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Abstract

This thesis concerns groups acting on spaces of combinatorial nonposi-

tive curvature. The first part of this thesis presents a discrete Morse-theoretic

method for proving that a regular CW complex is homeomorphic to a sphere.

We use this method to define bisimplices, the cells of a class of regular CW

complexes we call bisimplicial complexes. The 1-skeleta of bisimplices are com-

plete bipartite graphs making them suitable in constructing higher dimensional

skeleta for bipartite graphs. We show that the flag bisimplicial completion of

a finite bipartite bi-dismantlable graph is collapsible. We use this to show

that the flag bisimplicial completion of a quadric complex is contractible and

to construct a compact K(G, 1) for a torsion-free quadric group G.

The second part of this thesis introduces shortcut graphs and groups.

Shortcut graphs are graphs in which long enough cycles cannot embed with-

out metric distortion. Shortcut groups are groups which act properly and

cocompactly on shortcut graphs. These notions unify a surprisingly broad

family of graphs and groups of interest in geometric group theory and metric

graph theory including: systolic and quadric groups (in particular finitely pre-

sented C(6) and C(4)-T(4) small cancellation groups), cocompactly cubulated

groups, hyperbolic groups, Coxeter groups and the Baumslag-Solitar group

BS(1, 2). Most of these examples satisfy a strong form of the shortcut prop-

erty. We show that shortcut groups are finitely presented, have exponential

isoperimetric and isodiametric function and are closed under direct products

and under HNN extensions and amalgamated products over finite subgroups.

We show that groups satisfying the strong form of the shortcut property sat-

isfy these properties and also have polynomial isoperimetric and isodiametric

function.

iv



Abrégé

Cette thèse concerne les groupes qui agissent sur des espaces combina-

toires à courbure négative ou nulle. La première partie de cette thèse présente

une méthode basée sur la théorie de Morse discrète pour démontrer qu’un

CW-complexe régulier est homéomorphe à une sphère. Nous utilisons cette

méthode pour définir les bisimplexes, les cellules d’une classe de CW-complexes

réguliers que nous appelons les complexes bisimpliciaux. Les 1-squelettes des

bisimplexes sont des graphes bipartis complets et donc utiles dans la construc-

tion des squelettes de haute dimension des graphes bipartis. Nous montrons

que le complété de drapeau bisimplicial d’un graphe biparti fini bi-démontable

est collapsible. Nous utilisons ce résultat pour montrer que le complété de dra-

peau bisimplicial d’un complexe quadrique est contractile et pour construire

un K(G, 1) pour un groupe quadrique sans torsion G.

La deuxième partie de cette thèse introduit les graphes et les groupes

shortcuts. Les graphes shortcuts sont les graphes dans lesquelles les cycles

assez long ne peuvent pas plonger sans distortion métrique. Les groupes

shortcuts sont les groupes qui agissent proprement et cocompactement sur les

graphes shortcuts. Ces notions unifient une famille assez large et intéressante

de graphes et de groupes notamment dans la théorie des groupes géométriques

et la théorie des graphes métriques comprenant: les groupes systoliques et

quadriques (en particulier les groupes à petites simplifications C(6) et C(4)-

T(4) finement présenté), les groupes cocompactement cubulés, les groupes

hyperboliques, les groupes Coxeter et le groupe Baumslag-Solitar BS(1, 2). La

plupart de ces exemples satisfont une forme forte de la propriété shortcut.

Nous montrons également que les groupes shortcuts sont finement présentés,

ont des fonctions isopérimétriques et isodiamétriques exponentielles et qu’ils
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sont fermés par rapport aux produits directes, aux extensions HNN et aux

produits libres avec amalgame sur des sous-groupes finis. Nous montrons que

les groupes satisfaisant la forme forte de la propriété shortcut satisfont ces

propriétés et ont aussi des fonctions isopérimétriques et isodiamétriques poly-

nomiales.
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Chapter 1

Introduction

A major current in group theory throughout the 20th century has been

the study of groups acting on spaces of nonpositive curvature. This line of

work traces its origins to the work of Max Dehn on the fundamental groups

of surfaces of higher genus [11]. Dehn proved that these groups have decid-

able word problem by exploiting their actions on the hyperbolic plane, the

prototypical space of negative curvature. Dehn’s work was generalized to the

study of small cancellation groups [18]. These are various classes of groups

defined by presentations in which overlap between relators is restricted. This

line of work was revolutionized by Gromov’s study of hyperbolic groups and

program of studying groups via their quasi-isometry types, leading to the field

of geometric group theory [19].

In addition to the solvability of the word problem, many other properties

of a group G may be determined given an approparite action of G on a space

with controlled geometry or topology. For example, if G acts freely and cocom-

pactly on a contractible CW complex then the quotient is a finiteK(G, 1) from

which homological invariants of G may be effectively computed [24]. By the

Milnor-Schwarz Lemma, if G acts properly and cocompactly on a metric space

X then G and X have the same quasi-isometry type [5] and so share geometric

invariants such as isoperimetric and isodiametric functions [16]. These are ex-

amples that we touch upon directly in this thesis but there are many more such

interactions which drive the search for spaces and actions with nice properties:
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invariant subspace properties relate to subgroup structure, dynamics of auto-

morphisms help us classify group elements and understand their interactions,

boundary theories open avenues towards topological dynamics, etc.

Three major classes of spaces by which these interactions have been stud-

ied are CAT(0) cube complexes [19, 45, 52, 53, 37, 23, 36, 44, 38, 26, 21],

systolic complexes [28, 20, 51, 9, 12, 22, 29, 40, 39] and quadric complexes [25].

One part of this thesis is focused on quadric complexes. Quadric complexes are

a class of combinatorially nonpositively curved complexes which may in many

ways be considered analogous to systolic complexes: whereas disk diagrams in

systolic complexes are CAT(0) equilateral triangle complexes, disk diagrams

in quadric complexes are CAT(0) square complexes; whereas systolic groups

generalize finitely presented C(6) small cancellation groups, quadric groups

generalize finitely presented C(4)-T(4) small cancellation groups; whereas the

1-skeleta of systolic complexes are precisely the graphs whose isometric cycles

all have length 3, the 1-skeleta of quadric complexes are precisely the graphs

all of whose isometric cycles have length 4; etc. However, as originally defined,

quadric complexes have a major deficiency: they are not contractible. Hence

it is not possible to directly compute homological invariants of a group using

an action on a quadric complex.

In Part I of this thesis we remedy this deficiency of quadric complexes by

adding higher dimensional cells to quadric complexes in a natural way. Specif-

ically, we introduce a new class of CW complexes called bisimplicial complexes.

The cells of these complexes, called bisimplices, are bipartite analogs of sim-

plices since their 1-skeleta are complete bipartite graphs whereas the 1-skeleta

of simplices are complete graphs. Their construction is challenging since they

are not Euclidean polyhedra, as is the case for many other classes of cells

frequently used in CW complexes: most notably simplices and cubes. In the
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course of the construction of bisimplices we develop discrete Morse-theoretic

tools for proving that a given CW complex is homeomorphic to a sphere. We

show that the flag bisimplicial completion of a finite bipartite bi-dismantlable

graph is collapsible. We apply this to construct natural contractible supercom-

plexes for quadric complexes and thereby construct natural finite dimensional

K(G, 1) for torsion-free quadric groups.

Part II of this thesis draws inspiration from the remarkable fact that the

1-skeleta of all three of the major classes of spaces referred to above arose in-

dependently in the metric graph theory literature: CAT(0) complexes arose as

median graphs [2, 34, 32, 44, 15, 8], systolic complexes arose as bridged graphs

[49, 8] and quadric complexes arose as hereditary modular graphs [3, 25]. We

aim to define broad classes of graphs that capture general metric properties

of these and several other classes of spaces featured prominently in the ge-

ometric group theory literature. Specifically, we define shortcut graphs and

groups and strongly shortcut graphs and groups. These are essentially classes

of graphs and groups in which arbitrarily long cycles cannot embed with-

out metric distortion. Many classes of graphs and groups satisfying various

forms of nonpositive curvature conditions are shortcut, including the 1-skeleta

of systolic and quadric complexes (in particular finitely presented C(6) and

C(4)-T(4) small cancellation groups), 1-skeleta of finite dimensional CAT(0)

cube complexes, hyperbolic graphs, standard Cayley graphs of finitely gener-

ated Coxeter groups and the standard Cayley graph of the Baumslag-Solitar

group BS(1, 2). We show that most of these examples are strongly shortcut.

We also derive consequences of the shortcut properties. We show that shortcut

groups are finitely presented, have exponential isoperimetric and isodiametric

function and are closed under direct products and under HNN extensions and

amalgamated products over finite subgroups. We show that strongly shortcut
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groups satisfy these properties and also have polynomial isoperimetric and

isodiametric function.

1.1 Contributions to original knowledge

The main novel results of Part I are summarized in Section 2.1 by The-

orem A, Theorem B, Theorem C, Theorem D and Theorem E. The main

results of Part II are summarized in Section 8.1 by Theorem F, Theorem G,

Theorem H, Theorem I, Theorem J and Theorem K.
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Part I

Bisimplicial Complexes and Asphericity
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Chapter 2

Introduction

CW complexes are typically constructed by gluing together Euclidean

polyhedra along faces. A Euclidean polyhedron is the convex hull of a finite

point set in a Euclidean space, e.g., simplices and cubes. However, not all

CW structures on cells of a CW complex arise as Euclidean polyhedra [31]

and for some applications it is natural to use nonpolyhedral cells. In this part

we construct an infinite family of nonpolyhedral CW balls called bisimplices.

The 1-skeleta of bisimplices are connected complete bipartite graphs and so

we consider them as bipartite analogs of simplices. Our motivation for this

construction is to find a natural contractible higher dimensional skeleton for

quadric complexes.

Quadric complexes are locally finite simply connected square complexes

satisfying a certain combinatorial nonpositive curvature condition. A group

is quadric if it acts properly and cocompactly on a quadric complex. Quadric

complexes are examples of the generalized (4, 4)-complexes of Wise [51] and

were first studied in detail in the context of geometric group theory by the

present author [25]. They generalize the folder complexes of Chepoi [8] and

may be considered as square analogs of the 2-skeleta of systolic complexes

[28]. They can be characterized by their 1-skeleta, which are precisely the

hereditary modular graphs of metric graph theory [3].

6



· · ·

· · ·

span
&

cone

span
&

cone

span
&

cone

Figure 2–1: Bisimplices are essentially constructed by starting with a Km,n,
m,n ≥ 2, inductively spanning a biclique on each proper Km′,n′ subgraph,
m′, n′ ≥ 2, and then taking the cone of the result. The difficulty lies in showing
that the base of this cone is homeomorphic to Sm+n−3 and hence that the cone
has the structure of a regular CW complex with a single top dimensional cell
of dimension m + n − 2. This is trivial for (m,n) equal to (2, 2) or (2, 3), as
seen in the figure. To prove it for general (m,n) is not quite so easy.

2.1 Summary of results

In contrast to simplices which are indexed by dimension, bisimplices are

indexed by two natural numbers m,n ≥ 1. For each dimension d ≥ 2 there

are
⌈
d−1
2

⌉
bisimplices of dimension d. Recall that a CW complex is regular if

the characteristic maps of its cells are injective. See Figure 2–1.

Theorem A (Theorem 5.0.1). There exists a family {∇∆m,n}m,n≥1 of regular

CW complexes called bisimplices satisfying the following conditions.

• ∇
∆
m,n has a unique maximal cell and so ∇

∆
m,n is homeomorphic to a ball.

• ∇
∆
m,n has dimension m+ n.

• The 1-skeleton of ∇
∆
m,n is the complete bipartite graph Km+1,n+1.

Moreover, the cells of a bisimplex ∇
∆ are also bisimplices and these cells

are precisely the full subcomplexes of ∇
∆, aside from a few degenerate cases

such as the K0,ℓ and K1,ℓ subgraphs of the 1-skeleton. We consider vertices

and edges to be bisimplices also. These properties uniquely determine the cell

posets of the bisimplices. However, proving that this family of posets is indeed

a family of cell posets is not at all trivial and is an interesting application

of the discrete Morse theory of Forman [13] and the Generalized Poincaré
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Conjecture. Specifically, we prove Theorem A by inductively applying the

following theorem, which we expect to have applications elsewhere.

Theorem B (Theorem 4.0.6 and Remark 4.0.7). Let P be a poset such that

the order complexes of the under sets of P are PL-triangulated spheres. If P

and all of its over sets admit spherical matchings then the order complex of P

is a PL-triangulated sphere.

A spherical matching is a combinatorial structure on the Hasse diagram

of the cell poset of a regular CW complex X. This combinatorial structure

is essentially a discrete Morse function on X having exactly two critical cells

and so, by the Sphere Theorem of Forman [13], implies that X is homotopy

equivalent to a sphere. See Chapter 4 for an introduction to discrete Morse

theory and the definition of spherical matching. The other terminology of

Theorem B is defined in Chapter 3.

Having constructed the family of bisimplices, we may construct regular

CW complexes having bisimplices as cells. We call these bisimplicial complexes

when the intersection of any two bisimplices is a full subcomplex. Given

a bipartite graph Γ there is a natural bisimplicial complex ∇
∆(Γ) called the

flag bisimplicial completion of Γ. The flag bisimplicial completion is defined

analogously to the flag simplicial completion, also known as the clique complex,

of a graph.

Our primary motivation for the definition of the flag bisimplicial comple-

tion is to apply it to the bipartite 1-skeleta of quadric complexes. Quadric

complexes may be defined as simply connected 2-dimensional CW complexes

whose minimal area disk diagrams are CAT(0) square complexes. We would

like a natural way to glue higher dimensional cells to a quadric complex to

obtain a contractible supercomplex. The 1-skeleton of a quadric complex X is

bipartite and may contain K2,3 so it is not possible to extend X simplicially or
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cubically. However, X equals the 2-skeleton of ∇
∆(X1), so a natural candidate

for a contractible supercomplex is ∇
∆(X1).

Theorem C (Theorem 7.0.6). Let X be a nonempty quadric complex. Then

the flag bisimplicial completion ∇
∆(X1) is contractible.

Metric balls in X1 induce finite quadric subcomplexes of X and finite

quadric complexes have bi-dismantlable 1-skeleta [3, 25]. A finite bipartite

graph is bi-dismantlable if it can be reduced to a nonempty connected com-

plete bipartite graph by successively deleting a vertex whose neigbourhood

is contained in the neighborhood of another vertex. Theorem C then follows

from Theorem D below whose proof is another application of the discrete

Morse theory of Forman.

Theorem D (Theorem 6.0.2). Let X be a flag, nonempty finite bisimplicial

complex. If X1 is bipartite and bi-dismantlable then X is collapsible.

This method of proving contractibility mirrors that of Chepoi and Osajda

for weakly systolic complexes [9] via LC-contractibility [10, 33].

As pointed out to the present author by Damian Osajda, a quadric com-

plex X may also naturally be made contractible by extending each connected

complete bipartite subgraph of X1 to a complete subgraph and then taking

the flag simplicial completion of the resulting graph. However, this opera-

tion preseves neither the 1-skeleton nor the 2-skeleton of X. Moreover, the

resulting complex has higher dimension than the flag bisimplicial completion

∇
∆(X1).

If X is a compact locally quadric complex, the construction of the bisim-

plicial completion of the universal cover X̃ has a corresponding construction in

the base. We obtain from X a compact complex X+ whose 2-skeleton is X and

whose higher cells are obtained by successively gluing in higher dimensional

9



bisimplices along immersions of their boundaries. Then applying Theorem C

we obtain the following.

Theorem E (Theorem 7.1.4). Let X be a compact locally quadric complex. If

π1(X) is torsion-free then X+ is a compact K(π1(X), 1).

Note that π1(X) in Theorem E is torsion-free if and only if the automor-

phism group of every immersion of the 2-skeleton of a bisimplex into X is

trivial. This is a consequence of the invariant biclique theorem for quadric

complexes [25]. Moreover, every torsion-free quadric group is the fundamental

group of some locally quadric complex.

2.2 Structure of Part I

In Chapter 3 we give some background on posets, regular CW complexes

and PL-triangulated spheres. In Chapter 4 we present basic theorems of the

discrete Morse theory of Forman. We apply these theorems and the topological

Generalized Poincaré Conjecture to prove a discrete Morse-theoretic sphere

recognition theorem. We use our sphere recognition theorem in Chapter 5

to construct the infinite family of bisimplices. We then prove some basic

facts about bisimplices. In Chapter 6 we introduce bisimplicial complexes and

prove that flag finite bisimplicial complexes with dismantlable 1-skeleta are

collapsible, again making use of discrete Morse theory. Finally, in Chapter 7 we

prove that the flag bisimplicial completion of a quadric complex is contractible

and describe how to construct a K(G, 1) for a torsion-free quadric group G.
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Chapter 3

Posets and regular CW complexes

Let P be a poset. The covering relation CP on P is the following binary

relation.

CP (x, y) ⇐⇒ x < y and there is no z satisfying x < z < y

A poset P is graded if every element x ∈ P is assigned a grade |x| ∈ N such

that the following conditions hold.

CP (x, y) =⇒ |x|+ 1 = |y|

x < y =⇒ |x| < |y|

Let P be a poset. For x ∈ P , the over set Ox and under set Ux of P at

x are the following subsets of P .

Ox = {y ∈ P : y > x} Ux = {y ∈ P : y < x}

We may write OP
x and UP

x if the poset is not clear from the context. Note that

making the inequalities in the definitions of Ox and Ux nonstrict would give

what are usually referred to as the principal ideal and principal filter having

principal element x. For x, y ∈ P , the strict interval (x, y) of P between x

and y is the subset of P defined as follows.

(x, y) = Ox ∩ Uy

11



The over sets, under sets and strict intervals of P are themselves posets by

restricting the order relation. If P is graded then the over sets, under sets and

strict intervals of P are likewise themselves graded.

Let P be a poset. The set of nonempty chains of P form an abstract

simplicial complex. Its associated simplicial complex is the order complex ∆P

of P .

A CW complex is regular if the characteristic maps of its cells are em-

beddings. Let X be a regular CW complex. The cells of X are regular CW

subcomplexes. Viewing a cell x as a ball, we denote its boundary by ∂x and

its interior by x◦. The k-skeleton Xk of X is the subcomplex of X formed by

the union of the cells of X of dimension at most k. The cell poset PX of X

is the set of cells of X ordered by inclusion. Cell posets are equipped with

a natural grading, namely dimension: |x| = dimx. A cell poset P uniquely

determines its regular CW complex XP . The order complex of the cell poset

of a regular CW complex X is isomorphic to the barycentric subdivision of

X. A subset Q of P is the cell poset of a subcomplex of XP iff Q is downward

closed, meaning the following.

x ∈ Q and y < x =⇒ y ∈ Q

The following theorem of Björner characterizes the cell posets.

Theorem 3.0.1 (Björner [4, Proposition 3.1]). Let P be a poset. Then P

is a cell poset iff the order complexes of its under sets are homeomorphic to

spheres.

Proof. If P is the cell poset of a regular CW complex X then its under sets are

the cell posets of the boundaries of its cells. The order complexes of these under

sets are the barycentric subdivisions of these cells and so are homeomorphic

to spheres.
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To prove the converse, we construct XP inductively on dimension. Define

the height function h : P → N as follows.

h(x) = max
{
|C| − 1 : C is a chain in P with maximum x

}
Note that h(x) is finite because, otherwise, the order complex of the under

set at x would be infinite dimensional. We have that h(x) = 0 for minimal

elements of P and that h(x) < h(y) for x < y. We will show that h is a grading

on P . Let x ∈ P . Since the under set Ux has order complex homeomorphic

to a sphere Sℓ, the maximal chains of Ux must all have size ℓ + 1. Hence

h(x) = ℓ+ 1 and h(y) = ℓ for any element of P that is covered by x.

Let P k ⊆ P be defined by the following.

P k = {x ∈ P : h(x) ≤ k}

We will construct XP such that its k-skeleton Xk
P has cell poset P k. We

begin the induction by letting X0
P = P 0. Suppose we have constructed Xk

P

having cell poset P k. Let x ∈ P with h(x) = k + 1. Since h is a grading,

we have Ux ⊆ P k. So Ux is the cell poset of a subcomplex A of Xk
P . The

barycentric subdivision of Ax is isomorphic to the order complex of Ux which,

by hypothesis, is homeomorphic to a sphere. This sphere has dimension k

since that is the height of a maximal chain in Ux. We construct Xk+1
P from

Xk
P by attaching a (k+1)-ball along its boundary to each Ax with h(x) = k+1.

Then P k+1 is the cell poset of Xk+1
P . Having inductively defined the skeleta

X0
P ⊆ X1

P ⊆ X2
P ⊆ · · ·

we obtain XP as the colimit.

We consider the empty space to be the sphere of dimension −1.
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Let P be a cell poset. The under sets of P are also cell posets. More

precisely, the under set Ux at a cell x is the cell poset of the regular CW

complex structure on the boundary of x.

The order complex of the over set Ox is isomorphic to the link of the

barycenter of x in the barycentric subdivision of XP . However, because of the

existence of homology spheres, Ox need not be a cell poset. A homology sphere

is a manifold with the homology of a sphere but which is not homeomorphic to

a sphere. The double suspension of a homology sphere is homeomorphic to a

sphere, as first proved in full generality by Cannon [6]. The Poincaré homology

sphere X, also known as the spherical dodecahedron space, is a homology 3-

sphere that has a simplicial triangulation [47, Section 62]. Let B be the regular

CW complex with a single cell of dimension 6 and whose boundary ∂B has

the structure of the simplicial double suspension of X. Let e be a 1-simplex of

B joining two of the suspension points of ∂B. Then the link lk e is isomorphic

to X and so the over set Oe of e in PB is the cell poset of X augmented with

a new maximum element corresponding to the top-dimensional cell of B. The

under set of B in Oe then has order complex homeomorphic to X and not a

sphere and hence Oe is not a cell poset.

If XP is a simplicial complex, then the over set Ox at a cell x is also a

cell poset. In fact, Ox is the cell poset of the link lk x of x. Theorem 3.0.5

characterizes the cell posets in which this holds.

Proposition 3.0.2. Let P be a cell poset and suppose XP is connected. If the

over sets of P at its minimal elements have order complexes homeomorphic to

spheres then XP is a manifold.

Proof. The order complexes of the over sets of P at minimal elements are

isomorphic to the links of vertices of the order complex of P . Hence the links

of vertices of the barycentric subdivision of XP are homeomorphic to spheres.

14



That XP is connected ensures that these spheres all have the same dimension,

say d− 1, and that XP is second countable. Then XP is a d-manifold.

A PL-triangulated manifold is a simplicial complex X that is homeomor-

phic to a manifold such that the link of every simplex of X is homeomorphic

to a sphere [27]. PL-triangulated manifolds are referred to as combinatorial

manifolds in the PL-topology literature.

Proposition 3.0.3. Let P be a cell poset and suppose XP is connected. Then

the order complex of P is a PL-triangulated manifold iff the order complexes

of the strict intervals and over sets of P are homeomorphic to spheres.

Proposition 3.0.3 is an immediate consequence of the following lemma.

Lemma 3.0.4. Let P be a cell poset and suppose XP is connected. Let P ′ be

the cell poset of the order complex ∆P . The order complexes of the over sets of

P ′ are homeomorphic to spheres iff the order complexes of the strict intervals

and over sets of P are homeomorphic to spheres.

Indeed, the over sets of P ′ are the cell posets of the links of the simplices

of ∆P . If ∆P is a PL-triangulated manifold then these are all homeomorphic

to spheres. Conversely, if the links are all homeomorphic to spheres then since

XP is connected, Proposition 3.0.2 ensures that ∆P is homeomorphic to a

manifold. Then, by definition, XP is a PL-triangulated manifold.

Before proving Lemma 3.0.4 we study the over sets of cell posets of order

complexes. Let P be a poset and let P ′ be the cell poset of the order complex

of P . Every c ∈ P ′ is a nonempty chain

c = {c0, c1, . . . , ck} ⊂ P

with

c0 < c1 < · · · < ck
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in P and these chains are ordered by inclusion. Each element of the over set

Oc is a chain in P containing c and so is determined by its intersections with

Uc0 , with Ock and with the strict intervals (ci−1, ci). It follows that Oc embeds

in the componentwise product order

(Uc0)
′
⊥ × (c0, c1)

′
⊥ × (c1, c2)

′
⊥ × · · · × (ck−1, ck)

′
⊥ × (Ock)

′
⊥

where Q′
⊥ denotes the poset of all chains (including the empty chain) in a

poset Q. Aside from the presence of a minimum element corresponding to the

empty simplex, this product is isomorphic to the cell poset of the simplicial

join of the order complexes of Uc0 , Ock and the (ci−1, ci). The complement of

this minimum element is the image of Oc under its embedding in the product.

Hence, XOc is isomorphic to the simplicial join

XOc
∼= OUc0

▷◁ O(c0,c1) ▷◁ O(c1,c2) · · · ▷◁ O(ck−1,ck) ▷◁ OOck

of the order complexes of Uc0 , Ock and the (ci−1, ci).

Proof of Lemma 3.0.4. The joins of spheres are spheres so, by the discussion

above, the “if” part of Lemma 3.0.4 has been established. It remains to prove

the “only if” part.

Assume that the order complexes of the over sets of P ′ are homeomorphic

to spheres. Let x, y, z ∈ P with x < y. Let cx ∈ P ′ and cz ∈ P ′ be maximal

chains of P that have x and z as their maximums. Let cy ∈ P ′ be a maximal

chain of P that has y as its minimum. Then we have

XOcy∪cx
∼= O(x,y)

and

XOcz
∼= ∆Oz

and so O(x,y) and OOz are homeomorphic to spheres.

16



A PL-triangulated sphere is a PL-triangulated manifold that is homeo-

morphic to a sphere.

Theorem 3.0.5. Let P be a cell poset. The following conditions are equiva-

lent.

1. The order complexes of the under sets of P are PL-triangulated spheres.

2. The order complexes of the strict intervals of P are PL-triangulated

spheres.

3. The order complexes of the strict intervals of P are homeomorphic to

spheres.

4. The over sets of P are cell posets.

Theorem 3.0.5 characterizes the regular CW complexes X for which each

d-cell x may be associated a link having the structure of a regular CW complex

in which the (k− d− 1)-cells naturally correspond to the k-cells of X that are

incident to x. Theorem 3.0.5 says that this holds precisely when the boundaries

of the cells of X are PL-triangulated spheres.

Proof of Theorem 3.0.5. (1) =⇒ (2) Let (x, y) be a strict interval of P . Then

(x, y) is the over set of Uy at x. So, by the forward implication of Proposi-

tion 3.0.3, the order complex of (x, y) is homeomorphic to a sphere. Every

over set and strict interval of (x, y) is a strict interval of P and so, by the

same argument, must have order complex homeomorphic to a sphere. Then,

by the reverse implication of Proposition 3.0.3, the order complex of (x, y) is

a PL-triangulated sphere.

(2) =⇒ (3) This is clear.

(3) =⇒ (4) Let Ox be a over set of P . By Theorem 3.0.1 we need only

show that the under set of Ox at any y ∈ Ox has order complex homeomorphic

to a sphere. But the under set of Ox at y is the strict interval (x, y) of P and

so this holds.
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(4) =⇒ (1) Let Uz be a under set of P . By Theorem 3.0.1, the order com-

plex of Uz is homeomorphic to a sphere. To prove that it is a PL-triangulated

sphere it suffices, by Proposition 3.0.3, to show that, for x < y < z, the strict

interval (x, y) and the over set O
Uy
x of Uy at x have order complexes homeomor-

phic to spheres. But (x, y) and O
Uy
x are equal to the under sets UOx

z and UOx
y

of Ox and so, by Theorem 3.0.1, they have order complexes homeomorphic to

spheres.
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Chapter 4

Forman Morse theory and the recognition of spheres

Let P be a finite graded poset. The Hasse diagram ΓP of P is the covering

relation CP viewed as a directed graph. A matching M on P is a set of

pairwise disjoint closed edges of ΓP . An element x ∈ P is matched by M if it

is contained in an edge of M . A matching M on P is acyclic if the directed

graph ΓM
P obtained from ΓP by reversing the direction on the edges of M has

no directed cycles. An element x ∈ P is a critical element of M if x is not

matched by M . Acyclic matchings are also known as Morse matchings. If P

is a cell poset then an acyclic matching M on P determines a Forman discrete

Morse function [13] on XP with the same set of critical cells [7]. The language

of acyclic matchings for discrete Morse theory is due to Chari [7].

Proposition 4.0.1. Let P be a finite graded poset, let M be a matching on

P and let (γ0, γ1, γ2, . . . , γk) be the sequence of edges of a directed cycle γ of

ΓM
P . Then no consecutive pair of edges (γi, γi+1)—indices modulo k—has both

edges in M or both edges in the complement of M .

Proof. Following an edge ofM causes a unit decrease in the grading. Following

an edge not in M causes a unit increase in the grading. Hence γ must contain

the same number of edges in M as it does edges not in M . Since M is a

matching, there is no consecutive pair of edges of γ both contained in M .

Suppose we have a consecutive pair of edges (γi, γi+1) neither of which are

contained in M . Then there are two more M -edges in (γi+2, γi+3, . . . , γi+k)
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then there are non-M -edges. Hence there is a consecutive pair of edges of γ

both contained in M , contradicting the hypothesis that M is a matching.

We require the following basic theorems of Forman discrete Morse theory.

Theorem 4.0.2 (Forman [13]). Let P be a cell poset. Let M be an acyclic

matching on P and let Q be the set of critical cells of M . If Q is downward

closed, then XQ can be obtained from XP by a sequence of elementary collapses.

In particular, XQ is homotopy equivalent to XP .

Theorem 4.0.3 (Forman [13, Corollary 3.5]). Let P be a cell poset and let

M be an acyclic matching on P . Then XP is homotopy equivalent to a CW

complex with as many cells of each dimension as M has critical cells of that

dimension.

Let P be a finite graded poset. A spherical matching on P is an acyclic

matching M on P with two critical cells.

Theorem 4.0.4 (Sphere Theorem of Forman [13, Theorem 5.1(1)]). Let P be

a cell poset. If P has a spherical matching then XP is homotopy equivalent to

a sphere.

We also require the Generalized Poincaré Conjecture for topological man-

ifolds.

Theorem 4.0.5 (Topological Generalized Poincaré Conjecture). A closed

topological manifold X is homotopy equivalent to the d-sphere iff it is homeo-

morphic to the d-sphere.

The first breakthrough in the proof of the Generalized Poincaré Conjec-

ture was made by Smale, who proved that a PL-triangulated manifold X that

is homotopy equivalent to the d-sphere is homeomorphic to the d-sphere, for

d ≥ 5 [48]. Stallings gave a different proof of this fact for d ≥ 7 using an

“engulfing” method [50]. This method was later extended by Zeeman to prove

the cases d = 5 and d = 6 [54]. Newman generalized the engulfing method to
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topological manifolds and thus completed the proof of the Topological Gen-

eralized Poincaré Conjecture for d ≥ 5 [35, Theorem 7]. In dimension 4 the

conjecture was proved by Freedman [14]. In dimension 3 it was proved by

Perelman [41, 43, 42]. In dimensions at most 2, it follows from the classifica-

tion of manifolds.

Theorem 4.0.6. Let P be a poset such that the order complexes of the un-

der sets of P are PL-triangulated spheres. The order complex of P is a PL-

triangulated sphere iff the order complexes of P and all of its over sets are

homotopy equivalent to spheres.

Remark 4.0.7. Let P be as in Theorem 4.0.6. By Theorem 3.0.1 and The-

orem 3.0.5, P and its over sets are all cell posets. So if Q is equal to P or

to one of its over sets then to show that the order complex of Q is homotopy

equivalent to a sphere it suffices to show that Q has a spherical matching.

This holds by Theorem 4.0.4 and the fact that the order complex of Q is the

barycentric subdivision of XQ.

Proof of Theorem 4.0.6. We prove the “if” part since the “only if” part is

immediate. The proof is by induction on the maximum size k of a chain in P .

If k = 0 then P is the empty poset and so has the PL-triangulated −1-sphere

(i.e. the empty simplicial complex) as its order complex.

Suppose k > 0 and that the theorem holds for all lesser values of k.

Take x ∈ P . We show that Ox satisfies the conditions of the theorem. The

under sets of Ox are strict intervals of P and so, by Theorem 3.0.5, the order

complexes of the under sets of Ox are PL-triangulated spheres. By assumption

Ox is homotopy equivalent to a sphere as are its over sets since they are also

over sets of P . Hence, by the inductive hypothesis, the order complex of Ox is

a PL-triangulated sphere. By Theorem 3.0.5, the strict intervals of P are also

PL-triangulated spheres and so, by Proposition 3.0.3, the order complex OP of
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P is a PL-triangulated manifold. By assumption, OP is homotopy equivalent

to a sphere so, by Theorem 4.0.5, OP is homeomorphic to a sphere and so is

a PL-triangulated sphere.
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Chapter 5

Bisimplices

A bipartitioned set is a set S along with a bipartition S = A ⊔ B into

subsets that are possibly empty. A subset T ⊆ S is considered to be a bi-

partitioned set with its induced bipartition T = (T ∩ A) ⊔ (T ∩ B). Our goal

is to span cells on certain subsets of a bipartitioned set, just as simplices are

spanned on subsets of vertices of a simplicial complex. In our case, however,

not all subsets are eligible to span a cell so we introduce the term spanworthy.

A bipartitioned set S = A⊔B is spanworthy if S ̸= ∅ and the following holds.

|A| ≤ 1 ⇐⇒ |B| ≤ 1

Spanworthiness excludes precisely the following cases.

• ∅ ⊔ ∅

• A ⊔ ∅ with |A| ≥ 2

• ∅ ⊔B with |B| ≥ 2

• A ⊔ {b} with |A| ≥ 2

• {a} ⊔B with |B| ≥ 2

In particular, it excludes any S of cardinality 3.

Theorem 5.0.1. Let S = A ⊔ B be a spanworthy bipartitioned set and let P

be the collection of spanworthy proper subsets of S ordered by inclusion. Then

P is a cell poset and OP is a PL-triangulated sphere.

Proof. Let A = {a0, a1, . . . , am} and B = {b0, b1, . . . , bn}.
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If m = −1 or n = −1 then, by spanworthiness, S is a singleton and so

P is empty. Then P is the cell poset of the empty simplicial complex, i.e.,

the PL-triangulated −1-sphere. The PL-triangulated −1-sphere is equal to its

own barycentric subdivision OP so the theorem holds in this case.

Assume thatm ≥ 0 and n ≥ 0. Ifm = 0 or n = 0 then, by spanworthiness,

m = n = 0 and P is the poset with two incomparable elements. This is the cell

poset of the two point simplicial complex, i.e., the PL-triangulated 0-sphere.

The PL-triangulated 0-sphere is equal to its own barycentric subdivision OP

so the theorem holds in this case.

Assume that m ≥ 1 and n ≥ 1. If m = n = 1 then the elements of P are

the singletons and the {ai} ⊔ {bj} for i and j ranging over 0 and 1. So P is

isomorphic to the cell poset of the 4-cycle and so the theorem holds.

So, by symmetry, we may assume that m ≥ 1 and n > 1. Assume that

the theorem holds for all S of lesser cardinality. Then the order complexes of

the under sets of P are PL-triangulated spheres. So, by Theorem 3.0.1, P is a

cell poset and, by Theorem 4.0.6, it suffices to show that the order complexes

of P and all of its over sets are homotopy equivalent to spheres.

Let T ∈ P . Spanworthiness implies that |T | ≠ 3. If |T | > 3 then every

proper subset of S containing T is spanworthy and so OT is isomorphic to the

cell poset of the boundary of a simplex and so has order complex homeomor-

phic to a sphere. So it remains only to show that the order complexes of P and

OT for |T | ∈ {1, 2} are homotopy equivalent to spheres. By Remark 4.0.7 it

suffices to show that P and such OT have spherical matchings. By symmetry

we need only consider the cases T = {a0}⊔∅, T = ∅⊔{b0} and T = {a0}⊔{b0}.
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Consider the following families of edges of the Hasse diagram ΓP of P .

M1 =

{
{ai} ⊔ ∅ → {ai} ⊔ {bn}

}

M2 =

{
∅ ⊔ {bj} → {am} ⊔ {bj} : j ̸= n

}

M3 =

{
{ai} ⊔ {bj} → {ai, am} ⊔ {bj, bn} : i ̸= m, j ̸= n

}

M4 =

{
A′ ⊔ {bj, bn} →

(
A′ ∪ {am}

)
⊔ {bj, bn}:

am /∈ A′, j ̸= n

|A′| ≥ 2

}

M5 =

{
A′ ⊔B′ → A′ ⊔

(
B′ ∪ {bn}

)
:

bn /∈ B′

A′ ⊔B′ ̸= A ⊔
(
B \ {bn}

)
|A′| ≥ 2, |B′| ≥ 2

}

Recall that B = {b0, b1, . . . , bn} and we have assumed n > 1. Thus |B| > 2

and so the terminal endpoints of edges in M3 and M4 are proper subsets of

A ⊔B and hence are elements of P .

The endpoints of these edges from different families or from different ends

of edges in the same family can be distinguished by the cardinality of their

parts and by the presence of am and bn, as shown in Table 5–1. Moreover

the initial endpoints of two edges from the same family are equal if and only

if their terminal endpoints are equal. Hence we see that M = ∪iMi forms a

matching on P .

Let ΓM
P be the directed graph obtained from ΓP by reversing the direction

of each edge inM . By Proposition 4.0.1, to show thatM is an acyclic matching

we need only show that ΓM
P does not contain any directed cycles whose edges

alternate between being contained and not contained in M . To do this it

suffices to define a function α : P → N such that α(T2) < α(T0) for any
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Family Initial Endpoint Terminal Endpoint
Cardinalities am bn Cardinalities am bn

M1 1 0 ⊥ 1 1 ⊤
M2 0 1 ⊥ ⊥ 1 1 ⊤ ⊥
M3 1 1 ⊥ ⊥ 2 2 ⊤ ⊤
M4 ≥ 2 2 ⊥ ⊤ > 2 2 ⊤ ⊤
M5 ≥ 2 ≥ 2 ⊥ ≥ 2 > 2 ⊤

Table 5–1: Distinguishing characteristics of the endpoints of edges in the fam-
ilies of edges described in the proof of Theorem 5.0.1. Under am or bn, the
symbol ⊤ indicates that this element is present in every member of the family
and the symbol ⊥ indicates that this element is not present in any member of
the family.

directed path

T0
e0−→ T1

e1−→ T2

of ΓM
P with e0 ∈M and e1 /∈M . Note that in ΓP , e0 is directed from T1 to T0

so we have the following inclusions.

T0 ⊋ T1 ⊊ T2

We define α as follows.

α(T ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, am /∈ T and bn /∈ T

1, am ∈ T and bn /∈ T

2, am /∈ T and bn ∈ T

3, am ∈ T and bn ∈ T

We may think of α as a function summing the weights on the elements of T ,

where am is assigned a weight of 1 and bn is assigned a weight of 2 and all

remaining elements have zero weight. Since T1 = T0 \ A for some nonempty

A ⊆ {am, bn}, we have α(T1) < α(T0). Suppose α(T2) = α(T0). Then T1∪A ⊆

T2 and, since |T0|− |T1| = |T2|− |T1|, we have T0 = T2. This is a contradiction

since a pair of vertices of ΓM
P may be joined by at most one edge and this edge
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is directed in a unique way. Suppose α(T2) > α(T0). Then T1 = T0 \{am} and

T2 = T1 ∪ {bn}. The equality T1 = T0 \ {am} implies that e0 is the reverse of

an edge in M2 or M4. The equality T2 = T1 ∪ {bn} and the fact that T2 ̸= T1

implies that bn /∈ T1. This rules out the possibility that e0 is the reverse of an

edge in M4. Thus we have

{am} ⊔ {bj}
e0−→ ∅ ⊔ {bj}

and so T1 = ∅ ⊔ {bj} and T2 = ∅ ⊔ {bj, bn} which is not spanworthy, a contra-

diction. We have established that M is an acyclic matching.

Let T ∈ P . Since the Hasse diagram of OT is an induced subgraph of

ΓP , the subset MT ⊂ M consisting of all edges both of whose endoints are

contained in OT is an acyclic matching on OT . It remains only to show thatM

is spherical on P and thatMT is spherical on OT for T = {a0}⊔∅, T = ∅⊔{b0}

and T = {a0} ⊔ {b0}. In fact it will suffice to prove that M is spherical on P

with critical elements ∅ ⊔ {bn} and A ⊔
(
B \ {bn}

)
. Indeed, in this case the

only critical element of M contained in OT would be A⊔
(
B \{bn}

)
. The only

other possible critical elements of OT would arise from edges of M having one

endpoint in OT and the other endoint in P \ OT . But there is a unique such

edge of M , namely the edge with initial endpoint T . Hence MT would have

two critical elements.

We now prove that M is spherical with critical elements ∅ ⊔ {bn} and

A ⊔
(
B \ {bn}

)
. First we verify that these elements are indeed unmatched by

M . Singletons in B appear as endpoints only in M2 where ∅ ⊔ {bn} is not

present so ∅ ⊔ {bn} is critical. The element A ⊔
(
B \ {bn}

)
is maximal in P

and so may only appear as a terminal endpoint of an edge of M . These all

contain bn except those in M2 where they have the form {am}⊔{bj}. Such an
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element cannot be equal to A⊔
(
B \ {bn}

)
since then A⊔B = {am}⊔ {bj, bn}

which is not spanworthy.

Now, suppose T = A′⊔B′ is an element of P that is not equal to ∅⊔{bn}

or A ⊔
(
B \ {bn}

)
. We will show that T is matched in M . We consider the

following cases separately: (I) |T | = 1, (II) |T | = 2, (III) |T | = 4, (IV) |T | > 4

and |B′| = 2, (V) |T | > 4 and |B′| > 2.

Case I. |T | = 1. If |A′| = 1 then T is an initial endpoint in M1. Other-

wise |B′| = 1 and T is an initial endpoint in M2.

Case II. |T | = 2. Then |A′| = |B′| = 1 by spanworthiness. If bn ∈ T

then T is a terminal endpoint of M1. Otherwise T is a terminal endpoint in

M2 if am ∈ T and T is an initial endpoint in M3 if am /∈ T .

Case III. |T | = 4. Then |A′| = |B′| = 2 by spanworthiness. If bn /∈ T

then T is an initial endpoint of M5. Otherwise T is a terminal endpoint in M3

if am ∈ T and T is an initial endpoint in M4 if am /∈ T .

Case IV. |T | > 4 and |B′| = 2. Then |A′| > 2. If bn /∈ T then T is an

initial endpoint of M5. Otherwise T is a terminal endpoint in M4 if am ∈ T

and T is an initial endpoint in M4 if am /∈ T .

Case V. |T | > 4 and |B′| > 2. Then |A′| ≥ 2 by spanworthiness. If

bn ∈ T then T is a terminal endpoint inM5. Otherwise T is an initial endpoint

in M5.

Corollary 5.0.2. Let S = A⊔B be a spanworthy bipartitioned set and let P ′

be the collection of spanworthy subsets of S ordered by inclusion. Then P ′ is

the cell poset of a regular CW complex homeomorphic to a ball.

Note that the difference between P ′ in Corollary 5.0.2 and P in Theo-

rem 5.0.1 is that P ′ contains S.
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Proof of Corollary 5.0.2. By Theorem 3.0.1, it suffices to show that the order

complexes of the under sets of P ′ are homeomorphic to spheres. Since S is

the maximum in P ′, the under sets of P ′ are P = P ′ \ {S} and the under sets

of P . By Theorem 5.0.1, we know that P is the cell poset of a regular CW

complex XP that is homeomorphic to a sphere. Hence, by Theorem 3.0.1, the

under sets of P have order complexes homeomorphic to spheres and the order

complex of P is the barycentric subdivision of XP and so is also homeomorphic

to a sphere.

Let S = A ⊔ B be a spanworthy bipartitioned set and let P ′ be the

collection of spanworthy subsets of S ordered by inclusion. By Corollary 5.0.2,

P ′ is the cell poset of a regular CW complex XP ′ that is homeomorphic to a

ball. A regular CW complex isomorphic to XP ′ is an (m,n)-bisimplex where

m = |A| − 1 and n = |B| − 1. We let ∇
∆
m,n denote an (m,n)-bisimplex. See

Figure 2–1.

Proposition 5.0.3. There is an isomorphism ∇
∆
m,n ∼= ∇

∆
n,m.

Proof. This is clear from the symmetry of the definition.

Proposition 5.0.4. The cells of a bisimplex are all bisimplices.

Proof. The cell poset P of a bisimplex ∇
∆ is isomorphic to the poset of span-

worthy subsets of a spanworthy set A ⊔ B. The cell poset of a cell x of ∇
∆

corresponds to P ′ = UT ∪ {T} for some spanworthy T . Hence, the cell poset

of x is isomorphic to the poset of spanworthy subsets of the spanworthy set

T .

Proposition 5.0.5. The 1-skeleton of ∇
∆
m,n is isomorphic to the complete

bipartite graph Km+1,n+1 on m+ 1 and n+ 1 vertices.

Proof. let P be the cell poset of ∇
∆
m,n viewed as the poset of spanworthy subsets

of A ⊔ B with |A| = m + 1 and |B| = n + 1. The 0-cells of ∇
∆
m,n correspond
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to the minimal elements of P . These are precisely the singletons in A ⊔ B

and so we may identify the 0-skeleton of ∇
∆
m,n with A⊔B. The 1-cells of ∇

∆
m,n

correspond to those elements of P that cover singletons. These are precisely

the sets {a} ⊔ {b} with a ∈ A and b ∈ B.

Proposition 5.0.6. Let m ≥ 1 and let n ≥ 1. The dimension of ∇
∆
m,n is

m+ n.

Proof. Let P be the poset of spanworthy subsets of A ⊔B with

A = {a0, a1, . . . , am}

and

B = {b0, b1, . . . bn}

and identify P with the cell poset of ∇
∆
m,n. Since ∇

∆
m,n is homeomorphic to a

ball of some dimension k, the maximal chains of P all have cardinality k + 1.

One such maximal chain is the following.

{a0} ⊔ ∅ ⊊ {a0} ⊔ {b0} ⊊ {a0, a1} ⊔ {b0, b1} ⊊ {a0, a1, a2} ⊔ {b0, b1}

⊊ {a0, a1, a2, a3} ⊔ {b0, b1} ⊊ · · · ⊊ {a0, . . . , am} ⊔ {b0, b1}

⊊ {a0, . . . , am} ⊔ {b0, b1, b2} ⊊ · · · ⊊ {a0, . . . , am} ⊔ {b0, . . . , bn}

This chain has cardinality |A| + |B| − 1 where the −1 is due to the jump

{a0} ⊔ {b0} ⊊ {a0, a1} ⊔ {b0, b1}. Hence ∇
∆
m,n has dimension k + 1 − 1 =

|A|+ |B| − 1− 1 = m+ n.
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Chapter 6

Bisimplicial complexes

A full subcomplex Y of a regular CW complex X is full if ∂x ⊂ Y implies

x ⊂ Y for any cell x of X. A bisimplicial complex is a regular CW complex

X such that each cell x of X is isomorphic to a bisimplex and, for any two

bisimplices x and y of X, the intersection x ∩ y is a full subcomplex of X.

Note that this implies that the bisimplices themselves are full subcomplexes

and, furthermore, that any finite intersection of bisimplices is full.

A complete bipartite graph K is spanworthy if it is nonempty, connected

and the bipartition on its vertex set is spanworthy. A spanworthy complete

bipartite subgraph K of the 1-skeleton X1 of a bisimplicial complex X spans

a bisimplex ∇
∆ of X if the 1-skeleton (∇∆)1 of ∇

∆ is equal to K. Note that at most

one bisimplex may span K since the intersection of two distinct bisimplices ∇
∆

and ∇
∆
′ spanning K would be full in neither ∇

∆ nor ∇
∆
′. A bisimplicial complex

X is flag if every spanworthy complete bipartite subgraph K of X1 spans a

bisimplex ∇
∆. We use the notation ∇

∆(A;B) to denote ∇
∆, where A ⊔ B is the

bipartitioned vertex set of K.

Definition 6.0.1. Let Γ be a graph. The flag bisimplicial completion ∇
∆(Γ) of

Γ is a flag bisimplicial complex defined inductively as follows. The 1-skeleton

of ∇
∆(Γ) is Γ. Now, assume the (k − 1)-skeleton of ∇

∆(Γ) has been defined.

The k-skeleton is obtained by the following operation. To each subcomplex

isomorphic to some ∂∇
∆
m,n with dim(∇∆m,n) = k, glue in a copy of ∇

∆
m,n along

the isomorphism.
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Note that if X is a flag bisimplicial complex then X = ∇
∆(X1).

Let Γ be a finite bipartite graph. We view Γ0 as a metric space with

the shortest path metric. The metric sphere Sr(u) ⊆ Γ0 of radius r about

u ∈ Γ0 is the set of vertices of Γ at distance r from u. If u and v are distinct

vertices of Γ then u is dominated by v if there is an inclusion S1(u) ⊂ S1(v)

of neighbourhoods.

A finite bipartite graph Γ is bi-dismantlable if there exists a sequence Γ =

Γ1,Γ2, . . . ,Γn of graphs ending on a nonempty connected complete bipartite

graph such that, for each i < n, Γi+1 is a subgraph of Γi induced on the

complement of {vi} for some vi dominated in Γi.

Theorem 6.0.2. Let X be a finite flag bisimplicial complex with X1 bipartite.

If X1 is bi-dismantlable then X is collapsible.

Proof. The proof is by induction on the length of the bi-dismantling sequence.

In the base case, X1 is a nonempty connected complete bipartite graph

on some bipartitioned vertex set S = A ⊔ B. Let A = {a0, . . . , am} and B =

{b0, . . . , bn}. Without loss of generality |A| ≤ |B|. If X1 is not spanworthy

then, as it is nonempty and connected, we have |A| = 1 and |B| ≥ 2. Then the

only spanworthy subgraphs of X1 are its edges and vertices and so X = X1.

But X1 is a tree and so X is collapsible.

Suppose now that X1 is spanworthy. By flagness, X is a bisimplex

∇
∆(A;B). If |A| + |B| ≤ 4 then ∇

∆(A;B) is isomorphic to a vertex, an edge

or a square. These are collapsible. So we assume that |A| ≥ 2 and |B| > 2.

Identify the cell poset of ∇
∆(A;B) with the poset P ′ of nonempty spanworthy

subsets of A⊔B. Then the poset P = P ′\{A⊔B} is the cell poset of ∂∇
∆(A;B).

The proof of Theorem 5.0.1 gives a spherical matching M on P . Let M ′ be
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the matching obtained from M by adding the following edge.

A ⊔
(
B \ {bn}

)
→ A ⊔B

Then M ′ is acyclic and leaves only ∅ ⊔ {bn} unmatched. Hence, by Theo-

rem 4.0.2, X = ∇
∆(A;B) is collapsible.

Now, suppose suppose the bi-dismantling sequence has nonzero length

with v the first dominated vertex in the sequence. Let u be a dominator of v

in X1. Let P be the cell poset of X. Consider the downward closed subset Q

of P defined as follows.

Q = {x ∈ P : x ̸≥ v}

Then the subcomplex XQ =
⋃
Q is the full subcomplex of X induced on

X0 \ {v} and so XQ is flag. Moreover, X1
Q is the induced subgraph of X1

obtained from X1 by deleting v and so X1
Q is dismantlable. Hence X1

Q is

collapsible by induction. Therefore, by Theorem 4.0.2, it suffices to construct

an acyclic matching M on P whose set of critical elements is Q.

Let w be any neighbour of v inX1. Note that the vertices of any connected

complete bipartite subgraph of X1 containing v are at distance at most 2 from

v. Consider the following families of edges in the Hasse diagram ΓP of P .

M1 =

{
∇
∆

(
{v}; ∅

)
→ ∇

∆

(
{v}; {w}

) }

M2 =

{
∇
∆

(
{v}; {x}

)
→ ∇

∆

(
{u, v}; {w, x}

)
: x ∈ S1(v) \ {w}

}

M3 =

{
∇
∆

(
{u, v};N

)
→ ∇

∆

(
{u, v}; {w} ∪N

)
:

N ⊆ S1(v) \ {w}

|N | ≥ 2

}

M4 =

{
∇
∆

(
T ∪ {v};N

)
→ ∇

∆

(
T ∪ {u, v};N

)
:

T ⊆ S2(v) \ {u}

N ⊆
⋂

y∈T∪{v} S1(y)

|T | ≥ 1, |N | ≥ 2

}
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The union M =
⋃

iMi is an acyclic matching on P whose set of critical ele-

ments is Q. The argument is very similar to that in the proof of Theorem 5.0.1

with w playing the role of am and u playing the role of bn.
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Chapter 7

Quadric complexes and asphericity

Definition 7.0.1. A locally quadric complex is a locally finite square complex

X with immersed cells such that no reduced disk diagram in X has the form of

Figure 7–1 and any immersed disk diagram of a form on the left-hand side of

Figure 7–2 has a replacement on the right-hand side with the same boundary

path. If, in addition, X is simply connected then X is quadric. A group G is

quadric if it acts properly and cocompactly on a quadric complex.

For a full introduction to quadric complexes and groups see prior work of

the present author [25].

A square complexX is flag if each square ofX is bounded by an embedded

4-cycle and each embedded 4-cycle of X1 bounds a unique square of X.

Proposition 7.0.2 ([25, Proposition 1.18]). Let X be a connected square com-

plex. Then X is quadric if and only if X is flag and every isometrically em-

bedded cycle of X1 has length 4.

It follows from Proposition 7.0.2 that a quadric complex X is the 2-

skeleton of the flag bisimplicial completion ∇
∆(X1). See Definition 6.0.1.

Figure 7–1: A disk diagram which can not be reduced in a locally quadric
complex.

35



Figure 7–2: Replacement rules for disk diagrams in quadric complexes.

Theorem 7.0.3 (Bandelt [3, Theorem 1]). A graph is hereditary modular if

and only if it is connected and every isometrically embedded cycle has length

4.

A graph is modular if for every triple of vertices u, v, w there exists a

vertex x which lies on some geodesic between each pair of vertices in the

triple. A graph is hereditary modular if each of its isometrically embedded

subgraphs is modular.

The metric ball of radius r ∈ N centered at a vertex v of a graph (bisim-

plicial complex) is the induced (full) subgraph (subcomplex) on the set of

vertices of distance at most r to v (in the 1-skeleton).

Remark 7.0.4. Let Γ be a modular graph. Then the metric balls of Γ are

isometrically embedded. In particular, if Γ is hereditary modular then its

metric balls are hereditary modular.

Theorem 7.0.5 (Bandelt [3, Theorem 2]). Let Γ be a finite nonempty hered-

itary modular graph. Then Γ is bi-dismantlable.

Theorem 7.0.6. Let X be a nonempty quadric complex. Then the flag bisim-

plicial completion ∇
∆(X1) is contractible.

Proof. The metric balls of X are quadric by Proposition 7.0.2, Theorem 7.0.3

and Remark 7.0.4. These balls are finite since quadric complexes are locally
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finite. Hence balls in X are collapsible by Proposition 7.0.2, Theorem 7.0.3,

Theorem 7.0.5 and Theorem 6.0.2. The balls of X centered at a fixed vertex

give an ascending exhaustion of X by contractible subcomplex and so X is

contractible.

7.1 A K(G, 1) for torsion-free quadric groups

LetX be a locally quadric complex. Then the universal cover X̃ is quadric

and so π1X is quadric. Let □m,n denote the 2-skeleton of the bisimplex ∇
∆
m,n.

Let □m,n → X be an immersion withm,n ≥ 2. Since □m,n is simply connected

it lifts to X̃. Since quadric complexes do not contain loops or bigons [25],

every lift □m,n → X̃ is an embedding. Every torsion-free quadric group is

the fundamental group of a compact locally quadric complex. However, a

compact locally quadric complex may have a fundamental group with torsion.

The following theorem allows to understand when this is the case.

Theorem 7.1.1 (Invariant Biclique Theorem [25]). Let F be a finite group

acting on a quadric complex X̃. Then F stabilizes a nonempty connected

complete bipartite subgraph of X̃.

To state the following corollary we need a definition. Let Aut(□m,n)

be the set of automorphisms of □m,n. Note that Aut(□m,n) acts on the set

of immersions {□m,n → X}. For a given immersion □m,n → X, we define

Aut(□m,n → X) as the stabilizer of □m,n → X in Aut(□m,n).

Corollary 7.1.2. Let X be a compact locally quadric complex. Then π1(X)

has torsion if and only if Aut(□m,n → X) is nontrivial for some immersion

□m,n → X with m,n ≥ 1.

Proof. Let g ∈ π1(X) \ {1}. Suppose g has finite order. Then ⟨g⟩ stabilizes a

nonempty connected complete bipartite subgraph Km+1,n+1 of X̃1. Since the

action is free, we havem,n ≥ 1. The full subcomplex induced by thisKm+1,n+1

is a □m,n. Restricting the covering map to □m,n we have an immersion □m,n →
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X. Restricting the action of g to □m,n we obtain a nontrivial automorphism

of □m,n → X.

Now, suppose there is a nontrivial automorphism φ : □m,n → □m,n of an

immersion □m,n → X. Let f : □m,n → X̃ be a lift of this immersion and

identify □m,n with its image under f . Then φ extends to a nontrivial deck

transformation which must have finite order.

LetX be a compact locally quadric complex. We will construct a compact

complex X+ having X as its 2-skeleton such that X+ is a K
(
π1(X), 1

)
if

π1(X) is torsion-free. The construction is by induction on dimension. The

2-skeleton of X+ is X. Now suppose we have already constructed the (k− 1)-

skeleton (X+)k−1 of X+. To obtain the k-skeleton of X+ perform the following

operation. Along each immersion ∂∇
∆
m,n → (X+)k−1 with dim(∇∆m,n) = k glue

in a copy of ∇
∆
m,n. For the purposes of this operation, two immersions which

are isomorphic over (X+)k−1 are considered identical and so result in only a

single gluing. Since X is compact there is a bound on the size of a connected

complete bipartite graph which can immerse in X. Hence X+ is compact.

Lemma 7.1.3. Let X be a compact locally quadric complex. Suppose π1(X)

torsion-free. Then the universal cover X̃+ is isomorphic to the bisimplicial

completion ∇
∆

(
X̃1
)
.

Proof. The proof is by induction on skeleta. The 2-skeleta of X+ and ∇
∆(X̃1)

areX and X̃ so the base case holds. Assume the statement holds for the (k−1)-

skeleta:
(
X̃+
)k−1 ∼= ∇

∆

(
X̃1
)k−1

. Each ∂∇
∆
m,n subcomplex, dim(∇∆m,n) = k,

of ∇
∆

(
X̃1
)k−1

immerses into (X+)k−1 under the covering map and so spans

a ∇
∆
m,n in

(
X̃+
)k
. On the other hand, each immersion ∂∇

∆
m,n → (X+)k−1

with dim(∇∆m,n) = k lifts to an embedding in ∇
∆

(
X̃1
)k−1

whose image thus

spans a unique ∇
∆
m,n in ∇

∆

(
X̃1
)k
. So the set of boundaries of the k-dimensional

bisimplices of
(
X̃+
)k

and ∇
∆

(
X̃1
)k
. No two k-dimensional bisimplices have the
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same boundary in ∇
∆

(
X̃1
)k
. The same holds for

(
X̃+
)k

by Corollary 7.1.2 and

so
(
X̃+
)k ∼= ∇

∆

(
X̃1
)k
.

The main theorem of this section follows immediately from Lemma 7.1.3

and Theorem 7.0.6.

Theorem 7.1.4. Let X be a compact locally quadric complex. If π1(X) is

torsion-free then X+ is a compact K(π1(X), 1).
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Part II

Shortcut Graphs and Groups
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Chapter 8

Introduction

One of the main currents in geometric group theory is the study of groups

acting on spaces that satisfy various kinds of combinatorial nonpositive cur-

vature properties. These spaces are typically associated with graphs having

nice metric properties. For example, the 1-skeleta of CAT(0) cube complexes

[44, 15, 8], systolic complexes [8] and quadric complexes [25], all of which

arose independently in the geometric group theory and metric graph theory

literature [19, 28, 20, 25, 2, 34, 32, 49, 3]. In this part we introduce a metric

property which captures an aspect of nonpositive curvature which is shared by

these graphs and a surprisingly large number of other graphs of importance

in group theory and metric graph theory. We call the graphs satisfying this

property shortcut graphs and those satisfying a stronger property strongly

shortcut graphs. A shortcut graph is a graph for which there is a bound on

the lengths of its isometrically embedded cycles. A strongly shortcut graph

may be defined as a graph for which there is a bound on the lengths of its

K-bilipschitz cycles, for some K > 1. A group is (strongly) shortcut if it acts

properly and cocompactly on a (strongly) shortcut graph.

An initial motivation for the study of shortcut graphs and groups arose

from systolic and quadric complexes. Chepoi characterized systolic complexes
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as those flag simplicial complexes whose 1-skeleta contain isometrically embed-

ded cycles only of length three [8]. We similarly characterized quadric com-

plexes as those square-flag square complexes whose 1-skeleta contain isometri-

cally embedded cycles only of length four [25]. Hence the 1-skeleta of systolic

and quadric complexes are shortcut. In particular, systolic and quadric groups,

and thus finitely presented C(6) and C(4)-T(4) small cancellation groups, are

shortcut [51, 25]. As we will see, many more prominent classes of graphs and

groups satisfy the shortcut property.

8.1 Summary of results

The following theorems summarize our results.

Theorem F (Corollary 11.1.2). Shortcut groups are finitely presented.

Theorem G (Theorem 11.2.1 and Theorem 11.3.1). Shortcut graphs and

groups have exponential isoperimetric and isodiametric functions. Strongly

shortcut graphs and groups have polynomial isoperimetric and isodiametric

functions. In particular, shortcut groups have decidable word problem.

Theorem H (Theorem 12.1.1). Products of (strongly) shortcut graphs and

groups are (strongly) shortcut.

Theorem I (Corollary 12.2.5). Graphs of (strongly) shortcut groups with finite

edge groups are (strongly) shortcut. In particular, amalgamated free products

and HNN extensions of (strongly) shortcut groups over finite subgroups are

(strongly) shortcut.

Theorem J (Theorems 13.1.2, 13.3.1, 13.4.2 and 13.4.4 and Corollary 13.2.3).

The following classes of graphs are strongly shortcut.

• Hyperbolic graphs

• 1-skeleta of finite dimensional CAT(0) cube complexes

• Standard Cayley graphs of finitely generated Coxeter groups

• All Cayley graphs of Z and Z2
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In particular, hyperbolic groups, cocompactly cubulated groups and Coxeter

groups are all strongly shortcut.

Theorem K (Theorem 14.2.2 and Theorem 14.3.4). The Baumslag-Solitar

group BS(1, 2) is shortcut but not strongly shortcut. Moreover, BS(1, 2) has a

Cayley graph which is shortcut and a Cayley graph which is not shortcut.

8.2 Structure of Part II

In Chapter 9 we present the main definitions of Part II. In Chapter 10

we prove basic properties of shortcut graphs and groups. In Chapter 11 we

construct disk diagrams for shortcut graphs and study their filling invariants.

In Chapter 12 we describe ways of combining shortcut graphs and groups to

obtain new shortcut graphs and groups. In Chapter 13 we prove that various

classes of graphs and groups are strongly shortcut. In Chapter 14 we study

the shortcut property in Cayley graphs of BS(1, 2).

8.3 Conventions

A graph Γ is a 1-dimensional polyhedral complex whose edges are isomet-

ric to [0, 1] ⊂ R. In this way each graph is equipped with both the structure

of a cellular complex with edges and vertices and the structure of a geodesic

metric giving a distance between any pair of its points. A combinatorial map

of graphs is a continuous map Γ1 → Γ2 in which each vertex of Γ1 maps onto

a vertex of Γ2 and each closed edge of Γ1 maps onto a vertex or closed edge

of Γ2. A combinatorial map is degenerate if some closed edge maps onto a

vertex. Otherwise it is nondegenerate.
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Chapter 9

Definitions

9.1 Isometric and almost isometric cycles

Let Γ be a graph. A combinatorial path in Γ is a nondegenerate com-

binatorial map P → Γ from a graph P that is homeomorphic to a compact

interval of R. A cycle C is a graph homeomorphic to a circle. A cycle in Γ is

a nondegenerate combinatorial map C → Γ from a cycle C. The length of a

path or cycle, denoted |P | or |C|, is the number of its edges.

A cycle f : C → Γ is isometric if it is an isometric embedding. Corol-

lary 10.0.2 below shows that f is isometric if and only if

dΓ
(
f(p), f(q)

)
≥ |C|

2

for every antipodal pair of points p, q ∈ C. With this in mind we give the

following definition. A cycle f : C → Γ is ξ-almost isometric, for ξ ∈ (0, 1), if

dΓ
(
f(p), f(q)

)
≥ ξ

|C|
2

for every antipodal pair of points p, q ∈ C. One may imagine that if f is not

isometric then there is a “shortcut” in Γ between a pair of its antipodes and if

f is not ξ-almost isometric then there is such a “shortcut” which reduces the

distance by a constant factor.

9.2 Shortcut graphs and groups

A connected simplicial graph Γ is shortcut if, for some θ ∈ N, every

isometric cycle of Γ has length at most θ. A connected simplicial graph Γ

44



is strongly shortcut if, for some θ ∈ N and some ξ ∈ (0, 1), every ξ-almost

isometric cycle of Γ has length at most θ.

Proposition 10.0.5 below says that Γ is strongly shortcut if and only if

there is a K > 1 and a bound on the lengths of the K-bilipschitz cycles of Γ.

Since a 1-bilischitz map is the same thing as an isometric embedding, we can

thus define both properties together: Γ is shortcut if there is a K ≥ 1 and a

bound on the lengths of the K-bilipschitz cycles of Γ; if this K can be chosen

strictly greater than 1 then Γ is strongly shortcut.

A group G is (strongly) shortcut if it acts properly and cocompactly on a

(strongly) shortcut graph.
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Chapter 10

Basic properties

In this section we prove some basic properties of (strongly) shortcut

graphs and groups. In particular, we prove that the strong shortcut prop-

erty is equivalent to the existence of a K > 1 and a bound on the lengths of

the K-bilipschitz cycles in a graph. We also show that a (strongly) shortcut

group acts freely and cocompactly on a (strongly) shortcut graph.

Proposition 10.0.1. Let Γ be a graph and let ξ̄ ∈ (0, 1]. A cycle f : C → Γ

satisfies

dΓ
(
f(p), f(q)

)
≥ ξ̄

|C|
2

for every antipodal pair of points p, q ∈ C if and only if

dΓ
(
f(p), f(q)

)
≥ dC(p, q)− (1− ξ̄)

|C|
2

for every pair of points p, q ∈ C.

Proof. The “if” part follows by applying the inequality to each antipodal pair

of p and q. To prove the “only if” part, let p, q ∈ C. Let p′ be the antipode of

p. Then, since f is 1-Lipschitz, we have

dΓ
(
f(p), f(p′)

)
≤ dΓ

(
f(p), f(q)

)
+ dΓ

(
f(q), f(p′)

)
≤ dΓ

(
f(p), f(q)

)
+ dC(q, p

′)

= dΓ
(
f(p), f(q)

)
+ dC(p, p

′)− dC(p, q)

= dΓ
(
f(p), f(q)

)
+

|C|
2

− dC(p, q)
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but ξ̄ |C|
2

≤ dΓ
(
f(p), f(p′)

)
and so we have dΓ

(
f(p), f(q)

)
≥ dC(p, q) − (1 −

ξ̄) |C|
2
.

Corollary 10.0.2. Let Γ be a graph and let f : C → Γ be a cycle. Then f is

isometric if and only if

dΓ
(
f(p), f(q)

)
≥ |C|

2

for every antipodal pair of points p, q ∈ C.

Proof. This follows from the fact that f is 1-Lipschitz and by applying Propo-

sition 10.0.1 with ξ̄ = 1.

Proposition 10.0.3. Let Γ be a graph and let f : C → Γ be a cycle in Γ of

length |C| ≥ 4. If f is not isometric then

dΓ
(
f(u), f(v)

)
< dC(u, v)

for some pair of vertices u, v ∈ C0 with dC(u, v) ≥
⌊
|C|
2

⌋
− 1. If f is not

ξ-almost isometric, for some ξ ∈ (0, 1), then

dΓ
(
f(u), f(v)

)
< ξdC(u, v)

for some pair of vertices u, v ∈ C0 with dC(u, v) ≥
⌊
|C|
2

⌋
− 1.

Proof. Let ξ̄ ∈ (0, 1]. Suppose

dΓ
(
f(p), f(q)

)
< ξ̄

|C|
2

for some pair of antipodal points p, q ∈ C. If ξ̄ < 1 then this is equivalent to f

not being ξ̄-almost isometric and, otherwise, this is equivalent to f not being

isometric.

Let d = dΓ
(
f(p), f(q)

)
. Let α : [0, d] → Γ be a geodesic from f(p) to

f(q). If α−1(Γ0) = ∅ then f(p) and f(q) are contained in the interior of

some common edge e of Γ. Then the edges e1 and e2 of C with p ∈ e1 and
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q ∈ e2 map onto e. Then there are endpoints u ∈ e1 and v ∈ e2 such that

f(u) = f(v) and dC(p, u) + dC(q, v) ≤ 1. So we have dΓ
(
f(u), f(v)

)
= 0 and

dC(u, v) ≥ dC(p, q)− dC(p, u)− dC(q, v) ≥ |C|
2
− 1.

Assume now that p and q do not map to the same edge in Γ. Let α−1(Γ0) =

{x1, x2, . . . , xk} with 0 ≤ x1 < x2 < · · · < xk ≤ d. Then α|[0,x1] and α|[xk,d]

factor through f so their images contain vertices u, v ∈ C0 with dC(p, u) < 1

and dC(q, v) < 1 such that f(u) = α(x1) and f(v) = α(xk). Moreover

dΓ
(
f(u), f(v)

)
= xk − x1

= d− x1 − (d− xk)

= d− dC(p, u)− dC(q, v)

< ξ̄dC(p, q)− dC(p, u)− dC(q, v)

≤ ξ̄
(
dC(p, q)− dC(p, u)− dC(q, v)

)
≤ ξ̄dC(u, v)

and dC(u, v) ≥ dC(p, q)− dC(p, u)− dC(q, v) >
|C|
2
− 2. Since |C| and dC(u, v)

are integers we obtain dC(u, v) ≥
⌊
|C|
2

⌋
− 1

Remark 10.0.4. In fact, if f : C → Γ is not isometric then we can improve

the u and v obtained from Proposition 10.0.3 so that dC(u, v) ≥
⌊
|C|
2

⌋
. This

does not hold for f not ξ-almost isometric. (Consider the quotient map from

C oriented and of even length that identifies two antipodal edges of C in

an orientation reversing way.) In order to present a unified proof without

additional case analysis, we give the weaker statement in Proposition 10.0.3.

Proposition 10.0.5. Let Γ be a graph. Then Γ is strongly shortcut if and only

if there exists K > 1 such that there is a bound on the length of K-bilipschitz

cycles of Γ.
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Proof. If a cycle f : C → Γ is not ξ-almost isometric then, for some pair of

antipodal points p, q ∈ C,

ξdC(p, q) = ξ
|C|
2

> dΓ
(
f(p), f(q)

)
and so f is not 1

ξ
-bilipschitz. This proves the “only if” part of the proposition.

To prove the “if” part of the proposition, suppose θ bounds the length of

the K-bilipschitz cycles of Γ where K > 1. Let 1− (K−1)3

13K2(K+1)
< ξ < 1. We will

show that there is a bound on the lengths of the ξ-almost isometric cycles of

Γ. Let f : C → Γ be a ξ-almost isometric cycle of Γ. We will define a sequence

of open paths (Pi), a sequence of cycles (Ci)i, a sequence of finite graphs (Γi)i

and sequences of combinatorial maps as in the following commuting diagram.

P0 P1 · · · Pn−1

C C0 C1 · · · Cn−1 Cn

C Γ0 Γ1 · · · Γn−1 Γn

Γ

f
f0 f1 fn−1 fn

Where it makes sense, we will use the same notation to refer to points and

subspaces as we do to refer to their images under maps. We begin with

Γ0 = C0 = C and f0 = f . Suppose we inductively have Ci ↪→ Γi
fi−→ Γ. If the

composition of these maps is K-bilipschitz then we terminate the sequence

with n = i. Otherwise, let ui, vi ∈ C0
i be a furthest pair of vertices in Ci

for which dΓ
(
fi(ui), fi(vi)

)
< 1

K
dCi

(ui, vi). Let Qi be a geodesic segment of

Ci between ui and vi. Let Pi be the complement of Qi. Let Ri → Γ be a

geodesic from fi(ui) to fi(vi). We obtain fi+1 : Γi+1 → Γ from fi and Ri → Γ
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by identifying the endpoints of Ri with {ui, vi}. Let Ci+1 = Pi ∪ Ri in Γi+1.

The sequence always terminates since |Ci| is strictly decreasing.

Our goal is to show that |Cn|
|C| is uniformly bounded away from zero. Thus

we will show that if we have arbitrarily long ξ-almost isometric cycles then we

must also have arbitrarily long K-bilipschitz cycles.

Suppose Qi ⊂
⋂i−1

ι=0 Pι for all i < j. Then the Qi, with i < j, are pairwise

disjoint in C and C \
(⋂j−1

i=0 Pi

)
=
⋃j−1

i=0 Qi. Since Cj is obtained from C by

replacing the Qi with Ri we see then that the Ri, with i < j, are pairwise

disjoint in Cj and the complement in Cj of
⋂j−1

i=0 Pi is
⋃j−1

i=0 Ri. Since f is

ξ-almost isometric we have

|Qi| − (1− ξ)
|C|
2

≤ |Ri| <
1

K
|Qi|

for all i < j, by Proposition 10.0.1. Hence, if i < j then we have the following

inequality.

K|Ri| < |Qi| < (1− ξ)

(
K

(K − 1)

)
|C|
2

(∗)

Moreover, we can find a pair of points p, q in the closure of
⋂j−1

i=0 Pi = C \(⋃j−1
i=1 Qi

)
at distance dC(p, q) ≥ |C|

2
− K(1−ξ)

4(K−1)
|C|. Let S1 and S2 be the two

segments of C between p and q. Then

dΓ
(
f(p), f(q)

)
≤ |Si| −

⏐⏐⏐Si ∩
⋃
i<j

Qi

⏐⏐⏐+ ⏐⏐⏐Si ∩
⋃
i<j

Ri

⏐⏐⏐
≤ |Si| −

⏐⏐⏐Si ∩
⋃
i<j

Qi

⏐⏐⏐+ 1

K

⏐⏐⏐Si ∩
⋃
i<j

Qi

⏐⏐⏐
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and so, by Proposition 10.0.1,

|C| − K − 1

K

∑
i<j

|Qi|

≥ 2dΓ
(
f(p), f(q)

)
≥ 2dC(p, q)− (1− ξ)|C|

≥ |C| − K(1− ξ)

2(K − 1)
|C| − (1− ξ)|C|

which gives us the following inequality.

∑
i<j

|Qi| ≤ (1− ξ)

(
K(3K − 2)

(K − 1)2

)
|C|
2

(†)

We will now prove that Qi ⊂
⋂i−1

ι=0 Pι for 1 < i < n. For the sake of

finding a contradiction, suppose j ≥ 1 is the least integer with Qj ̸⊂
⋂j−1

i=0 Pi.

It is possible that, for some i < j, we have Qj ∩ Ri ̸= ∅ but Ri ̸⊂ Qj. This

may happen for at most two Ri since such Ri must contain an endpoint of Qj.

Let Q−
j be obtained from Qj by subtracting the interiors of any such Ri and

let Q+
j → Cj extend Qj ↪→ Cj so as to include full copies of any such Ri. Let

Q− ⊂ C be obtained from Q−
j ⊂ Cj by replacing any Ri ⊂ Q−

j , where i < j,

with Qi ⊂ C. Let Q+ → C be obtained from Q+
j → Cj by replacing any

Ri ↪→ Cj, where i < j, with Qi ↪→ C. Let R+ → Γ be obtained from Q+
j → Γ

by replacing Qj → Γ with Rj → Γ. Then R+ → Γ and the composition
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Q+ → C
f−→ Γ have the same endpoints in Γ and we have

|R+| = |Rj|+ |Q+
j \Qj|

<
1

K
|Qj|+ |Q+

j \Qj|

=
1

K

(
|Q−

j |+ |Qj \Q−
j |
)
+ |Q+

j \Qj|

≤ 1

K
|Q−

j |+ |Qj \Q−
j |+ |Q+

j \Qj|

=
1

K
|Q−

j |+ |Q+
j \Q−

j |

≤ 1

K
|Q−

j |+
1

K
|Q+ \Q−|

=
1

K
|Q+|

where the final inequality follows from the fact that Q+
j \Q−

j consists of up to

two copies of segments Ri which are replaced with correspondingQi inQ
+\Q−.

By assumption, Qj nontrivially intersects at least one Ri, with i < j. Let i be

minimal such that Qj nontrivially intersects Ri. Since Qj is not equal to this

Ri we see that |Q+| > |Qi|. Hence, if Q+ → Ci were an isometric embedding

then this would contradict the choice of ui and vi. So, Q+ → Ci is not an

isometric embedding and so |Q+| > |Ci|
2
. But then

|Q+| > |Ci|
2

≥ |C|
2

−
∑
k<i

|Qk| ≥
|C|
2

− (1− ξ)

(
K(3K − 2)

(K − 1)2

)
|C|
2

by (†) while

|Q0| < (1− ξ)

(
K

(K − 1)

)
|C|
2

by (∗). So |Q+| < |Q0| would imply

1− (1− ξ)

(
K(3K − 2)

(K − 1)2

)
< (1− ξ)

(
K

(K − 1)

)
which after some manipulation gives ξ < 1 − (K−1)2

K(4K−3)
which one can show

contradicts our choice of ξ > 1− (K−1)3

13K2(K+1)
. Hence |Q+| ≥ |Q0| so if Q+ → C
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were an isometric embedding then this would contradict the choice of u0 and

v0. So, Q+ → C is not an isometric embedding and so |Q+| > |C|
2
. On the

other hand

|Q+| ≤ |Q−|+ 2max
i<j

|Qi|

≤ |Q−
j |+

∑
i<j

(
|Qi| − |Ri|

)
+ 2max

i<j
|Qi|

≤ |Cj|
2

+
∑
i<j

(
|Qi| − |Ri|

)
+ 2max

i<j
|Qi|

≤ |C|
2

+ 2
∑
i<j

(
|Qi| − |Ri|

)
+ 2max

i<j
|Qi|

≤ |C|
2

+ 4
∑
i<j

|Qi|

≤ |C|
2

+ (1− ξ)

(
4K(3K − 2)

(K − 1)2

)
|C|
2

where the last inequality follows from (†). We have

1− ξ <
(K − 1)3

13K2(K + 1)
<

(K − 1)2

12K(K + 1)
=

(K − 1)2

4K(3K + 3)
<

(K − 1)2

4K(3K − 2)
(‡)

and so |Q+| < |C| so Q+ embeds in C and the endpoints u, v of Q+ in C are

at distance

dC(u, v) ≥
|C|
2

− (1− ξ)

(
4K(3K − 2)

(K − 1)2

)
|C|
2
.

But we also have

dΓ
(
f(u), f(v)

)
≤ |R+| ≤ 1

K
|Q+| ≤ 1

K

(
|C|
2

+ (1− ξ)

(
4K(3K − 2)

(K − 1)2

)
|C|
2

)

which, by Proposition 10.0.1, implies

1

K

(
|C|
2

+ (1− ξ)

(
4K(3K − 2)

(K − 1)2

)
|C|
2

)

≥ |C|
2

− (1− ξ)

(
4K(3K − 2)

(K − 1)2

)
|C|
2

− (1− ξ)
|C|
2
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which is equivalent to 1− ξ ≥ (K−1)3

K(13K2+2K−7)
. But

1− ξ <
(K − 1)3

13K2(K + 1)
=

(K − 1)3

K(13K2 + 13K)
<

(K − 1)3

K(13K2 + 2K − 7)

so we have a contradiction. Therefore we have proved that Qi ⊂
⋂i−1

ι=0 Pι for

1 < i < n.

Then the Qi are all pairwise disjoint in C and C \
(⋂

i Pi

)
=
⋃

iQi so Cn

is obtained from C by replacing Qi ⊂ C with Ri, for each i. Then since fn is

K-bilipschitz and by (†) and (‡), we have

θ ≥ |Cn| ≥ |C| −
∑
i

|Qi| ≥ |C| − (1− ξ)

(
K(3K − 2)

(K − 1)2

)
|C|
2

> |C| −
(

(K − 1)2

4K(3K − 2)

)(
K(3K − 2)

(K − 1)2

)
|C|
2

=
7

8
|C|

So |C| < 8
7
θ and we see that 8

7
θ bounds the lengths of ξ-almost isometric cycles

of Γ.

Proposition 10.0.6. Let Γ be a (strongly) shortcut graph. Then the graph

obtained from Γ by subdividing each edge is (strongly) shortcut.

Proof. Let Γ′ be the barycentric subdivision of Γ. Then Γ′ is isometric to Γ

after scaling the metric by a factor of 2. Since isometric cycles are embedded,

they have no backtracks and so every isometric cycle of Γ′ is the subdivision

of an isometric cycle of Γ. Hence, if θ bounds the lengths of the isometric

cycles of Γ then 2θ bounds the lengths of the isometric cycles of Γ′. So if Γ is

shortcut then Γ′ is shortcut. Similary, if there is a bound on the K-bilipschitz

cycles of Γ then there is a bound on the K-bilipschitz cycles of Γ′. So, by

Proposition 10.0.5, if Γ is strongly shortcut then Γ′ is strongly shortcut.
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Proposition 10.0.7. Let G be a (strongly) shortcut group. Then G acts freely

and cocompactly on a (strongly) shortcut graph.

Proof. Let G act properly and cocompactly on a (strongly) shortcut graph Γ.

If Γ has a single vertex then G is finite and so acts freely on any Cayley graph

of G which is strongly shortcut because it is connected and finite. So we may

assume that Γ has more than one vertex.

By Proposition 10.0.6, we may assume that G acts on Γ without edge

inversions. Let π : G × Γ0 → Γ0 be the projection onto the second factor.

Define a graph Γ̃ on the vertex set G× Γ0 where Γ̃ has an edge joining (g, v)

and (g′, v′) for each edge joining v and v′. Then the diagonal actionG↷ G×Γ0

extends to Γ̃ and the projection π extends to a G-equivariant nondegenerate

combinatorial map π : Γ̃ → Γ. That G acts on Γ without edge inversions rules

out nontrivial fixed points of midpoints of edges of Γ̃ and so the action of G

on Γ̃ is free. Let {v1, v2, . . . , vk} be a set of orbit representatives of G ↷ Γ0.

Let Γ̂ be the induced subgraph of Γ̃ on
⋃

g∈G
{
(g, gvi)

}
i
. We will prove that Γ̂

is (strongly) shortcut and that the action of G on Γ̂ is cocompact.

Let π̂ : Γ̂ → Γ be the restriction of π to Γ̂. For a vertex v ∈ Γ0, we

have v = gvi for some i and so π̂(g, gvi) = v. Moreover, since Γ̂ is an induced

subgraph of Γ̃, for each pair of vertices (g, u), (h, v) ∈ Γ̂0, we see that π̂ induces

a bijection between the set of edges between (g, u) and (h, v) and the set of

edges between u and v. This implies that for any (g, u), (h, v) ∈ Γ̂0, we can lift

any path of nonzero length α : P → Γ between u and v to a path α̂ : P → Γ̂

from (g, u) to (h, v). The lift is not unique since, if the sequence of vertices

visited by α is (u = u0, u1, u2, . . . , uk = v) then, for 0 < i < k, the lift of ui in

α̂ may be any (g, ui) ∈ π̂−1(ui).

If Γ is strongly shortcut then let θ ≥ 3 bound the lengths of the ξ̄-almost

isometric cycles of Γ. Otherwise, let θ ≥ 3 bound the lengths of the isometric
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cycles of Γ and set ξ̄ = 1. Let ξ̂ = 1+ξ̄
2

and let f : C → Γ̂ be a (ξ̂-almost)

isometric a cycle of length |C| > θ. By Proposition 10.0.3,

dΓ
(
π̂ ◦ f(u), π̂ ◦ f(v)

)
< ξ̄dC(u, v)

for some u, v ∈ C0 with dC(u, v) ≥
⌊
|C|
2

⌋
− 1. If dΓ

(
π̂ ◦ f(u), π̂ ◦ f(v)

)
> 0

then let α : P → Γ be a geodesic from π̂ ◦ f(u) to π̂ ◦ f(v). Otherwise, let

α : P → Γ be a path of length 2 from π̂ ◦ f(u) to π̂ ◦ f(v) = π̂ ◦ f(u). This is

always possble since Γ is a connected graph on more than one vertex. By the

previous paragraph, we may lift α to a path α̂ : P → Γ̂ from f(u) to f(v). So

we see that either

dΓ̂
(
f(u), f(v)

)
< ξ̄dC(u, v)

or

dΓ̂
(
f(u), f(v)

)
≤ 2

and so, by Proposition 10.0.1, one of

dC(u, v)− (1− ξ̂)
|C|
2

< ξ̄dC(u, v) (§)

or

dC(u, v)− (1− ξ̂)
|C|
2

≤ 2 (¶)

must hold. Since dC(u, v) ≥ |C|
2
− 3

2
we see that (¶) gives the bound |C| ≤ 7

ξ̂
.

On the other hand, (§) is equivalent to

(1− ξ̄)dC(u, v) < (1− ξ̂)
|C|
2

and so gives

(ξ̂ − ξ̄)
|C|
2

< (1− ξ̄)
3

2

which is impossible if ξ̄ = 1 and otherwise gives the bound |C| ≤ 3(1−ξ̄)

ξ̂−ξ̄
.
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Chapter 11

Filling properties and disk diagrams

In this section we study disk diagrams and the isoperimetric and isodia-

metric functions of (strongly) shortcut graphs and groups. Let Γ be a graph

and let θ ∈ N. For the purposes of the current discussion, a cycle C is always

based and oriented. Hence two cycles f1, f2 : C → Γ may be distinct even if

f1 = f2 ◦ ψ for some ψ ∈ Aut(C). Let

Sθ =
{
f : C → Γ : |C| ≤ θ

}
be the set of cycles in Γ. The θ-filling Fθ(Γ) is the 2-complex whose 1-skeleton

is Γ and whose 2-skeleton has a unique 2-cell with attaching map f : C → Γ

for each f ∈ Sθ. If a group G acts on Γ then G acts on Sθ by g · f = φg ◦ f

where φg ∈ Aut(Γ) is the automorphism by which g acts on Γ. Thus the

action of G on Γ extends to an action on Fθ(Γ) such that an element g ∈ G

stabilizes a 2-cell F if and only if g stabilizes F pointwise.

For θ,N ∈ N with 3 ≤ θ ≤ N and ξ ∈ (0, 1) consider the following

property.

Every cycle C → Γ with θ < |C| ≤ N is not ξ-almost isometric. (∗)

Remark 11.0.1. If Γ is shortcut then Γ satisfies (∗) for θ bounding the lengths

of isometric cycles of Γ, for any N ≥ θ and for ξ ∈
(
N−2
N
, 1
)
. Of course, if Γ is

strongly shortcut, then it satisfies (∗) for a fixed ξ not depending on N .
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Construction 11.0.2. Let Γ be a graph satisfying (∗). Given a cycle f : C →

Γ of length |C| ≤ N we will inductively construct a disk diagram Df → Fθ(Γ)

for f . If |C| ≤ θ then Df → Fθ(Γ) is just a single 2-cell mapping to the 2-cell

of Fθ(Γ) whose attaching map is isomorphic to f . Otherwise f is not ξ-almost

isometric and so, by Proposition 10.0.3,

dΓ
(
f(u), f(v)

)
< ξdC(u, v)

for some pair of vertices u, v ∈ C0 with dC(u, v) ≥
⌊
|C|
2

⌋
− 1. Let P and Q

be the two segments of C joining u and v. Let g : R → Γ be a geodesic path

from f(u) to f(v) in Γ and note that |R| < ξmin
{
|P |, |Q|

}
. Glue f and g

together along u ∼ g−1
(
f(u)

)
and v ∼ g−1

(
f(v)

)
to obtain a combinatorial

map h : (C ⊔R)/∼ → Γ with h|P∪R and h|Q∪R cycles of length

|P |+ |R| < |P |+ ξ|Q| < |C|

and

|Q|+ |R| < |Q|+ ξ|P | < |C|

and so, by induction we have disc diagrams Dh|P∪R
→ Fθ(Γ) and Dh|Q∪R

→

Fθ(Γ) for h|P∪R and h|Q∪R. Gluing Dh|P∪R
→ Fθ(Γ) and Dh|Q∪R

→ Fθ(Γ)

together along R we obtain a disk diagram Df → Fθ(Γ) for f .

11.1 Simple connectedness

Theorem 11.1.1. Let Γ be a shortcut graph and let θ ≥ 3 bound the lengths

of the isometric cycles of Γ. Then Fθ(Γ) is simply connected.

Proof. Let f : C → Γ be a cycle in Γ. Then, by Remark 11.0.1 Γ satisfies

(∗) for θ as given, for N = |C| and for ξ = N−1
N

. Hence, we may apply

Construction 11.0.2 to obtain a disk diagram for f .
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Corollary 11.1.2. Let G be a (strongly) shortcut group. Then there is a

compact 2-complex X with G = π1(X) such that the universal cover X̃ of X

has (strongly) shortcut 1-skeleton. In particular, we have that G is finitely

presented.

Proof. It suffices to consider the case where G is shortcut since every strongly

shortcut group is shortcut. By Proposition 10.0.7, there is a free and cocom-

pact action of G on a shortcut graph Γ. Let θ ≥ 3 bound the lengths of

the isometric cycles of Γ. Then G acts freely and cocompactly on the filling

Fθ(Γ).

11.2 Isoperimetric function

Theorem 11.2.1. Let Γ be a graph. If Γ is shortcut then, for θ large enough,

the filling Fθ(Γ) has an exponential isoperimetric function. If Γ is strongly

shortcut then, for θ large enough, the filling Fθ(Γ) has a polynomial isoperi-

metric function.

Proof. Suppose Γ is shortcut and let θ ≥ 3 bound the lengths of the isometric

cycles of Γ. Let ∆: N → N be the Dehn function of Fθ(Γ). We will prove,

by induction on n that ∆(n) ≤ 2n. If n ≤ θ then this clearly holds since

any cycle of length at most θ bounds a 2-cell in Fθ(Γ). Let f : C → Γ be a

cycle of length n > θ. Applying Construction 11.0.2 to f with N = n and

ξ = n−1
n

we see that f bounds a disk diagram Df which is the union of two

disk diagrams of boundary length less than n. Hence f bounds a disk of area

at most 2∆(n− 1). By induction

2∆(n− 1) ≤ 2 · 2n−1 = 2n

and so we have ∆(n) ≤ 2n.
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Suppose Γ is strongly shortcut. Choose L ∈ N with L > 3. Let θ ≥ L
1−ξ

bound the lengths of the ξ-almost isometric cycles of Γ. We will prove that the

Dehn function of Fθ(Γ) satisfies ∆(n) ≤ nlogb(2) for b = 2L
(L−3)ξ+L+3

. Note that

b > 1 and that b tends to 2
1+ξ

as L goes to infinity. The argument proceeds as

in the shortcut case but in the inductive step f bounds a disk diagram which

is the union of two disk diagrams of boundary length strictly less than

ξ
n

2
+
⌈n
2

⌉
+ 1 ≤ ξ

n

2
+
n

2
+

1

2
+ 1 =

1

2

(
ξ + 1 +

3

n

)
n ≤ 1

2

(
ξ + 1 +

3

θ

)
n

so, since θ ≥ L
1−ξ

we have a disk diagram for f of area at most

2∆
(⌊1

2

(
ξ+1+

3(1− ξ)

L

)
n
⌋)

= 2∆
(⌊ 1

2L

(
(L−3)ξ+L+3

)
n
⌋)

= 2∆
(⌊1
b
n
⌋)

and so by induction we have

2∆
(⌊1
b
n
⌋)

≤ 2
(⌊1
b
n
⌋)logb(2)

≤ 2
(1
b
n
)logb(2)

= 2
(1
2
nlogb(2)

)
= nlogb(2)

and so we have that ∆(n) ≤ nlogb(2).

Corollary 11.2.2. Let G be a group. If G is shortcut then it has an exponen-

tial isoperimetric function. If G is strongly shortcut then it has a polynomial

isoperimetric function.

Corollary 11.2.3. Let G be a shortcut group. Then G has a decidable word

problem.

11.3 Isodiametric function

Theorem 11.3.1. Let Γ be a graph. If Γ is shortcut then, for θ large enough,

the filling Fθ(Γ) has an exponential isodiametric function. If Γ is strongly

shortcut then, for θ large enough, the filling Fθ(Γ) has a polynomial isodia-

metric function.

Proof. For a cycle f : C → Γ let diam(f) denote the minimum diameter

of a disk diagram for f . Observe that in Construction 11.0.2 diam(f) ≤
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diam(h|P∪R) + diam(h|Q∪R). Indeed we may glue together minimal diame-

ter disk diagrams of h|P∪R and h|Q∪R along R to obtain a disk diagram for

f . Using this observation, the proof follows virtually identically to that of

Theorem 11.2.1.

Corollary 11.3.2. Let G be a group. If G is shortcut then it has an exponen-

tial isodiametric function. If G is strongly shortcut then it has a polynomial

isodiametric function.
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Chapter 12

Combinations

In this section we show that (strongly) shortcut graphs and groups are

closed under products and that a finite graph of (strongly) shortcut groups

with finite edge groups is (strongly) shortcut.

12.1 Products

Let Γ1 and Γ2 be simplicial graphs. The product graph Γ1 × Γ2 of Γ1 and

Γ2 is the 1-skeleton of the CW complex product of Γ1 and Γ2. The vertex set

of Γ1 × Γ2 is Γ0
1 × Γ0

2 and the edges of Γ1 × Γ2 are given by (u1, u2) ∼ (v1, v2)

whenever

u1 = v1 and u2 ∼ v2

or

u1 ∼ v1 and u2 = v2

where ∼ is the edge relation.

Theorem 12.1.1. Let Γ1 and Γ2 be (strongly) shortcut graphs. Then Γ1 ×Γ2

is (strongly) shortcut.

Proof. Let Γ1 and Γ2 be (strongly) shortcut and let θ bound the lengths of

the (ξ-almost) isometric cycles of the Γi. Let Γ = Γ1 × Γ2 and let f : C → Γ

be a cycle of length |C| ≥ 2θ. We combine the shortcut and strongly shortcut

cases as follows. If the Γi are strongly shortcut then we have θ and ξ as given.

Otherwise, by Remark 11.0.1, the Γi satisfy (∗) for θ as given, for N = |C|

and for some ξ depending on N . We will show that for some antipodal pair of

points p, q ∈ C we have dΓ
(
f(p), f(q)

)
<
(
1+ξ
2

) |C|
2
.
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Each edge of C projects nondegenerately onto exactly one of Γ1 or Γ2. Call

those edges that project nondegenerately onto Γ1 horizontal edges and those

that project nondegenerately onto Γ2 vertical edges. Without loss of generality

there are more horizontal edges than vertical edges. Let f1 : C1 → Γ1 be the

cycle obtained from C → Γ1 by contracting the vertical edges of C. Then

N ≥ |C1| ≥ |C|
2

≥ θ so we have dΓ1

(
f1(p1), f1(q1)

)
< ξdC1(p1, q1) for some

antipodal pair of points p1, q1 ∈ C1. Let p′, q′ ∈ C map to p1 and q1 under

the contraction map C → C1. We may choose p′ and q′ so that they are not

contained in the interior of any vertical edge. Let ℓ be the number of vertical

edges in a geodesic segment of C between p′ and q′. Then dC(p
′, q′) = |C1|

2
+ ℓ

while dΓ
(
f(p′), f(q′)

)
< ξ |C1|

2
+ ℓ. Let P ⊂ C be a geodesic segment of length

|C|
2

containing p′ and q′ and let p and q be the endpoints of P with p nearest

to p′ and q nearest to q′. Then dC(p, q) =
|C|
2

while

dΓ
(
f(p), f(q)

)
≤ dΓ

(
f(p), f(p′)

)
+ dΓ

(
f(p′), f(q′)

)
+ dΓ

(
f(q′), f(q)

)
≤ dC(p, p

′) + dΓ
(
f(p′), f(q′)

)
+ dC(q

′, q)

= dC(p, q)− dC(p
′, q′) + dΓ

(
f(p′), f(q′)

)
<

|C|
2

−
( |C1|

2
+ ℓ
)
+ ξ

|C1|
2

+ ℓ

=
|C|
2

− (1− ξ)
|C1|
2

=
(1 + ξ

2

) |C|
2

and so dΓ
(
f(p), f(q)

)
<
(
1+ξ
2

) |C|
2
.

Corollary 12.1.2. Let G1 and G2 be (strongly) shortcut groups. Then G1×G2

is (strongly) shortcut.

12.2 Trees of shortcut graphs

Let T be a tree. An arc decomposition of T is a partition of the edges

of T into paths, called arcs, whose interior vertices all have degree two. The
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endpoints of the arcs of an arc decomposition are called nodes. Every tree

comes equipped with a default arc decomposition whose arcs are simply its

edges. A tree of graphs with discrete edge graphs is a surjective (possibly

degenerate) combinatorial map Γ → T from a graph Γ to a tree T with an arc

decomposition such that the preimage of each node v is a connected subgraph

and the preimage of the interior of each arc P is a disjoint union of open paths

of the same length. The closure of a component P̃ of this disjoint union is

called a lift of P . We call the preimage of a node v the vertex graph Γv at v of

Γ → T . We call the preimage of the midpoint of an arc P of T the edge graph

ΓP at P of Γ → T . For each endnode v of an arc P of T there is a function

Γv,P : ΓP → Γv sending p ∈ Γe to the unique vertex contained in P̃ ∩Γv where

P̃ is the lift of P that contains p. The Γv,P are called the attaching maps of

Γ → T .

For the purpose of discussing trees of graphs, it is convenient to consider

combinatorial maps C → Γ, with C homeomorphic to S1, which are not

necessarily nondegenerate. Call such a map a cycles with degeneracies.

The following lemma is a variant of Jordan’s separator theorem for trees

[30].

Lemma 12.2.1. Let T be a tree. Let f : C → T be a cycle with degeneracies of

length |C| ≥ 3. Then for some vertex w ∈ f(C0), the metric subspace f−1(w)

has diameter at least |C|
3
.

Proof. For w in the image of f , consider the metric subspace f−1(w) ⊂ C.

Choose w in the image of f such that f−1(w) has the largest possible diameter.

Let the vertices u, v ∈ f−1(w) achieve the diameter of f−1(w). Suppose, for

the sake of finding a contradiction, that dC(u, v) <
|C|
3
. Then the segment P

of length |P | ≥ 2|C|
3

between u and v in C intersects f−1(w) only at u and

v. Indeed any point p ∈ f−1 must be at distance less than |C|
3

to both u and
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v and there is no such point of P . But then the first and last edges of P

map nondegenerately to some common edge ww′ of T . But then f−1(w′) has

diameter larger than the diameter of f−1(w) contradicting our choice of w.

Hence dC(u, v) ≥ |C|
3
.

Lemma 12.2.2. Let T be a tree. Let f : C → T be a cycle with degeneracies

of length |C| ≥ 3. Let L < |C|
3
+ 1 and suppose that for each edge e ⊂ f(C),

the distance between the midpoints of any two edges of f−1(e) is at most L.

Then for some vertex w ∈ T 0, any segment P ⊂ C whose interior is disjoint

from f−1(w) has length |P | ≤ L+ 1.

Proof. Let w be as in Lemma 12.2.1 and let P be the closure of a component

of C \ f−1(w). We need to show that |P | ≤ L + 1. The initial and terminal

edges e1 and e2 of P map to the same edge of T and so either |P | ≤ L+ 1 or

|P | ≥ |C| − L+ 1. But |C| − L+ 1 > 2|C|
3

while, by our choice of w, we have

|P | ≤ 2|C|
3
. Hence |P | ≤ L+ 1 as required.

A cycle with degeneracies is ξ-almost isometric if

dΓ
(
f(p), f(q)

)
≥ ξ

|C|
2

for any antipodal pair of points p, q ∈ C.

Lemma 12.2.3. Let Γ be strongly shortcut with θ bounding the lengths of

the ξ-almost isometric cycles of Γ. Then there exist ξ′ ∈ (0, 1) and θ′ ∈ N

depending only on ξ and θ such that θ′ bounds the lengths of the ξ′-almost

isometric cycles with degeneracies of Γ.

Proof. Let θ bound the lengths of the ξ-almost isometrically embedded cycles

of Γ. Let f : C → Γ be a cycle with degeneracies. Define S ⊂ C as the

union of all edges of C that map to vertices under f . We may assume that

S ̸= C since, otherwise f is the constant map and so satisfies the statement
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of the theorem for any ξ′. Let (Pi)
ℓ
i=1 be the sequence of components of S in

the order they are visited in some traversal of C. We begin by showing, for

θ′′ ≥ max
{
θ, 8

1−ξ

}
and ξ′′ = 1+ξ

2
, that if |C| > θ′′ and |Pi| is even for each i

then there exist antipodal p, q ∈ C such that dΓ
(
f(p), f(q)

)
< ξ′′ |C|

2
. Call the

condition that the |Pi| are even the parity condition. Later we will use this

result to prove the statement of the theorem, for θ′ ≥ max
{
θ′′, 2(2+ξ′′)

1−ξ′′

}
and

ξ′ = 1+ξ′′

2
, with no assumption on the parities of the |Pi|.

Assume f satisfies the parity condition and |C| > θ′′. We obtain from

f a cycle without degeneracies f ′ : C → Γ by mapping each edge of Pi onto

f(ei) where ei is the edge that follows Pi in some fixed orientation of C. This

is possible since f satisfies the parity condition. Thus f ′ folds Pi onto f(ei)

in a zig-zag fashion. Then for any point p ∈ C, we have dΓ
(
f(p), f ′(p)

)
≤

1. If |C| > θ′′ then there is a pair of antipodal points p, q ∈ C such that

dΓ
(
f ′(p), f ′(q)

)
≤ ξ |C|

2
. Hence

dΓ
(
f(p), f(q)

)
< ξ

|C|
2

+ 2 =
(
ξ +

4

|C|

) |C|
2

≤
(
ξ +

4

θ′′

) |C|
2

≤ ξ′′
|C|
2

as required.

We now consider general f : C → Γ which does not necessarily satisfy

the parity condition. Assume that |C| > θ′. Let i0 < i1 < · · · < im−1 be

the set of indices for which |Pi| is not even and assume |C| > θ′. Obtain a

cycle f ′ : C ′ → Γ from f by contracting an edge in each Pij with j odd and

expanding a vertex v to an edge e ↦→ f(v) in each Pij with j even. Then f ′

satisfies the parity condition and we have |C| ≤ |C ′| ≤ |C| + 1. There is a

relation R ⊂ C × C ′ with pRq if and only if one of the following holds.

1. p was obtained directly from q

2. p is contained in an edge that was contracted to q

3. p is a vertex which was expanded to an edge that contains q
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By the alternating nature of the expansions and contractions we see that if

pRp′ and qRq′ then dC(p, q) ≥ dC′(p′, q′)− 1. By the previous paragraph, we

have a pair of antipodal points p′, q′ ∈ C ′ such that dΓ
(
f ′(p′), f ′(q′)

)
< ξ′′ |C

′|
2
.

Take any p′′, q′′ ∈ C satisfying p′′Rp′ and q′′Rq′. Then f(p′′) = f ′(p′) and

f(q′′) = f ′(q′) and so dΓ
(
f(p′′), f(q′′)

)
< ξ′′ |C

′|
2

≤ ξ′′ |C|+1
2

and yet dC(p
′′, q′′) ≥

|C|
2
− 1. Hence, as f is 1-Lipschitz, for some antipodal pair of points p, q ∈ C

we have

dΓ
(
f(p), f(q)

)
< ξ′′

|C|+ 1

2
+ 1 =

(
ξ′′ +

ξ′′ + 2

|C|

) |C|
2

<
(
ξ′′ +

ξ′′ + 2

θ′

) |C|
2

≤ ξ′
|C|
2

as required.

Theorem 12.2.4. Let φ : Γ → T be a tree of graphs with discrete edge graphs

satisfying the following two conditions.

1. The vertex graphs Γv are uniformly (strongly) shortcut in the sense that

there exists θ ≥ 3 (and ξ ∈ (0, 1)) such that θ bounds the lengths of the

(ξ-almost) isometric cycles of every vertex graph.

2. For some M ∈ N, for every attaching map Γv,P of φ, the diameter of

Γv,P (ΓP ) is at most M .

3. Every arc of T has length M .

Then Γ is (strongly) shortcut.

Proof. We will first consider the case where the vertex graphs are shortcut.

Let f : C → Γ be an isometric cycle. If f maps entirely into a single vertex

graph then |C| ≤ θ by hypothesis. So, suppose the image of f contains some

edge in the lift P̃ of an arc P of T . Then, since f is injective, it must traverse

all of P̃ and, by consideration of φ ◦ f , it must also traverse some other lift
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P̂ of P in the opposite direction. Let Q and Q′ be the segments of C which

map isomorphically to P̃ and P̂ . Let u ∈ Q and u′ ∈ Q′ be endpoints of Q

and Q′ mapping to the same vertex graph. Then dΓ
(
f(u), f(u′)

)
≤ M and

so dC(u, u
′) ≤ M whereas Q and Q′ each have length M . Hence the geodesic

segment R of C between u and u′ is disjoint from the interiors of Q and Q′.

The same goes for the geodesic segment R′ between the other pair of endpoints

of Q and Q′. Then C is covered by the segments Q, Q′, R and R′, each of

which has length at most M . Hence the lengths of the isometric cycles of Γ

are bounded by max{θ, 4M}.

The case where the vertex graphs are strongly shortcut requires a more

delicate argument relying on the preceeding lemmas. By Lemma 12.2.3 we

can replace θ and ξ so that θ bounds the lengths of the ξ-almost isometric

cycles with degeneracies of all the vertex graphs. Let ξ′ = ξ+2
3

and let θ′ =

max
{
θ, 18M+6

1−ξ

}
. Let f : C → Γ be a ξ′-almost isometric cycle. We will prove

that |C| ≤ θ′. Since 18M
1−ξ

≥ 4 we may assume that |C| ≥ 4.

If the image of f is contained entirely in a single vertex graph then |C| ≤

θ ≤ θ′ since ξ′ ≥ ξ. So let us assume that f is not confined to a single vertex

graph. Then φ ◦ f maps some pair of distinct edges e and e′ of C onto a

common edge of some arc P of T . Then f maps e and e′ onto a pair of edges

in the same relative position in lifts of P . Since P has length M and the

attaching maps of φ have diameter bounded by M , we have dΓ(pē, pē′) ≤ 2M

where pē and pē′ are the midpoints of ē and ē′. Then by Proposition 10.0.1

dC(pe, pe′) ≤ 2M + (1− ξ′) |C|
2

where pe and pe′ are the midpoints of e and e′.
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Let L = 2M + (1− ξ′) |C|
2
. If L ≥ |C|

3
+ 1 then we have

0 ≤ 2M +
(
1− ξ + 2

3

) |C|
2

− |C|
3

− 1

= 2M − 1 +
(1
2
− ξ + 2

6
− 1

3

)
|C|

= 2M − 1−
(ξ + 1

6

)
|C|

and so |C| ≤ 6(2M−1)
ξ+1

≤ θ′. So we may assume that L < |C|
3
+ 1 and can apply

Lemma 12.2.2 to φ◦f and L to obtain a vertex w ∈ T 0 such that any segment

Q ⊂ C whose interior is disjoint from (φ ◦ f)−1(w) has length |Q| ≤ L + 1.

Let v ∈ (φ ◦ f)−1(w) be a vertex.

Suppose w is an interior vertex of an arc P of T . Let p be the antipode of

v and let p′ be a point of (φ◦f)−1(w) that is nearest to p. Then dC(p, p
′) ≤ L+1

2

and so dC(p
′, v) ≥ |C|

2
− L+1

2
. So, since arcs have length M and the images of

attaching maps of φ have diameter at most M , we have

2M ≥ dΓ
(
f(p′), f(v)

)
≥ dC(p

′, v)− (1− ξ′)
|C|
2

≥ |C|
2

− L+ 1

2
− (1− ξ′)

|C|
2

= ξ′
|C|
2

− L+ 1

2

where the second inequality holds by Proposition 10.0.1. So, recalling that

L = 2M + (1− ξ′) |C|
2

we have

2M ≥ ξ′
|C|
2

−M − (1− ξ′)
|C|
4

− 1

2

which gives |C| ≤ 4M+2
3ξ′−1

= 4M+2
ξ+1

≤ θ′.

Suppose w is a node of T . Then (φ ◦ f)−1(w) = f−1(Γw). Let (Pi)i be

the components of f−1(Γw) and let (Qj)j be the closures of the components

of C \ f−1(Γw). Then |Qj| ≤ L + 1 for each j and f maps each Pi into Γw
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and maps each Qj into the closure of the complement of Γw. We will define

a cycle with degeneracies f ′ : C → Γw that agrees with f on the Pi and that

maps each Qj onto a geodesic. To see that this is possible, we need only to

show that the endpoints of each Qj map to a distance of at most |Qj| in Γw.

The endpoints of Qj map to a distance of at most M since M is bound on

the diameters of the attaching maps of φ. So we need only consider the case

where |Qj| < M . But then Qj is not long enough for f |Qj
to traverse the lift

of an arc of T since the arcs have length M . Hence the endpoints of Qj map

to the same vertex of Γw. So we are able to define f ′ : C → Γw. Then, for

a point p ∈ C, we have dΓ
(
f(p), f ′(p)

)
≤ M

2
+ L+1

2
. So if p, q ∈ C are any

antipodal pair then

dΓw

(
f ′(p), f ′(q)

)
≥ dΓ

(
f ′(p), f ′(q)

)
≥ dΓ

(
f(p), f(q)

)
−M − L− 1

≥ ξ′
|C|
2

−M − L− 1

and so dΓw

(
f ′(p), f ′(q)

)
≥
(
ξ′ − 2(M+L+1)

|C|

) |C|
2
. So as long as ξ′ − 2(M+L+1)

|C| ≥ ξ

then |C| ≤ θ ≤ θ′. If ξ′ − 2(M+L+1)
|C| < ξ then we have

0 < ξ − ξ + 2

3
+

2
(
M + 2M +

(
1− ξ+2

3

) |C|
2
+ 1
)

|C|

=
2ξ − 2

3
+

6M

|C|
+
(
1− ξ + 2

3

)
+

2

|C|

=
ξ − 1

3
+

6M + 2

|C|

and so |C| < 18M+6
1−ξ

≤ θ′.

Corollary 12.2.5. Let G be a finite graph of (strongly) shortcut groups with

finite edge groups. Then the fundamental group of G is (strongly) shortcut.
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Proof. Let Γ be the underlying graph of G . We construct a graph of spaces H

on Γ such that the fundamental group functor sends H to G . See Scott and

Wall for this viewpoint on graphs of groups [46]. By Corollary 11.1.2, we can

choose the vertex spaces so that their universal covers have (strongly) shortcut

1-skeleton. The 1-skeleton Γ̃ of the universal cover of H has the structure

Γ̃ → T of a tree of graphs Γ̃ → T on which π1(G ) acts freely and cocompactly.

ForM large enough, subdividing each edge of T into an arc of lengthM results

in a tree of graphs that satisfies the conditions of Theorem 12.2.4.

Corollary 12.2.6. Amalgamations and HNN extensions of (strongly) shortcut

groups over finite subgroups are (strongly) shortcut.

Note that BS(1, 2) is an HNN extension of Z but is not strongly shortcut.

Hence, we see that the condition that the edge groups be finite is essential in

the strong shortcut case.
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Chapter 13

Examples

In this section we prove that hyperbolic graphs, 1-skeleta of CAT(0) cube

complexes, the standard Cayley graphs of finitely generated Coxeter groups

and all Cayley graphs of Z and Z2 are strongly shortcut. In particular, hy-

perbolic groups, cocompactly cubulated groups and finitely generated Coxeter

groups are strongly shortcut.

13.1 Hyperbolic graphs

In this section we will prove that hyperbolic graphs are strongly shortcut.

To do so we will make use of the following proposition whose proof is given in

Bridson and Haefliger [5].

Proposition 13.1.1 (Specialization of Proposition 1.6 of Part III of Bridson

and Haefliger [5]). Let Γ be a δ-hyperbolic graph. Let f : P → Γ be a 1-Lipchitz

map to Γ from a compact interval P ⊂ R. If Q ⊂ Γ is the image of a geodesic

joining the endpoints of f , then

dΓ
(
x, f(P )

)
≤ δmax{0, log2 |P |}+ 1

for every x ∈ Q.

Theorem 13.1.2. Let Γ be a hyperbolic graph. Then Γ is strongly shortcut.

Proof. Let δ ≥ 1 be a hyperbolicity constant for Γ. Suppose f : C → Γ is a

3
4
-almost isometric cycle of length |C| ≥ 2. Let y, y′ ∈ C be a pair of antipodal

points and let P1 ⊂ C and P2 ⊂ C be the two segments of C between y and

y′. Let Q be the image of a geodesic in Γ from f(y) to f(y′) and let x be
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the midpoint of Q. Then, by Proposition 13.1.1, there are points p1 ∈ P1 and

p2 ∈ P2 such that f(p1) and f(p2) are each at distance at most δ log2
|C|
2
+ 1

from x in Γ. Then, since f is 3
4
-almost isometric, we have |Q| ≥ 3|C|

8
and

3|C|
16

≤ 1

2
|Q| = dΓ

(
f(y), x

)
≤ dΓ

(
f(y), f(p1)

)
+ dΓ

(
f(p1), x

)
≤ dC(y, p1) + δ log2

|C|
2

+ 1

and so dC(y, p1) ≥ 3|C|
16

− δ log2
|C|
2

− 1. By the same argument we have the

same lower bound for dC(y, p2) and dC(y
′, p1) and dC(y

′, p2). Hence

dC(p1, p2) ≥
3|C|
8

− 2δ log2
|C|
2

− 2

and so, by Proposition 10.0.1, we have

dΓ
(
f(p1), f(p2)

)
≥ 3|C|

8
−2δ log2

|C|
2

−2−
(
1− 3

4

) |C|
2

=
|C|
4

−2δ log2
|C|
2

−2

but f(p1) and f(p2) are both within a distance of δ log2
|C|
2

+ 1 to x and so

dΓ
(
f(p1), f(p2)

)
≤ 2δ log2

|C|
2
+ 2. Hence we have

|C| ≤ 16
(
δ log2

|C|
2

+ 1
)

which bounds the length |C| of f .

Corollary 13.1.3. Hyperbolic groups are strongly shortcut.

13.2 CAT(0) cube complexes

In this section we will prove that the 1-skeleton of a finite-dimensional

CAT(0) cube complex is strongly shortcut. The proof rests on a theorem

about edge colorings of cycles.

Let C be a cycle. An edge coloring of C is a function α : C(1) → W from

the set C(1) of edges of C to some set W of colors. A cycle C along with
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an edge coloring α : C(1) → W is a wall cycle if α is surjective and, for each

w ∈ W , the number |α−1(w)| of edges of color w is even. In this case we may

refer to the elements of W as walls.

Let (C, α) be a wall cycle. A combinatorial segment P ⊂ C crosses a

wall w ∈ W if the number of edges of P colored w is odd. A combinatorial

segment P ⊂ C begins and ends with a wall w ∈ W if the initial and terminal

edges of P map to w under α. Two distinct walls w1, w2 ∈ W cross if for

some combinatorial segment P ⊂ C, we have that P begins and ends with

one of the two walls and P crosses the other of the two walls. The dimension

d of a wall cycle (C, α) is defined as d = max{1, n} where n is the size of

the largest set S ⊆ W of pairwise crossing walls. The wall crossing distance

dα(u, v) between a pair of vertices u, v ∈ C0 is defined as the number of walls

crossed by a segment P ⊂ C from u to v. Note that the choice of segment P

does not matter since each wall appears an even number of times along C.

Proposition 13.2.1. Let X be a CAT(0) cube complex. Let W be the set of

hyperplanes of X and let β : X(1) → W map each edge e of X to the hyperplane

that e crosses. Then for any cycle f : C → X1, the coloring (C, α) is a wall

cycle, where α(e) = β
(
f(e)

)
for e ∈ C(1). Moreover, two crossing walls of

(C, α) must cross in X and so the dimension of X is at least the dimension

of (C, α). Lastly, the wall crossing distance on (C, α) satisfies dα(u, v) =

dX1

(
f(u), f(v)

)
.

Proof. That (C, α) is a wall cycle is a consequence of the fact that hyperplanes

of a CAT(0) complex are two-sided. That two crossing walls of (C, α) must

cross in X is a consequence of the fact that hyperplanes are connected and

two-sided. The dimension of a CAT(0) cube complex is equal to the size of

the largest set of its pairwise crossing hyperplanes. Finally, the combinatorial

74



distance between two vertices of a CAT(0) cube complex is equal to the number

of hyperplanes separating them.

In light of Proposition 13.2.1, the following theorem implies that the 1-

skeleta of d-dimensional CAT(0) cube complexes are strongly shortcut.

Theorem 13.2.2. Let (C, α) be a d-dimensional wall cycle. If dα(u, v) ≥(
5d−1
5d

) |C|
2

for all antipodal pairs of vertices u, v ∈ C0 then |C| ≤ 50d2

5d−1
.

Corollary 13.2.3. The 1-skeleta of finite dimensional CAT(0) cube complexes

are strongly shortcut.

Corollary 13.2.4. Cocompactly cubulated groups are strongly shortcut.

A group is cocompactly cubulated if it acts properly and cocompactly on

a CAT(0) cube complex.

The proof of Theorem 13.2.2 relies several lemmas and on the following

theorem of Turan.

Theorem 13.2.5 (Turan’s Theorem). Let Γ be a simplicial graph on n ver-

tices. If every complete subgraph of Γ has at most d ∈ N vertices then Γ has

at most
(
d−1
d

)
n2

2
edges.

Several proofs of Turan’s Theorem are given in Aigner and Ziegler [1].

Lemma 13.2.6. Let (C, α) be a wall cycle and suppose that for some ξ ∈ (0, 1)

we have dα(u, v) ≥ ξ |C|
2

for every antipodal pair u, v ∈ C0. Let W ′ = {w ∈

W : |α−1(w)| = 2}. Then |W \W ′| ≤ 1−ξ
ξ
|W |.

Proof. Partition C(1) into two sets S and T such that

⏐⏐(α|S)−1(w)
⏐⏐ = ⏐⏐(α|T )−1(w)

⏐⏐
for each w ∈ W . This is always possible since |α−1(w)| is even for each

w ∈ W . Viewing the elements of S as colored by W , every color appears in S

and those colors inW \W ′ appear at least twice. Hence |W | ≤ |S|−|W \W ′| =
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|C|
2
+ |W ′| − |W |. Let u and v be an antipodal pair of vertices. Then we have

ξ
|C|
2

≤ dα(u, v) ≤ |W | ≤ |C|
2

+ |W ′| − |W |

and so |W ′| ≥ |W | − (1 − ξ) |C|
2

≥ |W | − 1−ξ
ξ
|W | = 2ξ−1

ξ
|W |. Hence we have

|W \W ′| = |W | − |W ′| ≤
(
1− 2ξ−1

ξ

)
|W | = 1−ξ

ξ
|W |.

Let (C, α) be a wall cycle and let w be a wall of (C, α). Let Xw ⊂ C

denote the set of all midpoints of edges colored w and let diamXw denote the

diameter of Xw as a metric subspace of (C, dC). For a pair of vertices u, v ∈ C0

we say that w contributes to {u, v} if a geodesic segment from u to v crosses

w. Hence dα(u, v) is equal to the number of walls contributing to {u, v}.

Lemma 13.2.7. Let (C, α) be a wall cycle and let w ∈ W be a wall such that

the number of edges colored w is exactly 2. Then w contributes to {u, v} for

exactly diamXw antipodal pairs of vertices u, v ∈ C0.

Proof. Let P ⊂ C be a segment beginning and ending with w of length |P | =

diamXw+1. Then w contributes to an antipodal pair {u, v} if and only if one

of u or v is an interior vertex of P and there are exactly |P | − 1 = diamXw

such pairs.

Lemma 13.2.8. Let (C, α) be a wall cycle and suppose that, for some ξ ∈

(0, 1), we have dα(u, v) ≥ ξ |C|
2

for all antipodal pairs of vertices u, v ∈ C0. Let

w ∈ W be a wall. Then w crosses at least diamXw − 1− (1− ξ) |C|
2

walls.

Proof. Consider first the case where diamXw = |C|
2
. Then there exist a pair

of antipodal edges e and e′ colored w. Let u ∈ e and u′ ∈ e′ be a pair of

antipodal vertices and let P ⊂ C be a segment with endpoints u and u′. Note

that P contains exactly one of e or e′. Without loss of generality P contains

e. Then, since dα(u, u
′) ≥ ξ |C|

2
, then P must cross at least ξ |C|

2
− 1 walls
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aside from w. Then the same must hold for P ∪ e′ and so w crosses at least

ξ |C|
2
− 1 = diamXw − 1− (1− ξ) |C|

2
walls.

Consider now the case diamXw <
|C|
2
. We have a geodesic segment P ⊂ C

beginning and ending with w such that |P | = diamXw+1. Let u and v be the

endpoints of P , let u′ be the antipode of u and let Q be the geodesic segment

containing P and having endpoints u and u′. Then we have

ξ
|C|
2

≤ dα(u, u
′) ≤ dα(u, v) + dα(v, u

′)

≤ dα(u, v) + dC(v, u
′)

= dα(u, v) +
|C|
2

− (diamXw + 1)

and so we have dα(u, v) ≥ diamXw + 1 − (1 − ξ) |C|
2
. But w crosses at least

dα(u, v)− 1 walls and so we are done.

Proof of Theorem 13.2.2. Let ξ =
(
5d−1
5d

)
. For each vertex pair {u, v} and

each wall w ∈ W , let 1
{u,v}
w be defined as follows.

1
{u,v}
w =

⎧⎪⎪⎨⎪⎪⎩
1 if w contributes to {u, v}

0 otherwise

Let W ′ ⊆ W be the set of walls which color exactly two edges of C.

We have

dα(u, v) =
∑
w∈W

1
{u,v}
w

and, by Lemma 13.2.7, for w ∈ W ′ we have

diamXw =
∑
{u,v}

1
{u,v}
w

where the sum ranges over all antipodal pairs of vertices {u, v}. Let Γ be the

simplicial graph with vertex set W and where two walls are joined by an edge
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if they cross. Then we have

|Γ(1)|

≥ 1

2

∑
w∈W ′

(
deg(w)

)
≥ 1

2

∑
w∈W ′

(
diamXw − 1− (1− ξ)

|C|
2

)
=

1

2

∑
w∈W ′

(∑
{u,v}

1
{u,v}
w

)
− 1

2
|W ′| − 1

2
|W ′|(1− ξ)

|C|
2

=
1

2

∑
{u,v}

(∑
w∈W

1
{u,v}
w

)
− 1

2

∑
w∈W\W ′

(∑
{u,v}

1
{u,v}
w

)
− 1

2
|W ′| − 1

2
|W ′|(1− ξ)

|C|
2

=
1

2

∑
{u,v}

(
dα(u, v)

)
− 1

2

∑
w∈W\W ′

(∑
{u,v}

1
{u,v}
w

)
− 1

2
|W ′| − 1

2
|W ′|(1− ξ)

|C|
2

≥ 1

2
ξ

(
|C|
2

)2

− 1

2
|W \W ′| · |C|

2
− 1

2
|W ′| − 1

2
|W ′|(1− ξ)

|C|
2

≥ 1

2
ξ|W |2 − 1

2

(1− ξ

ξ

)
|W | · 1

ξ
|W | − 1

2
|W | − 1

2
|W |(1− ξ)

1

ξ
|W |

=
(
ξ − 1− ξ

ξ
− 1− ξ

ξ2
− 1

|W |

) |W |2

2

=
(
ξ + 1− 1

ξ2
− 1

|W |

) |W |2

2

≥
(
ξ + 1− 1

ξ2
− 2

ξ|C|

) |W |2

2

where the second inequality holds by Lemma 13.2.8 and the second to last

inequality holds by Lemma 13.2.6. We now verify that 4x− 3 ≤ x+1− 1
x2 for

x ∈
[
4
5
, 1
]
, noting that it suffices to check the inequality for x = 4

5
and x = 1

since x ↦→ x + 1− 1
x2 is a concave function. Then, since ξ = 5d−1

5d
∈
[
4
5
, 1
]
we

have

|Γ(1)| ≥
(
4ξ − 3− 2

ξ|C|

) |W |2

2
=
(4(5d− 1)

5d
− 3− 2

|C|
· 5d

5d− 1

) |W |2

2

and, since (C, α) is d-dimensional, we have

4(5d− 1)

5d
− 3− 2

|C|
· 5d

5d− 1
≤ d− 1

d
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by Turan’s Theorem (Theorem 13.2.5). After some rearranging and cancella-

tion this inequality becomes |C| ≤ 50d2

5d−1
.

13.3 Cayley graphs of Coxeter groups

In this section we use the cubulation of Coxeter groups of Niblo and

Reeves [38] and our result on CAT(0) cube complexes to prove that Coxeter

groups are strongly shortcut.

Let Γ be a simplicial graph on the vertex set {v1, v2, . . . , vn} with every

edge labeled by an integer at least 2. If Γ has an edge e from vi to vj then let

mij = mji denote the label of e. The Coxeter group CΓ defined by Γ is given

by the following presentation

⟨
v1, v2, . . . , vn | v2k = 1 for all k and (vivj)

mij = 1 for all edges {vi, vj} ∈ Γ(1)
⟩

For a Coxeter group CΓ, Niblo and Reeves [38] construct a finite dimen-

sional CAT(0) cube complex into whose 1-skeleton the Cayley graph of CΓ

with generating set Γ0 isometrically embeds. Hence, since the 1-skeleta of

CAT(0) cube complexes are strongly shortcut, we have the following theorem.

Theorem 13.3.1. Coxeter groups are strongly shortcut.

13.4 Cayley graphs of Z and Z2

We have shown that the 1-skeleta of CAT(0) cube complexes are strongly

shortcut. In particular, the standard Cayley graphs of the finitely generated

free abelian groups are strongly shortcut. In this section we will strengthen

this result for Z and Z2 by showing that all of their Cayley graphs are strongly

shortcut.

Lemma 13.4.1. Let Γ be a graph and suppose there is a continuous (K,M)-

quasi-isometric embedding ι : Γ → R2. Let ξ ∈ (0, 1) and let f : C → Γ be

a ξ-almost isometric cycle. Suppose the image of ι ◦ f is contained in the

N-neighborhood of a line L ⊂ R. Then |C| ≤ 2K
ξ
(M + 2N).
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Proof. By continuity, for some pair of antipodal points p, q ∈ C, the points

ι ◦ f(p) and ι ◦ f(q) project perpendicularly to the same point of L. Then

dR
(
ι ◦ f(p), ι ◦ f(q)

)
≤ 2N

and so we have

ξ
|C|
2

≤ dΓ
(
f(p), f(q)

)
≤ K(M + 2N)

and so we have |C| ≤ 2K
ξ
(M + 2N).

Since the inclusion map Z ↪→ R × {0} extends to a continuous quasi-

isometric embedding from any Cayley graph of Z, we obtain as a corollary of

Lemma 13.4.1 the following theorem.

Theorem 13.4.2. Every Cayley graph of Z is strongly shortcut.

In the remainder of this section we will prove that the same holds for

Cayley graphs of Z2. Let S be a generating set of Z2, let the Γ be the Cayley

graph of (Z2, S) and let ι : Γ → R2 be the (K,M)-quasi-isometry obtained by

extending the inclusion map Z2 ↪→ R2 to Γ in such a way that the restriction

of ι to each edge is a geodesic.

Lemma 13.4.3. Let f : C → Γ be a ξ-almost isometric embedding. For some

constants A and B depending only on S, there is a line in R2 whose
(
(1 −

ξ)A|C|+B
)
-neighborhood contains the image of ι ◦ f .

Proof. For x ∈ R let |x| denote the standard Euclidean norm of x. Let t ∈ S

achieve |t| = max
{
|s| : s ∈ S

}
. Let V be the vector subspace of R2 generated

by t. For s ∈ S let st be the perpendicular projection of s onto t and let

α = max
{
|st| : s ∈ S \ {±t}

}
. Then α < |t|.

By continuity, some pair of antipodal points p, q ∈ C satisfy ι ◦ f(p)− ι ◦

f(q) ∈ V . Pick u ∈ Z2 such that |u − ι ◦ f(p)| ≤ 1. Then for some r ∈ Z,

we have |u + rt − ι ◦ f(q)| ≤ 1 + |t|. Then dΓ
(
u, f(p)

)
≤ K(M + 1) and
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dΓ
(
u+ rt, f(q)

)
≤ K

(
M + 1 + |t|

)
. Hence we have

ξ
|C|
2

≤ dΓ
(
f(p), f(q)

)
≤ dΓ

(
f(p), u

)
+ dΓ(u, u+ rt) + dΓ

(
u+ rt, f(q)

)
≤ r +K

(
2M + 2 + |t|

)
and so r ≥ ξ |C|

2
−K

(
2M + 2 + |t|

)
. Let P ⊂ C be a segment with endpoints

p and q. Label each edge of C by the label of the edge it maps to under f .

Let T be the union of all t-labeled edges of C and let ℓ be the total length of

the segments of T ∩ P . Consider the projection of the path ι ◦ f |P onto the

line p + V . It has arclength at most ℓ|t| +
( |C|

2
− ℓ
)
α. But the endpoints of

ι ◦ f |P are ι ◦ f(p) and ι ◦ f(q), which are of distance at least (r − 1)|t| − 2

apart and so (r− 1)|t| − 2 ≤ ℓ|t|+
( |C|

2
− ℓ
)
α. Combining this inequality with

r ≥ ξ |C|
2
−K

(
2M + 2 + |t|

)
we have(

ξ
|C|
2

−K
(
2M + 2 + |t|

)
− 1

)
|t| − 2 ≤ ℓ|t|+

(
|C|
2

− ℓ

)
α

which, after some manipulation gives

ℓ ≥
(
ξ|t| − α

|t| − α

)
|C|
2

− K(2M + 3 + |t|)|t|+ 2

|t| − α

and so we have the following inequality.

|C|
2

− ℓ ≤
(
(1− ξ)|t|
|t| − α

)
|C|
2

+
K(2M + 3 + |t|)|t|+ 2

|t| − α

But then the projection of ι ◦ α|P to V ⊥ must have length at most(
(1− ξ)|t|2

|t| − α

)
|C|
2

+
K(2M + 3 + |t|)|t|2 + 2|t|

|t| − α

and so the image of ι ◦ α|P must be contained in a neighborhood of radius(
(1− ξ)|t|2

2(|t| − α)

)
|C|
2

+
K(2M + 3 + |t|)|t|2 + 2|t|

2(|t| − α)
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about the line L = p+ V . Then setting

A =
( |t|2

4(|t| − α)

)
and

B =
K(2M + 3 + |t|)|t|2 + 2|t|

2(|t| − α)

we are done.

Theorem 13.4.4. Every Cayley graph of Z2 is strongly shortcut.

Proof. Let f : C → Γ be a ξ-almost isometric cycle. By Lemma 13.4.3 we have

a line L ⊂ R2 whose
(
(1 − ξ)A|C| + B

)
-neighborhood contains the image of

ι ◦ f . So, by Lemma 13.4.1, we have

|C| ≤ 2K

ξ

(
M + 2(1− ξ)A|C|+ 2B

)
and so (

1− 4K

ξ
(1− ξ)A

)
|C| ≤ 2K

ξ
(M + 2B)

which gives us a bound on the length of |C| assuming we have 1− 4K
ξ
(1−ξ)A >

0. But this condition is equivalent to ξ > 4KA
1+4KA

, which we can satisfy. Hence,

for ξ ∈
(

4KA
1+4KA

, 1
)
, there is a bound on the length of the ξ-almost isometric

cycles of Γ.
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Chapter 14

The Baumslag-Solitar group BS(1, 2)

The Baumslag-Solitar group BS(1, 2) is defined by the following presen-

tation.

⟨a, t | tat−1 = a2⟩

In this section we will show that the standard Cayley graph of G = BS(1, 2)

is shortcut but that adding the generator τ = t2 results in a Cayley graph

Cay
(
G, {a, t, τ}

)
which is not shortcut. Hence we see that there exists a

shortcut group with exponential Dehn function [17] and that the shortcut

property for a Cayley graph is not invariant under a change of generating set.

We also see that there exists a shortcut group which is not strongly short-

cut, since strongly shortcut groups have polynomial isoperimetric function, by

Corollary 11.2.2.

Let Γ be the Cayley graph of BS(1, 2) with generating set {a, t}. Since

BS(1, 2) is an HNN extension it has a Bass-Serre tree T . Every vertex of T

has two outgoing edges labeled t and one incoming edge labeled t.

Lemma 14.0.1. Every element of BS(1, 2) can be written uniquely in the form

tmaktn where m, k, n ∈ Z and k is even only if k = m = 0.

Proof. Given any word representing an element of BS(1, 2) in the standard

generators, we may commute positive powers of t to the right and negative

powers of t to the left using the relations tnak = a2
nktn and akt−n = t−na2

nk,

with n ≥ 0, to obtain a representative of the form tmaktn. Then we may apply

the relation ak = tnak/2
n
t−n if k is a nonzero integer multiple of 2n, with n ≥ 0,
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to obtain a representative of the form tmaktn where k is even if and only if

k = m = 0.

To see that this form is unique, let tm
′
ak

′
tn

′
= tmaktn. By consideration

of the Bass-Serre tree T we must have m + n = m′ + n′. Without loss of

generality m ≥ m′ and so we have

ak
′
tn

′
= tm−m′

aktn = a2
m−m′

ktm−m′
tn = a2

m−m′
ktn

′

and so, as the base group embeds in an HNN extension, we have k′ = 2m−m′
k.

So, in the case where k = m = 0, we have k′ = 0 and so m′ = 0, which implies

(m′, k′, n′) = (m, k, n). If k ̸= 0 then k′ ̸= 0 and so k and k′ are both odd

integers. Hence 2m−m′
= 1, which again implies (m′, k′, n′) = (m, k, n).

It follows from Lemma 14.0.1 that we have a one-to-one correspondence

φ : G→ Z
[1
2

]
× Z

tmaktn ↦→ (2mk,m+ n)

with inverse

φ−1 : Z
[
1

2

]
× Z → G

(r, z) ↦→

⎧⎪⎪⎨⎪⎪⎩
tν(r)ar/2

ν(r)
tz−ν(r) if r ̸= 0

tz if r = 0

where Z
[
1
2

]
is the set of dyadic rationals and ν(r) is defined as follows.

ν(r) = max
{
m ∈ Z : r is an integer multiple of 2m

}
The height of a point (r, z) is z. We use µ(g) to denote the height of φ(g) for

g ∈ BS(1, 2).
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Pushing forward the group operation to Z
[
1
2

]
× Z gives the following

operation.

(r, z) · (r′, z′) = (r + 2zr′, z + z′)

Pushing forward the Cayley graph structure gives the following edges.

(r, z)
a−→ (r + 2z, z)

(r, z)
t−→ (r, z + 1)

The Bass-Serre tree T may be identified with the quotient of this graph which

identifies (r, z) and (r′, z) if r−r′ is an integer multiple of 2z. This identification

preserves height so we may refer to the height µ(v) of a vertex v of T .

14.1 Geodesics in BS(1, 2)

We now prove some lemmas about geodesics in the Cayley graph Γ. We

will describe paths in Γ using words in the letters {a±1, t±1}. We use the

notation w1 ≡ w2 to mean that the words w1 and w2 represent the same

elements of BS(1, 2). Of course if w1 ≡ w2 then paths described by w1 and w2

and starting at the same initial vertex must have the same final vertex.

Remark 14.1.1. A path in Γ may be projected to a path in T . A backtrack

in the projection corresponds to a subword of the form takt−1 or t−1a2kt. The

initial and terminal edges of a path described by twt−1 project to the same

edge in T if and only if w ≡ ak. The initial and terminal edges of a path

described by t−1wt project to the same edge in T if and only if w ≡ a2k.

Lemma 14.1.2. Every finite subtree of T has a unique vertex of minimal

height.

Proof. Let T ′ be a finite subtree and suppose v and v′ are minimal height

vertices of T ′. Then v and v′ correspond to some (r, z) and (r′, z) in Z
[
1
2

]
×Z.

There exists a path in T ′ from v to v′ and so we may obtain r′ from r by

85



adding and subtracting powers of 2 with exponent at least z. But then r − r′

is an integer multiple of 2z and so (r, z) = (r′, z) in T .

Lemma 14.1.3. Words of the following forms do not describe geodesic paths.

1. ta±1t−1

2. t−1ak and akt with |k| ≥ 2

3. aεt−1a−ε with ε = ±1.

4. t−1w1tw2t
−1 with w1 ≡ ak1 and w2 ≡ ak2

5. w ≡ th with w ̸= th.

6. w1w2 with w1w2 ≡ ak and where µ(w1) < 0

Proof. The following equivalences prove nongeodesicity for (1), (2), (3) and

(4).

(1) ta±1t−1 ≡ a±2

(2) t−1ak ≡ at−1ak−2

(3) aεt−1a−ε ≡ t−1aε

(4) t−1w1tw2t
−1 ≡ t−1ak1a2k2 ≡ t−1a2k2ak1 ≡ t−1tw2t

−1w1 ≡ w2t
−1w1

(5) Suppose w is geodesic with w ≡ th. Note that ν(w) = h so w must

contain at least |h| instances of tε where ε is the sign of h. Hence, as |w| ≤

|th| = h, we see that w cannot contain any instance of a±1. But w may not

contain any backtracks either and so w = th.

(6) Suppose w = w1w2 is geodesic with w ≡ ak and µ(w1) < 0. By

Lemma 14.1.2, there is a unique vertex v of minimal height of the projection

of w to the Bass-Serre tree T and µ(v) ≤ µ(w1) < 0 = µ(1) = µ(w). Then

w must contain a subword of the form t−1akt with the ak part mapping to v

under the projection to T . Then (2) implies that |k| = 1. So t−1akt = t−1a±1t

corresponds to a nonbacktracking path in T . It follows, since the projection

of w to T is a closed path and v is a cutpoint of T , that w contains another

subpath of the form t−1a±1t such that a±1 maps to v under the projection to
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T . Then w contains a subword of the form t−1aε1tw′t−1aε2t with εi ∈ {±1}

and w′ ≡ ak
′
. But, by (4), we know that t−1aε1tw′t−1 is not geodesic, which is

a contradiction.

Lemma 14.1.4. If µ(w) = 0 and every prefix w′ of w has µ(w′) ≥ 0 then

w ≡ ak for some k.

Proof. Viewing w as a path in Z
[
z
2

]
starting at (0, 0), we see that at each step

the first coordinate changes by a positive power of 2. Hence the endpoint of

the path is (k, 0) for some integer k.

A word w is ascending if it contains only positive powers of t and de-

scending if it contains only negative powers of t.

Lemma 14.1.5. Let w be a geodesic word with w ≡ t−hak where h ≥ 0.

Then no prefix w′ of w satisfies µ(w′) < −h and we have w = xy where x is

ascending and y is descending.

Proof. Suppose w = w1w2 where w1 is the smallest prefix of w with µ(w1) =

−h. Since the vertices of T have indegree 1, any two paths in T of the same

negative height have the same endpoint. So the projections of w and w1 to T

have the same endpoint. Hence w2 ≡ aℓ for some ℓ. Also, any prefix w′ of w

with µ(w′) < −h must be longer than w1 and so w′ = w1w
′
2. Then w′

2 is a

prefix of w2 of height µ(w′
2) = µ(w′) − µ(w1) < 0. So, by Lemma 14.1.3(6),

we have that w2 is not geodesic, contradicting the geodesicity of w.

We now prove that w = xy such that x is ascending and y is descending.

If w has no such decomposition then w has a subword of the form t−1w′t. An

innermost such subword has the form t−1akt. By Lemma 14.1.3(2), we have

|k| ≤ 1. So w = w1t
−1aεtw2 with ε = ±1. We have µ(w1t

−1aε) ≥ −h and

so µ(w1t
−1aεt) > −h. So µ(w2) < 0 and the shortest prefix of w2 of negative

height has the form w′
2t

−1 with µ(w′
2) = 0. Then, by Lemma 14.1.4, we have
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w′
2 ≡ ak for some k. But then

w1t
−1aεtw′

2t
−1 ≡ w1t

−1tw′
2t

−1aε ≡ w1w
′
2t

−1aε

and so w1t
−1aεtw′

2t
−1 is a nongeodesic subword of w, which is a contradiction.

Lemma 14.1.6. Let h ≥ 1, let k ≥ 2h and let ε = ±1. Let w be a geodesic

word with w ≡ t−haεk. Then the first letter of w is not t−1.

Proof. Suppose the first letter of w is t−1. Then, by Lemma 14.1.5, we see

that w is descending. Hence

w = t−ℓ1ak1t−ℓ2ak2 · · · t−ℓmakm

with
∑

i ℓi = h and ℓi > 0 for all i. So we have

w ≡ t−
∑

i ℓia2
L1k1+2L2k2+···+2Lmkm

where Lj =
∑

i>j ℓi and so εk = 2L1k1 + 2L2k2 + · · · + 2Lmkm. But, by

Lemma 14.1.3(2), we have |ki| ≤ 1 for all i and so

|k| ≤ 2L1 + 2L2 + · · ·+ 2Lm

with

0 = Lm < Lm−1 < · · · < L1 < h

which implies |k| ≤
∑h−1

j=0 2
j = 2h − 1, a contradiction.

Lemma 14.1.7. Let h ≥ 1, let 0 ≤ k ≤ 2h and let ε = ±1. Let w be a geodesic

word with w ≡ t−haεk. Then w contains only negative powers of t and every

prefix w′ of w satisfies w′ ≡ t−h′
aεk

′
where 0 ≤ h′ ≤ h and 0 ≤ k′ ≤ 2h

′
.

Proof. Since there is an automorphism of BS(1, 2) fixing t and sending a to

a−1, we may assume that ε = 1. The proof is by induction on the length of w.
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If |w| = 1 then w = t−1 and so satisfies the required conditions. Assume now

that |w| > 1. Consider the path f : P → T followed by w in the Bass-Serre

tree T . Let v1 and v2 be the initial and final vertices of this path. The shortest

path in T from v1 to v2 is labeled t−h. By Lemma 14.1.3(6), the path f may

not traverse an edge below v2. Hence, any instance of t in w corresponds to an

edge of T which is ascended by f and later descended. That is, the instance of

t is the first letter of a subword tw′t−1 of w with w′ ≡ ak
′
for some k′. Then,

if w has an instance of t then, by Lemma 14.1.3(4), it must occur to the left

of any negative power of t. So w = aηtw′ for some η ∈ {−1, 0, 1} and some

word w′. But then

w′ ≡ t−1a−ηw ≡ t−1a−ηt−hak ≡ t−(h+1)a−2hη+k

and | − 2hη + k| ≤ 2h + 2h = 2h+1 and so, by induction, w′ must have a prefix

of the form t−1 or aε
′
t−1, where ε′ is the sign of −2hη + k. But then w must

contain a subword tt−1 or taε
′
t−1, which are not geodesic. So we see that w is

descending.

It remains to show that every prefix w′ of w satisfies the condition (∗)

that w′ ≡ t−h′
ak

′
where 0 ≤ h′ ≤ h and 0 ≤ k′ ≤ 2h

′
. That w′ ≡ t−h′

aℓ with

0 ≤ h′ ≤ h holds because w is descending and f does not descend below v2 in T .

We project the path taken by w in Γ to Z by sending w′ ≡ t−h′
aℓ to π(w′) =

2h−h′
ℓ. Then a prefix w′ satisfies (∗) if and only if its projection satisfies

0 ≤ π(w′) ≤ 2h. Note that π(w′) is uniquely defined by w′th
′−h ≡ t−haπ(w

′)

where w′ ≡ t−h′
aℓ. So if two prefixes w′ and w′′ have the same projection then

(w′)−1w′′ ≡ th
′−h′′

where h′ and w′′ are the heights of w′ and w′′. Hence, by

Lemma 14.1.3(5), if π(w′) = π(w′′) then w′′ = w′th
′−h′′

. Let w0, w1, . . . , wn

be the sequence of prefixes of w ordered by length. Then the projected path

π(w0), π(w1), . . . , π(wn) begins at 0 and ends at k with π(wi+1)− π(wi) equal
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to 0 or ±2h
′
with 0 ≤ h′ ≤ h. Hence if this path leaves the interval [0, 2h]

then there must be some i < j < ℓ with π(wi) = π(wℓ) ∈ {0, 2h} but with

π(wj) ̸= π(wi), contradicting wℓ = wit
m.

Lemma 14.1.8. Let h ≥ 1, let 0 ≤ k ≤ 2h and let ε = ±1. The following

statements describe precisely which initial letters a geodesic word w ≡ t−haεk

may have.

1. If k <
(
2
3

)
2h then any geodesic word w ≡ t−haεk has the form w = t−1w′.

2. If
(
2
3

)
2h < k <

(
5
6

)
2h then any geodesic word w ≡ t−haεk has the form

w = t−1w′ or w = aεw′′ and there exist geodesics of both forms.

3. If k >
(
5
6

)
2h then any geodesic word w ≡ t−haεk has the form w = aεw′.

Proof. The proof is by induction on h. If h = 1 then k ∈ {0, 1, 2}. If k = 0

then k < 4
3
=
(
2
3

)
2h and the only geodesic word w ≡ t−haεk is t−1. If k = 1

then k < 4
3
=
(
2
3

)
2h and the only geodesic word w ≡ t−haεk is t−1aε. If k = 2

then k > 5
3
=
(
5
6

)
2h and the only geodesic word w ≡ t−haεk is aεt−1. So, in all

cases, the lemma holds for h = 1.

If h = 2 then k ∈ {0, 1, 2, 3, 4}. By Lemma 14.1.7, we need only consider

descending words whose prefixes are equivalent to

t−h′
ak

′ε

for h′ ∈ {0, 1, 2} and k′ ∈ {0, 1, . . . , 2h′}. We may also exclude words with

backtracks and, by Lemma 14.1.3(2), those containing t−1aℓ with |ℓ| ≥ 2 and,

by Lemma 14.1.3(3), those containing aεt−1a−ε. Then the list of all possible

geodesics is

t−2aεℓ

t−1aεt−1aεℓ ≡ t−2aε(2+ℓ)

aεt−2a−εℓ ≡ t−2aε(4−ℓ)
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with ℓ ∈ {0, 1}. Only one pair of the words in this list, namely aεt−2a−ε and

t−1aεt−1aε, are equivalent and they have the same length. Hence the list is

exactly the list of all geodesics equivalent to t−2aεk with k ∈ {0, 1, 2, 3, 4}.

Now, if k <
(
2
3

)
2h then k ∈ {0, 1, 2}. All geodesics equivalent to t−2aεk with

k ∈ {0, 1, 2} are of the first two forms in the list which have initial letter t−1.

The only k with
(
2
3

)
2h < k <

(
5
6

)
2h is k = 3 and t−2aε3 is equivalent, with ℓ

set to 1, to both the second form and the third form, which have initial letter

t−1 and aε. Finally, if k >
(
5
6

)
2h then k = 4 which is equivalent only to the

last form in the list with ℓ = 0 and this form has initial letter aε. So we see

that the lemma holds for h = 2. Going forward we assume that h > 2.

Suppose k <
(
2
3

)
2h. To show that a geodesic w ≡ t−haεk has initial

letter t−1 it suffices, by Lemma 14.1.7, to rule out the possibility that w has

the form aεt−1w′. If that were the case then, by Lemma 14.1.6, the first

letter of w′ would be either t−1 or a−ε and we would have w′ ≡ ta−εt−haεk ≡

t−(h−1)a−ε(2h−k). If 2h − k > 2h−1 then, by Lemma 14.1.6, the first letter of

w′ is not t−1 and so would have to be a−ε. But aεt−1a−ε is not geodesic, by

Lemma 14.1.3(3). So we have 2h−1 ≥ 2h − k >
(
2
3

)
2h−1. Then, applying (2)

and (3) inductively to h − 1 and 2h − k and −ε, we see that w′ is equivalent

to a geodesic of the form a−εw′′. But then aεt−1a−εw′′ is geodesic and this

cannot be by Lemma 14.1.3(3).

Suppose k >
(
5
6

)
2h. Let w be a geodesic with w ≡ t−haεk. Suppose the

initial letter of w is not aε. Then, by Lemma 14.1.7, we have w = t−1aεw′

for some w′. Hence w′ ≡ a−εtt−haεk ≡ t−(h−1)aε(k−2h−1) with k − 2h−1 ≤ 2h−1

and k − 2h−1 >
(
5
6

)
2h − 2h−1 =

(
2
3

)
2h−1. So, inductively applying (2) and

(3), we see that w′ can be replaced by a geodesic of the form aεw′′. But then

t−1aεaεw′′ is a geodesic, which is a contradiction.
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Suppose
(
2
3

)
2h < k <

(
5
6

)
2h. That any geodesic w ≡ t−haεk has the form

w = t−1w′ or w = aεw′′ follows from Lemma 14.1.7. Consider first the case

where we have a geodesic of the form w = t−1w′. Then, by Lemma 14.1.7,

the initial letter of w′ is either t−1 or aε. But w′ ≡ tw ≡ t−(h−1)aεk with

k >
(
2
3

)
2h > 2h−1 and so, by Lemma 14.1.6, the initial letter of w′ is aε. So

w′ = aεu′ with u′ ≡ a−εw′ ≡ t−(h−1)aε(k−2h−1) and k − 2h−1 <
(
5
6

)
2h − 2h−1 =(

2
3

)
2h−1. So, by induction, we have u′ = t−1x′ with x′ ≡ t−(h−2)aε(k−2h−1) and

k − 2h−1 >
(
2
3

)
2h − 2h−1 =

(
2
3

)
2h−2. Then, either by induction if k ≤ 2k−2 or

otherwise by Lemma 14.1.6, we have that x′ is equivalent to a geodesic of the

form aεy′. Thus we have a geodesic t−1aεt−1aεy′ ≡ t−haεk. But aεt−2a−ε has

the same length as t−1aεt−1aε and aεt−2a−ε ≡ t−1aεt−1aε and so aεt−2a−εy′ is

a geodesic with aεt−2a−εy′ ≡ t−haεk. Now, consider the case where we have

a geodesic of the form w = aεw′′. By Lemma 14.1.7, the next two letters of

w′′ are either t−2 or t−1a−ε but aεt−1a−ε is not geodesic, by Lemma 14.1.3(3),

so we must have w = aεt−2x′′. Then x′′ ≡ t2a−εt−haεk ≡ t−(h−2)a−ε(2h−k) with

2h − k > 2h −
(
5
6

)
2h =

(
2
3

)
2h−2. Then, either by induction if 2h − k ≤ 2k−2 or

otherwise by Lemma 14.1.6, we have that x′′ is equivalent to a geodesic of the

form a−εy′′. So we have a geodesic aεt−2a−εy′′ ≡ t−hak and we may replace

aεt−2a−ε with t−1aεt−1aε to obtain an equivalent geodesic t−1aεt−1aεy′′.

Lemma 14.1.9. Let w be a geodesic with w ≡ ak. Then w = xaℓy such that

the following conditions hold.

1. x is ascending and does not have terminal letter a±1.

2. y is descending and does not have initial letter a±1.

3. ℓ has the same sign as k.

4. −
(
2
3

)
2h < |k| − 2h|ℓ| <

(
5
3

)
2h where 0 ≤ h = µ(x) = −µ(y).

Proof. By Lemma 14.1.5, we have w = xaℓy with x ascending and y descend-

ing. Choosing x and y so as to maximize the length of the aℓ part ensures that
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the terminal letter of x is t and the initial letter of yi is t
−1. Since µ(w) = 0

and µ(aℓ) = 0, we have µ(x) + µ(y) = µ(w) = 0.

If h = 0 then w = ak = aℓ and so the remaining conditions hold. So let

h ≥ 1. Then, by Lemma 14.1.3(1), we have |ℓ| ≥ 2. Let ε be the sign of ℓ. The

first letter of y is t−1. Hence, by Lemma 14.1.6, we have y ≡ t−haεm for some

|m| ≤ 2h. Then, by Lemma 14.1.8, we have |m| <
(
5
6

)
2h. Now aεy is a subword

of w and aεy ≡ aεt−haεm ≡ t−haε(m+2h) with m+ 2h > 2h −
(
5
6

)
2h > 0. Then,

by Lemma 14.1.8, we see that m+2h >
(
2
3

)
2h. Hence we have −

(
1
3

)
2h < m <(

5
6

)
2h. Applying the exact same arguments to the subwords x−1 and a−εx−1

of w−1 = y−1a−ℓx−1 we see that x−1 ≡ t−ha−εn with −
(
1
3

)
2h < n <

(
5
6

)
2h.

Hence

w ≡ aεnthaℓt−haεm ≡ aε(n+m+2h|ℓ|)

and so k = ε(n+m+ 2h|ℓ|) which gives

−
(
2

3

)
2h + 2h|ℓ| < εk <

(
5

3

)
2h + 2h|ℓ|

and so, as |ℓ| ≥ 2 we see that εk > 0. Then k has the same sign as ℓ so

εk = |k| and we have

−
(
2

3

)
2h < |k| − 2h|ℓ| <

(
5

3

)
2h

as required.

14.2 Isometric cycles in BS(1, 2)

Lemma 14.2.1. Let f : C → Γ be an isometrically embedded cycle of length

|C| > 5. Then f is described by a word of the form

w = aε1w1a
ε2w2

with ε1, ε2 ∈ {±1} such that wi satisfies the following properties for each i.

1. wi is geodesic with initial letter t and terminal letter t−1.
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2. wi ≡ a2ki with |k1 + k2| ≤ 1.

Proof. Let f : C → Γ be an isometrically embedded cycle. Let f̄ be the

projection of f to the Bass-Serre tree T . By Lemma 14.1.2, there is a unique

vertex v of minimal height of f̄ . Then f must contain a subpath of the

form t−1akt with the ak part mapping to v under f̄ . Since f is an isometric

embedding and |C| > 5, Lemma 14.1.3(2) implies that |k| = 1. So t−1akt =

t−1a±1t corresponds to a nonbacktracking path in T . It follows, since f is a

closed path and v is a cutpoint of T , that f contains another subpath of the

form t−1a±1t such that f̄ sends a±1 to v. That is f has the form

w = aε1tu1t
−1aε2tu2t

−1

with ε1, ε2 ∈ {±1}, such that ui ≡ aki for some k1, k2 ∈ Z. Let wi = tuit
−1.

Then wi ≡ a2ki so we have

ε1 + 2k1 + ε2 + 2k2 = 0

since w is trivial in G, and this implies |k1 − k2| ≤ 1. Also we have

aεiwia
εi+1 ≡ wia

εiaεi+1

which shows that aεiwia
εi+1 has the same length and endpoints as wia

εiaεi+1 .

But wia
εiaεi+1 cannot be geodesic since it either backtracks or contains t−1ak

with |k| = 2 and so aεiwia
εi+1 is not geodesic either. Hence, since f is an

isometric embedding, the complementary path wi+1 is geodesic.

Theorem 14.2.2. The standard Cayley graph of of BS(1, 2) is shortcut.

Proof. Let Γ be the standard Cayley graph of BS(1, 2). We will show that

there are no isometrically embedded cycles f : C → Γ of length |C| > 5. For

the sake of deriving a contradiction, suppose f is such a cycle. Then, by
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Lemma 14.2.1, we have

w = aε1w1a
ε2w2

such that wi is geodesic with initial letter t and terminal letter t−1 and wi ≡

a2ki with |k1 + k2| ≤ 1. Then, by 14.1.9, we have

wi = xia
ℓiyi

where xi is ascending and has initial and terminal letter t, where yi is descend-

ing and has initial and terminal letter t−1, where ℓi has the same sign as ki

and where

−
(
2

3

)
2hi < |ki| − 2hi |ℓi| <

(
5

3

)
2hi

with 0 ≤ hi = µ(xi) = −µ(yi). Since xi has terminal letter t and yi has initial

letter t−1, we have hi ≥ 1 and, by Lemma 14.1.3(1), we have |ℓi| ≥ 2.

We may assume that h1 ≤ h2 since otherwise we may replace w with a

cyclic permutation. We must have |ki| ≥ 1 since otherwise wi = 1 or w = a±1,

which do not start with t. Hence, as |k1+k2| ≤ 1 we must have that k1 and k2

have opposite signs. Since there is an automorphism of BS(1, 2) fixing t and

mapping a ↦→ a−1 we may assume that k1 > 0 and k2 < 0. Then ℓ1 > 0 and

ℓ2 < 0.

Let pi ∈ C be the midpoint of the subpath aℓi of w. Abusing nota-

tion we write the two segments of C between p1 and p2 as aℓ1/2y1a
ε2x2a

ℓ2/2

and aℓ2/2y2a
ε1x1a

ℓ1/2 which may be thought of as combinatorial paths in the

barycentric subdivision of Γ. Since f is an isometric embedding, one of these

two paths must be geodesic in Γ. We have

y1a
ε2x2a

−1 ≡ y1a
ε2a−2h2x2 ≡ a−2h2−h1y1a

ε2x2

a−1y2a
ε1x1 ≡ y2a

−2h2aε1x1 ≡ y2a
ε1x1a

−2h2−h1
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and so

aℓ1/2y1a
ε2x2a

ℓ2/2 ≡ aℓ1/2−2h2−h1y1a
ε2x2a

ℓ2/2+1

aℓ2/2y2a
ε1x1a

ℓ1/2 ≡ aℓ2/2+1y2a
ε1x1a

ℓ1/2−2h2−h1

which, by geodesicity of one of these paths, imply that either

|ℓ1/2|+ |ℓ2/2| ≤ |ℓ1/2− 2h2−h1 |+ |ℓ2/2 + 1|

or

|ℓ2/2|+ |ℓ1/2| ≤ |ℓ2/2 + 1|+ |ℓ1/2− 2h2−h1 |

but these two inequalities are equivalent so they must both hold. Then, using

ℓ1 ≥ 0 and ℓ2 ≤ −2, we obtain ℓ1 + 2 ≤ |ℓ1 − 2h2−h1+1|. Since ℓ1 ≥ 0, this

inequality may only hold if 2h2−h1+1 > ℓ1 and so we have ℓ1+1 ≤ 2h2−h1 . Now

ℓ1 ≥ 2 and so we have h2 ≥ h1 + 2. The following computation makes use of

various inequalities which have been established thus far in this proof.(
2

3

)
2h2−2 + 2h2 ≥

(
2

3

)
2h1 + 2h2−h1 · 2h1

≥
(
2

3

)
2h1 + (ℓ1 + 1)2h1

=

(
5

3

)
2h1 + 2h1 |ℓ1|

> |k1| ≥ |k2| − 1 > −
(
2

3

)
2h2 + 2h2|ℓ2| − 1

So, as |ℓ2| ≥ 2, we have(
2

3

)
2h2−2 + 2h2 > −

(
2

3

)
2h2 + 2h2 · 2− 1

which we manipulate to obtain the equivalent inequality 2h2 < 6. Then h2 ≤ 2,

which implies that h1 = 0. But this is a contradiction as we established above

that h1 ≥ 1.
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14.3 A Cayley graph of BS(1, 2) that is not shortcut

We now turn our attention to a different generating set of BS(1, 2). Let Γ

be the Cayley graph of BS(1, 2) with the generating set {a, t, τ} where τ = t2.

Lemma 14.3.1. Let k ≥ 1 and let 0 ≤ zmax ≤ k. Suppose

zmax∑
z=−m

αz2
z = 2k ± 1

where αz ∈ Z and m ≥ 0.

• If zmax = 0 then
∑

z |αz| ≥ 2k−zmax − 1

• If zmax = 1 then
∑

z |αz| ≥ 2k−zmax

• If zmax ≥ 2 then
∑

z |αz| ≥ 2k−zmax + 1

Proof. If zmax = 0 then

2k − 1 ≤ 2k ± 1 =
⏐⏐⏐ zmax∑
z=−m

αz2
z
⏐⏐⏐ ≤ zmax∑

z=−m

|αz|2zmax =
zmax∑
z=−m

|αz|

and so we have
∑

z |αz| ≥ 2k−zmax − 1.

Suppose zmax = 1 and
∑

z |αz| < 2k−zmax . Then
∑

z |αz| ≤ 2k−zmax −1 and

so ⏐⏐⏐⏐ zmax∑
z=−m

αz2
z

⏐⏐⏐⏐ ≤ zmax∑
z=−m

|αz|2zmax ≤ (2k−zmax − 1) · 2zmax = 2k − 2

which is a contradiction. So we have
∑

z |αz| ≥ 2k−zmax .

Now, suppose zmax ≥ 2. Among all m ≥ 0 and (αz)z that satisfy

zmax∑
z=−m

αz2
z = 2k ± 1

choose an m ≥ 0 and (αz)z that minimizes
∑

z |αz|. We will show that∑
z |αz| ≥ 2k−zmax + 1. We claim that for z < zmax, we have |αz| ≤ 1. Indeed,

if |αz| ≥ 2, then we can replace αz with αz − ε2 and αz+1 with αz+1+ ε, where

ε is the sign of αz. This reduces
∑

z |αz| while preserving
∑

z αz2
z and so

contradicts minimality of m and (αz)z. Since 2k ± 1 is not even, there must
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be some αz ̸= 0 with z ≤ 0. So if αzmax ≥ 2k−zmax then
∑

z |αz| ≥ 2k−zmax + 1.

So we may assume that αzmax < 2k−zmax . Say αzmax = 2k−zmax − ℓ with ℓ ≥ 1.

Then 2k ± 1− αzmax2
zmax ≥ ℓ2zmax − 1 and so

∑zmax−1
z=−m αz2

z ≥ ℓ2zmax − 1. But,

since αz ≤ 1 for z < zmax we have

zmax−1∑
z=−m

αz2
z ≤

zmax−1∑
z=−m

2z ≤ 2zmax − 2−m

with equality only if αz = 1 for −m ≤ z < zmax. It follows that ℓ = 1 and that

αz = 1 for 0 ≤ z < zmax. Hence
∑

z |αz| ≥ 2k−zmax − 1 + zmax ≥ 2k−zmax + 1 as

required.

Lemma 14.3.2. Let k and ℓ be nonnegative integers with ℓ ≤ k and k ≥ 2.

Then the word

w = τ ℓaτ−ka±1τ k−ℓ

describes a geodesic in Γ.

Proof. Consider the bijection φ : BS(1, 2) → Z
[
1
2

]
× Z described near the

beginning of Chapter 14. Then, under this bijection, w describes a path from

(0, k − ℓ) to (4k ± 1, k − ℓ). Consider any path (rj, zj)
m
j=0 from (0, k − ℓ) to

(4k ± 1, k− ℓ) following edges of the Cayley graph. It will suffice to show that

m ≥ 2k + 2, since 2k + 2 = |w|. For each j, either

(rj+1, zj+1)− (rj, zj) = (±2zj , 0)

which we call a horizontal step or

(rj+1, zj+1)− (rj, zj) =

⎧⎪⎪⎨⎪⎪⎩
(0,±1)

(0,±2)

which we call a vertical step. Since 4k ± 1 is not a power of 2, there must be

at least two horizontal steps in (rj, zj)j. Moreover, since 4k ± 1 is not even,
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we must have zj ≤ 0 for some j. Let zmax = maxj zj. Extend (rj, zj)
m
j=0 to a

continous map f : C → R2 where |C| = m. The projection C → R of this map

onto the second component captures the vertical behaviour of f . We collapse

any edges of C that map to points under C → R to obtain a map f̄ : C̄ → R

where |C̄| is equal to the number of vertical steps of (rj, zj)j. The map f̄ is

2-Lipschitz and 0, (k− ℓ), zmax ∈ f̄(C̄) with zmax ≥ k− ℓ and 0 ≤ k− ℓ. Then⏐⏐⏐f̄−1
(
[k − ℓ,∞)

)⏐⏐⏐ ≥ 2 · zmax − (k − ℓ)

2

and ⏐⏐⏐f̄−1
(
(−∞, k − ℓ]

)⏐⏐⏐ ≥ 2 · k − ℓ

2

where
⏐⏐f̄−1(I)

⏐⏐ is the sum of the lengths of all maximal segments of f−1(I).

Hence |C̄| ≥ zmax and so (rj, zj)j takes at least zmax vertical steps. Then, since

there must also be at least two horizontal steps, we see that if zmax ≥ 2k then

m ≥ 2k + 2. So we may assume that zmax < 2k.

We split into three cases: zmax = 0, zmax = 1 and zmax ≥ 2. If zmax = 0

then, by Lemma 14.3.1, there are at least 22k−1 horizontal steps. So it suffices

to show that 22k − 1 ≥ 2k+ 2 but, since k ≥ 2, this follows from the fact that

2x ≥ x+ 3 for all x ≥ 4.

If zmax = 1 then, by Lemma 14.3.1, there are at least 22k−1 horizontal

steps. There will also be at least zmax = 1 vertical step. But 1 vertical step

cannot give a closed path and so there are at least 2 vertical steps. So it

suffices to show that 22k−1 +2 ≥ 2k+2 but, since k ≥ 2, this follows from the

fact that 2x ≥ x+ 1 for all x ≥ 1.

If zmax ≥ 2 then, by Lemma 14.3.1, there are at least 22k−zmax+1 horizontal

steps. There are also at least zmax vertical steps. So it suffices to show that

22k−zmax + 1 + zmax ≥ 2k + 2 but, since zmax < 2k, this follows from the fact

that 2x ≥ x+ 1 for all x ≥ 1.
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Lemma 14.3.3. The word

w = aτ kaτ−ka−1τ ka−1τ−k

describes an isometric cycle in Γ for all k ≥ 1.

Proof. The word w has length 4k + 4. After possible inversion and/or the

application of the automorphism of BS(1, 2) fixing t and sending a ↦→ a−1,

the cyclic subwords of w of length 2k + 2 are all of the form in Lemma 14.3.2

and so are geodesic. Hence, by Proposition 10.0.3, the word w describes an

isometric cycle in Γ.

Then we have the following theorem and we see that the shortcut property

for a Cayley graph is not invariant under a change of generating set.

Theorem 14.3.4. Let Γ be the Cayley graph of BS(1, 2) with generating set

{a, t, τ} where τ = t2. Then Γ is not shortcut.
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