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Abstract

A distingnished class of cocyeles i the local Chevalley cohomology associated
with the representation of the Lic algebra of vector fields on the vector space of dif-
fcrential 2-forms is defined and proven to be non-zero. Two prerequisites to this prool
arc a thcorem that local operators must be locally differential and a characterization
of invariant tensors under the representation of gl(IR™) on the tensor algebra. Finally,
the constructed cocyeles are shown to be non-trivial even if the cochains of the coho-
mology are restricted to the Lie algebra of infinitesimal automorphisms of a higher

order contact structure.

Résumé

Nous construisons une classe prévilégice de cocycles dans la cohomologic de Chevalley
associée a la représentation de Palgebre de Lie de champs de vecleurs sur 'espace
vectoriel des 2-formes différentielles, et prouvons qu’elle n'est jamais nulle. Pour ce
faire nous démontrons qu'un opérateur local doit étre locallement différentiel et nous
donnons une caractérisation des tenseurs invariants par la représentation de gl(IR™)
sur Palgebre tensorielle. Finalement, nous démontrons que ces cocycles demeurent
non-triviaux méme lorsque la cohomologie est restreinte a Palgebre de Lie des auto-

morphismes inlinitésimanx d une structure de contact d’ordre supéricur.
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1 Introduction

What is this thesis about? Au examination of the table of contents would seem to
indicate that it is an unlikely mixture ol several diverse topics. Sectior, 2 is analy-
sis: operators, function spaces, norms and convergence, and a theorem relating two
different operator propertics. Section 3 is pure algebra; it is really a mixture of fi-
nite dimensional lincar algebra and basic representation theory., Sections 4 and 5
are differential geometry: the Chevalley cohomology of vector field operators, the
Lie derivative of a connection, contact stiuctures on the jet bundle, and lots of local

coordinate comptitations.

Actnally, only in Section 5 do we come to the issue that motivates this entire
dissertation; the other sections are just preparatory diversions (lengthy and tedious
diversions il one is solely interested in the results of Section 5, but useful diversions
il one is trying to learn some mathematics). The origin of this issue is [6], a paper by
Lichnerowicz and Perciva DaSilva, in which the authors demonstrate that there is a
natural, non-trivial way to extend the Lie algebra of vector fields by using the space
of ditferential 2-forms, The extension is based on the construction of a distinguished,
non-zeto cohomology class in the Chevalley cohomelogy of the Lic algebra of vector
fields. The extension by the 2-forms turns out to be non-trivial precisely because
the cohomology class is non-trivial, i.e. cannot be represented as a coboundary. The
non-triviality of the cohomology class in question had been previously demonstrated
by A. Lichnerowicz in [3] and by DeWilde and Lecomte in [10]. The authors of [6]
then consider manifolds with quite a number of different geometrical structures: fo-
liations, unimodular structures, Poisson and Jacobi brackets. In each case, they look
al the reduced Lie algebra of those vector fields which are infinitesimal automor-
phisms of the structure in question. Remarkably, they show that the cocycles in the

above-mentioned cohomology class remain non-trivial when restricted to these Lic




subalgebras, and thereby show that these Lic algebras can be extended as well in a

non-trivial way.

The present work carries out this program for the Lic algebra of infinitesinal au-
tomorphisms of fitst and ligher order contact stenetures. Now, specifying a Jaco'n
bracket on a manifold is equivalent, in a certain way, to specifying a first order contact
structure on the manifold (see {or examnle [5]); and so [6] implicitly resolves the case
of the infinitesimal avtomorphisms of first order contact structures. Thus, the orly
original part of this dissertation is the observation that the above-mentioned class
of cocycles remains non-trivial when restricted to the Lie algebra of intinitesimal
autornorphisms of higher order contact structures. The hey to proving, this obset-
vation ends up being the fact that the infinitesimal automorphisms of higher order
contact structures all arise from the “prolongation” of infinitesimal antomorphisims
of first order contact structures, thereby relating the situation under discussion to

the above-mentioned case of the Jacobi bracket.

Sections 2,3, and 4 are an exposition of some of the issues related to the coeyeles
of section . Section 4 introduces the Chevalley cohomology (in which cochains are
operators that take vector field arguments and give 2-form results), construets the
cocycle in question, and shows that the cohomology dass is, in general, non-trivial.
Section 2 develops the result that a local cochain is necessarily differential, thereby
permitting a less restrictive criterion for which cochaing can be included in the above-
mentioned cohomology. Scetion 3 discusses the algebraie prerequisites for the prool
that the cocveles constructed in section 4 are not coboundaries. Phe theme of Section
3 is the representation of the permutation group and the representation of the Lie
algebra gl{n) on various tensor spaces; the seminal ideas come from the treatment of

this subject by H. Weyl in [9]. The central result of section 3 is the proof that the




actions of the permutation group on tensor space generate the commutator algebra

of the actions of gl(n).

The most important result of section 4 is the proof that the cocycles of the above-
mentioned class are not coboundaries. Actually, thiee different proofs are presented.
The second of Lhese proofs is a corollary of the central theorem of section 3; the other
two proofs are self-contained. The third version of the prool requires being able to
express the given cocycle as a differential operator; The first version of the proof only
needs the assumption that the cocycle is a local operator. Thus, by restricting oneself

to version | of the non-triviality proof, one can climinate the need for sections 2 and 3.




2 Local Operators

It is not difficult to prove that an operator Lo ("N(R™) —= C(IR™) which is
continnous with respect to a certain topology on € (IR™) is local if and only il
it is differential (see for instance Dicudonné [ Actuallv. this result is true even
without the continuity assumption. Ihis was shown by ). Pectie mn [7]. The approach
taken by that work is rather abstract; the author uses the language ol sheal and
distribution theory to state and prove the result. A generalization ol the recult to
multi-lincar operators is given by DeWilde and Lecornte in [10]. Thew approach iy
less sophisticated, but still requites Peetre’s result as a prerequisite as well as relving
on the use of the Bate Category Theorem. In the present section we will give an
original (Lo the authot’s hest knowledge). self-contained proof that a local malts-hnear
L must be differential. The tesulting theorem generahizes castly to local eperators
whose arguments and value are tensor ficlds on a finite-dimensional manilold, vather
than just functions on R™. We will need this extended resnlt about the equivalence

of local and dilferential operators in the sections that follow.

The assumption that the operators in question have (" arguments, rather than
analytic ones, is essential for the above mentioned prool. The eason, tonghly speak-
ing, is that there exist '™ “plateau” functions: these are functions with compart
support that are identically equal to 1 on some open set. Given a function, f, and a
point, p, if we multiply f by a properly scaled and translated platean function, the
result will be a function with arbitrarily small support, but with the same behaviour
as f in some neighborhood around p. In other words, it is possible to extend a given
function germ to a globally defined function with arbitranily small support.  Suel
a construction is not possible when working in the “analytic category” hecause the
germ of an analytic function fully determines global behaviour. It is the ¢ extension

property that makes possible the prool that local operators must actually be differ-




ential. We will show that if a given lincar operator, L, does not act like a differential
operator at snfficiently many points, then it is possible to use the extention property
Lo construct a C™ function, f, such that L(f) is not continuous. Such an L cannot,
therefore, be a local operator. With a little more work, we will then be able show
that a local operator must act like a differential one in a neighborhood around cach

point ol IR™.

2.1 Precliminaries

Let C(IR") denote the space of infinitely differentiable, real-valued functions on
IR™. By a multi-index, o, of order d we will mean a list of 2 non-negative integers,
(a',...,0™), such that $, a' = d. We will use o! to denote a'l- ... a™ and use the
symbol < to refer to the lexicographic partial order relation on the space of multi-
indices, For multi-indices a, g of orders ¢ and b, respectively, and for 1 <1 < n, we
will use [{i] to denote the multi-index (0,...,0,1 (i-th position),0,...,0); [«,z] will
denote the (a+1)-st order multi-index (!, ...,a'+1,...,a"); and a+ 2 will denote
the (a + 0)-th order multi-index (! + 8,...,a" + 7). We will use multi-indices
to specify basic polynomials functions, ¥, and basic multi-differential operators, d,.

Using «'.. .. 0" to denote the coordimate functions on IR™ we define

1 n

- (:L,l)o . .“'(J:n)a ,

and .

8 \° o\
o () ()"

Let U be asubset of IR™ and d a non-negative integer. For f € C*(IR") put

[/lva = sup [0af](p) -
pev

fal<d




For U = IR™ we will simply write || f]l;. It is not diflicult to verify that it {7 is
bhounded, theu the above defines a notim on C(IR™). "This norm is useful because it
“measures” the maximum vartation of [ and all of its derivatives up to order o on

the set 7.

2.2 Linear Local Operators

The proof that multi-inear local operators are differential combines several ditferent
ideas. For the suke of clarity. we will first consider the simpler case ol linear operators,
i.e. opetators with only one argument. This will permit us to bighlight certam
essential ideas without involving the full range of teclimeal details needed for the

proofl of the general case.

Let L@ C"(R"®) — C"™(IR™) be a linear operator. When we say that Los
local, we mean that for a given function. f, the value of Lf at a point is completely
determined by the behaviour of f around that point. As a rigotous definition, this

can be expressed in two wavs,

Definition 2.1 We call L a local operatoraf of sahisfie s the followmy two cond-tions,

for every open I C R and [,9 € C™(IR")

(i) [ lu= 0 implies that (L[) |u=0.

(it) [ lu= g lv implics that (Lf) lu= (Lg) lu.
Proposition 2.2 Conditions (i) and (1) arc cquuvalent

Proof. This result is an immediate consequence of the lincarity of 1. 0

There are several ways to interpret the notion of differential oprrator: we could

be speaking about a global, a local or a point-wise condition. A formal, infinite
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sum Y., a,6,, whete the cocflicients, a,,, are arbitrary functions will specify a well-
defined local operator as long as only finitely many of the cocflicients are non-zero
at cach pomt. The range of such an operator will not in general lie in the space
ol continnous functions: for that at is suflicient to assume that the cocfficients are
themselves continnous 1 such is the case. a standard compactness argument shows
that ina given bounded set only finitely many coefficients are not identically zero. It
wonld he fitting to call such an operator locally differential. Ol course, just because
there is a local bound on the number of the non-zero a,’s does not imply that a global
bound exists as well. Indeed, one can casily choose continuous coeflicients so that no
a, is identically zero, but <o that only finitely many «,,’s are non-zero when restricted
to a bounded domain In other words, just because an operator is locally equivalent
to a linite sum of d, s does not mean that it can be expiessed that way globally, We
will not be dealing with the global differential condition. Rather, what we will be

trying to show, is that a local operator must necessarily be locally differential.

Definition 2.3 We widl call L locally differential of order d or less if for cocry
bounded U C " we can choose (" funclions a, (Jof < d) such that for every
S e O (IR™)

L= Y wir,

lo<d

al all pownts of U.

Definition 2.4 L is said {o be pownt-wise differential of order d or less at a point, p,

if tsatusfics the followng three conditions:

(i) Guen any f.of we have that 0, f(p) = 0 for all |a| < d, then we also have

(LNp)=0 .

-~1




() Given any [ and g, if we have that 9,f(p) = dug(p) for all |a| < d, then we

also heve

(LNY(p) =(Lg)(p)

(i1) There are real constanls, ayy, (Ja] < d), such that for coery [ we have

(L)) >_‘ Aaip O f(P) (1)

ILVlS(I

We will shortly show that these three conditions are actually cguivalent, Why
defline the same concept in three different ways? The term pomnel-wnse diffcrential s
an apt description for an operator that satisfies (iii); alter all, (111) simply savs that
the action of L at pis equivalent to the action ol some multi-differential operator.
We will see, however. that being able to express this notion in terms of condilions (1)

and (i1) is essential in showing that a non-diferential operator cannot he local,

Proposition 2.5 [ach of the three conditions of Definition 2.4 unplics the other

Lwo.

Proof. (i)=>(ii) Suppose that [ obeys (i) and that f and ¢ satisly the premise
of (ii). Thus, all detivatives of [ — ¢ of ovrder o or less are zero ab pand hence,
(L(f — 9))(p) = 0. The conclusion of (ii) follows by the linecarity of L.

(i1)=>(iii) Suppose that [ obeys (ii). Foragiven function, f, we can always choose
a polynormial, g, such that 9, f(p) = d.g(p) for all o] < d and henee, it is enough to

choose the constants ., so that (1) holds for all f = 2 (o] £ d). Since

A _
Oer — g
C=Foa

if @ € B, and equals 0 otherwise we need Lo choose the constants so that

B ey, .
(L"L 1)) = (f\;ﬁaa.p (/j CY) * (7) (Z)




for every possible

f] < d. This can be accomplished with the following inductive

definition. For a given |8] < d, after having defined all a,,, (o < B8), put

App = 3| ( LTﬁ)(P Z acx,p ) ﬁ_a(P)) .

a<lf
(i1)=(i) Trivial. 0

The reason f{or the awkward phrase “of order d or less” in Definition 2.4 is that if
the conditions of the definition hold for a certain d = N, then they will also hold for

d=N +1.

Definition 2.6 We call N the differential order of L at p if the conditions of Defi-
nition 2./ hold for d = N, but do not hold for any smaller d. If L is such that these
conditions cannot be satisfied for any d, then we will say that the differential degree

of L at pis co.

Having given a rigorous definition of local and differential operator we can now

state the primary result of this section.
Theorem 2.7 If L is locdl, then it is also locally differential.

The proof of this thcorem requires a number of Lemmas. [First, we need to

construct a “canonical” plateau function.

Lemina 2.8 There exists a C*®°(IR") function, ¢, with compact support such that

¢ = 1w some neighborhood of the origin.

Proof.  We construct ¢ from a 1 dimensional bump function, i.e. a positive

C* function ¢, : IR — IR with compact support. We use the following standard




technique to define ¢;. For 2 € IR put

exp(=) —1<a <l

2?1

i) = )
otherwise

Next, we define a C® function ¢g : IR — IR whose graph has a plateau of height 1,

but a platcau that extends indefinitely to the right. For 2 € IR, put

_ Lo ei(s)ds
(@) = (s

We can make a 1 dimensional “platcau” function, 3, by shifting ¢o» to the left and

combining the resulting {unction with its reflection. For » € R, put

©2(2 + ) v<0
or(=(2+2)) T >0

w3(z) =

The resuiting, ¢3(z), has support in —3 < 2 £ 3 and is identically 1 for -1 < 2 < 1.

The desired n-dimensional plateau function, ¢, can now be constructed by using

the standard norm on IR™. For p € IR™ put

o(p) = @a(lp]) -

0

An essential technique that will be used in the prool of Theorem 2.7 is the con-
struction of a function by the superposition of a countable number of C'™ Tunctions
with disjoint supports. The following lemma gives conditions that are sullicient to
guarantee that the constructed function will itself be C*. Indeed, let f € C=<(IR")

be functions with disjoint supports and put f = Y, fi.

Lermma 2.9 In order for f to be C®, it is sufficient thal limg_oq || felle = 0 for

every d.
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Proof. et us denote the support of fi. by Oy that is O is the set of points, p,
stich that fi is not identically zero on every neighborhood of p. Let 1 £ 7 < n be given.
Since we are assuming that limg_e || fille = 0 for all d, and since || fillas1 = |0:fillas
we also have that limgoe || Jk]l« = 0 for all d. Since the support of &, fi. is contained
in Oy, the premisc of the lemma remains true if we replace each fi by 9; fi. Therefore,
we can prove the lemma by showing that 8, f exists and equals 3" 0, fi, and then using
induction. Since cach Oy, is open and the Ok’s are disjoint, f is C*° at all points of
ULOr. Thus, it is enough to show that 8;f(p) exists and cquals 0 for cvery p & UrOy.
Let such a p be given. We have to show that limu—o f(p + he,)/h = 0'. Whatever
h > 0 is, the point p 4+ he, 1s cither in some Oy or it is in none of them. In the first
case, f(p+ he)/h = fi(p+ he,)/h; and in the second case, f(p + he,)/h = 0. Now,
for a fixed k, we certainly have that limy_o fe(p + he;)/h = 0; we must show that
this limit is uniform over k. Let € > 0 be given. Since limy_. || fi||; = 0, there will
be only finitely many & such that | fi.(p+ he,)/h| is not always less than e. Therefore,

by making A small enough we will have that | fi(p + he;)/h| < e for all k. 0

The following lemma is another technical result needed for the proof of Theorem
2.7. It shows how to extend a function germ to a globally defined function with
atbitrarily small support, but extend it in such a way that the resulting function is

“just as flat” as the given germ.

Lemma 2.10 Suppose that [ € C®(IR") is such that daf(p) = 0 for all || < d.
Then, for cvery ¢ > 0 and cvery neighborhood O of p, there exists a g € C®(IR™)

sueh thal

"\WVe arc using eg, ..., e, to denote the canonical basis of IR"

11




(i) the support of g is contained in O.
(ii) f =g in some nerghborhood of p.

(iii) flglle < .

Proof.  Let ¢ be the “platcan” function constructed in Lenuua 2.8, scaled in
such a way that the support of ¢ is contained in the unit ball. For ¢ > 0, deline
¢ 1 IR® — IR to be the C° function ¢,(q) = ©((¢ — p)/t). Thus, ¢ is a “platcan”
function whose support is contained in a p-ball of vadius £, and furthermore, o, =1
in some neighborhood of p. TFor cach £ > 0 put ¢,(¢q) = [(q)oi(q). The resulting ¢/
function, g, satisfies (ii) and has its support contained in the p-ball of radius £. Thus,
if ¢ is sulliciently small, g, will also satisly (i). What isn’t obvious is that by making
{ small we can also get ¢, Lo satisfy (iii); in other words we are going to show that
limy—o [|lgelle = 0. For je| < d, we have by the Leibnitz rule that

Dogr= 3. Cpdpf o (1)

Bty=a
where the Cp’s (B < «) are positive integer constants which we do not need to
compute here. In finding an upper-bound lor ¢, we need only he concerned with
points whose distance from p is less than ¢. As we decrcase ¢, such points lie closer

and closer to p, and hence, dgf at these points goes to zero for all || < d. However,

Ovela) = 7 2o( 1) (1

and hence, as ¢ goes Lo zero, the derivatives of ¢, grow like a ||-degree polynomial in
1/t. We must show that as ¢ goes to zero the derivatives of [ decrease “faster” than
the derivates of ¢, grow. The constant K = ||¢y||q is an upper bound for |dyp,(q)]
and thus (3) and (4) imply that

daf{q
Graa)l € 3 Colf 210D ’l{ O (

(11
S—
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"The assumptions about [ imply that f(q) is o(|¢—p|®) and that 8af(q) is o(|g—p|*~"#).

Since for every B + v = a, we have that |y| = |o| = |8] < d — |B], and since the sum

in (5) is over a finite number of terms, the preceding remark implies that

sy sup{0agula)l < o=l S 1/2} =0

Since the support of g, is contained in {g: g —p| £ 1/t} and since the above holds

for all Ja| < d we can conclude that lime_g|jg:]|4 = 0. O

The purpose of the next lemma is not to furnish a rigorous demonstration of yet
another technical detail. Rather, in it we give the essential idea needed for the proof
of Theorem 2.7. Let {pr} be an infinite sequence of distinct points contained in a

bounded subset of IR™, For cach k, let Ny denote the differential order of L at py.
Lemma 2.11 [f L s local, then limsup,_,, Ny is finile.

Proof. Suppose, on the contrary that
limsup N = o0
k=0
Thus, we can assume without loss of generality that Ny > k& for each & . The fact that
the pe’s come from a compact sct will guarantee the existence of an accumulation
point of the set {p;}, and hence a convergent subsequence of {py} can be extracted.
Thus, we may without loss of generality assume that the py’s are distinct, that they
converge to some point, p, and that Np > k for each k. According to Defition 2.4,
for each k, we can choose a function f such that d,fi(px) = 0 for all |o] < d and
yet such that (Lfi)(p) # 0. Multilplying each fi by a sufficiently large constant, we
can assume without loss of generality that the sequence (L fi)(px) increases without
bound. Let us choose an open neighborhood, Oy, around each py in such a way

that the resulting Ok’s arc disjoint. Using Lemma 2.10, we can replace each fj by

13




a function g, that has the same germ at pg, has its support in Oy, and such that
llgxllx < 1/k. We have chosen the gi'’s to be sufliciently “flat” so that

lim flgelle =0

k=00

for all d and hence, using Lemma 2.9, we can superinpose the gi's to get a ¢

function

9= Z;gk
The restriction of g to Oy, is just gi. Since L is local, the preceeding fact means that
(Lg)(pr) = (Lgi)(m) and hence, {(Lg)(pr)} is unbounded. And yet, since we are
assuming that Lg is continuous, we must have that
lim (Lg)(pi) = (Lg)(»)
This is a contradiction. 0

We need one final technical lemma before giving the prool of 'Theorem 2.7.
g g

Lemma 2.12 Lel O be an open, bounded subsel of ™. Supposc that the differential
order of L is less than or cqual lo N ul all but a finite number of pornls of O Then, the
differential orvder of L is less than or equal to N al ol points of O, and furthermore,

[, 15 a local differential operator of order or less on Q.
I local dif lial operal ler N l 0

Proof. TFor each |#| < N, inductively define C™ functions g by first defining all

an for o < B and then putting

ag = Ay e 2P
g ﬂ'( % (ﬂ~a)' )

This definition is a global analogue of (2). Indeed, having defined the ay’s this way

we can be sure by (i) of Definition 2.4, that for every [ € C**(IR™)

Lf= )" apdpf

I8i<N

14




at all but finitely many points of 0. But, both sides of the above cquation are
assumed to be continuous and therefore we can conclude that the above relation

holds everywhere on O, 0

We are now ready to give the prool of Theorem 2.7. It is a direct conscquence of

Lemmas 2,11 and 2,12,

Proof of Theorem 2.7.  Assume that L is a local operator, let O be an open,
bounded subsct of IR™, and let S denote the set of points of O where the diflerential
order of L is infinite. Lemma 2.11 tells us two things: there are at most finitely many
points in S, and there exists an upper bound, N, for the differential order of L at
points of O\S. Thus, we can use Lemma 2.12 to conclude that S = 0 and that L is

a local differential operator of order N or less on all of O. 0

2.3 Multi-linear local operators

We now turn to the case of multi-lincar operators. We will follow the treatment of

the preceding section, extending definitions and proofs where necessary.

Let L C=(IR™) x ... (7 times)... x C°(IR") — C*°(IR™) be a j-linear operator.

Definition 2.13 We call L a local operator if it satisfies the following two conditions:

Jor cvery open U CIR™ and fi,..., f;, g15...,9, € C°(IR")

(i) fi le=10 for any { implies that L{f1,..., f;) lu=10

(1) file= gl for cvery v amplies that L(f1,..., f;) lv= L(g1y-..,95) v
Proposition 2.14 Conditions (i) and (ii) are equivalent.

Proof. Again, this is a direct consequence of the j-linearity of L. o

15




Ir our notation for multi-linear differential operators we will make use of lists of
multi-indices. Such a list will be written oy ... a, and called a j-place mulli-indes.
We will use < to denote the lexicographic partial order on the space of j-place multi-
indices. In other words, we will use a, ceqp £ 48 to mean that o, < 4, for

every 1.

Definition 2.15 We will call L locally differential of order d or less, of for coery
bounded U C IR™ we can choose C™ functions Uay.a, (l0o] < d) such that for cocry

Jisoo oy f; € C(RY),
LU o i) = )2 oy oy Ot fieoovOu [,
|U’l|5d

at all points of U.

Definition 2.16 L s said lo be point-wise differential of ovder d or less al « powl,

p € RYif il satisfics the following three condilions: for [y, . .., Jivgseooyg, € O(IRY)
(i) the existence of an i such that du f.(p) =0 for all lo < d Dmplies that
L{fv,-o s [iXp) =0
(i1) Gufi(p) = 0ugi(p) for alli and |a| < d implies thal
L{fis o f5)(p) = Llgr,-..,9,)(p)
(ii1) There erists real constants Qay...ap p (0] < d) such that

L{fi,... af])(?’) = Z oy, ayip 0mfl(7’) T 00,f1(7’) ) (6)

Ia,lﬁd

Jor every fi,..., f; € C=(IR").
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Proposition 2.17 The lhree conditions of the above definition are equivalent.

Proof.  (i)=(ii) Suppose that L obeys (i) and that fi,...,f,,q1,...,9, satisly
the premise of (ii). Fot every |a] € d we have O4(f; — ¢.) = 0 and hence, since L is

multi-lincar, we have

1‘(./.la./.'2a'-').[J)(])) = L(glaf’b'-wa)(P)
= L(g1,92.--, [,)(p)

= L(g,92...,9)p)

(ii)=(iii) We proceed analogously to the proof of Proposition 2.5. Just as before,
we need only choose the constants so that (6) holds for all basic polynomial functions
of degree d or less. 'This can be accomplished inductively by defining aq,..a,;p for
every ay...a, < fi...f; and then putting

I A 5, Bl s
“ﬂl- 131;1’ = ﬂ ' ,H [4(1 gerey )(P Z acn 0}(7’ H ( )l' (p)
I ayeea; <pr...06 - )
(

7)

(iii)=(i) Trivial O

Definition 2.18 Ve call N the differential order of L at p if the conditions of Defi-
nition 2.16 hold for d = N, but do not hold for any smaller d. If L is such that these
conditions cannot be salisfied for any d, then we will say that the differential degre of

L at p s 00,

The following lemmais the “multi-linear” analogue of Lemma2.11. The statement
of the Lemma does not change, but the proof is complicated by the fact that L takes
multiple arguments.  As before, let {p;} be a sequence of points contained in a

bounded subset of IR™. TFor each &, let Ny denote the differential order of L at py.
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Lemma 2.19 If L s local, then imsup,_, ., N is finite.

Proof. Suppose, on the contrary, that
limsup Ny = 00
A—oca
We may assume without loss of generality that the sequence {p} converges to a

point, p, and that cach Ny > & According to Definition 2,16, for cach k, we can

choose functions [V, M we have

h g . .
. ,fJ‘ Y such that for one of these functions, say T

0o S8 (pi) = 0 for all |a| < d and yet such that

LIPS () # 0

The scquence ay, aq, ... consists of numbers from 1 to j and hence, one of these
numbers, say a, will he repeated infinitely masy times. We can therelore, assume
without loss of generality that «p = a for all £ As belore, choose disjoint, open
neighborhoods, Oy, around cach pg. For cach b and cach ¢ # ¢, multiply f;*' by
an appropriate “plateau” function so that the resulting function, let us call it g™,
has its support contained in O and so that f* = ¢™ in some neighbothood of
pr. We know nothing about how big ||¢!”|l4 is, and thus cannot be sure that ¥, ¢
will be continuous, much less ¢, We can, however, choose constants (1" so that

HCE g < 1k and put
g= D CHFgl

k
Having done so, we sce that

lim [|C9g™ =0

for all d and hence, by Lemma 2.9, the ¢;’s are of class C*. Now, choose constants

C‘M so that the numbers

COLTIC™ ) LA™, i )
1#a
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increase without bound as k — co. Since dafM(pe) = 0 for all o] < d, we can use
Lemma 2.10 to choose ¢f) so that the support of each g{¥ is contained in O, so that

a

gt = 40 in some neighborhood of pg, and so that

1

”.(12)”1-‘ < LCH

We've chosen the ¢4%s in such way that
. 1(A k
Jim GOl =0
for every d. That will allow us to put

k) (K
gi‘_:zcz(z'gz(z)
k

and have ¢, be of class C*°. Since L is local and multi-linear, we also have for each

k that

L(gis--y05)(m) = LICPFP,...,CH ) (pr)

N (HC'(k)>L( {k)v"’f;k))(f’k) )

thereby implying that
lim L{g1y....9,)(px) =00
k=00

which is impossible because we had assumed that L(gy, ..., g,) is continuous and that

e = P a

We also need to give a multi-linear analogue of Lemma 2.12.

Lemma 2.20 Let O be an open, bounded subset of IR™. Suppose that the differential
order of L isless than or equal to N at all but a finite number of points of Q. Then, the
differential order of L is less than or equal to N at all points of O, and furthermore,

L. is a local diffcrential operator of order N or less on Q.
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Proof.  For cach choice of a j-place multi-index 3y ... 4, (4] < V). inductively
define € functions ag, g, by first defining all ¢, .., Tor ay...a, < d). .3, and

then putting

! N 4,

43 R -
: ry ]«(.I 1....,.1 ) - Z““l ”)H__T.____ _______ Pl o

ag, i3, = j'
71 A np w4, 1
Let p be a point whete we know L to be point-wise diflerential. Recatling how the
coeflicients ag, 4,, were defined in (7) we can see that a5 0= ay (). I other

words,

Lifiocon )= a5, 0 fr-oo 0sf,

[Pl EN
at all but finitely many points of O. But, both sides of the above equation are

assumed to be continuous and therefore we can conclude that the above 1elation

holds everywhere on (. ()

Theorem 2.7 remiains true for a multi-linear L; there is no point in restating, either
the theorem or its prool. We should only note that the proof of the present version

should use Lemnias 2,19 and 2.20 rather than Lemmas 2.1 and 2,12,

2.4 Operators with Tensor Valued Arguments

It is not difficult to generalize the precedimng tesults to operators whose argmments are
tensor fields on a given ('™ manifold, M. As a canonical esample we will consider o

local multi-linear operator
L:V(M)x...x V(M) (ktinics) — C™(M)

wherer V{AS) denotes the vector space of all C™ vector fields on M. Let us fix a
system of local coordinates (xy,...,2,) on M, thereby identifying an open subset of

M with an open U C IR". Accordingly, 1, induces 1% different, multi-linear operators
Lk O®(U) x oo x C(U) (k times) — C™(U) L < gyeeiqe<m
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which are given by

L4 J"('/‘),...afn) =L (fl_'a—""-“afk a )

Ox,, dz,,

The abouve expression is meaningful even though the vector fields f,0/0z,, are only
locally delined  This is hecause L is local and because a locally defined vector field
can always be extended to a global one 2. 1t is casy to sce that the assumption that L
is local implies that cach £21- 2 is local as well. Thercfore, we can use the Theorem
2.7 to show that cach L2 9% s locally diflerential, i.e.
LY My, )= Z Oy f1 - o Oai S a;:{:;:"
) ay

where the sum is formally infinite, although only finitely many of the coeflicient

)Yy

functions o}'"7™ are not identically zero on any given bounded subset of U. Since

X =%, X'0/dx,, the action of L can be expressed as
L{X) = Z Z Doy X7+ oo oy X a?ll---ﬁ.k
[0 BN W QRS 1 S

Therefore, L is a locally differential operator.

*One can, for instance, multiply the given vector field by an appropriate “plateau” function




3 Invariant Tensors

In the present section we are going to study a certain naturally defined representation
of gl{U), where U is a finite-dimensional real vector space, on the tensor algebra of {7
and give a result that characterizes the invariant tensors. The methods and ideas tor
doing so come from chapter 3 of 11. Weyl's book [9], although we are going to work
without coordinates and use Chapter 1 of [8] as the source of our multi-linear algebra
notation. The characterizetion of tensors which are invariant under the aclions of
gl(U) will provide us with a proof of an important theorem in Section .

In this scction we will only consider real vector spaces. Hom(l/, V') will denote
the vector space of lincar maps from vector space U to vector space V, and End(l/)
will denote Hom(U, U), the lincar maps of U into itsell. {77 will denote Hom(1, 1),
the dual space of /. CP(U) will denote U () ooo ¢y U (p times), the vector space of
tensors of type (p,0). SP(L7) € CP(U) will denote the space of symmetric tensors and
AP(U) € CPU) will denote the space of skew-symmetric tensors, Ly @ lnd((7) will
denote the identity endomorphism of U. For [, € End(U), we will use LY € End(lU/*)

to denote the transpose of L.

3.1 Lie Algebra Representations

We begin by recalling the basic {acts about Lie algebra vepresentations. Let U be
a real vector space. The Lie algebra, gl(U) is defined as the vector space Iind((/)

together with the bracket operation
[@,0] = ab- ba, a,b€ Lnd(V)
Suppose that @ is a Lic algebra over the reals. A Lie algebra hommaomorphism
L:a— gll)
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is called a representation of g on U. In other words, £ is a linear map such that
L(a)L(b) ~ L(b)L(a) = L([a,b]) ,

for all a,b € g. We call £(a) € End(U) the action of ¢ on U and for notational
convenience write it as £,. Let us remark that throughout Section 3 we will be using
the symbol £ to denote representations of Lie algebras. Ambiguity can arise when
we will be considering several representations at once. In these circumstances we will

write £ with a superseript so as to indicate exactly the space on which g is operating.

Definition 3.21 We call v € U invariant under the action of g if Lou = 0 for

all a € g.

Suppose that we have representations of g on real vector spaces U and V. There
is a natural way to definc representations of g on U ® V and Hom(U, V). Let us
first recall the “universal” property that characterizes the tensor products of vector

spaces.

Proposition 3.22 Let U, (i = 1,2,...,k) be real vector spaces and suppose that ¢ is
mulli-imear mapping of Uy X ... X Uy into another real veclor space, V. Then, there

exisls ¢ umque linear map @ : U1 @ ... Uy — V such that for all u; € U; we have

Py, ug) = 3(ur @ ... Q uy)

Corollary 3.23 Lect U,’s be as above and let L, € End(U;) be given endomorphisms.
Then there is ¢ unique endomorphism of U1 Q. . .@Uy, which we denote by L1 ®...® Ly,

whose action 1s given by

MO .. Qup— L1 ®...Q0 Lyug, weU,1=1,2,...,k
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Now, we can show how to construct a representation of gon U & V. Fora € g

put
LV =l @ly+1yeLy

Proposition 3.24 The above formula defines a representation, LYY, of g on UQV .

Proof. Tor a,b € g we have
LoV =il olv+ LY o £y + Ly oLy +lue £Ly

LYY LU®Y has the same expression, save that a and b are switched. Taking the
difference of the two expressions we see that the middle two terms of cach cancel and

thus we have

[£V8Y, V8] = UV @1v+ 1oLyl —LVcloly +ly@LyL)
= Lo

I

Suppose that we have representations of g on vector spaces Uy, . .., Ui. The above
construction of a representation of g on a tensor product of two spaces casily gener-
alizes to a method for constructing a representationof gon P = U, @ ... @ U). For

a € g put
L =£ely,s.0ly+1y,0L8 0. 0ly+1lu,0...0ly_wLd . (8)
Proposition 3.25 L¥, as defined above, is a representation of g on Uy @ ... @ Uy.
Proof. Put P'=U;®...® Us and note that
LP =LY @lp+1ly, @ LY
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Since P2 = U/, @ P’ we sec that LF is a representation, if L is one too. We can now

use induction on k to conclude that £” is a representation of g. ]

Now we turn to the extension of a representation of g on U and V to a represen-

tation of gon /1 = Hom(U,V). For a € g and ¢ € Hom(U, V) put
Lilo=Llo—oLd
Proposition 3.26 L, as defined above, is a representation of g on Hom(U, V).

Proof. It is easy to verily that £, as given above, is an endomorphism of

Hom(U, V). For a,b € g we have
Litle = L)~ (Lffo)e]
= LLY o~ LloLy - LY oL! + oLiLl

The expression for LI'L7 o is the same, save that a and b are switched. Taking the
difference of the two expressions and cancelling the middle two terms from each we

have

il

(£ bl = L{LYo+ L)L) — L]0 o —oL]L]
= rH
[a,0)%
a

Let us assume that the only one-dimensional representation of g we shall use is the
trivial representation. In other words we define LR to be mulliplication by zero for
all « € g. The preceding discussion gives us a natural way to define a representation

of gon U* = Hom(U,IR™). We define LY" to be the element of End(U*) such that

(£Y" aju = —a(lu) 9)
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forall @ € U* and w € U. Inother words, £V" is the negative of (LY),

Ifone deals with finite-dimensional vector spaces, then there are several naturally
occurring isomorphisms between the spaces constructed with the &, Hom, and the
duality operations. The representations of g constructed above will coincicle under

such identifications.

Let U and V be finite dimensional vector spaces. There is a natural isommorphism
between V@ U* and H = llom(U,V) thal identifics v @ a € V @ U with the

homomorphism

w—aolu)v, we U,
Proposition 3.27 With the ebove identification we huve, L = LV OU,

Proof. Let v@a € VU™ begiven and let us identily it with an clement of
Hom(U, V) as per above. For LY € End(U) and LY € End(V) it is casy to verily
that

Vwee)=L""®a ,
and that
W@ a)l! =v@(LY)a .

Of course, LY is an endomorphism of U and LY is an endomorphism of V and thus,

LTy a) LY(v@a) — (vea)L?

= LYvoa—-va(LY) o
= L'v@at+ vl
O

For finite dimensional vector spaces U; (:=1,2,...,k) thereis a nalural isomor-

phism between U ®...@ Uy and (U1@...@ Uy)" that identifics o, @. . .@ (e, € U))

26




with the linear lorm

MR, .. Quy Ha,(u,) (u, € U;)

Proposition 3.28 Wilh the above identificaiion the representation of g on (U; ®

@ UL coincides with the representation on Uf @ ... Q Uy.

Proof.  Let L; € End(U,) be given, It is easy to verify that with the above
isomorphism

(Li@...Q L) € End((U1®...0Uk)%)

corresponds Lo

11®.. .0l ¢ EdUr ®...® U

llence, the action of « € gl(U) on (U1 ® ... ® Ux)* corresponds to the following

endomorphismof U7 @...Q U:
[ t t
- (M) e1he...01, -1, 0(cl) .. .01y, ~1},8...01),_, ® (£¥%)

e s . v t
I'he latter expression is equal to the action of @ on Uy @ ... ® U} because 1y = 1U;

14 JUs
and because — (Ef;") = La*. 0

3.2 The Representation of gl(U) on the Tensor Algebra of U

Let U be a finite-dimensional real vector space. In this section we will be interested
in the representation of gl({) on the tensor algebra of U. As per (9), we can define
a repiesentation of gl(U/) on U* by defining £V" to be the negative of the trans-
posc operation. Since T(U7), the tensor algebra of U, is a direct sum of the various
spaces obtained by tensoring together copies of U and U~, we can use (8) to define a

representation of gl(U) on all of T(U).




The question of whether a tensor is invariant under the action of gl({/) is casy to
8 A

answer if the contravariant degree of the tensor is not cqual to its covariant degree,
Indeed, let us consider the representation of gl(U) on U/; & ... 0 Uy, where cach
U, (1 =1,2,...,k) is cither {7 or U*. Let r be the number of times that €/, = {7 and

s the number of times that U, = U~.

Theorem 3.29 [fr # s lhen 0 is the only elemment of Uy & ... Uy that s mvarian!
under the action of gli(U).

Proof.  Consider how 1y € End(U) acts on T(U). From (9) we see that the
action of 1y on U= is =1y« and hence, by (8) theaction of Ly on Uy .. U must
bhe

(" - 3)1Ux @.0 1Uk = (7' _S)lU\C)‘()Uk

Therefore the only clement of the latter space annihilated by the action of 1y is 0.

(0]

Characterizing invariant tensors of cqual covariant and contravariant degree is
considerably more difficult. Let us fix p and put 7 = (?(U). The space End(1') is
identificd with T & 7™, and since T is identified with C?(1/*) we can view End (1)
as a space of tensors of type (p, p). Propositions 3.27 and 3.28 tell us that we get the
same representation of gl(U) on End(7") regardless of whether we view Fnd(7') as a
space of endomorphisms or as the tensor product of p copics of U and p copies of U*,
Therefore, a tensor, ¢, of type (p, p) is invariant under the action of gl(U) il and only

if o, when viewed as an clement of End(T'), satisfics
"
Lop—oly =0,

for all @ € gl(U). Thus we have to find the ¢ € BEnd(7T") that commute with all £7.

In order to do so we have to introduce the permutation group on p letters, i,
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The group of permutations acts on the space T in the following way: for a per-

mutation 7 € Il,, we define
U @...QUy) = U, @...QUr, , u, €U,

thereby associating 7 with an element of End (7).

Proposition 3.30 et a € gl(U) and 7 € 11, be given. Then, LT commules with the

aclion of w on T

Proof. 1t is a matter of direct verification that both £I7 and LT map u;®. . .®u,

(v el)to
Ay, Uy, @ ... @ U, +ttgy Qs @... & Ugy, Fooit Uy Qua,®... 0 atm,

O

Thus, the action of a permutation on T' corresponds to a type (p,p) tensor that
is invariant under the action of gl(U). The relation of the permutation group to the
invariant tensors is actually even stronger; we can classify all invariant type (p,p)

tensors in terms of the action of 1T, on T

Theorem 3.31 Suppose that ¢ € End(1) commutes with LT for every a € gl(U).
Then ¢ can be given as a linear combination of permutation actions; i.e. there are

real coefficients ¢, (w € I1,) such that
et) = cm(t), teT.

We will need to develop some preliminary results before proving this theorem.

Recall that SP(U) is generated by elements of the form

S(w®...0u), wel.
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where 8 is the symmetrization operator

!
D

ST r(l). teTl.

r€lly

Since End(U/) is isomorphic to U o U* and End(7") is isomorphic to C'P(U) & CP(U*),
we can identify End(7') with

C'End())=UQU")®...0 (U U™ (p times) .

[T, acts on End(7) in a manner analogous to the way it acts on T'. For = € I, and

a, € End(l'),
mlay @ Q) =y .. Oy,
Thus, the symmetrization operator on CP(End(7")) can be expressed as

1
S(1®..Qap) = ;,TE e, @ .. @y,
o

In the subsequent discussion we will need a formula for the composition of two el-
ements of SP(End(7')). For a,,b, € End(U), the composition of «y ¢) ... ¢)a, and

by @... @by is Just aiby @ ... @ «a,b,. Using this identity, it is not hard to verify that
|
(a1 ®..® a8 ®...0b,) = " D 8(aths, © ... Qayhs,) . (10)
' U

We should also note that there is a close relation between the action of 1, on T

and the action of I, on End(T).

Proposition 3.32 Lel ¢ € ind(7') and = € 11, be gwen. Then,

() =men ™t

where on the right hand side © and 7' denote the elemenls of End(T') thal are

associated with these two permutations.
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Proof. ‘The proof is a mattier of verifying the above for p = ¢, @ ... © a,. a

In view ol this proposition, the symmetrization operator on C?(End(T")) can be

expressed in terms of the action of IT, on T'. Indeed, for ¢ € End(T) we have

1 -
S(SO) = -1-')—!' Z TYw !

We will need the following definition in order to prove an upcoming result.

Definition 3.33 lor k = 1,2,...,p, lel us call elements of SP(End(U)) C End(T")

that heve the form
$S(t;@..04:Q01y®...01y), a€EndU),

symmetric endomorphisms of order k.

Lemma 3.34 ¢ € End(7') commules with all LT if and only if ¢ commutes with all
clements of SP(End(U)).

Proof. Let us note that

LT =p8(a®1ly®...0 1y) ;

in other words, {£T : a € gl(U)} is just the set of symmeiric endomorphisms of
order 1. Therelere, if ¢ commutes with all symmetric endomorphisms, it commutes

in particular with all clements of {£7: a € gl(U)}.

Next, we will show that a symmetric endomorphism of any order (i.e. any element
of S*(Iind(V))) can be generated by symmetric elements of order 1 (i.e. elements of
{€T : a € gl(U)}). This will prove that if ¢ commutes with all £T then it must

commute with all of SP(End(U)). A calculation of the composition of two symmetric
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endomorphisms of order 1 reveals the key to the proof.  Using (10) we sce that
S(e®ly@...0 1y) composed with 8(b® Ly @ ... & 1) is

p=1 . . !

T (¢ b loo...® lu) + ]—) 5((1[) N PR B 11)
The second terns of the right hand side is just a symmetric endomorphism ol order
1, and thercfore, symmetric endomorphism of order 1 can generate ones of order 2.
More generally, a symmetric endomorphisim of order 1 composed with one of order &

gives

S((l O 1U &...0 1( )S(/)l I [);\ o 1U oo™ 1(/) =

=k

L—p—— ((H?)blC)...C;‘)bkQ)luc;‘)...\:\lu)~|~

1 & ~

;ZS((L[)JG_)IJI Dby oo lpew. o ly)
J=1

and therefore, if symmetric endomorphisins of order 1 can generate ones of order
k, then they can also generate ones of order k 4+ 1. Proceeding by induction on
k we can conclude that symmetric endomorphisms ol order 1 generate symmetiic

endomorphisms of orders 2,3,...,p. 0

Let V be a finite dimensional vector space and let {-,+) be a bilinear form on
V x V. Recall that (.,-) is called symmetric if for all w,v € V we have (u,v) = (v, 0)
and that it is called positive semi-definite if for every v € V we have (u,u) > 0. A
sequence u, in V is called almost orthonormal with respeet to {,-) if (u,,7,) is cither

0 or 1 and if {u,,u,) =0 whenever 7 # j.

Lemma 3.35 Supposc that (-, ) is a bibnear, symmetric, posdive scme-definde form

on V x V. Then, there exisls an almost orthonormal basis, u,, of V wilh respeel to

(’)

Proof. We will first prove that if for some u € V we have {u,u) = 0, then

(u,v) = 0 for all v € V. Suppose that (u,u) = 0. Then lor every v € V and every
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real number & # 0, we have
(u + zv,u + 2v) = 2z{u,v) + 2} {v,v) >0 ,

and hence, 2/x(u,v) + (v,v) > 0. Since & can be chosen arbitrarily, the latter is

possible only if (u,v) = 0.

Let w, be an almost orthonormal, lincarly independent sequence that doesn’t
span all of V. Choosc a v € V which is not a lincar combination of the u, and put
w=v—y_,(v, u)u,. Because of the way v was chosen u cannot be a linear combination
of the u,’s cither. Note that (u,u,) = (v,u;)(1 — (u,,u,)). Certainly, if (u,,u;) =1
we must have (u,u,) = 0. If on the other hand (u,,u,) = 0, we remarked earlier that
(,u,) = 0. Therefore, (u,u,) = 0 for every j. By multiplying u by a constant, if
necessary, we can assure that (w,u) is either 0 or 1. Appending u to the sequence
i, creates a longer, almost orthonormal, lincarly independent sequence. A almost
orthonormal basis of V can be found by using the above argument in an inductive

construction . O

Lemma 3.36 Let w € End(V) be such that tr(wp) = tr(p) for all ¢ € End(V).

Then, w = 1y.

Proof. For cvery v € V and every @ € V* we have
a{wy) = trw(v @ a)) = tr(v @ a) = a(v)

This is only possible if wy = v. 0

Lemma 3.37 There exists a ¢ € End(T) such that
Y tr(prr = 1p
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Proof.  Choose a basis, c1.o....en, of U7 and let {777} be the corresponding

[SAY

basis for End(7). Let 7 be a permutation. [ is casy to verity the following three
A A 8

facts:
Jie dp . 7.11':‘ . J“P
7‘-611...:,, = 4, i !
Meedp =1 __ J1 Jp
C”_“,pﬂ' - et,,l...x,r,, 3
W) ) —_ o, i
tl(c,l‘ ,ﬂ) = 0 ... 6,,,

A very simple proof of the lemma is available in the case when p < ny where
n is the dimension of the underlying vector space, U. The general case requires a
technique of somne sophistication, and so it scems worthwhile to furnish a separate

proof for the simple case.

Suppose that p < n. Put ¢ = e;5 P Tor a permulation, 7, the preceding identities
show that tr{i»7™1) is equal to one if 7 is the identity permutation and is equal to
zero otherwise, Therefore ¢ = ¥ tr(¢da~Ha must be the identity map.

Let us now give the general prool. Deline the transpose operation on Ind(7")

1 . e 1e'e e 10 1 eyt Lt i1 1 Ve 7Y
with respect to the above choice of basis, i.e put (¢ ") = ¢, . Using the above

identities, it is easy to verify that for ¢ € End(T') and = € 11, we have
tr(pr ™) = tr(my')
For 0,0 € End(T), put
(p.0) = X te(m)n(x0)
It is easy to check that (v,+) is a bilinear, symmetric, positive semi-definite form on
End(T). For ¢ € End(T) note that (@, ) = =, tr(me)? and hence (p,¢) = 0 implies

that tr(¢) = 0. Using Lemma 3.35, we can choose an almost orthonormal basis, ,,

of End(T") with respect to (-,-). Having done so, put
w = Z Z tr(y )tr(me )
1 n
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Henee,

tr(wi,) = w(ahy )y, ) = te(y,)
The second equality is justified because (¥;,%,) is cither 1 or 0 and because if the
second case holds, we showed earlier that tr(1,) = 0. Since 1, is a basis for End(T),

we must have tr(wp) = tr(y) for all ¢ € End(T) and therefore w must be 17, Put
=3 tr(g )yt
and note that
Ztr(z/iw")ﬂ = Ztr(m/zt)n
Z ; te(ey)be(mep;)n

= w:lT

O

Proof of Theorem 3.31.  Suppose that ¢ € End(T) commutes with L7 for all
a € gl(UV). By Lemma 3.34, ¢ must commute with all elements of SP(End(U)) as

well. By Lemma 3.37 we can choose a 9 € End(T') such that
S ou(pr Hr=1r
Since End(7') is isomorphic to T @ T, we can choose u; € T and o; € T™ so that
’lf/) = Zuz ® (4§
1]
Henee, for any v € 7' we have
vo= ) tr(pr o
= Y ) (a7 ')y
T 1
= > > w(v®a)ry
1 v

= Y p!'8(ve®a)u

H

35




v commutces with §(v® a;) because the latteris an element of SP(End(l/)), and hence,

pv

Therefore ¢ can be expressed as

to he shown.

= > pl8v® a)u
- Z},l S(v ® v,
= }%:Z(a,w“‘tpu;)wv
}i:t:(gotbw"l)wv

a linear combination of permutation actions, as was

r
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4 A certain interesting cocycle

Let M Lo an n-dimensional. (°°, paracompact manifold. We will use V(M) to denote
the vector space of C° vector ficlds on M and G to denote the Lie algebra which
consists of V(M) together with the Lie bracket operation. @ (M) will denote the
vector space of €' differential k-formson M. For X ¢ V(M), let

Z(/\,) . q)k_H(M) — (I)k(j\l)
denole interior multiplication with respect to X and let
Ly : Op(M) — O (M)

denote the Lic derivalive operator with respect to X. Recall that X — £ x defines a

representation of G on @y (M).

Let €% denote the vector space of local, multi-linear, skew-symmetric operators
C:V(M)x...x V(M) (ktimes) — ®o(M)
ForCeand X, e V(M)(1 <5< k+ 1) put

IC(X1ye oy Xan) = Y(=1)"Lx,C Xy Kooy Xigt) +

1

Z(-1)'+Jc([x.~,x11,xl,...,E,...,E,...,xk+1) (11)

i<y
A straightforward, but laborious computation shows that 9C = 0 and hence, that
with

9:CF— gt

as the coboundary operator, the €*'s form a cochain complex. The resulting coho-
mology is relerred to as the local Chevalley cohomology [10] associated with the
representation of G on ®4(M) and denoted by H* (G, P2(M)). We will denote this

loc

cohomology simply by H;:_.
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The primary objective of this scction is to describe a certain distinguished, non-
trivial clement S of 112 . This cohomology class will be defined in the folowing,
way. First, there is a natural way to assign to cach connection, I'; on M a certain
2-cocycle S". Sccond, any two such cocycles are related by a coboundary. Sinee A is
paracompact, a connection on M can always be found and thus S can be defined as
the class of all cocycles of the type ST. The latter part of this section will be devoted
to the demonstration that S is not trivial, i.e. that no coboundary can be a cocyele

of the type ST.

4.1 The Lie derivative of a connection

Before defining a cocycle of the type S" we will need to define the Lie derivative of
a connection, I', with respect to a vector field, X. We will do so by considering the

covariant derivative operator, V, associated with the given connection.

Recall that a covariant derivative operator associated with I' is a multi-lincar

differential operator

V V(M) x V(M) — V(M)

k]

such that for all A, B € V(M) and all f e C®(A1)

ViaB = [V4B (12)
VafB = [VaB+(ANB

and such that in terms of local coordinates we have

(Vo))" =T}

w 1S86,5,k<n.

In fact, one can show that a differential operator V which satisfies the preceding three

conditions completely characterizes the connection, I' (sce [4]).
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Like a conncction, a type (1,2) tensor field, T', also has an associated multi-linear
differential operator

T V(M) x V(M) — V(M)

that satisfies slightly different conditions. TFor all A, B € V(M) and f € C®(M), the

differential operator, 7', must satis{y
JT(A,B)=T(fA,B)=T(A,fB) , (13)

and

(T(8,,9,))" = T

[t is also possible Lo show that a differential operator which satisfies the preceding

two conditions completely characterizes the tensor field, T' (see [4]).

The Lie derivative of a type (1,2) tensor field, T', with respect to vector field X
can be defined (sce [4]) as the type (1,2) tensor field, LxT', such that

(LxTYA, BY=[X,T(A,B)-T(|X, A],B)—T(A,[X,B)) A,BeV(M) . (14)
The Lic derivative of a connection, I'y with respect to X is defined analogously; i.e.
LxD:V(MYyx V(M) — V(M)

is the differential operator given by
(LxT)A,B) = [X,VaB] = Vix 4B — ValX,B] . (15)

Proposition 4.38 The differential operator LxT satisfies (13) and is therefore, as-

socialed with a type (1,2) tensor which is given by

(LxD)F = 9, X* + ZI: X'orf -TL,oX*+Tiox +Tha,x' . (16)
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Proof. The proposition is proven by performing a straightforward calculation

using (15) and (12). a

Since the Lie derivative operation defines a representation of G on the vector space

of type (1,2) tensor fields on M (sce [4]) we have
L"[X.)"]T = £.\'(£yT) —_ L',y(L',,\"l') \

for all X,Y € V(M). An analogous identity can be proven for the Lic derivative of
a connection, I':

Lixyil =Lx(LyT) - Ly(LxT) . (17)

One merely hage to perform the necessary calculation using (15) and (14).

4.2 Definition of S" and S
For a real vector space, U, let
p:URU QU QUU QU — U U*
denote the following contraction
MR @b Quz @0z ® Py Po(ur)Bi{we) 1 e w €U, o, e U, 0 =1,2.

Now suppose that A and B are type (1,2) tensor fields on M. We deline Ao I3 o be
the element of ®,(M) given by

AoB=¢(AQB)- (B A)

[t is obvious {rom this definition that Ao B = — 3o A, T terms of local coordinates
we have
k
(Ao B), Z Al LB AJ,
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Proposition 4.39 For X € V(M) and type (1,2) tensor fields A, B, we have

Lx(AoB) = (LxA)o B+ Ao(LxB)

Proof. Recall that £, commutces with contractions and that
Li(A@B)=(LxA)@B+AQ(LxB)

(see, for instance, 11.8 of [8]) a

Definition 4.40 For a conneclion I' and X,Y € V(M), define the cochain ST of €?

according to the formula:

SF(AX', Y) = L:xF <>£y].-‘ . (18)
Proposition 4.41 d5" =0, i.e. ST is a cocycle.

Proof. Let X, Y, Z be veclor fields. According to the definition of the cobound-

ary operator,
AS"(X,Y, Z) = ${LxS"(Y, Z) - S*([X,Y), 2)} ,

where § denotes summation of the formulas which result after the three circular
rearrangements ol X, Y, and Z. By the definition of ST and Proposition 4.39 one
has

LxS'(Y,Z)=Lx(LyT)o LT ~ Lx(LT)0 LT
and hence by (17)

S{LxS"(Y,Z2)} = Lx(LyD)o Lyl = Ly(L,T)o L, T+
Ly(L;T) 0 Lyl — Ly(LxD) 0 LT+
L,(LxT)o Lyl — Ly(LyT)o LxT
= LT oLl + Lyl o LyT + Lig xT 0 Ly T
= 8{5"([X,Y],2)}
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Proposition 4.42 For any two connections, I' and 1", the corresponding cocycles,

S" and S*', differ by the coboundary of a cerlain one-cochain.

Proof. Let ¥V and V’ be the corresponding covariant derivatives. Recall that the
action of V/ — V is given by an operator associated with a certain (1,2) tensor field,

T. To be more precise, one has for any vector fields A, I3
V,AE' =V.0+ T(/\, [3)

Hence, the dcfinitions given earlier of LxI' and Lx1" make it casy to sce that for a
vector field X,
ch’ = L:xr‘ + L:xT.

Harking back to the definition of ST one can now compute the difference of 8™ and

ST, For any vector ficlds X', Y one has
SY(X,Y) =S (X, Y) + (£xD) o (LyT) + (£27T) o (Ly 1) + (LxT) 0 (Ly7T)
The desired one-cochain, call it R, can defined by the following lormula:
R(X)=To(LxI)+1/2T o (LxT)
Using Proposition 4.39, by (17), and the formula for the coboundary ol 1,
RN, Y) =Ly R(Y) - Ly R(X) — R{[X,Y])

one verifies that

OR(X,)Y) = (LiT) o (LyT)+ (LxT)o (Ly )+ (LxT)o (LyT)

a

The paracompactness of A implies existence of a connection (sce [4]) and hence
the existence of at least one cocycle of the type S*. This fact and the preceding two
propositions make it possible to define 5 € 12

of type ST.

as the equivalence class of cocycles

P
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4.3 Threec proofs of the nontriviality of the cohomology

class S
Theorem 4.43 A cocycle of the type, S*, can never be a coboundary.

We have already proved that all cocycles of this type are related by a coboundary;
therefore it is enough to choose some connection, I' and to prove that for every 1-
cochain, T', we can never have 7' = S'. We will consider two approaches to the
proof. Oue strategy is Lo look for specific vector fields so that the results obtained by
operating on them with @1 would be different than the results obtained by operating
with ST. The other strategy is to use local coordinates to express the actions of the
two operators. Now, if 9T really did cqual S¥, then the corresponding expressions in
local coordinates would be the same for both operators. Thus, the second approach

consists ol showing that there is no T for which the preceding is true.

First proof of Theorem 4.43. let T be a given 1-cochain. Choose a system of
coordinates, (w1,...,2,), so that some point, p, of the base manifold is mapped to
the origin. Define A, 3,C, D to be vector fields on the coordinate domain which are
given by

A= (2,20, B=(2,)%0,,

C=uz090, D=ayx:0,.
Bxtend these vector fields to the rest of the manifold by multiplying them by a
“plateau function” that has the “platcau” around p. 3 Doing so does not change the
above local coordinate expression of A, B, C, D in some neighborhood of p. Note that

in this neighborhood

[A, .B] = 2(1‘2)2&'182 - 2(3,‘1)2.1)201 3
[C, I)] = (.UQ)Z.’UI(?Q - (1'1)2(12261 s

There is a deseription of plateau functions in Section 2

43




and hence [A, B] = 2[C, D] there. Since this is a local rather than just a point-wise
relation and since T is a local operator we actually have T'([A, B]) = 27'([C, D])

all points of the ncighborhood in gquestion.

The other significant property of vector ficlds A, B,C, D is the fact that all of
their components and all the first derivatives of their components are zero at p. As
we arc about to see, this fact means that the formula for 07 and S* operating on
these vector fields at p has a particularly simple form. Recall the following identity
for the Lic derivative operator on @4(A7). TFor f € C=(M), X € V(Al)

£f,\' = fﬁ,\' + ([f A ?.(X) N (H))
Thus, using local coordinates to represent X as 3, X' @, we have

Lx =3 X*Ca +dX* Ni(Ok)
k

Therefore at any point where the components of X and their first derivatives are all
zero, the result of operating with £x must give a zero result. Recalling the delinition

of 9T in (11) we can therefore conclude that

OT(A, B)(p) = ~T({A, BI)p)
oT(C, D)(p) = ~T((C, D))(p)

and hence that

8T (A, B)(p) = 20T(C, D)(p)

Now, let us compute ST(A, B)(p) and ST(C, D)(p). By (16) we have that

al)p) = (2des @ dza @ W )(p)
(LeT)(p) = (2dz1 @ dz1 @ 02)(p)
(LeD)(p) = (dzy @ dzy ® D) + dzo @ dzy @ 1)(p)
(Lpl)(p) = (dzy @ dzy @ 02 + dz2 @ dxy @ Oa)(p)
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and hence by the definition of ST
SYA, B)(p) = (Lal'o LT)(p) = 4(dwy Adzy)
SUC, D)(p) = (Ll o Lpl)(p) = day A daz
Therelore, ST cannot be equal to dT, since unlike the case of the latter, we have
§°(A, B)(p) = —4S"(C, D)(p) ,
and since neither the left or the right hand sides are zero. O

In Section 2 we showed that a local, multi-linear operator with C*® arguments
and €™ values must necessarily be locally differential. That means that the cochains
ol € are., at least locally, equivalent to a certain multi-differential operator with
cocflicients that take values in @3(M). Thus, for C € € and Xi,..., X, € V(M) we

have

CXty ooy Xi)= 3 30 Qo XP' oo O X 0202 o deg Ady

J1 e Jka
Qpelp 21 Ik
ab

where | < ji,..., Jr,¢,b < n and where the sum over the a,’s is formally infinite,
although only a finite number of the cocflicient functions, ¢3! % , are not identically

zero on any compact subsct of the coordinate domain.

For fixed orders of ay,...,ax, ;| = d;, the notation o

ek is reminiscent of

the notation for the components of a tensor in the vector space
S4(R") ®...® S%*(IR") ® CHIR™) ® A2 (IR™) . (20)
This observation suggests the following definition.

Definition 4.44 l'or p € M and non-negative integers d,...,d we define the as-

sociated tensor of (' of order d,...d; at p to be the element of the vector space

Ty Ly dk

m (20} with components o)} 7% (p) 4 and denote this tensor by ol

"The associated tensor as it is given here is a construction relative to a fized system of coordinates

in IR". It is tempting to try and define the associated tensor in terms of the tangent space at p,




It will be more convenient to regard the vector space in (20) as
Hom ( SHIR™M) ®...® SH(IR™) ® C*(IR™), A*(IR™) )

and identify a tensor, o, from such a vector space with a mapping

k times k times
— D e N, ) .
o:IR" x...xIR®" xIR* x...R" — A*(IR™) . (21)

which is homogenous of degree dy,...,di in the first & variables, and finear in the

last k variables. For & € IR™ and u, € IR", the action of this mapping is given by

0(611'--’€k;u17-“,uk) =

d; times dy times di times
p _ ~ A N PubAE R —
0’(51®...®€‘@fg@...@é.g@...@gk@...f{)ﬁk(_&)”]‘,')...Q)HA)

Using coordinates we have

JC”dk(fl’ ol u) = Y, Y H (&)° H wt oyt e Aa o, (22)

L 9k gy g =1 1=
Inll d, ab

where €,...,¢, is the canonical basis of IR™ , and where lor & € IR™ and a multi-

index a,, we use (&) to denote the homogenous product (£!) (€2)7 ... (én)®

Using associated tensors to describe cochains turns out to be a usclul idea; we
can use them to prove Theorem 4.43. First, we must make some remarks abont the
representation of gl(IR") on the tensor algebra of IR™ and then we need to prove a

lemma about invariance of certain types of tensors under this representation.

rather than IR™; this would be possible if the components of the associated tensor transformed
properly under a change of coordmmates. Unfortunately, only the components of the associated
tensor with maximal orders transfornn properly under arbitrary changes of coordinates 'T'he suut of
the components with maximal order is usually referred to as the tolal symbol and gives enordinate

independent information about the operator. It is not used in the present work
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Let us define the representation of gl(IR™) on the tensor algebra of IR™ as it was
done in Section 3. We need to state some explicit formulas for expressing the action

of gl{(IR") on associate tensors.

Lemma 4.45 Let o € SYIR?) be a type (d,0), symmetric lensor identified “ith the
degree d, homogenous mapping from R™ Lo IR,

d limes

e m—— n.
of)=0(f®...0¢), (€R
Then, forn € R™ and v € IR* we have
do(§ + in)
di ’

t=0

(Loeno)(€) = &(v) £eRY

Lemma 4.46 Forw € AKIR™), forp € R™, and v € IR™ we have

Lognw =1 A 1(v)w

Lemma 4.47 Fora € ™, fornp € R™, and v € IR* we have

(Legna)(u) = —=n(v)a(v), w€IR"

The preceding three lemimas allow us to develop a formula for the action of gl(U) on

an associated tensor.

Lemma 4.48 Lef 0 be a type (di+. ..+ dk, k+2) tensor from the veelor space in (20)
wdentified wath a mapping of the type given in (21). For n,¢, € R and v,u, € R

we have

dal€y &G &+t Eery . JEnur, o, )
dt

L
(Cogn@)&1y o &, oo m) = Z{{,(v}
)=t

t=0
A

-Z Huy) a(§ayen o Ehstin, o 1, U U4, ., UK)
=1

"'"A'(")0(610-vak;uln'“yuk)
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Lemma 4.49 Lcl 0 € S*(IR") © R* ® C*(IR™) be a type (3,3) lensor which s

invariant under the action of gl(IR™). Then, identifying o with an clement of

Hom(C*(IR™) ® IR, C*(IR™"))

b}

o must be of the form

clli® RGO U)=c Z Ery(U) Eny ©&nyy E1E2, & €M v e R,

el

where ¢ is some real constant.

Proof. By Theorem 3.31, & must be of the form

ol @EOEQU) = Y cr &x (1) €ny 9 Eny

ﬂ'E“J
for some real constants ¢, (7 € 1), By assumption, interchanging the ovder of

€1, €2, €5 does not change the value of o and hence, for any p € 1y we also have

(61 ®EOEQU)=Y cr Epry (1) Epny O Epry

Therefore, by “averaging” over all p € I, and using the substitution p = pr, we

conclude that

1
U(fl ©LOGOU = EZC" fmn(“) €pry @ 'fpm
o

1
= _6 Z (Z Cp"u) €llx (“) 61!1 ) Em
o\ p
= ¢ Zflll(“) £ltz @ élta y
1
where c=1/6Y, cx. )

Second proof of Theorem 4.43. Let T' € €! be given and choose some p € M. We
showed in Section 2 that T'is a locally differential operator and hence that in some

neighborhood around p,

T(X) =33 0.X0%,dz, Adzy (23)

a  jab
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where only finitely many of the functions 0%, are not identically zero in every compact
ncighborhood of p. We are going to use associated tensors to compare the local

coordinate expressions of 81" and of S" and thereby show that 0T # ST.

Now, let us compute the expression of 9T in local coordinates. For vector fields

X,Y, we have by (19)

LxTY) =) dX"ANi()T(Y) + ZX‘Ea,T(Y) (24)
LyT'(X) = Zr:dY’ A(9)T(X) + E': YL, T(X) (25)
lixpressing [ X, Y] in local coordinates we have
(X YD =Y S 0.(X"0,Y ~ Y0, X702 ydea Ny . (26)
o gab 1

Let d denote the differential order of T' at pj i.e. the largest integer, d, such that

oru(p) # 0 for some choice of |a| = d and 1 £ j,a,b < n. Since
ar(X.Y)= LxyT(Y)- LyT(X) - T([X,Y]) ,

we can see from the above equations that T cannot have terms at p of order higher
than (d +1,0), (d,1), (d = 1,2), ..., (1,d), (0,d + 1). Now, let us consider the local
coordinate expression of S'. Relerring to (16) and (18) we sec that for X, Y € V(Af)
we have

XYY = L 0w X'l Aday + (27)
J

17hd

where the ellipsis denotes terms of order (1,1) or less. If d = 1,2, it is therefore
impossible for 91" to cqual S becase the latter has a non-zero term of order (2,2).
Thus, we may assume without loss of generality that d > 3. Equation (27) also shows
that S has no terms of order (d,1) at p and therefore, we can prove that 9T # ST,
if we can show that the associated tensor of order (d, 1) of 97 is nol zero. Another

strategy for showing that 91' # S would be to prove that the (2,2) term of 9T
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must be diflerent from the (2,2) term of SF. This approach will be pursued below,
) Pl

in Proof 3.

From (25) and (26) we sec that only Ly T(X) and T([.X,Y]) can furnish terms of
order (d,1) for 1. These terms are

- ZZ Z OaX? O5YT oy dg A i(0)dva Adry

TS ](lb |a|=d
- Z Z Z Du X" O 0y dug Nduy
T gab ]a]:d

Z Z Z Z T a['m]‘yj (.)kyr U_;Vub (].1'(1 A (/.l‘b

T gab laj=d [yA]=c

The summation condition [v, k] = a says to sum over all & for which o* # 0 and that
for each value of k, 7 is the multi-index obtained from o by decrementing ot Using

O compuie o,yp,,, ad reca inf LeCIMIna 4. we caill see thal ‘Ol' U, v alic
22) t pute oy, and recalling | 4.48 that for u,o € IR™ and

for £,7 € IR™ we have

{1 » d
Tl & iy 0) = (Logyop ) (€ 1)

. d,1 toe _ .
Thus, in order of ogy., to be zero, it is necessary thal o, is invariant under the

action of gl(IR"). Using Lemma 4.49 we see that a type (3,3) tensor
o € Hom(S3(IR™) @ R*, A*(IR™))

which is invariant under the action of gl(IR™) must satisly

o(fiu) =o((QL@EOU) =06c&(u) EDE

* ~ .
forall £ € IR® and v € IR™. Thus, the values of o must be both symmetric and
) 0
skew-symmetric, which means that ¢ must be the zero tensor. cf,’,l.;p cannol be the zero
tensor because of the assumption that the order of 7" at p is d. T'herelore, af,“;p cannot

. . . . . 0y
be invariant under the action of gl(IR™), which means that a,f.,"p 15 not zero. n]




Third proof of Theorem 4.43 Let T be a given 1-cochain . In this prool we will
compule rff,'f and show that it cannot be equal to a:‘;’l?. Let the expression for T' in
local coordinates be as in (23). We have already mentioned that LxT'(Y') contributes
terms of order 1 and 0 in X and that £y T(X) contributes terms of order 1 and 0
in Y. Il 91" is to have terms of order (2,2) they must come from T'([X,Y]) and be
generated by those terms of T' that have order 3. Thus, the (2,2) terms of 9T are
given by

Y3 a* (0, X0 Y7 — Oy Y " Ope X7 )05pda A day

jorl=3 jub l'y'k}:a

Therefore, we have

doi (¢ + tn; v)
dt

dod.(n + t&; u)

- ¢n) 1L (29)

oa(é,m;u,v) = ()

t=0 t=0

Now, let us compute o5 Recalling the local coordinate form of ST, given in (27),

we sce that

ax (& nu0) = 3 Eekulpploter A ey = E(0)p(w)E A (29)
irkl

Let us assuine thal

o3 = o3
and argue by contradiction. Let £ € IR™ be given. Suppose that u € IR™ is such that
£(u) = 0. Choose a v € IR" so that {(v) = 1. By (29) we see that

0;'1?(5,5;“,'0) =0
and hence, using (28), that
—307(&u) =0

On the other hand, suppose that u € IR" is such that £(u) # 0. Again by (29) we
have that

ogr(6,26,u,u) =0
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and hence, using (28), that

90":13'('55 “) =0
Therefore, for every u € IR,

05}(6, u) =0

.. . : 2,2
and this is absurd because it means that both oglﬁ, and o3¢, are zero.




5 Infinitesimal automorphisms of contact struc-

tures

In the previous seetion we considered cochains that wete local operators on the Lie
algebra of all stnooth vector ficlds. In this section we will suppose that the base
inanifold is J¥(IR™, IR), the k-th order jet bundle of smooth maps from IR" to IR and
focus our atlention on the Lic algebra of infinitesimal automorphisins of the contact
system vhich is attached to the jet bundle. The cochains of the associated Chevalley
cohomology are thus local operators, but operators whose choice of arguments is
restricted to those veetor fields that are infinitesimal automorphisms of the contact
system, The preceding proofs that S is non-trivial consisted of showing that there is
no 7' such that ST and 97 arc the same differential operator. It is concecivable that
distinct differential operators can act identically on a restricted choice of arguments
and therefore there may be a dillerential operator T' such that d7 and S* specify the
same co-chain, There is another obstruction: since our proof that local operators are
locally differential (see Section 2) relies on the fact that any smooth vector ficld can be
taken as an argument we cannot exclude (at least not without doing more work) the
existence of local cochains of a non-differential nature. That means that the second
prool of the non-triviality of S* given in the preceding scction cannot be adopted to
the present situation; i.e. we cannot use local coordinates to express a 1-cochain, T,
as a differential operator and then compare the local coordinate expression of 97 to
that of S". Recall, however, that the first proof of the non-triviality of ST did not
rely on 1" being differential, only local. We could carry this proof over to the present
circumstances if we could choose the four vector fields in question so that they are

infinitesimal automorphishms of the contact system. This turns out to be possible.
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5.1 The contact structure on the bundle of 1-jets

Let us begin by considering the bundle JY(IR*, IR), a manifold diffeomorphic to IR#+!,
Using (2,,¥, y,), where 1 <7 <, to denote the local jet coordinates, we have that

the contact system, Q0 on JHIR™, IR) is generated by the ditferential 1-form
w=dy - ) y;da,
3

Thus, an infinitesimal actomorphism of QY is a vector field of J'(IR", IR) such that
Lyw is some multiple of w. We are going to show that there is an isomorphism
between the vector space of infinitesimal automorphisms of 2 and the vector space

of real valued functions on J'(IR", IR).
Suppose that A, B are vector fields and 7 is a differential 1-form. The following
identitics are a basic computational tool for the proofs that follow.

i([A, B))r = i(A)Lgm — Lyi(A)r . (30)

(A)Lpr — Lpi(A)m = -i(B)Lamw + Lp(B)x . (31)

The fitst is a standard (see for stance {4]) and the second identity follows imimedi-

ately because [A, B] = -3, A].

For a function, f, on JI(IR*,IR) put
af af\ o af o -
(f ZJJ BJ,) Z ((?:L'J U By) dy, ; dy, Dz, (52)
Notice that ¢(Xy)w = [. Indeed, we have

Proposition 5.50 [or all funclions f, the veclor ficld Xy is an infinitesimal aulo-
morphism of OV and furthermore, every infinilestmal wulomorphism, X, is of the

orm Xy, where f = i(X)w
S




Proof. For 1< 3 <mn,put
d
ly= 5= +U5—
7 O, Ay
Note that the 2n vector fields Z, and @/0y, span the vector space of vector fields that
amnihilate w. Therelore, X is an infinitesimal automorphism of the contact structure
il and only if 2(7,)Lxw and i(9/8y,)L xw are zero for all j.
Let X be a vector field on JHIR®, IR) and put [ = 2(X)w. A simple calculation
shows thal,

Lyw=dy, |,

and that

L:a/ay)w = -—d:l:j
Using identity (30) with 7 repaced by w, A replaced by X, and B replaced by alter-
nately 7, and 9/dy,, we sce that X is an infinitesimal automorphism of the contact
strneture if and only if

—i(X)dx, = 8f /Dy,

and

X)dy, =2,

lor every j. Thus, if X = X, for some {unction, ¢, we may conclude that X is an

infinitesimal automorphism because

[=iXw=g ,
—i(Xy)dz, = 0¢/Dy, ,

and because

i(Xg)dy; = Z,9




On the other hand, if X is an infinitesimal automorphisim we may conclude that
the 2, and y, components of X are equal to the respective components of Xy, To

conclude that X = X we need to show that
(X)dy = [ — 30,010y,
2

But, this is true because by definition,

J=i(X)dy =Y y,i(X)dr;
2
and because as we have already shown,

Of Ay, = —i(X)du,

N

Proposition 5.51 Suppose that X = Xy is an infinilesimal avlomorphism of Q0.

Then, Lyw = (If[0y)w.

Proof. We arc assuming that Lyw = cw. By considering the local coordinate

form for w we sec that the multiplying function is given by
c=i(d/0y)Lxw .
Using identity (31) with w, d/9y, and X in place of m, A, and 13 we have
c—Lyl =X)Ly +0f/Dy

A calculation in local coordinates shows that

La/ayw =0 )
and hence,
c=0f[dy
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For functions [,g on JI(IR", IR), put
{f,9} =([Xp, Xg])w . (33)

[t is clear that the bracket {, } obeys the Jacobi identity because X(sqy = [Xy, Xg]

and because the Jacobi identity holds for the Lie bracket of vector fields.

Proposition 5.52 In local coordinales we have

)f 0 dy df of o dg df dg Of
{log}=2_v (__f__l___(/_i + _i__g____g__j +.—1—(—‘f‘ (34)
: Ay dy, Oy dy, ~ \dr, 0y, O, dy, dy Oy
Proof. Using identity (30) with w, Xy, X, in place of m, A, B we have
* 7 4 4 ag
([Xy, Xgl)w = Xy(9) - 3y
and this is equivalent to what we are trying to conclude. ]

It is interesting to note that if f and ¢ are functions which do not depend on ¥
then {fyg} is just a Poisson bracket of the two functions. The case of infinitesimal
automorphisins of Poisson brackets was treated by Lichnerowitz and Flato in [3]. We
will follow their proof in showing that ST restricted to infinitesimal automorphisms

of 1Y is not equal to a co-boundary.

Theorem 5.53 The cohomology class S remains non-trivial in the local Chevalley

cohomology of tnfimtesimal automorphisms of QM,

Proof. Let T be any local 1 co-chain. We will show that 97" # S™. Put

H=@) ', g=z:(n)?,
fa=(m)®, g= ).

]




According to (34) we have

{Ji01} = 3(a1)*(1)*

{002} = 9@ )*(m1)*
and thus

Hug) = {fag:}
everywhere. Hence,

3[.\'1'1 ) ‘\’,“] = [sz ” —\.:1211

everywhere as well. Since the four functions in question all have zeros of degree 3
al the origin, we can sce by looking at (32) that the infinitesimal automorphisnis
generated by these functions will have zeros of at least order 2 at the origin. Thus

we can use the same argument as in Theorem 4.13, to show that
BTN 0 X0 )0) = TN, X, )0

Let us use (32) to compute the four infinitesimal automorphisms in question and then

equation (16) to compute the respective Lie derivatives of the conncction, I', at the

origin.
Jd , 0
Xp = 21‘1!}1’5;/*]‘ - () e
, 0 o 0
'\91 = _-”!(Ul)ggg + (3/1)25!71‘ - Z‘Ul'!/l‘g;
) , 0
- = (2 37 ¢ T 2
/\fz (7’1) ay +3(7’1) 0.7/!

7 —_ 3_____ —_ 2_____
}‘92 = Z(y,) ay 3(.’/1) 9,

’ ) 0 9}
Ly, T(0) =2(dvy @ dy; +dyy @ du)) © 5&—‘ ~ 2ley B day @ o

%We are using 0 to denote the ongin of IR"




J
Lx, I'0) =2dy @ dy @ _97 ~2dry @ dyy + dyy @ dxy) @
1

.7,‘1

* A 1 g a
L,\’hl (0) = 6dry & de, @ ‘("3"/:

2l ~ d
Ly, 1(0) = ~6dys @1 @

[lence, according to the definition of ST we have

S'(X gy Xg )(0) = Lx, T o Lx, '(0) = 8dzy Adys
S (X, X )(0) = Lx,, T oLy, T(0) = ~36de; Ady,
and thercfore 97" cannot equal S* because unlike the former,
—3657 (X, Xg,)(0) = (AfQ'IX!l?)(O)

and because the preceding two expressions are not zero. a

5.2 Higher order contact systems

Now, let us work with the k-th order jet bundle, J*(IR*, R), a manifold diffeomorphic

k-1
C'L=(n+k )

is the number of multi-differential indices of order k or less. Let us use (z,,y4), where

to IR where

J is an index with range 1 < j < n and a is a multi-index with range |o] < k, to
denote coordinates on the jet bundle. We will express a vector field, X, on J¥(IR",R)
in local coordinates by writing
0 0
A=Y X'—+ Y X*—
;0% Gz O
In other words, X7 = #(X)dx, and X* = {(X)dy,. The contact system, O, on the

k-order jet bundle is a plaffian system generated by the Ci_; differential 1-forms

w = dy, «ZJ[(,,](LIJ, e < k-1
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An infinitesimal automorphism, X, of the contact systenn is any vector field on

J"'(IR", IR) such that Lxw!® € Q¥ for every a.

Before proceeding with an cquivalent of Theorem 5.53 for JA(IR™, IR) we need to
study how the infinitesimal automorphisms of % are related to the infinitesimal
automorphisms of Q. There is a natural way to define a projection from a higher
order jet bundle to one of a lower order. lor 1 < < &, the projection in guestion is
the map

mr  JEORY, IR) — J'(IR™, IR)

that acts by “lorgetting” coordinates yg (I < |8l € k), ie. for p e JHARY,IR), we

define ¢ = 7f(p) to be the point such that
() =x,(p) (1 <Jj<m)

Yl) = ya(p) (la} £1)
Recall that whenever there is a projection from one manifold to another; there are
acompanying notions of a vector field prolongation. Indeed, for a vector field, N, on
J(R™, IR) and a vector ficld, X, on JH(IR™, IR) we say that X is a prolongation of
il (18).X = X ox}. This rather abstract definition has a simpler equivalent in terms

of local coordinates.

Proposition 5.54 X s a prolongalion of some vector fild on YR, IR) of und only
if for every | < j < n and |a| <1, X7, and X* are functions which wre tdependint

of coordinates yz, | < |8 < k.

We can see from the preceding proposition that a given vector field, X, can have
many different prolongations and that there is no “natural” way to distingnish one
of them. But, if we assume that X is an infinitesimal antomorphisim of Q% we

will be able to show that there exists a unique prolongation of X which s also an
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infinitesimal antomorphism of Q™. Surprisingly, the converse is also true, i.e. we
will also show that every infinitesimal automorphism of Q¢ is a prolongation of an
infinitesimal antomorphism of U9, This result is due to Backlund and is typically

referred to as Backlund’s Theorem.

For every | <a < n, put

d d
gk = L v
u 8.7‘1 + Z Yia.a) Dy

Jo|<k=1
The vector fields Z% will be a crucial aid in developing our results about the in-

finitesimal antomorphisms of £2¢),

Proposition 5.55 A differential 1-form is in Q® if and only if it is annihilated by
cocry 23 and cvery 3y (18] = k).

Proof.  The n 4+ Oy — Cioy vector fields Z%, d/0Jyg are linearly independent
and annihilate every wf'. Since the w(’s are linearly independent themselves, the
space of vector fields that annihilates them must have dimension n + Cy — Cy_; and

therefore ZM's and 0/dyga's span that space. a

Proposition 5.56 A veetor field X 1s an infinitesimal awtomorphism of Q% if and

only of both {77, N and [5’:—5, X anniilate W for all a, |8] =k, and |o| < k - 1.
Proof. 'This proposition is a corollary of the preceding Proposition and of iden-
tity (30).

Proposition 5.57 7V, ZM] = 0.
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Proof. 1f the action of Z®M 2V — ZiM 7™ annihilates all the coordinate functions,
then the vector field [Z, Z{®] must be zero. Since Z(x,) is a constant (either 0
or 1) and Z®M(ys) = O for |B] = k, we only nced to cousider the case of y,, where
la| < &k = 1. Forsuch an a we have Z*(yy) = Y and therelore 729725 (0,) 15 0
when o] = & ~ 1, and is yaua, otherwise. The conclusion follows by noting that

!/[n,b,n] = y[n,a,b] . ]

Let a be a given multi-index. Choose ay,...,a; 50 that o = [ay...«q;] and put

(R . 7k} 7 (k)
a0 =78 18

”l .o

Since the actions of the differential operators Z% commute, the action of the differ-
ential operator Z is determined by o and not by the order of the a,'s. In order to
avoid any possible confusion, we should note that Z% refers to a cither a veetor field
ot a differential operator of order 1, while 2% refers to a multi-differential operator

of order |a].

Following a course similar to the onc we took when working with J'(IR™, IR), we
should now try to define an infinitesimal automorphism of Q™ in terms of a generating,
function. Let f be a function on J*{IR®,IR) and put

-\’(f” - _Z ()I .__(_}_. J- Z /(k; Z /[”] ()j _()— + L (A)(/)______

0‘/[11 dx, D<lae kmt Dy | Oy W oy
(35)

The next proposition recasts this definition into a another, perhaps more useful forin.

Proposition 5.58 The following conditions characlerize a veclor fielld X = X{P.

(X = Z0()) (36)

X=zZM (37)

() = ———(L}—L (.‘3)
My

for all indices with ranges 0 < la| <k-=1,|pl=4k 1 < j <n.
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Our next goal is to prove the following.

Theorem 5.59 Supposc that [ is a funcltion of variables v, yo and yiqy only. Then,
X = X" s a prolongalion of coery X¢, 1 £ 1<k and is, furthermore, an infinites-

imal automorphism of QM.

We will proceed via the following three lemmas. The first two lemmas are verified by

sitnple local coordinate computations.

Lemma 5.60 l'or cocry a and || = k we have

B if o] S k-2

E.(L)w(k) =
2070 .
dy[o.a] Zf Ial = k -1
L w(g) —'d"l:j if,B = [Q‘,j] fOT some ]
_a_ =
" 0 olherwise

Lemma 5.61 For eoery a and |8l < k we have

[ o Z""] B 52—: if B = |a,d| for some ¢

) a
dys 0  otherwise

Lemma 5.62 [f f and X are as in the condition of Theorem 5.59, then for all|B8) = k

and |a] <k =1 we have

9ZM(f) 2L if B = [a,]] for some

Zoa M) dyy (39)
Dy 0 otherwise

Proof. 'T'he proof is by induction on k. The case & =1 is trivially true. So, let
us suppose that the lemma has been shown to be true for a certain & = N and show

that the lemumais also true for k= N +1. Let |8| = N +1 be given. If we consider
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the definition of Z, we can sce that Z{P(f) is a Tunction ol vaviables &, and y,

(17} € || +1), only. lence, (39) is true for o] < NV — 1. So, suppose that |a| = N.
If there is a j such that 8 = [a, /], we can choose a |y = N — [ and an ¢, such that
a =[y,a] and § = [v,a,)]. Using Lemma 5.61 and the induction hy pothesis we have

9257() A% (Z())

ayﬁ Byh‘nul
0 QzZM )

_ IR 74 v\

[ayh.u.)l’ [ﬂ]} ( 7 (f)) + ol ( (')U[‘r.u.Jl
_ ALV (f) P a7 )

v 1N Oy
_ 9

Oy

If nosuch j exists, thenit is possible to choosc an ¢ and [y] = N -1 so thal o = [7,¢]
and f* = 0. Thus, using Lemma 5.61 we have

DZM()  AZP(ZP)

dys Dy
— _f)__ (k) Ry 7 () OZSY“’_(—Q
- [ayﬁa A[a]] (Z'y (j )) + /J[n] i)y/}
= 0

(]

Proof of Theorem 5.59. We first show that X(f” is a prolongation of .\'(f” for every
1 <1< k. Wedo soby comparing the local coordinate expressions for these two
vector fields (see (39)). Since ZP(f) is a function of variables ¢, and g, (J7] < |al+1)
only, we can sce that Z0(f) = Z5(f) for |a| < — 1. Thus, in order to show that
X is a prolongation of X§” we need only show that for |a| = j

d
290(f) = Z9(]) — Zm«,,;%% - (10)

J

Choose a j such that o/ # 0 and write a = [v,5]. Let us consider the difference of

ZP(ZO(f)) and ZEW(Z0(S)). Since ZU(f) = Z9([f) and since these do not depend
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on variables yg (]8] > 1), the difference is one extra group of terms that are present

in Z2(Z889([)), namely
02(1)
Z Yiwl 974

la|=t

By Lemma 5.62 this is equal to

of
Ve gn—
zj: " Oy

thereby showing that (40) is true.

Now we turn to the proof that X is an infinitesimal aulomorphism. Since X

satisfies conditions (36) and (37) of Proposition 5.58, we have

i(X )l — ZOE(X M) =0

[er,a)

(X )y — ZH (X)) =0

for all a, |a| £ k-2, and |B] = k — 1. Hence, using Lemma 5.60 and identity (30),
we have

(12, X[ = 0

Again, using identity (30) and Lemma 5.60 we have for |8 = k and o] < k~1

(1 WY oy 9280 L, "
I([(’)y,j"\])w" = o ‘(‘)‘)Lg‘;’;wa

If we suppose that there is an j such that § = [a, 7], then by Lemmas 5.60 and 5.62,
both of the terms of the right side are —X? and hence, the above expression is 0. If
we suppose that no such j exists then both of the terms in the right side are zero by

the same two Lemmas, and therefore

; (? ¢ (h)y
(E‘J‘AD =0

for all B and a. Proposition 5.55 allows us to conclude that X" must be an infinitesimal

automorphism of Q*), ]

We now prove the converse of the preceding theorem.
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Theorem 5.63 (Backlund) Suppose that X is an infinedesimal automorphism of
QW Then, [ =1(X ) is a function that depends only on variables v, y,, s and,
furthermore, X = X, therchy umplying thal X is a prolongalion of an anfinitesimal

aulomorphism of Q) (namely X§").
We first need to prove the following converse of Lemma 5.62.

Lemma 5.64 Supposc that (39) holds for all 1Bl =k and o] < k=1, Then, f only

depends on a,, yo. Yy, and =X7 = 5‘;{;
J

Proof. Let |Bl=k 1 and Ja] < k=2 be given, Choose any « and use Lemma
5.61 to seec that

%) OZ(ZP())
(7!/[,;...1 a!/(ﬁ,..]
. ARSI
= g | i+ g (2220))
[()t’/(ﬁ«“’ } ( (j )) e ()!/[H.ﬂl
_ 9z
Yy

Note that the condition that there exists an Jsuch that # = [a, j] is true il and only
if the condition that there exists an j such that [A,a] = [a,a, j]is true as well, Thus.
the preceding caleulation shows that the premise of the lemma 1emains true if we
replace & by & — 1. Proceeding inductively we see that the premise of the letma is
true if we replace k by any of 1,2,..., k= 1. In particular, we have

af 0z ()
Iy, Ay,

==X

*

and for 2 £ 8] < k we have

o _ary)

dys Yy
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Proof of Theorcm 5.63. By Proposition (5.55) we have
(7, X! =0,

‘a -

and hence, (36) and (37) are true by identity (30) and by Lemma (5.60). We also

N ? ¢ () _
([am’}‘]) “a’ =0

for all |#] =k and all o} € & — 1. Using Lemma 5.64, we conclude that X satisfies

have

all conditions of Proposition 5.58 and that f is a function of variables a,, yo, and yg

only. m)

We are now in a position to prove an anologue of Theorem 5 53 for higher order

jet bundles. For functions, [, g on J*(IR™, IR), put

{59} = (X7, XPuts”

Using basic propopertics of prolongations we have that [X}”,X;")] is a prolongation

of of [X7,.X,], because X! and XM are prlongations of X; and X,. Thus

{Log)™ = (NP XD = (X X )wt” = { £, 9)

Therefore we have defined exactly the same bracket operation as in (33) and just as
hefore we have

X = X0, X

Theorem 5.65 The cohomology class S remains non-trivial wn the local Chevalley

cohomology of ifimitesoanal auiomorphisms of Q%)

Proof.  We will follow the proof of Theorem 5.53. Let T be any local 1 cochain.
Taking
JSi= ()Y g1 =2(m)*
fo=(@P v ga= ()
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we have, as hefore, that

BU(XRNE)(0) = T(NE X9 (0)

N 42

The computation of S"(.\'}“..\"‘)“) is quite a bit more complicated in the present
case, because the local coordinate expression of ,\'}” 15 considerably more comples
than the expression of X;. Since we can work with any connection, I'y let us work
with the flat connection on J¥(IR*,IR). Doing so gives a simpler local coordinate
expression for LxI", because for a flat I' we have by (16) that (LyI)y, = D N©.
Restricting our attention to computing the diey A i component of STCNPY N (0)
and ol S"( X‘:), XUI0) we see that S (.\'l” N )iy at the origin is positive and that

ST(XYY Xy at the origin is negative; and henee, that

ST, XI)(0) # ST(N, A1) 0)
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