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Abstract

Analysis of digitally scanned microscopic slides using machine learning is a rapidly ad-

vancing area of research that has the potential to enable faster identification, better lo-

calization, prediction of recurrence, and better decisions about the treatment of diseases,

especially cancer. Several diverse techniques using computer vision and deep learning

have been proposed and applied to histology images to perform a wide range of tasks

such as classification, regression, and segmentation. Applying deep learning to digital

histopathology comes with its own set of caveats. Most of these have to do with the

high resolution of Whole Slide Images. Applying deep learning-based imaging on them

is computationally intractable and resizing the slides to low resolution leads to loss of

information. The primary objective of this thesis is to build a patch-based tumor detec-

tor or tissue classifier for head and neck pathology data and to analyze and benchmark

state-of-the-art architectures in a fully supervised transfer learning paradigm for this task

using a range of metrics. An end-to-end inference pipeline for tumor detection is also pro-

posed that performs preprocessing, ROI segmentation, patch extraction, and prediction,

returning whole slide coarse segmentation masks, and heatmaps for visualization. The

slide-level tumor detection performance is also analyzed using an aggregation heuris-

tic stacked on top of the patch tissue classifier. Various sampling strategies and coarse

segmentation performance using metrics such as pixel-level IOU are also analyzed. The

optimal performance obtained is an accuracy of 91% and an F1-score of 0.9 for unseen

patch data and an accuracy of 89% for unseen data for Whole Slide classification into the

tumor and non-tumor classes.
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Chapter 1

Introduction

We are rapidly moving towards an increasingly automated society with more emphasis

on human-machine and machine-machine interactions, that includes the medical science

community. A large number of procedures from diagnosis to surgical procedures to drug

discovery are now leveraging technologies like Artificial Intelligence, Machine Learning,

Robotics, etc. with promising results. Medical experts, doctors, radiologists, and pathol-

ogists are highly trained professionals with vast in-domain knowledge involved in diag-

nosing diseases and their impacts on patients based on data obtained from patients. The

AI-based techniques for diagnosis are being increasingly applied to medical imaging to

assist radiologists and pathologists. Digital Pathology is a popular area in the field of

medical imaging which has recently taken off with the advent of advanced digital micro-

scopic scanners and novel computer vision algorithms to study and extract information

from digitized scans.

Traditionally, histopathology slides are examined visually under the microscope by a

trained pathologist who then makes a diagnosis. With the advent of high-resolution slide

scanners, as well as with the advance in state-of-the-art computer vision and machine

learning techniques, automated slide analysis known as digital pathology has become

possible and more prevalent. Histopathological images have now become available in

abundance to drive research related to automated analysis of these slides at scale.
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Figure 1.1: Whole Slide Image samples taken from publicly available The Cancer Genome

Atlas (TCGA)[1], 5 from each of the following human tissues Brain, Breast, Colon, Kidney,

Liver, and Skin

This automation helps speed up analysis for larger amounts of data. It is thus imper-

ative to further explore the potential of Machine learning in providing reliable solutions

for the automation of tasks such as diagnostics. Cancer prevalence and diagnosis have

increased substantially in recent years. Accurate analysis, characterization, identification,

and localization can go a long way in ensuring faster, more controlled treatment among

patients. An automated biopsy analysis system can help pathologists by filtering and
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pre-populating scans, improving efficiency and turnaround time. This not only reduces a

lot of burden of redundant work from diagnosticians but also helps significantly improve

the capacity and speed of hospitals and medical institutes in processing patients’ data.

Automation of diagnostics will also enhance the accuracy as it will help address large

inter-observer variability arising from a subjective examination of the images. An auto-

mated, quantitative method can help overcome that and provide a more standardized

reading.

The objective of this thesis is to not only theoretically explore the state of research in

digital pathology, especially deep learning methods, but also to apply and analyze state-

of-the-art deep learning algorithms for tumor detection in head and neck cancer histology

data. It also aims to describe and build an efficient, high throughput pathology data

preprocessing workflow that can be integrated with the training and inference pipelines.

1.1 Related Work

Medical Science, especially medical imaging has seen significant interest from the com-

putational research community in recent times. It comes in the wake of a spike in data

availability, computational resources, scanning devices, image analysis tools, and a grow-

ing necessity for interdisciplinary research using automated techniques for augmenting

medical processes. This phenomenon has been especially marked in diagnostic systems

for various diseases including cancer

Digital Pathology is no different, it is fast catching up in terms of the application of

these novel methods for detection, classification, and prognostication of diseases in the

fields of radiology[2, 3] and oncology[4, 5] with already well-established computational

imaging practices. There has been extensive research going on for applying state-of-the-

art imaging algorithms and learning techniques to scanned biopsy images for diagno-

sis, segmentation, and prognosis[6, 7]. This includes tissues from various regions of the

body for tasks such as breast cancer detection(Mammography)[8, 9], cervical cancer anal-
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ysis[10, 11], Squamous Cell Carcinoma[12, 13], Head and neck cancer detection[14], celiac

disease analysis[15, 16], renal pathology[17], and many more.

Many recent works have been proposed that have proven to be highly successful in

tasks relevant to digital pathology. They involved a variety of techniques including classi-

cal computer vision-based techniques as well as advanced deep representation learning-

based ones. The primary tasks addressed are classification of diseases, segmentation of

affected tissue regions, prediction of severity of diseases, prediction of treatment regime,

etc. using different learning paradigms.

Several previous studies have implemented computer-assisted detection methods us-

ing histological images[18]. Colorectal epithelial and stromal tissues have been classified

on histological images using support vector machines with hand-crafted features, such

as color and texture[19, 20]. Barker et al.[21] in their 2014 work proposed a brain tu-

mor type classification algorithm using local representative tiles. Their method utilizes a

coarse-to-fine analysis of the localized characteristics in pathology images. There is an ini-

tial surveying stage for analyzing the diversity of coarse regions in the WSI that includes

extraction of spatially localized features from tiled regions in the slide followed by dimen-

sionality reduction of the features and clustering to create representative groups. A sec-

ond stage provides a detailed analysis of a single representative tile from each group. An

Elastic Net classifier is then used to produce a diagnostic decision value for each represen-

tative tile. A meta voting scheme then aggregates the decision values from these tiles by

appropriately weighing them to obtain a diagnosis at the whole slide level. Their method

achieved an accuracy of 93% for brain cancer classification into two possible types.

Additionally, convolutional neural networks (CNNs), which are a family of machine

learning algorithms that learn to extract features from training images, have also been ap-

plied to classifying epithelium and stromal tissues from colorectal and breast cancers[22].

Several patch-based deep learning classification models have been used for various his-

tology tasks. Patch-based CNNs have been used to classify Non-small cell lung cancers,

including metastatic SCC to the lungs[23]. Another method for detecting lung cancers
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in histological images of needle core biopsies used morphological and color features for

classification with an ensemble of artificial neural networks[24]. Head and neck SCC has

also been investigated but only in a couple of previous works, One such work was done

for cell lines xenografted into mice, where a CNN was implemented with histological

images to predict hypoxia of tumor-invaded microvessels[18, 25].

A more relevant and recent work for global classification by Halicek, Martin, et al.[14]

performs patch-based localization and whole slide classification for Squamous Cell Carci-

noma(SCC)(head) and Thyroid Cell Carcinoma(Neck) using CNN. It used the Inception-

V4 model trained on coarsely annotated SCC and thyroid cancer datasets and tested for

its performance on Thyroid Cell and Squamous Cell carcinoma detection as well as gen-

eral cancer presence detection, it was also tested on the external CAMELYON 2016 Breast

cancer lymph node metastases dataset. It used a patch-based approach training on 101

x 101 patches obtained using the coarse binary mask ground truth from downsampled

WSIs.

Furthermore, computational imaging methods have also been developed for thyroid

carcinomas to detect and classify malignant versus benign nuclei from thyroid nodules

and carcinomas, including follicular and papillary thyroid carcinomas, on a cellular level

with promising results[26, 27, 28]. However, most of the work related to thyroid carci-

noma were done at a cellular or nuclear level leveraging hand-crafted features obtained

using classical computer vision algorithms like texture or shape, and statistical learning

algorithms such as support-vector-machines for nuclei classification, with a large num-

ber of algorithms using an ensemble-based approach such as boosting, bagging or stack-

ing[27, 28, 29, 30, 31].

1.2 Challenges

Applying automated image analysis techniques for digital pathology comes with its own

set of caveats and challenges[32]. Most of these have to do with the high resolution of
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Whole Slide Images which are usually Gigapixel size images. They are computationally

intractable and resizing them to low resolution leads to loss of information. Most of the

research deals with this issue by breaking down the images into smaller tiles/patches for

training and processing[7, 14, 21, 23]. Tiling/patch extraction breaks down the whole

slide image into a set of sequentially extracted overlapping or non-overlapping patches

of predefined sizes. This simplifies our problem to automated processing and designing

algorithms for these individual patches instead of the original whole slide image. This

reduces the processing cost and makes algorithms computationally tractable. Tiling also

helps by essentially multiplying the amount of data we have for training deep learning

models since it breaks down one slide into a large number of patches of different classes.

Most pathology slides are usually very high-resolution multi-level images. This poses

a major challenge in terms of the computational tractability of algorithms designed for

these slides. It is important to capture all the information present in a whole slide image

without making the process too compute-intensive. Using lower-resolution versions of

the slides for processing would lead to loss of sensitive information and in turn below

par algorithms.

Patch-based approaches too have their issues. They do not capture visual context and

require a lot of computation for whole slide-level tasks. Since in a patch-based approach

we are concentrating only on a very specific patch of small size, we lose important con-

textual and spatial information present in the entire slide as well as the neighborhood

of the patch in consideration. The context is very important in a variety of automated

image analysis tasks such as classification, segmentation, generation, etc. Also, when we

deal with specific patches in isolation we lose information pertaining to the relationship

between different patches in a sub-region of the slide. This spatial relation between the

different regions of a slide is usually very significant information for slide-level tasks.

Under a specific patch size, patches drawn at a high magnification level lead to less con-

textual and spatial information whereas patches at lower magnification levels may not

capture cell-level features
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Since our whole slide images are massive images of gigapixel resolutions, breaking

them down into small patches for faster processing results in a very large number of

patches, which is a computational bottleneck when processing these patches sequentially.

Aggregation of individual patch level predictions into slide level labels is also a major

issue since it involves a lot of algorithmic design choices regarding how to best pool the

patch level results to get a suitable slide level prediction. In the case of deep learning,

major ways include soft and hard voting, average pooling, max pooling, and using linear

models such as logistic regression, Support Vector Machines(SVMs), etc as meta learners,

stacked on top of the patch-based deep learning model[14, 21, 23, 33, 34].

Another important challenge is the availability or lack thereof annotated data. Anno-

tation of pathology slides requires medical professionals and expert pathologists. Deep

learning-based computational pathology approaches either require manual annotation of

gigapixel whole slide images (WSIs) in fully supervised settings or thousands of WSIs

with slide-level labels in a weakly supervised setting and thus is a major bottleneck in

training efficient algorithms. It is neither possible nor recommended for non-domain ex-

perts to annotate pathology slides to ensure our automated digital pathology algorithms

don’t learn spurious features that might make them unreliable. While the experts who can

annotate are usually qualified doctors and pathologists who cannot dedicate too much

time from their usual professions for data annotation. Also, the sensitivity of dealing with

patients’ medical data and the associated privacy-related norms limit the manpower that

can be utilized for the task of data annotation or processing.

Another important caveat to take into account while dealing with pathology slides is

that the regions of interest i.e tissues in these slides are sparse and far apart. Pixels repre-

senting tissue are often found grouped in small clusters embedded in large image regions

with only uninformative, redundant background pixels. So a mechanism is needed that

can isolate the regions of interest from the slide and strip off the background with high

precision to not lose any important information. This will help speed up the analysis of

slides, by bringing down the processing time for tiling, feature extraction, or prediction
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since we only focus on relevant regions. This is usually done by a preliminary segmenta-

tion step that uses standard image processing algorithms leveraging thresholding based

on slide properties such as color, intensity [35, 36, 7]. Deep Learning algorithms can also

be used but they would require a large amount of training data and will have much higher

latency and size. The tissue and background regions in pathology slides, especially H&E

stained ones, are fairly easily separable based on color and intensity. Hence applying

complex deep learning approaches for what is essentially a pre-processing step would be

an algorithmic redundancy.

1.3 Method Overview

This project deals with the application of deep learning to digital pathology Slides for

Head and Neck cancer detection. Essentially this can also be framed as a tissue classi-

fication problem, where we classify patches from the Whole Slide Images into the two

classes: tumor and non-tumor. We leveraged state-of-the-art learning paradigms to ex-

periment and benchmark their performance on head and neck cancer pathology data for

both patch level and slide level aggregated tissue classification as well as for visual anal-

ysis of coarse segmentation using the same patch-based approach. This project involves

a detailed study of the performance of the Transfer learning approach using several ar-

chitectures trained on ImageNet[37] data for the tumor detection in head and neck tissue

patches using fine ground truth annotations of tumor regions done at the pixel level.

An entire experiment pipeline was developed that involved Data analysis, Image pre-

processing such as denoising, normalization, tissue segmentation, and patch extraction,

followed by data resampling, data augmentation, transfer learning, hyperparameter tun-

ing, and finally evaluation on unseen data, whole slide level detection along with image

reconstruction and output overlay.

We have used a patch extraction-based approach where we tiled our digitally scanned

slides stained with hematoxylin and eosin. We trained state-of-the-art Convolutional
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Neural Network(CNN) based architectures in a transfer learning setting[38] to classify

tissue patches as containing Tumor or not. We benchmarked the performance with differ-

ent architectures, sampling strategies, hyperparameters using various metrics such as ac-

curacy, precision, recall, and F1 score for classification and Intersection over Union (IOU)

for segmentation performance.

We trained on nearly 500 whole slide images obtained from 46 patients which pro-

duced 3∗106 non-tumor and 44,000 tumor patches. The Whole Slide Images were first pre-

processed using standard image processing algorithms including Morphological Opera-

tions, thresholding, contour detection for tissue segmentation followed by patch extrac-

tion from these contours in a customized way for our purpose. These patches were then

used for training ConvNets in a supervised setting to minimize classification error. We

trained various state-of-the-art architectures for benchmarking and comparison. These

were Residual Network(ResNet-34 and ResNet-50)[39] and EfficientNet (EfficientNet-B2)[40].

We tested our models on 5 ∗ 105 unseen patches and registered an accuracy of as high as

95% and an F1 score of 0.93 on validation data and accuracy of 91% and F1-score 0.9

on unseen patches. Once we had benchmarked different models for their performance

on patch level classification, a metaheuristic was used to aggregate patch level predic-

tions to generate slide level labels. The final slide level detection performance based on

this heuristic stacked on top of the patch-classification model was measured. We also

generated binary and overlaid prediction/localisation masks for each slide along with

probability heatmaps for each slide using the patch level classifier which gave us a visual

equivalent of coarse segmentation masks. Each patch was assigned as containing a tumor

or not by thresholding the final activation values generated by the patch classifier. We

then analyzed these coarse segmentations visually and by calculating Intersection over

Union between the generated classifier mask and the initial tumor contour mask.
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1.4 Outline of Thesis

This thesis is arranged as a series of Chapters. The introduction above was our first chap-

ter which laid down a short but comprehensive overview of the project including the chal-

lenges, method overview, and problem introduction. Chapter 2 of the thesis is the Tech-

nical Background. The background chapter comprises sections explaining the necessary

theoretical background for the project. They are arranged in terms of their application to

the project as well as a general technical hierarchy of methods used for digital pathology.

The theoretical descriptions also include relevant literature reviews as and when required.

The background is followed in Chapter 3 by the methodology chapter where we discuss

the overall methodology in much greater detail and the proper sequence of steps involved

in the project. Apart from a detailed description of the steps involved in the project, we

also lay out our entire experimental setup. Chapter 4 deals with a well-defined tabula-

tion, visualization, summarization, and discussion of the results of our experiments. The

last chapter, Chapter 5 concluded the thesis with general observation, conclusion, and

discussion of future research directions relevant to this project.

1.5 Contribution

The main contributions of this thesis have been summarized below

• This thesis explores the efficacy of state-of-the-art Convolutional Neural Network

models in a transfer learning paradigm for the detection of tumors in Head and

Neck histology data.

• The work is among a rare few to study the performance of deep learning-based

vision models for patch-based tumor detection in head and neck tissue samples in a

fully supervised setting. Multiple CNN architectures such as ResNet-34, ResNet-50,

and EfficientNet-B5 are trained, analyzed, and benchmarked for the classification of

tissue patches into two classes, tumor and non-tumor.
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• A high throughput, efficient, and reliable computer vision pipeline was implemented

and used for preprocessing large giga-pixel sized Whole Slide Images for integrated

noise removal, ROI segmentation, and patch extraction.

• Slide-level classification using a meta aggregation heuristic on top of patch classifi-

cation was also implemented and benchmarked.

• Extensive analytic and comparative study of the different architectures, sampling

strategies was done using an array of metrics such as F1 score, classification accu-

racy, IOU for coarse segmentation.

• An end-to-end workflow for inference was created that includes preprocessing such

as tissue segmentation and patch extraction, classification using the trained model,

and outputs not only the evaluation metrics but also visualizations of results using

binary prediction masks, heatmaps, and overlaid WSIs.
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Chapter 2

Background

In this section, we shall be studying the theoretical aspects of the various phases involved

in Digital Pathology in general as well as concepts involved in the various steps of this

project in particular. The discussion is divided across two implicit verticals: One based

on the various tasks that can be performed on digital whole slide images, and the other

based on the different techniques that can be applied to perform these tasks.

On a more abstract level, the different phases of a digital pathology workflow include

a Pre-analytical phase that deals with the acquisition of tissue data(biopsy) from patients,

slicing and preparation of these tissue samples to be put on glass slides for observation

using glass slide microscopes, the analytical phase which deals with digitization of the

whole slide images for storage and computation, as well as the post-analytical phase that

encompasses computational analyses, data extraction, integration, and final output.

The finer workings of the computational image analysis of pathology can be divided

into three main parts:

• Data Acquisition and Preparation This involves the process of acquiring data, stor-

ing them, visualizing, programmatically accessing, analyzing, removing outliers,

and preparing them for the subsequent data pre-processing.

• Data Pre-processing In this step we prepare our data for being fed to the feature

extraction or learning stages of the algorithm. This could involve standard prac-
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tices such as Image normalization, denoising, artifact removal, tissue segmentation,

patch extraction, graph construction, etc

• Learning This is the most important part of the image analysis. Here we use com-

puter vision algorithms for modeling our data. Then we use further computer vi-

sion, machine learning, or deep learning algorithms for feature engineering and to

learn useful representations from the model of the image content to predict some

outcome of interest or for any other downstream task. So we can either use com-

puter vision algorithms exclusively or use classical computer vision algorithms in

combination with various learning algorithms.

We discuss the various pre-processing techniques, classical computer vision and fea-

ture engineering-based methods, the various deep learning-based algorithms, and their

applications to classification and segmentation tasks in more general technical detail in

the upcoming sections of this chapter. The various Learning Schemes or paradigms of

Deep Learning that are popularly applied in the context of computational pathology

which we shall discuss are outlined in the Figure 2.1. Based on these, various DL mod-

Figure 2.1: Four popular learning schemes applied to computational pathology

els have been applied, which are traditionally based on convolutional neural networks

(CNNs), recurrent neural networks (RNNs), generative adversarial networks (GANs),

auto-encoders(AEs), and various other variants.

Popular and relevant recent literature and state-of-the-art methods in the domain of

digital pathology have also been discussed as and when required to consolidate the ex-

planation of the various technical concepts or to visualize the possible applications to

various steps in the digital pathology pipeline. But before that, the next section contains

13



a detailed definition of Digital pathology as well as a detailed description of its various

phases.

2.1 Digital Pathology

Histology[41] is the branch of biology dealing with the microscopic structure of biological

tissues. Histopathology[42, 43, 44] is a sub-domain of histology that deals with the diag-

nosis and study of diseases by examining tissues under a microscope to record changes

caused by diseases such as cancer. Trained experts known as pathologists examine mi-

croscopic slides of patients’ tissues in the affected region scanned under a microscope not

only to identify and localize diseased regions but also to define the severity and layout of

the prognosis or the treatment regime. It remains one of the most important clinical prac-

tices for diagnosing a variety of diseases such as cancer, Celiac disease in different parts

of the body. The process by which pathologists take a small sample of tissues for fur-

ther examination is known as a biopsy. Hematoxylin-Eosin (H&E) stained whole slides

have been used by pathologists for over a hundred years now for cancer detection and

prognosis. With such long history and proven applicability, histopathological imaging

is a popular research paradigm for medical practitioners and is expected to stay among

common clinical practices in the coming years.

The advent of ubiquitous whole slide digital imaging systems and developments in

computational image analysis techniques have driven the rise of a new domain called

Digital Pathology[45, 6]. Digital Pathology can be thought of as the convergence of

digital clinical workflows such as virtual microscopy with imaging techniques with the

goal of creating integrated computational systems in order to acquire, interpret and pro-

cess pathology data. It’s a departure from earlier where only the conventionally trained

pathologists using light microscopy would analyze tissue slides. Now this entire digital

environment where we use modern new techniques on digitally acquired slides enables
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expedited clinical workflows and the development of new image analysis tools for pathol-

ogy data.

Moreover, the application of machine learning algorithms has also led to new tissue in-

vestigation techniques and unique feature extractions which were erstwhile, not possible

with physical interrogation as well as standard imaging techniques which have pushed

the boundary of medical sciences in general. Hence digital pathology is a rapidly grow-

ing area of research and has fast reached applicability and accuracy levels to allow clinical

deployment. Since 2017, the FDA has approved the use of commercial WSI platforms, fa-

cilitating the use of digital pathology as a tool for primary diagnosis. WSIs, which can

now be scanned in less than a minute, can serve as an effective surrogate for traditional

microscopy-based pathology The important analytical phases and their corresponding

steps for Digital Pathology as shown in Figure 2.2 are:

• Pre-analytical Phase This phase encompasses the procurement step as well as parts

of the histology step. It involves steps that are involved in tissue procurement and

processing. It essentially relies on electron or glass slide microscopy and other ad-

vanced optical imaging technologies.

• Analytical Phase The analytical phase also involves histology steps such as selec-

tion of the stain to be used, optimization and validation of the staining procedure,

etc. as well as digitization steps for scanning the whole slide images and proper cu-

ration of the dataset. This phase depends heavily on high-quality digital scanners

capable of automatically producing very high-resolution images of the glass slides,

and modern software systems capable of WSI data visualization, storage, and over-

all management.

• Post-analytical Phase The analytical phase involves extraction, analysis, and in-

terpretation of results. Here we use the computer vision algorithms, both classical

or modern deep learning-based, for modeling or simplifying our data by feature

engineering or representation learning, followed usually by Machine Learning or
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state-of-the-art Deep Learning algorithms or some combination of them to learn

from these features and representations for specific tasks such as classification, pre-

diction, segmentation, etc. It can also be accomplished using purely human visual

analysis. Data extracted from the images using human and machine vision are inte-

grated and reported.

Figure 2.2: Analytical Phases of Digital Pathology, adapted from [46]

2.2 Procurement, Histology, and Digitization

Diving deeper to lay out the technical details of the Digital Pathology workflow requires

that we discuss in appropriate detail all the primary steps leading up to the computa-

tional imaging are done. This includes acquisition/procurement, processing, visualiza-

tion, staining, scanning of tissue samples.

In traditional pathology, the tissue sample to be examined is usually obtained through

biopsy, autopsy, or operation. It is then processed by fixation, wax embedding before be-

ing cut into very thin slices of 2-5 µ width. These slices are then stained before being
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transferred to a glass slide for being examined by pathologists using a light microscope.

12

The first step in tissue processing i.e fixating is done using a fixative solution. It is

done to prevent tissue degradation by preserving its original state. This is followed by

embedding it using paraffin wax[47]. This helps as the embedding agent infiltrates the

specimen to provide a support matrix to toughen it up. This firming up allows very thin

sectioning/slicing which is done using a microtome. The tissue is sliced into sections thin

enough to allow light to pass through.

Histochemical staining[48] (also simply called staining) is done to provide contrast

to tissue sections, making tissue structures better visible and easier to evaluate. Since

tissues are normally colorless, applying a dye to the tissue section allows the cells and

their components to be seen under a microscope. The most common technique used is the

hematoxylin and eosin (H&E) stain. Other staining techniques such as Masson trichrome,

alcian blue, reticulin staining, HER2, Ki-67, and others are sometimes used to demonstrate

specific tissue components not captured by a H&E stain. H&E is the combination of two

histological stains: hematoxylin and eosin. The hematoxylin stains cell nuclei a purplish

blue, and eosin stains the extracellular matrix and cytoplasm pink, with other structures

taking on different shades, hues, and combinations of these colors.

The common microscopy techniques involved in pathology are Optic aka Light mi-

croscopy and Electron microscopy. Optic microscopy uses light from the visible spectrum

and combines it with multiple lenses to create a magnified image. The magnifying power

of the objective (4x, 10x, 20x, 40x, or 100x) gets multiplied by the power of the ocular

lenses (10x). Since tissues are relatively colorless, the magnifying properties of the optic

microscope are not sufficient for proper visualization of a specimen, therefore necessitat-

ing the staining techniques described above.

Electron microscopy (EM) is a more modern form of microscopy. EM works by emit-

ting parallel beams of electrons onto the tissue sample. It provides for a much higher

magnification as well as higher resolution images. There are two types of EM: trans-
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mission electron microscopy, which requires very thin sections of tissue, and scanning

electron microscopy, which uses larger pieces of tissue and produces 3-dimensional im-

ages.

Digital pathology involves all of the same steps with the addition of methods for dig-

itization, visualization, and storage of these tissue samples. The digitization is usually

done using highly advanced optical scanners. It involves scanning glass slides to produce

digital slides. Modern whole-slide scanners are capable of automatically producing very

high-resolution images that replicate glass slides. Its also sometimes referred to as virtual

microscopy. Currently, there is a plethora of high throughput, high precision whole slide

scanners such as Aperio or InterScope. They use a multi-sensor array approach where a

microscope objective lens projects an image onto multiple sensors, allowing concurrent

image acquisition and data processing. These instruments typically contain a microscope

with one or more objective lenses, digital cameras, robotics, and numerous other parts.

They also come with state-of-the-art optic, robotic, and computing components such as

bar code scanners, sensors, cartridges.

Not just scanning, Whole slide imaging requires highly capable software systems for

visualization, processing, storage, and management of the scanned slides. These are re-

ferred to as virtual microscopy software. A large number of both active open-source WSI

systems, as well vendor-owned proprietary whole-slide software systems are available

currently driving research in digital pathology. Most of these Virtual Microscope soft-

ware systems make use of image pyramid-based data management systems to support

multi-resolution pan-and-zoom operations. The scanned Whole Slide Images are com-

monly encoded and stored in ’.SVS’ or (less frequently) ’.tiff’ formats.

These contemporary WSI systems include two integrated components (1) the scan-

ner that handles image acquisition and (2) the workstation that includes a monitor as

shown in Figure 2.3 depicting their workflow. Some examples of such systems are caMi-

croscope, the Digital Slide Archive, Aperio ImageScope, and QuPath. There also exists an

increasing number of libraries such as OpenSlide[50], slideIO, HistomicsTK[51] in differ-
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Figure 2.3: Overview of a Whole Slide Imaging system comprising of a scanner and inte-

grated workstation along with typical sequence of steps, adapted from [49]

ent programming languages that are making it convenient to visualize, process, convert,

perform image analysis and develop algorithms around them.

2.3 Computational Image Analysis

2.3.1 Whole Slide Image Preprocessing

While the most important part of the Computational imaging-based analysis of Pathol-

ogy slides is the feature extraction and modeling techniques that allow us to perform

prediction using our data, Image pre-processing is an essential step before that. Since the

scanned Whole Slide Images are color images, it is imperative to perform certain color

and texture-based preprocessing on them to enhance various color features for better fea-

ture extraction and to effectively exploit the color and spectral information present in the
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images. These steps help improve the visibility, saturation, and overall representative

ability of the images. Suitable usage of various combinations of preprocessing techniques

supports and enables highly effective image analysis.

Pre-processing also helps make the imaging process less sensitive to extrinsic factors

such as imaging conditions and scanner variations. Thus preprocessing is necessary to

guarantee stability in image quality as well as in the performance of imaging algorithms.

Pre-processing also helps segment and remove noise and other artifacts which might be

present on the scanned image before processing. Typically, a large portion of a slide isn’t

useful, such as the background, shadows, water, smudges, and pen marks. Preprocessing

can help rapidly reduce the quantity and increase the quality of the image data to be

analyzed. When it comes to preprocessing there are no standardized workflows and this

leads to significant variations and design decisions. There are a number of preprocessing

methods[52, 53] that can be applied to WSIs, an important and non-exhaustive list of

preprocessing steps includes color Calibration and enhancement, Colour deconvolution

and color normalization, morphology, color thresholding, tiling, ROI segmentation, etc.

Colour calibration[54] aims to ensure accurate color information has been recorded

and displayed, which can involve calibrating the intrinsics of a camera or the scanners,

overcorrection of displayed colors Colour enhancement is useful in order to obtain op-

timal performance of image analysis algorithms. This is done to ensure robustness to

imaging conditions and scanner variations. It involves techniques like Contrast enhance-

ment, hue and saturation adjustment, interconversion among different color spaces such

as RGB, YUV, YCbCr, HSV, etc that in turn can help improve e.g. segmentation or other

subsequent tasks. Colour deconvolution allows us to effectively separate the contribu-

tions of stains localized in the same area and thus allows analysis of stain specific images,

Colour Normalization[55, 54] helps address the variations in color appearance of histopathol-

ogy images due to scanner characteristics, chemical coloring concentrations, or different

protocols. Color normalization is an image processing tool that has been developed to

mitigate the effects of color variation by transforming the color properties of an image to
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Figure 2.4: Figure depicting variations in Prostate tissue WSIs caused due to rescanning

i.e scanner calibration and colour normalization [54]

align to a single standard. It helps reduce the staining variations and ensures all images

adhere to a certain color standard thus helping in visualization. Several different color

normalization approaches[56, 57, 58] have been developed that utilize standard image

processing techniques like intensity thresholding, histogram normalization, stain separa-

tion, color deconvolution, and structure-based color classification.

In many cases, preprocessing also involves addressing the major disadvantages when

dealing with Whole Slide Images as discussed in Section 1.2(Challenges). These are the

huge gigapixel size of these images as well as the sparsity of these images. This means

that large areas of pathology slides contain redundant background pixels which is a crip-

pling computational overhead in downstream tasks. In order to help with high through-

put, efficient imaging, we need to process WSIs to handle these issues. This involves

tiling or patch extraction which is essentially breaking down the Whole slide image into

smaller, more tractable sub-regions of a predefined size. The patch extraction can be per-

formed on all the available resolutions of the slide and is usually done at their native

resolutions.

It is also important to get rid of the redundant background information and segment

only the tissue regions as our regions of interest. This is done through a series of image
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Figure 2.5: An example of a WSI preprocessing pipeline where a skin tissue sample goes

through various steps such as edge detection, graph segmentation and tiling to remove

background information and generate tiles from tissue regions.[61]

transformations to identify the foreground from the background, pass only foreground

regions for further processing. The segmentation[59, 60] of the tissue region can be done

by exploiting the large differences in colors of tissue and non-tissue region. This involves

using image filters and other image processing techniques such as color space transforma-

tion, color thresholding, edge detection, contour detection, etc for segmentation of tissue

regions. There is no standardized way and this pipeline involves a number of tunable

parameters which affect the accuracy of segmentation. We utilized one such pipeline that

was fairly accurate and generalizable for our experiments which is explained in Chapter

3.

2.3.2 Feature Extraction, Modeling and Learning

This is essentially the most important step in the computational imaging of digitized

whole-slide images. In this step, we extract features and representations from patches or
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Whole Slide Images depicting various properties of the different pathology slides which

are utilized for downstream tasks such as prediction, segmentation, diagnosis, etc.

Quantitative feature modeling for tissue classification in the context of digital pathol-

ogy is divided into two categories – handcrafted features that can be correlated with spe-

cific measurable attributes in the image and have some degree of interpretability, and

unsupervised feature-based approaches such as deep learning-based methods which are

less intuitive and rely on filter responses learned from large numbers of training data to

characterize image appearance. There are a number of trade-offs to be made during the al-

gorithmic decision-making process. While the former has the advantage of greater inter-

pretability and control, the deep learning methods have proven to be highly successful in

capturing feature combinations, spatial correlations that are difficult to be comprehended

at a human level using primitive methods even by trained pathologists. Given substan-

tial data, the deep learning models learn highly abstract representations and complex

features which are also highly generalizable. Then again, handcrafted features are much

less computationally expensive, easier to guide, and efficient while the deep learning-

based methods require large amounts of carefully annotated data, as well as significant,

compute resources. We discuss both these paradigms in greater detail in the following

sections.

2.3.3 Handcrafted Features based Modeling

This section essentially deals with the classical computer vision-based techniques that

have been developed over the years to perform digital pathology. Before the advances

in computational capacity and learning-based algorithms which could learn abstract rep-

resentations as an optimization problem, researchers working on Whole Slide Imaging

would rely on handcrafted and engineered image features for diagnostic tasks such as

segmentation, labeling, tissue classification, disease grading, and in precision medicine.

There have been a number of recent advances in handcrafted and unsupervised fea-

ture analysis approaches for use in digital pathology some of which also take inspiration
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from algorithms developed for addressing radiomics problems. There are emerging re-

search areas that involve the fusion of these computer extracted tissue biomarkers with

genomic and proteomic measurements in a multimodal setting for improved prediction

of disease aggressiveness and patient outcome.

The traditional approach has been to leverage algorithms for extracting imaging fea-

tures. These features can be broadly classified as being pixel-level, object-level, or semantic-

level based.

Pixel-level features are lowest in the information hierarchy, such as mathematical

characterizations of color, texture, and spatial patterns. A small subset of specific pixel-

level features includes Gray-level intensity profiles, Haralick Gray-level co-occurrence

matrix features, wavelets, Gabor filter responses, and statistics and frequencies of color

histograms[62, 63, 64]. Linder et al. (2012) [19, 65] employed a texture approach for

segmentation of epithelium and stromal tissue partitions. They successfully used local

binary patterns (LBPs) as features for the differentiation of stroma and epithelium with

an area under the ROC curve of 0.995.

Object-level features help describe the characteristics of objects such as nuclei, nucle-

oli, and mitoses, as well as more complex aggregates of multicellular, histologic struc-

tures such as crypts, ducts, and blood vessels. They are, therefore, considered higher in

the information hierarchy. We need segmentation of structures in our data in order to

characterize these object-level features in a detailed manner. There is a significant body

of literature dedicated to the documentation of methods developed for identification and

segmentation of nuclei[66, 67] and more complex aggregate structures as well as for object

detection, to identify the location or relative positions of different structures.

Madabhushi et al. [68] used cytoplasmic and stromal features to automatically seg-

ment glands in prostate histopathology. In [68] and [67], nuclear segmentation from

breast and prostate cancer histopathology respectively was achieved by integrating a

Bayesian classifier driven by image color and image texture and a shape-based template

matching algorithm
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Semantic-level features help to capture the biological classification of histological struc-

tures or regions. They help describe high-level concepts such as type of cell (e.g., epithe-

lial or endothelial), presence of lymphocytes, and necrosis. Kothari et al. [69] describe

semantic-level features as being histological objects with descriptive labels We can also

use semantic information for classifying WSI regions. For example, we can classify re-

gions within a WSI as belonging to a tumor region or non-tumor region, or even benign

and malignant tumor regions.

Qaiser et al [70] in 2016 in their paper used Persistent Homology Profiles as distin-

guishing features in order to segment tumor regions in Hematoxylin & Eosin (H&E)

stained colorectal cancer histology whole slide images (WSI) by classifying patches as

tumor regions or normal ones. Persistent Homology Profiles are algebraic features that

exploit the fact that nuclei in tumor regions have atypical characteristics such as nonuni-

form chromatin texture, irregularity in shape and size, and clustering of nuclei to distin-

guish tumor regions.

2.3.4 Deep Learning

Figure 2.6 gives a very detailed overview of the current state of research when it comes

to the different Machine Learning Schemes applied for Digital Histopathology. They are

broadly defined into four different paradigms i.e Supervised Learning, Weakly Super-

vised Learning, Unsupervised Learning, and Transfer Learning. The corresponding ap-

plications and specific deep learning architectures within the different learning schemes

have also been clearly outlined in the figure.

A brief theory of deep learning applied to Digital Pathology along with relevant liter-

ature references has been discussed in the following sections divided based on the above

mentioned four schemes. This section is largely based on the comprehensive survey

paper titled ”Deep neural network models for computational histopathology: A survey”[7] by

Srinidhi et al.
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Figure 2.6: An overview of the different deep learning schemes used for digital pathology

along with popular architectures and corresponding applications, adapted from [7]
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Supervised Learning

Supervised Learning is a learning approach where the learning algorithm is provided

with large amounts of labeled training data that contains both the data and its corre-

sponding ground truth labels. So essentially the data is in the form of an ordered pair.

Thus for N training samples we have of {xi, yi} ∀ i ∈ N . The goal is to train a model that

best learns to model the output given a new input based on a loss function.

The supervised learning-based models take three different canonical forms based on

the problem they are solving, viz. classification which usually deals with tasks such as

classification or object detection at a slide or patch level using a pixel-wise or sliding

window-based prediction, regression which involves learning continuous-valued out-

puts and thus helps learning tasks such as prediction of severity of disease, or pixel-wise

scoring for predicting the location, and segmentation which uses an encoder-decoder

based fully convolutional network-based approaches for semantic and instance-level seg-

mentation.

The supervised learning models for classification were identified as performing both

local-level tasks and global-level tasks. Local-level classification models deal with the ef-

fective localization of objects in a region such as a cell or nuclei by using spatially pooled

feature maps. CNN-based models have been really successful at pixel-wise prediction us-

ing a sliding window approach over image patches that are annotated by pathologists as

regions containing objects of interest( cells/nuclei) or background. Most of these methods

have a clear parallel to object detection algorithms meant for natural images [71]. Cirec-

san et al. [8] was one of the most significant early successes in this domain in 2013, where

they applied a CNN-based pixel prediction to detect mitosis in routinely stained H&E

breast cancer histology images. Another popular and fairly successful set of work for

these tasks involved hybrid approaches combining CNN extracted features with biologi-

cally interpretable handcrafted features, the likes of which we discussed in the previous

section, which helped to reduce the requirement of a huge dataset for training CNNs.[72,

73, 74, 75]
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Specialized research solutions like Multi-scale CNNs[76] and CNNs with data-specific

stain augmentation[55] have also been proposed in several works in order to alleviate the

issues caused by loss of information due to working with small localized windows and to

deal with the loss of generalizability due to stain variations respectively. All in all, CNNs

are the gold standard deep learning techniques when it comes to local histopathology

tasks.

In global level classification, where we work to perform classification, grading at the

slide level, most of the published work focuses on a patch-based classification approach

for whole-slide level disease prediction tasks[77]. It can involve both patch level local-

ization as well as whole slide level classification or grading of disease. Most works per-

taining to these problems used simple CNN-based models. Cruz-Roa et al. [78] for ex-

ample in 2014 proposed a simple 3-layer CNN for identifying invasive ductal carcinoma

is breast cancer images which outperformed all the previous handcrafted methods by a

margin of 5%. These methods and the global level tasks, in general, suffer from the issue

of relatively long computational time required to carry out a dense patch-wise prediction

over an entire WSI. Many new techniques are increasingly being utilized to address these

problems. These include Monte-Carlo-based adaptive sampling strategy to focus only

on highly relevant regions [78], task-driven visual attention models meant to selectively

focus on the most diagnostically significant regions[79, 80, 81]. In fact, attention mecha-

nism is rapidly becoming the method of choice. Xu et al.(2019) [80] proposed recurrent

attention mechanisms to selectively attend and classify the most discriminate regions in

WSI for breast cancer prediction. while Zhang et al. [77] (2019) proposed an attention-

based multimodal framework to automatically generate clinical diagnostic descriptions

and tissue localization attention maps, mimicking the pathologist which was inspired by

solutions for visual question answering problems.

Regression models on the other hand solve the identification and localization of ob-

jects by directly regressing continuous-valued outputs for each pixel that gives a probabil-

ity score of it being the center of an object. The reason it can potentially outperform simple
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pixel-level classifiers is that it allows us to enforce topological constraints such as assign-

ing higher scores to pixels near the center of an object than those farther from it thus tak-

ing a much more statistically nuanced approach. They use continuous-valued distance-

based loss functions like L1, L2, and mean squared losses instead of cross-entropy loss.

These deep regression models are mostly based on CNNs and FCNs. Beyond the

earlier iterations of simple FCN based models for regression, [82, 83], the more recent

methods use modified loss functions as well as additional features for better performance.

This includes a structured regression model proposed by Xie et al. [84] based on fully

residual convolutional networks for detecting cells in four different tissue images that

used a weighted MSE loss function with higher loss assigned to misclassified pixels nearer

to the cell centers.

Another seminal work popularly known as HoVer-Net, short for Horizontal Vertical

Network proposed by Graham et al. in 2019 [85] proposed a unified FCN model for

simultaneous nuclear instance segmentation and classification. The proposed model ef-

fectively encodes both relative horizontal and vertical distance information of each nuclei

pixel from their respective centers of masses as a number in -1,1. This information helps in

accurate nuclei separation in multi-tissue histology images especially in case of occlusion

or overlap.

Segmentation models aim to perform semantic segmentation of each pixel identifying

them on the basis of the cells or nuclei to which they belong. Most segmentation models

use an encoder-decoder architecture such as U-Net or FCNs. Patch-based sliding window

approaches although effective is very computationally expensive. Common applications

are the nucleus, gland or duct [86, 87, 88] segmentation. Swiderska-Chadaj et al.[89] did a

comparative analysis of both FCN based segmentation model, de Bel et al.[90] and UNet

architecture, Ronneberger et al.[91] and found U-Net to be more robust and generaliz-

able owing to the upsampling path in its decoder as well as extra skip connections, thus

yielding more accurate better quality segmentation maps.
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Figure 2.7: An overview of supervised learning methods

One very recent work that is worth highlighting is SlideGraph[92] 2020 that devised a

way to work around the computational intractability of using whole slide images. They

used a method where the entire whole slide image is modeled into a graph which is

a highly memory-efficient data structure before being fed to a Graph Neural Network

model for training. Instead of extracting small patches from the WSI and doing analysis

on a limited visual field for prediction, a pipeline is used which constructs a graph from

the nuclei-level to the entire WSI-level.

It makes use of the seminal regression model HoVer-Net [85], that we discussed above

for localizing and classifying the individual nuclei. Spatial clustering is then used to

group together nuclei that share common properties. Each of the tissue clusters is then

modeled as a node in a graph, with edges of the graph capturing the possible tissue

signaling mechanisms. Once the graph construction is done, the task of WSI-level pre-

diction can be modeled as a graph classification problem. A graph convolutional neural

network(GCN) [93] with graph isomorphic network convolutional (GIN-Conv) layers can

then be used for further training and downstream tasks. The mechanism has been out-

lined in the figure 2.8.
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Figure 2.8: An overview of the SlideGraph approach (taken with permission from [92])

Slide Graph is computationally more efficient than patch-based models and opens the

avenue of using WSI graph representations for solving other problems in computational

pathology as well.

It is based on the assumption that cells in a tissue can organize in a certain way for

specific functional states.

Weakly Supervised Learning

Weakly supervised Learning has also been extensively used recently in cases where we do

not have access to complete or pixel-level data annotations or only have weakly annotated

data, such as slide level annotation for classification of patches and/or localization of

tumors. They make use of Multi-Instance Learning, or simply infer finer level information

for pixels and patches from coarser slide level information which is more easily available.
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This method is especially relevant in the domain of Digital Pathology given that getting

expert annotations at pixel or patch levels is very hard and time-consuming and such an

extrapolation dramatically reduces the burden from pathologists.

In Multiple Instance Learning[94, 95], we work with bags of training data, labeled as

positive or negative, and each bag consists of many instances whose label is unknown. An

example can be histology slides labeled cancerous/non-cancerous with each slide repre-

senting a bag and patches/pixels extracted from each slide being the instances. The goal

usually is then to train models that can help with both bag level and instance level predic-

tion using only weak annotation. Therefore in a broader sense even weakly supervised

learning methods based on MIL can be categorized into three types

Global: Identifying target in the Whole Slide Images i.e at the bag level such as pres-

ence/absence of Cancer in the slide.

Local: Identification at a finer instance-level i.e in patches/pixel, such as localization

of cancerous tissue patches or pixels.

Local and Global: A hybrid detection where both instance level and bag level tar-

gets are identifying, such as classifying a slide as cancerous along with localization of

cancerous pixels/patches. This is arguably the most popular and clinically relevant MIL

approach in histopathology.

A lot of weakly supervised algorithms make use of a combination of multiple weak

annotations such as image-level tags,points, bounding boxes, polygons, and percentage

of the cancerous region within an image [96, 97, 98, 99].

One popular weakly-supervised approach is ”LOOK, INVESTIGATE, AND CLASSIFY”

A three-stage deep hybrid attention method for Breast Cancer Classification by Xu et al

[80]. In this work, the authors adaptively select a sequence of coarse regions from the

raw image by a hard visual attention algorithm, and then for each such region, we are

able to investigate the abnormal parts based on a soft-attention mechanism. A recurrent

network is then built on top to classify the image region and also to predict the location
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Figure 2.9: An overview of weakly supervised learning for digital pathology

of the image region to be investigated at the next time step. This way, only a fraction of

pixels need to be investigated for the classification.

The classification problem is formulated as a Partially Observable Markov Decision

Processes (POMDP). Slide-level annotations cast a weak label on all tiles within a partic-

ular whole slide image in the following way:

• If the slide is negative, negative for all of its tiles;

• If the slide is positive, positive for at least one of the tiles.

Following the patch-level training, slide level inference was done through aggrega-

tion, various Slide level aggregation techniques used were Max-pooling, Random Forest-

based aggregation, and RNN based aggregation. Similarly, scale level aggregation was

also done by taking tiles extracted at the same center pixel but at different magnifica-

tions(5x,10x, and 15x). The strategies used for the aggregation were naive multiscale ag-

gregation using Average and Max Pooling as well as an RNN based multiscale aggrega-
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tion using the S most interesting tiles. For both the slide level and scale level aggregation,

the RNN based integration method proved to be the most effective.

Unsupervised Learning

Unsupervised Learning refers to the set of learning algorithms that are applied when we

don’t have any labeled data. Since there are no annotations to guide the training pro-

cess, the emphasis of common unsupervised learning algorithms is to learn a distinctive

pattern, clusters, or anything useful about the underlying data structures from the un-

labelled data. The significance of studying and developing unsupervised learning algo-

rithms should be abundantly clear given the scarcity of labeled data owing to regulatory

concerns and the labor cost involved in data creation and annotation.

Usual ways to handle unlabeled data are to perform clustering, learn latent represen-

tations or perform generative modeling. Autoencoders and Generative Adversarial Net-

works are popular generative models for learning useful discriminative representations

from unlabelled data[100, 101, 102]. The learning task in an unsupervised scenario is am-

biguous since the given input can be mapped to infinitely many spaces, therefore most

approaches are aimed at maximizing a constrained likelihood of the data thus achieving

some meaningful clustering for the given task.

Fischer et al.[103] in their paper titled Sparse coding of pathology slides compared to

transfer learning with deep neural networks applied an unsupervised dictionary learning

to learn sparse representations of patches extracted using Local Competitive Algorithm

that could minimize both reconstruction error as well as non zero neurons. The sparse

representations generated using the learned dictionary were then used as a feature to train

a tumor/non-tumor classifier. This method outperformed state-of-the-art CNN-based

models, by reducing dependence on domain knowledge as well as patch-level annotation.

In early work, sparse autoencoders were utilized for unsupervised nuclei detection

[100](Xu et al., 2015a). Detection performance improved by modifying the receptive fields

of the convolutional filters to accommodate small nuclei [101]. Generative Adversarial
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Figure 2.10: An overview of latent representation based unsupervised learning methods

Networks (GANs) have also recently been employed for more complex tasks, like tissue

and cell classification. InfoGANs [102] were leveraged for extracting features, which in

turn helped maximize the mutual information between the generated images and a pre-

defined set of latent codes, to be applied to tasks such as cell-level classification, nuclei

segmentation, and cell counting.

There is another category of approaches called unsupervised transfer learning, where

instead of directly applying learned features on a target task, we learn mapping functions

to be used as initialization for target tasks, possibly with very few labeled training images.

Using a loss term that is similar to the reconstruction objective of autoencoders,[104]

trains a CNN using unlabeled images pertaining to a specific modality (e.g., brain MRI

or kidney histology images), to learn filterbanks at different scales by sparsely encoding

the input images of sizes 13×13 and 27×27 pixels. The resulting filters are shift-invariant,

scale-specific, and can help uncover intricate patterns in various tasks, such as tumor

classification of glioblastoma multiform or kidney renal clear cell carcinoma. In machine

learning, this form of unsupervised learning is called “self-supervised” learning that can
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help deal with larger images and thus, offers a promising alternative to clustering ap-

proaches in histopathology.

Transfer Learning

The Transfer Learning[105, 106] approach is the most popular and widely adopted tech-

nique in digital pathology is the use of. Transfer Learning is the paradigm where the goal

is to apply knowledge or representations extracted from one domain to another domain.

This way we transfer the learning from a source task/domain to a destination domain.

This relies on relaxing the constraint on our data being independent and identically dis-

tributed. It also relies on the abstraction ability of deep learning models which tend to

learn increasingly complicated features from the data. This means that the initial few

layers learn very simple patterns like edges while the later layers learn increasingly com-

plex features representing more specific structures. This ensures that the initial layers

pre-trained on any task can easily be transferred to data from other domains since the

simplistic features like edges and circles are task agnostic, while we can fine-tune later,

more complex layers on our task-specific data.

Therefore, transfer learning techniques in medical imaging can be applied in two dif-

ferent contexts, a. Pretrained models as feature extractors, b. fine-tuning networks ini-

tialized with pre-trained weights for the given task, the latter being more ubiquitous in

digital pathology. This ingenious approach ensures we don’t have to train a new model

from scratch every time on a new dataset, we can simply use weights learned on other

more general, large datasets on a multitude of tasks and transfer the same weights on

our data. This saves significant computational resources and time while not affecting the

performance significantly.

Various pre-trained models have been successfully adopted in histopathology domain

such as: VGGNet[107], InceptionNet[108], ResNet[39], MobileNet[109], DenseNet[110],

etc. Their applications range widely from various cancer grading to prognosis tasks. A

more relevant and recent work using transfer learning by Halicek, Martin, et al.[14] per-
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forms patch-based localization and whole slide classification for Squamous Cell Carci-

noma(SCC)(head) and Thyroid Cell Carcinoma(Neck) using CNN.

A ground-truth binary mask of the cancer area was produced from each outlined his-

tology slide. The WSIs and corresponding ground-truths were down-sampled by a factor

of four using nearest-neighbor interpolation. The downsampled slides were then broken

into patches of 101 x 101 size. To ensure generalization the number of image patches

was augmented by 8x by applying 90-degree rotations and reflections to develop a more

robust diagnostic method.

Additionally, to establish a level of color-feature invariance and tolerance to differ-

ences in H&E staining between slides, the hue, saturation, brightness, and contrast of

each patch were randomly manipulated to make a more rigorous training paradigm be-

fore being fed to the Inception-v4 model for detecting head and neck cancer.
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Chapter 3

Methodology

In this chapter, the entire workflow has been described in detail. The first section is ded-

icated to the description, visualization, and analysis of the dataset used. The subsequent

sections contain detailed overview of the steps involved in the project including the pre-

processing, training, inference and evaluation explained in detail along with figures and

pseudo-codes as necessary. They contain details about the segmentation and patch extrac-

tion steps, sampling strategies, models and architectures used, evaluation metrics used

and the inference output, latency and computational requirements.

3.1 Dataset

The dataset, as is the case for any deep learning problem, was at the center stage of

our project and a great deal of work involved in this project was centered around our

data, be it acquisition, preprocessing, tiling, color adjustments, and training. Clean, well-

annotated, high-quality data can help complex networks identify unique and distinctive

information allowing novel tasks hitherto difficult to be automated, while lack of quality

data can be the biggest bottleneck when trying to solving novel problems even with the

most advanced algorithms.
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Our data essentially consisted of digitally scanned head and neck biopsy Whole Slide

Images. These were surgical tissue samples taken from patients that were Formalin-fixed

and paraffin-embedded (FFPE). They were derived from head and neck regions such as

the larynx, pharynx, neck, tongue, mouth, etc. Thin sections were then cut out of the fixed

and embedded tissue samples. These sections were stained using Hematoxylin and Eosin

staining which is the gold standard and the most widely used stain in medical diagno-

sis, especially for cancer. The H&E stained tissue sections were analyzed/reviewed by a

pathologist.

Following H&E staining all slides were scanned using the Aperio ScanScope AT Turbo

located at the Molecular Pathology Centre of the Segal Cancer Research Centre at Jewish

General Hospital, Montreal. This helped us get the high-resolution digitized version of

the slides for computational processing. We had a total of 1517 Digitized Whole Slide

Images obtained from 41 patients.There was no inter-scanner variation among the slides

since all slides were scanned using the same scanner. Each patient data was assigned a

unique alphanumeric code for sorting.

The images were high-resolution files encoded in the ’.SVS’ format for accessing. Each

of the files was very large in size, nearly gigapixel resolution. The whole slide images

were created by laying out tiles of smaller sizes to create the larger resolution image.

The whole slides each contained multiple resolutions allowing us to pan and zoom to

visualize and process them at different resolutions. The four zoom levels expressed as

downsample levels were 1x, 4x, 16x, and 32x respectively. We principally worked with

the second-highest zoom level(4x downsample) for the project except for visualization,

preprocessing steps. We used Aperio ImageScope as our virtual microscope to visualize

the WSI at different scales easily. Figure 3.2 shows the distribution of the dimensions

of the Whole Slide Images. The central scatter plot plots the width and height for each

slide while the histograms on the side depict the distribution of heights and widths. The

average dimensions of the slides were approximately 45185(height) x 69108(width)
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Figure 3.1: Selected samples from our head and neck histology data

40



Figure 3.2: Distribution of the dimensions of the Whole Slide Image in pixels
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The same ImageScope was used to generate manual annotations for our use case

where an expert pathologist drew contours around the tumor regions in WSIs that were

cancerous. The contour boundaries were stored as sets of coordinates in the highest reso-

lution as XML files. WSIs with no tumor regions were left as is. These annotations served

as our ground truth. A random subset of 600 WSIs out of 1500 odd were annotated since

it was a time-consuming effort and they proved sufficiently successful for the scope of the

task as we shall see later.

For accessing and processing these WSIs on our programming language of choice i.e

Python, we primarily used the OpenSlide library, an open-source C + + based library that

enables working on large Whole Slide Images using python. It works by loading WSIs as

an object along with all its related information or metadata such as the number of levels,

level downsamples, dimensions, etc. We also used several other tools and libraries such

as large image, slideIO, OpenCV, for processing WSIs as convenient.

3.2 Pre-processing

It was important to preprocess our data in order to make it viable for the application

of deep learning best computational image analysis. This was also necessary because of

the computationally inhibitive sizes of the images that ran into gigapixels. The images

also consisted of vast redundant information that necessitated the use of a preprocess-

ing pipeline that would segment out the regions of interest before further processing in

order to streamline the whole training and inference process allowing high throughput.

Therefore a major part of the project was to develop an efficient preprocessing pipeline re-

plete with algorithms to analyze, process, sample, and prepare data for subsequent train-

ing. The preprocessing pipeline consisted of steps for artifact removal, ROI segmentation,

Patch extraction, data normalization, etc which have been discussed in further detail in

the following sections.
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Figure 3.3: Selected WSIs with their annotation, the green boundary represents contours

around tumor region
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3.2.1 Data Cleaning

A large number of our Whole Slide Images contained artifacts such as Ink marks that had

been used by the pathologists for identification of the tissue samples before digitization.

The ink marks were usually text written in blue or black markers. They were redundant

information for our digital pathology task since the IDs and other information were al-

ready available as metadata for the slides. Moreover, the artifacts are essentially noise for

both the tissue segmentation as well as tumor detection models skewing their accuracy

and leading to non-distinctive data.

A visual inspection of the dataset showed that these ink marks were only of two spe-

cific colors: blue and black, therefore we used an RGB thresholding-based image pro-

cessing algorithm to remove them. We converted our WSI object into an array for ease

of computation, we then created two binary masks by thresholding on two specific RGB

value ranges, one each for blue and black. The binary masks had the highest value(255)

assigned to the regions containing pixels in the said color ranges. We then performed

morphological dilation of these masks to ensure they capture even the edges of the arti-

facts properly. Following this, we performed a bitwise OR operation of the masks with all

the three channels of the image separately and then merged them to get the final version.

The bitwise OR operation causes the regions in the image containing the ink marks to

become white while letting the remaining pixels be as it is. A few samples of the working

of the algorithm are shown below in Figure 3.4

def cleanData ( image= <array >) :

mask1= threshold ( image , range1 ) # binary threshold

# range1 = [ [ 0 , 0 , 1 0 0 ] , [ 5 0 , 5 0 , 2 5 5 ] ] # blue

mask1= morphologica lDi la t ion ( mask1 )

mask2= threshold ( image , range2 )

# range2 = [ [ 0 , 0 , 0 ] , [ 1 0 , 1 0 , 1 0 ] ] # black

mask2= morphologica lDi la t ion ( mask2 )
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r , g , b= s p l i t c h a n n e l s ( image )

r i n t = b i t w i s e o r ( r , mask1 )

r new= b i t w i s e o r ( r i n t , mask2 )

. . . # repeat f o r a l l three channels

b new= b i t w i s e o r ( b i n t , mask2 )

image new = merge channels ( r new , g new , b new )

return image new

Listing 3.1: Python pseudocode for WSI noise removal

3.2.2 Tissue Segmentation

One of the biggest challenges when working with Whole Slide Images for digital pathol-

ogy is that very frequently the WSIs contain a very limited region of interest that includes

tissue and nuclei areas while a significant portion of the image is made up of redundant

background pixels. With the WSIs being very high resolution in themselves, it’s impor-

tant to devise a way to get rid of the background and isolate the tissue regions in the WSIs

for further processing thereby improving the computational efficiency.

Luckily the background and the tissue regions are very distinctive to the naked eye

in their color, texture, and intensity as can be seen from the Figure 3.3 and can be easily

separated. The two kinds of pixels are also easily separable by image processing tech-

niques owing to their highly divergent properties. This difference is also a result of the

H&E staining used on the samples. The task was to create an efficient and generalizable

algorithm to accurately segment out the tissue regions. We used a pipeline of classical

computer vision methods to achieve this.

The key step involved in the tissue segmentation pipeline was to convert the image

from RGB color space to the HSV color space, this resulted in further intensifying the

difference between the tissue and the background regions as seen in Figure 3.5. For the
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Figure 3.4: Samples from our dataset showing the artifact removal algorithm in action,

original images on the left and final results on the right

thresholding, we used Otsu’s thresholding algorithm. Otsu’s algorithm is a binarization

algorithm that iterates through all possible values of threshold and calculates a measure

of spread for the pixel levels on each side of the threshold, i.e. the pixels that either fall in

foreground or background. The goal is to find the optimum threshold value at which the

sum of foreground and background spreads is at its minimum. All the steps involved in

the segmentation step are outlined below

46



• First of all, the images were resized to a tractable size for the segmentation. The WSI

is read into memory at a highly downsampled resolution (e.g. 32×32). This was

done by simply taking the most downsampled level of our WSI for preprocessing.

• It was then converted from RGB to the HSV color space. Following this, a median

blur is applied to the HSV image to smoothen the edges in the image.

• A binary mask for the tissue regions (foreground) is then computed based on thresh-

olding the saturation channel of the image after median blurring. We used Otsu’s

thresholding algorithm.

• It is then followed up with additional morphological closing to fill small gaps or

holes in the tissue regions of the mask.

• The approximate contours of the detected foreground objects are then filtered based

on an area threshold and stored as arrays for downstream processing after scaling

to the appropriate resolution.

• The contours for large holes within a tissue were also stored separately using con-

tour hierarchy

def segmentTissue ( image= <array >) :

image=cleanData ( image ) # remove a r t i f a c t s

image hsv= convertRGB2HSV ( image ) # convert to HSV

colorspace

image med= medianBlur ( image hsv [ : , : , 1 ] , b l u r t h r e s h o l d )

# Apply median blur to s a t u r a t i o n channel of HSV image to

smoothen edges

image otsu= o t s u t h r e s h o l d i n g ( image med , thresho ld va lue )

# apply otsu thresholding

image otsu= morphologicalClosing ( image otsu )
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# perform morphological c l o s i n g to remove small gaps

contours , h ierarchy= f in d c on to ur s ( image otsu )

# f ind admiss ib le connected component based contours from

the otsu −thresholded binary image

t i s s u e c o n t o u r s , ho le contours = f i l t e r c o n t o u r s ( contours

, hierarchy , a r e a t h r e s h o l d )

# f i l t e r t i s s u e and hole contours using contours and

hierarchy based on t h e i r area

return t i s s u e c o n t o u r s , ho le contours

Listing 3.2: Python pseudocode for WSI tissue segmentation

3.2.3 Patch Extraction

Once data cleaning and tissue segmentation were done, the contours were passed on to

the last and most important part of the preprocessing pipeline, the image patch extraction

system. Since we intend to train our model on patches for tumor detection, it is imperative

to build a computationally efficient, high throughput patch extraction algorithm that can

be easily integrated with both the preprocessing as well as machine learning training and

inference pipelines.

We extract patches from only tissue regions that have been segmented. We pursue the

patch extraction as a two-step process, one for non-tumor regions and another for tumor

regions. Since we have the contours for the entire regions of interest, as well as contour

coordinates for tumor regions for WSIs that contain tumors, we can iterate through each

of these contours and extract patches to store them for further processing or for dynamic

inference.

We first specify the patch size along with the patch level. Patch level decides the

resolution of the WSI at which we extract the patches. The patch size we decided on was

256 x 256 pixels in size and the patch level was decided to be the second-highest zoom
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Figure 3.5: Sample WSIs converted to HSV space, it shows how this transformation helps

to intensify the distinction between foreground and background pixels
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level i.e 4x downsample. This helped with an optimum trade-off between the complexity

of the patch extraction algorithm as well as the resolution of the patches.

Following this, we looped through each of the tissue contours returned by the seg-

mentation function, for each contour we further went through them in a sliding window-

based approach, with each window being of the same size as the patch size specified. The

sliding windows had a stride of 128 pixels along with both the directions thus creating an

overlap of 50% when looping through the contours.

For each of the sliding windows, the area was cropped out of the WSI at the patch

resolution specified using slideIO library. The cropped image array, along with metadata

such as patch coordinates, patch level, patch size, tumor label were saved in a dictionary

which was converted to binary data format and encoded and stored in .h5py files for later

access. Additionally, each patch array was also saved in ’.tiff’ format in a separate folder

for each slide.

The patches were also checked for tumor content. A separate binary tumor mask

was generated for slides that contained tumors using the contour coordinates stored as

XML files. This was done by taking a zero array(black) of the same size as the WSI at 4x

downsampling and drawing the contours and filling them in with ones. Now for each

sliding window patch, a similar patch was extracted from the tumor mask at the same

location. The proportion of tumor content in the patch was analyzed by counting the

number of white pixels(tumor) and black pixels(non-tumor) and calculating their ratio.

A ratio greater than 0.05 i.e 5% was considered tumorous and that particular patch was

skipped. Thus we got only normal non-tumor patches using the tissue contours given by

the segmentation algorithm, all arranged orderly with a 50% overlap.

The tumor patches were extracted separately from the tumor contours stored as XML

files. The tumor regions in different slides were of highly varying sizes. Instead of sam-

pling patches in the same sliding window approach as in the case of non-tumor patches,

we randomly sampled a fixed number of patches from each of the tumor regions. This

was done to ensure there is no bias towards tumor patches from slides containing large
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tumors since we shall always get a fixed number of such patches. Also introducing ran-

domness of patch selection was important to ensure coverage of all the different areas

in a tumor region and improve generalisability of subsequent learning algorithms since

we are not extracting all possible patches. We ended up extracting 200 patches for each

tumor region after an inspection of the average tumor area.

In the Figure 4.2 in the result chapter, we can see the different tumor and non-tumor

patches extracted from various slides. In figure 4.3 we can see the visualization of ex-

traction patches, which is constructed by stitching together downsampled patches on a

blank canvas of the size of a downscaled version of the original WSI. We can visualize the

results of different patch extraction strategies for tumor and non-tumor regions.

def e x t r a c t P a t c h e s ( image= <array > , contours , tumor contours ,

p a t c h l e v e l =1 , p a t c h s i z e =256 , s t r i d e =128 , num tumors =200) :

’ ’ ’ Input params :

Image : WSI

contours : segmented contours

tumor contours : tumor contours

p a t c h l e v e l : zoom l e v e l f o r patch e x t r a c t i o n

p a t c h s i z e : s i z e of each patch

s t r i d e : s t r i d e of s l i d i n g window

num tumors : Number of tumor patches to e x t r a c t from each

tumor contour

’ ’ ’

# e x t r a c t i n g non tumor patches

f o r cont in contours :

# loop through a l l contours

f o r x in range ( 0 , width ( contour ) , s t r i d e ) :

# loop through a l l p o s s i b l e x coordinates of a contour

with a given s t r i d e
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f o r y in range ( 0 , height ( contour ) , s t r i d e ) :

# loop through a l l p o s s i b l e x coordinates of a contour

with a given s t r i d e

patch= crop image ( x , y , pa tch s ize , p a t c h l e v e l )

# crop out a patch of given patch s i z e from

p a t c h l e v e l of WSI a t point ( x , y )

g t patch= crop ( gt mask , x , y , p a t c h s i z e )

# crop out a patch of given patch s i z e from binary

ground t r u t h tumor mask

tumor area=num ones ( g t patch ) /num zeros (

gt patch mask )

# c a l c u l a t e tumor r a t i o f o r the given patch

i f tumor area <0 .05 :

save patch ( patch )

# i f tumor p i x e l s are l e s s than 5% save patch as non

tumor patch along with metadata

# e x t r a c t i n g tumor patches

f o r cont in tumor contours :

# now looping through tumor regions

x= random sample ( 0 , width ( cont ) , num tumors )

y= random sample ( 0 , height ( cont ) , num tumors )

# randomly sample as many p a i r s of ( x , y ) coordinates as

number of tumor patches required , from each tumor

contour

patch= crop image ( x , y , pa tch s ize , p a t c h l e v e l )

# crop out a patch of given patch s i z e from p a t c h l e v e l

of WSI a t point ( x , y )

save patch ( patch )
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# save patch as tumor patch along with metadata

re turn patches

Listing 3.3: Python pseudocode for patch extraction

3.3 Experimental Setup

3.3.1 Data Split

Before proceeding with training our classifier with the patch data, we split the patches

into three separate parts, the training, validation, and test data. This is standard practice

in deep learning where we train our models on the training data and validate its perfor-

mance on the validation data in order to tune various hyperparameters as well as to select

the best model over multiple iterations. The test set is intended for testing our final model

on completely unseen data to assess its final performance as well as to see how well the

model generalizes.

We used the groupshufflesplit method from the sklearn library for the data split. This

was done to ensure the patches belonging to a particular patient all were placed into the

same split, i.e either train or validation or test. Since having patches belonging to the

same slide or the same patient may skew the model performance and not provide correct

insight into its performance. So the patches were grouped by the patient ID of the slide

they were extracted from and then a 60:20:20 split was done along with random shuffling

for the patches.

The final distribution of the data following the split is tabulated in Table 3.1 below

Training Set Validation Set Test Set Total
Tumor Patches 32,389 5,769 5,801 43,959
Non-Tumor Patches 2,259,014 173,334 570,828 3,003,176
Total 2,291,403 179,103 576,629 3,047,135

Table 3.1: Final distribution of tumor and non-tumor patches across the three data splits
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Figure 3.6: Pictorial representation of the two resampling strategies for an imbalanced

dataset

3.3.2 Sampling

As we can see from Table 3.1 above the patches are heavily class imbalanced with tumor

and non-tumor classes being present in a nearly 80:1 ratio. This needed to be fixed for

our model to learn properly else it would be heavily biased towards the non-tumor class

and hence non-reliable. While fixing this data imbalance it was also important to not

simply make the two classes equal as that would not have been a realistic representation

of actual data, since tissue samples/pixels/patches have a much higher probability of

not containing tumor cells than otherwise. Hence the sampling had to be done keeping

in mind this trade-off. The various sampling methods are:

Downsampling/Undersampling: In downsampling, we generally reduce the number

of samples from the more frequent class or group by randomly sampling a given percent-

age of its samples and discarding the rest. In order to resample our data to be equal, we

would have to downsample the non-tumor class by a factor of 30 i.e take one sample out

of every 30 possible ones.

Upsampling/Oversampling: Upsampling on the other hand implies multiplying the

number of samples present in the minority class. We can either do so by repetition, or by

randomly sampling with replacement to increase the proportion of minority class.
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Weighted Random Sampling: is a special sampling algorithm where instead of sam-

pling from classes with uniform probability, we sample items based on probabilities de-

termined by the relative weights assigned to each class. PyTorch framework provides

an easy-to-use WeightedRandomSampler method to perform this sampling during the

data-loading phase itself.

We used a combination of Downsampling and Weighted Random Sampling in our

training phase, Uniform downsampling was first performed to bring the proportion of the

two classes to a more representative level (e.g 10:1), and then weighted random sampling

was performed during the training phase to ensure each batch of training data had a sim-

ilar representation of both the classes. This along with the data augmentation techniques

employed ensure our model neither overfit nor was biased towards one class despite the

imbalance in the dataset.

3.3.3 Data Augmentation

Data augmentation is the technique employed to multiply the amount of data we have by

introducing various affine, color, and intensity transformations to the images. The multi-

plied dataset helps to reduce the possibility of models overfitting and makes them more

generalizable. These additions also make the model invariant to noise, blur orientation

shifts that it might face when inferring on real-world unseen data.

The different augmentation techniques are affine transformations such as rotation,

cropping, scaling, and shifting, image transformations such as blurring, noise addition,

color feature transformations like hue, saturation, contrast variations, color jitter addition,

normalization, etc.

The histology patches don’t have any canonical orientation, which means the diagno-

sis isn’t affected by their orientation. This provides us a great incentive to augment the

data through various transformations. augmented the training data by using transforma-

tions such as horizontal and vertical flips, random rotations, random rescaling, gaussian

blur, median blur, random Gaussian noise addition, normalization, random contrast and
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brightness adjustment, color jitter, etc. The image augmentation was carried out with the

help of Albumentations library in python. We used random rotation, gaussian blur, me-

dian blur, horizontal and vertical flips, and Contrast Limited Adaptive Histogram Equal-

ization(CLAHE) with a range of parameter values and randomness for augmentation.

3.3.4 Training

The patches extracted were then used to train our tumor detection or the patch classi-

fication model. Three different state-of-the-art architectures were trained and analysed

for this task. We used ResNet-34, ResNet-50 and EfficientNet-B2 for our analysis. All of

these models were trained using a transfer learning approach. Models pre-trained on Im-

ageNet dataset were fine tuned for our purpose. These models were then fine-tuned on

our dataset by freezing the initial few layers’ weights while removing the last fully con-

nected layers and replacing them with a custom fully connected block for our use case.

For the ResNet-34 and ResNet-50 models we froze the layers in the first six convolutional

block and fine tuned latter layers along with our custom one layer deep fully connected

classification block. For the EfficientNet-B2 we only fine-tuned the last MBConv block

along with the final Fully Connected block with 4 linear layers. The theoretical aspects of

the two primary CNN architectures we used have been discussed below

Models

Residual Network (ResNet) ResNet [39] is one of the most popular and powerful CNN

architectures. It was the state-of-the-art architecture that outperformed all the previous

architectures on the ImageNet data classification and was the first of its kind when it

comes to the depth of the architectures. Before ResNet, the possible depth of the CNN

architectures was severely limited by factors such as vanishing and exploding gradients

due to the multiplicative effect of the gradients in backpropagation. ResNet managed

to solve this problem by introducing the concept of residual blocks that contained skip

connections which are essentially ”identity shortcut connection” that skips one or more
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layers. This helped workaround the exploding and vanishing gradient problems and en-

abled very deep networks to be built and hence a much more complex representation

being learned. Figure 3.7 depicts a small residual block. There are many variations of the

ResNet architecture based on the number of layers such as ResNet-18, ResNet-34, ResNet-

50, ResNet-101, ResNet-152. There have also been a number of new architectures inspired

by the ResNet such as ResNeXt, Densely Connected Networks (DenseNets), etc. For our

experiments we used ResNet-34 and ResNet-50 for training and analyzing their perfor-

mance for tumor detection.

Figure 3.7: A residual block which is the building block of ResNet models

EfficientNet EfficientNet [40] is a new convolutional neural network architecture and

scaling method that uniformly scales all dimensions of depth/width/resolution using a

compound coefficient.

Its part of the AutoML paradigm meant for models to automatically adjust their fea-

tures such as depth, scale based on data and computational resources. Unlike conven-

tional practice that arbitrary scales these factors, the EfficientNet scaling method uni-

formly scales network width, depth, and resolution with a set of fixed scaling coefficients.

The main building block of EfficientNet architecture, is mobile inverted bottleneck

MBConv, which was first introduced in MobileNetV2 architecture [109] meant for train-

ing very small models to be deployed on edge devices. It uses shortcuts directly between

bottleneck layers which connects a much fewer number of channels compared to expan-

sion layers, combined with depthwise separable convolution effectively reducing com-
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Figure 3.8: Comparison of different scaling methods (b)-(d) arbitrarily scale a single di-

mension of the network, while (e) is the compound scaling method used in EfficientNet

[40]

putation by almost a factor of k2, compared to traditional layers, where k denotes kernel

size. This makes the EfficientNet much smaller in terms of the number of parameters

compared to other popular architectures such as ResNet while achieving even better per-

formance as can be seen in Figure 3.9

EfficientNet also has multiple variations such as EfficientNet-B0, EfficientNet-B1,

EfficientNet-B3, EfficientNet-B5, EfficientNet-B7, etc based on the complexity and ar-

rangement of the building blocks of the network. EfficientNet models also transfer well

across tasks. We used the EfficientNet-B2 for our experiments.

Hyperparameters

Training a CNN model requires a number of hyperparameters to be decided and fine-

tuned in order to get the optimum performance. These include activation functions, Op-

timizers, loss functions, number of epochs, batch size, etc.
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Figure 3.9: Graph depicting the ratio of performance to number of parameters of popular

CNN architectures on ImageNet. All the versions of EfficientNet require much fewer pa-

rameters for achieving similar or better performance as other architectures. Graph taken

from [40]

Activation Functions are transformations applied to the weighted sum of the inputs

at a node in a neural network to get their output. Most often these activation functions are

also used to introduce non-linearity into the values of the neurons. We used the Rectified

Linear Unit (ReLU) activation that gets rid of negative values for our convolutional layers

and is defined by the formula

R(x = max(0, x)
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for ResNet models and a sigmoid activation for our final fully connected layer with one

output unit to output a probability. The sigmoid function is given by

S(x) =
1

1 + e−z

For the EfficientNet model, we used the computationally efficient swish activation func-

tion for the convolutional building blocks of the model which is given by

f(x) = x · sigmoid(βx)

where β is a learnable parameter and sigmoid again for the fully connected part.

Optimizer: Optimization algorithms are the algorithms used to find the optimum pa-

rameters or arguments of a function such that it outputs the maximum or minimum value.

In the case of neural networks, optimization algorithms help find the optimum weights

of the neural network such that an objective function also called the loss function is min-

imized. The most common optimization algorithms used in deep learning are gradient

descent based first-order derivative optimization algorithms where we calculate the gra-

dient of the function, then follow the gradient in the opposite direction (e.g. downhill to

the minimum for minimization problems) using a step size (also called the learning rate).

Common optimizers are stochastic gradient descent, RMSProp, Adagrad, Adam, etc We

experimented with both RMSProp and Adam and ended up using Adam for training the

model. Adam adaptively adjusts the learning rate on a per parameter basis using the

moving average of the second moment of the gradients and also uses momentum based

on the first moment of the gradients. The Adam optimization formula for a set of weights
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ω is given as

νt = β1 ∗ νt−1 − (1− β1) ∗ gt

st = β2 ∗ st−1 − (1− β2) ∗ g2t

∆ωt = −η νt√
st + ε

∗ gt

ωt+1 = ωt + ∆ωt

where, η : Initial Learning rate

gt : Gradient at time t along ωj

νt : Exponential Average of gradients along ωj

st : Exponential Average of squares of gradients along ωj

β1, β2 : Hyperparameters

Loss Functions: Loss functions are functions used to describe the cost or error between

the model’s output and the intended ground truth value. This loss value is then used by

the optimization algorithm to fine-tune the weights and find the optimized parameters.

The common loss functions used for classification are Cross-entropy loss, Binary Cross

entropy loss, L2 loss, Hinge Loss, KL-Divergence loss. Since the tumor detection problem

we are working on is a binary classification problem, we used the Binary Cross Entropy

with Logits as our loss function. Binary cross entropy also called the log loss is given by

the following function

−(y log(p) + (1− y) log(1− p))

where y is the ground truth label and p is the output of the neural network after sigmoid

activation.

Apart from these principle hyperparameters other important values such as the num-

ber of epochs, batch size, learning rate were also experimented with and optimized. We

also used a learning rate scheduler for dynamically changing our learning rate based on

model performance. We used the ReduceLROnPlateau function that reduces the learning

amount by a given factor every time a metric of interest plateaus i.e reduces from the

highest achieved value or remains constant within a certain boundary. We used the F1
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score as our metric of interest and set the patience value to 1 which essentially means the

optimizer waits for at least two epochs of non-improvement before reducing the learning

rate. This prevents the model from getting stuck oscillating near the optimum due to very

high learning rates.

Metrics

Multiple metrics were used for the evaluation of the model in both training and testing

phases. These were

Accuracy: Accuracy refers to the percentage of the correct prediction made by the

model and is given by the formula

Accuracy =
TP + TN

TP + TN + FP + FN

where TP, TN, FP, and FN refer to True Positives, True Negatives, False Positives, and

False Negatives respectively In the case of imbalanced data such as the tumor and non-

tumor patches in our case, accuracy is not a reliable metric since the model could be biased

and predict the same label for entire data but still have high accuracy given the data ratio.

Recall: Recall is a metric that defines how many positive samples were identified out

of all possible positive samples or fraction of the relevant instances retrieved, in our case,

it defines how many tumor patches were detected by the model out of all possible tumor

patches. It’s also called sensitivity and is given by the formula.

Recall =
TP

TP + FN

This metric is used to keep a tab on the number of False Negatives which can prove sig-

nificant in a number of applications, especially medical applications such as ours, where

a False negative diagnosis can prove fatal.

Precision: Precision is used to signify how many of the positive samples identified are

actually positive samples and not False Positives, or the fraction of retrieved documents
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that are relevant to the query. In our case, it defines how many of the tissue patches

detected as containing tumors are actually tumorous. It’s also called specificity and is

given by the formula

Precision =
TP

TP + FP

Precision can be used to keep a tab on the number of false positives which is a piece of

important information for various applications.

F1 Score: Both recall and precision are better representative metrics than accuracy for

imbalanced datasets and important values in general. Hence, to examine the effectiveness

of a model we need both of these measures. Unfortunately, there is usually a trade-off to

be made i.e precision suffers when we improve the recall and vice versa. Hence we need

a metric we can focus on optimizing that will ensure the optimum value of both precision

and recall is achieved by the model. This is done by F1-score, which is nothing but the

harmonic mean of precision and recall and given by the formula

ROC curve and AUC: ROC curve or receiver operating characteristic curve is a graph

showing the performance of a classification model at all classification thresholds. This

curve plots two parameters: True Positive Rate(TPR) and False Positive Rate(FPR) given

by

TPR =
TP

TP + FN
FPR =

FP

FP + TN

AUC stands for Area under the ROC Curve. That is, AUC measures the entire two-

dimensional area underneath the ROC curve. AUC provides an aggregate measure of

performance across all possible classification thresholds. These metrics were used to fine-

tune the classification threshold

Apart from this we also used pixel-level IOU(Intersection over Union) to analyze

objectively how well the patch tumor classifier could be used as a coarse segmentation

model in the larger schemes of thinks. This was not done to measure segmentation per-

formance as the model was not primarily trained for segmentation, but as another metric
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to measure its performance as a classifier on a whole slide level. This was calculated using

the whole slide binary prediction mask and ground-truth binary mask.

3.3.5 Inference

Once the model had been trained and validated to its optimal performance, we used

the saved weights for inferring on new data at both patch and slide level. For infer-

ence, an integrated pipeline was built that would take a whole slide image, perform noise

removal, tissue segmentation, patch extraction, and patch classification in a single end-

to-end workflow. The outputs we got from the inference were binary prediction masks,

heatmaps of prediction probability overlaid on top of a downscaled version of the WSI,

IOU score and slide level prediction scores. So essentially we passed a set of WSIs and

the model predicted on the patches present in the slide in batches to generate the desired

outputs. All the patches were extracted using a sliding window of the patch size, since

tumor and non-tumor patches were not provided separately and were to be inferred by

the models.

The binary prediction mask was generated by taking a downsampled blank canvas of

the same aspect ratio as the original slide and stitching together patches downsampled

by the same scale as white if that region in the original slide was classified as positive

by the tumor classifier. This mask was then used for creating an overlaid image with the

predicted tumor mask on top of the actual Whole Slide Image. A heatmap of probability

scores was also generated for better visualization of the classifier performance.

The IOUs were calculated on a per pixel basis using the binary prediction mask and

the original ground truth tumor mask created from the annotations. This gave us high

level information about the coarse tumor segmentation capacity of the patch-based tu-

mor detection model. The IOUs suffered a due to minimal false positives since they were

calculated at pixel level while the prediction was at the patch-level, so even a single mis-

classification lead to major negative effect on the IOU.
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Apart from patch-level detection or tissue classification, slide level classification was

also done by using a meta heuristic on top of the classifier, which classified the slides as

containing tumor or not based on the average probability score of the top fifty highest

probability patches according to the model output. This value was thresholded for as-

signing a tumor/non tumor label to the slide. We used a heap data structure to maintain

a list of the top 50 highest scored patches values efficiently.

3.3.6 Computational Resources and Latency

We used a server with 12 GB RAM and two 12 GB NVIDIA GeForce GTX 1080Ti GPU

memories. For training, we made use of a distributed parallel training regime to speed

up training. For this, we made use of the Distributed Data parallel module in PyTorch to

spawn multiple processes distributed over the two GPU machines for parallel training.

The time required to train one ResNet-50 model was 45 minutes per epoch and that for

EfficientNet-B2 was 30 minutes per epoch. The inference on the other hand took less

than 16 seconds per slide and could be done both on GPU and CPU devices. A major

part of latency during inference had to do with the preprocessing steps such as tissue

segmentation and patch extraction.
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Chapter 4

Results and Analysis

In this section, the results of the experiments discussed in Chapter 3 are presented in a

sequential order corresponding to the steps mentioned in methodology along with a brief

analysis of each of the obtained results.

4.1 Tissue Segmentation

In figure 4.1, we can visualize the results of the tissue segmentation pre-processing steps.

Since there was no ground truth and since this was merely a preprocessing step in the

tumor detection workflow, the segmentation of regions of interest was only analyzed

visually and it was quite robust for all cases as can be seen in the figure. The disconnected

tissue areas were closely segmented into contours. Holes within the tissue regions were

also captured using the contour hierarchy and represented separately.

4.2 Patch Extraction

The patch extraction step was the most important part of the pre-processing workflow

since we needed a low latency, high through-put accurate patch extraction method to

convert WSIs into patches before training and inference with the patch-level tumor clas-
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Figure 4.1: Some outputs of tissue segmentation algorithm, yellow contours represent

tissues, blue represents holes

sifier. Figure 4.2 shows samples of tumor and non-tumor patches extracted from different

slides.

The patches were extracted from the second-highest resolution of the WSI i.e 4x down-

sample and the size of each patch extracted was 256x256. The patch extraction fits per-

fectly with the previous tissue segmentation step by taking only the tissue contours re-
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Figure 4.2: Samples of Tumor and Non-Tumor patches extracted from five different

Whole Slide Images

turned by the segmentation step and performing patch extraction on them. For tumor

regions, 200 patches were randomly extracted from the tumor contours provided as an-

notations while for non-tumor regions the patches were extracted sequentially. This dif-

ference in patch extraction strategy has been shown in Figure 4.3
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Figure 4.3: Patches extracted from WSIs stitched together on a dark background.

(Left)non-tumor patches, (right) tumor patches. The difference in patch extraction strate-

gies in non-tumor(sliding window-based) and tumor(randomly sampled) regions can be

seen

4.3 Training

The patches extracted were then used to train our tumor detection model. Three different

state-of-the-art architectures were trained and analyzed for this task. We used ResNet-

34, ResNet-50 and EfficientNet-B2 for our analysis. The performance of these models on

training, validation, and test data for patch-level tumor detection has been summarised

in Table 4.1.

As we can analyze from the table, EfficientNet-B2 significantly outperforms both ResNet-

34 and ResNet-50 on almost all metrics for validation and test data. EfficientNet-B2
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Metrics ResNet-34 ResNet-50 EfficientNet-B2

Training

Accuracy 0.95 0.96 0.95
Recall 0.95 0.97 0.95
Precision 0.94 0.955 0.92
F1-Score 0.95 0.965 0.94

Validation

Accuracy 0.91 0.92 0.94
Recall 0.85 0.89 0.93
Precision 0.95 0.93 0.94
F1-Score 0.9 0.91 0.935

Test

Accuracy 0.86 0.9 0.91
Recall 0.82 0.84 0.88
Precision 0.91 0.94 0.93
F1-Score 0.86 0.88 0.90

Table 4.1: Table showing the training, test and validation performances of the three mod-

els for patch classification/tumor detection

achieves the highest F1-score among the three models by a significant margin. It gener-

alizes better than the two models and has a lower false negative rate which is important

for medical predictions. ResNet-50 was not significantly inferior to EfficientNet-B2, but

it requires 3 times more parameters(27M) compared to EfficientNet-B2(9M). Hence the

model size for ResNet-50 was considerably higher compared to EfficientNet-B2 for infe-

rior performance. Figure 4.4 depicts the Receiver Operating Characteristic(ROC) curves

for the ResNet-50 and EfficientNet-B2 model along with their AUC scores. Figure 4.5

contains convergence plots of important training and validation metrics obtained over

the course of training ResNet-50. Similarly Figure 4.6 shows the convergence curves for

EfficientNet-B2 for three different runs.

4.3.1 Resampling

We experimented with two resampling strategies to train efficiently on our imbalanced

data. We used the ResNet-34 model to train using these strategies and benchmarking

their performance. In the first iteration, we used the inbuilt weighted random sampling

function in pytorch to sample data from classes using weights based on probabilities with
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Figure 4.4: ROC Curves for ResNet-50 and EfficientNet-B2, AUC under the curves were

0.95 and 0.97 respectively

repetition. In the second iteration, we first undersampled the majority non-tumor data by

a factor of 7 to bring the ratio of the two classes to 10:1, which made learning from it more

tractable, before using the weighted random sampling. The second strategy performed

better as the former overfit due to massive data imbalance and repetition which set a

performance ceiling. In the latter case we reduced the ratio of the classes which caused

lower repetition and hence the model did not overfit. Undersampling also significantly

reduced the time required for training the model. The performance and observations

have been tabulated in Table 4.2
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Figure 4.5: Curves showing changes in (a) Training Accuracy, (b) Training F1 Score, (c)

Training Loss, (d) Validation Accuracy, (e) Validation F1 Score, (f)Learning Rate across the

training steps for ResNet 50

Weighted Random Sampling
Undersampling
+
Weighted Random Sampling

Training Accuracy 0.97, F1 Score 0.95 Accuracy 0.96, F1 Score 0.95
Validation Accuracy 0.85, F1 Score 0.84 Accuracy 0.9, F1 Score 0.9

Comments Overfit in 4th epoch, Slower to train,
Much lower recall(0.77)

Overfit in 8th epoch, much faster training,
Much improved recall(0.85)

Table 4.2: ResNet-34 performance when trained using different resampling strategies

4.3.2 Hyperparameters

We experimented with a variety of hyperparameters over different runs of the training

procedure for each architecture. These included learning rates, optimizers, batch sizes,

the number of epochs, and the custom FC layers added on top of pre-trained convolu-

tional layers. Table 4.3 summarizes the final optimum values of these hyperparameters

used for training the ResNet-50 and EfficientNet-50 finalized after several runs. Since

ResNet-50 has more parameters, we used a smaller batch size for training. ResNet-50

started overfitting early, hence 10 epochs were enough for optimally training it, whereas
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Figure 4.6: Curves showing changes in (a) Training Accuracy, (b) Training F1 Score, (c)

Training Loss, (d) Validation Accuracy, (e) Validation F1 Score, (f)Learning Rate across the

training steps for three different runs of EfficientNet-B2

EfficientNet-B2 was trained for 20 epochs. We used Adam optimizer for training both the

models, EfficientNet-B2 with its smaller size allowed us to use a deeper fully connected

layer on top of its convolutional layer without overfitting.

4.4 Inference and Slide level performance

For inference an end-to-end pipeline that took Whole Slide Images was taken, passed

them through the denoising, segmentation and patch extraction, and detection/patch

classification steps and returned binary prediction masks, heatmaps of prediction prob-
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ResNet-50 EfficientNet-B2

Learning Rate 1e-3(initially), then dynamically
changed using a LR scheduler

3e-2(initially), then dynamically
changed using a LR scheduler

Number of Epochs 10 20
Batch Size 128 256

FC Layer Two linear layers with 512 and
128 units respectively

4 linear layers with 512,512, 128, 64 layers
along with BatchNorm and dropout layers

Optimizer Adam Adam

Table 4.3: Values of selected hyperparameters used for training the ResNet-50 and

EfficientNet-B2 models for tumor detection

Slide Level
Classification
Accuracy

Average IOU

ResNet-50 0.86 0.62
EfficientNet-B2 0.89 0.7

Table 4.4: Performance of the patch-based classifier on the whole slide level, analysed on

91 test WSIs

abilities overlaid on top of a downscaled version of the WSI, IOU score, and slide level

prediction performance. Table 4.4 shows the performance of ResNet-50 and EfficientNet-

B2 in terms of slide level classification accuracy and average IOU score analyzed on 100

test Whole Slide Images.

Figure 4.7 and Figure 4.8 show the performance of our model on Whole Slide Images

containing tumor while Figures 4.9 and 4.10 show the performance on non-cancerous

WSIs. It is important to note that the IOU, heatmap, coarse segmentation mask are essen-

tially meant to analyze visually the performance of the patch-level classifier and not the

tasks for which the model is trained, hence these values are not to be taken as reflective of

the model performance. The model performance for patch level classifier can be analyzed

using Table 4.1
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Figure 4.7: Sample results obtained for a WSI containing tumor(a) Annotated Slide, (b)

Ground truth binary tumor mask, (c) WSI overlaid with prediction mask, (d) Binary Pre-

diction Mask, (e) Prediction heatmap overlaid on tissue segmented WSI
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Figure 4.8: Few more results for WSIs containing tumor(a) Annotated Slide, (b) Ground

truth binary tumor mask, (c) WSI overlaid with prediction mask, (d) Binary Prediction

Mask, (e) Prediction heatmap overlaid on tissue segmented WSI
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Figure 4.9: Sample results obtained for a WSI not containing tumor(a) Tissue segmenta-

tion mask, (b) Ground truth binary tumor mask, (c) WSI overlaid with prediction mask,

(d) Binary Prediction Mask, (e) Prediction heatmap overlaid on tissue segmented WSI

77



Figure 4.10: Few more results for WSIs not containing tumor(a) Tissue segmentation

masks, (b) Ground truth binary tumor mask, (c) WSI overlaid with prediction mask, (d)

Binary Prediction Mask, (e) Prediction heatmap overlaid on tissue segmented WSI
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Chapter 5

Discussion

This thesis primarily involved exploring the application of CNN models for patch-based

tumor detection in head and neck histology images. The goal was to build an accurate, ef-

ficient end-to-end algorithm to classify patches extracted from Whole Slide Images as can-

cerous or otherwise. The thesis intended to prove the capability of state-of-the-art CNN

architectures trained on real-world data such as ImageNet object classification dataset[37]

to be able to transfer to the digital pathology domain when fine-tuned on manually anno-

tated patch level microscopy data. We also set out to build an efficient preprocessing mod-

ules which would help in denoising, region of interest segmentation, and patch extraction

from the WSIs. Another important objective of the thesis was to build an end-to-end high

throughput integrated system for preprocessing and inference on WSIs. Essentially this

was both a proof-of-concept and a benchmarking based project with additional software

byproducts such as the inference system.

Most of the relevant previous work in head and neck digital pathology involved stan-

dard computer vision algorithms for feature extraction and modeling. One of the pop-

ular recent works that leveraged deep learning for head and neck cancer detection [14]

approached this problem in a weakly supervised setting taking random patches and as-

signing the same label as the whole slide, in the absence of finer annotation. They used

much smaller patches of sizes 101x101 randomly sampled from downsampled cancerous

79



and non-cancerous WSIs, They had an artificially balanced dataset, made so by sampling

an equal number of tumor and non-tumor patches or instances which is not representa-

tive of actual data since tumor regions are rare and small. Working in a fully supervised

setting, as done in this thesis, allows us to have a more realistic dataset since the patches

have individual labels. The authors used an Inception-V4 CNN architecture while this

thesis studies and analyzes state-of-the-art architectures such as ResNet and EfficientNet.

As we can see from 4.1, all the three models trained for tumor detection performed

exceptionally well on all the metrics such as accuracy, F1-score, and AUC. The best-

performing model used an EfficientNet-B2 architecture with a custom 4-layer fully con-

nected network on top of the pre-trained convolution layers. It achieved an accuracy

of 91% and an F1-score of 0.90 on unseen test patch data. It also achieved an accuracy

of 89% at the whole slide level where the classification was done using an aggregation

heuristic where the top 50 highest probability patches are averaged to get a slide level

score. This is a significant yet expected improvement upon the work by Halicek et al

[14] which achieved an accuracy of 85% in Head and neck squamous cell carcinoma in

a weakly supervised setting using the Inception-V4 model. We also built a low latency

end-to-end system for performing inference on WSIs using the tumor detection models. It

is able to preprocess, extract patches, perform inference and generate prediction masks,a

heatmap and other metrics taking about 16 seconds on average per Slide. The results are

visualized in Figures 4.7, 4.8, 4.9, and 4.10. A detailed analysis of several architectures,

sampling strategies, hyperparameters was also done along with a visual and pixel-wise

IOU based analysis of coarse segmentation performance at the whole slide level. The re-

sults of these experiments analysed using a variety of metrics can be seen in Tables 4.1,

4.2, 4.3, and 4.4.
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5.1 Limitation and Future Scope

This thesis lays a strong foundation for further research into the application of deep learn-

ing to head and neck histology while benchmarking the performance of state-of-the-art

models on the tumor detection task. A large body of research is already being conducted

towards leveraging deep learning for medical applications.

The major limitation of our tumor detection/patch classification system is the same

as the limitation of any patch-based approach, which is the general loss of global con-

textual information due to limited region of focus when working with patches, as well

as the computational overhead encountered due to fragmented processing. Other impor-

tant limitations include the requirement of fine expert annotations for better performance,

possible lack of generality when working with WSIs from other parts of the body, or WSIs

stained differently, or in case of more varied, multi-class classification.

In order to mitigate this problem, Generative models that use an encoder-decoder

architecture such as autoencoders or GANs can be trained to learn discriminative, low di-

mensional latent representation. Graph representation learning can also be leveraged to

transform large WSIs along with all of their contextual and spatial information in compu-

tationally tractable graph data structures and training specialized graph neural networks

on them. The models could also be used as the backbone while working with novel con-

cepts such as visual attention, which would considerably lower the latency for slide level

prediction by reducing the number of patches required for predicting by selecting only a

few most representative patches using a weighting function.

Models trained in a fully supervised setting like the ones in this thesis can also be

used a pre-trained models to be further fine-tuned in a semi-supervised and weakly-

supervised scenario where we have only a fraction of the data labeled by experts. They

can further be used as a backbone networks for the self-supervised or contrastive learn-

ing approaches which could prove very useful in digital pathology due to the general
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unavailability of annotated data.This will help address the limited availability of anno-

tated data

Further, the models can be quantized, compressed, frozen, and deployed as browser-

based models or on edge devices like mobiles, embedded systems to make diagnosis more

efficient, affordable, accessible, and advance the field of telemedicine. They can also be

extended to predicting severity, treatment regime, as well as for finer segmentation.

5.2 Conclusion

Based on the results discussed above, it can be concluded that patch-based algorithms

provide an efficient workaround to the problems of computational intractability caused

due to the high resolution of Whole Slide Images. A bottom-up approach to slide level

prediction is possible using a meta learner or some other aggregation heuristic on top of

the patch classifiers. This thesis employs a simplistic heuristic to achieve this

Standard computer vision methods can be applied for efficient preprocessing and han-

dling of digital pathology data as seen in this thesis where such classical vision algorithms

were employed for denoising, tissue segmentation, etc. This is possible due to the distinc-

tive nature of tissue regions, background, and artifacts present in the WSIs.

Image augmentation such as spatial transformations and color transformations helps

improve the generalization ability of the models and prevent overfitting. Ideal transfor-

mations are rotation, flipping, contrast adjustment, blurring, noise addition, color jitter,

brightness adjustment, etc.

Multiple trade-offs were made throughout the thesis including the decision of patch

size and resolution to ensure optimal information is captured, trade-off during sampling

to ensure less imbalance while also maintaining a realistic representation of the classes,

trade-off in terms of the metrics such as precision and recall. In the specific case of diag-

nosis recall was the most significant metric based on which model decisions were made

to ensure low false negatives. Accuracy turned out to not be an appropriate measure
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of model efficacy in the case of an imbalanced dataset and F1-score was a much more

important metric.

All in all the major contribution of this thesis was to show a deep learning patch-

based end-to-end tumor detection system that can be built for digital pathology with low

latency, high throughput, and reliable performance at both patch level and slide level that

can be easily deployed, retrained and used to visualize results thus assisting pathologists

in pre-screening.
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