
Providing an Infrastructure for
Assertion-based Test Generation and
GPU Accelerated Mutation Testing

Jason G. Tong

Department of Electrical and Computer Engineering
McGill University, Montréal, Québec

A Thesis submitted to McGill University in partial
fulfillment of the requirements for the degree of
Doctor of Philosophy in Electrical Engineering

c©Jason G. Tong, 2013

December, 2013

The secret in doing anything, is believing that you can do it. Anything
that you believe you can do strong enough, you can do it. As long as you
believe.

— Bob Ross

You’ve gotta hit as hard as life. It ain’t about how hard you hit, it’s about
how hard you can get hit and keep moving forward. How much can you
take and keep moving forward. That’s how winning is done!

— Rocky Balboa

Acknowledgements

Fourteen years ago, I had great aspirations of pursuing a Ph.D. degree in Electrical
Engineering. Fourteen years later, I successfully did it. And it is a grand honour and
a privilege of achieving this at McGill University.

There are several people I want to thank. First and foremost, I dearly thank my
supervisor Dr. Zeljko Zilic and Dr. Marc Boulé. I thank you both for your invaluable
guidance and assistance over the last 6 years. I am also thankful to you both for
introducing to me to Assertion-based verification and GPU computing. I am greatly
indebted for their invaluable feedback, especially with the contributions by Marc with
our published papers and journal articles. Without their help, this research would
not have been possible.

Next, I want to thank Dr. Yann Oddos, for working together in Assertion-based
test generation and also for his generosity lending his MyGen tool for my research. I
want to acknowledge the verification team at PMC-Sierra, particularly Patrick Tsi-
nany, Dr. Ken Wagner and Claude Beauregard of Cadence Design Systems of Canada
with their time and patience in helping me to get started with Cadence Incisive For-
mal Verifier. I also thank them for their generous donation of their assertion and
design benchmarks that were used in this thesis. Additionally, I would like to ac-
knowledge Darcy Poncsak, Kevin Peterson, and Ricardo Nunez for helping me to get
settled into my very first engineering job and made my stay at PMC-Sierra enjoyable.

I would like to acknowledge Kelly Goss from Acceleware for her valuable GPU
computing and CUDA training. Thank you for enlightening me with some ideas,
which were incorporated into GPU kernels that were developed in this thesis. Also,
to Olive Zhao and the Canadian Microelectronics Corporation for their generous
donation of the NVIDIA GPU Tesla cards and workstations.

To Kenneth Domino, thanks for our lengthy and thorough discussions on helping
me to get started with ANTLR and your invaluable ANTLR C++ parser program,
which was extensively used with the development of my tools of this research.

To the members of the Integrated Microsystems Laboratory (in no particular
order) I want to thank, Omid Sarbishei, Majid Janidarmian and Atena Roshan Fekr
for their insightful and inspirational research discussions that helped me in developing
the tools in this thesis. Additionally, I want to acknowledge Marwan Kanaan, Pang
Yu, Rozita Najafi-Nejad, Ashraf Suyyagh, Ari Ramdial, Ben Nahill, Steve Ding,
Dimitrios Stamoulis, Alexandre Courtemanche and Dr. Andraws Swidan, for making
my stay in the lab fun and enjoyable. Also, to Connie Greco, I thank you for helping

v

vi

me with the administrative work, particularly with the thesis submission process and
setting up my defence, which required a lot of your time.

I also want to thank the people from the McMaster University, particularly Dr.
Nicola Nicolici, and his former Computer Aided Design and Test group members
(in no particular order): Ehab Anis, Adam Kinsman, Henry Ho Fai Ko, Zahra Lak,
Mark Jobes, Kaveh Elizeh, Jason Thong and Roomi Sahi. I greatly thank you all
for helping me to find my niche and passion for software development, which has
helped me immensely in completing this research. I also want to thank Cheryl Gies
for helping me with the immense administrative work, and who I am very glad that
I met during my brief stay.

To my closest friends: Natalia Salgo, Sheeba Pennickara, Lisa and Sandra Price,
Frenita Chua, Frances Chua, Shan-Shan Chua, Mr. Chen, Noman Siddiqui, Dr. Mo-
hammed A. S. Khalid, Laura Ciovica, Courtney Padden, Courtney Beaulieu, Jasmin
Pichlyk, Savannah Garoufalis, Jessica Perez, Ayo Olanrewaju and Cassandra Stover.
Thanks so much for your support and friendship over the years.

Last but not least, I want to thank my parents for their love, support and en-
couragement. I am greatly indebted for the sacrifices that they made just for me to
pursue and fulfill my dream.

Abstract

Functional verification of modern digital designs is a never ending challenge in the
Integrated Circuit (IC) industry. Fuelled by the continuous demand of more integra-
tion, the increased effort in verification does not always entail error-free circuits after
first production. Emerging technologies such as Assertion-based verification, can help
in verifying the functional correctness of digital designs and can be easily integrated
into existing design verification methodologies. Simulation-based verification is still
the most predominant method in industry because of its ability to scale with large
designs. Assertions can be inserted into the design and they can be treated as cover-
age points, where the input tests are responsible for exerting the design’s conditions
in evaluating those assertions. The effectiveness of this approach relies on the quality
of the tests, where poor test quality can prevent the design from being thoroughly
verified.

This thesis presents novel techniques and algorithms for generating tests from
assertions. Assertions serve as an invaluable source of information, where one can
leverage the defined behaviours for generating the appropriate functional tests that
can be used in simulation. A proposed set of coverage metrics helps in generating
tests that thoroughly evaluate assertions during simulation. Verification engineers can
make use of these tests in performing effective simulation in order to detect and then
correct any design errors. The tool developed for generating tests from assertions was
evaluated using nearly 300 assertions that were written for verifying the correctness of
several industry-based designs. As a result, the proposed test generation approach was
able to provide additional tests which led to an improvement in coverage compared
to assertion-based test generator developed by another research team.

Mutation testing is a technique that can be used for gauging the quality of
assertion-based tests. This thesis also developed novel algorithms for Graphics Pro-
cessing Units and used for accelerating mutation-based simulations, which is a com-
putationally intensive application. It was empirically shown for a set of 10 industry-
based designs, that efficiently using the GPU’s resources can drastically improve the
simulation performance on the GPU, when compared to a commercial tool. The addi-
tional performance is a necessity, where maximal acceleration is needed for rigorously
assessing test quality when simulating large quantities of mutations. This can have a
positive impact in the quest for improving assertion quality, ultimately leading to an
effective dynamic verification of digital designs.

vii

Abrégé
La vérification fonctionnelle de circuits numériques modernes comporte des défis

sans fin dans l’industrie des circuits intégrés (CI). Alimentés par la demande continue
d’intégration croissante, les efforts grandissants en vérification ne mènent pas tou-
jours à des circuits sans erreur du premier coup. Une technologie émergente telle que
la vérification par assertions peut aider à vérifier le bon fonctionnement des circuits
numériques et peut être facilement intégrée aux méthodologies de vérification exis-
tantes. La simulation fonctionnelle représente toujours la méthode de vérification la
plus répandue dans l’industrie, étant donné sa capacité à traiter des circuits plus vo-
lumineux. Les assertions peuvent être insérées dans un circuit et peuvent aussi servir
comme repères de couverture, pour lesquels les tests d’entrée ont la responsabilité
d’exercer le circuit évaluant ces assertions. L’efficacité de cette approche repose sur
la qualité des tests, car de piètres tests peuvent empêcher une vérification complète.

Cette thèse présente des techniques et algorithmes novateurs ayant pour but de
produire des tests à partir des assertions. En raison des comportements qu’elles
décrivent, les assertions représentent une source importante d’information permettant
d’extraire des séries de tests fonctionnels, pouvant servir lors de la simulation. Un
ensemble de métriques de couverture aide à produire des tests qui évaluent rigoureuse-
ment les assertions durant la simulation. Les ingénieurs en vérification peuvent ainsi
utiliser ces tests pour effectuer des simulations efficaces dans le but de détecter et
corriger des erreurs de conception. L’outil servant à générer des tests à partir des
assertions qui a été développé fut évalué avec près de 300 assertions créées dans le
but de vérifier le bon fonctionnement de plusieurs circuits industriels. Sur le plan
des résultats, l’approche de génération de test proposée a été capable de produire des
tests supplémentaires menant à une couverture de test améliorée comparativement à
un générateur de test d’une autre équipe de recherche.

Le test par mutation est une technique permettant d’évaluer la qualité des tests
découlant des assertions. Les simulations de mutations exigent une grande puissance
de calcul. Basés sur des processeurs graphiques (GPU), cette thèse présente aussi
des algorithmes novateurs dans le domaine des tests par mutations. Sur une série
de 10 circuits industriels, les résultats expérimentaux démontrent une amélioration
importante de la performance de simulation comparativement à un outil commercial.
Cette amélioration des performances est nécessaire étant donné l’accélération de calcul
requise pour évaluer la qualité des tests lors de simulations de plusieurs mutations.
Cela a un impact bénéfique dans la quête visant à améliorer la qualité des assertions,
menant ultimement vers une vérification dynamique efficace de circuits numériques.

ix

Contents

List of Figures xiv

List of Tables xvi

List of Algorithms xvii

List of Acronyms xviii

1 Introduction 1
1.1 Problem Definition and Motivation 1
1.2 Problem Definition . 4
1.3 Thesis Contributions and Collaborations 5

2 Background and Related Work 11
2.1 Functional Verification with Assertions 11

2.1.1 Assertion-based Dynamic Verification 13
2.1.2 Overview of Assertions . 15
2.1.3 Test Generation Using NFA Representation of Assertions . . . 17

2.2 Assessing Assertion Quality with Mutation Testing 20
2.3 Accelerating EDA Algorithms on GPUs 22

2.3.1 GPU Architecture and OpenCL Execution Model 23
2.3.2 Memory Hierarchy . 25

2.4 Summary of Related Work . 26
2.4.1 Related Work on Test Generation from Properties 26
2.4.2 Related work in Test Compaction from Properties 28
2.4.3 Related Work in GPU-based Logic and Fault Simulation . . . 30
2.4.4 Related Work on Mutation testing with Assertions 31

2.5 Chronology Work Overview . 33
2.5.1 Coverage Driven Assertion-based Test Generation 33

xi

xii CONTENTS

2.5.2 Test Compaction Techniques for Assertion-based Test Generation 33
2.5.3 Efficient Data Encoding of Mutation and Fault Data on GPUs 34
2.5.4 Using GPUs for Accelerating Mutation Testing of Assertions . 35

3 Coverage Driven Assertion-based Test Generation 37
3.1 Motivation . 37
3.2 Finite Automata Checking . 39
3.3 Coverage in Assertion-Based Verification 40

3.3.1 Vacuity in ABV . 40
3.3.2 Assertion Coverage . 41
3.3.3 Mapping Assertion Coverage to Automata Coverage 42
3.3.4 Acceptance and Failure Automata Test Coverages 46

3.4 The Airwolf Test Generator . 47
3.4.1 Test Generation Overview . 47
3.4.2 Airwolf-TG Algorithms . 48
3.4.3 Run time and Correctness . 51
3.4.4 Test Sequence Generation Example 52
3.4.5 Coverage Analysis Example 53

3.5 Experimental Results and Analysis 54
3.6 Summary . 58

4 Test Compaction Techniques for Assertion-based Test Generation 61
4.1 Motivation . 61
4.2 Proposed Compacted Test Generation Methodology 63
4.3 Assertion Clustering . 64

4.3.1 Assertion Map and Similarity Weight 65
4.3.2 Clustering Modes . 67

4.4 Compacted Test Sequence Generation 70
4.4.1 Test Path Overlapping . 71
4.4.2 TPO Example . 73
4.4.3 Parallel-Path Removal . 75
4.4.4 PPR Example . 76

4.5 Experimental Results . 78
4.5.1 Compacting Good and Failing Test Sequences from TG 79
4.5.2 Compacting Good and Failing Test Sequences from MyGen . . 86

4.6 Summary . 88

CONTENTS xiii

5 Efficient Data Encoding of Mutation and Fault Data on GPUs 89
5.1 Motivation . 89
5.2 µ-GSIM Overview . 91

5.2.1 Mutant Stream Generation . 92
5.2.2 GPU Mutation Simulation . 96
5.2.3 Simulation Kernel . 96
5.2.4 Maximum Work-item Configuration and Memory Scalability . 99
5.2.5 Experimental Results for µ-GSIM 102

5.3 GS-SIM Overview . 108
5.3.1 Gate Stream Generation and MFG Encoding 109
5.3.2 Gate Stream Simulation of GS-SIM 110
5.3.3 Maximum Work-item Configuration and Scalability 114
5.3.4 Experimental Results of GS-SIM 115

5.4 Summary . 117

6 Using GPUs for Accelerating Mutation Testing of Assertions 119
6.1 Motivation . 120
6.2 µDV-GSIM Overview . 121
6.3 Circuit Stream Generation . 122
6.4 Multiple Assertion Encoding (MAE) 124
6.5 Circuit Stream Simulation . 126

6.5.1 Simulation Kernel . 126
6.5.2 Circuit Parallelism Factor and Memory Scalability 130

6.6 Experimental Results . 132
6.6.1 Circuit Parallelism Factor and Work-item Configuration . . . 134
6.6.2 Run-time Comparison with Different Assertion Encodings . . 136

6.7 Summary . 137

7 Conclusions 139
7.1 Conclusions . 139
7.2 Future Work . 141

7.2.1 Assertion-based Test Generation 142
7.2.2 GPU Accelerated Mutation Testing 142
7.2.3 Performance Comparison between CUDA and OpenCL 143

Bibliography 145

List of Figures

1.1 Common Bugs During IC Design and Verification [1] 2

2.1 Traditional and Assertion-based Dynamic Verification 13
2.2 Assert and Assume Directives . 14
2.3 MBAC Checker Generator for Hardware Verification. 18
2.4 Non-deterministic Finite Automata Representation of φ1 19
2.5 Mutation Testing using Assertion-based Tests 21
2.6 GPU Architecture . 23
2.7 OpenCL Execution Run-Time Model 24
2.8 OpenCL Memory Hierarchy . 25

3.1 Model checker vs. finite automata checker in model-based test generation 39
3.2 Waveform for SVA assertion . 41
3.3 Node coverage metric . 42
3.4 Edge coverage metric . 43
3.5 Complete round trip coverage metric 43
3.6 Edge completion for and, or and xor Boolean expression coverage . . 44
3.7 Partial ordering between different automata coverages 45
3.8 Acceptance and failure automata for the example assertion : “assert

property (@(posedge clk) req |→ ##1 (ack[*0:3]) ##1 grant);” . . . 46
3.9 Test generation overview with MBAC and Airwolf-TG 47
3.10 NFA node types . 50
3.11 Flow chart of coverage analyzer function 51
3.12 Acceptance automaton example . 52
3.13 Coverage analysis process . 57

4.1 Proposed Test Compaction Methodology 63
4.2 Antecedent Clustering. In the left cluster, the computed similarity

weights are shown in the edges, and the sum of weights for φ3 is 2.5 (σ3) 67

xiv

LIST OF FIGURES xv

4.3 Consequent Clustering . 68
4.4 Antecedent and Consequent Clustering 69
4.5 Assertion Signal Clustering . 70
4.6 Test Path Overlapping Example . 73
4.7 Parallel Path Removal Example . 77

5.1 µ-GSIM Framework . 91
5.2 Circuit to Mutant Array Transformation 92
5.3 Multiple Mutant Gate (MMG) Encoding and Detectability Word . . 93
5.4 Mutant Encoding Example . 95
5.5 Exploited Parallelism Factors . 96
5.6 Different Mapping and Simulation Scenarios 100
5.7 Run-times of µ-GSIM for Different Mutant Encoding Techniques . . 104
5.8 Overview of GS-SIM . 108
5.9 Combinational Circuit to Gate Stream Representation 109
5.10 Gate-Fault and Detected Data Representation 110
5.11 Exploited Parallelism Factors within 64 Gate Streams 111
5.12 Gate Stream Data Mapping and Simulation Scenarios 115

6.1 µDV-GSIM Framework . 121
6.2 Circuit Stream Representation . 123
6.3 Multiple Assertions Encoding . 124
6.4 Parallelism Factors . 127
6.5 Circuit Parallelism Factor . 130
6.6 Three Simulation Scenarios . 132

List of Tables

3.1 Model Checking vs. Finite Automata (FA) Checking 40
3.2 Relating Assertion and Automata Coverage 45
3.3 Additional Coverage Relative to MyGen[2] 54
3.4 SVA Property Benchmarks (from MyGen[2], converted from PSL to

SVA) . 55
3.5 Node vs. Edge Coverage of Assertions using Acceptance Automata . 56
3.6 Acceptance versus Failing Sequences 59

4.1 Assertion Benchmarks, Test Paths and Uncompacted Tests 80
4.2 Comparison of Compaction and Clustering Modes for Good Test Se-

quences . 82
4.3 Comparison of Compaction and Clustering Modes for Failing Test Se-

quences . 84
4.4 Compacting Passing and Failing Test Sequences of MyGen 87

5.1 Memory Usage Comparison and Maximum Work-item Computation
for 5000 Injected Mutations . 103

5.2 Performance Analysis of µ-GSIM with Commercial Tool 106
5.3 Attained Speed-Ups for µ-GSIM . 106
5.4 Total Memory Usage and Computed wimax 116
5.5 Performance Analysis of GS-SIM . 117

6.1 Comparison between µ-GSIM and µDV-GSIM 119
6.2 Charactistics of Each Design . 133
6.3 Computed Circuit Parallelism Factor (Cpf) for 200 Injected Mutations

when using MAE and SAE Encoding 135
6.4 Performance Analysis of µDV-GSIM vs. RTL Simulator 136

xvi

List of Algorithms

3.1 Hybrid Search Algorithm for Automata Search 48
3.2 Node Selection Algorithm (Node and Edge+CRTC Coverages) 49
4.1 Assertion Clustering . 65
4.2 Test Path Overlapping . 71
4.3 Parallel-Path Removal . 75
5.1 Mutant Stream Generation . 94
5.2 Mutant Stream Simulation Kernel . 97
5.3 Mutant Gate Function for Two Input and-gate 99
5.4 Gate Stream Simulation Kernel . 112
5.5 Evaluation Function for Two Input and-gate 113
6.1 Circuit Stream Simulation Kernel . 128
6.2 Gate Evaluation Function for Three Input and-gate 129

xvii

List of Acronyms

µ-GSIM : Mutation Simulator on GPU
µDV-GSIM : Mutation-based Dynamic Verification Simulator on GPU
Airwolf-TG : Airwolf Test Generator
Airwolf-CTG : Airwolf Compacted Test Generator
ABD : Assertion-Based Design
ABV : Assertion-Based Verification
AB-DV : Assertion-based Dynamic Verification
AHB : AMBA’s Advanced High-performance Bus
AXI : AMBA’s Advanced eXtensible Interface
AM : Assertion Map
ATPG : Automatic Test Pattern Generation
ATR : Additional Test Reduction
BFS : Breadth-First Search
CPU : Central Processing Unit
CPF : Circuit Parallelism Factor
CRTC : Complete Round Trip Coverage
DUT : Design Under Test
DUV : Design Under Verification
DFS : Depth-First Search
EDA : Electronic Design Automation
FI : Fault Injection
FF-SYNC : FIFO Synchronous Controller
FF-GC : FIFO Grey Code Controller
FPGA : Field Programmable Gate Array
GPU : Graphics Processing Unit

xviii

HSA : Hybrid Search Algorithm
HDL : Hardware Description Language
IC : Integrated Circuit
IEEE : Institute of Electrical and Electronics Engineers
IP : Intellectual Property
LFSR Linear Feedback Shift Register
MAE Multiple Assertion Encoding
MBAC: Marc Boulé’s Assertion Compiler
MC : Model Checking
MFG : Multiple Fault Gate Encoding
MI : Mutant Injection
MMG : Multiple Mutant Gate Encoding
NFA : Non-deterministic Finite Automaton
NSA : Node Selection Algorithm
OpenCL : Open Computing Language
OTR : Overall Test Reduction
PCI : Peripheral Component Interconnect
PPR : Parallel Path Removal Algorithm
PSL : Property Specification Language
RTL : Register Transfer Level
SAE : Single Assertion Encoding
SFG : Single Fault Gate Encoding
SMG : Single Mutant Gate Encoding
SDRAM : Synchronous Dynamic Random Access Memory
SVA : System Verilog Assertions
TPO : Test Path Overlap Algorithm
VHDL : Very High Speed Integrated Circuit Hardware Description Language

Chapter 1

Introduction

This chapter presents an overview of the thesis, along with a description of the prob-
lem definition. Also, a summary is given on contributions that were brought forth
into this thesis.

1.1 Problem Definition and Motivation

Function verification of modern digital designs is a never ending challenge in the
Integrated Circuit (IC) industry. Fuelled by the continuous demand of electronic de-
vices comprising many integrated components, companies have invested a significant
amount of resources into functional verification. Nowadays, verification can consume
as much as 70% of the total development of a product [3]. Companies must strive to
reduce the number of design errors that can escape prior to mass production. Pro-
ducing products containing undetected design errors can be very costly. Not only
the company’s market share will be lost to the competition, human lives can be at
stake. Our modern society is technologically driven and reliant on these digital sys-
tems. Thus, it is increasingly important to ensure electronic devices are free from
functional errors.

Figure 1.1 shows the data of the collected survey responses from various IC com-
panies that was conducted by the Wilson Research Group and Mentor Graphics [1].
IC companies have reported that functional and logic bugs are most prevalent during
product development and verification. Additionally, the survey also reported that as
much as five re-spins are needed due to functional bugs escaping during verification
[1]; however, despite these costly re-spins, design errors do go undetected, which then
become part of the product that is mass produced. For instance, in 1994, Intel’s infa-
mous FDIV bug was manufactured into their Pentium brand of processors. Massive

1

2 Chapter 1. Introduction

Logical or Functional

Clocking

Power Consumption

Yield or Reliability

Mixed-signal Interface

Tuning Analog Circuit

Cross Talk Induced Delays

Timing-path Too Fast

Timing-path Too Slow

IR Drops

Other

 0 10 20 30 40 50 60 70

(%) Responses

Figure 1.1: Common Bugs During IC Design and Verification [1]

recalls were needed to replace these processors containing the floating point division
error. The cause of the error was not a result during manufacturing, but a functional
fault that was undetected during verification. The total cost in replacing and fixing
the bug was nearly 480 million dollars. More recently in 2007, Advanced Micro De-
vices Phenom microprocessors suffered the Translation Look-aside Buffer functional
bug, which was discovered weeks after mass production. This bug was also a func-
tional error, which can cause system instability during operation. A software patch
was released as a workaround of the flaw; however, this caused significant performance
penalties. Both of these examples show the importance of functional verification in
which errors going undetected can have drastic economical effects to the company.

Recently, Assertion-based Verification (ABV) has begun a prominent aspect in
functional verification [4]. Assertions are high-level statements that are capable of
describing the correct behaviour of the design, with the intent of capturing any de-
sign errors. Assertions can be derived from a set of specifications, which describes
the requirements to which the design must conform. A typical design requirement
specifies the expected response that the design must generate based on some input
conditions. Any deviation in the design’s output response causes an assertion to fail,

1.1. Problem Definition and Motivation 3

which this result can be computed by means of simulation or formal methods.
Assertions can be inserted into the design and simulated with a digital circuit

simulator or formally checked with a model checker. As designs become enormously
large, model checking becomes infeasible due to its state space explosion issues. Sim-
ulation is the most predominant method in industry because of its ability to scale
with larger designs. Incorporating assertions into simulation can further help to as-
sess how well the design has satisfied the specification. Each assertion describes an
aspect (or a required functionality) of the design. During simulation, the simulator
tool captures every activity within the design caused by the set of tests that is applied
at its inputs. Then, the recorded activity determines which assertions were satisfied
(or falsified); however, the verification thoroughness depends on the quality of the
tests that are used during simulation.

Assertions not only monitor the behaviour of the design, but they can also be
used as a valuable source of information for generating appropriate input stimuli
(tests). Assertions can serve as a blueprint, where the defined sequence of events
that is specified in an assertion, is used for generating the appropriate functional
tests for creating an assertion pass. It is important to note that throughout this
thesis, the word “test” is specifically used for detecting design errors and should not
be confused with detecting manufacturing faults. Automated test generation from
assertions is advantageous compared to writing directed tests manually. An assertion
can have complex temporal sequences that is mixed with Boolean expressions which
define a required condition that the design must satisfy. This can potentially create
an enormous amount of tests and performing a manual test generation would be
infeasible.

The work presented in this research lies in the area of automated test generation.
The intent is to develop an automated technique for generating tests from assertions,
which can be used for dynamically verifying the functional correctness of a design.
The effectiveness of simulation-based verification is reliant on the test quality. Poor
test quality can lead to portions of the design being unexplored, thereby having
potential bugs go undetected. Since assertions can be inserted into the design during
simulation, the generated assertion-based tests can then be applied to the primary
inputs. The assertion-based tests will effectively exert the necessary conditions that
were defined in the assertion itself. This will help in quickly evaluating in how well
the design has implemented the specification, which is modelled by the assertions.
This is beneficial when compared to using pseudorandom functional tests.

Another contribution that was made in this work, is to devise a method in har-

4 Chapter 1. Introduction

nessing the raw compute power of Graphics Processing Units (GPUs) for accelerating
mutation-based simulations. In ABV, mutation testing relies on simulating many mu-
tated designs individually, with the intent of gauging the quality of assertion-based
tests that are able to uncover the injected mutant (functional fault). GPUs are an
ideal hardware platform because simulating multiple mutated designs can be per-
formed independently. This is favourable when modern digital designs are injected
with large quantities of mutations.

1.2 Problem Definition

Incorporating ABV into dynamic verification comes with challenges that have to
be addressed. A common problem when using assertions is vacuity. Passing a set
of assertions may not necessarily imply that the design is entirely bug-free. An
assertion can have more than one sequence of conditions that results in an assertion
pass. Additionally, an assertion pass can also occur when the assertion itself was not
evaluated during verification. This happens when the design is unable to exert all
the necessary conditions that are needed for the assertion to begin monitoring its
behaviour. When the assertion was not thoroughly exercised, then it has experienced
a vacuous pass [5].

Another problem is to devise an accelerated method for assessing the test quality
from assertions. Despite the ability of assertions on specifying design intent, they
can also generate tests that may not necessarily exert the entire design, which can
lead to poor test quality. Mutation testing is a common method for assessing the
quality of tests. A design is injected with a set of mutations (functional faults),
where each mutated design is simulated using the assertion-based tests; however,
the large computational costs that is accompanied with mutation testing makes it
impractical to use, which is due to simulations of many mutated designs.

Given the importance and the challenges of ABV and mutation testing, this thesis
will focus on the following two problems:

1. How can one know when the test set is effectively exercising the assertions de-
scribing the expected circuit behaviour?

2. How to harness the raw compute power of Graphics Processing Units for accel-
erating the simulation of multiple designs?

The first challenge was addressed in Chapter 3 where a set of coverage metrics
were defined for generating tests using Non-deterministic Finite Automata (NFA)

1.3. Thesis Contributions and Collaborations 5

representations of assertions. These defined coverage metrics are incorporated into
the proposed test generator tool for assertions, which undertakes coverage driven test
generation for producing tests that non-vacuously pass (or fail) an assertion. The pro-
posed coverage metrics that are incorporated into the test generator have contributed
to an additional test coverage when compared to another assertion-based test gener-
ator tool. Assertion-based test compaction was also explored in this research. The
purpose is to cluster similar assertions into groups and attempt to exploit similarities
of other assertions that can be shared with each other. Two novel test compaction
algorithms are described in Chapter 4, which use similarities in identifying any re-
dundant test paths that can also be satisfied from another assertion. Ultimately, this
is beneficial in reducing the applied verification time.

The second challenge was addressed in Chapters 5 and 6. GPUs are massively
parallel devices that are suitable for accelerating many forms of computation, such as
bioinformatics, medical imaging and digital circuit simulation. GPUs can also help in
accelerating circuit simulation of large designs. The key to harness the raw computer
power of GPUs is to ensure the circuit data are independent of each other. This
has led to the development of a novel data-generation algorithm for exploiting data-
parallelism (more specifically bit-parallelism) of the circuit design. The entire length
of GPU’s computer word was leveraged for storing different kinds of mutant and fault
information, along with assertion-based test data. This has led to an innovative data
encoding scheme that was used for generating efficient data-parallel representations
of multiple circuits. The work presented in Chapter 6 also uses similar encoding
techniques, but instead assertion-based tests were encoded over the computer word. It
was empirically shown from the developed encoding techniques that memory efficiency
is key in improving simulation performance.

1.3 Thesis Contributions and Collaborations

This section presents a summary of the contributions that were made from this re-
search. The author would like to highlight the contributions that were also made
from external collaborators within the Integrated Microsystem Laboratory and PMC-
Sierra, which are described in detail. These contributions are organized by the pre-
sented topics within this thesis.

• Coverage Driven Assertion-based Test Generation: A set of coverage metrics was
proposed when using the NFA as the computable representations of assertions.

6 Chapter 1. Introduction

The NFA representations are generated by the hardware assertion checker tool,
MBAC . The coverage metrics serve as a guide in generating tests from NFAs
which includes all the specified conditions at least once, without having any
condition unexplored. These coverage metrics were then incorporated into the
test generator tool, Airwolf-TG, which helps in producing tests that can non-
vacuously pass (or fail) an assertion. Using a set of industrial assertions that
were presented from [2], has shown additional tests were generated for improving
the overall assertion coverage, by as much as 70% in some of the benchmarks.

The author developed heuristic algorithms for generating tests using NFA repre-
sentations of assertions. This led to a developed novel Hybrid Search Algorithm,
which incorporates the proposed coverage metrics for generating assertion-based
tests non-vacuously. Also, this work was performed in collaboration with M.
Boulé who assisted in the translating of the PSL assertions that were used from
MyGen[2]. M. Boulé also provided the MBAC tool[6] for generating NFA repre-
sentations of various assertions. Y. Oddos also generously provided the MyGen
tool, which is used for generating test sequences from their hardware generators.
This has also led the author to develop an assertion coverage analyzer, Airwolf-
CA, which assessed the assertion coverage of the tests that were generated from
MyGen. This work has resulted in the following publications:

– J. G. Tong, M. Boulé and Z. Zilic, Defining and Providing Coverage for
Assertion-based Dynamic Verification1 [7] Journal of Electronic Testing:
Theory and Applications (JETTA), Special Issue on the High-level Design
Verification and Test workshop, Volume 26, Issue 2, pp. 211–225, April
2010

– J. G. Tong, M. Boulé and Z. Zilic, Airwolf-TG: A Test Generator for
Assertion-based Dynamic Verification [8], In the Proceedings of the 14th

High-Level Design Verification and Test workshop (HLDVT’09), pp. 106–
113, November 2009

In addition to this work, the coverage analyzer was also used for analyzing a
set of assertions for verifying an industrial FIFO controller. This work was
performed at an internship sponsored by PMC-Sierra and a Natural Sciences
and Engineering Research Council Engage Industrial Grant. The FIFO con-
troller and set of assertions were developed in-house and were gladly provided

1This publication was selected as an Invited Journal Article

1.3. Thesis Contributions and Collaborations 7

by P. Tsinany and K. Wagner. The coverage analyzer also used assertions that
were developed by D. Sarraf. The author was responsible for extracting tests
from a formal verification tool, Cadence Incisive Formal Verifier, and used the
developed coverage analyzer in gauging how well the tests exercised all the spec-
ified conditions within each assertion. This work has resulted in the following
publication:

– J. G. Tong, D. Sarraf, M. Boulé and Z. Zilic, Generating Compact As-
sertions for Control-based Logic Signals, In the Proceedings of the 54th

Midwest Symposium on Circuits and Systems (MWSCAS’11), pp. 1–4,
August 2011

• Assertion-based Test Compaction:

Two test compaction algorithms were developed by the author, which use clus-
ters of similar assertions for the intent of reducing the size of assertion-based
tests. A clustering algorithm was devised, which groups similar assertions with
a certain level of similarity. One of test compaction algorithms leveraged the
similarities of the test paths from different assertions. The purpose is to iden-
tify any redundant sequences of events from different assertions that can be
subsumed with each other. An improved test compaction algorithm attempts
to assign multiple specified conditions from many assertions within a single
test. The proposed test compaction approaches were evaluated using nearly
300 industry-based assertions, and have showed a visible test set reduction by
as much as 98% in some of the benchmarks.

The author would like to highlight the contributions made by M. H. Neishaburi
who assisted in generating the NFA representations of the AXI benchmark [9].
Also, a thorough discussion was made on how to cluster assertions, where M.
H. Neishaburi’s work was used for clustering hardware checkers while the au-
thor’s work was to cluster the assertion (statements) themselves. Constructive
discussions were also made with O. Sarbishei about the MiniSAT [10] solver,
which was helpful for integrating it into Airwolf-CTG. Additionally, this has
also helped in the development of the two test compaction algorithms. This
work has resulted in the following publications:

– J. G. Tong, M. Boulé and Z. Zilic, Test Compaction Techniques for
Assertion-based Test Generation [11], In the ACM Transactions on De-

8 Chapter 1. Introduction

sign Automation of Electronic Systems (TODAES), Volume 19, Issue 1,
pp. 1–29, December 2013

– J. G. Tong, M. Boulé and Z. Zilic [12], Assertion Clustering for Compacted
Test Sequence Generation, In the Proceedings of the 13th International
Symposium on Quality Electronic Design (ISQED’12), pp. 694–701, March
2012

• GPU Mutation and Fault Simulation:

A data-parallel generation algorithm was developed for the purpose of perform-
ing mutation and fault simulation of digital circuits using GPUs. Two novel
data-parallel representations were proposed, namely mutant and gate streams.
Each proposed representation exploited several levels of parallelism, namely
gate, mutant and and fault parallelism, for the purpose of having one work-
item to simulate many mutated and fault-injected circuits. The developed data
generation algorithm made use of the GPU’s computer word for encoding dif-
ferent gate, fault and mutant data. This has further led to two proposed encod-
ing schemes, namely Multiple Mutant Gate (MMG) and Multiple Fault Gate
(MFG) encoding, which were used in mutation and fault simulation on the GPU
respectively. These encoding schemes compactly store gate, mutant and fault
information over the computer word. Additionally, mathematical formulations
were proposed in determining the optimal number of work-items that can be
launched on the GPU which is based on memory usage. The combined paral-
lelism factors gave a noticeable reduction of the memory usage of the circuit and
mutant data. This allowed for the host program to allocate more work-items
on the GPU, thereby improving simulation efficiency. It was empirically shown
that reducing the memory usage for simulating 8 industrial benchmarks, has
led to an improvement in simulation performance by at least 95× in mutation
simulation, and 26× in fault simulation.

The author would like to highlight the many discussions that were had with M.
Boulé who has suggested the idea of using gate-level mutations. This helped
in the development of a novel encoding scheme used for storing necessary gate-
level information over the GPU’s computer word. Also, this work was extended
into fault simulation for manufacturing testing. This work has resulted in the
following publications:

– J. G. Tong, M. Boulé and Z. Zilic, Improving GPU Fault Simulation

1.3. Thesis Contributions and Collaborations 9

with Efficient Data-parallel Generation Techniques, IEEE Transactions on
Computer Aided Design, (In Submission – January 2014)

– J. G. Tong, M. Boulé and Z. Zilic, Efficient Data Encoding for Improving
Fault Simulation Performance on GPUs [13], To appear in the 4th Inter-
national Symposium on Electronic System Design (ISED’13), December
2013

– J. G. Tong, M. Boulé and Z. Zilic, Mu-GSIM: A Mutation Testing Sim-
ulator on GPUs2 [14], In the Proceedings of the 5th Asia Symposium on
Quality Electronic Design (ASQED’13), pp. 302-311, August 2013

Additionally, this work was extended for performing mutation testing in the
context of design verification using assertions. This extended work led to a
development of a novel encoding scheme, namely Multiple Assertion Encoding
(MAE). The proposed encoding scheme differs from the MMG and MFG encod-
ings. The MAE compactly stores multiple tests from different assertions over
the GPU’s computer word. This allows for different assertion-based tests within
one work-item to be simulated over large quantities of mutated designs on the
GPU. MAE further reduced the memory usage on 3 industrial designs, which
led to an improvement of the simulation efficiency by as much as 10× over an
RTL simulator. Accelerating mutation testing is greatly beneficial, where as-
sertions are rigorously assessed when using large quantities of mutations. This
work has resulted in the following publications:

– J. G. Tong, M. Boulé and Z. Zilic, Using GPUs for Accelerating Mutation
Testing for Design Verification, IET Computers & Digital Techniques, (In
Submission – January 2014)

The work listed in the contributions were performed by the author, who was
solely responsible in the implementation and development of test generation
and GPU simulation algorithms.

The author performed and analyzed all the experimental results of each of the
proposed tools in this thesis. These contributions also came from the continuous
collaborative work with M. Boulé. It is noted that M. Boulé has provided invalu-
able feedback and also contributed to the technical writing of these papers. Z. Zilic
supervised the entire work.

2This publication was awarded an ASQED’13 Best Paper Award

10 Chapter 1. Introduction

The organization of the entire thesis is as follows: Chapter 2 presents the nec-
essary background that is used in this thesis. Section 2.4 presents a brief survey of
the previous work related to assertion-based test generation, test compaction, GPU
logic and fault simulations and mutation analysis of assertions. Chapter 3 introduces
Airwolf-TG, the coverage driven test generator for assertion-based dynamic verifica-
tion. Chapter 4 presents the proposed test compaction methodology for assertion-
based tests which is incorporated inside the test compactor, namely Airwolf-CTG.
Chapter 5 presents a comprehensive description of the data encoding technique for
mapping multiple mutant and fault data on the GPU’s device memory. Then the two
GPU-based simulators are introduced, namely µ-GSIM (Section 5.2) and GS-SIM
(Section 5.3) respectively. Finally, Chapter 6 presents µDV-GSIM which utilizes
these efficient data encoding techniques and performs mutation testing for assessing
the quality of assertions.

Chapter 2

Background and Related Work

This chapter begins with describing the theme of this work within the area of func-
tional verification using assertions. Then, a brief introductory background on asser-
tions is presented along with the definitions that are used throughout this thesis.
Following is a discussion on mutation testing, which is used for measuring assertion
quality. Subequently, an overview of the Graphics Processing Unit is shown with
a brief discussion on OpenCL are given. This chapter ends with a survey of the re-
lated research work that is related to assertion-based test generation, test compaction,
GPU-based logic and fault simulation, and applying mutation testing on assertions.

2.1 Functional Verification with Assertions

Functional verification of Integrated Circuits (IC) investigates if the design is thor-
oughly verified in terms of its correct operation and functional completeness [15]. Two
different terms that often arise when testing and verifying hardware designs, which
are: validation and verification. Validation seeks to determine if the design meets
the intended use and satisfies the customer’s requirements. Verification confirms if
the design was properly built and if it reflects the design’s specifications [16]. The
ultimate goal is to detect and correct any errors that may exist in the design.

As designs become more complex due to the increase by customer demand for
more functionality, integration and performance, verification becomes a crucial phase
during development. IC design companies have invested significant resources in verifi-
cation; however, this does not always entail in producing error-free designs after first
production. IC companies constantly struggle with the increasing verification gap
[17], where the complexity of digital designs is significantly greater than verification
abilities. More design errors escape during the test and verification phase in which

11

12 Chapter 2. Background and Related Work

can lead to non-functional designs being produced. This can put a major strain on the
company’s resources in performing costly re-spins of the design. Additionally, this can
further delay the development progress and potentially lead to missed time-to-market
deadlines. Thus, it is imperative that designs are bug-free prior to production.

Assertion-based verification has swept into the field of design verification and has
begun to play a prominent role in functionally verifying the correctness of digital de-
signs [3]. Assertions are high-level statements, armed with temporal logic and Boolean
operators, which are able to describe a broad range of expected (or prohibited) be-
haviour of the design. They are derived from a set of specifications that describe the
correct functionality of the design. Recently, verification groups and the Electronic
Design Automation (EDA) industry have incorporated assertions into their verifica-
tion methodology and into verification tools. This has led to the emergence of two
leading industry standards, namely the Property Specification Language (PSL) [18]
and the SystemVerilog Assertion [19] languages.

There are two categories of verification using assertions for functionally verifying
the correctness of a design, namely static and dynamic verification. The goal in both
methods is to find and correct any bugs that may exist within the design. Static
verification (or formal) transforms the design into an abstract model, which depicts
its functionality. A set of mathematical formulas, in terms of temporal logic, define
the intended (or prohibited) behaviour. These formulas are the assertions that depict
the properties to which the design must conform. A formal verification tool (such as
model checkers [20] or theorem provers) exhaustively checks the model in determining
if the properties are proven (or dis-proven) correct. Whenever a property (assertion)
passes, the model checker generates a witness trace that describes the sequence of
events that satisfies the assertion. Otherwise, a counterexample is produced, depicting
the events leading to an assertion failure. Static verification is known for its capacity
limitations, which limits the size of the design that can be verified when using formal
verification tools.

Dynamic verification (or simulation) is the most predominant method in indus-
try for validating the correctness of a design due to its scalability. Simulation-based
verification typically comprises of the design itself and a set of functional tests that is
used for input stimuli. (It is important to note that this should not be confused with
tests used for manufacturing testing). The design contains a set of assertions used for
verifying its functional correctness. During simulation, the simulator tool monitors
the assertions and analyzes the simulation traces in determining if any assertion has
passed or failed; however, the effectiveness of this approach is highly dependent on

2.1. Functional Verification with Assertions 13

Test
Sequences

Input
Stimuli

Output
Response

Implementation

Test
Generation

Reference
Output

Start

Dynamic Simulation

Design
Specification

(a) Dynamic Verification

Unexercised

Unexercised

Exercised

Design Under Test

Input
Stimuli

Output
Response

Implementation
Test

Generation

Reference
Output

Start

Dynamic Simulation

Design
Specification

(b) Assertion-based Dynamic Verification

Design Under Test

Assertion
Derivation

1

2

3

5

4

Assertions as
Coverage points

Correct /
Incorrect?

Assertions

Test
Sequences

Correct /
Incorrect?

Figure 2.1: Traditional and Assertion-based Dynamic Verification

the quality of the functional test sequences that are applied to the design and on
their ability to exert the circuit’s functionality for uncovering potential design er-
rors. Functional test sequences can be obtained from various sources, namely from
pseudo-random, constrained-random and directed test generation methods. Directed,
or algorithmic, test generation can achieve smaller test size and higher coverage com-
pared to random generation approaches; however, directed tests can still produce a
large test volume and be time-consuming to develop when performed manually.

2.1.1 Assertion-based Dynamic Verification

In this thesis, assertion-based dynamic verification is used for input test stimuli and
also for measuring the quality of assertions. Figure 2.1 shows the differences between
traditional and assertion-based dynamic simulation methods. Traditionally, dynamic

14 Chapter 2. Background and Related Work

IP Block A IP Block B

assert ()

IP Block A IP Block B

assume ()

(a) Monitoring Outputs of IP Block A (B) Generating Inputs for IP Block B

Figure 2.2: Assert and Assume Directives

simulation involves a Design Under Test (DUT) and a set of tests sequences that can
be pseudo-randomly generated from a test generator tool or a testbench, shown in
Figure 2.1(a). The test sequences are applied at the DUT’s inputs while the simulator
monitors the outputs. The outputs that were generated by the DUT determines if the
design was able to exert the correct behaviour as defined from the design specification.

Assertion (or Property)-based Dynamic Verification (AB-DV) [21] treat assertions
as coverage points, which are indicated by the red nodes in Figure 2.1(b). Assertions
are derived from the design specification and are used to describe the required func-
tionality of the design. Additionally, they serve as a valuable source of information
such that the defined sequence of events is used for generating the tests required to
evaluate the assertion. When the assertion-based tests are applied to the DUT, the
DUT will attempt to exert the necessary conditions in order to satisfy (cover) the
assertion [22]; however, the effectiveness of this approach is limited to how well the
tests are able to exert the necessary conditions for reaching those coverage points.

One of the challenges in verification is that the DUT can have components that are
supplied from different vendors which do not necessarily reveal their internal struc-
ture. Verifying the functional correctness of these components is then limited to the
given specifications where the assertions can only reference the signals at the interface
(primary inputs and outputs). A key feature of assertions is that they can also be
used for providing the assumptions about the environment, which helps in restricting
the input valuations that the component can receive. Figure 2.2 shows the differences
when using φ with the assert and the assume directives. The assert directive is
shown in Figure 2.2(a) monitors the outputs of IP Block A for an assertion defined as,
φ. Based on the output values, assert(φ) determines if the assertion passes or fails.
The same sequence of events that are defined in φ can also be used with the assume
directive, shown in Figure 2.2(b). The statement assume(φ) provides the verification
tool the assumptions about the environment of IP Block B, which restricts the kind
of input values that can be applied at the inputs. The distinction between using φ
as an assertion or an assumption is key to the assume-guarantee paradigm, where

2.1. Functional Verification with Assertions 15

the outputs of IP Block A are first proven correct by the assert directive, then the
functionality of IP Block B can also be proven correct when connected to the outputs
of IP Block A [23, 24]. This concept helps verification engineers to verify components
separately, thereby undertaking a black box modular verification approach. This prin-
ciple is used for generating tests from assertions where the sequence of events and
Boolean signals reference the primary inputs of the DUT.

Using a white box testing approach allows access to the DUT’s internal structure
and provides insight on deriving assertions that verify the correctness of the design.
A model checker is employed where the DUT along with the assertion are used for
generating the appropriate tests. The typical goal of white box testing is to verify
the correctness of the internal implementation and does not incorporate the DUT’s
environment. Employing a black box approach eliminates the need for the DUT’s
internal structure, where assertions reference the primary inputs and outputs. The
emphasis is to functionally verify the correctness of the DUT to ensure it can produce
the correct result based on the given input scenarios defined in the assertions. This
helps to limit the search space for generating tests from an intermediate representation
of the assertion. Using black box testing is restricted to the access of the primary
inputs and outputs, and it can be difficult to derive tests and assertions in verifying
the DUT if the specification is not given.

In this thesis, the black box testing approach is undertaken for generating func-
tional tests from assertions. It is assumed that the given assertions describe the
functionality of the design by referencing the primary inputs and outputs of the
DUT. The assume guarantee paradigm allows the use of the defined sequences from
assertions as a source for test generation, where these tests create an assertion pass or
failure. The next section describes an overview of the SystemVerilog Assertion syntax
and followed by a discussion of using a computable representation for generating tests
from assertions.

2.1.2 Overview of Assertions

Assertions are capable of expressing a broad range of expected (or prohibited) be-
haviours of the Design Under Test (DUT). Verifiers can take advantage of the ex-
pressive power provided by the modern assertion languages such as the Property
Specification Language (PSL) [18] and SystemVerilog Assertions (SVA) [19] for writ-
ing complex properties comprised of a wide range of temporal and Boolean operators.
At their lowest level, they describe the behaviour by defining the expected values of

16 Chapter 2. Background and Related Work

different signals in the form of a Boolean expression, bi. This is also known as the
Boolean Layer of the assertion language. Each bi can be a signal itself or a Boolean
expression over multiple signals. Assertions usually combine different Boolean expres-
sions together in order to form a sequence of Boolean events. A sequence si is a finite
list of Boolean expressions that describes the precise order of the expected values of
signals that must take place over a period of time. Every assertion is defined with
a default clocking directive so that each specified Boolean event must be observed
at every edge of the clock signal. For instance, the following sequence s1 = {b1, b2,
... , bn−1, bn} is said to match if and only if each Boolean expression is evaluated
to true in n successive clock cycles. Sequences can also be constructed using regular
expression operators and other syntax sugaring. Together, these operators comprise
the expressive power of the temporal layer provided by modern assertion languages.

Properties add another layer of operators that define how these Boolean expres-
sions and sequences should behave. There are many operators and forms available
for writing a property; however, this thesis focuses on the following form:

φi : sequence_expression |=> property_expression

where φi represents an assertion that is used to describe one particular aspect of the
DUT’s behaviour. This is a typical form that is usually seen in the vast majority of
industry-based designs.

The |=> operator represents non-overlapping implication. It specifies that the as-
sertion is conditionally checked: if the left hand side prerequisite sequence_expression
is matched, then the right hand side property_expression must also match. These
are referred to as the antecedent and consequent components of the assertion respec-
tively. A failure to observe the consequent when the antecedent has occurred means
that the property does not hold on the design.

Definition 1 (Antecedent) The antecedent of an assertion defines the condition in
the form of a sequence of Boolean events that must occur in order for the assertion
to evaluate the property in the consequent component.

Definition 2 (Consequent) The consequent of an assertion defines the expected
sequence of Boolean events that be must be generated by the DUT after a matching
sequence from the antecedent component.

The SVA language is used for showing how the above constructs and different
layers are applied; however, the themes presented can also be applicable to PSL

2.1. Functional Verification with Assertions 17

assertions. Consider the assertion φ1, which specifies the behaviour of a certain
aspect of the DUT.

φ1: sig1 ##1 sig3 |=> sig2 ##1 sig5

The antecedent of assertion φ1 specifies that the gating condition requires signal sig1
to be at logic-1 followed by sig3 at logic-1 at the next clock cycle. This is due to the
clock cycle delay operator ##n between signals sig1 and sig3 (with n=1). Once the
antecedent is matched, the consequent must be matched starting in the next clock
cycle. The consequent specifies that the signal sig2 is to be at logic-1, then followed
by signal sig5. For this assertion to pass, the circuit must adhere to the sequence
of events defined in the consequent anytime the antecedent is observed. Since the
assertion has explicitly defined the sequence of events that must take place, it then
becomes possible to generate tests based on those events.

2.1.3 Test Generation Using NFA Representation of Asser-
tions

Generating tests by using assertions takes advantage of the Boolean events and se-
quences explicitly defined inside the assertion itself. This thesis relies on a computable
representation for generating tests, known as the Non-deterministic Finite Automata.
To generate this representation, a hardware assertion checker tool is used, namely
MBAC .

Boulé et al [6] have created a tool called MBAC, that generates hardware checkers
from properties written in SVA or PSL under the simple subset guidelines. MBAC
first generates a finite automaton representation of each property either in acceptance
or failure mode. Following this process, a Verilog representation of the checker circuit
is produced, which can then be used as a run-time assertion checker. The checkers
are suitable for use in simulators and formal verification engines that do not support
assertions; they can be instrumented as part of the design for post silicon validation,
and they can also be synthesized in hardware for advanced debugging during the
prototyping stages.

Figure 2.3 shows a high-level view of the assertion-based verification methodology,
and the roles played by the assertions, the checkers and the checker generator. At
the left of the figure are the given inputs to the tool, namely the Design Under
Verification (DUV) and the assertions. In this illustration a failure-mode checker is
pictured, along with its interconnection to the DUV for finding errors. Finally, the

18 Chapter 2. Background and Related Work

Design Under

Verification

Assertions
Checker

Generator

Assertion-

Checkers

PSL/SVA

HDL

assert

...
HDL

Assertion

Failure

Figure 2.3: MBAC Checker Generator for Hardware Verification.

circuit-level checkers are derived from non-deterministic finite automata which is used
as a computable representation for generating tests from assertions.

A Non-deterministic Finite Automaton (NFA) is a directed graph defined as a
5-tuple A = (Q,Σ, δ, q0, F), which is used for representating assertions. The non-
empty set Q defines a set of states (nodes) , where q0 is the initial state (q0 ∈ Q)
and F represents the non-empty set of final states , with F ⊆ Q. The set of symbols
Σ represents Boolean expressions that reference either the primary inputs, primary
outputs or intermediate signals of the DUT. A transition relation, represented by the
set δ = {Q × Σ × Q}, defines the required conditions for the automaton to activate
its next state(s). It consists of a set of ordered triples (s, ψ, d) | s, d ∈ Q and ψ

∈ Σ, where s and d represent the source and destination states respectively, and ψ

represents a given transition clause, defined next.

Definition 3 (Transition Clause) A transition clause ψ references the signals de-
fined in Σ which explicitly describes the required conditions that must be satisfied in
order for A to enter into its next state (or set of active states).

Because the automaton is inherently non-deterministic, and since the assertion is
clocked, the automaton can potentially transition to a new set of active states for
each clock cycle.

The NFA representation for assertion φ1 is depicted in Figure 2.4. The left part of
the figure represents the acceptance automaton while the failure automaton is shown
on the right. Both types were generated using the MBAC tool. Describing the steps
of converting an assertion to its non-deterministic finite automata representation is
beyond the scope of this thesis; however, the details are thoroughly described in
[6]. An acceptance automaton describes the required sequence of Boolean events
that creates a successful completion (passing) of an assertion. In contrast, the failure
automaton shown on the right depicts the sequences that can lead to the failure of the
assertion. Each edge is labelled with a transition clause ψ which references the signals
that are defined in assertion φ1 introduced previously. The initial state, q0 = S0, is

2.1. Functional Verification with Assertions 19

sig3 !sig2sig1

(b) Failure Automata

sig
3

sig2 sig4
!sig3 S4 S0 S1 S2

S3

S4

(a) Acceptance Automata

!sig1

sig1S0 S1

S2 S3

sig
2 !sig4

Figure 2.4: Non-deterministic Finite Automata Representation of φ1

represented by a gray node while the final state is shown in green for the acceptance
automaton (F = {S4}) and in red for the failure automaton.

Whenever an automaton has reached its final state, it is said the assertion has
passed (acceptance automaton) or failed (failure automaton). In our usage, the accep-
tance and failure automata will serve as the blueprint for generating the test sequences
that create either a passing or a failing of an assertion, respectively. Test sets that
don’t exercise the assertions have limited value in verification.

The NFA representations of assertion φ1 is seen to have more than one path that
leads to the final state. These different paths are referred as test paths of the assertion;
the set of all test paths is denoted Π.

Definition 4 (Test Path) Let πi be a test path inside the NFA representation of an
assertion that begins in the initial state, q0, and ends in a given final state, qf . A
transition clause ψ references the signals that were defined in Σ, thus each test path
πi contains a set of transition clauses, Ψπi

, which represents the required ordering of
transition clauses {ψ1,ψ2, ...,ψn} for passing (or falsifying) an assertion φi.

For the cases used in this thesis, the Boolean signals defined in the assertions
refer to the primary inputs of the DUT is assumed. When this is not the case,
primary input justification is handled via model checking in order to obtain usable
test sequences, given that internal signals and primary outputs can not be driven
directly by the testbench. Thus, each test path π becomes a test sequence when
assigning the appropriate Boolean logic values to each signal in the transition clause,
ψ, which can then be directly applied to the DUT’s primary inputs. For instance,
from the NFA representation depicted in Figure 2.4, test path π1 contains a set of
transition clauses Ψπ1 = {sig1, sig3, sig2, sig4}; these values thus become the test
sequence used for verifying the circuit.

The background presented in this section will now be applied to the proposed
test generation and compaction strategy, which are presented in Chapters 3 and 4
respectively. To assess the test quality from assertions, the technique of mutation
testing is used, where the discussion is presented in the next section.

20 Chapter 2. Background and Related Work

2.2 Assessing Assertion Quality with Mutation Test-
ing

Assertion-based verification is playing a prominent role for validating the functional
correctness of digital designs. Assertions can come from various sources such as from
analyzing the design specification, to interacting with the designers where both can
describe the design intent. A problem that is often faced by verification engineers is to
determine the completeness of the assertion set. The lack of completeness can cause
functional bugs to escape during verification. This can be due to an assertion that was
incapable of capturing the error or that was not fully defined from the specification.
Thus, it is imperative that the set of assertions is sound and of capable detecting
potential design errors.

Assessing the completeness of an assertion set is becoming an important problem
within the verification community. One of the methods in seeking the quality of
assertions is to determine whether the design was able to exert all the necessary
conditions in passing the assertions; however, this does not imply that the design is
entirely bug-free because assertions can pass without being evaluated (known as a
vacuous pass. This will be further explained in Section 3.3). Another method, that
is effective, is to use mutation testing, where this method determines if the assertions
are able to detect the functional fault inside a mutated design.

Mutation testing is a technique that is based on software testing, which is used
for gauging the adequacy of tests [16]. The intent is to measure the capability of
a test set for detecting mutations, usually in the form of functional faults, that are
injected into the design. This technique relies on generating multiple copies of the
Design Under Verification (DUV) where each instance contains an injected functional
fault, known as a mutant. The injected fault can be as simple as a syntactical change
in the design’s Register Transfer Level (RTL) code. The purpose is to determine
if a set of tests is able to excite (activate) the mutant, and propagate the erroneous
result to the design’s primary outputs. When the output of the mutated design differs
to the reference design (mutant-free), then the mutant is deemed killed (detected).
Otherwise, additional tests are required, which results in a strengthened test suite
that is capable in detecting more faults.

Evaluating the completeness of an assertion set (A) is of paramount of importance
in design verification. The lack of thoroughness in the set of assertions can potentially
have design flaws go undetected and escape during the verification stage of the design.
To evaluate the quality of assertions, the concept of mutation testing is used where the

2.2. Assessing Assertion Quality with Mutation Testing 21

Circuit C0 µ0

Circuit C1 µ1

Circuit C2 µ2

Circuit Ck µk

Reference
Output

Assertion-
based Tests

Tϕ

X

X

X

Mutated
Outputs

Detected µ1 ?

Detected µ2 ?

Detected µk ?

Every circuit Ck
is simulating Tϕ

Reference Circuit

Figure 2.5: Mutation Testing using Assertion-based Tests

original circuit is injected with a set of functional faults, F. The dynamic verification
environment is chosen because simulation is the most predominant method in industry
due to its ability to scale with larger designs. A copy of the mutated design is created
for every injected functional fault µk ∈ F, as shown in Figure 2.5. It is important
to note that µ0 represents a null mutant, which does not affect the functionality of
the circuit. The set of assertion-based tests Tφ, that was generated from a set of
assertions A, is used for simulating the set of mutated designs. A mutant-free design
containing the null mutant, denoted as C0, is used for computing the correct result
without having any injected faults. At the end of simulation of each mutated design
Ck, the values of the primary outputs (Ok) are compared against the reference design
(O0). If any output from does not much with the reference design, then the mutant
µk is deemed killed. Otherwise, is said to have survived.

After all the mutated designs have been simulated, an adequacy score is computed,
known as the mutation coverage. Mutation coverage is defined as:

covµ = |Fkill|
|F|

× 100% (2.1)

which is the ratio of the number of killed mutants (|Fkill|) to the total number of
mutations (|F|, excluding the null mutant µ0). The value of covµ gives a sense in
how well the tests from Tφ were able to detect the injected mutations (i.e., the test
quality). The goal of mutation testing is to raise the mutation coverage close to 100%.
To improve the assertion-based test set for killing the remaining set of mutations, F̄kill,
the verification engineer will derive additional assertions that will generate additional
tests that can be added to the existing set, Tφ.

Mutation testing is an effective method for assessing the quality of the test set;
however, it comes with high computational costs when injecting a large set of muta-

22 Chapter 2. Background and Related Work

tions into the design. There are existing techniques for pruning the number of mu-
tations to inject. Selective mutation minimizes the number of mutants by injecting
a subset of mutations into the design without having any loss in the test effective-
ness [25]. It has been experimentally proven that the number of mutations has been
reduced to five key mutations, which helps in reducing the computational costs [26];
however, as designs become larger, using mutation testing during simulation becomes
a performance bottle neck.

Graphics Processing Units are an ideal platform for accelerating scientific com-
putations, especially in the field of Electronic Design Automation (EDA). Mutation
testing can benefit from the use of GPUs. As seen in Figure 2.5, there is a cer-
tain amount of data parallelism that can be exploited. The next section presents an
overview of GPU architecture and the OpenCL run-time execution model.

2.3 Accelerating EDA Algorithms on GPUs

Modern Graphics Processing Units (GPUs) are becoming easily programmable for
performing not only graphics rendering, but also used in scientific applications. As
Advanced Programming Interfaces (APIs) for these coprocessors have improved, many
different forms of computation are being offloaded from the host CPU and onto GPU,
with significant speed-ups being achieved [27]. Such popular APIs are the Com-
pute Unified Device Architecture C (CUDA C) Programming language provided by
NVIDIA [28] and the Open Computing Language (OpenCL) supported by AMD [29]
and NVIDIA [30]. These APIs allow developers to harness the compute power of
GPUs for accelerating compute intensive applications. Thus, coining the term Gen-
eral Purpose-computing on Graphics Processing Units (GPGPU).

Recently, GPUs have been used for accelerating compute intensive applications
in the field of Electronic Design Automation (EDA) [31]. The massive parallelism
provided by GPUs can help in accelerating circuit simulation algorithms; however,
EDA algorithms generally involve several data dependent operations, which can pose
significant challenges for efficiently parallelizing these algorithms using GPUs. Con-
cepts in parallelizing and accelerating EDA algorithms using conventional processors
have been borrowed and applied to GPU architectures. Previous researchers have
thoroughly investigated in accelerating circuit simulation algorithms over a network
of workstations, with the intent in reducing the simulation time [32]. These ap-
proaches are broadly classified into three different classes, namely algorithm-parallel,
model-parallel and data-parallel [33]. Algorithm-parallel approaches assign different

2.3. Accelerating EDA Algorithms on GPUs 23

Device Memory

Interconnection Network

GPC 0 GPC 1 GPC 2 GPC 3

GPC 4 GPC 5 GPC 6 GPC 7

GPU Device

(a) CPU to GPU Device Interaction (b) Graphics Processor Cluster

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

LD/
ST

LD/
ST

LD/
ST

LD/
ST

LD/
ST

LD/
ST

LD/
ST

LD/
ST

S
FU

S
FU

S
FU

S
FU

Register File
Warp Scheduler Warp Scheduler

Instruction Cache

Interconnection Network

Local Memory / Level 1 Cache

Host CPU

Host Interface

System
Memory

GPU Interface

Figure 2.6: GPU Architecture

tasks within the simulation algorithm, such as scheduling and gate evaluation, and
are distributed over different processors, working in a pipelined fashioned [34, 35].
Model-parallel involves with partitioning the circuit into disjoint sub-circuits, where
each circuit can be logic (or fault) simulated independently with different processors
[36]. Data-parallel algorithms can be further decomposed into pattern- and fault-
parallel approaches. In pattern-parallel [37], all the test sequences are simulated
concurrently, whereas in fault-parallel approaches simulate every fault independently
[38].

The data-parallel approaches are suitable for the GPU, as they do not require
inter-communication between other processing cores. The remaining challenge is to
generate an efficient data-parallel representation, which ensures all the threads on the
GPU operate on the plethora of circuit, fault and test data independently. The next
section presents an overview of the GPU architecture and the OpenCL Execution
Model.

2.3.1 GPU Architecture and OpenCL Execution Model

GPUs employ a single instruction and multiple data paradigm so that many instances
of a kernel function can be executed concurrently. Figure 2.6(a) shows the architecture
of a Fermi-based NVIDIA GPU connected with the Host CPU through the Host
Interface. The architecture contains 8 Graphics Processing Clusters (GPC), each
consisting of 48 processing cores, as shown in Figure 2.6(b) [39]. When a kernel

24 Chapter 2. Background and Related Work

x

y

Work-item

Global Work
Domain (x,y)

y

x

Thread

Workgroup(x,y)

Figure 2.7: OpenCL Execution Run-Time Model

function is launched on the GPU hardware, each GPC will contain an instance of
the kernel code. The individual processor cores (shown in the green boxes) execute
multiple copies of the kernel code and operates on different data that is stored in the
GPU’s device memory. It is important to note that each processor core executes the
same set of instructions in a lockstep manner.

Synchronization and data sharing within the GPC takes place by accessing the
available local memory. Each instance of the kernel function has its own private
memory that is accessible through the register file. Global memory can be read and
written by all the processing cores on the GPU device; however, every access to device
memory creates a latency of 400 to 800 clock cycles.

Figure 2.7 shows the execution run-time model of the OpenCL programming lan-
guage. The developed simulation kernels that will be presented in this thesis are
written in the OpenCL language, which gives the opportunity in running the kernels
on other GPU architectures. The constructs and the execution model are similar to
the CUDA C programming language [30]. In OpenCL, each kernel instance is known
as a work-item and groups of work-items are known as work-groups [40], as depicted
in Figure 2.7. The combination of all the work-groups define what is called a global
work domain, which specifies the number of work-items that are executing on the
GPU. Each instance of a work-item has its unique global ID that is accessible by the
built in kernel function, get_global_id(), while the size of the global work domain
is accessible through the kernel function, get_global_size(). When a work-group is
assigned to execute on a GPC, the thread hardware schedulers decompose the work-
group into 32 work-items, known as a warp. To achieve maximal performance, every
work-item within a warp must have a common execution path.

2.3. Accelerating EDA Algorithms on GPUs 25

Private
Memory

Processing
Element 1

Local
Memory 1

Global/Constant Memory

OpenCL Compute Device
Compute Unit 1

.

Private
Memory

Processing
Element N

Private
Memory

Processing
Element 1

Local
Memory M

Compute Unit M

. . .

Private
Memory

Processing
Element N

Figure 2.8: OpenCL Memory Hierarchy

2.3.2 Memory Hierarchy

Figure 2.8 shows the OpenCL memory hierarchy to which every OpenCL application
must abide [40]. It is important to note that each type of memory in the hierarchy
has different access latencies. The OpenCL Compute Device is represented by the
GPU, which it contains a set of Compute Units. These depict the GPCs of the GPU.
Each compute unit contains a set of processing elements, which represent the pro-
cessing cores in every GPC. Every processing element from different compute units
can access the Global / Constant Memory of the compute device. Every compute
unit has a dedicated, high bandwidth local memory, that every processing element
within a compute unit can access for sharing data or synchronizing work-items within
a work-group. The processing elements have dedicated private memory, which repre-
sents the register file of each GPC. Work-items can access the register file for storing
temporary data; however, the data stored in private memory cannot be shared with
other work-items. The kernel code will use the built-in OpenCL kernel functions (e.g.,
get_global_id()) for retrieving the appropriate data element that is stored either in
global, local or private memories.

Programming an application on the GPU is a non-trivial task, and many key
factors must be exploited in order for the application to achieve optimal performance
[41]. One of the factors is to have every work-item within a warp execute the same
set of instructions that follow the same execution path. Any work-item within a
warp executing different instructions leads to branch divergence, which causes the

26 Chapter 2. Background and Related Work

hardware schedulers to execute each branch path in a serial manner, thus causing a
decrease in performance. Accesses to the GPU’s device memory must be performed
in a coalesced manner in order to maximize the throughput. This requires all the
work-items to access the device memory using contiguous index address values so
that multiple memory requests can be fulfilled by a single transaction. Lastly, every
GPC is equipped with a certain amount of local memory that is accessible by all
work-items within the work-group. Storing most frequently accessed data into local
memory can increase performance since these data are accessible in one clock cycle,
thus reducing accesses to the GPU’s device memory.

These factors have been exploited in the proposed simulator tools, namely µ-GSIM
and GS-SIM that are presented in Chapter 5. The tools that were developed use a
novel data-parallel generation and encoding scheme for efficiently mapping a plethora
of circuit and mutant data onto the GPU’s device memory. Additionally, a mutation
testing environment for assessing assertion quality was also developed, which uses
the same data-parallel representation and is presented in Chapter 6. The developed
GPU applications have shown significant performance improvements, which is much
needed in the quest for improving assertion and test quality.

2.4 Summary of Related Work

This section presents a discussion on the previous research work related to assertion-
based test generation, test compaction, GPU logic and fault simulations and applying
mutation analysis on assertions.

2.4.1 Related Work on Test Generation from Properties

A large amount of work on generating test sequences from properties originates in the
field of software testing [42]. Closest to this work, Oddos et al. [2] recently developed
a tool (MyGen) to obtain test vector circuit generators based on automata created by
MBAC. Their approach relies on producing the test sequences pseudo-randomly with
a Linear Feedback Shift Register (LFSR) and Cellular Automata. The test sequences
satisfy a given property based on the acceptance automaton of that property. The
hardware generators were synthesized for FPGAs; however the size and complexity
depends entirely on the transition conditions (Boolean expressions) of each edge.

Koo et al. [43] proposed a bounded model-checking method for validating pipelined
processors. They generated a model of the MIPS processor in graph form, where a

2.4. Summary of Related Work 27

node represents either a pipeline (fetch, decode, execute, writeback) or a storage unit
(memory or registers), while an edge depicts a data storage link. The objective is
to generate a counter-example program that violates the user defined property. This
goal is achieved by traversing the model (graph) of the microprocessor by finding a
set of instructions that causes the property to fail. Similarly, Mathaikutty et al. used
model checking for generating directed tests for designs written in SystemC combined
with a set of specifications.

Shimizu et al. [44] presented a method for generating test sequences based on
constraints written as Boolean formulas. The constraints rely on the state variables
from previous states that are used for biasing during subsequent test generations.
These constraints are then converted into a Binary Decision Diagram (BDD) which
is used for generating test sequences that lead to a “true” value. These sequences are
the inputs to the circuit that will exert the expected (good) behaviour of the design.
This state space search is repeated for every dynamically created BDD at each clock
cycle.

Calamé et al. [45] demonstrate automata techniques for finding test sequences that
lead to a property failure. This method requires the specification of the design and
the test purpose. The specification is described in the form of a finite state machine,
while the test purpose is described by an automaton representing the constraints that
guide the generation of test sequences. Performing the product of the specification
and the test purpose automata creates the search space for test generation. State
space traversal algorithms are used to create the test sequences for property failure.

Cheng et al. [46] generate tests sequences from an Extended Finite State Machine
(EFSM) representation of a DUT expressed in VHDL or C. Their method exhaus-
tively traverses all edges of the EFSM, however, the EFSM does not incorporate
nondeterministic behaviour, whereas an automaton generated by MBAC does.

Test sequences from assertions can also be derived by traversing through an ex-
tended finite state machine representation of a design in formulating a set of con-
straints. A model checker will then be used as a constraint solver in which the
results produced from the tool become the test sequences that satisfy the set of as-
sertions [47]. Classical Automatic Test Pattern Generation (ATPG) algorithms have
been employed with model checking where the assertion is represented as a stuck-at-0
or stuck-at-1 fault. A SAT engine attempts to solve a set of Conjunctive Normal
Form (CNF) clauses representing the DUT for the attempt of detecting those faults
that represents assertions [48].

Another approach uses logic implications [49] and well established implication-

28 Chapter 2. Background and Related Work

based techniques [50]. In this method, logic implications define the expected relation-
ships between values at different circuit sites. This technique helps in deriving useful
tests that exercise the proper behaviour defined in the logic implications.

Assertions can also be used in guiding the test generator to produce test sequences
without the presence of the DUT. Pal et al. [22] proposed a “black-box” approach
for performing test generation from user-defined assertions. The black-box setup is
somewhat interesting to us because it is aimed at cases when the DUT structure is not
available, and creating the tests should proceed without the DUT being considered,
such that the algorithms are independent from the size and implementation of the
DUT. In this approach, assertions are seen as coverage points and are used as a source
for test generation. The test set produced is applied at the primary inputs so that
the DUT is able to reach those coverage points by exerting the specified events that
are defined in the set of assertions [22, 7].

2.4.2 Related work in Test Compaction from Properties

Considerable research efforts have been made on developing novel techniques for re-
ducing the size of a test set. The idea is to identify redundant test vectors that
can be modified or removed from the set while maintaining the same coverage goals.
Test compaction algorithms are broadly classified into static and dynamic techniques.
Static compaction is applied after the test generation process is complete [51]. Al-
though simpler to integrate as a post-processing step to an existing methodology, the
full size of the test set must still be generated and handled. Test compaction algo-
rithms that are directly integrated into the test generator are dynamic test compaction
techniques [52]. They require modifications to the generator to allow modifying or
removing redundant tests during the generation stage.

Techniques were proposed that dynamically or statically compact tests for detect-
ing manufacturing faults of scan-based designs. With such techniques, the circuit’s
flip-flops are directly initialized through a dedicated port in order to bring the cir-
cuit into a particular state prior to applying the tests at the primary inputs. Fault
simulators are typically used for dynamically compacting tests in which they deter-
mine the number of faults that were detected by a single test. The test itself can be
modified either using genetic algorithms [53], complementing bits of a test vector [54]
or deterministically assigning logic values to the don’t care bits of a test vector [55]
so that more faults can be detected by a single test. One of the proposed static test
compaction techniques decomposes each test vector into its atomic components, then

2.4. Summary of Related Work 29

identifies if each component detects the same fault [56]. Changing the sequence of
test vectors by means of test vector reordering can potentially increase the number
of detected faults and further reduce the size of the test set [57]. Set covering [58]
and integer linear programming [59] have also been explored for compacting tests
statically.

Test sizes for detecting manufacturing faults of non-scan circuits is larger than
scan-based designs because additional test data is needed for performing the scan-in
and scan-out operations at the circuit’s inputs. Several techniques have been proposed
for reducing test data by minimizing the number of scan operations in between tests
that are applied at speed. One of them is to merge at-speed tests if they do not
require scan out operations for detecting the faults [60], then use scan-based circuit
test compaction techniques [61] to further reduce the test set. Compacting tests with
partial scan techniques has been explored in [62] where a subset of flip-flops are used
for shifting in and shifting out the stored values that determine the detectability of
faults. Further test reduction was achieved by configuring the flip-flops in the circuit
into a shift register for shifting the detected fault data and the elimination of the
scan inputs and outputs [63]. This in turn reduces the amount of test data when scan
operations are not needed.

Assertion (property) clustering methods have been explored for various purposes.
The key idea is to group similar assertions with a certain level of similarity that can
be beneficial to other assertions for a specific application. For instance, grouping
similar properties together can help in generating tests for multiple assertions and
can accelerate the test generation process so that the similarities between properties
can be reused [64]. Similarly, assertion clustering can also be applied for generating
an efficient cluster of hardware assertions that produces minimal hardware usage
and reduced power consumption that is suitable for many post-silicon debugging
infrastructures [65] 1.

Assertions can also be clustered on a reprogrammable fabric such as an FPGA.
Clusters of similar assertions were formed in order to minimize the number of recon-
figurations needed, which is suitable for debugging designs using rapid prototyping
methods that require reprogramming the FPGA many times [66]. This concept was
also explored for Time Multiplexed Assertion Checkers where a group of similar as-
sertions are confined to a portion of the FPGA [67].

Little research has been made on compacting test sequences from assertions when

1The authors used clustering of hardware assertion checkers whereas in this work, we use clus-
tering of assertions themselves

30 Chapter 2. Background and Related Work

using clustering methods. One proposed approach is to compact directed tests from
properties for validating a pipeline processor. This is achieved by analyzing the finite
state machine model of the processor by identifying and removing redundant and
unreachable states along with illegal transitions in order to minimize the overall state
space of the model [68].

2.4.3 Related Work in GPU-based Logic and Fault Simula-
tion

GPU-based logic and fault simulation and its applications have been extensively stud-
ied by various authors. In each implementation, every author has explored different
methods for mapping the gate and fault data onto the GPU’s device memory for
exploiting the inherent parallelism offered by GPUs. In the work of Li et al. [69],
the authors map the circuit’s data using the GPU’s computer word, where the dif-
ferent threads decode the gate and fault data information. Each gate containing the
faults was encoded using a 32-bit word, while also storing the input port numbers for
identifying the location of the faults. Koshte et al. [70] proposed a Parallel Pattern
Single Fault Propagation algorithm on the GPU where they encoded the different
gate and fault data over the computer’s word. They limited the number of inputs
of every logic gate to two input ports, so they can constrain the memory size of the
circuit and fault data. Accelerating fault simulation algorithms was also performed
by Gulati et al. [33]. Their approach was to map the gate data using specific integer
identifiers, so that each thread computes the effective address in order to obtain the
appropriate logic value by means of a truth table stored in shared memory. The fault
data was encoded over the computer word by storing integer values indicating the
port containing a particular stuck-at fault.

In the context of logic simulation, Chatterjee et al. [71] proposed an event-driven
logic simulator based on a look-up table method for obtaining the correct logic value.
Additionally, they have partitioned the circuit with their proposed cone clustering
algorithm so they can generate a set of macro-gates for simulation. Sen et al. [72] also
proposed a logic simulator by representing the circuit as an And-Inverter Graph. They
have also used a form of partitioning for isolating a set of gates that are responsible for
evaluating a particular set of primary outputs [73]. In the work of Bombieri et al. [74],
the authors developed a logic simulator that is based on designs written in SystemC.
They transformed a SystemC design into a C++ representation that is executed on
the GPU. Additionally, they performed a thorough study by comparing the run-time

2.4. Summary of Related Work 31

performances between OpenCL and CUDA on the NVIDIA GPU platform [75].
GPU-based logic and fault simulation algorithms have also been applied in other

VLSI related applications. Holst et al. developed a scan-based power simulator that is
based on a form of logic simulation that is implemented on GPUs [76]. Their approach
was to simulate multiple instances of the circuit using different input waveform data
for computing the power dissipation for every logic gate. Li et al. also proposed
a GPU framework for generating tests in design verification [77], in which a GPU-
based logic simulation algorithm was used for justifying and assigning logic values to
the internal signals within a circuit. These tests are ultimately used for verifying the
correctness of the design. Additionally, they also proposed an algorithm for reliability
analysis of logic circuits using GPUs in which they also use a form of logic simulation
[78]. Fault table generation also uses a form of fault simulation algorithms on GPUs
and was studied by Croix et al. [31].

2.4.4 Related Work on Mutation testing with Assertions

Mutation testing is an approach that is based on software testing which is used for
gauging the quality tests [79]. This approach injects intended faults, called mutants,
into the original program one at a time and determines if the set of tests are able
to excite (mutant activation) and detect (killed mutant) the fault that was intro-
duced. The primary objective is to determine if additional tests are needed so that
the quality of the test suite can be improved. Recently, concepts of mutation testing
were borrowed and applied to the functional validation of digital circuits. The au-
thors Sousa et al. [80] injected different mutation operators into the SystemC model
whereas Bombieri et al. [81] applied mutations into the extended finite state machine
representations of the Transaction Level Models (TLM) of a design. These approaches
were used for assessing the quality of tests generated from a testbench that is used
for validating TLM designs written in SystemC.

Behnam et al. [82] also used mutation testing techniques where they replace a set
of gates with a different logic type representing mutations of a synthesized gate-level
circuit. They transformed the mutated circuit into a set of Conjunctive Normal Form
(CNF) clauses and perform satisfiability in order to determine if the mutants were
detected. Similarly, Mirzaeian et al. [83] also used the idea of gate replacements by
injecting erroneous multiplexers into the design, which then gets converted into CNF
clauses for word-level satisfiability solving. Results from the SAT solver determine if
the faulty multiplexers were detected and indicate the location in the RTL code that

32 Chapter 2. Background and Related Work

contains the intended errors. These gate replacement techniques are also used in our
work as mutations for synthesized gate-level circuits and are further explained in [84].

Mutation testing has also been applied for assessing the quality of properties in
validating the correctness of a design. The objective is to measure the property cov-
erage which gauges how well the specified properties can detect the set of injected
mutants inside the original design [85]. Previous research work, quantifying property
coverage was also used in formal and dynamic verification methods. Kupferman et
al. [86] proposes a formal verification method by employing a model checker for an-
alyzing the completeness of properties. Their approach perturbs the original finite
state machine model with a set of mutations (faults). The objective is to analyze
the properties’ thoroughness so that each property can be satisfied (or falsfied) non-
vacuously, ultimately improving the quality of them. Similar work was also proposed
by Fraser et al. [87] in which they use model checking for generating counterexamples
when properties detect the injected fault. The goal of their work is to improve the
test quality by adding properties that can detect all of the injected mutations. Sim-
ilar formal verification techniques have employed by various authors where they use
mutation testing for analyzing a set of properties that can be easily satisfied without
thoroughly exercising the specified sequence of events [88, 89], also known as vacuity
analysis [90].

Dynamic (simulation) approaches have also been proposed for analyzing the thor-
oughness of written properties. Simulation is still the predominate method in industry
for design validation [91]. DiGuglielmo et al. proposes a method for analyzing vacuity
analysis of properties using fault simulation [92]. Their approach is to inject faults
at the RTL level of the design and map them using a gate-level stuck-at fault model.
Then, the fault simulator will determine which fault was detected, which determines
which property was able to detect the fault. Similarly, they also used this method
for quantifying property coverage by means of vacuity analysis, completeness and
overspecification [93].

Banerjee et al. [94] have also used a form of simulation for assessing how well
the assertions were able to uncover the injected stuck-at faults at the interface of the
design. Similarly, Pal et al. [22] developed a testbench in the attempt of accelerating
assertion coverage in terms of property completeness. They treat assertions as cover-
age points inside the design. Their goal is to have the testbench generate the required
stimuli so the circuit is able to reach those coverage points, thereby measuring the
property coverage. Other research work undertaken by Di Guglielmo et al. [95] is
closely related to ours where they accelerated simulations by developing a parallel

2.5. Chronology Work Overview 33

functional simulator. Their approach is to synthesize every fault injected circuit and
to rely on the bits of the computer word for detecting the faults. The input stimuli
they used are based on the properties that were associated to each design. They
subsequently used their developed simulator for quantifying the property coverage.

2.5 Chronology Work Overview

This section gives an explanation of how the previous work relates to the development
of an assertion-based test generator and GPU accelerated mutation testing simulator,
with the ultimate goal for providing an infrastructure for assessing assertion quality.

2.5.1 Coverage Driven Assertion-based Test Generation

Chapter 3 discusses our developed assertion-based test generator, Airwolf-TG. The
developed tool is capable of generating tests by using a computable representation
of assertions, namely NFA, which was described from Section 2.1.3. A similar tool
developed by Y. Oddos et al [2], called MyGen, also uses the NFA representation
of assertions for generating assertion-based tests; however, their approach was to
pseudorandomly exert different transition clauses that creates an assertion pass. Our
approach that was incorporated into Airwolf-TG, employs a directed strategy for
generating assertion-based tests by thoroughly exploring the NFA space, thereby all
of the transition clauses are exerted at least once. A set of proposed relations between
automata coverage and assertion coverage metrics (explained in detail in Section 3.3),
is incorporated into the developed test generator which helps in generating directed
tests from assertions non-vacuously. These coverage metrics have shown that the
generated assertion-based tests from Airwolf-TG attained improved coverage when
compared to the tests generated by MyGen.

2.5.2 Test Compaction Techniques for Assertion-based Test
Generation

Chapter 4 describes two novel test compaction algorithms, which were incorporated
into the developed tool, Airwolf-CTG. The proposed test compaction algorithms uses
assertion clustering by grouping assertions containing similar signals and sequences.
This work was closely related to the ones found in [65, 66, 64], where authors have
used clustering for the context of generating an efficient cluster of hardware assertions

34 Chapter 2. Background and Related Work

for post-silicon debug, reducing area usage on a programmable fabric such as FPGAs,
and also for accelerating the test generation process of assertions by exploiting sim-
ilarities. The test compaction techniques that were incorporated into Airwolf-CTG
also uses assertion clustering. Our approach exploits the similarities that are found
within a cluster of similar assertions, which can then be shared for compacting the
assertion-based tests. This has led to the development of the Test Path Overlapping
compaction algorithm, described in Section 4.4.1. An improved test compaction al-
gorithm, namely Parallel Path Removal (explained in Section 4.4.3), leverages the
unspecified conditions of assertions for compacting tests within a cluster. This has
helped in providing additional compaction of the assertion-based tests that is benefi-
cial in reducing the overall applied verification time.

2.5.3 Efficient Data Encoding of Mutation and Fault Data
on GPUs

Chapter 5 presents our proposed efficient data-parallel representation and encoding
techniques for accelerating mutation and fault simulations using GPUs. As discussed
from Section 2.3, one of the challenges for using GPUs for accelerating EDA algo-
rithms is to ensure every thread (work-item) is operating on independent data as
much as possible. Previous approaches that were found in [33, 71] performs logic and
fault simulation by having every thread on the GPU to compute the Boolean logic
of every gate using a look-up-table method. The proposed approach presented in
this chapter transforms the circuit into a stream-based representation, so that every
thread operates on a single instance of a circuit. Additionally, we also show how the
GPU’s computer word is leveraged for efficiently encoding the different gate types,
mutant and fault data, which has led to the two encoding techniques, namely Mul-
tiple Mutant Gate (used by µ-GSIM) and Multiple Fault Gate (used by GS-SIM).
The purpose of these encoding strategies and a stream-based representation of the
circuit is to reduce the overall memory usage on the GPU’s device memory. This
has enabled for more threads to simulate multiple circuit streams while operating on
independent mutants or faults, thus improving simulation efficiency on the GPU.

2.5. Chronology Work Overview 35

2.5.4 Using GPUs for Accelerating Mutation Testing of As-
sertions

Chapter 6 shows our proposed framework for assessing assertion quality using mu-
tation testing on GPUs. This chapter combines the test generation strategy that
was described from Chapter 3 and the data encoding techniques that were shown
in Chapter 5. Similar work in terms of assessing assertion quality was proposed by
Pal et al. [22], where assertions are used as coverage points (discussed from Section
2.1.1) for assessing how thorough the design under verification was explored and are
able to catch the injected faults [94]; however, their approach was to pseudorandomly
generate tests and apply them at the inputs of the design while observing which asser-
tion has passed and faults were detected. Our proposed approach uses the directed
assertion-based tests from Airwolf-TG (described from Chapter 3), which directly
exerts the necessary conditions for passing the assertion. Additionally, we inject syn-
thesized mutations into the circuit and determine if the assertion-based tests were
able to detect the mutant during simulation on the GPU.

Chapter 3

Coverage Driven Assertion-based
Test Generation

This chapter presents the proposed assertion-based test generation tool Airwolf-TG:
A Test Generator for Assertion-based Dynamic Verification. Airwolf-TG operates
over NFA representations of assertions, which were discussed in Section 2.1.3. A
set of coverage metrics for NFAs is also proposed, which helps gauging how well the
assertion was evaluated during simulation, and also for generating tests non-vacuously.
The proposed tool will help in performing an effective dynamic verification of digital
designs.

3.1 Motivation

Dynamic (or simulation-based) verification is still the dominant approach for verifying
the Design Under Test (DDT). It requires a DUT simulation over sufficiently detailed
test sequences, to ensure conformance to expected behaviour. Most commonly, verifi-
cation engineers are asked to perform functional verification, which typically amounts
to exercising the expected good behaviour by generating test sequences that should
produce the anticipated response from the circuit. To exercise the circuit more thor-
oughly, one should also attempt to find test sequences leading to faulty behaviour.

Assertions help by increasing the observability within the circuit, and can also
help to create behavioural scenarios that can be seen as potential coverage criteria
[4, 96]. Properties are commonly defined using modern assertion languages based on
linear time temporal logic and sequential extended regular expressions. Additionally,
they serve as a formal specification mechanism to define the intended behaviour in
a design. Any deviation causes an assertion to fail, which can be captured by either

37

38 Chapter 3. Coverage Driven Assertion-based Test Generation

the simulation environment or by formal methods.
The work presented in this chapter addresses the question: Have we produced

enough test vectors to exercise most of the possible behaviours of the circuit? We seek
to obtain the minimal number of test vectors that thoroughly exercise the circuit
behaviour based on the defined properties. It is assumed that enough assertions
were written to properly specify the functionality of the circuit. Test generation is an
essential step in the dynamic verification process, with the main goal being quantified
in the form of coverage metrics.

Within ABV, we could actually use the readily available assertions to produce test
sequences. If assertions thoroughly define the properties of the design, then they also
provide a blueprint for exploring the relevant common cases as well as the corner-case
scenarios. For that, it is imperative to have sound assertion coverage metrics that
measure how fully the properties have been exercised [3]. Hence, the coverage goals
can be thought of as the exploration of the specification space. This chapter proposes
proposes a set of coverage metrics for automata that represent assertions, and relate
them to the specific assertion coverage goals. The contributions that are made in this
chapter are as follows:

• We present an approach for verification test generation based on properties
represented by finite automata;

• We establish a relation between assertion coverage goals and the automata
coverage;

• We develop a method for detecting and exploiting non-determinism for efficient
automata traversal;

• We also develop a mechanism for analyzing coverage for a set of vectors that
is used in determining the edge coverage and for combining vector generation
schemes.

The contents of this chapter are organized as follows: 1 Section 3.2 shows our
proposed methodology for generating tests from assertions. Section 3.3 presents a
thorough discussion on vacuity in testing, assertion coverage, different automata cov-
erage metrics and test coverage which are all valuable in test generation. Section 3.4
presents the underlying algorithms and Section 3.5 details the experiments undertaken
with Airwolf-TG.

1The contents of this chapter is based on the article entitled Defining and Providing Coverage for
Assertion-based Dynamic Verification [7] and the paper Airwolf-TG: A Test Generator for Assertion-
based Dynamic Verification [8]

3.2. Finite Automata Checking 39

Buchi

Automaton
State Space

Explosion

Product Automata Generation

Non

Determinstic

Finite

Automaton

Run-Time

Assertion

Checkers

Finite Automata Generation

MBAC

a&&b

c&&d

a

b
c

Assertions DUT Assertions DUT

Figure 3.1: Model checker vs. finite automata checker in model-based
test generation

3.2 Finite Automata Checking

Most commonly, generating test sequences in the model-based approach amounts to
generating a witness trace or a counterexample in Model Checking (MC). MC uses a
finite state machine description of the circuit and a given property that it must satisfy.
From these two inputs, it generates a product automaton that describes acceptable
behaviours for infinite input sequences. While the product automaton structure,
typically a Büchi automaton, allows us (in principle) to verify whether the properties
hold for infinite traces, this method often suffers from state space explosion and is
typically prohibitive for realistic circuits.

The model checking approach is illustrated in Figure 3.1(a). Table 3.1 shows
the major differences between the model-based approach using MC and our proposed
Finite Automata checking approach. The key point to make is that the state explosion
associated with MC-based test generation is avoided at this stage by relying only on
the checker automata to devise the sequences of symbols exercising the assertion
automata.

The finite automata that describe properties are generated by the MBAC tool [6],

40 Chapter 3. Coverage Driven Assertion-based Test Generation

which produces assertion checkers suitable for dynamic verification. The tool explic-
itly optimizes the Non-deterministic Finite Automata (NFA) for subsequent genera-
tion of assertion checker circuits. With this approach we utilize the single automata
from properties (Figure 3.1 (b)), as opposed to the product automata.

Our test generation tool, Airwolf-TG, requires that the original assertion coverage
goals be expressed in terms of automata coverage. When assertions reference internal
signals, additional steps must be employed for the Airwolf-TG assertion sequences to
find the corresponding primary input sequences of the DUT. We focus on the assertion
automata alone and their test sequences, as well as the much needed coverage metrics
related to assertions. Verification techniques ignoring the DUT in whole or in part
are sometimes encountered (i.e. abstraction-based methods [97]), hence this work can
be potentially useful from that angle as well.

3.3 Coverage in Assertion-Based Verification

To show the need of coverage in assertion-based verification, we initially describe the
issue of vacuity for passing or failing assertions vacuously.

3.3.1 Vacuity in ABV

Vacuity is a common issue that needs to be addressed in the ABV paradigm [98].
Upon simulating a test sequence, an assertion should succeed by having the design
perform the expected behaviour as specified in the property; however, it can also
succeed if the design does not produce any signals exercising the property.

For example, the following SVA assertion illustrates a simple grant and request
property:

assert property (@(posedge clk) req |-> ##1 gnt)

Table 3.1: Model Checking vs. Finite Automata (FA) Checking

Category Model Checking FA Checking
Automata Type Büchi NFA

Represented Traces Infinite Finite
Use of Product Automata Yes No

Computation Time Potentially huge Low
Output Type Counter Examples Test Sequences
Input HDL Yes No

3.3. Coverage in Assertion-Based Verification 41

req

gnt

req

gnt

Figure 3.2: Waveform for SVA assertion

Figure 3.2 shows the two timing diagrams that can satisfy the property. Part (a)
in the figure depicts that for every assertion of signal req at clock cycles 1 and
5, the signal gnt must be asserted on the next clock cycle (i.e. at clock cycles
2 and 6 respectively). On the other hand, as shown in Figure 3.2(b), if the req
was not asserted throughout the simulation, then this property is satisfied vacuously
without effectively exercising the antecedent portion of the assertion [99]. When this
phenomenon occurs, there is a possibility that the design may not have produced the
antecedent signal, the property itself was not thoroughly specified or the tests did not
fully exert the specified signalling conditions in the assertion [5].

To achieve effective test generation from assertions we first need to derive suitable
coverage metrics for generate tests that passes or fails the assertion non-vacuously.
The intent is to map the high-level verification goals to the automata coverage goals,
such that we only need to worry about the automata coverage during the test gener-
ation.

3.3.2 Assertion Coverage

Coverage is an important metric that measures how well an assertion captures the
intended design behaviour. Since our goal is to fully exercise assertions by dynamic
verification, we would naturally want to attain a good coverage of the assertion source
code. In practice, one could consider the evaluation/firing of the assertion to consti-
tute a coverage metric [100]. That by itself is not a sufficient form of coverage since
there are different sequences of internal states that can satisfy or falsify the property.

As the attempts to define coverage in conjunction with assertions were limited,
we first recall a few concepts from source code coverage metrics, such as: statement
(line), expression, branch and path coverages [101, 16]. When narrowing the scope to

42 Chapter 3. Coverage Driven Assertion-based Test Generation

assertion code, difficulties arise as modern assertions languages allow a much higher
density of code (often into single-line statements) such that line coverage might not
produce sufficient granularity in assertion coverage. Similarly, branch and expression
coverages from high-level languages and RTL do not have their meaningful equivalent
in assertions.

A more effective assertion coverage strategy is proposed in [102] to help the ver-
ification engineer determine the following aspects about the defined assertions : Are
they exercised thoroughly? Are their Boolean expressions thoroughly assigned? Re-
garding to the first question, the assertion statement should thoroughly exercise all
the temporal steps in sequences; this is referred to as Assertion Step Coverage. For
example, the property:

a |-> ##1 (b[*0:3] ##1 c)

is satisfied by requiring signals a and c to occur; however, signal b can remain low
throughout the simulation.

The second question above concerns the Boolean variables referenced in a property.
Assertion Variable Coverage determines which variables were assigned or remained
dormant during simulation. For example, the property:

a |-> ##1 (e||f)

is satisfied by requiring signal a to be asserted and either e or f to occur. Any of
the two Boolean variables in the OR expression can remain dormant throughout the
simulation.

3.3.3 Mapping Assertion Coverage to Automata Coverage

In this section, we will briefly describe each automata coverage metric that will be
applied to the assertion-checker automata produced by MBAC. From there we will try

��������������	�

������������

���������������������

�

�
����

��
����

�

���

�
���

���� �����
����

����

Figure 3.3: Node coverage metric

3.3. Coverage in Assertion-Based Verification 43

to map each coverage metric with the assertion source code coverage metrics briefly
defined in the previous section.

Node Coverage expresses how many nodes of the entire graph have been visited,
and is the most common metric. When covering all the nodes, the assertion (or the
automaton) has entered into all of the possible states for that property. Shown in
Figure 3.3 is an automaton traversed with node coverage as the goal. It is evident
that in node coverage not all edges are traversed (dotted lines), which can result in
test sequences that vacuously satisfy a property.

��������������	�

������������

���������������������

�

�
����

��
����

�

���

�
���

���� �����
����

����

Figure 3.4: Edge coverage metric

Edge Coverage is one of the most widely accepted coverage metrics, in which
the intent is to traverse all the edges of the automaton. When achieving the edge
coverage, we ensure that all the Boolean expressions of the property are included
during test generation at least once. Figure 3.4 depicts a graph with complete edge
coverage. When performing this metric, it guarantees complete node coverage, and
generates extra test sequences to guarantee that a given property is satisfied non-
vacuously. A correlation between edge coverage and assertion source code coverage
would be Assertion Variable Coverage as it requires all variables to be true or false
at least once.

��������������	�
�
������������������

�������������������������
���������

�

!
��

�"#�

$

�

�
��%%���

&

��%%�!
���

��%%���

'

��%%�!
���

��%%�!
���

��%%�!
���
��%%���

Figure 3.5: Complete round trip coverage metric

44 Chapter 3. Coverage Driven Assertion-based Test Generation

Figure 3.6: Edge completion for and, or and xor Boolean expression
coverage

Complete Round-Trip Coverage (CRTC) involves covering all the round-trip paths
(or cycles) that exist in the automaton. This type of coverage falls under Expression
and Path Coverage in the assertion coverage criteria. At least one path must contain
a cycle in order to cover all the edges of the graph as seen in Figure 3.5. It is apparent
that the paths also attain complete node and edge coverage in order to generate test
sequences non-vacuously.

Complete Path Coverage (CPC) involves covering all possible independent paths
that exist in an automaton. A path starts from an initial node, then traverses through
edges of the graph until it reaches a final node. Obtaining complete path coverage is
infeasible if the graph contains any cycles since this can lead to infinite path lengths.

m-Path Coverage helps to remedy the infinite length problem in CPC. Usually it
is desirable for generating test sequences (or paths) of a finite length while including
all edges and cycles of the automaton. Both Complete Path and Fixed Length path
coverages fall under the Path Coverage category in assertion coverages.

Edge Completion involves expanding an edge that contains a Binary expression
of more than one variable into a set of edges that uniquely activates each variable.
Figure 3.6 shows an automaton for three different transitions of Boolean operators.
The first row shows a set of automata each containing a different primary Boolean
operator between signals a and b. The second row depicts the expanded but equivalent
versions of the automata, wherein the edge coverage covers each variable being fired.

The automaton in Figure 3.6(a) shows the condition a&&b to be at logic-1 for
making the transition from state 0 to 1. Since the and-operation requires all Boolean
variables be at logic-1, the expanded version of the automaton remains the same.
For an or-operator in Figure 3.6(b), there are three possibilities for the original edge
to become activated. In order to achieve complete assertion variable coverage by

3.3. Coverage in Assertion-Based Verification 45

Table 3.2: Relating Assertion and Automata Coverage

Assertion Automata Vacuity
Coverage Coverage Issue
Covering all Node Yesstates of a property Coverage
Covering all Edge Nostate transitions Coverage

Covering repeated Complete Round NoSequences of a property Trip Coverage
Combination of Complete Path Noall of transitions Coverage
Assertion Step Edge NoCoverage Coverage

Assertion Variable Edge Completion NoCoverage + Edge Coverage

covering the edges, all the possible conditions must be exercised such that all variables
were assigned to logic-1 or logic-0 at least once. Finally, in Figure 3.6(c) the edge
completion for the xor-operator produces two outgoing edges. The defined automata
coverages and their correlated assertion coverages are summarized in Table 3.2.

Node Coverage

Edge Coverage

Complete Round

Trip Coverage

m-path

coverage

Complete path

coverage

In
c
re

a
s
in

g
 C

o
v
e
ra

g
e

(m-1)

Largest loop

size path

(m+1)

Figure 3.7: Partial ordering between different automata coverages

Partial order between the automata coverages is shown in Figure 3.7. Node cover-
age is completely subsumed in edge coverage since visiting all edges implies visiting all
states (the reverse does not hold). The path coverage for the length of the largest loop

46 Chapter 3. Coverage Driven Assertion-based Test Generation

���������	�
�����	��	�

�

�

������

����

�

���

�

���

�

���

�

���

���
	

���

���

���

��������	
���	����

� ����

�

��

�

��������������
����

�

�����������
����

��������������
����

�

�����������
����

��������������
���� �

�����������
����

���
���

Figure 3.8: Acceptance and failure automata for the example asser-
tion : “assert property (@(posedge clk) req |→ ##1 (ack[*0:3]) ##1
grant);”

achieves CRTC. Below that length, the m-path coverage cannot be brought into the
ordering relation with CRTC. Assertion variable coverage subsumes edge coverage,
but is not comparable to other coverages.

3.3.4 Acceptance and Failure Automata Test Coverages

We mentioned that for test generation in ABV, the goal is to generate test sequences
that can satisfy the expected behaviour of the design, as well as to exercise the
scenarios that can potentially cause a fault. Shown in Figure 3.8 are the two types
of automata based on the SVA assertion shown in the caption. For instance, the
first automaton in Figure 3.8(a) shows the paths (or sequences) in order to exert the
proper behaviour of the circuit. By efficiently traversing through all of the available
paths in this automaton and covering all of the edges in order to generate non-vacuous
test patterns, a test set of five vectors was derived.

However, for the failure automaton in Figure 3.8(b), an additional test set of four
vectors was obtained. This implies that when solely using acceptance automata for
generating test sequences, there is a possibility of achieving low test coverage. With

3.4. The Airwolf Test Generator 47

Airwolf-TG
Automata Generation Sequence Generation

MBAC

.fsm

.sym

1

2

3

a

!a

b&&c

!d

!d
{a;b&&c}
{!a}

Generated
Sequences

.tpg
auto_analysis()

HSA_search()

NSA()

Automaton Analysis

Path Search

Figure 3.9: Test generation overview with MBAC and Airwolf-TG

additional test vectors generated using the failure automata, we attempt to exercise
all of the correct and incorrect behaviour, and potentially increase the coverage of
the entire test suite.

3.4 The Airwolf Test Generator

The objective of Airwolf-TG is to generate efficient test sequences that can either
exercise the expected behaviour or a failure. The goal is to attain 100% coverage by
applying the automata coverage metrics as shown in Table 3.2. Here are some of the
constraints imposed on Airwolf-TG:

• Generating test sequences non-vacuously: As shown, this requires 100% Edge
Coverage of an automaton where all edges are used at least once.

• Minimizing the reuse of edges that were traversed previously: This helps to
reduce the amount of redundant edges that were already covered from a previous
recursive search.

3.4.1 Test Generation Overview

Figure 3.9 shows MBAC and Airwolf-TG used together for generating test sequences
for either acceptance or failure automata. In the first phase, MBAC produces efficient
automata representations of the given properties, which in turn are used to model
hardware checkers. A description of each automaton along with a list of its symbols
are also produced, both of which are used by Airwolf-TG.

The sequence generation phase is split into two parts. Initially, an Automaton
Analysis is performed by the function auto_analysis. This involves labelling the

48 Chapter 3. Coverage Driven Assertion-based Test Generation

Algorithm 3.1 Hybrid Search Algorithm for Automata Search
FUNCTION: HSA(A (φ), Qa, ΠIn, Goal)
back_track ← 0, Qnew ← ∅
while qc 6= q0 & back_track 6= 1 do
for all qi ∈ Qa do
if qi ∈ F /* If current state is a finish node */ then
ext_path(ΠIn[qi]) /* Extract Test Path at current state */

else
Qnew = NSA(A (φ), qi, ΠIn, back_track, Goal);

if Qnew = ∅ then
break

else
HSA (A (φ), Qnew, ΠIn, Goal)
//Backtracking when returning from previous call
back_track ← 1

return Πφ

edges that can cause either non-deterministic behaviour, creating a cycle, or an edge
that leads directly to a final node. Following this, the Path Search is called by
functions HSA_search and NSA. These functions strategically explore the automata
state space. The results from this phase are then stored into a separate file and
ultimately form the sequences that cause a property to either pass or fail.

3.4.2 Airwolf-TG Algorithms

Airwolf-TG uses a combination of a modified Depth-First (DFS) and Breadth-First
(BFS) searches to generate test sequences for any given finite automaton. These mod-
ifications were necessary for the following reasons: First, due the non-determinism,
the tool should analyze the possibility of activating more than one successive node
during the path search process. Second, since assertion automata can contain cycles,
our algorithms check for them explicitly when minimizing the length of the test se-
quences of a property. Finally, our approach strategically chooses the subsequent set
of edges to include as part of the test sequence based on the directional properties
and edge weight calculations of each edge.

3.4.2.1 A Hybrid DFS/BFS Automata Search Algorithm

Algorithm 3.1 shows the pseudocode of the proposed Hybrid DFS/BFS Automata
Search Algorithm (HSA). The HSA algorithm operates over a directed graph depicting
the NFA representation of the assertion A (φ), for which it receives a list of currently

3.4. The Airwolf Test Generator 49

Algorithm 3.2 Node Selection Algorithm (Node and Edge+CRTC Coverages)
FUNCTION: NSA (A (φ), qc, ΠIn, back_track, Goal)
for all πi ∈ Πin do
if qc was not visited then
if Goal = Node then
Select edge ej that was not previously traversed

else if Goal = Edge & CRTC then
Select edge ej that is F/P/N NFA edge type

Esel ← Esel ∪ ej /* store selected edge */
qc ← as visited

else if qc was previously visited & back_track = 0 then
if Goal = Node then
Select edge ej that was not travsered

else if Goal = Edge & CRTC then
if qc has unused edges then
Esel ← Esel ∪ Eqc /* Insert outgoing set of edges at qc */

else if qc has an edge ej that leads to qd ∈ F /* Final State */ then
Esel ← Esel ∪ ej

ΠIn ← ΠIn∪Esel
Qnew ← Subsequent nodes from outgoing edges stored in Esel
return (Qnew)

activated states stored in the variable Qa such that each state qn ∈ Qa belongs to
A (φ), a coverage metric to apply for the test generation process (Goal), and an array
of active incoming edges at each node ΠIn.

The algorithm keeps track of the current active nodes at each recursive call of
the HSA function. For determining the subsequent nodes to explore, each presently
active node qn ∈ Qa is sent to the Node Selection Algorithm for analysis and the
decision to continue the forward traversal or not. Backtracking occurs when there are
no subsequent nodes to explore. Finally, the HSA algorithm returns a set of paths, Πφ

describing the sequence of events for either passing or failing of assertion φ.

3.4.2.2 Node Selection Algorithm

Algorithm 3.2 shows the pseudocode of the Node Selection Algorithm (NSA). It receives
from (HSA) a directed graph representing the NFA representation of the assertion
(A (φ)), the current node (qc), an array of active incoming paths (ΠIn) of each node,
a backtracking (back_track) flag, and finally Goal which defines the coverage metric
to apply (Node/Edge+CRTC).

The NSA function is designed to generate test sequences for eitherNode or Edge/CRTC

50 Chapter 3. Coverage Driven Assertion-based Test Generation

(a) Full-NFA (F-NFA)

0 1

a&&b

a

b

(b) Partial-NFA (P-NFA)

0 1

a&&b

a

c

(c) Normal-NFA (N-NFA)

0 1

a&&b

d

e

Figure 3.10: NFA node types

coverages. When choosing a specific coverage goal, the algorithm will try to explore all
the possible paths by analyzing the edges’ directional properties and Boolean expres-
sions. Since the assertion automaton is non-deterministic, the NSA monitors which
edge (or set of edges) can cause the automaton to enter into more than one successive
state. Hence, during the automaton analysis, each node was labelled with a node
type (F-NFA, P-NFA, N-NFA).

Shown in Figure 3.10 are the NFA node types. For a F-NFA node (Figure 3.10(a)),
the NSA will select the edge that causes an activation of other edges of that node. In
this case, all the edges are included. A P-NFA node (Figure 3.10(b)) occurs when one
edge can activate a subset of edges coming from that same node while the dormant
edges will be incorporated in later recursive calls. In the N-NFA node (Figure 3.10(c)),
all its edges are uniquely activated and incorporated one at time.

During the backtracking phase, the NSA function tries to find any remaining unused
nodes or edges to explore and traverse. When an unused node or edge is found, the
forward traversal resumes. In this scenario, the search algorithm may encounter a
set of nodes and edges that were previously explored. NSA tries to minimize the
inclusion of redundant edges by finding an outgoing edge that leads directly to a final
node (qd ∈ F – ending the test path), or selecting the edge of the least weight value
(balancing the use of edges). At the end of the NSA call, the selected edges will then
be assigned as the active incoming paths of each subsequent node stored into ΠIn.
Furthermore, those subsequent nodes will then be added to the new node list for the
next recursive call.

3.4.2.3 Coverage Analyzer

A Coverage Analyzer (CA) is included to determine if a set of test vectors achieves the
coverage goals. The algorithm plays a key role not only in determining the coverage,
but also in combining the dissimilar methods, such as pseudo-random generation, with
our scheme. Hence, it is of independent interest in the overall verification process, as
we will detail when explaining the experimental results. Shown in Figure 3.11 is the

3.4. The Airwolf Test Generator 51

Checked all

Nodes?

New recursive call to

CA function

Assign active paths to

activated edges

Is final node?

Extract vector path

Yes

Bool_check(vec)

No

= 1

All vectors parsed?

Check for

duplicate paths

No

Yes

No

= 0

Yes

Figure 3.11: Flow chart of coverage analyzer function

flow chart of the CA analyzer.
The recursive function begins by checking all the current nodes in the current

call. Each node will have its outgoing edges analyzed by the Bool_check function
that determines a set of activated edges by the current vector vec. If Bool_check is
true, the activated edges will then be assigned to the destination node as an active
incoming path. Otherwise, CA continues to the next active node until all the nodes
have been analyzed. If the CA encounters a final state, it will extract the path
based on the current incoming active path assignments of each node. Dupe_check
will determine if the path is already included in the vector set. Only distinct paths
are kept which represent the unique path traversals that occurred in the automaton.

3.4.3 Run time and Correctness

Airwolf-TG’s test generation process is a BFS/DFS combination search. When the
nodes of the automaton are entirely of F-NFA type, the Hybrid Search Algorithm
will behave in a Breadth-First manner as it searches all of the outgoing edges. On

52 Chapter 3. Coverage Driven Assertion-based Test Generation

the other hand, when all the nodes in the automaton have edges containing distinct
Boolean expressions, and are strongly deterministic [103], the hybrid algorithm will
then behave in a Depth-First manner as it searches a node at a time.

In the HSA, the computational portion of the function is cycling all the active
nodes. At most, all the nodes of the automaton can be active concurrently which
places an upper bound of N. When calling the NSA, the majority of the computation
time is spent on assigning the active incoming path(s) to each node. If the edges of
the automaton converge to a single non-final node, the largest number of active paths
(including cycles) can potentially be all the edges of the automaton, denoted as E.
Hence, the overall worst-case-scenario run time of our algorithm is O(N · E).

Regarding to the correctness, for every goal defined (Node or Edge+CRTC), the
NSA algorithm finds all objects of the automaton and leaves nothing unused. Each
traversed node/edge object becomes “marked” as visited upon a first encounter. The
algorithm terminates when there are no unmarked objects remaining to visit. Addi-
tionally, for each traversal, a Boolean sequence is created by concatenating symbols
for the transitions leading to all the objects. The sequence generated from an asser-
tion automaton thus causes the traversal of the entire set of automaton objects of
interest (edges, nodes), which satisfies the given coverage goal.

3.4.4 Test Sequence Generation Example

To illustrate our Hybrid Search Algorithm, we present an example based on theMBAC
assertion automaton shown in Figure 3.12. The starting position of the hybrid-search
begins at node 1. Two edges have the same Boolean expression (sig1 && sig3) which
leads to subsequent nodes 0 and 2. Those nodes are added to the Qnew list which
will be the next set of active nodes. Additionally, the edges that lead up to them are
added into variable ΠIn as the active paths, π0 and π2 respectively.

��������������	�
��������
�����������

�

������������

�
����

��

�

������������ ����

Figure 3.12: Acceptance automaton example

When the algorithm approaches the final node 0, it starts to output the test se-

3.4. The Airwolf Test Generator 53

quences. In this case, the edge between nodes 1 and 0 with the non-deterministic
expression becomes extracted. The search resumes with node 2 by finding an out-
going edge to node 0 (sig3) that will be included into ΠIn. The final node is once
again added to the subsequent node list. Finally, the function extracts the Boolean
sequences through the node path 1, 2 and 0.

Since there are no further nodes to traverse from node 0, the algorithm backtracks
from node 2, and then to 1. It finds an unused deterministic edge between nodes 1 and
0 (!sig1). Eventually the algorithm will include that edge as part of the test sequence.
In total, this example has generated 3 test sequences that cause the assertion to pass.

3.4.5 Coverage Analysis Example

The coverage analyzer in Airwolf-TG uses an approach similar to the Hybrid Search
Algorithm for monitoring active nodes and edges. Instead of autonomously exploring
the assertion space, a set of test vectors that accompanies the assertion can uniquely
or non-determinstically activate certain edges of the automaton.

For the assertion automaton in Figure 3.12, the self terminating edge at node 1
is continuously active. Assuming the most and least significant bit of the binary test
vector represent signals sig1 and sig3 respectively, as each test vector is read, the
bits are analyzed to determine which variable is “high” or “low”.

Assuming the first test vector {1,1} is read, this activates the edges between nodes
1 and 2 and nodes 1 and 0 both containing the Boolean expression: sig1 && sig3.
A final node has thus been reached and the Boolean expression is extracted. CA will
then determine if the sequence is a duplicate that was previously included, which in
this case is false.

Currently, nodes 2 and 1 are active. A second vector {1,1} is sent to the CA,
which detects that the edges between nodes 2 and 0 (sig3) and nodes 1 and 0 are
activated. The extracted path between nodes 1,2 and 0 ({sig1 && sig3; sig3}) is
retrieved and is then kept since it is not a duplicate. The path sequence between
nodes 1 and 0 however, is rejected since it was already included.

A third vector {0,0} is then sent to the CA. The second path between nodes 1
and 0 (!sig1) is activated, whereas other edges remain dormant. Once again, the
Boolean expression is extracted and compared to previously included test sequences.
This entire process continues until all the test vectors are analyzed.

54 Chapter 3. Coverage Driven Assertion-based Test Generation

Table 3.3: Additional Coverage Relative to MyGen[2]

CPX ID Total Acceptance Failure Additional
Vectors Vectors Vectors Coverage

0 5 60% 40% 66.7%
1 6 66.6% 33.3% 50%
3 5 60% 40% 66.7%
4 8 25% 75% 300%
6 4 25% 75% 300%
7 6 16.6% 83.3% 500%
9 11 91.6% 8.3% 9.1%
10 8 37.5% 62.5% 166.7%
12 19 52.6% 47.3% 90%
13 12 83.3% 16.6% 20%
15 2 50% 50% 100%
17 33 36.3% 63.6% 175%
19 22 27.2% 72.7% 267%

3.5 Experimental Results and Analysis

Three sets of experiments were carried out with Airwolf-TG from a set of Complex
(CPX) properties that represent assertions used in industry [2]. Those properties are
suitable for testing our tool since the automata produced by MBAC contain more
paths and loops than the Primitive (PRIM) and Limits properties suite, also available
at the URL link in [2]. As the CPX properties were written in PSL, we translate them
into SVA and list them in Table 3.4. Some PSL assertions, however, do not have an
SVA equivalent.

For the first experiment, we compared the amount of coverage attained using the
Node coverage with the combined Edge/CRTC coverages on acceptance automata
alone. The aim of the second experiment was an analysis of the test sequences gener-
ated with acceptance and failure automata. For the third experiment, we investigated
if there were any differences in the number of unique test sequences generated between
MyGen and Airwolf-TG. Generation of the two types of automata was performed by
the MBAC tool, via the failure and acceptance modes.

In the first experiment, we generated test sequences with Airwolf-TG with em-
phasis on Node and Edge/CRTC coverages separately. Results are shown in Table
3.5. The automata coverage for each property was computed as a ratio between the
covered (or traversed) edges to the total number of outgoing edges in the automaton.

3.5. Experimental Results and Analysis 55

T
ab

le
3.
4:

SV
A

Pr
op

er
ty

Be
nc
hm

ar
ks

(fr
om

M
yG

en
[2
],
co
nv

er
te
d
fro

m
PS

L
to

SV
A
)

P
ro
p
ID

SV
A
ss
er
ti
on

C
PX

_
SV

A
_
0

pr
op

er
ty

(@
(p
os
ed
ge

cl
k)

(e
n_

lo
ad

&
&

en
_
ud

)
|→

(s
ig
1[
→

4]
#
#
0
!si
g2
))
;

C
PX

_
SV

A
_
1

pr
op

er
ty

(@
(p
os
ed
ge

cl
k)

!re
se
tg
|→

(
((
!(s

ig
1
&

sig
2)
)[*

1:
$]
)
|→

(e
n_

lo
ad

&
en
_
ud

))
);

C
PX

_
SV

A
_
3

pr
op

er
ty

(@
(p
os
ed
ge

cl
k)

(s
ig
1
→

sig
2)
|→

((
!si
g3

&
!si
g4
)[*

0:
$]

#
#
1
(s
ig
3
&

!si
g4
))
);

C
PX

_
SV

A
_
4

pr
op

er
ty

(@
(p
os
ed
ge

cl
k)

((
sig

1)
or

(s
ig
2
#
#
1
sig

3)
)
#
#
1
sig

4)
;

C
PX

_
SV

A
_
6

pr
op

er
ty

(@
(p
os
ed
ge

cl
k)

((
sig

2
#
#
1
sig

3)
[*
4]
)
#
#
1
sig

4)
;

C
PX

_
SV

A
_
7

pr
op

er
ty

(@
(p
os
ed
ge

cl
k)

((
(s
ig
1[
*4
])
#
#
1
(s
ig
2)
)[*

8]
)
#
#
1
((
(s
ig
3)
[*
0:
$]
)
#
#
1
((
sig

4
&
&

sig
5)
[*
2]
))
);

C
PX

_
SV

A
_
9

pr
op

er
ty

(@
(p
os
ed
ge

cl
k)

!re
se
tg
|→

(#
#
[1
:1
0]
(e
n_

lo
ad
|e

n_
ud

))
);

C
PX

_
SV

A
_
10

pr
op

er
ty

(@
(p
os
ed
ge

cl
k)

(s
ig
1
#
#
1
sig

2[
*0
:$
])
|→

(s
ig
3[
*2
]#

#
1
sig

4)
);

C
PX

_
SV

A
_
12

pr
op

er
ty

(@
(p
os
ed
ge

cl
k)

!re
se
tg
|→

(s
ig
1[
→

3:
10
]|
→

(e
n_

lo
ad
|e

n_
ud

))
);

C
PX

_
SV

A
_
13

pr
op

er
ty

(@
(p
os
ed
ge

cl
k)

!re
se
tg
|→

(s
ig
1[
→

3:
10
]#

#
0
(e
n_

lo
ad
|e

n_
ud

))
);

C
PX

_
SV

A
_
15

pr
op

er
ty

(@
(p
os
ed
ge

cl
k)

sig
1
|s

ig
2
|s

ig
3
|s

ig
4
|s

ig
5
|s

ig
6
|s

ig
7
|s

ig
8)
;

C
PX

_
SV

A
_
17

pr
op

er
ty

(@
(p
os
ed
ge

cl
k)

((
(s
ig
1[
*0
:$
]#

#
1
sig

2[
*0
:$
]#

#
1
sig

3[
*0
:$
])

in
te
rs
ec
t
(s
ig
4[
*5
:7
]))

#
#
0
sig

3[
*0
:$
]))

;
C
PX

_
SV

A
_
19

pr
op

er
ty

(@
(p
os
ed
ge

cl
k)

sig
1
|→

(
(!s

ig
5[
*1
:$
])
|→

((
(s
ig
2
#
#
1
sig

3)
[*
0:
$]
)
#
#
1
sig

4[
*3
]))

);

56 Chapter 3. Coverage Driven Assertion-based Test Generation

Table 3.5: Node vs. Edge Coverage of Assertions using Acceptance
Automata

CPX_ID
Node % Edge/CRTC %

Coverage Edge Coverage Edge
Vectors Coverage Vectors Coverage

0 1 71.4% 3 100%
1 1 40% 4 100%
3 1 50% 3 100%
4 1 75% 2 100%
6 1 100% 1 100%
7 1 100% 1 100%
9 1 52% 11 100%
10 1 66.6% 3 100%
12 1 55% 10 100%
13 1 55% 10 100%
15 1 100% 1 100%
17 6 78% 12 100%
19 1 50% 6 100%

The majority of properties generated a single test sequence that visits all the nodes
when using Node coverage; however, for some properties, the automata coverage is
significantly lower compared to using Edge/CRTC coverage, where 100% automata
coverage was achieved. These results show that Node coverage alone has the potential
of leaving out sequences that can also pass or fail a property.

In the second experiment, we generated test sequences using acceptance and failure
automata with Airwolf-TG. The set goal was to have 100% Edge/CRTC coverage,
which avoids test sequences generated vacuously. Table 3.6 shows the number of
vectors generated for each property when using acceptance and failure automata.
The column “Total Vectors” gives the number of vectors produced by our tool for
acceptance and failure automata combined. The “Min. Length” and “Max. Length”
columns gives the length of the smallest and largest vector in the test set respectively.
These numbers can be viewed as the number of clock cycles required to either pass
or fail the property.

By observing the number of sequences generated using failure automata, we see an
additional 3 to 6 vectors required to cause a property to fail. Additionally, properties
like CPX_SVA_12, 17, and 19 present a significant difference. This implies that when
considering only test patterns for verifying the proper behaviour of a design, there is
a possibility that an unexpected behaviour during its execution or simulation may be

3.5. Experimental Results and Analysis 57

Test VectorsControl signals

(CA Function)

Test bench
Inputs to Airwolf-TG

Automata Files

Input Files

Figure 3.13: Coverage analysis process

perceived as being correct, when in fact it may be an incorrect response.
Since the MyGen tool [2] produces vectors only for the acceptance automata, in

Table 3.3 we quantify the extra coverage obtained by our tool. The data is obtained by
taking the acceptance and failure vector sets and is normalized such that 100% denotes
both cases being taken into account. As shown in the table, a significant increase is
observed over using only acceptance automata for generating test sequences, which is
the case with the MyGen tool. For instance, the inclusion of failing states in examples
such as CPX_SVA_12, 17 and 19, can contribute 47.3% to 72.7% of the test suite.
Two properties such as CPX_SVA_9 and 13 are the only properties whose acceptance
vectors contribute 80% or more of the test suite. These results indicate that generating
acceptance test sequences alone may not contribute to a large portion of the coverage.
When adding the failure test sequences, as we do in Airwolf-TG, additional vectors
are available to try exploring the improper behaviour. In the case of design errors
violating the properties, the incorrect response would manifest itself at the outputs
upon applying these sequences.

In the third experiment, we used the Coverage Analyzer (CA) of Airwolf-TG for
comparing the unique test sequences generated with MyGen’s hardware generators.
Figure 3.13 depicts the entire process for this experiment. In the block diagram, the
MyGen HDL generator is assisted by a Linear Feedback Shift Register (LFSR) that
is used to generate pseudo-random test sequences. The entire entity is enclosed in a
testbench file that provides stimulus to the generator and LFSR in order to capture
the test vectors generated, which are then logged into a text file. The test bench
extracted 1000 test vectors for each property.

The results retrieved by the CA function has shown little difference in the number
of uniquely generated vectors betweenMyGen and Airwolf-TG. Both approaches have
attained full edge coverage. There was a difference in the number of unique vectors for
property CPX_17, in which MyGen generated 17 unique vectors whereas Airwolf-TG
produced 12 vectors. When examining the path sequences that MyGen created, some

58 Chapter 3. Coverage Driven Assertion-based Test Generation

of the paths included previously traversed edges that were redundant compared to
Airwolf-TG’s generated paths. The results presented show Airwolf-TG’s capabilities
in generating test sequences compactly with respectable test coverage.

3.6 Summary

Assertion-based test generation is a much needed endeavour given the complex veri-
fication tasks, both present and future. In this chapter, a set of coverage coals were
defined. These coverage goals were integrated into Airwolf-TG, a tool that generates
test sequences that explore the specifications given by assertions. We derived a map-
ping from the assertion coverage goals to the coverage of the NFAs created by MBAC
that represent the properties. We have presented methods that traverse the automata
in order to generate efficient test sequences (based on a specified coverage metric),
either from failure or acceptance automata. Our proposal is based on a hybrid search
algorithm that is catered towards non-deterministic finite automata for run-time as-
sertion checkers. Additionally, as automata may contain cycles that can create longer
test sequences or activate more paths, the proposed algorithm minimizes the amount
of loop traversals during the state space search.

With Airwolf-TG being able to efficiently traverse the automata, we compared
the test vectors generated when using acceptance or failure automata on the same
sets of properties. It was shown that some properties have generated additional test
vectors that can potentially increase the overall test coverage, while having a modest
increase in the test vector length. As a result, some of the benchmark assertions
gave an increase of up to 70% of additional coverage, compared to when using accep-
tance automata alone. The additional tests sequences can then be used to effectively
perform dynamic verification of digital designs.

3.6. Summary 59

T
ab

le
3.
6:

A
cc
ep
ta
nc
e
ve
rs
us

Fa
ili
ng

Se
qu

en
ce
s

A
cc
ep

ta
nc
e
A
ut
om

at
a

Fa
ilu

re
A
ut
om

at
a

T
ot
al

T
G

#
of

#
of

M
in
.

M
ax

.
T
G

#
of

#
of

M
in
.

M
ax

.
ID

V
ec
to
rs

G
en

er
at
ed

St
at
es

E
dg

es
Le

ng
th

Le
ng

th
G
en

er
at
ed

St
at
es

E
dg

es
Le

ng
th

Le
ng

th
C
PX

_
0

5
3

6
12

1
5

2
6

11
4

5
C
PX

_
1

6
4

3
7

1
2

2
3

5
1

2
C
PX

_
3

5
3

3
6

1
2

2
3

5
1

2
C
PX

_
4

8
2

4
5

2
3

6
5

10
1

3
C
PX

_
6

4
1

10
10

9
9

3
10

12
1

9
C
PX

_
7

6
1

43
44

42
42

5
44

50
1

44
C
PX

_
9

12
11

12
22

1
11

1
12

12
11

11
C
PX

_
10

8
3

5
8

1
4

5
5

10
1

4
C
PX

_
12

19
10

12
31

1
11

9
12

30
3

11
C
PX

_
13

12
10

12
31

1
11

2
12

23
10

11
C
PX

_
15

2
1

2
2

1
1

1
2

2
1

1
C
PX

_
17

33
12

14
26

5
5

21
19

39
1

7
C
PX

_
19

22
6

7
14

1
7

16
9

27
1

8

Chapter 4

Test Compaction Techniques for
Assertion-based Test Generation

Generating tests from NFA representations of assertions has the potential to create
a large amount of tests. As discussed in Section 2.1.2, assertions are capable of
defining complex behaviour that can be specified using temporal operators with large
repetitions. This can increase the size of the NFA, which can lead to a large amount
of tests for passing (or failing) an assertion.

This chapter presents Airwolf-CTG, a tool for generating compacted test sequences
from assertions. The developed test compactor also relies on the generated tests
from using NFA representations of assertions, which was presented with Airwolf-TG
from Chapter 3. The proposed test compaction approach relies on grouping and
exploiting similarities of multiple assertions. The similarities are used for finding
redundant sequences of events that can satisfy (or falsify) more than one assertion.
Additionally, the proposed test compactor can be integrated with another assertion-
based test generator that was developed by another research team. The goal is to
obtain a reduction in the size of the test set from assertions, thereby reducing the
overall verification time.

4.1 Motivation

Assertion-based verification is gaining widespread usage among pre-silicon verifica-
tion techniques as a powerful methodology for design verification [4]. Assertions are
statements that explicitly define the intended behaviour of the Design Under Test
(DUT). We use the fact that they can also serve as a blueprint for exploring the
defined events of signals for satisfying the property. This behaviour exploration in-

61

62 Chapter 4. Test Compaction Techniques for Assertion-based Test Generation

cludes both testing in pre-fabrication verification and the monitoring of signals in the
post-silicon phase [104]. Assertions, hence, provide the means of undertaking model-
based directed test generation, wherein the temporal behaviour of the assertions can
be used to drive the test generation process.

Using assertion-based directed test generation can potentially lead to large test
sets. An assertion can model complex sequences of events that the DUT must pro-
duce, in turn generating many test sequences that can satisfy that same property.
From our observations, combining multiple assertions with a certain level of similar-
ity could help to produce overlapping sequences of events, which can then be shared.
Exploiting these similar overlapping sequences can thus potentially reduce the test
set size, which leads to a reduction in the overall verification time.

In this chapter, we present a novel method for generating a compacted set of
test sequences by grouping similar assertions. Our approach assumes that all the
Boolean signal conditions of every assertion references the primary inputs to the
DUT. Each test vector applied to the DUT can thus be used to explore the events in
multiple assertions concurrently. To assess our test compaction approach, we intro-
duce the Airwolf-CTG tool (referred as CTG hereafter), which utilizes the standard
non-deterministic finite automata approach [6] for generating test sequences. Our
tool incorporates a set of proposed clustering methods that effectively group asser-
tions with related sequences and signals. Then, our CTG tool employs two kinds of
test compaction methods: Test Path Overlapping (TPO) and Parallel-Path Removal
(PPR). We show that concurrently generating tests from multiple assertions can sig-
nificantly reduce the test set size by as much as 98% when using PPR in some of
the benchmarks. Additionally, our test compaction approach is also applicable for
generating tests that cause an assertion failure, which further reduces the number of
tests by as much as 86% when using PPR. The contributions that are made in this
chapter are as follows:

• We introduce a set of clustering methods that groups assertions with common
signals and sequences;
• We develop two test compaction algorithms for generating a reduced set of

passing and failing test sequences for a set of assertions.

The contents of this chapter are organized as follows: 1 Section 4.2 presents our
proposed test compaction methodology from assertions. From there, Section 4.3 shows

1The contents of this chapter is based on the article entitled Test Compaction Techniques for
Assertion-based Test Generation [11] and the paper Assertion Clustering for Compacted Test Se-
quence Generation [12]

4.2. Proposed Compacted Test Generation Methodology 63

1

sig1 sig2 sig3

sig2 sig3 sig4

2

3

4

sig1 sig2 sig3 sig4 sig1 sig2 sig3

sig1 sig2 sig3

sig2 sig3 sig4

1

2

3

4

SAT
SAT

sig5 sig6
Eliminated

Test Path

1: sig1 |=> sig2[*1:2] ##1 sig3 ##1 sig4;

2: sig2 |=> sig3 ##1 sig4;

3: sig1 |=> sig2 ##1 sig3;

4: sig5 |=> sig6[*1:2] ##1 sig4

5: sig1 && !sig4 |=> sig1;

6: sig2 |=> sig3;

...

2 3

Overlapped

Test Path

1

1

4
6 5

1

2 3

2 31

2

3
1

Each i in k

gets converted to NFA
A1

1 1

Test Path

Extraction

Figure 4.1: Proposed Test Compaction Methodology

our assertion clustering technique where we attempt to exploit as much similarities
within different portions of the assertion itself. The test compaction techniques are
presented in Section 4.4.

4.2 Proposed Compacted Test Generation Method-
ology

Figure 4.1 outlines the overview of our test compaction methodology. The first step
is to divide the set of n assertions in A (the set of assertions) by using one of the four
types of clustering methods, namely antecedent, consequent, combined antecedent and

64 Chapter 4. Test Compaction Techniques for Assertion-based Test Generation

consequent and assertion signal clustering. This generates a set of clusters C where
each cluster Ak | k = 0, 1, ...m holds a set of similar assertions.

Each cluster is sent to MBAC so that each assertion φi ∈ Ak can be transformed
into its NFA representation, A . As defined in Section 2.1.3, we use the acceptance
automata representation of assertions for generating compacted test sequences that
exercises the correct behaviour of the design. Our test compaction methodology is
also applicable for failure automata when generating compacted tests that explores
the incorrect behaviour of the design.

After NFA generation, the set of clusters C is then subjected to test path extrac-
tion using TG. The size of the NFA representation of assertions depends on temporal
operators and sequences that were used in the assertion. This can imply that the gen-
erated set of test paths can be large. Each NFA representation of the assertion (Aφi

)
is sent to TG, which uses a heuristic that is based on a set of NFA coverage metrics
[7] for generating and selecting test paths that are deemed significant. The coverage
metrics guide TG in generating test paths that incorporates all transition clauses at
least once while avoiding redundancies of previously included clauses, thereby creat-
ing a non-vacuous pass (or fail) of an assertion. TG stores the set of test paths into
Π representing all the test paths for every assertion in cluster Ak.

Finally, each cluster of test paths undergoes compacted test generation which uses
one of the proposed techniques, namely Test Path Overlapping (TPO) and Parallel-
Path Removal (PPR), for generating a minimal number of tests for a similar set
of assertions. The assertion clustering and compacted test generation are the main
contributions in this chapter and will be thoroughly discussed in the subsequent
sections.

4.3 Assertion Clustering

Assertion clustering is the process of dividing the set of assertions into disjoint
groups that have a certain degree of similar signals and sequences. Clustering of
similar assertions has been thoroughly studied with the intent of reducing the area
overhead and power consumption when hardware assertions are grouped together.
We incorporate assertion clustering into our framework so that we can generate a
compacted set of tests for those grouped hardware assertion checkers, with the goal
of reducing the overall verification time. Assertion clustering is performed on the
assertions themselves where our algorithm analyzes the defined signals and sequences.
On the other hand, performing clustering at the test path level would entail high costs

4.3. Assertion Clustering 65

Algorithm 4.1 Assertion Clustering
FUNCTION: clustering
Input: A Set of Assertions (A)
Output: A Set of Clusters (C)

Step 1. Generate Assertion Map
for each (φi, φj) ∈ A | i 6= j do
wi→j = signal_sim(φi, φj, cluster_mode)
if wi→j > τ then
Create edge ei→j for (φi, φj) and include wi→j

Step 2. Compute σ for each φi
for each φi ∈ A do
Compute σi of assertion φi

Sort set A based on descending σi value

Step 3. Cluster the similar assertions
k = 1 // Initialize Cluster ID
while A 6= ∅ do
Ak = Group φi and its adjacent assertions
Remove φi and its adjacent assertions from A
C ← C∪Ak, k = k + 1

return (C)

in computation time because every test path and their associated transition clauses
must be analyzed when the size of the test paths and the number of referenced signals
in each transition clause is large.

We assume that the assertions are in the form of antecedent |=> consequent
which was defined from Section 2.1.2. This is a typical form that is usually seen in
the vast majority of industry-based designs. Our goal is to generate a compacted set
of test sequences that is tailored towards industry written assertions. We exploit as
much similarity as possible within a cluster so that our compacted test generation
algorithms are able to identify redundant test paths, thereby reducing the overall size
of the test set.

4.3.1 Assertion Map and Similarity Weight

Assertion clustering is modelled by a weighted graph called an Assertion Map, that
is generated during the first step of Algorithm 4.1. An Assertion Map AM(A,E) is
a directed graph containing a set of vertices A and a set of edges E. The set variable

66 Chapter 4. Test Compaction Techniques for Assertion-based Test Generation

A contains n assertions that are used for generating test sequences :

A = {φ1, φ2, φ3, ..., φn}

where φ is a given assertion. This assertion set is the input to our clustering algorithm.
The set E of directed edges embodies the similarity between distinct pairs of

assertions. Each directed edge ei→j connects assertion φi to assertion φj in the AM
provided they share a certain similarity. Each edge is thus labelled with a similarity
weight wi→j. Any pair of nodes (φi, φj), where (i, j) ≤ n and i 6= j, has an edge ei→j
if and only if their computed similarity exceeds an overlap threshold value τ . The set
of edges is therefore as follows :

E = {ei→j} | wi→j > τ, i 6= j (4.1)

The threshold value τ is used in the clustering algorithms to generate clusters with
that minimum amount of similarity.

In computing the similarity weight for any pair of assertions, the clustering al-
gorithm first determines the number of similar signals between assertions φi and φj
which is computed by the signal_sim function. The set of similar signals is defined as
Si↔j, and its size denoted as, |Si↔j|. The exact criteria for determining which signals
are deemed to be similar depends on the clustering mode employed (cluster_mode
in the algorithm). The next subsection presents multiple ways in which such criteria
can be implemented. Once a clustering mode is selected, the similarity weights are
computed as follows :

wi→j = |Si↔j|
|Sj|

(4.2)

which is the ratio between the number of similar signals between a pair of assertions φi
and φj to the total number of signals defined in φj. It is important to note that both
wi→j and τ have values between 0 and 1. For example, if wi→j = 1 for the antecedent
clustering mode, this implies that the signals defined in assertion φi match all the
signals defined in φj.

After computing the similarities of all the assertions, the clustering algorithm then
determines the sum of all edge weights σi for each node i (i.e. assertion φi) as follows :

σi =
∑
i 6=j

wi→j | wi→j > τ (4.3)

This is performed in Step 2 of the algorithm.

4.3. Assertion Clustering 67

3

3 1 sig3

2

5

3

1

3 1

21

4

3 4 sig2

3 2 sig3

3 2

3 4

Figure 4.2: Antecedent Clustering. In the left cluster, the computed
similarity weights are shown in the edges, and the sum of weights for
φ3 is 2.5 (σ3)

Thereafter, the node with the largest weight summation will cluster its adjacent
nodes (similar assertions) together, thereby removing those nodes from further clus-
tering (shown in Step 3). The size of each cluster can vary between having as many
individual clusters with a single assertion to a single cluster with the entire asser-
tion set. These clusters of assertions are then used by our compacted test generation
algorithm.

4.3.2 Clustering Modes

In this section, we describe our proposed clustering methods namely: antecedent
clustering, consequent clustering, combined antecedent and consequent clustering and
assertion signal clustering. The paragraphs that follow discuss how each clustering
mode computes the similarity weights of the assertions and how they affect the clusters
that are generated.

Antecedent Clustering involves searching for similar signals in the left part of
the temporal implication operator |=>. For example, consider the set of assertions
defined below :

φ1: sig1 ##1 sig3 |=> sig2 && sig4 ##1 sig5

φ2: sig3 |=> sig2 ##1 sig5;

φ3: sig2 && sig3 |=> sig6 && sig4 ##1 !sig7;

φ4: sig2 |=> sig3 || sig6;

φ5: sig5 && sig3 ##1 sig4 |=> sig1;

The clustering algorithm analyzes each assertion and determines if the number of

68 Chapter 4. Test Compaction Techniques for Assertion-based Test Generation

1 2 sig3

5

3

1

21

1 2

3 4 sig2

2

43

3 4

1 3

Figure 4.3: Consequent Clustering

signals defined in the antecedent portion is able to exceed the required overlapping
threshold on signals defined in other assertions. If we define a threshold value of τ
= 0.5 for antecedent clustering, we see that the assertion φ3 is able to overlap all
of the signals defined in assertions φ2 and φ4. This is due to the signals sig3 and
sig2 both overlapping the signals in the antecedent in φ2 and φ4, respectively. Thus,
the set of similar signals between these assertions with respect to assertion φ3 are
S3↔2 = {sig3} and S3↔4 = {sig2}. Using equation (4.2) yields a similarity weight
of 1.0 for w3→2 and w3→4. Similarly, the signals in the antecedent of assertion φ3

also overlaps assertion φ1, thereby having a similar signal set S3↔1 = {sig3}. Then,
applying equation (4.2) yields a similarity weight of w3→1 = 0.5. Assertion φ5, has
the least number of signals that are similar with other assertions due to the fact that
signals sig4 and sig5 were not defined in other assertions, thus achieving a similarity
weight of w3→5 = 0.33 which is below the required threshold value. After completing
the weight similarity computations, the clustering algorithm computes the summation
of each node’s surrounding similarity weights using equation (4.3). As depicted in
the figure, assertion φ3 has the largest weight total σ3 = 2.5, while assertion φ5 had
the least similarity. Thus, the clustering algorithm generates two clusters which are
A1 = {φ1, φ2, φ3, φ4} and A2 = {φ5}.

Consequent Clustering attempts to group assertions that have similar signals
defined in the right part of the implication operator. There are cases in which as-
sertions can have overlapping signals and sequences in the consequent, and grouping
them can potentially benefit other assertions.

The clustering algorithm begins by analyzing the signals in all of the assertions’
consequent portions. Signals sig2, sig4 and sig5 from the consequent of assertion
φ1 overlap all the defined signals in the consequent of φ2, thus creating a set of
similar signals S1↔2 = {sig2, sig5} and a similarity weight of w1→2 = 1.0. The
consequent portion of assertion φ3 overlaps half of the signals defined in the consequent
of assertion φ4. Thereby having the set of similar signals and similarity weight S3↔4

= {sig3} and w3→4 = 0.5, respectively. Assertion φ5 did not have any similar signals

4.3. Assertion Clustering 69

with other assertions, thus it is not connected to other nodes in the AM . When
summing the similarity weights of all the nodes (assertions), the clustering algorithm
generates three clusters which are A1 = {φ1, φ2}, A2 = {φ3,φ4} and A3 = {φ5}, as
shown in Figure 4.3.

 5

3

 2

2

 4 3

 3 = 1.25

w3 2 = 0.5 w3 4 = 0.75

 1

1

Figure 4.4: Antecedent and Consequent Clustering

Combined Antecedent and Consequent Clustering takes the weight values
w that were computed using antecedent and consequent clustering modes in each
assertion and computes the average, w. This average value determines the overall
similarity of other assertions in both the antecedent and the consequent portion.
From the same assertion set with the unchanged threshold value of τ , the clustering
algorithm computes the average similarity weights for all the assertions in the AM .
Assertion φ3 has an average similarity weight ranging between assertions φ2 and φ4,
which are w3→2 = 0.5 and w3→4 = 0.75, respectively. Assertion φ1 has overlapping
signals defined in the antecedent and consequent of assertion φ2 and the average
similarity weight is w1→2 = 1.0. The same can also be said for assertion φ5, which
has a computed average similarity weight with φ2 of w5→2 = 0.5.

After the average similarity weights are computed between all the assertions, as-
sertion φ3 has achieved the largest weight sum of σ3 = 1.25 with assertions φ2 and
φ4. Thus, three clusters are generated: A1 = {φ1}, A2 = {φ2, φ3,φ4} and A3 = {φ5},
as depicted in Figure 4.4.

Assertion Signal Clustering takes each assertion and computes the similarity
of the uniquely defined signals as a whole. For example, if we attempt to compute the
similarity of assertions φ1 and φ2, we determine the signal set of φ1 as (sig1, sig2,
sig3, sig4, sig5) and φ2 as (sig2, sig3, sig5). We see that the signals defined in
φ1 overlap all of the uniquely defined signals in φ2 and φ5. Thus, the similar signal
set becomes S1↔2 = {sig2, sig3, sig5} and S1↔5 = {sig1, sig2, sig3, sig4}. The
similarity weights in w1→2 and w1→5 are both equal to 1.0.

Similarities can also be found in assertions φ3 and φ4 with respect to assertion φ1.
The set of similar signals between these assertions then become S1↔3 = {sig2, sig3,
sig4 } and S1↔4 = {sig2, sig3}, with their computed similarity weights being w1→3

70 Chapter 4. Test Compaction Techniques for Assertion-based Test Generation

 2 3

w1
4
= 0.67

1

 5 4

 1

S1 2 = {sig3,

sig2, sig5}

S1 5 = {sig1,

sig2, sig3, sig4}

S1 4 =
{sig2, sig3}

S1 3 = {sig2,

sig3, sig4}

w1
3
= 0.6w

1 2 = 1.0

w
1 5 = 1.0

 1 = 3.27

Figure 4.5: Assertion Signal Clustering

= 0.6 and w1→4 = 0.67, respectively. Assertion φ1 therefore has a weight similarity
total of σ1 = 3.27, which then produces the cluster A1 = {φ1, φ2, φ3, φ4, φ5}.

The proposed clustering methods attempts to group assertions with various signals
defined in either the antecedent or the consequent parts. Depending on the nature
of the assertions, some of the clustering methods can produce optimal clusters with
significant overlap. In the next section, we discuss our test compaction approaches.

4.4 Compacted Test Sequence Generation

The clusters of assertions generated from our clustering algorithm are used for gen-
erating a compacted set of test sequences. Each cluster is utilized by one of our
two compacted test sequence generation algorithms, namely Test Path Overlapping
(TPO) and Parallel-Path Removal (PPR). Both compaction algorithms maintain the
order of events that are defined in every test path, πi, which creates either an as-
sertion pass or fail. Additionally, they ensure that the value of a Boolean signal
does not conflict with others during test compaction [56]. Furthermore, the PPR
algorithm takes advantage of the unspecified signal conditions that is similar to the
approach employed in [55]. This allows the combining of multiple transition clauses
to form a single test, thereby having multiple test paths reaching to their final states.
These concepts were originally developed for compacting manufacturing tests; how-
ever, we apply them for compacting tests for functional verification. In this section,
we describe our proposed compacted test sequence generation algorithms where each
approach is discussed in detail followed by an illustrative example.

4.4. Compacted Test Sequence Generation 71

Algorithm 4.2 Test Path Overlapping
FUNCTION: TPO
Input: A Cluster of Similar Assertions (Ak)
Output: Test Set (T ∗)

{Phase 1: Test Path Extraction}
for each φi ∈ Ak do
1. Aφi

← MBAC(φi)
2. Π ← Π ∪ TGΠ(Aφi

)
3. Ψ ← Ψ ∪ TGΨ(Aφi

)

{Phase 2: Test Compaction using TPO}
4. Sort(Π) by descending lengths

while Π 6= ∅ do
πbase ← largest (|π| ∈ Π), Remove πbase from Π
5. Ts ← SAT(πbase)

{Redundant Test Path Removal}
for each πi ∈ Π do
if Ts evaluates all clauses in Ψπi

to true then
6. Remove πi from Π

7. T ∗ ← T ∗ ∪ Ts

return (T ∗)

4.4.1 Test Path Overlapping

Algorithm 4.2 shows the proposed Test Path Overlapping approach which is based
on the SAT-solution sharing concept from [64]. The novelty of our approach is to
generate test sequences by running a satisfiability (SAT) solver on a set of transition
clauses Ψ within a test path πi (denoted as Ψπi

). We use SAT-solution sharing for
identifying and removing redundant test paths within a cluster of similar assertions,
thereby potentially reducing the overall size of the test set. The TPO algorithm takes
in a cluster of similar assertions, Ak, and is subjected to two phases. The first phase
is test path extraction and their collection of transition clauses from each assertion.
The second phase performs the compacted test sequence generation where the Boolean
sequences are generated by a SAT solver, followed by the removal of redundant test
paths. Following these two phases, the algorithm returns a set of compacted tests, T ∗,
which represents the test sequences used for satisfying the similar set of assertions.

72 Chapter 4. Test Compaction Techniques for Assertion-based Test Generation

Phase 1 begins by transforming each assertion, φi ∈ Ak, into its NFA representa-
tion Aφi

using MBAC. In the second step the test paths from Aφi
are extracted by

the function TGΠ and stored into the set variable Π. Each test path πi contains a
sequence of transition clauses, Ψπi

, which represent the Boolean conditions required
for reaching a final state. In step 3 each test path’s transition clauses are extracted
by the function TGΨ and stored into the set variable Ψ.

Phase 2 of the algorithm uses the extracted test paths and transition clauses from
phase 1 for generating compacted test sequences for a cluster of similar assertions.
The second phase begins by sorting all the test paths in descending order according
to their lengths (|Ψπi

|). The intention is to use the longest test path as the base path,
πbase, in order to perform SAT solving on a potentially large set of transition clauses,
which can then be shared with other test paths within the cluster. After finding the
longest path, it is then removed from the test path set, Π, so that it will not be
considered for further analysis.

The base test path gets sent to the SAT solver which determines the appropriate
assignments of Boolean logic values on the set of transition clauses, Ψπbase

. Results
obtained are then stored into the set variable, Ts. The sequence of Boolean logic
values generated by SAT become the test sequences that are used for satisfying an
assertion. It is important to note that the ordering of these test sequences must be
respected since they were generated based on the order of appearance of the transition
clauses of a test path. This sequence ordering causes the test path to enter its final
state, thereby creating a successful pass through the assertion.

After generating test sequences from the base path, the algorithm attempts to find
redundant test paths in Π. To perform this step, a search is performed by analyzing
each of the test paths’ set of transition clauses, Ψπi

. The algorithm then uses the
current base path’s test sequences stored in Ts and determines if the ordering of
those tests can continuously evaluate the entire set of transition clauses in Ψπi

to
true. This is performed by taking the assigned Boolean logic values of each sequence
and determining if the clause evaluates to either true or false. If the entire set of
transition clauses evaluates to true, then test path πi is deemed redundant since it
can enter its final state based on the tests generated from the base path, πbase. As a
result, the algorithm removes the redundant test path which can potentially reduce
the overall number of tests. Otherwise, the test paths remains in the set and will be
analyzed in the next iteration. Finally, the current test sequences are stored into T ∗.
The algorithm repeats these steps until there are no test paths remaining for analysis
and test generation. When this occurs, the algorithm proceeds to the next cluster of

4.4. Compacted Test Sequence Generation 73

sig1 sig3
sig2 &&

sig4 sig5

sig2 &&

sig3

sig3

sig6 &&

sig4 !sig7

sig2 sig5

sig5 &&

sig3 sig4

 1

 2

 3

 4

SAT

t1 {1000000}

t2 {0010000}

t3 {0101000}

t4 {0000100}

Ts overlaps 3

sig1

sig2 &&

sig3

sig6 &&

sig4 !sig7

sig5 &&

sig3 sig4

 2

 4

sig1

sig5 &&

sig3 sig4
 4

sig1

t5 {0110000}

t6 {0001010}

t7 {0000000}

t8 {0010100}

t9 {0001000}

t10 {1000000}

SAT

First

Iteration

Second

Iteration

Third

Iteration

 base

 base

 base

SAT

Remove 1 & 3

Remove 2

Ts from 1

Ts from 2

Ts from 4

Remove 4

Figure 4.6: Test Path Overlapping Example

assertions.

4.4.2 TPO Example

Figure 4.6 shows a sample three iteration run of our TPO algorithm. Each bit in the
test represents {sig1,sig2,sig3,sig4,sig5,sig6,sig7}. There are four sample test paths
which were generated from a cluster of assertions in A1 when using the antecedent
signal clustering mode. The test paths were sorted in descending order of length.

The first iteration shows that test path π1 is the current base path which is
enclosed inside the dashed box as seen in the figure. The base path contains four
transition clauses that describe the required conditions for reaching its final state.
Each transition clause ψi ∈ Ψπbase

is converted into its DIMACS representation that
can be used for SAT solving. Since there are four transition clauses inside the current
base test path, then four test sequences will be generated and stored into Ts.

Each test sequence in Ts contains the appropriate Boolean logic values that are
assigned to each signal. The signals defined for each test sequence within this cluster

74 Chapter 4. Test Compaction Techniques for Assertion-based Test Generation

are {sig1, sig2, sig3, sig4, sig5, sig6 and sig7}. For instance, the third transition
clause of the base path is sig2 && sig4 which requires signals sig2 and sig4 to be
at logic-1. This causes sig2 and sig4 to have a value of a logic-1 as depicted in
t3. Signals that were not included in the transition clause are treated as don’t care
values; however, we assign them to logic-0 since we only consider the Boolean values
of the signals defined inside a transition clause.

The test sequences stored in Ts are then used for identifying redundant test paths
in Π. This is done by determining if the ordering of current test sequences generated
from πbase can cause other test paths in the set to enter into their final states. For
example, in test path π2, the first transition clause is ψ1 =sig2 && sig3, which
requires a value of logic-1 under the signals sig2 and sig3. Since there was no test in
Ts that satisfies this condition, then this first clause of π2 is evaluates to false, causing
the algorithm to analyze the next test path.

Test path π3 was able to reach its final state. This is due to the fact that the test
sequence from t2 to t4 causes the entire set of transition clauses in Ψπ3 to evaluate
to true continuously. This implies that the test sequences generated from the current
base path (π1) subsumes the test path of π3. Thus, π3 is deemed redundant and
consequently removed from Π, thereby reducing the number of tests generated. This
is the key principle behind the TPO test compaction approach.

Test path π4 was not able to evaluate all of its transition clauses to true con-
tinuously. The test set from Ts did not have a test containing a logic-1 under the
specified signals. Thus, this test path remains in Π. At the end of the first iteration,
the algorithm will add Ts to T ∗. Then, it removes test paths π1 and π3 from Π.

The second iteration begins by selecting test path π2 as the base path. Performing
SAT-solving on the set of transition clauses Ψπ2 generates three test sequences that
are listed as t5, t6, t7 in Ts. Then, the algorithm will attempt to identify any redundant
test paths based on the sequences generated from π2; however, the tests in Ts were
unable to cause the transition clauses in π4 to continuously evaluate to true. Since
there are no remaining test paths to analyze at this current iteration, the algorithm
will add Ts to T ∗ and remove test path π2.

At the third iteration, the remaining test path π4 is selected as the base path for
test generation. Finally, after π4 is removed, there are no more test paths and the
test compaction is finished. Thus, a total of 10 test sequences were generated and
stored in T ∗.

4.4. Compacted Test Sequence Generation 75

Algorithm 4.3 Parallel-Path Removal
FUNCTION: PPR
Input: A Cluster of Similar Assertions (Ak)
Output: Test Set (T ∗)

{Phase 1: Test Path Extraction}

{Phase 2: Test Compaction using PPR}
Sort Π by descending lengths

while Π 6= ∅ do
nt ← largest |πi| ∈ Π
Πr ← 0
for j = 0→ nt do

Ψs ← ∅
for πi ∈ Π do
if add_clause(Ψs, ψj) = false then

Πr ← πi
if ψj ∈ Ψπi

| (s, ψj, d), d ∈ F then
Remove πi from Π

T ∗ ← T ∗ ∪ SAT(Ψs)

if Πr 6= ∅ then
Π ← Πr

return (T ∗)

4.4.3 Parallel-Path Removal

The second proposed algorithm, namely Parallel-Path Removal (PPR), generates
compacted test sequences by analyzing transition clauses from every test path con-
currently. This test compaction algorithm is based on the test set relaxation concept
that assigns a Boolean value to the don’t care bits of a test in order to increase the
number of detectable faults. We use this concept with our compaction algorithm so
that a generated test can cause multiple test paths to enter into either their next or
final states, thereby potentially passing multiple assertions.

Algorithm 4.3 shows our proposed PPR compaction algorithm. The first phase of
the algorithm begins by extracting a set of test paths and the associated transition
clauses from a set of similar assertions, Ak. The tasks performed in this first phase
are the same as those described in Algorithm 4.2.

The second phase of the PPR algorithm begins by finding the longest test path

76 Chapter 4. Test Compaction Techniques for Assertion-based Test Generation

length and stores that value into the variable, nt. This compaction approach employs
a sweep of transition clauses of all the test paths in the set Π. The purpose is to
analyze each transition clause starting from the initial state (j = 0) to the final state
of every test path (πi | i = 0, 1, ..., |Π|). This ensures that every test path of length
less than nt gets analyzed and used for test generation.

Set variable Ψs is used to store the jth transition clauses from every test path.
We define the function add_clause which takes as input the set of transition clauses
Ψs and a transition clause ψj from a test path πi. It is important to note that the
stored transition clauses must have a single logic value assignment for every signal
defined. For example, if a transition clause j from test path πa is ψj = (b1 && b2)
and in test path πb is ψj = (!b1), then these clauses are unable to have a single logic
value assignment for b1. If the add_clause function returns a false value, this implies
that the transition clause ψj at test path πi cannot be added into Ψs. The algorithm
removes πi from the current iteration and gets stored into set variable Πr, which
stores the test paths for analysis at the next test compaction iteration.

After completing the analysis of all test paths at the jth transition clause, then
the next step is to determine if ψj ∈ Ψπi

causes a test path πi to enter into its final
state. If this condition is true, then this implies that all the clauses from Ψπi

were
successfully used for test generation, thereby causing the algorithm to remove test
path πi from further analysis. This is the crux of the PPR algorithm.

The transition clauses in Ψs get sent to SAT for determining the appropriate
Boolean value assignments of every defined signal. Results obtained from SAT(Ψs)
is stored into T ∗. The analysis continues to the next transition clause ψj+1 and ends
when j reaches to value nt (longest test path).

After all the paths have been analyzed in Π, the algorithm determines if there are
any remaining test paths in the set variable Πr. PPR continues its test compaction
approach if Πr has remaining test paths, otherwise execution ends and then returns
a set of compacted tests, T ∗.

4.4.4 PPR Example

Figure 4.7 is an example run for using PPR compaction on the four test paths. The set
of test paths Π are sorted in descending order according to the number of transition
clauses. As depicted in the figure, test path π1 is deemed to be the longest in this
set. Thus, the value of the variable nt is 4.

4.4. Compacted Test Sequence Generation 77

sig1 sig3
sig2 &&

sig4 sig5

sig2 &&

sig3

sig3

sig6 &&

sig4 !sig7

sig2 sig5

sig5 &&

sig3 sig4

 1

 2

 3

 4

sig1

!s for
j = 0

!s for
j = 1

!s for
j = 2

!s for
j = 3

nt

SAT

(!s)

SAT

(!s)

SAT

(!s)

SAT

(!s)

Remove

Remove

Remove

Remove

t1
{1110100}

t2
{0111010}

t3
{1101100}

t4
{0000100}T*

Figure 4.7: Parallel Path Removal Example

PPR begins by analyzing the first transition clause, j = 0, from all of the test
paths in Π. The first transition clause in test path π1 is ψ0 = sig1, and since the set
variable Ψs is empty, ψ0 from π1 is added to Ψs. Next, the first transition clause in π2

is ψ0 = sig2 && sig3, which gets sent along with the set variable Ψs to the function
add_clause, which determines if the defined Boolean variables have only one logic
value assignment. Since there are no shared variables between these clauses, then the
transition clause is added to Ψs.

Next, the first transition clause from the third test path is passed to add_clause
for analysis. The signal sig3 is already included in Ψs, therefore requiring a Boolean
value of logic-1. For this test path, the Boolean conditions defined in ψ0 require
sig3 to be at logic-1 which satisfies the previous condition from the second test path.
Thus, the transition clause sig3 gets added to Ψs. This reasoning is also applied to
ψ0 from the fourth test path, where the Boolean condition requires signal sig3 to be
at logic-1. Since this satisfies the other previous Boolean conditions from other test
paths, the transition clause sig5 && sig3 gets added to Ψs.

At the end of every function call to add_clause, the PPR algorithm determines if

78 Chapter 4. Test Compaction Techniques for Assertion-based Test Generation

the current test path πi has reached the final state. Since every test path has entered
its next state, which does not belong to the set of final states, then those test paths
remain for further analysis.

The algorithm now passes the set variable Ψs, which contains all the jth transition
clauses (j = 0 for this sample run) that gets sent to SAT for generating a single test ti.
Each test contains the appropriate logic values that causes multiple test paths within
a cluster of assertions to enter into its next state concurrently. This is the crux behind
the PPR algorithm for compacting test sequences from assertions. Results retrieved
from SAT are stored into T ∗. The algorithm continues to the next ψj+1 transition
clause and finishes until j reaches the value of largest test path length, nt.

The test sequences generated with the PPR algorithm are different from those
using the TPO scheme. In the PPR algorithm, a test is generated at the end of
analyzing the jth transition clause from every test path. Each test contains Boolean
value assignments that causes multiple test paths to enter into their next or final
states. The TPO algorithm generates tests from a single test path. Those same tests
sequences are used to find redundant test paths within the same set of assertions,
although not as effectively as analyzing all the test paths concurrently during the test
generation phase. For instance, t1 = {1110100} has signals sig1, sig2, sig3 and
sig5 assigned to logic-1. These logic value assignments cause the entire set of test
paths to enter into the next state. Similarly, test t2 = {0111010} has signals sig2,
sig3, sig4 and sig6 assigned to logic-1 concurrently. Thus, they also cause all the
test paths to enter into the next state. Finally, in test t3 = {1101100} contains the
appropriate Boolean values for causing test paths π2 to π4 to enter into their final
state. Thus, three test sequences were required for creating a passing result of three
assertions within the same cluster.

The above example shows that the PPR algorithm was able to satisfy a similar
set of assertions with only four test sequences. In comparison, the TPO compaction
scheme requires 10 test sequences in order to satisfy this same set of assertions. This
shows a significant improvement in terms of the number of tests generated when using
the PPR compaction method.

4.5 Experimental Results

To verify the effectiveness of our proposed compacted test generation methodology, we
have considered two case studies, each comprised of five different sets of assertions.
In the first case study, we evaluate our CTG tool for compacting good (passing)

4.5. Experimental Results 79

and failing test sequences by using the four proposed clustering modes and the two
compaction approaches. Our second case study is to use MyGen [2] for generating
and compacting passing and failing test sequences. The work of Oddos et al. is
closely related to ours as they also use NFA representations of assertions for producing
tests. We use these tests for determining which test paths in Π are overlapped, thus
contributing to a reduction in the test set size, |T ∗|. The goal of both studies is to
gauge the amount of compaction that was achieved compared to no test compaction
applied with both tools.

Five sets of assertions were used in each case study. Each set contains assertions
that were used to verify industry standard protocols and interfaces. The first set is
ARM’s AMBA 3 High Performance Bus (AXI) [9] which contains a suite of assertions
for verifying the timing requirements of the design’s control signals when it is using
the AXI interface. The next two sets are synchronous (FF-SC) and asynchronous
(FF-GC) FIFO assertions that are provided by PMC-Sierra. These assertions were
written in-house for verifying the correct functionality of the two FIFO controllers
used for interfacing with other circuits. Lastly, we used two sets of assertions that are
available from [105], namely the Peripheral Component Interconnect (PCI) protocol
and the SDRAM controller, which are both used to verify the correctness of the
control signals’ timing requirements. Since these assertions were written for industry
standard protocols, it would be beneficial to attempt to compact the generated tests,
thereby accelerating the conformance testing of the design.

4.5.1 Compacting Good and Failing Test Sequences from TG

In the first case study, we performed our experiments with our clustering algorithm,
while varying the overlap ratios between 0.1 ≤ τ ≤ 0.9 using 0.1 increments. The
purpose is to determine the value of τ that achieves an optimal configuration of asser-
tion clusters with a certain amount of similarity. From there, the clustered assertions
are then used with our TPO and PPR techniques, which attempt to generate the
least number of tests that satisfy (or falsify) the same set of assertions. We also gen-
erated test sequences without any compaction using TG. Our comparison is based
on the number of test sequences generated from the three approaches (uncompacted
and the two compaction algorithms) and the measured run-time in seconds. We used
MiniSAT [10] as the SAT solver. These experiments were carried out on a Linux PC
using a 2.4GHz 64-bit Dual-Core processor with 8GB RAM.

Table 4.1 lists the assertion benchmarks that were used in our case studies. The

80 Chapter 4. Test Compaction Techniques for Assertion-based Test Generation

Table 4.1: Assertion Benchmarks, Test Paths and Uncompacted Tests

Bench. |A| |Πp| |Πf |
TG MyGen

|Tp| |Tf | |Tp| |Tf |
AXI 103 317 100 1080 221 374 100

FF-GC 37 93 41 145 70 61 41
FF-SC 80 159 80 238 159 192 156

PCI 39 586 373 13689 4639 4014 1320
SDRAM 30 472 70 20949 659 4980 569

first column (Bench.) is the name of the benchmark and the number of assertions
(|A|) is shown in the second column. The third and fourth columns lists the number
of test paths that were extracted from the acceptance (passing) (|Πg|) and failure
(|Πf |) automata respectively. The number of tests generated from TG and MyGen
are shown in columns 5-6 and 7-8 respectively, each consisting of the passing (|Tp|)
and failing (|Tf |) test sets.

The set of extracted test paths were used by TG for generating the uncompacted
tests whereas MyGen relies on a pseudorandom number generator for exerting the
defined signals in the assertion. As seen in the table, the uncompacted test set size
for TG is visibly larger than MyGen. MyGen considers only traversing through all
the states within the automata, while TG uses a coverage-driven directed approach
for generating tests that exercises all possible (and meaningful) sequences of events
to either pass or fail the assertion.

Looking into the test set as a whole, the PCI and SDRAM assertion sets both
generated a large number of good test sequences with a small number of assertions
compared to other benchmarks. This is due to the fact that the PCI and SDRAM
assertions contained temporal sequences with a large integer constant in the repeti-
tion operators causing both tools to generate many uncompacted tests. The number
of failing tests for each benchmark is considerably less compared to its counterpart.
This is due to the fact that the failing automata (discussed in Section 2.1.3) are a
different representation of an assertion, which causes both tools to generate differ-
ent test paths with Boolean events causing the assertion to fail. This table is used
for comparing and calculating the reduced number of tests obtained using our two
compaction approaches.

Table 4.2 shows the results obtained for compacting good test sequences using our
two test compaction approaches with the four assertion clustering methods. (Bench)
lists the name of the benchmark. The clustering modes are shown in the second

4.5. Experimental Results 81

column (Cluster) using the abbreviations: Antecedent (Ant.), Consequent (Con.),
Antecedent and Consequent (Ant+Con), Assertion Signal (A-Sig.). OTR portrays
the Overall Test Reduction in terms of a percentage that is computed as:

OTR = |T | − |T
∗|

|T |
× 100% (4.4)

where |T ∗| represents the number of compacted test sequences that were generated
either from the TPO or PPR approaches, and |T | represents the uncompacted tests
that are listed in Table 4.1. Values in the fifth column are the overlap ratios (Best
τ) which give an optimal configuration of clusters that achieves the least number
of compacted tests. |C| lists the number of clusters generated based on the chosen
clustering mode and the overlap ratio. The run time (Time(s)) is the amount of
time spent in the assertion clustering, test path generation and test compaction using
MiniSAT . Values listed in the Additional Test Reduction (ATR) column represent
the additional overall test compaction achieved when using our PPR test compaction
mode. These values are computed as:

ATR = |T
∗
TPO| − |T ∗PPC |
|T ∗TPO|

× 100% (4.5)

where |T ∗TPO| and |T ∗PPC | are the number of compacted tests using the TPO and PPR
compaction strategies respectively.

Results obtained from both of our test compaction algorithms were able to achieve
different amount of test reduction when using the different clustering modes. We
observe that the run times using our two compaction schemes contributed very little
performance overhead. We also observe that when using the PPR test compaction
algorithm, at least 30% of additional test reduction (ATR) is obtained in all the
assertion benchmarks.

The clustering modes and the overlap values (τ) produced different compacted
sizes of tests for both compaction algorithms. In observing the number of tests
generated by TPO and PPR, we see that Antecedent and Assertion Signal yielded
the smallest test set size compared to other clustering modes. This is due to the fact
that the assertions for each of the benchmarks contained more similar signals and
sequences in the antecedent portion than in the consequent. Thus, using Antecedent
and Assertion Signal clustering is beneficial for creating clusters of assertions with
greater sharing of Boolean logic values with similar signals.

The overlap ratios (τ) vary significantly in each of the benchmarks and generate

82 Chapter 4. Test Compaction Techniques for Assertion-based Test Generation

T
ab

le
4.
2:

C
om

pa
ris

on
of

C
om

pa
ct
io
n
an

d
C
lu
st
er
in
g
M
od

es
fo
r
G
oo

d
Te

st
Se
qu

en
ce
s

B
en

ch
C
lu
st
er

T
es
t
P
at
h
O
ve
rl
ap

pi
ng

P
ar
al
le
l-
P
at
h
R
em

ov
al

|T
∗ |

O
T
R

Be
st
|C
|

T
im

e
|T
∗ |

O
T
R

Be
st
|C
|

T
im

e
AT

R
(%

)
τ

(s
)

(%
)

τ
(s
)

(%
)

A
X
I

A
nt
.

27
1

75
.1

0.
3

9
0.
57

39
96
.4

0.
3

9
0.
53

85
.6

C
on

.
38
2

64
.9

0.
3

47
0.
25

22
7

78
.9

0.
3

47
0.
49

40
.5

A
nt
+
C
on

26
4

75
.7

0.
2

5
0.
57

43
96
.0

0.
3

8
0.
50

83
.7

A
-S
ig
.

26
3

75
.8

0.
2

5
0.
54

32
97
.0

0.
3

5
0.
53

87
.8

FF
–G

C

A
nt
.

47
67
.6

0.
5

7
0.
02

33
77
.2

0.
3

4
0.
09

29
.7

C
on

.
68

53
.1

0.
1

7
0.
03

43
70
.3

0.
3

8
0.
09

36
.1

A
nt
+
C
on

47
67
.6

0.
3

4
0.
03

32
77
.9

0.
3

5
0.
08

31
.9

A
-S
ig
.

47
67
.6

0.
3

5
0.
03

32
77
.9

0.
5

5
0.
08

31
.9

FF
–S

C

A
nt
.

82
65
.5

0.
5

4
0.
19

22
90
.7

0.
4

4
0.
25

73
.1

C
on

.
10
9

54
.2

0.
1

9
0.
13

45
81
.0

0.
1

9
0.
21

58
.7

A
nt
+
C
on

10
0

58
.0

0.
3

7
0.
18

27
88
.6

0.
2

5
0.
25

73
.0

A
-S
ig
.

87
63
.4

0.
4

6
0.
03

30
77
.9

0.
4

6
0.
25

65
.5

PC
I

A
nt
.

58
9

95
.7

0.
2

2
1.
68

13
5

99
.0

0.
2

2
2.
34

77
.0

C
on

.
70
0

94
.9

0.
4

6
1.
32

25
5

98
.1

0.
4

6
2.
19

63
.5

A
nt
+
C
on

66
9

95
.1

0.
4

4
1.
98

21
3

98
.4

0.
4

4
2.
32

68
.1

A
-S
ig
.

61
8

95
.5

0.
4

3
1.
18

14
8

98
.9

0.
3

3
2.
46

76
.0

SD
R
A
M

A
nt
.

94
5

95
.5

0.
9

2
3.
37

37
8

98
.1

0.
9

2
4.
97

60
.0

C
on

.
95
3

95
.3

0.
8

4
3.
22

40
2

98
.0

0.
8

4
5.
11

57
.8

A
nt
+
C
on

94
5

95
.5

0.
8

3
3.
50

40
2

98
.0

0.
7

3
5.
09

57
.4

A
-S
ig
.

87
9

95
.8

0.
9

4
3.
21

41
4

97
.9

0.
9

4
5.
34

52
.9

4.5. Experimental Results 83

differing values of compacted sizes of tests. For instance, with the AXI and PCI
benchmark, a low value of τ was required for achieving an overall test reduction of
75.8% and 95.7% respectively using TPO compaction. When using PPR compaction
scheme, an additional reduction of tests was achieved, for an overall test reduction
rate of 97% and 99% for the AXI and PCI assertion benchmarks, respectively. This
is very favourable for reducing the overall verification time.

We note that the number of generated clusters produced from the different clus-
tering modes varies moderately for each benchmark with the exception of the AXI
assertions. When applying Consequent clustering on the AXI assertion set, five times
more clusters were generated compared to Antecedent clustering and nine times more
compared to the other modes. This shows evidence that the consequent portions of
the AXI assertions had very minimal common signals.

For the FF-GC and FF-SC assertion sets, the overlapping ratios differ in all the
clustering modes and test compaction methods; however, in most cases Antecedent
clustering gave the most optimal set of tests using either TPO (OTR of 67.6% and
65.5% for FF-GC and FF-SC respectively) and PPR compaction (OTR of 77.2% and
90.7% for FF-GC and FF-SC respectively). This implies that the assertions for those
benchmarks had more common signals and sequences in the antecedent portion com-
pared to other portions of the assertion. Additionally, the PPR compaction algorithm
achieved a further reduction of tests.

As for the SDRAM assertion set, it required a high overlapping ratio in all of
the clustering modes in order to achieve a minimal test set. Thus, this goes to show
that there were many common signals and sequences in both the antecedent and
consequent parts of the assertion. For both compaction algorithms, TPO achieved
95.8% in overall test reduction whereas PPR had a further reduction of tests at 98.1%.

Table 4.3 shows the results for compacting failing test sequences by using all of
our assertion clustering and our test compaction methods. Despite the difference in
test sizes when compared to the good tests, it is still valuable to compact the failing
test sequences in order to gain reductions in verification time. We see that our test
compaction methodology was able to achieve an overall test reduction (using TPO)
of at least 35% when applying Antecedent and Assertion Signal clustering in most
benchmarks. For the AXI assertion set, it has garnered the least amount of com-
paction when using Consequent assertion clustering. As explained for compacting
good test sequences, applying Consequent clustering on the AXI assertions generated
many clusters due to very little similarity in the consequent portion of the asser-
tion; however, when compared to the other clustering modes, they have produced

84 Chapter 4. Test Compaction Techniques for Assertion-based Test Generation

T
ab

le
4.
3:

C
om

pa
ris

on
of

C
om

pa
ct
io
n
an

d
C
lu
st
er
in
g
M
od

es
fo
r
Fa

ili
ng

Te
st

Se
qu

en
ce
s

B
en

ch
C
lu
st
er

T
es
t
P
at
h
O
ve
rl
ap

pi
ng

P
ar
al
le
l-
P
at
h
R
em

ov
al

|T
∗ |

O
T
R

Be
st
|C
|

T
im

e
|T
∗ |

O
T
R

Be
st
|C
|

T
im

e
AT

R
(%

)
τ

(s
)

(%
)

τ
(s
)

(%
)

A
X
I

A
nt
.

12
9

41
.6

0.
4

12
0.
24

36
83
.7

0.
4

12
0.
38

72
.0

C
on

.
18
3

17
.1

0.
6

47
0.
24

15
0

32
.1

0.
3

47
0.
38

18
.0

A
nt
+
C
on

12
6

42
.9

0.
4

19
0.
24

32
85
.5

0.
2

8
0.
39

74
.6

A
-S
ig
.

13
0

43
.4

0.
5

13
0.
22

36
83
.7

0.
3

5
0.
38

72
.3

FF
–G

C

A
nt
.

42
40
.0

0.
6

6
0.
03

26
62
.8

0.
6

6
0.
07

38
.0

C
on

.
56

20
.0

0.
1

7
0.
03

40
42
.8

0.
1

7
0.
08

28
.5

A
nt
+
C
on

45
35
.7

0.
4

5
0.
04

30
57
.1

0.
4

5
0.
08

33
.3

A
-S
ig
.

47
32
.8

0.
6

6
0.
03

35
50
.0

0.
7

7
0.
07

25
.5

FF
–S

C

A
nt
.

90
43
.3

0.
6

10
0.
15

28
82
.3

0.
5

4
0.
21

68
.8

C
on

.
10
4

34
.5

0.
6

9
0.
13

45
71
.6

0.
6

9
0.
20

56
.7

A
nt
+
C
on

99
37
.7

0.
4

8
0.
14

30
81
.1

0.
2

5
0.
20

69
.6

A
-S
ig
.

81
49
.0

0.
3

7
0.
14

41
74
.2

0.
3

7
0.
19

49
.3

PC
I

A
nt
.

23
40

49
.5

0.
2

2
7.
07

15
56

66
.3

0.
2

2
5.
41

33
.5

C
on

.
23
51

49
.3

0.
6

8
5.
19

16
87

63
.6

0.
5

6
5.
35

28
.3

A
nt
+
C
on

23
73

48
.8

0.
4

4
6.
12

16
87

63
.6

0.
4

4
5.
31

28
.9

A
-S
ig
.

23
34

49
.6

0.
4

3
5.
18

17
62

62
.0

0.
4

3
4.
92

24
.5

SD
R
A
M

A
nt
.

44
5

32
.4

0.
9

2
0.
25

26
6

59
.6

0.
9

2
0.
27

40
.2

C
on

.
35
4

46
.2

0.
9

4
0.
17

17
3

73
.7

0.
8

4
0.
17

51
.1

A
nt
+
C
on

35
4

46
.2

0.
9

4
0.
17

17
3

73
.7

0.
8

4
0.
16

51
.1

A
-S
ig
.

35
0

46
.8

0.
9

4
0.
16

17
0

74
.2

0.
9

4
0.
18

51
.4

4.5. Experimental Results 85

significantly fewer number of clusters and reduced number of tests.

In the PCI assertion benchmark, the number of compacted tests is considerably
larger compared to the other benchmarks in this case study. This is due to the
fact that the test paths generated from the failing automata have transition clauses
requiring more than one Boolean logic value assignment, which prevents our com-
paction methods from effectively overlapping similar test paths and sharing similar
logic values. Despite this drawback, our test compaction methodology was able to
achieve 49.5% test reduction when using Assertion Signal clustering with the TPO
compaction algorithm; however, a 66.3% reduction of tests was achieved with the
PPR compaction algorithm when using Antecedent clustering.

In comparing both compaction modes and using the same assertion clustering tech-
niques, we observe that the PPR compaction attained at least 51.1% of additional
test reduction in most of the benchmarks. The PPR algorithm was particularly effec-
tive with the AXI assertion set. For instance, using TPO compaction and Assertion
Signal clustering on the AXI benchmark yields an overall test reduction of 41.6%.
When applying the PPR compaction algorithm with the same clustering mode, a fur-
ther test reduction of 83.7% was achieved. The same can also be said for the FF-SC
and SDRAM benchmarks. In the FF-SC assertion set, applying Antecedent cluster-
ing achieves a 43.3% of test reduction with TPO compaction while PPR compaction
attains 82.3%. Similarly for the SDRAM assertion set, TPO compaction attains a
46.8% reduction of the test set when using Assertion Signal clustering whereas with
PPR compaction attains 74.2%.

The results presented in this case study show that the overall effectiveness of as-
sertion clustering and generating compacted test sets depend on how the assertions
were written, specifically whether they contain many or minute similar signals and
sequences. Our improved PPR compaction algorithm has produced an additional test
reduction in all the benchmarks in both case studies. In the worst case scenario, for
using the least effective assertion clustering mode (Consequent clustering for exam-
ple), our test compaction methodology was able to reduce the sizes of test sets in half,
for the passing and failing cases, when using the PPR algorithm. This can greatly
reduce the amount of time spent in verification.

86 Chapter 4. Test Compaction Techniques for Assertion-based Test Generation

4.5.2 Compacting Good and Failing Test Sequences from
MyGen

In the second case study, we applied our compaction to the test sequences obtained
with the tool MyGen [2]. The passing and failing tests were compacted by our PPR
algorithm. Every test is analyzed to determine the test paths that are covered, which
are eventually removed from Π for further analysis. The objective is to demonstrate
that our compaction methodology can be applied to other tools that are capable of
generating tests from assertions. We applied the same clustering and overlap ratios
listed in Tables 4.2 and 4.3 for the good and failing test sequences, respectively.

Table 4.4 lists the compacted tests for MyGen. The first two columns list the
benchmark and the applied clustering mode. The number of compacted tests from
MyGen is shown in the third column with the listed Overall Test Reduction (OTR)
percentages in the fourth column. The fifth and sixth columns show the number of
paths covered, and their percentage, respectively. The compacted failing tests are
listed in the subsequent columns.

As seen in the table, our PPR algorithm was able to compact tests generated
from MyGen. It should be noted that unlike our test generation, which has full
coverage, the test sequences provided from MyGen do not attain 100% path coverage.
The amount of path coverage determines how well the specification was explored
and adequately exercised by the tests. For instance, a high OTR percentage was
attained for the SDRAM and the PCI benchmarks when compacting the passing tests;
however, those benchmarks only achieved 31.6% and 23.2% path coverage respectively.
Similarly for the failing test sequences, the FF-SC attained the highest compaction
compared to other benchmarks but was limited to 56% in path coverage. This is due
to the fact that tests from MyGen did not necessarily assert the required signals for
the generation of passing and failing test sequences, causing a sparse amount of test
paths to transition the automata into their next states. The tool did not consider
any kind of coverage where potential test paths are explored, thus not thoroughly
exercising all the defined signals and sequences of an assertion. As for TG, our tool
effectively explores the state space with more elaborate automata coverage metrics,
which helps in including all transition clauses at least once.

We conclude that our compaction method can be successfully applied to other test
generation approaches, but obviously cannot correct their coverage shortcomings.

4.5. Experimental Results 87

T
ab

le
4.
4:

C
om

pa
ct
in
g
Pa

ss
in
g
an

d
Fa

ili
ng

Te
st

Se
qu

en
ce
s
of

M
yG

en

B
en

ch
C
lu
st
er

P
as
si
ng

T
es
t
Se

qu
en

ce
s

Fa
ili
ng

T
es
t
Se

qu
en

ce
s

|T
∗ |

O
T
R

C
ov

.
%

C
ov

.
|T
∗ |

O
T
R

C
ov

.
%

C
ov

.
(%

)
Pa

th
s

Pa
th
s

%
Pa

th
s

Pa
th
s

A
X
I

A
nt
.

17
4

53
.5

20
5

54
.8

57
43
.0

55
54
.5

C
on

.
27
6

26
.2

14
7

39
.3

81
19
.0

45
44
.6

A
nt
+
C
on

17
9

52
.1

20
2

54
.0

45
55
.0

56
55
.4

A
-S
ig

17
4

53
.5

20
5

54
.8

45
55
.0

56
55
.4

FF
-G

C

A
nt
.

36
41
.0

51
83
.6

26
36
.6

42
87
.5

C
on

.
39

36
.1

50
82
.0

21
48
.8

40
83
.3

A
nt
+
C
on

36
41
.0

51
83
.6

22
46
.3

38
79
.2

A
-S
ig

33
45
.9

52
85
.2

26
36
.6

42
87
.5

FF
-S
C

A
nt
.

99
48
.4

11
2

70
.4

28
82
.1

38
47
.5

C
on

.
91

52
.6

14
3

89
.9

34
78
.2

42
52
.5

A
nt
+
C
on

89
53
.6

12
4

78
.0

30
80
.8

45
56
.3

A
-S
ig

82
57
.3

11
6

73
.0

35
77
.6

26
32
.5

PC
I

A
nt
.

38
2

90
.5

86
14
.7

43
8

66
.8

31
8.
3

C
on

.
45
0

88
.8

13
6

23
.2

42
6

67
.7

61
16
.4

A
nt
+
C
on

25
8

93
.6

11
1

18
.9

39
7

69
.9

26
7.
0

A
-S
ig

25
1

93
.7

10
1

17
.2

39
7

69
.9

26
7.
0

SD
R
A
M

A
nt
.

47
0

90
.6

14
6

30
.9

41
0

27
.9

22
31
.4

C
on

.
45
5

90
.9

14
8

31
.4

33
8

40
.6

7
10
.0

A
nt
+
C
on

42
0

91
.6

14
9

31
.6

33
8

40
.6

7
10
.0

A
-S
ig

42
0

91
.6

14
9

31
.6

33
8

40
.6

7
10
.0

88 Chapter 4. Test Compaction Techniques for Assertion-based Test Generation

4.6 Summary

Directed test generation from assertions can produce a large volume of tests for use
in design verification. This chapter has presented a method for compacting directed
tests based on assertions. One of the contributions that was presented in this chapter
is the development of a method that groups similar assertions together to generate a
compact set of good and failing test sequences. Assertion grouping is based on the
antecedent, consequent, combined antecedent and consequent, and assertion signal
clustering approaches. Results show that the proper choice of clustering method
and its main parameter (the overlap ratio) can be used to obtain even more test
compaction. To this effect, we also developed two efficient compacted test generation
algorithms, namely Test Path Overlapping (TPO) and Parallel-Path Removal (PPR),
which were used to compact good and failing test sequences for a set of assertions.

The experimental results show that the test path overlapping method can attain at
least 50% and 30% reduction for the good and failing test sequences, respectively; the
parallel path elimination approach reduces the test set size by at least 70% and 50%,
for the good and failing cases respectively. Results show that both of the algorithms
have compacted tests on a set of 289 assertions, with very little performance overhead.
We also show that our tool can be interfaced with the most related test generation
developments in our area, namely theMyGen tool, for compacting test sets from other
sources. The significant compaction improvement provided by the PPR algorithm
is favourable for reducing the overall verification time. Efficient test generation is
essential given the increased complexity faced by modern verification endeavours, in
the quest for bug-free designs.

Chapter 5

Efficient Data Encoding of
Mutation and Fault Data on GPUs

The obstacle of using Graphics Processing Units (as described from Section 2.3) for
accelerating digital circuit simulation is to devise a data-parallel representation of the
circuit data. Electronic Design Algorithms, particularly logic and fault simulation,
require a certain level of data dependency, which can pose a challenge in generating
data-parallel representations of a circuit.

This chapter presents two proposed tools for mutation and fault simulation us-
ing GPUs, namely µ-GSIM and GS-SIM respectively. These tools rely on a novel
data-parallel generation algorithm, which exploits several levels of parallelism that is
suitable for simulation on GPUs. Two proposed encoding techniques were also devel-
oped for storing gate, mutant and fault data using the GPU’s computer word. These
proposed approaches have helped in reducing the memory consumption, which ulti-
mately led an improvement in simulation performance on the GPU. The goal of this
chapter is to establish an accelerated framework, which will be used for simulating
mutated designs in the context of design verification.

5.1 Motivation

Graphics Processing Units (GPUs) have gained wide spread popularity as being a low
cost parallel platform for accelerating scientific computations. As Advanced Program-
ming Interfaces (APIs) for these coprocessors have improved, many different forms of
computation are being offloaded from the host CPU, with significant speed-ups being
achieved [27]. Recently, GPUs have been used for accelerating compute intensive ap-
plications in the field of Electronic Design Automation (EDA) [106]. Tasks that can

89

90 Chapter 5. Efficient Data Encoding of Mutation and Fault Data on GPUs

benefit from this advanced parallel platform are logic and fault simulation algorithms,
which can be used for accelerating the simulation of large mutated circuits for evalu-
ating the test quality. In order to take advantage of the wealth of processing power
provided by GPUs, a few key requirements need to be met, such as ensuring as much
data independency as possible and properly organizing the data in the GPU’s device
memory. GPUs employ the Single Instruction Multiple Data (SIMD) paradigm so
that the many threads deployed on the GPU are executing an instance of the kernel
program while operating on different data.

Mutation testing and fault simulation can benefit from the massive parallelism
provided by GPUs. For instance, given a Design Under Test (DUT) with a large test
set, the design is simulated for a set of mutations or stuck-at faults, in which the
goal is to observe the differences in the outputs compared to the error free circuit.
Since the mutations and stuck-at faults are independent of each other, they can be
simulated in parallel by creating multiple instances of the circuit, each containing a
different injected error. Additionally, further parallelism can be exploited by having
each thread on the GPU simulate a circuit containing a set of mutants (or stuck-at
faults) that is stored over the length of the GPU’s computer word, thus leveraging the
inherent bit parallelism of GPUs. We attempt to exploit many levels of parallelism
within a single thread, which requires an efficient mapping and duplication of the
circuit, mutant and fault data.

In this chapter, we present a novel GPU-based approach for accelerating simu-
lations of digital circuits for mutation testing and fault simulation. Our aim is to
generate an efficient data mapping of multiple circuit designs in order to achieve
optimal performance of logic-based simulations on GPUs. Logic-based simulation
requires a certain level of data dependency, which poses a challenging task for creat-
ing an efficient mapping of the gate, mutant and stuck-at fault data. We show that
our optimized mapping of a plethora of circuit designs (injected with either many
mutations or faults) on the GPU and has contributed significant performance im-
provements compared to when naively duplicating a circuit for every injected mutant
or stuck-at fault.

The contributions brought forth into this chapter are summarized as follows: 1

• We developed a logic-based circuit simulator that exploits the inherent bit par-
1 The contents of this chapter is based on the papers entitled Mu-GSIM: A Mutation Testing

Simulator on GPUs [14] and Efficient Data Encoding for Improving Fault Simulation Performance
on GPUs [13]

5.2. µ-GSIM Overview 91

Combinational
Circuit Extraction

Generate Mutant
Streams

Map Mutation Data

Memory
Overflow?

End of Simulation

No

Mutant Simulation

Partition Mutant Data

Launch OpenCL Kernel

Compute Maximum
Work-items

Copy Detected to CPU

More Data?

Mutation Data Generation

Copy Mutation
Data to GPU

Circuit
Netlist

Mutant
List

No

Yes Yes

GPU Mutation Simulation

O
n

 G
P

U

Test
Data

Figure 5.1: µ-GSIM Framework

allelism of GPUs for improving mutation testing and fault simulation applica-
tions;
• We proposed two different encoding schemes that enables efficient mapping of

circuit data on the GPU that leads to improved simulation performance.

The contents of this chapter is organized as follows: Sections 5.2 presents the
proposed mutation-based simulator, µ-GSIM where the details of the algorithms are
given in Sections 5.2.1 through 5.2.2. The results obtained from µ-GSIM are pre-
sented in Section 5.2.5, where comparisons are made with the different mutant encod-
ing techniques and a commercial gate-level event-driven simulation tool. Following, is
a presentation of the GS-SIM where we use the similar memory encoding techniques
for developing the fault simulation tool on GPUs. Section 5.3 presents the overview
of GS-SIM where the encoding techniques and the GPU fault simulation algorithm
is presented in Sections 5.3.1 and 5.3.2 respectively. Results from GS-SIM are shown
in Section 5.3.4.

5.2 µ-GSIM Overview

Figure 5.1 shows the overall µ-GSIM simulator framework. Our approach leverages
the inherent bit parallelism of GPUs where we use the entire length of the GPU’s com-

92 Chapter 5. Efficient Data Encoding of Mutation and Fault Data on GPUs

g5

g6g2

g1

g3 O0

O1

O2

I0

I1
I2

I3
I4

Mutated Gate

g1 g2 g3 g4 g5 g6

g4

g4'

Figure 5.2: Circuit to Mutant Array Transformation

puter word for representing the combined gate-mutant data and mutant detectabil-
ity data. µ-GSIM consists of both sequential (non-shaded boxes) and data-parallel
(shaded boxes) tasks that are performed on the host (CPU) and GPU respectively.
Our approach takes as input the circuit netlist and a list of mutants that describes
the inserted erroneous logic gate or fault and the associated test data. The flow of our
tool is divided into two phases. The first phase, namely Mutation Data Generation,
is responsible for generating the gate-mutant data and creating an effective memory
mapping so that all work-items on the GPU can operate independently. In the event
of a memory overflow, the host program will partition the mapped mutation data and
then will perform an additional kernel execution. The second phase is GPU Mutation
Simulation, where the host determines the effective work-item and work-group con-
figuration in order to achieve optimal performance when performing logic simulation
on a circuit with injected mutants. In the next subsequent sections, we thoroughly
describe these phases of our tool in detail.

5.2.1 Mutant Stream Generation

This section describes the tasks involved for creating an efficient data parallel repre-
sentation of a circuit containing mutated logic gates. To perform logic simulation on a

5.2. µ-GSIM Overview 93

056910
Gate TypeMutant CodeMI

1415

16-bit Gate-Mutant Data Encoding

0163115

32-bit Detected Mutant Data

g1'g2'g3'g4'g16'g29'g30' ... g15' ...

Mutant-free
Value

Bit Number:

Bit Number:

Assigned Det. Bit

Figure 5.3: Multiple Mutant Gate (MMG) Encoding and Detectabil-
ity Word

mutated circuit, µ-GSIM uses the concept of mutant streams so that every work-item
simulates the same set of gates containing different mutants. We define a mutant
stream as mi, which represents a one dimensional array of logic gates of a circuit (C).
The gates within the stream are arranged in a particular order so that their input and
output dependencies are satisfied. A mutated gate, defined as g′, is a gate depicting
the intended error such that their gate types are not the same (gi 6= g′i | gi ∈ C). The
erroneous gate replacements that we use are defined in [84].

Figure 5.2(a) illustrates a levelized circuit netlist containing combinational logic
elements. We see that the circuit contains a mutated gate, labelled as g′4, that replaces
the or-gate with an and-gate. After applying the As Soon As Possible scheduling
algorithm to the circuit, the set of gates from each time step gets transformed into an
array as shown in Figure 5.2(b). Each labelled node depicts a specific gate inside the
circuit. Nodes that are outlined in green depict the mutations that were added, as
is shown at node 4. Every work-item will evaluate the same gate type in a lockstep
manner. This implies that every work-item will follow the same execution path,
thereby avoiding branch divergence.

The set of gates within a mutant stream are represented by a 16-bit data word that
is shown in Figure 5.3. This Multiple Mutant Gate (MMG) encoding scheme allows
for every work-item to perform simulation on a set of gates with multiple injected
mutants independently. The first 6 bits (bits 0 through 5) of the word are used to
store the type of logic gate. A control flag called Mutant Injection (MI) is used for
representing every mutated gate, g′j. This flag is used by the simulation kernel for
computing and placing the incorrect result over the 32-bit word. A Mutant Code
represents a particular gate type substitution that depicts the intended incorrect gate

94 Chapter 5. Efficient Data Encoding of Mutation and Fault Data on GPUs

Algorithm 5.1 Mutant Stream Generation
FUNCTION: mutant_stream_gen
Input: Mutant List (G′list), Circuit (C), Gate Library (Glib)
Output: Set of Mutant Streams (MS)

i← 0
while G′list != ∅ do
Initialize mi with encoded gate types, det_bit← 0
for all mutant g′l ∈ G′list do
if |G′i| < 31 then
k ← array position of gl ∈ mi for injecting g′l
MI ← 1, mu_code← g′l, gate_type← Glib(gl)

/* Encode 16-bit word */
mi[k]← (MI|det_bit|mu_code|gate_type)
det_bit← det_bit+ 1

if |G′i| > 31 then
Break loop and start new mutant stream

Remove added mutants from G′list
MS ←MS ∪mi, i← i+ 1

return (MS)

that is injected into the circuit. The Assigned Detection Bit (shown as Assigned Det.
Bit from the figure) specifies the number of left shifts for appropriately inserting
the incorrect result over the 32-bit word. This value can range from 0 to 30, while
leaving bit 31 as the mutant-free value. The true value is used for storing the correct
simulation results and also for computing the number of killed mutants. We note that
the gate-mutant encoding scheme can be expanded over a 32-bit word if the number
of gate or mutant types exceed 63 and 15 respectively.

Algorithm 5.1 describes the mutant stream generation approach which transforms
the circuit to the representation as illustrated in Figure 5.2(b). The inputs to the
algorithm are a levelized circuit netlist (C) and a list of mutants (G′list). The gate
library (Glib) is a lookup table function which returns a 6-bit code depicting the
gate type. Every mutant (g′l ∈ G′list) specifies a logic gate in the circuit (C) that is
to be replaced by the erroneous gate type, which is represented by a mutant code
(mu_code).

The algorithm begins by creating a new mutant stream mi where every logic gate
is already encoded with its gate type. Each mutant g′l from the list is assigned to
a mutant stream mi if the size of the set of mutants for the current stream |G′i| is

5.2. µ-GSIM Overview 95

g1 g2 g3 g4 g5 g6

g4'g2' g5'

Multiple Injected Mutants

m1

g2'g4'g5'
Detected Data for m1

31 30 012

00000 00001 00010Assigned Det. Bit

Mutant Code

MI

0100 0011 0011

1 1 10 0 0

Mutant-free
Value

Gate Type 000011000010 000010 000011 000010 000010

Mutant
Detectability

Bits

Bit Number :

Figure 5.4: Mutant Encoding Example

less than 31. Once this condition is satisfied, the injected mutant is placed at the kth

position in the array of logic gates ofmi. The value of k is determined by the specified
mutated gate g′l. Then, the control bitMI is set to logic-1 to indicate that the kth logic
gate is a mutant defined by the code, mu_code. The value of the assigned detection
bit is determined by the counter det_bit, which represents the current unassigned bit
position used for detecting the killed mutant of g′l. The variable gate_type holds the
6 bit code for representing the gate type. After the data have been retrieved, the
algorithm combines the necessary data portions into a 16-bit word and stores it into
the kth gate of the mutant stream (mi[k]). Thereafter, the subsequent mutant g′l+1

will be assigned to the next unassigned bit until |G′i| exceeds 31 or all the mutants
from the list (G′list) are assigned.

Figure 5.4 shows an example of a mutant stream m1 containing multiple mutants
that are encoded over the 16-bit data word. Each data field is split into rows for
illustration purposes. We see that the mutant stream contains three injected mutants,
namely g′2, g′4 and g′5. Those gates will haveMI set to logic-1, depicting that the gate
has been replaced by a specific erroneous gate defined in the mutant code, mu_code.
Mutant-free gates will haveMI set to logic-0 so that each work-item will compute the
gate’s output normally. The assigned detection bit holds the value of the bit position
that will be used for detecting the particular mutant. Also shown in the figure is the

96 Chapter 5. Efficient Data Encoding of Mutation and Fault Data on GPUs

gn...

gn...

gn...

G
ate-level P

arallelismP
at

te
rn

 P
ar

al
le

lis
m

m0

m1

m63

wi0

wi1

wi63

AND OR AND OR OR AND ... NOT

Same Gate Type Evaluation

Sync

Mutant Parallelism

Direction of Simulation
Sync Sync Sync Sync Sync Sync

...

...

g1 g2 g3 g4 g5 g6

g1 g2 g3 g4 g5 g6

g1 g2 g3 g4 g5 g6

Figure 5.5: Exploited Parallelism Factors

32-bit detected data word which explicitly assigns a detected bit for every mutated
gate, g′l. Whenever the assigned detected bit is at logic-1, then the mutant at that
bit location is deemed killed, otherwise it was not detected.

The mutant stream approach and the 16-bit encoding scheme presented in this
section will now be used for evaluating the mutated circuit on the GPU. The next
section discusses the second phase of the µ-GSIM tool.

5.2.2 GPU Mutation Simulation

In this section, we describe our proposed GPU circuit simulator for mutated circuits.

5.2.3 Simulation Kernel

The principle operation of a single work-item on the GPU is to perform logic simula-
tion of a mutated circuit by leveraging several parallelism factors that were encoded
within a mutant stream, mi. Figure 5.5 outlines the different levels of parallelisms
that were achieved. First, we have exploited gate-level parallelism by having a group
of 64 work-items simulating a set of 64 mutant streams. Every work-item evalu-
ates the same non-mutated gate type and synchronizes at the end of each evaluation,
which ensures that no branch divergence can occur. Second, mutant parallelism was
exploited because every mutant stream contains a unique set of replaced gates or

5.2. µ-GSIM Overview 97

Algorithm 5.2 Mutant Stream Simulation Kernel
FUNCTION: mutant_stream_sim
Input: Mutant Stream Set (MS), Intermediate values (nets), Detected array
(detected)

/* Initialize Variables*/
numwi ← get_global_size(0) // Total Num Work-items
wiid ← get_global_id(0) // Work-item ID
det_local← 0x00000000 // Detected data
mi ←MS[wiid] // Mutant Stream

for all logic gates gj ∈ mi do
/* Decode Mutant and Gate Data */
mg_data← mi[j × numwi + wiid]
MI ← mg_data & 0x8000
mu_code← (RHS 6 bits of mg_data) & 0x000F
det_bit← (RHS 10 bits of mg_data) & 0x001F
gate_type← & 0x003F

/* Pass decoded data to mutant_sim kernel */
mutant_sim (gate_type, MI, mu_code, det_bit, nets)

/* Compute Detected Data */
for all output ports p of MS[wiid] do
cor ← net31 & 0xFFFFFFFF | (1− net31) & 0x00000000
det_local |= (nets[p× numwi + wiid]⊕ cor)

/* Store Detected Data to Device Memory */
detected[wiid]← det_local

errors that were injected into the circuit and can be simulated independently. Third,
pattern parallelism was fulfilled by having every work-item simulating the same set
of tests that are applied to the primary inputs of the circuit. These levels of paral-
lelism were encoded over the 16-bit data representation, which enables a group of 64
work-items to simulate 1984 different mutants (31 mutants per mutant stream × 64
mutant streams) concurrently.

Algorithm 5.2 describes our proposed logic simulation kernel that operates on a
mutant stream. This kernel code is executed by every work-item on the GPU. The
inputs to the kernel function are the mapped mutant stream data MS, an array
called nets that is used for storing the primary input, intermediate and primary
output values during logic simulation and an array detected for storing the detected

98 Chapter 5. Efficient Data Encoding of Mutation and Fault Data on GPUs

mutant data. The input data are accessed through the GPU’s device memory in a
coalesced fashion.

The algorithm begins by retrieving the appropriate offset values, namely the total
number of work-items deployed and the work-item ID, which are accessible through
the built-in OpenCL functions get_global_size(0) and get_global_id(0) respec-
tively. The index (0) returns the one dimensional ID value of the work-item. These
offset values are important for computing the effective addresses so that every work-
item accesses the GPU’s device memory in a coalesced fashion. The detected variable,
det_local, is used for storing the 32-bit detected data type in local memory. We use
local memory because det_local is continuously accessed and updated at every com-
pletion of a simulation run for a set of tests. This reduces the additional latency
when accessing the GPU’s device memory. The mutant stream mi is then fetched by
accessing the global memory variable MS and using the work-item’s global identifier
as the index. We also note that every work-item will initialize the nets memory based
on the test data used for verifying the circuit.

The simulation kernel continues by decoding the 16-bit data type that is stored in
mg_data, which is done by applying the appropriate logic operations and bit shifts as
indicated in the algorithm. This is for retrieving the gate type (gate_type), mutation
injection control flag (MI), the assigned detection bit (det_bit) and the mutant code
(mu_code). The decoded data are then sent to a function called mutant_sim which
is used to determine which gate evaluation function is called based on the coded
gate type. After all the gates are evaluated in the mutant stream mi, the algorithm
proceeds by computing the number of detected mutants. The mutant-free value is
obtained by retrieving the most significant bit (bit 31) from nets which gets expanded
over the 32-bit word and stored into the variable cor. Then, a logical xor operation
is performed on the intermediate values that depict the primary outputs. Finally, the
detected word stored in local memory is transferred to the GPU’s device memory in
a coalesced fashion.

The function mutant_sim was called from Algorithm 5.2 which is used for invoking
the appropriate gate evaluation function based on the decoded value of gate_type.
A gate evaluation function is defined for every type that is supported in the gate
library. For instance, the 6-bit gate type code 000010 represents a two input and-
gate. The mutant_sim function calls and2_mutant_sim, which is shown in Algorithm
5.3. Evaluation functions for other gate types are similar to the one presented.

The primary operation of every gate evaluation function is to compute the mutant-
free and the mutated value of a logic gate. At the beginning of the evaluation function,

5.2. µ-GSIM Overview 99

Algorithm 5.3 Mutant Gate Function for Two Input and-gate
FUNCTION: and2_mutant_sim
Input: Input net addresses (in0, in1), Output net address (out), nets, MI,
mu_code, det_bit

/* Retrieve Input Values */
in0_v ← nets[numwi × in0 + wiid]
in1_v ← nets[numwi × in1 + wiid]

/* Compute correct value */
m_free← in0_v & in1_v

/* Compute mutated values */
m_value←
(mu_code)× (!(in0_v & in1_v) | // mutant-nand
(mu_code)× (!(in0_v | in1_v)) | // mutant-nor
(mu_code)× (in0_v & in1_v) | // mutant-and
(mu_code)× (in0_v | in1_v) // mutant-or

/* Write Result to nets */
nets[numwi × out+ wiid]←
(1-MI) & (m_free) | (MI) & (LHS m_value by det_bit)

the intermediate values are retrieved and stored into the 32 bit variables in0_v and
in1_v. Then, the mutant-free value is computed, followed by the computation of the
mutated values. The bits of each mutant code mu_code will choose which incorrect
result to store into m_value. The gate evaluation algorithm shows only a subset of
the mutant functions due to space reasons. Finally, a Left Hand Shift (LHS) operation
on m_value is performed for inserting the erroneous output at the appropriate bit
position defined by det_bit. This ensures that the intermediate values for detecting
other mutants in mi are not overwritten. Injecting the incorrect result into the
intermediate values (nets) depends on the value of the control flag MI. If MI is
set to logic-1, the mutated value is inserted into the intermediate values stored in
nets, otherwise the mutant-free value is used.

5.2.4 MaximumWork-item Configuration and Memory Scal-
ability

Determining the maximum number of work-items to deploy on the GPU depends on
the available memory remaining after mapping the mutant stream data. The host

100 Chapter 5. Efficient Data Encoding of Mutation and Fault Data on GPUs

(a) wimax ≥ |MS|

Padding

Mutation
Data

Mutation
Data 0

Mutation
Data K

(b) wimax < |MS|

D
ire

ct
io

n
of

 S
im

ul
a

tio
n

Mutation
Data 0

Mutation
Data 1

Mutation
Data P

Direction of Simulation

(c) Mtot >> Mgpu

Executing P Separate Simulations

H
os

t-
G

P
U

T

ra
ns

fe
r

H
os

t-
G

P
U

T

ra
ns

fe
r

H
os

t-
G

P
U

T

ra
ns

fe
r

w
i0
w
i1

w
im

ax

...

wimax wimax wimax

w
i0
w
i1

w
im

ax

Kernel
Iteration

Kernel
Iteration

Padding

(K
 –

1)
 A

dd
iti

on
al

S

im
ul

at
io

ns

Figure 5.6: Different Mapping and Simulation Scenarios

program computes the maximal number of work-items, defined as wimax, which is
dependent on the amount of memory in bytes that is consumed by the set of mutant
streams MMS and the number of bytes for storing the intermediate values Mint per
work-item. We define Mtot as the total memory that is required for simulating the
entire set of mutant streams and it is computed by:

Mtot = MMS +Mnets (5.1)

The memory required for storing the mutant stream data, MMS is defined by:

MMS = (|mi| × |MS|)× sizeof(mg_data) (5.2)

where |mi| represents the length of the mutant stream in terms of the number of logic
gates.

Initially, we compute the raw number of work-items that can potentially be in-
stantiated as the following:

wiraw = Mrem

Mint
, with Mrem = Mgpu −MMS (5.3)

5.2. µ-GSIM Overview 101

where Mint is the number of bytes used for storing the intermediate values in every
gate stream; however, we require that the number of work-items be a factor of 1024
so that we can have at least 128 work-items in each Graphics Processing Cluster
(1024 work-items / 8 Graphics Processing Clusters). Thus, from wiraw we derive the
maximum number of work-items with:

wimax = 1024× n, with n = bwiraw/1024c (5.4)

We chose the floor operator when computing n so that the memory allocated for
Mnets along with the mutant stream data,MMS, does not exceed the memory available
provided by the GPU (Mgpu).

Computing the maximum number of work-items is limited to the memory con-
sumed by the mutant stream data and the memory required for storing the interme-
diate values. Additionally, the number of work-items deployed can affect the mapping
of the data along with the overall performance of the simulation kernel. Figure 5.6
shows the different data mappings and the flow of simulation. The host program
aims to allocate as many work-items as possible in order to simulate the entire set
of mutant streams without requiring additional simulation (iteration) runs. This oc-
curs when wimax ≥ |MS|, which is shown in Figure 5.6(a) whereby each work-item is
simulating a mutant stream. Padding of the memory is needed in order to align the
mutation data to the number of work-items deployed.

When the value of wimax is less than the size of MS, the host program creates
a mapping of the mutation data of the form that is shown in Figure 5.6(b). This
occurs when the mutation data consumes a significant amount of memory preventing
the host program from allocating sufficient work-items. The kernel will then evaluate
K − 1 additional simulations, where K is defined as:

K =
⌈
|MS|
wimax

⌉
(5.5)

The additional kernel runs will add to the overall simulation time.

Figure 5.6(c) shows when the total memory Mtot required for simulation greatly
exceeds the memory capacity on the GPU (Mtot � Mgpu). This causes our host
program to partition the set of mutant streams into P equal sets where each subset
of mutant streams is simulated separately; however, this requires more than one data
transfer from the host to the GPU. Thus, it is essential that the number of partitioned
mutant streams be kept low.

102 Chapter 5. Efficient Data Encoding of Mutation and Fault Data on GPUs

5.2.5 Experimental Results for µ-GSIM

In this section, we evaluated the performance of our µ-GSIM tool against a commer-
cial event-driven gate-level simulator tool on a set of large circuits from the ITC’99
benchmark suite [107]. Due to the commercial tool’s licensing agreement, the name
cannot be mentioned in this thesis. Smaller ITC’99 benchmarks take negligible time
with our tool and are not reported due to space reasons. Our experimental platform
is based on a six-core AMD processor running at 3.2 GHz with 16 GB of memory,
which serves as the host. The GPU device is a GTX 560 Ti graphics card containing
8 GPCs, each consisting of 48 processing cores with a core clock speed of 1.7 GHz.
The available on-board memory is 1 GB with a maximum bandwidth of 128 GB/s.
We used the NVIDIA CUDA SDK 4.2.1 using version 1.1 of the OpenCL language.

To achieve the best performance, we aim to generate an efficient data mapping so
that the GPU can concurrently simulate as many mutant streams as possible. This
implies that the work-items (one work-item per mutant stream) should efficiently use
the available resources provided by every GPC. In our GPU platform, each GPC
consists of 48 KB of local memory and 32,768 32-bit registers which are shared by
every work-item [30]. The maximum number of concurrent work-items that can oc-
cupy a GPC is 1536, which limits each work-item to 32 bytes of local memory and
21 registers. Our implemented OpenCL kernel consumes 20 registers and 4 bytes of
local memory, thereby our approach is capable of simulating 1536 mutant streams
concurrently within a GPC and a total of 12228 mutant streams when utilizing all
the GPCs of the GPU.

Prior to executing our simulation kernel onto the GPU, we first compute and com-
pare the maximum number of work-items (wimax) when using two different mutant
encoding schemes, namely Single Mutant Gate (SMG) and Multiple Mutant Gates
(MMG). The SMG encoding injects one mutated gate whereas MMG encoding at-
tempts to inject multiple mutants into a mutant stream. The purpose is to show the
effectiveness of our multiple mutant gate encoding scheme in the attempt to optimize
the memory usage on the GPU. The computed values of wimax for each encoding
technique are then used for launching our OpenCL kernel on the GPU where we
compare the performance run-time between the two encoding schemes along with the
run-times of the commercial tool executing on the host. Each mutation is assumed
to be a gate replacement error as described in [84]. A copy of a circuit is generated
for every mutation and we cumulatively injected mutations in increments of 1000,
such that the first 1000 mutants in the case of 2000 injected mutations are identical
to those in the case of 1000 mutations, and so forth. Each benchmark was simulated

5.2. µ-GSIM Overview 103

Table 5.1: Memory Usage Comparison and Maximum Work-item
Computation for 5000 Injected Mutations

Circuit Gates Encoding MMS Mnets Mtot wimax(MB) (MB) (MB)

b17 30777 SMG 480.9 503.6 984.5 4096
MMG 300.6 629.5 930.0 5120

b17_1 38166 SMG 447.3 309.9 757.2 4096
MMG 298.2 619.8 918.0 5120

b18 111241 SMG 2172.7 895.5 3068.2 2048
MMG 434.5 895.5 1330.0 2048

b20 19682 SMG 461.3 315.7 777.0 4096
MMG 307.5 631.4 938.9 8192

b21 20027 SMG 469.4 321.1 790.5 4096
MMG 312.9 642.2 955.1 8192

b22 29162 SMG 455.7 467.6 923.3 4096
MMG 284.8 584.6 869.3 5120

using 131072 (128K) tests for ten runs, after which the run-times are averaged in
order to ensure consistent measurements of the execution times.

5.2.5.1 Computing Maximum Work-item Configuration

Table 5.1 shows the memory usage and the computed maximum number of work-items
that can be launched onto the GPU. The first column (Circuit) shows the circuit
benchmark along with the number of logic gates (Gates) listed in the second column.
The two mutant encoding schemes that were used are shown in the third column
(Encoding) where we compare the memory consumption and computed maximum
work-items by inserting a single mutated and multiple mutated gates into a mutant
stream. The fourth and fifth columns list the memory consumed by the mutated
circuits (mutant streams) (MMS) and the storing of the intermediate values (Mnets) by
every work-item respectively. The total memory shown in the sixth column (Mtot) is
the sum ofMMS andMnets. The computed maximum number of work-items (wimax) is
shown in the seventh column and is based on the approach described in Section 5.2.4.
We set the value of Mgpu at 960MB so that the GPU can use the remaining memory
for storing software drivers used for communication with the host. The memory and
work-item values listed in the table are based on injecting 5000 mutations.

As seen in the table, the memory consumed by the mutated circuits (MMS) for
each benchmark is larger when only one mutant is injected in each mutant stream.
When applying our multiple mutant encoding scheme, the memory consumption is

104 Chapter 5. Efficient Data Encoding of Mutation and Fault Data on GPUs

 0

 5

 10

 15

 20

b17 b17_1 b18 b20 b21 b22

R
u
n
 T

im
e
 (

s
e
c
)

Benchmarks

(a) Single Mutant Gate Encoding

1000 Mutants

2000 Mutants

3000 Mutants

4000 Mutants

5000 Mutants

 0

 5

 10

 15

 20

b17 b17_1 b18 b20 b21 b22

R
u
n
 T

im
e
 (

s
e
c
)

Benchmarks

(b) Multiple Mutant Gate Encoding

1000 Mutants

2000 Mutants

3000 Mutants

4000 Mutants

5000 Mutants

Figure 5.7: Run-times of µ-GSIM for Different Mutant Encoding
Techniques

reduced by 60% for circuits b17 and b22. The largest decrease in memory consumption
was observed in b18 where we reduced the memory foot print for storing the mutated
circuits by 400% (2172.7−434.5

434.5). This is due to the fact that we were able to assign
multiple mutants within a mutant stream and have its detectability data assigned
over the 32-bit computer word.

Most benchmarks experienced an increase in the number of work-items (wimax)
that can be launched onto the GPU. Reducing the memory usage for storing the mu-
tated circuits (MMS) has allowed our algorithm to allocate more work-items, thereby
allowing more mutant streams to be simulated concurrently. For instance, circuits
b17_1, b20 and b21 observed an increase in the number of work-items by as much
as 2.5× compared to when using single mutant encoding. This goes to show that
memory efficiency is key for potentially increasing the performance for applications
running on the GPU.

Circuit b18 did not have any increase in the number of work-items. Due to its
large size, the memory consumption for storing the intermediate values exceeds the
available capacity of the GPU’s device memory,Mgpu. Decreasing the number of work-
items below 1024 would not provide any performance gains as not all resources of the
GPC are effectively utilized. We should note that the total memory consumption
(Mtot) has decreased significantly by 150% when using our multiple mutant encoding
scheme, which helps to reduce the amount of CPU to GPU transfers required during
simulation.

5.2. µ-GSIM Overview 105

5.2.5.2 Run-time Comparison with Different Mutant Encodings

Figure 5.7 shows the run-time comparisons when employing the SMG and MMG
mutant encoding schemes. Each measured run-time for every benchmark was based
on the number of injected mutations as indicated in the graphs. We see that the run-
times are reduced when employing the MMG encoding technique, which was able to
achieve a speed-up of more than 2.5× compared to the SMG encoding. Additionally,
the allocation of more work-items onto the GPU also help with masking the high
latencies involved in accessing the GPU’s device memory.

We also observe that when increasing the number of mutations, the run-times for
every benchmark remain consistent for the MMG encoding technique. This is due to
the fact that the number of work-items that were launched onto the GPU is sufficient
for simulating the entire set of mutant streams concurrently. For the SMG encoding,
the run-times increase when injecting 5000 mutations into the circuit. This occurs
because the computed maximum number of work-items (wimax) was less than the size
of the mutant stream set (wimax < |MS|). Thus, reducing the amount of concurrent
mutant streams that are being simulated and requiring an additional execution of the
simulation kernel.

For circuit b18, the SMG run-times increase with each successive number of in-
jected mutations. This is caused by the additional data communication that is re-
quired between the host and the GPU since the mapped data (Mtot) exceeds the
GPU’s device memory capacity. Using the MMG encoding allows the benchmark to
reduce its memory consumption for storing the mutated circuit data and requiring
the same number of data memory transfers between the host and the GPU. This goes
to show that efficient memory utilization is key for improving the overall performance
of the simulation kernel.

5.2.5.3 Run-time Comparison Against Commercial Tool

Table 5.2 compares the run-times of µ-GSIM with a commercial tool (shown as
Comm. Tool) that was used for simulating different sets of mutated circuits, whereas
Table 5.3 shows the attained speed-ups. A direct comparison to the other GPU logic
and fault simulation tools is not feasible due to our platform being significantly more
advanced than the ones indicated in the literature; however, the achieved memory
savings from our multiple mutant encoding scheme was able to increase the perfor-
mance of our simulation kernel which was shown in the previous section. The first
column lists the benchmark. Columns 2 through 6 lists the run-times of µ-GSIM

106 Chapter 5. Efficient Data Encoding of Mutation and Fault Data on GPUs

Table 5.2: Performance Analysis of µ-GSIM with Commercial Tool

Ckt.
Run-Time for µ-GSIM Run-Time for Comm. Tool

Injected Mutants Injected Mutants
1000 2000 3000 4000 5000 1000 2000 3000 4000 5000

b17 2.31 2.39 2.32 2.38 2.32 219.5 429.7 860.9 1149.5 1430.3
b171 1.62 1.57 1.53 1.57 1.63 214.6 524.3 887.4 1134.1 1347.1
b18 8.98 9.00 9.01 8.99 9.01 932.2 1851.6 2309.2 2862.3 3602.8
b20 0.76 0.76 0.76 0.76 0.76 266.3 579.7 864.7 1149.3 1418.8
b21 0.76 0.77 0.76 0.78 0.76 285.3 578.6 850.5 1135.5 1280.5
b22 2.22 2.22 2.23 2.22 2.22 280.1 505.4 623.0 948.8 1152.9

∗Using MMGate Encoding, Reported run-times are in seconds

Table 5.3: Attained Speed-Ups for µ-GSIM

Speed-Ups (×) for µ-GSIM vs. Comm. Tool

Ckt. Injected Mutants
1000 2000 3000 4000 5000

b17 94.9 179.8 370.8 482.0 616.6
b171 132.3 334.2 579.5 724.1 828.7
b18 103.8 205.7 256.2 318.2 400.0
b20 349.6 762.5 1134.7 1506.2 1863.0
b21 374.0 752.2 1115.3 1462.5 1678.5
b22 126.2 227.9 279.7 428.0 518.3

for using the MMG encoding technique for the different number of injected mutants.
As shown in Table 5.3, columns 2 through 6 lists the attained speed-ups against the
commercial tool.

As we increase the number of mutations, the run-times for µ-GSIM remains virtu-
ally constant due to the fact there were a sufficient number of work-items launched on
the GPU for concurrently simulating the entire set of mutant streams. The commer-
cial tool experienced an increase in run-time for each successive injection of mutants
by as much as 6× when increasing the number of mutants from 1000 and 5000. This
shows that the simulation time required by the commercial tool is dependent on the
number of mutated circuits that are simulated in a serial manner, whereas µ-GSIM
simulates them in parallel.

We also observe that injecting 1000 mutations into the circuit yields a significant
speed-up with our GPU tool. Additionally, the µ-GSIM run-times are visibly smaller
compared to the commercial tool when simulating 5000 mutated circuits. The run-
times ranged from twenty minutes to one hour whereas µ-GSIM required less than ten

5.2. µ-GSIM Overview 107

seconds when looking into the largest circuit (b18). Uncovering the data independency
of mutation testing, along with the proper memory consumption and mapping of
mutation data, and leveraging the wealth of computational power of GPUs enables
the evaluation of test sets in the least amount of time. This is favourable for large
industrial circuits containing a plethora of test data.

108 Chapter 5. Efficient Data Encoding of Mutation and Fault Data on GPUs

Overflow?

wimax

More Data?

Transfer Data Host→GPU

Transfer Data GPU→Host

Circuit
Netlist

O
n

G
PU

No

NoYes

Yes

Figure 5.8: Overview of GS-SIM

5.3 GS-SIM Overview

This section presents GS-SIM which is based on the work of µ-GSIM that was pre-
sented in the last section. GS-SIM uses a similar encoding technique that encodes
gate and fault data over the GPU’s computer word.

Fault simulation requires a certain level of data dependency, which can pose a
challenge in generating a data parallel representation of the circuit. We leverage the
inherent bit parallelism of GPUs where we use the entire length of the computer
word for representing the combined gate-fault and fault detectability data. Figure
5.8 shows the overview of our proposed GS-SIM simulator tool. The host program
is responsible for generating the gate stream data, GPU device memory initialization
and launching the simulation kernel. The GPU is responsible for fault simulating a
set of gate streams concurrently, shown in the shaded box.

Many key factors must be exploited so that compute intensive applications (writ-
ten either in OpenCL or CUDA) running on the GPU can achieve improved run-time
performance [41]. One of them is to ensure all threads (work-items) access the GPU’s
device memory in a coalesced fashion, whereby multiple read and write accesses can
be fulfilled by a single transaction. Threads within a warp (a group of 32 threads)
must execute the same sequence of instructions so that branch divergence can be
avoided. Lastly, threads should make effective use of the local memory available
within the Graphics Processing Cluster (GPC) [39] for reducing the access latencies

5.3. GS-SIM Overview 109

O0 O1 O2 O3

g1

I0 I1 I2 I3 I4 I5

1 2

3 4 5

6 7

g2

g3

g4

g5

g6

g7

Figure 5.9: Combinational Circuit to Gate Stream Representation

to device memory. GS-SIM exploits all of these key factors in order to leverage the
wealth of computer power of GPUs. We use the OpenCL programming language [40]
so that our fault simulator is able to target other GPU architectures. The constructs
and the execution model are similar to the CUDA C programming language [30] in
which this was presented from Section 2.3.1.

5.3.1 Gate Stream Generation and MFG Encoding

GS-SIM uses the concept of gate streams, which is illustrated in Figure 5.9. This
concept is similar to the one used in µ-GSIM for simulating multiple mutated circuits.
Figure 5.9(a) depicts the circuit’s gate-level netlist containing combinational logic
elements. After applying the As Soon As Possible scheduling algorithm to the circuit,
the set of gates from each time step is transformed into an array, as shown in Figure
5.9(b). We define this representation as a gate stream, gsi, which is a one dimensional
array of logic gates containing multiple stuck-at-fault gates, ḡk. Each stuck-at fault
gate contains a set of collapsed stuck-at faults, Fk, where each fault fj ∈ Fk is
either stuck-at-0 or stuck-at-1. The shaded nets starting from ḡ2 depict the path for
propagating the faults to the primary outputs O1, O2 and O3.

The intention of the gate stream representation is to encode as many stuck-at
fault gates in gsi as possible so that a single work-item can simulate up to 31 faults.
In the example, there are two fault gates, namely ḡ2 and ḡ7, as seen in Figure 5.9(a).
They are represented by a 16-bit data word that is shown in Figure 5.10(a). The first

110 Chapter 5. Efficient Data Encoding of Mutation and Fault Data on GPUs

(a) 16-bit Gate-Fault Data Encoding

0931 ...

(b) 32-bit Detected Data

f1f2f3f4f5f1f2f3f4f5
8 7 6 5 4 3 2 1

g7 detection g2 detection
Fault-free

Value

0910

FI
1415

0011000000000001

1 100 0 1 0011000000

g2

g7

SDB Gate Type
Bit Number:

Bit Number:

Figure 5.10: Gate-Fault and Detected Data Representation

10 bits of the word stores the gate type. A Fault Injection control flag, FI, is used
for identifying a stuck-at fault gate ḡk where the simulation kernel inserts the set of
stuck-at faults, Fk. The Shift Detection Bits (shown as SDB) specify the number of
left shifts for appropriately inserting the stuck-at faults over the 32-bit word during
simulation. This value can range from 0 to 30 while leaving bit 31 as the fault-free
value, which is used for computing the number of detected faults. As seen in the
figure, ḡ2 and ḡ7 are the same gate type and both contain a set of faults causing
their FI control flags set at logic-1. Without compromising the fault detection data
during simulation, their shifted detection bits are set to 0 and 5 respectively. In the
32-bit detected word, ḡ2 faults are assigned to bits 0 through 4 whereas ḡ7 faults are
assigned to bits 5 through 9, as shown in Figure 5.10(b). This encoding scheme can
be expanded over a 32-bit data type if we use a 64-bit data variable for detecting
faults or the number of gate types is greater than 1023.

5.3.2 Gate Stream Simulation of GS-SIM

The principle operation of a single work-item on the GPU is to perform fault simu-
lation by leveraging several parallelism factors encoded within a single gate stream.
Figure 5.11 outlines the different levels of parallelism that were achieved. First, we
have exploited gate parallelism where every work-item is concurrently simulating the
same set of gates and synchronizes at the end of each gate evaluation, which ensures

5.3. GS-SIM Overview 111

g1

Sync

Sync

Sync

Sync

Sync
gs0 gs1 gs63

wi0 wi1 wi63

AND

AND

AND

OR

S
am

e
G

at
e

Ty
pe

 E
va

lu
at

io
n

Gate Parallelism

Fault
Parallelism

Pattern Parallelism

g2

g3

gn

g2 g2

g1 g1

g3 g3

gn gn

Si
m

ul
at

io
n

Pr
og

re
ss

Figure 5.11: Exploited Parallelism Factors within 64 Gate Streams

that no divergent execution can occur. Second, fault parallelism was achieved because
every work-item is fault simulating a unique set of stuck-at fault gates within a gate
stream. Third, pattern parallelism was fulfilled by having every work-item simulate
the same set of tests independently. Combining these levels of parallelism has enabled
a group of 64 work-items (one work-item per gate stream) to fault simulate up to 1984
different stuck-at faults concurrently.

Algorithm 5.4 describes our proposed gate stream simulation kernel that is ex-
ecuted by every work-item on the GPU. The inputs to the kernel function are the
generated gate stream data (GS), an array (nets) used for storing primary input, in-
termediate and primary output values during fault simulation and the detected fault
data (detected). The input and output data are accessed through the GPU’s device
memory. The algorithm is a two phased approach.

At the beginning of the first phase, the gate_stream_sim kernel function retrieves
the appropriate offset values which are accessible through the built-in OpenCL func-
tions get_global_size(0) and get_global_id(0). The index (0) returns the one di-
mensional ID value of the work-item. These offsets are used to compute the effective

112 Chapter 5. Efficient Data Encoding of Mutation and Fault Data on GPUs

Algorithm 5.4 Gate Stream Simulation Kernel
FUNCTION: gate_stream_sim
Input: Gate Stream Set (GS), Intermediate values (nets, Detected array
(detected)

/* Retrieve gs offset values */
numwi ← get_global_size(0), wiid ← get_global_id(0)
det_local← 0 // Detected Fault Data
gsi ← GS[wiid] // Retrieved Gate Stream

/* Retrieve gate-fault data gk, then fault simulate */
for all gk ∈ gsi do
gf_data ← gsi[gk × num_wi + wid]
gf_sim (gf_data, nets)

/* Compute Detected Data */
for all output ports p of gsi do
t← net31& 0xFFFFFFFF | (1− net31)& 0x00000000
out← p× numwi + wiid
det_local |= t⊕ nets[out]

address in GS so that every work-item accesses data from the GPU’s device memory
in a coalesced fashion. The variable, det_local, is used for storing the 32-bit detected
data type in local memory of the GPC. This helps to reduce the number of read
and write accesses to the device memory, because the detected data is continuously
updated at the completion of a simulation run for a set of tests.

The variable gf_data stores the encoded 16-bit gate-fault data, and its state is
determined by the function gf_sim. This function decodes the 16-bit variable for
retrieving the gate type (gate_type), the fault injection (FI) control flag, and the
shifted detection bit (SDB). Then, the appropriate gate evaluation function is called
based on the gate type. After all the gates are evaluated within the gate stream gsi,
the algorithm proceeds to compute the number of faults detected. This is done by
retrieving the fault free value (bit 31) of nets which gets expanded over a 32-bit word
and stored into the variable t. Then, performing a logical xor operation such that
the propagated fault can be detected at the circuit’s outputs.

The second phase of the algorithm is to perform fault simulation of a logic gate
using the appropriate gate evaluation function. An evaluation function is defined for
every gate type that is supported in the gate library. For instance, the 10-bit coded
gate_type 0000000100 represents a two input and-gate. The gf_sim function calls the

5.3. GS-SIM Overview 113

Algorithm 5.5 Evaluation Function for Two Input and-gate
FUNCTION: fsim_and2
Input: Input net addresses (in1, in2), Output address (out), nets, FI, SDB

SA0_mask ← LHS (SDB) of 0x01
SA1_mask ← LHS (SDB + 3) of 0x0E

/* If FI = 1 insert faults, otherwise no faults inserted */
SA0 ← 0xFFFFFFFF × (1-FI) | SA0_mask × FI
SA1 ← 0x00000000 × (1-FI) | SA1_mask × FI
in1_addr ← in1× numwi + wiid, v1 ← nets[in1_addr]
in2_addr ← in2× numwi + wiid, v2 ← nets[in2_addr]

/* Gate Evaluation */
out_addr ← out× num_wi+ wiid
nets[out_addr] ← ((v1 & v2) & (!SA0)) | SA1

evaluation function fsim_and2, which is shown in Algorithm 5.5. Evaluation functions
for other gate types are similar.

Every gate evaluation function computes the fault-free value and the fault masks
for injecting stuck-at faults. This eliminates the need for executing different kernel
functions for computing the fault-free values and propagating the stuck-at faults
separately. At the beginning of the evaluation function, the stuck-at-0 and stuck-at-1
fault masks are generated. The and2-gate type function generates the stuck-at fault
masks by using the hard coded values 0x01 and 0x0E, representing stuck-at-0 and
stuck-at-1 faults respectively. Each fault mask performs a left-hand shift (LHS) of
SDB bits, which appropriately inserts the set of faults over the 32-bit word without
compromising the fault data from other stuck-at fault gates. Every stuck-at fault gate
ḡk ∈ gsi will always have its faults inserted into the intermediate values as determined
by the FI control flag. If the value of FI is 1, the faults are appropriately encoded
over the 32-bit data word SA0 and SA1, otherwise the fault-free masks are used.

Finally, the gate evaluation function will use the established input values for com-
puting the output. Symbols v1 and v2 are the input values to the two input and-gate,
followed by the logical and and or of the SA0 and SA1 values, which depict the in-
sertion of the stuck-at-0 and stuck-at-1 faults respectively. Results are stored into the
intermediate values array, nets, indexed in a manner such that the work-items write
the results to the GPU’s device memory in a coalesced fashion.

114 Chapter 5. Efficient Data Encoding of Mutation and Fault Data on GPUs

5.3.3 Maximum Work-item Configuration and Scalability

Determining the maximum number of work-items to deploy on the GPU depends
on the available memory remaining (Mrem) in bytes after the gate stream data has
been generated. The formulations that are presented in this section are based on the
computations that were presented in Section 5.2.4 for the µ-GSIM tool. We define
Mtot as the total memory in bytes that is required for simulating the entire set of gate
streams:

Mtot = MGS +Mnets (5.6)

where Mnets is the memory for storing the intermediate values.
The required gate stream memory, MGS, is defined by:

MGS = (|gs| × |GS|)× sizeof(gf_data) (5.7)

where |gs| represents the length of a gate stream in terms of the number of logic
gates. Lastly, we multiply by the byte size of the 16-bit data word.

Based on the memory usage of MGS, we initially compute the raw number of
work-items that can potentially be instantiated as:

wiraw = Mrem

Mint
, with Mrem = Mgpu −MGS (5.8)

where Mint is the number of bytes used for storing the intermediate values in every
gate stream; however, we require that the number of work-items be a multiple of 1024
so that each GPC can have at least 128 work-items. Thus, from wiraw we derive the
maximum number of work-items with:

wimax = 1024× n, with n = bwiraw/1024c (5.9)

We chose the floor operator when computing n so that the memory allocated for
Mnets along with the gate stream data, MGS, does not exceed the memory available
provided by the GPU, Mgpu.

The computed maximum number of work-items affects how the gate stream data
is mapped and simulated on the GPU. Different scenarios are shown in Figure 5.12.
The host program aims to allocate as many work-items as possible so the entire set of
gate streams can be simulated concurrently. This occurs when wimax ≥ |GS| whereby
each work-item is simulating a gate stream. Padding of the memory is needed in order
to align the gate stream data to the number of work-items deployed. When the size of

5.3. GS-SIM Overview 115

P
ad

di
ng

H
os

t-G
P

U

Tr
an

sf
er

K
er

ne
l

Ite
ra

tio
n

H
os

t-G
P

U

Tr
an

sf
er

H
os

t-G
P

U

Tr
an

sf
er

Simulation Time

K
er

ne
l

Ite
ra

tio
n

(K – 1) Additional Iterations

wimax

wimax wimax

wimax wimax wimax

wimax MS

wimax MS

E
nd

 o
f

S
im

ul
at

io
n

E
nd

 o
f

S
im

ul
at

io
n

E
nd

 o
f

S
im

ul
at

io
n

Mtot Mgpu

P
ad

di
ng

Figure 5.12: Gate Stream Data Mapping and Simulation Scenarios

MGS is large, the host program may not allocate enough work-items to concurrently
simulate a set of gate streams. This occurs when wimax < |GS|, thus requiring (K−1)
simulations, where K is defined as:

K =
⌈
|GS|
wimax

⌉
(5.10)

Additional time is therefore required to complete the simulation. When the total
memory greatly exceeds the memory capacity on the GPU (Mtot � Mgpu), the host
program then partitions the gate stream data into P equal sets where each subset of
gate streams is simulated separately. This requires more than one data transfer from
the host to the GPU, which can decrease the overall fault simulation performance.
Thus, it is imperative that the number of partitions be kept low.

The gate stream circuit representation combined with the multiple fault gate
encoding are essential for creating an efficient mapping of the fault simulation data on
a GPU. Our approach aims to allocate as many work-items on the GPU for simulating
as many gate streams concurrently as possible.

5.3.4 Experimental Results of GS-SIM

We evaluated the performance of ourGS-SIM tool against a CPU fault simulation tool
on a set of large circuits from the ITC‘99 benchmark suite [107]. Smaller benchmarks
take negligible time and are not included due to space reasons. Our host (CPU)

116 Chapter 5. Efficient Data Encoding of Mutation and Fault Data on GPUs

Table 5.4: Total Memory Usage and Computed wimax

Circuit Gates Encoding MGS Mnets Mtot wimax(MB) (MB) (MB)

b17 30777 SFG 1806.7 251.5 2058.2 1024
MFG 230.7 628.8 859.5 5120

b17_1 38166 SFG 2778.3 154.4 2932.7 1024
MFG 372.2 463.3 835.5 3072

b18 111241 SFG 3906.6 447.5 4354.1 1024
MFG 563.7 447.5 1011.2 1024

b19 224624 SFG 5786.5 898.5 6684.9 1024
MFG 1041.6 898.5 1940.0 1024

b20 19682 SFG 738.9 157.6 896.5 2048
MFG 269.1 630.4 899.5 8192

b21 20027 SFG 765.0 160.3 925.3 2048
MFG 391.2 561.0 952.2 7168

b22 29162 SFG 1622.1 116.8 1738.8 1024
MFG 398.7 467.1 865.8 4096

platform is a six-core AMD processor running at 3.2GHz with 16GB of memory. The
GPU device is a GTX 560 Ti graphics card containing 8 GPCs, each consisting of
48 processing cores with a core clock speed of 1.7GHz and is equipped with 1GB of
device memory. We used the NVIDIA CUDA SDK 4.2.1, using version 1.1 of the
OpenCL language.

Table 5.4 shows the memory usage and the computed wimax values that can be
launched onto the GPU. For each circuit benchmark, we applied the Single Fault
Gate (SFG) encoding (one stuck-at fault gate per gate stream) and Multi-Fault Gate
(MFG) encoding scheme and set the value of MGPU to 960MB. As seen in the table,
the MFG encoding of the circuits yields a decrease in theMGS memory requirement by
nearly 80%, with an associated increase in the number of work items wimax, implying
that more gate streams can be concurrently simulated. Some circuits do not show an
increase in the number of work-items due to their large size. The gate stream data for
those circuits are partitioned into equal sets where additional host to GPU transfers
are required.

Table 5.5 shows the average run-time comparisons when employing the SFG and
MFG encoding schemes with our GS-SIM tool. We also compare our work to an open
source fault simulator tool, FSIM [108], which ran on the CPU. A direct comparison
to the other GPU fault simulation tools is not feasible due to our GPU hardware being
more advanced than the ones indicated in the literature; however, the memory savings

5.4. Summary 117

Table 5.5: Performance Analysis of GS-SIM

Circuit Run-times (s) Speed-up (×) Speed-up (×)vs FSIM [108]
MFG SFG FSIM MFG SFG MFG vs SFG

b17 0.40 1.50 23.83 60.2 15.9 3.8
b17_1 0.49 1.85 27.09 55.3 14.6 3.8

b18 4.42 11.05 138.97 31.4 12.6 2.5
b19 5.74 14.92 319.00 55.6 21.4 2.6
b20 0.16 0.47 4.98 31.2 10.5 3.0
b21 0.13 0.48 5.56 41.5 11.5 3.6
b22 0.36 1.42 9.49 26.5 6.7 4.0

Average: 43.1 13.3 3.3

achieved can benefit other approaches as our encoding technique is independent of
the GPU architecture. We fault simulated each circuit using 32K (32,768) random
tests and performed ten simulation runs to ensure that the measured run-times are
consistent. The number of work-items launched are based on the computed wimax

values, shown in Table 5.4.
The average run-times from our tool when employing the MFG encoding are visi-

bly reduced compared to the SFG encoding as shown in columns two and three. The
decrease in memory usage has led to an average speed-up of 3.3×, with a maximum
of 4.0× compared to the SFG encoding, as shown in the rightmost column. This is
due to the number of work-items that were launched onto the GPU is sufficient for
simulating the entire set of gate streams concurrently. The large circuit benchmarks
also show a decrease in run-time. This is caused by the reduced memory usage for
storing gate stream data, which in turn leads to a decrease in the number of data
transfers between the host and the GPU.

Both encoding techniques achieve significant performance gains when compared to
FSIM , with average and maximum speed-ups of 43.1× and 60.2× respectively, for the
MFG encoding (column 5). This shows that memory efficiency and the exploitation of
the many parallelism factors of GPUs are key for improving application performance.

5.4 Summary

Graphics processing units are gaining in popularity for parallelizing many forms of
computations, including accelerating simulation algorithms for the validation of dig-
ital circuit designs. One of the challenges is to determine an efficient mapping of the

118 Chapter 5. Efficient Data Encoding of Mutation and Fault Data on GPUs

circuit data so that every work-item can perform its simulation independently. This
chapter proposed two GPU-based tools, namely µ-GSIM and GS-SIM for accelerat-
ing mutation-based and fault simulation algorithms on the GPU. Both of the tools
have leveraged the inherent bit parallelism of GPUs; we showed how to exploit gate,
mutant, fault and pattern parallelism factors within a mutant and gate streams of a
circuit. The novel concepts of the Multiple Mutant Gate (MMG) and Multiple Fault
Gate (MFG) encoding schemes has helped in reducing memory consumption of the
required circuit data, which had a positive impact on the simulation performance in
our proposed simulation tools. The proposed memory encoding techniques we put
forth allowed for larger circuits to be handled, which is essential for validating and
assessing test quality of modern circuit designs.

Chapter 6

Using GPUs for Accelerating
Mutation Testing of Assertions

This chapter presents µDV-GSIM, an accelerated mutation testing GPU framework
for assessing test quality from assertions. The proposed framework is based on µ-
GSIM , which was presented in Section 5.2. Table 6.1 highlights the differences
between µ-GSIM and the proposed µDV-GSIM that is presented in this chapter.
The proposed framework also uses the efficient memory encoding techniques, that
were presented in Chapter 5, for generating an effective data-parallel representations
of multiple mutated designs onto the GPU’s device memory. µDV-GSIM utilizes
assertion-based tests that are encoded over the GPU’s computer word. This enables
one work-item using 32 different assertion-based tests concurrently, which can be
simulated with multiple mutated designs. Secondly, mutations are injected at the
design (RTL) level, and are synthesized into their equivalent gate-level representa-
tion. Finally, by encoding the assertion-based tests, Assertion-Test parallelism was
exploited with µDV-GSIM. The goal of this chapter is to present a novel method for
accelerating mutation testing of assertion-based tests, in the effort for reducing the
computational time. These concepts are presented in the subsequent sections.

Table 6.1: Comparison between µ-GSIM and µDV-GSIM

Category µ-GSIM µDV-GSIM
Applied Tests Random Assertion-based

Data Encoding Type Multiple Mutants Multiple Assertions
Injected Mutant Gate-level RTL-level

Circuit Representation Mutant Stream Circuit Stream
Parallelism Gate, Mutant Gate, Assertion-Test

119

120 Chapter 6. Using GPUs for Accelerating Mutation Testing of Assertions

6.1 Motivation

Mutation testing is a technique that is based on software testing, which is used for
gauging the quality of tests. It can also be used for gauging the quality of assertions,
by having the assertion-based tests simulate multiple mutated designs, each contain-
ing an injected functional fault. At the end of simulating the mutated designs, the
amount of mutations that were undetected (survived) can be used in developing ad-
ditional assertions. This leads to a strengthened set of assertions that is capable of
uncovering other faults.

Mutation testing is computationally expensive, because of the amount of simula-
tion runs that are needed for simulating multiple mutated designs. Additionally, as
designs increase in size and complexity along with their test data, the computational
cost would outweigh the benefits of using this technique for assessing test quality. As
shown from Section 2.2, analyzing the quality of assertion-based tests using mutation
testing can benefit from the massive parallelism provided by GPUs, as also explained
from the GPU architecture in Section 2.3. Since each functional fault (mutant) is
independent of each other, then multiple mutated designs can be simulated concur-
rently, thereby accelerating the mutant simulation process. Furthermore, the set of
assertion-based tests can also be used simulatenaously by all the mutated designs.

In this chapter, µDV-GSIM is presented. This is a GPU-based tool that uses
mutation testing for assessing test quality of assertions. The assertion-based tests
generated from the developed framework in Chapter 3 will be used. µDV-GSIM
attempts to exploit many levels of parallelism so that the tool is able to generate an
efficient mapping of the multiple mutated design data and assertion-based tests in
order to gauge the completeness of a given assertion set. Additionally, the proposed
optimized mapping technique has contributed a speed-up by a factor of up to 2.5×
in additional performance improvements with a speed-up of 10.6× on the largest
benchmark, compared to when having each thread simulate a set of tests from one
assertion.

The contributions brought forth into this chapter are summarized as follows: 1

• A GPU-based simulator was developed for assessing the quality of tests derived
from assertions;

• An encoding scheme was developed which is used for storing multiple mutated
design and assertion test data, which leads to improved simulation performance

1The contents of this chapter is based on the article entitled Using GPUs for Assessing Assertion
Quality

6.2. µDV-GSIM Overview 121

Synthesized
Mutated Circuits

Assertion-based
Test Generation

Map Circuit and
Test Data

Memory
Overflow?

Partition
data

End of Simulation

More Data?

Copy Data to GPU

No

O
n

G
PU

Compute Cpf and
wimax configuration

Circuit Simulation

Copy Data to CPU

Design Under Verification
RTL Code

Launch GPU Kernel

Yes

NoYes

Circuit and Test Data Generation GPU Simulation

Assertions

Mutants
(µ1,...,µk) Inject

Circuit Stream
Generation (MC)

Assertion Test
Encoding (T)

Figure 6.1: µDV-GSIM Framework

on the GPU

6.2 µDV-GSIM Overview

Figure 6.1 shows the overview of the µDV-GSIM framework. µDV-GSIM exploits the
inherent bit parallelism of the GPU where the entire length of the GPU’s computer
word is used for storing multiple assertion-based test data along with the detected
assertion data. Our framework takes in a Design Under Verification (DUV) where
the design is given in Register Transfer Level (RTL) code and a set of assertions that
verifies the correctness of the design. A set of mutants, F, is also provided where
each mutant operator µ depicts a fault at the RTL level. We focus on synthesizable
mutations and using the five key mutants that were defined in [26]. Each mutant, µk,
gets inserted into the RTL code and is synthesized into a gate-level mutated circuit, Ck
, by a synthesis tool. The set variable MC stores the synthesized gate-level circuits:

MC = {C0, C1, C2, ..., Ck}

where C0 represents the reference (mutant-free) circuit. The assertions that are pro-
vided undergo an Assertion-based Test Generation.The defined sequence of events

122 Chapter 6. Using GPUs for Accelerating Mutation Testing of Assertions

from each assertion, φi , gets transformed into a test sequence by our TG tool and
are stored into the set variable, Tφ,i. Each test, tj,i ∈ Tφ,i, contains the appropriately
assigned Boolean values for each defined primary input of the design. The entire set
of the assertion-based tests gets stored into the set variable:

Tφ = {Tφ,0, Tφ,1, ..., Tφ,n}

for all of the n assertions from A.
After generating the set of synthesized mutated circuits MC and the assertion-

based tests Tφ, the next step is to generate an efficient data parallel representation
of the mutated circuit and test data. This is performed during the Circuit Stream
Generation and the Assertion Test Encoding stages of the µDV-GSIM tool. During
these stages, the circuit and test data are effectively duplicated so we can have multi-
ple work-items on the GPU simulating many mutated circuits independently. In the
event of a memory overflow while mapping the circuit and test data, the host program
will partition the set of mutated circuits into equal portions and will then perform a
separate kernel execution call. The second phase is the GPU Simulation, where the
host program determines the maximum number of work-items (wimax), which leads to
computing the Circuit Parallelism Factor (Cpf). These computed values are used for
allocating the work-items on the GPU. In the next sections, we thoroughly describe
these phases.

6.3 Circuit Stream Generation

µDV-GSIM uses the concept of circuit streams for simulating multiple synthesized
mutated circuits on the GPU. A circuit stream, defined as ci,k | i = 0, 1, 2, ..., ns,
where ns represents the number of circuit streams inside each Ck. Each circuit stream
ci,k depicts a one dimensional array of logic gates (g ∈ ci,k) that are arranged in a
particular order so that their input and output dependencies are satisfied. Figure
6.2(a) shows an example of a levelized mutated circuit netlist, C1. After applying the
As Soon As Possible scheduling algorithm to the circuit, the set of gates from each time
step gets transformed into a data-parallel arrangement, as shown in Figure 6.2(b).
Each labelled node depicts a specific gate inside the circuit. The Multiple Circuit
Stream representation for the synthesized mutated circuit C1 enables every work-item
to evaluate the same gate types in a lockstep manner. This prevents any divergent
execution to occur within a warp of work-items, which is one of the key factors when

6.3. Circuit Stream Generation 123

Time
Step 1

Time
Step 2

Time
Step 3

g5

g6g2

g1

g3 O0

O1

O2

I0

I1
I2

I3
I4

g1

g2

g3

g4

g5

g6

g4

Ti
m

e
S

te
p

1

(a) Levelized Circuit

g1

g2

g3

g4

g5

g6

g1

g2

g3

g4

g5

g6

. . .

. . .

. . .

. . .
Sync

Sync

Sync

Sync

Sync

Sync

AND

OR

AND

OR

OR

AND

Ti
m

e
S

te
p

2
Ti

m
e

S
te

p
3

(b) Multiple Circuit Stream Representation

c0,0 c1,0 cn,0

Data-Parallel Circuit C1Circuit C1

S
am

e
G

at
e

Ty
pe

 E
va

lu
at

io
n

W
ith

in
 a

 W
ar

p

wi0 wi1 win

Figure 6.2: Circuit Stream Representation

programming GPUs. Work-items are assigned to a particular circuit stream that
is based on its indexing value. Additionally, each circuit stream is assigned to a
particular set of tests so that every work-item is simulating a circuit using different
tests independently. The multiple circuit stream representation is also applied to
every synthesized mutated circuits Ck ∈MC.

Circuit streams employed by µDV-GSIM differ from the previous mutant and
gate streams that were used in µ-GSIM and GS-SIM respectively. In both of those
approaches use a single gate-level netlist for generating an efficient data parallel rep-
resentation while every mutant and manufacturing fault was injected at the gate-
level. Since µDV-GSIM simulates synthesized mutated circuits where the mutant µk
is injected at a higher level of abstraction (RTL level), then every circuit Ck can
potentially have different circuit structures with each other. This is caused by the
gate-level optimizations that were performed by the synthesis tool. Circuit streams
belonging to different mutated circuits (ci,a, ci,b | a 6= b) will have different gate types
at every position in the array (gi,a 6= gi,b). To ensure that every warp of work-items
evaluate the same circuit structure in terms of their gate types, the assigned number
of work-items per synthesized circuit should be a multiple of 32. This implies that
the number of circuit streams ns in every synthesized circuit Ck must be a multiple
of 32 (ns mod 32 = 0).

The value of ns is dependent on the number of assertion-based tests in Tφ. For
instance, if each work-item simulates a single subset of tests Tφ,i from assertion φi,

124 Chapter 6. Using GPUs for Accelerating Mutation Testing of Assertions

1 1
ϕ0

I0

I1

I2

1 1 1

1 1

ϕ1ϕ2ϕ31ϕ30

1 1 I0

0

1

I1

I2

T 0
T 1

P
rim

ar
y

In
pu

ts

wi0

ϕ0ϕ1ϕ2ϕ3ϕ31ϕ30
c0,10

i0,0

i1,0

i2,0

i0,1

i1,1

i2,1

Figure 6.3: Multiple Assertions Encoding

then the minimum number of circuit streams per circuit is |A|; however, since each
subset of tests are independent of each other while the synthesized mutated circuit
is decomposed into their individual bit members, then the GPU’s computer word is
leveraged for encoding multiple subset of tests that can be used by a single work-
item. This can significantly reduce the required number of streams to its minimum
value of 32. In the next section, the proposed encoding technique, namely Multiple
Assertions Encoding, that describes how the tests are stored over the length of the
GPU’s computer word.

6.4 Multiple Assertion Encoding (MAE)

Every work-item wii on the GPU will evaluate a circuit stream ci,k belonging to a
respective circuit, Ck. Additionally, each circuit Ck will have work-items applying
their assigned test sequences that were generated from assertions, which implies one
work-item is simulating a set of tests that was derived from an assertion φi. For
example, work-item wi0 can be simulating circuit stream c0,4 that belongs to circuit
C4, while applying test sequences that were derived from assertion φ0. Since the
synthesis tool decomposes every logic element into their individual bit members, then

6.4. Multiple Assertion Encoding (MAE) 125

the GPU’s 32-bit computer word is used for assigning different Boolean logic test
values at specific bit positions for every primary input. This enables one work-item
to simulate tests from 32 different assertions. Thus, creating the potential of having
up to 1024 different assertion-based tests with a circuit containing 32 circuit streams
(32 assertions per work-item × 32 work-items per circuit). This concept is defined
as the Multiple Assertion Encoding (MAE) which is a technique for reducing the
number of streams ns to its minimum value while also being able to simulate as many
assertions concurrently as possible.

Figure 6.3 shows an example of the MAE concept that is used in µDV-GSIM for
encoding multiple assertion-based tests. During the Assertion Tests Encoding stage,
the generated set of tests has their individual bit members encoded over a 32-bit
word. For instance, consider the subset of assertions that are defined below where
the signals references the primary inputs of the circuit :
φ0: I0 && I1 |=> I2

φ1: I1 && I2 |=> I0

φ2: I0 && I1 && I2 |=> I0 && !I1

The assertion-based test generator will take in those assertions and generate the
necessary test sequences by assigning the appropriate Boolean logic values. It is
assumed that a value of logic-0 is assigned when a signal condition is not explicitly
defined in the assertion. Then, the MAE encoding scheme will transform those tests
and appropriately assign logic values at specific bit positions over the entire 32-bit
word, as depicted in Figure 6.3(a). Each input test sequence Ts has a corresponding
set of test packets ip,s where packet ip belongs to test, Ts. The number of input packets
per test is equal to the number of primary input ports of the circuit.

Every assertion is assigned to a bit position over the 32-bit word. Assigning
their corresponding Boolean logic values are determined by the specified signalling
conditions of the assertion. For example, assertion φ2 is assigned at bit position 2
of the 32-bit word. The first input test sequence (T0) requires signals I0, I1 and I2

be at logic-1. Consequently, a logic-1 is assigned at bit position 2 for test packets
i0,0 through i2,0 belonging to input test, T0. This is indicated by the blue text in the
figure.

Due to every assertion having the non-overlapping operator (|=>), a next test is
created, which is T1. In the consequent portion of assertion φ2, the input signals I0

and I1 is required to be at logic-1 and logic-0 respectively. This is indicated in the
input test packet i0,1 and i2,1 at bit position 2.

Figure 6.3(b) shows the 32-bit word that stores the detected assertion data for

126 Chapter 6. Using GPUs for Accelerating Mutation Testing of Assertions

work-item, wi0. Each bit position corresponds to the assigned assertion φi. When the
test set Tφ,b causes the mutated circuit Ck to produce an output that differs from the
reference design, then assertion φb is said to have detected the mutant µk. Then, the
corresponding assigned detection bit b for the assertion in detected the mutant, φb,
is set to logic-1. This implies that the assertion is able to detect the injected mutant.
Otherwise, leaving the assigned detected bit at logic-0.

It is noted that the above MAE example shows the test encoding for work-item
wi0. This concept also applies for other work-items where work-item wi1 is using
tests derived from assertions φ32 through φ63, and so forth. For ns = 32, then each
synthesized circuit Ck can simulate up to 1024 assertions concurrently. When the
assertion set is greater than 1024, then the host program will increase the number of
circuit streams by a factor of 32, thereby each circuit will contain 64 circuit streams
and can simulate using 2048 assertions.

The mutated circuit stream approach along with the multiple assertion encoding
scheme presented in this section will now be used for simulating multiple mutated
circuits on the GPU. The next section describes the GPU simulation phase of the
µDV-GSIM.

6.5 Circuit Stream Simulation

In this section, the description of the proposed GPU circuit simulator is presented for
assessing test quality from assertions on multiple synthesized mutated circuits.

6.5.1 Simulation Kernel

Figure 6.4 shows one of the memory organizations for mapping 32 circuits inside
the GPU’s device memory. The primary function for each work-item on the GPU
is to perform logic simulation on the mutant and mutant-free (C0) circuits using
their assigned assertion-based tests. As seen in the figure, several parallelism factors
have been achieved from the transformed data-parallel representation of the mutated
circuit and test data. First, gate-level parallelism was exploited, where each mutated
circuit containing 32 circuit streams (ns = 32) and are being simulated by 32 work-
items. Each group of work-items in every circuit will evaluate the same gate-type and
synchronizes at the end of each evaluation. This ensures that every warp of work-
items on the GPU will have the same instruction flow, thereby avoiding divergent
execution. Second, mutant parallelism was exploited because in each set of 32 circuit

6.5. Circuit Stream Simulation 127

g1

g2

g3

g4

gn

g1

g2

g3

g4

gn

g1

g2

g3

g4

gn

. . .

. . .

. . .

. . .

c0,0 c1,0 cn,0

C0

wi0 wi1 win

. .
 .

. .
 .

. .
 .

g1

g2

g3

g4

gn

g1

g2

g3

g4

gn

g1

g2

g3

g4

gn

. . .

. . .

. . .

. . .

c0,1 c1,1 cn,1

C1

wi0 wi1 win
. .

 .

. .
 .

. .
 .

g1

g2

g3

g4

gn

g1

g2

g3

g4

gn

g1

g2

g3

g4

gn

. . .

. . .

. . .

. . .

c0,31 c1,31 cn,31

C31

wi0 wi1 win

. .
 .

. .
 .

. .
 .

Circuit Parallelism

Reference Circuit Mutated Circuit Mutated Circuit

Gate-level Parallelism

Assertion
Tests

Parallelism

Figure 6.4: Parallelism Factors

streams (excluding the reference circuit C0) contains a distinctive synthesized mutant
and are simulated independently. Third, assertion tests parallelism was fulfilled where
each work-item is using its assigned tests that are applied to the circuit’s primary
inputs.

Algorithm 6.1 shows the proposed simulation kernel that operates on a circuit
stream belonging to a synthesized circuit, Ck. This algorithm is similar to the ones
that are shown in the µ-GSIM and the GS-SIM GPU simulators. The inputs to
the kernel function are the generated circuit stream data (CS), an intermediate value
array (nets) for storing the input and output values for every logic gate and sequential
elements (flip-flops), the detected assertion data (detected) and the encoded test data
stored (Ts). These are accessed through the GPU’s device memory and are accessed
in a coalesced manner. The variable ns is a constant variable indicating the number
of circuit streams in every circuit, Ck.

At the beginning of the algorithm, the kernel retrieves the appropriate offset values
which are accessible through the built-in OpenCL kernel functions, get_global_size(0),
get_global_id(0) and get_local_id(0). The index parameter (0) returns the one
dimensional ID value of the work-item. The global work size and ID values are used
for accessing the circuit stream data and the intermediate values in a coalesced fash-
ion, whereas the local ID is used for retrieving the encoded test data and computing
the detected assertion data. Using the appropriate offset values, the kernel retrieves

128 Chapter 6. Using GPUs for Accelerating Mutation Testing of Assertions

Algorithm 6.1 Circuit Stream Simulation Kernel
FUNCTION: circuit_stream_sim
Input: Circuit Stream Set (CS), Intermediate values (nets), Detected array
(detected), Tests (Ts), Streams Per Circuit (ns)

/* Initialize Variables*/
numwi ← get_global_size(0) // Total Num Work-items
wigid ← get_global_id(0) // Global Work-item ID
wilid ← get_local_id(0) // Local Work-item ID
det_local← 0x00000000 // Detected data
ci,j ← CS[wigid] // Circuit Stream

for all ip,s ∈ Ts do

/* Initialize Input Ports with Test Packets */
for all input ports p ∈ ci,k do
nets[p ×numwi + wiid] = ip,s

/* Update Sequential Elements */
for all Present state nets ∈ ci,k do
Transfer Next State nets ∈ ci,k to Present State nets

for all logic gates gj ∈ ci,k do
/* Pass gate type to gate_sim kernel */
gate_type← gj
gate_sim (gate_type)

/* Compute Detected Data */
for all output ports p of ci,k do
ref ← nets[p× numwi + wilid // Reference Circuit Output
det_local |= (nets[p× numwi + wiid]⊕ ref)

/* Store Detected Data to Device Memory */
detected[wiid]← det_local

the circuit stream data and stores it into the variable, ci,k where i is the work-item
local ID and k is the appropriate offset for accessing circuit, Ck. To further reduce
the number of accesses to global memory, the 32-bit detected assertion data is stored
in the GPC’s local memory because the variable det_local is continuously updated
at the completion of simulating every input test sequence, Ts. Additionally, local
memory provides lower access latencies (one clock cycle) compared to global memory
(400-800 clock cycles).

6.5. Circuit Stream Simulation 129

Algorithm 6.2 Gate Evaluation Function for Three Input and-gate
FUNCTION: and3_gate_sim
Input: Input net addresses (in0, in1, in2), Output net address (out)

/* Retrieve Input Values */
in0_v ← nets[numwi × in0 + wiid]
in1_v ← nets[numwi × in1 + wiid]
in2_v ← nets[numwi × in2 + wiid]

/* Compute and Write Output Result to nets */
nets[numwi × out+ wiid]← and(in0, in1, in2)

Each circuit stream in every mutated circuit gets simulated by the assigned
assertion-based tests. Every work-item will use their local IDs for retrieving the
input test packet data so that work-item wi0 will use test packets ip,0 from T0 , then
work-item wi1 will load test packets from T1 and so forth. Test packets are loaded
into the primary input locations in nets. Then, the next state inputs are transferred
to the present state outputs, which depicts the behaviour of the sequential elements
inside the circuit.

For every gate gi inside the circuit stream ci,k, its 16-bit data word is retrieved
then stored into the variable, gate_type. The gate type data is used by the function
gate_sim, which invokes the appropriate gate evaluation function. During this state,
the kernel will then perform logic simulation on all the gates inside the circuit stream.

At the completion of simulating the circuit stream, the detected assertion data is
computed. This is done by using the work-items local ID for retrieving the primary
outputs values from the reference circuit, C0, and stored into the variable, ref . Using
the output values from the mutated circuit along with the reference output values,
then a logical xor operation is performed and its result is stored into local memory
through the variable det_local. Then, the next test (Ts+1) is used for simulation and
repeats until all tests have been simulated.

The function gate_sim was called from Algorithm 6.1, which is used for invoking
the appropriate gate evaluation function. For example, the value of gate_type is
0x000E which is the 16-bit gate code of a three input and-gate. Then, gate_sim

invokes the and3_gate_sim gate evaluation function which is listed in Algorithm 6.2.
Evaluation functions for other gate types are similar to the one presented. Every
gate evaluation function will compute the value of the logic gate’s output based on
the assertion-based tests that are supplied at the primary inputs or the intermediate
values. Since each circuit stream ci,k belonging to a circuit Ck has its set of logic gates

130 Chapter 6. Using GPUs for Accelerating Mutation Testing of Assertions

0 1 2 n

w
i0

w
in

w
i0

w
in

w
i0

w
in

w
i0

w
in

S
am

e
G

at
e-

Ty
pe

 E
va

lu
at

io
n

S
am

e
G

at
e-

Ty
pe

 E
va

lu
at

io
n

Cpf

Figure 6.5: Circuit Parallelism Factor

arranged with the same gate-types in every position of the array, then every work-
item within a warp will execute the same gate evaluation function. Furthermore, with
every work-item accessing the same rows in the nets variable in global memory using
continuous address offset based on their global work ID, then the work-items within
a warp will read from and write to global memory in a coalesced fashion.

6.5.2 Circuit Parallelism Factor and Memory Scalability

Determining the number of synthesized mutated circuits that can be concurrently
simulated on the GPU depends on the maximum number of work-items that can
be deployed. The Circuit Parallelism Factor, defined as Cpf , depicts the number of
circuits that can be simulated within a single iteration of the simulation kernel, as
depicted in Figure 6.5. This value determines the number of kernel iterations that
are needed in order to simulate the entire set of mutated circuits. It is favourable if
this value can exceed, |MC|, so that one kernel iteration is needed to simulate the
entire set of mutated circuits. The CPF value is computed by:

Cpf = wimax
ns

(6.1)

where wimax is the maximum number of work-items that can be allocated on the GPU
and ns is the number of circuit streams for every circuit, Ck. To achieve a high Cpf
value, it is imperative that the number of circuit streams in each circuit Ck be at its
minimum while the host program aims to allocate as many work-items on the GPU
as possible. As described from Section 6.3, the number of circuit streams in every
circuit must be a multiple of 32. Thus, the minimal value of ns should be kept at 32
where possible.

Determining the maximum number of work-items to deploy on the GPU depends
on the available memory remaining after mapping the circuit stream data, CS. Com-

6.5. Circuit Stream Simulation 131

puting wimax is dependent on the memory usage by the circuit stream data MCS and
the amount of bytes for storing the intermediate valuesMint per work-item. The total
memory, Mtot, is the memory required for simulating the entire set of circuit streams
and it is computed by:

Mtot = MCS +Mnets (6.2)

The memory required for storing the circuit stream data of every circuit, MCS is
defined by:

MCS = |ci,k| × ns × |MC| × sizeof(gate_type) (6.3)

where |ci,k| is the length of the circuit stream in terms of the number of logic gates,
ns is the number of circuit streams per circuit and |MC| is the number of synthesized
circuits required for simulation.

Initially, the raw number of work-items is computed as the following:

wiraw = Mrem

Mint
, with Mrem = Mgpu −MCS (6.4)

where Mint is the number of bytes used for storing the intermediate values in every
gate stream; however, it is required that the number of work-items be a factor of
1024 so that there are at least 128 work-items in each Graphics Processing Cluster
(1024 work-items / 8 Graphics Processing Clusters) simulating 4 mutated circuits (if
ns = 32, then 1024 / 32 work-items per circuit = 32 mutated circuits). Thus, from
wiraw, the maximum number of work-items is computed as:

wimax = 1024× n, with n = bwiraw/1024c (6.5)

The floor operator is chosen when computing n so that the memory allocated for
Mnets along with the circuit stream data,MMC, does not exceed the memory available
provided by the GPU (Mgpu).

Computing the maximum number of work-items is limited to the memory con-
sumed by the circuit stream data and the memory required for storing the inter-
mediate values. This directly affects the circuit parallelism factor which determines
the number of circuits that can be simulated concurrently with one kernel iteration,
thereby affecting the overall simulation performance. Figure 6.6 shows the different
data mapping scenarios and the flow of simulation. The host program aims to allocate
as many work-items as possible in order to simulate the entire set of circuitsMC with-

132 Chapter 6. Using GPUs for Accelerating Mutation Testing of Assertions

C0 Cn
...

E
nd

 o
f

S
im

ul
at

io
n

K
er

ne
l

Ite
ra

tio
n

K
er

ne
l

Ite
ra

tio
n

E
nd

 o
f

S
im

ul
at

io
n

C0 Cpf
... C0 Cn

...

C0 Cpf
...

H
os

t-G
P

U

Tr
an

sf
er

C0 Cpf
... C0 Cn

...

E
nd

 o
f

S
im

ul
at

io
n

H
os

t-G
P

U

Tr
an

sf
er

H
os

t-G
P

U

Tr
an

sf
er

Simulation Time

Cpf C|

Cpf C

Mtot > Mgpu

Iteration 0

Iteration 0 Iteration K

Sim 0 Sim 1 Sim P

(1)

(2)

(3)

Figure 6.6: Three Simulation Scenarios

out requiring additional simulation (iteration) runs. This occurs when Cpf ≥ |MC|,
which is shown in Figure 6.6(a) whereby the entire set of MC can be simulated with
one kernel iteration.

When the value of wimax decreases due to the increased memory usage of the circuit
stream data, then the value Cpf decreases. The host program creates a mapping of
the circuit data of the form that is shown in Figure 6.6(b). This occurs when the
circuit stream data consumes a significant amount of memory preventing the host
program from allocating sufficient work-items. The kernel will then evaluate K − 1
additional simulations, where K is defined as:

K =
⌈
|MC|
Cpf

⌉
(6.6)

The additional kernel runs will add to the overall simulation time.
Figure 6.6(c) shows when the total memory Mtot required for simulation greatly

exceeds the memory capacity on the GPU (Mtot � Mgpu). This causes the host
program to partition the set of mutated circuits into P equal sets where each subset
is simulated separately; however, this requires more than one data transfer from the
host to the GPU. Thus, it is essential that the number of partitioned mutant streams
be kept low.

6.6 Experimental Results

This section evaluates the run-time performance of µDV-GSIM. Table 6.2 lists the
characteristics of the chosen designs. Two industrial designs and a PCI controller
from OpenCores [109] were used for evaluating the performance of µDV-GSIM. The

6.6. Experimental Results 133

Table 6.2: Charactistics of Each Design

Design |A| |T | Gates
Indust. 1 67 803 4333

PCI 70 2121 19484
Indust. 2 82 1004 44956

first column shows the design name where the second column lists the number of
assertions that were used (|A|). Each set of assertions was either readily provided
with the design or subsequently written by analyzing the specifications. These designs
were chosen because the assertions were capable of generating a large amount of tests,
where the third column lists the size of test sets that were generated by the TG tool.
The number of gates that is reported by the synthesis tool is shown in the fourth
column.

The experimental platform that was employed to run the simulations consist of a
host running on a six-core AMD processor at 3.2 GHz containing 16GB of memory.
The GPU device is a GTX 560 Ti graphics card which contains 8 GPCs, each consist-
ing of 48 processing cores and a core clock speed of 1.7 GHz. The available on-board
memory is 1 GB with a maximum bandwidth of 128 GB/s. We used the NVIDIA
CUDA SDK 4.2.1 using version 1.1 of the OpenCL language. The host’s processor is
responsible for serially simulating the set of mutated designs using an RTL simulator,
whereas the GPU is used to run the circuit stream kernel for simulating multiple
gate-level circuits concurrently.

To the best of the author’s knowledge, there does not exist a mutation testing tech-
nique on GPUs for the context for assessing assertion quality. A direct comparison to
other GPU-based circuit simulation tools is not feasible, due to the GPU hardware
being more advanced than the ones indicated in the literature. Additionally, the fault
simulation application for each proposed approach was used in the context of manu-
facturing testing, where µDV-GSIM is used for functional verification. Nevertheless,
the memory savings gained from the proposed test data encoding techniques can be
applied to the previous research approaches independently of the GPU architecture.

Achieving optimal performance with the µDV-GSIM simulator is dependent on
the number of work-items that can be instantiated on the GPU. This implies that the
simulation kernel should effectively use the available resources of every GPC. Each
GPC inside the GPU platform consists of 48KB of local memory and 32,768 32-bit
registers and is capable of executing 1536 work-items concurrently. To achieve 100%
GPU work-item occupancy, each work-item limited to 32 bytes of local memory and

134 Chapter 6. Using GPUs for Accelerating Mutation Testing of Assertions

21 registers, allowing sufficient resources for other work-items to use within the GPC.
The developed circuit stream OpenCL kernel consumes 19 registers and 8 bytes of
local memory, thereby the proposed OpenCL implementation is capable in allocating
1536 work-items within a GPC. Since the GPU card contains 8 GPCs, then the
simulation kernel can instantiate up to 12288 work-items. This implies that the
maximum circuit parallelism factor, Cpf that can be achieved is 384 (when ns is
at the minimum required size); however, as explained in Section 6.5.2, the number
of work-items that can be instantiated on the GPU (wimax) is dependent on the
memory consumption of the circuit stream memory. This can affect the overall circuit
parallelism factor.

Prior to executing the simulation kernel on the GPU, the host program computes
the circuit parallelism factors when using two different assertion encoding schemes,
namely Single Assertion Encoding (SAE) and the proposed Multiple Assertion En-
coding (MAE). Each design was injected using 200 synthesizable mutations at the
RTL level. This value was chosen conservatively because the the amount of mutated
circuit data will force the host program to compute the different CPF factors, using
the two different test encoding schemes. Additionally, it will allow µDV-GSIM to
perform circuit simulation using the three different scenarios, as depicted in Figure
6.5, along with comparing the simulation performance.

The SAE encoding will have each work-item simulating one single set of tests
that were generated from one assertion. The proposed MAE encoding generates 32-
bit test packets containing multiple tests which can be simulated concurrently for
each work-item. The intent is to show that these encoding schemes can affect the
number of circuit streams within each circuit Ck, which directly affects the circuit
parallelism factor. For each computed value of Cpf , their values of wimax will be used
for launching the OpenCL kernel on the GPU. From there, a comparison was made
on the run-time between the two encoding schemes. Each design was simulated using
the number of tests that are listed from Table 6.2 for ten execution runs, after which
the run-times are averaged in order to ensure the measurements are consistent.

6.6.1 Circuit Parallelism Factor and Work-item Configura-
tion

Table 6.3 lists the computed circuit parallelism factor for each of the encoding schemes.
The first column (Design) lists the name of the benchmark while the second column
(Encoding) list the encoding technique that was used for generating the circuit stream

6.6. Experimental Results 135

Table 6.3: Computed Circuit Parallelism Factor (Cpf) for 200 Injected
Mutations when using MAE and SAE Encoding

Design Encoding ns
MCS Mnets Mtot wimax Cpf

Sim.
(MB) (MB) (MB) Scene.

Indust. 1 SAE 96 158.7 203.1 361.8 12288 128 2
MAE 32 52.9 203.1 256.0 12288 384 1

PCI SAE 96 713.5 246.5 960.0 6144 64 2
MAE 32 237.8 608.9 846.7 9216 288 1

Indust. 2 SAE 96 1097.6 351.2 1448.8 2048 32 3
MAE 32 548.8 351.2 900.0 2048 64 3

data for 200 injected mutations. The number of circuit streams (ns) per mutated cir-
cuit Ck is listed in the third column. The fourth and fifth columns list the memory
consumed by the circuit stream data (MCS) and the storing of the intermediate values
(Mnets) by every work-item respectively. The total memory (Mtot) shown in the sixth
column is the sum ofMCS andMnets. The computed maximum number of work-items
(wimax) is listed in the seventh column. The value of Mgpu is set at 960MB, where
the remaining memory can be used for storing software drivers used for communicat-
ing with the host. The computed circuit parallelism factor (Cpf) and the simulation
scenarios (indicated as Sim. Scene.) are indicated in the eighth and ninth columns
respectively. The reference for the simulation scenario labellings are defined in Figure
6.5.

As seen in the table, each design had an increase in the number of circuit streams
(ns) when using SAE encoding. The increase is necessary because SAE assigns one
set of tests (Ts) for a work-item operating on one circuit stream. To assign the entire
set of assertion-based tests within a circuit Ck using SAE, then the number of circuit
streams (ns) will increase by multiple factors of 32. For instance, every benchmark
required ns be at 96 in order to allocate their entire set of assertions. We see that
the memory consumed by the circuit stream data for each design is larger when using
SAE. When applying the proposed MAE encoding scheme, the number of circuit
streams has decreased to its minimum size of 32 This is due to the fact that the host
program was able to encode multiple assertion-based tests over the 32-bit computer
word (i.e., wi0 simulates assertion-based tests from assertion φ0–φ31). This helps in
fitting the entire set of assertion-based tests without increasing the number of circuit
streams in every circuit, Ck. Additionally, the memory consumption of the circuit
stream data is reduced by 66% for each benchmark.

Every design experienced an improvement in its computed value of the circuit

136 Chapter 6. Using GPUs for Accelerating Mutation Testing of Assertions

Table 6.4: Performance Analysis of µDV-GSIM vs. RTL Simulator

Design
Average Simulation Speed-up vs Speed-up (×)Run-times (s) RTL Sim (×)
MAE SAE RTL Sim MAE SAE MAE vs SAE

Indust. 1 0.35 0.95 1.70 4.0 1.8 2.2
PCI 3.88 10.38 20.34 5.3 2.0 2.7

Indust. 2 5.11 12.79 54.23 10.6 4.2 2.5
Average: 6.6 2.7 2.5

parallelism factor, Cpf . This was due to the reduction in the number of circuit
streams that were assigned for each circuit, Ck, which allowed for more mutated
circuits to be simulated concurrently. The improvement of the parallelism factor was
also compounded by the increase in the maximum number of work-items, which was
evident with the PCI design. The PCI benchmark had an increase in the number of
work-items (wimax) from 6144 to 9216. This is due to the reduction in the memory
consumption of the circuit stream data, which led to an improvement of the circuit
parallelism factor of 288.

The Indust. 1 and Indust. 2 designs did not experience an increase to the number
of allocated work-items. In Indust 1., the host program has allocated the maximum
work-items that can be instantiated on the GPU platform. The circuit stream memory
of Indust 2. is significantly large and exceeded the available memory on the GPU,
which prevented the host program in allocating additional work-items. Despite the
lack of improvement, the MAE encoding helped in improving the circuit parallelism
factor. The Indust. 1 design was able to simulate its entire set of mutated circuits
within one kernel iteration. In the Indust 2. design, the improvement in the circuit
parallelism factor led to a reduction in the number of data transfers between the host
and GPU. These improvements are reflective of the enhanced run-time performance
of the µDV-GSIM tool, which is discussed in the next section.

6.6.2 Run-time Comparison with Different Assertion Encod-
ings

Table 6.4 shows the average run-time comparisons of µDV-GSIM when employing
the SAE and MAE assertion encoding schemes for each design. We also compared
the performance with an RTL simulator which ran on the host’s processor. The first
column lists the names of the designs. Columns 2 through 4 lists the different run-
times when using µDV-GSIM with the two encoding techniques, and the run-times

6.7. Summary 137

from the RTL simulator (shown as RTL Sim) tool. Columns 5 and 6 shows the
achieved speed-ups against the RTL simulator when µDV-GSIM is employed with
MAE and SAE encoding. Finally, column 7 shows the speed-up improvement when
compared against the two encoding schemes.

The average run-times of the µDV-GSIM tool when employing the MAE encod-
ing are visibly reduced when compared to the SAE encoding. Each design had an
increase in the circuit parallelism factor which has led to an average speed-up of 6.6×,
with a maximum of 10.6× speed-up, when compared to the performance of the RTL
simulator tool. This is due to the fact that the improved circuit parallelism factor
helped in reducing the number of kernel iterations (shown from Figure 6.6) that is
required for simulating the entire set of circuits on the GPU. For instance, the Indust
1. and the PCI designs were able to simulate 200 circuits within one kernel itera-
tion when using the MAE encoding scheme because their achieved circuit parallelism
factors has exceeded the number of circuits required for simulation (Cpf > |MC|
where |MC| = 200). Additionally, the improved value of Cpf for the Indust. 2 design
helped in the run-time on the GPU. This is because that SAE encoding generated
a large amount of circuit data, which required additional transfers between the host
and GPU. The MAE encoding technique reduce the memory consumption, thereby
reducing the number of data transfers during simulation.

The proposed MAE encoding technique was able to reduce the circuit stream
memory, which this was observed for designs containing a large set of assertion-based
tests. As shown in the results, the gained memory savings led to an improvement in
the simulation performance on the GPU. This is very encouraging for designs that are
injected with a large quantity of mutations, for the purpose of rigourously measure
the assertion quality.

6.7 Summary

Mutation testing is a key technique for analyzing the amount of coverage attained
for a set of tests. Mutation testing can also be beneficial for measuring the quality of
assertions that are used for verifying the correctness of a design. In this chapter, µDV-
GSIM tool was introduced, a framework for assessing the quality of assertions using
GPUs. The proposed approach attempts to exploit many levels of parallelism so that
the GPU is able to simulate multiple mutated circuits with different assertion-based
tests concurrently. The proposed Multiple Assertion Encoding generates a compact
mapping of the mutated circuit and test data, while achieving additional simulation

138 Chapter 6. Using GPUs for Accelerating Mutation Testing of Assertions

performance of at least 2.5× compared to when every work-item is simulating a single
set of assertion-based tests. The proposed techniques that was put forth allowed the
handling of larger circuits that contain an abundance of assertions. This is beneficial
in the quest for improving the assertion quality in design verification.

Chapter 7

Conclusions

This chapter summarizes the work that was presented in this thesis, along with some
suggested future work.

7.1 Conclusions

Assertions are continuing to be a prominent force behind functional verification. The
available assertion languages have enabled verification engineers to write assertions
for checking the design’s functional correctness using either static or dynamic ver-
ification methods. The expressive power of the assertion languages has led to the
development of assertions describing complex behaviour to which the design must
conform. This thesis has introduced a variety of methods and algorithms in leverag-
ing the design behaviour expressed in assertions as a valuable source for generating
tests. Additionally, this thesis shows how to assess the test quality from assertions,
which can help in improving the assertion quality.

Dynamic verification is the most predominant method in functionally verifying
the correctness of designs. When assertions are inserted into the design, they are
treated as coverage points. The input stimuli is used for exerting the necessary
conditions within the design in order to cover those assertions. As was shown in this
thesis, using a computable representation of assertions for generating tests, such as
Non-deterministic Finite Automata, can have more than one sequence of events that
can cause an assertion to pass or fail. The proposed coverage metrics brought forth
into this thesis have helped in gauging how thorough the assertion was evaluated.
Additionally, the coverage metrics were then incorporated into the test generator, so
that it gives the ability in generating tests without excluding any sequence of events
within an assertion. It was shown that the developed coverage driven assertion-based

139

140 Chapter 7. Conclusions

test generator produced additional tests that thoroughly evaluates the assertion, while
improving the assertion coverage by as much as 70%. These tests can then be used in
simulation, thereby performing an effective simulation for functionally verifying the
correctness of the design.

Assertions are capable of generating a large amount of test data because the
conditions that were defined in the assertion can use complex temporal sequences
with large repetitions. Reducing the number of assertion-based tests required the
development of a clustering algorithm for grouping assertions and sequences that
contain a certain level of similarity. These similarities were exploited by the two
developed test compaction algorithms. The first test compaction approach was to use
the longest test sequence in the attempt of overlapping shorter sequences, thereby
reducing the number of tests. The second improved approach relied on assigning
multiple events from different assertions within a single functional test. This led to
have one test in potentially satisfying (or falsifying) more than one assertion. Results
showed the second test compaction algorithm yielded favourable test compaction,
by as much as 85% and 70% improvement for compacting good and failing tests
respectively, when compared to the initial attempt. Furthermore, it was empirically
demonstrated that the proposed test compaction algorithms can be easily integrated
with an assertion-based test generator developed by another research team. These
test compaction algorithms visibly reduced the overall test set size by as much as 98%
in some of the benchmarks, which can reduce the applied verification time.

GPU’s are an ideal parallel platform for accelerating simulations of multiple mu-
tated circuits; however, harnessing their raw compute power is dependent on the how
the circuit data is organized and the amount of device memory that is needed for
circuit simulation. This is crucial when performing mutation testing on a large set
of mutated designs, for the purpose of assessing assertion quality. Additionally, the
GPUs limited device memory can pose a challenge when replicating and generating
data-parallel representations of mutated designs. Thus, careful duplication is needed,
which led to the development of a novel data-parallel circuit data generation algo-
rithm. The devised algorithm aims to efficiently use the memory resources that are
available on the GPU. An innovative encoding scheme was devised, where the GPU’s
computer word length was leveraged for exploiting, mutant, gate, fault and test data
parallelism factors. The developed data-parallel generation algorithm combined these
parallelism factors, which enabled an efficient mapping of the multiple mutated and
fault injected circuit data. The efficient encoding scheme has also enabled the devel-
opment of a GPU simulation kernel in OpenCL, where each instance of a kernel is

7.2. Future Work 141

simulating a unique mutated gate-level circuit. Furthermore, the devised mathemat-
ical formulations based on the memory usage of the circuit data, has helped the host
program in computing an optimal work-item configuration for performing circuit sim-
ulation on the GPU. Results show that efficiently generating and duplicating circuit
data has led to a decrease in memory consumption by as much as 80% in some of the
benchmarks. This has led to an improvement in simulation run-time by as much as
5.4× on the GPU, and outperformed a commercial simulator by at least 95×.

The assertion-based test generation framework that was developed, along with the
devised strategy for simulation multiple mutated circuits on the GPU, has allowed for
the assessment of test quality from assertions using mutation testing. The assertion-
based tests are used as input stimuli and are simulated over multiple circuits, where
each contains a unique mutation (functional fault). Assertions are capable of gen-
erating a plethora of tests, which was shown to affect the generation of an efficient
data-parallel representation of the mutated circuits, ultimately affecting simulation
performance. This has led to a novel encoding scheme, where multiple assertion-
based tests are encoded over the GPU’s computer word, with the intent of reducing
the memory usage of the mutated circuit data. It was observed that the 67% memory
reduction improved simulation performance by as much as 10× on the GPU and 54×
compared to an RTL simulator running on the host. This in turn helped in assess-
ing the quality of assertions in negligible time, which is favourable for improving the
quality of assertions.

As designs increase in complexity over time, dynamic simulation will undoubtedly
continue to be the predominant method in verifying the design’s functionality. The
proposed algorithms and developed tools that were presented allow for the generation
of effective test stimuli for dynamic simulation. Combining the effective assertion-
based test generation strategy and a methodology for an accelerated assertion quality
assessment will give verification engineers the means for improving the quality of tests,
thereby performing functional verification using assertion-based dynamic verification
effectively. It is imperative to ensure designs must be error free; however, the contin-
uing rise of design complexity will no doubt bring significant functional verification
challenges on the road to producing error-free designs.

7.2 Future Work

The research performed for generating assertion-based tests and using GPUs for ac-
celerating mutation testing, can be further extended to future projects.

142 Chapter 7. Conclusions

7.2.1 Assertion-based Test Generation

• The test generation strategy that was employed with Airwolf-TG, assumes that
the given assertions reference the primary inputs and outputs. The assume-
guarantee paradigm allowed for this assumption to be valid, thus generating
tests is reduced to the automata traversal tasks, which is then addressed in a
manner suitable for the types of NFA arising in hardware checkers. Assertions
can reference signals inside the design, and this case the test generation by
automata traversal alone does not result in the sequences of primary inputs.
It would be suitable for using the sequences generated by Airwolf-TG with a
model checking tool in order to assign the appropriate Boolean values at the
primary inputs. Because of the known bounds on the sequence lengths, the
bounded model checking approach (such as in [43]) is promising. Towards that
end, incorporating model checkers such as NuSMV, together with MBAC and
Airwolf-TG can yield a highly effective assertion-based test generation strategy.

• The assertion-based tests from Airwolf-TG can be used as test stimuli for func-
tionally verifying designs that are synthesized on a reconfigurable fabric, such
as a FPGA. Nowadays, digital designs have dedicated post-silicon debugging
hardware for capturing certain behaviour of the design during operation. The
assertion-based tests can be used for exerting the necessary conditions of the
synthesized design on the FPGA. This can help to verify the implemented func-
tionality and also assess how thorough the implemented design has satsified the
specification during operation. Additionally, the compacted set of tests using
assertion clustering can also be applied with designs having hardware assertion
clusters as a post-silicon debug infrastructure. Clusters of hardware assertions,
which were described in [66, 65], can benefit from the compacted assertion-based
tests by quickly assessing how well the design was implemented.

7.2.2 GPU Accelerated Mutation Testing

• The work presented in Chapter 6 developed a strategy for accelerating simula-
tions of multiple mutated designs using GPUs, for the context of mutation test-
ing. Commercial and academic tools such as Certitude [110] and Laerte++ [111]
analyze the design along with the set of assertions, for determining which mu-
tation to inject and its location inside the RTL design. This will help the
assertion-based tests to properly target the mutations that are necessary for
activating and propagating the mutated result at the primary outputs. Since

7.2. Future Work 143

those tools are also capable of injecting a large amount of mutations, then
the proposed µDV-GSIM framework can help accelerate simulations of multiple
mutated circuits containing effective mutations and report their coverages in
negligible time.

• The GPU simulation algorithms that were presented operate on gate-level rep-
resentations of digital designs. Even though, the developed algorithms have
successfully exploited many levels of parallelism for designs provided at the
gate-level, RTL simulations can further improve the simulation performance
due to being at a higher level abstraction (such as in [74]). From there, faults
can be injected at the RTL level without having the need for synthesizing each
mutated design into its gate-level representation. This is beneficial for simulat-
ing multiple mutated circuits for assessing assertion quality without the need
for synthesizing the mutated design.

7.2.3 Performance Comparison between CUDA and OpenCL

• The developed GPU simulation kernels shown in Chapters 5 and 6 were writ-
ten in the OpenCL language. Another project is to explore the differences
between CUDA and OpenCL in terms of register usage, local memory usage
and run-time performance. This future work is beneficial in comparing the ad-
vantages and disadvantages between the two popular GPU kernel programming
languages. Typically, designs are synthesized into their gate-level representa-
tions and companies perform gate-level logic or fault simulation in determining
their correctness and the ability to detect manufacturing faults. This work
would be valuable in helping to choose the appropriate GPU kernel language
for accelerating logic and fault simulation algorithms, where gate-level simula-
tions are the most time consuming during the design of VLSI circuits.

Bibliography

[1] H. Foster, Post Silicon Debug Workshop – Design Automation Conference,
2012. [Online]. Available: https://www.research.ibm.com/haifa/images/dac/
Harry_2012-DAC-Post-Silicon-Workshop.pdf

[2] Y. Oddos, K. Morin-Allory, D. Borrione, M. Boulé, and Z. Zilic, “Mygen:
automata-based on-line test generator for assertion-based verification,” in Pro-
ceedings of the 19th ACM Great Lakes symposium on VLSI (GLSVLSI). ACM,
2009, pp. 75–80.

[3] H. Foster, “Applied assertion-based verification: An industry perspective,”
Foundations and Trends in Electronic Design Automation, vol. 3, no. 1, pp.
1–95, 2009.

[4] H. Foster, A. Krolnik, and D. Lacey, Assertion-based design. Springer, 2004.

[5] O. Kupferman and M. Vardi, “Vacuity detection in temporal model check-
ing,” International Journal on Software Tools for Technology Transfer (STTT),
vol. 4, no. 2, pp. 224–233, 2003.

[6] M. Boulé and Z. Zilic, Generating Hardware Assertion Checkers: For Hardware
Verification, Emulation, Post-Fabrication Debugging and On-Line Monitoring.
Springer Publishing Company, Incorporated, 2008.

[7] J. G. Tong, M. Boulé, and Z. Zilic, “Defining and providing coverage for
assertion-based dynamic verification,” Journal of Electronic Testing, vol. 26,
no. 2, pp. 211–225, 2010.

[8] J. G. Tong, M. Boulé, and Z. Zilic, “Airwolf-TG: A test generator for assertion-
based dynamic verification,” in Proceedings of the 2009 International High Level
Design Validation and Test Workshop (HLDVT). IEEE, 2009, pp. 106–113.

145

https://www.research.ibm.com/haifa/images/dac/Harry_2012-DAC-Post-Silicon-Workshop.pdf
https://www.research.ibm.com/haifa/images/dac/Harry_2012-DAC-Post-Silicon-Workshop.pdf

146 BIBLIOGRAPHY

[9] ARM AMBA 3 Specification and Assertions, ARM Holdings plc, 2012. [Online].
Available: http://www.arm.com/producs/solutions/axi_spec.html

[10] N. Een and N. Sörensson, “The minisat page,” Research Web Page. Chalmers
University, Sweden (March 2007) http://minisat.se, 2006.

[11] J. G. Tong, M. Boulé, and Z. Zilic, “Test compaction techniques for assertion-
based test generation,” ACM Transactions on Design Automation of Electronic
Systems (TODAES), vol. 19, no. 1, p. 9, 2013.

[12] J. G. Tong, M. Boulé, and Z. Zilic, “Assertion clustering for compacted test
sequence generation,” in Proceedings of the 13th International Symposium on
Quality Electronic Design (ISQED). IEEE, 2012, pp. 694–701.

[13] J. G. Tong, M. Boulé, and Z. Zilic, “Efficient data encoding for improving
fault simulation performance on gpus,” in Proceedings of the 4th International
Symposium on Electronic System Design (ISED). IEEE, 2013, p. (In Press).

[14] J. G. Tong, M. Boulé, and Z. Zilic, “Mu-gsim: A mutation testing simulator on
gpus,” in Proceedings of the 5th Asia Symposium on Quality Electronic Design
(ASQED). IEEE, 2013, pp. 302–311.

[15] C. Spear, SystemVerilog for Verification: A Guide to Learning the Testbench
Language Features. Springer, 2008.

[16] P. Ammann and J. Offutt, Introduction to software testing. Cambridge Uni-
versity Press, 2008.

[17] H. B. Carter and S. G. Hemmady, Metric Driven Design Verification: An En-
gineer’s and Executive’s Guide to First Pass Success. Springer, 2007.

[18] Property Specification Language Reference Manual, Accelera, June 2004.
[Online]. Available: http://www.eda.org/vfv/docs/PSL-v1.1.pdf

[19] 1800-2005 - IEEE Standard for SystemVerilog: Unified Hardware Design,
Specification and Verification Language, IEEE, 2005. [Online]. Available:
http://standards.ieee.org/findstds/standard/1800-2005.html

[20] E. M. Clarke, O. Grumberg, and D. A. Peled, Model checking. MIT press,
1999.

[21] P. Dasgupta, A roadmap for formal property verification. Springer, 2006.

http://www.arm.com/producs/solutions/axi_spec.html
http://www.eda.org/vfv/docs/PSL-v1.1.pdf
http://standards.ieee.org/findstds/standard/1800-2005.html

BIBLIOGRAPHY 147

[22] B. Pal, A. Banerjee, A. Sinha, and P. Dasgupta, “Accelerating assertion cover-
age with adaptive testbenches,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 27, no. 5, pp. 967–972, 2008.

[23] J. Yuan, C. Pixley, and A. Aziz, Constraint-based verification. Springer, 2006.

[24] D. Borrione, K. Morin-Allory, and Y. Oddos, “Property-based dynamic verifi-
cation and test,” in Design Technology for Heterogeneous Embedded Systems.
Springer, 2012, pp. 157–176.

[25] Y. Jia and M. Harman, “An analysis and survey of the development of mutation
testing,” IEEE Transactions on Software Engineering, vol. 37, no. 5, pp. 649–
678, 2011.

[26] A. J. Offutt, G. Rothermel, and C. Zapf, “An experimental evaluation of selec-
tive mutation,” in Proceedings of the 15th international conference on Software
Engineering. IEEE Computer Society Press, 1993, pp. 100–107.

[27] J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, and J. Phillips, “GPU
computing,” Proceedings of the IEEE, vol. 96, no. 5, pp. 879–899, 2008.

[28] C. Nvidia, Compute unified device architecture programming guide, 2013.

[29] A. Advanced Micro Devices, AMD Accelerated Parallel Processing, 2013.

[30] NVIDIA OpenCL Programming Guide, 2011.

[31] J. Croix, K. Gulati, and S. Khatri, “Using gpus to accelerate cad algorithms,”
IEEE Design and Test, vol. 30, pp. 8–16, 2013.

[32] P. Banerjee, Parallel algorithms for VLSI computer-aided design. Prentice-
Hall, Inc., 1994.

[33] K. Gulati and S. Khatri, “Towards acceleration of fault simulation using graph-
ics processing units,” in Proceedings of the 45th annual Design Automation
Conference (DAC). ACM, 2008, pp. 822–827.

[34] M. B. Amin and B. Vinnakota, “Workload distribution in fault simulation,”
Journal of Electronic Testing, vol. 10, no. 3, pp. 277–282, 1997.

[35] N. Manjikian and W. M. Loucks, “High performance parallel logic simulations
on a network of workstations,” in Proceedings of the seventh workshop on Par-
allel and distributed simulation, vol. 23, no. 1. ACM, 1993.

148 BIBLIOGRAPHY

[36] S.-E. Tai and D. Bhattacharya, “Pipelined fault simulation on parallel machines
using the circuit flow graph,” in Proceedings of the International Conference on
Computer Design: VLSI in Computers and Processors (ICCD). IEEE, 1993,
pp. 564–567.

[37] N. Ishiura, M. Ito, and S. Yajima, “Dynamic two-dimensional parallel simu-
lation technique for high-speed fault simulation on a vector processor,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 9, no. 8, pp. 868–875, 1990.

[38] M. Amin and B. Vinnakota, “Data parallel fault simulation,” IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, vol. 7, no. 2, pp. 183–190,
1999.

[39] C. M. Wittenbrink, E. Kilgariff, and A. Prabhu, “Fermi GF100 GPU architec-
ture,” IEEE Micro, vol. 31, no. 2, pp. 50–59, 2011.

[40] The OpenCL Specification Version 1.1 – Khronos OpenCL Working Group,
2011.

[41] Y. Torres, A. Gonzalez-Escribano, and D. R. Llanos, “Using Fermi architecture
knowledge to speed up CUDA and OpenCL programs,” in Proceedings of the
International Symposium on Parallel and Distributed Processing with Applica-
tions (ISPA). IEEE, 2012, pp. 617–624.

[42] R. M. Hierons, K. Bogdanov, J. P. Bowen, R. Cleaveland, J. Derrick, J. Dick,
M. Gheorghe, M. Harman, K. Kapoor, P. Krause et al., “Using formal specifi-
cations to support testing,” ACM Computing Surveys (CSUR), vol. 41, no. 2,
p. 9, 2009.

[43] H.-M. Koo and P. Mishra, “Test generation using sat-based bounded model
checking for validation of pipelined processors,” in Proceedings of the 16th ACM
Great Lakes symposium on VLSI (GLSVLSI). ACM, 2006, pp. 362–365.

[44] K. Shimizu and D. L. Dill, “Deriving a simulation input generator and a cov-
erage metric from a formal specification,” in Proceedings of the 39th annual
Design Automation Conference. ACM, 2002, pp. 801–806.

[45] J. R. Calamé, Specification-based test generation with TGV. Centrum voor
Wiskunde en Informatica, 2005.

BIBLIOGRAPHY 149

[46] K. T. Cheng and A. Krishnakumar, “Automatic functional test generation using
the extended finite state machine model,” in Proceedings of the 30th interna-
tional Design Automation Conference (DAC). ACM, 1993, pp. 86–91.

[47] G. Di Guglielmo, F. Fummi, G. Pravadelli, S. Soffia, and M. Roveri, “Semi-
formal functional verification by efsm traversing via nusmv,” in Proceedings
of the 2010 International High Level Design Validation and Test Workshop
(HLDVT). IEEE, 2010, pp. 58–65.

[48] V. Boppana, S. P. Rajan, K. Takayama, and M. Fujita, “Model checking based
on sequential atpg,” in Proceedings of the International Conference on Com-
puter Aided Verification (CAV). Springer, 1999, pp. 418–430.

[49] J. Dworak, K. Nepal, N. Alves, Y. Shi, N. Imbriglia, and R. Iris Bahar, “Using
implications to choose tests through suspect fault identification,” ACM Trans-
actions on Design Automation of Electronic Systems (TODAES), vol. 18, no. 1,
p. 14, 2012.

[50] M. Bushnell and V. Agrawal, Essentials of electronic testing for digital, memory,
and mixed-signal VLSI circuits. Springer, 2000, vol. 17.

[51] M. S. Hsiao, E. M. Rudnick, and J. H. Patel, “Fast algorithms for static com-
paction of sequential circuit test vectors.” in Proceedings of the VLSI Test Sym-
posium (VTS). IEEE, 1997, pp. 188–195.

[52] I. Pomeranz and S. M. Reddy, “Dynamic test compaction for synchronous se-
quential circuits using static compaction techniques,” in Proceedings of the An-
nual Symposium on Fault Tolerant Computing. IEEE, 1996, pp. 53–61.

[53] E. M. Rudnick and J. H. Patel, “Efficient techniques for dynamic test sequence
compaction,” IEEE Transactions on Computers, vol. 48, no. 3, pp. 323–330,
1999.

[54] I. Pomeranz and S. Reddy, “On test generation with test vector improvement,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, vol. 29, no. 3, pp. 502–506, 2010.

[55] S. Neophytou and M. Michael, “Test set generation with a large number of
unspecified bits using static and dynamic techniques,” IEEE Transactions on
Computers, vol. 59, no. 3, pp. 301–316, 2010.

150 BIBLIOGRAPHY

[56] A. H. El-Maleh and Y. E. Osais, “Test vector decomposition-based static com-
paction algorithms for combinational circuits,” ACM Transactions on Design
Automation of Electronic Systems (TODAES), vol. 8, no. 4, pp. 430–459, 2003.

[57] I. Pomeranz and S. M. Reddy, “Forward-looking fault simulation for improved
static compaction,” IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 20, no. 10, pp. 1262–1265, 2001.

[58] P. Drineas and Y. Makris, “Independent test sequence compaction through
integer programming,” in Proceedings of the 21st International Conference on
Computer Design (ICCD). IEEE, 2003, pp. 380–386.

[59] M. Dimopoulos and P. Linardis, “Efficient static compaction of test sequence
sets through the application of set covering techniques,” in Proceedings of
the 2004 Design, Automation and Test in Europe Conference and Exhibition
(DATE), vol. 1. IEEE, 2004, pp. 194–199.

[60] Pomeranz, Irith and Reddy, Sudhakar M, “Static test compaction for full-
scan circuits based on combinational test sets and non-scan sequential test
sequences,” in Proceedings. 16th International Conference on VLSI Design.
IEEE, 2003, pp. 335–340.

[61] I. Pomeranz and S. M. Reddy, “Static test compaction for scan-based designs
to reduce test application time,” Journal of Electronic Testing, vol. 16, no. 5,
pp. 541–552, 2000.

[62] Y. Cho, I. Pomeranz, and S. M. Reddy, “On reducing test application time
for scan circuits using limited scan operations and transfer sequences,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 24, no. 10, pp. 1594–1605, 2005.

[63] I. Pomeranz and S. M. Reddy, “Autoscan: a scan design without external scan
inputs or outputs,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 13, no. 9, pp. 1087–1095, 2005.

[64] M. Chen and P. Mishra, “Functional test generation using efficient property
clustering and learning techniques,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 29, no. 3, pp. 396–404, 2010.

BIBLIOGRAPHY 151

[65] M. Neishaburi and Z. Zilic, “Enabling efficient post-silicon debug by clustering
of hardware-assertions,” in Proceedings of the 2010 Design, Automation & Test
in Europe Conference & Exhibition (DATE). IEEE, 2010, pp. 985–988.

[66] M. Boulé, J.-S. Chenard, and Z. Zilic, “Assertion checkers in verification, silicon
debug and in-field diagnosis,” in Proceedings of the 8th International Symposium
on Quality Electronic Design. IEEE, 2007, pp. 613–620.

[67] M. Gao and K.-T. Cheng, “A case study of time-multiplexed assertion check-
ing for post-silicon debugging,” in Proceedings of the 2010 High Level Design
Validation and Test Workshop (HLDVT). IEEE, 2010, pp. 90–96.

[68] H.-M. Koo and P. Mishra, “Specification-based compaction of directed tests
for functional validation of pipelined processors,” in Proceedings of the 6th
IEEE/ACM/IFIP international conference on Hardware/Software codesign and
system synthesis. ACM, 2008, pp. 137–142.

[69] M. Li and M. Hsiao, “3-D parallel fault simulation with GPGPU,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, vol. 30,
no. 10, pp. 1545–1555, 2011.

[70] M. Kochte, M. Schaal, H. Wunderlich, and C. Zoellin, “Efficient fault simula-
tion on many-core processors,” in Proceedings of the 47th Design Automation
Conference (DAC). IEEE, 2010, pp. 380–385.

[71] D. Chatterjee, A. Deorio, and V. Bertacco, “Gate-level simulation with GPU
computing,” ACM Transactions on Design Automation of Electronic Systems
(TODAES), vol. 16, no. 3, p. 30, 2011.

[72] A. Sen, B. Aksanli, M. Bozkurt, and M. Mert, “Parallel cycle based logic simula-
tion using graphics processing units,” in Proceedings of the Ninth International
Symposium on Parallel and Distributed Computing (ISPDC). IEEE, 2010, pp.
71–78.

[73] A. Sen, B. Aksanli, and M. Bozkurt, “Speeding up cycle based logic simulation
using graphics processing units,” International Journal of Parallel Program-
ming, vol. 39, no. 5, pp. 639–661, 2011.

[74] N. Bombieri, F. Fummi, and V. Guarnieri, “FAST-GP: An RTL functional
verification framework based on fault simulation on GP-GPUs,” in Proceedings

152 BIBLIOGRAPHY

of the Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2012, pp. 562–565.

[75] N. Bombieri, S. Vinco, V. Bertacco, and D. Chatterjee, “SystemC simulation on
GP-GPUs: CUDA vs. OpenCL,” in Proceedings of the eighth IEEE/ACM/IFIP
international conference on Hardware/software codesign and system synthesis
(CODES). ACM, 2012, pp. 343–352.

[76] S. Holst, E. Schneider, and H.-J. Wunderlich, “Scan Test Power Simulation on
GPGPUs,” in Proceedings of the 21st Asian Test Symposium (ATS). IEEE,
2012, pp. 155–160.

[77] M. Li, K. Gent, and M. S. Hsiao, “Utilizing gpgpus for design validation with
a modified ant colony optimization,” in Proceedings of the 2011 International
High Level Design Validation and Test Workshop (HLDVT). IEEE, 2011, pp.
128–135.

[78] M. Li and M. S. Hsiao, “Rag: an efficient reliability analysis of logic circuits
on graphics processing units,” in Proceedings of the Conference on Design, Au-
tomation and Test in Europe (DATE). EDA Consortium, 2012, pp. 316–319.

[79] J. Offutt, P. Ammann, and L. Liu, “Mutation testing implements grammar-
based testing,” in Proceedings of the Second Workshop on Mutation Analysis.
IEEE, 2006, pp. 12–12.

[80] M. Sousa and A. Sen, “Generation of TLM testbenches using mutation test-
ing,” in Proceedings of the eighth IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis (CODES). ACM, 2012, pp.
323–332.

[81] N. Bombieri, F. Fummi, V. Guarnieri, and G. Pravadelli, “Testbench qualifica-
tion of SystemC TLM protocols through Mutation Analysis,” IEEE Transac-
tions on Computers, p. (In Press), 2012.

[82] P. Behnam, B. Alizadeh, Z. Navabi, and M. Fujita, “Mutation based debugging
technique with auto-correction mechanism for RTL designs,” in 8th Interna-
tional Workshop on Silicon Debug and Diagnosis. IEEE, 2012, p. In Press.

[83] S. Mirzaeian, F. Zheng, and K.-T. Cheng, “RTL error diagnosis using a word-
level SAT-solver,” in Proceedings on the 2008 International Test Conference
(ITC). IEEE, 2008, pp. 1–8.

BIBLIOGRAPHY 153

[84] M. S. Abadir, J. Ferguson, and T. E. Kirkland, “Logic design verification via
test generation,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 7, no. 1, pp. 138–148, 1988.

[85] S. Katz, O. Grumberg, and D. Geist, ““have i written enough properties?”-a
method of comparison between specification and implementation,” in Correct
hardware design and verification methods. Springer, 1999, pp. 280–297.

[86] O. Kupferman, W. Li, and S. A. Seshia, “A theory of mutations with applica-
tions to vacuity, coverage, and fault tolerance,” in Proceedings of the 2008 In-
ternational Conference on Formal Methods in Computer-Aided Design. IEEE
Press, 2008, p. 25.

[87] G. Fraser and F. Wotawa, “Using model-checkers for mutation-based test-case
generation, coverage analysis and specification analysis,” in Proceedings of the
International Conferenc eon Software Engineering Advances. IEEE, 2006, pp.
16–16.

[88] S. Ben-David, D. Fisman, and S. Ruah, “Temporal antecedent failure: Refining
vacuity,” in CONCUR 2007–Concurrency Theory. Springer, 2007, pp. 492–506.

[89] R. Armoni, L. Fix, A. Flaisher, O. Grumberg, N. Piterman, A. Tiemeyer, and
M. Y. Vardi, “Enhanced vacuity detection in linear temporal logic,” in Proceed-
ings of the International Conference Computer Aided Verification. Springer,
2003, pp. 368–380.

[90] I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh, “Efficient detection of vacuity
in actl formulas,” in Proceedings of the International Conference on Computer
Aided Verification, 1997, pp. 279–290.

[91] V. Singhal and P. Aggarwal, “Using coverage to deploy formal verification in a
simulation world,” in Proceedings of the International Conference on Computer
Aided Verification. Springer, 2011, pp. 44–49.

[92] L. Di Guglielmo, F. Fummi, and G. Pravadelli, “Vacuity analysis by fault simu-
lation,” in Proceedings of the International Conference on Formal Methods and
Models for Co-Design (MEMOCODE). IEEE, 2008, pp. 27–36.

[93] G. Di Guglielmo, F. Fummi, and G. Pravadelli, “The role of mutation analysis
for property qualification,” in Proceedings of the International Conference on

154 BIBLIOGRAPHY

Formal Methods and Models for Co-Design (MEMOCODE). IEEE, 2009, pp.
28–35.

[94] A. Banerjee, B. Pal, C. Kamarapu, P. Dasgupta, P. Chakrabarti, and M. Jha,
“Assertion based verification: have i written enough properties?” in Proceedings
of the First India Annual Conference (INDICON). IEEE, 2004, pp. 363–367.

[95] G. Di Guglielmo, F. Fummi, M. Hampton, G. Pravadelli, and F. Stefanni,
“The role of parallel simulation in functional verification,” in Proceedings of
the International High Level Design Validation and Test Workshop (HLDVT).
IEEE, 2008, pp. 117–124.

[96] D. A. Mathaikutty, S. Ahuja, A. Dingankar, and S. Shukla, “Model-driven test
generation for system level validation,” in Proceedings of the 2007 High Level
Design Validation and Test Workshop (HLDVT). IEEE, 2007, pp. 83–90.

[97] D. Chatterjee and V. Bertacco, “Activity-based refinement for abstraction-
guided simulation,” in Proceedings of the High Level Design Validation and
Test Workshop (HLDVT). IEEE, 2009, pp. 146–153.

[98] I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh, “Efficient detection of vacuity
in temporal model checking,” Formal Methods in System Design, vol. 18, no. 2,
pp. 141–163, 2001.

[99] T. Ball and O. Kupferman, “Vacuity in testing,” in Tests and Proofs. Springer,
2008, pp. 4–17.

[100] T. L. Anderson, “Coverage is the heart of verification,” EETimes., 2005.
[Online]. Available: http://www.eetimes.com/document.aspdoc_id=1217979

[101] L. Bening and H. Foster, “Principles of verifiable rtl design,” Principles of Veri-
fiable RTL Design: A Functional Coding Style Supporting Verification Processes
in Verilog, pp. 223–230, 2002.

[102] J. Sordoillet and S. Davey, “Integrated, comprehensive assertion-based cover-
age,” in EDA Tech Forum, vol. 3, no. 1, 2006, pp. 22–25.

[103] M. Boulé and Z. Zilic, “Efficient automata-based assertion-checker synthesis of
seres for hardware emulation,” in Proceedings of the 2007 Asia and South Pacific
Design Automation Conference (ASP-DAC). IEEE, 2007, pp. 324–329.

http://www.eetimes.com/document.aspdoc_id=1217979

BIBLIOGRAPHY 155

[104] M. Boulé, J.-S. Chenard, and Z. Zilic, “Debug enhancements in assertion-
checker generation,” IET Computers & Digital Techniques, IET, vol. 1, no. 6,
pp. 669–677, 2007.

[105] S. Vijayaraghavan and M. Ramanathan, A Practical Guide for SystemVerilog
Assertions. Springer, 2005.

[106] J. Croix and S. Khatri, “Introduction to GPU programming for EDA,” in Pro-
ceedings of the 2009 International Conference on Computer-Aided Design (IC-
CAD). ACM, 2009, pp. 276–280.

[107] ITC‘99 Benchmarks. [Online]. Available: http://www.cad.polito.it/downloads/
tools/itc99.html

[108] Virginia Tech VLSI for Telecommunications. [Online]. Available: http:
//www.vtvt.ece.vt.edu/vlsidesign/cadtools.php

[109] OpenCores. [Online]. Available: http://opencores.org

[110] M. Hampton and S. Petithomme, “Leveraging a commercial mutation analysis
tool for research,” in Testing: Academic and Industrial Conference Practice
and Research Techniques-MUTATION, 2007. TAICPART-MUTATION 2007.
IEEE, 2007, pp. 203–209.

[111] A. Fin and F. Fummi, “Laerte++: an object oriented high-level tpg for systemc
designs.” in FDL, vol. 3. Springer, 2003, pp. 105–117.

[112] C. Eisner and D. Fisman, A Practical Introduction to PSL (Series on Integrated
Circuits and Systems). Secaucus, NJ, USA: Springer-Verlag New York, Inc.,
2006.

[113] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata The-
ory, Languages, and Computation, 2nd. Addison-Wesley, 2001.

[114] G. D. Hachtel and F. Somenzi, Logic synthesis and verification algorithms.
Kluwer academic publishers, 2000.

[115] A. Piziali, Functional verification coverage measurement and analysis.
Springer, 2004.

[116] C. Baier, J.-P. Katoen et al., Principles of model checking. MIT press Cam-
bridge, 2008, vol. 26202649.

http://www.cad.polito.it/downloads/tools/itc99.html
http://www.cad.polito.it/downloads/tools/itc99.html
http://www.vtvt.ece.vt.edu/vlsidesign/cadtools.php
http://www.vtvt.ece.vt.edu/vlsidesign/cadtools.php
http://opencores.org

156 BIBLIOGRAPHY

[117] Y. Oddos, K. Morin-Allory, and D. Borrione, “On-line test vector generation
from temporal constraints written in psl,” in Proceedings of the 2006 Interna-
tional Conference on Very Large Scale Integration. IEEE, 2006, pp. 397–402.

[118] X. Cheng and M. S. Hsiao, “Simulation-directed invariant mining for software
verification,” in Proceedings of the conference on Design, automation and test
in Europe (DATE). ACM, 2008, pp. 682–687.

[119] H. Lee and D. Ha, “An efficient, forward fault simulation algorithm based on
the parallel pattern single fault propagation,” in Proceedings of the 1991 Inter-
national Test Conference (ITC). IEEE, 1991, p. 946.

[120] D. Chatterjee, A. DeOrio, and V. Bertacco, “Event-driven gate-level simula-
tion with GP-GPUs,” in Proceedings of the 46th Annual Design Automation
Conference (DAC). ACM, 2009, pp. 557–562.

[121] G. J. Holzmann, “The model checker spin,” IEEE Transactions on Software
Engineering, vol. 23, no. 5, pp. 279–295, 1997.

[122] J. Brzozowski, “Canonical regular expressions and minimal state graphs for
definite events,” Mathematical theory of Automata, vol. 12, pp. 529–561, 1962.

[123] M. Boulé and Z. Zilic, “Automata-based assertion-checker synthesis of PSL
properties,” ACM Transactions on Design Automation of Electronic Systems
(TODAES), vol. 13, no. 1, pp. 1–21, 2008.

[124] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu, “Bounded model
checking.” Handbook of Satisfiability, vol. 185, pp. 457–481, 2009.

	List of Figures
	List of Tables
	List of Algorithms
	List of Acronyms
	1 Introduction
	1.1 Problem Definition and Motivation
	1.2 Problem Definition
	1.3 Thesis Contributions and Collaborations

	2 Background and Related Work
	2.1 Functional Verification with Assertions
	2.1.1 Assertion-based Dynamic Verification
	2.1.2 Overview of Assertions
	2.1.3 Test Generation Using NFA Representation of Assertions

	2.2 Assessing Assertion Quality with Mutation Testing
	2.3 Accelerating EDA Algorithms on GPUs
	2.3.1 GPU Architecture and OpenCL Execution Model
	2.3.2 Memory Hierarchy

	2.4 Summary of Related Work
	2.4.1 Related Work on Test Generation from Properties
	2.4.2 Related work in Test Compaction from Properties
	2.4.3 Related Work in GPU-based Logic and Fault Simulation
	2.4.4 Related Work on Mutation testing with Assertions

	2.5 Chronology Work Overview
	2.5.1 Coverage Driven Assertion-based Test Generation
	2.5.2 Test Compaction Techniques for Assertion-based Test Generation
	2.5.3 Efficient Data Encoding of Mutation and Fault Data on GPUs
	2.5.4 Using GPUs for Accelerating Mutation Testing of Assertions

	3 Coverage Driven Assertion-based Test Generation
	3.1 Motivation
	3.2 Finite Automata Checking
	3.3 Coverage in Assertion-Based Verification
	3.3.1 Vacuity in ABV
	3.3.2 Assertion Coverage
	3.3.3 Mapping Assertion Coverage to Automata Coverage
	3.3.4 Acceptance and Failure Automata Test Coverages

	3.4 The Airwolf Test Generator
	3.4.1 Test Generation Overview
	3.4.2 Airwolf-TG Algorithms
	3.4.3 Run time and Correctness
	3.4.4 Test Sequence Generation Example
	3.4.5 Coverage Analysis Example

	3.5 Experimental Results and Analysis
	3.6 Summary

	4 Test Compaction Techniques for Assertion-based Test Generation
	4.1 Motivation
	4.2 Proposed Compacted Test Generation Methodology
	4.3 Assertion Clustering
	4.3.1 Assertion Map and Similarity Weight
	4.3.2 Clustering Modes

	4.4 Compacted Test Sequence Generation
	4.4.1 Test Path Overlapping
	4.4.2 TPO Example
	4.4.3 Parallel-Path Removal
	4.4.4 PPR Example

	4.5 Experimental Results
	4.5.1 Compacting Good and Failing Test Sequences from TG
	4.5.2 Compacting Good and Failing Test Sequences from MyGen

	4.6 Summary

	5 Efficient Data Encoding of Mutation and Fault Data on GPUs
	5.1 Motivation
	5.2 -GSIM Overview
	5.2.1 Mutant Stream Generation
	5.2.2 GPU Mutation Simulation
	5.2.3 Simulation Kernel
	5.2.4 Maximum Work-item Configuration and Memory Scalability
	5.2.5 Experimental Results for -GSIM

	5.3 GS-SIM Overview
	5.3.1 Gate Stream Generation and MFG Encoding
	5.3.2 Gate Stream Simulation of GS-SIM
	5.3.3 Maximum Work-item Configuration and Scalability
	5.3.4 Experimental Results of GS-SIM

	5.4 Summary

	6 Using GPUs for Accelerating Mutation Testing of Assertions
	6.1 Motivation
	6.2 DV-GSIM Overview
	6.3 Circuit Stream Generation
	6.4 Multiple Assertion Encoding (MAE)
	6.5 Circuit Stream Simulation
	6.5.1 Simulation Kernel
	6.5.2 Circuit Parallelism Factor and Memory Scalability

	6.6 Experimental Results
	6.6.1 Circuit Parallelism Factor and Work-item Configuration
	6.6.2 Run-time Comparison with Different Assertion Encodings

	6.7 Summary

	7 Conclusions
	7.1 Conclusions
	7.2 Future Work
	7.2.1 Assertion-based Test Generation
	7.2.2 GPU Accelerated Mutation Testing
	7.2.3 Performance Comparison between CUDA and OpenCL

	Bibliography

