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ABSTRACT

In real world applications, control is always performed without perfect knowl-

edge, perfect models, and often, under changing conditions. Such circumstances are

particularly true of complex systems. As a result, application of control theory to

complex systems requires the development and implementation of control policies

that are robust to unexpected and potentially malicious changes to the underlying

network. This thesis makes three important contributions along this direction. First,

we introduce a new definition of robustness which captures realistic constraints im-

posed by many control problems. Second, we develop a novel algorithm for computing

this robustness measure. Third, we conduct a thorough assessment of the control

robustness of different synthetic networks to a wide array of attacks/network per-

turbations. We find that our robustness measure is behaviorally different from other

robustness measurements in the literature and that the attacks considered highlight

a number of ways in which network properties correlate with control robustness.
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ABRÉGÉ

Dans les applications du monde réel, le contrôle est toujours effectuée sans

une parfaite connaissance, des modèles parfaits, et souvent, dans des conditions

changeantes. Ces circonstances sont particulièrement vrai des systèmes complexes.

En conséquence, l’application de la théorie du contrôle de systèmes complexes nécessite

l’élaboration et la mise en œuvre des politiques de contrôle qui sont robustes à des

changements inattendus et potentiellement malveillants sur le réseau sous-jacent.

Ce document fait trois contributions importantes le long de cette direction. Tout

d’abord, nous introduisons une nouvelle définition de la robustesse qui capture des

contraintes réalistes imposées par de nombreux problèmes de contrôle. Deuxièmement,

nous développons un nouvel algorithme de calcul de cette mesure de robustesse.

Troisièmement, nous procédons à une évaluation approfondie de la robustesse de

contrôle des différents réseaux de synthèse pour un large éventail d’attaques / per-

turbations du réseau. Nous constatons que notre mesure de robustesse est com-

portemental différent des autres mesures de robustesse dans la littérature et que

les attaques considérées mettre en évidence un certain nombre de façons dont les

propriétés du réseau sont en corrélation avec le contrôle robustesse.
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CHAPTER 1
Introduction

Networks are ubiquitous and they find applications in biological systems, trans-

port systems, social interactions, food networks and many other natural as well as

engineered systems. Complex networks are used to model and describe many of

these systems that function around us everyday [1, 4, 15, 16]. Synthetic networks

have been developed to model the structural characteristics of these natural net-

works, for purpose of studying their physical properties and developing networks of

similar performance capabilities [3, 5, 9, 10]. Such networks have been analyzed for

their tolerance against structural failures [2]. Apart from the studies of topological

properties, recent work has highlighted the importance of understanding the extent

to which complex network systems are controllable [14, 22].

A controllable system can be driven from any arbitrary state to any desired

state in finite time through the application of external control inputs. For example,

a network of power grid stations can be controlled externally through input signals

from control units connected to some of the grid stations. The network is fully

controllable (all the stations are controllable) if the state, such as voltage level, of

each grid stations can be changed to any possible value in that state space. Like

any property that is dependent on structure of complex networks, controllability

is sensitive to perturbations or failures that occur to the networks. Understanding

how network controllability changes in the context of node or link failures as well as
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which network structure designs have control schemes that are most resilient to such

failures is an essential part of making such theoretical formalisms practically useful.

In this thesis, in order to understand and compare different synthetic networks for

their resilience or capacity to maintain controllability under failures, we define and

analyze a new measure of robustness of the controllability.

1.1 Problem Definition & Motivation

We strive to identify critical design characteristics of networks that provide in-

creased controllability and robustness under component failures. Current research

indicates a correlation between topological characteristics such as degree distribu-

tion and network controllability [14], but the role of underlying control structures is

ignored. Effects of different types of node and link failures and attacks on robust-

ness of network controllability have also been studied [17, 21], but with an indirect

measure of robustness. In this study, we analyse the parameters such as our new

measure of robustness, types of attacks, and structural properties of underlying con-

trol structures, to discover relationships between these characteristics and network

controllability.

In current literature on network controllability, there appears to be a broader

interest in statistics surrounding the number of controls necessary to control a com-

plex network (e.g., [11, 14, 20, 22]). Certainly, it is practically useful to minimize

the number of controls necessary to fully control a network. As opposed to research

on network controllability, work on robustness in the context of control is nascent.

Therefore, due to the broader interest, the recent studies on robustness of control-

lability have primarily measured robustness as the number of additional controls
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required to maintain full controllability following a change (a failure or an attack) in

the topology of the network [17, 21].

Such a definition of robustness effectively makes the assumption that new con-

trols can be added to the network as components fail: e.g., such a definition of

robustness assumes that one is always in a position to add more controls, only that

we have a preference to add as few controls as possible. However, in practice, critical

aspects of the system may be unknown, resources constrained, and regions flagged

for direct control not easy to reach: thus, in many cases, controls cannot be simply

added without great cost.

With this in mind, this thesis explores an alternative definition of robustness

concerned with how the number of controllable (reachable) nodes changes due to a

topological change (failure or attack). Such a definition offers a more direct way of

interpreting robustness as it measures the loss of controllable nodes after a failure.

On the other hand, the existing definition of robustness in literature measures an

increase in number of controls needed after a failure to compensate for the loss of

controllable nodes. In order to distinguish these notions of robustness, we refer to

the existing definition as control-based and our proposed definition as reachability-

based robustness (CR and RR, respectively). Different systems and conditions will

determine which of these definitions will be appropriate to use - but certainly both

capture practical constraints and objectives.

This thesis makes three core contributions. First, we formalize reachability-

based robustness. This formalization involves the development of a complex algo-

rithm which has been alluded to in literature, but (to our knowledge) has never
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before been fleshed out or published [8, 19]. Second, using random network models,

we establish how control-based and reachability-based definitions of robustness differ

(and are similar) both over different types of networks and different types of attacks.

Where attacks are concerned, we consider a much more comprehensive set than has

been evaluated elsewhere in the literature. Specifically, we assess all standard node

and edge attacks which depend on first-order degree properties. This extensive set

of attacks constitutes our third contribution and reveals that there are significantly

more nuanced factors determining the most effective attacks (and most robust con-

figurations) than what is currently reported in the literature. Moreover, our study

raises a number of questions about the relationship of robustness to network struc-

ture in general and to the nature of the control structures that govern the control of

complex systems.
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CHAPTER 2
Background and Prior Work

In this section, we outline characteristics of networks and the methods used to

control them. This will serve as a basis and background for the analysis performed

in this thesis.

2.1 Complex Networks

The use of networks to model systems, both simple and complex, has been

prevalent for decades. Most commonly, these networks are constructed with nodes

and edges according to graph theory. A node represents an entity, while an edge

represents a connection between two nodes. This connection could be physically

identifiable such as a power line in a power grid network, or it can be representational,

such as human relationships in a social network. These edges can be either undirected

or directed. The undirected edges imply that there is no directional constraint on

flow of information between the nodes that share a particular edge. In a directed

network, the connection only works in the direction marked by an arrow present at

one end. It is very important to note that all of our study concerns with directed

networks only. Additionally, edges can have weights associated with them. Weights

can have different interpretation based on the different kinds of networks. In the case

of an internet or router network for example, weight could represent bandwidth of a

connection, while in an airport network, it could be the number of flights between

two airports. In this thesis, the effect of edge weights is not studied in context of
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controllability since we are interested only in structural controllability. The reason

for ignoring weight is further explained in subsequent sections describing structural

controllability.

Another important characteristic of networks is degree of a node which is the

number of connections, or edges, connected to the node. This characteristic will

be used extensively in this work, particularly in determining types of node and edge

attacks used to define robustness of controllability. These basic properties of networks

outlined before form the fundamental graph-theoretic representation of networks.

Network applications are extremely widespread and diverse in characteristics.

Networks can be relatively small, for example the animal prey/predator food chain

in a small community, or relatively large such as a network of human interactions.

Table 2–1 shows some of the important real-world networks that are often used by

the research community in the study of network controllability. In this thesis, we

focus only on synthetic networks. However, it is important to note that our choice

of synthetic networks and their parameters is such that they closely model many

important types of real networks.

2.1.1 Synthetic Networks

Synthetic networks have been developed by researchers interested in modeling

real networks to analyse their topological aspects as well for understanding mech-

anisms to design optimal networks. Many natural networks such as food chains,

for example, have slowly evolved over years to adapt and survive under constantly

varying environmental parameters. Understanding these networks provides valuable
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Table 2–1: Examples of real-world networks

Networks Description

Airport Networks Nodes represent airports, and edges exist wherever
there are flight(s) between the airports.

Amazon Co-purchase The relationship between co-purchasing patterns
on Amazon.com, indicating that the source of an
edge is often copurchased with the target

C. Elegans Neural Net-
work

A graph of Caenorhabtitis elegans (C. elegans)
worm’s neural network. Neurons are nodes and
edges indicate existance of at least one synapse or
gap junction between neurons

Corporate Ownership Ownership relations among companies, where a di-
rected link indicates that the source is an owner of
the target

E-coli Transcription A transcriptional regulation network for E. coli en-
coding interactions between transcription factors
and operons

Food Web Networks from various marine ecosystems, where
the orientation of networks is such that directed
edges point towards the flow of biomass, e.g., edges
point from prey to predators.

Gnutella Networks Nodes represent hosts in the Gnutella network
topology and edges represent connections between
the Gnutella hosts

Macaque Neural Networks representing structural (axon projec-
tions) cortical connectivity in Macaque monkeys

Social networks Online social networks, edges represent interac-
tions between people

World Wide Web Nodes represent webpages and edges are hyperlinks
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insights into the principles of better network design. Commonly referred to as ran-

dom graphs, the synthetic models used in this study are based on graph theory and

probability theory. A random graph is generated when a given node or a set of nodes

is added to a graph and then edges are added to connect them at random. Different

formation mechanism yield a number of network properties and topologies, which

characterize each type of the random graphs. While a number of such models exists,

the following four types were chosen for this study for their unique characteristics

and applications. These models and parameters for each of them were selected such

that they represent a wide range of real world networks mentioned earlier.

(a) p = 0 (b) p = 0.1 (c) p = 0.2

Figure 2–1: An illustration of the Erdős-Rényi model using a 10 node network. By
increasing probability p, the number of edges scales accordingly.

Erdős-Rényi Model. The Erdős-Rényi model is one of the simplest of the

exponential random graph models. Under this model, a network of N nodes is

generated using a single parameter, the probability p of existence of an edge eij from

node ni to nj. Each edge’s existence is independent of other edges. Therefore, given
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N nodes, the expected number of edges [6] is E{L} = pN(N − 1)/2. Figure 2–1

shows examples of ER graphs for different values of the probability p.

Figure 2–2: A Barabási-Albert network exhibiting preferential attachment charac-
teristics.

Barabási-Albert Model. The Barabási-Albert (BA) model generates ran-

dom scale-free networks using a preferential attachment mechanism. Scale-free net-

works are widely observed in natural and human-made systems, including the In-

ternet, the world wide web, citation networks, and some social networks. Degree

distribution of scale-free networks closely follow that of a power law i.e. the fraction

of nodes with degree k, is of the form [3]

P (k) ∼ k−α

In the case of BA networks, the power in equation above is taken as α = 3.

Formation mechanism of BA networks is as follows. Initially, there are m0 connected

nodes. Then each new node i is connected to m (≤ m0) existing nodes with a
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probability that is proportional to number of link that existing nodes have. The

probability pj that a new node connects to an existing node j is given by

pj =
kj∑
m km

where kj is degree of node j [1]. It can be seen that the new node prefers nodes with

a higher degree, i.e. the nodes that are already more populated with connections.

This signifies a concept called preferential attachment, which characterizes many

scale-free networks. A sample Barabási-Albert network is shown in Figure 2–2. It

can be clearly seen that very few nodes have much higher degree compared to the

other nodes in the network.

Local Attachment Model. Proposed by Jackson and Rogers [10], the local

attachment (LA) model is built from behavior typically seen in social networks.

As the name suggests, the model generates a random networks where nodes find

other nodes to form links with in one of the two ways: some are found uniformly at

random, while others are found by searching locally through the current structure

of the network (e.g., meeting friends of friends). In this model, nodes are added

incrementally with m edges each. Of the m edges, r are connected randomly from a

new node to existing nodes in network, while remaining m − r edges are connected

to neighbors of randomly chosen nodes. Clustering can be added to the network

by increasing the fraction m − r. Thus, the model can be considered to have two

parameters, number of links to add for each node (m) and clustering (c). From

these parameters, the fraction of nodes to be added randomly can be obtained as

r = (1 − c)m. This methodology ensures that the outward bound connections, or
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out-degree, of each node is near uniform, but the in-degree will depend on how long

the node has existed. Figure 2–3 shows two local attachment networks with different

clustering values.

(a) Low clustering (b) High clustering

Figure 2–3: Two 15-node local-attachment networks with different clustering.

Duplication-Divergence Model. The Duplication-Divergence (DD) model

was developed to describe the evolution of protein-protein interaction networks. The

particular DD model used in this thesis is considered asymmetric, based on replica

proteins that carry some but typically not all of the interaction links of the proteins

from which they sprouted [9]. In this model, we start with an initial directed network

having two nodes and two edges; an edge from node 0 to node 1 and vice versa. Then

at each step, a random node n is duplicated to obtained a new node n′ which is then

connected to each neighbor of the node n with a probability s. If the new node n′

does not obtained any connections, it is removed. This simple one-parameter network

has been shown to approximate the degree distribution of realistic protein-protein
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networks. Figure 2–4 shows two sample DD networks with different probabilities of

duplication.

(a) Low probability of connecting to neighbours (b) High probability of connecting to neighbours

Figure 2–4: Two 15-node Duplication-Divergence networks with different probabili-
ties of connections.

2.2 Controllability of Complex Networks

Consider a linear dynamical system represented by a directed graph G(A), com-

posed of N nodes and L edges, where A is the N × N adjacency matrix of the

network for which the component aij is the edge weight from node xi to node xj.

Dynamics of such a system can be described using a set of mathematical equations

governing the state of each node in the system and any effect that one node may

have on the other. Though many real world systems are complex, non-linear and

non-homogeneous, thorough analysis of a linear model is a key step in generaliz-

ing to non-linear dynamics. In fact, many natural phenomenas fit well to a linear
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time-invariant model of the form,

d

dt
x(t) = Ax(t)

where x(t) = [x1(t), x2(t), ..., xN(t)]T is a vector denoting the states of the N nodes

at time t [14].

The above equation can describe dynamics of a network where nodes can change

states only under influence of other connected nodes. In other words, external in-

fluences from outside of the network on states of the nodes are ignored. However,

it is often desirable to influence networks externally for functional or performance

related reasons. For example, in case of a power grid network, some grid stations

might be required to be controlled or regulated directly for desired voltage levels.

Similarly, networks usually require external influences in case of unexpected node

or link failures. Sometimes we might desire to change states of a whole network by

controlling few nodes only. For example, in case of social networks, where people

are represented as nodes in the network and the connections (friendship, association,

trust) between people as links, it would be desirable, for the purpose of advertise-

ment for example, to be able to drive propagation of certain sentiment within the

population by controlling a few highly influential individuals in the population. In

case of airport networks modeling the flow of flight traffic, it is necessary to regulate

as few control locations as possible for efficient performance.

In order to incorporate external control inputs in the model, we need to augment

the dynamic system defined above. Then, such a controllable dynamical system

(A,B) is one that can be driven from a given initial state to any desired final state
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within a finite amount of time. Here, the N ×m matrix B indicates the components

or nodes of the system where m control input signals are applied. The control-

augmented graph G(A,B), formed by adding additional control nodes, one for each

control inputs, to the original network G(A), provides efficient methods for dealing

with large-scale networks. The controlled network G(A,B) can be described with

the governing equation,

d

dt
x(t) = Ax(t) +Bu(t) (2.1)

where u(t) = [u1(t), u2(t), ..., um(t)]T is a vector of m control input signals at time t.

Let us consider a directed graph G(A,B) shown in Figure 2–5, that represents

a simple controlled system with the linear dynamics given by

d

dt



x1(t)

x2(t)

x3(t)

x4(t)

x5(t)


=



0 0 0 0 0

0 0 0 0 0

a31 a32 0 0 0

a41 0 a43 0 0

a51 0 a53 0 0





x1(t)

x2(t)

x3(t)

x4(t)

x5(t)


+



b1 0

0 b2

0 0

0 0

0 0



u1(t)
u2(t)



In this system, the matrix A represents the interaction strengths aij among the

nodes in G(A). The matrix B encodes the strengths (b1, b2) of control inputs (u1(t),

u2(t)) from control nodes X and Y (external to network G(A)) as well as locations

of the nodes where the control inputs are applied. The control nodes X and Y are

directly controlling nodes 2 and 1 respectively. Then, nodes 1 and 2 can further

influence other nodes connected to them such that all nodes in the path 2→ 3→ 5

are controlled by control node X and those in the path 1 → 4 are controlled by
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Figure 2–5: A simple network G(A) with 5 nodes, when augmented by adding control
nodes X and Y , is represented as G(A,B).

control node Y . The nodes that can be controlled are called controllable nodes.

Note that there are other possible choices of paths such as X → 2 → 3 → 4 and

Y → 1→ 5, through which control inputs can be applied such that total number of

controllable nodes are same.

A given system G(A,B) is controllable (all N nodes in G(A) are controllable)

if and only if the controllability matrix given by

C = [B,AB,A2B, ..., AN−1B] (2.2)

has full rank, i.e., rank(C) = N . This mathematical condition for controllability is

called the Kalman’s controllability rank condition [12].

There are some important questions about network controllability that current

literature has attempted to answer: (1) Given a system G(A) how to find a minimal

B (B ∈ RN×m with smallest possible m) such that G(A,B) is fully controllable (all
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N nodes are controllable)? (2) Given a system G(A,B) how many nodes are con-

trollable? In practice, since resources available to deploy control inputs are limited,

it is necessary to find minimum number of controls to achieve full controllability.

Hence question (1) above is important and practically useful to solve. As we will

see later in this thesis, answer to the question (1) is used as a basis for definition

of robustness in the current literature. While an answer to the question (2), is the

basis for robustness defined in this thesis.

2.2.1 Structural Controllability

The present thesis purposely ignores weights on the edges or links; in other

words, the matrices A and B in equation 2.1 consists of either 0 or 1 instead of

any real-valued weights. This is because in many dynamical systems to which this

analysis is relevant, the strength or weight of a single connection or link in a complex

network changes with time, and is rather expensive to measure or could possibly be

unknown. The direction of influence however may be known, and therefore the focus

of this work is on the generic properties of such networks, i.e., those that hold for

almost all parameter values. Exact methods exist to find minimum set of controls

to achieve full control of networks with arbitrary structures and link-weights [23].

However, as link weights for many real networks are either unknown or dynamic in

nature, structural controllability introduced by Lin [13] is used by many researchers

to deal with control of such systems. Furthermore, the Kalman’s controllability rank

mentioned before is computationally extensive to compute for large-scale networks.

Therefore, tools from structural controllability described below make the analysis

tractable.
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Structural controllability deals with control of a network using only topological

structure of the system, therefore weights of the edges can be ignored. It has been

shown that if the system is structurally controllable, it is controllable for almost

all choices of edge weights except for some pathological cases [14]. Let us consider

some example networks as shown in Figure 2–6 to understand controllability and

structural controllability.

Figure 2–6: Controlling simple networks. (a) A directed path that can be completely
controlled by controlling the starting node only. (b) A directed star can never be
completely controlled by controlling the central hub (nodeX1) only. (c) This example
network, generated by adding a self-edge to the node X3 of the star shown in b, can
be completely controlled by controlling node X1 only. (d) This network is completely
controllable for almost all weights combinations except some pathological cases.
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The linear dynamics of the network shown in Figure 2–6(a) can be written as

d

dt


x1(t)

x2(t)

x3(t)

 =


0 0 0

a21 0 0

0 a32 0



x1(t)

x2(t)

x3(t)

 +


b1

0

0

u(t)

The controllability matrix of the Kalman’s rank condition is given by

C = [B,A ·B,A2 ·B] = b1


1 0 0

0 a21 0

0 0 a21a32


Since rank(C) = 3 = N , the system is controllable. Moreover, the system is al-

ways controllable if the weights a21, a32 and b1 are non-zero. Since the controllability

is independent of the weights, it is called structural controllability.

The linear dynamics of the network shown in Figure 2–6(b) can be written as

d

dt


x1(t)

x2(t)

x3(t)

 =


0 0 0

a21 0 0

a31 0 0



x1(t)

x2(t)

x3(t)

 +


b1

0

0

u(t)

The controllability matrix is given by

C = [B,A ·B,A2 ·B] = b1


1 0 0

0 a21 0

0 a31 0


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Since rank(C) = 2 < N , the system is uncontrollable. In fact, this is inde-

pendent of the weights; the system is uncontrollable no matter how their values are

tuned.

The linear dynamics of the network shown in Figure 2–6(c) can be written as

d

dt


x1(t)

x2(t)

x3(t)

 =


0 0 0

a21 0 0

a31 0 a33



x1(t)

x2(t)

x3(t)

 +


b1

0

0

u(t)

The controllability matrix is given by

C = [B,A ·B,A2 ·B] = b1


1 0 0

0 a21 0

0 a31 a33a31


Since rank(C) = 3 = N , the system is controllable. Moreover, the system is

always controllable if the weights a21, a32 and b1 are non-zero. Thus, the system

is structurally controllable. Note the difference between Figure 2–6(b) and 2–6(c).

Presence of self-loop, or a cycle, changes the controllability of the system such that

cycles can be effectively considered as self-controlling and do not require extra control

inputs.

2.2.2 Control Structures

In his highly influential paper, Lin [13] formed a network representation of struc-

tural systems and defined key structures within the network that characterize con-

trollability of the network. These controls structures are defined below.
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• Stem. It is an elementary path x0, x1, ..., xt in network G(A,B) from a node

x0 (also called origin of the stem) to node xt (also called terminus of the stem)

such that the origin x0 is under direct control of an external control input.

Each stem requires exactly one external control input (attach to origin of the

stem) such that all nodes in the stem are controllable.

• Cycle and Bud. Cycle is a path in G(A,B) such that its starting node and its

ending node are the same i.e. the path forms a closed loop. Moreover, unlike

a stem, a cycle might not be directly controlled by an external control input.

As opposed to stem, cycles are self-regulatory and do not need extra control

inputs; existing control inputs used for stems can also accommodate cycles.

Bud is a cycle with an additional edge, the distinguished edge, that enters a

node of the cycle from the a node of a stem. Thus, a bud is indirectly controlled

via a stem. A non-bud cycle is one that is not attached to any stems; it is an

independent cycle and it is directly attached to an external control input.

• Cactus. It is a subgraph composed of stems and cycles and is formed recur-

sively as follows. A stem is a cactus. Given a stem S0 and cycle C1, C2, ...Cl,

the union S0 ∪ C1 ∪ C2 ∪ ... ∪ Cl is a cactus if for every i(1 ≤ i ≤ l) the source

node of the distinguished edge of Ci is not the terminus of S0 and is the only

node belonging to both Ci and S0 ∪C1 ∪C2 ∪ ...∪Ci−1. A set of node-disjoint

cacti is called a cacti.

Figure 2–7 gives an overview of cacti structure in a sample network. Original

network denoted by G(A) is augmented with control nodes u1,u2 and u3 to form

a controlled network G(A,B), where matrix B encodes nodes to which the control
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(a) Network G(A) (b) Controlled Network G(A,B)

(c) Cacti Structure

Figure 2–7: An illustration of Cacti Structure in a network
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inputs are applied (shown with blue arrows in Figure 2–7(b)). Since the three control

nodes can fully control the network, there is a cacti which spans the network as shown

in Figure 2–7(c). The cacti is composed of three stems starting with nodes x1,x2 and

x3 (a stem can have just one isolated node). There are also three cycles in the cacti,

one of which is an independent (non-bud) cycle directly controlled by u1 while the

other two are buds that are indirectly controlled by u1. Since there are three stems,

the number of controls required to fully control the network is also 3.

Nodes in G(A,B) can be uncontrollable in two scenarios, inaccessibility and

dilations. A node is inaccessible if there is no directed path reaching the node from

any of the control nodes. Inaccessible nodes are nodes that are simply not reachable

from the control nodes, hence it is not possible to exert a controlling influence over

them. A dilation exists in the graph G(A,B) if a subset S of nodes in G(A), can be

found such that the number of nodes in the inbound neighborhood set of S, given by

|T (S)|, is smaller than the number of nodes in S, given by |S|. The inbound neigh-

borhood set |T (S)| is the set of nodes with directed edges going into S. Simply put,

dilations imply a situation in the network whereby there is not a sufficient number

of inputs to control all nodes in S. There are at most |T (S)| control inputs leading

into S and |T (S)| < |S|. The existence of cacti that span the graph G(A,B) relies

upon the control-augmented graph having no inaccessible nodes and no dilations.

A fundamental result from structural controllability thereom by Lin [13] states

that the following three statements are equivalent:

1. A linear control system (A,B) is structurally controllable.

2. (a) The directed graph G(A,B) contains no inaccessible nodes.
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(b) The directed graph G(A,B) contains no dilations.

3. G(A,B) is spanned by cacti.

Since only stems require control inputs and cycles don’t, if one can find a cacti

spanning the network G(A,B) that minimizes number of stems, one can find min-

imum number of controls required to fully control the network. Using statement 2

mentioned above, a method to find such a cacti is described in the next section.

2.3 Finding Control Structures

Here we describe a method to find the control structures in a given network

in order to obtain minimum number of control inputs and their locations to fully

control the network.

As we saw in the last section, an important task in structural controllability of

networks is to construct a minimal B (B ∈ RN×m with smallest possible m), such

that there are no inaccessible nodes and there are no dilations. A solution to the task

can be found in the maximum matching algorithm from graph theory that can find

a set of disjoint and simple paths and cycles which maximally cover nodes of a given

network G(A) [7, 14]. Edges in the maximum matching obtained from the algorithm

can be joined to form stems and cycles. The unmatched nodes from the algorithm

are the nodes without any matched inbound edges. They identify the location of

either inaccessible nodes or dilations in G(A). By connecting control nodes, which

represent the external control inputs, to these unmatched nodes, we can create a

spanning cacti for G(A,B) without inaccessible nodes or dilations. A cycle which is

not a bud (no distinguished edge exists from a node in a stem to a node in the cycle)

can be converted into a bud by adding a distinguished edge from a control node to a
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node in the cycle. The matrix B then encodes the new edges from the control nodes

to the unmatched nodes and the new distinguished edges from the control nodes to

the non-bud cycles. This method, due to Liu et al. [14], is described in detail below

with an example of the maximum matching algorithm.

2.3.1 Maximum Unweighted Matching in Directed Graphs

Maximum matching of a network is the largest set of nodes that can be uniquely

paired amongst themselves using edges within the network. Algorithms exist for

obtaining the maximum matching of bipartite graphs [7]. However, most networks

are not bipartite graphs and therefore, an extra step must be taken to convert a

directed graph to an undirected bipartite graph.

(a) (b)

Figure 2–8: An illustration of finding minimum number of controls inputs using
maximum matching. (a) A directed network G(A). (b) Undirected Bipartite network
GB(A) showing a maximum matching.
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Figure 2–8(a) depicts the original network G(A). Figure 2–8(b) shows GB(A),

the bipartite representation of G(A) . In GB(A), each node from G(A) has been

translated into two nodes, each belonging to one of the two groups: the positive

(+) group representing the out-bound edges of G(A) and the negative (−) group

representing the inbound edges. For example, the edge A→ B in G(A) is translated

to the edge A+ → B− inGB(A). Now, the Hopcroft-Karp algorithm can be applied to

GB(A) to get a maximum matching inGB(A), which is shown as the red-colored edges

in Figure 2–8(b). This matching in GB(A) are translated back to a corresponding

matching in G(A) which is also shown as the red-colored edges. Matched nodes

in G(A) have an in-bound edge (shown in red) which is included in the matching.

Thus, nodes B and C, shown in blue, are matched. Unmatched nodes, shown in grey,

don’t have an in-bound edge which is in the matching. Therefore, the unmatched

nodes must be controlled directly by external control inputs. In Figure 2–8(a), the

unmatched node A must be directly controlled. All matched nodes in G(A) can be

joined together using edges in the matching to form stems and cycles. The unmatched

nodes are the origins or starting nodes of these stems. In Figure 2–8(a), A→ B is a

stem, while C → C is a cycle.

The maximum matching ensures that as many nodes as possible are matched;

the number of unmatched nodes is minimized. Therefore, the minimum number of

control inputs and their locations are given by the unmatched nodes. In many cases,

a maximum matching is not unique; different sets of edges can be chosen to produce

different maximum matchings of the same size. However, the number of unmatched

nodes, and hence the number of control inputs, remains the same.
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2.4 Robustness

Networks, and the underlying control structures, are susceptible to failure and

attack, and thereby must be designed to survive these unavoidable events. Their

robustness, or ability to function, after links or nodes have been removed or inca-

pacitated is a key characteristic and measurement of the quality of their design. We

first look at previous research that attempts to define and understand robustness of

networks with regards to their topological structure. Then we discuss previous works

on robustness of controllability (or control structure) of networks.

2.4.1 Robustness of Networks

The robustness of synthetic networks, in particular the exponential random

models (such as Erdős-Rényi) and scale-free models (such as Barabási-Albert), have

been studied in depth. Most of these studies view robustness of a network as its

resilience to any change in important network properties under node or edge failure

or removal.

Albert et al. [2] studied behavior of the scale-free and the exponential networks

under different kinds of node failures. One of the network properties they used to

study resilience or robustness of the networks was diameter, which they defined as

“the average length of the shortest paths between any two nodes in the network”.

Figure 2–9 is one of their results which shows changes in the diameter d of the

networks as a fraction of nodes are removed from the networks in steps. They con-

sidered two kinds of node removal or percolation: random (when nodes are removed

randomly, simulating a random failure) and degree-based (when nodes with highest
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Figure 2–9: Comparison between the exponential (E) and scale-free (SF) network
models, each containing N = 10, 000 nodes and 20, 000 links. The blue symbols
correspond to the diameter of the exponential (triangles) and the scale-free (squares)
networks when a fraction f of the nodes are removed randomly ( error tolerance).
Red symbols show the response of the exponential (diamonds) and the scale-free
(circles) networks to attacks, when the most connected nodes are removed. [2]

degree are removed first, simulating a targeted attack). They found that, under ran-

dom node failure, the scale-free network exhibited better durability or robustness,

through lower recorded diameter on average, than the exponential networks. This

can be largely attributed to the significant differences in topological structure of the

two networks. The exponential network exhibits this behavior because of its rela-

tive homogeneity; since all the nodes have approximately the same number of links,

they contribute equally to the interconnectedness of the network and therefore, each
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node removal inflicts the same relative amount of damage. Meanwhile, the scale-

free network is heterogeneous; there exist only a few nodes with a high degree of

connectivity and a large fraction of nodes with a smaller degree. Therefore, under

random failures, loss of a low-degree node is more likely than that of a high-degree

node. However, contrary to random failures, under high-degree attacks on nodes

(when nodes with highest degree are removed first), the scale-free networks exhibit a

significant increase in diameter, while the exponential networks perform almost the

same as in case of random failures. Again, this can be attributed to the network

homogeneity.

The above study uses a method of understanding and measuring robustness of a

network, in which changes in topological structure of the network are observed under

node or link failures. Such a method can also be applied to understand robustness

of different kinds of network properties such as controllability. The same concept is

used in the current literature on robustness of controllability as well as this thesis.

2.4.2 Robustness of Controllability

In this thesis, “robustness of controllability” is viewed as resilience of a network

with regards to its controllability, or the ability of a network to maintain controlla-

bility under node or link failures. Understanding the robustness under this view or

interpretation, also appears to be the goal of other researchers discussed below, when

they define and formulate models of the robustness. However, our novel definition

and model of the robustness are more directly related to the above goal, and hence,

are one significant step further in strengthening our understanding of the robustness.
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As we have already seen, often it is desirable to find minimum number of controls

Nc such that a network is fully controllable. When a network undergoes node or link

failure, it may no longer maintain full controllability with the same number of controls

Nc. Therefore, under failures, a network loses controllability and may require more

controls to maintain full controllability. To our knowledge, all the existing studies of

robustness of controllability have measured the increase in the minimum number of

controls required as a proxy for the reduction in controllability due to a failure. We

refer to this indirect approach of measuring robustness as control-based robustness

(CR).

Liu et al. [14] showed that sparse and heterogeneous networks are difficult to

control and provided a method to observe robustness under edge failures based on

change in Nc upon edge removal. Pu et al. [21] investigated the behavior of control-

lability of various networks under random, targeted, and cascading failures of nodes.

As shown in Figure 2–10, they found that under degree-based failures or attack,

both Erdős-Rényi (ER) and scale-free (SF) networks need more controls on average

to maintain full controllability than they need under random failures. Hence, they

conclude that for both the networks, degree-based attacks are more effective (damag-

ing) than random attacks, i.e. both the networks are less robust against degree-based

attacks than random attacks. Furthermore, they observed that a larger number of

edges and greater network homogeneity increases the robustness of network control-

lability. Finally, Nie et al. [17] analyzed robustness of control under random and

targeted cascading failures. They report that ER networks with smaller average de-

grees are more robust against a highest-load cascading attack while SF networks with
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Figure 2–10: Minimum number of controls required for full control Nc vs number
of node failures. Scale-free network is shown in black (degree-based failure) and red
(random failure). ER network is shown in blue (degree-based failure) and dark-green
(random failure). [21]

smaller power-law exponents are more vulnerable than those with large exponents.

Furthermore, random attacks are shown to be more effective than targeted attacks

for less heterogeneous networks under moderate edge removal rates.

Such a control-based robustness highlighted in the above studies, is measured

in terms of change in minimum controls required, and hence has some practical

limitations. In real world systems, resources to assign controls are limited and it

is not always possible to bring system under full control after a failure. In light of
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such practical issues, it is desirable to have a measure of robustness which provides a

better perspective on how controllability of a network changes under failures when the

controls assigned to the network cannot be increased. In the subsequent sections, we

define this new measure of robustness, which we call reachability-based robustness,

as well as we perform analysis on various synthetic networks using a wide array of

node and edge attacks to demonstrate similarities as well as differences between the

reachability- and control-based robustness measures.
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CHAPTER 3
Methods and Data

In this section, we define reachability-based robustness, the algorithmic means

by which it is calculated, and the network models as well as the attacks which will be

used to empirically assess the attributes of the both control- and reachability-based

robustness.

3.1 Reachability-based Robustness

Our goal is to investigate a robustness measure that focuses on how much of the

network remains under control in the presence of an attack. Unlike control-based

robustness, in our measure, no new controls are added after a node or link failure.

The original set of controls designed for the original network remain in place (except

those whose nodes were removed by the attack, if any). Our measure of robustness

asks how many nodes are still under control after the perturbation to the network

topology. In this way, we can expect the number of nodes under control (or the

controllable nodes) to decrease with increasing node or link failures. To assess the

robustness of a network over a series of failures affecting 0 to 50% of the network

(nodes or edges, depending on the attack), we consider the average or mean of the

number of controllable nodes for each step of the series.

Notice, however, that our formulation thus far requires a particular assignment

of controls to nodes in the network (called the control configuration) before a series

of failures occurs. In order to obtain a robustness measure for a network, we sample
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multiple control configurations for the network and report the robustness score as

the average of values obtained for each configuration. In this study, we used a sample

of 10. While a small number, this yielded results with extremely low variance. As

an interesting direction for future work, this suggests that different minimal control

configurations have highly similar robustness for a wide array of events.

Returning to the issue of computing our robustness value for a network, however,

we still have a problem. Specifically, how do we compute the number of controllable

nodes in an arbitrary network controlled by an arbitrary control configuration (the

need for handling an “arbitrary” network stems from the fact that a perturbation

could affect a network in any number of ways)? In order to do this, we require a

simple and efficient algorithm for finding the cacti control structure given a fixed

set of controls. While this problem is discussed as finding the generic dimension

of controllable subspace in literature [8, 19], quite remarkably, a clear algorithmic

approach appears to be missing. This algorithm is the first of our contributions in

this thesis.

To understand the problem, consider the example in Figure 3–1(a), which shows

a network G with two controls X and Y attached to driver nodes A and B. The

number of minimum controls Nc is 2 while number of controllable nodes Nr is 8.

Figure 3–1(b) demonstrates an increase in Nc after node C is removed from G. After

removal of C, in order to fully control the network, a new control Z needs to be

attached to the unmatched node D. Thus, Nc increases to 3. On the other hand,

Figure 3–1(c) shows the decrease in controllable nodes Nr given the same set of
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Figure 3–1: (a) An example network G with driver nodes A and B. Stems are highlighted
in blue, cycles in green (b) Nc increases by 1 as node C is removed and cycle is broken
into a stem which requires a new control Z (c) Nr decreases by 3 as node C is removed
and stem starting with D becomes uncontrollable

controls (X and Y ) as before percolation. The value of Nr reduces to 5 since the

stem starting with node D is no longer reachable using controls X and Y .

In order to calculate Nr given controls X and Y , Hosoe’s theorem can be used

[8]. Let us recall the linear system given in Equation 2.1 as a graph G(A,B). The

generic dimension of the controllability matrix C (Equation 2.2) is defined as

rank(C) = max
Gsub∈G

|E(Gsub)| (3.1)

where Gsub is the set of all stem/cycle disjoint subgraphs of the G(A,B) that are

reachable from controls B and |E(Gsub)| is the number of edges in the subgraph Gsub.
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Algorithm 1 Algorithm to find Cacti for fixed controls

Require: Network G, Control node set C (G includes nodes in C and edges to driver
nodes)

Ensure: Cacti representing control structure
1: G′ ← G− x, x not reachable from C // using Depth First Search
2: Create a Bipartite Graph GB with:
3: . 2|V (G′)| nodes, a pair of +ve and -ve nodes for each node in G′

4: for all edge (u, v) in G′ do
5: Add an edge (u+, v−) to GB with weight 1
6: end for
7: for all control node c in C do
8: d← Neighbor(c) // d is driver node
9: Add an edge (c+, d−) to GB with weight 1
10: for all node x in G′ such that x is not in C do
11: Add an edge (x+, c−) to GB with weight 0
12: end for
13: end for
14: for all node u in G′ do
15: Add an edge (u+, u−) to GB with weight 0 // self loop
16: end for

// Add large enough weight to make it a perfect matching
17: Add weight W to all edges in GB such that

W >
∑
weight(e),∀e ∈ Edges(GB)

18: Perform weighted maximum matching algorithm on GB to get a matching M
19: Map edges in M back to edges in G and join them to form stems and cycles of

cacti.
20: Number of controllable nodes is number of matched nodes in cacti // control

nodes in C are not matched
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Figure 3–2: (a) An example network G with N = 5 nodes with external control node U
attached to driver node A (b) Bipartite graph with 2N nodes, a pair of +ve and -ve nodes
for each node in G.

Though the proof of the theorem is well presented [8], a algorithm to calculate the

rank is missing. On the other hand, Poljak [19] gives a graph-theoretic proof of the

theorem, which describes a method to calculate the rank in Equation 3.1 as well as to

construct the cacti structure in the graph G(A,B). However, the solution presented

therein requires solving an integer linear program, which is computationally more

expensive than our method and requires sophisticated linear program solvers. There-

fore, we convert the solution into one that involves finding perfect maximum-weighted

matching in a bipartite graph created from G(A,B). The solution is explained fur-

ther in Algorithm 1 and Figure 3–2). Using Fibonacci Heap in the implementation,

we have the time complexity of the algorithm to be O(NL + mN2 + 4N2log2N)

where N and L are number of nodes and edges in G(A,B) respectively and m is the

36



number of controls. It can be seen that for sparse graphs, the performance is better

than O(N3).

3.2 Network Models and Data

Our present study is focused on synthetic network models that have been de-

scribed before. Because the formation mechanisms of these synthetic models are

known to us, they offer an opportunity to establish connections between the robust-

ness of controllability in networks that have features which are frequently observed in

nature. One of the distinguishing features of this thesis over the current literature on

the robustness of network controllability is our broader survey of synthetic network

models. Previous work has established that while these models share some com-

mon topological statistics (e.g., scale-free degree distribution) they show significant

differences in their control properties [22].

We focus on directed synthetic networks using the Erdős-Rényi (ER), Barabási-

Albert (BA), local attachment (LA), and duplication-divergence (DD) models of

network generation. In this study, all networks have N = 1000 nodes; average de-

grees k = 2, 4, 6, 8, 10, 12 were considered except for duplication divergence networks,

in which the parameter of the model does not directly involve degrees of the nodes

and hence the formation mechanisms yields networks with highly varied average de-

gree. Worth noting is that other choices of parameters did not substantively affect

any of the results reported here. Further, these average degree values represent al-

ready a highly conservative approximation of the average degrees seen in real world

networks. In all results presented, each realization of network type and parameter
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values is generated with 10 different instances to provide a notion of expected (aver-

age) behavior. Even with this rather small level of averaging, for N = 1000 the error

bars are very small in most cases, underscoring that our results are stable and this

approach is sufficient to observe the expected control properties of these networks.

The network models are described below.

Erdős-Rényi (ER) Using random connection model described in [5], the random

networks were generated until the number of edges (E) was within an acceptable

tolerance: |E− kN | < 0.001kN . The homogeneity of ER networks typically leads to

networks that have very few controls with relatively long stems and cycles.

Barabási-Albert (BA) These networks were generated using the preferential at-

tachment model presented in [3]. BA networks are inherently acyclic, which limits

the range of the effect that a control can have in the network. Therefore, BA net-

works are characterized by a large number of controls (typically due to source nodes)

and short stems and cycles.

Local Attachment (LA) The networks were created using local attachment model

[10], which has been decribed in the previous section. In this study, we chose cluster-

ing values as c = 0, 0.25, 0.5, 0.75. LA networks are also acyclic and tend to exhibit

similar control characteristics to that of BA networks.

Duplication Divergence (DD) In duplication-divergence model, a node is du-

plicated and its edges are kept with a probability s [9]. Values for probability of

duplication s = 0.1, 0.3, 0.5, 0.7, 0.9 were considered. DD networks have the most

diverse control profiles of the synthetic networks surveyed here.
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3.3 Types of Attacks

Another way we distinguish our work from other studies of robustness of network

controllability is through the inclusion of a variety of node and edge attack types.

While attacker models could potentially consider any level of knowledge about the

system, we focus on the more realistic scenario where attackers have access to the

most fundamental structural information given by the degree of the nodes in the

network. Thus, as with other studies, we consider attacks that leverage degree in-

formation to identify critical nodes. Pósfai et al. [20] explored the role that various

relative degree relationships determine properties of network controllability. With

this as guidance, we consider such relative degree relationships in our study of ro-

bustness of network controllability.

For targeted node attacks, we select the node to be attacked based on its in-

degree, out-degree, or total degree (Figure 3–3(a)). A node may be important, in

the context of control, with high in-degree because it is a node through which many

potential paths may pass or with high out-degree because it has the potential to

propagate the influence of a control to many neighbors. Through this investigation

we begin to shed light on the relative importance of these factors.

With regard to edge attacks, we consider the degree information of the source (s)

and target (t) nodes of the edge. We can, therefore, consider all four combinations of

looking at in- and out-degree information for both of these nodes: in-in, in-out, out-

in, out-out, and total degree relationships. These combinations explore the extent to

which the edge is important due to being a funnel (in-in), being a source (out-out),

being a bridge (in-out), or other such functions. We considered five edge attacks
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(a) Node attacks. The node is selected
for removal based its degree (shown as red
edges).

(b) Edge attacks. Green edge is selected for re-
moval based on sum of degrees of its nodes (shown
as red edges).

Figure 3–3: Types of attacks.

(Figure 3–3(b)) which are functions of the degree of s and t. Edges were selected in

descending order of the score returned by a given function.

Finally, because we are interested in the contrast between random failures and

targeted attacks, we also evaluate a random node and edge percolation (attack).
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CHAPTER 4
Results

In this section we summarize how we generated results that show effects of node

and edge attacks on reachability- and control-based robustness for different networks.

We explain the plots involved and highlight key observations that can be made from

plots.

While the node- and edge-based attacks differ to some extent, the approach

to assessing robustness (both numerically and visually) was consistent across net-

work models and attack types. As seen in Figures 4–1 and 4–2, we take the fixed

set of control inputs to be a minimum control set required to control the original

(unperturbed) network. Because the minimum controls guarantee complete control-

lability, nr = Nr/N = 1 before the percolation process begins. With each step, 5% of

nodes/edges are removed up to a total of 50% percolation. As opposed to Pu et al.

[21], we do not keep as node in network after it is removed (or fully disconnected as is

the case when edges are removed), so that the change in Nr reflects also the change in

network size. Because the number and location of the controls cannot change, when

the nodes they directly connect to are removed, that control will lose it’s connection

to the network and no longer be able to contribute to controlling the networks. Fig-

ures 4–1 and 4–2 show the change in the fraction of controllable nodes (nr = Nr/N)

for different networks with respect to node/edge percolation with different attacks.
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Figure 4–1: The robustness of control structures in the four network models to degree
node-based attacks. Only the results for one parameter choice are shown — these are
representative of all other parameter choices.

4.1 Connected Components and Stem Lengths

In order to understand the behavior of attacks on robustness we analyzed how

the number of strongly-connected components NSCC and average stem length vary

under particular edge attacks (see Figure 4–3). Since BA and LA networks are

acyclic, NSCC remains constant at 1000 hence not shown in the figures. While for

ER networks, we can see that the effectiveness of an attack is correlated with the an

increase in NSCC . Also there is a strong correlation between change in average stem
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Figure 4–2: The robustness of control structures in the four network models to degree
edge-based attacks. Only the results for one parameter choice are shown — these
are representative of all other parameter choices.

length shown in Figure 4–3(b) and controllability plots in Figure 4–2. For example,

the in-out attack which tends to be the most effective also tends to create shorter

stems on average after percolation.

4.2 Initial Observations

Node attacks. There are few important observations that can be inferred from the

plots in Figure 4–1. Unlike [21], we find that degree-based attacks are not always

more effective (more damaging) than random attack. For example, in the case of BA
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Figure 4–3: Variation in number of strongly connected components and average stem
length under edge attacks

and LA networks, random attack does nearly the same as the most effective, high

out-degree, attack. In the case of DD and ER networks random attack is the least

effective. We also find significant variations among different types of degree-based

attacks. High out-degree attacks stands out as being the most effective in most of the

networks, while high in-degree and total degree attacks show considerable difference

in effectiveness across network types. These differences underscore the importance

of evaluating various metrics for robustness of network controllability.

Edge attacks. As seen in Figure 4–2, the in-out degree attack initially starts out

being less effective than a random attack but after a few steps, it rapidly degrades

controllability. This effect can be best explained by observing the change in the

number of strongly connected components (SCC) as well as the change in average

stem/cycle lengths (described next). It is observed that in-out degree attack rapidly

creates a larger number of SCCs than other attacks and also produces stems/cycles

of very short lengths. Also noteworthy is that out-in degree and total degree are
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almost always least effective, while random attack maintains average effectiveness.

This further confirms our proposition that degree-based attacks exhibit varying ef-

fectiveness relative to random attack for different networks and suggesting the role

of more nuanced network features in the phenomena.
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CHAPTER 5
Discussion

In this section we discuss important properties of reachability-based robustness

such as its relation to control-based robustness. We also analyse the robustness

measure as a function of network and attack types.

5.1 Robustness definitions have different behavior

Figures 5–1(a) and (b) show how the number of controllable nodes, Nr (or

fraction nr = Nr/N), decreases and the number of minimum controls, Nc, increases

for BA and ER networks under edge percolation. In order to verify whether changes

in Nr tell us a different story about robustness of networks than changes in Nc, in

Figure 5–1(a) and (b) we also plotted ∆Nr(t)−∆Nc(t) for each percolation step t,

where ∆Nr(t) = Nr(0) − Nr(t) and ∆Nc(t) = Nc(t) − Nr(0). The intuition here is

to capture increase in Nc after percolation and compare it with decrease in Nr. We

can see that in case of BA network, difference between the decrease in Nr and the

increase in Nc for some attacks is almost negligible. While for more effective attacks

such as in-out degree attack, there is a greater decrease in Nr for a given increase in

Nc. This gap between Nr and Nc widens greatly in case of ER network. This strongly

suggests that Nr (reachability) based measures reveal different aspects of network

vulnerability to particular node- and edge-based attacks compared with measures

using Nc. In fact, as opposed to results by Pu et al. [21], we find that ER networks are

46



less robust than BA networks. Therefore, our definition of robustness indeed presents

a behaviorally different and significant point of view for understanding robustness.

Figure 5–1: Comparison showing Reachability- and Control-based robustness measures
for ER an BA networks. nr = Nr/N is fraction of controllable nodes and Nc is minimum
number of controls required for full controllability

5.2 Robustness dependence on network types

Figure 5–2 highlights the extent to which different network types will have dif-

ferent responses to various attacks. The fact that the robustness signatures dif-

fer indicates that clustering, degree homogeneity, the presence of cycles, and other
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Figure 5–2: Reachability-based robustness for all networks grouped by type. Five data
points, each for an average degree k=2,4,6,8,10 (or probability s=0.1, 0.3, 0.5, 0.7, 0.9 in
case of DD) is shown for each network type.

higher-order network features may impact a particular network’s vulnerability to at-

tack. While an investigation into the nature of these signature differences is beyond

the scope of this thesis, we can highlight a number of intriguing trends which deserve

attention in future work.

• Clustering does not affect robustness to node attacks. Notice that BA networks

and LA networks with high clustering tend to exhibit similar behavior for all
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node attacks. LA networks have both a scale-free degree distribution and clus-

tering - thus the similarity in behavior suggests that the addition of clustering

does not affect the overall vulnerability to node attacks.

• Degree distribution. Even though both LA with zero clustering and ER are

both random models, the former creates acyclic networks and exhibits greater

resistance to attacks than ER which is more homogeneous than LA and consists

of cycles.

• Average degree sometimes can play a role. Our analysis indicates that, under

node attacks, N̂r does not show much variability across different average degrees

except for the case of ER networks. In the case of ER networks, robustness

increases with average degree (likely due to presence of more edges). The

effect of clustering in LA networks is also negligible for node attacks. N̂r shows

greater variation across attack types in DD and ER networks than in LA and

BA networks.

Similarly for edge attacks, there is only slight change in N̂r with increasing

average degree, except for the case of ER networks. It is surprising to find

that the in-out degree attack in fact is more effective with increase in average

degree. In-out degree attack is systematically the most effective attack for all

networks, as well as across different average degrees. It is also interesting to

note that duplication divergence (DD) networks are significantly more robust

than other network types against edge attacks. This suggests that biologi-

cal protein networks might have evolved to favor stability of protein-protein

interactions.
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5.3 Robustness dependence on attack types

While this point has already been indirectly explored above, it is worth high-

lighting that Figure 5–2 (as well as the other results figures) demonstrate the variable

effect a given attack can have. Interestingly, in some instances, node attacks have

more-or-less equivalent robustness scores; whereas in others, the same attacks can

have very different and highly variable robustness scores. This perspective suggests

that, in addition to understanding how particular network structures achieve differ-

ential degrees of robustness; another fruitful approach might consider the means by

which different attacks achieve similar (or different) robustness levels across a wide

array of networks.
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CHAPTER 6
Conclusion

The robustness of control structures will be an important consideration when

applying theory governing the control of complex systems. In this thesis we have

proposed a new measure of robustness which we consider to capture many of the

constraints that arise when controlling real-world systems. We find that this measure

functionally differs from existing measures in the literature and that, when subjected

to a variety of node- and edge-based attacks, yields trends that suggest ways in which

network properties relate to the robustness of control structures. We show that our

measure gives not just a practical but a necessary view of robustness. A novel and

efficient method to evaluate the robustness measure is presented in this thesis. We

strongly believe that the important results we obtained, using a wide array of network

models and attack types in our study, will help in robust network design.

Our method and results are directly useful in at least two following ways. First,

when resources available to control a network are limited and a full controllability

can’t be achieved, it is often desirable to select an allocation of controls from a set of

feasible allocations such that controllability is maximized. Our method to calculate

controllability given an a set of controls can be used effectively in this case. Second,

our results can help to choose a synthetic network model for any practical system by

comparing different models for their robustness against particular attacks that the

system is likely to encounter. Furthermore, the specific model parameters, such as
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average degree for example, of such networks can also be tuned for robustness based

on patterns observed in the results.

One of our future goals is to continue our study and include real networks in

our analysis of robustness. Our promising preliminary results suggest an interesting

pattern of robustness among real networks. Our next future goal is to study a slightly

different measure of robustness where control inputs are allowed to move to different

nodes but their number is kept fixed. In practical scenarios, we may find that after

a node or link failure, if control inputs are allowed to be reassigned, controllability

can be increased. We are currently working on methods to calculate controllability

given a fixed number of movable control inputs. We hope to find interesting results

to compare against our existing measure of robustness.
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