss taper profile. Second, curved 

waveguide bends in orthogonal waveguide couplers were simulated via finite difference time 

domain and optimized. The effect of the device footprint on the optimal shape and performance 

was investigated and intuitive trends were found for the bend parameters. These trends were 

closely related to historical concepts of transition and bending losses in curved structures and, 

more specifically, the difference in the scaling behavior for these two attenuation mechanisms. 
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Résumé de thèse 
Une croissance soutenue des applications commerciales viables pour les technologies 

photoniques intégrées requière un perfectionnement de performances des principaux composants 

optiques sans que soit sacrifiée leur manufacturabilité et sans introduire des délais de conception 

déraisonnables. Dans cette thèse nous présentons des optimisations pour deux composants 

fondamentaux des circuits intégrés photoniques. Nous en étudions les résultats dans le but 

d'améliorer notre compréhension des interactions entre la géométrie des guides d'ondes et la 

conversion de mode électromagnétique à petites échelles Dans un premier temps nous présentons 

le concept d’entonnoir inversé à pertes constantes et nous étudions avec la théorie des modes 

couplés sa géométrie pour les structures de guides d'onde nanométriques communes. Nous 

revoyons et nous approfondissons aussi la théorie fondamentale derrière ce dispositif au travers 

d'une analyse fonctionnelle. Nous présentons une nouvelle procédure de normalisation et 

d'adaptation qui conduit à une équation globale pour la géométrie des entonnoirs inversé à pertes 

constantes. 

Dans un second temps nous simulons et nous optimisons les coupleurs de guides d'ondes 

orthogonaux en utilisant la méthode de calcul de différences finies dans le domaine temporel. Nous 

investiguons l'influence de l'empreinte du dispositif sur la forme optimale et sa performance.  Nous 

mettons aussi à jour des tendances intuitives pour les paramètres optimisés des courbes. Ces 

tendances sont étroitement liées aux concepts historiques de pertes dues à soit des transitions ou 

des courbes. De façon plus spécifique, la géométrie optimale est le résultat de différences dans les 

comportements d'échelle pour ces deux mécanismes d'atténuation.  
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Preface 
The concept of optical data transmission can be traced back to the inventors Claude 

Chappe and Alexander Graham Bell in the 18th and 19th centuries respectively, as they both 

patented communication systems that operated using light rather than electricity [1]. However, 

active scientific investigation into the subject only began in the 20th century, when researchers 

such as Van Heel [2]  and Hopkins [3] began characterizing the performance of the first optical 

fibers. The first planar optical waveguides were fabricated in the 1960s, and three-dimensional 

waveguides were developed a decade later. The primary goal for these early studies was to 

increase signal bandwidth in transmission lines [4, 5]. Half a century of research building on 

these findings resulted in optimized optical material properties, fiber geometries, and signal 

processing methods, effectively realizing Chappe and Bell’s vision of optical communication 

networks. Optics have displaced electronics in our modern information infrastructure at the 

scales of continents, datacenters, and even the home. 

Considering these developments, the logical continuation for research is to pursue optical 

communication technologies at smaller length scales where electronics still dominate, most 

notably in integrated circuits. In fact, it has been well established that optical interconnects, with 

their potential for high bit rates, minimal losses, low weight, and immunity to electromagnetic 

interference, would be a promising solution to many problems facing modern computing, which 

currently relies on copper interconnects [4-6]. Furthermore, improvements in photonic devices 

for signal gain, modulation, and other signal processing operations already threaten the market 

for certain electronic devices. The significant potential for optics on-chip has been recognized 

by several established members of industry. Intel founded its Photonics Technology Lab in 2002 
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to pursue commercialization of integrated photonics and Hewlett Packard is actively developing 

“The Machine”, which implements optical interconnects and memristor technology in a next 

generation computer. The promise of photonic systems has also resulted in more recent ventures 

such as Infinera and Lumentum, which specialize in applications of photonic technologies to 

network communications. 

A general goal in the development of photonic devices is the reduction of losses. 

Attenuation at any stage of transmission through an optical network results in signal quality 

degradation and can lead to increased energy usage. This is because the initial signal power 

must be increased to maintain a required signal to noise ratio at the signal’s destination. 

Furthermore, radiated light from an integrated waveguide may also have the negative effect of 

interfering with normal operation of other devices on chip. For example, this may occur through 

cross talk with other optical waveguides [7].  

Two examples of simple photonic devices where incurred losses can have a significant 

effect on overall performance are fiber-to-chip couplers and waveguide bends. Fiber-to-chip 

couplers are used to transfer optical signals from fiber optics to integrated waveguides. This 

process involves a significant reduction in the size of the propagating optical mode, from a 

mode field diameter of roughly 20 µm to below 1 µm [8]. Meanwhile, waveguide bends are 

inevitably required to compactly package integrated photonic circuits. Due to the ubiquity of 

both devices, even a minor decrease in their respective losses would have a significant effect 

on the performance of photonic chips. 

In this thesis, improved fiber-to-chip couplers and bends will be designed by leveraging 

high performance computer clusters and parallelized electromagnetic simulations. These 
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simulations will numerically solve for the propagating optical modes in the devices of interest 

from Maxwell’s equations1 [9]. This set of four equations is presented below (Eqs. 1), alongside 

their simplified form (Eqs. 2). The simplified form is applicable when the materials considered 

are non-conductive (σ = 0), non-magnetic (μ = μ0), isotropic, and operate in a linear regime (𝐷 

= 𝜀𝐸). Here the dielectric constant (𝜀) and other properties are a function of position. Overall, 

Maxwell’s equations describe the behavior of the electric (E) and magnetic (H) fields of light 

as they relate to the electric displacement vector (D) and magnetic flux density vector (B). 

Below, 𝜌𝑣 denotes the charge density, which is zero for a dielectric, and J represents the current 

density vector. 

 

∇ ∙ 𝐷 = 𝜌𝑣 
∇ ∙ 𝐵 = 0 

∇ × 𝐸 = −
𝜕𝐵

𝜕𝑡
 

∇ × 𝐻 = −
𝜕𝐷

𝜕𝑡
+ 𝐽 

(Eqs. 1) 

   

 
∇2𝐸 = 𝜇𝜎

𝜕𝐸

𝜕𝑡
+ 𝜇𝜀

𝜕2𝐸

𝜕2𝑡
 

∇2𝐻 = 𝜇𝜎
𝜕𝐻

𝜕𝑡
+ 𝜇𝜀

𝜕2𝐻

𝜕2𝑡
 

(Eqs. 2) 

The solutions to Maxwell’s equations form two orthogonal sets of functions, which 

represent the transverse electric (TE) and transverse magnetic (TM) modes present in the 

waveguide. These are the modes where either the electric or magnetic field components are solely 

in the transverse directions (Ez or Hz = 0). Figure 1 shows the two fundamental modes for a 500 

nm × 220 nm strip waveguide with a SiO2 cladding. Note that due to the waveguide geometry, 

                                                 
1 Here a mode is defined as an independent electromagnetic field pattern present within a waveguide that forms a 

solution to Maxwell’s equations. 
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the TM mode is less confined within the core than the TE mode. Many research groups have 

pointed out that these asymmetries in standard waveguide geometries results in different 

coupling behavior for TE and TM modes, the implication being that devices are often optimized 

either TE or TM light [8, 10-13]. In this thesis, TE modes will be primarily considered as these 

are generally of interest in the 220nm silicon-on-insulator (SOI) platform [14], though similar 

analysis and trends would be applicable to TM modes. 

 

Figure 1 Fundamental (a) TE and (b) TM modes in rectangular silicon 220 nm x 500 nm waveguide 

surrounded by silica cladding [7]. 

The modes shown in Figure 1 were found by solving Maxwell’s equations numerically. 

Frequency or time domain approaches could be used for this task. Frequency domain methods 

are usually best at finding the band structures and mode profiles of a given dielectric structure, 

but time domain models can help understand how these modes propagate and interact in the 

waveguide dynamically [15]. In the discussions that follow both techniques will be used: coupled 

mode theory will be used to study propagation through three-dimensional waveguide tapers 

while bends will be analyzed through finite difference time domain (FDTD) methods. 

Constrained geometrical optimization routines will use these methods to decrease losses 

incurred during propagation through both types of devices. Throughout the design process, 

emphasis will be placed on searching for structures that are feasible from a fabrication 
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perspective, meaning that they are relatively easy to make and integrate into existing 

manufacturing pipelines. 

 

Chapter 1: Development of a Global Fitting Equation 
 for the Constant Loss Inverted Taper 

Introduction 

Coupling of optical modes present in optical fibers with those guided within integrated 

waveguides is a challenging practical problem as waveguide couplers designed for this task must 

convert spatially diffused optical modes present in fiber optics to highly confined, sub-micron 

optical modes present in integrated waveguides on-chip. This allows for the transfer of information 

from fiber optic networks to photonic devices, which are a critical building block in the optical 

communications technology roadmap.  

The design of fiber-to-chip optical waveguide couplers is concerned with overcoming 

the large mode-mismatch present between fiber optics and integrated waveguides while 

minimizing fabrication cost, footprint, and coupling loss. Figure 2 shows example fiber optic 

and integrated waveguides that must be connected. If these were simply butt coupled the 

transmission efficiency from the fiber to the waveguide on-chip would be roughly 0.1% [16]. 

The use of a fiber-to-chip waveguide coupler may increase this efficiency to well above 90% [8, 

12, 17, 18], thereby enabling the use of optical interconnects for communication between chips, 

or allowing for multiscale photonics systems by efficiently connecting integrated photonic 

devices with other components. 
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Figure 2 Single-mode optical fiber core (silica) on left and integrated silicon on insulator waveguide 

(Si) on right [16]. 

Increasingly, industry uses an inverted taper structure as a fiber-to-chip coupler because of 

the large bandwidth of these devices compared to grating couplers, which are often optimal for 

only one wavelength [16]. In an inverted taper coupler, the single-mode strip waveguide shown in 

Figure 2 has a smaller width at the interface with the fiber core, around 200 nm or less [8, 16, 18]. 

The waveguide width gradually tapers from this small tip width at the fiber interface to the width 

of the integrated waveguide as we move along the propagation direction. Naturally, for this process 

to occur efficiently the core of the single mode optical fiber must be aligned with that of an 

integrated waveguide, a non-trivial task that is an active area of research [19]. Relative to standard 

tapers and diffractive couplers, the inverted taper coupler design reduces footprint and increases 

bandwidth by exploiting the broadband increase in the effective mode area (EMA) when the 

waveguide dimension becomes much smaller than the wavelength. This phenomenon is shown in 

Figure 3, where a typical plot of the EMA is presented for a linear inverted taper in the case with 

input wavelength of 1550 nm [8]. The definition of the EMA is presented in (Eq. 3), where 𝑆𝑧 is 

the component of the Poynting vector in the propagation direction and 𝑑𝐴 = 𝑑𝑥𝑑𝑦  is the 

differential area element. 
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 𝐸𝑀𝐴 = (∫∫𝑆𝑧𝑑𝐴)
2

∫∫𝑆𝑧
2𝑑𝐴⁄  (Eq. 3) 

 

 

Figure 3 Effective Mode Area as a function of waveguide width for variable material systems and 

rectangular waveguide heights [8]. 

In the above figure two regimes are present, separated by a turning point at a critical 

waveguide width (≈ 450 nm) labeled (c) in Figure 3, most easily seen in the inset. For widths larger 

than this point the lateral spread of the guided mode depends roughly linearly on the waveguide 

dimension while the mode’s vertical spread (in the vertical direction Figure 3 b – d) remains nearly 

constant. However, as the waveguide dimension decreases below point (c), we enter a rapid mode 

expansion regime where the core is no longer capable of confining the electromagnetic field. 

Importantly, in this regime the mode expansion occurs in both the lateral and the vertical direction. 

This allows for efficient conversion between the radially symmetric and diffused modes present in 

circular-cross-section optical fibers and the confined, 2-fold symmetric modes present in 

rectangular waveguides. 
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Tapering waveguide structures and their alternatives have been studied since the late 1960s, 

with researchers applying a variety of modeling approaches to optimize their performance. A 

survey of the literature will follow in which we shall see that previous studies have largely focused 

on specific use cases. Optimized taper profiles have been reported over a narrow parameter space 

as a result. For example, a typical taper design study will report an optimized width profile for a 

specific material system, device footprint, and waveguide geometry. This limits the practical 

application of the results as the full optimization process must be repeated by those wishing to 

implement the inverted taper coupler under different conditions. In addition, several complex 

inverted taper designs have been proposed involving several waveguide layers or multiple material 

systems. While interesting, these studies also have limited impact in industry due to the difficulties 

involved in fabrication. 

There have, however, been studies presenting general design principles for taper design 

that are more widely implemented. Three notable examples are the Milton and Burns’ adiabatic 

taper angle [20], Marcuse’s analytical studies of power in tapering waveguides [21, 22], and Baets’ 

work on the influence of the normalized width and effective taper angle [23, 24]. Unfortunately, 

these studies relied on approximations that limit their application in modern devices. The slab 

waveguide approximation was often used and, like all methods that reduce the dimensionality of 

the problem, this approach fails to accurately model rectangular cross section waveguides that are 

commonly used on modern photonic chips2. 

                                                 
2 The slab waveguide approximation is incapable of describing waveguiding behavior in three dimensions, and it has 

similarly been shown that 2.5D approximations yield distinctly different mode shapes than those found in full 3D 

simulations [8]. 

. 
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Therefore, we lack robust and quantitative design guidelines for the derivation of optimal 

inverted taper width profiles for modern fiber-to-chip couplers that nearly always couple into 

integrated waveguides with rectangular cross section. As a result, most experimental inverted taper 

studies have implemented simple linear and parabolic tapers, which are not necessarily optimal as 

shall be seen in the discussion that follows. This thesis chapter will attempt to address this gap in 

available knowledge by deriving optimal inverted taper profiles for a range of refractive indices 

and waveguide heights. 

 

Literature Review 

Studies on the dependence of electromagnetic mode profiles on geometry and material 

parameters date back to the earliest days of optics. Numerous investigations have explored the 

effect of changing the width, height, material, and other factors on the electromagnetic mode 

profiles [25-27]. Studies into tapered waveguides have also been widely published. Early studies 

by Marcuse, Milton, and others in the 1970s and 1980s focused on analytical treatments of tapered 

slab waveguides [20-22, 28]. Due to limited computational resources, simplified structures were 

examined, often slab waveguide tapers with widths on the order of one micron. Later, common 

modeling techniques such as two-dimensional coupled mode theory [29], beam propagation 

method [30], and finite difference [31, 32] analysis would be used to simulate tapered structures. 

Most researchers implemented spatial frequency domain models, which did not discretize 

Maxwell’s equations in time steps, instead using frequency and position as the discretized 

variables. 

At the onset of tapered waveguide research Marcuse presented the first derivation 
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showing that a horn shaped taper, where the rate of waveguide expansion increases with 

propagation distance, was best for a slab waveguide system and outperformed a linear taper [28]. 

This paper, and later ones by Marcuse, also featured the use of a staircase approximation to a 

tapered waveguide structure where the loss at each step was estimated via coupled amplitude 

equations [21]. Building on this work, Milton et al. developed the first analytical design rule for 

tapered waveguides in 1977 [20]. In this paper, Milton posited that a taper would behave 

adiabatically if the local taper angle (Ω) was smaller than a critical value called an adiabatic 

tapering angle. The expression for this parameter is shown in (Eq. 4), where w is the waveguide 

width and 𝜆𝑔 = 𝜆/𝑛𝑒𝑓𝑓 is the fundamental mode wavelength. This equation was derived by 

requiring that the tapering rate must be slower than the diffraction spreading of the lowest order 

mode. Love et al. would also later study the concept of an adiabatic tapering angle  [33]. 

 Ω <
𝜆𝑔

𝑤
  (Eq. 4) 

Shortly after Milton, Baets et al. presented two new parameters for taper design in one of 

the first fully numerical studies in this field [23]. Various taper width profiles were compared under 

the assumption that the tapers behaved adiabatically, meaning that the modes changed slowly. 

Using the beam propagation method (BPM), Baets found that the radiation loss in a waveguide 

taper was dependent on two parameters: a normalized width parameter (Vm) and the effective 

taper angle (θeff). Expressions for these parameters are listed below in (Eqs. 5). Here w again 

represents the taper width. 

 

𝑉𝑚 = √𝑤𝑖𝑛𝑤𝑜𝑢𝑡 

sin(𝜃𝑒𝑓𝑓) =
sin(θ)

√𝑛𝑐𝑜𝑟𝑒2 − 𝑛𝑐𝑙𝑎𝑑
2

 
(Eqs. 5) 
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Baets analyzed the parameter space of these two variables for linear tapers, finding that 

for large normalized widths small effective angles should be chosen to minimize losses. 

Interestingly, Baets went on to design improved taper shapes, finding a quadratic form for the 

taper, similarly to Marcuse [21]. The study also notes that the optimal slab waveguide taper would 

have constant radiation losses throughout the conversion process. This is the first time a constant 

loss condition is alluded to in waveguide taper literature. In research that followed this paper, it 

was common to design tapers such that they had a constant normalized parameter (Vm) 

throughout. 

In the 1980s and 1990s experimental and more complex theoretical studies built on the 

work by Baets, Milton, Marcuse et al. However, no novel and influential guidelines for taper 

geometry were presented. Instead the focus shifted towards numerical optimization and 

improved modeling techniques and increased computational resources. Tapered waveguide 

simulations progressed with the work of Haes [24], Lee [34], Sewell [35], Hermansson [36, 37] 

and their collaborators who developed numerical techniques and improved discretization 

methods. These methods were used to derive optimal taper width profiles in studies by Yanagawa 

[38], Suchoski [29], Lu [32] and others. However most of this research remained focused on 

two-dimensional modeling methods, which limits its practical use today. Also, an important fact 

to note is that standard tapers, not inverted tapers, were of interest at the time due to fabrication 

limitations.  

The first inverted taper studies would occur in the new millennium. Shoji et al. performed 

one such study in 2002 [10], presenting the idea that rapid mode expansion at low waveguide 

widths could be used for coupling optical fibers to waveguides on chip. This approach was then 

adopted by other researchers who achieved ≤1 dB coupling losses [8, 39]. This result represented 
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an order of magnitude improvement over alternative in-plane couplers with the same length. 

Studies would also show that inverted tapers exhibit excellent coupling bandwidth at small 

footprint relative to competing coupling techniques [16, 18, 40]. 

Three-dimensional taper simulations also became widespread near the turn of the 

century, as increased computation capabilities allowed for modeling of rib waveguides and other 

complex structures. These simulations provided a better way to study and optimize the coupling 

behavior of light through tapers, accurately capturing the effect of rib waveguide geometry on 

different polarizations. Researchers such as Almeida et al. and Ren et al. used 3D FDTD and the 

BPM to compare linear, exponential, and parabolic taper profiles, finding that parabolic tapers 

had improved performance [12, 41]. Three-dimensional simulations also led to several studies 

suggesting that multi-layer tapers should be used to improve performance [13, 42, 43]. This was 

just one of many proposed structures for inverted taper couplers that were often prohibitively 

complicated or expensive to fabricate and integrate. 

During this time, more advanced optimization techniques emerged. Zou et al. and Spuhler 

et al. used genetic algorithms to optimize waveguide tapers [11, 39]. Also, a return to designing 

waveguide tapers from first principles took place when Fu et al. performed an FDTD optimization 

study based on the Milton and Burns adiabatic taper angle criterion [44], and later when Horth et 

al. developed a novel constant loss approach to designing adiabatic tapers [8]. The structure 

proposed by Horth et al. emerged from a Lagrangian treatment of the mode conversion process. 

An inverted taper coupler as shown schematically in Figure 4 was considered, where an 

instantaneous loss, 𝛼, is present at each position z. If parameters such as the core index nc, cladding 

index 𝑛𝑐ℓ, and waveguide height h remain constant throughout the taper, then 𝛼 will depend on 

the instantaneous width 𝑤 and its spatial derivative 
𝜕𝑤

𝜕𝑧
= 𝑤′. The total loss 𝐿 in the taper may then 
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be expressed as the functional in (Eq. 6), where 𝑧 represents the position along the taper's length. 

The task of finding the path 𝑤(𝑧) which minimized the functional then reduces to solving the 

Euler-Lagrange equation for this system, (Eq. 7). Here we have aliased 
𝜕𝛼

𝜕𝑤
 as 𝛼𝑤 and 

𝜕𝛼

𝜕𝑤′
 as 𝛼𝑤′. 

 𝐿 = ∫ 𝛼(𝑤,w′, 𝑧)𝑑𝑧
𝑍

0

 (Eq. 6) 

 
𝛼𝑤(𝑤,𝑤

′, 𝑧) −
𝑑

𝑑𝑧
𝛼𝑤′(𝑤,𝑤

′, 𝑧) = 0 

where: 𝛼𝑤 =
𝜕𝛼

𝜕𝑤
, 𝛼𝑤′ =

𝜕𝛼

𝜕𝑤′
  

(Eq. 7) 

   

 

Figure 4 Schematic of inverted taper problem 

Horth assumed that there was negligible attenuation when propagating through a straight 

waveguide, a valid assumption when considering the typical length scale of an inverted taper 

coupler. In this case the instantaneous loss would not explicitly depend upon position and the 

Beltrami identity may be used to yield the simple solution shown in (Eq. 8).  

 𝛼 = 𝑤′𝛼𝑤 = 𝑐 (Eq. 8) 

Here c is a constant, which implies that a taper with constant loss is at least a local 

minimum in our optimization problem. Inverted taper profiles with constant 𝛼  will herein 

referred to as constant-loss tapers (CLTs). 
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Modeling 

A Lagrangian Approach to Taper Design 

Following the derivation of the constant loss solution to the taper coupler design problem, 

there remains the question of whether this solution represents a local or global minimum. This was 

not fully addressed in Horth et al. If the integrand 𝛼 in (Eq. 6), which represents the instantaneous 

loss within the waveguide along the propagation direction, is convex for all continuous and 

monotonically increasing taper profiles, then the functional L would also have to be convex [45]. 

The implication of such a result would be that the constant loss solution is a global minimum to 

the optimization problem. Here convexity is defined as any function 𝑓(𝑥) were the condition in 

(Eq. 9) is met.  

 
𝑓(𝜆𝑥1 + (1 − 𝜆)𝑥2) ≤ 𝜆𝑓(𝑥1) + (1 − 𝜆)𝑓(𝑥2)  ∀ 𝑥1, 𝑥2 ∈ ℝ 

 

where:  0 < 𝜆 < 1 
(Eq. 9) 

There are signs that this may be the case, at least over the interval of interest. For a 3D 

rectangular waveguide it is not possible to find analytical expressions for 𝛼 as we cannot solve 

Maxwell’s equations analytically for such structures. However, numerical modeling can be used 

to solve for the guided modes, and these can be used to perform a precursory functional analysis 

over the subspace of interest. Figure 5 illustrates how the step loss 𝛼𝑠𝑡𝑒𝑝, which herein refers to 

the loss incurred at a step perturbation in the width of a waveguide, scales with (a) the size of width 

perturbation at a given input width and (b) the size of the input width for a given width 

perturbation. The step loss is a discrete approximation of 𝛼  in a tapered waveguide and was 

calculated from the overlap integral in (Eq.10), where Ei,o and Hi,o are the fundamental modes of 

the input and output waveguides.  
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𝜂 =

|∫∫𝐸𝑖 × 𝐻𝑜
∗|2

|∫ ∫ 𝐸𝑖 × 𝐻𝑖
∗| ∙ |∫ ∫ 𝐸𝑜 × 𝐻𝑜∗|

 

 

(Eq.10) 

 

(a) 

 

(b) 

 

Figure 5 Sample parameter sweeps of step loss as functions of width and change in width. In both 

examples nc = 3.44, ncl = 1.5, h= 220 nm. (a) Step loss of waveguide perturbation as a function of step 

size Input width is 300 nm width. (b) Step loss of waveguide perturbation as a function of initial 

width. 
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Note that in Figure 5 (a) the step loss increases monotonically with increasing width 

perturbation and is convex according to the definition in (Eq. 8). Similarly, Figure 5 (b) shows that 

the relationship between the step loss and the waveguide width is convex. While the sample curves 

above are insufficient evidence to claim the CLT is optimal, the surface for 𝛼𝑠𝑡𝑒𝑝 (𝑤,
Δw

Δz
) 

presented in Appendix A shows the same trends throughout the studied parameter space and 

therefore provides more convincing evidence of optimality. Still, the argument presented here is 

not sufficient for a formal proof of convexity and merely suggests that the constant loss taper result 

may be optimal within the studied interval. A full proof is left to future studies that place the focus 

more heavily on analytical analysis of mode conversion processes in a nanophotonic waveguide. 

It is worth noting that this result in (Eq. 8), which showed that the optimal rectangular 

waveguide taper profile has constant instantaneous loss throughout, can also be directly applied to 

slab waveguide tapers or to circular cross-section waveguides by replacing waveguide width with 

radius in the above discussion. This is consistent with previous studies on tapered waveguides 

where the optimized profiles in these simple cases were described by Baets to have constant 

radiation loss throughout [23]. Extrapolating, the constant-loss design principle may be valid for 

any real waveguide cross-section that depends on one geometric parameter. Furthermore, from a 

general perspective this discussion demonstrates that functional analysis can be coupled with 

numerical analysis of large parameter spaces to further understanding of photonic devices. 
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Constant Loss Taper Calculation Using Coupled Mode Theory 

Following the CLT framework in Horth et al., constant loss taper width profiles were 

derived by discretizing the waveguide taper, as shown in Figure 6, and calculating the coupling 

coefficient between successive steps. This staircase approximation to tapering waveguide 

structures has been widely used in the past [8, 21, 29, 39]. After normalizing with respect to power 

(Eq. 11), we know from coupled mode theory that the coupling coefficient 𝜂𝑖,𝑖+1 is expressed 

according to (Eq. 12).  

 

Figure 6 Schematic of discretized inverted taper. Adapted from [8]. 

∫∫𝐸 × 𝐻∗ ∙ �̂�𝑑𝐴 = 1 (Eq. 11) 

𝜂𝑖,𝑖+1 = |∫∫𝐸𝑖 ×𝐻𝑖+1
∗ |

2

 (Eq. 12) 

 

Using the overlap integral analysis above as an estimate for the transmission from step i to 

j, we find the discrete step loss as 𝛼𝑖,𝑗 = 1 − 𝜂𝑖,𝑗 − 𝑅𝑖,𝑗 , where the step loss refers to the loss 

incurred at a step discontinuity in the width of the waveguide. The reflection at each step is 

assumed to be very small and therefore the approximation that 𝑅𝑖,𝑗 = |
∆(𝑛𝑒𝑓𝑓)𝑖.𝑗

∑ 𝑛𝑒𝑓𝑓
𝑗
𝑖

| is used. This is 

win wout 
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valid unless a large target 𝛼𝑖,𝑗 is chosen, which results in a large change in width. In this case, the 

algorithm generates large ∆(𝑛𝑒𝑓𝑓)𝑖.𝑗
 steps, resulting in significant reflections. Thus, an upper limit 

is present on the choice of 𝛼𝑖,𝑗. Otherwise, note that the choice of a discrete target step loss has no 

effect other than to dilate or contract the CLT shape. This is shown below in Figure 7, where the 

calculated constant-loss taper width profiles as a function of normalized step number are presented 

for different choices of the discrete step loss 𝛼𝑖,𝑗. Here the step losses for each curve correspond 

to attenuations of 0.12%, 0.15%, and 0.18% per step. These are reasonable targets for the step loss 

as they are small enough to be associated with a small perturbation in the waveguide width, and 

therefore reflections are negligible. However, they are still large enough that numerical error does 

not play a significant role in the optimization. 

 

Figure 7 Effect of discrete target step loss in dB on derived CLT profile between a width of 100 and 

400 nm. 
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As the modeling approach based on modal overlap integrals assumes that there are no 

losses within the waveguide steps, see the diagram of discretized taper in Figure 6, the model does 

not describe the effect of the inverted taper length on coupling losses. Instead, it serves only to 

describe how relative losses change with the inverted taper geometry under adiabatic conditions. 

This fact allows the results in Figure 7 to be scaled to the same curve. In practice, the length of the 

inverted taper will influence the total performance. Also, the model assumes an infinite cladding 

surrounding the strip waveguide. For small waveguide widths, the size of the cladding may 

constitute an additional source of error. Other sources of error, such as leakage to the substrate 

would also affect the taper performance and result in deviation from the model’s predictions.  

 To calculate guided modes at each step in the discretized taper, a two-dimensional, full-

vectorial, frequency-domain, finite-element model was constructed in GNU Octave, as described 

in [46]. Octave is a free to use programming language that is syntax compatible with MATLAB 

and largely sponsored by the Free Software Foundation [47]. To ensure the accuracy of the modes 

generated by the frequency domain solver, a cell size of 0.2 nm was used within the waveguide 

core. A stretched mesh was also used in the cladding region to decrease the overall resolution and 

thereby reduce the computational load. Similarly, symmetry boundary conditions were used to 

limit computation cost. For quasi-TE modes, 𝐸𝑦  was set to zero in the x-dimension boundary 

condition, and for quasi-TM modes, 𝐸𝑦 was set to zero in the y-dimension boundary condition. A 

typical magnetic field component is presented below in Figure 8 for a 200 nm x 300 nm waveguide. 

In this mode profile we see that there is significant energy present in the cladding, which requires 

a large simulation region on the order of 1 µm2. This requirement increases exponentially with 

decreasing waveguide size. As a result, simulations of the tip of the inverted taper can be very 

memory intensive. 
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Figure 8 Sample Hy component of a 1550 nm mode resulting from a full-vectorial finite element 

calculation of a silicon waveguide embedded in a silica cladding for a waveguide height of 200 nm 

and a width of 300 nm. 

This solver was used at each step in the discretized taper to first calculate the local 

fundamental TE mode, and then find the width of the following step required to the constant step 

loss target  (𝛼) . The width perturbation was optimized through a simple bisection method 

algorithm to achieve this target loss. As this optimization problem was convex with a single turning 

point, the bisection algorithm was guaranteed to find the width perturbation that provided a target 

loss, within some tolerance. The analysis was performed for waveguides up until a final width of 

1500 nm, which is well above 400 nm, the typical waveguide width in practical applications.  

Previously, Horth et al. implemented a similar modeling approach to produce inverted CLT 

couplers that had the highest efficiency per length ratios reported to date [8]. However, Horth 

presented a CLT profile for a single set of parameters. Therefore, implementation of a CLT in 

another context would require repeating the optimization procedure, a process that is time 

consuming and resource intensive. To enable the widespread use of CLTs, the dependence of 

waveguide 

boundary 
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constant loss taper profiles on the waveguide height and choice of optical materials was 

investigated in this thesis.  As this requires running many iterations of the above procedure, the 

complete method for deriving the constant loss taper in Octave and Python was parallelized using 

the standard Message Passing Interface (MPI), allowing it to be run iteratively on the Guillimin 

high-performance computing cluster, which is managed by the McGill center for High 

Performance Computing (HPC). As we shall see below, this large-scale parallelized simulation led 

to empirical equations describing optimal inverted taper structures for typical applications. These 

may be used to generate taper width profiles for any waveguide platform after performing a single 

parameter sweep to find the effective refractive index as a function of waveguide width. 

 Results 

Using the methodology outlined above, a collection of CLTs were generated for different 

refractive index contrasts, rectangular cross-sections, and target taper losses. This investigation 

was limited to the 1.55 µm wavelength, which is most commonly used in optical communication 

networks. However, the inverted taper is well known to have broadband performance and the 

findings here could be used for nearby wavelengths with little expected impact on overall 

performance or optimality. 

The general shape of the CLT width profile was presented in Figure 7 in the previous 

section and is reproduced for a single loss parameter as the green curve in Figure 9 below. Here, a 

rectangular inverted taper SOI waveguide with a 150 nm tip width and 220 nm height is presented. 

The width is plotted against the normalized step number instead of the integer step number because 

the derived taper geometry is not dependent on the number of segments in the discretized taper. 
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For a taper with a given total loss, we have found the same geometry is derived so long as the step 

number is large enough that the step loss is small, on the order of -0.006 dB.  

General trends in Figure 9 are related to the scaling behavior of the effective mode area 

with waveguide dimension in Figure 3, which is correlated to the effective refractive index. At 

very narrow widths, the spatial spread of the guided mode is most sensitive to changes in the taper 

dimension and therefore the width changes slowly. In this region, for normalized step between 0 

and 0.5 in the example below, the mode resides primarily outside the core, so the effective index 

is near that of the cladding. As the waveguide width continues to increase, the guided mode is 

increasingly confined to the waveguide core and modal area begins to stabilize. A greater rate of 

tapering is then required to achieve the target constant loss. Eventually a turning point, labeled z* 

in Figure 9, is reached where the modes resides almost entirely in the waveguide core. This point 

coincides with the minimum of the effective mode area in Figure 3. At w*, the width associated 

with the turning point, the step loss is the least sensitive to width perturbations. This fact can be 

demonstrated by plotting the calculated step loss as function of the instantaneous width and change 

in width. Shown in Appendix A (b), this surface has a clear peak at w*, where the system is 

virtually lossless for small changes in width.  The effective mode area will increase with increasing 

width beyond w*. In this regime, very rapid waveguide tapering is required to maintain constant 

loss as 
𝜕𝐸𝑀𝐴

𝜕𝑤
 is significantly lower than prior to the turning point, see Figure 3. 
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Figure 9 Example CLT width and effective index profiles with nc = 3.48, ncl =1.48, h= 220 nm 

Rather than studying width profiles, a preferred method of studying inverted CLT 

structures is to investigate their effective refractive index profiles. The effective refractive index 

is a dimensionless parameter and therefore allows for improved comparison of different 

waveguiding systems. More importantly, it is inversely proportional to the phase velocity, which 

is closely related to the mode field diameter and waveguiding structure. This makes it a good 

descriptor of the mode conversion process that occurs in the inverted taper coupler. Overall, these 

characteristics make the effective index inherently more suitable as a fitting parameter than the 

waveguiding width. 

 In the effective index profile in Figure 9, we see that the effective index follows a sigmoid-

like function with position, starting at the cladding refractive index and approaching the effective 
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index of an equivalent slab waveguide. As was the case for the EMA plot in Figure 3, two distinct 

regimes divided by the critical width, w*, can be identified. These will be herein referred to as the 

cladding dominated regime (𝑤 ≤  𝑤∗ ) and the core dominated regime (𝑤 > 𝑤∗ ), since the 

cladding index dominates behavior in the first case while the properties of the waveguide core 

dominate in the second case. Note that the effective index profile exhibits an inflection point at the 

critical width. In the core dominated regime, the taper width expansion is roughly linear and 

therefore relatively easy to model. However, the form of the taper in the cladding dominated 

regime is less straightforward. Fitting CLT profiles in these two regimes for different parameters 

will be discussed in more detail in the following sections. 

 

Qualitative Trends 

Integrated waveguides are widely studied in the silicon on insulator (SOI) material system, 

and the constant loss inverted taper was initially developed for this use case [8]. However, CLT 

geometries will change depending upon the choice of materials. Furthermore, with the advent of 

metamaterial waveguides and photonic crystals, any number of refractive index systems could be 

used in an inverted taper. To better understand the relationship between material properties and 

optimized taper profiles, the effect of cladding and core refractive indices was studied for common 

material systems. The cladding refractive index was modeled between 𝑛𝑐ℓ𝑎𝑑 = 1.6, which would 

correspond to a high index glass or polymer, and 𝑛𝑐ℓ𝑎𝑑  = 1.0, the refractive index of air. 

Meanwhile, the core refractive index was varied from 𝑛𝑐𝑜𝑟𝑒 = 3.0, just below that of phosphide 

materials such as InP and GaP at a wavelength of 1.55 µm  [48], to 𝑛𝑐𝑜𝑟𝑒 = 3.6, which is just above 

the refractive index of doped silicon [49]. In addition, different waveguide heights are used for 
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integrated circuits depending upon the application. To understand the influence of the waveguide 

height on the constant loss taper, waveguide heights between 200 nm and 300 nm were simulated. 

As we shall see in the following two sub-sections, the CLT retained a sigmoid-like effective index 

distribution over the three dimensional (𝑛𝑐𝑙𝑎𝑑, 𝑛𝑐𝑜𝑟𝑒 , ℎ) parameter space of interest. 

Effect of Material System 

Two CLT effective index profiles are compared in Figure 10 (a) for different cladding 

indices. Here the inverted CLT has a tip with of 150 nm and is calculated to a final width of 1500 

nm. The plots show that, holding the core index constant, raising the cladding index does not 

change the CLT profile significantly in the core-dominated regime. This is because the 

fundamental guided mode at the beginning of the inverted taper, where the waveguide is narrow, 

is quite diffused and resides primarily in the cladding. Meanwhile the guided mode at later stages 

of the taper resides mostly in the core region. The small effect seen in this plot in the core-dominate 

regime is due to exponential tail regions of the guided mode profile that reside in the cladding. 

Overall, changing the cladding index simply results in a shift in the constant loss taper’s initial 

value of the effective refractive index.  

Similarly, the effect of changing the refractive index of the waveguide core primarily 

affects the core-dominated region of the CLT effective index plot, as shown in Figure 10 (b) for 

core refractive indices of 3.36 and 3.48. The two curves shown in this figure are basically identical 

up until shortly after the inflection point at w*, at which point the effective refractive indices seem 

to approach limits defined by the index for a slab waveguide. In practice, since the effect of the 

core index is seen relatively late in the taper, many inverted CLTs will be identical despite having 

different core materials. For the case plotted in Figure 10 (b), a noticeable difference is only present 
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after an effective index of greater than roughly 2.5 is reached. This corresponds to a waveguide 

width of around 500 nm when the waveguide’s core index is 3.48, and a waveguide width near 

700 nm when the core index is 3.36. Many integrated waveguides have dimension smaller than 

these values, and therefore an inverted constant loss taper coupler would not be affected by varying 

the core material in these cases. 

(a) 
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(b) 

 

Figure 10 Refractive index on the CLT refractive index profile. In (a) the core index was 3.48 and 

cladding indices of 1.6 and 1.48 are compared. In (b) the cladding index is 1.48 and core indices of 

3.36 and 3.48 are compared. In all cases the waveguides had height of 220 nm. 

While the trends shown above are useful for understanding the tapering process, a further 

simplification can be performed prior to fitting. Namely, we can normalize the effective index 

according to (Eq.13) to get nearly identical profiles for all cases discussed in Figure 10. This 

equation simply rescales the effective index profile so that its upper and lower limits, originally 

equal to the slab waveguide effective refractive index 𝑛𝑠𝑙𝑎𝑏 and cladding waveguide index 𝑛𝑐𝑙𝑎𝑑, 

become 0 and 1. The result of this normalization process is shown in Figure 11, where the 

normalized effective index (�̂�𝑒𝑓𝑓) curves are presented for the examples shown above. 

 �̂�𝑒𝑓𝑓 =
𝑛𝑒𝑓𝑓 − 𝑛𝑐𝑙𝑎𝑑

𝑛𝑠𝑙𝑎𝑏 − 𝑛𝑐𝑙𝑎𝑑
 

 

(Eq.13) 
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Figure 11 Normalized CLT effective index profiles. Legend labels correspond to waveguide core 

and cladding indices respectively. Height of waveguide is 220 nm in all cases. 

 

Effect of Strip Waveguide Core Height 

In addition to the refractive index of the materials used, the waveguide height strongly 

affects the CLT effective index profile. This effect is more complicated than that from the 

waveguide refractive indices. Typical integrated rectangular waveguide heights used in modern 

application lie between 200 nm and 300 nm, with the most common being the 220 nm SOI platform 

[14]. Heights larger than 300 nm are challenging to fabricate with narrow tip widths in the inverted 

taper application, and heights smaller than 200 nm exhibit less confinement, and are therefore less 

common. 

Effective refractive index profiles are shown for waveguides with heights of 220 nm and 

300 nm in Figure 12 (a). There are two important differences between the presented curves. First, 
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there is a change in the inflection point that demarcates the boundary between the cladding and 

core dominated regions. Increasing the height results in a leftward shift of the inflection point as 

the taller waveguide will confine the guided mode within the core at a smaller width. Second, there 

is a change in the curvature of the effective index profile. A clear decrease in the slope is seen at 

the inflection point when the waveguide height is increased from 200 nm to 300 nm. This trend 

can again be explained as resulting from the higher effective refractive index of the structure when 

the height of the waveguide core is increased at a fixed waveguide width. The change in curvature 

is seen more clearly in Figure 12 (b), where instead of plotting against the step number normalized 

to the total step number, we have normalized the z axis such that both curves exhibit the same 

inflection point at z’ = 0.5. We will herein refer to this normalized coordinate as z’. Rescaling the 

z axis does not impact the physical geometry represented by the inverted taper profile as length is 

not considered in our discretized taper model. As we shall see, expressing the curves in new 

coordinates such as z’ will be useful for fitting. 
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Figure 12 Effect of waveguide height in nanometers on CLT refractive index profile. (a) position 

normalized to final width, (b) normalized to inflection point. Waveguide core has index 3.48 and 

cladding has index 1.48. 

 

Parametric Fitting of Constant-Loss Taper Effective Index Profiles 

The collection of parameter trends discussed above can be summarized in two equations 

for the normalized effective index profile in constant-loss tapers. For all CLTs derived in this 

paper, the �̂�𝑒𝑓𝑓 profile initially followed an exponential increase. However, as the width of the 

taper continues to increase with propagation distance, the taper’s effective refractive index must 

approach a limit that represents the refractive index of a slab waveguide, which has infinite width. 

Unfortunately, the asymmetry of the derived CLT effective index profiles made it difficult to fit 

with a single logistic or alternative sigmoid function. As a result, the fitting function proposed here 

is piecewise, containing an exponential function for the cladding-dominated regime and a rational 
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function for the core-dominated regime. This equation is presented in (Eqs.14) alongside a typical 

fit in Figure 13. This is an approximate function that will work well for empirical fitting and for 

examining trends in the CLT profiles over the parameter space. 

 �̂�𝑒𝑓𝑓(z′) =
𝑛𝑒𝑓𝑓,   𝐶𝐿𝑇 − 𝑛𝑐𝑙𝑎𝑑

𝑛𝑠𝑙𝑎𝑏 − 𝑛𝑐𝑙𝑎𝑑
 =

{
 
 

 
 

1

2
e−𝑘𝑐𝑙𝑎𝑑 (z′−1/2), 𝑧′ < 1/2

 
1

1 +
1

𝑘𝑐𝑜𝑟𝑒 (z′ −
1
2
) + 1

, 𝑧′ ≥ 1/2
 (Eqs.14) 

 

Figure 13 Fitting curve for nclad = 1.5, ncore = 3.44, and height = 220 nm 

 As was the case previously, z’ is the normalized step along the discretized taper in arbitrary 

units such that the point z’ = 0.5 demarcates the cladding and core dominated regions. The 

refractive index 𝑛𝑠𝑙𝑎𝑏 in (Eqs.14) represents the effective index of a slab waveguide with the same 

height, cladding, and material properties as the tapering structure. Finally, 𝑘𝑐𝑙𝑎𝑑  and 𝑘𝑐𝑜𝑟𝑒  are 

dimensionless fitting parameters that were found for each CLT in the parameter sweep.  
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The fitting procedure first rescaled the raw data such that z’ = 0.5 at the inflection point 

and z’ = 0 at the start of the taper. Next 𝑛𝑠𝑙𝑎𝑏 was found analytically from a slab waveguide model. 

With this information, it was possible to normalize the effective refractive index as shown in 

(Eq.13) and perform linear regressions to find 𝑘𝑐𝑙𝑎𝑑 and 𝑘𝑐𝑜𝑟𝑒 in (Eqs.14) for each CLT effective 

index profile. The 𝑘𝑐𝑙𝑎𝑑 and 𝑘𝑐𝑜𝑟𝑒 fitting procedure was performed on the McGill HPC Guillimin 

following the previously mentioned CLT geometry computational process.  

Surfaces for 𝑘𝑐𝑙𝑎𝑑  and 𝑘𝑐𝑜𝑟𝑒  as a function of 𝑛𝑐𝑙𝑎𝑑 ,  𝑛𝑐𝑜𝑟𝑒  and waveguide height were 

generated by running the simulation and fitting procedure for many waveguide systems. These 

surfaces were then fitted via a multilinear regression to establish a fully empirical description of 

the CLT geometry’s parameter dependence. The resulting goodness of fit plots are shown in Figure 

14, where the predicted coefficients �̂�𝑐𝑙𝑎𝑑 and �̂�𝑐𝑜𝑟𝑒 are plotted against the real values 𝑘𝑐𝑙𝑎𝑑 and 

𝑘𝑐𝑜𝑟𝑒. The full regression results with coefficients are shown in Appendix B. Here the multilinear 

regression for 𝑘𝑐𝑙𝑎𝑑 had an R2 of 0.93, while that for  𝑘𝑐𝑜𝑟𝑒was lower at 0.76. The lower R2 for  

𝑘𝑐𝑜𝑟𝑒, the parameter that defines the curve in the core dominated region, may be due to there being 

fewer data points in this part of the effective index curve. That is, the fitting process is more prone 

to error since there are fewer points and a greater proportion of points in the set lie near the 

inflection point. This region is also the least stable in the optimization because the shape of the 

CLT is derived sequentially, starting with the tip, which results in greater accumulated error in the 

later part of the reported curves. 
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(a) (b) 

  
Figure 14 Goodness of fit curves for multilinear regression of (a) kclad and (b) kcore. 

Despite the somewhat lower R2 value for  𝑘𝑐𝑜𝑟𝑒, the fitted polynomial surface represents 

the data well and can provide us with some insight into the mode conversion process in inverted 

constant loss tapers. Also recall that the core dominated region is less important to practical 

inverted taper design as it usually applies to waveguide widths in the multi-mode regime that are 

larger than those commonly used. Figure 15 shows the fitting parameter values for constant height 

as a function of the refractive index of the core and cladding materials. Figure 16 plots the values 

of the fitting parameters for constant cladding refractive index, but varies the height and core 

refractive index. In these figures we see that the surfaces for 𝑘𝑐𝑙𝑎𝑑 and 𝑘𝑐𝑜𝑟𝑒  are similar. This is 

because they both relate to the curvature of the effective refractive index profile. For example, in  

Figure 12 (b), the profile for a 200 nm waveguide height has a greater curvature than that with a 

300 nm height, and this is reflected in the fact that the 200 nm height inverted taper has a 

normalized effective index profile with larger 𝑘𝑐𝑙𝑎𝑑 and  𝑘𝑐𝑜𝑟𝑒 than that for the 300 nm height 

inverted taper. 
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Near the center of the studied parameter space, the 𝑘𝑐𝑙𝑎𝑑 and  𝑘𝑐𝑜𝑟𝑒 surfaces have a very 

small gradient, meaning that the normalized effective index plots (e.g. Figures 11 or 12b) are nearly 

the same, as was seen qualitatively earlier. However, as we approach extremes in the refractive 

index (e.g. 𝑛𝑐𝑜𝑟𝑒 = 3.6, 𝑛𝑐𝑙𝑎𝑑 = 1.6), the fitting parameters begin to change. A rough trend is that 

greater values for 𝑘𝑐𝑙𝑎𝑑 and  𝑘𝑐𝑜𝑟𝑒 are seen when the waveguide structure has an intrinsically low 

effective refractive index, and therefore greater phase velocity. The constant height contour 

surfaces in Figure 15 and the constant cladding index surface in Figure 16 illustrate this finding. 

This is particularly evident in the latter case (Figure 16) where we see that increasing the core 

index decreases the fitting coefficient values. The same trend is also present in Figure 16 for 

increasing waveguide height: Larger heights result in greater mode confinement and decreased 

phase velocity, which translates to smaller 𝑘𝑐𝑙𝑎𝑑 and  𝑘𝑐𝑜𝑟𝑒 that reflect decreased growth rates for 

the normalized effective refractive index profiles.  

(a) 
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(b) 

 
Figure 15 Surfaces for (a) kclad, (b) kcore in the nc – ncl space for constant height of 220 nm.  
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(b) 

 
Figure 16 Surfaces for (a) kckad, (b) kcore in the nc – h space for cladding index of 1.40. 

The close correlation between the trends in the fitting parameters and the intrinsic 

waveguide effective index is show more explicitly in Figure 17 (a) and (b), where the effective 

index of a waveguide with width of 400 nm is plotted over the refractive index and height 

parameter space. These two surfaces seem inversely correlated to those presented above for the 

fitting parameters This suggests that differences in 𝑘𝑐𝑙𝑎𝑑  and  𝑘𝑐𝑜𝑟𝑒 , and therefore the CLT 

geometries, may be a result of our z’ axis scaling. To clarify, in our fitting procedure the starting 

point was a tip width of 150 nm. However, systems with larger waveguide height or refractive 

index contrast have greater normalized effective refractive indices at this initial width. This 

increased starting point results in smaller values for 𝑘𝑐𝑙𝑎𝑑 and 𝑘𝑐𝑜𝑟𝑒. By eliminating this effect, we 

shall see that a global curve is found that describes all constant loss taper geometries. This is done 

by rescaling the z’ axis such that all curves begin at the same normalized effective index value.  
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(a) 

 
(b) 

 
 

Figure 17 Surface for effective refractive index of a 400 nm x 220 nm waveguide as a function of (a) 

the core refractive index and cladding refractive index and (b) the core refractive index and the 

waveguide height. 

Following the result discussed above, the normalized effective index profiles in terms of z’ 

were rescaled such that they each began with a common starting �̂�𝑒𝑓𝑓,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 . We refer to this 

rescaled coordinate as x. The �̂�𝑒𝑓𝑓(𝑥) data after this rescaling procedure are shown in in Figure 18 
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as a scatter plot. We see that there is a very limited difference in the profiles over the entire 

parameter space. In fact, the variations in the normalized index profiles are likely within simulation 

errors resulting from uncertainties in the effective index calculation and overlap integral method 

of calculating the step loss (Eq. 12). The implication of this result is that a single global 

normalized-effective-index curve could be used when designing a constant loss inverted taper 

regardless of the application specific material system or waveguide platform. This global or 

average curve is presented in Figure 18 as a dashed black line. The fitting parameters for the global 

normalized index profile are 𝑘𝑐𝑙𝑎𝑑   = 12.18 and 𝑘𝑐𝑜𝑟𝑒 = 42.60. 

 

Figure 18 Global normalized effective index curve plotted alongside scatter data of 25 randomly 

selected rescaled CLT �̂�𝒆𝒇𝒇(𝒙) profiles. 
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Finding Constant Loss Taper Geometry from the Global Normalized 

Effective Index Curve 

The discussion above has identified that inverted nanophotonic tapers share a common 

normalized effective refractive index profile. However, what is most important from a practical 

perspective is not just the existence of a global normalized effective index profile, but rather the 

taper geometry and performance that are generated from the profile. In general, we have found 

that width profiles back-calculated form the global normalized effective index curve match very 

well with the raw constant loss width profiles derived numerically in this study.  

If the relationship between fabrication parameters, design parameters, and material choices 

is well understood for a given waveguiding system, then it is very simple to calculate the taper 

geometry associated with the global normalized effective index profile. To find the width profiles 

from the global normalized effective index profile, the effective index profile for the system of 

interest is first found by mapping the global, normalized-effective-index profile to the interval 

(𝑛𝑐𝑙𝑎𝑑 , 𝑛𝑠𝑙𝑎𝑏). Then, a parameter sweep of the waveguide width is performed to find 𝑛𝑒𝑓𝑓 as a 

function of the waveguide width. The width profile of interest can then be interpolated from this 

curve. Note that to implement this approach in practice the effective index of the waveguide system 

must be very well understood.  

Figure 19 (a) – (d) plots four constant loss inverted taper width profiles calculated from the 

global effective index curve alongside the raw width profiles derived from our simulation for three 

different cases. Figure 19 (a) – (c) show the results for elevated cladding refractive index, 

waveguide height, and core refractive index respectively, and Figure 19 (d) shows a standard case 

where 𝑛𝑐𝑙𝑎𝑑= 1.4, 𝑛𝑐𝑜𝑟𝑒 = 3.4, and ℎ = 240 nm. In each case the difference between the width 
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profiles back calculated from the global normalized effective index curve and the raw data is within 

around ten nanometers. This is a relatively small error, on the order of fabrication error in many 

cases.  The global effective-index profile therefore seems to be a reliable and simple method of 

designing an inverted CLT, which is quicker and more simple to implement than running a custom 

electromagnetic optimization procedure. 

 
Figure 19 Comparison of width profiles calculated from global �̂�𝒆𝒇𝒇 empirical curve with those 

found from numerical model for (a) ncl  = 1.4, nc = 3.6, h = 200 nm, (b) ncl  = 1.4, nc = 3.4, h = 280 

nm, (c) ncl  = 1.6, nc = 3.4, h = 240 nm, (d) ncl = 1.4, nc = 3.4, h = 240 nm. 

 

Having established that the global effective index profile is indeed capable to reproducing 

the raw numerical results with sufficient accuracy, the question of relative performance should be 

addressed. In terms of performance, we can compare the relative losses of the calculated constant 
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loss inverted tapers with those of linear inverted tapers. For both families of taper geometries, an 

inverted taper between 200 nm and 600 nm was divided into 45 segments and the overlap integral 

method was used to estimate losses. As predicted by the Lagrangian analysis of the waveguide 

tapering problem, significant loss improvement is seen throughout the parameter space, for all 

studied cases. This is illustrated in Figure 20 (a) – (c), which show the ratio of the loss in the CLT 

to the loss in the linear taper for constant cladding refractive index, core refractive index, and 

waveguide height respectively. When light is guided primarily in the cladding-dominated regime, 

as was the case for the waveguides studies in this example, the core index does not significantly 

affect the relative performance of the CLT. This is reflected in the horizontal and vertical contour 

lines in Figures 20 (a) and (b) respectively. From these figures, it is also clear that the benefits of 

the CLT are accentuated at lower waveguide heights and at smaller index contrasts, or more 

generally when the waveguide system is less confining. This trend is easily explained as there is 

more mode conversion taking place between the input and output widths under these conditions. 

The initial mode at the tip of the inverted taper is more diffused when the core is less substantial 

(has smaller refractive index or decreased height), and the optimal mode conversion approach 

yields greater benefit as a result.  

From these surfaces it can therefore be concluded that the underlying theory regarding the 

optimality of the constant loss taper is correct for at least the parameter space studied here. The 

design of optimal inverted taper geometries can thus be greatly accelerated by using the global 

normalized effective index curve. 
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(a) 

 
(b) 
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(c) 

 

Figure 20 CLT loss relative to a linear taper loss between a 200 nm and a 600 nm strip waveguide 

for the studied parameter space. (a) constant height, (b) constant cladding index, (c) constant core 

index. All units of height are in nanometers. The plotted value is ratio: 
𝑳𝑪𝑳𝑻

𝑳𝒍𝒊𝒏𝒆𝒂𝒓
. 

 

Summary 

Coupling between fiber optics and integrated waveguides is an important problem faced 

whenever photonic components are implemented in our modern communications networks. 

Among the many methods for converting optical modes present in fibers to those present in 

nanoscale waveguides, the inverted taper coupler proves one of the most promising due to its high 

efficiency, relatively small footprint, and broadband performance. Several principles exist in the 

literature for the design of tapered waveguides. Unfortunately, they are generally hard to apply in 

modern applications as they were either not developed for three dimensional waveguides or are 

overly qualitative.  
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The constant loss approach to inverted taper coupler design appears to be an exception. 

This Lagrangian approach arises from analyzing the mode conversion process in an adiabatic 

inverted taper coupler through the lens of functional analysis. In this paper, we have examined the 

geometry of constant loss inverted tapers by leveraging high performance computing and 

parallelized simulations with the goal of furthering our understanding of these structures and 

finding methods to simplify their design. This analysis led to the development of a new framework 

for describing the inverted taper mode conversion process, which focused primarily on the study 

of the normalized effective refractive index (�̂�𝑒𝑓𝑓) profile along the propagation direction of the 

inverted taper. This normalized effective index was found to be a valuable descriptor of the mode 

conversion process in fiber-to-chip couplers because it is dimensionless and closely, though not 

directly, related to the spatial spread of the guided mode.  

The �̂�𝑒𝑓𝑓  profile followed an asymmetrical, sigmoid-like shape along the constant loss 

taper, with an inflection point at the critical waveguiding dimension (w*) where the effective mode 

area was minimized. This critical turning point separates two regimes of waveguide tapering: the 

cladding-dominated regime, where the mode phase velocity is primarily a function of the cladding 

refractive index, and the core-dominated regime where, as the name suggests, the core refractive 

index is of most importance. In the cladding-dominated regime an exponential form for the 

normalized effective index �̂�𝑒𝑓𝑓 was found, which is likely related to the exponential increase in 

the effective mode area with decreasing waveguide dimension (see literature review discussion). 

Meanwhile an algebraic function best fit the change in the effective index in the core-dominated 

regime. The difference in functional form may be the result of inherently different mode 

conversion processes taking place in the two regimes. The cladding-dominated regime exhibits 
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rapid mode contraction with increasing width, while the core-dominated regime exhibits slow 

mode expansion. The asymmetry of the derived profiles in this work is also likely a result of this 

difference. 

 Interestingly, the normalized effective index profile along the constant loss taper was 

nearly the same for the various waveguide systems studied in this thesis when proper normalization 

was applied. Small differences in the curves for different waveguide heights or materials are 

attributed to numerical error.  The discovery of a single normalized function to describe the 

constant loss taper allows for a simplified inverted taper coupler design process. First, the �̂�𝑒𝑓𝑓 

profile must be found using the reported empirical equations and fitting parameters. The 𝑛𝑒𝑓𝑓 

profile can then be found by simply rescaling the �̂�𝑒𝑓𝑓 curve to the interval between the cladding 

refractive index and the slab waveguide refractive index. Then, the associated waveguide widths 

can be calculated by performing a single parameter sweep of 𝑛𝑒𝑓𝑓 against waveguide width in any 

full-vectorial mode solver. The derived map of effective index to width allows the empirical 𝑛𝑒𝑓𝑓 

profile to be converted to a width profile which represents the taper geometry. We have performed 

this process for many waveguiding systems, finding strong correlation between the generated 

inverted taper geometries and those found from numerical optimization. In addition, it is clear from 

the results that using a constant loss taper results in significant loss improvements over a linear 

taper.  

Considering the results discussed above, the Lagrangian approach to designing inverted 

tapers is a promising method for rapidly designing optimal inverted taper structures in fiber-to-

chip couplers. In qualitative terms, one can describe the constant-loss approach as simply 

maximizing the width expansion at each position in the taper without exceeding some tolerable 
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loss. The existence of a common normalized effective index distribution for constant-loss tapers 

is a result of the fact that we have a good descriptor of the mode conversion process in waveguide 

tapers, namely the effective index. By normalizing this quantity, we account for the variation in 

the step loss function with system parameters like the waveguide height and refractive indices. We 

are thus left with a global trend that describes the constant loss taper expansion. This result is easily 

applied in practice if the effective index is well known for the material system and structure being 

used. Therefore, when applying the results of this study to the design of a constant loss inverted 

taper for any waveguiding system, whether it be a metamaterial, photonic crystal, or wire 

waveguide, great care must be taken to ensure that the desired effective index is achieved after 

fabrication.  

 Looking beyond the empirical equations presented, this study shows that recent growth of 

computation resources and cloud-based technologies can empower large-scale parameter studies 

of photonic devices. As was the case here, this expanded computational potential can be enhanced 

and guided by analytical properties of our parameter spaces. Overall this approach could be 

adapted to solve many other constrained optimizations problems in photonics.   
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Chapter 2: Constrained Optimization of Orthogonal  

  Waveguide Couplers with Fixed Footprint 

Introduction 

Waveguide bends are required components of integrated photonic circuits as they are 

necessary to maintain compact packaging. They are widely used in devices such as photonic 

transceivers and receivers, where up to 200 bends can commonly be found [50]. Due to the large 

number of waveguide bends in integrated photonic circuits, reducing their footprint by decreasing 

the bending radius can have a significant effect on the size of photonic chips. A similar argument 

can be made regarding the efficiency of waveguide bends. Reducing the losses in a waveguide 

bend by a fraction of a percent can hugely impact overall power usage in photonic chips since the 

total loss is proportional to the loss incurred per waveguide bend to the power of n, where n is the 

number of waveguide bends in the device. Unfortunately, the bending radius of a curved 

waveguide is inversely related to the power coupled into radiation modes. Losses and footprint are 

therefore two performance metrics that must be balanced in an optimization procedure.  

When discussing curved waveguides, often two types of losses are identified: bending 

losses and transition losses [51]. Bending losses arise from mode distortions that result in radiation 

of light away from the curved waveguide. They are often modelled as shown in Figure 21, where 

a radius R + xr is defined beyond which the wave must propagate above the speed of light to remain 

in phase. Since this condition cannot be met, the energy associated with the guided field beyond 

this point is lost by radiation. The critical distance, xr, can be found in (Eq. 15), where R is the 

radius, 𝛽𝑧 is the propagation constant in the waveguide and 𝛽0is the unguided light propagation 

constant [52].  
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𝑥𝑟 =

𝛽𝑧 − 𝛽0
𝛽0

𝑅 

 

(Eq. 15) 

 

Figure 21 Schematic showing bending loss mechanism in curved waveguide [52] 

Meanwhile, the second class of losses in waveguide bends are commonly referred to as 

transition losses. These are associated with a change in the shape of the guided electromagnetic 

mode resulting from a change in the waveguide’s radius of curvature and are often modeled as the 

overlap integral of the guided mode within the curved waveguide mode with that present within 

the straight waveguide  [51-54]. 

As shall be discussed in some detail, many studies have investigated methods of reducing 

the transition and bending losses in curved waveguides. Approaches have included optimizing the 

bend geometry [55-57], fabricating trenches [58], controlling the refractive index profile [59], and 

offsetting the central axis of the waveguide bend from that of the straight bend [60]. However, 

there has not been a comprehensive study relating the footprint of a waveguide to the optimal bend 

profile. To further investigate this area, this study will find and analyze the optimal shapes of 

orthogonal bend waveguides for different footprints through modern full-vectorial finite difference 

time domain simulations.  
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Literature Review  

Researchers such as Marcuse and Marcatili performed some of the earliest studies 

investigating bending losses in optical fibers and waveguides [61-64]. Marcatili found an 

approximate closed-form expression for bending loss in 1969, which he used to identify three 

guidance regimes for low-index-contrast waveguides [64]. Shortly thereafter, Marcuse published 

a similar study analyzing asymmetric curved slab waveguides [61, 63]. He would also later 

compute bending losses via diffraction theory [65]. These early studies found increasingly skewed 

field distributions within curved waveguides as the radius was decreased, which resulted in an 

increased imaginary field component in the guided mode and therefore decreased transmission. 

In 1975, shortly after these early studies, Heiblum and Harris introduced a conformal 

transformation to reduce the complexity and computation time associated with modeling curved 

waveguides [66]. Since then, this approach has been widely used to describe any systems with 

refractive index gradients [67]. A conformal transformation approach models the curved structure 

as a straight waveguide by modifying the cross sectional refractive index distribution (𝑛(𝑥)) , 

which would be a step function for any rectangular waveguide, according to (Eq. 16). Here x 

represents the distance from the waveguide core in the radial direction, as shown in Figure 21. 

This approach allows for the guided mode in the bent waveguide to be found by solving the 

Helmholtz equation under the transformed conditions. Semi-analytical techniques can be 

leveraged for this task such as the Wentzel–Kramers–Brillouin (WKB) approximation [53, 54, 68] 

or methods like the one outlined by Lu et al. in 2005 [69]. These techniques have produced more 
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accurate results than simple analytical models for most bent waveguide applications, particularly 

at smaller length scales.   

𝑛′(𝑥) = 𝑛𝑒𝑥/𝑅 

𝑛′(𝑥) ≈ 𝑛 (1 +
𝑥

𝑅
) 

(Eq. 16) 

The WKB method has been particularly well developed for analysis of bending losses. This 

technique is widely used in physics to numerically solve linear differential equations. Berglund 

and Gopinath have performed a complete analysis of bend loss using WKB method with a 

conformal transformation, finding good correlation between their results and experimental data, 

as well as the results of more computationally intensive methods of solving this problem [53]. In 

Figure 22 the conformal transformation of the refractive index distribution is shown in the lower 

subfigure and the associated mode profile found by WKB analysis is shown in the upper subfigure. 

Here 𝑥 represents the spatial dimension along the radial direction of the curved waveguide. In the 

upper subfigure we can see how the guided mode in a waveguide bend is asymmetric, with its peak 

shifted towards the outer radius of the waveguide. We can also see the cutoff radial position, 

labeled xr, beyond which the mode is no longer guided. Note that this results in the presence of an 

imaginary field component Im(𝐸𝑧) which represents the radiation bending losses. 
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Figure 22 (a) The electric field as a function of radial position x (Eq. 16) calculated by WKB 

approximation for a bent fiber using conformal transformation. (b) The refractive index profile of 

the wavguide as a function of x after applying conformal transformation to the originally rectangular 

profile [53]. 

 Modal analysis of bent waveguides using the techniques discussed thus far have led to two 

primary design concepts for reducing losses in curved structures. The first involves offsetting the 

center of the bent waveguide relative to that of the straight waveguide. This discrete change in the 

central axes of the straight and curved waveguides serves to maximize the overlap between the 

symmetric guided mode in the straight waveguide and the skewed mode in the curved waveguide, 

illustrated in Figure 22. Put forward by Neumann  [60], this approach aims to reduce transmission 

losses. The second approach instead focusses upon reduction of bending losses by increasing the 

guided mode confinement in the curved region. This has been achieved by either introducing a low 

index trench in the cladding outside of the waveguide bend, which was also suggested by Neumann 

[58], or by increasing the width of the curved waveguide region, an idea that has been implemented 

in several studies [56, 70].  
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More recently full-vectorial, numerical-propagation-based methods have improved the 

accuracy of waveguide bend simulations and allowed modeling of 3D waveguides and polarization 

effects. The need for these simulations arose from inherent limitations in the conformal 

transformation to describe propagation behavior [71]. Such studies generally used either the finite 

difference time domain (FDTD) [72], finite element method (FEM) [71], or beam propagation 

method (BPM) [73]. The BPM calculates solutions to the Hemholtz equation for a curved 

waveguide using a Fast Fourier Transform (FFT), which makes it very computationally efficient. 

Studies such as Schermer and Cole (2007), have successfully used the BPM to predict bending 

losses in single mode and multimode fibers [73]. Despite the fundamentally different approach 

taken, the authors noted that their numerical simulation results matched well experimental results 

and those found numerically using techniques outlined by researchers such as Marcuse [74]. This 

similarity can be seen in Figure 23 from their paper which plots the bend loss against bend radius.  

 

Figure 23 Comparison of bend loss vs bend radius for an SMF-28 fiber using BPM simulation with 

other techniques from Schermer et al. at 1550 and 1320 nm [73]  
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Likewise, FDTD and FEM simulations of curved waveguides have been successfully 

performed in the past, though many of these have focused on designing photonic crystals to reduce 

losses and dispersion [75, 76]. In the past, FDTD simulations of nonlinear waveguides faced issues 

surrounding boundary conditions and computational time. However, these obstacles can be 

overcome by using a perfectly matched layer (PML) boundary conditions to improve the accuracy 

of FDTD models [77]. Studies by Wu et al. [78] and other research groups [79-81] have further 

developed the method in FDTD such that it is now commonly used to analyze a wide range of 

photonic systems including those containing curved waveguides. Similar developments have been 

made by Coccioli et al. [82] and Jedidi et al. for the finite element method [83, 84]. Curved 

waveguide FDTD studies such as those by Yuan in 2008 [85] and Wang in 2010 [86] have shown 

similar trends as those reported by Marcuse [65], as shown in Figure 24. These curves, which show 

the scaling behavior of losses with bending radius, will have a critical role in interpreting the 

optimization results. 

(a) 

  

(b) 

 
   
Figure 24 Bending loss versus radius for 90o bends of a submicron waveguide using FDTD. (a) Result 

from Yuan using 500 nm wide waveguide and λ=780 nm (b) Comparison between Wang [86] and 

Marcuse [65] for SMF28 fiber of different radii at λ=1550 nm. Fiber has silica core and fluorine 

doped cladding. [85] 
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Many optimization studies have been published that leverage the above numerical 

methods. Early in the 1990s, Smit et al. [70] optimized the curved waveguide width and offset 

using modal analysis and Yamauchi, et al. [87] performed optimization studies of trench 

parameters for a slab waveguide. A few years later a more relevant trench analysis for 3D 

waveguides was presented by Seo et al. using a semi-vectorial, finite-difference analysis [88]. 

More recently, finite difference optimization of different bend structures has been published by 

Anderson et al. [89] and Harjanne et al. [90], looking at slot waveguides and ridge waveguides 

respectively. Several papers have also been reported where genetic algorithms or particle swarms 

were implemented for curved waveguide optimization. Coccioli [91] and Khanzadeh [55] were 

two such studies that used the finite element method. Unfortunately, many of these studies report 

on narrow parameter spaces, focusing on methods rather than results. Single use cases are often 

analyzed and reported geometries are therefore not easily adapted to practical contexts. In addition, 

there seems to be no definitive answer as to what functional form is optimal for the bent waveguide.  

In summary, previous studies investigating the effect of curvature on wave propagation 

have used a wide range of techniques to perform their analysis. Analytical methods have been 

employed with success in 2D waveguide bend simulations, and numerical methods including the 

WKB approximation [53], FDTD [72, 75, 81, 86], and BPM [73, 92] have also proved reliable in 

the past for simulating these structures in 2D and 3D. However, there has not yet been a definitive 

conclusion on the optimal shape of a 90o
 bent waveguide, or a topological analysis of how these 

shapes scale with footprint. In this thesis chapter, we will attempt to fill this gap in knowledge by 

optimizing a typical integrated silicon waveguide bend for a range of different footprints, 

investigating scaling laws and bending parameter surfaces in the process. 
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Modeling 

 Finite difference time domain modeling has been used intensively since the 1990s to model 

wave propagation in optical devices. The method involves meshing the geometry of interest and 

solving Maxwell’s equations as finite difference equations with spatial and temporal dimensions. 

Lumerical, a commercial FDTD software, was used in this study to model orthogonal rectangular 

silicon waveguide bends for device footprints between 1 µm2 and 100 µm2. Here the footprint was 

defined as the area of the smallest square that could contain the waveguide bend. For a circular 

bend, the footprint would be equal to the square of the bend radius plus the half the waveguide 

width. Perfectly matched layer (PML) boundary conditions and a spatial buffer of greater than one 

micron between the simulation boundaries and the waveguide were used to prevent simulation 

artifacts, such as reflection off the boundary or errors in the fundamental guided mode calculation. 

A 1550 nm fundamental TE mode source was injected to the bend and mode expansion monitors 

were placed at the input and output of the bend to sample the guided mode. An example simulation 

setup is presented in Figure 25, which was created in the Lumerical user interface [93]. Here the 

blue region represents the integrated waveguide, the yellow lines are power monitors, the pink 

arrow shows the propagation direction of the injected mode, and the borders represent the PML 

region. 
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Figure 25 Typical waveguide bend simulation setup. 

The waveguide bend shape was described by a Bezier curve with four control points and 

the exact waveguide path was derived from (Eq. 17). Bezier curves are parametric curves 

representing piecewise polynomials that can be used to approximate a wide range of bends. Here 

the typical Bezier curve notation is used where n represents the number of control points, Pi 

represents the i-th control point, and u represents the position along the bend. The shape of the 

curve is represented by 𝐂(𝑢). The coordinates of the curve at position u along the bend is found 

by taking the sum of control points weighted by the factor 𝐵𝑛,𝑖(𝑢), which can qualitatively be 

interpreted as representing the contribution of a given control point to the local bend shape. 

𝐂(𝑢) =∑𝐵𝑛,𝑖(𝑢)𝐏𝑖

𝑛

𝑖=0

 

𝐵𝑛,𝑖(𝑢) =
𝑛!

𝑖! (𝑛 − 𝑖)!
𝑢𝑖(1 − 𝑢)𝑛−𝑖 

(Eq. 17) 

 The local derivative of a Bezier curve can then be found according to (Eq. 18). For our 

application, the initial and final derivative must be continuous with the input and output orthogonal 

waveguides. This condition fixed the first and final control points, as well as one of the coordinates 

of each of the remaining control points. Therefore, two independent parameters remain to define 

x 

y 
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the shape of a given coupler profile, which are the y coordinate of P1 and the x coordinate of P2. 

Under the symmetry condition, a relationship can be derived between the two central control 

points, namely they take the form in (Eq. 19). Here we have designated the y-coordinate of the P1 

control point a.  For a circle, the value of a is roughly equal to 0.552. Diagrams showing the 

construction of asymmetric and symmetric Bezier curve are shown in  Figure 26 (a) and Figure 26 

(b). The dotted lines between control points are related to the derivative of the Bezier curve as 

shown in the equations below (Eq. 18). 

 𝑑

𝑑𝑢
𝐂(𝑢) = ∑𝐵𝑛−1,𝑖(𝑢)[𝑛(𝐏𝑖+1 − 𝐏i)]

𝑛−1

𝑖=0

 

𝑑

𝑑𝑢
𝐂(0) = 𝑛(𝐏1 − 𝐏0),

𝑑

𝑑𝑢
𝐂(1) = 𝑛(𝐏𝑛 − 𝐏n−1) 

(Eq. 18) 

𝐏1 = (0, 𝑎)T 
𝐏2 = (1 − 𝑎, 1)T  (Eq. 19) 

  

(a) 
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(b) 

 
Figure 26 Diagrams of Bezier curve construction for (a) asymmetric curve with P1 = (0, 0.55), P2 = 

(0.7, 1) and (b) symmetric curve with a = 0.4. Note that units here are normalized to unity. 

When the waveguide bend was assumed to be symmetric according to (Eq. 18), the rate of 

convergence was increased by an order of magnitude. It is clear this symmetry condition is valid 

if the waveguide bend should operate for modes injected from both directions. In addition, a 

symmetric solution may be optimal in some cases when only one propagation direction is required 

due to the underlying loss mechanisms. For example, consider the limit case where transmission 

losses dominate. Since transmission losses calculated by overlap integrals are agnostic to 

propagation direction, there is no benefit to having asymmetric transmission losses at the input and 

output facet when in the absence of bending losses. A similar argument could be made for bending 

loss limit case as it is not clear how the transmission would improve with an asymmetric path. For 

any skewed distribution of curvature along the bend, the same performance should be achievable 

with a symmetric distribution.  In a skewed curvature distribution, bending losses would simply 

be spread asymmetrically along the waveguide bend, while the opposite would be true in the 

symmetric case.  
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However, when transmission and bending losses are comparable an asymmetric structure 

could yield improvements. In this case, as bending losses attenuate the guided power through the 

waveguide, the absolute transmission loss resulting from a curvature change at the end of the 90o 

bend would be smaller in absolute terms than the absolute transmission loss resulting from the 

same curvature change at the start of the waveguide. Therefore, an overall improvement would be 

achieved by strategically placing higher changes in curvature towards the end of the waveguide 

bend. For simplicity, symmetric structures will first be investigated in the discussion that follows. 

Asymmetric solutions will then be studied to test the reasoning outlined here. 

Whether waveguide bend symmetry was imposed or not, a particle swarm optimization 

procedure was implemented to search for the control points that define the path of lowest loss 

between the two orthogonal waveguides. This technique involved running several hill-climbing 

optimizations in parallel that were seeded at different starting points. High performing 

optimization threads are given computational priority over those that found themselves in sub-

optimal locations. After each iteration of the optimization procedure, the calculated fields were 

analyzed in MATLAB. The objective function for the optimization calculated the overlap integral 

of the mode captured by the final monitor, which was located in the output orthogonal waveguide, 

and the fundamental guided mode of the linear structure. This overlap integral for total 

transmission T is shown in (Eq.20), where Eo, Ho are the output fields, and Ef, Hf are the calculated 

fundamental modes. 

 
𝑇 =

|∫∫𝐸𝑜 × 𝐻𝑓
∗|
2

|∫ ∫ 𝐸𝑜 × 𝐻𝑜∗| ∙ |∫ ∫ 𝐸𝑓 ×𝐻𝑓
∗|

 

 

(Eq.20) 
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Results 

The path connecting two orthogonal waveguides was optimized to maximize transmission 

for various device footprints using a particle swarm optimization of 3D FDTD simulations. In this 

section we will first discuss the optimization results found by assuming a symmetric solution to 

the orthogonal coupling problem. Afterwards the validity of this assumption will be tested by 

considering the larger asymmetric parameter space. All results reported below were generated by 

modeling the propagation of the fundamental TE mode at 1550 nm through 90o bends of 350-nm-

wide silicon strip waveguides with silica cladding. Figure 27 (a) and (b) show typical optimized 

90o waveguide bends alongside reference circular arc for 1 µm2 and 25 µm2 footprints. We see that 

for the 1 µm2 case in  Figure 27 (a), the optimized shape has a decreased path length relative to the 

arc of a circle (blue). Meanwhile, the optimized Bezier curve path for the larger footprint in  Figure 

27 (b) has a greater path length. 

(a) 

 
 

x, µm 

y,
 µ

m
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(b) 

 
Figure 27 Optimized waveguide bend paths (red) compared to circular arcs (blue) for two device 

footprints: (a) 1 µm2 and (b) 25 µm2. 

The geometry of the optimized curves shown above can be explained through a modal 

analysis of the curved waveguides. As previously discussed, transition losses are incurred when 

the curvature of the waveguide changes because of the resulting change in the guided mode profile. 

Therefore, there are no transition losses if the radius of curvature is constant. Meanwhile, bending 

losses are a function of the instantaneous curvature in the waveguide, as the guided modes in 

curved waveguides develop an imaginary field component. Naturally, the bend curvature for 

orthogonal waveguide couplers with a larger footprint is smaller than for those with a smaller 

footprint. As there is a roughly exponential increase in bending losses with decreasing curvature, 

this means that bending losses gradually become the dominant loss mechanism as the footprint is 

decreased.  

A similar trend is present for transition losses, but the exponential scaling law for transition 

losses has a lower exponential factor than that for bending losses, see Figure 28. As a result, the 

x, µm 

y,
 µ

m
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optimized bend structures under compact conditions aim to reduce bending losses at the expense 

of increasing transition losses by taking on a sub-circular shape. Conversely, for devices with a 

larger footprint, transition losses are slightly greater than bending losses and this leads to a shape 

with greater path length than a circular arc. 

 

Figure 28 Comparison of transition and bending losses in SOI wire waveguides. 

 As we have constrained the optimized curves to be symmetric by using the control point 

relationship in (Eq. 19), another way to quantify the difference between the curves is to look at the 

distance between their midpoints and the center of the circular arc, labeled as 𝑑 in Figure 29, and 

the radius of the circular arc, labelled as 𝑟 . The ratio of 𝑑/𝑟, hereafter called the apex ratio, 

describes the degree that that the optimized arc is sub- or super-circular. Sub-circular bends, unlike 

super-circular bends, have 𝑑/𝑟  apex ratios less than unity;  
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Figure 29 Apex ratio calculation example for sub-circular curve. Here apex ratio is d / r = 0.92. 

Figure 30 shows the change in the total loss (transition plus bending losses) and the apex 

ratio with increasing one-dimensional device footprint, which is defined as the outside radius of 

the reference circle arc or the square root of the total footprint. As was the case in earlier waveguide 

bend studies discussed in the literature review, we see that losses increase roughly exponentially 

with decreasing bending radius (orange curve in Figure 30). At very small footprints on the order 

of 1 µm2, the apex ratio is less than unity, indicating that the optimal shape is sub-circular. The 

apex ratio increases roughly linearly from 1 µm to around 2 µm, at which point the rate of change 

decreases. At 1D footprints of ~1.7 µm, a circular arc seems optimal. If the footprint is increased 

beyond this point larger apex ratios are found, and the optimal curve is super circular. This trend 

is very similar to the trend in the optimal fitting parameter a, which represents the y coordinate of 

the second control point P2. This relationship is plotted in Appendix D.  
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Figure 30 Parameter sweep results for optimized waveguide bend. Apex ratio and loss for 1D 

footprints between 1 and 5 µm. 

The total loss improvement for the optimized structures is of greater interest than the total 

loss plotted in Figure 30 as it provides information on the potential impact these optimized bends 

could have on real devices. In Figure 31, the loss improvement of the optimal curve compared to 

the circular arc is reported as a function of the 1D footprint. Note that the loss improvement 

approaches zero near 1.7 µm, the point at which the optimized shape was circular. We also see 

that the use of the optimized Bezier curve has a more significant effect when sub circular bends 

are optimal. This occurs for more compact waveguide bends, which have worse performance 

overall. However, near the normal range of operation we also see improvement in transmission on 

the order of 0.5%.  This suggests that using the optimized Bezier waveguide bend could either 

make circular bends more compact for a given target loss, or that transmission could be improved 
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at the same footprint. For example, consider a typical transmitter receiver photonic integrated 

circuit with 200 circular 90o bends with a 4 µm radius [50]. If we assume that a 220 nm height SOI 

wire waveguide is used, similar to the one considered in our modeling work, the optimized results 

would reduce total losses by nearly 4 dB. Alternatively, a redesigned chip with optimized bends 

could have the same total loss with an area of only 8.6 µm2 per bend, which may nearly halve the 

total chip footprint in some configurations. 

 

Figure 31 Loss improvement of optimized waveguide bends as a function of 1D footprint. 

While the above results show that the symmetric optimization routine yields important 

improvement in transmission for all tested waveguide bends, it is possible that an asymmetric 

solution is optimal. To test the symmetric bend assumption, a parameter sweep of the two 

independent control point coordinates was performed for device footprints of 1 µm2 and 4 µm2.  

The resulting surface for a footprint of 1 µm2 is presented in Figure 32, alongside a plot of the line 

containing control points that provide a symmetric Bezier curve. This line is perpendicular to the 
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contour lines of the transmission surface, which are mostly parallel, straight lines throughout the 

parameter space. This suggests that there is indeed a symmetric curve which provides the optimal 

orthogonal bend coupler for this device footprint. However, asymmetric alternatives are also 

available, though they do not result in significant increased performance. Instead, these 

asymmetric solutions to the optimization problem simply distribute losses differently throughout 

the structure, as was hypothesized earlier in this thesis. They will have unequal transmission losses 

at the input and output, and the first half of the waveguide bend will have different bending losses 

than the second half. 

 

Figure 32 Transmission through Bezier waveguide bend with 1 µm2 footprint as a function of a and 

b parameters for the Bezier curve definition according to Eqs. 17-19. 

 The parameter surface in Figure 33 for the 4 µm2 footprint bend structure is very similar 

to that for a 1 µm2 footprint. Again, we see that the line of symmetric control points falls mostly 

perpendicular to the contour lines of the surface, which at first seems to suggest that symmetric 
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solutions exist. However, upon further inspection this trend is not as clear as in the 1 µm2 

surface, as there is a subtle curvature to the contour lines near the maxima in Figure 33. This 

suggests that if the parameter sweep resolution were increased then it is possible that optimal 

bend structures could in fact be asymmetrical at this larger footprint. As previously discussed, 

this could be caused by the fact that bending losses and transmission losses are of similar 

magnitude for bends with a 4 µm2
 footprint. In this case, there is a slight benefit to skewing the 

distribution of curvature changes towards the end of the bend where the guided mode will have 

been slightly attenuated by previous bending losses. Despite this, the benefits of an asymmetric 

structure are marginal and that nearly optimal behavior is achievable with a symmetric bend. 

 
Figure 33 Transmission through Bezier waveguide bend with 4 µm2 footprint as a function of a and 

b parameters. 
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Summary 

Optimized orthogonal waveguide couplers were found by finite difference time domain 

using a Bezier curve to model the curved waveguide. Overall, the optimized devices performed 

roughly 20% better than basic circular arcs, making the optimization worthwhile to repeat when 

designing any photonic integrated circuit that requires multiple bends. A typical transmitter – 

receiver photonic integrated circuit was analyzed, finding that the optimized bends could either 

reduce the total curved waveguide footprint by nearly a factor of two, or total losses by between 1 

– 4 dB.  

The optimized symmetric bend geometries were nearly always non-circular and their 

geometry depended significantly on the device size. The general trends in optimized bend 

geometry were quantified through the introduction of the apex ratio, which led to the identification 

of two distinct regimes of optimized waveguide bend geometries: a sub-circular regime that exists 

at small footprints and a super-circular regime at the larger footprints that are typically seen in 

practice. A critical footprint was present at which the optimal bend was circular. For the modeled 

system, this corresponded to a 2D footprint of roughly 2.9 µm2. The presence of these two regimes 

can be well explained through modal concepts of bending and transition losses. Bending losses 

and transition losses in waveguide bends scale differently as the bend radius is decreased. For 

bends with large radii the bend losses are comparable in magnitude, but bending losses increase 

more rapidly when the bending radius becomes very small, below 2 µm for the studied system. As 

a result, optimized bends for these smaller radii take a sub-circular path in order to reduce the 

curvature of the waveguide at the expense of increased transition losses. 
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The larger parameter space of asymmetric couplers was also investigated. Results of this 

parameter sweep indicated strongly that there exists an optimal symmetric Bezier curve, but that 

an infinite number of equivalent asymmetric structures could be found. There also may exist 

conditions where asymmetric solutions are optimal, especially when both transmission and 

bending losses are significant. Losses are not spread evenly throughout the waveguide bend in 

these asymmetric curves, meaning that energy may be radiated primarily from a specific part of 

the waveguide bend. The generation of controlled radiation patterns from optimized bend 

structures represents a potential area for future investigations, with possible application towards 

coupling into ring resonators for example. 
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Conclusion 
As photonic technologies increasingly become part of our information infrastructure, 

optimizing the design of common components such as waveguide bends and tapers can have 

significant impact. Marginal increases in the efficiency of such structures can greatly improve the 

performance and cost of the larger system. In this thesis, optimization results and methods for 

common photonic inverted tapers and bends were presented in order to facilitate their design in 

future applications, as well as to improve our understanding of the underlying optical processes. 

First, a variational treatment of the inverted taper coupler problem was revisited, building 

upon the initial work on the concept of a constant loss inverted taper by Horth et al [8]. The 

reasoning behind this finding was further explored through parameter sweeps of coupling loss, 

primarily to investigate whether the loss functional was indeed convex. Results showed that the 

step loss was at least locally convex on the typical interval used in practice. Next, parallelizing the 

constant loss taper simulation allowed for analysis of these structures in a larger, more practical 

parameter space. New normalization methods were developed as a result, which allowed the 

geometry of the resulting inverted tapers to be very well described by a global fitting equation, 

irrespective of the strip waveguide material or height. Furthermore, our analysis led to the 

definition of cladding and core dominated regimes for mode conversion in tapered waveguides.  

Second, the well-studied problem of orthogonal bend coupling was revisited with a focus 

on the effect of device footprint on optimized waveguide curves. Bezier curves were used to model 

waveguide bends in FDTD, and a particle swarm algorithm was used to optimize the transmission 

of these bends for the fundamental TE mode. Overall, a roughly 20% improvement was possible 

through optimization of curves in orthogonal waveguide couplers. As expected, the performance 
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and geometry of the optimized waveguide bend depended strongly on the permissible device 

footprint. More specifically, two footprint regimes existed that had distinctly different behavior.  

At very small footprints optimized bends became sub-circular due to the rapid scaling of bending 

losses relative to transition losses with decreasing radius of curvature. Meanwhile, larger footprint 

waveguide bends benefitted from a super-circular shape as this served to decrease transition losses 

at input and output interfaces. A further finding regarding curved waveguide structures was related 

to the symmetry of the optimal solution. Two parameter sweeps of the Bezier control points 

indicated that asymmetric bends could provide the same performance as symmetric bends, which 

implies that there are an infinite number of optimal curves for any given footprint. This opens the 

possibility that waveguide bends could be optimized not only for their total loss, but also for a 

specific radiation pattern. 

Overall the two waveguide optimization studies presented in this thesis highlight how 

theoretical analysis of loss mechanisms in photonic devices can produce novel insights when 

coupled with massively parallel simulations launched on the cloud. This combination can lead not 

only to conceptual developments, but also to significant improvements in device performance 

without sacrificing manufacturability. 
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Appendix A – Step Reflection and Transmission 
Surfaces below show the reflection and transmission occurring at a step discontinuity in a SOI 

wire waveguide. The values were calculated using overlap integrals derived from coupled mode 

theory and demonstrate the existence of a global turning point denoted by w* in (b). 

(a) 

 
(b) 

 
Figure 34 Surface describing effect of a step perturbation in a 220 nm tall rectangular waveguide 

with core refractive index 3.48 encapsulated in glass cladding with refractive index 1.48 (a) Reflection 

and (b) Transmission as functions of input and output widths of waveguide step.  

w* 
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Appendix B – Multilinear regression results 

The table below provides the multilinear regression results when fitting the parameters in Eq. 14 

for the constant loss effective index profile in the optimized inverted taper. The parameters were 

fitting as functions of the waveguide height (h), cladding index (nclad), and core index (ncore). These 

coefficients can be used to generate surfaces similar to those reported in Figures 15 and 16. The 

goodness of fit measures are also reported. The variable xf  is discussed in Appendix C.  

Variable Coefficient – kclad Coefficient - kcore Coefficient - xf 

1.0 -660.32128 -14557.47290 29.49570 

h 8.77600 215.19025 -0.45227 

h2 -0.00801 -0.39014 0.00056 

h3 0.00005 0.00104 0.00000 

nclad -0.00001 0.00000 0.00000 

nclad * h 0.00000 -101.73875 0.26261 

nclad * h2 -11.70887 0.07356 -0.00021 

nclad* h3 0.01023 -0.00002 0.00000 

nclad
2 -0.00060 6565.14002 -17.79270 

nclad
2 * h -210.32380 15.53704 -0.03754 

nclad
2 * h2 1.62810 -0.01328 0.00004 

nclad
3 * h 182.62425 -0.59247 0.00104 

nclad
3 -0.27334 -4157.34849 9.97854 

ncore -21.02128 0.00000 0.00000 

ncore * h 0.00000 -91.08895 0.20725 

ncore * h2 -1.32284 -0.03210 0.00011 

ncore * h3 -0.01193 0.00006 0.00000 

ncore* nclad 0.00000 3044.85440 -5.95867 

ncore* nclad*h 1172.70560 36.93373 -0.09589 

ncore* nclad*h2 3.96589 -0.00526 -0.00001 

ncore* nclad
2 -0.00030 -427.52627 2.14240 

ncore* nclad
2*h -249.89620 -1.99338 0.00437 

ncore* nclad
3 -0.05810 544.90618 -1.33918 

ncore
2 55.08698 3206.16325 -6.38703 

ncore
2 * h -167.90042 21.47192 -0.04872 

ncore
2 * h2 0.37438 -0.00053 -0.00001 

ncore
2 * nclad 0.00179 -2140.15136 4.25198 
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ncore
2 * nclad *h -413.37510 -4.28176 0.01327 

ncore
2 * nclad

2 -0.53392 -166.36353 0.30151 

ncore
3 39.82722 -950.69573 1.86878 

ncore
3 * h 81.15061 -1.47935 0.00342 

ncore
3 * nclad -0.04763 356.19916 -0.79122 

ncore
4 -9.47160 67.61316 -0.12252 

nclad
4 -7.01075 487.73768 -1.15680 

h4 0.00000 0.00000 0.00000 

 

Goodness of Fit 

Variable kclad kcore xf 

R2 0.9328 0.7638 0.9717 

Mean Absolute Error 0.0260 0.0514 0.0083 

Mean Absolute 
Standard Deviation 

0.0228 0.0411 0.0063 
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Appendix C – Linear Approximation to CLT Fitting 
When either a shorter design cycle or a taper residing primarily in the cladding dominated 

regime is desired, a simplified approach to deriving the constant loss taper profile may be used. 

This method involves using the parametric surface to define the CLT profile in the cladding 

dominate regime as suggested above, but to approximate the change in the waveguide dimension 

in the core dominated regime after x = 0.5 profile as a straight line.  In this case, we must find a 

new empirical expression for the slope of this line as a function of height and material properties. 

As all the inverted taper simulations in this study were performed until a final width of 1500 nm, 

we find the slope of this line m in nanometers is simply found as shown in (Eq. 21), where w* is 

the waveguide width at the CLT effective index profile’s inflection point. Here xf is a fitting 

parameter that represents the normalized x value when the target 1500 nm width was reached. 

 𝑚 =
1500 − 𝑤∗

𝑥𝑓 − 0.5
 (Eq. 21) 

This parameter was found for each curve in the parameter space of interest. The resulting 

goodness of fit plot for xf is shown in Figure 35 (R2 = 0.97) and the surfaces for xf  as a function of 

height, ncore, and nclad are shown in Figure 36.  The multi-linear regression results are also presented 

in Appendix B. Overall this method results in a very high quality multilinear regression but there 

is some loss of accuracy in the estimated taper width, which may reduce performance. This 

downside, however, is not very significant as the width expansion is usually very linear after the 

critical point that divides the cladding and core dominated regimes. In practice, the benefit of this 

simplified fitting approach is that it avoids the use of the parameter surface for kcore, which exhibits 

the most error, and eliminates the need to run a parameter sweep for the effective index at larger 

widths, which may prove time consuming to future researchers. 
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Figure 35 Goodness of fit curve for multilinear regression of xf. 

Figure 36 Surfaces for xf  in (a) ncl – nc and  (b) nc – h search space for cladding index of 1.4 

 (a) 

 
(b) 
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Appendix D – Optimized Bezier Fitting Parameter 
The figure below shows the optimized fitting parameter a for the 90o waveguide Bezier bend as a 

function of one dimensional footprint, which is the square root of the two dimensional footprint. 

In the case of a circular bend, this parameter would be roughly equal to the radius. We see in the 

result below that there is a rapid change in the parameter at small footprints below 2.25 micron. 

 

Figure 37 Plot of symmetric Bezier curve fitting parameter a against the permissible 1D footprint of 

an orthogonal bend coupler. The simulated waveguide had a silicon core, a silica cladding, and an 

input mode wavelength of 1550 nm. 
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