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Abstract

In this thesis, we explore probabilistic and enumerative aspects of graphs, primarily studying

the Erdős-Rényi random graph, minor-closed classes of graphs, and graphs on surfaces. In

particular, we present a proof of the phase transition in connected components of the Erdős-

Rényi random graph, introduce and implement Tutte’s recursive method, as well as discuss

conditions that guarantee the algebraicity of functional equations obtained from Tutte’s

recursive method. We will also present a conjecture on phase transitions of random graphs

sampled from minor-closed classes. This is supplemented with examples where the conjecture

is known to be true, namely in uniform random graphs, random planar graphs, and random

forests.
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Résumé

Dans cette thèse, nous explorons les aspects probabilistes et énumératifs de graphes. Nous

étudions principalement des graphes Erdős-Rényi, des graphes de classes closes par mineur

et des graphes sur des surfaces. En particulier, nous présentons une preuve de la transition

de phase des composantes connexes des graphes Erdős-Rényi. De plus, nous introduisons et

implémentons la méthode récurrente de Tutte et nous étudions quelles conditions garantissent

l’algebräıcité des équations fonctionnelles résultantes de la méthode récurrente de Tutte.

Nous présentons également une conjecture sur les transitions de phase de graphes aléatoires

échantillonnés de classes closes par mineur. Ceci est complété par des examples pour lesquels

la conjecture est vraie: les graphes uniformes aléatoires, les graphes planaires aléatoires et

les forêts aléatoires.
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Chapter 1

Introduction

Random graph models have been heavily studied, particularly on how their behaviour

changes with incremental shifts of its parameters. The earliest models are the uniform

and binomial random graph, both are referred to as Erdős-Rényi random graphs, which were

introduced in 1959 [6, 11]. It is well known that both models exhibit a phase transition in

the sizes of their connected components. After imposing planarity and acyclicity restrictions

on the Erdős-Rényi random graphs, such phase transitions are still present [14, 20].

In the uniform random graph model, as well as the resulting models after imposing

planarity and acyclicity restrictions, we can consider them as uniformly selecting a graph

from a certain family of graphs. It turns out in each case, the family of graphs we are

sampled from is a (subclass of a) minor-closed class [17, 24, 26]. Furthermore, as graphs on

surfaces can be characterized as minor-closed classes of graphs, and as the phase transition

results for the connected components in these classes have been proved using enumerative

methods, then studying maps and methods for their enumeration is a natural prerequisite

step to studying phase transitions of random graph models sampled from other minor-closed

classes [3, 4, 23, 29].

This chapter will cover background knowledge about phase transitions for the connected
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components of random graphs, introductions to the notions of graph minor theory, and will

discuss embeddability of graphs on surfaces.

We lead with some preliminary notation and probabilistic bounds.

1.1 Probabilistic Notation and Commonly Used Bounds

We leave this section as a collection of probabilistic terminology, notation for asymptotics,

as well as bounds that may be referenced throughout this thesis. This section will be used to

supplement the next where we discuss probabilistic aspects of random graphs and is based

on [10].

1.1.1 Probability and Landau Notation

It will be useful to recall some probabilistic and asymptotic terminology. We will use P,E,

and Var to denote probability, expectation, and variance respectively.

Definition 1.1.1. An event E is said to occur almost surely (a.s.) if P (E) = 1. We say

that a sequence of events (En)n≥1 occur with high probability (w.h.p.) if

lim
n→∞

P (En) = 1.

We frequently use indicator functions as well.

Definition 1.1.2. Let E be an event and define the indicator function of E by

1{E} =

{
1 if E occurs,

0 otherwise.

We note that for an event E,

E
(
1{E}

)
= P (E) .
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The following is commonly used Landau notation:

• Little-o:

For functions f(n), g(n) where g(n) > 0, we write f(n) = o(g(n)) as n→∞ when

lim
n→∞

|f(n)|
g(n)

= 0.

• Big-O:

For functions f(n), g(n) where g(n) > 0, we write f(n) = O(g(n)) as n→∞ when

lim sup
n→∞

|f(n)|
g(n)

<∞.

• Big Theta:

For functions f(n), g(n) > 0, we write f(n) = Θ(g(n)) as n→∞ when f(n) = O(g(n))

and g(n) = O(f(n)).

1.1.2 Some Useful Bounds

In this section, we will provide some bounds as well as recall common probabilistic tools,

such as the first moment and second moment methods.

Lemma 1.1.3.

(a) For all x ∈ R, 1 + x ≤ ex.

(b) For x ∈ [0, 1), 1− x ≥ e−x/(1−x).

(c) For all n, k ∈ N,
(
n
k

)
≤
(
ne
k

)k
.

(d) For all n, k,
(
n
k

)
≤ nk

k!

(
1− k

2n

)k−1
.
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(e) For all n, k,
(
n
k

)
≤ nk

k!
e−k(k−1)/(2n).

(f) For all non-negative n, 1
n!
≤
(
e
n

)n
.

(g) For x ∈ [0, 1], ex ≤ 1 + 2x.

The proof of this Lemma can be found in the Appendix A. A commonly used approxi-

mation is the following, given without proof.

Theorem 1.1.4 (Stirling’s Formula). For n ∈ N,

n! = (1 + o(1))
(n
e

)n√
2πk,

and moreover,

n! ≤
(n
e

)n√
2πk.

We end this section with some well known probabilistic inequalities.

Theorem 1.1.5 (Markov’s Inequality). Let X be a non-negative random variable. Then for

all t > 0,

P (X ≥ t) ≤ E (X)

t
.

Proof. Let X be a non-negative random variable and t > 0. Note that,

X = X · 1{X≥t} +X · 1{X<t}

≥ X · 1{X≥t}

≥ t · 1{X≥t}.

Then as expectation is monotonic,

E (X) ≥ tE
(
1{X≥t}

)
= tP (X ≥ t) .
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The following corollary is immediate by taking t = 0.

Corollary 1.1.6 (First Moment Method). Let X be a non-negative integer valued random

variable. Then,

P (X > 0) ≤ E (X) .

The first moment method is a powerful tool used to show that a random variable must

be equal to 0, with high probability. In contrast, the second moment method can be used to

show that a random variable is positive, with high probability. This is also a consequence of

Markov’s inequality.

Theorem 1.1.7 (Chebyshev’s Inequality). Let X be a random variable with finite mean and

variance. Then for all t > 0,

P (|X − E (X) | ≥ t) ≤ Var (X)

t2
.

Proof. Let X be as above and t > 0. Note that |X−E (X) | ≥ t if and only if (X−E (X))2 ≥

t2. Thus,

P (|X − E (X) | ≥ t) = P
(
(X − E (X))2 ≥ t2

)
≤ E ((X − E (X))2)

t2
(Theorem 1.1.5)

=
Var (X)

t2
.

The following is immediate by taking t = E (X).

Corollary 1.1.8 (Second Moment Method). Let X be a non-negative integer valued random

variable, then

P (X = 0) ≤ Var (X)

E (X)2
=

E (X2)

E (X)2
− 1.

5



1.2 Component Sizes in Various Families of Random

Graphs

For a positive integer n, denote [n] := {1, . . . , n} and for a set S, denote
(
S
2

)
= {S ′ ⊆

S : |S| = 2}. Recall that a simple graph is an ordered pair G = (V,E) where V is a finite

set and E ⊆
(
V
2

)
. Unless otherwise stated, a graph will refer to a simple graph. Furthermore

given a graph G, we let V (G) denote its vertex set and E(G) denote its edge set. Since the

vertex set of a graph is finite, we may assume V (G) = [n]. When we refer to the size or

order of graph G, we are simply referring to the number of vertices in G, denoted by |G|.

There are two very closely related random graph models, both commonly referred to as

Erdős-Rényi random graph models.

Definition 1.2.1. For n,m ∈ N, let Gn,m be the collection of graphs with vertex set [n] and

with exactly m edges. We say Gn,m is a uniform random graph with parameters n,m which

is uniformly distributed over Gn,m.

This model was introduced by Erdős and Rényi in 1959 [6] and the following model was

introduced by Gilbert in the same year [11].

Definition 1.2.2. For p ∈ (0, 1) and n ∈ N, Gn,p is a binomial random graph with parameters

n and p so that V = V (Gn,p) = [n] and each possible edge e ∈
(
V
2

)
appears independently in

Gn,p with probability p.

When n is very large and taking m =
(
n
2

)
p, then Gn,p and Gn,m behave very similarly.

A correspondence between the two models can be found in Chapter 1 of [10]. We will

be interested in the connected components of Gn,m and Gn,p and it will be useful to have

notation to refer to such components.

Definition 1.2.3. Let G = (V,E) be a graph with V = [n]. For a vertex v ∈ V , the

component of v is the connected component in G that contains v, and is denoted by CG(v).
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When it is clear we are referring to a particular graph G, then we may write C (v) :=

CG(v). Furthermore, we consider an ordering on the components in terms of size.

Definition 1.2.4. Let G = (V,E) be a graph with V = [n]. Let C(i) = C(i) (G) be the

components of G ordered in terms of size,
∣∣C(1)

∣∣ ≥ ∣∣C(2)
∣∣ ≥ · · · . To break ties, if C,C ′ are

distinct components so that |C| = |C ′|, then list C,C ′ in increasing order based off of their

smallest vertex label. We say that C(i) is the i-th largest component of G. Furthermore, let

Comp(G) denote the collection of all the components of G.

In the uniform random graph model, it is seen that minor changes to the parameter m in

Gn,m can yield very different behaviours; this phenomenon is referred to as a phase transition.

In particular, Gn,m undergoes a phase transition in the sizes of its connected components

when m is around n
2
. When m < n

2
, it is said that the Gn,m model is in the subcritical regime

and the model is referred to be in the supercritical regime when m > n
2
. We say that Gn,m

is in the critical regime when m = n
2

+ O(n2/3). This discovery was initially published in

[7] by Erdős and Rényi with analogous results in the Gn,p model by Gilbert in [11]. Several

improvements on precision were later developed, the following results for the Gn,m model are

due to the work of  Luczak [18, 19] as well as  Luczak, Pittel, and Wierman [21].

Theorem 1.2.5. Take s = s(n) and set m = n
2

+ s. Consider the Gn,m model with C(i) =

C(i) (Gn,m) for all i. Then with high probability,

∣∣C(i)
∣∣ =



(
1
2

+ o(1)
)
n2

s2
log |s

3|
n2 if s3

n2 → −∞,

Θ(n2/3) if s3

n2 → c ∈ R,

(4 + o(1))s if s3

n2 →∞ and i = 1,(
1
2

+ o(1)
)
n2

s2
log |s

3|
n2 if s3

n2 →∞ and i ≥ 2.

The phenomenon of obtaining the linear order component after surpassing m = n
2

is

7



known as the emergence of the giant component and the largest component of Gn,m for

m > n
2

is often referred to as the giant component.

In Chapter 2, we provide a proof for this phase transition in terms of the Gn,p model

where the phase transition is in terms of p. In particular the critical regime occurs at p = 1
n
,

at which value Gn,p has around n
2

edges with high probability. The goal of the proof is to

show the existence of the phase transition as well as the uniqueness of the giant component,

and hence will not show the results with same amount of precision as stated in Theorem

1.2.5. It will be done by assessing cyclic components and tree components separately. In

fact, we will see that in the subcritical regime, with high probability the largest component

is a tree.

In the uniform random graph model, Gn,m uniformly picks a graph from the collection

Gn,m = {G = (V,E) : V = [n], |E| = m}. One can look at a similar model for more restric-

tive families of random graphs, for example conditioning that a graph is planar or is acyclic.

In these settings, we can likewise study the existence of such phase transitions for component

sizes as a function of the number of edges. In this case, we will be imposing conditions on

the Gn,m model. The following two examples gives results for the phase transitions in these

two more restrictive cases, these results will be given without proof.

Example 1.2.6 (Random Forests). Let Fn,m be the collection of forests on vertex set [n]

and having m edges. Let Fn,m be a uniform element taken from Fn,m, we call Fn,m a random

forest. The limiting behaviour of component sizes is described in [20] showing that random

forests too exhibit a phase transition when m = n
2
.

Theorem 1.2.7. Take s = s(n) and set m = n
2

+ s. In the random forest model Fn,m, set

C(i) = C(i) (Fn,m) for all i. Then with high probability,

8



∣∣C(i)
∣∣ =



(
1
2

+ o(1)
)
n2

s2
log |s

3|
n2 if s3

n2 → −∞,

Θ
(
n2/3

)
if s3

n2 → c ∈ R,

(4 + o(1))s if s3

n2 →∞, n− s→∞, and i = 1,

O
(
(n− s)2/3

)
if s3

n2 →∞, n− s→∞ and i ≥ 2.

In the subcritical regime, the component sizes are identical to the bounds found in The-

orem 1.2.5 for the subcritical regime. This is consistent with the fact that most of the

components in the uniform random graph are trees with high probability. Furthermore, ran-

dom forests are similar to the uniform random graph in the critical regime. In the critical

regime of the uniform random graph, the ratio |C
(1)(Gn,m)|
|C(i)(Gn,m)| is bounded in probability for any

i, and in the case of random forests in the critical regime, [20] shows that ratio |C
(1)(Fn,m)|
|C(i)(Fn,m)| is

likewise bounded in probability.

Example 1.2.8 (Random Planar Graphs). Let Pn,m be the collection of planar graphs on

vertex set [n] and having m edges. Let Pn,m be a uniform element taken from Pn,m, we call

Pn,m a random planar graph. Kang and  Luczak proved that Pn,m exhibits a similar phases

transition as Gn,m with the emergence of a giant component [14]. The critical value for this

case is m = n
2

+O
(
n2/3

)
.

Theorem 1.2.9. Take s = s(n) and let m = n
2

+ s. In the random planar graph model, set

C(i) = C(i) (Pn,m) being the i-th largest component of Pn,m. Then with high probability,

∣∣C(i)
∣∣ =



(
1
2

+ o(1)
)
n2

s2
log |s

3|
n2 if s3

n2 → −∞, s = o(n),

Θ(n2/3) if s3

n2 → c ∈ R,

(2 + o(1))s if s3

n2 →∞, n− s→∞, and i = 1,

Θ
(
n2/3

)
if s3

n2 →∞, n− s→∞ and i ≥ 2.
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1.3 Graph Minors and the Graph Minors Theorem

This section will cover introductory concepts about graph minor theory coming from [17, 24,

26]. We begin with some definitions.

Definition 1.3.1. Let G = (V,E) be graph. A contraction of an edge uv in G is the

replacement of u and v by a new vertex w which is adjacent to all of the neighbours of u

and v. The graph obtained after contracting the edge uv is denoted G/uv.

Definition 1.3.2. Let G = (V,E) be a graph. A subdivision of an edge uv ∈ E is the

deletion of uv in G and the addition of a new vertex w along with two new edges uw and

vw. A graph which has been derived from G by a sequence of edge subdivisions is called a

subdivision of G.

An example of an edge contraction and edge subdivision can be seen in Figure 1.1.

Definition 1.3.3. A graph H is said to be a minor of a graph G if H can be obtained from

G via a (possibly empty) sequence of edge deletions, vertex deletions, and edge contractions.

If H is a minor of G, we write H 4 G. We say H is a proper minor of G, and write H ≺ G,

if H 4 G and H 6= G.

Remark 1.3.4. We use the convention that the minor relation is considered up to graph

isomorphisms. That is, if H is a minor of a graph G and H,H ′ are isomorphic graphs, then

we also say that H ′ is a minor of G.

Note that if H ≺ G then H has either fewer edges than G or fewer vertices than G, so

H 6= G. One shall notice that the minor relation between graphs forms a poset.

Proposition 1.3.5. Let G be the collection of all graphs and 4 be the graph minor relation,

then (G,4) is a partially ordered set.

10



Figure 1.1: Example of an edge contraction and edge subdivision.

Proof. Consider the pair (G,4) and note that every graph is a minor of itself, so 4 is

reflexive.

Let G1, G2, G3 ∈ G so that G1 4 G2 and G2 4 G3. We can see that G1 4 G3 by

concatenating a sequence of deletions and contractions to obtain G2 from G3 with a sequence

of deletions and contractions to obtain G1 from G2. Thus, 4 is transitive.

For antisymmetry, suppose G,H ∈ G so that G 4 H and H 4 G. For the sake of

contradiction, suppose G 6= H where without loss of generality H ≺ G. Then G 4 H ≺ G,

so by transitivity G ≺ G, a contradiction.

Before proceeding with an example, we state two well-known planarity theorems. The

first is a characterization of planar graphs via subdivisions, established by Kuratowski in

11



1930 [16].

Theorem 1.3.6 (Kuratowski’s Theorem). A finite graph G is planar if and only if G con-

tains no subdivision of the complete graph K5 or the complete bipartite graph K3,3.

In the same decade due to Wagner, another characterization of planar graphs was estab-

lished, this time using graph minors [31].

Theorem 1.3.7 (Wagner’s Theorem). A finite graph G is planar if and only if neither the

complete graph K5 nor the complete bipartite graph K3,3 are minors of G.

Definition 1.3.8. A family of graphs G is minor-closed if for any G ∈ G and H 4 G, then

H ∈ G.

In this definition, we may assume that the family of graphs G is closed under graph

isomorphisms since the minor relation is considered up to graph isomorphisms, as mentioned

in Remark 1.3.4. Theorem 1.3.7 in particular implies that the family of planar graphs is

minor-closed. The following shows an example of a minor, along with a non-example that

makes use of Theorem 1.3.6.

Example 1.3.9. Let G be the the graph in Figure 1.2. The complete graph on four vertices

Figure 1.2: The graph G in Example 1.3.9.
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Figure 1.3: An example of a sequence to obtain K4 from G in Example 1.3.9.

K4 is a graph minor ofG. A sequence of vertex deletions, edge deletions and edge contractions

is depicted in Figure 1.3 to show how K4 can be obtained from G.

In this figure, multiple vertex deletions, edge deletions, and edge contractions may be

done all at once for efficiency. Let the coloured vertices and coloured edges depict which

vertex or edge is deleted in the following step of the sequence. The dashed edges depict

which edge is contracted in the following step in the sequence.

In the case of infinite graphs, the sequence of vertex deletions, edge deletions, and edge

contractions in the definition may be infinite. However, we will restrict our attention to

finite graphs. We want to discuss possible ways to characterize a minor-closed family.

Definition 1.3.10. Let G be the collection of finite simple graphs. Let I be a not necessarily

finite index set and take a collection of graphs {Gi : i ∈ I}. Then

Forb {Gi : i ∈ I} = {G ∈ G : Gi 64 G ∀i ∈ I}

is the collection of graphs that forbids any of {Gi : i ∈ I} as a minor.

Some very well known families of graphs can be thought of in terms of the set Forb {·}.

For example, take G to be the collection of all finite graphs, we see that Forb {∅} = G. Take

F to be the collection of all finite forests, then as a forest is characterized as an acyclic graph,

we can write F = Forb {C3} where C3 is the cycle of length three. One more example is the

collection of all finite planar graphs, call it P . By Wagner’s Theorem, it can be seen that
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Forb {K3,3, K5} = P .

A property we hope for in Forb {·} is that it is itself minor-closed. This indeed is the

case.

Proposition 1.3.11. For a collection of graphs {Gi : i ∈ I}, the set Forb {Gi : i ∈ I} is

minor-closed.

Proof. Let G ∈ Forb {Gi : i ∈ I} and suppose H 4 G. Suppose for a contradiction that

H /∈ Forb {Gi : i ∈ I}, so there is some i ∈ I so that Gi 4 H. Then Gi 4 H 4 G, and by

transitivity, Gi 4 G. This contradicts the fact that G ∈ Forb {Gi : i ∈ I} and so it must

be that H ∈ Forb {Gi : i ∈ I}. As G ∈ Forb {Gi : i ∈ I} and H 4 G were arbitrary, then

it follows that Forb {Gi : i ∈ I} is minor-closed.

Any collection of graphs defined by Forb {·} is minor-closed. If every minor-closed family

of graphs can be written in terms of Forb {·}, then this provides a characterization of minor-

closed families of graphs in terms of which graphs they exclude.

Definition 1.3.12. For a family of graphs G, we say a graph H is an excluded minor of G

if H is not a minor of G for every G ∈ G. In this case, we also call H a forbidden minor.

For an excluded minor H of G, we say H is minimal if every minor of H is a minor of some

graph in G.

Note that if G is a minor-closed family and H /∈ G, then H is automatically an excluded

minor of G. It follows that taking F = {H : H is a graph, H /∈ G}, then G = Forb {F}.

Thus, all minor-closed families have a forbidden minor characterization. In fact, every minor-

closed family can be characterized by a finite set of excluded minors. This was conjectured

by Wagner [32] and later proved by Robertson and Seymour [27].

Definition 1.3.13. A partially ordered set (P,≤) is a well-quasi ordering if for every infinite

sequence (xi)i≥1 of elements from P we can find two indices i, j so that i < j and xi ≤ xj.
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Robertson and Seymour proved that any infinite sequence of finite graphs must have one

graph that is a proper minor of another. The Graph Minors Theorem is a direct consequence.

Theorem 1.3.14 (Robertson, Seymour). Let G be the collection of all finite graphs, then

(G,4) is a well-quasi ordering.

Corollary 1.3.15 (Graph Minors Theorem). A minor-closed family G can be characterized

by a finite list of forbidden minors.

Proof. Let G be a minor-closed family and H be the collection of minimal excluded minors.

Note that H characterizes G as every graph not in G is either in H or has a minor in H so

G = Forb {H}. If H were infinite, then by the Robertson-Seymour Theorem there would be

G,H ∈ H so that G ≺ H. In this case, H is not a minimal minor, so this contradicts H

being a collection of minimal minors. Thus, H is finite.

The examples in Section 1.2 looked at the phase transitions for the largest connected

component for each of the binomial random graph Gn,m, random forests Fn,m, and random

planar graphs Pn,m. Furthermore, recall that

Gn,m = {G = (V,E) : V = [n], |E| = m} ,

where Gn,m was uniformly selected from Gn,m. Similarly, Fn,m and Pn,m were uniformly

selected from Fn,m and Pn,m, respectively. Each of Gn,m,Fn,m,Pn,m are subsets of minor-

closed families of graphs. Precisely,

Gn,m = Gn,m ∩ Forb {∅} ,

Fn,m = Gn,m ∩ F = Gn,m = Gn,m ∩ Forb {C3} ,

Pn,m = Gn,m ∩ P = Gn,m = Gn,m ∩ Forb {K3,3, K5} .
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So in the previous examples, we can consider each random graph to be sampled from a subset

of a minor-closed class. A natural direction to look into is to check if such a phase transition

exists for any minor-closed family. We conclude this section with a conjecture.

Conjecture 1. Let G̃ be a minor-closed family of graphs. For all n,m ∈ N, set

G̃n,m =
{
G̃ ∈ G̃ : V

(
G̃
)

= [n],
∣∣∣E (G̃)∣∣∣ = m

}

and take G̃n,m to a random graph uniformly selected from G̃n,m. Then there is a constant

c > 0 so that:

(i) If a < c then for all ε > 0,

lim
n→∞

P
(∣∣∣C(1)

(
G̃n,an

)∣∣∣ > εn
)

= 0.

(ii) If a > c then there exists ε > 0 so that,

lim
n→∞

P
(∣∣∣C(1)

(
G̃n,an

)∣∣∣ > εn
)

= 1.

We conjecture that for any random graph model G̃n,m, that is defined by uniformly

selecting an element from a subset of a minor-closed class of graphs, there is a critical value

cn so that w.h.p. G̃n,m has a component of linear size when m > an for a > c. Otherwise,

w.h.p. every component of G̃n,m is sub-linear when m < an for a < c.

1.4 Embeddability of Maps and Graphs

The collection of terminology is taken from [1, 22, 29]. We discuss the notions of what it

means for a graph and map to be embeddable on a surface. We also discuss the distinction
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between planar graphs and planar maps. Whenever we refer to a surface, we are always

considering an oriented, compact, connected 2-manifold without boundary.

Definition 1.4.1. Let G be a graph and S be a surface. Then G is said to be embeddable

on S if there exists a drawing of G on S without any edge crossings.

The definition of embeddability requires the existence of a drawing without edge crossings,

although many drawings could exist with edge crossings. A particular case we will study is

when S is the sphere. In this case, a graph that is embeddable on S is called a planar graph.

We will often view planar graphs drawn on the plane instead of the sphere. One common

example of a planar graph is the complete graph K4, which is the largest complete planar

graph. Figure 1.4 shows two drawings of K4, the drawing on the right is an embedding into

the plane without edge crossings

Figure 1.4: A non-planar and planar drawing of K4.

Another example to consider is K5, which by Kuratowski’s Theorem is non-planar. How-

ever, we see in Figure 1.5 that K5 is embeddable on the torus.

Definition 1.4.2. Let S be a surface and G be a graph embeddable on S. Embed G in S,

then S − G is obtained my removing the images in S of all the vertices and edges in G. A

face of G is a connected component of S −G.

An example of S −G for a graph G embedded in the sphere is shown in Figure 1.6.
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Figure 1.5: An embedding of K5 on the torus.

Figure 1.6: S −G where G is a graph embeddable on the sphere.

Definition 1.4.3. Let S be a surface, then a map in S is an embedding of a connected graph

G in S drawn so that each face is homeomorphic to an open disk. That is, each connected

component of S−G is simply connected. In this case, call G the underlying graph of M and

denote it by G(M).

For notation, take a map M and its underlying graph G(M) = (V,E). Then, we take

V (M) to be the vertices V under the embedding M and E(M) to be the set of edges E

under the embedding M . When it is clear we are referring to the vertices and edges under

the embedding, we simply say M has vertex set V and edge set E.
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In Figure 1.6, we see that the embedding of G is not a map as the removal of the isolated

vertex in the right hemisphere does not result in a face that is homeomorphic to a disk.

However, if we took H to be the graph obtained from G by removing the singleton, then

under the induced embedding, we obtain a map on S.

From this definition, a map M is an embedding of G(M). Note that this underlying graph

is unique. Furthermore, the definition of a map implies that for any map M in any surface

S, the underlying graph G(M) is connected. An observation to note is that embeddability

in S is closed under taking minors.

Proposition 1.4.4. Let S be a surface and G be a graph embeddable in S, then any minor

of G is also embeddable in S.

Proof. Since minors are obtained through vertex deletions, edge deletions, and edge contrac-

tions, and as embeddability is clearly preserved under taking subgraphs, we only need to

check that edge contractions preserve embeddability in S. This is clear by viewing S as a

polygon. By the classification theorem of surfaces [5], S can be viewed as a polygon with its

sides labelled and oriented. Fix a graph G that is embeddable in S and embed G so that

all the vertices are on the face of the polygon. For an edge uv, draw G/uv by fixing u and

draw all the edges of v to be incident with u by following near to the path fromu to v given

by the embedding of edge uv.

A depiction of this process can be seen in Figure 1.7. Two examples are shown: one when

the edge being contracted is completely on the face of the polygon, and one where the edge

being contracting passes through one of the polygon sides. Then G/uv is drawn on S with

no edges crossing, which shows that embeddability is preserved under edge contractions.

For a graph G that is embeddable in S, then any embedding of G in S corresponds to

the same graph. However, different embeddings of G could correspond to different maps.

The notion of map isomorphism becomes pertinent.
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Figure 1.7: Two examples of contracting edges on a surface for Proposition 1.4.4. The edge labels
and orientations of the polygon are omitted and the different edge colours are used to distinguish
distinct edges. The edges with both endpoints labelled will be contracted.

Definition 1.4.5. Let M,M ′ be maps on surfaces S, S ′ respectively. Then M is isomorphic

to M ′ if there is an orientation preserving homeomorphism ϕ : S −→ S ′ so that ϕ(V (M)) =

V (M ′) and ϕ(E(M)) = E(M ′). In this case, we call ϕ an map isomorphism.

In this paper, our focus will be in the case where S = S ′. So maps are only viewed

as equivalent up to orientation preserving homeomorphisms of S. Figure 1.8 provides an

example where the first two embeddings on the plane are equivalent but the last is not.

From the notion of map isomorphism, we see that maps not only rely on the structure

of their underlying graph but also on the structure of the surface they are embedded onto.

Due to these factors, there are many more maps than graphs that are embeddable on a fixed

surface S.

Enumerating graphs embeddable on a fixed surface becomes difficult due to overcounting
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Figure 1.8: Equivalent and non-equivalent embeddings on the plane.

embeddable graphs. This is particularly seen in the planar case where enumerative formulas

for planar maps were established almost 50 years prior to their analogues for planar graphs.

Tutte established a combinatorial argument for enumerating planar maps in [29] and in this

same paper provided an enumeration for 3-connected planar maps. This formulation for 3-

connected planar maps exactly counted 3-connected planar graphs as Whitney showed that

embeddings of of 3-connected planar graphs are equivalent [33]. Tutte’s recursive method

was used for these two enumerations, however once this connectivity restraint is removed,

the combinatorics of counting planar graphs with 2-connectivity or less must resort to a

different technique. Bender, Gao, and Wormald [2] use singularity analysis to count 2-

connected planar graphs. This was extended to counting general planar maps by Giménez

and Noy [12] in 2008, also using singularity analysis. Such singularity analysis techniques

will not be covered but can be seen in [9].

1.5 Outline

The uniform random graph, random planar graph, and random forest models all share a

similar phase transition for the largest connected component. Further noticing that these

models are all uniformly sampled from subsets of minor-closed classes is the underlying mo-
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tivation for Conjecture 1. Although we were not able to obtain the result in this conjecture,

there were many natural avenues to attempt. We display two in this thesis.

Chapter 2 contains a combinatorial proof of the existence of the phase transition for the

binomial random graph model. The proofs of the phase transition results in the examples

from Section 1.2 rely on enumerative methods, and as minor-closed families are closely

related to graphs on surfaces [15, 22], another approach to attempt would be to develop the

enumerative theory of graphs on surfaces, and then extend it to more general minor-closed

families. In Chapter 3, we enumerate different classes of planar maps as well as provide a

general strategy in establishing the algebraicity of systems of functional equations which can

be used to study the generating functions of such classes.
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Chapter 2

Phase Transition in Gn,p

We follow the proof given in [10] which is combinatorial in nature. Here, we provide ap-

proximate bounds on the sizes of the components in the subcritical and supercritical regime

as well as the uniqueness of the giant component. Proofs with more precise constants and

results on the critical regime can be found in [18, 19, 21]. Another proof can be found in

Chapter 5 of [30] that utilizes branching processes.

We first provide definitions and notation that will be used in the proofs of both regimes.

Definition 2.0.1. Let G = (V,E) and G′ = (V ′, E ′) be two graphs. Then the union graph

of G and G′ is the graph

G ∪G′ = (V ∪ V ′, E ∪ E ′).

Furthermore, a realization of G ∪ G′ can be obtained by taking G and superimposing

G′. In this case, any double edges would be replaced by a single edge; see Figure 2.1. Given

graphs G and H, we write H ⊂ G if H is a subgraph of G, and write H ∈ Comp(G) if H is

a connected component of G.

Lastly before continuing on to the proof of the sizes of the connected components in the

Gn,p model, we note that in many instances, we will be taking either the floor or the ceiling
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(a) Two graphs that have the black vertices in common.
(b) The result of superimposing
the graphs G1 and G2.

(c) The graph G1 ∪G2

Figure 2.1: An example of superimposing graphs to get their union.

when referring to component sizes. For the purpose of exposition, these operations will be

omitted.

2.1 Subcritical Regime

When p < 1
n
, the random graph model Gn,p falls into the subcritical regime. We expect

every component to have order O(log n) and furthermore, we see through the course of the

proof that w.h.p. each component is either a tree or unicyclic.

Theorem 2.1.1. Let p = c
n

where c ∈ (0, 1) is a constant. Then with high probability, the

order of the largest component of a random graph Gn,p is Θ(log n).

The proof will be given in a sequence of lemmas.

Lemma 2.1.2. Let p = c
n

where c ∈ (0, 1) is a constant. Then with probability 1 − O
(
1
n

)
,

every component of Gn,p has at most one cycle.
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Proof. In a graph G, we call a pair of cycles C1, C2 of G minimal if C1, C2 lie in the same

component of G and one of the following hold, which is depicted in Figure 2.2:

(1) C1, C2 are joined at a vertex

(2) C1, C2 are joined by a path P (in this case, there could be several paths connecting C1

and C2, fix one of them to be the path P )

(3) C1 ∪ C2 form a cycle with a diagonal path

(a) Two cycles joined at a vertex
as in case (1). (b) Two cycles joined by a path as in case (2).

(c) Union of two cycles that create
a cycle with a diagonal path as in
case (3).

Figure 2.2: Conditions of minimal cycles in Lemma 2.1.2.

Now define H ⊂ G by setting H = C1∪C2 in cases (1) or (3), or H = C1∪C2∪P in case

(2), and call H a minimal subgraph. Then we see that H is a union H = P1 ∪P2 ∪P3 where

P1 is a path and P2, P3 are additional distinct edges attached to the endpoints of P1; refer

to Figure 2.3. If H is a subgraph on k vertices, then H consists of k + 1 edges. Further, if

we insist that V (H) is a fixed set of k labelled vertices, then we bound the total number of
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Figure 2.3: Showing three paths whose union is H in Lemma 2.1.2.

minimal subgraphs H by

|{H ⊂ G : V (H) = [k], H = P1 ∪ P2 ∪ P3 for a minimal pair of cycles}| ≤ k!k2, (2.1.1)

where k! counts the number of options for P1 and k2 counts the second attachment locations

for P2 and P3.

Now in the Gn,p model for any pair of cycles C1, C2 in the same component, either they

are minimal or a minimal pair exists in the same component. We define a random variable

that counts the number of minimal subgraphs in Gn,p,

X = |{H ⊂ Kn : H is a minimal subgraph in Gn,p}|

=
n∑
k=4

∑
H⊂Kn,
|H|=k

1{H⊂Gn,p is minimal}

=
n∑
k=4

∑
H⊂Kn,
V (H)=[k]

(
n

k

)
1{H⊂Gn,p is minimal}.
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But since c ∈ (0, 1), then there is some constant M <∞ so that

∑
k≥1

k2ck+1 = M. (2.1.2)

Then applying the first moment method,

P (X > 0) ≤
n∑
k=4

∑
H⊂Kn,
V (H)=[k]

(
n

k

)
E
(
1{H⊂Gn,p is minimal}

)
(Corollary 1.1.6)

≤
n∑
k=4

(
n

k

)
k!k2pk+1 (equation (2.1.1))

≤
n∑
k=4

nk

k!
k!k2

ck+1

nk+1

≤ 1

n

∑
k≥1

k2ck+1

=
M

n
, (equation (2.1.2))

where pk+1 in the second line is the probability of the k + 1 edges being present. Therefore,

lim
n→∞

P (Gn,p has at most one cycle in each component) = lim
n→∞

(1− P (X > 0))

≥ lim
n→∞

(
1− M

n

)
= 1.

From this, the contenders for the largest component would be unicyclic components and

isolated trees. The next lemma says that w.h.p. any uncyclic component has order O(ω) for

any function ω = ω(n) that tends to infinity. In particular, w.h.p. every unicylic component

has order O(log n).

Lemma 2.1.3. Let p = c
n

where c ∈ (0, 1) is a constant and ω = ω(n) be any function
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that tends to infinity. Then with high probability, the number of vertices in components with

exactly one cycle is O(ω).

Proof. Take p = c
n

with constant c ∈ (0, 1) and consider the Gn,p model. We approximate

the number of vertices in unicyclic components. For fixed k define a random variable

Xk = |{H ⊂ Kn : |H| = k, H is a unicyclic component in Gn,p}|

=
∑

H⊂Kn unicyclic,
|H|=k

k · 1{H∈Comp(Gn,p)}.

Note that a unicyclic graph on k vertices is precisely a tree with an additional distinct edge.

Thus, we may bound the number of unicyclic graphs on vertex set [k] by

|{H : H is a unicyclic graph, V (H) = [k]}| ≤
(
k

2

)
· |{T : T is a tree, V (T ) = [k]}|

=

(
k

2

)
kk−2, (2.1.3)

where the factor kk−2 comes from Cayley’s formula for labelled trees. Furthermore, for a

fixed unicyclic graph H on vertex set [k] then H has k edges and observe

P (H ∈ Comp(Gn,p)) = pk(1− p)(
k
2)−k+k(n−k), (2.1.4)

where the factor pk is for the k edges of H being present, the factor (1− p)(
k
2)−k corresponds

to no other edges among the vertex set [k] being present, and the factor (1−p)k(n−k) accounts

for excluding the edges between [k] and [n] \ [k]. Estimating the first moment of Xk,
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E (Xk)

=
∑

H⊂Kn unicyclic,
|H|=k

kP (H ∈ Comp(Gn,p))

= k

(
n

k

) ∑
H⊂Kn unicyclic

V (H)=[k]

P (H ∈ Comp(Gn,p))

≤ k

(
n

k

)(
k

2

)
kk−2pk(1− p)(

k
2)−k+k(n−k) (equations (2.1.3), (2.1.4))

≤ nk

k!
exp

{
−k(k − 1)

2n

}
kk+1 · c

k

nk
exp

{
−ck

((
k

2

)
− k + k(n− k)

)}
(Lemma 1.1.3 (a), (e))

≤ nk

k!
exp

{
−k(k − 1)

2n

}
kk+1 · c

k

nk
exp

{
−ck +

ck(k − 1)

2n
+
k

n

(
3c

2

)}
≤ ek

kk
kk+1ck exp

{
−k(k − 1)

2n
− ck +

k(k − 1)

2n
+

3c

2

}
(Lemma 1.1.3 (f))

= kck exp {k(1− c)} e
3c
2

= k(ce1−c)ke
3c
2 .

Note that ce1−c < 1 for c 6= 1 and so,

∑
k≥1

k2ck+1 = M, (2.1.5)

for some constant M <∞. Computing the expectation for varying k,

E

(
n∑
k=3

Xk

)
≤

n∑
k=3

k(ce1−c)ke
3c
2 ≤ e

3c
2

∑
k≥1

k(ce1−c)k = Me
3c
2 = O(1), (2.1.6)

where the second last equality is due to equation (2.1.5). It follows that for any function
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ω = ω(n) so that ω(n)→∞ as n→∞,

P

(
n∑
k=3

Xk ≥ ω

)
≤ E (

∑n
k=3Xk)

ω
(Theorem 1.1.5)

= O

(
1

ω

)
= o(1).

That is, for any growing function ω = ω(n), w.h.p. the number of vertices lying in unicyclic

components is bounded by ω.

This lemma will be useful in the proofs which address the supercritical regime. The

remaining candidate for the largest component in the subcritical case is an isolated tree.

Part (i) of the following lemma provides the lower bound of Theorem 2.1.1 and part (ii)

finishes the upper bound. Furthermore, the following lemma will also be used in the later

proofs that address the supercritical regime and will note now that the proof of (i) holds for

general c 6= 1.

Lemma 2.1.4. Let p = c
n

for a constant c < 1. Set α = c− 1− log c and take ω = ω(n) to

be a growing function so that ω = o(log log n). Then:

(i) with high probability, there exists an isolated tree of order

k− =
1

α

(
log n− 5

2
log log n

)
− ω,

(ii) with high probability, there is no isolated tree of order at least

k+ =
1

α

(
log n− 5

2
log log n

)
+ ω.

Proof. Note that as c 6= 1 is a positive constant, then α = c− 1− log c is a positive constant
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as well. Considering the random graph Gn,p with p = c
n
, we count the number of isolated

trees. For k ∈ N, let

Xk = |{T ⊂ Kn : T is an isolated tree in Gn,p, |T | = k}|

=
∑

T⊂Kn tree,
|T |=k

1{T∈Comp(Gn,p)}.

Observe that for a fixed tree T on vertex set [k] then T has k − 1 edges, so

P (T ∈ Comp(Gn,p)) = pk−1(1− p)(
k
2)−k+1+k(n−k), (2.1.7)

where the factor pk−1 is for the k − 1 edges of T being present, the factor (1 − p)(
k
2)−k+1

corresponds to no other edges among the vertex set [k] being present, and the factor (1 −

p)k(n−k) accounts for excluding the edges between [k] and [n] \ [k]. Computing the first

moment,

E (Xk) =
∑

T⊂Kn tree,
|T |=k

P (T ∈ Comp(Gn,p))

=

(
n

k

) ∑
trees T,
V (T )=[k]

P (T ∈ Comp(Gn,p))

=

(
n

k

) ∑
trees H,
V (T )=[k]

pk−1(1− p)(
k
2)−k+1+k(n−k) (equation (2.1.7))

=

(
n

k

)
kk−2

( c
n

)k−1 (
1− c

n

)k(n−k)+(k2)−k+1

. (2.1.8)

To prove (i), suppose k = O(log n) and notice,
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E (Xk)

=

(
n

k

)
kk−2

( c
n

)k−1 (
1− c

n

)k(n−k)+(k2)−k+1

=

(
n

k

)
kk−2

ck−1

nk−1
(1 + o(1)) exp

{
− c
n

{
k(n− k) +

(
k

2

)
− k + 1

}}
(Lemma 1.1.3 (a), (b))

= (1 + o(1))
n

c
· k

k−2

k!
ck exp {−ck + o(1)} (since k = O(log n))

= (1 + o(1))
n

c
· k

k−2

k!
(ce−c)k (2.1.9)

=
(1 + o(1))

c
√

2π
· n

k5/2
(ce1−c)k (Theorem 1.1.4)

=
(1 + o(1))

c
√

2π
· n

k5/2
exp {(log c+ 1− c)k}

=
(1 + o(1))

c
√

2π
· n

k5/2
e−αk. (2.1.10)

Taking k = k− := 1
α

(
log n− 5

2
log log n

)
− ω,

E (Xk) =
(1 + o(1))

c
√

2π
· n

k5/2
exp

{
− log n+

5

2
log log n+ αω

}
=

(1 + o(1))

c
√

2π
· 1

k5/2
(log n)5/2eαω

≥ Aeαω, (2.1.11)

for some A > 0. Assessing the second moment of Xk,

E
(
X2
k

)
=

∑
trees T1,T2⊂Kn,
|T1|=|T2|=k

P (T1 ∈ Comp(Gn,p), T2 ∈ Comp(Gn,p))
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=
∑

trees T1⊂Kn,
|T1|=k

P (T1 ∈ Comp(Gn,p)) +
∑

trees T1,T2⊂Kn,
|T1|=|T2|=k
T1 6=T2

P (T1 ∈ Comp(Gn,p), T2 ∈ Comp(Gn,p))

(2.1.12)

The first sum in equation (2.1.12) is simply E (Xk). For the second, note that if

V (T1) ∩ V (T2) = ∅ and |T1| = k then,

P {T2 ∈ Comp(Gn,p) | T1 ∈ Comp(Gn,p)} = P (T2 ∈ Comp(Gn,p)) (1− p)−k2 ,

since the conditioning tells us that the k2 potential edges between V (T1) and V (T2) are

absent. Also, if V (T1) ∩ V (T2) = ∅ but T1 6= T2 then,

P {T2 ∈ Comp(Gn,p) | T1 ∈ Comp(Gn,p)} = 0.

So equation (2.1.12) gives that

E
(
X2
k

)
= E (Xk) +

∑
trees T1,T2⊂Kn,
|T1|=|T2|=k

V (T1)∩V (T2)=∅

P (T1 ∈ Comp(Gn,p))P (T2 ∈ Comp(Gn,p)) (1− p)−k2

= E (Xk) + (1− p)−k2
∑

trees T1⊂Kn,
|T1|=k

P (T1 ∈ Comp(Gn,p))
∑

trees T2⊂Kn,
|T1|=k

V (T1)∩V (T2)=∅

P (T2 ∈ Comp(Gn,p))

= E (Xk) + (1− p)−k2E (Xk)
∑

trees T2⊂Kn,
|T1|=k

V (T1)∩[k]=∅

P (T2 ∈ Comp(Gn,p))

≤ E (Xk) + (1− p)−k2E (Xk)
∑

trees T2⊂Kn

P (T2 ∈ Comp(Gn,p))

= E (Xk) + (1− p)−k2E (Xk)
2 .
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As the focus is on the asymptotic behaviour of Gn,p, we may assume that n is large enough

so that ck2

n−c < 1. Then note that,

(1− p)−k2 =

(
n

n− c

)k2
=

(
1 +

1

n− c

)k2
≤ exp

{
c

n− c
k2
}
≤ 1 + 2

ck2

n− c
,

the last bound holding when ck2

n−c < 1 by Lemma 1.1.3 (g). Computing the variance of Xk,

we obtain the bound

Var (Xk) = E
(
X2
k

)
− E (Xk)

2

≤ E (Xk)
(

1 + (1− p)−k2E (Xk)
)
− E (Xk)

2

= E (Xk) + E (Xk)
2
(

(1− p)−k2 − 1
)

≤ E (Xk) +
2ck2

n− c
E (Xk)

2 .

For fixed ε > 0, Chebyshev’s inequality (Theorem 1.1.7) then implies that

P (|Xk − E (Xk)| ≥ εE (Xk)) ≤
Var (Xk)

ε2E (Xk)
2

≤ E (Xk)

ε2E (Xk)
2 +

2ck2E (Xk)
2

(n− c)ε2E (Xk)
2 (2.1.13)

≤ 1

ε2Aeαω
+ o(1)

= o(1),

where the last equality is due to ω being a growing function. Therefore, w.h.p.

Xk = E (Xk) ≥ Aeαω > 0,

where k = k−, and this completes the proof of (i).
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Now for (ii), we first estimate an upper bound on E (Xk),

E (Xk) =

(
n

k

)
kk−2

( c
n

)k−1 (
1− c

n

)k(n−k)+(k2)−k+1

≤ nk

k!

(
1− k

2n

)k−1
kk−2

( c
n

)k−1 (
1− c

n

)kn−k2+ k2

2
− k

2
−k+1

≤ nk√
2πk

( e
k

)k (
1− k

2n

)k−1
kk−2

( c
n

)k−1
exp

{
−ck +

ck2

2n
+
ck

2n
+
ck

n
− c

n

}
,

where the penultimate inequality is an application of Lemma 1.1.3 (d) and the last inequality

uses Theorem 1.1.4. Note that ck
2n

+ ck
n
− c

n
= O(1) is bounded as n varies, so collecting

constants, there is some B > 0 so that

E (Xk) ≤
B√
k

(ne
k

)k
kk−2

(
1− k

2n

)k−1 ( c
n

)k−1
exp

{
−ck +

ck2

2n

}
=

Bn

k5/2
ek(1−c(1−

k
2n)) c

(
1− k

2n

)k
c
(
1− k

2n

)
=

2Bn

k5/2c

(
ĉke

1−ĉk
)k
,

where ĉk = c
(
1− k

2n

)
, and 1

1− k
2n

≤ 2 follows from the fact that k ≤ n and c > 0. If c < 1,

then it follows that

ĉke
1−ĉk = c

(
1− k

2n

)
e1−c(1−

k
2n)

≤ ce1−c
(

1− k

2n

)
eck/2n

≤ ce1−c exp

{
ck

2n
− k

2n

}
≤ ce1−c.
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So recalling that α = c− 1− log c,

n∑
k=k+

E (Xk) ≤
n∑

k=k+

2Bn

k5/2c

(
ĉke

1−ĉk
)k

≤ 2Bn

k
5/2
+ c

n∑
k=k+

(
ce1−c

)k
=

2Bn

k
5/2
+ c

∞∑
k=k+

e−αk

=
2Bn

k
5/2
+ c
· e

−αk+

1− e−α

=
2Bn

c (1− e−α)
·

exp
{
− log n+ 5

2
log log n− αω

}(
1
α

(
log n− 5

2
log log n

)
+ ω

)5/2 (plugging in value of k+)

= O(1)e−αω

= o(1). (2.1.14)

It follows from Corollary 1.1.6 that

P

∑
k≥k+

Xk ≥ 0

 ≤ E

∑
k≥k+

Xk

 = o(1).

Therefore, w.h.p. all tree components have order less than k+.

Part (ii) of this lemma says that with high probability, every tree component has order

less than k+ = O(log n). As this was the last contender for the largest component of Gn,p

then every component of Gn,p has order O(log n), with high probability. Part (i) guarantees

w.h.p. the existence of some component having order at least O(log n), giving the result that

w.h.p. |C(1) (Gn,p) | = Θ(log n).
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2.2 Supercritical Regime

Before proving the emergence of the giant component, we provide two tools that will be used

in the proof. The following observation allows one to generate a uniform random graph Gn,p

in two independent steps.

Observation 2.2.1. Let n be a positive integer and p ∈ (0, 1). Take p1 ∈ (0, p) and

p2 ∈ (0, 1) defined by

1− p = (1− p1)(1− p2).

Take the random graphs Gn,p1 , Gn,p2 and consider the random graph G = Gn,p1 ∪ Gn,p2

obtained from Gn,p1 and superimposing it with Gn,p2 . Then note that V (G) = [n] and any

edge e ∈
(
[n]
2

)
is not present in G if and only if e is not present in Gn,p1 and Gn,p2 . That is,

each edge e ∈
(
[n]
2

)
has independent probability (1− p1)(1− p2) = 1− p of not being present

in G. So in fact, Gn,p = Gn,p1 ∪Gn,p2 .

The second tool is the following identity.

Lemma 2.2.2. Let c > 0 so that c 6= 1 is a constant and define x = x(c) by

x =


c c ≤ 1,

the solution in (0, 1) to xe−x = ce−c c > 1.

Then,

1

x

∞∑
k=1

kk−1

k!

(
ce−c

)k
= 1.

Proof. First suppose c < 1. Consider the Gn,p model with p = c
n

and define following random

variables

X =
∑
v∈[n]

1{CGn,p (v) is not a tree},
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and

Xk =
∑

trees T⊂Kn,
|V (T )|=k

1{T∈Comp(Gn,p)}.

So X counts the number of vertices in non-tree components and Xk is as in Lemma 2.1.4

which counts the number of tree components of order k. Then,

n =
n∑
k=1

kXk +X,

and taking expectations,

n = E

(
n∑
k=1

kXk +X

)
=

n∑
k=1

kE (Xk) + E (X) .

From Lemma 2.1.2, the contribution to E (X) from components with more than one cycle is

O(1). Then by equation (2.1.6) of Lemma 2.1.3,

E (X) = O(1).

Furthermore, taking k+ = 1
α

(
log n− 5

2
log log n

)
+ω as in Lemma 2.1.4, then equation (2.1.9)

gives

E (Xk) = (1 + o(1))
n

ck!
kk−2

(
ce1−c

)k
,

for k < k+. So applying these equations and bounds, we get

n =

k+∑
k=1

kE (Xk) +
n∑

k=k++1

kE (Xk) +O(1)

=
n(1 + o(1))

c

k+∑
k=1

kk−1

k!

(
ce1−c

)k
+

n∑
k=k++1

kE (Xk) +O(1)
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=
n(1 + o(1))

c

k+∑
k=1

kk−1

k!

(
ce1−c

)k
+ o(n) (equation (2.1.14))

=
n(1 + o(1))

c

∞∑
k=1

kk−1

k!

(
ce1−c

)k
+ o(n),

where the last equality is due to the fact that
∑∞

k=1
kk−1

k!
(ce1−c)

k
converges, so the tail

n(1 + o(1))

c

∞∑
k=k++1

kk−1

k!

(
ce1−c

)k
= o(n).

Dividing through by n, it follows that

1

c

∞∑
k=1

kk−1

k!

(
ce1−c

)k
= 1 + o(1).

Taking n→∞ and recalling that x = c when c < 1, we obtain the desired identity

1 =
1

c

∞∑
k=1

kk−1

k!

(
ce1−c

)k
.

Finally, for c > 1, since x = x(c) ∈ (0, 1) is a solution to xe−x = ce−c, we have

1 =
1

x

∞∑
k=1

kk−1

k!

(
xe1−x

)k
(x < 1)

=
1

x

∞∑
k=1

kk−1

k!

(
ce1−c

)k
.

(
xe−x = ce−c

)
We are now in position to prove the existence and uniqueness of the giant component as

well as provide bounds on the component sizes.

Theorem 2.2.3. Let p = c
n

with constant c > 1. Take x = x(c) to be the solution of

ce−c = xe−x in (0, 1). Then with high probability, Gn,p has a unique giant component with

order
(
1− (1 + o(1))x

c
+ o(1)

)
n. Furthermore, all other components have order at most
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O(log n), with high probability.

Proof. Take p = c
n

with c > 1 a constant and consider Gn,p. Let Zk be the random variable

that counts the number of components in Gn,p of order k. Note that if H is a component

in Gn,p then there exists a spanning tree TH of H such that the edges of TH are present in

Gn,p. Furthermore, no edges between V (TH) = V (H) and [n] \ V (TH) are present in Gn,p.

Then we may bound Zk by

Zk ≤
∑

tree T⊂Kn,
|T |=k

1{T⊂Gn,p}1{no edges present between V (T ) and [n]\V (T )}.

Fixing a tree Tk on vertex set [k],

E (Zk) ≤
∑

tree T⊂Kn,
|T |=k

P (T ⊂ Gn,p, no edges present between V (T ) and [n] \ V (T ))

=

(
n

k

) ∑
tree T⊂Kn,
V (T )=[k]

P (T ⊂ Gn,p, no edges present between V (T ) and [n] \ V (T ))

=

(
n

k

) ∑
tree T⊂Kn,
V (T )=[k]

P (Tk ⊂ Gn,p, no edges present between V (Tk) and [n] \ V (T ))

=

(
n

k

)
kk−2pk−1 (1− p)k(n−k)

≤ nk

k!
kk−2

( c
n

)k−1
exp

{
− c
n
· k(n− k)

}
≤ n

k2
· ck exp

{
k − ck +

ck2

n

}
(Lemma 1.1.3 (f), c > 1)

=
n

k2

(
ce1−c+

ck
n

)k
.

Take β1 = β1(c) to be a constant small enough so that

δ := ce1−c+cβ1 < 1,
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which exists as 1− c < 0. Also take β0 = β0(c) to be a constant large enough so that

(
ce1−c+

c
n
β0 logn

)β0 logn ≤ 1

n2
.

Such a constant β0 exists as

(
ce1−c+

c
n
β0 logn

)β0 logn
= cβ0 logn

(
elogn

)(1−c)β0
e
c
n
β2
0 log2 n =

(
clogn

nc−1

)β0 (
e
c log2 n
n

)β2
0

,

where we observe that clogn

nc−1 < 1 and limn→∞ e
c log2 n
n = 1. Focusing on components of order

k ∈ [β0 log n, β1n], we then have

P

(
β1n∑

k=β0 logn

Zk > 0

)
≤

β1n∑
k=β0 logn

E (Zk) (Corollary 1.1.6)

≤
β1n∑

k=β0 logn

n

k2

(
ce1−c +

ck

n

)k
≤ (β0 log n+ β1n)

(
n

β2
0 log2 n

· 1

n2
+
nδnβ1

β2
1n

2

)
(choice of β0, β1)

=
1

β0n log n
+
β0δ

nβ1

β2
1

+
β1

nβ2
0 log2 n

+
δnβ1

β1

= o(1).

Hence, with high probability, no component in Gn,p is of order k ∈ [β0 log n, β1n]. Next,

we will estimate the number of vertices that lie in components of size at most β0 log n. By

doing this, we may infer that the remaining vertices will lie in giant components. That is,

the components of order at least β1n. The estimate of the vertices in ‘small’ components

will be done in two claims.

Claim 1: The number of vertices in tree components of order at most β0 log n is (1 +
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o(1))xn
c

+ o(n).

As in Lemma 2.1.4, define

Xk =
∑

tree T⊂Kn,
|V (T )|=k

1{T∈Comp(Gn,p)},

to be the number of isolated trees of order k. We consider the value of k in two parts. First

consider when 1 ≤ k ≤ k0 =
⌊

1
2α

log n
⌋
, where α = c− 1− log c > 0 as in Lemma 2.1.4. So

by equation (2.1.9),

E

(
k0∑
k=1

kXk

)
= (1 + o(1))

n

c

k0∑
k=1

kk−1

k!
(ce−c)k

= (1 + o(1))
n

c

∞∑
k=1

kk−1

k!
(ce−c)k, (2.2.1)

where we may extend the summation as
∑∞

k=1
kk−1

k!
(ce−c)k converges. Then taking ε = 1

logn
,

P (|Xk − E (Xk)| ≥ εE (Xk) for some k ∈ [k0])

≤
k0∑
k=1

P (|Xk − E (Xk)| ≥ εE (Xk))

≤
k0∑
k=1

(
log2 n

E (Xk)
+

2ck2 log2 n

n− c

)
(equation (2.1.13))

≤
k0∑
k=1

(
O(log2 n)eαkk5/2

(1 + o(1))n
+

2ck20 log2 n

n− c

)
(equation (2.1.10))

≤ k0

(
O(log2 n)eαk0k

5/2
0

(1 + o(1))n
+
O(log5 n)

n− c

)

≤ O(log11/2 n)

n1/2
+
O(log6 n)

n− c

= o(1).
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So w.h.p., kXk ∈ [(1− ε)E (Xk) , (1 + ε)E (Xk)]. Then as ε = 1
logn

= o(1), w.h.p.,

k0∑
k=1

kXk = (1 + o(1))

k0∑
k=1

E (Xk)

= (1 + o(1))
n

c

∞∑
k=1

kk−1

k!
(ce−c)k (equation (2.2.1))

= (1 + o(1))
n

c

∞∑
k=1

kk−1

k!
(xe−x)k

= (1 + o(1))
nx

c
. (Lemma 2.2)

Now for k0 ≤ k ≤ β0 log n, we have

E

(
β0 logn∑
k=k0+1

kXK

)

=

β0 logn∑
k=k0+1

kE (XK)

=

β0 logn∑
k=k0+1

(
n

k

)
kk−1

( c
n

)k−1 (
1− c

n

)k(n−k)+(k2)−k+1

(equation (2.1.8))

≤
β0 logn∑
k=k0+1

nk

k!
kk−1

( c
n

)k−1
exp

{
− c
n

(
k(n− k) +

(
k

2

)
− k + 1

)}
(Lemma 1.1.3 (a))

≤ n

c

β0 logn∑
k=k0+1

ek

kk
kk−1ck exp

{
−ck +

ck2

n
− ck2

2n
+
ck

2n
+
ck

n
− c

n

}
(Lemma 1.1.3 (f))

≤ n

c

β0 logn∑
k=k0+1

ck

k
exp {k − ck} exp

{
ck2

n
+
ck

2n

}

≤ n

c

β0 logn∑
k=k0+1

ck exp {k − ck} exp

{
cβ2

0 log2 n

n
+
cβ0 log n

2n

}

=
O(1)n

c

β0 logn∑
k=k0+1

(
ce1−c

)k
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=
O(1)n

c
·
(
ce1−c

)k0 β0 logn∑
k=k0+1

(
ce1−c

)k−k0
= O

(
n
(
ce1−c

)k0) ,
where the last equality follows from the fact that

∑
k≥1(ce

1−c)k converges. Then noticing

that

(
ce1−c

)k0 = O(1) · (exp {log c+ 1− c})
logn
2α = O(1) · exp

{
−α · log n

2α

}
= O

(
n−1/2

)
,

gives

E

(
β0 logn∑
k=k0+1

kXk

)
≤ O

(
n1/2

)
.

Now for any function λ = λ(n) so that λ = o(n) and n1/2 = o(λ), we have

P

(
β0 logn∑
k=k0+1

kXK ≥ λ

)
≤

E
(∑β0 logn

k=k0+1 kXK

)
λ

(Theorem 1.1.5)

≤
O
(
n1/2

)
λ

= o(1).

Therefore, w.h.p.
β0 logn∑
k=k0+1

kXk = o(n).

Thus w.h.p., the number of vertices in tree components of order at most β0 log n is

β0 logn∑
k=1

kXk = (1 + o(1))
nx

c
+ o(n),

and this completes Claim 1.
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Claim 2: The number of vertices in non-tree components of order at most β0 log n is o(n)

with high probability.

Consider the random variable Yk that counts the number of non-tree components in Gn,p

of order k. Note that if H is a non-tree component of Gn,p then there is a (not necessarily

unique) unicyclic subgraph UH that spans H. Then the edges of UH are present in Gn,p, and

as H is a component, then there are no edges between V (UH) and [n] \ UH . Then we may

bound Yk by

Yk ≤
∑

unicyclic U⊂Kn,
|U |=k

1{U⊂Gn,p}1{no edges present between V (U) and [n]\V (U)}.

Take Uk to be a fixed unicyclic graph on vertex set [k] and note that Uk has precisely k

edges. Then following a similar argument as in Lemma 2.1.3 and using equation (2.1.3),

E

(
β0 logn∑
k=1

kYk

)

=

β0 logn∑
k=1

kE (Yk)

≤
β0 logn∑
k=1

k
∑

unicyclic U⊂Kn,
|U |=k

P (U ⊂ Gn,p, no edges present between V (U) and [n] \ V (U))

=

β0 logn∑
k=1

k

(
n

k

) ∑
unicyclic
U⊂Kn,
V (U)=[k]

P (U ⊂ Gn,p, no edges present between V (U) and [n] \ V (U))

=

β0 logn∑
k=1

k

(
n

k

) ∑
unicyclic
U⊂Kn,
V (U)=[k]

P (Uk ⊂ Gn,p, no edges present between V (Uk) and [n] \ V (U))

=

β0 logn∑
k=1

(
n

k

)
kk−1

(
k

2

)( c
n

)k (
1− c

n

)k(n−k)
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≤
β0 logn∑
k=1

nk
( e
k

)k
kk−1

k2

2
· c

k

nk
exp

{
− c
n
· k(k − k)

}
=

β0 logn∑
k=1

k
(
ce1−c

)k
eck

2/n

≤ O(1)
∞∑
k=1

(
ce1−c

)k
= O(1),

where the last equality follows from the fact that
∑

k≥1 (ce1−c)
k

converges. As before, take

a growing function λ = λ(n) so that λ = o(n). Then,

P

(
β0 logn∑
k=1

kYk ≥ λ

)
≤

E
(∑β0 logn

k=1 kYk

)
λ

(Theorem 1.1.5)

≤ O(1)

λ

= o(1).

Therefore, w.h.p.
β0 logn∑
k=1

kYk = o(n),

completing Claim 2.

From Claim 1 and Claim 2, w.h.p. , there are (1 + o(1))nx
c

+ o(n) vertices that lie in compo-

nents of order at most β0 log n. Thus, the remaining vertices will fall into giant components,

showing the existence of a giant component. What remains to show is that the giant com-

ponent is unique.
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The proof of uniqueness of the giant component will use Observation 2.2.1. Take

c1 = c− log n

n
and p1 =

c1
n
,

and note that 0 < p1 < p. Define p2 to satisfy

1− p = (1− p1)(1− p2).

Then,

p2 = 1− 1− p
1− p1

=
log n

log n− n+ nc
≥ log n

n2
,

for n large. By the choice of p1, p2, we see that

Gn,p = Gn,p1 ∪Gn,p2 .

Take x1 to be the unique solution of x1e
−x1 = c1e

−c1 in (0, 1). We may assume n is large

and so x1 = (1 + o(1))x. Then by the same analysis of Zk as performed above for Xk, then

w.h.p. Gn,p1 has no components non-tree of order k ∈ [β0 log n, β1n].

Suppose C1, C2, . . . , Cl are all the components of Gn,p1 for which |V (Ci)| > β1n, where

l ≤ 1
β1

. Recall that Gn,p is obtained from Gn,p1 and superimposing Gn,p2 . Then the giant

component of Gn,p is unique if for any pair of components among C1, . . . , Cl, there is an edge

in Gn,p2 that connects them. We compute the probability that there are two components

that do not get joined by Gn,p2 :
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P (no edge in Gn,p2 joins Ci, Cj for some i, j)

= P

(∑
i,j

1{Ci is not joined to Cj in Gn,p2} > 0

)

≤ E

(∑
i,j

1{Ci is not joined to Cj in Gn,p2}

)
(Theorem 1.1.5)

=
∑
i,j

P (Ci is not joined to Cj in Gn,p2)

=
∑
i,j

P (C1 is not joined to C2 in Gn,p2)

=

(
l

2

)
(1− p2)(β1n)

2

≤ l2
(

1− log n

n2

)(β1n)2

≤ l2 exp
{
−β2

1 log n
}

o(1).

Therefore, with high probability, every component of order greater than β1n in Gn,p1 gets

connected after superimposing Gn,p2 . And so with high probability, the giant component of

Gn,p is unique.
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Chapter 3

Graphs on Surfaces

This chapter will cover some techniques seen in [3, 4, 23]. We will see examples of a method

for enumerating maps, namely Tutte’s Recursive Method, to count planar maps in terms of

a functional equation, as well as a strategy to solve these functional equations.

3.1 Tutte’s Recursive Method

We introduced graphs on surfaces in Chapter 1. In this section we will focus on the case

where the surface S is the sphere S2 so unless otherwise stated, a map is synonymous to

a planar map. Furthermore, as maps are viewed as equivalent up to orientation preserving

homeomorphisms, the labels in the figures throughout are for expository purposes only.

3.1.1 Maps and Rooted Maps

The main elements of a planar map are its vertices, edges, and faces. For a fixed map M

with vertex set V and edge set E, there is some added terminology to it.

Definition 3.1.1. Let M be a map with vertex set V and edge set E. An incidence between

an edge e ∈ E and a vertex v ∈ V is called a half edge in M . An incidence of e with a
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face of M is called a side of e. An incidence between a face of M and vertex v ∈ V is a

corner of M . For a vertex v ∈ V , the degree of v is the number of half edges incident to v,

denoted deg(v). For a face F in M , the degree of F is the number of edge sides incident to

F denoted deg(F ). We say that an edge of a map M is a bridge if its removal disconnects

the underlying graph G(M).

Example 3.1.2 exhibits each definition with a particular example.

Example 3.1.2. Figure 3.1 (a) gives an example of a map M . Consider the surface S to be

the sphere with the embedding of map M drawn on the plane.

Since the degree of a vertex counts half edges, we see that a loop is counted twice. Looking

at Figure 3.1 (b), we see that deg(w) = 4 as it is incident to a loop and two other edges.

Counting the degrees of the other vertices, we have deg(v) = 4, deg(x) = 5 and deg(y) = 1.

The degree of a face counts edge sides, so a bridge would contribute twice. This map has

five faces, labelled F1, . . . , F5. In Figure 3.1 (c), the face F5 has a bridge and so combining

with the two other edges, we have deg(F5) = 4. Counting the remaining face degrees,

deg(F1) = 4, deg(F2) = 1, deg(F3) = 4 and deg(F4) = 1.

Lastly, note that every vertex is incident to at least one corner. Furthermore, it is possible

for a vertex and a face to share several corners. For example in part (d) of Figure 3.1, vertex

x and face F3 share two corners.

From these definitions, we see that for a map M with underlying graph G(M) = (V,E),

there are 2 · |E| half edges in M , each edge has two sides, and each side is incident to a unique

face. Note that both sides of an edge could be incident to the same face. For example, in

Figure 3.1, edge yv has both edge sides incident to face F5 whereas the edge xw is incident

to faces F1 and F3.
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(a) Map M .
(b) Distinct half edges incident to w
are marked with different colours.

(c) The dotted path shows the edge
sides bounding the face F5.

(d) The five corners incident to ver-
tex x are highlighted.

Figure 3.1: The corresponding map in Example 3.1.2.

Furthermore, we see that for each vertex v ∈ V , there are deg(v) many corners incident

to v. This can easily be seen in Example 3.1.2. In general, fix vertex v ∈ V . Label the deg(v)

half edges incident to v in counterclockwise order around v by h1, h2, . . . , hdeg(v). Then each

of the pairs

(h1, h2), (h2, h3), . . . , (hdeg(v)−1, hdeg(v)), (hdeg(v), h1)

uniquely determines a face incident to v. So in particular, each such pair of half edges
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uniquely determines a distinct corner of M that is incident to v. This is depicted in Figure

3.2, where (b) shows that the pair (hi, hi+1) determines a particular corner of v with some

face Fj.

(a) Labelled half edges of vertex v. (b) The corner determined by the pair (hi, hi+1).

Figure 3.2: This shows that a vertex v is incident to deg(v) corners.

It is often useful to specify corners in terms of an ordered pair of half edges. Fixing a

face F , then given (h, h′) of half edges which are counterclockwise consecutive around F and

share a common vertex, then this specifies a corner κ. Figure 3.3 provides a few examples of

a corner determined by the pair of half edges (h, h′) that are counter clockwise consecutive

around a face F . In particular, note that half edges h, h′ need not be distinct. The order

pair (h, h) determine a corner κ precisely when the vertex of κ is a leaf, for example, as in

Figure 3.3 (b).

We will usually specify a corner κ by giving an ordered pair of counterclockwise consec-

utive half edges (h, h′), and will even refer to such a pair as a corner itself.

We noted that maps are considered as equivalent up to orientation preserving homeo-

morphisms. However, other symmetries are still possible. For example in Figure 3.4 (a),

without marking the edges there is no way to tell the two edges apart. To deal with this, we

will focus on maps with a marked corner.
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(a) (b)

(c) (d) (e)

Figure 3.3: Examples of corners determined by pairs (h, h′).

(a) There is no way to distin-
guish the two edges. (b) Marking a corner gives two distinct rooted maps.

Figure 3.4: Unrooted and rooted versions of a symmetric map.

Definition 3.1.3. A rooted map is a map is a pair (M,κ) where M is a map and κ = (h, h′)

is a corner of M that is determined by the ordered pair of half edges (h, h′) which are

counterclockwise consecutive around a face F which share the same vertex. We refer to κ

as the root corner. The trivial case is when G(M) is a single vertex, then we call (M,κ) the

atomic map, where we take κ = ∅.

Once a map M is rooted at corner κ, this automatically fixes the root vertex, root face

and root edge. The root vertex and root face are the respective vertex and face at the marked

corner κ. The root edge is the oriented edge with h′ at its tail. In other words, to define the
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root edge, start at the root corner and move in a counterclockwise manner; the root edge

is the first edge we encounter. In the case where (M,κ) is the atomic map then there is no

root edge.

Further note that for a map M and given the root face, root vertex and root edge, then

we can automatically determine which corner to mark to obtain a rooted planar map (M,κ)

due to this counterclockwise convention.

In a planar drawing, the root corner is marked by an arrow pointing at a vertex, called the

rooting arrow. From this, the root vertex is the vertex which the rooting arrow is pointing to

and the root face is the face that the rooting arrow lies in. Following the the counterclockwise

construction of the root edge, if the root face is the outer face then the root edge lies to the

right of the head of the rooting arrow, otherwise the root edge lies to the left of the head

of the rooting arrow. This notion of rooting provides a way to remove map symmetries, for

example Figure 3.4 (b) shows the different ways to root the map in Figure 3.4 (a), which

distinguishes the two edges. Taking the map M from Example 3.1.2, Figure 3.5 shows three

distinct rooted maps (M,κ1), (M,κ2), (M,κ3).

3.1.2 A Canonical Embedding and Isomorphisms

Canonical Embedding:

The methods we will see will always deal with rooted planar maps. By convention, we draw

rooted planar maps so that the root face F is the outer face. This provides a canonical way

to draw a planar map as drawn in the plane. We assume that a rooted planar map is viewed

in this canonical embedding, unless otherwise stated.

Figure 3.6 provides an intuitive visualization as to why we can always take the outer face

as the root face and how this canonical embedding indeed does not affect the combinatorics

of rooted planar maps. In this visualization, the rooting arrow determines our marking
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(a) Each coloured rooting
arrow corresponds to a dif-
ferent rooted map.

(b) (M,κ1) is determined by
the blue rooting arrow. The
root vertex, root face, and
root edge are distinguished.

(c) (M,κ2) is determined
by the green rooting ar-
row. The root vertex,
root face, and root edge
are distinguished.

(d) (M,κ3) is determined by
the red rooting arrow. The
root vertex, root face, and
root edge are distinguished.

(e) Under the canonical embedding, the root vertex, root face and root
edge is known given the oriented edge e.

Figure 3.5: Three different ways to root M from Example 3.1.2

corner and the root edge is also distinguished. By moving a map around the sphere so that

the north pole is inside the root face, taking the stereographic projection yields a planar

drawing with the root edge on the boundary of the outer face. Note that the sphere minus

the north pole S2 \ (0, 0, 1) is homeomorphic to R2. Then as the stereographic projection

is an orientation preserving homeomorphism from S2 \ (0, 0, 1) to R2, then this justifies our

canonical embedding of planar maps.
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(a) A rooted map drawn on the
plane so that the root face is not
the outer face. The root corner
and root edge are distinguished,
with the remainder of the map
encapsulated in the black blob.
A green edge is added as another
reference point, for visualization.

(b) Embed the map onto the
sphere.

(c) Stretch the map around
the sphere, lengthening the root
edge.

(d) Pull the root edge to the
other side of the sphere.

(e) Project the map onto the plane via stereographic pro-
jection.

(f) A map obtained by an orientation preserving
homeomorphism shows the root edge is on the outer
face and the counterclockwise orientation is pre-
served.

Figure 3.6: Visual depiction to show the canonical embedding.
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Due to this convention, we refer to the degree of the root face of a rooted planar map

(M,κ) as the outer degree and denote it by od(M). This convention provides one more

visual simplification as to how we mark the root corner. Given a rooted planar map (M,κ)

we have that κ = (h, h′) where h, h′ are counterclockwise consecutive around the outer face.

Therefore, a planar embedding with a counterclockwise oriented edge on the boundary of

the outer face provides all the information about the rooting corner κ. In particular, this

oriented edge orients away from h′ and the root vertex. The root face is the outer face, the

root edge is oriented edge, and the root vertex is the vertex at the tail of the oriented edge.

Refer to Figure 3.5 (e), this shows how a rooting of the map M from Example 3.1.2 is given

by an oriented edge.

Isomorphisms:

We defined a map isomorphism in Definition 1.4.5, one can similarly define this notion for

rooted maps. One can view [23] as a reference for maps of higher genus.

Definition 3.1.4. Let (M,κ), (M ′, κ′) be rooted maps on surfaces S, S ′ respectively. Fur-

thermore, take e, e′ to be the root edges of (M,κ), (M ′, κ′) respectively. A map isomorphism

ϕ : S −→ S ′ of (M,κ) and (M ′, κ′) is said to be a root-preserving isomorphism if additionally,

ϕ(e) = e′. In this case, (M,κ) and (M ′, κ′) are isomorphic rooted maps.

We introduc rooted maps to deal with map symmetries caused by automorphisms from a

planar map M to itself. In fact if (M,κ) is a rooted planar map, then the only root-preserving

automorphism of (M,κ) to itself is the identity map.

Proposition 3.1.5. Let (M,κ) be a rooted planar map with root edge e and S be the sphere.

If ϕ : S −→ S is a map automorphism so that ϕ(e) = e, then ϕ is the identity map.

This proposition is Proposition 3.2 in [29].
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3.1.3 Tutte’s Recursive Method

We now introduce generating functions of combinatorial classes before restricting our atten-

tion to enumerating rooted maps.

Definition 3.1.6. Let S be a set of objects equipped with a size function | · | : S −→ N so

that each s ∈ S has an associated size |s| ∈ N. Further denote for each n ∈ N

Sn = {s ∈ S : |s| = n} and s(n) = |Sn|.

Then the generating function of S counted by size is

S(t) =
∑
s∈S

t|s| =
∑
n≥0

tns(n),

and each coefficient s(n) of S(t) can be written as

[tn]S(t) := s(n).

Given a rooted planar map (M,κ), write |M | = |(M,κ)| to be the number of edges of

(M,κ). Given a family M of rooted planar maps, recall that Mn = {(M,κ) ∈M : |M | =

n}. Then denote the generating function of M by

M(t) =
∑
n≥0

tn|Mn|.

Take (M,κ) ∈ M and remove the root edge e; then Tutte’s method allows us to recur-

sively create a functional equation for M(t) based off of whether e was a bridge or not. There

are typically three cases:

1. (M,κ) is the atomic map.
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2. The root edge e is not a bridge.

3. The root edge e is a bridge.

Figure 3.7 illustrates the above three cases.

(a) The
atomic
map.

(b) The root edge is not a
bridge. (c) The root edge is a bridge.

Figure 3.7: The three cases in Tutte’s method.

The case for the atomic map is trivial as there is no root edge. The second and third

cases will need more care. Take G := G(M) = (V,E) and denote G − e = (V,E \ {e}). In

order to provide a recursion for computing M(t), we must create rooted planar maps using

the components of G− e.

Construction 3.1.7. Let (M,κ) be a map with κ = (h, h′), v the root vertex and e the

root edge. Take h′′ to be the half edge preceding h in the counterclockwise order around v

and let w be the other endpoint of e.

• In the case where e is not a bridge, then G − e is connected. Take M ′ to be the

embedding of G − e induced by M , so M ′ is a map. Mark the corner κ′ = (h, h′′) of

M ′ by the incidence of the root vertex v with the outer face determined by the ordered

pair of half edges (h, h′′). Then (M ′, κ′) is a rooted planar map. This construction can

be seen in Figure 3.8.

• For the case where e is a bridge, label the other half edge of e by f ′, take f and f ′′ to be

the half-edges preceding and following f ′ around w in a counterclockwise manner; as in
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(a) A general rooted map (M,κ) where root
edge e is not a bridge.

(b) The resulting rooted map (M ′, κ′) after
removing e and rerooting.

Figure 3.8: The case when e is not a bridge in Construction 3.1.7.

Figure 3.9 (a). We have that G−e consists of two connected components G1, G2, where

G2 contains v and G1 contains w. Take M1 and M2 to be the respective embeddings

of G1 and G2 induced by M , so M1 and M2 are maps. Mark their respective corners

κ1, κ2 where κ1 = (h, h′′) and κ2 = (f, f ′′). So (M1, κ1) and (M2, κ2) are rooted planar

maps. Refer to Figure 3.9 for this construction.

(a) A general rooted map (M,κ) where root
edge e is a bridge.

(b) Maps M1,M2 as a result of removing
edge e.

(c) Root M1,M2 to obtain (M1, κ1), (M2, κ2).

Figure 3.9: When e is a bridge in Construction 3.1.7.

These constructions of obtaining rooted planar maps upon removing the root edge will

be used throughout. It will always be the case that in the bridge setting, the root vertex of

(M,κ) will fall into the map M2.
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Here, I will emphasize that our size parameter counts the number of edges as opposed to

vertices. We start with a basic application of Tutte’s Recursive Method where the underlying

family of graphs are trees.

Example 3.1.8 (Rooted Trees).

Let A be the family of rooted planar maps with one face, so the corresponding graph of each

map is a tree. Such maps are called plane trees. Let a(n) count the number of plane trees

with n edges and A(t) be its generating function,

A(t) =
∑
n≥0

a(n)tn.

Analysing the coefficients:

• As there is only one way to root the atomic map, then a(0) = 1.

• For n ≥ 1, note that each edge is a bridge. Consider a new set

B = {((B1, κ1), (B2, κ2)) : (B1, κ1) ∈ Ai, (B2, κ2) ∈ Aj, i+ j = n− 1},

consisting of pairs of plane trees so that together, the total number of edges is n− 1.

Note that

|B| =
∑
i,j≥0:

i+j=n−1

a(i)a(j).

Now by Tutte’s method and following our Construction 3.1.7, for each (A, κ) ∈ An

the removal of the root edge e and rerooting gives two rooted maps (A1, κ1), (A2, κ2).

Furthermore, since (A, κ) ∈ An, then |A1|+ |A2| = n−1. By definition, the root vertex

of (A2, κ2) is the same root vertex as (A, κ). We thus obtain a function f : An → B

where for each (A, κ) ∈ An, f(A, κ) is the ordered pair ((A1, κ1), (A2, κ2)) which is an

element of B. A depiction this construction can be seen in Figure 3.10.
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(a) Rooted tree (A, κ). (b) Resulting rooted trees after applying Construction 3.1.7.

Figure 3.10: Obtaining two rooted trees from one rooted tree in Example 3.1.8.

The inverse function f−1 can be described as follows. For each pair ((B1, κ1), (B2, κ2)) ∈

B, take B to be the map by adding a new edge e connecting B1 and B2 by their root

vertices of (B1, κ1), (B2, κ2). So B is a planar map with one face. Root B by taking

the edge e and take the root vertex to be the same root vertex as (B2, κ2). Since

the root corner κ is uniquely determined by the root vertex together with the root

edge, this uniquely defines (B, κ) as a rooted planar map with one face. Furthermore,

|B| = |B1| + |B2| + 1 = n, then (B, κ) ∈ An. This is the above construction working

in reverse, refer to Figure 3.11.

From the constructions of f and f−1, it follows that

a(n) = |An| = |B| =
∑
i,j≥0:

i+j=n−1

a(i)a(j).
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(a) Rooted trees (B1, κ1), (B2, κ2).
(b) Obtain map B by removing the rooting
and adding edge e.

(c) Root B to obtain (B, κ).

Figure 3.11: Obtaining one rooted tree from two rooted trees in Example 3.1.8.

Therefore,

A(t) =
∑
n≥0

a(n)tn

= 1 + t
∑
n≥1

∑
i,j≥0:

i+j=n−1

a(i)a(j)tn−1

= 1 + t
∑
n≥0

∑
i,j≥0:
i+j=n

a(i)a(j)ti+j

= 1 + t

(∑
i≥0

a(i)ti

)(∑
j≥0

a(j)tj

)

= 1 + tA(t)2. (3.1.1)
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In fact, referring to [9, 13], one can find explicitly the value of each coefficient of A(t). For

n ∈ N,

[tn]A(t) =
1

n

(
2n− 2

n− 1

)
,

and note that this is the (n− 1)-th Catalan number.

In this application of Tutte’s method, we obtained a recurrence relation and simplified it to be

expressed as a functional equation. In the following examples, we will omit the intermediate

computations for the recurrences as in equation (3.1.1) and immediately write the functional

equation. Referring back to Example 3.1.8, a terser explanation of the logic leading to the

functional equation, more in line with that of the subsequent examples, is as follows.

The atomic map contributes t0 = 1 to the expression of A(t) as it has no edges. In

the bridge case, we see that every rooted tree (T, κ) can be uniquely constructed from two

rooted trees (T1, κ1), (T2, κ2) which satisfy that |T1|+ |T2| = |T | − 1 as follows. Add an edge

between the root vertices of T1 and T2, attached in the root corners of both maps. Then

mark a corner κ by taking the root vertex of T to be the root vertex of T2 and the root edge

of T to be the new edge added. Thus, this case contributes tA(t)2 where the factor t comes

from the new root edge and each of (T1, κ1), (T2, κ2) contributed a factor of A(t). Therefore,

A(t) = 1 + tA(t)2.

Such simplifications are valuable due to the complexity of the recurrence relations we will ob-

tain in forthcoming examples. In particular, we will see that the next application of Tutte’s

method will require a multivariate generating function and hence a multivariate recurrence

relation. First, we define a multivariate version of a generating function.
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Definition 3.1.9. Let S be a set of objects equipped with r + 1 size functions,

| · |, f1, f2, . . . , fr : S −→ N,

with each of r + 1 functions corresponding to different parameters. The multivariate gener-

ating function of S counted by its r + 1 size parameters is

S(t;x1, . . . , xr) =
∑
s∈S

t|s|x
f1(s)
1 · · ·xfr(s)r

=
∑
n≥0

tnpn(x1, . . . , xr),

where pn(x1, . . . , xr) =
∑

s∈S, |s|=n x
f1(s)
1 · · ·xfr(s)r is a polynomial in n variables x1, . . . , xr.

For the second identity to hold, we require that {s ∈ S : |s| = n} is finite for all n ∈ N.

This definition becomes useful in our next example, where we will count planar maps in

terms of the number of edges and the outer degree.

Example 3.1.10 (Rooted Planar Maps).

Let M be the family of rooted planar maps. Let (M,κ) ∈ M with root edge e, we recall

the possible cases from Tutte’s method.

The computations for the atomic map case and the bridge case can follow an identical

argument as in Example 3.1.8. However, when e is not a bridge, an additional parameter

will be needed. The reason for this can be understood from the example in Figure 3.12. We

see that when od(M ′) > 0, then we no longer have a one-to-one correspondence as in our

previous case.

To obtain a functional equation which handles the case when the root edge e is not a

bridge, we will need to look at a multivariate generating function of M. Take | · | :M→ N

to be the size function counting the number of edges and recall that od(·) counts the degree
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(a) The rooted map (M ′, κ′) that results from (M,κ) after ap-
plying Construction 3.1.7.

(b) The different possible rooted maps obtained after adding a new edge to (M ′, κ′).

Figure 3.12: Showing that adding a new root edge to (M ′, κ′) in Example 3.1.10 is not unique.

of the outer face. We shall obtain a functional equation for

M(t; y) =
∑

(M,κ)∈M

t|M |yod(M).

It will be useful to consider a separate generating function for rooted planar maps with

specified outer degree d ∈ N. For d ∈ N define

Md(t) =
∑

(M,κ)∈M,
od(M)=d

t|M |,

to be the generating function for rooted planar maps with outer degree d. Note that Md(t)

is independent of the variable y and observe that

M(t; y) =
∑
d≥0

ydMd(t).
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Again using Tutte’s method, we assess the contributions of each case to M(t; y).

• There is exactly one way to root the atomic map. As there are no edges and hence no

edges sides, then this contributes t0y0 = 1 in the expression of M(t; y).

• Let (M,κ) ∈Mn and suppose that the root edge e is a bridge. Then the removal of e

and rerooting as in Construction 3.1.7 yields two rooted planar maps (M1, κ1), (M2, κ2),

as in Figure 3.13 (a), and together (M1, κ1) and (M2, κ2) have n− 1 edges.

(a) Obtaining (M1, κ1), (M2, κ2) from (M,κ) as in Construction 3.1.7.

(b) Starting with two rooted planar maps to obtain one rooted planar map.

Figure 3.13: The bridge case in Example 3.1.10.

On the other hand, starting with any two rooted planar maps (M1, κ1), (M2, κ2). Add

an edge e connecting the root vertices of (M1, κ1) and (M2, κ2) and take M to be the

resulting map. Note that M is planar as M1 and M2 are. Let v be the root vertex of

M2, then v and the new edge e determines a corner κ in M , refer to Figure 3.13 (b). As

the root corner is uniquely determined by the root vertex together with the root edge,

then this construction uniquely defines a rooted planar map (M,κ). This construction

results in a one-to-one correspondence between rooted planar maps where the root

edge is a bridge and ordered pairs of rooted planar maps and contributes ty2M(t; y)2.

The factor ty2 comes from the root edge and its two edge sides, and the ordered pair

of planar maps contributes the factor M(t; y)2.
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• Suppose (M,κ) ∈ M so that its root edge e is not a bridge. The removal of e and

rerooting as in Construction 3.1.7 gives a planar map (M ′, κ′). An example can be

seen in Figure 3.15.

Figure 3.14: Obtaining (M ′, κ′) from (M,κ) as in Construction 3.1.7 for the non-bridge case in
Example 3.1.10.

Conversely, if od(M ′) = d, then we show that there are d + 1 distinct maps (M,κ)

which yield (M ′, κ′) after applying Construction 3.1.7.

Take M ′ and the vertex v that is determined by κ′. The outer face of M ′ consists of d

edge sides, so moving around the outer face in a counterclockwise order starting and

ending at v, we encounter d+ 1 not necessarily distinct vertices. List these vertices in

order as v1, v2, . . . , vd+1 and note that v1 = vd+1 = v. This sequence likewise defines a

sequence of corners κ1, . . . , κd+1 where κi is incident to vi for each 1 ≤ i ≤ d+ 1, as in

Figure 3.15 (a). We can add a new edge e with one endpoint being v1 and the second

endpoint in any of κ1, . . . , κd+1.

If e joins v to v1, then embed e so that it is a loop that does not bound any of the

corners κi, for i = 1, . . . , d + 1. If e joins v to v2, embed e so that it bounds only the

root edge of (M ′, κ′). For i = 3, . . . , d + 1, let e join v to vi in such a way so that

κ2, . . . , κi−1 falls into the bounded face created, as seen in Figure 3.15 (c). So there

are d+ 1 possible ways to add a new edge e where v is at least one of the endpoints.
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(a) (M ′, κ′) with vertices and corners labelled.

(b) Adding a root edge to M ′ with v being
both endpoints. This does not bound cor-
ners of the outer face, so od(M) = d+ 1.

(c) Adding a root edge to M ′ with vi being one
endpoint. The edge e bounds κ2, . . . , κi−1.

(d) Adding a root edge to M ′ with vd+1 being
one endpoint. The edge e bounds all corners
except for κ1 = κd+1.

Figure 3.15: Different possible (M,κ) from (M ′, κ′) based off of od(M ′) for the non-bridge case in
Example 3.1.10.

Note that each possible way to add a new root edge results in a different value of

od(M). Take (M,κ) to be the rooted map obtained from adding the edge e to M ′ and

taking κ to be determined by e and v. Recall that κi is the i-th corner of the outer

face of M ′, moving in a counterclockwise order. If e joined v to v1 the vertex in κ1,

then the outer face of M contains all edge side of the outer face of M ′ as well as the

new edge side from e so od(M) = od(M ′) + 1 = d+ 1. For i ≥ 2, if e joined v to vi the

vertex in κi then e bounds the corners κ2, . . . , κi−1 and hence bounds i− 1 edge sides

of M ′. So e contributes a new edge side to the outer face of M and removes i−1 edges
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sides of M ′ from the outer face of M . Thus, od(M) = od(M ′)− (i− 1) + 1 = d+ 2− i.

These outer degrees can be depicted in Figure 3.15 (b)–(d).

In the contribution to M(t; y), the root edge accounts for a factor of t. Summing over

maps (M ′, κ′) with od(M ′) = d, contributes an Md(t) factor and the possible outer

degrees of the resulting map (M,κ) provides a factor of (yd+1 + · · · + y1). Thus, the

non-bridge case gives a contribution of t
∑

d≥0Md(t)
(
yd+1 + yd + · · ·+ y1

)
.

Summing the contributions of all three cases, we obtain the following functional equation

for M(t; y):

M(t; y) = 1 + ty2M(t; y)2 + t
∑
d≥0

Md(t)
(
yd+1 + yd + · · ·+ y1

)
= 1 + ty2M(t; y)2 + t

∑
d≥0

Md(t)
y(yd+1 − 1)

y − 1
(geometric series)

= 1 + ty2M(t; y)2 +
ty

y − 1

(
y
∑
d≥0

ydMd(t)−
∑
d≥0

Md(t)

)

= 1 + ty2M(t; y)2 +
ty

y − 1
(yM(t; y)−M(t; 1)) . (3.1.2)

When y = 1, we obtain explicit values for the coefficients of M(t; 1). For each n ∈ N,

[tn]M(t; 1) = 2 · (2n)!3n

n!(n+ 2)!
∼ 2√

πn5
· 12n.

For the computations, refer to Proposition VII.II in [9].

We conclude this section with a more restrictive family of rooted maps, namely the

triangulations of a polygon.

Definition 3.1.11. A rooted planar map is a triangulation if every face has degree 3. A

near triangulation is a rooted planar map so that every non-root face has degree 3.
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Let M be a planar map and take {v1, . . . , vm} to be the collection of vertices of some

face F . A face F is simple if no two corners incident to F are incident to the same vertex.

Lastly, a triangulation of a polygon is a near triangulation so that the root face is simple.

Examples of the above definitions are given in Figure 3.16.

(a) Two different triangulations.
(b) A near triangulation that is not a trian-
gulation of a polygon.

(c) A rooted map that is not a
near triangulation nor is the outer
face simple.

(d) A triangulation of a poly-
gon.

(e) Another triangulation of
a polygon. Note the bounded
faces need not be simple.

Figure 3.16: Examples for Definition 3.1.11.

Take (M,κ) to be a triangulation of a polygon and e to be any non-bridge edge. Since e

is not a bridge, then e is incident to at least one face F . Since (M,κ) is a triangulation of a

polygon, then deg(F ) = 3. The observation that any non-bridge edge forms a triangle with

an interior face is invoked throughout the next example.

By convention, say that the atomic map is not a triangulation of a polygon. Next, we

apply Tutte’s method to triangulations of a polygon.
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Example 3.1.12 (Triangulations of a Polygon).

Let P be the family of triangulations of a polygon. We will enumerate such maps using the

number of edges and the outer degree, consider the bivariate generating function

P (t; y) =
∑

(P,κ)∈P

t|P |yod(P ).

As before, it will be useful to consider a separate generating function for triangulations of a

polygon with specified outer degree d ∈ N. Define

Pd(t) =
∑

(P,κ)∈P,
od(P )=d

t|P |,

to be the generating function for triangulations of a polygon with outer degree d. Note that

Pd(t) is independent of the variable y and observe that

P (t; y) =
∑
d≥0

ydPd(t).

In our analysis of the contributions of each case of Tutte’s method to P (t; y), we take the

bridge case as our initial case and omit the atomic map.

Suppose (P, κ) ∈ P with root edge e. If e is a bridge, then as the the root face is simple,

the only possible map P is a single edge. Refer to Figure 3.17 and note that this case

contributes the term ty2 to P (t; y), t from the edge and y2 for the two sides of e.

Figure 3.17: Initial bridge case for Example 3.1.12.

We now consider the case where e is not a bridge, so G(P )− e is connected. Taking P ′

to be the embedding of G(P ) − e induced by P , then P ′ is a map. Since the outer face of
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P is simple, then every edge on the outer face belongs to a triangle. Thus, the removal of

e yields (P ′, κ′) as a near triangulation. However, we must break our analysis into cases of

whether the outer face of P ′ is simple or not. Particularly, note that the root edge e forms

part of a triangle where the two vertices of e lie on the boundary of the root face. We must

consider whether the third vertex of the triangle is a boundary vertex or not.

• Suppose the third vertex is a boundary vertex, so the root face of P ′ is not simple.

Let r be the root vertex of (P, κ) and v be the third vertex of the triangle that is on

the boundary. Take (P ′, κ′) as the rooted map obtained by removing root edge e and

taking rv to be the new root edge, as seen in Figure 3.18 (a).

(a) (P, κ) and (P ′, κ′) that is obtained after deleting e.

(b) Ignore the rooting to obtain P ′. (c) P1, P2 triangulation components of P ′.

(d) Root P1, P2 to yield (P1, κ1), (P2, κ2).

Figure 3.18: The non-bridge case when the third vertex is on the boundary of Example 3.1.12.
Obtaining (P1, κ1), (P2, κ2) from (P, κ).
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In the following arguments, we will refer to triangulation components. These are em-

bedded subsets of G(P ′) under the induced embedding of P , which form a triangulation

of a polygon after some choice of root corner.

Figure 3.18 (b) and (c) shows two maps P1, P2 obtained by taking P1 as the maximal

triangulated component of P ′ that does not contain the vertex r and P2 to be the

maximal triangulated component of P ′ that contains r. Explore the outer face of

P1 in a counterclockwise manner and take f and f ′ to be the respective half edges

encountered before and after vertex v. Similarly in P2, let h, h′ be the respective half

edges encountered before and after vertex r upon visiting the outer face of P2 in a

counterclockwise fashion. Take κ1 = (f, f ′) and κ2 = (h, h′) to be corners in P1 and

P2 respectively to obtain (P1, κ1), (P2, κ2) ∈ P . This is depicted in Figure 3.18 (d).

Conversely, given (P1, κ1), (P2, κ2) ∈ P , let r1, r2 be the root vertices of (P1, κ1), (P2, κ2) ∈

P respectively. Let u, v be the non-root endpoints of the root edges of (P1, κ1), (P2, κ2) ∈

P respectively. Combine the maps P1 and P2 into a single map P ′ by identifying ver-

tices r1 and v as in Figure 3.19 (a) and (b). Under this identification, the outer face

of P ′ is not simple.

To obtain a triangulation of a polygon, take P ′ and add an edge e incident to r2 and

u so that the triple (r2, u, v) is a triangle as in Figure 3.19 (c), and call this resulting

map P . Note that the outer face of P is simple and every bounded face is a triangle

as (P1, κ1), (P2, κ2) are triangulations of a polygon and (r2, u, v) forms a triangle. Note

that the outer face together with vertex r2 and edge e determines a corner κ in P which

is seen in Figure 3.19 (d), then (P, κ) ∈ P .

This construction uniquely recovers (P, κ) from (P1, κ1) and (P2, κ2) and and we can

conclude that this case contributes t
y
P (t; y)2. The ordered pair of maps (P1, κ1), (P2, κ2)

contribute the factor P (t; y)2. The root edge contributes a factor ty, but by adding
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(a) Two triangulations of a polygon (P1, κ1) and
(P2, κ2).

(b) P ′ obtained from removing the rooting
identifying r1 and v.

(c) P obtained from P ′ by adding edge e. (d) Rooting to get (P, κ).

Figure 3.19: The non-bridge case when the third vertex is on the boundary of Example 3.1.12.
Obtaining (P, κ) from (P1, κ1) and (P2, κ2).

the root edge e to P ′, we remove the sides r2v and vu from the outer face so we get

the factor ty · 1
y2

= t
y
.

• Suppose the third vertex is not a boundary vertex. As every boundary edge is in a

triangle, then the removal of the root edge and rerooting as in Construction 3.1.7 yields

the outer face of P ′ to be simple, as seen in Figure 3.20 (a). Thus, (P ′, κ′) ∈ P .

Conversely, take a map (P ′, κ′) ∈ P . We must consider if the addition of an edge to

P ′ and rerooting gives a new map in P . If od(P ′) ≥ 2, there is exactly one way to add

the root edge since the root edge must be in a triangle. This is seen in Figure 3.20 (b).

The case od(P ′) = 1 is depicted in Figure 3.20 (c), in this instance there is no way to

add a root edge so that it forms a triangle, so this case must be subtracted.

This contributes t
y
(P (t; y)− y ·P1(t)) to the expression of P (t; y). The terms P (t; y)−
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(a) Triangulation of a polygon (P ′, κ′).

(b) The only possible way to add edge e
to yield a triangulation of a polygon when
od(P ′) > 1.

(c) The forbidden
case of od(P ′) = 1.

Figure 3.20: Non-bridge case when the third vertex is not on the boundary of Example 3.1.12.

yP1(t) are due to the construction above being unique while omitting the case where

od(P ′) = 1, in which case, provides a factor y for the edge side. The addition of the

root edge provides the factor t
y
, as the total number of edges increases by one and the

degree of the outer face decreases by one.

Summing the contributions of all three cases, we obtain the functional equation,

P (t; y) = ty2 +
t

y
P (t; y)2 +

t

y
(P (t; y)− y · P1(t)) . (3.1.3)

Like the previous two examples, explicit formulations of the coefficients were obtained, given

some conditions [25, 28]. For each n ∈ N, the number or rooted triangulations with 2n

triangles, 3n edges, and n+ 2 vertices is

Tn =
2(4n− 3)!

n!(3n− 1)!
.
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Note that with these conditions on the number of triangles, edges, and vertices, then trian-

gulations like in Figure 3.16 (e) are not counted. Specifically, triangles on two vertices with

two edges are not included in the computations of Tn.

Remark 3.1.13. For our convention, we do not consider an atomic map as a triangulation

of a polygon. If it were, then our computations in Example 3.1.12 would be a bit different.

The atomic map would contribute a term of y0t0 = 1 to the functional equation. For

the non-boundary case of the non-bridge case, we would need to consider the possibility

of od(P ′) = 0. Here we would instead obtain the difference P (t; y) − yP1(t) − y0P0(t) =

P (t; y) − yP1(t) − 1 instead of P (t; y) − yP1(t). Lastly, for the boundary case of the non-

bridge case, then we must omit the case when (P1, κ1), (P2, κ2) are atomic maps themselves.

This results in (P (t; y) − P0(t))
2 = (P (t; y) − 1)2 instead of P (t; y)2. Thus, our functional

equation would instead be

P (t; y) = 1 + ty2 +
t

y
(P (t; y)− 1)2 +

t

y
(P (t; y)− y · P1(t)− 1).

We see that including the atomic case is redundant as the atomic case gets systematically

removed in the analysis.

Another indicator to support why we may want to omit the atomic map as our convention

is that the bridge case is a natural initial condition for triangulations of a polygon. When

we are considering the boundary vertex case, we see that the smallest possible P1, P2 are

bridges, so it makes sense to take bridges as the initial map and omit the atomic map.

In the examples above, we’ve seen Tutte’s method applied to families of graphs with

constraints on connectivity and face degree. Connectivity is restricted in the sense that the

removal of an edge or vertex would disconnect the map, we can see this in action when

analysing the bridge cases or even talking about boundary vertices as in Example 3.1.12. In

general, Tutte’s approach can be applied to a large variety of families of maps to obtain a
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functional equation, particularly in the cases of families that are characterized by face degree

and connectivity constraints.

3.2 Solving Functional Equations

This section is modelled after [4]. We discussed in the previous section Tutte’s approach to

obtaining functional equations for generating functions of rooted maps. Here, we will follow

Bousquet-Mélou and Jahanne’s general strategy in solving these functional equations.

3.2.1 Motivation and Algebraic Notation

In Example 3.1.10, if we view M(t; y) ≡ M(y) as a power series in y with coefficients being

power series in t, then rewriting equation (3.1.2) gives the functional equation

M(y) = 1 + ty2M(y)2 + ty · yM(y)−M(1)

y − 1
,

where M(1) = M(t; 1) is a power series.

Similarly in Example 3.1.12, take P (t; y) ≡ P (y) and Pd(t) ≡ Pd for each d ∈ N, then

rewriting equation (3.1.3) gives the functional equation

P (y) = ty2 +
t

y
P (y)2 +

t

y
(P (y)− y · P1).

In the respective examples, we obtained a polynomial equation in the main seriesM(y), P (y)

with some specialization in y, namely M(1) and P1.

As mentioned before, Tutte’s method is robust in its applications and can be used in more

restrictive cases, which would result in more complicated functional equations. Consider the

following example.
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Example 3.2.1. Similar to the triangulations of a polygon, if we can instead consider simple

rooted planer maps where we insist that each finite face has degree 7. Denote the collection

of such rooted maps by F with bivariate generating function F (t; y) ≡ F (y) counted by

number of edges and outer degree respectively. For each d ∈ N, let Fd(t) ≡ Fd be the

generating function where we insist that the outer degree is d.

In the application of Tutte’s method, we will consider a map F ′ ∈ F and see how many

ways we can add a new edge e and reroot to obtain a rooted planar map F ∈ F . In order to

guarantee that the new edge we are adding bounds a face of degree 7, we must require that

od(F ′) ≥ 6. So in our computation, we obtain a term that has a factor of

F (y)− y0F0 − · · · − y5F5.

In this case, Tutte’s method yields a polynomial equation

Pol (F (y), F1, . . . , F5, t, y) .

In fair generality, the functional equations obtained from Tutte’s method, upon rearrang-

ing, yield a polynomial equation of the form

Pol (F (y), F1, . . . , Fk, t, y) = 0,

where F (y) = F (t; y) is the main series and F1, . . . , Fk are auxiliary series independent of

y. Using the terminology from [34], this equation is called a polynomial equation with one

catalytic variable y.

Bousquet-Mélou and Jehanne present a general strategy, under some conditions, to show

that the main series and auxiliary series in a polynomial equation with one catalytic variable

are all algebraic and furthermore, provide a polynomial equation for them. It is indeed the
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case that functional equations obtained from Tutte’s method satisfy these conditions.

When we are dealing with functional equations obtained from Tutte’s recursive method,

note that in the expression

Pol (F (y), F1, . . . , Fk, t, y) = 0,

F (y) is the main series and F1, . . . , Fk are specializations in the catalytic variable. The idea

behind the general strategy, is to obtain a system of equations to show each F1, . . . , Fk are

algebraic. Then it follows that F (y) is algebraic.

We will provide a general method in this setting, specifically generating functions of

families of rooted planar maps counted by number of edges and outer degree, but first we

provide notation for various power series.

If K is a commutative ring, then K[t] denotes the set of polynomials with coefficients in

K. If further K is a field, then:

• K(t) is the field of fractions of K[t].

• K[[t]] is the set of formal power series in t with coefficients in K. For A(t) ∈ K[[t]],

then A(t) has the form

A(t) =
∑
n≥0

ant
n,

where an ∈ K.

• Kfr[[t]] is the set of fractional power series in t with coefficients in K. For A(t) ∈ Kfr[[t]],

then A(t) has the form

A(t) =
∑
n≥0

ant
n/d,

where an ∈ Kfr[[t]] and d ∈ N.

Lastly, take K[y][[t]] to be the set of formal power series in t with coefficients in K[y].
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3.2.2 Strategy for Solving Functional Equations

We now provide the general strategy obtained in Section 2 of [4] in terms of the functional

equations obtained from Tutte’s recursive method.

Let F (t, y) ∈ C[y][[t]] and F1(t), . . . , Fk(t) ∈ C[[t]]. Write F (y) ≡ F (t, y) and Fi ≡ Fi(t)

for each i = 1, . . . , k. Suppose that the (k+1)-tuple (F (y), F1, . . . , Fk) of formal power series

in t is completely determined by a polynomial equation

Pol (F (y), F1, . . . , Fk, t, y) = 0, (3.2.1)

where the polynomial Pol (x0, x1, . . . , xk, t, y) is a non-trivial polynomial in k + 3 variables

with coefficients in C.

Further assume that equation (3.2.1) defines (F (y), F1, . . . , Fk) uniquely in C[y][[t]] ×

C[[t]]k. The solution of an equation of the form (3.2.1) relies on the following observation.

Differentiate equation (3.2.1) with respect to y, then by the multivariate chain rule,

∂

∂y
Pol (F (y), F1, . . . , Fk, t, y)

= F ′(y) · ∂

∂x0
Pol (F (y), F1, . . . , Fk, t, y) +

∂

∂y
Pol (F (y), F1, . . . , Fk, t, y)

= 0. (3.2.2)

Let Y (t) ≡ Y ∈ Cfr[[t]], then F (Y ) ≡ F (t, Y ) is a well-defined power series in t. Further

suppose that Y satisfies

∂

∂x0
Pol (F (Y ), F1, . . . , Fk, t, Y ) = 0, (3.2.3)
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then we obtain from equation (3.2.2) the identity

∂

∂y
Pol (F (Y ), F1, . . . , Fk, t, Y ) = 0.

Now, if we can show that there are k distinct fractional power series Y1, . . . , Yk ∈ Cfr[[t]]

satisfying equation (3.2.3), then applying this observation to each Y1, . . . , Yk yields a system

of 3k polynomial equations

Pol (F (Yi), F1, . . . , Fk, t, Yi) = 0 (3.2.4)

∂

∂x0
Pol (F (Yi), F1, . . . , Fk, t, Yi) = 0 (3.2.5)

∂

∂y
Pol (F (Yi), F1, . . . , Fk, t, Yi) = 0 (3.2.6)

for i = 1, . . . , k.

The system of 3k polynomial equations relate t, Y1, . . . , Yk, F (Y1), . . . , F (Yk), F1, . . . , Fk.

We hope to be able to eliminate the Yi’s and F (Yi)’s to obtain k polynomial equations

Pol1 (t, F1) = 0, . . . ,Polk (t, Fk) = 0.

If that is attained, then the series F1, . . . , Fk are algebraic and hence F (y) will be algebraic.

Remark 3.2.2. There is quite a bit of optimism to hope that everything works out; we

require that there are enough distinct Yi’s to obtain a system of equations with as many

equations as there are unknowns. And furthermore, we want this system to completely char-

acterize the 3k unknown series so we can do algebraic eliminations to obtain the algebraicity

of the Fi’s.

We will apply this strategy to our examples from Tutte’s method, before discussing more

general cases.
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Example 3.2.3 (Rooted Planar Maps). From Example 3.1.10, applying Tutte’s method

yields the functional equation

M(y) = 1 + ty2M(y)2 + ty · yM(y)−M(1)

y − 1
.

Multiplying through by y − 1,

(y − 1)M(y) = (y − 1)(1 + ty2M(y)2) + ty · (yM(y)−M(1)).

Then, the tuple (M(y),M(1)) is related by an equation

Pol (M(y),M(1), t, y) = 0,

where Pol (x0, x1, t, y) = (1− y)x0 + (y−1)(1 + ty2x20) + ty · (yx0−x1). Taking the derivative

with respect to x0 gives

∂

∂x0
Pol (x0, x1, t, y) = (1− y) + (y − 1)(2ty2x0) + ty2 = 0.

Applying this recipe, we want to check if there is some Y ∈ Cfr[[t]] so that

∂

∂x0
Pol (M(Y ),M(1)t, Y ) = (1− Y ) + 2tY 2(Y − 1)M(Y ) + tY 2 = 0.

Upon rearranging, we want to find Y ∈ Cfr[[t]] so that

Y = 1 + 2tY 2(Y − 1)M(Y ) + tY 2. (3.2.7)

Claim: There is a unique Y ∈ Cfr[[t]] so that equation (3.2.7) holds.

83



We will work with the right hand side of equation (3.2.7) to construct Y =
∑

n≥0 ynt
n.

Extracting coefficients, we see that

[t0]Y = [t0]{1 + 2tY 2(Y − 1)M(Y ) + tY 2}

= 0

as all other terms of the right hand side have a factor of t. Thus, if Y exists then Y =

1 +
∑

n≥1 y
n
t . Now,

[t]Y = [t]{1 + 2tY 2(Y − 1)M(Y ) + tY 2}

= [t]{2tY 2(Y − 1)M(Y )}+ [t]tY 2

= [t]2tY 2

(∑
n≥1

ynt
n

)
M(Y ) + [t]

(
1 +

∑
n≥1

ynt

)(
1 +

∑
n≥1

ynt

)

= 0 + 1

= 1.

Proceeding inductively, we see that [tn]{1 + 2tY 2(Y − 1)M(Y ) + tY 2} will depend on yk for

k ≤ n− 1. So we will be able to obtain Y uniquely, concluding the claim.

Now as Pol (x0, x1, t, y) = (1 − y)x0 + (y − 1)(1 + ty2x20) + ty · (yx0 − x1), we have the

following derivatives:

∂

∂x0
Pol (x0, x1, t, y) = 1− y + (y − 1)2x0ty

2 + ty2

and

∂

∂y
Pol (x0, x1, t, y) = −x0 + (1ty

2x20) + (y − 1)(2tyx20) + t(yx0 − x1) + tyx0.
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Letting Y be the unique value such that (3.2.7) holds, by the above derivatives it follows

like in (3.2.5) and (3.2.6) that ∂
∂x0

Pol (x0, x1, t, Y ) = 0 and ∂
∂y

Pol (x0, x1, t, Y ) = 0.

Evaluating these derivatives at (M(Y ),M(1), t, Y ) and by equations (3.2.4), (3.2.5),

(3.2.6), we obtain a system of three equations relating t, Y,M(Y ),M(1):


(Y − 1)M(Y ) = Y − 1 + tY 2(Y − 1)M(Y )2 + tY 2M(Y )− tY M(1)

Y − 1 = 2tY 2(Y − 1)M(Y ) + yY 2

M(Y ) = 1 + tY (3Y − 2)M(Y )2 + 2tY M(Y )− tM(1)

,

from which one can eliminate Y and M(Y ) by hand or using a computer to obtain an

algebraic equation for M(1) which has three factors. Only one of these factors, corresponding

to

M(1) = 1− 16t+ 18tM(1)− 27t2M(1)

has the correct behaviour in t,

M(1) = M(t; 1) = 1 + 2t+O(t2).

So this uniquely identifies M(1) and in particular shows that M(1) is algebraic.

Example 3.2.4 (Triangulations of a Polygon). From Example 3.1.12, applying Tutte’s

method yields the functional equation

P (y) = ty2 +
t

y
P (y)2 +

t

y
(P (y)− y · P1).

Multiplying through by y,

yP (y) = ty3 + tP (y)2 + t(P (y)− y · P1).
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So the pair (P (y), P1) is related by an equation

Pol (P (y), P1, t, y) = 0,

where Pol (x0, x1, t, y) = x0(t− y) + ty3 + tx20 − tyx1. Taking the derivative with respect to

x0 gives

∂

∂x0
Pol (x0, x1, t, y) = t− y + 2tx0.

Applying this recipe, we want to check if there is some Y ∈ Cfr[[t]] so that

∂

∂x0
Pol (P (Y ), P1t, Y ) = t− Y + 2tM(Y ) = 0.

Upon rearranging, we want to find Y ∈ Cfr[[t]] so that

Y = t+ 2tP (Y ). (3.2.8)

As in the the previous example, we can show a unique such Y exists by extracting coefficients.

Now since Pol (x0, x1, t, y) = x0(t−y)+ty3+tx20−tyx1, then we have the following derivatives:

∂

∂x0
Pol (x0, x1, t, y) = t− y + 2tx0

and

∂

∂y
Pol (x0, x1, t, y) = −x0 + 3ty2 − tx1.

Evaluating these derivatives at (P (Y ), P1, t, Y ) and by equations (3.2.4), (3.2.5), (3.2.6), we
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obtain a system of three equations relating t, Y, P (Y ), P1:
tY P1 = P (Y )(t− Y ) + tY 3 + tP (Y )2

Y = t+ 2tP (Y )

P (Y ) = 3tY 2 − tP1

.

Similarly, we can eliminate Y, P (Y ) from the system of equations to obtain a polynomial

identity Pol (t, P1) = 0 and so P1 is algebraic, implying that P (y) is algebraic. Furthermore,

by matching rates of growth in t to find the correct factor, we can show that P1 satisfies

64t5P 3
1 − t(96t3 − 1)P 2

1 + (30t3 − 1)P1 + t2 − 27t5 = 0.

This strategy allows us to ensure algebraicity of functional equations obtained from Tutte’s

method and additionally, provides a polynomial equation for each of the series in equation

(3.2.1). One reason why algebraicity is of interest is due to the fact that if a class of

combinatorial objects is counted by an algebraic series, then this is a good indicator that

one may be able to construct objects recursively, particularly through concatenation. For

examples, refer to [8].

3.2.3 A General Algebraicity Theorem

The examples with the rooted planar maps and triangulations of a polygon fall into the

framework of a general algebraicity theorem. We will define the necessary terms and state

the theorem but omit the proof, which can be seen in Section 4 of [4].

Definition 3.2.5. Given a function f(y), define the divided difference or discrete derivative
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to the operator ∆ given by

∆f(y) =
f(y)− f(0)

y
.

Note that taking the limit as y → 0 gives the derivative of f evaluated at 0,

lim
y→0

∆f(y) = f ′(0).

Then one may define the operator ∆(i) as the result of applying the ∆ operator i times,

∆(i)f(y) =
f(y)− f(0)− yf ′(0)− · · · − yi−1

(i−1)!f
(i−1)(0)

yi
.

Take K to be a field, in the previous examples we had K = C. Let Pol (x0, x1, . . . , xk, t, y)

be a polynomial in k + 3 indeterminates, with coefficients in K. Take a functional equation

F (y) ≡ F (t, y) = F0(y) + t · Pol
(
F (y),∆F (y),∆(2)F (y), . . . ,∆(k)F (y), t, y

)
, (3.2.9)

so that F0(y) ∈ K[y] is given explicitly.

Note that equation (3.2.9) has a unique solution F (t, y) ∈ K[y][[t]], which can be seen by

extracting coefficients [tn]F (t, y) from (3.2.9), in the same manner as in Examples 3.2.3 and

3.2.4. A generalization of functional equations that can be solved by the strategy given in

Chapter 3.2.2 follows.

Theorem 3.2.6 ([4], Theorem 3). For a field K, a formal power series F (t, y) defined by

(3.2.9) is algebraic over K(t, y).
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Appendix A

Appendix

For completeness, we provide the proof of Lemma 1.1.3.

Proof of Lemma 1.1.3.

(a) Consider the function f(x) = ex − 1− x on R. Taking derivatives, we obtain

f ′(x) = ex − 1,

and

f ′′(x) = ex.

Note that f ′(x) = 0 if and only if x = 0. As f ′′(0) = 1 > 0, then x = 0 is a local

minimum of f(x). However, since f ′′(x) = ex > 0 on R, the second derivatives test says

that f(x) is concave up on R. Therefore, x = 0 is a global minimum and f ≥ 0. Hence

all x ∈ R, 1 + x ≤ ex.

(b) Suppose x ∈ [0, 1). By part (a) we have

1− x+ x

1− x
= 1 +

x

1− x
≤ ex/(1−x).
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Then as 0 ≤ x < 1 and rearranging,

1− x+ x

ex/(1−x)
≤ 1− x.

Thus,

e−x/(1−x) ≤ 1− x.

(c) First note that

ek =
∑
i≥0

ki

i!
≥ kk

k!
,

so we have that 1
k!
≤
(
e
k

)k
. Then,

(
n

k

)
=
n(n− 1) · · · (n− k + 1)

k!
≤ nk ·

( e
k

)k
,

as desired.

(d) It suffices to show that

n(n− 1) · (n− k + 1)

nk
≤
(

1− k

2n

)k−1
.

First note that

n(n− 1) · (n− k + 1)

nk
=

k−1∏
i=1

(
1− i

n

)
,

and we compare
(
1− i

n

) (
1− k−i

n

)
with

(
1− k

2n

)2
.

Claim: For i ≤ k
2
,
(
1− i

n

) (
1− k−i

n

)
≤
(
1− k

2n

)2
.

Expanding, we obtain, (
1− k

2n

)2

= 1− k

n
+

k2

4n2
,
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and (
1− i

n

)(
1− k − i

n

)
= 1− k

n
+
ki

n2
− i2

n2
.

To obtain the claim, left to show is

ki

n2
− i2

n2
≤ k2

4n2
,

or equivalently,

4ki− 4i2 ≤ k2.

The latter follows from the fact that

0 ≤ (k − 2i)2 = k2 − 4ki+ 4i2,

and this completes the claim. Now if k is odd, then

n(n− 1) · · · (n− k + 1)

nk
=

k−1∏
i=1

(
1− i

n

)

=

k−1
2∏
i=1

(
1− i

n

)(
1− k − i

n

)

≤
k−1
2∏
i=1

(
1− k

2n

)2

(by the claim)

=

(
1− k

2n

)2· k−1
2

=

(
1− k

2n

)k−1
.
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Otherwise if k is even,

n(n− 1) · · · (n− k + 1)

nk
=

k−1∏
i=1

(
1− i

n

)

=

(
1− k

2n

)
·
k−2
2∏
i=1

(
1− i

n

)(
1− k − i

n

)

≤
(

1− k

2n

)
·
k−1
2∏
i=1

(
1− k

2n

)2

(by the claim)

=

(
1− k

2n

)
·
(

1− k

2n

)2· k−2
2

=

(
1− k

2n

)k−1
.

(e) It suffices to show that n(n−1)···(n−k+1)
nk

≤ e−k(k−1)/2n. Observe that

n(n− 1) · · · (n− k + 1)

nk
=

k−1∏
i=0

(
1− i

n

)

≤
i=1∏
i=0

exp

{
− i
n

}

= exp

{
−

i=1∑
i=0

i

n

}

= exp

{
−k(k − 1)

2n

}
.

In both cases,

n(n− 1) · (n− k + 1)

nk
≤
(

1− k

2n

)k−1
,

as desired.
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(f) From the Taylor expansion of en,

en =
∑
k≥0

nk

k!
≥ nn

n!
.

Rearranging,

1

n!
≤ en

nn
.

(g) This follows from the fact that ex is convex. Take g(x) = 1 + 2x and note that g(0) =

1 = e0. Furthermore, g(1) = 3 > e1. As g is linear, intersects ex at x = 0 and is strictly

greater than ex at x = 1 then convexity of ex guarantees g(x) ≥ ex for x ∈ [0, 1].
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