
Smart Applications with Enriched Sensors

on Mobile Devices

Xinye Lin

Doctor of Philosophy

School of Computer Science

McGill University, Montreal

2018-04

A thesis submitted to McGill University in partial fulfillment of

the requirements of the degree of Doctor of Philosophy.

c⃝Xinye Lin, 2018

Dedication

This thesis is dedicated to my best friend Yiling, my parents and my sister

for their precious love and support.

ii

Acknowledgements

I would like to present my most sincere gratitude to my supervisors, Professor Xiao-Wen

Chang and Professor Xue Liu, who have guided me through this long journey, provided

me with precious advice both in the academic area and everyday life. Their persistence

and self-discipline have inspired me for countless times when I was lost in the kingdom of

research.

I would also like to express my deepest thanks to Professor Xingming Zhou and Professor

Xiaodong Wang. Professor Zhou is a great computer scientist who dedicates his whole life

to this field, and his deep understanding and broad vision about this subject has been my

beacon over the years. Professor Wang is a respectful and warm-hearted elder brother, giving

a lot of insightful advice about my career and life, and has provided me with endless support

during my stay in China.

I am also extremely lucky to have all the volunteer participants who contributed in the

experiments of my research, sacrificing their personal time to provide first-handed data in

this research area.

I thank my girlfriend Yiling, my parents and sister, my great friend Lorenz Luthe for

their firmly support all over the years.

I am much grateful for this opportunity of studying in McGill and will never forget these

marvelous years in Montreal.

Grandescunt Aucta Labore.

iii

Abstract

Empowered by embedded sensors with increasing variety and precision, mobile devices

like smart phones and smart watches are gifted with unprecedented capabilities. With the

proliferation of these devices, new applications emerge spanning from health assistance to

activity profiling. Novel solutions for existing mobile computing problems also become pos-

sible.

Inspired by the versatile sensors, this thesis seeks to take full use of them to address two

problems: indoor localization and text-entry on the smart watch, and proposes LocMe and

SHOW , respectively.

LocMe provides a new perspective of solving the indoor localization problem without the

requirement of any infrastructure. By sensing the user’s locomotion states and synergizing

the new locomotion-constraint with the classic wall-constraint in a particle filter, it achieves

better convergence and accuracy than existing wall-constraint only methods, with negligible

extra complexity. Our field tests show that LocMe can achieve a median localization error of

1.1 m, which is over 68% lower than the localization algorithm with only the wall-constraint

under the same test conditions.

SHOW senses the user’s wrist movement with a smart watch to recognize his/her hand-

writings, hence enables a novel text-entry method. By implementing rotation injection,

SHOW manages to use real hand-writing traces as seeds to automatically generate quan-

tities of traces which are both effective and robust for training purposes. Our experiments

show that SHOW can effectively generate 60 traces from a single real handwriting trace

and achieve high accuracy at 99.9% when recognizing the 62 different characters written

by 10 volunteers. Furthermore, having more screen space after removing the virtual key-

iv

v

board, SHOW can display 4x candidate words for autocompletion. Aided by the tolerance

of character ambiguity and accurate character recognition, SHOW achieves over 70% lower

mis-recognition-rate, 43% lower no-response-rate in both daily and general purposed text-

entry scenarios, and 33.3% higher word suggestion coverage than the tap-on-screen method

using a virtual QWERTY keyboard.

Abrégé

Dotés de capteurs intégrés de plus en plus variés et précis, les appareils mobiles tels que

les téléphones intelligents et les montres intelligentes sont dotés de capacités sans précédent.

Avec la prolifération de ces dispositifs, de nouvelles applications vont de lassistance sanitaire

au profilage dactivité. De nouvelles solutions pour les problèmes informatiques existants

deviennent également possibles.

Inspirée par les capteurs polyvalents, cette thèse vise à les utiliser pleinement pour ré-

soudre deux problèmes: la localisation en intérieur et la saisie de texte sur smart watch, et

proposer respectivement LocMe et SHOW.

LocMe fournit une nouvelle perspective pour résoudre le problème de localisation en

intérieur sans lexigence de toute infrastructure. En détectant les mouvements de lutilisateur

et en synergisant la nouvelle contrainte de locomotion avec une paroi de contrainte classique

dans un filtre à particules, il obtient une meilleure convergence et précision que les méthodes

existantes de contraintes murales, avec une complexité supplémentaire négligeable. Nos tests

sur le terrain montrent que LocMe peut atteindre une erreur de localisation médiane de 1,1

m, soit plus de 68% inférieure à lalgorithme de localisation avec seulement la contrainte de

paroi dans la même condition de test.

SHOW détecte le mouvement du poignet de lutilisateur avec une montre intelligente

pour reconnaître son écriture manuscrite, permettant ainsi une nouvelle méthode de saisie

de texte. En implémentant linjection de rotation, SHOW parvient à utiliser des traces réelles

décriture manuscrite comme des semences pour générer automatiquement des quantités de

traces à la fois efficaces et robustes à des fins de formation. Nos expériences montrent que

SHOW peut effectivement générer 60 traces à partir dune seule trace décriture réelle et

vi

vii

atteindre une grande précision à 99,9% en reconnaissant les 62 caractères différents écrits

par 10 volontaires. De plus, avec plus despace sur lécran après avoir supprimé le clavier

virtuel, SHOW peut afficher 4x mots candidats pour lauto-complétion. Grâce à la tolérance

de lambiguïté des caractères et à la reconnaissance précise des caractères, SHOW atteint un

taux de non-reconnaissance inférieur de plus de 70%, un taux de non-reconnaissance de 43%

dans les scénarios quotidiens et généraux et un taux de 33,3% de plus dans la couverture de

mots suggérés que la méthode tap-on-screen en utilisant un clavier virtuel QWERTY.

Contents

Contents viii

List of Figures xii

List of Tables xiv

List of Acronyms xv

1 Introduction 1

1.1 Motivation . 3

1.1.1 Practical needs . 3

1.1.2 Hardware and software are ready . 4

1.1.3 Sensing opportunities . 5

1.2 Challenges . 5

1.2.1 Noise removal. 6

1.2.2 LocMe: Locomotion state recognition. 6

1.2.3 SHOW : Large scale data collection. 7

1.3 Contributions . 7

2 Background 9

2.1 The Popularity of Mobile Devices . 9

2.2 Sensors on the Mobile Devices . 11

2.2.1 Accelerometer . 12

2.2.2 Gyroscope . 13

viii

CONTENTS ix

2.2.3 Magnetometer . 15

2.2.4 Barometer . 16

2.2.5 Light Sensor . 16

2.2.6 Proximity Sensor . 16

2.2.7 Heart Rate Sensor . 17

2.3 Applications Employing the Sensors . 18

2.3.1 Healthcare . 18

2.3.2 User Input . 20

2.3.3 Human Behaviors and Activities . 21

3 LocMe 23

3.1 Introduction . 23

3.2 System Overview . 25

3.3 Sensor Agent . 25

3.3.1 Coordinate transformation. 25

3.3.2 Noise removal. 27

3.3.3 Sensing Rate Control. 27

3.4 Locomotion Detector (LD) . 29

3.4.1 Walking Detection. 31

3.4.2 Escalator Detection. 36

3.4.3 Elevator Detection. 38

3.4.4 Static State Detection. 39

3.5 LocalizationAgent . 40

3.5.1 Location Updating. 40

3.5.2 Floor Detection. 46

3.6 Map Agent . 49

x CONTENTS

3.7 Evaluation . 51

3.7.1 Locomotion Detector Performance . 51

3.7.2 Floor Detection Performance . 51

3.7.3 Field Test . 51

3.8 Related Work . 58

3.9 Conclusion . 59

4 SHOW 61

4.1 Introduction . 61

4.2 Comprehend Handwriting with A Smartwatch 63

4.2.1 Watch hand v.s. Writing hand . 63

4.2.2 Support Point: the Controller of Speed, Comfort, and Amplitude . . 64

4.2.3 Watch Rotation: Challenge and Opportunity 66

4.3 System Overview . 68

4.3.1 Noise Removal . 70

4.3.2 Data Flow . 70

4.4 Character Recognition . 71

4.4.1 Rotation Injection . 71

4.4.2 Feature Extraction . 72

4.4.3 Learning . 72

4.5 From Character to Word . 75

4.5.1 Character Separation . 77

4.5.2 Character Ambiguity . 78

4.5.3 Manual Correction . 80

4.5.4 Recognition Feedback . 81

4.5.5 Special Use Cases . 81

CONTENTS xi

4.6 Evaluation . 82

4.6.1 Experiment settings . 82

4.6.2 Character Recognition Tests . 83

4.6.3 Input Efficiency . 85

4.6.4 Performance on different surfaces . 90

4.7 Related Work . 92

4.7.1 Writing Recognition . 92

4.7.2 Word Auto-Completion . 94

4.8 Conclusion . 95

5 Conclusion and Discussion 96

5.1 The re-initialization problem for LocMe . 96

5.2 Handwriting privacy leak . 99

5.3 Cursive and Context-aware: A Smarter SHOW 100

5.4 A Chinese Version of SHOW . 100

References 102

List of Figures

1.1 Limitations of current input methods on the smart watch. 4

2.1 Top 15 countries with the most smartphone users as of April, 2017. 10

2.2 The number of available apps in major app stores. 10

2.3 Primitive accelerometers. 13

2.4 Gyroscope. 14

2.5 A magnetometer using the Hall Effect. 15

2.6 An optical proximity sensor on a smart phone. 17

2.7 A heart rate sensor in working condition on a smart watch. 18

3.1 LocMe architecture. 26

3.2 The two coordinate systems involved in LocMe. 27

3.3 Accelerometer readings with different sample rates. 28

3.4 The decision tree used by LocMe. 30

3.5 Barometer readings for walking upstairs. 34

3.6 Three types of intersections. 35

3.7 The mechanical structure of an escalator . 37

3.8 Frequency domain of the acceleration signals. 38

3.9 Accelerometer readings for elevators. 39

3.10 A diagram by Oakpointe showing the structure of a staircase [1]. 47

3.11 Indoor maps hold rich information about POIs. 49

3.12 CDF of the floor detection error and the location error. 53

3.13 Test path in an office building. 54

xii

LIST OF FIGURES xiii

3.14 The localization errors over the test path. 55

3.15 Comparison of the convergence. 56

4.1 Sensory data of writing with different joints as the support point. 65

4.2 Watch rotation around the arm axis. 67

4.3 Illustration of writing with SHOW on a horizontal surface. 68

4.4 Architecture of SHOW . 69

4.5 The power spectrum of a handwriting trace in the frequency domain. 70

4.6 An example of word autocompletion based on characters input. 77

4.7 Examples of special gestures. 79

4.8 Information about the 10 volunteers. 83

4.9 Error rate of the tap-on-screen method and SHOW 87

4.10 Statistical information of the chosen phraseset. 88

4.11 Writing with SHOW on different surfaces. 91

5.1 An example of shadow path in a building with a grid layout. 97

List of Tables

2.1 Sensors equipped on most of the off-the-shelf mobile devices and their mea-

surement. 12

3.1 Relations between the locomotion states and POIs. 29

3.2 Performance of the Locomotion Detector. 52

3.3 Average error over all the test subjects. 57

4.1 Effects of taking different support points of writing. 65

4.2 Accelerometer features used in SHOW . 73

4.3 Test settings for the classification algorithms. 74

4.4 Recognition accuracy of the tests. 85

4.5 SHOW ’s character recognition performance on different surfaces. 91

xiv

List of Acronyms

AP Access Point.

BDT Bagging of decision trees.

CDF Cumulative Distribution Function.

DEFF Dominant escalator featured frequency.

HCI Human-computer interaction.

IMU Inertial measurement unit.

KNN K nearest neighbors.

LD Locomotion detector.

LED Light-emitting diode.

LocMe Human locomotion and map exploitation based indoor localization.

LocMe-WO LocMe with wall-constraint only.

LSTM Long short term memory.

MEMS Micro-electro-mechanical system.

MIMO Multiple-input and multiple-output.

xv

xvi List of Acronyms

MLR Multinomial logistic regression.

NAC Normalized auto-correlation.

NB Native bayes.

NN Neural network.

POI Place of interest.

RF Random forests.

SHOW Smart handwriting on watches.

SVM Support vector machine.

UI User interface.

Chapter 1

Introduction

The past few years have witnessed the explosive growth of mobile devices such as smart

phones, tablets, smart watches and wristbands. In 2017 alone, a total of 1.47 billion units of

smartphones [2] and 113.2 million of wearable devices (including smart watches and wrist-

bands) [3] are shipped worldwide. On one hand, mobile devices have brought fairly powerful

computing resources on the go to everyone around the world, weaving a ubiquitous platform

that covers the most people in history; on the other hand, the unprecedented portability of

these mobile devices has become a de facto life companion of human beings, accompanying

their users anywhere and anytime. In this new era of mobile computing, new possibilities for

all kinds of applications arise in two aspects: 1. New device forms like smart watches and

wristbands bring inspiring application contexts and interaction needs; 2. Enriched sensors

provide enhanced or even unprecedented capabilities of learning about the users’ behaviours,

activites and living/working environment. With these opportunities, we revisit both existing

and emerging problems in mobile applications and seek for novel solutions. In particular, we

focus on infrastructure-free indoor localization and text-entry on smart watches, and have

developed LocMe [4] and SHOW [5] respectively.

LocMe employs the sensors such as accelerometer, magnetometer and barometer on the

smart phone to detect the user’s locomotion state. It analyzes the association between these

locomotion states and special places of interest (POIs). For example, in an elevator, a user

always moves vertically up or down; on an escalator, the user always moves monotonically

up and down and experiences special vibrations due to the moving escalator steps. Based on

1

2 CHAPTER 1. INTRODUCTION

these associations, LocMe creates locomotion-constraints to filter out unrelated POIs once

the user’s locomotion states are detected. Furthermore, LocMe combines the locomotion-

constraint with the wall-constraint, which assumes that no steps can cross the wall, and

apply a particle filter to finally locate the user on the indoor map.

SHOW aims at providing a novel text-entry method on a smart watch by allowing the

user to handwrite on horizontal surfaces. It collects the sensory traces of the user’s wrist

as he/she handwrites, and applies machine learning algorithms to learn and recognize these

traces. SHOW invents a rotation injection technique, which can generate huge amount

of traces from a single real trace, hence much alleviates the difficulty of data collection.

Furthermore, SHOW designs intuitive gestures for character separation and correction, and

achieves autocompletion with comparable or even better efficiency than the existing tap-on-

screen input method.

This thesis is organized as follows.

• The first chapter briefly introduces the motivation, challenge and contribution of our

work.

• The second chapter explains the background of our research and serves three major

purposes: 1. Elaborate on the popularity of mobile devices and explain how they

penetrate into every single aspect of our daily lives. 2. Introduce and present an

overall perspective about the various sensors on modern mobile devices, explaining how

they work and what kind of data they may provide; 3. Enumerate major categories

of applications based on mobile devices employing their sensors and show a general

picture about the cutting-edge research status in this area.

• The third and fourth chapter elaborate on how LocMe and SHOW are designed, im-

plemented and tested, and introduce related work, respectively.

1.1. MOTIVATION 3

• The last chapter concludes this thesis, with discussion on the limitations of our current

work and the future research directions.

1.1 Motivation

The motivation of the research work presented in this thesis is threefold, as explained in

the following subsections.

1.1.1 Practical needs

Both LocMe and SHOW are motivated by practical needs from the user.

For LocMe, indoor localization is one of the most popular services on mobile devices. The

cutting-edge indoor localization techniques can reach decimeter-level accuracy. However,

these techniques require widely deployed infrastructure to work. They either rely on wireless

access points (APs) with MIMO (multiple-input and multiple-output) capability [6–9], or

need densely deployed LED lights which are not widely available [10,11]. These infrastructure

may have existed in large cities, but are still absent in rural areas or less developed countries.

As a result, an indoor localization without any needs for infrastructure is much in demand.

At the meantime, due to its low cost, mobile devices like smart phones are prevalently owned

even for people in poor areas. Therefore it makes a great solution if we can use mobile device

as the only equipment in need for indoor localization. This is the main motivation for LocMe.

As for SHOW , text-entry on smart watches is becoming a leading application. Unfor-

tunately, due to the small screen size of the watch, the tap-on-screen input method which

is dominant on current smart phones can not be applied to the smart watch nicely with

the densely packed virtual keyboard (Fig. 1.1a). Existing systems aiming at improving the

4 CHAPTER 1. INTRODUCTION

(a) (b) (c)

3.Eavesdropping

2.Noise1.Silence

(d)

Figure 1.1: Limitations of current input methods on the smart watch. (a) Densely packed
virtual keyboard with the default qwerty layout. (b,c) Redesigned virtual keyboards [12,13],
which are inconsistent with the one on smart phones. (d) Voice input.

tap-on-screen method end up creating new virtual keyboard layout (Fig. 1.1b and 1.1c).

Its inconsistency with the keyboard on other devices imposes an unfriendly learning curve

and causes difficulties for users who frequently switch between the phone and the watch [12].

Alternatively, the de facto first choice text entry method on the watch, i.e. the voice input,

faces the following limitations as listed in Fig. 1.1d: 1. The scenario might not be suitable

for speaking. 2. The environment might be noisy. 3. The personal information is prone to

eavesdropping. Consequently, a novel text-entry method for smart watches is highly desired,

and it is the primary motivation for SHOW .

1.1.2 Hardware and software are ready

Our essential idea for LocMe is based on the observation that there are many indoor

POIs, in which the user express special locomotion patterns. If we can monitor the user’s

locomotion state, it is possible to infer which POI the user is passing through. After that,

given an indoor map, with the POIs we just inferred, it is feasible to find the user’s path

and pinpoint his/her location.

The core idea for SHOW is based on the observation that when the user handwrites, the

1.2. CHALLENGES 5

smart watch on the wrists will move accordingly. Therefore it is possible to use some sensors

to record the watch’s moving trace and infer what the user has written.

It is straightforward to see that both LocMe and SHOW rely on the prerequisite of

successfully recording and analyzing a certain kind of locomotion trace. Luckily, such pre-

requisite is already satisfied for a modern mobile device. Hardware wise, the sensors in need

such as the accelerometer, gyroscope, magnetometer, barometer etc., are equipped by default

in most off-the-shelf mobile devices. Software wise, main stream mobile operating systems

such as iOS and Android provide the developers with rich APIs and libraries that the sensors

of interest can be easily configured and programmed.

1.1.3 Sensing opportunities

Last but not least, mobile devices are carried by their users almost all the time, and

this characteristic gives both LocMe and SHOW perfect opportunities for collecting sensory

data. For example, LocMe requires the host device to be carried by the user while he/she

is walking, taking elevators/escalators, and making turns, etc. It is hard to find any digital

device other than mobile devices such as smart phones and watches that can easily meet such

a requirement. The same happens to SHOW , for which no other devices than the smart

watch can record the user’s handwriting trace without bringing in inconvenience to their

normal activities.

1.2 Challenges

On one hand, there is a fundamental challenge of sensory noise removal, which LocMe

and SHOW both face. On the other hand, they each have application-specific challenges.

We explain them in the following subsections.

6 CHAPTER 1. INTRODUCTION

1.2.1 Noise removal.

There are three kinds of noises in the collected sensory data: The instrumental noises,

the environmental interference, and the arbitrary user movements.

1. The instrumental noises come with the sensors, it can be caused by the sensor

malfunction, lack of calibration, or simply instrumental bias when the sensor is man-

ufactured.

2. The environmental interference is caused by noises coming from the surrounding

environment. For example, the magnetometer’s readings are affected by electronic

devices around it; the barometer’s readings are affected by the air flow around it and

the weather changes.

3. The arbitrary user movements are those unintentional movements by the user

which affect the sensor readings. For example, the user’s breath, body shaking and

speaking affect the readings of the accelerometer and gyroscope.

It is critical for both LocMe and SHOW to remove these noises, so that the collected sensory

data accurately describe the user’s locomotion state.

1.2.2 LocMe: Locomotion state recognition.

Another tough challenge LocMe faces is distinguishing and detecting all kinds of loco-

motion states. Existing research mostly rely on machine learning techniques to classify the

user activities [14–22]. They have two limitations: 1. Machine learning models for classi-

fication mostly work like a black box, where the high dimensional feature space is hard to

be interpreted by human; 2. These models require large amount of user data for accurate

classification, which is hard to acquire because the human activities of interest are both time

1.3. CONTRIBUTIONS 7

and energy consuming. Furthermore, existing research on activity profiling does not give

much attention about how human locomotion states are related to different POIs, thus can

hardly be used for localization. In Chapter 3, we will show that LocMe not only gives insights

about how to distinguish different locomotion states, but also explores their association with

different POIs to benefit the localization process. Also, we explain how these locomotion

states are generated by carrying out extensive field tests, so that large quantities of user data

for training is not mandatory.

1.2.3 SHOW : Large scale data collection.

SHOW applies machine learning models to learn about the handwriting traces. These

models need to be trained with large amount of data before they can achieve high accuracy

of recognition. Unfortunately, collecting data is a difficult task in SHOW because the test

participants have to repeatedly handwrite the same characters, which is time-consuming,

labor intensive and tedious. How to efficiently acquire large amount of handwriting traces is

a prominent challenge SHOW faces. In Chapter 4, we will show that our proposed rotation

injection technique is a nice answer to this challenge.

1.3 Contributions

As aforementioned, this thesis consists of two smart applications using sensors on mobile

devices, and our contribution in the two applications are as the following.

For LocMe, our contribution is two-fold:

• First, we propose LocMe, a service that applies a synergy of the locomotion-constraint

and the wall-constraint to achieve fast and accurate indoor localization. It guarantees

faster convergence, and reduces the median of the localization error in our field tests

8 CHAPTER 1. INTRODUCTION

by 68% than the wall-constraint only methods.

• Second, by analyzing the user’s locomotion states in special connectors such as stairs

and escalators, LocMe can distinguish different floors and achieve dynamic map reload-

ing.

For SHOW , our contribution is three-fold.

• First, we propose and implement SHOW , an accurate handwriting recognition system

using smart watch. Our experiments show that it can reach an average of 99.9%

character-wise recognition accuracy of the 62 different handwriting characters (A-Z,

a-z and 0-9) from 10 volunteers writing on horizontal surfaces.

• Second, to our best knowledge, SHOW represents the first work that employs the

potential inconsistency of watch positions to automatically generate sensor traces. It

substantially alleviates the difficulties of collecting large amount of training samples,

and boosts the robustness and generalizability of the dataset.

• Third, SHOW is the first work that achieves word autocompletion for handwriting

with smart watches, and show potential for both daily and general purposed text-

entry tasks with comparable efficiency, over 70% lower mis-recognition-rate, 43% lower

no-response-rate, and 33.3% higher word suggestion coverage than the tap-on-screen

method using a virtual QWERTY keyboard.

Chapter 2

Background

2.1 The Popularity of Mobile Devices

Modern mobile devices have penetrated into our everyday life and are becoming capable

of almost any daily task. In this section, we present a full picture of the mobile devices’

popularity from three aspects: the users, the apps and the usage paradigms.

Users. The most representative type of mobile devices is the smart phone. Fig. 2.1 displays

the top 15 countries with the largest number of smart phone users as of April, 2017 [23] and

the respective penetration in terms of percentage of the population [24]. It shows that, in

many of the developed countries, the smart phone user penetration can be as high as 70%. In

fact, 27 out of the top 50 countries with the most smart phone users have a high penetration

over 50% [23]. Early in 2015, the smart phone penetration already surpassed 50% of the

global population [25]. If we consider the hundreds of millions of other devices like tablets,

smart watches and wrist bands that are manufactured and sold annually [3], it is reasonable

to infer that mobile device is becoming the most owned digital equipment in human history.

Apps. Fig. 2.2 shows the changes of number of available apps in Google Play Store and

Apple App Store from July, 2008 to December, 2017 [26, 27]. Within 10 years, the number

of available apps has increased by over 200 times.

The current Google Play Store list 60 categories of apps, and Apple App Store lists 25

9

10 CHAPTER 2. BACKGROUND

Figure 2.1: Top 15 countries with the most smartphone users as of April, 2017.

Figure 2.2: The number of available apps in Google Play Store and Apple App Store from
July, 2008 to December, 2017.

categories and 61 subcategories. As a conclusion, the mobile apps are abundant both in

terms of type and number, and have covered almost every aspect of our lives, bringing the

user great convenience and efficiency.

2.2. SENSORS ON THE MOBILE DEVICES 11

Usage paradigms. From the user’s perspective, the time and energy spent on mobile

devices are also increasing rapidly. According to the investigation report by ComScore, the

user in US spent 171 minutes on average on mobile phones every day [28], which is twice

the time of 2011 [29–31]. Furthermore, new wearable devices such as smart watches and

wristbands have much longer stand-by time (up to a month) and special features like water-

resistance, which enable them to be accompanying the user almost all the time. As a result,

mobile device is the irrefutable top choice for learning about user behaviors and sensing

different contexts.

2.2 Sensors on the Mobile Devices

Table. 2.1 lists the sensors equipped on most of the off-the-shelf mobile devices. Among

them, the accelerator, gyroscope and magnetometer are usually referred to as Inertial Mea-

surement Units (IMU). Together they give the essential information about the user’s loco-

motion state. IMU sensors are the building stones that support a wide range of applications,

from activity profiling, fitness tracking to localization. Lying in the core of these applications,

the idea of utilizing IMU sensory data is a two-step process called dead reckoning, which

first integrates instantaneous IMU measurements, such as acceleration and angular speed into

spatial quantities like angles and displacements, then based on them to derive higher level

information such as locations and human activities. Unfortunately, the inevitable instru-

mental noises, arbitrary human movements and the sensitivity of integral operation greatly

limit the precision of dead reckoning over time. In comparison with IMU sensors, other

sensors may directly measure, or derive without integral operations, the spatial quantities.

For example, the proximity sensor can directly measure the distance of an obstacle, and

from the atmospheric pressure measured by the barometer, we can directly get the altitude.

Besides, extra information from non-IMU sensors can help to accomplish missions impossible

12 CHAPTER 2. BACKGROUND

Name Measurement Unit Dimension
Accelerometer acceleration m/s2 3D

Gyroscope angular speed rad/s 3D
Magnetometer ambient magnetic field µT 3D

Barometer atmospheric pressure hPa 1D
Light ambient light level lux 1D

Proximity distance of obstacles m 1D
Heart rate sensor heart rate bpm 1D

Microphone sound frequency Hz 1D
Camera pixel matrix

Table 2.1: Sensors equipped on most of the off-the-shelf mobile devices and their measure-
ment.

for IMU sensors. For example, using light sensors we can directly infer whether a phone is

in the pocket or not. All these sensors combined enable mobile devices to accomplish a wide

range of everyday tasks, and they are one of the most important reasons that makes modern

mobile phones “smart”. In comparison, traditional non-smart phones (usually referred to as

feature phones) usually only come with the microphone.

In the following subsections, we briefly introduce the physical mechanisms behind the

first seven sensors in Table. 2.1, which are relatively new to mobile devices, and help the

reader to get a general idea about how these sensors work and what kind of data they may

provide.

2.2.1 Accelerometer

An accelerometer measures the acceleration based on Newton’s Second Law, which is

more commonly known as the law of inertia, and it is described as,

F = ma

2.2. SENSORS ON THE MOBILE DEVICES 13

where, m is the mass of the object, F the force imposed on the object, and a the result accel-

eration. In practice, an accelerometer has a proof mass in the center, and first measures the

force imposed on it, then deduce the acceleration with the above equation. Fig. 2.3 shows

the most primitive form of an accelerometer initialized with free fall state and gravity, respec-

tively. The displacement of the center mass causes transformation of the springs, who then

reports the force over different axes, and the acceleration is computed thereafter. In modern

devices, the springs are replaced with electronic units such as capacitors and piezoelectric

sensors [32], and can be manufactured into extremely small pieces. These sensors that use

micro-level electronic parts instead of traditional mechanical parts are usually referred to as

the MEMS (micro-electro-mechanical systems).

2.2.2 Gyroscope

A gyroscope measures the device’s angular velocity. A primitive gyroscope with mechan-

ical parts is shown in Fig. 2.4a. The inner most disc (the rotor) rotates rapidly around the

central spin axis, and due to the inertia of momentum, the pointing direction of the rotation

axis will stay unchanged if no external torque is applied. This characteristic gives the gyro-

scope a reliable reference of direction. The outermost frame is usually mounted to a fixed

m

F

(a)

m

G

(b)

Figure 2.3: Primitive accelerometers. (a) Free fall state; (b) With gravity.

14 CHAPTER 2. BACKGROUND

pivot base, and can only rotate around the base’s axis, hence has only one degree of freedom

of rotation. The middle gimbal can rotate both around its own axis and the base’s axis, thus

has two degrees of freedom of rotation. Similarly, the innermost gimbal has three degrees

of freedom of rotation. This structure then enables the central disc to rotate freely around

three axes in the space. The angular velocity along all three axes can then be measured.

(a)

Mass

vibration

sensor

rotation
ṙ

F

(b)

Figure 2.4: Gyroscope. (a) Primitive version with mechanical parts; (b) MEMS version
taking use of the Coriolis effect.

In modern mobile devices, the MEMS version of the gyroscope usually has a vibrating

structure and employs the Coriolis effect, as illustrated in Fig. 2.4b. The central mass

vibrates constantly and when the host device rotates, the mass tends to keep on vibrating in

the old plane, and a Coriolis force can be detected by the adjacent sensor. Then the angular

velocity can be deduced from the following equation.

F = −2mω × v

2.2. SENSORS ON THE MOBILE DEVICES 15

where F is the measured Coriolis force, m the mass of the vibrator, ω is the angular velocity

and v the velocity of the vibrator with respect to the host device.

2.2.3 Magnetometer

A magnetometer senses the magnetic field around the device, and provides information

about its strength, direction, and changes. Most magnetometers first detect the Lorentz

force, then deduce the magnetic field from it. The Lorentz force is explained in the following

Figure 2.5: A magnetometer using the Hall Effect.

equation. When a particle of charge q moves with velocity v in an electric field E and

magnetic field M , the particle experiences a Lorentz force F , where

F = q(E + v ×M).

Although Lorentz force is experienced by the particles of charge at the micro scale, it leads to

a few phenomena that can be easily observed and measured. For example, when there is no

magnetic field at presence, the particles with charge will move along a straight path; when

a magnetic field is present, these particles will move along a curved path due to the Lorentz

16 CHAPTER 2. BACKGROUND

force and many of them will collide and accumulate on one side of the path, other particles

with opposite charges will accumulate on the opposite side of the path. This will establish

a steady electric potential between the two sides of the path which can be measured. This

phenomenon is named the Hall Effect and is widely used to detect and measure the magnetic

field, as illustrated in Fig. 2.5.

2.2.4 Barometer

A barometer measures the atmospheric pressure. Traditional barometers involve two

types, the liquid barometer and the aneroid barometer. Liquid barometers have a vertical

tube filled with liquid (usually water, mercury or oil), which is directly connected to a

reservoir whose surface is exposed to the open air. The changes of atmospheric pressure are

indicated by the height of the liquid in the cube. Aneroid barometers ship with specifically

designed alloy capsules, which will expand or contract when the pressure on it changes. Such

expansion/contraction is amplified by a lever and then presented on a reader. MEMS version

of barometers takes use of the piezoelectric sensors, which will gain an electric potential under

pressure.

2.2.5 Light Sensor

A light sensor measures the ambient light level. It usually consists of a photodiode, which

will absorb the incoming photons and generate electric current. After measuring the current,

the light level can be computed.

2.2.6 Proximity Sensor

A proximity sensor detects if any object is near the sensor. Most mobile devices have

optical proximity sensors (Fig. 2.6). Such proximity sensor has a transmitter which keeps

2.2. SENSORS ON THE MOBILE DEVICES 17

Transmitter

Receiver

Figure 2.6: An optical proximity sensor on a smart phone.

emitting signals (usually infrared), and a receiver aligned beside the transmitter waiting for

incoming signals. When there is no object in close proximity, the emitted signals will not

reflect and the receiver detects nothing; when an object comes into the vicinity of the sensor,

the emitted signal will get blocked by the object and reflected to the receiver, and the sensor

then detects the presence of the object.

It is noteworthy that on some devices, the light sensor is used as the proximity sensor. When

an object comes into the vicinity of the sensor, it also blocks the ambient light and causes an

observable drop in the detected light level, which can be used as the indicator of the target

object’s presence.

2.2.7 Heart Rate Sensor

Heart rate sensors are mostly equipped on wrist-worn devices such as smart watches and

wristbands. They consist of an LED that emits light onto the skin and a receiver that detects

the reflection. Due to the pulse of the veins, the reflected light shows a periodic pattern which

can be used to determine the heart rate. To avoid the interference from ambient light, it is

usually suggested that the heart rate sensor be closely attached to the skin. Fig. 2.7 shows

18 CHAPTER 2. BACKGROUND

a heart rate sensor in working condition on a smart watch, the green light is emitted from

the aforementioned LED in the sensor.

Figure 2.7: A heart rate sensor in working condition on a smart watch.

2.3 Applications Employing the Sensors

The evolution of sensors on mobile devices has given rise to a wide range of applications.

These applications can be roughly divided into three major categories: Healthcare, User

Input and Human Behaviors and Activities. In this section, we summarize and introduce

the most recent research work in these three categories.

2.3.1 Healthcare

Sensors on mobile devices can help users and researchers in the health related area from

the following two aspects.

Provide alternative solutions for in-home health status assessing. Many of the

health assessing tasks can hardly be accomplished at home because the professional medical

2.3. APPLICATIONS EMPLOYING THE SENSORS 19

equipment involved are either not cost effective for personal use or lack of portability. Sensors

on mobile devices, though not specifically designed for these assessing tasks, can provide

health related information from multiple aspects. When various types of information is

fused together, the user’s health status in concern can be successfully inferred.

For example, Sugarmate is an application on smart phones that can assess the user’s blood

glucose level [33]. By collecting the accelerometer data, Sugarmate infers the user’s physical

activities; by fusing the data from accelerometer, light sensor and microphone, it infers the

user’s sleep quality; at last, by combining the activity and sleep data with the user recorded

food and drug intake, it can infer the user’s blood glucose level. MindfulWatch takes use of

the accelerometer and gyroscope on a smart watch to monitor the user’s breathing during

a meditation, and based on that assesses the user’s respiration condition [34]. HeartSense

takes use of the gyroscope to achieve accurate heart-rate estimation on smart phones [35]. By

combining the sensing data and usage pattern of the mobile phones, MoodExplorer manages

to detect the compound emotion of the user [36]. Ben-Zeev et al. derives information from

sensors on the smartphone and help to achieve psychiatric assessment.

Provide new possibilities for easing the lives of people with special health con-

ditions. People with special health conditions suffer from various kinds of inconvenience

in everyday life. For example, the elderly people face high risks of falling [37, 38]. Mobile

sensors enable automatic fall detection and make possible of fast medical rescue [39–41].

People with schizophrenia need continuous monitoring of their psychiatric symptoms so that

in-time intervention and treatment adjustment can be provided, and Wang et al. manage

to accomplish such tasks with the help of sensors on mobile phones [42]. By combing data

from the accelerometer and gyroscope, the difficulty of interacting with mobile phones for

people with tremor can be effectively alleviated [43–46]. With the help of the microphone on

mobile devices, researchers also developed applications that help people with hearing-loss to

20 CHAPTER 2. BACKGROUND

gain better awareness of the surroundings [47,48]. By fusing sensory data on a smart watch,

Mario A. Gutierrez manages to predict the blood alcohol level [49], thus helps people with

drinking problems to improve their life styles.

2.3.2 User Input

With the fast development of various types of mobile apps, the need of user-device in-

teraction is increasing rapidly, and many new challenges arise. For example, some smart

phones are having large touch screens, which causes difficult for one-hand input. Among all

the user input scenarios, text-entry is one of the most frequently encountered. However, due

to the limited screen size, text-entry on mobile devices suffers from high mis-tap rate [5].

Furthermore, unlike a physical keyboard, the virtual keyboard used on mobile devices cannot

provide effective feedback, which much increases the difficulty for users with visual impair-

ment [50, 51]. Therefore, improving the input on mobile devices with the help of sensors on

board is becoming a research direction that draws a lot of attention.

Blindtype explores eyes-free typing on a touchpad using one thumb [52]. It allows the

user to tap on an imaginary QWERTY keyboard while receiving text feedback on a separate

screen. By sensing high-resolution pressure, shear, and pinch deformations on a soft surface,

DeformWear enables expressive and precise input for emerging mobile devices even without

touch screens [53]. Shimon et al. explore non-touch screen gestures for smart watches to

bypass the limitation of small screens [54]. By recording the user’s input with the gyroscope,

Change et al. propose novel interaction methods for one-hand input on smart phones with

large screens [55]. WatchOut explores leverages the capability of sensors on smart watches

to design a new family of input gestures like tap and swipe, which can be extended to the

watch’s case, bezel and band [56].

2.3. APPLICATIONS EMPLOYING THE SENSORS 21

2.3.3 Human Behaviors and Activities

The most important use of sensors on mobile devices is to learn about the user’s behaviors

and activities. It is sometimes referred to as activity recognition, which is usually in close

relation with context sensing and human-computer interaction (HCI).

Mago senses the Hall Effect patterns caused by different transportation tools, and fuse it

with the accelerometer to recognize the user’s mode of transportation [57]. Guan et al. take

use of the IMU sensory data from wearable devices and feed them into ensembles of deep

LSTM (long short term memory) learners for activity recognition [58]. Bae et al. collect

sensory data from mobile phones to identify drinking episodes of young adults [59].

Driving as a special human behavior which has heavy impact on safety also attracts lots

of researchers’ attention. SafeDrive uses smart watch sensors to detect abnormal user activ-

ities of the driver and help to reduce distracted driving [60]. Karatas et al. and SafeWatch

apply similar idea to detect if the driver’s hand is away from the steering wheel [61,62], and

monitor the steering angle. V-Sense employs the phone’s sensors to monitor the steering

status of the vehicle and notify the driver when dangerous maneuvers are detected [63].

Benefiting from the fact that mobile devices are accompanying the users for almost all

the time, sleep tracking becomes another typical sensing application on mobile devices.

SleepMonitor takes use of the accelerometer on a smart watch to monitor the respiration rate

and sleep positions [64]. Similarly, the Toss ’N’ Turn system can detect sleep and wake states

and analyze the user’s sleep quality [65]. Aiming at providing the user with an unobtrusive

way of sleep tracking, Chen et al. develop a system based on the best effort sleep (BES)

model which can use the smart phone’s sensors to track the user’s sleep in an unobtrusive

way [66].

Fitness and sports is another hot area where researchers leverage mobile devices to

sense human activities. TrailSense collects gait-based sensory data about the hiker’s walking

22 CHAPTER 2. BACKGROUND

with a smartphone to help analyze the risks in mountain climbing and hiking [67]. Bajpai et

al. leverage wearable devices to monitor the user’s fitness level and calorie consumption [68].

RecoFit proposes to use wrist worn sensors to recognize and monitor strength-training ac-

tivities, which can be well applied on wristbands and smart watches [69].

As the deep learning model gains success in many recognition related areas, More and

more researchers start to feed sensory data to machine learning models to achieve robust

activity recognition. Bhattacharya et al. employs the Restricted Boltzmann Machine to

recognize human activities with smart watches [70]. Bajpai et al. take use of neural network

to train and learn about the user’s physical activities [68]. By using SVM (support vector

machine), Kubo et al. combine the accelerometer data of both smart phones and watches to

achieve context recognition, and manage to present dynamic UI (user interface) on the device

accordingly [71]. Weiss et al. compare the recognition performance using machine learning

algorithms with smart phones and smart watches, respectively, and conclude that smart

watch based activity recognition are better suited for biomedical and health applications [72].

Chapter 3

LocMe: Human Locomotion and Map

Exploitation based Indoor Localization

3.1 Introduction

Indoor localization is one of the most popular services on mobile devices. The cutting-

edge indoor localization techniques can reach decimeter-level accuracy. However, these tech-

niques require widely deployed infrastructure to work. They either rely on wireless access

points (APs) with MIMO capability [6–9], or need densely deployed LED lights which are

not widely available [10, 11]. These infrastructures may have existed in large cities, but are

still absent in rural areas or less developed countries.

To realize infrastructure-free indoor localization, one can apply the Pedestrian Dead

Reckoning (PDR) method, which monitors the inertial sensor readings and estimates the

user’s step length and heading directions, then updates the user’s locations on a step basis.

However, such method drifts drastically over time because of the accumulated error. A

common approach to removing this drift is to apply a filter with special constraints, so that

inaccurate estimations of the locations can be eliminated automatically. The most intuitive

constraint is the wall-constraint, which rules out any step that goes through a wall [73–76].

Some other work cluster the user’s special indoor activities as “landmarks” to help reduce

the localization ambiguity between steps [77]. For this kind of indoor localization systems,

two challenges remain open: 1. The converging speed for locating the user is not fast. Simply

23

24 CHAPTER 3. LOCME

imposing the wall-constraint or activity landmarks is effective but not efficient for eliminating

invalid locations. 2. The system can not automatically load new maps upon floor changes.

Existing solutions for floor detection either require crowd-sourcing and a central server for

collecting and distributing information [78, 79], which is not viable in an infrastructure free

scenario, or need extremely detailed information of the building (e.g. the moving time of

the elevator between floors, the number of steps of the staircases [80]), which is beyond the

scope of an indoor map and cannot be retrieved without massive manpower.

Aiming at the two challenges, we propose LocMe, an indoor localization service based

on locomotion state detection and map exploitation. To our best knowledge, LocMe is the

first effort toward synergizing the wall-constraint and locomotion-constraint to speed up the

convergence of the infrastructure-free indoor localization and achieve better accuracy.

LocMe is motivated by several important observations. First, indoor maps are widely

available today with rich annotations for places of interest (POIs), such as staircase, elevators,

escalators, etc. Second, in the indoor environment, a user could express a set of locomotion

states (e.g. walking, turning, taking escalators or elevators). Each state can only take place

within a limited set of POIs whose coordinates are already given by the map. For example, if

the user is detected to be moving vertically, his/her possible locations must be in an elevator.

Third, the indoor POIs covers all possible paths leading to other floors, which means locating

users at these places gives us information about floor changes. Based on that, we can infer

which floor the user has travelled to, hence dynamically load the new floor map.

Bearing these observations into the design, LocMe utilizes the accelerometer, gyroscope,

magnetometer and barometer, which are embedded in many off-the-shelf mobile devices, to

distinguish different locomotion states, and employs them together with the wall-constraint

to shrink the location search space and achieve automatic map reloading for new floors.

The rest of this chapter is organized as follows. Section 3.2 to 3.6 elaborates each module

of LocMe. Section 3.7 evaluates LocMe in terms of convergence speed, effectiveness and

3.2. SYSTEM OVERVIEW 25

accuracy. Section 3.8 presents the background and related work of LocMe. Section 3.9

concludes this chapter.

3.2 System Overview

LocMe incorporates two essential ideas: 1. Use the embedded sensors on the mobile

devices to distinguish the user’s locomotion states. 2. Extract POI and wall information

from the indoor map, then formalize the locomotion-constraint and wall-constraint to search

for the user’s location.

The architecture of LocMe is shown in Fig. 3.1. The underlying SensorAgent directly talks

to the Android OS and collects the sensory data in need. SensorAgent preprocesses these

data and pass them to LocomotionDetector (LD), which is a collection of detectors that report

the user’s current locomotion state. The detected state is then fed into LocalizationAgent,

which leverages the locomotion state and the POI information from MapAgent and applies

a particle filter to pinpoint the current location of the user. MapAgent is responsible for

extracting POI info from the vanilla map and loading in new maps upon the notification of

the floor change from LocalizationAgent.

3.3 Sensor Agent

SensorAgent preprocesses the raw sensory readings by completing the following three

tasks.

3.3.1 Coordinate transformation.

Accelerometer, gyroscope and magnetometer report readings with regards to the phone’s

local coordinate system (Fig. 3.2a). However, such coordinate system depends on the ori-

26 CHAPTER 3. LOCME

Sensor Agent

Locomotion Detector (LD)
Rate control Sensory data

Android

Localization Agent

Map
AgentLocomotion state

POI
Info

Vanilla map

New
Floor

User Interface (UI)
Location Annotated map

Sensory data

Figure 3.1: LocMe architecture.

entation of the phone and is subject to changes if the user carries the mobile device in

different positions while walking around. To locate the user, we are actually interested in

the world coordinate system (Fig. 3.2b). Thus, we always transform the raw sensory data

from the phone’s local coordinate system to the world coordinate system. This is achieved

by employing the rotation vector reported by the Android system.

A rotation vector r = (x sin(θ
2
), y sin(θ

2
), z sin(θ

2
))⊤ means that, we can rotate the local

coordinate system around r by θ to get the world coordinate system. If we denote the

elements of r as rx, ry and rz respectively, its corresponding rotation matrix R is computed

as,

R =

1− 2r2y − 2r2z 2rxry − 2rz cos

θ
2

2rxrz + 2ry cos
θ
2

2rxry + 2rz cos
θ
2

1− 2r2x − 2r2z 2ryrz − 2rx cos
θ
2

2rxrz − 2ry cos
θ
2

2ryrz + 2rx cos
θ
2

1− 2r2x − 2r2y

 .

3.3. SENSOR AGENT 27

Given any sensory data in the local coordinate system, e.g. a 3D acceleration reading a, its

transformation aw in the world coordinate system will be aw = Ra.

(a) Local. (b) World.

Figure 3.2: The two coordinate systems involved in LocMe.

3.3.2 Noise removal.

LocMe applies a 4th order low-pass Butterworth filter to remove noises, because our

tests show that all the human locomotion states of LocMe’s interest are signals with relative

low frequency. For example, the typical human walking frequency is around 2 Hz, and the

vibration frequency of an escalator is mostly around 4 Hz.

3.3.3 Sensing Rate Control.

Off-the-shelf smartphones have different pre-defined options of the sensing rate. For

Android, the standard sensing rates include 5Hz (Normal), 16.7 Hz (UI), 50 Hz (Game),

and the fastest mode (the fastest sampling rate provided by the actual sensor hardware).

Different levels trade-off monitoring granularity with energy consumption and processing

time. As shown in Fig. 3.3, generally a higher sampling rate can capture more details, and

after the noise removal (detailed in following paragraphs), it shows smoother curves and

28 CHAPTER 3. LOCME

0 1 2 3 4 5 6 7 8 9 10 11
Time (s)

10
8
6
4
2
0
2
4
6
8

A
cc

e
le

ra
ti

o
n
 (
m
/s

2
)

x

y

z

(a) Low (Android-Normal): 5Hz.

0 1 2 3 4 5 6 7 8 9 10 11
Time (s)

4
3
2
1
0
1
2
3
4
5

A
cc

e
le

ra
ti

o
n
 (
m
/s

2
)

x

y

z

(b) Medium (Android-UI): 16.7Hz.

0 1 2 3 4 5 6 7 8 9 10 11
Time (s)

4
3
2
1
0
1
2
3
4

A
cc

e
le

ra
ti

o
n
 (
m
/s

2
)

x

y

z

(c) High (Android-Game): 50Hz.

Figure 3.3: Accelerometer readings with different sample rates (after low-pass filtering). The
periodical pattern is well preserved with the medium sampling rate (b), while in contrast,
at a low sampling rate (a) the periodicity becomes indistinguishable.

3.4. LOCOMOTION DETECTOR (LD) 29

clearer patterns. LocMe dynamically adjusts the sampling rate to effectively preserve the

device’s battery. According to our tests, LocMe can operate under a sampling frequency of

16.7Hz, which is lower than that being used in previous studies (usually ≥ 50Hz) [73,81–86].

This avoids LocMe from draining the mobile device’s battery in a short while.

3.4 Locomotion Detector (LD)

LD detects the indoor human behaviors in a two-level hierarchy. At the top level, hu-

man behaviors are divided into four locomotion categories: walking, taking elevators, taking

escalators and static, as listed in the second header row of Table 3.1. Then, each category

is separated into different locomotion states (the 3rd header row in Table 3.1).

LD walks through a decision tree illustrated in Fig. 3.4. It takes in the preprocessed

sensory data from SensorAgent, and based on a few key characteristics to first decide the

locomotion category. Upon a category decision, a corresponding finer detector will further

determine the locomotion state. For example, a walking detector will further decide whether

the user is walking on a level plane or going upstairs/downstairs.

POIs
Locomotion

Category Static Walking Taking Elevators Taking Escalators
State static level downstairs upstairs turn up down up down

Stairs ✓ ✓ ✓ ✓ ✓ × × × ×
Elevators ✓ ✓ × × ✓ ✓ ✓ × ×
Escalators × × ✓ ✓ × × × ✓ ✓

Intersections ✓ ✓ × × ✓ × × × ×
Other ✓ ✓ × × × × × × ×

Table 3.1: Relations between the locomotion states and POIs. “✓” means the state is allowed
in the POI, “×” otherwise.

Here we first present the following observations:

1. Upon each state change, either the static state or level walking state is always involved.

This observation implies that level walking and static are bridging states that interme-

30 CHAPTER 3. LOCME

diate between other states. In another word, without the presence of a level walking

or static state, no state can transit to other states.1

2. The only state that leads to the POI change is the level walking state.

This observation is straightforward, and based on it, we can conclude that two states

joined by a static state must occur in the same POI. LD defines a special event

called significant motion, which is a short period of acceleration readings with high

magnitude.

3. States in the walking category are always registered as significant motion, and states

in non-walking categories are never registered as significant motion.

Sensory data

Flip of the
significant motion

detection?Yes No

High NAC?
Keep previous

category
Yes No

Walking

DEFF
detected?Yes No

Paired vertical
acceleration?

Yes No

Escalator Elevator Static

Figure 3.4: The decision tree used by LocMe to distinguish different locomotion categories.
DEFF: Dominant Escalator Featured Frequency, a special frequency pattern observed only
in acceleration readings of escalators.

1We ignore unusual cases such as turning around and reversing directions when walking on a flight of stairs.

3.4. LOCOMOTION DETECTOR (LD) 31

Based on these observations, at any moment, if the significant motion state is not flipped,

LD thinks that the user’s locomotion category is not changed, as shown in the top right

branch of Fig. 3.4. Such policy has two advantages:

1. Avoid non-necessary reports of state changes. For example, a user is taking an eleva-

tor upward to the 5th floor, and the elevator stops at the 3rd floor while other people

coming inside. The user’s state is now changed to static, but such state change is mean-

ingless to LocMe because the user’s location is not changed and he/she will definitely

keep on taking this elevator, hence remain in the previous locomotion state, until the

destination floor. Such state changes will not flip the significant motion status, thus

will be ignored.

2. Avoid arbitrary user movements. The significant motion will only be detected when

the accelerator readings reach a certain amplitude over a time period, this can rule out

most arbitrary user movements.

In the following sections, we explain the detector for each locomotion category and the

rest part of the decision tree.

3.4.1 Walking Detection.

The most important characteristic of human walking is the periodicity, which is absent in

other locomotion categories. LocMe takes advantage of such periodicity to detect the walking

state. To be more specific, LocMe maintains a history of the 3D-accelerations and calculates

the normalized auto-correlation (NAC) over each of the three dimensions. NAC describes

the similarity between a signal and a lagged version of itself. If a signal is periodical, given a

lag which is close to the signal’s period, the NAC will be close to 1. NAC is widely adopted

for walking analysis [73,87,88]. The NAC of an acceleration signal a(n) at k, given a lag λ,

32 CHAPTER 3. LOCME

is defined as,

NAC(k, λ) =

λ−1∑
i=0

[a(k + i)− µ(k, λ)][(a(k + i+ λ)− µ(k + λ, λ)]

λσ(k, λ)σ(k + λ, λ)
.

Here, σ(k, λ) and µ(k, λ) represent the standard deviation and mean of data series [a(k), a(k+

1), . . . , a(k + λ)], respectively. According to our experiment and previous studies [73, 89], a

typical two-step walking period is within 0.4∼2 s, given the current sampling rate f of

LocMe, we can constrain the range of lag λ in [0.4f, 2f], and by searching for the largest

NAC in this range, the two-step walking period T can be found by

T (k) =
1

argmax
λ∈[0.4f,2f]

NAC(k, λ)
. (3.1)

LD stores the acceleration readings since the last time the existence of significant motion

has flipped, as a(n), and dynamically computes the largest NAC to decide whether the user

is walking. Furthermore, using the λ corresponds to the largest NAC, LocMe also detects

the steps.

Theoretically, the NAC over all three dimensions should be at a high level. But in reality,

we observe that only the vertical dimension always expresses a high NAC (>0.8), and the

NAC of the other two dimensions on the horizontal plane are usually not as high as expected

(average around 0.5). The reason is that the horizontal factors of acceleration are much less

significant than the vertical one. When the user is a soft walker, or is having the phone in a

loose pocket, the horizontal factors of acceleration may be even less distinguishable, hence

more sensible to interference. Thus, LocMe only requires the NAC of vertical acceleration

to be at a high level (>0.8 as in the current setting), and the average of the other two

dimensions to be larger than a loose threshold (0.5 in current settings).

3.4. LOCOMOTION DETECTOR (LD) 33

After confirming the user is walking, LocMe further breaks it down into four possible

states: level walking, walking upstairs, walking downstairs and turn. It is worth noting that

while the first three walking states are mutually exclusive, the turn state cannot exist by

itself and must be accompanied by one of the other three walking states.

Level/Upstairs/Downstairs. LocMe distinguishes these three states by analyzing the

barometer readings. A barometer measures the atmospheric pressure which corresponds to

the altitude. The barometer readings cannot be used directly because they change constantly

even at the same place due to the weather and air flow. Luckily, while detecting different

walking states, LocMe is only interested in the altitude changes on a step basis, which is

at a small scale both in time and space. At such a small scale, the interference from the

weather change can be ignored. To cancel out the interference caused by the air flow, LocMe

uses the difference of readings from two consecutive steps at the same stage of walking (i.e.,

heel-strikes).

Ideally, if the user is walking upstairs/downstairs, each step should monotonically lead

to a lower/higher barometer reading. However, this monotonicity is affected by different

phone positions. The reason is that during a gait cycle (two consecutive steps), the two

legs enter the stance phase (supporting the body) and the swing phase (rotating around the

pelvis) alternatively. When one leg is in the swing phase, it registers much greater change of

sensor reading than the other leg which is in the stance phase. We test three kinds of phone

positions: in pant pocket, in shirt pocket, and held in hand, and find that when the phone

is in the pant pocket, it will record such difference between two consecutive steps (Fig.3.5).

In contrast, the upper body is relative stable, and if the device is put in the upper pocket

or held by the user in hand, not much step-wise difference will be recorded. Being aware

of this, we monitor the barometer readings of every two steps (i.e., consecutive steps of the

same leg). And if the corresponding curve expresses monotonicity, LocMe concludes the user

34 CHAPTER 3. LOCME

is walking upstairs/downstairs. After that, whether it is up or down is derived from the sign

of changes of barometer readings.

0 2 4 6 8 10 12

Time (s)

1014.3

1014.4

1014.5

1014.6

1014.7

1014.8
A

tm
o
s
p
h
e
ri
c
 P

re
s
s
u
re

 (
h
P

a
)

Baro readings
1-step
2-step

Figure 3.5: Barometer readings for walking upstairs. When the device is put in the pant
pocket, the curve on a 1-step basis does not express monotonicity. Instead, the curve sampled
on a 2-step basis (solid line) shows clear monotonicity.

Turn Detection. To detect the turn state, LocMe first denotes each intersection as a set

of vertices and edges, as shown in Fig. 3.6. Upon the detection of a step, if it crosses the

edge of an intersection (the dashed line in Fig. 3.6), LocMe regards it as the entering step

and begins to monitor the changes of the user’s heading direction; Following that, when a

new step crossing another edge of the same intersection, which is called the leaving step, is

detected, LocMe will go through the following procedure to decide whether a turn has been

made.

First, LocMe checks if the two edges that the user has stepped across are jointed. If

not, the user is just walking straightly across the intersection. Second, LocMe resorts to

the magnetometer to monitor the changes of the user’s heading direction. Although the

magnetometer is known to suffer from interference from various electronic equipment widely

existed in an indoor environment [90], it is intuitive to mitigate such interference by only

3.4. LOCOMOTION DETECTOR (LD) 35

calculating the direction change between consecutive readings sampled in a short period.

A problem here is that the device’s heading may vary at different stages of the gait cycle,

and not necessarily corresponds to the user’s heading direction. However, it is reasonable

to assume that the heading of the device at the same stage of two consecutive gait cycles

stay the same, hence their difference is an accurate estimation of the change of the user’s

heading directions at that two moments. Therefore, LocMe only calculates the difference

of magnetometer readings at two continuous heel-strikes of the same leg after the entering

step. Once the user walks out of the intersection, all the recorded direction changes are

summed into one angle (denoted as θu). Then LocMe compares it with the intersection’s

turning angle θ (Fig. 3.6) obtained by the MapAgent beforehand. θ is formed by the wall

which the user is turning toward and the extending line of the wall which the user is turning

away from. If θu ≥ θ, LocMe concludes that the user has made a turn.

Figure 3.6: Three types of intersections. The shadowed parts are considered as the intersec-
tion area, and θ are possible turning angles formed by one passage wall and the extending
line of the jointed wall of the other passage.

In the field tests, we observe that, at the leaving step, many users have not fully turned

across the central line of the next passage yet. Therefore LocMe applies two relaxation

schemes: 1. θu is computed at the subsequent step of the leaving step; 2. LocMe only

requires θu ≥ 0.9θ. Also, the detection of an entering step could be a false positive, in which

case LocMe will never find a corresponding leaving step, unless it mistakes a new entering

36 CHAPTER 3. LOCME

step as the leaving step. To avoid such mistakes, LocMe will ignore an entering step if no

leaving step is detected within the subsequent n steps, where n is dependent on the size of

the intersection. These measures effectively increase the precision of the turn detection by

32%.

Step Detection. LD also detects the steps after confirming the user is walking. It main-

tains a cache queue C with length λ, which corresponds to the largest NAC in Eq. 3.1, and

stores the sensory readings of the same step in C. Any time λ is updated, C is extended or

shrunken correspondingly. Upon each new acceleration reading, LD deals with the following

cases:

• If the walking state persists, enqueue the new readings at the end of C, remove the

oldest ones in C if it’s full.

– If a peak in C is found, the peak is regarded as a heel-strike. The peak’s times-

tamp, the current locomotion state and all the sensory readings in the cache, are

reported to the Localization Agent. Then, LD empties C.

– if no peak is found, C is kept unchanged.

• If the walking state does not continue, C is emptied.

3.4.2 Escalator Detection.

We investigate a total number of 75 escalators spread in metro stations, shopping malls

and other public buildings in our city, and find that most of them express a sole dominant

vibration frequency within the range 3.5∼4.5 Hz, as shown in Fig. 3.8a. This vibration

is caused by the meshing between the step-chain and the sprocket which drives the chain

(Fig. 3.7). Interestingly, this frequency is not observed in any other indoor behaviors. We

3.4. LOCOMOTION DETECTOR (LD) 37

Figure 3.7: A diagram by Encyclopaedia Britannica, Inc. showing the mechanical structure
of an escalator [91]. The step chain meshes with the sprocket when the escalator is moving,
and causes constantly vibration to users on it.

name such special dominant frequency as Dominant Escalator Featured Frequency (DEFF).

LocMe detects whether a user is taking escalator by examining the existence of DEFF. In

contrast, Fig. 3.8b shows the frequency domain of acceleration for walking. Though it also

has a peak within 3.5∼4.5 Hz, it is not dominant in comparison with other harmonics.

The barometer readings are used to determine whether the escalator is going up or down.

Because the vibration of the escalator is at a low amplitude, its interference to the barometer

is negligible. In our tests, the barometer readings express clear monotonicity while the user

is taking an escalator. To make the detection result more robust, LocMe only uses the

difference of barometer readings at the start and the end of the escalator.

38 CHAPTER 3. LOCME

0 1 2 3 4 5 6 7 8
Frequency (Hz)

0

2

4

6

8

10

12

14

16

18

M
a
g
n
it

u
d
e

x

y

z

(a) (b)

Figure 3.8: Frequency domain of the acceleration signals. (a) Taking an escalator. DEFF
locating within 3.5∼4.5 Hz is clearly observed. (b) Periodic patterns for walking, with a lot
of harmonics.

3.4.3 Elevator Detection.

The dominant motion experienced by the user in an elevator is along the vertical axis,

with three distinctive phases: activation, equilibrium and deactivation. Through the three

phases, the accelerator readings have the three following features:

• The acceleration factors on the horizontal plane average at (or very close to) zero.

• The vertical acceleration averages at (or very close to) zero during the equilibrium

phase.

• The vertical acceleration experiences a peak-valley pair in both the activation and

deactivation phases, and the peak-valley order is reversed in the two phases.

The three phases are illustrated in Fig. 3.9. Combine the three features, even though the

elevator does not register high amplitude of acceleration, it can be well separated from those

noise readings caused by arbitrary human movements. Also, by utilizing these features,

3.4. LOCOMOTION DETECTOR (LD) 39

(a) Up

(b) Down

Figure 3.9: Accelerometer readings for elevators.

LocMe can recognize the cases when the elevator stops for other passengers getting in and

out. A user will be regarded as out of the elevator only when a level walking state is detected

afterwards.

3.4.4 Static State Detection.

If all the previous detectors report negative result, and both the mean accelerometer

readings and the first-order derivative of barometer readings stay close to zero over time,

LocMe will report a static state.

Each time a new step or state change is detected, LD reports to the LocalizationAgent,

40 CHAPTER 3. LOCME

hence triggers a location update. The next section explains how LocalizationAgent works.

3.5 LocalizationAgent

LocalizationAgent fulfills the two major tasks of LocMe: location updating and floor

detection.

3.5.1 Location Updating.

LocalizationAgent applies the particle filter algorithm discussed in [76] to update the

user’s location. Similar algorithms have also been adopted and proven to be effective by

previous works [73–75,80]. Particularly in LocMe, we incorporate the locomotion constraint

to further speed up convergence of the algorithm.

A particle filter maintains a set (denoted as LocationSet) of N weighted points to sample

the user’s location state space. In this set, each potential location is represented as a particle

Pi = (xi, yi, si, di, statei, wi), where (xi, yi) is the 2D coordinates, si is the user’s stride length,

di is the walking direction, statei is the locomotion state reported by LD and wi is the

particle’s weight.

Initialization. At the beginning, LocMe generates N particles with the same weight,

where w
(0)
i = 1/N, i = 1, 2, . . . , N. Depending on the available initial information, there are

different cases that LocMe may boot up from. First, a complete set of initial information

is given as P (0) = (x(0), y(0), s(0), d(0), state(0), w(0)), then the N particles are just N copies

of P (0). Second, only a part of the initial information is known. If the starting position is

unknown, then the positions for the N initial particles will be uniformly picked from the

allowed positions on the current floor. If the initial step length s(0) or heading direction d(0)

3.5. LOCALIZATIONAGENT 41

is unknown, they will be uniformly picked from a default range. If the initial state of the

user is unknown, it’s assumed as static.

Updating. The particles are updated upon the detection of a step or a state change.

Upon the kth update, if a new state state(k) is reported, LocMe simply assigns it to each

particle, so that,

P (k) = (x(k−1), y(k−1), s(k−1), d(k−1), state(k), w(k−1)).

If a step is detected, then the probability of getting the new state P (k) is computed as,

p
(
P (k)

∣∣P (k−1)
)
= p

(
x(k), y(k), s(k), d(k)

∣∣x(k−1), y(k−1), s(k−1), d(k−1)
)

(3.2)

= p
(
s(k), d(k)

∣∣x(k−1), y(k−1), s(k−1), d(k−1)
)

· p
(
x(k), y(k)

∣∣ s(k), d(k), x(k−1), y(k−1), s(k−1), d(k−1)
)

= t2

s(k)
d(k)

∣∣∣∣∣∣
 s

(k−1)
i

d
(k−1)
i + δ

(k−1)
i

 ,

σ2
s

σ2
d

· t2

x(k)
i

y
(k)
i

∣∣∣∣∣∣
x(k−1)

i

y
(k−1)
i

+ s
(k)
i

cos(d(k)i)

sin(d
(k)
i)

 ,

σ2
x

σ2
y

 ,

where t2 is the density function of Student’s t distribution with 2 degrees of freedom; δi is

the changes of heading direction detected by the phone using the method proposed in [73];

the standard deviations σs, σd, σx and σy are configurable system parameters.

Therefore, when the kth update is a step detection, LocMe uses the following distribution

42 CHAPTER 3. LOCME

to sample and update the ith particle’s position, step length and heading direction.

s(k)i

d
(k)
i

 ∼T2

 s
(k−1)
i

d
(k−1)
i + δ

(k−1)
i

 ,

σ2
s

σ2
d

 (3.3)

x(k)
i

y
(k)
i

 ∼T2

x(k−1)
i

y
(k−1)
i

+ s
(k)
i

cos(d(k)i)

sin(d
(k)
i)

 ,

σ2
x

σ2
y

 ,

where T2 is the Student’s t distribution with 2 degrees of freedom. LocMe uses the Student’s t

distribution because its heavy tail can help the particle cloud to quickly increase the coverage

of the search space, so that the system faces lower pressure of resampling (explained later).

After each update, LocalizationAgent checks the following two constraints.

• Wall-constraint. Any user can not walk through a wall. Thus if any two consecutive

location points form a line through a wall, the latter added location is highly unlikely

to be valid. LocMe uses subscript W to denote variables related to the wall-constraint

and Algorithm 1 to validate it.

• Locomotion-constraint. The current locomotion state and location have to follow

the relation listed in Table 3.1. Because both the number and area of the POIs are

usually small, this constraint can effectively reduce the search space and speed up the

convergence of the particle filter. LocMe uses subscript L to denote variables related

to the locomotion-constraint and Algorithm 2 to validate it.

In the two constraints, we have ϵW and ϵ
L,state

(k)
i

both satisfying 0 < ϵ ≪ 1. Here ϵ is an

extremely small value, which ensures that particles breaking the constraints get eliminated

quickly. Meanwhile, ϵ is not zero, giving the constraint-breaking particles a chance to survive

in case the constraint violation is a false positive. Particularly, ϵ
L,state

(k)
i

is related to the

performance of state detectors in LD. The more precise a state detector is, the smaller

3.5. LOCALIZATIONAGENT 43

Algorithm 1: Wall-constraint validation.
Input: (P

(k)
i , P

(k−1)
i), WallSet

Output: w
(k)
W ,i

1 for wall ∈ WallSet do
2 if (P

(k)
i , P

(k−1)
i) ∩ wall! = ∅ then

3 w
(k)
W ,i :=

ϵW
1− ϵW

w
(k−1)
i

4 break
5 end
6 w

(k)
W ,i := w

(k−1)
i

7 end

ϵ
L,state

(k)
i

is. If the kth update is a step update, LocMe will validate both the wall-constraint

and the locomotion-constraint; if it is only a state update, then the wall-constraint will

not get violated and only the locomotion-constraint will be validated. LocMe validates the

constraints and updates each new particle’s weight using Algorithms 1 and 2 accordingly.

Finally, the location updating algorithm is given in Algorithm. 3. As the user walks

around, invalid location points will get excluded by the two constraints and LocationSet(k)

eventually converges to points concentrating on a small area, then the weighted center of the

set will be output as the localization result.

Algorithm 2: Locomotion-constraint validation.
Input: P

(k)
i

Output: w
(k)
L,i

1 poi :=getPOI(P (k)
i)

2 if P
(k)
i .state ̸∈ getAllowedState(poi) then

3 w
(k)
L,i :=

ϵ
L,state

(k)
i

1− ϵ
L,state

(k)
i

w
(k−1)
i

4 break
5 else
6 w

(k)
L,i := w

(k−1)
i

7 end

44 CHAPTER 3. LOCME

Algorithm 3: Location updating algorithm. α in line 14 balances the wall-
constraint and locomotion-constraint.
Input: LocationSet(k−1), WallSet, POISet
Output: LocationSet(k), µ̄(k)

/* Update the particles. */
1 for P

(k−1)
i ∈ LocationSet(k−1) do

2 if LD reports a new state state(k) then
3 state

(k)
i := state(k)

4 else
5 state

(k)
i := state

(k−1)
i

6 end
7 if LD reports a step then
8 Generate (x

(k)
i , y

(k)
i , s

(k)
i , d

(k)
i) using Eq. (3.3)

9 Use Algorithm 1 to get w
(k)
W ,i

10 else
11 (x

(k)
i , y

(k)
i , s

(k)
i , d

(k)
i) := (x

(k−1)
i , y

(k−1)
i , s

(k−1)
i , d

(k−1)
i)

12 end
13 Use Algorithm 2 to get w

(k)
L,i

14 w
(k)
i := αw

(k)
W ,i + (1− α)w

(k)
L,i

15 P
(k)
i := (x

(k)
i , y

(k)
i , s

(k)
i , d

(k)
i , state

(k)
i , w

(k)
i)

16 end
/* Normalize the weight. */

17 w
(k)
sum :=

∑N
j=1w

(k)
j

18 for i = 1 to N do

19 w
(k)
i =

w
(k)
i

w
(k)
sum

20 end
/* Output the current estimated location. */

21 µ̄(k) :=
∑N

i=1 w
(k)
i

[
x
(k)
i

y
(k)
i

]

Resampling. As the user walks around, many particles eventually become low-weighted

and should be eliminated, and those with high weights should be replicated to impose more

3.5. LOCALIZATIONAGENT 45

influence on the localization result. This process is called resampling. LocMe uses the

multinomial resampling method [92].

Upon resampling, LocMe computes the sum of all N particles’ weights and denotes it as

W . Then the range [0,W] is divided into N segments, where the ith segment’s length equals

to the weight of the ith particle. Then N random numbers in the range [0,W] are uniformly

generated. For each random number, if it falls into the ith segment, the ith particle will be

drawn once and be placed into the new particle set.

Resampling may lead to impoverished particle set, in which only a few heavy-weighted

particles survived. In this case, the survived particles may be too concentrated to cover

potential interested locations. To avoid such impoverishment, LocMe monitors the effective

number of particle (ENP) [76]

N (k)
enp = 1/

N∑
i=1

(
w

(k)
i

)2

,

where w
(k)
i is the weight of the ith particle after the kth update. LocMe only resamples the

particle set when N
(k)
enp is smaller than a given threshold.

Complexity Analysis. In comparison to the existing particle-filter based localization

algorithms, ours brings in additional complexity by checking the locomotion constraint.

To understand its impact, we first clarify the complexity of checking the wall-constraint.

Intrinsically, it can be formalized as a geometric intersection problem, where given n line-

segments (walls and the target step), we want to verify if there are intersections between

them. A classic solution is the sweep-line algorithm [93], whose computational complexity

is O(n log n). Moreover, our problem is actually a simpler case, since we only care whether

one line-segment (the target step) intersects with the others (walls). Thus the complexity

can be reduced to O(n).

46 CHAPTER 3. LOCME

For checking the locomotion-constraint, it consists of two parts. The first is the function

getPOI(P
(k)
i), which checks which POI the potential location P

(k)
i is in. It is a point-in-

polygon problem, and can be solved by the simple even-odd-rule, i.e., form a ray from the

current location point and check how many times this ray intersects with the POI polygon.

If the number of intersections is odd, the location point is inside the POI, otherwise not.

This part costs O(1), since the number of edges of each POI polygon is fixed. The total cost

for checking all m POIs is O(m). The second part is verifying if the state of P (k)
i is allowed

in the POI. Since the number of each POI’s allowed states is already fixed, this part can also

be done in O(1) time. In total, the proposed algorithm brings in extra computational cost of

O(m). Because the number of POIs m is guaranteed to be smaller than the number of walls

n, it is safe to conclude that the extra complexity of O(m) in our algorithm is negligible.

3.5.2 Floor Detection.

The second essential task of LocalizationAgent is to detect whether a floor change has

taken place, and if yes, which floor the user has come to. It is obvious that only through

three places the user can travel to another floor: stairs, escalators or elevators, and these

three POIs are often referred to as connectors. To achieve floor detection, LocMe must find

answers to the following three questions.

1. When does the user enter and leave the connectors?

2. Is the user ended moving up or down?

3. How many floors the user has actually traveled?

LocMe cares for the first question, because the user may go up and down in an elevator

or stairwell before leaving it. Then question 2 and 3 help LocMe to determine the final

3.5. LOCALIZATIONAGENT 47

floor number. In the following paragraphs, we elaborate how LocMe gets answers to these

questions for different connectors.

Flight

Step

Landing

Figure 3.10: A diagram by Oakpointe showing the structure of a staircase [1].

Stairs. A staircase connecting two adjacent floors usually consists of a few flights of steps;

each two flights are connected by a short horizontal platform called a landing, as illustrated

in Fig. 3.10. We observe that, within the same stairwell, each floor has the same number D

of landings. Although D is not directly available from the indoor map, it usually satisfies

D ≤ 4. In LocMe, each landing is detected as a continuous short series of level walking

states. If such series is longer than a given threshold, LocMe will think the user has walked

out of the stairwell. Suppose LocMe detects l landings and a total number of n stair steps,

then the number of the floor change is determined as f , such that:

Cmin ≤ nS

f
≤ Cmax, f ∈ {l/D|D = 1, 2, 3, 4} ∩ N.

Here N is the set of natural numbers; Cmin and Cmax are the minimal and maximal allowed

ceiling height of a floor, and S the average riser height of the stair step. According to the

48 CHAPTER 3. LOCME

international building code [94], the height of the indoor stair riser is regulated to be within

102∼178 mm, thus we take the average and set the default S to 140 mm. The minimum

ceiling height of each floor is defaulted at 2.1 m, and the default maximum is an empirical

value (3.5 m). We believe it is reasonable that LocMe has knowledge about the user’s current

location in a large scale, for example, at the city level. Thus it is feasible for LocMe to ship

a table of floor height regulations for different cities, and preload the local ones to replace

these parameters here.

Escalators. An escalator always connects the same two floors. LocMe’s MapAgent will

try to derive which floors are connected by a specific escalator from the indoor map. If this

knowledge cannot be extracted, LocMe assumes that the escalator connects adjacent floors.

Elevators. LocMe uses the barometer readings of the user entering and exiting elevators

to decide the floor change in an elevator. The user’s entrance is determined as the latest

timestamp of any walking state, and the exiting moment is determined as that of the first

detected walking state after one or a continuous series of taking elevator state. Assume the

barometer reading is P1 upon the user’s entrance of the elevator, and P2 upon the user’s

exit, the elevation change h can be computed as

h = (−RT/g) ln(P2/P1),

where T is the temperature, R is the universal gas constant, g is the gravitational accelera-

tion. With h, the floor difference f is acquired by f = ⌊(h/H)⌉, where H states the average

height of a floor in the current building.

By default, LocMe uses empirical value for T (22 C◦) and H (2.4 m). Such default

settings do not perform well, because T varies over different time of the year and heating

3.6. MAP AGENT 49

conditions, and H is dependent on building type. However, we discussed before that LocMe

can check a floor height regulation table to find a more reasonable local H. For T , once the

user has used the stairs or escalator, LocMe can employ atmospheric data and floor detection

results from them to derive a more accurate T . By updating H and T , the 75th percentile

of floor detection error of elevators can be reduced to 0 (Fig. 3.12a).

3.6 Map Agent

Indoor maps are becoming widely available. On one hand, leading map service providers

are constantly collecting and releasing indoor maps for major public buildings such as shop-

ping malls and airports. On the other hand, detailed floor plans exist for the purpose of

evacuation during emergencies, and these floor plans are usually open to public. As an ex-

ample, Fig. 3.11 shows indoor maps of public buildings we obtained from Google Maps and

Bing Maps. These maps contain rich POI information which can benefit LocMe.

Given a raw indoor map, MapAgent loads it in and fulfills the following two tasks.

(a) Google Maps. (b) Bing Maps.

Figure 3.11: Indoor maps hold rich information about POIs.

50 CHAPTER 3. LOCME

Map Alignment among Different Floors. When the user travels to a new floor,

we want to map the existing particles directly onto the new floor map so the localization

algorithm does not need to reboot. To achieve this, MapAgent uses the following three

types of anchor points to align the maps of different floors: contour vertices of the building,

the elevator and the stairwell. Because there must be at least one staircase connecting two

adjacent floors, it is guaranteed that, besides the building’s contour vertices, LocMe can

always find at least 4 extra points to conduct the alignment.

Map Annotation.

• Walls: Upon getting an indoor map, LocMe stores each wall as a line segment

(start, end), where start and end are the coordinates of the two endpoints. For all

walls connected along the same line, they are joined and stored as one long segment.

• POIs: For each POI, LocMe assigns it with a contour component which stores coordi-

nates of all the vertices of the POI. Beside of that, some complementary information is

also stored. For example, an elevator or stairwell is stored as a tuple (contour, floors),

where floors is a list of floors this elevator/stairwell connects; an escalator is stored

as (contour, direction, startF loor, endF loor), where direction describes whether the

escalator is going upwards or downwards, and startF loor and endF loor denotes the

floor numbers that the escalator start and end with respectively. An intersection is

stored as (contour, angles), where contour is a list of edges which enclose the inter-

section area (dashed line in Fig. 3.6), and angles is a 2D array which stores the turn

angles (θs in Fig. 3.6).

3.7. EVALUATION 51

3.7 Evaluation

3.7.1 Locomotion Detector Performance

We recruited 17 test subjects to walk around different indoor POIs to test the performance

of LD. For each subject, the ground truth of his/her locomotion state is manually recorded

by another observer. These tests cover 42 staircases, 75 escalators and 31 elevators spread

all over shopping malls, metro stations and campus buildings in Montreal. The test results

are presented in Table 3.2.

3.7.2 Floor Detection Performance

The cumulative distribution function (CDF) of the floor detection error is shown in

Fig. 3.12a. Escalator always gives the correct floor detection hence is not illustrated here.

When using the default parameters to detect floor changes by elevator, only 20% detec-

tion results are correct. However, by using average floor height derived from local building

regulation code and temperature derived from previous escalator/stairs data, this rate is

significantly improved to 75%.

3.7.3 Field Test

We carry out a field test in a 70m×100m office building with 7 volunteers. Each volun-

teer is asked to travel through a path over three floors. The test building’s indoor map is

illustrated in Fig. 3.13, where the path is marked with black lines, and arrows indicate the

volunteer’s walking direction. The path length is about 500 steps, taking an average of 310

seconds. The tests are recorded on video, which provides us the ground truth.

Throughout the test, the number of particles N is set to 500, the threshold for Nenp is

52 CHAPTER 3. LOCME

Table
3.2:

Perform
ance

ofthe
Locom

otion
D

etector.

(a)
B

y
locom

otion
category.

G
round

Truth
walk

escalator
elevator

static
Detection

walk
93.5%

†
0%

0%
0%

escalator
5.7%

90.3%
7.9%

0%
elevator

0.8%
9.7%

92.1%
0%

static
0%

0%
0%

100%
†

A
llresults

here
are

com
puted

as
#

ofdetection
#

ofgroundtruth .
D

iagonal(bold)
elem

ents
are

the
recall.

Sam
e

in
Tab.(b).

(b)
B

y
locom

otion
state.

G
round

Truth
walk

escalator
elevator

static
level

upstairs
dow

nstairs
turn

up
dow

n
up

dow
n

static

Detection

walk

level
85.9%

2.7%
3.5%

N
/A

0%
0%

0%
0%

0%
upstairs

3.2%
91.7%

0%
N

/A
0%

0%
0%

0%
0%

dow
nstairs

3.6%
0%

89.9%
N

/A
0%

0%
0%

0%
0%

turn
*

N
/A

N
/A

N
/A

91.4%
N

/A
N

/A
N

/A
N

/A
N

/A

escalator
up

2.6%
5.6%

0%
N

/A
90.0%

0%
8.5%

0%
0%

dow
n

3.4%
0%

5.5%
N

/A
0%

90.7%
0%

7.3%
0%

elevator
up

1.3%
0%

0%
N

/A
10.0%

0%
91.5%

0%
0%

dow
n

0%
0%

1.1%
N

/A
0%

9.3%
0%

92.7%
0%

static
static

0%
0%

0%
N

/A
0%

0%
0%

0%
100%

*
N

ot
like

other
locom

otion
states,the

turn
state

is
non-exclusive

w
ith

other
states

in
the

sam
e

category.
T

hus
here

we
only

list
the

true-positive
rate

ofits
detection.

3.7. EVALUATION 53

set to 50. The initial user position is set to unknown. The initial step length is randomly

picked from [0.7, 1.2] m, the initial heading direction is randomly picked from the range of

±20◦ of the true direction. Although different test subjects have different walking habits,

LocMe manages to detect their locomotion states and locate them along the path, outputting

similar error distributions over time. Here we take one subject as an example to illustrate

the effectiveness of the constraint synergy.

0 1 2 3 4 5

Error (# of floors)

0.2

0.4

0.6

0.8

1

C
D

F

Stairs

Elevator - default

Elevator - updated

(a) Floor detection error.

0 10 20 30 40

Error (m)

0

0.2

0.4

0.6

0.8

1

C
D

F
LocMe
LocMe-WO
Zee-Modified
Horus

(b) Location error.

Figure 3.12: CDF of the floor detection error and the location error for different algorithms
over the test path.

As shown in Fig. 3.14, at first, the error is high because all particles are uniformly

chosen and given the same weight. After the user makes the first turn (between 1 and 2

in Fig. 3.13(a)), LocMe immediately detects it and leads to a significant drop in the error.

Later, when LocMe detects the elevator as the user exiting it, another abrupt drop of the

error is observed. At this moment, the new floor number is also determined, and the new

floor map is loaded with a known start point on it. This ensures that the particle filter

can continue to work without reinitialization and also a low error level at the beginning of

a new floor. Previous particle-filter based systems will fail at this point because they can

54 CHAPTER 3. LOCME

(a)
(b)

(c)

Figure
3.13:

Test
path

in
an

offi
ce

building.
T

he
num

bers
denote

the
order

ofcheckpoints
on

the
path.

For
exam

ple,
the

user
starts

from
1,

walks
to

2
on

floor
(a),

takes
the

elevator
dow

n
to

floor
(b),

then
walks

through
3

to
4,etc.

A
t

the
end,the

user
returns

to
1.

T
he

dashed
lines

represent
sub-paths

w
hich

the
users

are
free

to
choose.

3.7. EVALUATION 55

not detect and load in the new floor map. As the user walks upstairs from 103s to 184s

and downstairs from 213s to 228s, LocMe detects the corresponding states and confines the

potential locations within the stairwell, maintaining a low error level. After the user leaves

the stairwell (6 in Fig. 3.13(a)), there is a long period of level walking from 229s to 278s, and

the error begins to accumulate and rise. In the end, the last turn (near 2 in Fig. 3.13(a)) is

detected and the error is again reduced to a low level around 0.7m.

0 50 100 150 200 250 300

Time (s)

0

10

20

30

E
rr

o
r

(m
)

turn detcted

waiting for
the elevator

taking elevator

elevator
detected

stairs
stairs

Figure 3.14: The localization errors over the test path.

Effectiveness of the constraint synergy. To illustrate how the synergy of constraints

have sped up the particle filter’s convergence, we implement a modified version of Zee [73]

and wall-constraint-only version of LocMe (LocMe-WO) for comparison. First, we explain

how Zee and LocMe-WO work.

Zee. Zee is an indoor localization system which aims at automating the collection of

WiFi fingerprints [73]. It applies the wall-constraint to a particle filter to simply eliminate

any point that violates the constraint. It also relies on the indoor map to get all the wall

information, but cannot detect the floor changes and will fail when the user moves to a new

floor. To make Zee function in a multi-floor environment, we directly feed the floor detection

56 CHAPTER 3. LOCME

0 50 100 150 200 250 300

Time (s)

0

5

10

15

20

25

30

35

E
rr

o
r

(m
)

LocMe
LocMe-WO
Zee-Modified

Figure 3.15: Comparison of the convergence of different particle filter based indoor localiza-
tion methods.

result of LocMe to Zee. Upon a floor change, Zee will load the new map, and inherit all the

existing particles and use them to initialize on the new map. We denote such a modified Zee

system as Zee-Modified.

LocMe-WO. It is a special version of LocMe that it will not update w
(k)
L,i and will set

α = 1 in Algorithm 3, thus completely excludes the locomotion-constraint.

Fig. 3.15 illustrates the localization error over time for different particle filter based

methods. It is clearly shown that, with the locomotion-constraint, LocMe converges faster

than LocMe-WO and Zee-modified, and confines the error at a lower level for most of the

time. In general, how much LocMe outperforms the wall-constraint-only methods depends

on the specific user path, if the user tends to travel through the staircases, elevators and

escalators more frequently, the more likely LocMe will benefit from the locomotion-constraint

and maintain a low level of error. However, even when the user’s path covers no POIs such

that locomotion-constraint can not be applied, LocMe actually becomes LocMe-WO and its

performance is still guaranteed to be no worse than wall-constraint only methods.

3.7. EVALUATION 57

Table 3.3: Average error over all the test subjects of different localization methods in the
field test.

Error (m)
Mean Median 85% Percentile

LocMe 3.4 1.1 3.1
LocMe-WO 5.4 3.4 6.3

Zee-Modified 5.5 3.6 6.5
Horus 2.7 1.3 1.7

Localization Accuracy. To understand the localization performance of LocMe, we fur-

ther implement the Horus system [95] as a representative for popular localization systems

built upon the WiFi infrastructure. Horus first measures the Received Signal Strength (RSS)

of different WiFi Access Points (AP), and manually mark the locations. Then it builds up

the probability distribution of the RSS readings over different locations. After that, each

time a new measurement of different APs at location x is acquired, the system infers x by

using maximal likelihood estimation.

Fig. 3.12b illustrates the CDF of LocMe, LocMe-WO, Zee-Modified and the Horus system.

It can be observed that LocMe achieves similar or even higher accuracy than the Horus

system at most of the time. The few points with high errors are at the beginning of the test,

when the search space is initialized as the whole floor and not get reduced by any constraint

yet. Such kind of error can be eliminated if we apply back-propagation after the particle

filter converges to a concentrated group of points [73,76]. In contrast, LocMe-WO and Zee-

modified have more points with higher errors, because the search space is not reduced as

efficiently without the locomotion-constraint. Table. 3.3 illustrates the errors of different

localization methods. The listed results are the average over all the test subjects. From

these results, we can see that LocMe reduces the mean localization error by over 37% and

the median error by over 68% than the wall-constraint only methods.

58 CHAPTER 3. LOCME

3.8 Related Work

Indoor Maps. Indoor maps are widely available and the related service have been there

for years [96–99]. Currently, information from the indoor map providers may be not accurate

enough and is difficult to be retrieved automatically. However, for two reasons, we are

confident that extracting accurate POI data automatically from indoor maps will become a

reality soon: First, each building has a detailed floor plan serves purposes like renovation,

emergency evacuation and fire hazard inspection, and such indoor maps are highly accurate.

Map providers like Google are already collecting them by allowing the users to upload.

Second, these floor plans usually come as simple line graphs, or even as digital script from

designing software such as AutoCAD, and POI data within them can be extracted easily

with some knowledge of the designing software or computer vision techniques.

Indoor Human Activities. There are three major interests relating to this topic.

The first one is about the human walking behavior, which is important in the medical

care systems [82,84,89,100].

The second interest is about estimating the human walking direction, which is essential

for indoor localization [73,75,90].

The third is about activity profiling, which is highly beneficial for developing personal dig-

ital assistant and recommendation. Many efforts have been made in this direction. However,

some of them only use statistical features of sensor readings for classification [85, 101–103],

which cannot capture the short-term characteristics of different locomotion states like LocMe.

UnLoc [77] clusters the activities of different users to tag landmarks, this crowd-sourcing

manner is not suitable for the infrastructure-free scenario of LocMe; also, each landmark is

directly used to reset the user’s location, thus the uniqueness of the landmark is critical,

which is validated by WiFi fingerprints, and again is not available for LocMe. In contrast,

3.9. CONCLUSION 59

LocMe does not need the detected POI to be unique, false ones will eventually get eliminated

by the particle filter.

Floor Detection. Traditional floor detection approaches mainly rely on RF fingerprinting.

For example, SkyLoc takes use of the GSM signals [104], and WiFi based fingerprinting is

also well discussed [105–107]. The performances of these approaches are dependent on the

training process which is hard to scale up to multiple buildings. Besides, they will not work

in a infrastructure free scenario. Ftrack [78] and B-Loc [79] achieve the floor detection in a

crowd-sourcing manner. They detect the encounters between users and share it among the

users. This kind of systems need a central server who collects and distributes the user traces,

which will not work in an environment without network access. Vanini and Giordano also

employed the barometer and succeeded in detecting the floor transition, but were not capable

of detecting the number of floor changes [108]. In contrast, LocMe works independently

from any infrastructure and does not need the input from other users, and manages to give

accurate floor detection which could be used directly to make map reloading decisions.

3.9 Conclusion

We propose LocMe, an infrastructure free indoor localization service which exploits the

rich information from indoor maps and applying both the locomotion-constraint and wall-

constraint, it achieves faster and more accurate localization than existing algorithms with a

single constraint, but keeps the same level of complexity. Our field tests show that LocMe

reaches a median localization error of 1.1 m and mean error of 3.4 m, which is over 37%

and 68% lower than those of the wall-constraint only methods. In addition, LocMe can

automatically detect the floor changes.

The actual improvement of localization accuracy and converging speed of synergizing

60 CHAPTER 3. LOCME

the constraints is dependent on the user’s choice of indoor path. Nevertheless, LocMe can

guarantee its accuracy and converging speed to be no worse than the wall-constraint only

methods in any cases. Furthermore, particle-filter based localization methods can achieve

even higher accuracy by using the estimated results to do backward smoothing. We leave it

as our future work.

Chapter 4

SHOW : Smart Handwriting on Watches

4.1 Introduction

As the smart watch gains stronger computational capabilities and more versatile sensors,

it has become a new digital hub on which the users install tons of applications and fulfill

all kinds of daily tasks such as fitness tracking, message sending/receiving and note keeping,

etc. After Google announced the next generation of Android watch to be completely phone

independent [109], smart watch is transforming from a companion gadget to a full-fledged

device and will be capable of performing a much wider range of tasks. Consequently, text

entry on the smart watch is becoming a fundamental use case. Unfortunately, the watch’s

small screen drastically limits the performance of the tap-on-screen input method, which

is the dominant one for touch-screen devices. Existing research aiming at overcoming the

limitation of small screen leads to specially designed virtual keyboard, which is extremely

different from the traditional QWERTY layout, hence has a steep learning curve. They may

cause further inconvenience as the user switches between different devices from time to time.

At the meantime, voice input methods are highly dependent on the environment. It cannot

be used at places either require silence or has a lot of noises. Besides, it suffers from high

risk of privacy leak when used in public.

Considering that the smart watch is always wrapped around the user’s wrist, it is intuitive

to relate it to the most traditional input method, i.e. handwriting. We can use the IMU

(inertial measurement units) sensors such as the accelerometer and gyroscope to monitor

61

62 CHAPTER 4. SHOW

the hand/wrist/arm’s movements and use the data to learn and recognize handwritings. In

fact, using wearable sensors to track and recognize the user’s gestures is not new, and many

efforts have been made to recognize the finger, hand or arm gestures [110–113]. However,

these attempts are not specifically made to achieve writing recognition and are subject to

various limitations. For example, ArmTrak [110] requires movements of the entire arm, which

will easily exhaust the user if used as a text input method, and it can not be applied in space

limited places such as a vehicle; The work in [111] employs classification algorithms which

heavily rely on the actual data samples but suffers from the difficulties of data collection

at a large scale. To address these limitations, we propose SHOW , a system designed for

recognizing handwriting with smart watches on horizontal surfaces. By asking the user to

write with the elbow as the support point, it finds a balance between comfort and efficiency,

and allows the users to input in the same way as they handwrite. By implementing rotation

injection, SHOW manages to seed from a small set of collected traces and automatically

generate a large quantity of traces, which are proven to be effective and robust, for the use

of machine learning. Furthermore, by defining simple yet distinct gestures for indicating

word separation and character correction, SHOW realizes character-level to word-level text

entry, which we prove to be efficient for both daily and general-purposed text-entry tasks

and express a few nice advantages over the tap-on-screen method.

The rest of this chapter is organized as follows: In Section 4.2, we first give a breakdown

analysis of handwriting, and reveal the fundamental observations that support SHOW . In

Section 4.3, we introduce the overall system design of SHOW . Then we explain the char-

acter recognition and word autocompletion in Section 4.4 and Section 4.5, respectively. We

evaluate SHOW in Section 4.6. In Section 4.7, we introduce related work. In the end, we

conclude the work and discuss the future work in Section 4.8.

4.2. COMPREHEND HANDWRITING WITH A SMARTWATCH 63

4.2 Comprehend Handwriting with A Smartwatch

In this section, we look into the handwriting from three aspects: the watch-wearing hand,

the support point and the watch rotation.

4.2.1 Watch hand v.s. Writing hand

The first challenge we face is that, SHOW requires the watch to be worn on the writing

hand, but in reality, most people do not. This observation is also confirmed by our 10 test

participants, where only 2 of them wear the watch on the writing hand. This convention is a

legacy from the non-smart watch era where the only functionality of a watch is for displaying

time, and people wear it on non-dominant hand to minimize the damage to the watch from

daily activities. Such legacy is vanishing rapidly nowadays for the following three reasons:

1. Smart watches have far richer functionalities than a traditional one, and will be reached

to by the user far more frequently. 2. Other than SHOW , many apps on the smart watch

require the watch to be worn on the dominant hand for better functioning. For example,

fitness tracking apps for basketball/tennis/badminton need to monitor the movements of the

dominant hands. 3. Modern smart watches are designed to be used during sport activities,

equipped with water-proof material and gorilla glass, and are much more resistant to daily

damages than traditional ones. We have also surveyed 40 smart watch users (including our

10 test participants), and all of them express that wearing a watch on the non-dominant

hand is only a habitual thing, and find it no compulsion to switch to the other hand if the

apps can provide improved performance.

64 CHAPTER 4. SHOW

4.2.2 Support Point: the Controller of Speed, Comfort, and Am-

plitude

When the user handwrites, there are different potential support points: the palm bot-

tom / wrist, the elbow or the shoulder, and the choice will affect our experience of writing

speed, comfort and size. To understand how different support points affect the handwriting,

we recruit 10 volunteers and ask them to write with a pen and the index finger, respectively.

We observe that, when writing with a pen, the participants tend to use the bottom palm

or the wrist as the support point to the moving fingers; when writing with the index finger,

the participants tend to move the hand and the forearm and use the elbow as the support

point. Furthermore, we observe that only when writing in the air the participants use the

shoulder joint as the support point. These support points determine the length of levers

we use to produce the writing traces, and consequently the amplitude of body movements,

the comfort (or intensity of labor), the speed of writing, and the size of writing. Based on

our observations and the participants’ feedback, we summarize the effects of taking different

support points for handwriting in Table 4.1. As the support point changes from palm bot-

tom / wrist to the elbow and then to the shoulder joint, the amplitude of movements, the

intensity of labor, and the writing size increase, but the writing speed decreases.

Fig. 4.1 illustrates sensory data from the same user writing letter “A” with the wrist,

elbow and shoulder as the support point, respectively. Evidently, as the support point moves

up, the amplitude of movements increases. In SHOW , we consider the case of handwriting

with elbow as the support point, for the following reasons:

1. When taking the palm bottom / wrist as the support point, the amplitude of movement

is relatively small because the watch is located near the support point in this case. As a

result, the movements of the hand and fingers will only register a stabilized version at the

watch. Therefore, it is extremely difficult, if not impossible, to recognize what the user writes

4.2. COMPREHEND HANDWRITING WITH A SMARTWATCH 65

Table 4.1: Effects of taking different support points of writing. “↑” stands for increase, “↓”
otherwise.

Support Amplitude Intensity Writing Writing
point of movements of labor speed size

Shoulder x
x

y
xElbow

Palm/wrist

without additional finger-wrapped sensors.

2. When taking the shoulder as the support point, the amplitude of movement is large

since the entire arm is moving. This amplitude requires larger space thus greatly limits the

potential application scenarios. For example, the user can hardly write with the entire arm

when he is in a vehicle. Also, the user gets tired more easily in this case with the whole arm

in the air and moving constantly.

Figure 4.1: Sensory data of writing with different joints as the support point.

In conclusion, taking elbow as the support point is a choice that achieves the best balance

66 CHAPTER 4. SHOW

between amplitude of movements (space required), intensity of labor (comfort), writing speed

and writing size. Fig. 4.3a gives an illustration of the user writing on a horizontal surface

with the elbow as the support point.

Requiring the elbow as the support point filters movements from the upper arm and

the whole body, largely constrains the possible movements of the wrist in space. This

highly benefits SHOW and helps it to achieve a high character recognition accuracy. In

the meantime, this requirement restricts potential application scenarios. For example, when

writing on a vertical surface, it is usually hard to find something to support the elbow and

will lead to degraded handwriting recognition performance. For the same reason, SHOW

cannot work well while the user is standing or walking. However, as the need of typing on

smart watch while walking or standing is rare anyway, and when sitting, the user can always

find a horizontal surface for use (using the thigh in the worst case), we consider the tradeoff

between recognition accuracy and number of application scenarios constrained by the elbow

support requirement as acceptable.

4.2.3 Watch Rotation: Challenge and Opportunity

We observe that people tend to wear the watches loosely for more comfort. Therefore,

each time the user puts on the watch, its facing direction could be different. We hereby refer

to such inconsistency between watch facing directions as the static rotation. After the watch

has been put on, it may also swing and rotate during the handwriting process, and we refer

to such rotation as dynamic rotation.

The existence of watch rotation is both a challenge and an opportunity. It is a challenge

because it requires massive human effort to collect writing samples with respect to different

potential rotations. For models based on machine learning algorithms, the final performance

of writing recognition is greatly constrained by the rotations. On the contrary, it is an

4.2. COMPREHEND HANDWRITING WITH A SMARTWATCH 67

θ

(a) (b)

Figure 4.2: Watch rotation around the arm axis. (a) An illustration of the rotation. (b) An
X-ray image showing the anatomy of the wrist joint [114] that constrains the rotation.

opportunity because, once we understand the effects of the rotation, we can use it to generate

data from the same user writing with different watch face directions. With this approach,

the effort of collecting more handwriting data can be substantially reduced. Moreover, the

robustness of SHOW ’s character recognition can be enhanced by taking the rotation into

account.

It follows that the comprehension of the watch rotation is the key to convert the challenge

into our chance.

First, the rotation is confined between the bulged ends of ulna and radius bones of the

wrist joint, as shown in Fig. 4.2b. If we take the watch facing direction when the hand is at

rest as the initial direction, the rotation of the watch is confined within a range about ±30◦

(θ in Fig. 4.2a).

Second, we observe that even though the watch is loosely wrapped around the wrist, the

friction between the skin and the watch prevents it from swinging, which means the possible

dynamic rotation within a writing trace is small and negligible.

Based on the two observations, we implement the rotation injection, which is detailed in

68 CHAPTER 4. SHOW

Section 4.3. It helps SHOW to increase its robustness and considerably reduce the effort

of collecting handwriting data. Our experiments show that the average accuracy of SHOW

can be increased by 16.5% after the rotation injection.

4.3 System Overview

SHOW is designed for use on horizontal surfaces, and requires the user to use the elbow

as the support point (Fig. 4.3a). It allows the user to write in a semi-cursive way: For

each single character, the user can write cursively with his/her personal style (no need to be

the printed version), but for any two consecutive characters, there should be a full stop in

between (which we denote as the soft separation and is introduced in Section. 4.5).

(a) Elbow as the support point. (b) Use the other hand to select a word.

Figure 4.3: Illustration of writing with SHOW on a horizontal surface.

As the user writes, each character is recognized by SHOW , and a suggestion list of words

with the current input as prefix is updated and displayed dynamically. When the intended

word appears in the suggestion list, the user needs to keep the writing hand at still, then

uses the other hand to tap on it (Fig. 4.3b). By doing so, the tapped word will be selected

4.3. SYSTEM OVERVIEW 69

and SHOW will be notified the beginning of the next word. If the intended word is the first

candidate in the suggestion list, the user can also make a hard separation gesture (introduced

in Section. 4.5) to indicate the end of the current word, and the first candidate word will be

selected automatically.

The architecture of SHOW is shown in Fig. 4.4. It collects the accelerometer and gyro-

scope data from the smart watch. After the noises have been removed, the data processing

goes through two stages: Character recognition and word recognition.

Accelerometer and Gyroscope

Noise Removal

Rotation Injection

Update Special Gesture
Analyzer

Characters
M

an
ua

l C
or

re
ct

io
n

H
ar

d
S

ep
ar

at
io

n

S
of

t S
ep

ar
at

io
n

User Selection

Character
Recognition

Word
Recognition

Learning

Classification

Feature Extraction

Word Autocompletion

Figure 4.4: Architecture of SHOW .

70 CHAPTER 4. SHOW

4.3.1 Noise Removal

Human handwriting is in general a low-frequency activity. Fig. 4.5 shows the power

spectrum of one of the volunteers writing letter “A”. The energy of the writing trace is

concentrated on the lower frequency range. Hence, for all the traces SHOW collects on

the watch, a 10th order butterworth 2 Hz low-pass filter is applied to remove potential

high-frequency noises.

0 0.2 0.4 0.6 0.8 1
Frequency (Hz)

0.5

1

1.5

2

P
ow

er

#10-3

x
y
z

(a) Accelerometer.

0 0.5 1 1.5 2
Frequency (Hz)

2

4

6

8

10

12

14

P
ow

er

#10-3

x
y
z

(b) Gyroscope.

Figure 4.5: The power spectrum of a handwriting trace in the frequency domain.

4.3.2 Data Flow

At the first Character Recognition stage, for all the labeled handwriting traces that SHOW

collected for the training purpose, they are taken as seeds for generating extra traces, using

rotation injection. After that, each trace’s features are extracted and they are fed into a

machine learning model to train the classifier.

For the user’s input traces when he/she is actually using SHOW , they are first fed into the

Special Gesture Analyzer, which will detect the special gestures that SHOW defines for better

4.4. CHARACTER RECOGNITION 71

word autocompletion. Only when the traces are not recognized as any special gestures, their

features will get extracted and be fed into the pre-trained classifier.

At the second Word Recognition stage, all characters recognized by the classifier and spe-

cial gestures detected by the Special Gesture Analyzer are sequentially processed to produce

a list of word suggestions.

After the two stages of data processing are completed, the user will have a suggestion

list of words from which he/she can choose the intended one. His/her choice will also label

the corresponding traces, which will later be employed to update the classifier.

In the following sections, we will elaborate how each data processing stage is designed

and implemented.

4.4 Character Recognition

4.4.1 Rotation Injection

As we discussed in Section 4.2, people tend to wear the watch in a relatively loose fashion

which results in the dynamic rotation and static rotation. The dynamic rotation is negligible

and we mainly consider the static rotation here. For each recorded trace x, we generate 60

rotated versions of it by doing the following rotation injection,

∀i,x′(Ti) = R(β)x(Ti), β = −30◦,−29◦, . . . ,−1◦, 1◦, . . . , 29◦, 30◦.

Here, R(βi) =

1 0 0

0 cos βi − sin βi

0 sin βi cos βi

 is the rotation matrix of βi over the arm axis (x axis);

Ti denotes the ith timestamp.

72 CHAPTER 4. SHOW

Rotation injection mimics the slightly different directions the user may wear the watch.

The ±30◦ rotation range is determined by the wrist anatomy as explained in Section 4.2.

After the injection, each handwriting trace we collect from the user will produce 60 traces,

thus the number of training samples are greatly increased. Theoretically we can increase the

rotation granularity to produce more traces, but our tests show that with the 1◦ rotation

granularity, we can already acquire sufficient traces for the later model training stage. Ro-

tation injection also brings in extra variety to the dataset and increases the robustness and

generalizability of the model. We will show this in the evaluation later.

4.4.2 Feature Extraction

In [115], Emmanuel experiments on human activity recognition with machine learning

algorithms, and analyses the effectiveness of 41 types of features extracted from the data

collected by body-attached sensors. Among these features, Xu et al. show that three sets

are particularly effective for classifying arm and hand related gestures [111]. In SHOW , we

also take these features for learning about handwritings. Table 4.2 lists the accelerometer

related features and how they are computed respectively. Features with prefix “DC” refer

to the DC components of the fourier transform, and those with “AC” correspond to the AC

components. For ACEnergy, ACLowEnergy, DCMean, DCArea, CPostureDist, ACAbsMean,

and ACAbsArea, they are axis-dependent and will each be converted to three features. Also,

for each feature in Table 4.2, there is a corresponding version for gyroscope. They sum up

to 46 features in total.

4.4.3 Learning

We test seven machine learning algorithms for SHOW . The following paragraphs briefly

explain them and Table 4.3 presents details about the corresponding test settings.

4.4. CHARACTER RECOGNITION 73

Table 4.2: Accelerometer features used in SHOW . Each feature listed here also has a corre-
sponding gyroscope feature.

Feature Computing
formula Description

ACEnergy
∑nf/2

i=1 m2
i

The total energy of a signal without the DC
component.

ACLowEnergy
∑

fi∈[0,0.7]m
2
i The energy of the signal within [0,0.7] Hz.

DCArea
∑ns

i=1 ai The area under a signal.

DCMean N/A
The mean of a signal, which is a measure of the

static component of acceleration that changes with
the body.

DCTotalMean N/A
The mean of a signal over all axes, captures the
overall posture information contained in the DC

component.

DCPostureDist N/A
The mean distances between the X-Y, X-Z, and Y-Z

acceleration axis. It captures the body posture
information.

ACAbsArea
∑

|aaxisi | The area under the absolute values of a signal.
ACAbsMean meani|ai| The mean over absolute values of a signal.

ACTotalAbsArea
∑naxis

i=1 ACAbsAreaaxisi

The area under the absolute value of a signal,
summed over all the axes.

a: acceleration reading. fi: The ith frequency component.
mi: The magnitude of the ith FFT coefficient. naxis: number of axes for a sensor.
nf : Number of frequency components after FFT. ns: Number of sensory readings.

Bagging of Decision Trees (BDT) When the classification boundary is complicated,

the decision tree method tends to form deep trees and overfits. Bagging is an ensemble

technique which aggregates the results of many decision trees to alleviate such an overfitting

problem. It takes the decision tree as the base learner, and trains it with different bootstrap

training sets Bi. Bi is a replica of the original data set S, and is generated by uniformly

drawing samples (with replacement) from S. When classifying a new sample, a poll is made

among the results of all the trained trees and the most voted one is taken as the final

74 CHAPTER 4. SHOW

result [116].

Random Forests (RF) Random forests is another technique that works on an ensemble

of decision trees. Unlike the BDT algorithm, which randomly draws the data samples,

RF randomly picks a subset of features to train different decision trees [117]. The final

classification result is also based on the poll of all the trees.

Table 4.3: Test settings for the classification algorithms.

Algorithm Parameters Tested Values

BDT # of trees
{

30, 40, 50
}

Max allowed splits
{

100, 200, 300
}

RF # of trees
{

30, 40, 50
}

Max allowed splits
{

100, 200, 300
}

SVM Breakdown strategy
{

OneVSOne, OneVSAll
}

Kernel function
{

linear, quadratic, cubic, gaussian
}

MLR N/A N/A
NB N/A N/A

NN # of hidden layers
{

1, 2, 3
}

of nodes / layer
{

20, 30, 40
}

KNN k
{

20, 40, 60, 80
}

distance metric
{

euclidean, correlation, cosine
}

Support Vector Machine (SVM) It finds a hyperplane which leads to the largest

margin between data points from two classes. It is usually used in binary classification

problems. To apply it to multi-class problem, we need to first break it down to multiple

binary classification problems and build many binary SVMs first. There are two strategies to

achieve such a breakdown: OneVsOne and OneVsAll [118, 119]. In the OneVsOne strategy,

a binary SVM is trained for each pair of classes. When classifying a new instance, it is

tested against each binary SVM, and the final result is based on the poll over the result of

each binary SVM. In the OneVsAll strategy, for each class, a binary yes or no classification

problem is formed and a corresponding binary SVM is trained. When classifying a new

4.5. FROM CHARACTER TO WORD 75

instance, it is also tested against each binary SVM, and the result with the highest score

taken as the final decision.

Multinomial Logistic Regression (MLR) Logistic regression outputs the possibilities

of an instance being each of the classes, and takes the one with the highest possibility as

the final result. However, it is only applied to binary classification problems. In contrast,

MLR extends it to a multi-class problem, where the classes are nominal. In SHOW , the set

of different writing characters are also nominal, hence we can apply MLR.

Naive Bayes (NB) Given an instance, NB estimates the posterior probability of the

instance belonging to each class and takes the class with the highest probability as the

classification result. NB is based on the assumption that, given a class, different features are

conditionally independent from each other.

Neural Network (NN) Generally speaking, a neural network consists of the input,

hidden, and output layers, each of which is composed of neurons. Using a few hidden

layers, neural networks are capable of capturing the subtle, non-linear relationships between

the input and output. In a classification task, whose input is continuous, it is sensible

to use sigmoid neurons in hidden layers and softmax function in the output layer. The

whole network is a feed-forward network that is trained by applying the back-propagation

algorithm.

K Nearest Neighbors (KNN) When classifying a new instance, KNN searches the

instance’s k nearest neighbors in the feature space, and takes the majority class among these

neighbors as the result.

4.5 From Character to Word

After achieving character-level recognition, the next task for SHOW is to present word

suggestions based on the current user input, so that the word can be autocompleted and the

76 CHAPTER 4. SHOW

text-entry speed be improved. According to Zipf’s Law [120], in a large corpus, a given word’s

frequency is approximately inversely proportional to its rank of frequency. This indicates

that most intended words can be autocompleted with a short prefix input. Traditionally,

such a word autocompletion task is fulfilled by a frequency-based statistical model, which

has been proven to be effective and is widely adopted for every day text-entry tasks both on

the personal computers and mobile phones [121–123]. The idea of such model consists of two

steps: 1. Build up an n-gram dictionary using the word frequency from a specific linguistic

database and/or the user’s own vocabulary, such as an address book or a contact list. 2.

Present a suggestion list where potential words are sorted with probability. However, there

are two challenges that prevent SHOW from adopting this model directly.

First, the autocompletion model assumes that the character can be detected one at

a time, so that the corresponding word suggestions will refresh upon each new incoming

character. An example is shown in Fig.4.6a, when “g” and “r” is detected, we have the

illustrated suggestions, and if the next detected character is “o”, then “great” and “grew”

can be removed from the list and new suggestions like “ground” and “grow” can be added.

In previous character recognition tests of SHOW , the participants are asked to write the

characters one at a time, so each recorded trace only contains one character, but in reality,

the user tends to write fast and the real-time sensory trace may include a few characters

sequentially. In this case, SHOW has to separate the characters first.

Second, the autocompletion model also assumes the character to be always correctly

detected. This is not true in practice. For example, in the tap-on-screen context, because

the user’s finger actually taps an area instead of a single point, the input character will

sometimes be mistaken as the ones adjacent to them on the keyboard. This problem is

drastically exacerbated on the watch, where more keys are packed into each unit area due

to the small screen size. In our evaluation, we show that this “mis-tap” rate is as high

as 16.2% on average. In SHOW , similar problem exists where an input character can be

4.5. FROM CHARACTER TO WORD 77

misclassified as another one in our recognition stage. To deal with this challenge, SHOW has

to be tolerant with the character ambiguity and be able to present suggestions accordingly.

Take the same example in Fig. 4.6a, if a new character is recognized as “u” after “gro”, the

system should consider the probability of it being a mistake. For the tap-on-screen method,

the potential confusion for “u” may be “i”, “y”, “j”, “h”, so words like “grief” or “grip”

should also be considered. For SHOW , possible confusion of “u” can be “a”, thus words like

“grant” or “graph” should be considered.

In the following sections, we will elaborate upon how SHOW addresses the two challenges.

After that, a few use cases are presented to explain SHOW ’s advantages over the tap-on-

screen input method.

(a) Tap-on-screen. (b) SHOW

Figure 4.6: An example of word autocompletion based on characters input. Character “g”
and “r” are the current input.

4.5.1 Character Separation

When the user writes the characters sequentially, SHOW considers two types of char-

acter separation. The first is the soft separation, where the traces of two characters should

be separated for recognition, but they belong to the same word and should be considered

78 CHAPTER 4. SHOW

together for current word autocompletion. The second is the hard separation, where the two

characters belong to different words, which could be imagined as the space character. SHOW

assigns special hand gestures to the two types of separations so that the user can notify the

system about them. It’s straightforward to see that the soft separation appears much more

frequently than the hard separation. Therefore, SHOW assigns a gesture that needs as little

time and effort as possible to indicate the soft separation.

• Soft separation gesture. The user can rest the hand at still for a short moment to

indicate a soft separation, and this gesture can be detected as a zero pulse (amplitude

smaller than a given threshold in implementation) on all 3 dimensions for both the

acceleration and the angular speed (Fig. 4.7b). Our tests show that such a moment

can be as short as 0.2 seconds to be successfully detected, which requires little cost in

terms of both time and human effort.

• Hard separation gesture. We observe that the wrist flipping gesture around the arm

axis never occurs during the handwriting process, and can be used as an indicator of the

hard separation. To input a hard separation, the user quickly rotates the wrist around

the arm axis (x-axis of the watch) towards the outside direction and then rotates back.

This gesture can be detected as a deep valley followed by a high peak on the x-axis of

the gyroscope, while the other two dimensions stay much lower comparatively (bottom

subfigure of Fig. 4.7a).

4.5.2 Character Ambiguity

Because the characters cannot be guaranteed to be correctly recognized, SHOW has to

take potential confusions into consideration. In the classifier training stage, SHOW can

output a confusion matrix which contains the information about the possibility of confusing

4.5. FROM CHARACTER TO WORD 79

2 4 6 8
-10

0

10

x

y

z

2 4 6 8 10

Time (s)

-10

0

10

A
n
g
u
la

r
S

p
e
e
d
 (

ra
d
/s

)

x

y

z

Character A

Character B

Correction

Character A

Character B

Hard Separation

(a)

2 3 4 5 6 7 8
-0.5

0

0.5

A
c
c
e

le
ra

ti
o

n
 (

m
/s

2
)

x

y

z

2 3 4 5 6 7 8

Time (s)

-2

-1

0

1

A
n

g
u

la
r

S
p

e
e

d
 (

ra
d

/s
)

x

y

z

Character B

Soft

Separation

Character A

Character A

Soft

Separation

Character B

(b)

Figure 4.7: Examples of special gestures. (a) Top: Manual correction; Bottom: Hard sepa-
ration; (b) Soft separation.

one character with another. Then given n input characters C1, C2, . . . , Cn since the last hard

separation, where Cn is the latest one, the probability of suggesting the word W is computed

as:

P (W) =
∑

C
(R)
1 C

(R)
2 ...C

(R)
n ∈Cn

P
(
W |C(R)

1 C
(R)
2 . . . C(R)

n

) n∏
i=1

P (C
(R)
i |Ci), (4.1)

where C
(R)
i represents the possible recognized result of the actual input Ci, Cn is the space

containing all possible character series with length n, P
(
W |C(R)

1 C
(R)
2 . . . C

(R)
n

)
is the proba-

bility of having word W given the prefix C
(R)
1 C

(R)
2 . . . C

(R)
n , which can be computed by looking

up the relative frequency of all words with the same prefix in the pre-built language database

[124], and P (C
(R)
i |Ci) is the probability of recognizing Ci as C

(R)
i . One thing we need to

clarify here is that, when the user inputs the series C1C2 . . . Cn, SHOW does not know what

it actually is. For each input Ci, SHOW actually takes the recognized result with highest

80 CHAPTER 4. SHOW

probability to represent it. In another word, Eq. 4.1 is implemented as:

P (W) =
∑

C
(R)
1 C

(R)
2 ...C

(R)
n ∈Cn

P
(
W |C(R)

1 C
(R)
2 . . . C(R)

n

) n∏
i=1

P

(
C

(R)
i | argmax

C(R)

P (C(R)|Ci)

)
. (4.2)

Here argmaxC(R) P (C(R)|Ci) is the output of the classifier we trained beforehand.

This computation has an implicit assumption that, even if the user sees that his/her

input character is mis-recognized, he/she will not correct it, but instead keeps on inputting.

If we remove such assumption, Eq. 4.2 can be further simplified as:

P (W) =
∑

C
(R)
n ∈C

P
(
W |C(R)

1 C
(R)
2 . . . C(R)

n

)
P

(
C(R)

n | argmax
C(R)

P (C(R)|Cn)

)
. (4.3)

In reality, whether to use Eq. 4.2 or Eq. 4.3 depends on the user’s input style. If the user

tends to correct the mis-recognized input, he/she has to make extra efforts for the correcting

operation, but benefits SHOW by reducing the search space of candidate words. If the

user does not care to correct the current mis-recognized characters, SHOW has to do more

computations to deal with the ambiguity. In the implementation of SHOW , it starts with

Eq. 4.2, and employs the detection of the manual correction gesture (explained in the next

subsection) as a heuristic to decide whether it should switch to Eq. 4.3.

4.5.3 Manual Correction

In some cases, the user may accidentally input a wrong character, or the input character

has been mistakenly recognized as another, and he/she wants to manually correct it. SHOW

supports such a correction by allowing the user to make a correction gesture. This gesture

is defined similarly as the hard separation gesture, only with an opposite wrist flipping

direction. An example of its sensory readings is shown in the top subfigure of Fig. 4.7a. This

4.5. FROM CHARACTER TO WORD 81

gesture is recognized by a high peak followed by an deep valley on the x-axis of gyroscope,

with the readings of the other two dimensions being at a much lower level.

4.5.4 Recognition Feedback

When the user chooses a suggestion from SHOW ’s autocompletion list, he/she is also

confirming the current input. SHOW can use this feedback information to improve the

recognition. This is achieved by the following steps:

1. The collected traces are separated into small pieces using the soft separation, with each

piece corresponding to one character.

2. After the user chooses a suggested word, the current input prefix of that word is used

to label its corresponding sensory trace.

3. When the labeled traces reach a certain amount, they are merged back to the original

training dataset, and the character recognition model will be trained again.

4.5.5 Special Use Cases

Upper-case vs lower-case. For the tap-on-screen input method, the input letters are of

lower cases by default, and if the user wants to input an upper-case letter specifically, he/she

will have to tap the “shift” key first, tap the intended letter and then tap the “shift” key

again, which means three taps are needed for one upper-case letter. In contrast, in SHOW

the upper-case and lower-case letters are distinguished directly because of their intrinsic

differences in the handwriting traces. Only in a few special cases where the upper-case

and lower-case letters are simply different in terms of size, such as “c”, “o”, and “s”. For

these special letters, SHOW allows the user to prefix them with an “∧” character and a soft

separation to explicitly notify the system that the upper-case is intended.

82 CHAPTER 4. SHOW

Digits. When writing the digits, the tap-on-screen method also requires 3 taps, because

the default virtual keyboard layout only presents alphabetical letters, and the user has to

tap a special key (the one marked as “?12” at the bottom left of Fig. 4.6a) to enable/disable

the digit input mode before/after inputting the digits. On the contrary, SHOW is trained

directly with the handwriting traces of digits and can distinguish them from the alphabetical

letters, hence no extra operations from the users are needed.

Length of the suggestion list. As illustrated in Fig. 4.6a, the virtual keyboard occupies

the most part of the watch screen, and leaves very limited space for displaying the sugges-

tion list. In contrast, SHOW is free to use the whole screen to display the suggestion list

(Fig. 4.6b). Thus, it can display much more (4 times on average) word suggestions at one

time. Furthermore, with the spare screen space, SHOW has the luxury to use different sizes

of fonts to prioritize the most likely suggestion for the user’s ease of selection.

4.6 Evaluation

4.6.1 Experiment settings

We recruited 10 volunteers to collect the handwriting samples. The detailed information

about these volunteers are listed in Fig. 4.8. They all wore the watch around the wrist on

the writing hand and adjusted the tightness till comfortable.

SHOW is implemented on the Android platform. We tested on two different models of

smart watches: Moto 360 and Samsung Galaxy Gear. Data from the accelerometer and the

gyroscope are collected at the system’s default UI sampling rate (about 16.7 Hz).

The google-10000-english list [124] is used to build up the n-gram word model in SHOW .

It contains the 10,000 most common English words in order of frequency, extracted from

4.6. EVALUATION 83

Google’s Trillion Word Corpus.

Figure 4.8: Information about the 10 volunteers.

4.6.2 Character Recognition Tests

In these tests, each volunteer is asked to write the character A-Z, a-z and 0-9 on the

paper, one at a time and each character for 30 times. When writing the characters, the

only requirement is to use their elbow as the support point. The size of the character is

recommended to be 1/4 of a US letter paper, but we do not draw a box or set any constraints

alike to enforce such recommendation. Therefore, even for the same character and the same

volunteer, the sizes of writings may vary.

We carry out the following three kinds of training and recognition tests, all with 10-fold

validation.

1. Single person test. In this test, for each user we train a personal classifier, using

his/her data only.

2. Cross person test. In this test, all the users’ data are used to train a general classifier,

and the classifier is evaluated with all the user’s data.

84 CHAPTER 4. SHOW

3. Rotation Injection test. For each of the above test, we conduct two versions of

experiments, one uses only the original data without rotation injection, and the other

one uses data with rotation injection.

The experiment results are shown in Tab. 4.4, we give detailed analysis in the following

subsections.

Single-person recognition. This test evaluates the effectiveness of the features. From

Table 4.4, we can tell that for the single-person test without RI, the highest average accuracy

can achieve 91.0% (NN), this implies that the feature set we use are informative enough for

high accuracy handwriting recognition.

Cross-person recognition. The cross-person recognition test evaluates the model’s gen-

eralizability. From Tab. 4.4, the highest average accuracy without RI is achieved by NN at

89.4%. However, almost for all the classification algorithm, we notice an accuracy drop in

the cross-person test compared to that in the single-person test. This implies that the model

is not well generalized. That is where RI shows its charm.

Effectiveness of rotation injection. For both single-person and cross-person tests,

and for all the classification algorithms, we observe a great boost to the recognition accuracy

after adding in the rotation injection. The average accuracy boost is 16.5%, with the highest

gaining a 24.5% accuracy improvement (SVM). Also, if we compare the results of cross-

person with RI to those of single-person without RI, we can also observe a great accuracy

improvement. This indicates that the rotation injection operation also increases the model’s

generalizability and robustness.

4.6. EVALUATION 85

Table 4.4: Recognition accuracy of the tests.

Algorithm
Average accuracy Average accuracy

in single-person test in cross-person test
without RI with RI without RI with RI

BDT 79.2% 96.5% 77.2% 98%
RF 76.9% 98.0% 76.2% 97.8%

SVM 75.4% 99.9% 76.9% 99.8%
MLR 72.7% 88.0% 69.4% 87.2%
NB 76.3% 93.8% 74.3% 91.4%
NN 91.0% 95.6% 89.4% 93.3%

KNN 68.8% 83.4% 69.5% 81%

The recognition performance. Table 4.4 shows that, when trained with RI, some of

the classification algorithms can give great recognition accuracy, at an average over 95%

(BDT, RF, SVM, NN). And SVM in particular reaches an average accuracy of 99.9%. This

brings great confidence for further word autocompletion.

4.6.3 Input Efficiency

To understand the input efficiency of SHOW , we compare it with the tap-on-screen

method from three aspects: error rate, word coverage and time cost.

Error rate. We define the following error rates:

• Mis-recognition-rate-TAP. This rate reveals how often the user’s tap on the screen is

mistakenly interpreted. It is computed as:

mis-recognition-rate-TAP =
of mis-taps
total # of taps

,

where the total number of taps takes into account all the user intended input, including

86 CHAPTER 4. SHOW

the characters, the backspace symbol, the “shift” key for case switching, and the space

symbol, etc.

• No-response-rate-TAP. This rate reveals how often the user’s tap is not detected at

all. It is computed as:

no-response-rate-TAP =
of not responsed taps

total # of taps
,

• Mis-recognition-rate-SHOW. This rate reveals how often a user input is incorrectly

recognized by SHOW . It is computed as:

mis-recognition-rate-SHOW =
of incorrectly recognized characters

total # of written characters
,

where the total number of written characters takes into account both the intended

characters, hard/soft separation and the correction gestures.

• No-response-rate-SHOW . This rate reveals the frequency of the written characters not

being detected at all. It is computed as:

no-response-rate-SHOW =
of not detected written characters

total # of written characters

To test these error rates, we consider two cases.

• In the first case, we randomly pick 20 short sentences from the MacKenzie PhraseSet

[125], which is widely used in the HCI community for evaluating text input methods.

The statistical information of the chosen phrase set is shown in Fig. 4.10. The phrase

set’s correlation to the English language is computed with the tool provided by [125],

and the high value indicates that the phrase set is representative of the language. By

4.6. EVALUATION 87

1 2 3 4 5 6 7 8 9 10 avg

Participant ID

0

5

10

15

20

25

30

E
rr

o
r

ra
te

 (
%

)

mis-recognition-rate-TAP-general
mis-recognition-rate-SHOW-general
no-response-rate-TAP-general
no-response-rate-SHOW-general
mis-recognition-rate-TAP-daily
mis-recognition-rate-SHOW-daily
no-response-rate-TAP-daily
no-response-rate-SHOW-daily

Figure 4.9: Error rate of the tap-on-screen method and SHOW .

asking the user to input this phrase set, we evaluate the performance of SHOW as a

general purposed text-entry method (tagged with “general” in Fig. 4.9).

• In the second case, we choose 20 frequently used sentences from the participants’ daily

smart watch activities, such as “In a meeting, call you back”, “what do you like for

dinner”, etc. This evaluates SHOW ’s performance in daily text-entry tasks (tagged

with “daily” in Fig. 4.9).

In both cases, we first allow the 10 participants to get familiar with the target phrase set,

then ask them to input the text on the watch with the tap-on-screen method and SHOW

respectively, with sufficient rest time in between (>30 mins). These measures prevent the

performance of the two input methods from being affected by the participants’ familiarity or

weariness of the tests. The result is shown in Fig. 4.9. Not surprisingly, due to the densely

packed virtual keyboards, all 10 participants experience high mis-recognition-rate with the

tap-on-screen method, average at 16.5% in the general-purposed case and 15.5% in the daily

88 CHAPTER 4. SHOW

Figure 4.10: Statistical information of the chosen phraseset for general purposed text entry
test.

case, and also a high no-response-rate, average at 5.3% in the general-purposed case and

5.1% in the daily case. In comparison, SHOW ’s average mis-recognition-rate (4.9%

for general-purposed case and 3.8% for the daily case) are 70% and 75% lower

respectively, and the average no-response-rate (2.3% for the general-purposed

case and 2.4% for the daily case) are 46% and 43% lower, respectively. From

the participants’ feedback, the frequent mis-recognition and loss of response not only slow

down the input speed, but also produce an annoying experience which prevents the user

from future use of that input method.

Furthermore, results in Fig. 4.9 demonstrate that there is no significant difference in

the performances of SHOW between general purposed and daily text-entry tasks. Thus, we

conclude SHOW can be applied nicely in both use cases.

Word Coverage. We adopt the same linguistic database for the tap-on-screen method

and SHOW to give the word suggestions based on the input prefix. Therefore, given the input

4.6. EVALUATION 89

characters being detected correctly, the two input methods will output the same suggestions.

However, because SHOW has more spare space to display the word list, it can present 4x

more suggestions than the tap-on-screen method on average. We ask each participant to

randomly choose 20 phrases from the MacKenzie PhraseSet [125] to test with the two input

methods, and find that on average 33.3% of the intended words are presented by

SHOW but not the tap-on-screen method.

Time cost. The total time cost for inputting is affected by many factors, including the

error rates and word coverage we discussed, as well as the time cost for input each character.

If we assume that the tap-on-screen method and SHOW have the same word autocompletion

coverage, then when a word is successfully suggested by SHOW but not by the tap-on-screen

method, we can assume the tap-on-screen method already has it in the list but only has no

space to display it. In the best case, the user can make one extra tap to scroll the suggestion

list and find the desired word. Also, in the best case, one mis-tap/mis-recognition event

will lead to two more input (1 for the correction operation and 1 for re-input the intended

character); one no-response event will lead to 1 more input. Thus, the total input time of n

characters can be estimated as:

t = (1 + 1 ∗ rNS + 2 ∗ rMis + 1 ∗ rNR)nt̄.

where rNS is the rate of words being suggested but not shown on the current screen; rMis is

the mis-recognition rate; rNR is the no-response rate; t̄ is the average time cost of inputting

a single character. By timing the participants’ actual input, we find that t̄ for SHOW is

about 1.9 seconds, and for the tap-on-screen method it is 1.1 seconds, this large difference is

caused by the soft separation of SHOW , where the user needs to wait a small period (≥0.2s)

to indicate the end of a character. Despite of SHOW ’s higher unit time cost for each single

90 CHAPTER 4. SHOW

character, its lower mis-recognition-rate and no-response-rate will compensate as the input

length increases. Using the error rates we get in previous tests, we find that SHOW only

needs 16.8% more time to input the same number of characters.

However, this result is acquired at the best case for the tap-on-screen method with

simplified assumptions:

1. We have assumed that all the words that are not suggested can be found by scrolling

the candidate list by only one tap. In reality, considering that SHOW can present up

to 4x candidate words than the tap-on-screen method, the user may need up to 3 extra

taps with the tap-on-screen method to finally reach the intended word.

2. We have assumed that the correction operation will not be mis-recognized. In reality,

this is not true, and the tap-on-screen method may need more extra taps since it has

a higher mis-recognition rate.

3. We have assumed that it takes the same time to input alphabetical letters, digits and

punctuation symbols for the tap-on-screen method. But in reality, for the tap-on-screen

method, extra taps are needed to switch the input mode for digits and punctuation

symbols. In contrast, SHOW can recognize them directly without extra cost.

Therefore, we conclude that SHOW ’s input efficiency in terms of time cost is comparable

with the tap-on-screen method.

4.6.4 Performance on different surfaces

In this section, we evaluate SHOW ’s character recognition performance on both hori-

zontal and vertical surfaces. Furthermore, for each surface, we consider two scenarios: the

elbow is supported by a surface or hanging in the air without support, as shown in Fig. 4.11.

In Section. 4.6.2 we have shown that SVM can achieve best performance with the current

4.6. EVALUATION 91

feature set and proven the effectiveness of rotation injection, thus in this test we use SVM

with rotation injection by default. The test result is listed in Table. 4.5, from which we can

(a) Horizontal Surface. (b) Vertical surface

Figure 4.11: Writing with SHOW on different surfaces.

Table 4.5: SHOW ’s character recognition performance on different surfaces.

Recognition Accuracy Horizontal Vertical
with support w/o support with support w/o support

Single-person 99.9% 80.5% 87.3% 62.1%
Cross-person 99.8% 67.5% 71.3% 54.1%

find that, SHOW performs much better on a horizontal surface than on a vertical surface.

Furthermore, if the elbow is hanging in the air without any support, the recognition accuracy

will drop drastically. The reason is that the swinging elbow adds in interference and more

freedom to the wrist’s movement in the space, which significantly increases the difficulty of

92 CHAPTER 4. SHOW

capturing its patterns. Therefore, SHOW is best suited for use on a horizontal surface with

the elbow as the support point.

4.7 Related Work

4.7.1 Writing Recognition

The methodologies for writing recognition can be divided into three categories: IMU

sensor based, computer vision based and image recognition based methodologies. The first

two capture the dynamic trace of the writing and recognize the writings afterwards. On the

contrary, the third one takes in the writing result as a static image and analyzes accordingly.

IMU sensor based writing recognition. Shen et al. design ArmTrak which employs

the IMU sensors on a smart watch to track the 3D posture of the entire arm. ArmTrak

can recognize some hand gestures based on the arm posture changes. This implies that the

relatively small movements in handwriting, which mostly involves only fingers and wrists,

can not be detected easily by ArmTrak. In fact, ArmTrak reports a median error of 7.9 cm

and 9.2 cm respectively for wrist and elbow location estimation. It is almost the size of an

entire character written by the user. In many cases, the user has to input in a space-limited

area (e.g. in vehicle), hence ArmTrak’s measurement on the entire arm movement is not

applicable. On contrast, SHOW assumes the user’s input with the elbow as the support

point, which only involves the movements of hands and forearms, hence can work nicely in

these space-limited areas.

Xu et al. detect index finger writings on a flat surface using the smartwatch [111]. The

sensor readings they acquire results from movements of index finger tendon, therefore it

requires the watch to be tightly wrapped over the wrist. However, we observe that in real

4.7. RELATED WORK 93

life people do not wear the watch in a tight fashion. In this condition, we have shown that

the recognition results using the feature set provided in [111] are not as good. SHOW on the

other hand, takes the potential watch rotation into consideration and trains the model based

on it. Our evaluation confirms SHOW ’s effectiveness against such rotation interference.

The Airwriting system [126] also achieves handwriting recognition using wearable IMU

sensors. However, it requires the sensor to be attached to the back of the hand, hence

records much more distinguishable movements than the smart watch could. Apparently, this

attaching position is not applicable for a smart watch. Besides, Airwriting uses special IMU

sensors which can sample at 819.2 Hz, and it is far beyond the capability of the commodity

smart watches, for whose sensors the highest sampling rate is around 100 Hz.

Computer vision based writing recognition. Another way of recognizing handwriting

relies on computer vision techniques [127–131]. These techniques require a special device (e.g.

Kinect) to capture the spatial-temporal traces. Unfortunately, even if the smart watch is

becoming an independent device, it is not likely to be equipped with a camera in the near

future. Thus, these techniques are not suitable for smart watches. However, these researches

give valuable insights about the temporal characteristics within the trace. These insights

can help IMU based systems because the sensory data they collect are also temporal data.

In fact, [110] is actually using a Kinect to generate the ground truth about the gesture.

Image based writing recognition. A traditional way of learning about handwriting is

based on the analysis of visible traces saved in an image [132–134]. This kind of work is also

known as off-line handwriting recognition in literature [135]. This is a completely different

methodology than what we employed in SHOW , because in this method, the temporal

information of physical movements of the human body is completely hidden, and the image

of writing traces are only the “results”. However, research in this category has built up

94 CHAPTER 4. SHOW

a great knowledge base about the continuous handwriting, which is the most natural and

efficient way of writing in daily life. All handwriting recognition systems based on IMU

sensors like SHOW will have to deal with continuous writing to further push the limit of

inputting efficiency.

4.7.2 Word Auto-Completion

Word auto-completion is an important speedup technique for both text-entry and search

queries. Many researchers propose to explore the input context for extra information to

improve the word suggestions [136,137]. This is viable in the database or web search scenario,

where much public information such as the query history or click logs are ready for use, but

not viable for text-entry method on a personal device, as the user may have privacy concern.

However, if the user agrees to let SHOW log his/her input history, many context-exploration

autocompletion models can directly be applied.

When considering error-tolerant autocompletion, some researchers proposed to define a

general distance between the indexed words and the current input prefix, and all candi-

date words within this distance are presented as suggestions [138–140]. This approach will

substantially extend the search space and increase the complexity. In SHOW , we use the

classifier’s confusion matrix as the prior knowledge to restrict possible ambiguous characters

in a small set. In this way, the model is enhanced with a certain level of ambiguity tolerance,

and the search space and complexity are kept at a low level. Our approach can be envisioned

as a subset of such distance-based error-tolerant autocompletion.

4.8. CONCLUSION 95

4.8 Conclusion

We propose SHOW , a handwriting recognition system which provides a new and efficient

way for text entry on the smart watch. By manually injecting rotation into the sensory data,

SHOW effectively circumvents the problem of inconsistent watch wearing positions and the

difficulties of collecting large amount of user writing samples, and greatly improves the

recognition robustness and accuracy. SHOW also addresses the possible input ambiguity

caused by mis-recognition and achieve word autocompletion. It has a much lower error rate

than the tap-on-screen method and achieves comparable input efficiency.

Chapter 5

Conclusion and Discussion

In this thesis, we discussed the opportunities brought up by rapidly advanced mobile

devices and various sensors aboard, and based on them proposed LocMe and SHOW , which

addressed the infrastructure-free indoor localization and text-entry on smart watches from

novel perspectives, respectively. Additionally, we conducted comprehensive experiments and

had shown their advantages over existing work. Specifically, LocMe guarantees faster con-

vergence than the wall-constrained only methods, and reduces the median of the localization

error in our field tests by 68%. SHOW manages to seed large quantities of handwriting

traces from one single user trace, and achieves over 70% lower mis-recognition-rate, 43%

lower no-response-rate, and 33.3% higher word suggestion coverage than the tap-on-screen

method using a virtual QWERTY keyboard. During the development of LocMe and SHOW ,

we also encounter a few new challenges, which are our future research directions and can be

summarized as the following four parts.

5.1 The re-initialization problem for LocMe

For all particle filter based localization systems, they face a re-initialization problem.

Because there are cases that all survival particles are incorrect so that the filter will never

converge to the correct result, and the system has to re-initialize. There are two questions

to be answered for re-initialization, i.e. “when” and “how”.

96

5.1. THE RE-INITIALIZATION PROBLEM FOR LOCME 97

Actual PathShadow Path

Figure 5.1: An example of shadow path in a building with a grid layout.

When to re-initialize. To find out when to re-initialize, we first need to understand why

the particle filter may reach a stage that needs re-initialization.

During the development of LocMe, we notice a special kind of path, which we hereby refer

to as the shadow path. As the name suggests, a shadow path is not the actual path the

user travels through, but it always follows the user’s actual path and has the same shape as

illustrated in Fig. 5.1. In a wall-constraint only system, once the particle filter concentrates

onto a group of particles on the shadow path, the wall-constraint validation can not give any

hint about it, because for any point on the actual path, whether the user violates the wall-

constraint or not, its corresponding particle on the shadow path will have exactly the same

constraint validation result. Therefore, the filter itself can never realize it is on the shadow

path without any external prompt, until the shadow path comes to an end. For LocMe, the

use of locomotion-constraint brings in different POIs as check points along the path, thus it

can break down long shadow paths into smaller pieces, and the filter can leap out of each

shadow path earlier. However, there are still rare cases where no POIs are checked along a

long shadow path or there are exactly the same POIs at the same positions on the shadow

98 CHAPTER 5. CONCLUSION AND DISCUSSION

path as on the actual path. In these rare cases, we need a prompt from the user to detect

the shadow path.

In current work, we use the detection of shadow path in the filter as an indicator for

re-initialization.

How to re-initialize. When the system decides to re-initialize, it should not just roll

back to the state at the very beginning, where the system knows nothing about the user’s

location or locomotion state. Instead, plenty of information in the localization history can be

used. Therefore, the system can re-initialize to a particular state in the history, then quickly

converge to the correct location. In current work, we propose the following two re-initialize

strategies.

• Shift to the actual path. The system will trace all particles in the current filter back

to the previous POI, and shift the corresponding paths to other POIs of the same type

and size, then validate the path again. If the shifted path survives all the constraint

validation, it can be regarded as the actual path, and the newest particle on this path

can be put into the re-initialized filter.

• Seed from the previous POI. If no actual paths are found, we can re-initialize the

filter with the previous POI as a seed. In general, POIs work as special endpoints that

break the long shadow path into pieces. Therefore, rolling back to previous POI has

a great chance to take the particle filter out of the trap of shadow path. After that, a

radius is computed by the number of steps and average step length since the last time

the user reached that POI, and all particles within the circle centered at the previous

POI will be evenly put back into the filter again.

5.2. HANDWRITING PRIVACY LEAK 99

5.2 Handwriting privacy leak

In the modern era, people interact with all kinds of digital devices and frequently input

personal information on them. Most users had encountered with phishing websites, credit

card fraud, spamming emails etc., and are vigilant about potential privacy leak when input

on digital devices. In contrast, the confidence in the security of handwriting on paper is still

high. With the proliferation of smart watches, and our progress with SHOW , it indicates

that handwriting on paper is prone to information leak and no more safe. The challenge for

this work is threefold. From an attacker’s perspective,

1. The amount of handwriting data collected from the target user is extremely limited.

2. The handwriting can be cursive and continuous.

3. The handwriting traces are not labeled.

To address the first challenge, we need to find a way to generate extra handwriting

traces. In fact, our work in SHOW has already demonstrated that, with the help of rotation

injection, a large amount of robust handwriting traces from a limited sample set can be

generated.

To address the second challenge, we propose a smart word separation algorithm which is

based on the gesture of relocating the palm after a word is written.

To address the third challenge, we propose a crowd-sourcing based clustering method

combined with word prediction algorithms used in SHOW 2, to generate guesses about the

written content.

This work is in an early experiment stage, but our proposed solutions for challenge one

and two have already shown promising results.

100 CHAPTER 5. CONCLUSION AND DISCUSSION

5.3 Cursive and Context-aware: A Smarter SHOW

SHOW makes the word prediction solely by using the current input characters as a

prefix. But in reality, there is a lot of context information, such as the user’s message

history, application logs etc., that can be explored if SHOW is granted with the user’s

permission. Also, the words’ semantic relations can also be utilized for prediction [141,142].

Taking full use of these information resources, SHOW can be further improved for phrase

or even sentence level suggestions.

At the current stage, SHOW accepts short pause as the soft separation to distinguish

different characters, which is still counter-intuitive considering that people tend to handwrite

in a cursive and continuous way, where a natural separation is usually at the word level.

Therefore, accepting the handwriting word as a whole trace and extracting each character

from it automatically would be the ideal recognition paradigm for SHOW , and is our major

working direction.

5.4 A Chinese Version of SHOW

It would be nice to extend the work of SHOW to other languages. The English writing

system is based on a limited set of symbols, which makes it possible to learn the user

handwriting traces with respect to each letter. In contrast, the Chinese characters are

hieroglyphic, and each one is different from the other. There are about 3500 commonly used

characters in Chinese, making it impossible to learn the trace of each one. At current stage,

we have conceived two possible strategies to deal with this challenge.

1. Tear each character into smaller units, i.e. the strokes. The basic types of strokes are

limited, so we can still use the learning method. However, this means the user has to make

a soft separation between each stroke, the input efficiency will be drastically reduced.

5.4. A CHINESE VERSION OF SHOW 101

2. Postpone the recognition to the later word autocompletion stage. We can sacrifice the

recognition accuracy at the character level, where SHOW only gives a best-effort guess list

of the possible input, and relies on the intra-word relation between subsequent characters

to reduce the ambiguity. Unfortunately, as the Chinese words are usually short (typically

consist of two or three characters), such intra-word relation is also limited.

Our early stage tests demonstrate the effectiveness of the two strategies, but the overall

performance is still much lower than SHOW for English. We consider adapting SHOW

to Chinese and achieving a comparable performance with English as our major research

direction.

References

[1] Oakpointe. Stair anatomy. https://www.stairpartsandmore.com/stair-anatomy/, 2017.

[2] IDC. Worldwide quarterly mobile phone tracker. 2018.

[3] IDC. Worldwide quarterly wearable device tracker. 2018.

[4] Xinye Lin, Xiao-Wen Chang, and Xue Liu. LocMe: Human locomotion and map exploitation

based indoor localization. In 2017 IEEE International Conference on Pervasive Computing

and Communications (PerCom), pages 131–140, March 2017.

[5] Xinye Lin, Yixin Chen, Xiao-Wen Chang, Xue Liu, and Xiaodong Wang. SHOW:

Smart Handwriting on Watches. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.,

1(4):151:1–151:23, January 2018.

[6] Swarun Kumar, Stephanie Gil, Dina Katabi, and Daniela Rus. Accurate Indoor Localization

with Zero Start-up Cost. In Proceedings of the 20th Annual International Conference on

Mobile Computing and Networking, MobiCom ’14, pages 483–494, New York, NY, USA,

2014. ACM.

[7] Deepak Vasisht, Swarun Kumar, and Dina Katabi. Decimeter-level localization with a single

wifi access point. In Proceedings of the 13th USENIX Conference on Networked Systems

Design and Implementation, NSDI ’16, pages 165–178, 2016.

[8] Manikanta Kotaru, Kiran Joshi, Dinesh Bharadia, and Sachin Katti. SpotFi: Decimeter

Level Localization Using WiFi. In Proceedings of the 2015 ACM Conference on Special

Interest Group on Data Communication, SIGCOMM ’15, pages 269–282, New York, NY,

USA, 2015. ACM.

102

https://www.stairpartsandmore.com/stair-anatomy/

REFERENCES 103

[9] Deepak Vasisht, Swarun Kumar, and Dina Katabi. Decimeter-Level Localization with a

Single WiFi Access Point. In 13th USENIX Symposium on Networked Systems Design and

Implementation (NSDI 16), pages 165–178, 2016.

[10] Liqun Li, Pan Hu, Chunyi Peng, Guobin Shen, and Feng Zhao. Epsilon: a visible light based

positioning system. In Proceedings of the 11th USENIX Conference on Networked Systems

Design and Implementation, NSDI ’14, pages 331–343. USENIX Association, 2014.

[11] Ye-Sheng Kuo, Pat Pannuto, Ko-Jen Hsiao, and Prabal Dutta. Luxapose: Indoor Positioning

with Mobile Phones and Visible Light. In Proceedings of the 20th Annual International

Conference on Mobile Computing and Networking, MobiCom ’14, pages 447–458, New York,

NY, USA, 2014. ACM.

[12] A. Komninos and M. Dunlop. Text Input on a Smart Watch. IEEE Pervasive Computing,

13(4):50–58, October 2014.

[13] Touchone. Touchone keyboard. http://www.touchone.net/, 2017.

[14] Muhammad Shoaib, Stephan Bosch, Ozlem Durmaz Incel, Hans Scholten, and Paul J. M.

Havinga. A Survey of Online Activity Recognition Using Mobile Phones. Sensors, 15(1):2059–

2085, January 2015.

[15] A. Moncada-Torres, K. Leuenberger, R. Gonzenbach, A. Luft, and R. Gassert. Activity clas-

sification based on inertial and barometric pressure sensors at different anatomical locations.

Physiological Measurement, 35(7):1245, 2014.

[16] Jorge-L. Reyes-Ortiz, Luca Oneto, Albert Samà, Xavier Parra, and Davide Anguita.

Transition-Aware Human Activity Recognition Using Smartphones. Neurocomputing,

171:754–767, January 2016.

http://www.touchone.net/

104 REFERENCES

[17] Akram Bayat, Marc Pomplun, and Duc A. Tran. A Study on Human Activity Recogni-

tion Using Accelerometer Data from Smartphones. Procedia Computer Science, 34:450–457,

January 2014.

[18] Jian Bo Yang, Minh Nhut Nguyen, Phyo Phyo San, Xiao Li Li, and Shonali Krishnaswamy.

Deep Convolutional Neural Networks on Multichannel Time Series for Human Activity Recog-

nition. In Proceedings of the 24th International Conference on Artificial Intelligence, IJ-

CAI’15, pages 3995–4001, Buenos Aires, Argentina, 2015. AAAI Press.

[19] Muhammad Shoaib, Stephan Bosch, Ozlem Durmaz Incel, Hans Scholten, and Paul J. M.

Havinga. Fusion of Smartphone Motion Sensors for Physical Activity Recognition. Sensors,

14(6):10146–10176, June 2014.

[20] Yonggang Lu, Ye Wei, Li Liu, Jun Zhong, Letian Sun, and Ye Liu. Towards unsupervised

physical activity recognition using smartphone accelerometers. Multimedia Tools and Appli-

cations, 76(8):10701–10719, April 2017.

[21] Yongjin Kwon, Kyuchang Kang, and Changseok Bae. Unsupervised learning for human ac-

tivity recognition using smartphone sensors. Expert Systems with Applications, 41(14):6067–

6074, October 2014.

[22] Charissa Ann Ronao and Sung-Bae Cho. Human activity recognition with smartphone sensors

using deep learning neural networks. Expert Systems with Applications, 59:235–244, 2016.

[23] Newzoo. Global mobile market report, 2017.

[24] WorldoMeters. World population clock. http://www.worldometers.info/world-

population/, 2017.

[25] Cindy Liu. Worldwide internet and mobile user: Emarketer’s updated estimates for 2015,

2015.

http://www.worldometers.info/world-population/
http://www.worldometers.info/world-population/

REFERENCES 105

[26] AppBrain. Number of available applications in the google play store from december 2009 to

december 2017. http://www.statista.com/statistics/266210/number-of-available-

applications-in-the-google-play-store/, 2017.

[27] Apple and AppleInsider. Number of available apps in the apple app store from july 2008

to january 2017. http://www.statista.com/statistics/263795/number-of-available-

apps-in-the-apple-app-store/, 2017.

[28] ComScore. U.s. cross-platform future in focus, 2017.

[29] Charles Newark-French. Mobile apps put the web in their rear-view mir-

ror. http://flurrymobile.tumblr.com/post/113367503685/mobile-apps-put-the-

web-in-their-rear-view-mirror, 2011.

[30] Xinye Lin, Xiao Xia, Shaohe Lv, and Xiaodong Wang. Reserach on the predictability of mobile

app usage. In The 7th Joint Conference on Harmonious Human Machine Environment,

September 2011.

[31] Xiao Xia, Xinye Lin, Xiaodong Wang, Xingming Zhou, and Deke Guo. Apps at hand:

Personalized live homescreen based on mobile app usage prediction. IEICE Transactions on

Information and Systems, E96.D(12):2860–2864, 2013.

[32] Craig Aszkler. Acceleration, shock and vibration sensors. In Sensor Technology Handbook,

pages 137–159. Elsevier, 2005.

[33] Weixi Gu, Yuxun Zhou, Zimu Zhou, Xi Liu, Han Zou, Pei Zhang, Costas J. Spanos, and Lin

Zhang. SugarMate: Non-intrusive Blood Glucose Monitoring with Smartphones. Proc. ACM

Interact. Mob. Wearable Ubiquitous Technol., 1(3):54:1–54:27, September 2017.

[34] Tian Hao, Chongguang Bi, Guoliang Xing, Roxane Chan, and Linlin Tu. MindfulWatch: A

Smartwatch-Based System For Real-Time Respiration Monitoring During Meditation. Proc.

ACM Interact. Mob. Wearable Ubiquitous Technol., 1(3):57:1–57:19, September 2017.

http://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
http://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
http://www.statista.com/statistics/263795/number-of-available-apps-in-the-apple-app-store/
http://www.statista.com/statistics/263795/number-of-available-apps-in-the-apple-app-store/
http://flurrymobile.tumblr.com/post/113367503685/mobile-apps-put-the-web-in-their-rear-view-mirror
http://flurrymobile.tumblr.com/post/113367503685/mobile-apps-put-the-web-in-their-rear-view-mirror

106 REFERENCES

[35] Reham Mohamed and Moustafa Youssef. HeartSense: Ubiquitous Accurate Multi-Modal

Fusion-based Heart Rate Estimation Using Smartphones. Proc. ACM Interact. Mob. Wearable

Ubiquitous Technol., 1(3):97:1–97:18, September 2017.

[36] Xiao Zhang, Wenzhong Li, Xu Chen, and Sanglu Lu. MoodExplorer: Towards Compound

Emotion Detection via Smartphone Sensing. Proc. ACM Interact. Mob. Wearable Ubiquitous

Technol., 1(4):176:1–176:30, January 2018.

[37] WHO Ageing and LC Unit. Who global report on falls prevention in older age. World Health

Organization, 2008.

[38] Jeffrey M Rothschild, David W Bates, and Lucian L Leape. Preventable medical injuries in

older patients. Archives of internal medicine, 160(18):2717–2728, 2000.

[39] J. K. Lee, S. N. Robinovitch, and E. J. Park. Inertial Sensing-Based Pre-Impact Detection of

Falls Involving Near-Fall Scenarios. IEEE Transactions on Neural Systems and Rehabilitation

Engineering, 23(2):258–266, March 2015.

[40] L. J. Kau and C. S. Chen. A Smart Phone-Based Pocket Fall Accident Detection, Position-

ing, and Rescue System. IEEE Journal of Biomedical and Health Informatics, 19(1):44–56,

January 2015.

[41] B. Aguiar, T. Rocha, J. Silva, and I. Sousa. Accelerometer-based fall detection for smart-

phones. In 2014 IEEE International Symposium on Medical Measurements and Applications

(MeMeA), pages 1–6, June 2014.

[42] Rui Wang, Weichen Wang, Min S. H. Aung, Dror Ben-Zeev, Rachel Brian, Andrew T. Camp-

bell, Tanzeem Choudhury, Marta Hauser, John Kane, Emily A. Scherer, and Megan Walsh.

Predicting Symptom Trajectories of Schizophrenia Using Mobile Sensing. Proc. ACM Inter-

act. Mob. Wearable Ubiquitous Technol., 1(3):110:1–110:24, September 2017.

REFERENCES 107

[43] Katrin Plaumann, Milos Babic, Tobias Drey, Witali Hepting, Daniel Stooss, and Enrico

Rukzio. Improving Input Accuracy on Smartphones for Persons Who Are Affected by Tremor

Using Motion Sensors. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., 1(4):156:1–

156:30, January 2018.

[44] Katrin Plaumann, Milos Babic, Tobias Drey, Witali Hepting, Daniel StooSS, and Enrico

Rukzio. Towards Improving Touchscreen Input Speed and Accuracy on Smartphones for

Tremor Affected Persons. In Proceedings of the 2016 ACM International Joint Conference

on Pervasive and Ubiquitous Computing: Adjunct, UbiComp ’16, pages 357–360, New York,

NY, USA, 2016. ACM.

[45] Benoit Carignan, Jean-François Daneault, and Christian Duval. Measuring Tremor with a

Smartphone. In Mobile Health Technologies, Methods in Molecular Biology, pages 359–374.

Humana Press, New York, NY, 2015.

[46] Alan Michael Woods, Mariusz Nowostawski, Elizabeth A. Franz, and Martin Purvis. Parkin-

sons disease and essential tremor classification on mobile device. Pervasive and Mobile Com-

puting, 13:1–12, August 2014.

[47] M. Mielke and R. Brueck. Design and evaluation of a smartphone application for non-speech

sound awareness for people with hearing loss. In 2015 37th Annual International Conference

of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 5008–5011, August

2015.

[48] Liu Sicong, Zhou Zimu, Du Junzhao, Shangguan Longfei, Jun Han, and Xin Wang. UbiEar:

Bringing Location-independent Sound Awareness to the Hard-of-hearing People with Smart-

phones. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., 1(2):17:1–17:21, June 2017.

[49] Mario A. Gutierrez, Michelle L. Fast, Anne H. Ngu, and Byron J. Gao. Real-Time Prediction

of Blood Alcohol Content Using Smartwatch Sensor Data. In Smart Health, Lecture Notes

in Computer Science, pages 175–186. Springer, Cham, November 2015.

108 REFERENCES

[50] Hanlu Ye, Meethu Malu, Uran Oh, and Leah Findlater. Current and Future Mobile and

Wearable Device Use by People with Visual Impairments. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, CHI ’14, pages 3123–3132, New York,

NY, USA, 2014. ACM.

[51] Radu-Daniel Vatavu. Visual Impairments and Mobile Touchscreen Interaction: State-of-the-

Art, Causes of Visual Impairment, and Design Guidelines. International Journal of Human-

Computer Interaction, 33(6):486–509, June 2017.

[52] Yiqin Lu, Chun Yu, Xin Yi, Yuanchun Shi, and Shengdong Zhao. BlindType: Eyes-Free Text

Entry on Handheld Touchpad by Leveraging Thumb’s Muscle Memory. Proc. ACM Interact.

Mob. Wearable Ubiquitous Technol., 1(2):18:1–18:24, June 2017.

[53] Martin Weigel and Jürgen Steimle. DeformWear: Deformation Input on Tiny Wearable

Devices. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., 1(2):28:1–28:23, June

2017.

[54] Shaikh Shawon Arefin Shimon, Courtney Lutton, Zichun Xu, Sarah Morrison-Smith,

Christina Boucher, and Jaime Ruiz. Exploring Non-touchscreen Gestures for Smartwatches.

In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, CHI

’16, pages 3822–3833, New York, NY, USA, 2016. ACM.

[55] Youli Chang, Sehi L’Yi, Kyle Koh, and Jinwook Seo. Understanding Users’ Touch Behavior

on Large Mobile Touch-Screens and Assisted Targeting by Tilting Gesture. In Proceedings of

the 33rd Annual ACM Conference on Human Factors in Computing Systems, CHI ’15, pages

1499–1508, New York, NY, USA, 2015. ACM.

[56] Cheng Zhang, Junrui Yang, Caleb Southern, Thad E. Starner, and Gregory D. Abowd.

WatchOut: Extending Interactions on a Smartwatch with Inertial Sensing. In Proceedings of

the 2016 ACM International Symposium on Wearable Computers, ISWC ’16, pages 136–143,

New York, NY, USA, 2016. ACM.

REFERENCES 109

[57] Ke-Yu Chen, Rahul C. Shah, Jonathan Huang, and Lama Nachman. Mago: Mode of Trans-

port Inference Using the Hall-Effect Magnetic Sensor and Accelerometer. Proc. ACM Interact.

Mob. Wearable Ubiquitous Technol., 1(2):8:1–8:23, June 2017.

[58] Yu Guan and Thomas Plötz. Ensembles of Deep LSTM Learners for Activity Recognition

Using Wearables. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., 1(2):11:1–11:28,

June 2017.

[59] Sangwon Bae, Denzil Ferreira, Brian Suffoletto, Juan C. Puyana, Ryan Kurtz, Tammy Chung,

and Anind K. Dey. Detecting Drinking Episodes in Young Adults Using Smartphone-based

Sensors. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., 1(2):5:1–5:36, June 2017.

[60] Landu Jiang, Xinye Lin, Xue Liu, Chongguang Bi, and Guoliang Xing. SafeDrive: Detecting

Distracted Driving Behaviors Using Wrist-Worn Devices. Proc. ACM Interact. Mob. Wearable

Ubiquitous Technol., 1(4):144:1–144:22, January 2018.

[61] Chongguang Bi, Jun Huang, Guoliang Xing, Landu Jiang, Xue Liu, and Minghua Chen. Safe-

watch: A wearable hand motion tracking system for improving driving safety. In Internet-

of-Things Design and Implementation (IoTDI), 2017 IEEE/ACM Second International Con-

ference on, pages 223–232. IEEE, 2017.

[62] C. Karatas, L. Liu, H. Li, J. Liu, Y. Wang, S. Tan, J. Yang, Y. Chen, M. Gruteser, and

R. Martin. Leveraging wearables for steering and driver tracking. In IEEE INFOCOM 2016

- The 35th Annual IEEE International Conference on Computer Communications, pages 1–9,

April 2016.

[63] Dongyao Chen, Kyong-Tak Cho, Sihui Han, Zhizhuo Jin, and Kang G. Shin. Invisible Sens-

ing of Vehicle Steering with Smartphones. In Proceedings of the 13th Annual International

Conference on Mobile Systems, Applications, and Services, MobiSys ’15, pages 1–13, New

York, NY, USA, 2015. ACM.

110 REFERENCES

[64] Xiao Sun, Li Qiu, Yibo Wu, Yeming Tang, and Guohong Cao. SleepMonitor: Monitoring

Respiratory Rate and Body Position During Sleep Using Smartwatch. Proc. ACM Interact.

Mob. Wearable Ubiquitous Technol., 1(3):104:1–104:22, September 2017.

[65] Jun-Ki Min, Afsaneh Doryab, Jason Wiese, Shahriyar Amini, John Zimmerman, and Jason I.

Hong. Toss ’N’ Turn: Smartphone As Sleep and Sleep Quality Detector. In Proceedings of

the SIGCHI Conference on Human Factors in Computing Systems, CHI ’14, pages 477–486,

New York, NY, USA, 2014. ACM.

[66] Zhenyu Chen, M. Lin, Fanglin Chen, N. D. Lane, G. Cardone, Rui Wang, Tianxing Li,

Yiqiang Chen, T. Choudhury, and A. T. Campbell. Unobtrusive sleep monitoring using

smartphones. In 2013 7th International Conference on Pervasive Computing Technologies

for Healthcare and Workshops, pages 145–152, May 2013.

[67] Keunseo Kim, Hengameh Zabihi, Heeyoung Kim, and Uichin Lee. TrailSense: A Crowdsens-

ing System for Detecting Risky Mountain Trail Segments with Walking Pattern Analysis.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., 1(3):65:1–65:31, September 2017.

[68] A. Bajpai, V. Jilla, V. N. Tiwari, S. M. Venkatesan, and R. Narayanan. Quantifiable fitness

tracking using wearable devices. In 2015 37th Annual International Conference of the IEEE

Engineering in Medicine and Biology Society (EMBC), pages 1633–1637, August 2015.

[69] Dan Morris, T. Scott Saponas, Andrew Guillory, and Ilya Kelner. RecoFit: Using a Wearable

Sensor to Find, Recognize, and Count Repetitive Exercises. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, CHI ’14, pages 3225–3234, New York,

NY, USA, 2014.

[70] S. Bhattacharya and N. D. Lane. From smart to deep: Robust activity recognition on

smartwatches using deep learning. In 2016 IEEE International Conference on Pervasive

Computing and Communication Workshops (PerCom Workshops), pages 1–6, March 2016.

REFERENCES 111

[71] Yuki Kubo, Ryosuke Takada, Buntarou Shizuki, and Shin Takahashi. Exploring Context-

Aware User Interfaces for Smartphone-Smartwatch Cross-Device Interaction. Proc. ACM

Interact. Mob. Wearable Ubiquitous Technol., 1(3):69:1–69:21, September 2017.

[72] G. M. Weiss, J. L. Timko, C. M. Gallagher, K. Yoneda, and A. J. Schreiber. Smartwatch-

based activity recognition: A machine learning approach. In 2016 IEEE-EMBS International

Conference on Biomedical and Health Informatics (BHI), pages 426–429, February 2016.

[73] Anshul Rai, Krishna Kant Chintalapudi, Venkata N. Padmanabhan, and Rijurekha Sen.

Zee: Zero-effort crowdsourcing for indoor localization. In Proceedings of the 18th Annual

International Conference on Mobile Computing and Networking, Mobicom ’12, pages 293–

304, New York, NY, USA, 2012. ACM.

[74] Oliver Woodman and Robert Harle. Pedestrian Localisation for Indoor Environments. In

Proceedings of the 10th International Conference on Ubiquitous Computing, UbiComp ’08,

pages 114–123, New York, NY, USA, 2008. ACM.

[75] Fan Li, Chunshui Zhao, Guanzhong Ding, Jian Gong, Chenxing Liu, and Feng Zhao. A

reliable and accurate indoor localization method using phone inertial sensors. In Proceedings

of the 2012 ACM Conference on Ubiquitous Computing, UbiComp ’12, pages 421–430. ACM,

2012.

[76] H. Nurminen, A. Ristimaki, S. Ali-Loytty, and R. Piche. Particle filter and smoother for

indoor localization. In 2013 International Conference on Indoor Positioning and Indoor

Navigation (IPIN), pages 1–10, October 2013.

[77] He Wang, Souvik Sen, Ahmed Elgohary, Moustafa Farid, Moustafa Youssef, and Romit Roy

Choudhury. No Need to War-drive: Unsupervised Indoor Localization. In Proceedings of the

10th International Conference on Mobile Systems, Applications, and Services, MobiSys ’12,

pages 197–210, New York, NY, USA, 2012. ACM.

112 REFERENCES

[78] Haibo Ye, Tao Gu, Xiaorui Zhu, Jinwei Xu, Xianping Tao, Jian Lu, and Ning Jin. Ftrack:

Infrastructure-free floor localization via mobile phone sensing. In Pervasive Computing and

Communications (PerCom), 2012 IEEE International Conference on, PerCom ’12, pages

2–10. IEEE, March 2012.

[79] Haibo Ye, Tao Gu, Xianping Tao, and Jian Lu. B-loc: Scalable floor localization using

barometer on smartphone. In Mobile Ad Hoc and Sensor Systems (MASS), 2014 IEEE 11th

International Conference on, pages 127–135. IEEE, 2014.

[80] V. Radu and M. K. Marina. HiMLoc: Indoor smartphone localization via activity aware

Pedestrian Dead Reckoning with selective crowdsourced WiFi fingerprinting. In 2013 In-

ternational Conference on Indoor Positioning and Indoor Navigation (IPIN), pages 1–10,

October 2013.

[81] Melania Susi, Valérie Renaudin, and Gérard Lachapelle. Motion mode recognition and step

detection algorithms for mobile phone users. Sensors, 13(2):1539–1562, 2013.

[82] Wiebren Zijlstra and At L Hof. Assessment of spatio-temporal gait parameters from trunk

accelerations during human walking. Gait & Posture, 18(2):1–10, October 2003.

[83] T. von Buren, P.D. Mitcheson, T.C. Green, E.M. Yeatman, A.S. Holmes, and G. Troster.

Optimization of inertial micropower generators for human walking motion. IEEE Sensors

Journal, 6(1):28–38, February 2006.

[84] A.T.M. Willemsen, F. Bloemhof, and H.B.K. Boom. Automatic stance-swing phase detection

from accelerometer data for peronealcmerve stimulation. IEEE Transactions on Biomedical

Engineering, 37(12):1201–1208, December 1990.

[85] Jun Yang. Toward physical activity diary: Motion recognition using simple acceleration

features with mobile phones. In Proceedings of the 1st International Workshop on Interactive

Multimedia for Consumer Electronics, IMCE ’09, pages 1–10, New York, NY, USA, 2009.

ACM.

REFERENCES 113

[86] Sheng Zhong, Li Wang, A.M. Bernardos, and Mei Song. An accurate and adaptive pedometer

integrated in mobile health application. In IET International Conference on Wireless Sensor

Network, 2010. IET-WSN, pages 78–83, November 2010.

[87] Rolf Moe-Nilssen and Jorunn L. Helbostad. Estimation of gait cycle characteristics by trunk

accelerometry. Journal of Biomechanics, 37(1):121–126, January 2004.

[88] Chihiro Mizuike, Shohei Ohgi, and Satoru Morita. Analysis of stroke patient walking dynam-

ics using a tri-axial accelerometer. Gait & Posture, 30(1):60–64, July 2009.

[89] Justin J. Kavanagh and Hylton B. Menz. Accelerometry: A technique for quantifying move-

ment patterns during walking. Gait & Posture, 28(1):1–15, July 2008.

[90] Nirupam Roy, He Wang, and Romit Roy Choudhury. I Am a Smartphone and I Can Tell

My User’s Walking Direction. In Proceedings of the 12th Annual International Conference

on Mobile Systems, Applications, and Services, MobiSys ’14, pages 329–342, New York, NY,

USA, 2014. ACM.

[91] Encyclopædia Britannica. Diagram of an escalator, 207.

[92] J. D. Hol, T. B. Schon, and F. Gustafsson. On Resampling Algorithms for Particle Filters. In

2006 IEEE Nonlinear Statistical Signal Processing Workshop, pages 79–82, September 2006.

[93] M. I. Shamos and D. Hoey. Geometric intersection problems. In , 17th Annual Symposium

on Foundations of Computer Science, 1976, pages 208–215, October 1976.

[94] 2015 international building code. http://codes.iccsafe.org/app/book/toc/2015/I-

Codes/2015%20IBC%20HTML/index.html.

[95] Moustafa Youssef and Ashok Agrawala. The horus WLAN location determination system. In

Proceedings of the 3rd international conference on Mobile systems, applications, and services,

MobiSys ’05, pages 205–218. ACM, 2005.

http://codes.iccsafe.org/app/book/toc/2015/I-Codes/2015%20IBC%20HTML/index.html
http://codes.iccsafe.org/app/book/toc/2015/I-Codes/2015%20IBC%20HTML/index.html

114 REFERENCES

[96] Google. A new frontier for google maps: mapping the indoors. http://googleblog.

blogspot.ca/2011/11/new-frontier-for-google-maps-mapping.html, 2011.

[97] Rahul Desai. Nokia leads the way with indoor mapping. http://360.here.com/2012/07/

16/nokia-leads-the-way-with-indoor-mapping/, 2012.

[98] Marek Strassenburg-Kleciak. Openstreetmap to create indoor maps. http://

geospatialworld.net/Magazine/MArticleView.aspx?aid=31102, 2014.

[99] Google. Google maps. https://www.google.com/maps/about/partners/indoormaps/,

2015.

[100] David A Winter, Aftab E Patla, and James S Frank. Assessment of balance control in humans.

Med Prog Technol, 16(1-2):31–51, 1990.

[101] D. Gusenbauer, C. Isert, and J. Krösche. Self-contained indoor positioning on off-the-shelf

mobile devices. In 2010 International Conference on Indoor Positioning and Indoor Naviga-

tion (IPIN), pages 1–9, September 2010.

[102] J. Yin, Q. Yang, and J. J. Pan. Sensor-Based Abnormal Human-Activity Detection. IEEE

Transactions on Knowledge and Data Engineering, 20(8):1082–1090, August 2008.

[103] Stephen J. Preece, John Y. Goulermas, Laurence P. J. Kenney, Dave Howard, Kenneth

Meijer, and Robin Crompton. Activity identification using body-mounted sensorsa review of

classification techniques. Physiological Measurement, 30(4):R1, April 2009.

[104] A. Varshavsky, Anthony LaMarca, Jeffrey Hightower, and E. de Lara. The SkyLoc Floor Lo-

calization System. In Fifth Annual IEEE International Conference on Pervasive Computing

and Communications, 2007. PerCom ’07, pages 125–134, March 2007.

[105] S. Gansemer, S. Hakobyan, S. Puschel, and U. Grosmann. 3d WLAN indoor positioning

in multi-storey buildings. In IEEE International Workshop on Intelligent Data Acquisition

http://googleblog.blogspot.ca/2011/11/new-frontier-for-google-maps-mapping.html
http://googleblog.blogspot.ca/2011/11/new-frontier-for-google-maps-mapping.html
http://360.here.com/2012/07/16/nokia-leads-the-way-with-indoor-mapping/
http://360.here.com/2012/07/16/nokia-leads-the-way-with-indoor-mapping/
http://geospatialworld.net/Magazine/MArticleView.aspx?aid=31102
http://geospatialworld.net/Magazine/MArticleView.aspx?aid=31102
https://www.google.com/maps/about/partners/indoormaps/

REFERENCES 115

and Advanced Computing Systems: Technology and Applications, 2009. IDAACS 2009, pages

669–672, September 2009.

[106] F. Alsehly, T. Arslan, and Z. Sevak. Indoor positioning with floor determination in multi story

buildings. In 2011 International Conference on Indoor Positioning and Indoor Navigation

(IPIN), pages 1–7, September 2011.

[107] Hung-Huan Liu and Yu-Non Yang. WiFi-based indoor positioning for multi-floor Environ-

ment. In TENCON 2011 - 2011 IEEE Region 10 Conference, pages 597–601, November

2011.

[108] S. Vanini and S. Giordano. Adaptive context-agnostic floor transition detection on smart

mobile devices. In 2013 IEEE International Conference on Pervasive Computing and Com-

munications Workshops (PerCom Workshops), pages 2–7, March 2013.

[109] Android. Android wear 2.0 developer preview. https://developer.android.com/wear/

preview/index.html, 2016.

[110] Sheng Shen, He Wang, and Romit Roy Choudhury. I am a Smartwatch and I can Track my

User’s Arm. In Proceedings of the 14th annual international conference on Mobile systems,

applications, and services, 2016.

[111] Chao Xu, Parth H. Pathak, and Prasant Mohapatra. Finger-writing with Smartwatch: A

Case for Finger and Hand Gesture Recognition Using Smartwatch. In Proceedings of the

16th International Workshop on Mobile Computing Systems and Applications, HotMobile’15,

pages 9–14, New York, NY, USA, 2015. ACM.

[112] Lorenzo Porzi, Stefano Messelodi, Carla Mara Modena, and Elisa Ricci. A Smart Watch-based

Gesture Recognition System for Assisting People with Visual Impairments. In Proceedings

of the 3rd ACM International Workshop on Interactive Multimedia on Mobile & Portable

Devices, IMMPD ’13, pages 19–24, New York, NY, USA, 2013. ACM.

https://developer.android.com/wear/preview/index.html
https://developer.android.com/wear/preview/index.html

116 REFERENCES

[113] D. Moazen, S. A. Sajjadi, and A. Nahapetian. AirDraw: Leveraging smart watch motion

sensors for mobile human computer interactions. In 2016 13th IEEE Annual Consumer

Communications Networking Conference (CCNC), pages 442–446, January 2016.

[114] O J Lewis, R J Hamshere, and T M Bucknill. The anatomy of the wrist joint. Journal of

Anatomy, 106(Pt 3):539–552, May 1970.

[115] Emmanuel Munguia Tapia. Using machine learning for real-time activity recognition and

estimation of energy expenditure. Phd thesis, Massachusetts Institute of Technology, 2008.

[116] Thomas G. Dietterich. An Experimental Comparison of Three Methods for Constructing

Ensembles of Decision Trees: Bagging, Boosting, and Randomization. Machine Learning,

40(2):139–157, August 2000.

[117] Tin Kam Ho. Random decision forests. In Proceedings of 3rd International Conference on

Document Analysis and Recognition, volume 1, pages 278–282 vol.1, August 1995.

[118] Chih-Wei Hsu and Chih-Jen Lin. A comparison of methods for multiclass support vector

machines. IEEE Transactions on Neural Networks, 13(2):415–425, March 2002.

[119] Koby Crammer and Yoram Singer. On the Algorithmic Implementation of Multiclass Kernel-

based Vector Machines. J. Mach. Learn. Res., 2:265–292, March 2002.

[120] G. Zipf. Selective Studies and the Principle of Relative Frequency in Language. Harvard

University Press, Cambridge, MA, 1932.

[121] Joshua Goodman, Gina Venolia, Keith Steury, and Chauncey Parker. Language Modeling

for Soft Keyboards. In Proceedings of the 7th International Conference on Intelligent User

Interfaces, IUI ’02, pages 194–195, New York, NY, USA, 2002. ACM.

[122] Afsaneh Fazly and Graeme Hirst. Testing the Efficacy of Part-of-speech Information in Word

Completion. In Proceedings of the 2003 EACL Workshop on Language Modeling for Text

REFERENCES 117

Entry Methods, TextEntry ’03, pages 9–16, Stroudsburg, PA, USA, 2003. Association for

Computational Linguistics.

[123] Christopher P. Willmore, Nicholas K. Jong, and Justin S. HOGG. Text prediction using

combined word n-gram and unigram language models, December 2015.

[124] first20hours. google-10000-list. https://github.com/first20hours/google-10000-

english, 2017.

[125] I. Scott MacKenzie and R. William Soukoreff. Phrase Sets for Evaluating Text Entry Tech-

niques. In CHI ’03 Extended Abstracts on Human Factors in Computing Systems, CHI EA

’03, pages 754–755, New York, NY, USA, 2003. ACM.

[126] Christoph Amma, Marcus Georgi, and Tanja Schultz. Airwriting: a wearable handwriting

recognition system. Personal and Ubiquitous Computing, 18(1):191–203, February 2013.

[127] Sharad Vikram, Lei Li, and Stuart Russell. Handwriting and Gestures in the Air, Recognizing

on the Fly. In Proceedings of the CHI, volume 13, 2013.

[128] X. Zhang, Z. Ye, L. Jin, Z. Feng, and S. Xu. A New Writing Experience: Finger Writing in

the Air Using a Kinect Sensor. IEEE MultiMedia, 20(4):85–93, October 2013.

[129] K. K. Biswas and S. K. Basu. Gesture recognition using Microsoft Kinect #x00ae;. In

The 5th International Conference on Automation, Robotics and Applications, pages 100–103,

December 2011.

[130] Yi Li. Hand gesture recognition using Kinect. In 2012 IEEE International Conference on

Computer Science and Automation Engineering, pages 196–199, June 2012.

[131] Zhou Ren, Jingjing Meng, Junsong Yuan, and Zhengyou Zhang. Robust Hand Gesture

Recognition with Kinect Sensor. In Proceedings of the 19th ACM International Conference

on Multimedia, MM ’11, pages 759–760, New York, NY, USA, 2011. ACM.

https://github.com/first20hours/google-10000-english
https://github.com/first20hours/google-10000-english

118 REFERENCES

[132] Louis Vuurpijl and Lambert Schomaker. Coarse Writing-Style Clustering Based on Simple

Stroke-Related Features. 1996.

[133] H. Bunke, M. Roth, and E. G. Schukat-Talamazzini. Off-line cursive handwriting recognition

using hidden markov models. Pattern Recognition, 28(9):1399–1413, September 1995.

[134] Alex Graves and Juergen Schmidhuber. Offline Handwriting Recognition with Multidimen-

sional Recurrent Neural Networks. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou,

editors, Advances in Neural Information Processing Systems 21, pages 545–552. Curran As-

sociates, Inc., 2009.

[135] R. Plamondon and S. N. Srihari. Online and off-line handwriting recognition: a comprehen-

sive survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(1):63–84,

January 2000.

[136] Ziv Bar-Yossef and Naama Kraus. Context-sensitive Query Auto-completion. In Proceedings

of the 20th International Conference on World Wide Web, WWW ’11, pages 107–116, New

York, NY, USA, 2011. ACM.

[137] Liangda Li, Hongbo Deng, Anlei Dong, Yi Chang, Ricardo Baeza-Yates, and Hongyuan Zha.

Exploring Query Auto-Completion and Click Logs for Contextual-Aware Web Search and

Query Suggestion. In Proceedings of the 26th International Conference on World Wide Web,

WWW ’17, pages 539–548, Republic and Canton of Geneva, Switzerland, 2017. International

World Wide Web Conferences Steering Committee.

[138] Surajit Chaudhuri and Raghav Kaushik. Extending Autocompletion to Tolerate Errors. In

Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data,

SIGMOD ’09, pages 707–718, New York, NY, USA, 2009. ACM.

[139] Shengyue Ji, Guoliang Li, Chen Li, and Jianhua Feng. Efficient Interactive Fuzzy Keyword

Search. In Proceedings of the 18th International Conference on World Wide Web, WWW ’09,

pages 371–380, New York, NY, USA, 2009. ACM.

REFERENCES 119

[140] Guoliang Li, Shengyue Ji, Chen Li, and Jianhua Feng. Efficient Fuzzy Full-text Type-ahead

Search. The VLDB Journal, 20(4):617–640, August 2011.

[141] Kenneth C. Arnold, Krzysztof Z. Gajos, and Adam T. Kalai. On Suggesting Phrases vs.

Predicting Words for Mobile Text Composition. In Proceedings of the 29th Annual Symposium

on User Interface Software and Technology, UIST ’16, pages 603–608, New York, NY, USA,

2016. ACM.

[142] Nestor Garay-Vitoria and Julio Abascal. Text prediction systems: a survey. Universal Access

in the Information Society, 4(3):188–203, March 2006.

	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Practical needs
	Hardware and software are ready
	Sensing opportunities

	Challenges
	Noise removal.
	LocMe: Locomotion state recognition.
	SHOW: Large scale data collection.

	Contributions

	Background
	The Popularity of Mobile Devices
	Sensors on the Mobile Devices
	Accelerometer
	Gyroscope
	Magnetometer
	Barometer
	Light Sensor
	Proximity Sensor
	Heart Rate Sensor

	Applications Employing the Sensors
	Healthcare
	User Input
	Human Behaviors and Activities

	LocMe
	Introduction
	System Overview
	Sensor Agent
	Coordinate transformation.
	Noise removal.
	Sensing Rate Control.

	Locomotion Detector (LD)
	Walking Detection.
	Escalator Detection.
	Elevator Detection.
	Static State Detection.

	LocalizationAgent
	Location Updating.
	Floor Detection.

	Map Agent
	Evaluation
	Locomotion Detector Performance
	Floor Detection Performance
	Field Test

	Related Work
	Conclusion

	SHOW
	Introduction
	Comprehend Handwriting with A Smartwatch
	Watch hand v.s. Writing hand
	Support Point: the Controller of Speed, Comfort, and Amplitude
	Watch Rotation: Challenge and Opportunity

	System Overview
	Noise Removal
	Data Flow

	Character Recognition
	Rotation Injection
	Feature Extraction
	Learning

	From Character to Word
	Character Separation
	Character Ambiguity
	Manual Correction
	Recognition Feedback
	Special Use Cases

	Evaluation
	Experiment settings
	Character Recognition Tests
	Input Efficiency
	Performance on different surfaces

	Related Work
	Writing Recognition
	Word Auto-Completion

	Conclusion

	Conclusion and Discussion
	The re-initialization problem for LocMe
	Handwriting privacy leak
	Cursive and Context-aware: A Smarter SHOW
	A Chinese Version of SHOW

	References

