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ABSTRACT 

Soil texture and organic matter content are important indicators of the quality and health of soil. 

They affect a range of soil properties and processes, which are fundamental for agriculture and 

civil engineering. Several traditional methods and advanced measurement techniques aim to 

address the challenge of quantifying these attributes. However, their cost, time requirements, 

sophisticated analytical methods and in-situ inapplicability pose a major challenge to rapid 

measurement. This research discloses the development of a new, inexpensive, microscope-based 

sensor system to estimate content of both sand and organic matter. The research was divided into 

two experiments conducted over a span of two years, each approaching the problem from two 

different computational perspectives. The first experiment involved images of air dried soil 

samples from Field 26 (acquired in 2014, organic soil) of the Macdonald Campus Farm of 

McGill University. The set of images was analyzed for sand and organic matter content using 

color and spatial image analysis, then validated against data obtained using conventional 

methods in a laboratory. Predictive relationships were developed using simple linear regressions 

based on parameters computed from the acquired imagery, such as hue, saturation, value, 

porosity, and variance estimates. The best sand and organic matter prediction models exhibited 

coefficients of determination (R
2
) values of 0.63 and 0.83, respectively, with RMSE = 84.7 g/kg 

for sand content and 0.11 for log SOM. In addition to the first set of images, the second 

experiment explored both laboratory and in situ measurements from Field 86 (acquired in 2015, 

mineral soil). This method used a continuous wavelet transform to characterize sand content 

which was in strong agreement with the laboratory measurements (r
2
 = 0.86 and RMSE = 44.7 

g/kg for organic soil; r
2
 = 0.87 and RMSE = 40.2 g/kg for mineral soil). However, the efficiency 

of this algorithm was subpar for the images collected in-situ (r
2
 = 0.48 and RMSE = 80.6 g/kg). 
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This was due to the excessive soil water content, which can be addressed by modifying the 

microscope holder design and data collection protocol. The portable nature of the image 

acquisition system and the good performance of the wavelet algorithm shows promise for the 

future use of the system to rapidly quantify key soil physical attributes.  
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RÉSUMÉ 

La texture du sol et la teneur en matière organique sont des indicateurs importants de la qualité et 

de la santé du sol. Ils affectent un grand nombre de propriétés et de procédés du sol, plus 

précisément ils sont essentiels dans les secteurs de l’agriculture et du génie civil. En considérant 

ces derniers attributs, plusieurs processus traditionnels et techniques de prises de mesures 

avancées ont pour but de les quantifier. Toutefois, leurs coûts, leurs temps, les méthodes 

d'analyse sophistiquées et inadaptable en pratique in situ posent un défi majeur à la mesure 

rapide. Cette recherche révèle la conception et le développement d’un système de traitement 

d’image qui prédit la texture du sol et la quantité de matière organique présente. Cette recherche 

a été conçue de deux manières différentes sur l’espace de deux ans. Les deux méthodes de 

résolution ont été faites à base des algorithmes. Pour le premier procédé, des images 

d’échantillons de sols séchés à l’air en provenance du terrain 26 de la ferme du campus 

Macdonald ont été utilisées (datant de l’année 2014, sol organique) . La base de données 

d’images a été analysée afin de reconnaître le contenu de sable et de matière organique du sol. 

Ceci a été possible en appliquant l’analyse des données géospatiales tout en validant avec les 

données obtenues par méthode conventionnelle en laboratoire. Des relations prédictives ont été 

développées par des simples régressions linéaires établies sur le contenu de sable et de matière 

organique du sol. Ceci a été possible en utilisant différents paramètres calculés de l'imagerie 

acquise tels que la teinte, la saturation, la valeur, la porosité et les estimés de variance. Les 

modèles de prédictions pour le contenu de sable et matière organique obtiennent des coefficients 

de déterminations (R2) de 0.63 et 0.83. Tout cela avec une racine carrée du précédent (RMSE) de 

84.7 g/kg  pour le contenu de sable et 0.11 log sur le marché boursier. En addition de la première 

base de données d’images, la deuxième expérience a exploré à la fois les données prises en 



 

iv 

laboratoire ainsi que les mesures prises in-situ du terrain 86. (datant de l’année 2014, sol 

minéral) Ce procédé a utilisé la transformée en ondelettes continue pour caractérisé le contenu de 

sable. Cette méthode confirme avec les données du laboratoire ( r2 = - 0.86  et  RMSE = - 44.7 

g/kg pour le sol organique, r2 = - 0.87 ; RMSE =  - 40.2 g/kg pour le sol minéral). Cependant, 

l’efficacité de cet algorithme pour les images in-situ était bien moins précise ( r2 = – 0.48 ; et 

RMSE - 80.6 g/kg). Ceci était dû à la grande quantité d’eau présente dans le sol et pourrait être 

effectué avec des modifications au support pour le microscope et au protocol.  La mobilité du 

système d'acquisition d'images et de la bonne performance de l'algorithme d’ondelettes sont 

prometteuses pour l’utilisation future du système développé pour quantifier rapidement les 

principaux attributs physique du sol.  

.  
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1 INTRODUCTION 

 Soil can be considered as the fundamental matrix of life and consequently, improper land 

use and poor management practices directly threaten the health of this matrix (Bezdicek et al., 

1996). Knowledge of soil properties, like texture and organic matter content, can provide insight 

on soil health which, in turn, helps managers and other decision-makers improve soil conditions. 

Soil textural analysis is traditionally performed by sampling the soil and transporting it to a 

laboratory where a variety of techniques are performed in a sequence that begins with sieving 

and crushing, followed by measuring sedimentation using the hydrometer or pipette method 

(Smith & Mullins, 1991). Advanced technologies, such as laser diffraction and spectroscopic 

particle analysis techniques, can be used to estimate the texture of soil as well. The major 

constraint with the above mentioned methods is that they time consuming, labor intensive and 

expensive equipment. They are also restricted to laboratories and cannot be made compact for in-

situ deployment.  

Soil organic matter content was traditionally estimated in the laboratory using two 

techniques, namely, loss on ignition and Walkley-Black method of soil carbon content estimation 

(Nelson & Sommers, 1982). However, studies have shown that the loss on ignition technique 

does not completely account for all of the organic matter content in soil since not all organic 

matter ignites (Hoogsteen et al., 2015). Light reflectance has been correlated with organic matter 

content in soil by several studies (Krishnan et al., 1980). For many of the above mentioned 

techniques, samples need to be collected and transported to a laboratory where they would 

undergo standard preprocessing techniques, such as drying, crushing and sieving. These methods 

are laborious and the facilities required are expensive. Thus, there is a need to create a system 
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that is efficient and cheap which could be deployed in-situ on the field to circumvent the 

expenses associated with sampling and transportation.  

 Computer vision technologies may be able to address this exact need as it requires only a 

camera and a computer for the process of measurement. The definition of digital image 

processing (DIP) according to R.M. Haralik and L.G. Shapiro is the science of creating, defining 

and testing an algorithm that is capable of automatically extracting and analyzing useful data 

from an image database. The data is analyzed by computational algorithms and the system does 

not require too many hardware components, thus, making it cheaper than techniques, such as 

spectroscopy and laser diffraction. Computer vision techniques have been used in several 

industries to study the particle size distributions (PSD). From sand particle size in mortars for 

cement and concrete (Mertens & Elsen, 2006) to froth parameters in ore extraction for the 

mining industry (Jahedsaravani et al., 2014), DIP based systems are applied in industry for 

commercial use. This wide range of usage illustrates the ability of such computational 

procedures to estimate the parameters of both large and particulate objects. However, there has 

not been comparable work on using computer vision techniques for soil particle analysis. This 

research study is focused on exploring the possibility of applying computer vision techniques for 

soil property analysis. 

1.1 Research Objectives 

 The primary objective was to develop and evaluate a microscope image acquisition 

system suitable of in-situ use and to design a computational algorithm for analysis and prediction 

of soil properties (sand and organic matter contents). Two different computation methods were 

investigated. Method 1: assessment of soil texture using spatial statistics and SOM using a color-

based prediction model. Method 2: quantification of sand content using wavelet analysis.  
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2 LITERATURE REVIEW 

2.1 Importance of Soil Texture and Organic Matter 

 The soil matrix is an integral part of any ecosystem. Industrial agriculture over the past 

few decades has led to concerns over the excessive application of fertilizers and pesticides. The 

spatial variability of soil can lead to both under-application and over-application of chemicals in 

different parts of the same agricultural field (Anton et al., 2014). This led to the advent of 

Site-Specific Management (SSM), which involves a set of tools enabling the quantification of 

soil spatial variability - ultimately leading to improved and more precise agricultural 

management practices and more justified use of agricultural inputs.  

 Soil variability arises from varying physical properties and characteristics, which are 

predominantly determined by the percent composition of the three soil textural classes, namely, 

sand (2 mm - 0.05 mm), silt (0.05 mm - 0.002 mm) and clay (< 0.002 mm). Experimental 

research into the properties of soil texture can help farmers make informed management 

decisions (Barrios & Trejo, 2002). Soil texture analysis is one of the key components in studying 

many environmental issues. Studies by Yousefi et al. (2014) showed that plant available water 

content and least limiting water range measurements were highest under clay loam, thus, 

elucidating the effect of soil texture on these factors (Yousefi et al., 2014). Wind erosion of soil 

is also largely driven by soil textural properties (Nordstrom & Hotta, 2004). Research in China 

using simulated wind tunnels shows the range of the effects of wind erosion on different soil 

textures (Wang et al., 2006). Precision agriculture techniques aim to address the spatial 

variability of soils by changing the rate of application of chemicals at different locations based 

on field characteristics (Blackmer & White, 1998). Since most herbicide and pesticide 

recommendations are based on soil organic matter content, accurate quantification of soil organic 

matter is a necessity (Roberts et al., 2012). 
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2.2 Conventional Measuring Methods 

 Soil textural analysis is traditionally performed by sampling the soil and transporting it to 

a laboratory where a variety of techniques are performed in a sequence beginning with sieving 

and crushing, followed by measuring sedimentation using the hydrometer or pipette method 

(Smith & Mullins, 1991). These methods are costly, laborious, and time-consuming.  

 Recently, alternative laboratory analysis techniques have been developed to further 

improve accuracy and reduce analysis time by using advanced technologies. The laser diffraction 

method is one such method in which the particle size is established by determining the angle of 

diffraction by the particle under observation. Mie (Lorenz–Mie–Debye solution) theory 

quantifies the relationship between particle size and angular dispersion of light intensity (Keener 

et al., 2007). Other laboratory analysis methodologies, such as visible (vis) or near infra-red 

(NIR) spectroscopy, have been developed but they lack sufficient resolution. They can classify 

soil into light, medium, or heavy classes but the technique cannot provide any additional 

information about textural classes (Mouazen et al., 2007).  

X-ray absorption is another example of a laboratory analysis technique. It is used to 

measure the density of the particles as they undergo sedimentation through a liquid medium 

(Stein, 1985). The size distribution of particle sizes is determined based on Stoke's law. The 

SediGraph
® 

III 5120 (Micromeritics Instrument Corp., Atlanta, Georgia, USA) is a commercial 

system developed using micrometric and it is used to determine particles in the range of 0.1 m 

to 300 m.  

Electrical sensing zone technology estimates the change in the value of the resistance 

across a small aperture as the soil particles pass through it. The system Elzone II 5390 

(Micromeritics Instrument Corp., Atlanta, Georgia, USA) uses this technology; it is sensitive to 
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particles in the range of 0.4 µm to 240 µm. The amplitude of the impedance values is 

proportional to the density of the particles passing through the aperture (Jackson et al., 1995). 

Technologies have also been designed to collect soil texture data in the field. 

 Traditional methods of measuring soil organic matter content are the loss on ignition and 

Walkley-Black method estimation (Nelson & Sommers, 1982). The Walkley-Black method uses 

potassium di-chromate, a strong oxidizing agent, to react with organic matter in the soil. This 

results in the conversion of chromium (VI) to chromium (III). The amount of organic matter 

corresponds to the amount of converted chromium which is measured spectrophotometrically. 

This assumes complete oxidation of all organic matter present, which may not be the case for all 

samples. On the other hand, the loss on ignition technique is a method where organic matter is 

ignited under controlled conditions and the organic matter content is estimated gravimetrically. 

Studies have shown that the loss on ignition technique might not represent soil organic matter 

completely as not all organic matter ignites (Hoogsteen et al., 2015).  

Among the various factors that influence quantification of organic matter, optical 

reflectance plays a prominent role (Krishnan et al., 1980). Several studies have classified soil 

based on the correspondence of soil color against the Munsell color code (Schulze et al., 1993; 

Steinhardt & Franzmeier, 1979). Organic matter content is usually associated with high soil 

fertility and is observed as a dark surface horizon in the soil profile. Spectroscopic measurement 

of reflectance has proved to be more accurate at such color estimations than just visual 

inspection. Satellite imagery and aerial images provide a remote perspective to visualizing soil 

data. Brightness in these images is used in conjunction with elevation and electrical conductivity 

to delineate management zones within a field (Scharf et al., 2002; Schepers et al., 2004). 

However, studies that compared the efficiency of a ground based spectrometer with satellite 
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imagery showed that the spectrometer was more accurate than the remote sensing data (Gomez et 

al., 2008).  

NIR sensors have shown promise in predicting soil organic matter from an undisturbed 

soil core within a laboratory setting (Hummel et al., 2001). This research concluded by stating 

that further study was required to test the complete capabilities of the sensor (J. L. Shonk et al., 

1991). Ground based sensors that use reflectance as a primary parameter to determine soil 

organic matter have shown some promise but they require site-specific calibration which is 

subject to several environmental characteristics, such as soil moisture, chemical composition of 

the soil, and parent material (Hummel et al., 2001). 

 The above measurement techniques share a few common characteristics. They are all 

indirect measurements of soil properties. The more accurate of these techniques are expensive, 

bulky, and are constrained to the confines of a laboratory setting. In contrast, methods based on 

image analysis utilize cameras to capture images of soil particles (dynamic or static images) and 

a simple computer code to categorize them. The size of the soil particles could be computed 

directly from the pixilated image using various computer vision algorithms following matching 

of textural patterns (Tuceryan & Jain, 1998). Soil organic matter content has been correlated with 

soil color (Steinhardt & Franzmeier, 1979). This data can extracted from a color images of soil. 

2.3 Image Data Processing 

 A digital camera is a device that captures real life objects as images which are two 

dimensional matrices. These are digital signals sent to a frame grabber which is in turn connected 

to a computer that stores them as a digital matrix (Forsyth & Ponce, 2002). The digital image is 

then processed for features of interest. The definition of image processing according to Haralick 

and Shapiro (1992) is the science of creating, defining and testing an algorithm that is capable of 
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automatically extracting and analyzing useful data from the image database. The basic steps of 

image processing are as follows: 

 Image acquisition and storage. 

 Image preprocessing. 

 Image segmentation. 

 Extraction of features of interest. 

 Mathematical manipulation of interested data.  

 Computational procedures can be used to study the parameters of both large and 

particulate objects from a digital image. A study of the potential application of an image 

processing technique in the mining industry claims advantages, such as consistent results if the 

ambient light conditions are constant, continuous and non-invasive measurement, and low 

maintenance as there are no moving parts. (Crida & De Jager, 1997) 

 Just like any technology, image processing has some disadvantages. Low resolution of an 

inexpensive sensor is one such drawback. If the sensor is focused to a magnification level of a 

particle such as clay, then sand particles will be too large to be observed in the field of view. 

Another common issue includes the fact that image processing algorithms have the problem of 

occlusion. Since the image captured is in two dimensions, often an object in the field of view 

might result in another one hiding behind it. 

2.3.1 Image Analysis in Similar Fields 

 Digital image processing (DIP) has been used extensively in the fields of defense and 

target acquisition. With the appropriate processor, it is possible to acquire and extract relevant 

information in real time. DIP is also used for pattern recognition analysis in fingerprint matching. 



 

8 

This technology utilizes detection of thickness of the ridge, orientation and direction of the ridge 

extending to various applications in criminology (Mardia et al., 1997). Intricate analysis 

applications of image processing extend into the domain of medical sciences. In this domain, the 

processing techniques are usually focused on enhancement of different scans, such as 

tomography, X-rays, and angiograms. The enhanced images are then scanned for detection of 

tumors or other objects of interest. The final step involves studying the geometries of the object 

detected (Pham et al., 2000). Research has been conducted in the use of image analysis tools to 

study the geometry of gravel particles up to 8 mm by performing object detection and elliptical 

fitting. This was used to extract the major and minor axis parameters for each gravel particle. 

The study by Strom et al. (2010) showed an automated grain sizing technique using DIP as an 

alternative to grid sampling and random pebble walk methods for river bed gravel sample 

analysis. In the field of metallurgy, image analysis techniques are used in the ore extraction stage 

and froth segmentation was useful for bubble size determination.  

 The above mentioned applications demonstrate the capability of image processing which 

might be extended to the study of characteristics of soil. In the next section, previous research 

that has attempted to apply computer vision techniques for estimating soil particle size 

distribution (PSD) is discussed.  

2.3.2 Image Analysis in Soil PSD 

 Computer vision techniques are very efficient in detecting and matching textural patterns, 

which can be done directly in the field (Tuceryan & Jain, 1998). Studies have been conducted on 

soil profiles (White et al., 2005) and to predict susceptibility to landslides (Gökceoglu & Aksoy, 

1996) using DIP. Fourier spectral analysis was used to process in-situ images of soil (Wilde et 

al., 2008); in this study, it was observed that partial description of the granular characteristics of 

soil is possible. Research by Shin and Hryciw (1996) states that there are two broad techniques 
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for addressing the soil particle size distribution (PSD) – the deterministic and statistical methods. 

The former involves the use of object segmentation techniques such as edge detection and gray 

level thresholding, while the latter involves using a statistical approach for texture identification 

(Hryciw & Raschke, 1996). Deterministic methods of analysis produce considerable results only 

when the particles are not in contact with each other. This means that they must be spread on a 

surface with a source of illumination from behind the surface. The preprocessing techniques of 

the samples extend from crushing preparation of the sample to getting it ready for photography 

(Hryciw et al., 2006). Proper illumination conditions are essential for easy thresholding. This 

greatly limits the use of this technology to the confines of a laboratory.  

 Touching object separation or grain segmentation is a classic image processing problem. 

Watershed segmentation is suggested as a method for addressing this issue (Ghalib & Hryciw, 

1999). It is observed that watershed segmentation usually produces a further complication, called 

over segmentation. This is addressed by a combination of several morphological operations to 

create markers for a marker based watershed segmentation technique. Geological research uses 

an image analysis technique for estimating the grain sizes from soft clastic sediments. However, 

the thin sections of geologic materials are placed on an optical enlarger and their imprints are 

collected on a photographic negative. The negative is then examined under a scanning electron 

microscope (Francus, 1998). Image analysis has also been used in the cement and concrete 

industry to categorize particle size distributions. However, in these studies, samples are 

impregnated with an epoxy resin to enhance the contrast of sand and to differentiate it from the 

pore space, which makes the detection of regions of interest computationally simple (Mertens & 

Elsen, 2006). Both of these methods require elaborate preprocessing that involves not just a 

camera but chemicals and negatives as prerequisites for the image analysis algorithms to be 

efficient.  



 

10 

 An earlier attempt at using computer vision algorithms to characterize soil particle 

distribution is presented in Ghalib & Hryciw (1999). A CCD camera was used to capture images 

of soil samples placed on a platform and illuminated with light from underneath to make image 

segmentation easier. The use of a soil platform and back illumination techniques limit this 

method for in-situ data collection. Previous studies have shown that soil color classifications 

based on the Munsell color codes can be correlated with SOM (Schulze et al., 1993; Steinhardt & 

Franzmeier, 1979). 

2.4 Wavelet Analysis 

 If the image is viewed as a data matrix, then a mathematical approach such as spectral 

analysis may be a powerful tool for tackling PSD problems. Wavelet analysis, in principle, 

divides the entire spatial series into different frequency components. Each of these components is 

analyzed using a scalable window, also referred to as the wavelet. The variations are computed 

by shifting the mother wavelet along the spatial series where it undergoes contractions and 

dilations. This results in a change in the length of intervals in time and space domain, thus, 

providing the information on scale. 

When the space and time information is converted into scale information, the data 

becomes suitable available for computation. This has been applied in a variety of fields, such as 

seismic signal detection, atmospheric turbulence, image processing, optics, data compression, 

simulation, quantum mechanics, soil science, and geophysics (Biswas et al., 2008; Kumar & 

Foufoula-Georgiou, 1997). In an image matrix, an object can be identified as different from 

another by observing the pixels. There are variations in the image pixels in intensity plane or 

color planes between the two objects. Quantifying these variations at different scales will provide 

information on the variation in different particle sizes. Here, the continuous wavelet transform is 
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used to characterize the scale specific variations which have the capability to describe the PSD of 

soil from images.  

2.5 Summary 

 From the study of the literature, it is evident that though there are several efficient 

techniques for soil analysis, each has shortcomings. Feature extraction followed by advanced 

mathematical or computer vision techniques for studying and predicting various soil properties 

was deemed as an approach worth exploring. With recent advancements in technology, low-cost 

digital microscopes have become available on the market. For the purpose of this research, two 

unique methods have been developed and analyzed that address the specific problem of 

quantizing soil parameters from images under such a microscope in the laboratory and in field 

conditions.  
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3.  MATERIALS AND METHODS 

 When a digital camera is pointed at an object, it focuses the reflected light with a 

focusing lens onto a digital sensor grid. This sensor grid is typically made of a charge coupled 

device (CCD) or a complementary metal-oxide semiconductor (CMOS) array. This is used to 

convert analog signals to digital data, thus, storing the object observed as an image matrix. This 

immediately suggests two methods to approach our problem. 

 The first approach is to consider the dataset as an image. This perspective would entail 

typical image processing steps such as preprocessing or noise removal, masking to highlight the 

objects of interest, then finally extracting relevant parameters for the prediction of soil 

properties. The second approach is to consider the dataset as an entire matrix of digital data. 

With this perspective, the entire matrix is considered and no special region is masked; instead, 

advanced mathematical techniques such as a wavelet are applied to decompose and directly 

analyze the entire matrix. Both of these methods were explored as two separate experiments. 

3.1 Instrumentation and Hardware Design 

 A USB digital microscope AD 7013MT (Dino Lite, Inc., Taipei, Taiwan) was used to 

develop an image acquisition system in this study (Fig. 3.1). The microscope was chosen for its 

low cost, small size and large optical magnification (200X) at a 5 mega pixel resolution. The 

microscope was built in a durable aluminum alloy casing intended for outdoor usage (an 

important consideration for soil sensor development). A microscope holder was designed to 

provide a robust and sturdy framework for in field use in different weather conditions. The 

Teflon tube holder was designed with a press fitted scratch resistant fused silica viewing window 

of 40 mm diameter at the viewing end. The other end was sealed with a rubber stopper to prevent 
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soil from entering the holder. The microscope was equipped with a ring of 7 LEDs for uniform 

illumination of the samples. 

 

Fig. 3.1. The image acquisition system. 

MATLAB (The MathWorks, Inc., Release:R2013a) software was used to control the 

image acquisition rate. The LED lights were also controlled using MATLAB. The intensity of 

the lights was set to 75% of its capacity to avoid overheating while maintaining adequate 

brightness for illuminating the samples. Studies with the Munsell color chart using Konica 

Minolta spectrophotometer CM-2600d (Konica Minolta, Inc., Tokyo, Japan) showed that 

controlled lighting conditions were necessary for estimating parameters based on color (Gómez-

Robledo et al., 2013). Thus, the holder was designed to isolate the object under observation from 

any external light effects which tend to be unpredictable and weather-dependent. 



 

14 

3.2 Study 1  

3.2.1 Site Description 

 For the first study in 2014, Field 26 (~11 ha) located on the Macdonald Campus Farm of 

McGill University, Ste-Anne-de-Bellevue, Quebec was chosen (45°25ʹN, 73°56ʹW). This field 

was chosen because it exhibited high spatial variability of soil texture ranging from sandy to clay 

loam soil. The soil series in Field 26 include: Muck, St. Zotique, Soulanges, Chicot, Upland, St. 

Damase, Farmington and Chateauguay series soils. Field 26 is also rich in organic matter as the 

covering muck soils are classified as organic materials according to the FAO definition of 

organic materials. The field was under corn-soybean rotation with the previous crop being corn 

in 2014 when soil was sampled. 

3.2.2 Data Acquisition Protocol  

 3.2.2.1 Field Sampling Protocol 

 The soil sample collection was carried out in late April and early May 2014 before 

seeding. Here, 56 locations were selected following a stratified random sample design with nine 

additional locations representing field areas with diverse soil conditions. Sample locations were 

identified randomly within the 50 m × 50 m grid (quarter hectare). At each sampling location, 

surface residues were removed and the top soil (0 to 10 cm depth) samples were collected using 

a hand shovel. The samples were stored in air tight plastic bags and transported to the soil 

preprocessing station for image data. The maps in Fig. 3.2(a) and 3.2(b) illustrate these sampling 

locations on an elevation and EC map respectively. The elevation data in Fig. 3.2(a) was 

acquired using Trimble AgGPS 542 (Trimble Limited, Sunnyvale, California, USA) while the 

apparent soil electrical conductivity (ECa) data in Fig. 3.2(b) was acquired using a DUALEM-

21S (Dualem Inc. Milton, Ontario, Canada). 
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(a)  

 

(b)  

Fig.3.2. Fifty six Sampling locations on a) elevation map and b) ECa map of Field 26 of 

Macdonald Campus Farm, McGill University. 

The soil samples are plotted on the USDA soil textural triangle (Fig. 3.3) to clearly illustrate the 

representativeness of the samples. 
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Fig. 3.3. Textural class of soil samples studied from Field 26. 

 3.2.2.2 Laboratory Analysis Method 

 The laboratory analysis was done in the Macdonald Campus Soil Laboratory. The soil 

samples were air dried, ground, and sieved through a 2 mm sieve. They were then stored in a 

labeled air tight container for image data collection followed by sedimentation and SOM 

analysis. After collecting microscope imagery data, fifty grams of each of the soil samples were 

weighed and transferred to a beaker. They were then treated with hydrogen peroxide on a hot 

water bath (Robinson, 1927). Once the effervescence subsided, the contents were transferred to a 

hydrometer for sedimentation analysis. Soil particle sizes were analyzed following the 

hydrometer method (Gee & Bouder, 1986). The contents of the hydrometer were transferred to 

be reweighed and placed on baking trays. These trays were placed in a soil oven at 105°C for 

24 h. The loss of weight was used to compute SOM (Robinson, 1927).  

3.2.3 Image Acquisition and Analysis  

 Images for each sample were collected by pressing the microscope holder on to the soil 

and controlling the camera directly from the computer. A set of three images were collected for 
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each sample by mixing the soil sample to account for spatial variability. Thus, there were a total 

of 168 soil images taking into account three replicates for each of the 56 sample locations.  

 The image analysis was performed in two steps: masking and spatial analysis.  

Masking is an essential step in identifying the regions of interest which in our case are the 

particles on the aggregates. A well designed mask should be capable of segmenting the 

aggregates from the voids between them hence successfully separating the foreground, soil data 

from the background or void space data. The masking algorithm is composed of color scale 

transformation, preprocessing, thresholding, connected component analysis, and watershed 

analysis to create the mask. 

 3.2.3.1 Color Scale Transform 

The RGB image was collected using the sensor and was transformed into grayscale. 

                                                    (1) 

where fg(x,y) is the grayscale value, fR(x,y) is the value of the pixel in the red plane, fG(x,y) is the 

value of the pixel in the green plane, and fB(x,y) is the value of the pixel in the blue plane. 

(Gonzalez et al., 2004). 

 3.2.3.2 Preprocessing 

The soil aggregates (Fig. 3.4b) under the fused silica window can be disturbed by the 

smallest of perturbations that may originate from handling the holder. These micro-vibrations 

can cause blurred or distorted boundaries in the image. A standard image preprocessing 

technique was adopted to remove the distortions (Weiss, 2006). A burst of ten sub-images was 

taken with a sample interval of 10 ms and a median filter was applied to produce a single noise 

removed output image. 
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                                   (2) 

where    
      is the input gray images where i = 1:10;         was the output of the median 

filter; W was the two dimensional template. 

Robust grayscale thresholding was a challenging process. Otsu (1975) global 

thresholding based on discriminate analysis theory was used to perform grayscale thresholding. 

Otsu's method assumes that the bimodal grayscale histogram originates from two Gaussian 

distributions of the foreground and background pixel values. For an ideal case, it would have 

been a clean segmentation. However, for microscopic soil images, the grayscale values of the 

coarse and fine textures were very similar. Hence, a simple Otsu thresholding will lead to 

inaccurate results and a bi-directional Otsu approach was implemented in this study. Using this 

approach, two windows W1 (1425 x 1425 pixels) and W2 (95 ˣ 95 pixels) were chosen 

depending on the size of the possible objects of interest. This choice was made by analyzing a 

database of 168 images representing 56 sampling locations with three replications. It 

encompassed a range of aggregate sizes from 285 µm to 4275 µm. Thresholding was performed 

using the Otsu adaptive method (Otsu, 1975) on both window sizes (Figs. 3.4c and 3.4d).  

Thus, for the gray image hg(x,y) with k gray levels, the probability class occurrence of 

         and probability distribution of    was 

    =    
 
    (3) 

 

    =    
   
      (4) 

 

 
     

  
 
                    

           
                 

(5) 
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where    is the average gray level value in image        ; t is the gray level 

threshold;           are class means;                           is the pixels in the image 

above and below the threshold t. 

 
  
     

                        
 

           
 

(6) 

 

where   
     is the variance between the two groups; t is the greatest   

     is treated as the 

threshold T of an image f (x, y).  

 3.2.3.3 Minimum Threshold Matrix and Local Adaptive Binarization 

For each pixel p of the image hg(x,y), two neighbourhood windows W1 and W2 were 

selected. The inspected pixel p was located at the centre of the windows where    
 and    

  

denoted the bi-neighbourhood windows of pixel p with sizes of n ˣ n and m ˣ m, respectively. 

The n and m were odd integers. Thus, a local adaptive binarization mask was created. The 

minimum threshold among the two windows was chosen for each pixel. Let          
       and 

         
       denote the optimal thresholds of the two neighbourhoods. 

 
         

 
                             

               
      

             

 , for each p f. 
(7) 

where         is the binary image;         was the output of the median filter.  

The remaining area in the mask was cleaned up by removing all Binary Large Objects 

(BLObs) less than 50 µm (Fig. 3.4e). A BLOb is a collection of binary data stored as a single 

entity within a database and it was identified as consistent image regions. It is a fundamental 

component of image analysis using machine vision. The BLObs were removed to avoid stray 

particles in the void spaces. The mask had connected objects in representing the soil aggregates 



 

20 

as binary 1. The void space was set as binary 0. This led to the next challenge. All binary 1 

regions or aggregate spaces were interconnected (Fig. 3.4f). Thus computationally, the algorithm 

would perceive the foreground of the binary image as a single, huge, inter-connected, aggregate 

particle. Hence, the particles were segmented. 

 3.2.3.4 Connected Component Labeling and Post-processing 

 Initially, the connected components were labeled to keep track of the number of objects 

in the binary image. Due to the porous nature of soil, tiny holes were identified within the 

aggregates. BLOb analysis was used to address this issue. A simple noise removal filter was 

applied to the labeled objects in the image. Any hole with smaller values than the noise threshold 

tn was encountered in the binary image was flood filled. 

 
         

                 

                       
 

   tn = 400 
(8) 

where         is the binary image.  
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Fig. 3.4. First stage of mask generation; a) RGB color image; b) Grayscale image; c) Otsu local 

window 1; d) Otsu local window 2; e) Minimum threshold mask; and f) Post-processed mask. 

 3.2.3.5 Marker Detection 

 The output of the post-processing technique was used to perform the Euclidian distance 

transform to create an image skeleton (Fig. 3.5a) which was also known as the distance matrix 

(Maurer et al., 2003).  

                          (9) 

where   ,   ,    and    are pixels from        . 

Extended minima were estimated for the skeletonised image (Fig. 3.5b) and imposed on the 

distance matrix (Soille, 1999) (Fig. 3.5c). As estimation of the markers improves the efficiency 

of the watershed segmentation algorithm (Moga & Gabbouj, 1998), markers were localized on a 

post-processed image in this study. 
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 3.2.3.6 Watershed Segmentation 

 Watershed segmentation was a fast segmentation method. This algorithm was 

implemented to break the touching objects to successfully segment interconnected BLOBs into 

distinct labeled objects. However, small particles and noise tended to create over segmentation in 

this algorithm. This became even more challenging in dealing with particulate matter as objects 

of interest. This required a clear demarcation of the foreground from the background in the 

image. Marker based watershed segmentation was chosen to circumvent this problem. 

Skeletonization helped avoid over segmentation in the watershed segmentation process (Meyer, 

1994) (Fig. 3.5d).  

 3.2.3.7 Morphological Operations 

 The mask was created and imposed on the gray image to highlight the regions of interest 

(foreground) or soil aggregates and to clearly distinguish them from the pores (background). In 

this study, the edges were made thicker to avoid edge effect. Small granules were avoided in the 

pore region between the aggregates. This was performed by eroding the segmented image using 

morphological erosion (Haralick et al., 1987).  

                 (10) 

where erosion of A by B was the set of all structuring element z where the translated B has no 

overlap with the background of A (Gonzalez et al., 2004). The mask (Fig. 3.5 e) was then applied 

on the grayscale image. This enabled clear segmentation of void space from aggregates 

(Fig. 3.5 f). 

 
         

  
                     

                
  

(11) 
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 3.2.3.8  Spatial Computation 

 An 8 directional (3 × 3 pixel size with 8 pixels surrounding the centre pixel) moving 

window was created and applied to the image matrix. The variance between the center pixel and 

its neighbors was computed for each of the 8 directions. A temporary window was created with 

the variances in the location with the index corresponding to the respective neighbors. Once all 

the variances were computed and stored, the mean of these variances was assigned to the center 

pixel location. The window was then moved and the process was repeated. This resulted in a 

local variance matrix   . 

 

Fig. 3.5. Second stage of mask generation: a) Euclidian distance transform; b) detected minima; 

c) imposed minima; d) watershed segmentation; e) morphological edge enhancement; and f) gray 

image superposition (masking). 
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(12) 

 

 
        

  
                  

                     
  

(13) 

 

                 (14) 

where      is the local variance of the pixels x, y in image f(x,y) and          is the center pixel. 

Note that the voids with zero values in this binary image are converted to NaN and the mean is 

computed for the NaN values. The two dimensional NaN mean is computed as the final step to 

give the moving window on intensity or 'I' parameter. 

This technique was implemented for three different sizes of moving windows; 2µm (I1) - 

to define the silt-to-clay separation , 10 µm (I2) - to define the boundary between silt and fine 

sand and 50 µm (I3) - to describe the sand particles on both the masked images (Ie) and the raw 

full bitmap images (I). This generated a total of 6 parameters; the Ie1, Ie2, Ie3 and I1, I2, and I3. 

The RGB image was also transformed into the hue (H) saturation (S) and value (V) color space 

(Ford & Roberts, 1998). While RBG represented the Cartesian color coordinate system, the HSV 

represented a cylindrical color space equivalent of the former. The H indicated the degrees of 

color ranging from 0 to 360 where red was presented at 0 or 360. However, in the MATLAB 

calculation, the Hue (H) was represented with a scale range between 0 and 1, where 0 and 1 

represented the red color, 0.33 represented the blue color and 0.66 represented the green color. 

Saturation (S) indicated the range of gray. A faded color was due to lower saturation levels, or in 

other words, the color contained more gray. MATLAB computes its saturation between 0 and 1, 

where 0 represented the color gray and 1 represented the primary color. Value was the brightness 

of the color and varied in conjunction with color saturation. An increase in the value resulted in 



 

25 

an increase of color space brightness. MATLAB computations for value also ranged between 0 

and 1, where the value ‘0’ indicated a complete dark version of a color (black) while 1 

represented the brightest version of the same color. The average values of hue, saturation, and 

value were computed as H, S, and V parameters, respectively. 

Porosity is defined as the ratio of volume of pores to total volume (Bear, 2013). The 

masking technique allowed for the computation of the void space area as the area of the regions 

in the binary image that have value zero.  
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                 (17) 

where   is the area of pores    was the total area. Porosity is a dimensionless unit. 

 3.2.3.9  Multivariate Stepwise Linear Regression 

 Predictive relationships between the image parameters (acquired from the processing of 

images) and the laboratory measured soil properties were developed using a multivariate 

stepwise linear regression. The parameters were found to be normally distributed based on 

examined skewness and kurtosis values and the Kolmogorov-Smirnov Z test. The collinearity 

between the parameters was examined using variance inflation factors and found to be absent. 

The normality in the distribution and absence of autocorrelation in the residuals were also 

examined and found to be suitable for developing the predictive relationship. The coefficient of 

determination (R
2
) and the root mean square error (RMSE) were calculated to examine the 
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performance of the relationship between laboratory measurements and microscope imagery-

based predictions.  

3.3 Study 2 

3.3.1 Site Description 

 For study 2 in 2015, two agricultural fields were selected. Field 26 (~11 ha) and Field 86 

(~17 ha) are located at the Macdonald Campus Farm of McGill University, Ste-Anne-de-

Bellevue, Quebec, Canada (45°24′N, 73°56′W). Both fields exhibited high spatial variability in 

soil types ranging from organic to sandy soil and texture varying from sand to clay loam. The 

inter-field variability was also significant. Field 26 descriptions are given in section 3.2.1. Field 

86 was sampled in 2015 for its rich mineral soils. It had soils from several series, including 

Chicot, Dalhousie, St-Bernard, Macdonald, St-Amable, Ste-Rosalie and Courval series. Both 

fields were under minimum-tillage practices and under a corn-soybean rotation with the previous 

crop being soybean in Field 26 and corn in Field 86 in 2014. 

3.3.2  Data Acquisition Protocol 

 3.3.2.1 Field Sampling Protocol 

 In each of the locations, after the surface materials were scraped off (0-10 centimeters), 

an in-situ image was also collected using the microscope housed in the holder described in 

section 3.1. Following the image collection, physical soil samples were collected. The field 

boundaries and the location of the subsurface drainage system (tile drain system) were taken into 

consideration. The sample collection was carried out in late April and early May, 2015, before 

seeding. The soil samples were stored in two sets of air-tight plastic bags. One set was analyzed 

by Ward Laboratories Inc. in Kearney, Nebraska, USA. The other set was sent to the 

preprocessing station to be prepared for laboratory image acquisition. 
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For this study three sets of data were created. Table 3.1 provides a description of these datasets.  

Table 3.1. Description of Datasets. 

Dataset Number Description 
Number of Soil 

Samples 
Sampling Season 

Dataset 1 

Organic Soil 

Field 26 images 

acquired in lab from 

soil samples 

56 Summer-2014 

Dataset 2 

Mineral Soil  

Field 86 images 

acquired in lab from 

soil samples 

67 Summer-2015 

Dataset 3 

Mineral Soil 

Field 86 images 

acquired under in-situ 

conditions 

67 Summer-2015 

 

The soil samples were plotted on the USDA soil textural triangle (Fig. 3.6) to clearly illustrate 

the representativeness of the samples. 

 
Fig. 3.6. Textural class of soil samples studied from Field 86. 

The maps in Fig. 3.7(a) and 3.7(b) illustrate the sampling locations of Field 86 on an elevation 

and ECa map respectively. The elevation data in Fig. 3.7(a) the apparent soil electrical 

conductivity data in Fig. 3.7(b) was acquired. 
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(a) 

  

(b) 

Fig. 3.7. Sixty four sampling locations map on a) elevation map and b) ECa map of Field 86 of 

Macdonald Campus Farm, McGill University. 

 3.3.2.2 Laboratory Analysis Technique 

 The soil samples analyzed at Ward Laboratories Inc. in Kearney, Nebraska, USA were 

analyzed using weight loss on ignition (LOI) for SOM estimation (Nelson & Sommers, 1982) 

and the hydrometer method for soil texture estimation. The results were sent via electronic mail. 

3.3.3 Image Acquisition  

 For this study, three image sets were prepared (Table 3.1). Dataset 1 consisted of 168 (56 

x 3 replicates) ex-situ soil images from Study 1 on Field 26 (2014), carried over for wavelet 

analysis. Dataset 2 consisted of 201 (67 x 3 replicates) ex-situ images of soil samples from Field 

86. Dataset three consisted of 201 (67 x 3 replicates) in-situ images from Field 86.  
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3.3.4 Wavelet Analysis and Image Analysis  

 Wavelet analysis uses a mathematical function that occurs over finite spatial and 

temporal domains, also known as a wavelet, to study multi-scale processes. Wavelet results in a 

small and finite waveform unlike the Fourier series which extends indefinitely (Graps, 1995). 

The integral wavelet transform (e.g., the basic wavelet) and the wavelet series are the two main 

components of wavelet analysis. The wavelet series is expressed in terms of a single function by 

means of two operations, namely, binary dilations and integral transformations (Chui, 1992). 

Given a spatial series yi measured at locations xi (where i = 1, 2, 3 ... m) along a straight line, a 

mathematically integral wavelet transform can be defined as follows:  

 
                          

 

  

 
(18) 
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   (19) 

where, ψ(x) is the basic wavelet function and 
 ,s
is its complex conjugate. The parameter s is the 

dilation-contraction factor, and τ is the temporal or spatial translation of the wavelet function (Si, 

2008).  

In this study we implement only CWT. DWT's scales are analyzed in octaves (integer powers 

of 2) instead of voices (fractional powers of two), as it is done using CWT. Octave sampling may 

not always lead to a physically meaningful analysis of scale (Lau & Weng, 1995). Wavelet scale 

information is directly related to the size of the object under observation which in this instance is 

sand particle sizes and hence CWT was chosen over DWT. The detailed theory on CWT could 

be found at Chui (1992) and Mallet (1998). Briefly, given a spatial series Yi of length N (where i 
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= 1, 2, 3 ... n), mathematically continuous wavelet transform coefficient   
  can be calculated as 

follows: 

 

  
      

   

 
           

   

 
 

 

   

 

(20) 

where, dx is the equal sampling interval, s is the scaled wavelet, x is the translated wavelet, and 

  is the wavelet function (Torrence & Compo, 1998). 

 Commonly used wavelet functions in CWT include the Haar wavelet, Mexican hat and 

the Morlet wavelet. The Haar wavelet is asymmetric in nature and is used to detect sharp 

changes in the data series while the Mexican hat is real and symmetric in nature and is used to 

detect the peaks and valleys in the data series. The Morlet wavelet is complex symmetric and the 

imaginary part is used to extract phase information (Biswas & Si, 2011). Morlet wavelet was 

used in this study because of its ability to display much better resolution in spatial and frequency 

domains. The wavelet function      of the Morlet wavelet was defined as follows.  

                      (21) 

where,   is the dimensionless space and   is the dimensionless frequency.  

 The Morlet wavelet's imaginary part can also be used to extract the dominant orientation 

and variations in a random field. The energy associated with the scale and location can be 

measured from the magnitude of the Morlet wavelet. While calculating the wavelet coefficients, 

it was noted that it was biased towards the larger scales (Liu et al., 2007; Torrence & Compo, 

1998). Liu et al. (2007) proposed a method used here to rectify this bias. This gives rise to a 

wavelet power spectrum measurement as it provides some idea about the interaction between 

space-frequency-energy in the spatial data series. For this study, the global wavelet power 
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spectrum (GWPS) was computed. It was the average of the local wavelet spectra over all the 

location points (N). It was mathematically represented by: 

            
 

 
    

         
     (22) 

 The Global wavelet transform (GWT) results in the global wavelet spectrum (GWS) 

which in turn provides a consistent estimation of the true power spectrum which was useful for 

the estimation of non-stationary data series. Spectral components are defined as frequency and 

period components are ordered according to period scales in GWS (Partal & Küçük, 2006). 

Therefore, the objective of this experimental study was to use CWT to characterize PSD from the 

images taken with a portable microscope in the laboratory setting.  

 The images are first transformed into grayscale and then analyzed using the CWT 

followed by GWT. To reduce the computational load, 20 evenly spaced rows (Dimension 1) and 

20 evenly spaced columns (Dimension 2) are selected as a subset to represent the entire image 

matrix. For each row of data, the CWT spectra and GWT spectra were calculated. The GWT 

spectra are divided into two groups: “coarse” representing sand percentage (particles 2.0 mm to 

0.05 mm) and “fine” representing the sum of silt and clay percentages (particles 0.05 mm and 

below). The fine and coarse fractions are computed for each of the 20 data series along both rows 

and columns. The average of the 20 rows and the average of the twenty columns were computed 

to give a single data series along each dimension, one representing the row average and another 

representing the column average. The mean of the corresponding row and column averages gives 

the final coarse and fine values which are compared against the laboratory measured data.  
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4 RESULTS AND DISCUSSION 

4.1 Study 1 

 The descriptive statistics of soil properties are documented in Table 4.1. The sand values 

varied between 34.3 g/kg to 593 g/kg with an average of 328 g/kg and standard deviation of 146 

g/kg. This elucidates that there was a wide range of distribution of sand within the study area. A 

similarly wide distribution was observed of SOM ranging from 54.7 g/kg to 728 g/kg with an 

average of 297 g/kg and standard deviation of 193 g/kg. 

Table 4.1. Descriptive statistics of soil properties from Field 26 in 2014. 

Parameters Mean (g/kg) STD (g/kg) Min (g/kg) Max (g/kg) 

Sand 328 146 34.3 593 

Silt 253 100 65.2 528 

Clay 122 83.4 19.7 375 

OM 297 193 54.7 728 
 

 Based on Field 26 data obtained in 2014, the descriptive statistics of various image 

parameters are presented in Table 4.2. The H values or the color range (for 168 images) varied 

between 0.12 and 0.23 with an average of 0.15 and a standard deviation of 0.015. This indicated 

that the majority of the image colors fall within the yellow range. The V values, or the 

brightness, ranged from 0.24 to 0.64 with an average of 0.45 and a standard deviation of 0.11. 

This indicated that the majority of the images fall within the lower half of the brightness range or 

they are darker in color. A smaller value of porosity indicated a low pore to the total area ratio. 

The porosity values ranged between 0.003 and 0.33 with an average of 0.10 and a standard 

deviation of 0.06. This indicates that on average, 10% of the image area was covered by pore 

spaces.  
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 While the Ie3 values ranged from 0.90 to 4.43 with an average of 2.18 and a standard 

deviation of 0.18, the Ie2 values ranged from 0.46 to 2.95 with an average of 1.22 and a standard 

deviation of 0.50. This indicated that the average variance of the moving window size of 50 μm 

of the masked images was larger than the variance of the moving window size of 10 μm of the 

same image. A similar trend was observed between the window size of 50 μm and 1 μm of the 

masked image as the variance of the 1 μm and 10 μm window size were very similar. There was 

no obvious trend of increasing/decreasing variance with window size of either the masked or full 

image.  

Table 4.2. Descriptive statistics of various image parameters. 

Parameters Mean STD Min Max 

H 0.15 0.02 0.12 0.24 

S 0.20 0.03 0.12 0.27 

V 0.45 0.11 0.24 0.64 

Porosity 0.10 0.06 0.00 0.33 

Ie3 2.18 0.78 0.90 4.43 

I3 2.25 0.59 1.32 3.81 

Ie1 1.41 0.15 1.24 2.05 

I1 1.26 0.02 1.23 1.33 

Ie2 1.22 0.50 0.46 2.95 

I2 1.03 0.02 0.59 1.91 
 

There has to be a fine balance between the number of parameters chosen and the 

predictive capability of the developed relationship as too many. Too few parameters can cause 

over simplification of the model (Noori et al., 2010). The overall dataset was into a training 

(60%) and validation (40%) dataset. Thus, the predictive model was trained with 33 soil samples 

randomly selected out of 56. Since there are three replicates in each sample, a total of 99 images 

were chosen with their parameters for the training dataset.  
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A step-wise mixed model analysis was adopted for developing the predictive relationship. 

The p-value threshold was set to 0.25 between the upper and lower limits. The overall dataset 

was grouped into three different sets of parameters and the predictive relationships were 

developed for each group of parameters. In group one, only raw image parameters were chosen; 

H, S, V, I1, I2 and I3. The relationship showed a coefficient of determination, R
2
 = 0.79. In 

group two, only eroded image parameters were chosen; H, S, V, porosity, Ie1, Ie2 and Ie3. The R
2
 

= 0.81. Group three where all the parameters were chosen: H, S, V, porosity Ie1, Ie2, Ie3, I1, I2 

and I3 resulted in R
2
 = 0.80.  

As there was no significant difference between R
2
 values, eroded image parameters were 

chosen for further analysis. This choice was made for two main reasons; first, it makes more 

physical sense to compute variance among the regions of the image that represented the 

aggregates and not include the void space and secondly, the computation time was decreased for 

every image as the moving window did not compute variances for the NaN values.  

The predictive relationship was expressed as: 

 
      

 

  
                                       

                   

(23) 

 

                                                                     (24) 

The predictive relationship for sand can be adequately explained by the parameters in the 

equation. The inter-correlated Value (V) and Saturation (S) plane were directed towards the 

brightness of the image. This might be due to the fact that sand crystals in aggregates appeared 

brighter under the exposure of the LED lights of the microscope. The I2 and I3 window sizes 
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were chosen as 10  m and 50  m. I3 was selected to represent the coarse to fine particle 

boundary (equivalent to sand and silt) while the I2 was chosen to depict the boundary between 

the fine and very fine particles. Thus, they also contributed positively to predicting the sand 

content of the images. The predictive relationship between the logarithm (base 10) of organic 

matter and the image parameters included H and V (not S). This may be due to the fact that the 

soils collected for this study had a very high amount of organic matter (min = 54.7 g/kg, max = 

728 g/kg, and average = 297 g/kg) and were predominantly dark in color. Hence, the color and 

brightness corresponding to H and V parameters played a significant role in the prediction while 

the saturation (S) did not. Similar to the sand prediction, I2 and I3, the silt and sand boundary 

windows also played a significant role in predicting SOM. The parameter representing the 

smallest window size I1 was removed as it had high variance. The RMSE observed for the 

training models were 0.08 for SOM and 66.0 for sand g/kg. The training dataset was illustrated 

below in Fig. 4.1(a) and Fig. 4.1(b) for logarithm of organic matter and sand content 

respectively. 

 

                                         (a)                                                                   (b)   

Fig. 4.1. a) Training set model of the log of organic matter and b) The training set model of sand 



 

36 

content. 

 The relationship developed using the training data was applied to the testing dataset 

(remaining 40% of the data). The R
2 

values on the testing dataset for SOM and sand content were 

0.83 and 0.63, respectively. The RMSE values observed for them were 0.11 and 84.7 for organic 

matter and sand, respectively. This is shown below in Fig. 4.2(a) and Fig. 4.2(b) for logarithm of 

organic matter and sand content respectively. 

  

        (a) (b) 

Fig. 4.2. a) Testing set model of log of organic matter and b) The testing set model of sand 

content. 

4.2 Method 2 

 The script written in MATLAB provides a visual representation of calculated GWPS in 

Fig. 4.3. Here is an example of an image of sample 40, replicate 01, from dataset 1, to illustrate 

how the data were interpreted. 
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Fig. 4.3. a) Spatial distribution; b) histogram; c) wavelet spectrum; and d) global wavelet 

spectrum of the grayscale values selected from an image collected from Field 26 in 2014. The 

color scale shows the intensity of variations, thick solid line indicates 95% significance of those 

variations, and fine solid line indicates the cone of influence. 

 The bias corrected wavelet spectra show variations at different scales and locations while 

global wavelet spectra show the location normalized variations at different scales. The variations 

over scales are further separated into two groups, fine fractions and coarse fractions. Significant 

variations at a finer scale indicates higher amounts of clay and silt (47%) while stronger 

variations at a larger scale indicates higher amounts of sand (53%). The laboratory measured 

sand content for this sample was 54% and clay was 46%.  

The dataset was not split into training and testing models and no calibration was requires, as 

particle size was directly predicted from the wavelet transform. 
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4.2.1 Dataset 1 

 Based on Field 26 laboratory images collected in 2014, the relationship between the 

laboratory measured and predicted (from image) fine fractions show a strong agreement (slope = 

1.13, r
2
 = 0.86, RMSE = 44.7 g/kg). (Fig.4.5). However, the deviation of the trend line in from 

the 1:1 line was statistically significant. This might be due to the fact that Field 26 was muck 

soil; thus, it has very high organic matter content. Organic matter tends to bind and hold soil 

together, forming micro-aggregates (Fig.4.4). The algorithm might misinterpret these micro 

aggregates as sand particles, causing the deviation of the trend line. The regression relationship 

shows the prediction capability of 86.9% for coarse fractions for the data. To test the robustness 

of the algorithm and for further validation, the script was run on an entirely different dataset 

collected from another field: Field 86. The samples were prepared using identical protocols and 

the results are discussed as follows.  

 

Fig. 4.4. Illustration of micro aggregates of soil sample 40 from Field 26.  

 

1 x 1 mm 
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Fig. 4.5. Predicted particle sizes from images versus laboratory-measured particle sizes of 

Coarse fraction for dataset 1. 

4.2.2 Dataset 2 

 The descriptive statistics for Field 86 are elaborated in table 4.3. The sand content 

varied from 27% to 70% with an average of 52.2%, while silt content varied from 15% to 

43% with an average of 24%. The clay content varied greatly among the samples. The 

minimum, maximum, and average clay contents were 9%, 53% and 23.1%, respectively.  
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Table 4.3. Descriptive statistics of soil properties from Field 86 in 2015. 

Parameters Mean (g/kg) STD (g/kg) Min (g/kg) Max (g/kg) 

Sand 522 102 270 700 

Silt 245 524 150 430 

Clay 231 897 90 530 

 

The relationship between the laboratory-measured values and predicted coarse fractions 

(Fig.4.6) shows strong agreement (slope = 0.92, r
2
 = 0.87, RMSE = 40.2 g/kg). The deviation of 

the trend line from the 1:1 line was not statistically significant. This was because unlike Field 26, 

Field 86 shows more of a mineral soil nature. This may explain the smaller deviation unlike in 

dataset 1. The estimated error of sand content 40 g/kg is encouraging with regards to the 

implementation of this method for in-situ measurements. 
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Fig. 4.6. Predicted particle sizes from images versus laboratory-measured particle sizes of coarse 

fraction for dataset 2. 

4.2.3 Dataset 3 

 The relationships between the laboratory measured and the predicted fine fractions and 

coarse fractions are shown in Fig. 4.7. The deviation of the trend line from the 1:1 line was 

statistically significant (slope = 0.67, r
2
 = 0.48, RMSE = 80.6 g/kg). Interestingly, this was a 

consequence of the image quality for this dataset. The images were poorer quality (as compared 

to the ones from the laboratory) due to issues associated with collecting data in field conditions. 

  
Fig. 4.7. Predicted particle sizes from images versus laboratory-measured particle sizes of coarse 

fraction for dataset 3. 
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 4.2.3.1 Challenges in In-Situ Data Collection.   

 The sensor had several limitations when used in-situ. Soil moisture proved to be one of 

the major challenges. The image acquisition holder (described in section 3.1) was firmly pressed 

against the soil before the image was captured. This helped prevent the blurring in different 

regions of the image. However, the pressure on the soil caused soil moisture to ooze out of the 

soil matrix. This unintentionally created a slurry that made observing particles and definite edges 

in the soil difficult. Fig. 4.8(a) and 4.8(b) illustrate the difference between the microscopic 

images of moist soil and laboratory air dried soil. Images consisting of moist soil proved to be a 

challenge to the proposed algorithms. 
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(a) (b) 

  
(c) (d) 

Fig.4.8. a) Field 86 Sample - 60 Replicate - 01 collected in-situ ; b) Field 86 Sample - 60 

Replicate - 01 post air drying in laboratory. ; (c) F-26 Sample -22 Replicate -01 effect of LEDs 

on the sapphire window due to interaction with soil moisture ; d) Field 26 Sample - 22 Replicate 

- 01 post air drying in laboratory. 

  Non-uniform illumination and ambient light conditions pose a challenge to any computer 

vision algorithm. The microscope came equipped with a 7 LED ring used to illuminate the 

sample under observation. This was a useful feature as the holder was designed to block external 

light so that the sample was exposed to only the controlled uniform light of the 7 LEDs. 

However, the LEDs create significant amounts of heat and under cold conditions; heat the inner 

side of the fused silica window. During in-situ deployment, this heat produced a mist which 

formed on the outer side and the inner side of the lens due to high soil moisture. This proved to 
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be problematic, slowing down field sampling and occasionally obscuring the entire image 

matrix. Fig. 4.8.(c) illustrates this particular problem. To address this problem, improvements in 

hardware design - specifically proper moisture insulation - could prevent misting of the lens. To 

resolve the issue LEDs were also on only during image acquisition for 5 ms per exposure.  

 Once these challenges are addressed the microscope image acquisition system could be 

suitable for stand-alone operation or use along with other sensors integrated on a multi-sensor 

platform for measuring sand and soil organic matter content directly in the field (Adamchuk et 

al., 2015). 
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5. SUMMARY AND CONCLUSIONS 

  This thesis presents the development of a microscope image acquisition system 

and a computer vision algorithm to estimate sand and organic matter content in soil. Study 1 

reports on a spatial approach which resulted in the prediction of the sand content with RMSE of 

84.7 g/kg and a color-based algorithm allowing the prediction of soil organic matter content with 

a RMSE of 0.11 log SOM using samples obtained from an agricultural field with an extremely 

high range of SOM (54.7-728 g/kg). This RMSE corresponds to 23.1 g/kg for mineral soil with 

80 g/kg
 
SOM and 231 g/kg for organic soil with 800 g/kg. Further testing is required on soils 

with diverse moisture conditions to test the reliability of the prediction algorithm.  

 Study 2 reports on the development of a wavelet transform algorithm for improved sand 

content estimation. While performing ex-situ measurements, the wavelet method predicted sand 

content with RMSE = 44.7 g/kg (organic soil) and RMSE = 40.2 g/kg (mineral soil). Both 

datasets did not require a calibration model, which indicates that this method actually measured 

particle size distribution and could result in superior accuracy when compared to the reference 

measurements (hydrometer). However, the in-situ measurements of mineral soil yielded RMSE = 

80.6 g/kg. This increase was attributed to excess moisture present at the interface bertween the 

microscope holder and the soil being tested. A new holder design and lower soil moisture level at 

the time of measurement could reduce this effect.  

 Despite the superiority of the wavelet over the spatial image analysis in terms of sand 

content, the color-based prediction model appears to be the only valid technique that could be 

used to determine changes in soil organic matter content using the microscope imagery. The 

durable, low-cost portability of the microscope image acquisition system as well as the 

robustness of the algorithms make this sensor suitable for stand-alone operation or for use with 

other sensors integrated on a multi-sensor platform. 
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7 APPENDIX 

A  MATLAB Scripts for the Experiments  

A.1 MATLAB Script For Spatial Analysis 

%% This script is designed to segment the foreground of the soil particles from the void 

space. This is followed by the Spatial moving window computations.  

 

clc; 

close all; 

clear all; 

 

imgDir = 'C:\soil project\algortihm tests\2015\F26_micro'; 

imgPath = strcat(imgDir, '/', '*.jpg'); % only take .jpg 

imgFiles = dir(imgPath); 

numImages = length(imgFiles); 

 for img = 1:numImages 

I = imread(strcat(imgDir,'/', imgFiles(img).name)); 

G2 = rgb2gray(I); 

[pathstr,f_name,ext] = fileparts(strcat(imgDir,'/',  imgFiles(img).name));  

Name(img,:)=cellstr(char(f_name)); 

  

%% Porosity Calculation 

[rows columns numberOfColorChannels] = size(I); 

TotalArea = rows*columns; 
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g=rgb2gray(I); 

g = histeq(g); 

H=im2bw(g,0.65); 

 

%% Pore data analysis 

CC = bwconncomp(H); 

CC2 = regionprops(CC,'area'); 

TotalPoreArea = bwarea(~H); 

SoilArea = bwarea(H); 

NumOfPores = CC.NumObjects ; 

Diameter = (regionprops(CC,'EquivDiameter')); 

A = {CC2}; 

Area = cell2mat(A); 

  

c = {Diameter}; 

Diameter = cell2mat(c); 

  

VoidRatio(img) = TotalPoreArea/SoilArea; 

Porosity(img) = TotalPoreArea/TotalArea; 

s(img).AreaOfEachPore = [CC2.Area]*4.1616; 

s(img).Centroids = (regionprops(CC,'Centroid'))'; 

s(img).PoreDiameter = [Diameter.EquivDiameter]*2.04; 

min_area(img)=min(s(img).AreaOfEachPore); 

max_area(img)=max(s(img).AreaOfEachPore); 
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%% Image Masking window 

 

ws=950; 

C=0; 

IM=mat2gray(G2); 

mIM=imfilter(IM,fspecial('average',ws),'replicate'); 

sIM=mIM-IM-C; 

bw=im2bw(sIM,0); 

bw=imcomplement(bw); 

  

ws2=380; 

mIM2=imfilter(IM,fspecial('average',ws2),'replicate'); 

sIM2=mIM2-IM-C; 

bw2=im2bw(sIM2,0); 

bw2=imcomplement(bw2); 

mIM3=min(mIM,mIM2); 

sIM3=mIM3-IM-C; 

bw3=im2bw(sIM3,0); 

bw3=imcomplement(bw3); 

  

filled = imfill(bw3, 'holes'); 

bw3=filled; 

D = -bwdist(~bw3); 
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mask = imextendedmin(D,2); 

D2 = imimposemin(D,mask); 

Ld2 = watershed(D2); 

bw3(Ld2 == 0) = 0; 

  

b41=bwareaopen(bw3,400); 

se = strel('square',10);  

bw4=imerode(b41,se); 

%% 2 Micro meters - Clay 

 

A=G2; 

mean=mean2(A); 

std=std2(A); 

B2=double(A-mean); 

Standard_1=B2/std; 

  

d = 1; 

n = (d*2)+1; 

m = (n+1)/2; 

k = 0;  

for i = [1:d:n] 

 for j = [1:d:n] 

k=k+1; 

a(k,1) = i; 
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a(k,2) = j; 

 end 

end 

  

ker = cell(1,9); 

i = 0; 

 for ii=1:9 

 ker{ii} = zeros(n); 

 ker{ii}(m,m) = 1;%// for center element 

 i=i+1; 

 ker{ii}(a(i,1),a(i,2)) = -1; 

end 

  

 interim = zeros( [size(Standard_1,1) size(Standard_1,2), numel(ker)] ); % allocate room 

for intermediate results 

 for ii=1:numel(ker) 

 interim(:,:,ii) = conv2(Standard_1, ker{ii}, 'same' ); %//'same' takes care of 

output size  

 end 

  

interim =0.5*(interim.^2); 

B = sum(interim,3); 

B(B == 0) = NaN; 

PC_full(img)=nanmean(nanmean(B)); 
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A2=imresize(G2,[1900,1900]); 

A2(~bw4) = 0; 

  

A1=A2; 

  

mean=mean2(A1); 

std=std2(A1); 

B1=double(A1-mean); 

Standard=B1/std; 

  

d = 1; 

n = (d*2)+1; 

m = (n+1)/2; 

k = 0;  

for i = [1:d:n] 

for j = [1:d:n] 

k=k+1; 

a(k,1) = i; 

a(k,2) = j; 

%c=horzcat(a,b) 

end 

end 

  

ker = cell(1,9); 
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i = 0; 

 for ii=1:9 

ker{ii} = zeros(n); 

ker{ii}(m,m) = 1;%// for center element 

i=i+1; 

ker{ii}(a(i,1),a(i,2)) = -1;  

 end 

  

 interim = zeros( [size(Standard,1) size(Standard,2), numel(ker)] ); % allocates room for 

intermediate results 

 for ii=1:numel(ker) 

 interim(:,:,ii) = conv2(Standard, ker{ii}, 'same' ); %//'same' takes care of output 

size for you 

 end 

  

interim =0.5*(interim.^2); 

B = sum(interim,3); 

B(B == 0) = NaN; 

PC_eroded(img)=nanmean(nanmean(B)); 

 

%% 10 Micrometer calculations 

  

d1 = 5; 

n1 = (d1*2)+1; 
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m1 = (n1+1)/2; 

k1 = 0;  

for i = [1:d1:n1] 

for j = [1:d1:n1] 

k1=k1+1; 

a1(k1,1) = i; 

a1(k1,2) = j; 

end 

end 

  

ker1 = cell(1,9); 

i = 0; 

 for ii=1:9 

ker1{ii} = zeros(n1); 

ker1{ii}(m1,m1) = 1;%// for center element 

i=i+1; 

ker1{ii}(a1(i,1),a1(i,2)) = -1;  

 end 

  

interim1 = zeros( [size(Standard_1,1) size(Standard_1,2), numel(ker1)] ); % allocate 

room for intermediate results 

for ii=1:numel(ker1) 

 interim1(:,:,ii) = conv2(Standard_1, ker1{ii}, 'same' ); %//'same' takes care of 

output size  
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 end 

  

interim1 =0.5*(interim1.^2); 

B = sum(interim1,3); 

B(B == 0) = NaN; 

PC_full_1(img)=nanmean(nanmean(B)); 

  

A2_1=imresize(G2,[1900,1900]); 

A2_1(~bw4) = 0; 

  

A1_1=A2_1; 

  

mean1=mean2(A1_1); 

std1=std2(A1_1); 

B1=double(A1_1-mean1); 

Standard1=B1/std1; 

  

d1 = 5; 

n1 = (d1*2)+1; 

m1 = (n1+1)/2; 

k1 = 0;  

for i = [1:d1:n1] 

for j = [1:d1:n1] 

k1=k1+1; 
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a1(k1,1) = i; 

a1(k1,2) = j; 

end 

end 

  

ker1 = cell(1,9); 

i = 0; 

 for ii=1:9 

ker1{ii} = zeros(n1); 

ker1{ii}(m1,m1) = 1;%// for center element 

i=i+1; 

ker1{ii}(a1(i,1),a1(i,2)) = -1;  

end 

  

for ii=1:numel(ker1) 

 interim1(:,:,ii) = conv2(Standard, ker1{ii}, 'same' ); %//'same' takes care of 

output size for you 

end 

  

interim1 =0.5*(interim1.^2); 

B = sum(interim1,3); 

B(B == 0) = NaN; 

PC_eroded_1(img)=nanmean(nanmean(B)); 

%% 50 Micrometer calculations 
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d2 = 10; 

n2 = (d2*2)+1; 

m2 = (n2+1)/2; 

k2 = 0;  

  

for i = [1:d2:n2] 

for j = [1:d2:n2] 

k2=k2+1; 

a2(k2,1) = i; 

a2(k2,2) = j; 

end 

end 

  

ker2 = cell(1,9); 

i = 0; 

 for ii=1:9 

ker2{ii} = zeros(n2); 

ker2{ii}(m2,m2) = 1;%// for center element 

i=i+1; 

ker2{ii}(a2(i,1),a2(i,2)) = -1;  

end 
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 interim2 = zeros( [size(Standard_1,1) size(Standard_1,2), numel(ker2)] ); % allocate 

room for intermidiate results 

for ii=1:numel(ker2) 

interim2(:,:,ii) = conv2(Standard_1, ker2{ii}, 'same' ); %//'same' takes care of 

output size for you 

 end 

  

interim2 =0.5*(interim2.^2); 

B = sum(interim2,3); 

B(B == 0) = NaN; 

PC_full_2(img)=nanmean(nanmean(B)); 

  

A2_2=imresize(G2,[1900,1900]); 

A2_2(~bw4) = 0; 

A1_2=A2_2; 

  

mean2=mean2(A1_2); 

std2=std2(A1_2); 

B2=double(A1_2-mean2); 

Standard1=B2/std2; 

  

d2 = 10; 

n2 = (d2*2)+1; 

m2 = (n2+1)/2; 
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k2 = 0;  

for i = [1:d2:n2] 

for j = [1:d2:n2] 

k2=k2+1; 

a2(k2,1) = i; 

a2(k2,2) = j; 

 end 

end 

  

ker2 = cell(1,9); 

i = 0; 

 for ii=1:9 

 ker2{ii} = zeros(n2); 

 ker2{ii}(m2,m2) = 1;%// for center element 

 i=i+1; 

 ker2{ii}(a2(i,1),a2(i,2)) = -1;  

 end 

  

 interim2 = zeros( [size(Standard,1) size(Standard,2), numel(ker2)] ); % allocate room for 

intermidiate results 

 for ii=1:numel(ker2) 

interim2(:,:,ii) = conv2(Standard, ker2{ii}, 'same' ); %//'same' takes care of output 

size for you 

 end 
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interim2 =0.5*(interim2.^2); 

B = sum(interim2,3); 

B(B == 0) = NaN; 

PC_eroded_2(img)=nanmean(nanmean(B)); 

  

end 

 %% output data formatting and computation 

min_area=min_area'; 

max_area=max_area'; 

mean_area=mean_area'; 

std_area=std_area'; 

total_area=total_area'; 

VoidRatio=VoidRatio'; 

Porosity=Porosity'; 

save('s.mat'); 
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A.2 MATLAB Script For Wavelet Analysis 

%% This script is designed to apply global wavelet power spectrum (GWPS)on an image matrix 

the to estimate the coarse and fine soil fractions in data matrix. 

clc; 

close all; 

clear all; 

 %% Data Input 

imgDir ='C:\Users\abiswa9\Desktop\Documents\Students\MSc Student 

supervised\Bharat\Bharath_image_database\2014_lab_images\R2'; 

  

J=imread('F86S27R3.bmp'); 

J = imresize(J,[960 1280]); 

J=double(rgb2gray(J)); 

[imgWidth imgLength] = size(J); 

xa=150; 

  

%% Creating the sub-sampeld matrix 

iL=48; 

iB=64; 

X=J(1:iL:end,:)'; 

[newrow newcol]=size(X); 

numRows=20; 

numScale=89; 

sR(numRows).wave = zeros(numScale,numRows); 
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Y=J(:,1:iB:end); 

numCols=20; 

numScale=89; 

sC(numCols).wave = zeros(numScale,numCols); 

  

 %% For selected rows 

for i = 1:numRows 

sst=X(:,i); 

[d,dt]=formatts(sst); 

n=size(d,1); 

sigma2=var((d(:,2))); 

Args=struct('Pad',1,... % pad the time series with zeroes (recommended) 

'Dj',1/12, ... % this will do 12 sub-octaves per octave 

'S0',2*dt,... % this says start at a scale of 2 years 

'J1',[],... 

'Mother','Morlet', ... 

'MaxScale',[],... %a more simple way to specify J 

MakeFigure',(nargout==0),... 

'BlackandWhite',0,... 

'AR1','auto'); 

if isempty(Args.J1) 

 if isempty(Args.MaxScale) 

  Args.MaxScale=(n*.17)*2*dt; %automaxscale 
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 end 

 Args.J1=round(log2(Args.MaxScale/Args.S0)/Args.Dj); 

end 

  

if strcmpi(Args.AR1,'auto') 

Args.AR1=ar1nv(d(:,2)); 

if any(isnan(Args.AR1)) 

error('Automatic AR1 estimation failed. Specify it manually (use arcov or 

arburg).') 

end 

end 

  

% Wavelet transofrm 

[wave,period,scale,coi] = 

wavelet(d(:,2),dt,Args.Pad,Args.Dj,Args.S0,Args.J1,Args.Mother); 

s(i).power =(abs(wave)).^2 ;  % compute wavelet power spectrum 

signif(i,:) = wave_signif(1.0,dt,scale,0,Args.AR1,-1,-1,Args.Mother); 

s(i).sig95 = (signif(i,:)')*(ones(1,n)); % expand signif --> (J+1)x(N) array 

s(i).sig95 = s(i).power ./ (sigma2*s(i).sig95); 

s(i).wave = wave; 

  

% Global wavelet spectrum & significance levels: 

s(i).global_ws = sigma2*(sum(s(i).power')/n); % time-average over all times 

dof = n - scale; % the -scale corrects for padding at edges 
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s(i).global_signif = wave_signif(sigma2,dt,scale,1,Args.AR1,-1,dof,Args.Mother); 

  

% rectification of bias 

for j=1:length(scale) 

s(i).power_mod(j,:) = s(i).power(j,:)/scale(j); 

end 

s(i).global_ws_mod = sigma2*(sum(s(i).power_mod')/n); % time-average over all times 

dof = n - scale; % the -scale corrects for padding at edges 

s(i).global_signif_mod = wave_signif(sigma2,dt,scale,1,Args.AR1,-1,dof,Args.Mother); 

  

period_mat(i,:)= period; 

scale_mat(i,:)= scale; 

coi_mat(i,:)= coi; 

  

x=scale; 

% xa = 180; % partial value point in scale (50 microns/ 2.10 microns per pixel = 23.8) 

xb = max(x); 

  

y=s(i).global_ws_mod; 

ind = (x > xa) & (x < xb); 

xw = x(ind); 

yw = y(ind); 

  

ya_r = interp1(x, y, xa, 'spline'); 
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yb_r = interp1(x, y, xb, 'spline'); 

xw = [xa, xw, xb]; 

yw = [ya_r, yw, yb_r]; 

  

h1 = spline(x,y); 

coeffs = h1.coefs; 

Full_area=trapz(x,y); 

interim = trapz(xw, yw); 

Partial_area=Full_area-interim; 

s(i).silt_clay=(Partial_area/Full_area)*100; 

s(i).sand=100-s(i).silt_clay; 

Fine_R(i)=s(i).silt_clay; 

Coarse_R(i)=s(i).sand; 

end 

  

%% For selected columns 

for p = 1:numCols 

sst=Y(:,p); 

[d,dt]=formatts(sst); 

n=size(d,1); 

sigma2=var((d(:,2))); 

%d(:,2) = (d(:,2) - mean(d(:,2)))/ std(d(:,2)); 

Args=struct('Pad',1,... % pad the time series with zeroes (recommended) 

'Dj',1/12, ... % this will do 12 sub-octaves per octave 
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'S0',2*dt,... % this says start at a scale of 2 years 

'J1',[],... 

'Mother','Morlet', ... 

'MaxScale',[],... %a more simple way to specify J 

'MakeFigure',(nargout==0),... 

'BlackandWhite',0,... 

'AR1','auto'); 

if isempty(Args.J1) 

if isempty(Args.MaxScale) 

Args.MaxScale=(n*.17)*2*dt; %automaxscale 

 end 

Args.J1=round(log2(Args.MaxScale/Args.S0)/Args.Dj); 

end 

  

if strcmpi(Args.AR1,'auto') 

Args.AR1=ar1nv(d(:,2)); 

if any(isnan(Args.AR1)) 

error('Automatic AR1 estimation failed. Specify it manually (use arcov or 

 arburg).') 

end 

end 

% Wavelet transform 

[wave1,period1,scale1,coi1] = 

wavelet(d(:,2),dt,Args.Pad,Args.Dj,Args.S0,Args.J1,Args.Mother); 
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s(p).power1 =(abs(wave1)).^2 ;  % compute wavelet power spectrum 

signif1(p,:) = wave_signif(1.0,dt,scale1,0,Args.AR1,-1,-1,Args.Mother); 

s(p).sig951 = (signif1(p,:)')*(ones(1,n)); % expand signif --> (J+1)x(N) array 

s(p).sig951 = s(p).power1 ./ (sigma2*s(p).sig951); 

s(p).wave1 = wave1; 

  

% Global wavelet spectrum & significance levels: 

s(p).global_ws1 = sigma2*(sum(s(p).power1')/n); % time-average over all times 

dof = n - scale1; % the -scale corrects for padding at edges 

s(p).global_signif1 = wave_signif(sigma2,dt,scale1,1,Args.AR1,-1,dof,Args.Mother); 

  

% rectification of bias 

for j=1:length(scale1) 

s(p).power_mod1(j,:) = s(p).power1(j,:)/scale1(j); 

end 

s(p).global_ws_mod1 = sigma2*(sum(s(p).power_mod1')/n); % time-average over all 

times 

dof = n - scale1; % the -scale corrects for padding at edges 

s(p).global_signif_mod1 = wave_signif(sigma2,dt,scale1,1,Args.AR1,-

1,dof,Args.Mother); 

  

period_mat_c(p,:)= period1; 

scale_mat_c(p,:)= scale1; 

coi_mat_c(p,:)= coi1; 
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x=scale1; 

% xa = 180; % partial value point in scale (50 microns/ 2.10 microns per pixel = 23.8) 

xb = max(x); 

  

y=s(p).global_ws_mod1; 

ind1 = (x > xa) & (x < xb); 

xw = x(ind1); 

yw = y(ind1); 

  

ya_r = interp1(x, y, xa, 'spline'); 

yb_r = interp1(x, y, xb, 'spline'); 

xw = [xa, xw, xb]; 

yw = [ya_r, yw, yb_r]; 

  

h1 = spline(x,y); 

coeffs = h1.coefs; 

Full_area1=trapz(x,y); 

interim1 = trapz(xw, yw); 

Partial_area1=Full_area1-interim1; 

s(p).silt_clay1=(Partial_area1/Full_area1)*100; 

s(p).sand1=100-s(p).silt_clay1; 

Fine_C(p)=s(p).silt_clay1; 

Coarse_C(p)=s(p).sand1; 
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end 

  

%% average of row and col prediction 

Fine_Avg = (Fine_C+Fine_R)/2; 

Fine_a=mean(Fine_Avg) 

Coarse_Avg = (Coarse_C+Coarse_R)/2; 

Coarse_a= mean(Coarse_Avg) 
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B  Laboratory Datasets of Soil Samples 

Table B.1 - Field 26 - Summer 2014 Dataset 

Sample 

Id 

Sand(g/kg) Silt(g/kg) Clay(g/kg) OM(g/kg) 

1 134 147 86 633 

2 575 227 120 78 

3 430 259 237 75 

4 462 255 229 55 

5 124 124 24 728 

6 460 318 43 179 

7 183 201 111 505 

8 288 142 232 338 

9 222 528 66 183 

10 510 191 225 75 

11 470 198 254 77 

12 291 365 72 271 

13 328 404 53 214 

14 382 255 218 145 

15 474 237 219 70 

16 288 169 120 423 

17 179 89 63 668 

18 34 229 98 639 

19 281 322 47 350 

20 160 528 85 227 

21 421 229 225 125 

22 253 287 32 428 

23 114 212 31 643 

24 122 159 20 699 

25 245 164 71 520 

26 174 229 113 484 

27 441 270 105 185 

28 360 382 121 138 

29 174 309 161 357 

30 527 329 48 96 

31 420 300 33 247 

32 586 314 31 68 

33 416 249 179 156 

34 429 242 121 207 

35 283 281 134 301 

36 239 177 134 450 

37 588 228 121 62 
 

 



 

78 

Table B.1(continued) - Field 26 - Summer 2014 Dataset 

Sample 

Id 

Sand(g/kg) Silt(g/kg) Clay(g/kg) OM(g/kg) 

38 593 169 173 65 

39 539 284 33 144 

40 476 380 44 100 

41 494 121 191 194 

42 465 159 198 178 

43 483 298 34 185 

44 80 387 29 505 

45 182 201 107 510 

46 302 394 39 265 

47 211 207 118 464 

48 370 293 95 243 

49 319 426 41 213 

50 272 372 29 327 

51 219 155 93 534 

52 186 65 192 557 

53 183 118 375 324 

54 275 181 244 301 

55 288 148 316 248 

56 374 257 219 150  
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Table B.2 - Field 86 - Summer 2015 Dataset 

Sample 

ID 

% Sand % Silt % Clay Organic 

Matter 

LOI% 

1 34 35 31 7.0 

2 60 19 21 6.2 

3 31 22 47 9.4 

4 65 26 9 6.2 

6 43 24 33 6.1 

5 66 21 13 4.2 

7 65 24 11 5.0 

8 54 29 17 6.4 

9 57 24 19 5.2 

10 40 23 37 6.2 

11 57 24 19 4.9 

12 34 35 31 6.6 

13 53 26 21 4.7 

14 59 26 15 5.1 

15 60 21 19 3.3 

16 58 25 17 4.5 

17 52 29 19 5.9 

18 68 21 11 3.9 

19 60 23 17 5.4 

20 70 17 13 3.7 

21 60 23 17 4.9 

22 58 25 17 4.7 

23 57 24 19 5.5 

24 49 26 25 6.9 

25 57 26 17 5.9 

26 62 21 17 6.0 

27 41 30 29 6.9 

28 47 30 23 5.3 

29 55 24 21 5.1 

30 39 26 35 6.1 

31 50 22 28 4.3 

32 57 19 24 4.9 

33 49 21 30 5.0 

34 61 18 21 4.7 

35 69 19 12 4.6 

36 51 28 21 5.4 

37 45 28 27 6.5 

38 59 23 18 5.3 
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Table B.2 (continued) - Field 86 - Summer 2015 Dataset 

Sample 

ID 

% Sand % Silt % Clay Organic 

Matter 

LOI% 

39 50 26 24 6.2 

40 58 25 17 4.4 

41 44 21 35 5.7 

42 40 30 30 6.9 

43 60 26 14 6.2 

44 60 25 15 5.1 

45 42 43 15 9.8 

46 64 19 17 6.3 

47 67 16 17 6.7 

48 49 16 35 8.2 

49 53 20 27 6.5 

50 33 24 43 8.5 

51 27 20 53 8.6 

52 35 28 37 7.0 

53 67 16 17 4.3 

54 51 30 19 5.7 

55 49 22 29 7.0 

56 49 18 33 7.2 

57 39 26 35 6.6 

58 58 23 19 5.6 

59 51 26 23 5.1 

60 47 28 25 5.3 

61 59 20 21 4.5 

62 55 32 13 5.2 

63 58 27 15 5.2 

64 54 29 17 4.6 

1A 34 35 31 7.0 

2A 44 35 21 6.5 

3A 54 15 31 5.6 
 

 


