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Abstract 

 

Increasing consumption of plastic products in packaging, automotive, refrigeration, 

aerospace and other industries makes thermoforming a vital manufacturing process. The vast 

production of thermoformed parts encourages researchers to develop cost-effective and accurate 

controllers for the process. Heating phase is the most important phase of the process as the 

following phases depend on its outcome. Thus, it is very important to control the heating phase 

to ensure the economic viability of the product according to specifications. These specifications 

may not be met without a sophisticated process control system providing accurate control of key 

process variables that are inherently nonlinear and time-varying. This thesis analyzes the control 

problems of the process one by one and investigates a solution step by step.   

 

The first problem in controlling any process is to understand the system and develop a 

relationship between inputs and outputs. Having a well-developed mathematical model that 

represents the system’s behavior is important in developing model based controller.  An accurate 

mathematical model is also very important to get a good idea about the process and for the 

simulation of the developed control technique to guarantee the future prospects of the proposed 

technique before it is implemented in real-time. System modeling is a useful tool in efficient 

controller design to achieve the desired output temperature of the sheet at the end of the heating 

cycle in the thermoforming process. An improved model is presented in this thesis to define a 

better mathematical relationship between inputs and outputs.  

  

Another problem for ill-posed system like heating phase of thermoforming process is to 

find the set-points of heater temperatures that will heat the plastic sheet to the desired 

temperature at the end of the heating cycle. In this thesis, a new method is presented using 

conjugate gradient method to solve this problem along with details analysis of the proposed 

method.  

 



Sensing two dimensional space signals accurately using limited number of sensors is a 

big challenge in developing a close loop controller. This thesis presents a new method for the 

estimation of surface temperature and thereby modifies it in such a way that it can estimate sheet 

temperature independent of sensor positions on the sheet. The proposed method estimate the 

temperature profile over the entire sheet through its spatial harmonics and the controller can 

control the spatial harmonics to obtain the desired temperature profile.  

Although control techniques have been developed for the heating phase of the 

thermoforming process, oven heater temperatures in the thermoforming industry are still largely 

adjusted by trial and error based on the experience of the operator. In next part of this thesis, 

controllers are developed step by step that will achieve desired sheet temperature at the end of 

the cycle. The first controller developed in this thesis to control the surface temperature of a 

plastic sheet uses model predictive control (MPC) as a first step. MPC is one of the advanced 

methods for process control that can handle a multivariable process with presence of non-

periodic disturbance. To overcome the computation burden of MPC, Multi-parametric 

programming is used to compute the optimization problem.  

On the other hand, the thermoforming process can be described in terms of two distinct 

time scales, namely, the finite period of continuous time within each repeating cycle, and the 

cycle index. If the control formulations do not explicitly incorporate or exploit this 2D 

representation of cyclic systems, it can have limited success in controlling repetitive systems. 

Two-dimensional learning controller results in advantages over the in-cycle or cycle to cycle 

feedback control techniques where only in-cycle information or cycle to cycle information was 

used. For this reason, a real-time feedback control combining in-cycle and cycle-to-cycle 

strategies is proposed to improve control performance. This approach utilizes not only incoming 

information from the ongoing cycle, but also the information stored from the past cycles. To deal 

with constraints as well as non-repetitive disturbances in the process, the MPC technique is 

incorporated to update the control law within the cycle. To exploit the repetitive nature of the 

heating phase of the process, a cycle-to-cycle iterative learning control technique direction is 

proposed. The iterative learning strategy is useful for achieving desired temperature despite 

model mismatch and disturbances.  

 

 



Abrégé 

 

La croissance continue dans la consommation de produits en plastique dans les domaines 

de l’empaquetage, la réfrigération, l’aérospatiale et autres font du thermoformage un procédé 

manufacturier incontournable. La grande production de pièces thermoformées encourage donc  

les chercheurs à développer des contrôleurs précis et à coût raisonnable pour ce procédé. La 

phase de chauffage est la plus importante du procédé puisque les phases suivantes dépendent de 

sa réussite. Ainsi, il est très important de bien contrôler la phase de chauffage pour assurer la 

qualité et la viabilité du produit thermoformé selon les requis. Ces requis pourraient ne pas être 

remplis sans système de contrôle sophistiqué fournissant une bonne précision de contrôle des 

variables du procédé qui sont non-linéaires et varient avec le temps. Ce mémoire analyse les 

problèmes de contrôle du procédé un à un et propose des solutions étape par étape. 

Le premier problème qui se pose dans la commande de tout procédé est de bien 

comprendre le système et de développer des relations entre les variables d’entrée et de sortie. Il 

est important d’avoir un modèle mathématique bien développé représentant le comportement du 

système pour la conception d’un contrôleur basé sur ce modèle. Un modèle mathématique est 

aussi très important pour avoir une bonne idée du procédé ainsi que pour simuler la technique de 

contrôle ayant été développée pour en garantir les avantages avant qu’elle ne soit implantée en 

temps réel. La modélisation de système est un outil utile pour la conception de lois de commande 

efficaces pour atteindre la cible de température à la fin du cycle de chauffe dans le procédé de 

thermoformage. Un modèle amélioré est présenté ici pour définir une meilleure relation 

mathématique entre les entrées et les sorties. 

Un autre problème pour les systèmes mal conditionnés tels que le procédé de 

thermoformage est de trouver les consignes de température des éléments chauffants qui 

chaufferont la feuille de plastique à la température désirée à la fin du cycle. Dans cette 

dissertation, une nouvelle méthode est présentée en détail pour résoudre ce problème en utilisant 

la technique du gradient conjugué. 

 La mesure de signaux à deux dimensions en utilisant un nombre limité de capteurs est un 

grand défi dans le développement d’un contrôleur en boucle fermée. Cette thèse présente une 



nouvelle méthode de mesure de températures de surface et la modifie ensuite d’une façon telle 

que l’estimation de température devient alors indépendante de la position des capteurs sur la 

feuille. La méthode proposée estime le profil de température sur toute la feuille par ses 

harmoniques spatiales et le contrôleur peut contrôler ces harmoniques pour obtenir le profil de 

température voulu. 

Même si des algorithmes de commande ont déjà été développés pour la phase de 

chauffage du procédé de thermoformage, les températures des radiateurs sont encore largement 

ajustées à la main par une technique d’essai-erreur basée sur l’expérience de l’opérateur. Dans la 

partie suivante de cette thèse, des contrôleurs sont développés étape par étape pour arriver à la 

température désirée à la fin du cycle. Le premier contrôleur développé dans cette thèse est du 

type commande à modèle prédictif (CMP) dans un premier temps. La CMP est une des méthodes 

de commande parmi les plus évoluées et qui peut traiter des procédés multi-variables en présence 

de perturbations non-périodiques. Pour alléger la charge de calcul de la CMP, la programmation 

multi-paramétrique est utilisée pour résoudre le problème d’optimisation. 

D’un autre point de vue, le procédé de thermoformage peut être décrit en termes de deux 

échelles de temps distinctes, soit la période de cycle en temps continu qui se répète à chaque 

cycle, ainsi que l’index du cycle. Si la formulation du problème de contrôle n’incorpore pas 

explicitement cette représentation 2D, la commande peut avoir un succès limité pour ce type de 

système répétitif. Les contrôleurs 2D à apprentissage offrent des avantages par rapport aux 

contrôleurs n’agissant qu’en cycle, ou de cycle en cycle ou l’information d’une seule de ces 

dimensions est utilisée. Pour cette raison, un algorithme de contrôle rétroactif en temps réel 

combinant des stratégies de commande en cycle, et cycle-en-cycle est proposé pour en améliorer 

la performance. Cette approche inclut non seulement l’information du cycle en cours, mais 

également des cycles précédents. La commande CMP est utilisée en-cycle afin de pouvoir traiter 

les contraintes et réduire l’effet des perturbations non-répétitives. Une approche de commande 

itérative à apprentissage est proposée pour s’occuper des variations de cycle en cycle. Cette 

commande est utile pour atteindre les températures désirées en dépit des erreurs du modèle et des 

perturbations. 

 

 

 



Acknowledgements 

 

 

I would like to express my thankfulness and show appreciation those people who have 

supported in this research work and helped me by giving their valuable opinion for the 

preparation of this thesis. Dr. Benoit Boulet, my thesis supervisor, has been very important in the 

success of the thesis. He always endowed me with the strength to finish this work. This work 

might not be possible without his guidance and encouragement. His valuable and constructive 

suggestions during planning and writing this thesis have been very much appreciated.  

I am also indebted to other members of my thesis committee, Ioannis Psaromiligkos and 

Hannah Michalska, through the numerous discussions. I want to give many thanks to other 

graduate students and staff of my department at McGill University. Numerous people and 

innumerable instances, which I cannot enumerate in a single page, have helped me to accomplish 

this project.  

My parents and my beloved wife have always been patient and supportive to me, 

understanding and allowing me to be workaholic. I would like to appreciate all the circumstances 

around me, which have been so generous to this humble being.   

 

 

 



1 
 

Table of Contents 

CHAPTER 1 ...................................................................................................................... 14 

Introduction ........................................................................................................................ 14 

1.1 Thesis Objective ....................................................................................................... 14 

1.2 Literature Review ..................................................................................................... 18 

1.3 Major contribution of this thesis .............................................................................. 26 

CHAPTER 2 ...................................................................................................................... 31 

Modeling of the Heating Phase of a Thermoforming Machine ......................................... 31 

2.1 Introduction .............................................................................................................. 31 

2.2 Thermoforming oven ............................................................................................... 33 

2.2.1 Heater Bank ...................................................................................................... 34 

2.2.2 Infrared sensor .................................................................................................. 34 

2.2.3 Oven wall .......................................................................................................... 35 

2.2.4 Plastic Sheet ...................................................................................................... 35 

2.3 Review of the existing model .................................................................................. 36 

2.4 Shortcomings of the existing model ........................................................................ 43 

2.4.1 Shortcomings in consideration of the heat source to heat the plastic sheet ...... 43 

2.4.2 Shortcoming in convection heat transfer .......................................................... 44 

2.4.3 Shortcoming in modeling of oven air temperature ........................................... 45 

2.4.4 Other Shortcoming in the existing modeling .................................................... 46 

2.5 Improvement of the modeling of sheet reheat phase ............................................... 46 

2.5.1 Improvement in heating process of the plastic sheet ........................................ 47 

2.5.2 Improvement in Convection heating process .................................................... 49 

2.5.3 Modeling of oven air temperature in heating process ....................................... 52 

2.6 Modeling of the actuator/heating element ............................................................... 53 

2.7 Experimental Set-up ................................................................................................. 55 

2.8 Comparison with experimental data ........................................................................ 56 



2 
 

2.9 Conclusion ............................................................................................................... 60 

CHAPTER 3 ...................................................................................................................... 61 

Inverse Heating Problem in Thermoforming ..................................................................... 61 

3.1 Introduction .............................................................................................................. 61 

3.2 Solving the direct heating problem .......................................................................... 62 

3.3 Solution of inverse heating problem ........................................................................ 64 

3.4 Sensitivity matrix calculation .................................................................................. 70 

3.5 Convergence of the proposed method ...................................................................... 76 

3.6 Performance Investigation ....................................................................................... 82 

3.7 Conclusion ............................................................................................................... 91 

CHAPTER 4 ...................................................................................................................... 92 

Estimation of Sheet Temperature Profile ........................................................................... 92 

4.1 Introduction .............................................................................................................. 92 

4.2 Estimation of sheet temperature ............................................................................... 94 

4.3 Design of the controller ........................................................................................... 99 

4.4 Performance Investigation ..................................................................................... 101 

4.4.1 Simulation results for the estimation of temperature by 2D FFT ................... 101 

4.4.2 Simulation results of the proposed harmonic controller ................................. 106 

4.5 Conclusion ............................................................................................................. 116 

CHAPTER 5 .................................................................................................................... 117 

Estimation and control of temperature profile for non-equidistant temperature sensors . 117 

5.1 Introduction ............................................................................................................ 117 

5.2 Modification of FFT using Lagrange interpolation ............................................... 118 

5.3 Spatial harmonic prediction from non-equidistant data ......................................... 122 

5.4 Incorporating the interpolation into the spatial harmonic controller ..................... 127 

5.5 Performance Investigation ..................................................................................... 129 

5.6 Conclusion ............................................................................................................. 139 



3 
 

CHAPTER 6 .................................................................................................................... 140 

Model Predictive Control of Heating Phase .................................................................... 140 

6.1 Introduction ............................................................................................................ 140 

6.2 Model predictive controller .................................................................................... 143 

6.3 Multi-parametric quadratic MPC ........................................................................... 144 

6.4 Multi-parametric quadratic MPC for heating phase of thermoforming ................. 146 

6.5 Design of multi-parametric quadratic MPC for heating phase of thermoforming 

machine ........................................................................................................................ 148 

6.5.1 Linearization of the system ............................................................................. 151 

6.5.2 Incorporating constraints ................................................................................ 151 

6.5.3 Reduction of the number of partitions in offline solution of multi-parametric 

quadratic MPC ......................................................................................................... 152 

6.5.4 Choosing the weighting matrices of the controller ......................................... 153 

6.5.5 Tuning parameters of the controller ................................................................ 154 

6.6 Simulation results ................................................................................................... 155 

6.7 Conclusion ............................................................................................................. 172 

CHAPTER 7 .................................................................................................................... 173 

Iterative Learning Model Predictive Control of Heating Phase ....................................... 173 

7.1 Introduction ............................................................................................................ 173 

7.2 Iterative Learning Control ...................................................................................... 174 

7.3 Model Predictive Control Based Iterative Learning Controller ............................. 175 

7.3.1 Problem Formulation ...................................................................................... 175 

7.3.2 Controller development .................................................................................. 179 

7.4 Iterative Learning Model predictive controller (ILMPC) ...................................... 180 

7.4.1 Design of multi-parametric quadratic ILMPC ................................................ 183 

7.4.2 Design steps of multi-parametric quadratic ILMPC ....................................... 185 

7.5 Simulation results ................................................................................................... 187 

7.6 Conclusion ............................................................................................................. 197 



4 
 

CHAPTER 8 .................................................................................................................... 198 

Conclusion ....................................................................................................................... 198 

8.1 Content of this thesis .............................................................................................. 198 

8.2 Future work ............................................................................................................ 199 

8.2.1 Temperature Sensing ...................................................................................... 199 

8.2.2 Nonlinear Model Predictive Controller .......................................................... 199 

8.2.3 Linear Model Predictive Controller with time varying linear model.............. 200 

8.2.4 Robust Model Predictive Controller ............................................................... 205 

8.3 Concluding Remarks .............................................................................................. 207 

REFERENCE ................................................................................................................... 208 

 

 

 

 

 

 

 



5 
 

Abbreviations 

 

MPC  Model Predictive Control 

FFT   Fast Fourier Transform  

ILMPC Iterative Learning Model Predictive Control 

IHP   Inverse Heating Problem 

IFFT   Inverse Fast Fourier Transform 

ILC  Iterative Learning Control 

TILC  Terminal Iterative Learning Control 

PI   Proportional-integral 

PI   Proportional-integral-derivative 

MIMO  Multi-input-multi-output 

PEMRG Plastics Europe Market Research Group  

RC   Repetitive Control 

R2R  Run-to-run 

EWMA Exponential Weighting Moving Average 

NUFFT Non-Uniform Fast Fourier Transform 

SVD  Singular Value Decomposition 

 



6 
 

List of figures 
 
 

Fig.1.1: Consumption of Plastic Product in World (Thousands of Tons) ......................... 16 

Fig.2.2: Zone and IR temperature sensors ......................................................................... 37 

Fig. 2.3: Layers and nodes ................................................................................................. 37 

Fig. 2.4: Calculation of view factor for (a) parallel planes and (b) perpendicular planes . 41 

Fig. 2.9: energy transfer model in heater of thermoforming process ................................. 54 

Fig.2.10: Experimental set-up of a Thermoforming oven ................................................. 56 

Fig.2.11: comparison of real-time top and bottom heater temperature with the 

corresponding simulated results. ........................................................................................ 58 

Fig.2.12: Corner and center point of the sheet ................................................................... 58 

Fig.2.13: comparison of real-time sheet temperature at center and corner point of top 

surface of the sheet with the corresponding simulated results. .......................................... 58 

Fig.3.1: Algorithm for solving direct heating problem ...................................................... 63 

Fig.3.2: Algorithm for solving inverse heating problem. .................................................. 71 

Fig.3.4: Algorithm for solving inverse heating problem. .................................................. 84 

Fig.3.5: Physical location of (a) the thermoforming oven heaters (B) sensors .................. 85 

Fig.3.6: Desired temperature profile of the sheet............................................................... 86 

Fig.3.7 (a): the set point of the heater temperature calculated by conventional IHP solver 

to obtain desired sheet temperature of Fig.3.6. .................................................................. 86 

Fig.3.7 (b): Sheet temperature obtained with the heater temperature of Fig.3.7(a) ........... 87 



7 
 

Fig.3.7(c): Error between desired and obtained sheet temperature .................................... 87 

Fig.3.8 (a): Set point of the heater temperature calculated by proposed IHP solver to 

obtain desired sheet temperature of Fig.3.6. ...................................................................... 88 

Fig.3.8 (b): Sheet temperature obtained with the heater temperature of Fig.3.8(a). .......... 88 

Fig.3.8(c): Error between desired and obtained sheet temperature .................................... 89 

Fig.3.9: The actual temperature and desired temperature at the point of the real sensor (x-

axis: Time in Second and y-axis: Temperature in °C) ....................................................... 90 

Fig.4.1 (a): Original analog signal is sampled at uniform sampling rate. .......................... 97 

Fig.4.1 (b): FFT of the samples of fig.4.1 (a) .................................................................... 98 

Fig.4.1 (c): FFT value after padding zero. ......................................................................... 98 

Fig.4.1 (d): The original signal is reconstructed by IFFT of the signal in Fig.4.1(c) ........ 99 

Fig.4.2: Block diagram of the proposed spatial ............................................................... 101 

Fig.4.3: The actual temperature profile considered over the sheet to check accuracy of the 

proposed technique .......................................................................................................... 103 

Fig.4.4(a): The estimated temperature profile over the sheet using 1 sensor located at (1,1)

 .......................................................................................................................................... 103 

Fig.4.4(b): The estimated temperature profile over the sheet using 4 sensors (2 arrays with 

2 sensors in each array) located at  (0.5,0.5);(0.5,1.5);(1.5,0.5);(1.5,1.5) ....................... 104 

Fig.4.4(c): The predicted temperature profile over the sheet using 9 sensors (3 arrays with 

3 sensors in each array) located at (0.5,0.5), (0.5,1.0), (0.5,1.5), (1.0,0.5), (1.0,1.0), 

(1.0,1.5), (1.5,0.5), (1.5,1.0), (1.5,1.5). ............................................................................ 104 

Fig.4.4(d): The predicted temperature profile over the sheet using 16 sensors (4 arrays 

with 4 sensors in each array) located at (0.4,0.4), (0.4,0.8), (0.4,1.2), (0.4,1.6), (0.8,0.4), 



8 
 

(0.8,0.8), (0.8,1.2), (0.8,1.6), (1.2,0.4), (1.2,0.8), (1.2,1.2), (1.2,1.6), (1.6,0.4), (1.6,0.8), 

(1.6,1.2), (1.6,1.6).. .......................................................................................................... 105 

Fig.4.5: The error between the actual temperature profile and predicted temperature 

profile over the sheet using (a) 1 sensor (b) 4 sensors (2x2) (c) 9 sensors (3x3) (d) 16 

sensors (4x4) .................................................................................................................... 106 

Fig.4.6: The physical configuration of the oven and real and virtual sensor positions on 

the plastic sheet ................................................................................................................ 108 

Fig.4.7: (a) Desired temperature profile (b) Obtained temperature profile after 7th cycle 

(c) Error between desired and obtained temperature profile using proposed controller .. 109 

Fig.4.8: The actual temperature and desired temperature at the point of the real sensor for 

a desired temperature profile of Fig.4.7 (a) using the proposed technique. ..................... 110 

Fig.4.9: The actual temperature and desired temperature at some extreme point of the 

sheet for a desired temperature profile of Fig.4.7 (a) using the proposed technique. ...... 110 

Fig.4.10: The heater temperature for a desired temperature profile of Fig.4.7 (a) for the 

proposed technique .......................................................................................................... 111 

Fig.4.11: (a) Desired temperature profile (b) Obtained temperature profile after 7th cycle 

(c) Error between desired and obtained temperature profile using the conventional 

controller .......................................................................................................................... 114 

Fig.4.12: (a) Obtained temperature profile after 7th cycle (b) Error between desired and 

obtained temperature profile using the proposed controller for a desired temperature 

profile shown in fig.4.11 (a). ........................................................................................... 115 

Fig.4.13: The actual temperature and desired temperature at the point of the real sensor 

for a desired temperature profile of Fig.4.10 (a). (a) Conventional controller (b) proposed 

controller. ......................................................................................................................... 116 

Fig.4.14: The heater temperature for a desired temperature profile of Fig.4.11(a) ......... 116 



9 
 

Fig.5.1: Lagrange interpolation for non-uniform data ..................................................... 121 

Fig.5.2: Block diagrams of the proposed spatial harmonic controller of heater bank for 

thermoforming process (a) Using Lagrange interpolator (b) Using harmonic predictor. 129 

Fig.5.3: Assumed temperature over the sheet .................................................................. 132 

Fig.5.4: Sensor position arrangement used in simulation results ..................................... 132 

Fig.5.5 (a): The estimated temperature profile using the proposed technique in Chapter 4 

with 9 equidistant sensors ................................................................................................ 133 

Fig.5.5 (b): The estimated temperature profile using proposed Lagrange interpolation 

technique with 5 sensors at the locations shown in Fig. 5.4(a) ........................................ 133 

Fig.5.5 (d): The estimated temperature profile using proposed Lagrange interpolation 

technique with 5 sensors at the locations shown in Fig. 5.4(b) ....................................... 134 

Fig.5.5 (e): The estimated temperature profile using proposed harmonic predictor 

technique with 5 sensors at the locations shown in Fig. 5.4(b) ....................................... 135 

Fig.5.6 (a): The error in estimated temperature profile using the proposed technique in 

Chapter 4 with 9 equidistant sensors ............................................................................... 135 

Fig.5.6 (b): The error between the actual temperature and estimated temperature using 

modified technique with 5 sensors (as shown in Fig. 5.4(a)) using Lagrange interpolation

 .......................................................................................................................................... 136 

Fig.5.6 (c): The error between the actual temperature and estimated temperature using 

harmonic predictor technique with 5 sensors (as shown in Fig. 5.4(a)) .......................... 136 

Fig.5.6 (d): The error between the actual temperature and estimated temperature using 

modified technique with 5 sensors (as shown in Fig. 5.4(b)) using Lagrange interpolation

 .......................................................................................................................................... 137 



10 
 

Fig.5.6 (e): The error between the actual temperature and estimated temperature using 

harmonic predictor technique with 5 sensors (as shown in Fig. 5.4(b)) .......................... 137 

Fig.5.7: (a) Desired temperature profile (b) Error between desired and obtained 

temperature profiles using conventional controller (c) Error between desired and obtained 

temperature profiles using harmonic predictive controller. ............................................. 139 

Fig. 6.1: Model Predictive Control .................................................................................. 144 

Fig. 6.2: Solution of control input as a look up function of state in different partition or 

critical region in 2D space ............................................................................................... 146 

Fig. 6.3: Algorithm for offline optimization of the objective function for MPC ............. 149 

Fig. 6.4: Algorithm for incorporating the solution of offline optimization into the 

controller .......................................................................................................................... 150 

Fig. 6.5: Multi-parametric MPC for heating phase of thermoforming process. .............. 154 

Fig. 6.6: the sheet temperature at sensor point of the sheet for (a) PI (b) ILC (c) TILC (d) 

MPC ................................................................................................................................. 159 

Fig. 6.7: Error in sheet temperature at sensor point of the sheet for (a) PI (b) ILC (c) TILC 

(d) MPC ........................................................................................................................... 161 

Fig. 6.8: Error between command input temperature and actual heater temperature for (a) 

PI (b) ILC (c) TILC (d) MPC .......................................................................................... 163 

Fig. 6.9: Sheet temperature at sensor point of the sheet at the presence of large non-

repetitive disturbances for (a) PI (b) ILC (c) TILC (d) MPC .......................................... 165 

Fig. 6.10: Error in sheet temperature at sensor point of the sheet at the presence of large 

non-repetitive disturbances for (a) PI (b) ILC (c) TILC (d) MPC ................................... 167 

Fig. 6.11: Sheet temperature at sensor point of the sheet at the presence of repetitive 

disturbances for (a) PI (b) ILC (c) TILC (d) MPC .......................................................... 169 



11 
 

Fig. 6.12: Error in sheet temperature at sensor point of the sheet at the presence of 

repetitive disturbances for (a) PI (b) ILC (c) TILC (d) MPC .......................................... 171 

Fig. 7.1: MPC based ILC for heating phase of thermoforming process. ......................... 180 

Fig.7.2: Algorithm for offline optimization of the objective function for ILMPC .......... 186 

Fig.7.3: Algorithm for incorporating the solution of offline optimization into the 

controller .......................................................................................................................... 187 

Fig. 7.4: the sheet temperature at sensor point of the sheet for (a) MPC based ILC (b) 

ILMPC ............................................................................................................................. 190 

Fig. 7.5: Error in sheet temperature at sensor point of the sheet for (a) MPC based ILC (b) 

ILMPC ............................................................................................................................. 191 

Fig. 7.6: Error between command input temperature and actual heater temperature ...... 192 

Fig. 7.7: Temperature at sensor point of the sheet with presence of large non-repetitive 

disturbances ...................................................................................................................... 193 

Fig.7.8: Error in temperature at sensor point of the sheet with presence of non-repetitive 

disturbances ...................................................................................................................... 194 

Fig. 7.9: Sheet temperature at sensor point of the sheet at the presence of repetitive 

disturbances ...................................................................................................................... 195 

Fig. 7.10: Error in temperature at sensor point of the sheet at the presence of repetitive 

disturbances ...................................................................................................................... 196 

 

 



12 
 

List of tables 

Table.1.1: Annual Consumption of Plastic Product in World (Thousands of Tons) ......... 15 

Table 3.1: Comparison between proposed and conventional method ............................... 90 

Table 3.2: Comparison between proposed and conventional method ............................... 90 

Table 3.3: Comparison between proposed and conventional method ............................... 91 

Table 7.1: Comparison of different control technique for heater in terms of error ......... 189 

 

 

 

 

 

 

 

 



13 
 

Contributors 
 
Md Muminul Chy Literature review 

Problem identification 
Development of ideas to solve the problem 
Implementation of the idea 
Originator of the thesis 

 
Dr. Benoit Boulet Thesis supervision 
 
Dr. Hannah Michalska Thesis committee member 
 
Dr. Ioannis Psaromiligkos Thesis committee member  
 
McGill University/NSERC  Funder 
 

 
 

 

 

 

 

 

 



14 
 

Chapter 1 

Introduction 

 

1.1 Thesis Objective 

Among the growing manufacturing sectors, the plastic manufacturing industry 

occupies a strategic place because of the many advantages offered by plastic products. 

These products are gradually supplanting traditional materials such as aluminum, glass, 

wood and paper. The consumption of plastics around the world has increased throughout 

the last several decades along with the improvement of technology in this time period. 

Plastic products can be as diverse as yogurt jars, plastic packaging, bathtubs, boat hulls or 

automotive body parts. In fact, plastic consumption per capita also increases with the 

development of a country’s economy such as is the case in China, India and other 

developing countries. Plastics are widely used in packing, electrical and electronics, 

building, medical, automotive, aeronautics, sports and leisure, fishing, agriculture, textile 

and toy applications because of its low density, thermal, electrical and acoustical 

insulation, low permeability to liquids and gases, good mechanical performances such as 

tensile and impact resistance, good aesthetical characteristics in terms of color, gloss and 

touch, as well as easy conversion into useful products.  

Table.1.1 shows the rate of increase in annual consumption of plastic products 

throughout the past few decades and future plastics growth also projected for next decade 

using the consumption data over a fifty year time span, from 1960 to 2010 [Source: 

Plastics Europe Market Research Group (PEMRG)]. The annual rate of consumption 

growth 8.1% on average which increased the consumption of all solid polymers from 7 

million tons in the world during the year of 1960 to 196 million tons during the year of 
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2005 [Source: Pardos Marketing: Industrial Market Research Consultancy specializing in 

plastic and applications]. It continues to increase and is estimated to achieve over 365 

million tons during the year 2015 and it will continue to achieve over 540 million tons 

during 2020, using a more conservative annual rate of 6.5 %. Total world production and 

consumption of plastics from the beginning of the twentieth century has kept an average 

annual rate of growth of 15 %. It doubles the consumption of the products in every five 

years until 1975-1979. This high increase rate was never achieved again after the first oil 

shock; the average annual growth rate of plastics was 15% from 1960 to 1974, and 8% 

thereafter, from 1974 to 2000, and 2005. Plastics consumption is growing in the new vast 

and fast developing country markets. The growth rate is averaging more than 10-15 % a 

year, just like it was in the prime time of the plastics built-up in Europe, USA and Japan, 

in the 1960-1975 era. 

The diversity and wide use of plastic encourage researchers to develop more 

sophisticated and cost-effective way for product manufacturing processes. The process of  

Table.1.1: Annual Consumption of Plastic Product in World (Thousands of Tons) 

 
Types of Plastic Product 1960

(1000 

tons)

1979

(1000 

tons)

2000

(1000 

tons)

2010 

(1000 

tons) 

2020 

(projected)

(1000 tons)

Commodity 7000 60000 155000 287000 510000

Engineering 50 900 4500 12000 24500

Specialty 3 40 170 400 1100

Advanced Composites 0 1 80 200 500

Total 7100 62000 160000 300000 538000

Source: (a) Plastics Europe Market Research Group (PEMRG) in Plastics Europe, 2010 

  (b) Pardos Marketing: Industrial Market Research Consultancy specializing in 

plastic and applications.   
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Fig.1.1: Consumption of Plastic Product in World (Thousands of Tons) 

heating a plastic sheet to form it on an open mold is called thermoforming. The plastic 

sheet is heated by the oven heaters to its forming temperature and then formed by 

stretching it over, or into, an open single surface mold.  The sheet is pushed against the 

mold surface unit until it is cooled. The formed part is then trimmed from the sheet. The 

thermoforming process consists of three phases, namely, the heating phase, forming phase 

and solidification phase. The first and most important part of the thermoforming process 

is bringing the sheet up to the softening temperature, i.e., the heating phase. The sheet is 

then formed to a mold using pressure in order to achieve the desired shape in forming 

phase. Finally, in solidification phase, the formed part is left to cool in the mold until the 

material solidifiers and rigid enough to be removed from the mold. 
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As heating is the first phase of the thermoforming process, the remaining phases 

of the process depend on the outcome of this phase. In this thesis, a detailed analysis of 

the heating phase is presented and effective control strategies to track the desired sheet 

temperature profiles throughout the heating cycle are developed. Proper control of sheet 

temperature results in an overall improvement of the thermoforming process. The main 

objective of the control system of the heating phase of the thermoforming process is to 

control the heater temperature of the oven such that the sheet gets heated at the specified 

temperature profile. The specification of the temperature profile over the whole sheet is a 

crucial step which should be achieved at the end of the heating phase, because the 

mechanical properties of the plastic largely depend on the temperature of the sheet [1-3]. 

A change in temperature of the sheet results in a change in mechanical properties such as 

the fluid behavior index and fluid viscosity of the plastic sheet [4,5]. In the forming 

phase, the plastic sheet is formed in the desired shape over the mold depending on these 

properties of the plastic. Moreover, different heat conduction boundary conditions exist 

within the part due to different parts of the plastic making contact with the multi-cavity 

mold boundary at different times. The quality of the plastic product can be improved 

through better control of material distribution before actual forming of the sheet by close 

control of sheet temperature distribution. Due to these reasons, uneven temperature 

profiles are often required to influence the mechanical formability of the plastic based on 

the shape of the object to be formed. Thus, the required temperature profile over the sheet 

at the end of the heating phase depends on the desired final part thickness at different 

locations and the intended application of the part.  

Efficient temperature control and disturbance rejection helps to reduce the number 

of rejected parts and decrease the production cost. This is particularly important for 

producers of products manufactured from very expensive plastic materials. To increase 

production efficiency in terms of production rate, it is important to reduce the time it 

takes to make each individual part. This forces the controller to control the sheet surface 

temperature with a more aggressive trajectory for sheet temperature and shorter heating 

times for thermoforming operations. Heating a sheet at an aggressive rate will not give 

enough time for the heat to propagate across the sheet thickness through conduction as it 
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is a slow process compared to radiation. Another purpose of the controller could be to 

control the heater of the oven to decrease energy consumption by generating optimal 

control signals. Control of the heating temperature of the oven can be utilized in such a 

way that it can also potentially result in a decrease of machine maintenance cost. The 

performance of the heating elements in the oven can deteriorate with time which may 

affect heating quality. A controller can control the system to extend the life of the heating 

elements.  These are some of the important motivations for the application of the heating 

phase control.  

1.2 Literature Review 

Most of the improved and recently developed control techniques depend on a 

mathematical model of the system. An accurate mathematical model is very important to 

get an idea about the system’s behavior. It is also important for simulation of the 

developed control technique to gain confidence in the proposed technique before it is 

implemented in real-time. System modeling is a useful tool in efficient controller design 

to achieve the desired output temperature of the sheet at the end of the heating cycle in 

the thermoforming process. Some researchers have developed simple models of heat 

transfer in heating phase of the thermoforming process [5,6]. They are focused on various 

mechanisms of heat transfer for a variety of polymer processing techniques. In [5], Moore 

introduces the modeling of sheet reheat phase of the thermoforming process considering 

heat transfer by the combination of conduction, convection and radiation. He proposes the 

discretization of the plastic sheet across its thickness to consider heat propagation through 

its thickness only. In [6], Throne developed a model for heat transfer in semitransparent 

polymers for heating phase of the thermoforming process considering the wavelength 

dependency of sheet absorptivity and heater emissivity. In [7], the researcher analyzed the 

dependency of the absorbtivity and emissivity of the sheet on the wavelength of the 

transmitted heat that influence the development of the model of the heating phase. In [8], 

the researchers established the spectral properties of infrared heat emitters. In [9], the 

authors analyzed the uncertainty of the model parameters that are related to the input – 

output relationship of the heating phase. This work focuses on the treatment of parameter 
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uncertainty in the simulation of the sheet reheat phase of the thermoforming process. In 

[10], the researchers put emphasis on the importance of optimizing the reheating stage in 

blow moulding and thermoforming process. For that analysis, they come up with a model 

to predict the transient temperature distributions over both thin and thick-gauge 

polypropylene thermoformed sheets using an effective radiative heat transfer coefficient 

and the effective bulk temperature. Ajersch [11] improves on that modeling by 

incorporating the absorption of heat within the sheet as it heated. Gauthier [12] proposed 

certain improvements of the heating phase of a thermoforming machine by considering 

the transmission factor of incident heat over the plastic surface based on the previous 

model developed by Ajersch . He used the Beer Lambert Law to evaluate the part of heat 

energy that is transmitted through the plastic sheet layer and the part that is absorbed by 

the same plastic sheet. Although these researchers developed a good model for the 

heating phase of the thermoforming process, there are still some discrepancies between 

the simulation and experimental results. In this thesis, an improved model is developed 

for the heating phase of the thermoforming process through some development of the 

existing model developed by Ajersch resulting into superior quality of predictions 

through more accurate evaluation of input parameters of convection heat transfer, 

investigation of some other heating sources and development of a model for air 

temperature inside the oven.  

One of the problems that researchers face in controlling sheet temperature in 

heating phase is sensing the whole sheet temperature using a fixed number of sensors. To 

control the temperature profile at every point of the sheet to the specified profile, an 

infinite number of heater units in the oven and an infinite number of sensors to feedback 

the temperature would be required, which is not feasible. Thus, it becomes a challenge for 

researchers to estimate the sheet temperature and hence control the temperature profile of 

the sheet using a minimum number of sensors by a fixed number of heaters in the oven 

[13]. Estimation of a complete temperature profile over the whole sheet is necessary for 

an accurate and efficient control of the temperature, although the number of sensors 

should be kept low to minimize their cost. The effectiveness of the controller depends on 

the accuracy of the estimation of the complete temperature profile and the incorporation 
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of the estimation into the design of the controller. Some researchers use the signal from 

the sensor directly as the feedback signal to compare with the desired temperature at the 

point of the sheet [14,15]. The controller design based on these error signals works to 

minimize the difference between the actual temperature and desired temperature of the 

sheet zone. But the differences between the actual temperature and desired temperature at 

locations between any two sensors cannot be optimized using that control technique. If 

the sensor output can be used to estimate or interpolate the whole temperature profile over 

the sheet and this information is incorporated in the design of the controller in such a way 

that it will control whole sheet temperature instead of the temperature at some particular 

points of the sheet, then the sheet temperature can be achieved to the specified profile 

required for the forming phase. The approach in [11] uses virtual sensors (that uses 

information available from other real sensor to estimate temperature at other points to 

reduce sensor cost) in addition to real sensors so that some more temperature points can 

be incorporated into the design of the controller. The temperatures at these virtual sensors 

are estimated from the real sensor temperatures using a weighted average based on 

distance. Although more points can be incorporated in the design of the controller using 

the virtual sensors to optimize the difference between desired and actual temperatures, the 

difference between the desired and actual sheet temperature profiles still cannot be 

optimized by this method across the entire sheet as the controller only minimize 

temperature difference at certain points.  

Another challenge for research is to obtain heater temperature set-points for the 

desired temperature profile over the sheet at the end of the heating phase because of weak 

actuators (ceramic heaters) and high nonlinearity of the system. Excessive heating can 

cause the plastic material to degrade and may result in a change of color or premature 

failure when exposed to the outdoors. This not only affects the physical and mechanical 

properties of the part, but also endangers the economic viability of the product. It 

therefore becomes very important to control the temperature profile over the sheet to the 

desired temperature profile. Complex thermal couplings between large numbers of 

heaters and sheet zones and very low sensitivity make it more difficult to calculate the 

heater temperature set-points. Researchers have developed nonlinear models of heat 



21 
 

transfer between the heaters and the sheet by considering all three kinds of heat transfer in 

the oven: conduction, convection and radiation. The standard direct heat transfer problem 

is well-posed because the solution exists, is unique and stable under small changes of 

input data. But the inverse heating problem (IHP) is not well-posed [16, 17, 18, 19]. Some 

analytical methods like the exact method [20], polynomial method [21, 22] and integral 

method [23,24,25,26,27] are used to solve the IHP. But they are limited to one-

dimensional linear problems with particular initial and boundary conditions. Lots of 

complications come out when the analytical methods are applied for solving the IHP in 

nonlinear and three-dimensional systems. Sometimes, the results do not converge or 

oscillate for a nonlinear system. So these methods are not suitable for the solution of the 

IHP in the heating phase of thermoforming. Some heuristic methods of solution are based 

on pure intuition rather than mathematical formality. Even if they are not accurate, some 

of them are still used to solve IHP in different processes because of their ability to treat 

ill-posed unstable problems. These methods are based on the idea of reformulating the 

inverse problem in terms of approximate well-posed problem by utilizing some kind of 

regularization technique that work only in limited applications. But the error increases 

abruptly with the increase of complexity of the system. The performance of such methods 

is not satisfactory for most complex nonlinear systems like the thermoforming process. In 

most others methods, the solution is obtained by least-squares minimization. Tikhonov’s 

regularization procedure modifies the least-squares equation by adding a smoothing term 

in order to reduce the unstable effect of the measurement error [28]. Because of 

computational cost and ill-posedness of the thermoforming process, most of the works 

use the pseudo-inverse of the view factor matrix, which is basically the ratio of energy 

leaving each surface that reaches the other surface. It is one of the simplest methods. 

Although the computational cost is low in this method, the solution is often erroneous and 

it does not take into consideration the cycle time in calculating set-points of the heater 

temperature of the cyclic process. In another work, a neural network is used to solve the 

IHP [29]. Kudo et al. [30] and França et al. [31, 32, 33, 34] solved the IHP for radiating 

systems. There are also adaptive filtering algorithms that are used to solve the IHP based 

on a probabilistic approach [35,36]. These adaptive filtering algorithms do not converge 

to real setpoints for the thermoforming process as it is high sensitive to change in input 
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and the solution behavior changes continuously with the initial conditions. Although 

discrete methods [37, 38, 39, 40, 41, 42, 43] have the advantage of being applicable to 

any problem, they may experience some oscillation due to the unstable nature of the 

inverse problem. Discrete methods are very computationally costly and require a large 

memory for real-time implementation. As in the case of combined heat transfer problems, 

discretization leads to a system of nonlinear, ill-conditioned equations, so the result may 

not unique and stable. Ajersch tried to use the sensitivity matrix for solving the IHP for 

the thermoforming oven [11]. But the process is nonlinear, such that the sensitivity matrix 

changes quickly with its operating point. This method gives erroneous results even if the 

operating point is close to the linearization point. In [18], Duarte and Covas proposed a 

method for IHP based on multistage heating where the same sheet will be heated in 

different stages of the oven. This delays the whole process and makes it more costly. The 

method in [18] is based on intuition rather than mathematical formality that give 

approximate results. Moreover, the performance of the method degrades for uneven 

temperature profiles. Most of the methods used for solving IHP do not take into 

consideration the cycle time which has a role to play in deciding the set-points of the 

heaters. An iterative method may represent a good choice for solving such systems. In the 

iterative regularization principle, a sequential improvement of the solution takes place. A 

solution to the IHP is found at the end of the iterative procedure. There are many such 

algorithms based on the conjugate gradient used to produce robust and stable estimation 

of the solution of IHP which are frequently used in metallurgy, chemical industry, 

aerospace and electronics [44, 45, 46, 47, 48, 49, 50].  

Two types of control techniques are used for the heating phase of the 

thermoforming process: cycle-to-cycle control and in-cycle control. A cycle-to-cycle 

control technique updates the control input for the heater temperature set-points at the end 

of each cycle such that the next part is improved upon iteratively via better sheet 

temperature distribution and to correct for gradual drift of machine operating parameters. 

On the other hand, the in-cycle technique calculates control input of the heater 

temperature during the heating phase. In the process of thermoforming, the temperature 

profile over the plastic sheet at the end of the cycle and the rate at which the sheet is 



23 
 

heated depend on the efficiency of the controller, the number and locations of heater units 

and the number and locations of sensors. 

The control of the heating phase of the thermoforming process is a challenging 

problem because of the difficulty arising from the nonlinear and time-varying nature of 

the process. Moreover, a high level of uncertainty surrounding the process and in 

different material parameters, as well as the multi-input multi-output nature of the 

problem, with a high degree of coupling between inputs and outputs, make the control 

even harder. Finally, there are a number of hard constraints due to the heaters and the 

polymer material that must be taken into consideration such as maximum allowable sheet 

and heater temperatures.  At present, in some cases standard proportional-integral-

derivative (PID) controllers are used, even though the process is difficult to control using 

conventional PID controller due to the long time constant of the process [51,52,53,54]. 

The long time constant is caused by low heating and cooling rates of the heaters and 

plastic sheet, and the sheet temperature has a tendency to overshoot on set point changes 

and is slow to correct itself on disturbances. Moreover, the PID controller cannot handle 

process constraints such as the maximum and minimum heater temperatures, as well as 

limited heating and cooling rates of the heaters. Because of the limited heating and 

cooling rates, it is typically observed that the heaters fail to track the control inputs from 

the controller. Moreover, PID controllers typically take little model information into 

consideration to calculate the control input. Because of strong nonlinearities in the 

heating phase, they cannot achieve the specified performance level at different operating 

conditions. This poor control performance by PID controllers may lead to part quality 

variation problems that cannot meet industry’s strictest quality standards. PID controllers 

also have a drawback in controlling an MIMO system as the IHP has to be solved in real 

time to decouple the system [16].  

With the continuous growth of the thermoforming industry and ever-expanding 

applications of plastic parts, the demand for rapid production of complex parts with 

tighter tolerances, superior finish and lower cost is increasing rapidly. These requirements 

cannot be met without a sophisticated process control system providing accurate control 
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of key process variables that are inherently nonlinear and time-varying. Different control 

strategies, such as adaptive control and model predictive control (MPC) have therefore 

been adopted to handle the control problems [52,55,57,58,59,60,61,62,63]. Adaptive 

control can not give good performance for nonlinear systems with parameter uncertainty 

and it is sensitive to unmodelled dynamics and disturbances [57]. It may have poor 

transient that affects the heating rate throughout the thickness of the sheet as well as the 

performance of the thermoforming process. It also requires a lot of computation for a 

large and complex system such as the thermoforming process. Most of robust controllers 

use a priori knowledge of the upper bound on the uncertainties in developing the control 

actions, ignoring the fact that some characteristics of an uncertain system can be learned 

during the control process. The inability to learn results in a conservative design and 

stability of the system is achieved at the cost of performance.  

MPC has some nice features. For example, it can automatically compensate for 

process interaction and disturbances as well as handle difficult process dynamic. Another 

important advantage of this type of control is its ability to cope with constraints on 

controls and states. So MPC can optimize the performance by allowing for operation 

close to the system constraints. MPC is also able to handle structural changes and it may 

be easy to tune. However, the computation of MPC to solve the optimization problem 

between every sampling instant may require complex calculations demanding a high 

speed processor [61]. In some other industrial applications that work with repetitive batch 

processes and where each process has to follow a trajectory corresponding to the desired 

performance, the use of a cycle-to cycle control technique is typical. In case of a 

repetitive process, sometimes ‘in-cycle’ control approaches are not perfect and trajectory 

tracking errors remain as the controller does not use information from the previous cycles 

[51,52,53,54,55,56,57,58]. As a result, the same error is repeated at each cycle due to 

repetitive disturbances. With the information obtained from previous cycles, it becomes 

possible to change the control input applied to the process in order to reduce the trajectory 

error.  
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Among cycle-to-cycle control approaches, Iterative Learning Control (ILC), 

Terminal Iterative Learning Control (TILC), Repetitive Control (RC) and Run-to-Run 

(R2R) control are mostly used. TILC computes the control input at the end of the cycle 

and it keeps the same control input over the next cycle.  Process control using these 

techniques is also complicated by the fact that there is a high level of uncertainty 

surrounding the process, particularly with the material properties. Moreover, 

environmental conditions may change between cycles. Heater nonlinearity may make the 

controller delay in achieving the correct input signal. Sometimes a cycle-to-cycle 

controller converges very slowly resulting in lots of discarded parts. Moreover, the time 

varying nature of the process makes this technique insufficient to achieve the desired 

performance. RC is a control technique that is similar to ILC. The major difference 

between these two approaches is that ILC requires the return of the process to a specific 

initial state vector, always the same for all cycles, while in RC, the initial state vector of 

cycle k+1 corresponds to the final state vector of the process at the end of cycle k 

[64,65,66, 67,68,69,70,71]. Thus, ILC is used for intermittent processes whose final states 

are different from their initial states. The same applies to TILC and R2R. Between two 

successive cycles, the process returns to its initial conditions (or state vector) [66]. To 

illustrate, if we use ILC to control the heating of a plastic sheet, then the initial state of the 

process corresponds to the plastic sheet's temperature before entering the thermoforming 

oven. The final state at the end of the cycle corresponds to the sheet temperature just 

before it goes to the forming phase of the thermoforming process. These initial and final 

sheet temperatures can be very different. RC is used for processes for which there is no 

wait between two successive cycles and the final state of a cycle will become the initial 

state of the next cycle. In some applications, R2R is used to eliminate the effect of 

periodic disturbances. It is also considered to be an Intelligent Control approach [66]. 

This cycle-to-cycle control method, like TILC, is based on measurements of the 

controlled outputs taken at the end of the cycle [64,65,66]. The R2R approach is 

composed of various control algorithms for cycle-to-cycle control to correct for gradual 

drift of the process operating parameters[64,68,69,70], and one of the algorithm, which is 

the most used, is the "Exponential Weighed Moving Average" (EWMA) [64,65,66, 

67,68,69,70,71]. These R2R algorithms are analyzed from a stochastic point of view, 
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whereas the analysis of TILC algorithm approaches rely more on the deterministic 

analysis used in ILC.  

1.3 Major contributions of this thesis 

The major contributions of this thesis are listed below: 

1) In this thesis, at first, the existing model of sheet heating is improved to give a 

better mathematical relationship between inputs and outputs. That is, an improved model 

is developed for the heating phase of the thermoforming process through some 

development of the existing model developed by Ajersch resulting into superior quality of 

predictions through more accurate evaluation of input parameters. The existing model of 

the heating phase is first presented along with the discrepancy between the existing model 

and the experimental results. This thesis presents an improved mathematical model as 

compared to the existing model to represent a more accurate relationship between inputs 

and outputs of the heating phase of the thermoforming process. The proposed state-space 

model of this process can present and explain some behaviors that are impossible to 

explain using the existing model. The development of this new model helps to improve 

the quality of predictions of the system’s output and state through more accurate 

evaluation of the inputs and system properties. First, the modeling is developed based on 

the heat transfer method and the system’s behaviour. Then, a series of specialized 

experimental data are compared with the simulation data obtained from the developed 

model to validate it. All three kind of heat transfer methods (conduction, convection and 

radiation) are considered in the development of the model of the heating process. The 

proposed state space model is simulated using Simulink to compare with real time results. 

The input output relationship of the proposed model closely follows the real time 

relationship of the inputs and outputs at different operating conditions. The proposed 

model gives improved results as compared to the existing model.   

2) In this thesis, a conjugate gradient method is used to calculate the heating set-

points of the heaters to heat the plastic sheet to the desired temperature. To calculate the 
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set-points of heater temperatures that will heat the plastic sheet to the desired temperature 

at the end of the heating cycle is a challenge for thermoforming process. Although 

radiation heat transfer plays a big role in a thermoforming oven, conduction and 

convection also have a significant contribution in sheet heating. The combination of all 

three forms of heat transfer makes the problem harder to solve. In addition, the IHP is 

often not well-posed in a thermoforming process, making the solution numerically 

unstable. In this thesis, a conjugate gradient based method is proposed while taking into 

consideration computational cost such that it can be implemented as a real-time algorithm 

in the controller. The performance of the proposed method for solving IHP, and thereby 

the corresponding sheet temperature controller, are tested at different operating conditions 

and compared with the conventional method of solving IHP based on the pseudo-inverse 

of the view factor matrix.  

3) This thesis presents a new method for the estimation of sheet temperature using 

temperature sensors at different positions of the sheet. The proposed method is different 

from the conventional method in estimating sheet temperature through the prediction of 

spatial harmonics. This proposed estimation technique does not need the interpolated 

points’ locations prior to estimation like other conventional techniques. Therefore, it can 

estimate temperature at every point over the sheet from its spatial harmonics and a major 

part of the computation can be done offline as soon as we know the sensor location. This 

reduces the computational cost of the proposed method.  Two-dimensional FFT technique 

was used in the proposed estimation method of the temperature profile.  

4) This thesis proposes a new control technique that controls sheet temperature by 

controlling the spatial temperature harmonics to reach the desired temperature profile. In 

conventional technique, the temperatures at certain points are controlled and the control 

of temperature at one point definitely affects other location. But this proposed harmonic 

controller controls the spatial harmonics of the sheet temperature. Using this technique, 

spatial temperature harmonics can be controlled independently as they are orthogonal to 

each other. Control of one harmonic will not affect the control of other harmonics which 

is not possible in the conventional technique.  A simple PI controller is used to control 
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each spatial harmonic to achieve the desired temperature profile over the sheet. Each 

component of the two-dimensional space temperature harmonics is controlled by 

adjusting the heater temperatures. Thereafter, the performance of the proposed 

temperature control technique based on the spatial harmonics is compared with the 

conventional control technique in simulation.  

5) Fourier transform technique is an effective tool that is used for the estimation of 

the spatial harmonics of temperature profile over the sheet. But one of the drawbacks of 

this method is that its use for the estimation of the temperature profile of the sheet 

requires that the sensors have to be placed at equidistant positions over the sheet. This 

placement may not be optimal for the prediction of the temperature profile of the sheet. 

The location of sensors should depend on the expected temperature profile variations. 

More sensors should be placed around the areas where the largest gradients of 

temperature are expected to capture all harmonics correctly. So the temperature sensors 

are usually placed at the optimal positions of the sheet for the best estimation of surface 

temperature of a sheet with the least number of sensors. An estimation technique of 

missing sensor point temperatures is proposed to transform a non-equidistant sensor data 

into equidistant sensor data. The Lagrange interpolation technique is used in this 

proposed technique. It was found in the simulation results that, the estimation of 

temperature using Lagrange interpolation bring more oscillation. But this technique may 

be more suitable in case of a temperature profile with high oscillation.  

6) In Chapter 5 in this thesis, another estimation technique is proposed to predict 

harmonics using QR factorization method to avoid the drawback of Lagrange 

interpolation technique. The proposed method for the estimation of temperature can be 

used for any arrangement of sensors even for sensors with non-equidistant location. The 

proposed method is developed in such a way that it can do a high-quality estimation of 

the temperature profile over the entire sheet through its harmonics and the spatial 

harmonic controller can control the harmonics to obtain the desired temperature profile. 

The computational cost of computing Non-Uniform Fast Fourier Transform (NUFFT) to 

estimate the temperature profile can be reduced by computing the NUFFT matrix offline 
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to make the technique more computational efficient. The NUFFT matrix can be computed 

offline as soon as the locations of the sensors are known. The performance of the 

proposed estimator and controller is tested in simulation at different operating conditions 

to compare with the Lagrange interpolation technique and the conventional method of the 

estimation of temperature profile which is based on the weighted average of the 

temperature of the sensors surrounding the point.  

7) This thesis presents a method to control the surface temperature of a plastic sheet 

using MPC. Even though the MPC controller can handle a multivariable process, the 

large number of computations makes it difficult to apply to large systems such as multi-

zone temperature control in a thermoforming machine. This drawback is handled in this 

thesis using Multi-parametric quadratic programming that helps in solving the model 

predictive optimization problem offline which reduces the real-time computational 

burden of the controller. In this thesis, the design of a model predictive controller is 

reported and simulated on a complex thermoforming oven with a large number of inputs 

and outputs for precise control of sheet temperatures under hard constraints on heater 

temperature and their rates.  

8) Properties of the thermoforming process, such as its nonlinear, time-varying 

dynamics and actuator constraints, make its control challenging. An iterative control 

technique along with model predictive control is presented in this thesis on 2D control of 

the thermoforming process. This approach utilizes not only incoming information from 

the ongoing cycle, but also the information stored from the past cycles. To deal with 

constraints as well as non-repetitive disturbances in the process, the MPC technique is 

incorporated to update the control law within the cycle. To exploit the repetitive nature of 

the heating phase of the process, a cycle-to-cycle iterative learning control technique 

direction is proposed. The iterative learning strategy is useful for achieving desired 

temperature despite model mismatch and disturbances. Even though the proposed multi-

zone temperature controller can handle a multivariable process, the large number of 

computations makes it difficult to apply to large systems such as a thermoforming 
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machine. To reduce the computational burden, the control laws are computed offline 

using multi-parametric programming. 

9)  This thesis ends in Chapter 8 by drawing some conclusions and by providing 

some ideas for future research work.  
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Chapter 2 

Modeling of the Heating Phase of a Thermoforming 

Machine 

 

2.1 Introduction 

The first step in gaining knowledge about a system and controlling it is to build a 

mathematical model that represents the behavior of the system. In the case of the 

thermoforming process, the model represents the relationship between the input current to 

the heating elements and the plastic sheet temperature. Generally, there are two basic 

methodologies that are available for process modeling.  The first approach is known as 

the “black-box” modeling approach. This approach uses system identification techniques 

to obtain mathematical models from experimental input-output data. A model is 

developed to fit the input-output data to represent the behavior of the system. The second 

approach is direct: it utilizes in-depth knowledge of the system and various laws of 

physics to obtain mathematical equations which describe the system’s behavior.   

The first-principles approach and the black-box approach, have their own distinct 

advantages and disadvantages.  One advantage is that a black-box model, depending on 

its structure, can often better describe the behavior of the system within a certain 

operating range, even though the modeling equations hold no physical meaning.  Another 

advantage is the fact that this same approach is very versatile and can be applied to a wide 

range of systems.  This accounts for the method’s popularity. It does not need any kind of 

information about the system prior to the development of the model. However, some 

reasonable assumptions are often made about the system, such as linearity, time 
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invariance, operating range of the process etc. So, an in depth understanding of the 

system dynamics is not necessarily required for this kind of approach.  As a result, the 

black box approach is often a practical, less labor intensive modeling strategy.  One of the 

disadvantages of black box modeling is the fact that “plant friendly” inputs are not always 

possible.  This means that some systems may not be suitable for the application of system 

identification techniques that require relatively large input perturbations, which can 

subsequently bring the system out of its normal operating range and cause a defective 

product or even damage equipment.  Sometimes small signal PRBS (Pseudo Random 

Binary Signal) analysis is used to extract process models from processes that are sensitive 

to large perturbations [72, 73, 74].  Unfortunately, this technique is not directly applicable 

to thermoforming due to the slow response of the heating elements. As the thermoforming 

process is time-varying, most black box models will not be capable of capturing the time-

varying dynamics of the process.  Finally, the black box approach can sometimes require 

many identification experiments, which can be time consuming and costly depending on 

the process.  In this thesis, we will consider the second approach, i.e., the first-principles 

approach for modeling. 

The second approach has some distinct advantages as compared to first approach.  

To start, the mathematical equations that are derived have physical meaning.  At first, it 

will identify the entire physical phenomena that take place in the process and use various 

laws of physics to represent the relationships. Each of the terms in the equations relates to 

a specific physical phenomenon which yields greater insight into system behavior.  As a 

result, it is possible to tune the parameters in the model so that the model better represents 

the actual physical system.  This also leads to a more flexible design since it is possible to 

simplify or expand upon the model as required.   Another advantage is the fact this 

approach generally does not require as many model validation and identification 

experiments.  Finally, the first-principles approach usually results in better extrapolation 

performance.  This means that the model will often describe, quite well, the behavior of 

the system in operating ranges that are outside of the range in which the identification and 

validation experiments were performed. There are also drawbacks to the first principles 

approach.  One important drawback, which is of major concern, is the fact that a lot of 
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time and effort is usually required to develop a suitable model.  The model parameters 

can sometimes be difficult to obtain, particularly when there are many uncertain 

parameters within the model.  This will also increase the controller design time.  

Inaccurate models are also a major disadvantage.  Modeling errors can occur when 

unmodeled, higher order dynamics are left out, or when very complex physical 

phenomena are described by over-simplified mathematical relationships.  

 Researchers developed a full-order finite-element simulation model of the reheat 

phase of the thermoforming process [75, 76]. But this large and very complex model is 

not suitable for the design of an implementable controller. Another mathematical model 

for the reheat phase of the thermoforming process was developed by some researchers 

based on the combination of the three mechanism of heat transfer such as conduction, 

convection and radiation [5, 11, 12]. Some of the discrepancies of this model are 

investigated in this chapter. This chapter presents an improved mathematical model to 

represent a more accurate relationship among inputs and outputs of the heating phase of 

the thermoforming process. The proposed state-space model of the heating phase of the 

thermoforming process can present and explain some phenomena that are impossible to 

explain using the existing model. The main purpose of this chapter is to improve the 

quality of predictions of the system’s output and state through more accurate evaluation 

of the inputs and system properties. We discuss the model developed and improved by 

Moore, Ajersch and Gauthier [5, 11, 12]. Then, some points in the model will be checked 

to get an improved and more accurate model.  

2.2 Thermoforming oven 

At first, we discuss different parts of thermoforming oven briefly before 

discussing the model of the system. The thermoforming oven is composed of different 

parts such as heater banks, plastic sheet, temperature sensor, oven walls etc. A 

mathematical model represents the physical interactions between different elements 

within the process to develop a relation between input, output and other disturbances 

related in the process.  Before moving on to the modeling of the reheat phase of the 
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thermoforming process, let us provide some discussion about different elements of the 

system.  

2.2.1 Heater Bank 

The thermoforming oven heats the plastic sheet to the desired temperature that 

allows the forming of the sheet on a mold. The oven has two sets of heater banks at top 

and bottom of the oven. Each heater bank is composed of smaller heating elements. 

Although the heater banks have higher temperature at their center compared to its 

peripheral temperature, it could be assumed that the heater banks have uniform 

temperature all over their surface to make the model simple. These heating elements are 

usually made of ceramic, or quartz.  The heat transferred by radiation depends on the 

emissivity of the heater. The heating elements are heated using electrical currents. The 

use of Pulse Width Modulation (PWM) of the current controls the power delivered by the 

heater. The AAA thermoforming oven, on which tests are conducted, has 12 heater banks 

with 6 at the top and 6 at the bottom of the oven, each composed of 3 heating elements.  

2.2.2 Infrared sensor 

The temperature measurements of the plastic sheet surface are important to 

control the temperature of the sheet. Without proper measurement of the process output 

signals, it is impossible to accurately control the process as desired. Infrared temperature 

sensors are used to sense the sheet temperature without physical contact with the sheet.  

For the AAA thermoforming machine the IR temperature sensors are located in top and 

bottom layer of the thermoforming oven and installed in such a way that it will scan the 

temperature of a certain point on the sheet over the whole temperature range. It also has 

sensor to sense the heater temperature that are embedded into the ceramic heater by 

manufacturer. It is also possible to incorporate sensor to sense the air temperature of the 

oven. But the problem is that the air temperature varies widely at different positions in the 

oven.   
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Top heater bank

Bottom heater bank

Plastic sheet

Oven wall

Real temperature sensor

Fig.2.1: Thermoforming oven 

2.2.3 Oven wall 

The thermoforming oven can be open, semi closed or closed. The open oven has 

no side wall whereas in semi closed oven it has wall in two sides. The closed oven has 

four walls around it. In some cases, the oven has a wall that is partially closed. Depending 

on the type of the thermoforming machine, heating process is affected by the wall. The 

wall works as a good reflector of heat flux. In the AAA thermoforming oven, it has two 

walls on both sides made of asbestos.  

2.2.4 Plastic Sheet 

The plastic sheet is the most important part to be considered in developing the 

mathematical model. Heat transfer through the plastic is the vital phenomenon that should 
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be considered to develop the modeling of the process. Some of the plastic materials, 

known as Thermoplastics, do not change in their composition even if it is heated and can 

be molded again and again; while thermoset plastic can be heated and molded once only. 

Plastic could be referring to a wide range of natural, synthetic and semi-synthetic polymer 

material. It can also be classified based on some qualities such as elasticity, transparency, 

biodegradability, density, tensile strength and electric conductivity. Polymer plastic 

consists of high molecular mass that can vary in different properties like molecular 

composition, heat transfer property etc. The composite structures of the side hydrocarbon 

chains influence the properties of the polymer plastic. A plastic product can be modified 

in such a way that heat transfer properties through the material can be controlled. This 

ability to modify the properties of the plastic by repeating unit's molecular composition 

structure made plastics to become an essential part of the today’s world. In this thesis, we 

will focus on mathematical heat transfer properties rather than molding properties. The 

heating process in the plastic sheet depends on the various properties of sheet like density 

of the material, heat capacity, thermal diffusivity, thermal conductivity, and emissivity. 

The plastic sheet is placed in the middle of the oven with the help of a clamping 

mechanism. Depending on the location and number of temperature sensors, the plastic 

sheet is divided into a number of zones, as shown in Fig. 2.2.  The purpose of this zoning 

is to ensure control over the temperatures at certain locations on the sheet surface. Some 

parts require temperature uniformity across the surface, while others might require hotter 

spots at certain locations to ensure that the final part thickness at that spot is as desired.  

2.3 Review of the existing model  

The model used in this thesis is developed in [11]. Interested readers are 

encouraged to get details of the model from that reference.  The developed model is 

briefly discussed here. 
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Fig.2.2: Zone and IR temperature sensors 
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Fig. 2.3: Layers and nodes 

To analyze the propagation of the heat inside the plastic sheet, heat transfer 

equations must be defined for some points throughout the thickness of the sheet.  To do 

so, each zone is divided into layers throughout the thickness of the sheet (Fig.2.3).  The 

layers have the same thickness, and at the middle of each layer there is a point referred to 

as a node.  For each node, a differential equation describes the heat exchange of the 

corresponding layer. Since the surface of the plastic sheet is an important boundary of 

energy exchange, a node is located directly at the surface, see Fig.2.3.  This forces the 

layer containing this point to have only half of the volume inside the plastic sheet, and 

hence, its thickness is only half of that of internal layers.  The layers having their node at 
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the surface are identified as “surface layers” and the other layers are designated as the 

“internal layers”. Each IR temperature sensor looks at an area on the plastic sheet to 

perform the temperature measurement.  Each area where the sensors are pointing is 

designated as a “zone”.  To facilitate modeling, we assume that there are two IR sensors 

for each zone of the plastic sheet, one looking at the sheet from above and the other from 

below (Fig.2.2). For each node, a differential equation describes the heat exchange of the 

corresponding layer. There are three ways (conduction, convection and radiation) to 

exchange energy between heaters, ambient air and nodes. Neglecting the lateral 

conduction of heat between two zones as the thickness of the sheet is much smaller than 

its width and length, the conduction type of heat can be only transferred between two 

adjacent nodes through the thickness of the plastic sheet. The conduction heat transfer 

between surface node and its adjacent node can be expressed as, 

                      (2.1) 

where, ρ is density of the plastic sheet, Cp is the specific heat of the sheet, k is the heat 

conduction constant, Δz is the layer thickness, A is the zone area,  V is the volume of the 

layer, Tsu  is the surface node temperature and Tin is the temperature of the adjacent node 

of the surface.  

In the case of an interior node of the sheet, nodes exist on both sides of that interior 

node and conduction heat transfer is present on both sides of the node. The conduction 

heat transfer equation can be written down as, 

 1 1

1
2i

i i i
p

dT kA
T T T

dt VC z    
      

 

Where, the subscript i indicates the node number. 

Convection has an effect only on the nodes of surface layers and expresses heat 

 2su
in su

p

dT kA
T T

dt VC z
    
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exchange between the ambient air and the sheet. The convection heat transfer can be 

expressed as, 

 2

  su
su

p

dT
hA T T

dt VC
                  (2.2)     

Where; h is the convection coefficient, Tsu is the surface node temperature and T∞ is the 

ambient air temperature.  

The radiant energy exchange transmits energy from the heaters to the surface node of 

the plastic sheet which can be expressed as, 

 

       (2.3) 

where σ is the Stefan Boltzmann constant, εeff is the effective emissivity,  Ah  is the area 

of the heater bank, M is the total number of heaters, Fk,j is the view factor between the jth 

heater bank and the kth zone,θj is the jth heater bank temperature. Details of the method for 

calculating effective emissivity and view factors can be found in [11].  

View factor: In the case of radiant energy transfer, the fraction of the emitted energy by 

one surface reaching the second surface depends on the distance, position, and area of 

both surfaces. The ratio of the received energy by the second surface to the energy 

emitted by the first surface is called view factor.  Researchers already developed the 

mathematical equations for the view factor according to the relative positions of the 

surfaces. Ehlert and Smith provide a calculation of the view factor for two different 

horizontal planes that are separated by a distance N as shown in Fig.2.4(a) in [77]. It is 

found by using view factor algebra that the view factor expression from one plane to the 

other plane is  

 4 4
,

1

2 M
i

eff h j i k j
jp

dT
A T F

dt VC
 

 

   
        


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         (2.4)
 

where 

 

     (2.5) 

where Fpar is the view factor between two parallel planes. 

View factor between perpendicular oven wall and sheet can be calculated using 

the equation in [77]. 
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    (2.6) 

where Fper is the view factor between two perpendicular planes. Gauthier [12] 

considers the transmissivity of the plastic instead of considering that all the radiated heat 

is absorbed at the surface of the sheet. If the infrared radiation is able to penetrate inside 

the plastic sheet, the surface node will not absorb all the heat from the received incident 

radiant energy, and if it penetrates through the thickness of the sheet, then it heats up 

every node on its way, and a part of the incident radiant energy gets transmitted through 

the sheet depending on the transmissivity factor. 
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(a) 

 

                                                             (b) 

Fig. 2.4: Calculation of view factor for (a) parallel planes and (b) perpendicular planes 
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Using the Beer Lambert law (82), the absorbed fraction of transmitted energy in 

surface and inner nodes can be calculated as,  

For surface nodes,  / 2
1 : 1 A ze     

For inner nodes,  2 : 1 A ze     

Combining all three forms of heat transfer into the equation for 2 M  heaters, Z  

zones and 2 nodes for each zone, and taking the transmissivity into account in the energy 

transfer from the radiant heaters to the plastic sheet, the model for the jth zone in the 

heating phase becomes, 

 
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the model for internal node i of the jth zone the heating phase becomes, 
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      (2.8) 

where, 
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2.4 Shortcomings of the existing model 

The prediction of the output of the system for certain inputs, and hence the design 

of a controller, depends on the accuracy of the plant model. As heating phase is the first 

phase of the thermoforming process among all three different phases, an error in the 

prediction of the output temperature of the sheet will be followed by erroneous 

predictions of the subsequent phases of molding and cooling. If the controller is 

dependent on the model, such as a model reference adaptive controller or a model 

predictive controller, it becomes even more important to get an accurate model. The 

existing model has some shortcomings in defining oven air temperature as well as 

convection type of heat transfer. Moreover, it does not take into consideration other ways 

of heat transfer between heater and sheet. 

2.4.1 Shortcomings in consideration of the heat source to heat the plastic 

sheet 

According to the model developed by Moore, Ajersch and Gauthier [5, 11, 12], 

the way the sheet gets heated is as follows as shown in Fig. 2.5: 

1. Heat radiation from the heater banks to the surface of the plastic sheet. 

2. Heat conduction from the surface of the plastic sheet through its thickness. 

3. Heat convection at the surface of the plastic sheet by oven air. 

4. Absorption of the radiated heat throughout the plastic sheet thickness from the heater 

bank depending on the absorption coefficient of the plastic sheet. 

This model is not complete as certain behaviors of the heating phase in the 

thermoforming machine cannot be explained by the model.  It is observed that the sheet 

gets heated faster than is expected from the model [9, 11, 12]. Thus, there are some other 

forms of heat transfer happening in the sheet. As the increase in temperature occurs 

immediately after the sheet enters the oven and there is no delay in the transfer of heat, 

the extra heat gained is by radiation. So there must be some other heat source working as 
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a radiator to heat the sheet.  

Walls are good reflectors of the heat waves generated from oven heaters. The heat 

emitted from the heaters is reflected by the oven wall towards the plastic sheet and it thus 

works as a heat source to heat the plastic sheet. Moreover, when a wall of the oven gets 

heated by the heaters, it works as another emitting source that heats the sheet. The walls 

get heated by the heaters and when a new sheet is placed in the oven, it gets heated not 

only by heaters, but also by the oven walls and hot air inside the oven, see Fig.2.6.  

2.4.2 Shortcoming in convection heat transfer 

Convection heat transfer is different from conduction as it happens between a 

surface and a fluid (stationary or moving) due to the difference in temperatures. In the 

developed model, the convection heat transfer coefficient is considered to be constant at 

the top and bottom surfaces of the plastic sheet, which cannot be true as it changes with 

roughness, geometric orientation, geometric area, fluid temperature, fluid density, fluid 

velocity etc. As convection heat transfer is due to cumulative motion of the fluid 

molecules that are moving across the surface of the solid, it largely depends on the 

geometric orientation of the heater which means a face up heater surface to the air passing 

above the surface should be different as compared to the convection heat transfer from a 

face down heater surface to the air passing below the surface.  In the same way, the heat 

transferring from the sheet to the air at the top surface is higher than the heat transferring 

from the sheet at the bottom surface (when sheet temperature is higher than the air 

temperature and vice versa when sheet temperature is lower than the air temperature). 

Heat convection coefficient highly depends on the geometrical arrangement of the heater 

surface (face up, face down, perpendicular) and the heating medium as convection type 

heat transfer depends on the geometrical arrangement of the heater surface. Some 

researchers worked to calculate convection heat transfer coefficients for different 

geometrical areas and orientations of the heater surface [78,79,80]. So convection heat 

transfer coefficients for face up heaters, face down heaters, face up plastic sheet surface, 

face down plastic sheet surface, perpendicular oven walls will be different. They can be 
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calculated from different heat transfer research works that are already well established. 

There are also different kinds of convection heat transfer according to the nature of the 

flow: free or natural convection and forced convection. 

2.4.3 Shortcoming in modeling of oven air temperature 

Oven air temperature plays an important role in convection type of heating with 

both plastic sheet and heater. But this existing model excludes the modeling of the oven 

air temperature and it has no explanation about the heating process of the air. It cannot 

explain the relationship of the air temperature with the heaters and sheet temperature. 

Fig. 2.5: Heat transfer in existing model of heating phase in thermoforming process 
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Fig. 2.6: Heat transfer in new model of heating phase in thermoforming process 

2.4.4 Other shortcomings in the existing modeling 

Certain parameters of heat transfer equations such as conduction coefficient, sheet 

density, sheet specific heat constant, heater emissivity, and sheet absorbtivity depend on 

process conditions and wavelength of the transmitted heat.  In the present model, all those 

parameters are considered constant. A more accurate evaluation of the heat transfer 

parameters should be made to get a more accurate model. Another fact that cannot be 

explained using the present model is the experimental observation that the air and plastic 

sheet temperatures at the top surface of the sheet are higher than the air and sheet 

temperature at the bottom surface of the sheet [11]. One of the reasons behind this is the 

internal heat transfer due to air and heat flow between above the sheet and under the 

sheet. 

2.5 Improvement of the modeling of sheet reheat phase 

To predict the output of the heating process more accurately, the shortcomings 



47 
 

should be investigated and eliminated.  

2.5.1 Improvement in heating process of the plastic sheet 

Firstly, the radiative heat transfer from heater to the oven wall and oven wall to 

sheet surface are included in the model as shown in Fig. 2.6. The increase in oven wall 

temperature due to the radiative heat transfer between heater and oven wall can be 

expressed in the same way as discussed before as, 

 4 4
,

1

2
wall

wall

M
wall

eff h m j su mj
mwall wall p

dT
A T F

dt V C
 

 

    
            (2.9) 

Where the view factor between each heater and each perpendicular oven wall can 

be calculated using the equation in (2.6). These walls will work as additional heating 

sources to heat the plastic sheet. The heat transfer between oven wall and sheet depends 

on the corresponding temperature. At the beginning of the cycle, when the entering sheet 

is at room temperature, it is heated by the hot oven wall and at the end of the cycle, when 

the sheet is already heated to a temperature that is higher than the oven wall, the heat 

energy will transfer from the sheet to the oven wall. So, depending on the temperature of 

the sheet and the oven wall, the corresponding radiative heat transfer equation will be 

included in the model. In this case, it is important to consider that the heat energy 

transmitted through the oven walls depends on the view factors of the oven walls with 

respect to the heaters as well as the view factors of the corresponding sheet zone with 

respect to the oven walls. The same relation can also be interpreted by considering the 

oven wall as the reflector of the emitted energy from the heater. The effect of the wall can 

be considered using a virtual heater in the opposite side of the wall as shown in Fig. 2.7. 

So we can apply the same relationship for heat radiation in equation (2.3) considering the 

reflection coefficient of the wall. As the wall is reflecting a portion of the heat energy it 

receives from the heater, the original equation should be multiplied by a reflection 

coefficient.  
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For a surface node, 
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mjF  is the new view factor matrix with respect to the corresponding virtual heater and 

coffr  is a reflection coefficient that can be determined using previous experimental data. 

Fresnel’s equation describes the reflection and transmission of heat wave at an interface. 

It gives the reflection and transmission coefficient for wave parallel and perpendicular to 

the plane of incidence. It depends on the color and surface property of the wall. This 

method is considered for the rest of this chapter.  
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 Fig.2.7: Radiated heat reflected through oven wall 

2.5.2 Improvement in convection heating process 

To theoretically evaluate the natural convective heat transfer coefficients, 

empirical equations are developed by the researcher [78,79,80]. These well-established 

equations can be used as follows: 

n
L L

hL
Nu CRa

k
              (2.11) 

where LNu  is the average Nusselt number, h  is the heat transfer coefficient for 

convection, k  is the thermal conductivity of air, and C  and n  are constants. The 

Rayleigh number, defined as the product of Grashof number and Prandtl number, is based 

on the characteristic length L  of the geometry defined as follows: 

3

2

( )s
L

g T T L
Gr

v

 
   Pr

v




    

3( )
Pr s

L L

g T T L
Ra Gr

v





   

Where g is the local acceleration due to gravity, β is the thermal expansion coefficient, T 

is the plate surface temperature, T∞ is the air temperature, v is the kinematic viscosity and 
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α is the thermal diffusivity of air. To calculate the heat transfer coefficient for convection 

in case of a horizontal plate heater/cooler, the characteristic length L can be defined as the 

ratio of the surface area to the perimeter [79],  

sA
L

P
  

As some physical properties are dependent on the temperature, it is recommended that all 

those parameters should be calculated in the arithmetic average temperature of plate and 

air. The following equations give the heat transfer coefficients for the facing down of a 

heated plate or the facing up of a cooled plate as proposed by McAdams [79]: 

        1/ 40.27L LNu Ra  for 5 103 10 3 10LRa             (2.12) 

The heat transfer coefficient for the face up lower surface of a heated plate or the face 

down upper surface of a cooled plate is: 

     1/ 40.54L LNu Ra  for 5 710 2 10LRa      (2.13a) 

     1/30.14L LNu Ra  for 7 102 10 3 10LRa         (2.13b) 

Churchill and Chu [80] proposed two relations as stated below to calculate the heat 

transfer coefficient for a vertical surface of a heated plate. To calculate the heat transfer 

coefficient with both laminar and turbulent flow:
  

1/ 6
1/ 2

9/16 8/ 27

0.387
0.825

[1 (0.492 / Pr) ]
L

m

Ra
Nu  


 for 1 1210 10LRa       (2.14) 
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Fig. 2.8(a): Heat transfer to top and bottom oven air of heating phase in thermoforming 

process (front view) 

Fig. 2.8(b): Heat transfer to top and bottom oven air of heating phase in thermoforming 

process (cross sectional side view) 
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To calculate the heat transfer coefficient with only laminar flow: 

1/ 4

9/16 4/9

0.67
0.68

[1 (0.492 / Pr) ]
L

m

Ra
Nu  


        for 1 910 10LRa       (2.15) 

Where Nusselt number, m
m

h L
Nu

k
 , hm is the mean heat transfer coefficient for 

convection and in case of vertical plate heater/cooler, the characteristic length L can be 

defined as the height of the plate.  

2.5.3 Modeling of oven air temperature in heating process 

The heat transfer with the air inside the oven is of the following types as shown in Fig. 

2.8 (a) and 2.8 (b): 

1. Convection heat transfer between the air above the plastic sheet and face down heater 

at the top of the oven. 

2. Convection heat transfer between the air below the plastic sheet and face up heater at 

the bottom of the oven. 

3. Convection heat transfer between the air above the plastic sheet and face up top 

surface of the plastic sheet.  

4. Convection heat transfer between the air below the plastic sheet and face down 

bottom surface of the plastic sheet.  

5. Convection heat transfer between the air and the perpendicular wall surface in case of 

semi closed and closed oven.  

6. Convection heat transfer between the air of the oven and the air temperature outside 

the oven.  

The internal heat transfer within the oven if the sheet is smaller than the oven size can 

also be taken into consideration using convection heat transfer between the air above the 

sheet and the air below the sheet. If the sheet size is smaller than the size of the oven, hot 

air from the bottom part of the oven will pass to the top part of the oven due to a lower 
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density and gets trapped at the top surface of the oven. This increases the temperature of 

the air at the top and hence increases the sheet temperature at the top surface. In the case 

of semi-closed or open ovens, a percentage of the heat comes out due to convection heat 

transfer between the air of the oven and the air outside the oven. A part of the heat comes 

out from the bottom part of the oven, trapped again on its way to the top part of the oven 

and increases its temperature. The parameters of heat transfer equations like conduction 

coefficient of the sheet, sheet density, and sheet specific heat constant are dependent on 

the sheet temperature. These parameters for different sheet temperatures are usually 

available from the manufacturer and can be used by a least square method to establish a 

relationship between the sheet temperature and sheet conduction coefficient, sheet 

density, sheet specific heat constant.  

2.6 Modeling of the actuator/heating element  

The modeling of the actuator is important in order to completely know the 

behavior of the system. As the controller controls the process through actuators, control 

of a process becomes easier with a quick and powerful actuator. The actuator of the 

thermoforming process is weak and slow, therefore modeling of the actuator is necessary 

to get the relationship between control input and actuator output. Ajersch and Yang did 

some experiment to determine the maximum rate of heating and cooling to develop a 

model of the heater bank [11,81]. Although it can give some primary idea about the 

maximum heating and cooling rates, the heating and cooling rates that also depend on the 

operating condition of the system like the input power, the heat consumed by the sheet, 

the heat consumed by oven air and oven wall (that largely depends on sheet, oven air and 

oven wall temperature). The total energy transfer model of the heater, which relates 

electric energy input to the heater and temperature output of the heater, is shown in 

Fig.2.9. Since the maximum electrical power input to the heater is bounded, it is quite 

understandable that the maximum heating rate is bounded too. The boundaries of the 

maximum heating and cooling rates of the heater depend on the amount of heat transfer to 

the plastic sheet, oven wall by radiation and to oven air by convection. The heat energy 

emitted from the heater depends on the emissivity of the heater and the heat absorbing 
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material. The emissivity of a material is the ratio of energy radiated by the material to 

energy radiated by a black body at the same temperature. It is a measure of a material's 

ability to radiate absorbed energy. On the other hand, the energy radiated by the heater 

hitting at a material may be absorbed or reflected and depends on another crucial 

parameter which has a significant role in the material and is known as absorptivity of the 

material. The emissivity and absorptivity are properties of the material that depend on the 

wavelength of the radiated energy and temperature of the body [9]. So, the radiated 

energy from the heater as well as the absorbed energy by the sheet, air and the oven walls 

depend on the sheet temperature. In most of the cases, either these properties of the 

polymer material are not available from the manufacturer of the material, or consideration 

of these properties makes the model too complex to handle. However, Yousefi and al. did 

an experiment to measure effective emissivity using a thermoforming oven that consist of 

six ceramic heaters in [9]. They heated ABS sheet to measure emissivity within the 

operating range of the heater. They showed that the effective emissivity varied with the 

temperature within 0.765 to 0.79 and the relationship between them is linear. On the other 

hand, V. Kumar [7] and Howell, Siegel, Menguc [82] neglected the effect of sheet 

temperature and spectrum of the radiated heat on transmission, absorption and reflection 

of the radiated heat if the range of temperature variation is low (~150C). However, a 

constant value of emissivity and absorptivity is considered in the proposed model to keep 

it simple.  

 

 

 

 

Fig. 2.9: energy transfer model in heater of thermoforming process 
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2.7 Experimental Set-up  

The developed model of the heating phase of thermoforming machine is compared 

with real time data obtained using the AAA thermoforming machine, the same as in 

reference [9]. Both top and bottom heater banks are composed of 6 heating zones each. 

Each zone consists of 3 heating elements connected in parallel. A thermocouple is 

embedded in the central heating element of each heating zone to sense the temperature of 

the heater. In order to sense the surface temperature of the sheet, 7 infrared sensors (the 

Raytek thermalert MICtm) at the top and 5 infrared sensors at the bottom are installed in 

the machine. These sensors can measure the sheet temperature very quickly and 

accurately without direct contact. This type of infrared sensor must be operated within a 

certain ambient temperature range which is ensured by using an air cooled jacket around 

the sensor. The OPAL-RT RT-LAB software package is used in the real-time 

implementation.  The software runs on a hardware package with command station, 

compilation node, target nodes, communication links and I/O boards. Two different PC 

workstations work as command station and target node. The command station uses 

windows 2000 as operating system to run the original software, generate code and control 

the parameters of the RT-LAB simulation whereas the target node uses QNX as its 

operating system for real-time implementation. The target node is used as the real-time 

processing computer for real-time execution of the simulation and communication with 

I/O devices. The target node first debugs the user’s source code then compiles it in C 

code and finally loads it onto the target node. The I/O board is used to receive the IR 

sensors’ outputs, thermocouple outputs and sends the set points of the heaters. The 

embedded thermocouples output is very low (in the range of milliVolts) and nonlinear 

which requires some signal conditioning before they are processed by the A/D. The 

controller outputs from the RT-LAB pass through the output board and go to solid-state 

relays for each zone. The solid-state relays will be on or off depending on the signal. 

When the relay switch is on it will allow the ac current to pass current through the heating 

element to heat it. On the other hand, if the switch is off, it will block the current. The 

total experimental set-up is shown in Fig.2.10.   
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Fig.2.10: Experimental set-up of a Thermoforming oven 

2.8 Comparison with experimental data 

In this section, a comparison is made between the simulation results of the 

developed model for the AAA thermoforming machine and real-time data that was 

obtained with the same thermoforming machine used in reference [9].  All the real-time 

data used in this paper to compare the real-time data with simulation results were for only 

one cycle of the process with 500 seconds duration (from 9000 seconds to 9500 seconds). 

The oven is turned on a long time before the data is considered so that the data will be 

more reliable due to more uniform air temperature. In Fig. 2.11, real-time data of the 

upper and lower heater temperatures are compared with the corresponding simulation 

results for the heater set point of 180˚C in a single cycle of the process. The same inputs 

were provided for all the heaters in the top and bottom parts of the oven. The existing 

Top heater bank 

Bottom heater bank 

Sheet 
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model shows that the temperature of the heaters will be the same for both upper and lower 

heater for same input. But in the experimental data, it is found that the upper heaters 

attained a higher temperature than the lower heaters even for the same input. It is 

observed that the simulation results (solid lines) give values similar to the real-time data 

(points). In the following two figures the sheet temperature predicted at different points 

by the developed model are compared with the real-time values of the oven. The location 

of different points on the sheet that are used to compare the simulation and real time data 

is shown in Fig. 2.12. Shown in Fig. 2.13 and Fig. 2.14 are the sheet surface temperatures 

measured at these two different locations in the top surface and bottom surface within a 

cycle. The sheet is heated in open loop with all top and bottom heaters heated at 160C. 

The measured data are taken after a certain number of cycles. As expected, the sheet 

temperature at the center is higher than the temperature at corners. The temperature is 

decreasing towards the periphery of the sheet. This can be explained by the concept of 

view factor which are diminishing towards the corners. In Fig. 2.14, it is observed that the 

temperature at the bottom surface of the sheet is higher than the temperature at top 

surface of the sheet as the convection heating process is more active in the lower surface 

because of higher convection coefficient. It is observed that the developed model can 

predict experimental data satisfactorily, although there is a discrepancy in the case of the 

corner point of the sheet. The point is located closer to the outer part of the oven that can 

be cooled by the environment temperature.  In the simulation model, it is assumed that the 

air inside the oven attained the same temperature which may be an inaccurate assumption 

in the case of a corner point. In Fig. 2.15, the predicted data for average air temperature 

between top heater and sheet as well as average air temperature between bottom heater 

and sheet is shown. As the air temperatures inside the oven were different at different 

point, the overall average temperature could not be computed using a real-time 

temperature sensor. So the real-time data could not be compared with this predicted data. 

The air temperature between sheet and bottom heater is higher than the air temperature 

between sheet and top heater. This can be explained by using convection heat transfer 

concept because convection heat transfer co-efficient is higher between bottom heater and 

air than top heater and air. 
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Fig.2.11: comparison of real-time top and bottom heater temperature with the 
corresponding simulated results. 

 

Fig.2.12: Corner and center point of the sheet 

 

 

 

 

Fig.2.13: comparison of real-time sheet temperature at center and corner point of top 
surface of the sheet with the corresponding simulated results. 
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Fig.2.14: comparison of real-time temperature at center and corner point of bottom 

surface of the sheet with the corresponding simulated results. 

 

 

 

 

 

 

Fig.2.15: Average air temperature between sheet and top heater, average air temperature 

between sheet and bottom heater predicted from the model. 
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2.9 Conclusion 

An experimental set-up has been developed in order to compare the simulation 

results of the developed model with experimental data. The comparisons of the result of 

the experiment show that the developed model can predict the experimental results 

reasonably well. These preliminary models can be extended considering the rapid 

deformation of the sheet during the heating process using finite element methods. 

 

 

 

 

 

 

 

 



61 
 

Chapter 3 

Inverse Heating Problem in Thermoforming 

 

3.1 Introduction 

Finding the set-points of heater temperatures such that the sheet will achieve the 

desired temperature at the end of the heating cycle is known as the inverse heating 

problem (IHP) in thermoforming. Although the major part (50% to 80%) of the heat is 

transferred from the oven to the sheet by radiation, convection also has a significant (20% 

to 40%) contribution in sheet surface heating whereas conduction plays a significance 

role (10% to 50%) to heat the sheet through its thickness. This makes the inverse heating 

problem complex. In this chapter, a conjugate gradient method is used to solve the IHP in 

the control of sheet temperature. In the Conjugate Gradient method, all residual is 

orthogonal to every previous residuals as well as search direction and all new search 

direction is constructed to be orthogonal to every previous residual and search direction to 

ensure fastest convergence to the solution. Another major advantage of the conjugate 

gradient method is, it reduces space complexity and time complexity per iteration. So it is 

a good tool to solve linear and nonlinear equations [83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 

93]. This makes us to investigate the possibility of applying conjugate gradient methods 

in solving the IHP for thermoforming process. Thus, in this chapter, a method based on 

the conjugate gradient method is presented such that it can provide set-points temperature 

values for the heaters resulting in a specific temperature distribution in the plastic sheet 

after a predefined cycle time. In developing the method, computational cost is considered 

such that it can be implemented as a real-time algorithm in the controller. 
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3.2 Solving the direct heating problem 

In this section, the direct heating problem is discussed and an algorithm is proposed to 

solve it. The main goal though is to solve the IHP, i.e., finding the correct heating element 

temperatures that, in a noise-free, perfect open-loop case, would produce the correct sheet 

temperature distribution. In such an inverse problem, one seeks to determine the 

appropriate input to obtain a predetermined result, whereas in the direct problem, one 

calculates the output resulting from the application of a certain input, which is typically 

easier. But in an iterative method for solving the IHP, the direct problem has to be solved 

at every iteration. The detailed algorithm solving the direct heating problem is presented 

in Fig. 3.1. The solution of the direct heating problem depends on the initial temperature 

of the sheet, the cycle time, and the boundary conditions. Using the geometric 

configuration of the sheet and heaters and the physical and mechanical properties of the 

plastic, all parameters of the model equation can be calculated. Then, the differential 

equations can be solved using a finite difference method with forward difference 

approximation considering the final temperature of each step as the initial temperature for 

the next step. The effect of changing the geometric configuration of the sheet and heating 

elements due to changes in temperature may be neglected, unless the processor is fast 

enough to take into account such changes. For example, sheet sag could be modeled. 

However, a consequence of changes in the geometry of the heating problem due to sheet 

sag is that the view factor matrix has to be updated at every sampling time. To 

incorporate the physical change into the direct problem solution, one can use the model 

equation from [11]. The geometric shape of the heater is also changed with heating 

element temperature. 
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Fig.3.1: Algorithm for solving direct heating problem 
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3.3 Solution of inverse heating problem  

The pseudo-inverse approach is a computationally efficient technique that can be 

used to solve the underdetermined IHP, namely to determine the heater set points that will 

heat the plastic sheet to the specified temperature at the end of the heating cycle. As 

radiation is the fastest and dominant way of heating the sheet, the pseudo-inverse of the 

view factor matrix has been proposed for solving the IHP [11]. The view factor matrix is 

the matrix whose entries represent view factors from the heaters to a point on the sheet.  

As the behavior of the solution of inverse heating problem changes with change of 

initial condition and the system very low sensitive to input, it cannot be solved as easily 

as a direct heating problem. As the sensitivity of a sheet zone temperature to each 

individual heater is very low, a large change in heater temperature causes a small change 

in sheet temperature. Because of this “weakness” of the actuator, the control of the 

heating phase, hence the solution of IHP is difficult. It may be numerically unstable (even 

though it is not unstable physically) which means that the behavior of the solution 

changes so much that the error in the solution can be magnified and can grow 

exponentially instead of damped.  

Since the IHP is difficult to solve as compared to the direct heating problem, a 

promising approach is developed to solve the IHP based on iteratively solving the direct 

heating problem to get more accurate results in every iteration. In the proposed technique, 

a conjugate gradient method of optimization is used which is a straightforward and 

powerful iterative technique for solving linear and nonlinear inverse problems. In this 

iterative method, a suitable step size is taken along a direction of descent to minimize the 

difference between the model output and desired temperatures as defined by objective 

function. The direction is obtained as a linear combination of the negative gradient 

direction at the current iteration and the previous direction of descent. Hence, the method 

not only minimizes the objective function along a negative gradient, it also minimizes the 
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objective function along all previous directions.  The proposed algorithm for solving the 

IHP of the heating phase in thermoforming is described below.  

Let us consider the desired temperature distribution at sensor points on the sheet 

after 1t  seconds to be 1 2[ ]T
s s s sZT T T T  . The temperatures obtained according to 

the model after 1t  seconds at the same sensor points on the sheet are 

1 2[ ]T
i i i iZT T T T   and an initial guess of the temperatures ( )s initialT is taken as the 

current temperature of the sheet at different point. The heater temperatures are denoted as,

1 2[ ........ ]T
M    . The heater temperature is considered as the current temperature 

for the first iteration. The superscript k  used in this algorithm indicates the k th iteration. 

Starting with 
0 01 02 0[ ........ ]T

M     we search for the solution and in each iteration 

we need a function to tell us whether we are closer to the solution that is unknown to us. 

So if the function becomes smaller in an iteration it means that we are closer to solution 

considering that the objective function and the constraints in  are convex. This function 

is called here objective function. The objective function for minimizing the difference 

between the model output and desired temperatures is selected as, 

   T

s i s iR T T T T       (3.1) 

Step 1: As a first step, the direct heat transfer problem of the model is computed for 1t  

seconds to obtain iT  by using the initial guess of the sensor temperatures and heater 

temperatures obtained in the previous iteration to estimate the sheet.  Plastic sheet 

temperature can be calculated easily for known heater temperature using the model 

equation. The algorithm for solving the direct heating problem has already been discussed 

in the previous section. Some simplifications on the model equations can be considered to 

reduce the burden of computation. 

Step 2: Calculate the objective function in (3.1) with the solution that was obtained from 

Step 1. Conjugate gradient method will actually try to compute heater temperature to 
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minimize this objective function. The magnitude of the objective function is compared to 

the prescribed error margin   and the iterative procedure is stopped when  

   1 1 1Tk k k
s i s iR T T T T                 (3.2) 

Where   is the error margin. The error margin should be selected such that it will be 

achievable for that particular thermoforming oven.  

Step 3: Compute the sensitivity matrix. The sensitivity matrix is a matrix whose entry 

( , )i j   represents the sensitivity of the temperature of sensor i  to heating element j . Each 

entry of the sensitivity matrix can thus be expressed as 

     

i
ij

j

T
S







. 

1 1 1

1 2

2 2 2

1 2

1 2

....
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: : :

....

i i i

M

i i i

M

iZ iZ iZ

M

T T T

T T T

S

T T T

  

  

  

   
    
   
     
 
    
    

                                  (3.3) 

The sensitivity matrix plays a significant role in the convergence to a stable solution. If 

the change of temperature in a particular sensor is very low following a change in a 

heater’s temperature, then the corresponding entry of the sensitivity matrix must be small. 

The computation of the sensitivity matrix is also complex and costly. As the conjugate 

gradient method will converge with the inexact search direction with some conditions 

(these conditions will be discussed in Section 3.5), a compromise can be made between 

computational burden for sensitivity matrix and exact search direction. Thus, a simplified 

procedure of calculating the sensitivity matrix will be presented in the next section. 
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Step 4: The gradient direction of the objective function is a vector pointing in the 

direction of the steepest slope of the function at that point. The gradient direction of the 

objective function can be calculated by differentiating equation (3.1) with respect to 

heater temperatures, 

 2( )k k T k
s iR S T T                    (3.4) 

Step 5: Conjugate gradient method combines the advantages of steepest descent method 

and conjugate direction method. Its search directions combine both gradient and 

conjugate part.  The coefficient of conjugate part of search directions is known as 

conjugate coefficient. Conjugate coefficient 
k can be calculated in a few ways. 

Researchers worked on developing different ways to calculate the conjugate coefficient 

considering the convergence, number of iteration for solution and computational burden.  

The Fletcher-Reeves technique suggests the following expression for the method in 

[86,87],  
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The Polak-Ribiere expression proposes another value for the conjugate gradient method 

[94],   
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 The Hestenes-Stiefel expression to calculate conjugate coefficient is [89],   
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In the proposed method, we will use a modified Polak-Ribiere expression as it does not 

only give an accurate line search due its efficiency; it also tends to reset the search 

direction when needed to speed up the convergence.  The modified Polak-Ribiere 

expression is: 

( ) ( ) 0k k kPR if PRg g g= >        

0 ( ) 0k kif PRg g= <          (3.8) 

Step 6: The direction of descent is computed in this step. The direction of descent is the 

linear combination of the gradient direction of the objective function and the direction of 

descent of the previous iteration which can be expressed as, 
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1   k k k kd R d                (3.9) 

Step 7: The step size k  along this direction can be computed in such a way that the new 

estimated values of the heating element temperatures will minimize the objective function 

in the direction of descent.  

   1 1 1min mink k

Tk k k
s i s iR T T T T

 
               (3.10) 

By expanding 1k
iT   with a Taylor series expansion, 

2
21 1 1

2

1
...

2
   

 
               

k k
k k k k k ki i

i i k k

T T
T T  

Neglecting the higher order terms and replacing the value of 1k k    that we will get 

in the next step, 

1   k k k k k
i iT T S d  

Substituting the value into equation (3.10), 

   1min mink k

Tk k k k k k k k k
s i s iR T T S d T T S d

 
        

To solve the optimization problem with respect to k , we differentiate the equation with 

respect to k and equate it to zero, 

        0
T Tk k k k k k k k k k k k

s i s iT T S d S d S d T T S d          
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 With algebraic calculation, the following expression for step size can be obtained: 

Tk k k
i sk

Tk k k k

S d T T

S d S d


      
      

                 (3.11) 

Step 8: Compute the new estimate of heating element temperature by, 

1    k k k kd                  (3.12) 

Step 9: Increase the iteration index by 1 and return to Step 1 for the next iteration. 

The whole algorithm is shown in Fig.3.2. 

3.4 Sensitivity matrix calculation 

There are some problems that could arise in the convergence of the proposed 

gradient method of the inverse heating problem. The proposed technique requires 

computing a sensitivity matrix at every iteration to calculate the set points of the heaters.  

It is unreasonable to calculate a sensitivity matrix for a nonlinear system at every 

operating point. The sensitivity matrix plays an important role in computing a solution of 

the inverse heating problem. It measures the sensitivity of the sheet temperature at a 

certain point with respect to a change of heater temperature. For the heating phase of the 

thermoforming process, entries of the sensitivity matrix are very small so that the 

convergence rate to a solution becomes very slow. In other words, the sensitivity matrix 

for the heating phase is ill-conditioned. Generally speaking, large entries in the sensitivity 

matrix are desirable for estimation of the heater temperature, which can be done by 

properly locating the sensors.  The sensitivity changes dramatically with the change of the 

operating point of the system because of the nonlinearity of the process. If the sensitivity 

matrix is inaccurate, the proposed method may take a longer time to converge or may not 

even converge at all. 
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Fig.3.2: Algorithm for solving inverse heating problem. 
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The actuators and the system are very slow and the rate of change of heating 

temperature is bounded by its maximum and minimum limits [9]. Moreover, these limits 

are as low as a few degrees Celsius per second. Therefore, the system states change 

slowly with a change of system inputs, and the system can be considered to be linear if 

the sampling period is short enough. So, the linearized model that is nearest to the current 

operating point can be used for solving the inverse heating problem (instead of computing 

sensitivity matrix at each operating point) to reduce the computational burden 

significantly. Considering only one layer over the width of the sheet, the linearized model 

for k-th zone of the nonlinear model around the operating point * * * *( , ) ( , )k kU X T can be 

expressed as: 

k k k kX A X B U    
       

          
k k kY C X                        

Where, 
 k kn n

kA ,
 kn m

kB ,
 k kp n

kC .  As we consider only one layer, the value of 

nk is 2. But the plant has Z number of zones and the linear system equations for all those 

zones are strongly coupled with each other. Considering all the zone equations together, 

the process linear equation becomes, 

    X A X B U               

            Y C X                  (3.13) 

Where, n nA , n mB ,
p nC , 

and   kn Zn
, 

 kp Zp  

Based on the developed linearized model the proposed method can be modified to 

overcome the drawbacks already specified at the beginning of the section. The first 

drawback concerning computation will be significantly reduced due to the use of a 

linearized system model and the number of iterations needed to converge to a solution 

will be reduced. The output of a linear system can be obtained using the following 

equation: 

( )

0

( ) ( ) ( )
t

A ty t Ce Bu d Du t   
     (3.14) 
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Where 1 2 3( ) ( ) ( ) ( ) ... ( )   
T

py t y t y t y t y t ,  

  1 2 3( ) ( ) ( ) ( ) ... ( ) T

mu t u t u t u t u t  

To calculate the sensitivity matrix, we give a unit step input at each input node and 

measure the change in output due to that unit change in input. Let us consider a unit step 

change in the input 1( )u t to the system while other inputs remain the same. The difference 

between system output with a unit step increase in the input 1( ( ) 1)u t and system output 

with same input 1( )u t  after time t  is, 

1

1 1 1 1

2 2 2 2

( ) ( )
( )

0 0

( ) 1 ( ) 1 ( ) ( )

( ) ( ) ( ) ( )

. . . .
( ) |

. . . .

. . . .

( ) ( ) ( ) ( )

 

   
   

 

   

 

        
       
       
       

           
       
       
       
       

 
t t

A t A t
u t

m m m m

u u u u

u u u u

y t Ce B d D Ce B d D

u u u u

 

   

1

( )
( )

0

1 1

0 0

. .
( ) |

. .

. .

0 0

 

   
   
   
   

     
   
   
   
   


t

A t
u ty t Ce B d D       (3.15) 

In the same way, for a unit step change in the input 2( )u t to the system with other inputs 

staying at same, the difference between system output after time t  is, 
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2

1 1 1 1

2 2 2 2

( ) ( )
( )

0 0

( ) ( ) ( ) ( )

( ) 1 ( ) 1 ( ) ( )

. . . .
( ) |

. . . .

. . . .

( ) ( ) ( ) ( )

 

   
   

 

   

 

       
               
       

           
       
       
       
       

 
t t

A t A t
u t

m m m m

u u u u

u u u u

y t Ce B d D Ce B d D

u u u u
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0
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   
   
   
   

     
   
   
   
   


t

A t
u ty t Ce B d D , 

… 
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( )

0

0 0

0 0

. .
( ) |

. .

. .

1 1

 

   
   
   
   

     
   
   
   
   

m

t
A t

u ty t Ce B d D    

According to the definition of sensitivity matrix, 

1 2

1 1 1

1 2

2 2 2

1 2 ( ) ( ) ( )
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( ) ( )

0 0

1 0 ... 0 1 0 ... 0

0 1 ... 0 0 1 ... 0

. . ... . . . ... .
( )

. . ... . . . ... .

. . ... . . . ... .

0 0 ... 1 0 0 ... 1

   

   
   
   
   

      
   
   
   
   

 
t t

A t A tS Ce B d D Ce B d D  

 

Hence, the sensitivity matrix is: 

0

  
t

At AS Ce e Bd D           

1 1[ ]    At AtS Ce A B A e B D                              

             
1 1   AtS Ce A B CA B D                    (3.16) 

From equation (3.16), it can be concluded that the sensitivity matrix is time 

dependent and it is changing with time along the cycle time. This matrix needs to be 

computed at every sampling time. Since this sensitivity matrix will be computed based on 

the linear system at the current operating point, it is accurate as long as the linear system 

equation is accurate for the concerned nonlinear system.  

The value of the sensitivity matrix has to be computed at every operating point 

online using equation (3.16) in order to compute a solution to the inverse heating 

problem. It could be computationally expensive for a slow processor. Thus, the sensitivity 

matrix can be computed offline at certain operating points, which can later be used online 

depending on the operating points of the heaters. There are different methods available 

for the computation of the sensitivity matrix but a popular method is based on the forward 

difference approximation. Thus, the forward difference equation can be used instead of 

the derivative in (3.16).  

( _ _ ) ( _ )







i cycle time t i ss temp
ij

j

T T
S                       (3.17) 
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where 
ijS is the entry in the i

th
 row and j

th
 column, ( _ _ )i cycle time t

T  is the temperature 

of the i th
 sensor after cycle time t , ( _ )i ss temp

T is the steady-state temperature of the i th
 

sensor before applying the step change of temperature at heater j  and θ∆ j
 is the 

magnitude of the step change in temperature of the j th
 heater.  

3.5 Convergence of the proposed method  

Some researchers [85,89,91,93,95,96,97,99] worked to prove the convergence of 

the conjugate gradient method. Polak and Ribiere, Powell, Zoutendijk, Al-Baali, Gilbert 

and Nocedal gave some global convergence results. The purpose of this section is to 

review the condition of convergence in the case of exact and inexact sensitivity matrix for 

the thermoforming process. We analyze convergence using the results of [99] for this 

particular thermoforming process mainly when the sensitivity matrix is not accurate. 

Interested readers can see the detailed proofs and analysis in [91,93,95,96,97,99].    

Let us denote the starting point by 1θ  and define change in inputs as 

1:θ θ θ β+∆ = − = k k

k k k
d . We also define a function that will be the gradient of objective 

function i.e. = ∇k k
gr R . The direction of descent is defined as k

d  when , 0k

k
gr d〈 〉 < . Let 

k
α  be defined as the angle between −∇ k

R  and k
d . So the angle k

α can be easily 

calculated by using vector laws: 

, ,
cos

|| |||| || || |||| ||

k k

k k
k k k

k k

R d gr d

R d gr d
α

〈∇ 〉 〈 〉
= = −

∇
      (3.18) 

Interested readers can find detailed derivation for conjugate coefficient of the conjugate 

gradient methods as given in equation (3.5)-(3.7) and discussion of some of their 

properties in Gill, Murray, and Wright [90] and Fletcher [87]. 
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Assumptions 3.1:  

(i) The level set L:= {Ө: f(Ө)≤ f(Ө1)} is bounded. 

(ii) In some neighborhood N of L, the objective function f:�� → � is continuously 

differentiable, and its gradient is Lipschitz continuous, i.e., there exists a constant C > 0 

such that 

|| ( ) ( ) || || ||k kgr gr Cθ θ θ θ− ≤ −% %
, 

for all ,θ θ%
 
∈  N   .   (3.19) 

Note that these statements imply that there is a constant p , such that 

|| ( ) ||kgr pθ ≤ , for all Ө∈  L .      (3.20) 

At first, we will turn our attention to the line search. As studied by Wolfe [91,93], 

one efficient way consists in accepting a positive step-length 
kβ
 
if it satisfies the two 

conditions known as Wolfe conditions: 

1
( ) ( ) ,k k k k k

k k
f d f gr dθ β θ σ β+ ≤ + 〈 〉

   
(3.21)

 

2
( ), ,k k k k k

k
gr d d gr dθ β σ〈 + 〉 ≥ 〈 〉

    
(3.22) 

where 0 < σ1< σ2 < 1. We now introduce the so-called ideal line search condition. 

A positive step-length 
kβ  is accepted if 

ˆ( ) ( )k k k k

k k
f d f dθ β θ β+ ≤ +

     
(3.23)
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ˆ( ) ( )k k k k
k kf d f d           (3.23) 

where ˆ k  is the smallest positive stationary point of the function 

( ) : ( )k
k kf d      . Assumption 3.1 confirms that ˆ k  exists. Note that both the first 

local minimizer and the global minimizer of  f  along the search direction satisfy (3.23). 

Any of the line search strategies is sufficient to establish the following very useful result. 

THEOREM 3.1 

Suppose that Assumption 3.1 holds, and consider any iteration of the form (3.12). where 

kd  is a descent direction and k satisfies one of the following line search conditions: 

(i) the Wolfe conditions (3.21)-(3.22), or 

(ii) the ideal line search condition (3.23). 

Then, 

2 2

1

cos || ||k
k

k

gr


 
    

(3.24) 

This result was essentially proved by Zoutendijk [92] and Wolfe [91,93]. We can 

call (3.24) the Zoutendijk condition as mentioned in literature [92]. 

The term exact line search can be uncertain for the thermoforming process due to 

difficulty in calculating correct sensitivity matrix. It simply tries to indicate that the 

orthogonality condition is satisfied. That means,  

1, 0k kgr d          (3.25) 
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if 1kd  is a descent direction and that the line search satisfies Zoutendijk’s condition and 

condition (3.25). From (3.9) and (3.25) we can show that 

|| ||
cos

|| ||

k

k k

gr

d
 

     
(3.26) 

This shows that kd  is a descent direction. Now, we can find from Zoutendijk’s 

condition (3.24) by substituting (3.26). 

4

2
1

|| ||

|| ||

k

k
k

gr

d

 
     

(3.27) 

If we can prove that  
|| ||

|| ||

k

k

d

gr  is bounded, which means that cos k  is bounded 

away from zero, then (3.27) immediately gives 

lim || || 0k

k
gr




      
(3.28) 

This is done by Polak and Ribiere for their method, assuming that f is strongly 

convex, i.e., 2( ) ( ), || ||gr gr c              for some positive constant c and for all 

,   in L .  

For general functions, however, it is usually impossible to bound 
|| ||

|| ||

k

k

d

gr
 a priori, 

and only a weaker result than (3.28) can be obtained, namely, 
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lim inf || || 0k

k
gr




     
(3.29) 

We can use contradiction to get this result. Let us assume that the equation (3.29) 

does not hold, which means that the gradients remain bounded away from zero: there 

exists 0p   such that 

|| ||kgr p       (3.30) 

for all k higher than or equal to 1. Then (3.27) implies that 

2
1

1

|| ||k
k d

 
     

(3.31) 

We conclude that the iteration can fail only if 2|| ||kd   sufficiently rapidly. The 

method of proof used by Zoutendijk for the Fletcher-Reeves method consists in showing 

that, if equation (3.30) holds, then 2|| ||kd can grow at most linearly, i.e., 2|| ||kd ck  for 

some constant c . This opposes (3.31), and supports (3.29). 

The analysis for inexact line searches that satisfy Zoutendijk’s condition can 

proceed along the same lines if one can show that the iteration satisfies 

|| ||
cos

|| ||

k

k k

gr
c

d
 

     
(3.32) 

for some positive constant c. Then, this relation can be used instead of (3.26) to give 

(3.27), and the rest of the analysis is as in the case of exact line searches. 

 A1-Baali [95] shows that the Fletcher-Reeves method gives (3.32) if the step-length 

satisfies the strong Wolfe conditions: 
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1( ) ( ) ,k k k k k
k kf d f gr d            (3.33) 

2| ( ), | ,k k k k k
kgr d d gr d              (3.34) 

where 0 < σ1< σ2 < 1. In fact, it is necessary to require that σ2 < 0.5 for the result to hold. 

He thus shows that (3.29) holds for the Fletcher-Reeves method. 

A1-Baali’s result is also remarkable in another respect. By establishing (3.32), 

which by (3.18) is equivalent to 

2, || ||k k kgr d c gr         (3.35) 

They showed that the Fletcher-Reeves method always generates descent directions 

using the strong Wolfe conditions (with σ2 < 0.5). Before this result it was believed that it 

was essential to impose the descent condition while doing the line search. 

Researchers in [99] came up with the following condition that allows the conjugate 

gradient method to converge in case of inexact line search.  

Condition: For a conjugate gradient method, we can suppose that  

0 || ||kp gr p     for   1k    (3.37a) 

If this statement is satisfied, then the method will be considered to have the property (it 

may have it or not) if there exist constants  1b   and   0   such that for all k , 

| |k b        (3.37b) 
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And 

1|| ||

1
| |

2

k k

k

b

  



 

      (3.37c)  

Using the convergence analysis, we can modify the proposed method in case of inexact 

line search such that the convergence of the method is ensured even with the inaccurate 

sensitivity matrix that results from nonlinearity of the system. The flow chart of the new 

algorithm method is shown in Fig.3.4. The new method is modified based on the 

condition of convergence. At first, the sensitivity matrices are computed offline at 

different operating points using (3.17) to reduce the computational burden. An 

approximate sensitivity matrix will be picked up based on the operating points as long as 

the condition (3.37) is satisfied. If the condition fails at any point, an accurate sensitivity 

matrix will be computed using (3.16). 

3.6 Performance Investigation 

The effectiveness of the proposed method is investigated extensively in simulation. First, 

a simulation model based on the previous chapter is developed using Matlab/Simulink. 

Then, the performance of the proposed method and conventional method that is based on 

the pseudo inverse of the view factor matrix is compared using the developed model. The 

oven consists of top and bottom heater trays. Each tray consists of 6 (3x2) heaters.  The 

proposed IHP solver is programmed in such a way that it will give the setpoints of the 

heaters to reach the desired sheet temperatures at the 9 sensor (4 real and 5 virtual 

sensors) locations within the desired time. Physical location of thermoforming oven 

heaters and sensors that was used for the simulation result of this chapter is shown in Fig. 

3.5. 
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Fig.3.4: Algorithm for solving inverse heating problem. 
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The conventional and proposed methods are used to find out the exact value of the 

setpoints of heater temperatures such that the sheet will achieve the desired uniform sheet 

temperature of 80°C as shown in Fig.3.6 at the end of 50s considering the initial sheet and 

air temperature is 50°C. The set points for 6 heaters using the conventional method are  

 

 

    

(a) 

 

 

(b) 

 

Fig.3.5: Physical location of (a) the thermoforming oven heaters (B) sensors  
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shown in Fig.3.7 (a). Then the simulink model was used to get the sheet temperature with 

these set points, the result after 50s and corresponding error are shown in Fig.3.7(b) and 

Fig.3.7(c). It is observed that there are large errors as the conventional method considers 

the system as a linear system, and furthermore the cycle time and the current operating 

point of the system were not incorporated in solving the IHP. The same result for the 

proposed method is presented in Fig.3.8. The errors are significantly reduced in this 

method. As the proposed method considers the temperature at the sensor points, the error 

at these points is very small. Although the proposed method increases the computations as 

compared to the conventional method, it gives more accurate results. It is observed that 

the proposed method converges to the solution in less than 20 iterations. As the heating 

phase is a slow process, the sampling period in a real-time application is as long as 1 or 2 

seconds. Hence, the increase in computations due to the proposed IHP solver should not 

cause any problem to the processor. The performance between the conventional and 

proposed method is compared for different operating points as shown in Tables 3.1, 3.2, 

and 3.3. In Table 3.1, the setpoints of the heater temperatures are resolved for a desired 

sheet temperature of 120°C and the heaters are set to these temperatures. The 

corresponding sheet temperatures at the sensor points are measured after 50s. The 

solution of the proposed method gives accurate results as compared to the conventional 

method. The same results for desired sheet temperatures of 170°C and 220°C are 

presented in Tables 3.2 and 3.3, respectively. The performance of a PI controller 

incorporating the proposed method for the IHP for cycle to cycle operation solver is 

shown in Fig.3.9. The cycle duration is 600 second. At the beginning of each cycle the 

plastic sheet is entered into the oven and the setpoints of the heater is calculated using the 

proposed method. The temperature for the sheet is desired to be 150C at the end of the 

cycle. The sheet is heated to the desired temperature profile by the heaters of the oven 

during the cycle. At the end of the cycle the sheet transferred to the forming phase and a 

new sheet will enter into the oven to get heated for the new cycle. The proposed 

conjugate gradient method is used again based on air temperature and current heater 

temperature. The simulation results are presented for 10 consecutive cycles.  It is 

observed that the sheet temperature at sensor points almost attain the desired temperature. 
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Even though the sheet temperature was a bit higher than desired at the end of the cycle for 

the first couple of cycles, it was getting better with each cycle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.6: Desired temperature profile of the sheet. 

 

   

 

 

 

 

 

 

 

 

Fig.3.7 (a): the set point of the heater temperature calculated by conventional IHP solver 
using Pseudo-Inverse of sensitivity matrix to obtain desired sheet temperature of Fig.3.6. 
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Fig.3.7 (b): Sheet temperature obtained with the heater temperature of Fig.3.7(a) 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.7(c): Error between desired and obtained sheet temperature 
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Fig.3.8 (a): Set point of the heater temperature calculated by proposed IHP solver to 
obtain desired sheet temperature of Fig.3.6. 

 
 

 

 

 

 

 

 

 

 

 

Fig.3.8 (b): Sheet temperature obtained with the heater temperature of Fig.3.8(a). 
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Fig.3.8(c): Error between desired and obtained sheet temperature  

 

Fig.3.9: The actual temperature and desired temperature at the point of the real sensor (x-
axis: Time in Second and y-axis: Temperature in °C) 
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Table 3.1: Comparison between proposed and conventional method  

 Solution of IHP with Initial sheet temperature =100°C, air temperature =100°C, 

Command sheet temperature =120°C and corresponding sheet temperature at real sensor 

position with the IHP solution after 50s. 

 
Table 3.2: Comparison between proposed and conventional method  

 Solution of IHP with Initial sheet temperature =150°C, air temperature =150°C, 

Command sheet temperature =170°C and corresponding sheet temperature at real sensor 

position with the IHP solution after 50s. 

Heater Zone temperature (°C) Sensor temperature (°C) 

 Proposed Conventional  Proposed Conventional 

 method method  method method 

Zone 1 372.6504 254.2 Sensor 1 120.8 107.3 

Zone 2 339.1641 209.8 Sensor 2 120.8 107.3 

Zone 3 372.7453 254.2 Sensor 3 120.9 107.3 

Zone 4 371.9607 254.2 Sensor 4 120.9 107.3 

Zone 5 335.2856 209.8    

Zone 6 371.9459 254.2    

Heater Zone temperature (°C) Sensor temperature (°C) 

 Proposed Conventional  Proposed Conventional

 method method  method method 

Zone 1 398.7254 360.1 Sensor 1 171.3 164.3 

Zone 2 361.6055 297.2 Sensor 2 171.3 164.3 

Zone 3 398.8696 360.1 Sensor 3 171 164.3 

Zone 4 402.8696 360.1 Sensor 4 171 164.3 

Zone 5 360.8435 297.2    

Zone 6 402.8544 360.1    
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Table 3.3: Comparison between proposed and conventional method  

 Solution of IHP with Initial sheet temperature =200°C, air temperature =200°C, 

Command sheet temperature =220°C and corresponding sheet temperature at real sensor 

position with the IHP solution after 50s. 

 

3.7 Conclusion 

A new technique based on the conjugate gradient method is proposed for solving 

the inverse heating problem for the heating phase of the thermoforming process. A 

method for solving the direct heating problem is presented which is then used in the 

iterative solution of the inverse heating problem. Although it increases the computational 

cost, the proposed method gives better setpoints for the heater temperatures to achieve a 

particular temperature distribution over the sheet. The complete method is tested in 

simulation. The effectiveness of the proposed algorithm is shown by simulation. 

 

 

Heater Zone temperature (°C) Sensor temperature (°C) 

 Proposed Conventional  Proposed Conventional 

 method method  method method 

Zone 1 443.0235 466 Sensor 1 221.8 225.3 

Zone 2 372.0556 384.6 Sensor 2 221.8 225.3 

Zone 3 443.1497 466 Sensor 3 221.8 225.3 

Zone 4 445.3795 466 Sensor 4 221.8 225.3 

Zone 5 365.7297 384.6    

Zone 6 445.4239 466    
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Chapter 4 

Estimation of Sheet Temperature Profile  

 

4.1 Introduction 

This chapter presents a new method for the estimation of surface temperature of a 

sheet using temperature sensors pointing at different positions over the sheet. In the 

thermoforming process, the temperature profile over the plastic sheet at the end of the 

cycle depends on the efficiency of the controller, the number and locations of heater units 

and the number and locations of sensors. To control the temperature profile at every point 

of the sheet to the specified profile, an infinite number of heater units in the oven and an 

infinite number of sensors to feedback the temperature would be required, which is not 

feasible. Therefore, this problem is approached by estimating or interpolating the spatial 

temperature profile using the output from a minimum number of sensors. Although the 

number of sensors should be kept low to minimize their cost, estimation of a complete 

temperature profile over the whole sheet is necessary for an accurate and efficient control 

of the temperature. Thus, the effectiveness of the controller depends on the accuracy of 

the estimation of the complete temperature profile and the incorporation of the estimation 

into the design of the controller. Some researchers use the signal from the sensor directly 

as the feedback signal to compare with the desired temperature at the point of the sheet 

[11,12]. The controller design based on these error signals works to minimize the 

difference between the actual temperature and desired temperature of the sheet zone. But 

the differences between the actual temperature and desired temperature at locations 

between any two sensors cannot be optimized using that control technique. If the sensor 

output can be used to estimate or interpolate the whole temperature profile over the sheet 
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and this information is incorporated in the design of the controller in such a way that it 

will control whole sheet temperature instead of the temperature of some particular points 

of the sheet, then the sheet temperature can be achieved to the specified profile, within a 

prespecified tolerance, as required for the forming phase.  

The approach in [11] uses virtual sensors in addition to real sensors so that some 

more temperature points can be incorporated into the design of the controller. The 

temperatures at these virtual sensors are estimated from the real sensor temperatures using 

a weighted average based on distance. Although more points can be incorporated in the 

design of the controller using the virtual sensors to optimize the difference between 

desired and actual temperatures, the difference between the desired and actual sheet 

temperature profiles still cannot be optimized by this method across the entire sheet. In 

this chapter, a new method is proposed for the estimation of the whole sheet temperature 

profile based on spatial harmonics. Then, a new controller is designed to control these 

spatial harmonics, which has the effect of controlling the temperature over the whole 

sheet instead of just controlling temperatures at certain locations. The proposed method is 

developed and designed in such a way that it can estimate the temperature profile over the 

entire sheet through its spatial harmonics and control the spatial harmonics to obtain the 

desired temperature profile. Computational cost is also considered during the 

development of the proposed method. A PI controller is used to control each spatial 

harmonic to achieve the desired temperature profile over the sheet. The proposed 

estimation method of the temperature profile is based on the two-dimensional Fast 

Fourier Transform (FFT). Each component of the two-dimensional space temperature 

harmonics is controlled by adjusting the heater temperatures. For the sake of simplicity, 

we will consider that the sensors are located at equidistant points over the sheet. The 

reason behind this is that, we can apply the FFT to calculate spatial harmonics only for 

equidistant data points that will be obtained from temperature sensors. The performance 

of the proposed temperature estimation technique is tested in simulation for different 

desired temperature profiles to compare with a simple method of temperature estimation 

based on the weighted average temperature of the sensors surrounding the location of 

interest. Thereafter, the performance of the proposed temperature control technique based 
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on the spatial harmonics is compared with the conventional control technique in 

simulation. In the next chapter, we will expand the same idea in those cases where the 

sensors are located at different non-equidistant points.    

4.2 Estimation of sheet temperature  

In the heating phase in thermoforming, the temperature of the sheet is fed back to be 

compared with the temperature setpoint. In the proposed work, the temperature map of 

the whole sheet is estimated, instead of estimating temperatures at certain points only. 

Thereafter, the whole temperature sheet profile information will be fed back to the 

controller. The temperature profile over the sheet is a band-limited temperature map in 

terms of its spatial frequency contents [104,105,106,107,108,109]. Therefore, it can be 

expressed as a combination of components at harmonic spatial frequencies. The Fourier 

transform is an important signal processing tool which can be used to decompose the 

sheet temperature profile into its harmonic spatial frequencies. The output of the Fourier 

transformation denotes the temperature distribution on the sheet in the spatial frequency 

domain or Fourier space domain, while the input is the temperature distribution over the 

plastic sheet. In the Fourier domain, each coefficient represents a particular spatial 

frequency contained in the temperature distribution. The Fourier transform is used in a 

wide range of applications, such as image analysis, image filtering and image 

reconstruction [105,110,111].  Therefore, Fourier transform can be used to reconstruct the 

temperature profile of the sheet. The real sensor output can be used as a sampled value of 

the temperature distribution over the sheet. Thus, the number of sensors required to 

estimate the sheet temperature will depend on the spatial bandwidth of the temperature 

distribution and the accuracy specified for the controller. For a rectangular sensor array of 

size N×M, the two-dimensional Discrete Fourier Transform (DFT) is given by [105]:  

1 1

0 0

( , ) ( , ) exp( 2 ( ))
 

 

   
N M

k l

km ln
F m n f k l i

N M
        (4.1) 
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where ( , )f k l  is the sample temperature output at the sensor point indexed by (k,l) on the 

sheet in the spatial domain, ( , )F m n  is the spatial frequency representation of the 

temperature profile and the exponential term is the basis function corresponding to each 

point ( , )F m n  in the Fourier space. The significance of the equation can be interpreted as 

follows: the value of each point ( , )F m n  is obtained by multiplying the spatial 

temperature profile over the sheet with the corresponding basis function and summing the 

result. The complex exponential basis functions represent sine and cosine waves with 

increasing frequencies, i.e., (0,0)F  represents the DC-component of the temperature 

which corresponds to the average temperature of the sheet and ( 1, 1)F N M   represents 

the highest frequency component. In a similar way, the Fourier harmonic frequencies can 

be transformed back to the spatial domain.The inverse Fourier transform is given by 

[105]:  

1 1

0 0

1
( , ) ( , ) exp( 2 ( ))

 

 

  
N M

m n

km ln
f k l F m n i

N M N M
      (4.2) 

The DFT is the sampled Fourier transform and therefore it does not contain all 

frequencies forming the temperature profile, but only a set of samples which is large 

enough to fully describe the spatial domain temperature distribution. The number of 

frequencies corresponds to the number of sensors on the sheet, i.e., the temperature 

distributions in the spatial and Fourier domains are of the same dimensions. If the sensor 

arrangement on the sheet is not sufficiently dense to sample the temperature map 

according to the Nyquist criterion [105], then the exact temperature distribution cannot be 

estimated as a result of this under-sampling. If the number of sensors used to estimate 

temperature is not sufficient, then some of the higher spatial frequencies become aliased 

to lower spatial frequency representations in the sampled temperature profile. This creates 

undesirable artifacts that decrease the accuracy of the estimation. Fortunately, as the 

plastic sheet is heated by a finite number of heaters located at the top and bottom of the 

oven and considering lateral heat flow within the sheet, the temperatures between two 

adjacent points of the sheet do not differ much and the temperature map on the sheet has 
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no discontinuity. It makes the temperature profile a spatially band-limited signal, which 

means that its frequency spectrum contains components at low spatial frequencies while 

its magnitude gets insignificant at higher spatial frequencies. The two-dimensional 

Fourier transform indicates spatial frequency content in two orthogonal directions of the 

temperature distribution in the sheet. The maximum spatial frequency in any direction 

that can be recovered from the sensor samples can be determined by the Nyquist theorem 

as:  

max( )

2
x

x

f
d

     (4.3) 

where max( )xf is the maximum spatial frequency in the x direction that can be recovered, 

and xd  is the distance between two nearest real sensors in the x direction. If the 

arrangement of the sensors satisfies the Nyquist criterion, the temperature profile can be 

exactly reconstructed from the real sensor outputs [107,108]. Now, we discuss the 

interpolation technique to estimate the temperature profile.  

Interpolation by zero-padding technique  

A signal can be exactly reconstructed using samples of the signal if the sampling 

rate satisfies the Nyquist criterion. This technique can be best described graphically with 

a one dimensional example through Fig.4.1. The discrete Fourier transform of the 

samples (as computed by the FFT algorithm) is used to get the frequency content of the 

signal. When the discrete Fourier transform of the samples is compressed, meaning that 

zeros are padded from the high-frequency side of the Fourier transform, no information is 

lost in the frequency spectrum of the original signal. Because the magnitude and phase at 

frequencies lower than the maximum detectable frequency remain unchanged and new 

high-frequency components with zero magnitude are added, zero padding has an 

interpolation effect in the spatial domain. Thus, the inverse Fourier transform will recover 

the signal with the same number of extra samples as the number of zeros added. This 
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means that, to interpolate the function by a factor N, {(N-1)*number of samples} zeros 

have to be added. 

  

 

 

 

 

 

Fig.4.1 (a): Original analog signal is sampled at uniform sampling rate. 

 

 

 

 

 

 

Fig.4.1 (b): FFT of the samples of fig.4.1 (a) 

 

2 4 6 8 10
-20

0

20

40

60

80

100

120

140

FFT Sample

F
F

T
 V

al
u
e

0 1 2 3 4 5 6 7 
-60 

-40 

-20 

0 

20 

40 

60 

Position

Value of 
Signal 

Sample value

Original signal

Index



98 
 

 

 

 

 

 

 

Fig.4.1 (c): FFT value after padding zero. 

 
 

 

 

 

 

 

 

Fig.4.1 (d): The original signal is reconstructed by IFFT of the signal in Fig.4.1(c) 
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Computational Complexity  

It is well established that the Fourier and inverse Fourier transform in equation 

(4.1) and (4.2) can be easily calculated by multiplying the real sensor output with a matrix 

that depends on the position of the sensors. The matrices are constant because the 

positions of the real sensors are constant for a particular thermoforming process. 

Therefore, the matrices can be computed offline. So the transformation from one domain 

to the other can be done by a simple matrix multiplication. The dimension of the matrices 

depends on the number of sensors. This will not cause a significant computational burden 

especially for a slow system such as the heating phase of the thermoforming process.    

4.3 Design of the controller 

One problem of the conventional controller design for the heating phase is the 

coupling among the outputs of the controller [11]. The conventional controller generates 

the control input based on the error signal between the output of the sensor and the 

setpoint temperature at that sensor point. However, the temperature at one real sensor 

point cannot be controlled independently due to the coupling among the heaters and all 

the different points of the sheet. Due to this well-known issue, the conventional 

proportional integral (PI) controller or proportional integral derivative (PID) controller 

that works on the output of a sensor cannot be used efficiently to control the heater bank 

to obtain the specified temperatures at the respective sensor points of the sheet. Some 

researchers, e.g., [12], looked into the possibility of incorporating a decoupling technique 

like the singular value decomposition (SVD) into the controller to decouple the control 

input based on the model which makes the controller more dependent on the model of the 

system. However, the model changes a lot at different operating conditions and is 

influenced by the disturbances.  

On the other side, the spatial frequency domain of the Fourier transform is a 

method of expressing the spatial distribution of temperature that represents a point in 

some infinite dimensional vector space of functions in terms of the sum of its projections 
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onto a set of orthonormal basis functions with different frequencies. If the controller is 

designed in such a way that it will control the spatial harmonics instead of the 

conventional way of controlling the output of the sensors, two major problems can be 

solved. First, as orthogonal basis functions, the spatial harmonics are decoupled from 

each other, and they can be controlled independently. Second, by controlling the spatial 

harmonics, the controller can control the temperature over the whole sheet instead of 

controlling the temperature at certain points.  The complete architecture of the proposed 

spatial harmonic controller is explained in Fig.4.2. The output temperature of the sheet is 

measured by real sensors. The number of sensors depends on the maximum temperature 

gradient. So the number of the sensors (hence Nyquist sampling rate) should be chosen in 

such a way that all the spatial harmonics recovered to control the temperature profile can 

be recovered efficiently. The outputs of the real sensors are processed through the 2D 

FFT to get the spatial frequency spectrum of the temperature profile. The desired 

temperature profile is also processed through a 2D FFT transformation. This 2D FFT 

transformation is basically a matrix multiplication, as given in equation (4.1). Thus, the 

computational cost for this transformation is not high. In the proposed controller, the 

desired spatial harmonics are compared with the actual temperature profile harmonics, 

and the error between them is passed to the PI controller. The output of the PI controller 

is processed by the 2D IFFT to convert it into a temperature map in the spatial domain.  

 

 

 

 

 

Fig.4.2: Block diagram of the proposed spatial 
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Note that the 2D IFFT transformation is also a matrix multiplication, like the 2D FFT. As 

2D IFFT is a linear transformation, the IFFT for all spatial harmonics can be computed 

together in a single block in the figure.  The next block is the inverse heating problem 

solver which computes the corresponding heater temperature set-points of the heater 

bank.  

4.4 Performance Investigation 

The effectiveness of the proposed method of estimation of temperature profile and 

the new spatial harmonic control technique of the heater banks of the thermoforming 

process are investigated extensively in simulation in this section. The simulation results 

are presented in two steps. First, the results for the estimation of the temperature are 

presented for certain temperature distribution over the sheet. Second, the simulation 

results are presented for cycle to cycle operation of the heating phase that is controlled by 

the proposed controller incorporated with the proposed estimation technique. 

 4.4.1 Simulation results for the estimation of temperature by 2D FFT 

A spatial temperature distribution on the sheet as plotted in Fig.4.3 to be estimated 

using a particular number of sensors with the help of proposed technique can be described 

by the following equation:  

2 2( )( , ) 150 50    x yT x y e   .        (4.4) 

Where x and y are the Cartesian coordinates of the point of the sheet. Now, the 

proposed estimation technique will be used to predict this temperature profile distributed 

over the sheet to evaluate the performance of the 2D FFT technique. The resulting 

estimated temperatures with different combinations of sensors are shown in Fig.4.4. The 

corresponding error in the estimation of the temperature profile over the sheet is shown in 
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Fig.4.5. It is observed from the simulation results that the estimation error is decreasing 

with an increase in the number of sensors which is obvious. Using only one sensor, the 

estimated value of the temperature is equal to a dc value, which is the same as the value 

of the sensor temperature reading. FFT technique cannot detect higher order spatial 

harmonics from a single point value since the sampling of the temperature profile does 

not meet the Nyquist criterion. Thus, it is impossible to recontruct the temperature profile 

from that sensor output. The estimated temperature is fairly accurate with 4 sensors 

arranged as a 2X2 sensor array. The error in the reconstructed signal is decreased from 

40°C to 2°C when we use 4 sensors instead of a single sensor. However, with further 

increase of the number of sensors, the 2D FFT technique can reconstruct the signal more 

accurately. This can be explained using the Nyquist theorem. A higher number of sensors 

indicates a higher sampling rate that allows the proposed technique to recover a higher 

number of spatial harmonics of the temperature profile which leads to a more accurate 

estimation. It can be observed that the magnitude of the error is very low between the 

sensors as compared to the outside of the area surrounded by sensors. Thus, the error is 

going to be larger at the periphery of the sheet. As expected, the error is zero at the sensor 

locations. From the performance investigation, it can be concluded that the whole 

temperature distribution over the sheet can be predicted accurately using the proposed 

FFT technique if a sufficient number of sensors is used based on the Nyquist criterion. 
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Fig.4.3: The actual temperature profile considered over the sheet to check accuracy of the 
proposed technique 

 

 

 

 

 

Fig.4.4(a): The estimated temperature profile over the sheet using 1 sensor located at (1,1)  

 
 
 

 

 

 

 

 

 

Fig.4.4(b): The estimated temperature profile over the sheet using 4 sensors (2 arrays with 
2 sensors in each array) located at  (0.5,0.5);(0.5,1.5);(1.5,0.5);(1.5,1.5) 
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Fig.4.4(c): The predicted temperature profile over the sheet using 9 sensors (3 arrays with 
3 sensors in each array) located at (0.5,0.5), (0.5,1.0), (0.5,1.5), (1.0,0.5), (1.0,1.0), 
(1.0,1.5), (1.5,0.5), (1.5,1.0), (1.5,1.5). 

 

 

 

 

 

 

Fig.4.4(d): The predicted temperature profile over the sheet using 16 sensors (4 arrays 
with 4 sensors in each array) located at (0.4,0.4), (0.4,0.8), (0.4,1.2), (0.4,1.6), (0.8,0.4), 
(0.8,0.8), (0.8,1.2), (0.8,1.6), (1.2,0.4), (1.2,0.8), (1.2,1.2), (1.2,1.6), (1.6,0.4), (1.6,0.8), 
(1.6,1.2), (1.6,1.6).. 
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Fig.4.5: The error between the actual temperature profile and predicted temperature 
profile over the sheet using (a) 1 sensor (b) 4 sensors (2x2) (c) 9 sensors (3x3) (d) 16 
sensors (4x4) 
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4.4.2 Simulation results of the proposed harmonic controller  

A simulation model of the heating phase of the thermoforming process was 

developed using Matlab / Simulink. The model of the thermoforming heating process as 

developed in Chapter 2 was used for the simulation. The physical structure of the 

thermoforming oven and the sensor positions that were used in the simulation are shown 

in Fig.4.6. The heater bank used in this simulation is composed of 6 heaters at the top and 

6 at the bottom of the thermoforming oven. The 6 heaters are arranged in two arrays with 

3 heaters in each array as shown in the figure. Four real sensors (2 arrays with 2 sensors 

in each array) at equidistant positions are used in the sheet to sense the temperature at the 

top of the sheet. In addition with these 4 sensors, 21 additional virtual sensors were used 

as shown in Fig.4.6. The same number and arrangement of sensors are used at the bottom 

of the sheet. The performance of the proposed spatial harmonic controller is compared 

with that of the conventional controller of the heating phase for cycle to cycle operation. 

The cycle duration is 600s. At the beginning of each cycle the plastic sheet is entered into 

the oven and is heated to the desired temperature profile by the heaters of the oven during 

the cycle. At the end of the cycle, the sheet is transferred to the forming station to form it 

in the desired shape over the mould as a new sheet enters into the oven to get heated for 

the new cycle. The conventional controller that is used for comparison with the proposed 

controller is as described in [11]. Same numbers of real and virtual sensors are used in the 

conventional controller to make a fair comparison with the proposed controller. The 

performance of the proposed controller is presented in Fig.4.7. The temperature set-point 

at the end of the cycle for the sheet is 150C. The desired temperature profile is a uniform 

temperature all over the sheet as shown in Fig.4.7(a). The obtained temperature profile of 

the sheet and corresponding error after a 600 second cycle duration are shown in 

Fig.4.7(b) and Fig.4.7(c). We choose the seventh cycle instead of the first cycle to show 

the control behavior of the controller because we want to evaluate the performance when 

the setpoints of the heater achieve a periodical pattern after a few cycles. The temperature 

of the air and oven elements will achieve the same cyclic pattern after some cycle in the 

process whereas in the first cycle the pattern mostly depends on the initial air and oven 

element temperature. Moreover, the plastic sheet roughly follows the same pattern of 
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temperature in the subsequent cycles. This fact will be clear looking at 10 cycles in some 

of the figures later in this section. The outputs of the sensors are used to calculate the 

spatial frequency and a PI controller is used to control the heater such that the sheet 

spatial harmonics converge to the desired spatial frequency. It is observed that the 

temperature at the middle of the sheet is higher than the two sides because the center is 

getting heated by more heaters. But the controller controls the heater temperature to 

minimize the error. The simulation results of the temperatures at the locations of the real 

sensors are shown in Fig.4.8 for the first 10 cycles of heating phase. We can see that for 

the first couple of  cycles the sheet attains different temperatures at the end of the cycle 

and it achieves a particular pattern after several cycles. Fig. 4.9 shows the temperature at 

some points of the plastic sheet where the error between the actual temperature and 

desired temperature is highest within the sheet. It is observed that the temperatures at 

sensor points can reach the desired temperatures at the end of the cycle period whereas 

the temperatures at some other points cannot reach the setpoint temperatures as shown in 

Fig.4.9. As it was mentioned before, the temperature at every point of the sheet could be 

controlled to the desired temperature if an infinite number of heaters and sensors were  

 

Fig.4.6: The physical configuration of the oven and real and virtual sensor positions on 
the plastic sheet 
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(c) 

Fig.4.7: (a) Desired temperature profile (b) Obtained temperature profile after 7th cycle 
(c) Error between desired and obtained temperature profile using proposed controller  

 

 

Fig.4.8: The actual temperature and desired temperature at the point of the real sensor for 
a desired temperature profile of Fig.4.7 (a) using the proposed technique.  
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Fig.4.9: The actual temperature and desired temperature at some extreme point of the 
sheet for a desired temperature profile of Fig.4.7 (a) using the proposed technique. 

 

 

Fig.4.10: The heater temperature for a desired temperature profile of Fig.4.7 (a) for the 
proposed technique 
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used, which is impossible in practice. But the proposed controller controls the heater bank 

temperatures as shown in Fig.4.10 to minimize the error in the sheet temperature. The 

temperatures of the heaters follow a periodic shape for every cycle of the heating phase. 

In Fig.4.11 and Fig.4.12, the performance of the proposed controller is compared with the 

conventional controller for a different desired temperature profile on the sheet, as shown 

in Fig.4.11 (a). It is clearly observed that the error in the temperature of the sheet after 7th 

cycle is much less in the proposed controller as compared to the conventional controller. 

In the case of the conventional controller, the temperature at the real sensor points cannot 

track the desired temperature because of inaccurate estimation of the temperature at the 

virtual sensor points. If virtual sensors are not used in the conventional controller, then 

the temperatures at the real sensor locations may track the desired temperature, but 

temperatures between the real sensors will be off. In Fig.4.13, the desired temperature at 

different sensor points after a cycle is shown by straight line whereas the actual 

temperature for the corresponding points is represented in the same color. It is observed 

that the sheet temperatures at some points can track desired temperatures more accurately 

with the proposed controller than with the conventional controller. The performance of 

the harmonic controller is superior to conventional controller because of its better 

estimation technique as well as improved controllability over the sheet points.  At the end, 

the heater temperature of the thermoforming oven using the proposed controller is shown 

in Fig.4.14 to obtain the desired sheet temperature of Fig.4.11(a). 
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(c) 

Fig.4.11: (a) Desired temperature profile (b) Obtained temperature profile after 7th cycle 
(c) Error between desired and obtained temperature profile using the conventional 
controller  
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(b) 

Fig.4.12: (a) Obtained temperature profile after 7th cycle (b) Error between desired and 
obtained temperature profile using the proposed controller for a desired temperature 
profile shown in fig.4.11 (a). 
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(b) 

Fig.4.13: The actual temperature and desired temperature at the point of the real sensor 
for a desired temperature profile of Fig.4.10 (a). (a) Conventional controller (b) proposed 
controller. 

 

Fig.4.14: The heater temperature for a desired temperature profile of Fig.4.11(a) 
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4.5 Conclusion 

A new technique for the estimation of the temperature of a sheet has been 

developed and a new spatial harmonic controller for the heater bank of the thermoforming 

process has been presented   in this   chapter.   In    the    proposed    estimation technique, 

the use of the spatial domain FFT leads to a better control of the sheet temperature. The 

superiority of the proposed estimation technique and proposed controller is shown 

through simulation. A performance comparison of the proposed sheet temperature spatial 

harmonic controller with the conventional controller has also been provided.  With the 

accuracy of the proposed estimation technique evidenced by the results, the prospects of 

real-time industrial applications of the proposed spatial harmonic controller for sheet 

temperature in thermoforming are promising. One of the drawbacks of this method is that 

the sensors have to be placed at equidistant positions. This problem will be addressed in 

the next chapter. 
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Chapter 5 

Estimation and control of temperature profile for non-

equidistant temperature sensors 

 

5.1 Introduction 

The Fourier transform is a popular technique for the estimation of signals and 

images. This technique can be used for the estimation of the temperature profile over the 

sheet. In the last chapter, we used the Fast Fourier Transform (FFT) on equidistant sensor 

data to estimate the temperature profile and control the whole sheet temperature instead 

of only some points of the sheet. But the positions of the sensors are important to estimate 

the temperature accurately using an optimal number of sensors. The optimal positions of 

the sensors to estimate sheet temperature depends on the nature of the temperature profile. 

Therefore, it is not necessarily the case that optimal sensor positions will be at equidistant 

positions [13, 112]. As the FFT technique can only be used for equidistant sensor 

positions, it cannot handle the estimation and control of temperatures in non-equidistant 

locations of the sensors even though it is used in a wide range of applications, such as 

image reconstruction and image analysis from its samples. The purpose of this chapter is 

not to develop algorithms to determine the optimal position of the sensors over the sheet. 

It is rather to expand the application of the estimation and control method that was 

developed in the last chapter to those cases where sensors may not be placed at 

equidistant locations. The proposed method for the estimation of temperature in this 

chapter can be used for such sensor arrangements. The proposed method is developed in 

such a way that it can do a high-quality estimation of the temperature profile over the 

entire sheet through its harmonics. The spatial harmonic controller can then control the 

harmonics to obtain the desired temperature profile. Computational cost is also 

considered during the development of the proposed method. The computational cost of 
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computing Non-Uniform Fast Fourier Transform (NUFFT) to estimate the temperature 

profile is reduced to make the technique more computationally efficient. The chapter is 

organized as follows: Section 5.2 presents a modification of the FFT method using 

Lagrange interpolation in order to use the technique for non-uniform sensor data. In 

Section 5.3, another method is proposed to predict spatial harmonics directly from the 

non-equidistant sensor outputs. In section 5.4, a harmonic controller is designed to control 

these spatial harmonics, which has the effect of controlling the temperature over the 

whole sheet instead of just controlling temperatures at certain locations. That section is 

followed by sections comprising simulation results and conclusion. In simulation, the 

performance of the proposed estimator and controller is tested at different operating 

conditions to compare with the conventional method of temperature profile estimation 

based on the weighted average of the surrounding temperature sensors.  

 

5.2 Modification of FFT using Lagrange interpolation 

The FFT estimation technique for equidistant sensor positions cannot be used for 

non-equidistant sensor positions. But the temperature profile with non-equidistant sensors 

can be transformed to an equivalent temperature estimation problem with equidistant 

sensors using an interpolation technique. The non-equidistant temperature samples can be 

treated as equidistant temperature samples with a missing data problem. After 

interpolation, the FFT technique can be applied for estimation and control of the 

temperature profile of the sheet. There are a lot of interpolation techniques that were 

developed for interpolation of equidistant and 1-D samples. Some authors expanded those 

techniques for 2-D samples that can be used even for non-uniform data for image 

reconstruction [113,114,115,116,117,118].  Although they are good tools that can be used 

for image reconstruction efficiently, they impose a huge computational burden which 

makes them impractical to implement for sheet temperature estimation for the purpose of 

control.  We will now discuss one of the most popular interpolation techniques to 

interpolate the non-equidistant sample data into the equidistant temperature sample data. 
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Using Lagrange Interpolation:  

Lagrange interpolation is a useful technique that can be used to estimate the 

missing data from a non-equidistant temperature sample data to predict the equidistant 

sample. If the estimated one dimensional function ( )f z  is a polynomial of degree n , then 

the polynomial function of degree n can be completely determined or predicted by its 

values at 1n  points (presuming that the samples satisfy the Kadec condition) using the 

relation [115],    

/
0

( )
( ) ( )

( ) ( )




n
n

k
k k n k

G z
f z f z

z z G z        (5.1) 

where     

     
/ ( )
( )




k

n
n k

z z

dG z
G z

dz            (5.2) 

0 1 1( ) ( )( ).................( )( )    n n nG z z z z z z z z z
 (5.3) 

This 1-D Lagrange interpolation formula can be extended to a 2-D signal as 

shown in Fig.5.1, where a set of non-uniform samples on parallel lines are considered. 

The parallel lines are symbolized by { }nx  and the samples on the lines are symbolized by 

{ }nmy
 
where n  and m are integers. If nx  is a set of samples satisfying 1-D Lagrange 

interpolation, then for each real number  y R , ( , )f x y  is a band limited function in terms 

of x . Since the samples { }nx
 
satisfy the sufficiency condition for Lagrange interpolation, 

the function can be written as, 

/
0

( )
( , ) ( , )

( ) ( )


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N
N

n
n n N n

G x
f x y f x y

x x G x
     (5.4) 

where, 
/ ( )
( )




n

N
N n

x x

dG x
G x

dx
and N  is the total number of lines. 



120 
 

Let us consider nmy  as a sample data set with number of member nM  for each 

specific n , then the set of 2-D non-uniform samples can be reconstructed by 2-D 

Lagrange interpolation formula. Now,  for each n , ( , )nf x y
 
is a band limited 1-D function 

in terms of y (because the temperature in the plastic sheet cannot change very fast with 

respect to the change of location). Likewise, the 1-D Lagrange interpolation is 

/
0

( )
( , ) ( , )

( ) ( )




n
n

n

M
M

n n nm
m nm M nm

G y
f x y f x y

y y G y       (5.5) 

where, nM is the number of temperature sample of  thn  line and 

/
( )

( )


 n

n

nm

M
M nm

x y

dG x
G y

dx
. 

Substituting equation (5.5) into equation (5.4),  

0 0

( , ) ( , )
 


nMN

n nm nm
n m

f x y f x y          (5.6) 

n

Ynm

 

Fig.5.1: Lagrange interpolation for non-uniform data 
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where,   

 
/ /

( ) ( )

( ) ( ) ( ) ( )
 

 
n

n

M N
nm

nm M nm n N n

G y G x

y y G y x x G x
      (5.7) 

Up to this point, we only considered the reconstruction of a polynomial. The 

exponential term is the basis function corresponding to each point ( , )F m n  in the Fourier 

space. Therefore, we would like to get the Lagrange interpolation for a 2-D signal in 

terms of exponentials. As temperature data samples are a set of N  number 

{ ( ) : ( ), 0,1....., 1}  kf z f z k N R  of a band limited low frequency function in the sense of 

spatial frequency content, it can be concluded that its DFT of these sample data F  has 

Hermitian symmetry. Considering the first K  samples and last 1K   samples of DFT 

domain has non-zero values, 2 1K uniform or non-uniform samples of the signal will be 

sufficient to recover the set.  ( )f z  can be written with its DFT as, 

1 1

0 1
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where 
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Using Hermitian symmetry, 
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The Lagrange interpolation for the exponential polynomial in (5.9) is 

2 1
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Where , ( )if z  is considered to be symmetric around kz , and    
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for 2-D signal this interpolation can also be implemented as already done before, 

( , ) n nmf x y  
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(5.13) 

here,  , , , ,ij k y k xw w w  can be computed offline so it will not represent a huge computational 

burden.  

5.3 Spatial harmonic prediction from non-equidistant data  

In the last section, a Lagrange interpolation of data obtained from non- equidistant 

sensors allows the estimation of missing data in a virtual equidistant sensors pattern. That 

equidistant data can be used in FFT to estimate spatial harmonics of the temperature 

distribution over the plastic sheet. So the number of harmonics in that case will be the 

same as the number of the estimated equidistant data points that is higher than the number 

of actual data points. Sometimes the sensors are positioned in such a non-equidistant 

pattern that the number of missing sample data obtained using interpolation becomes very 

high. With the increase of the number of estimated sensor data points as compared to the 

total reconstructed equidistant data, the probability of erroneous prediction increases. Lots 

of oscillations could occur in the estimated pattern of equidistant data because of the 

Lagrange interpolation. These oscillations increase the number of spatial harmonics to be 

controlled. In this section, a new method is proposed to predict the spatial harmonics 

directly from non-equidistant data. So the number of the harmonics in this method will be 

the same as the number of sensor data points. 



123 
 

Consider TNM  the vector space that contains all trigonometric polynomials of 

order N  in x  and order M  in y  with the coefficient ( , )a n m  . So ( , ) NMf x y T  

1 1

0 0

( , ) ( , )exp( 2 ( ))
 

 

 
N M

n m

nx my
f x y a n m j

N M
   (5.14) 

Let us consider this trigonometric polynomial in normalized way as, 

1 1

0 0

( , ) ( , )exp( 2 ( ))
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 

 
N M

n m

f x y a n m j nx my
    

(5.15) 

The equation (5.14) can be compared with equation (4.2) of the previous chapter 

that was used as the transformation function from the spatial domain of the temperature 

profile to the sample temperature output at the sensor point of the sheet.  In this section, 

the linear equation (5.14) will be solved based on a least-squares method to find the 

unknown coefficient ( , )a n m , which will be used as Fourier coefficient in the spatial 

harmonic controller of the sheet temperature. Suppose that the samples of the 

trigonometric polynomial of equation (5.15) are given at the r non-uniform sampling 

points ( , )i ix y . Let us consider : ( , )i i is f x y  and 1{ }i i to rs s  . So we can develop a 

technique to predict ( , )f x y  by solving a series of r  linear equations for the unknown 

coefficient ( , )a n m with NM unknown coefficients. We can write down the  r  equations 

as follows: 

1 1

0 0

( , ) ( , )exp( 2 ( ))
 

 

 
N M

i i i i
n m

f x y a n m j nx my        (5.16) 

But trigonometric polynomial ( , ) NMf x y T can be uniquely reconstructed from its 

samples : ( , )i i is f x y  only if the system matrix has full rank which means r MN .  

Otherwise there are a few trigonometric polynomial solutions for these equations and 

system matrix will not have full rank for corresponding linear equations. To avoid this 

problem, we would chose the number of spatial harmonics MN   equal to or less than the 

number of linear equations which is the same as the number of non-uniform sensor point 
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temperature data. The linear equation (5.16) resembles a double Vandermonde matrix. It 

is not easy to solve a system with a Vandermonde matrix directly as it usually has high 

condition number which implies how sensitive that function is to small changes (or small 

errors) in its arguments even though some researchers [118] proposed a few numerical 

methods to solve this kind of system of linear equations in 1-D. The equations in (5.16) 

can be written as, 

CA G          (5.17) 

Where the values of C , A  and G  are given in equation (5.18). 

1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2

2 2 2 2 ( 1) 2 ( ) 2 ( ( 1) ) 2 (( 1) ( 1) )

2 2 2 2 ( 1) 2 ( ) 2 ( ( 1) ) 2 (( 1) ( 1) )

2

1 ... ... ...

1 ... ... ...

: : : : : : : : : :

: : : : : : : : : :

: : : : : : : : : :

1

j y j y j M y j x y j x M y j N x M y

j y j y j M y j x y j x M y j N x M y

j

e e e e e e

e e e e e e

C

e

     

     

      

      



2 2 2 ( 1) 2 ( ) 2 ( ( 1) ) 2 (( 1) ( 1) )... ... ...r r r r r r r r ry j y j M y j x y j x M y j N x M ye e e e e           

 
 
 
 
 
 
 
 
  

 

 (0,0) (0,1) (0,2) ... (0,( 1)) (1,1) ... (1,( 1)) ... (( 1),( 1))     T
A a a a a M a a M a N M

 1 2 3 ... ... ... ... ... ... T

rG s s s s
 

(5.18) 

By multiplying by a weight matrix D  to compensate for varying density in the 

sampling geometry or to fine-tune the condition number of the matrix, 

D C A D G        (5.19)  

Where, 

  1 2 3 ... ... ... ... ... ... rD diag wg wg wg wg
  

Here C  is a double Vandermonde matrix; QR factorization can be used to solve 

this system of equations. So ˆ A RA  is computed first using QR decomposition of DC
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.Since  DC  has full rank, there is a unique matrix  rxMNQ C  with orthonormal columns 

and a unique NM  X NM right triangular matrix R  with positive diagonal elements such 

that  DC QR . The solution of (5.17) is computed by first evaluating *ˆ A Q DG  and then 

computing 1 *( )A R Q DG .  

Sometimes (as an example if the entries of matrix R is very low or if the matrix C  

is ill-conditioned) based on the position of the temperature sensors, this algorithm has 

shown to be rather inefficient because of the double Vandermonde matrix. In that case, a 

new technique is developed in the next part of this section. This method is also based on a 

least squares method.  

From equation (5.16), the total energy of the samples can be expressed as, 

2

1

| ( , ) |



r

i i i
i

f x y w  

1 1 1 1

0 0 0 0 1

( , ) ( , ) exp( 2 (( ) ( ) ))
   

    

       
N N M M r

i i i
k n l m i

a k l a n m j k n x l m y w

  

,A ZA                 (5.19) 

where, A  is a vector with coefficients ( , )a k l  and Z  is the matrix with entries, 

,
1

exp( 2 (( ) ( ) ))


   
r

kl nm i i i
i

Z j k n x l m y w  

The coefficients  ( , )a n m  have to be determined in such a way that the value of 

2

1

| ( , ) |



r

i i i i
i

f x y s w is minimum and ( , ) NMf x y T . 
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Consider a new vector,  (0,0) .. (0, 1) (1,0) .. (1, 1) ... ( 1, 1)     T
B b b M b b M b N M  with 

the coefficient   
1

( , ) exp( 2 ( ))


  
r

i i i i
i

b k l w s j kx ly . 

Hence, 

2 2 2

1 1 1 1

| ( , ) | | ( , ) | ( ( , ) ( , )) | |
r r r r

i i i i i i i i i i i i i i i i
i i i i

f x y s w f x y w s f x y s f x y w s w
   

         

        

2

1

, , , | |


       
r

i i
i

A ZA A B B A s w  

if optA  is a vector such that  optZA B and trigonometric polynomial with optA  coefficient 

vector is  ( , )f x y  , then 

2 2

1

(| ( , ) | | | ) , ( ), ( ) 0


         
r

i i i i i opt opt opt opt
i

f x y s s w A ZA A A Z A A  

As Z is invertible (because of full rank), if  optA A , the last expression is strictly positive. 

So the least square is optA . Therefore, 1optA Z B  

1Z can be computed offline and hence this least squares solution can be obtained by 

multiplying the B vector with 1Z . This least squares solution can be used in the 

controller directly as the value of the spatial harmonic contents of the sheet temperature.   

5.4 Incorporating the interpolation into the spatial harmonic 

controller 

      The spatial frequency domain transformation is simply a method of expressing the 

spatial distribution of temperature over the sheet in terms of the sum of its projections 

onto a set of orthonormal basis functions with different frequencies. In this context, the 

functions form an orthonormal basis in the space of spatial frequency of temperature 

distributions and the Fourier transform can be thought of as a transformation of 
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coordinate basis in this space. As we discussed in the last chapter, the spatial harmonic 

controller is designed in such a way that it can control the spatial frequency of the 

temperature distribution instead of conventional way of controlling the temperature at 

certain sensor points in order to solve two major problems. They are: (1) Spatial harmonic 

can be controlled independently as they are orthogonal to each other. Control of one 

harmonic does not affect the control of other harmonics that was not possible in 

conventional technique. In conventional technique, the temperature at certain points were 

controlled and control of temperature at one point definitely affect other points in the 

plastic; (2) This proposed harmonic controller controls the temperature profile over the 

whole sheet whereas the conventional controller controls temperature only at certain 

points. The Lagrange interpolation is used in the proposed method to alleviate the 

drawback of getting equidistant data as shown in Fig.5.2 (a). Then these data will be used 

to construct the FFT to obtain spatial harmonics. The output temperature of the sheet is 

measured by some real sensors which are positioned to capture a sufficiently accurate 

estimation of the temperature profile. The number of sensors depends on how rapidly the 

expected sheet temperature changes with distance. Therefore, the number of sensors must 

be high enough as per Nyquist criterion to recover all the spatial harmonics required to 

control the temperature profile efficiently. The outputs of the real sensors are passed to 

the interpolator to get the missing data point and estimate the temperature at every 

equidistant point of the sheet. Thereafter, 2-D FFT tool is used to get the spatial harmonic 

components of the temperature distribution. The command input for the desired 

temperature profile is obtained in spatial frequency domain through a 2-D FFT 

transformation. These spatial harmonics are compared with the actual temperature profile 

harmonics obtained from real sensors and the error spatial harmonic signal passed to the 

PI controller. The output of the PI controller is passed through the 2-D Inverse Fourier 

Transform (IFFT) to convert it into spatial temperature domain on the sheet. So the 

outputs of the controller are the spatial frequency corresponding to the error of each 

spatial frequency and the 2D IFFT will compute the 2D signal for every frequency. The 

next block inverse heating solver will compute the corresponding command heating 

temperature of the heater bank. Solving the Inverse heating problem with a 

computationally efficient method is a big challenge. Pseudo-inverse matrix of the view 
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factor matrix is used in this controller because of its short computational time. In the 

feedback path of the controller, the outputs of the sensors are used in the interpolation 

block to get the missing data of the N X M  rectangular matrix and then the matrix is used 

for the prediction of spatial harmonics. However, if the number of sensor data is low as 

compared to the interpolated data, then the prediction of the spatial harmonics becomes 

erroneous. In that case, the estimation of the spatial harmonics can be done directly from 

the non-equidistant sensor using least square method as described in previous section. 

The block diagram for the corresponding method is shown in Fig.5.2 (b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5.2: Block diagrams of the proposed spatial harmonic controller of heater bank for 

thermoforming process (a) Using Lagrange interpolator (b) Using harmonic predictor. 
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5.5 Performance Investigation 

In order to verify the effectiveness of the proposed estimation method of 

temperature profile over the sheet and implementation of the spatial harmonic controller, 

a computer simulation model is developed in Matlab/Simulink software. The 

effectiveness of the proposed method of estimation of temperature profile and the new 

spatial harmonic control technique of the heater bank of the thermoforming process are 

investigated extensively in simulation in this section. Let us start with a spatial 

temperature distribution in sheet as shown in Fig.5.3: 

2 2( )( , ) 150 50    x yT x y e  

Now, the proposed estimation technique is used to predict this temperature profile 

distributed over the sheet. Two types of sensor arrangement are used for the estimation of 

the sheet temperature to make a comparison of the performance. These sensor locations 

are shown in Fig. 5.4. At first, temperature of the sheet is estimated using the proposed 

method in Chapter 4 with 9 real sensors (three rows of sensors with three sensors in each 

row) at equidistant position over the sheet. The estimated result is shown in Fig.5.5 (a). 

Thereafter, the temperature is estimated using the proposed technique with Lagrange 

interpolation in Fig.5.5 (b). In the case of this method only 5 sensors were used and those 

are located in the positions as shown in Fig.5.4 (a). For this sensor arrangement, the sheet 

temperature cannot be estimated using the proposed method of Chapter 4 as the location 

of the sensors is not at equidistance. The Lagrange method is used to interpolate the 

temperature at the four interpolated points as shown in Fig.5.4 (a). Then FFT is used to 

estimate whole sheet temperature. In Fig.5.5(c), the non-uniform sensor temperature is 

used to estimate harmonics using least squares method from the 5 sensor points output 

with the same position in the sheet. As expected, the FFT method with 9 real sensors 

gives most accurate estimation as actual temperatures at all those nine points are used to 

estimate temperature over the whole sheet. It is also found that the proposed two methods 

are also giving reasonable estimation as compared to the FFT method with 9 sensors. In 
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case of Lagrange interpolation, the estimation is less accurate because Lagrange 

interpolation incorporates oscillation in the estimation. But this technique may be more 

suitable in case of a temperature profile with high oscillation. In the case of the harmonic 

predictor, the error in estimation of the temperature is low as 1%. Then, the same 

temperature profile is estimated with the same number of sensors with different locations 

as shown in Fig. 5.4 (b). In this arrangement, the proposed method with Lagrange 

interpolation is required to interpolate the sheet temperature at eleven new points to apply 

the FFT technique in the estimation of the temperature. With an increased number of 

interpolated-points, the error in estimation increases and eventually propagates through 

the proposed FFT-based estimation of temperature as shown in Fig. 5.5 (d). This 

drawback can be eliminated using the proposed spatial harmonics prediction technique. 

The estimation result for the spatial harmonics prediction technique with the same sensor 

locations (as in Fig. 5.4 (b)) is shown in Fig. 5.5(e). The errors for all these cases are 

shown in Fig.5.6. It is observed that the prediction of missing sensor point temperatures 

using Lagrange interpolation for this particular profile were reasonably accurate as the 

number of missing points is lower than the number of real sensor temperatures. That 

helps the proposed estimation to give lower error in 5.6 (b). But if the number of missing 

data points increases as compared to real sensor data, the error of estimation in the 

proposed technique increases as shown in 5.6(d) because of the wrong prediction of the 

missing data by Lagrange interpolation. On the other hand, the spatial harmonics 

prediction technique gives very reasonable error as shown in in Fig. 5.6 (c) and Fig. 5.6 

(e) for both arrangements of the sensors.     

In the next step, a simulation model is developed using Matlab/Simulink. The 

simulation model of the thermoforming heating oven (Fig. 4.1) was used for the 

simulation. Five real sensors are used in the sheet to sense the temperature. The 

performance of the proposed spatial harmonic predictive controller is compared with a 

conventional PI controller that is based on the error at the sensor points (5 real sensors 

and 20 virtual sensors).  The cycle duration is 600 sec. At the beginning of each cycle, the 

plastic sheet is entered into the oven and it is heated until the end of the cycle to obtain 

the desired temperature profile by the heaters of the oven. Thereafter, the sheet is 

transferred to the forming phase at the end of the cycle and a new sheet enters the oven to 
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get heated for the new cycle. As we did in Chapter 4, we choose the seventh cycle instead 

of the first cycle to show the control behavior of the controller. The reference temperature 

profile is shown in Fig.5.7 (a). The outputs of the sensors are used to calculate the spatial 

frequency and a PI controller is used to control the heaters such that the sheet spatial 

harmonics converge at the desired spatial frequencies. The sheet temperature errors at the 

end of the cycle for the proposed harmonic predictive controller and the conventional 

controller are shown in Fig.5.7 (b) and Fig.5.7(c), respectively.  It is observed that the 

proposed method gives better results than the conventional method. As the harmonic 

controller controls the temperature over the whole sheet rather than certain points only, it 

results in much less error with the reference temperature profile. We can conclude that the 

performance of the proposed controller has the same performance as in Chapter 4 even 

though the estimation of temperature was more accurate. Because of the weakness of the 

actuator (heaters of the thermoforming oven), the performance of the controller cannot be 

improved even with better estimation of the temperature.  

 

 

 

 

 

 

 

 

 

Fig.5.3: Assumed temperature over the sheet 
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(a) 

 

 

 

(b) 

Fig.5.4: Sensor position arrangement used in simulation results  

 

 

 

 

 

 

 

 

Fig.5.5 (a): The estimated temperature profile using the proposed technique in Chapter 4 

with 9 equidistant sensors  

0
0.5

1
1.5

2

0

1

2
90

100

110

120

130

140

150

X-axis of sheetY-axis of sheet

E
st

im
at

ed
 s

he
et

 t
em

pe
ra

tu
re

 (
C

)



133 
 

 

 

 

 

 

 

 

 

Fig.5.5 (b): The estimated temperature profile using proposed Lagrange interpolation 

technique with 5 sensors at the locations shown in Fig. 5.4(a) 

Fig.5.5(c): The estimated temperature profile using proposed harmonic predictor 

technique with 5 sensors at the locations shown in Fig. 5.4(a) 
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Fig.5.5 (d): The estimated temperature profile using proposed Lagrange interpolation 

technique with 5 sensors at the locations shown in Fig. 5.4(b) 

 

Fig.5.5 (e): The estimated temperature profile using proposed harmonic predictor 

technique with 5 sensors at the locations shown in Fig. 5.4(b) 
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Fig.5.6 (a): The error in estimated temperature profile using the proposed technique in 

Chapter 4 with 9 equidistant sensors  

 

 

 

 

 

 

 

 

Fig.5.6 (b): The error between the actual temperature and estimated temperature using 

modified technique with 5 sensors (as shown in Fig. 5.4(a)) using Lagrange interpolation 
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Fig.5.6 (c): The error between the actual temperature and estimated temperature using 

harmonic predictor technique with 5 sensors (as shown in Fig. 5.4(a))  

 

 

Fig.5.6 (d): The error between the actual temperature and estimated temperature using 

modified technique with 5 sensors (as shown in Fig. 5.4(b)) using Lagrange interpolation  
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Fig.5.6 (e): The error between the actual temperature and estimated temperature using 

harmonic predictor technique with 5 sensors (as shown in Fig. 5.4(b)) 
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(b) 

 

 

 

 

 

 

 

(c) 

Fig.5.7: (a) Desired temperature profile (b) Error between desired and obtained 

temperature profiles using conventional controller (c) Error between desired and obtained 

temperature profiles using harmonic predictive controller. 
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5.6 Conclusion 

This chapter proposed two different techniques to expand the application of the 

proposed estimation and control technique for the estimation of the temperature profile 

over a sheet in the last chapter  in case of non-equidistant sensors.  These two different 

techniques: one based on Lagrange interpolation and other based on spatial harmonic 

prediction method are proposed for two different scenarios to achieve better performance 

in estimation and control. Typically, the optimum placement of the sensors over the sheet 

is organized in such a way that yields a lot of missing sensor data to achieve the 

equidistant pattern of the sheet temperature. Therefore, we have shown through 

simulations that the proposed harmonic predictive controller is likely to give better 

performance than the modified harmonic controller based on Lagrange interpolation in 

that case. 
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Chapter 6 

Model Predictive Control of Heating Phase 

 

6.1 Introduction 

In Chapters 4 and 5, we presented a new method to sense plastic sheet 

temperature. This chapter presents a method to control the surface temperature of a plastic 

sheet that not only gives an optimal performance but also takes into consideration the 

process constraints in calculating the control input. Although control techniques have 

been developed for the heating phase of the thermoforming process, oven heater 

temperatures in the thermoforming industry are still largely adjusted by trial and error 

based on the experience of the operator.  

This process is a multi-input, multi-output (MIMO) system with a high degree of 

coupling between inputs and outputs which introduces additional complexity. With the 

continuous growth of the thermoforming industry and ever-expanding applications of 

plastic parts, the demand for rapid production of complex parts with tighter tolerances, 

superior finish and lower cost is increasing rapidly. These requirements cannot be met 

without a sophisticated process control system providing accurate control of key process 

variables that are inherently nonlinear and time-varying. Adaptive control does not give 

good performance for nonlinear systems with parameter uncertainty and it is sensitive to 

unmodelled dynamics and disturbances. It may have poor transient that affect the 

performance of the thermoforming process. It also requires a lot of computation for a 

large and complex system like the thermoforming process. Model Predictive Control 

(MPC) is one of the advanced and popular methods for process control that has been used 

on different plants since the 1980s [119]. Even though the MPC controller can handle a 

multi-input multi-output (MIMO) process, a large number of computations make it 

difficult to apply to large systems such as multi-zone temperature control in a 
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temperatures in the thermoforming industry are still largely adjusted by trial and error 

based on the experience of the operator.  

This process is a multi-input, multi-output (MIMO) system with a high degree of 

coupling between inputs and outputs which introduces additional complexity. With the 

continuous growth of the thermoforming industry and ever-expanding applications of 

plastic parts, the demand for rapid production of complex parts with tighter tolerances, 

superior finish and lower cost is increasing rapidly. These requirements cannot be met 

without a sophisticated process control system providing accurate control of key process 

variables that are inherently nonlinear and time-varying. Adaptive control does not give 

good performance for nonlinear systems with parameter uncertainty and it is sensitive to 

unmodelled dynamics and disturbances. It may have poor transient that affect the 

performance of the thermoforming process. It also requires a lot of computation for a 

large and complex system like the thermoforming process. Model Predictive Control 

(MPC) is one of the advanced and popular methods for process control that has been used 

on different plants since the 1980s [119]. Even though the MPC controller can handle a 

multi-input multi-output (MIMO) process, a large number of computations make it 

difficult to apply to large systems such as multi-zone temperature control in a 

thermoforming machine. In this chapter, the design of a model predictive controller is 

presented and implemented on a complex thermoforming oven with a large number of 

inputs and outputs for precise control of sheet temperatures under hard constraints on 

heater temperatures and their heating/cooling rates. Multi-parametric programming is 

used to reduce computational complexity. 

MPC has some interesting features. As an example, it can automatically 

compensate for process interaction and measure the disturbances as well as handle 

difficult process dynamics such as dead-time dominant dynamics. Another important 

advantage of this type of control is its ability to cope with hard constraints on controls, 

outputs and states. So MPC can optimize the performance by allowing for operation close 

to the system constraints. MPC is also able to handle structural changes and it is easy to 

tune. Details of MPC control can be found in [117,118]. 
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An MPC predicts future control inputs by solving the optimization problem over 

an output horizon involving the minimization of a cost function using the model of the 

plant at each sampling instant. The computation of the optimization problem at every 

sampling instant may require complex calculations that demand a high speed processor 

[119]. Due to the online optimization at every sampling instant, MPC has not been an 

effective technique to deal with large multivariable constrained systems that increase 

computational complexity in solving the optimization problem. Moreover, although 

several issues like stability, feasibly and performances of linear MPC control are well 

developed and understood [117,118,119], much work needs to be done in the field of 

nonlinear MPC to make it popular in industry. Thus, the large system size and the 

presence of nonlinearities in the heating phase of thermoforming seem to have 

discouraged control engineers from using optimal control techniques for this kind of 

system. Recently, some works [120,121] have developed explicit solutions of the 

optimization problem and proposed a new framework to deal with a nonlinear system as a 

combination of piecewise affine hybrid systems. These results extend the applicability of 

the MPC controller to low-cost, slow processors and improve software adaptability and 

ratability in real-time implementation. These open a new door to the possibility of real-

time implementation of optimal control techniques for large multivariable constrained 

systems such as the thermoforming process.  

Multi-parametric quadratic programming helps in solving the model predictive 

optimization problem offline which reduces the real-time computational burden of the 

controller. Thus, in this chapter, we explore model predictive control using the explicit 

solution of the optimization problem (with the help of multi-parametric quadratic 

programming) for temperature control of a thermoforming machine. In this chapter, we 

introduce MPC for controlling the process in the first Section 6.2 whereas in the 

following Section 6.3 and Section 6.4, we discuss the multi-parametric quadratic 

programming used to solve the online optimization with an offline strategy in the 

development of MPC for the heating phase of thermoforming process. In Section 6.5, the 

design procedure of multi-parametric MPC is developed for the heating phase of the 

thermoforming process. The performance of the controller is investigated in Section 6.6. 
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6.2 Model predictive controller 

The main concept behind MPC is using the information from the mathematical 

model of a system to predict future control inputs to optimize an objective function such 

that the desired performance of the system can be obtained. So, an optimization problem 

needs to be solved to predict the optimal control input over a future time horizon such that 

it minimizes or maximizes a predefined performance objective satisfying the process 

constraints. MPC does not only compute the optimal control input, it also considers the 

physical and operational constraints of the system as well as the current and past history 

of the plant to predict future corrective actions. MPC is basically an optimization problem 

which involves a performance objective function of the form: 

1

1 0

ˆ ˆmin [ ( ) ( )] [ ( ) ( )] [ ( ) ( )]



 

            
p u

N N
T T

r i r i
u

i i

J y t i y t i Q y t i y t i u t i R u t i

  (6.1) 

Subject to the inequality constraints for  [0, ]t T  

min max

min max

( )

( )

( ( ), ( )) 0

u u t u

y y t y

g x t u t

 

 


     (6.2) 

and the process dynamics; 

( 1) ( ( ), ( ))

( ) ( ( ))

x t f x t u t

y t h x t

 


     (6.3) 

where the state is ( ) nx t  , the input is  ( ) mu t  , the output is ( ) my t  and its 

prediction is ˆ( )my t . In this control technique, at every sampling time instant the 

control move is predicted from the current time along the finite fixed horizon. However, 

only the first input is adopted as the control move and the whole procedure is repeated at 

the next sampling time. The control technique is shown in Fig. 6.1. At any time sample k , 

the optimization problem is solved to predict the optimal control input over the control 

horizon (four samples in this figure) such that it minimizes or maximizes the performance 
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objective over the output horizon 

 

 

 

 

 

 

 

 

 

Fig. 6.1: Model Predictive Control 

 

(six samples in this figure) taking into consideration the process constraints. The first 

term in equation (6.1) corresponds to the minimization of the predicted error over future 

time horizon, whereas the second term in the equation corresponds to the minimization of 

the control input over the control horizon. The Q  and R  are the weight matrices for 

tracking and control input of the system respectively. The main challenge in applying 

MPC is the computational burden of online optimization.      

6.3 Multi-parametric quadratic MPC  

The computation of the optimization problem online is a problem for complex 

MIMO process. So researchers have been working to come up with a technique to 

compute the optimization offline. Pistikopoulos, Georgiadis and Dua [123] proposed a 

new concept to compute the online optimization offline by parametric optimization 
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techniques named as Multi-Parametric Programming and express the solution of the 

optimization as a combination of affine functions of states and inputs. Hence, they 

succeed to overcome the implementation problem due to computational burden of the 

conventional MPC controller [123].  The solution is computed offline and the controller 

obtains its control move based on the value of the state using some affine function 

through which the computational burden for online optimization disappears. Using this 

offline parametric computation technique instead of a numerical optimization technique 

to solve the optimization problem is starting a new era for the implementation of MPC for 

large, fast multivariable plants using simple hardware. In this technique, the state space is 

divided into partitions or critical regions based on the system equations and objective 

function to be optimized. In each partition, an explicit affine function of the optimization 

variables and parameters makes up a complete map of look-up functions to optimize the 

performance objective function as shown in Fig. 6.2. The MPC controller computes 

future control input sequence at every sampling instant using the look up functions of 

state as an explicit control law. The procedure of multi-parametric quadratic MPC is as 

follows: at first, the current value of the state of the system is measured and then the 

partition to which the current value of the state belongs to is identified. The next step is to 

retrieve the corresponding affine function belonging to the region and calculate the 

control move by evaluating the explicit function using the value of the current state.  
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Fig. 6.2: Solution of control input as a look up function of state in different partition or 

critical region in 2D space  

 

6.4 Multi-parametric quadratic MPC for heating phase of 

thermoforming  

The thermoforming process is a complex multi-input multi-output system linking 

heater temperatures to infrared sensors outputs. Thus, employing a simple PI or PID 

controller cannot ensure satisfactory performance because it does not take the process 

constraints into consideration. A model predictive controller may be a better choice for 

controlling the heating phase. Although the heating phase of thermoforming machines is a 

slow process (which will give more time for computation), the number of system 

equations is high when multiple sensors are used (it will increase the amount of 

computation). Thus, much computation and expensive hardware is required to implement 

MPC for the system due to the online minimization of the cost function. Even though an 

advanced nonlinear programming algorithm for optimization is used, the speed and 

accuracy of the solution is not guaranteed.  In this chapter, multi-parametric quadratic 

MPC for heating phase of the thermoforming machine is proposed. The model developed 

for the heating phase of the thermoforming machine (in Chapter 2) is nonlinear. So the 

model equations should be linearized around the operating point * *( , )x u  to control the 

system using multi-parametric quadratic MPC.  

  
*

*

( , )
x x
u u

f x u
A

x 






   

*

*

( , )
x x
u u

f x u
B

u 






      

*

( )

x x

h x
C

x 




    

(6.4) 

In the rest of the chapter, we use t  as the present value and t k  for thk  future 

value predicted at t  time. The linear state space equations for the system are,  
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( 1) ( ) ( )

( ) ( )

x t Ax t Bu t

y t Cx t

  
       (6.5) 

where n nA  , n mB  . With the linearized system equation, by substituting

1

1
0

( ) | ( )
k

k j
t t k j

j

x t k A x t A Bu


  


   , the optimization problem of MPC can be 

reformulated in the following form with some algebraic manipulation as in [123], 

1 1
( ( )) ( ) ( ) min ( )

2 2
T T T

U
V x t x t Yx t U HU x t FU    

      

 (6.6)
 

Such that ( )GU W Ex t       

 (6.7) 

Where, 1[ ,........ ]
U

T
t t NU u u   is the optimization vector and , , , , ,H F Y G W E  are 

obtained from ,Q R . By defining a new vector 
1 ( )Tz U H F x t , the optimization 

problem can be transformed into, 

1
( ( )) m in

2
T

z
z

V x t z H z                (6.8) 

Such that ( )Gz W Sx t      (6.9) 

Where 
1 TS E GH F ,

1
( ( )) ( ( )) ( )

2
  T

zV x t V x t x t  1 ( ) TY FH F x t , 

the current state ( ) ox t x  can be taken as a vector of parameters, and if there are q  

number of inequalities exist, then .m Nz , . .m N m NH  , .q m NG  , 1qW  , 

q nS  and n qF   . In [123], it was shown that the explicit solution of the equation is 

a continuous piecewise affine function defined over the partition of the parameter space. 

Based on the result of that paper, we propose an algorithm for the offline computation of 

the optimization problem for heating phase of thermoforming process and hence 
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implement it in MPC control of the process. The whole algorithm is described by the flow 

chart in Fig. 6.3 and Fig. 6.4. 

6.5 Design of multi-parametric quadratic MPC for heating 

phase of thermoforming machine 

The design of the MPC controller is discussed in this section. At first, the system 

equation is linearized to obtain a linear system of equations so that multi-parametric MPC 

can be developed. The next step is to incorporate the constraint into the controller. The 

thermoforming oven heaters have maximum and minimum temperature constraints. The 

heating and cooling rate of the heaters also have some limitations. The conventional MPC 

requires an online solution of the optimization problem within a sampling period. As the 

size of the model of heating phase of the thermoforming process is large, it is difficult to 

use online optimization to  
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Fig. 6.3: Algorithm for offline optimization of the objective function for MPC 
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Fig. 6.4: Algorithm for incorporating the solution of offline optimization into the 

controller 

implement MPC. So, the next step is to compute the optimization offline using multi-

parametric programming. This recently developed technique allows solving an 

optimization problem offline for a constrained system within a certain range of the 

parameters. With the increase of parameter and complexity of the system, the number of 

polyhedral partition and hence the number of affine function increases. The solution of 

the optimization problem will be provided by a piecewise affine function by analyzing 

several properties of the geometry of the polyhedral partition and its relation to the 

combination of the active constraints for different polyhedral region. Then, the MPC 
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controller based on the model is tuned in such a way that the desired performance of the 

process is achieved. 

6.5.1 Linearization of the system 

The nonlinear system equations of the thermoforming process need to be 

linearized at an operating point of the system to incorporate the model in the design of the 

MPC controller. On the other hand, because of the nonlinear property of the system, the 

equation obtained by linearizing the system at a particular operating point may not 

properly sustain the properties of the actual system at another operating point far from the 

linearization point. Thus, the system is linearized at different operating point and different 

controllers are developed for each linear system. Based on the operating point, the control 

input will switch among different controllers. 

6.5.2 Incorporating constraints 

There are some input-constraints in sheet heating of the thermoforming process 

such as the maximum and minimum heater temperatures as well as maximum heating and 

cooling rates. The heaters are usually made of ceramic that could be damaged if heated 

more than 500C, which results in a constraint in the input heater temperature. On the 

other hand, the heater cannot be cooled less than the environment temperature. Ajersch 

performed some experiments to determine the maximum rate of heating and cooling to 

develop a model of the heater bank [11]. Although it can give some primary idea about 

the maximum heating and cooling rate, these rates depend on the operating condition of 

the system like the input power, heat consumed by the sheet, heat consumed by oven air 

and oven wall (that largely depend on sheet, oven air and oven wall temperature). As the 

maximum electrical power input to the heater is bounded, it is quite understandable that 

the maximum heating rate is bounded too. The boundary of the maximum heating and 

cooling rates of the heater depend on the amount of heat transfer to plastic sheet, oven 

wall by radiation and to oven air by convection. With the increase of the heater 

temperature, the maximum cooling rate increases as the heater can lose heat faster to the 

sheet, oven wall and to the environment. As the heat loss increases at higher temperature, 

the maximum heating rate will be reduced. On the contrary, at lower temperature of the 
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heater the maximum heating rate increases and maximum cooling rate decreases. So the 

input constraints about heating and cooling rate are function of the current heater 

temperature. Unfortunately, MPC cannot handle this kind of input-constraints that depend 

on present value of the input heater temperature. But the whole operating range of the 

heater can be divided into different sub-range and different maximum heating and cooling 

rate constraints could be incorporated in the design of the controller. So the input 

constraints can be given according to present value of the input heater temperature for 

different operating range which will be more accurate.   

6.5.3 Reduction of the number of partitions in offline solution of multi-

parametric quadratic MPC 

The number of polyhedral regions depends on the number of parameters which 

include system state, previous control input, reference output, measured disturbance and 

prediction horizon as well as the number of input and output constraint. The number of 

polyhedral regions also depends on the range of the parameters for which multi-

parametric quadratic programming is used to solve the optimization problem. Because of 

the large number of inputs, states and constraints in the thermoforming, multi-parametric 

quadratic programming (mp-QP) results in a large number of polyhedral regions with 

piecewise affine function for each region that is practically not possible to implement. So 

the next challenge in implementing MPC for this process is to reduce the number of 

regions in the offline solution. One of the possible ways to reduce the number of regions 

is to reduce the size of the system input and hence reduce the number of parameters as 

well as number of input constraints. The model of the heating phase of the thermoforming 

process has all of the constraints in its inputs.  It can be proven that as the rank of the S 

matrix in the constraint of equation (6.9) is less than or equal to the number of constraints, 

the number of regions for the piecewise affine solution will remain the same for any 

number of parameters that is higher than the number of constraints. In the case of the 

heating phase of this process, the number of parameters is much higher than the number 

of constraints. Therefore, the number of partitions of the parameter space defining the 

optimal controller is insensitive to the dimension of the parameter vector or the number of 

parameters involved in the mp-QP. So if we can reduce the number of input constraints, 
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the number of partitions will be reduced. In the case of the MPC design of the 

thermoforming machine, only a couple of heaters (top heater and its opposite bottom 

heater) are used at a time to control the temperature of the sheet and all other heater 

temperatures are considered to stay constant. As the temperature of a heater can change at 

most 1K per second (where the actual heater temperature is within the range 

350K~700K), it is reasonable to consider heater temperature constant within a sample 

time (which is 1 second). For each pair of heaters a different MPC will be designed 

whereas other heater temperatures will be considered constant at the starting temperature 

of the sample. If there are 2 M  heaters in the thermoforming oven, then there will be M  

numbers of MPC that have just 2 inputs with the constraint applicable for those inputs. It 

is observed that the number of partitions is significantly reduced for every MPC 

controller with this technique.     

6.5.4 Choosing the weighting matrices of the controller 

There are M  controllers for the process and each controller computes reference 

heater temperatures for a pair of heaters. If the same weights are given for output tracking 

at every point’s temperature of the sheet, then the controller will try to force the heater 

temperature in such a way that it tries to optimize error between reference and actual 

temperature at every point of the sheet to achieve the desired temperature. But some parts 

of the sheet are so far from the heater that the heater has very little influence on that part 

of the sheet i.e. the sensitivity of the part of the sheet is very low with the change of 

heater temperature. This will force the heater to attain very high temperature to heat the 

point of the sheet far from the heater to the desired temperature even at the cost of a 

higher temperature at the nearest point of the sheet from the heater. This could even burn 

some parts of the sheet. As the heaters are well distributed all over the oven, every heater 

can be used more to heat those point of the sheet that are closer to them. This could be 

attained by using appropriate weight matrix for reference outputs. The elements of the 

weight matrix are chosen to be inversely proportional to the distance between the sheet 

points and the heater.  
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6.5.5 Tuning parameters of the controller 

The parameters of the controller like output prediction horizon, control horizon 

and constraint horizon length are tuned in such that the controller gives its desired 

performance within significant amount of computation to implement in real-time. With 

the increase of the horizon length (both prediction and control), the performance 

improves at the cost of an increase in the number of constraints that will increase the 

number of polyhedral regions. As a result, the complexity of the final piecewise affine 

functions for the MPC controller increases dramatically. So the resolution of this problem 

is a compromise between performance and computational complexity. The lengths of the 

output prediction horizon, control horizon and constraints horizon are chosen such that 

they give convenient number of polyhedral regions as well as it will ensure desired 

performance.   

After the computation of the optimization problem using multi-parametric 

programming, the optimal control input to the system will be obtained as an affine 

function of system state, previous control input, reference output and measured 

disturbance. The diagram of the proposed Multi-parametric MPC for heating phase is 

shown in Fig. 6.5. 

 

 

 

 

 

 

 

Fig. 6.5: Multi-parametric MPC for heating phase of thermoforming process. 
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6.6 Simulation results 

The effectiveness of the proposed MPC controller is investigated extensively in 

simulation. The performance of the proposed controller is compared to other commonly 

used controllers (like PI) as well as state-of-the-art controllers (ILC, TILC) for this 

system. First, a simulation model is developed using Matlab/Simulink. Then the 

performance of the proposed method and conventional methods are compared using the 

developed model. The oven consists of top and bottom heaters. Each heater consists of 6 

(3x2) heater banks.  There are 9 equidistant sensors (3x3) considered on each side of the 

sheet. The positions of the sensors are as mentioned in Chapter 3. The conventional PI 

controller, cycle-to-cycle iterative learning controller (ILC) and terminal iterative learning 

controller (TILC) are used to compare the performance with the proposed MPC 

controller.  After the design and development of the MPC controller, each pair of control 

inputs will be formulated in an explicit expression of 30 system states (18 outputs, 2 air 

temperature and 10 other inputs), 2 previous control inputs and 18 reference outputs. The 

sheet output temperature at the sensor points for the first 11 cycles with cycle duration of 

600s are shown in Fig. 6.6 for the PI, ILC and MPC controllers respectively. The 

reference temperature input is chosen as an exponential function with starting temperature 

value 30C and final value at the end of the cycle period of 130C so that the plastic sheet 

will be heated very fast at the beginning of the cycle to give enough time for the heat to 

propagate throughout the thickness of the plastic sheet by conduction (conduction is a 

very slow process of heating as compared to radiation). Moreover, we should give enough 

time for the energy to propagate so that it will not burn any parts of the sheet. The fast 

production rate of plastic products forces us to have a high heating rate. On the other 

hand, enough time should be allowed so that the sheet will be heated properly throughout 

its thickness. Although uneven temperature distributions are required in some 

applications, we only consider an even distribution of 130C at the end of the cycle for 

simplicity. The performance of PI, ILC, TILC and MPC controllers are presented in Fig. 

6.6 and Fig. 6.7. We can observe that the PI controller cannot follow the reference input 

as it does not consider the actuator (heater) constraint during the heating process. 
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Actually, the PI controller is working very much the same way as a bang-bang controller 

as evidenced by the heater temperature error plot in Fig. 6.8. The control inputs generated 

by the PI and ILC controllers do not consider the cooling limitation of the actuators. As a 

result, the performance degrades with the progress of time in a cycle.  The use of a 

changing input in the case of TILC is irrelevant as its only focus is on the terminal output 

of the repetitive process. Hence, it can be considered that a constant temperature is used 

for TILC to heat the sheet to a uniform temperature of 130 C at the end of the cycle. TILC 

performs well to achieve the final output but it cannot follow the temperature profile over 

the cycle that will ensure enough heat propagation throughout the thickness of the sheet 

so that the surface as well as the inner layer of the sheet will be heated properly. It is 

observed that the PI controller results in a large deviation of 8C while ILC yields error of 

as much as 40C. The TILC controller gives bad performance at the beginning that is 

getting better with time whereas the proposed controller gives a better performance as the 

sheet temperature obtained at the end of the cycle remains pretty close to the desired 

temperature. On the other hand, the MPC controller shows good performance that can 

follow the reference input reasonably. In Fig. 6.8, it is observed that the heater 

temperature of the PI controller cannot follow the command heater temperature from the 

controller output as the controller did not consider the constraint of the heater in 

calculating the control input. So the error between the heater temperature command and 

actual heater temperature is as high as 800C. In the ILC case, the error is very high in the 

first few cycles as it does not have much information from previous cycles. But with the 

advance of cycle number, the ILC controller is generating a control input that does not 

consider the actuator constraint. As a result, the deviation between control input and 

heater output increases. In the case of TILC, the error in the first few cycles is high but it 

gets better with time, even though the controller does consider the constraint of the heater 

in calculating the control input. But it takes one full cycle time to attain the command 

heater temperature. In the case of MPC, the heater can follow the heater temperature 

command from the controller and the error is as low as 3C.   In the next two figures (Fig. 

6.9, Fig. 6.10) we observe the performance of these controllers in the presence of large 

disturbances (between -4C to 4C) that may come due to model mismatch, noise, ambient 

temperature fluctuations, sensor errors etc. As PI, ILC, TILC techniques are sensitive to 
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these non-periodic random disturbances, they do not achieve good performances as 

expected.  The proposed MPC controller gives better performance and lower error as 

compared to other controllers. The proposed MPC tries to estimate the disturbances from 

last few samples and incorporate the information into the controller.  

Now, we investigate the performance of PI, ILC, TILC, MPC controllers in the 

presence of repetitive fixed disturbances of 10C that affect the output at every cycle of the  
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(b) ILC 

 

(c) TILC 
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(d) MPC 

Fig. 6.6: the sheet temperature at sensor point of the sheet for (a) PI (b) ILC (c) TILC (d) 

MPC  

 

(a) PI 

0
100

200
300

400
500

600

2

4

6

8

10

20

40

60

80

100

120

140

Time (Second)Cycle Number

S
he

et
 T

em
pe

ra
tu

re
 (

C
)

Desired Temperature

Actual Temperature

0
100

200
300

400
500

600

2

4

6

8

10

0

2

4

6

8

10

Time (Second)Cycle Number

E
rr

or
 in

 T
em

pe
ra

tu
re

 (
C

)



160 
 

 

(b) ILC 

 

(c) TILC 
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(b) ILC 

 

(c) TILC 
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(d) MPC 

Fig. 6.8: Error between command input temperature and actual heater temperature for (a) 

PI (b) ILC (c) TILC (d) MPC 

0
100

200
300

400
500

600

0
2

4
6

8
10

12
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Time (Second)Cycle Number

E
rr

or
 in

 H
ea

te
r 

T
em

pe
ra

tu
re

 (
C

)



163 
 

 
(a) PI 
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(c) TILC 

 

(d) MPC 

Fig. 6.9: Sheet temperature at sensor point of the sheet at the presence of large non-

repetitive disturbances for (a) PI (b) ILC (c) TILC (d) MPC 
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(a) PI 
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(c) TILC 

 

(d) MPC 

Fig. 6.10: Error in sheet temperature at sensor point of the sheet at the presence of large 

non-repetitive disturbances for (a) PI (b) ILC (c) TILC (d) MPC 
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(a) PI 

 

(b) ILC 
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(c) TILC 

 

(d) MPC 

Fig. 6.11: Sheet temperature at sensor point of the sheet at the presence of repetitive 

disturbances for (a) PI (b) ILC (c) TILC (d) MPC 
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(a) PI 

 

(b) ILC 
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(c) TILC 

 

(d) MPC 

Fig. 6.12: Error in sheet temperature at sensor point of the sheet at the presence of 

repetitive disturbances for (a) PI (b) ILC (c) TILC (d) MPC 
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process after 500 seconds and until the end of the cycle. This kind of disturbance may 

come from sagging of the plastic sheet after a certain time of heating and that disturbance 

exists until the end of the cycle. In Fig. 6.11 and Fig. 6.12, it is observed that the PI 

controller and MPC cannot perform very well in the presence of repetitive disturbances 

although MPC can perform well in the presence of non-repetitive disturbances. Both PI 

and MPC only use the information that it achieved from previous samples throughout the 

present cycle, but the information from previous cycles of the batch process are not used 

in calculating control input. So these two types of controller cannot achieve the desired 

performance. In case of ILC, even though it uses the information of the previous cycles, it 

does not consider the actuator constraints of the process. This controller may have good 

performance in the presence of repetitive disturbances if the heater can follow the control 

input of the controller. On the other hand, TILC can achieve the desired temperature at 

the end of the cycle although it cannot follow the reference input along the cycle.    

6.7 Conclusion 

In this chapter, a step-by-step approach is proposed for the development of the multi-

parametric MPC of the thermoforming process. The main challenges in the deployment of 

the MPC controller for the process is discussed and solved in this chapter. The explicit 

implementation of the MPC controller, in the form of a piecewise affine control law 

computed offline, obviates the need for online optimization. Although the proposed MPC 

can handle non-repetitive disturbances better than the conventional controller, it does not 

perform very well in the presence of periodic disturbances. We propose a new method in 

next chapter that can handle both kinds of disturbances. 
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Chapter 7 

Iterative Learning Model Predictive Control of Heating 

Phase 

 

7.1 Introduction 

The heating phase of the thermoforming process is a repetitive process. At the 

start of the cycle, the plastic sheet is entered into the oven and gets heated throughout the 

cycle time. The heated sheet is then transferred to the molding section as a new sheet 

enters the oven to be heated. Model predictive control (MPC) has been adopted in the last 

chapter to handle the control problems. MPC has some nice features. For example, it can 

automatically compensate for process interaction and measure the disturbances as well as 

handle difficult process dynamics. Another important advantage of this type of control is 

its ability to cope with constraints on controls and states. So MPC can optimize the 

performance by allowing for operation close to the system constraints. MPC is also able 

to handle structural changes. However, the computation of MPC for the optimization 

problem at every sampling instant may require complex calculations that were solved in 

last chapter.  

This MPC control strategy as well as other model based control, however, focuses 

on single-cycle performance improvement. The heating phase of the thermoforming 

process is characterized by repetitive dynamics over a fixed cycle period [60]. Some 

researchers have developed cycle-to-cycle control techniques to control the repetitive 

process [124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139]. The idea 

is to use information from past cycles to help the closed-loop system track the desired 

trajectory across cycles. By using the repetitive nature of the process, Terminal Iterative 

Learning Controller (TILC) improves the control accuracy along the cycle index k from 

cycle to cycle [60]. On the other hand, TILC may not perform well in the presence of 
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non-periodic disturbances. Control during sheet reheat is also complicated by the fact that 

there is a high level of uncertainty surrounding the process, particularly with the material 

properties. Moreover, environmental conditions may change around a machine causing a 

cycle-to-cycle controller to converge very slowly, resulting in lots of rejected parts.  

The thermoforming process can be described in terms of two distinct time scales, 

namely, the finite period of continuous time within each repeating cycle, and the cycle 

index. Conventional control formulations do not explicitly incorporate or exploit this 2D 

representation of cyclic systems. Additionally, conventional one-dimensional control 

formulations have been shown to have limited success in controlling repetitive systems 

[60]. Two-dimensional learning controller results in advantages over the conventional 

feedback control techniques where only one input action is made in-cycle. For this 

reason, a real-time feedback control combining in-cycle and cycle-to-cycle strategies can 

improve control performance. Therefore, a 2D control technique combining iterative 

control technique with MPC can perform better in the presence of repetitive and non-

repetitive disturbances. This approach utilizes not only the incoming information from the 

ongoing cycle, but also the information stored from the past cycles. The MPC technique 

can be incorporated to update the control law within the cycle to deal with  non-repetitive 

disturbances considering the constraints of the process and the repetitive nature of the 

heating phase of the process can be exploited using a cycle-to-cycle iterative learning 

control technique. The iterative learning strategy is useful for achieving desired 

temperature despite model mismatch and disturbances. Even though the large number of 

computations makes it difficult to apply to large systems such as a thermoforming 

machine, multi-parametric programming can be used to compute optimization offline as 

in Chapter 6.  

7.2 Iterative Learning Control    

Iterative learning control (ILC) is a control technique that can be used to improve 

tracking performance of a batch process. It works based on improving the control signal 

for the current cycle using the information from previous cycles. Therefore, ILC does not 

require much information about the process dynamics prior to the controller design. It 
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basically concentrates on learning from the past performance with the objective of 

attaining the desired tracking performance even with model uncertainty and periodic 

disturbances. 

 The main purpose of ILC is to have better performance using a mechanism of 

trial and error with the help of previous experience. Learning usually means gaining 

knowledge and iterative corresponds to an action that requires the same dynamic process 

be repeated. Hence, the expression “iterative learning” indicates gaining knowledge from 

the same repeated dynamics over a finite tracking period. This knowledge can be learned 

from experience when a control task is performed repeatedly, providing the opportunity 

of refining the tracking control performance. If we refine our controller based on our 

knowledge, we can eventually get perfect tracking if the system dynamics stay exactly the 

same. Without learning, a control system can only give the same performance, even if the 

system dynamics repeats consecutively. But in real applications, the process dynamics 

may change a bit in two consecutive cycles or there might be some disturbances that 

might not repeat in the same way in every cycle. ILC cannot perform perfectly in those 

situations. Moreover, it does not consider the process constraints in calculating the control 

input. 

7.3 Model Predictive Control Based Iterative Learning 

Controller   

ILC cannot handle various disturbances that may affect the process in a non-

periodic way. In the design of this controller, MPC will be employed with ILC to handle 

this kind of uncertainty and disturbances. At first, we formulate the problem in the next 

subsection. 

7.3.1 Problem Formulation 

Let us consider a repetitive process that is described in a particular thk cycle  as 

follows: 

The linear state space equations for the system are,  
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( 1) ( ) ( )

( ) ( )

  


k k k

k k

x t Ax t Bu t

y t Cx t
      (7.1) 

where 
n nA  ,

n mB  and 
p nC  . In the rest of the chapter, we use t  as 

the present value and t i  for thi  future value predicted at t  time. With the linearized 

system equation, by using the response, 
1

0

( ) ( ) ( 1 )




     
i

i j
k k k

j

x t i A x t A Bu t i j , 

(1) (0) (0) k k ky CAx CBu
 

2(2) (0) (0) (1)  k k k ky CA x CABu CBu
 

3 2(3) (0) (0) (1) (2)   k k k k ky CA x CA Bu CABu CBu
 

 . 

 . 

 . 

1 2( ) (0) (0) (1) ... ( 2) ( 1)        N N N
k k k k k ky N CA x CA Bu CA Bu CABu N CBu N

     (7.2)
 

this equation can be written in matrix form as follows:  

(0) k k ky Gu Hx
      (7.3) 

where the matrices for the thk cycle can be defined as, 

(1) (2) (3) ... ( 2) ( 1) ( )    
T T T T T T T

k k k k k k ky y y y y N y N y N
 

(0) (1) (2) ... ( 3) ( 2) ( 1)     
T T T T T T T

k k k k k k ku u u u u N u N u N
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1 2 3

0 0 ... 0

0 ... 0

. . . ... .

. . . ... .

...  

 
 
 

  
 
 
  

N N N

CB

CAB CB

G

CA B CA B CA B CB

 

2 3( ) ( ) ( ) ... ( )   
T T T T N TH CA CA CA CA  

Including the non-periodic disturbances, the model can be written as: 

(0)  k k ky Gu Hx d       (7.4) 

Let us consider that ( )ry t is the reference output and the output ( )ky t  will converge 

to the reference output.
 
lim ( ) ( )k r
k

y t y t


   and the control input needed to obtain the desired 

output is lim ( ) ( )k r
k

u t u t



 

Let us define the error as the difference between the reference output and actual output. 

: ( )    k r k r ke y y G u u d
     (7.5)

 

At the start of the batch process, the reference control input to achieve the reference 

output cannot be known and the reference control input may be changed in the presence 

of   non-periodic disturbances. Let us consider a new variable that is the estimation of the 

reference control input as, ˆru , then we can reformulate equation (7.5) as,
 

ˆ ˆ( ) ( )    k r k r re G u u G u u d
     (7.6) 

The second part of the equation can be defined as a new variable, 

ˆ( )  e
k r re G u u d

      (7.7) 

It includes both deterministic part ˆ( )r rG u u and stochastic part d . It will be more 

convenient to model the error in state space form of a linear stochastic system.  
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1  

 

e e e e
k k k

e e e e
k k k

x A x B w

e C x D v       
(7.8) 

Where both kw , kv  are zero-mean independent and identically distributed sequences at 

thk  cycle. For simplicity, we can consider that the system matrices eA , eB , eC , eD are 

identity matrices. It is reasonable to consider the error state in one cycle mostly depend on 

the same error state of previous cycles and this assumption will make the problem 

simpler. So the system state space equation becomes, 

1  

 

e e
k k k

e e
k k k

x x w

e x v       
(7.9)

 

From the system state space equation e
kx  includes the cyclic part of e

ke  and kv  is 

completely random part that interacts instantaneously for that particular cycle only. If we 

define a new variable that composes only the cyclic part of the tracking error e  as de , 

ˆ( )   e
d r ke G u u x

      (7.10) 

Now, we can get this for two successive cycles as follows: 

1 1 1ˆ( )
    

k

e
d r k ke G u u x

     (7.11) 

ˆ( )  
k

e
d r k ke G u u x

      (7.12) 

Using equations (7.9),(7.11),(7.12) , 

1 1    
k kd d k ke e G u w        (7.13) 

 
kk d ke e v

       (7.14) 

From this model equation it is observed that the error can be estimated not only using 
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the information of current cycle but also using the information from the previous cycles. 

Hence model predictive controller will use current cycle information to handle non-

periodic uncertainties and disturbances and ILC will take care of periodic disturbances.   

7.3.2 Controller development 

 A model predictive controller is a good choice to eliminate non-repetitive 

disturbances for controlling the heating phase as we see in Chapter 6. Although the 

heating phase of thermoforming machines is a slow process, the number of system 

equations is high when multiple sensors are used. So multi-parametric programming will 

be used for this system to eliminate computational burden and cost of hardware. As we 

already discussed the design procedure of multi-parametric MPC in Chapter 6, we will 

not repeat it here.  

Iterative Learning Control will work on the cyclic disturbances as feed-forward. 

Hence, the output of the ILC for thk  cycle will be, 

1 1( ) ( ) ( )  ILC
k k ku t u t Le t

     

 (7.15) 

Where L is the ILC learning gain. So the control input ( )ku t  is composed of two terms: 

control input from MPC ( )MPC
ku t and the control input from ILC, ( )ILC

ku t . Final control 

input is, 

1 1( ) ( ) ( ) ( ) ( ) ( )     ILC MPC MPC
k k k k k ku t u t u t u t Le t u t

  (7.16) 

The diagram of the proposed MPC based ILC is shown in Fig.7.1. 

But the proposed controller raised another problem. One of the advantages of 

MPC was its ability to cope with hard constraints on control inputs by allowing for 

operation close to the system constraints. However, the addition of an ILC controller to 

the MPC in the proposed controller does not ensure control inputs that can be produced 

by the actuator considering the system constraint. To eliminate this problem, we propose 
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a new iterative learning model predictive controller (ILMPC) in the next section. 

 

 

Fig. 7.1: MPC based ILC for heating phase of thermoforming process. 

 

7.4 Iterative Learning Model predictive controller (ILMPC)    

As we discussed before, an MPC predicts future control inputs by solving the 

optimization problem over an output horizon involving the minimization of a cost 

function using the model of the system at each sampling instant. MPC does not only 

compute the optimal control input, it also considers the physical and operational 

constraints of the system as well as the current and past history of the plant to predict 

future corrective actions. MPC is basically an optimization problem which involves a 

performance objective function of the form: 

1 ( | )
10,.....,

ˆ ˆmin [ ( | ) ( )] [ ( | ) ( )]
p

k

p

N
T

r i r
u t i t

ii N

y t i t y t i Q y t i t y t i
 



       

1

0

[ ( | ) ( | )]
uN

T
i

i

u t i t R u t i t




           (7.17) 

Where iQ is weighting matrix with element those reflecting relative importance of the 

element of output vector and  iR iQ is weighting matrix with element those penalizing 

for relative big change of input. 
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Subject to the inequality constraints  

min max min max( ) ; ( ) ; ( ( ), ( )) 0u u t u y y t y g x t u t        (7.18) 

Where ( ( ), ( ))g x t u t  is the vector of system constraints and the linearized process 

dynamics of the non-linear system are given by, 

( 1) ( ) ( )

( ) ( ) ( )

x t Ax t Bu t

y t Cx t Du t

  
 

      (7.19) 

where the state is ( ) nx t   , the input is  ( ) mu t  , the output is ( ) py t  , Np and Nu 

are the output and control prediction horizons, ˆ( | )y t i t  is the predicted value of

( )y t i  at time t+i based on information at the current discrete time t using the 

process model. In this section, we propose an iterative learning model predictive 

control (ILMPC) framework that can be applied to 2D systems and that performs well 

while incorporating input and output constraints.  

A. Control Objective 

The thermoforming process is a periodic nonlinear system that must track a particular 

output profile repeatedly over each cycle while staying within process actuator 

constraints. In this section, we develop ILMPC for a linear periodic system. In the 

next section, it will be explained how this could be applied to the nonlinear 

thermoforming process. We require that the proposed control scheme tracks a 

repeating reference trajectory while satisfying all the constraints by specifically 

exploiting the 2D nature of the system. Mathematically such a control objective 

within a cycle k+1 can be defined as: 

1
1 1

( | )
10,.....,

ˆ ˆmin [ ( | ) ( )] [ ( | ) ( )]
p

k

p

N
T

k r i k r
u t i t

ii N

y t i t y t i Q y t i t y t i


 


     
 

1

1 1
0

[ ( | ) ( | )]
uN

T
k i k

i

u t i t R u t i t


 


         (7.20) 



181 
 

Where, the subscript k+1 refer to the cycle index. The output reference trajectory  yr 

(t+i) is the same for all cycles. Note that the objective of MPC is to minimize the 

output error over the current cycle. It is also important to note that the control and 

prediction horizons are finite.  

B. Augmented error model with integral information 

The system is required to track the output reference trajectory or, in other words, the 

process output profile must converge in the cycle-to-cycle direction to a limit profile 

yr. To achieve this goal, we “integrate” the error information propagating across the 

cycles. This integral information can be defined with the help of a new variable: 

1

( ) [ ( ) ( )]


 
k

k j r
j

es t y t y t         (7.21) 

at discrete time t within cycle k. esk sums the error across all the cycles at the same 

discrete time t within each cycle. Next, we define an extended output vector

( ) [ ] T T T
k k kz t y es . We now see that: 

 1 1 1( ) ( ) ( ) 0 ( ) ( )     k k k k res t Cx t Du t I z t y t
  

 (7.22) 

Thus the extended output vector can be represented as: 

1 1 1( ) ( ) ( )k k k

C D
z t x t u t

C D  

   
    
   

0 0 0
( ) ( )

0 1k rz t y t
I

   
       

     (7.23) 

The target trajectory for each cycle remains the same. We assume that lim ( ) ( )k rk
x t x t


 , 

lim ( ) ( )k rk
y t y t


 , lim ( ) ( )k rk

u t u t


 , lim ( ) ( )k rk
z t z t


 . To define the error model, let:  
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1 1

1 1

1 1

1 1

( ) : ( ) ( )

( ) : ( ) ( )

( ) : ( ) ( )

( ) : ( ) ( )

k k r

k k r

k k r

k k r

x t x t x t

y t y t y t

u t u t u t

z t z t z t

 

 

 

 

 

 

 

 

        (7.24) 

Following [62], the error model can then be defined using these error variables as: 

1 1 1

1 1 1 0

( 1) ( ) ( )

( ) ( ) ( ) ( )
k k k

k k k k

x t Ax t Bu t

z t Cx t Du t D z t
  

  

  

  
     (7.25) 

where, 

0

0 0
, ,

0

C D
C D D

C D I

     
       
     

 

The optimization problem can be rewritten within a cycle k+1 as: 

1
1 1( | )

10,.....,

ˆ ˆmin [ ( | ) ( )] [ ( | )
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k

p

N
T

k r i ku t i t
ii N

z t i t z t i Q z t i t


 
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   
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1 1
0

( )] [ ( | ) ( | )]
uN

T
r k i k

i

z t i u t i t R u t i t


 


       (7.26) 

where, ( ) [ ] T T T
r r rz t y es and T

res is a null vector, subject to the inequality constraints 

for [0, ]t T due to the constraints in the actual process  

min max

min max

( )

( )

u u t u

z z t z

 
 

  

7.4.1 Design of multi-parametric quadratic ILMPC  

The thermoforming process is a complex MIMO system linking heater 

temperatures to infrared sensors outputs. Although the heating phase of thermoforming 

machines is a slow process, the number of system equations is high when multiple 

sensors are used. Thus, much computation and expensive hardware is required to 
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implement the online minimization of the cost function. Even though an advanced 

nonlinear programming algorithm for optimization is used, the speed and accuracy of the 

solution is not guaranteed.  In this section, mp-ILMPC for heating phase of the 

thermoforming machine is proposed. The model developed for the heating phase of the 

thermoforming machine is nonlinear. So the model equations are linearized around the 

operating point * *( , )x u  to control the system using mp-MPC.  

  
*

*

( , )
x x
u u

f x u
A

x 






     

*

*

( , )
x x
u u

f x u
B

u 





      
*

( )

x x

h x
C

x 





 

 (7.27) 

The linear state-space equations for the process are:  

( 1) ( ) ( )

( ) ( )

x t Ax t Bu t

y t Cx t

  


    

  (7.28) 

where n nA  , n mB  , p nC  . With the linearized system equations, using 

equations (7.28) and substituting 
1

1
0

( ) | ( )
i

i j
t t i j

j

x t i A x t A Bu


  


   , the optimization problem 

of MPC in equation (7.26) can be reformulated following some algebraic manipulation 

(see [62]) to get the minimum value, 

1 1
( ( )) ( ) ( ) min ( )

2 2
T T T

U
V x t x t Yx t U HU x t FU

    
    

 (7.29)
 

Such that ( )GU W Ex t   

where, 1[ ,........ ] 
U

T T T
t t NU u u is the optimization vector and , , , , ,H F Y G W E  are 

obtained from ,Q R . By defining a new vector 1: ( )  Tw U H F x t , the optimization 

problem can be transformed into, 
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1
( ( )) min

2
T

w
w

V x t w Hw                (7.30) 

Such that ( )Gw W Sx t      

Where 1 TS E GH F  and  ( ( )) ( ( ))wV x t V x t   11
( ) ( )

2
T Tx t Y F H F x t , the 

current state ( ) ox t x  can be taken as a vector of parameters. If there are q inequalities, 

then 
2 .m Nw  , . .m N m NH  , 

2 .q m NG  , 
1qW  , 

q nS  and n qF   . In 

[61], it is shown that the explicit solution of the equation is a continuous piecewise affine 

function defined over the partition of the parameter space. Based on these results, we 

propose the same algorithm as in the previous chapter for the offline computation of the 

optimization problem for the heating phase and hence implement it in ILMPC control of 

the process. The algorithm is described by the flow charts in Fig.7.2.  

7.4.2 Design steps of multi-parametric quadratic ILMPC  

The steps in the design of the ILMPC controller will not be discussed in details as 

they are very similar to the previous chapter. The steps are as follows: 

(1) Linearization of the system 

(2) Incorporating constraints 

(3) Reducing the number of partitions in offline solution 

(4) Choosing the weight matrix of the controller 

(5) Tuning the parameters of the controller 

After the computation of the controller using mp-QP, the optimal heater control input to 

the system will be obtained as an affine function of system state, previous control input, 

reference output, previous cycle error and measured disturbance. The algorithm for 

incorporating the solution of offline optimization into the controller is shown in Fig. 7.3. 
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Fig.7.2: Algorithm for offline optimization of the objective function for ILMPC   



186 
 

 

 

Fig.7.3: Algorithm for incorporating the solution of offline optimization into the 

controller 

7.5 Simulation results 

The effectiveness of the proposed ILMPC controller is investigated using same 

simulation model that was developed using Matlab/Simulink. The performance of the 

proposed method and conventional method is compared using the developed model. The 

oven configuration with 9 equidistant infrared sheet temperature sensors (3x3) location on 

each side of the sheet is discussed in details in Chapter 3. The performance of a 
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conventional PI controller and some state-of-the-art controllers like ILC, TILC and MPC 

are used from Chapter 6 to compare with the MPC based iterative learning controller and 

ILMPC controller.  In the design and development of the MPC based iterative learning 

controller, MPC part of the controller is designed using exactly the same procedure as in 

the last chapter, and the iterative learning controller part used information from the last 5 

cycles to generate the control inputs. Final control inputs are the summation of MPC part 

and iterative learning part of the controller. On the other hand, ILMPC controller is 

designed and developed using the extended output variables. Each pair of control inputs is 

formulated in an explicit expression of 48 system states (36 outputs, 2 air temperatures 

and 10 other inputs), 2 previous control inputs and 36 reference outputs.  

The output sheet temperature at the sensor locations for the first 11 cycles with a 

cycle length of 600s are shown in Fig.7.4 and 7.5 for MPC based ILC and ILMPC 

controller. At the start of each cycle, a sheet enters the oven and comes out of it after a 

cycle period of 600s, as a new sheet enters the oven. An exponential input profile (same 

as last chapter) is chosen such that the heat has enough time to propagate to the inner 

layers of the sheet. The sheet temperature should follow as closely as possible the desired 

profile so that it will not melt down or burn but will be heated across its thickness. We 

observed in last chapter that the PI controller and ILC have weak control over the 

temperature because of the long time constant of the process. The TILC controller cannot 

follow the profile even though it can get close to the target temperature at the end of the 

cycle as the output measurement occurs only once at the end of the cycle. Therefore, 

TILC is mono-dimensional. The MPC controller performs well but there is a steady-state 

error passing through the cycle-to-cycle direction as it does not use any information from 

the previous cycle. In Fig.7.4 and 7.5, the MPC based ILC does not perform very well. 

Although MPC is incorporated with ILC, the controller output does not ensure to be 

followed by the actuator. So it does not really have the advantages of the MPC. On the 

other side, the performance of ILMPC controller is quite satisfactory even though there 

was a small error in the first cycle. The controller tunes itself to achieve the desired 

profile.  In Fig. 7.6, it is observed that the heater temperature of the MPC based ILC 

controller cannot follow the command heater temperature from the controller output as 

the ILC part of the controller output is an extra term that is added with the MPC part of 
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the controller which is calculated considering system constraints. So the heater cannot 

follow the control input generated by the controller. But in case of ILMPC, the heaters 

can follow the control input as it was calculated considering the system constraint. If we 

compare these two controller with all other controllers in the last chapter, we see that 

MPC and ILMPC can follow the control input whereas PI, ILC, TILC and MPC based 

ILC cannot follow it. The performance of the proposed MPC based ILC controller and 

ILMPC controller in presence of non-repetitive disturbances are shown in Fig.7.7 and 

Fig.7.8. The performance of ILMPC looks better than MPC based ILC controller.  

ILMPC and MPC controller performs better than other controller in the presence of non-

repetitive disturbances. The tracking error of ILMPC and MPC is much less than other 

conventional controllers. At last, the performances of the proposed controllers are shown 

in Fig, 7.9 and Fig. 7.10. It is observed that ILMPC can perform much better than MPC 

controller as it combines cycle to cycle control technique with in cycle control. Now, we 

will present a comparison table (Table 7.1) based on the results of the previous and 

current chapters. 

Table 7.1: Comparison of different control technique for heater in terms of error 

 

Name of 

the control 

Technique 

Maximum error among 6th to 11th 

cycle under normal operation 

Maximum sheet temperature error 

among 6th to 11th cycle under 

disturbances 

Sheet 

temperature 

error  (Celsius) 

Heater 

temperature 

error  (Celsius) 

Non-repetitive 

disturbances 

(Celsius) 

Repetitive 

disturbances 

(Celsius) 

PI 8 800 10 12 

ILC 10 50 13 13 

TILC 13 5 14 12 

MPC 3 1.5 4.5 6 

MPC 

based ILC 

6 15 17 8 

ILMPC 3 1.5 5 3 
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(a) MPC based ILC 

 

(b) ILMPC 

Fig. 7.4: the sheet temperature at sensor point of the sheet for (a) MPC based ILC (b) 
ILMPC 
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(a) MPC based ILC 

 

(b) ILMPC 

Fig. 7.5: Error in sheet temperature at sensor point of the sheet for (a) MPC based ILC (b) 
ILMPC  
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(a) MPC based ILC 

 

(b) ILMPC 

Fig. 7.6: Error between command input temperature and actual heater temperature  

0
100

200
300

400
500

600

0
2

4
6

8
10

12
-15

-10

-5

0

5

10

15

20

Time (Second)Cycle Number

E
rr

or
 in

 H
ea

te
r 

T
em

pe
ra

tu
re

 (
C

)

0
100

200
300

400
500

600

2

4

6

8

10

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Time (Second)Cycle Number

E
rr

or
 in

 T
em

pe
ra

tu
re

 (
C

)



192 
 

 

(a) MPC based ILC 

 

(b)  

Fig. 7.7: Temperature at sensor point of the sheet with presence of large non-repetitive 
disturbances  
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(a) MPC based ILC 

 

(b) ILMPC 

Fig.7.8: Error in temperature at sensor point of the sheet with presence of non-repetitive 
disturbances 
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(a) MPC based ILC 

 

(b) ILMPC 

Fig. 7.9: Sheet temperature at sensor point of the sheet at the presence of repetitive 
disturbances 
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(a) MPC based ILC 

 

(b) ILMPC 

Fig. 7.10: Error in temperature at sensor point of the sheet at the presence of repetitive 
disturbances  
 

0
100

200
300

400
500

600

2

4

6

8

10

0

2

4

6

8

10

12

Time (Second)Cycle Number

E
rr

or
 in

 T
em

pe
ra

tu
re

 (
C

)

0
100

200
300

400
500

600

0
2

4
6

8
10

12
0

1

2

3

4

5

6

7

Time (Second)Cycle Number

E
rr

or
 in

 T
em

pe
ra

tu
re

 (
C

)



196 
 

7.6 Conclusion 

In this chapter, a step-by-step approach is proposed for the development of 2D 

controller that uses the information from input and output samples within the cycle and 

the information from cycle to cycle. Iterative control technique along with model 

predictive control is presented in this chapter on 2D control of the thermoforming 

process. Two controllers are developed for the purpose of achieving better performances 

in presence of non-repetitive and repetitive disturbances. To deal with constraints as well 

as non-repetitive disturbances in the process, the MPC technique is incorporated in 

ILMPC to update the control law within the cycle. To exploit the repetitive nature of the 

heating phase of the process, a cycle-to-cycle iterative learning control technique 

direction is proposed. To reduce the computational burden, the control laws are computed 

offline using multi-parametric programming. The main feature of the ILMPC controller 

for the process is that it can handle model mismatch and periodic and non-periodic 

disturbances very well as compared to other techniques.  But the MPC based ILC 

controller has poor performances as compared to ILMPC. 
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Chapter 8 

Conclusion 

 

In the control of a complex industrial process, we face typical challenges such as 

building a mathematical model that represents the behavior of the system, arranging to 

collect process variable information, knowing the constraints of the actuator, developing a 

technique to overcome the process constraints and designing a suitable controller that 

performs the objective satisfactorily.  In this thesis, we tried to focus on these issues one 

by one, then proposed solutions to these issues and developed an appropriate control 

technique step by step for sheet temperature control of the thermoforming process. In this 

development process, the advantages and drawbacks are identified for the proposed 

controllers. In the last part of the thesis, a new control technique is introduced to achieve 

the desired performance.  

8.1 Content of this thesis 

In Chapter 2, some possible ways to improve the model is presented. In next 

Chapter 3, another challenging problem in controlling the thermoforming process, known 

as IHP, is discussed. Thus, in Chapter 3, a method based on the conjugate gradient 

method is proposed such that it can provide setpoint temperature values for the heaters 

resulting in a specific temperature distribution in the plastic sheet after a predefined cycle 

time.  In Chapter 4, a new method is proposed for the estimation of the whole sheet 

temperature profile based on spatial harmonics. Then, a new controller is designed to 

control these spatial harmonics, which has the effect of controlling the temperature over 

the whole sheet instead of just controlling temperatures at certain locations. In Chapter 5, 

the proposed method of Chapter 4 is modified to overcome some of the discrepancies. In 

the following chapter, we explore model predictive control using the explicit solution of 

the optimization problem for temperature control of a thermoforming machine. In this 

chapter, I discuss the multi-parametric quadratic programming used to solve the online 
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optimization with an offline strategy in the development of MPC for the heating phase of 

thermoforming process, and a multi-parametric MPC is developed for it. Chapter 7 

introduces a 2D control combining MPC and ILC to control the heater temperature. 

8.2 Future work 

This thesis presents some new sensing and controlling techniques for sheet temperature of 

heating phase in thermoforming process. These techniques can also be used in other 

repetitive slow processes. But more research can be conducted to sense the temperature 

signal from plastic sheet and control the sheet temperature of the heating phase.  Some of 

them are proposed in this thesis as follows: 

8.2.1 Temperature Sensing 

A new temperature sensing technique is proposed in this thesis. It has satisfactory 

performance. But we can make this sensing technique more effective by locating the 

sensors of the plastic sheet at optimal positions. This arrangement of the sensors depends 

on the expected temperature profile on the sheet. Therefore, more research can be done in 

this area to find optimal arrangement of the sensors. This would ensure the best 

estimation of temperature from the least number of sensors. 

8.2.2 Nonlinear Model Predictive Controller 

Even though the dynamics of the thermoforming process is nonlinear due to the radiation 

heat transfer between heater and sheet, nonlinear behavior of the heater actuator and 

presence of constraints; linear MPC approaches have been found successful in controlling 

sheet temperature. In this thesis, linear MPC technique is used to control the system as 

important issues of MPC such as online computation can be solved using well developed 

multi-parametric programming. The thermoforming system is, however, in general 

inherently nonlinear. Linear models are often inadequate to describe the process dynamics 

and nonlinear models have to be used. This motivation can lead researchers to use 

nonlinear model predictive control in sheet temperature control in the future. Solving the 
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optimization problem will be the main challenge in implementing this nonlinear control 

technique as it requires a lot of computation within a sampling period to solve online.  

8.2.3 Linear Model Predictive Controller with time varying linear model 

The nonlinear model of the thermoforming process can be linearized at different 

operating points. The system matrices of the linear system will be changing with a change 

of operating point of the process. So the model of the thermoforming process can be 

expressed as a linear system with time varying system matrices that depend on system 

states and system inputs to capture nonlinear behaviors of the thermoforming process 

more accurately. In future work, one could also work to develop a model predictive 

control for a time-varying multivariable process model.  

The linear state space model equations for the system can be expressed as,  

( 1) ( ) ( ) ( ) ( )

( ) ( ) ( )

  


x t A t x t B t u t

y t C t x t     (8.1) 

Where the system matrices are,
 

*

*
( ) ( )
( ) ( )

( ( ), ( ))
( )

( ) 





 x t x t
u t u t

f x t u t
A t

x t
   

*

*
( ) ( )
( ) ( )

( ( ), ( ))
( )

( ) 





 x t x t
u t u t

f x t u t
B t

u t
    

 
*( ) ( )

( ( ))
( )

( ) 





x t x t

h x t
C t

x t
 

1( ) ( ( ), ( ))    n nA t g x t u t , 2( ) ( ( ), ( ))   n mB t g x t u t ,

3( ) ( ( ), ( ))  pxnC t g x t u t  

The MPC uses the information from the mathematical model of a system to 
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calculate future control inputs that optimize an objective function to have desired 

performance of the system. The performance objective function is of the form: 

1

1 0

ˆ ˆmin [ ( ) ( )] [ ( ) ( )] [ ( ) ( )]



 

            
p u

N N
T T

r i r i
u

i i

J y t i y t i Q y t i y t i u t i R u t i

  (8.2) 

Subject to the inequality constraints for  [0, ]t T  

min max

min max

( )

( )

( ( ), ( )) 0

u u t u

y y t y

g x t u t

 

 


     (8.3) 

and the process dynamics; 

( 1) ( , ( ), ( ))

( ) ( , ( ))

 


x t f t x t u t

y t h t x t
     (8.4) 

where the state is ( ) nx t  , the input is  ( ) mu t  , the output is ( ) my t  . The 

control move is calculated from the current time along the horizon at every sampling time 

instant using the model information. But the nonlinear model information can be 

simplified using linearization of the model at that current operating point of the 

thermoforming process to provide the system information as accurate as nonlinear model 

around the operating point. The thermoforming process can be represented as linear 

system where the system matrices depend on the arbitrary system states *( )x t and inputs 

*( )u t . 

 The system equation for the system at time t can be written as:   
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* * * *

* *

( 1) ( ( ), ( )) ( ) ( ( ), ( )) ( )

( ) ( ( ), ( )) ( )

  


t t

t

x t A x t u t x t B x t u t u t

y t C x t u t x t
   

Where, , ,t t tA B C  are system matrices at system operating point * *( ( ), ( ))x t u t . The system 

equation for the same system at time t+1 can be written as:   

* *
1

* *
1

* *
1

( 2) ( ( 1), ( 1)) ( 1)

( ( 1), ( 1)) ( 1)

( 1) ( ( 1), ( 1)) ( 1)







    

   

    

t

t

t

x t A x t u t x t

B x t u t u t

y t C x t u t x t
  

Where, 1 1 1, ,  t t tA B C  are system matrices at system operating point * *( ( 1), ( 1)) x t u t . In 

general, the system equation can be written as,  

* *

* *

* *

( 1) ( ( ), ( )) ( )

( ( ), ( )) ( )

( ) ( ( ), ( )) ( )







     

   

    

t k

t k

t k

x t k A x t k u t k x t k

B x t k u t k u t k

y t k C x t k u t k x t k        

(8.5) 

Where, , ,  t k t k t kA B C  are system matrices at system operating point * *( ( ), ( )) x t k u t k . 

A new objective function can be developed in the form of (8.2) to obtain the 

desired performance of the system.  

1

1 0

ˆ ˆmin [ ( ) ( )] [ ( ) ( )] [ ( ) ( )]



 

            
p u

N N
T T

r i r i
u

i i

J y t i y t i Q y t i y t i u t i R u t i
 

The estimated output of the system using the model equations can be found as, 

* * * * * * * *ˆ ( 1) ( ( ), ( )) ( ( ), ( )) ( ) ( ( ), ( )) ( ( ), ( )) ( )  t t t ty t C x t u t A x t u t x t C x t u t B x t u t u t
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* * * * * *
1 1

* * * * * *
1 1

* * * *
1 1

ˆ( 2) ( ( 1), ( 1)) ( ( 1), ( 1)) ( ( ), ( )) ( )

( ( 1), ( 1)) ( ( 1), ( 1)) ( ( ), ( )) ( )

( ( 1), ( 1)) ( ( 1), ( 1)) ( 1)

 

 

 

     

    

     

t t t

t t t

t t

y t C x t u t A x t u t A x t u t x t

C x t u t A x t u t B x t u t u t

C x t u t B x t u t u t  

* * * *
2 2

* * * *
1

* * * *
2 2

* * * *
1

* *
2 2

ˆ( 3) ( ( 2), ( 2)) ( ( 2), ( 2))

( ( 1), ( 1)) ( ( ), ( )) ( )

( ( 2), ( 2)) ( ( 2), ( 2))

( ( 1), ( 1)) ( ( ), ( )) ( )

( ( 2), ( 2)) (

 



 



 

     

 

    

 

  

t t

t t

t t
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t t

y t C x t u t A x t u t

A x t u t A x t u t x t
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A x t u t B x t u t u t

C x t u t A * *

* *
1

* * * *
2 2

( 2), ( 2))

( ( 1), ( 1)) ( 1)

( ( 2), ( 2)) ( ( 2), ( 2)) ( 2)



 

 

  

     
t

t t

x t u t

B x t u t u t

C x t u t B x t u t u t
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 These predicted outputs can be substituted into the objective function of (8.2) to get a 

form to be used in multi-parametric programming. The objective function will be as 

follows:  
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Where, * * * * * *( ( ), ( )), ( ( ) ( )), ( ( ), ( ))t t tA x t u t B x t u t C x t u t  are system matrices of the linear 

model of thermoforming process at linearization point * *( ( ), ( ))x t u t . At any time sample k

, the optimization problem can be solved to predict the optimal control input over the 

control horizon such that it minimizes or maximizes the performance objective over the 

output horizon taking into consideration the process constraints. But it should be ensured 

that the computational burden of online optimization will be low enough to implement 

MPC in industry using existing hardware. So the optimization problem can be solved 

offline using multi-parametric programming. It will be a challenge for researchers to 

develop multi-parametric programming for a system with variable system matrices to 

solve the optimization problem.  

8.2.4 Robust Model Predictive Controller 

MPC has very good performance in controlling sheet temperature due to its capability to 

deal with multivariable constraints. Despite the widely acknowledged capabilities of 

MPC, it has three drawbacks for repetitive processes like thermoforming. The first 

drawback is that real time implementation demands huge computation effort for solving 

the online optimal control problem. This drawback limits the use of MPC to only simple 

slowly varying processes. This problem is solved in this thesis by using multi-parametric 

programming. The second drawback is that the control technique cannot use the 

information from previous cycles to tackle repetitive disturbances. In this thesis, two-

dimensional control technique was proposed to have a better performance in presence of 

both repetitive and non-repetitive disturbances. The last drawback is that even though 

MPC has inherent robustness due to the implicit feedback, it relies on nominal models for 

the prediction of control input. If there were no disturbance and no model-plant 

mismatch, and if the optimization problem could be solved for infinite horizons, then one 

could apply the input function found at time zero to the system for all times. However, 

this is not possible in general. Due to disturbances and model-plant mismatch, the true 

system behavior is different from the predicted behavior. So it cannot guarantee the 

satisfaction of constraints and optimal performance in presence of uncertainties and 
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disturbance.  The presence of uncertainties and disturbances should thus be taken into 

consideration. The optimization problem for robust MPC can be modified as: 

1

1 0

ˆ ˆmin [ ( ) ( )] [ ( ) ( )] [ ( ) ( )]

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Where,
 

nx , mu , qy and  w are state, input, output and 

disturbance vector respectively. , ,  A B C  are modeling uncertainties in system 

matrices  , ,A B C respectively.  , , , , , , ,  A B C W F A B C  are matrices with appropriate 

dimensions. The disturbance vector includes input disturbances and noises. This 

disturbances and uncertainties degrade the performance of the controller. Future 

prediction of the states contains the information about the past uncertainty values. This 

implies that the future control action can be re-adjusted to compensate the past 

uncertainty and disturbance realization by deriving a closed loop MPC problem. The 

main idea of this control technique will be to introduce constraint into control 

optimization problem that preserve feasibility and performance for all disturbance 

realization. These constraints can be incorporated into the system equation and give rise 

to a new optimization problem. In this optimization, at every time instant the future 

control input is readily adjusted to offset effect of past uncertainty to satisfy the 

constraint.  
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8.3 Concluding Remarks 

In this thesis a survey on the state-of-the-art work on plastic sheet temperature control of 

thermoforming process is presented at the beginning. The detail modeling of the heating 

phase of the thermoforming process is presented. A new method for estimating sheet 

temperature for both uniform and non-uniform sensor location is developed and hence 

implemented through harmonic controller of the process. In order to get better 

performance, MPC is developed for sheet temperature control through heater control of 

the thermoforming process. The proposed controller is found to have better performance 

as compared to conventional controller with some drawbacks. To improve the 

performance of the control, iterative learning control technique is incorporated with MPC.   
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