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Abstract

Crossover designs are widely used in clinicai trials. The main advantage

of this type of design is that the treatments are compared within subjects.

That is, every subject provides a direct comparison of the treatments he or

she has received. In general, a smaller number of subjects is needed to obtain

the same precision than with a cross-sectional design. However, because of

the correlations within subjects arising from the repeated measurements,

the usuai analysis of variance based on ordinary least squares (OLS) rnay

he inappropriate to analyze crossover designs. Sorne approxirnate likelihood

based tests that take into account the structure of the covariance matrix have

recently been proposed in the literature.

The aim of this thesis is to compare the performance of the OLS method

and two of the approximate likelihood based tests to a non-likelihood based

method, the generalized estimating equations, for testing the treatment and

carryover effects, in crossover designs, under the assumption of multivariate

normality.



Résumé

Les plans croisés sont souvent utilisés dans les essais cliniques. Le princi

pal avantage de ce type de plans est de comparer les effets de traitement avec

la variabilité intra-sujet. En d'autres termes: chaque sujet fournit une com

paraison directe entre les traitements qu'il reçoit. Donc, en général, un nom

bre moindre de sujets est nécessaire pour obtenir la même précision qu'avec

un plan d'analyse de variance classique. Cependant, à cause des corrélations

entre les mesures répétées d'un même sujet, l'analyse de variance basée sur la

méthode des moindres carrés ordinaires peut être inappropriée pour l'analyse

des plans croisés. Quelques tests approximatifs basés sur la vraisemblance

et qui tiennent compte de la structure de la matrice de covariance ont été

proposés récemment dans la littérature.

L'objectif de ce mémoire est de comparer la performance de la méthode

des moindres carrés ordinaires et de deux tests approximatifs basés sur la

méthode du maximum de vraisemblance à une méthode qui n'est pas basée

sur la vraisemblance, soit la méthode des équations généralisées d'estimation,

pour confronter les hypothèses d'absence d'effets de traitement et d'efi'ets

rémanents dans les plans croisés sous le présupposé de multi-normalité.
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Chapter 1

Introduction

Nowadays, longitudinal data are frequently found in research studies, espe

cially in epidemiology and in clinical trials. In a cross-sectional study, only

one observation of the response variable is taken for each subject. On the

other hand, in longitudinal studies, a sequence of repeated rneasurements

of the response variable is observed over time. Longitudinal studies can be

viewed as a large number of short time series, one for each subject. An im

portant advantage of longitudinal studies is that it can discriminate changes

over time within individuals from between individuais differences (i.e. dif

ferences among subjects in their baseline levels). Although, in general, a

smaller number of subjects is needed in longitudinal studies to obtain the

same precision than in cross-sectional studies, the multiple observations per

subject in the former design may involve higher costs. The choice, if the

researcher has any, between using a longitudinal design or a cross-sectional

design will depend, among other things, on the relative cast of recruiting sub-
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jects and the cost of taking repeated measurements on the subjects. Another

drawback of longitudinal studies is the special and more complex statistical

methods required because of the correlations between the set of observations

from each subject.

In longitudinal studies, a subject may receive only a single treatment that

is evaluated at different time points (repeated measures studies) or he may

receive a sequence of several treatments with the order of presentation of the

treatments varying between subjects. The latter type of longitudinal study is

commonly called a crossover design. An overview of the analyses of repeated

measurements studies can be found in the books by Diggle, Liang and Zeger

(1994) and Crowder and Band (1990). In this thesis we will consider the

analysis of a very important particular class of longitudinal studies : crossover

designs.

The classical analysis of data from a crossover design, assuming that the

vector of observations for a subject follows a multivariate nornlal distribu

tion, is the analysis of variance based on ordinary least squares (OLS) (Jones

and Kenward, 1989). Bowever, for this analysis to he valid, the covariance

matrix must have a sphericity structure (Bellavance, 1994). Since this latter

assumption is most of the time violated in practice, Bellavance, Tardif and

Stephens (1996) proposed and studied the performance of sorne approximate

likelihood based tests for the analysis of crossover designs that take into ac

count the covariance structure. In particular, they considered two methods

that use an estimate of the covariance matrix. Another method exists that

allows the use of different structures of the covariance matrix in the case

where the vector of observations has a multivariate normal distribution; this

2
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is the generalized estimating equations (GEE) method introduced by Liang

and Zeger (1986). The method is useful because of the lack of tests available

for the case where the distribution of the data is not multivariate normal.

Thus, the GEE method can also be used with different distributions like the

Poisson, binomial or gamma. However, the purpose of this thesis is to com

pare the performance of the GEE method, the analysis of variance based on

the ordinary least squares and two of the approximate tests studied by Bella

vance, Tardif and Stephens (1996) in the case of smal1 and medium sample

sizes and for different structures of the covariance matrix with observations

coming from a multivariate normal distribution. In Chapter 2, the OLS and

two approximate likelihood based tests are presented. In Chapter 3, the GEE

method is described. A numerical example is presented in Chapter 4 and the

Monte-Carlo simulations and their results are given in Chapter 5. Finally,

sorne conclusions are drawn in Chapter 6.

3



Chapter 2

Crossover designs and

likelihood based lllethods

2.1 Crossover designs

Two sources of variation in data from experimental designs with repeated

measures are the within-subject and between-subjects variations. However,

most of the information for treatment comparisons is contained in the within

subject variation. Hence, to achieve sufficient precision from small trials for

treatment comparisons, it is desirable, when possible, to reduce or eliminate

the between-subject variation and to rnaximize the information obtained from

each subject. This is the main advantage of repeated measurement designs

in general and of crossover designs in particular.

In crossover designs, each subject receives a sequence of treatments over

different periods of time. Although the main aim of crossover trial is to

4



compare the effects of two or more treatments, there are sorne nuisance pa

rameters that need to be considered in the mode!. Indeed, even if two treat

ments have identical effects, a large difference between two measurements on

a subject might he obtained if, for sorne reason, the measurements in one

treatment period were significantly lower or higher than those in the other

treatment period. To avoid confounding period and treatment effects, more

than one sequence must be used. Hence, the subjects are randomly assigned

to prespecified sequences of treatments, and it is therefore possible to ac

count for the presence of a period effect in the statistical model and obtain

unbiased estimates of the treatment effects.

The use of repeated measurements on the same subject brings with it

great advantages, but it also brings a potential disadvantage. This disadvan

tage can be largely overcome if three or more treatment periods are used,

and is only serious in the simplest crossover design known as the 2 x 2 design.

The disadvantage to which we refer to is the possibility in drug trials that

the effect of a drug given in one period might still be present at the start

of the following treatment period. The effect of a treatment that persists

after the end of the treatrnent period is called the carryover effect. In the

standard 2 treatment - 2 period crossover design where each subject receives

both treatments, which are conventionally lahelled as A and B, the test for

carryover effects lacks power because it is based on between-subject variation.

Moreover, in the presence of a carryover effect, it is not possible to get an

unbiased estimate of the treatment effect using the within-subject variation;

using a "wash-out" period between the two treatment periods should lessen

the chances of a significant carryover effect. However, the use of a "wash-
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.'
out" period increases the length of the study. Furthermore, it is often not

ethical to include a wash-out period when a standard and effective treatment

exists. The use of higher-order designs, designs including either more than

two sequences or more than two treatment periods or both, would yield un

biased within-subject estimates of the treatment and carryover effects. For a

thorough discussion of the advantages and disadvantages of using crossover

designs, see Jones and Kenward (1989).

Here are sorne examples of different crossover designs (note : the different

letters represent different treatrnents).

Ex. 1 : The standard 2 treatments x 2 periods x 2 sequences crossover

design

Period

1 2
Sequence

1

2

A

B

B

A

Ex. 2 : Three possible 2 treatments x 3 periods x 2 sequences crossover

designs

Period Period

1 2 3 1 2 3
Seq. Beq.

1 A A B 1 A B B

2 B B A 2 B A A

6



Period

1 2 3
Seq.

1 A B A

2 B A B

Ex. 3 : Two possible 4 treatments x 4 periods x 4 sequences crossover

designs

Period Period

1 2 3 4 1 2 3 4

1 A D B C 1 A B C D
Seq. Seq.

2 B A C D 2 B C D A

3 C B D A 3 C D A B

4 D C A B 4 D A B C

Clearly, it is possible to choose among a large number of designs to com-

pare a specifie number of treatments. The problem of deciding which design

to use to estimate the treatment effects has been considered by a number

of researchers (see Jones and Kenward, 1989, for a review). The "optimal"

designs chosen provide minimum-variance unbiased estimates of the effects

of interest.

2.2 Model

In general, consider a p -period crossover design comparing t -treatments

with n subjects. If the responses are continuous and are put in a single np

7
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dimensional vector Y, then the usual linear model for analyzing these data

is

y = Xj3 + c

where Y = (Yll,Y12, .. ·,Ylp,Y21,Y22, .. ·,Y2p, ... ,Ynl,Yn2,.·.,Ynp)', Yjk be

ing the response of subject j in period k, j = 1,2, ... , n, k = 1,2, ... , p,

X = (lnp 1 (In ® I p) 1 (ln ® lp) 1 ~Yr 1 X,\), (3' = (p. ci 'Tr' T' N),

lm is the identity matrix of order m and lm is an m-dimensional vectar of

anes. The symbol @ denotes the Kronecker product. In model (2.1) c =

(ê11, c12, ... , ê np)' is a vector of normally distributed errors with zero mean.

À = (..:\1' À2 , • •• , Àt )' represent the overall mean, fixed subject, period, direct

treatment and carryover effects respectively. The np x t matrices X r and X,\

are the design matrices associated with T, and À respectively. For example,

in the case of the crossover design with the two sequences ABB and BAA

and two subjects per sequence, the above design matrices are the following :

8



Yu J.L 1 0 0 0

YI2 J.L 1 0 0 0

YI3 J.L 1 0 0 0

Y21 J.L 0 1 0 0

Y22 J.L 0 1 0 0 CtI

y=
Y23

112 . J.L =
Il

14 ® 13 =
0 1 0 0 0'2

0'=

Y31 Il 0 0 1 0 0'3

Y32 J.L 0 0 1 0 0'4

Y33 J.L 0 0 1 0

Y4I J.L 0 0 0 1

Y42 J.L 0 0 0 1

Y43 J.L 0 0 0 1

9



G:

1 0 0 1 0

0 1 0 0 1

0 0 1 0 1

1 0 0 1 0

0 1 0 0 1
7rl

T= ( ::)

0 0 1 0 1
14 ® 13 = 7[= 7rz X-r =

1 0 0 0 1
71"3

0 1 0 1 0

0 0 1 1 0

1 0 0 0 1

0 1 0 1 0

0 0 1 1 0

(Note: here, Tl and 72 represent the effects of A and B respectively.)
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0 0 fU

1 a f12

0 1 f13

0 0 f21

1 0 €22

0 1
À = ( ~: )

<:23x).. = f=

0 a <:31

0 1 f32

1 0 <:33

0 0 f41

0 1 <:42

1 a <:43

2.3 Likelihood based methods

2.3.1 The ordinary least squares analysis

The hypotheses of interest are

HOT : 7 = 0, Le. no treatment effects or 71 = 72 = = Tt = 0

and Ho). : À = 0, i.e. no carryover effects or À1 = À2 = =Àt = O.

In order ta present the statistics used ta test these two hypotheses, it is useful

ta first expose sorne important concepts of linear algehra. Let B he a matrix

of dimension p x p :

Il



B=

1. The trace of the matrix B is the SUffi of the diagonal elements of B :

p

tr(B) = L bii -
i=!

2. The matrix B is idempotent if B - B = B2 = B.

3. A generalized inverse of a matrix B is defined as any matrix B- that

satisfies the equation BB-B = B.

4. The matrix B is nonnegative definite if X'BX > 0 for aIl vector X of

dimension p.

5. A covariance matrix ~ of dimension p x p with a compound symmetry

structure has the form

1 P

P 1

p

p

~1
~'

p P 1

6. A covariance matrix r; = (akk') , k,k' - 1,2, ... ,p has a sphericity

structure if E has elements of the form :

O"kk' = Qk + (}:k' + À8kk, where Qk are constants, k = 1,2, ... , P, ). > 0

and 6kk, is equal to 1 if k = k' and 0 otherwise.

12
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Note that the compound symmetry structure is a particular case of the

sphericity structure.

Now, define the following matrices :

!l1T = (Xl 1 J\À) ,

M>. = (Xl 1 XT ),

where

Also, define :

E = [1 - X(X'X)- X'],

AT [X(X'X)-X' - MT(M~MT)-M~],

A>, - [X(X'X)-X' - MÀ(M~M>,)- M~],

where B- is a generalized inverse of the matrix B. Note that there exists a

multitude of generalized inverse B- for a matrix B (Searle, 1987). However,

the operations performed in the statistical methods presented in this thesis

are invariant ta the choice of the generalized inverse.

In the ordinary least squares analysis (OLS), the following F -ratio tests

are used for testing the treatment effects adjusted to carryover effects (i.e.

testing for the presence of treatment effects cansidering that the carryover

effects are already included in the model) and for testing carryover effects

adjusted for treatment effects :

13
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FT - T(E) Y' Ar)' for HOTr(A r ) Y'EY

and·

F>. - ~Y'A~l''' for Ho>.r(A.\} Y'El'

where r(B) is the rank of B.

For both F -ratios, Fr and F>., in the case where Y has a rnultivariate

normal distribution, the covariance structure of the vector of errors, €, has to

have a sphericity structure for the quadratic forms of the numerator and de

nominator to be independent and X2 -distributed (Bellavance, 1994). DIlder

these assumptions, the F -ratios FT and F>. have an exact F -distribution.

Hence, we will reject the null hypotheses HOT and Ho>. for large values of Fr

and F>. respectively. Unfortunately, in practice the assumption of sphericity

structure for the covariance matrix is rarely met. This is why Bellavance,

Tardif and Stephens (1996) proposed and compared three alternative like

lihood based tests that take into account the covariance structure. Two of

these tests will he used in this study and will be presented in the next two

sections.

2.3.2 Modified F-test approximation (MFA)

Suppose that in model (2.1), the vector ê has a multivariate normal distri

bution with mean zero and positive definite covariance matrix ~ (~ > 0).

Thus, Y '"'-' N(X{3, ~). In general, the quadratic forms of the numerator and

denominator of both F -ratios in section 2.3.1 are dependent. Ta present

the alternative test, the following results on quadratic forms are needed. Let

14



(2.2)

Q = yiDY for a matrix D symmetric and nonnegative definite. Therefore

r(D)

Q "'J L (Jixî
i=1

where the BiS are the r(D) nonzero eigenvalues of the matrix DE and X~

represents a random variable having a chi-squared distribution with h degrees

of freedom. In equation (2.2) the xi are independent. In the case where the

covariance structure of the vector of errors, E, is spheric, an eigenvalues of

DE are equaI, (Ji = (J, say, i = 1, 2, ... , r (D). Therefore

r(D)

Q rv (J ~ xi = BX;(D)'
i=1

that is, Q has a X2 -distribution with r(D) degrees of freedom multiplied by

a scalar f). In general, the expectation and variance of Q are

r(D) r{D) r(D)

E[Q] = E[ L BiXi] = L BiE[xi] = L Bi . 1 = tr(DE)
i=1 i=1 i=1

and
r(D) r(D) r{D)

Var[Q] = Var[ L Bixi] = I: B;Var[xîJ = L Bi' 2 =2tr(DE)2,
i=1 i=l i=1

where tr(B) is the trace of the matrix B.

Box (1954 a, b) proposed the following approximation for the distribution

ofQ:

Q ~ cX~

where c and h are such that Q and CX~ have the same first two monlents,

that is

E(Q) - tr(DE) = E(cX~) - ch

15



and Var(Q) - 2tr(DE)2 = Var(cx~) = 2c2h.

Therefore,

- tr(DE)2 a d h _ [tr(DEW
C - tr(DE) n - tr(DE)2'

Now, consider two nonnegative quadratic forms QI = Y'Dl Y and Q2 =

y.'D2Y approximated by ClX~l and C2X~2 respectively. QI and Q2 need not be

independent. A simple approximation to the distribution of the ratio ~~~:~~~

is the distribution of a constant b times an F -distributed random variable

with (hI, h 2 ) degrees of freedom where

b = r(D2)clh l = r(D2)tr(Dl~)

r(Ddc2h2 r(Ddtr(D2~)'

Back ta the hypotheses testing of HOT and Ho>. in the analysis of crossover

trials, the following approximations can be used :

where
b _ [r(E)tr(ATE)]
T - [r(AT)tr(EE)]'

[tr(AT E)]2
tr(Ar E)2 ,

h
2

_ [tr(EE)]2
tr(EE)2 '

and

where
[r(E)tr(A>.E)]
[r(A>.)tr(EE)] ,

16
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h _ [tr(AÀ~)J2
lÀ - tr(AÀ~)2'

Unfortunately, in practice ~ is unknown and an alternative is to estimate

~ from the data and use this in place of the true value. In section 2.3, an

estimate of ~ will be presented.

Note that when E has a sphericity structure, the above approximate tests

are then exactly equivalent to the OL8 method. To prave this, we first note

that the matrices An AÀ and E are aIl idempotent and furthermore, under

the assumption of sphericity for the structure of E, the fallowing identities

hold (Bellavance, 1994) :

Thus, the last twa identities indicate that the quadratic farms Y'AT}'~ and

y'AÀ Y are both independent of the quadratic form Y' EY. Nloreover, we

have for D = AT, AÀ and E

tr(DE) = tr(DD~) (because D is idempotent)

- tr(D~D)

- tr(8D) (first three identities above)

- 8 tr(D)

- 8 r(D) (because D is idempotent),

and

tr(DE)2 = tr(DEDE)

= tr(8DE)

17



= (J tr(D~)

= (J2 r(D).

Renee,

br = r(E)(} r(Ar ) = 1, b\ = r(E)B r(A,\) = 1, h1r = [B r(Ar )F = (A)
r(Ar)O r(E) 1\ r(A>.)B r(E) B2 r(Ar ) r 'T,

_ [0 r(A>.)]2 = (A) h2(}2 r(A>.) r >.,
[8 r(E)]2 = (E)
82 r(E) r .

2.3.3 Empirical generalized least squares (EGLS)

The empirical generalized least squares technique has been suggested by

Jones and Kenward (1989) for the analysis of crossover designs. Basically, it

consists of a transformation of the vector of observations Y and of the design

matrix X. Since ~ is positive definite, there exists a non singular matrix ]<
such that E = 1<]{'. The following transformations are performed :

Z = K-ly, W = K-IX and 'T} = K-1é.

The following transformed model is then obtained

z = W,B + 'T}, where 'TJ rv N(O, 1).

Then the OLS method can be conducted on the transformed vector of obser-

vations Z and the transformed design matrix W to make inferellces about {J.

Here again, ~ is needed to be able to find ]<, but in practice it is replaced

by an estimate.

18



2.4 Estimation of ~

If we assume that the errors on each subject are independent and have the

same dispersion matrix V of order p, then

The experimental design has s sequences and we suppose that ni 2: 2 subjects

per sequence, i = 1,2, ... , s. Then an unbiased estimate of li is given by the

within-sequence sample dispersion matrix

where

Yij - (Yijl, Yij2"" ,Yijp)' and fh - ;i Lj~l Yij, - 1,2, ... , s.

19



Chapter 3

Generalized estirnating

equations (GEE) method

3.1 Introduction

As mentioned in the last chapter, models for longitudinal data with multi

variate Gaussian outcomes already exist (Laird and Ware, 1982; Ware 1 1985).

For the particular case of crossover trials, Jones and Kenward (1989) present

the ordinary least squares and the empirical generalized least squares meth

ods. Bellavance, Tardif and Stephens (1996) proposed the modified F-test

and a Pearson curve approximation. However, aIl these methods assume that

the observations are multivariate Gaussian. In the case of binary outcomes,

likelihood based analysis is possible but computation is difficult (Stiratelli et

al., 1984). With other types of outcomes, multivariate distributions for Yjk

(k = 1, ... , Pj) similar to the multi-normal distribution are not available.

20
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Therefore, likelihood based method cannot he used. On the other hand, both

discrete and continuous responses can be modeled with the generalized es

timating equations (GEE) approach (Liang and Zeger, 1986). Data coming

from Poisson, binomial or gamma distributions are sorne examples that can

easily be analyzed with the GEE method. This method also takes into ac

count the time dependance structure of the data with the introduction of a

working correlation matrix which will be presented in section 3.4. Another

interesting point is that different subjects can have different numbers of re

peated measurernents and these measurements do not need ta be taken at

the same time intervals for aIl subjects. As for the OL8 and EGLS methods,

GEE provides estimates of the coefficients f3, which is not the case for the

MFA. This is one advantage of the GEE approach over the modified F-test

approximation.

The GEE method estimates model parameters by iteratively solving a sys

tem of equations based on quasi-likelihood distributional assumptions (Mc

Cullagh and Nelder, 1983). Because it is based on quasi-likelihood, this

method does not need a complete specification of the joint distribution of

the responses but only a pre-determined form of the marginal distribution

and the form of the expectation and variance. The GEE method gives con

sistent estimators of the regression parameters and of their variances under

weak assumptions.

The remainder of this chapter presents the details and properties of the

generalized estimating equations approach and its application ta crossover

designs.

21
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3.2 Data layant

3.2.1 General layant for longitudinal studies

Repeated measurements (observations) are taken for each subject in longi

tudinal studies; the structure of each observation contains a subject identifier

(subject id), an observation number, a time identifier, a response and sorne

covariates. The time identifier variable can take different forrns: time points

equally spô:ced or not, identical for aIl subjects or not, and same number of

time points for each subject or not. Here are three different examples :

Ex. 1. Same number of observations for aIl 3 subjects at the same time

points (equally spaced) :

Time points

1 1 2 3
Subject

2 1 2 3

3 1 2 3

Ex. 2. Different time points not equally spaced between subjects but same

number of observations for aIl 3 subjects :

Time points

1 1 2 3 4
Subject

2 1 3 5 10

3 1 6 9 10
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Ex. 3. Different time points between subjects and different number of

observations for the 3 subjects :

Time points

1 1 2 4 5 6 8 9
Subject

2 1 4 5 10

3 1 3 5 7 9

In this example, only subject 3 has equally spaced time points.

The notation for the Pj time points of subject j is the vector (ti!' ti2' ... , tipj )',

j = 1,2, ... , n.

The response variable can be continuous or discrete. For example, the

response could be the level of blood pressure (continuous), the presence or

absence of a disease (1 or 0), or the number of asthma attacks over the last

time period (counts). The responses for subject j, Yj, are written as the

vector (Yi!, Yj2, ... , Yjp)', j = 1, 2, ... , n. The mean will be addressed

as E(Yj) = ILj = (J.Ljl' J.Li2, ... , J1.jpj)'. Finally, the covariates (predictors)

can also be continuous or discrete and can vary with time or not. A time

varying covariate can take different values over the time Hne; for example,

the proportion of carbon monoxyde (CO) in the air at a certain location

varies in time. On the other hand, in aIl but extraordinary cases, the sex

would not vary with time. The predictors of J.Ljk farm the vector of covariates

Xjk = (Xjkl, Xjk2, .•. , Xjkm)' , k = 1, 2, ... , Pi and j = 1, 2, ... , n. The

following layout represents the general structure of the data for longitudinal

studies.
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subject observation # time response covariates

(j)

1

1

1

2

2

(k)

1

2

Pl

1

2

Yjk

Yu

Yl2

Ylpl

Y21

Y22

Xjkl

XUI

Xl21

Xjkm

Xllm

Xl2m

Xl p1m

X2lm

X22m

2 P2 t2P2 Y2P2 X2P2 1 X2P2 m

j 1 tjl Yjl Xjl1 Xjlm

j 2 tj2 Yj2 Xj21 Xj2m

j Pj tjpi Yjpi XjPi l XjPj1l1

n 1 tnl Ynl Xn l1 Xnlm

n 2 t n2 Yn2 Xn 21 X n 2m

n Pn
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3.2.2 Particular layout for crossover studies

In crossover designs, each subject j (j = 1, ... , n) has a vector of p re

sponses YJ = (Yjl, Yj2, .•• , Yjp) and a design matrix Xj of m = [1 + P +

t + t] covariates that represents the intercept, p -period, t -treatment and

t -carryover effects :

1 Xjll Xjl2

1 Xj21 Xj22
X i =

1 Xipl Xjp2

Xjlm

Xj2m

Xjpm

This means that at time tjk, for subject j at period k, the fol1owing vector

is 0 bserved,

In this vector, Yik is the response, the p covariates Xjk1,Xjk2, •.. ,Xjkp re

present the p period effects (1rI, 1r2, ..• , 1rp ), the t covariates Xjk(p+l), Xjk(p+2), ••. ,

Xjk(p+t) represent the t treatment effects (Tl, T2, •.. , Tt) and the last t covari

ates Xjk(p+t+l) , Xjk(p+t+2) , •.. , Xjkm represent the t carryover effects (À l , À2 ,···, Àt ).

AIl these covariates will take the value 0 or 1.

Hence we have a design matrix for analysis of variance (ANOVA) models

and we can then add the usual constraints on the model parameters, without

lost of generality, Le.

Due to these constraints, the p periods can be represented by (p-l) covariates

and the t treatments and t carryovers by (t -1) covariates respectively. AIsa,
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the values taken by the covariates will be such that the SUffi over periods

(treatments or carryovers) equals zero. For example, let p = 5; then the

covariates Xjkl, Xjk2, Xjk3 and Xjk4 could take these values for the 5 different

periods :

Yjk Xjkl Xjk2 Xjk3 Xjk4

1 Yjl 1 0 0 0

2 Yj2 0 1 0 0
Period

3 Yj3 0 a 1 0

4 Yj4 a 0 0 1

5 Yj5 -1 -1 -1 -1

The transformed design matrix obtained with these new (p-1)+(t-1)+(t-1)

covariates is of full rank.

Let 's consider the example of the crossover design with three treatments

(A, Band C), three periods (1, 2 and 3), six sequences (ABC, ACB, BAC,

BCA, CAB and CBA) and two subjects per sequence. Let subjects 1 and

2 receive the treatment sequence ABC, subjects 3 and 4 the sequence ACB,

subjects 5 and 6 the sequence BAC, subjects 7 and 8 the sequence BCA,

subjects 9 and 10 the sequence CAB and subjects Il and 12 the sequence

CBA. The matrices of covariates for the twelve subjects are the following,

where the first column represents the intercept, the second and third the

period, the fourth and fifth the treatment and the last two the carryover

effects :
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1101000

Xl = X 2 = 1 0 1 0 1 1 0

1 -1 -1 -1 -1 0 1

1101000

X 3 =X4 = 1 0 1 ..... 1 -1 1 0

1 -1 -1 0 1 -1 -1

1100100

X s = X 6 = 1 0 1 1 0 0 1

1 -1 -1 -1 -1 1 0

1100100

X 7 = Xe = 1 0 1 -1 -1 0 1

1 -1 -1 1 0 -1 -1

1 1 0 -1 -1 0 0

X g = X lO = 1 0 1 1 0 -1 -1

1 -1 -1 0 1 1 0

1 1 0 -1 -1 0 0
Xn = X l2 = 1 0 1 0 1 -1 -1

1 -1 -1 1 0 0 1

27

G"



•
.'cC

, ~
"'.'

Although not needed in crossover designs, the GEE method allows the

observations to be taken at different times for different subjects, and a dif

ferent number of observations taken for different subjects. If the notation

tk (k = 1, ... , p) is used, the same number of observations will be taken

for each subject, at the same time points, as in the type of crossover design

looked at in this thesis.

3.3 Details and properties of the generalized

estimating equations method

The generalized estimating equations method is an extension of generalized

linear models to the analysis of longitudinal data. The latter are themselves

an extension of classical linear models.

In classicallinear models with a single observation for each subject (Le.

Pi = 1) we have E(Jj) = J.Lj where /.lj = Xjf3 and [3' = (/31,(32", .,f3m) is

the vector of unknown parameters that we want ta estimate from the data.

Assuming that the responses Yj, j = 1,2, ... , n, are independent Normal

variables with constant variance (j2, the density function is

and the log-likelihood function is given by



.'
The maximum likelihood estimator of f3 is the solution of the score equa

tions :

8Iog.c(Yi, Y2, ... ,Yn,.B)
8f3

For the introduction of the generalized linear models, modifications to

the specification of the model need to be presented :

1. The responses Yj, j = 1,2, ... , n, are independent and have a probability

density function in the exponential family, taking the form

(Y·O· - b((Jo))
f(Yj,8i ,f/J) = exp { J l

a
(cf» J + c(Yj,cf»}

for sorne specifie functions a, band c, and where 4J is the dispersion param

eter. When rP is known, this is an exponential-family model with canonical

parameter 8. The expectation and variance of 1j are given by

E(Yj) = /-Li = b' ((Jj) and Var(Yj) = b" ((Jj) a(4».

Thus, the variance of Yj is the product of the function b"(Oj) which depends

on the rnean /-Lj only, and of a(4J) independent of 0i' The variance function

bIt (0i) considered as a function of /-Li is referred to as V (/-Li).
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2. The linear combination of the f3's is equal to sorne function of the expected

value p,j of Yj, that is

g(p,j) = Xj{3, j = 1,2, ... ,n

where 9 is a monotone, differentiable function called the link function. In

this generalized model formulation, classical linear models have a normal

distribution and the identity function for the link function.

The most important distributions used with generalized linear models are

presented with their canonicallink and variance functions in table 3.1.

Normal N(p" a2) (12 1 1

Poisson pep,) 1 log (J.l) J.L

Binomial Bin(l,J.l) 1 logit(J.L) = log (~) J.l(I - p,)

Gamma G( /-L, Il) 11-1 l p,2
p.

Table 3.1 Link and Variance functions

1 Distribution ~ Notation 1 a(lj» 1 g(p,) V(J.l)

For the exponential family, and thus for the generalized linear models,

the likelihood is

( Y Y (} A.) = exp {~ [ (YjOj - b(Oj )) ( ) ] }I:. YI, 2,"" n, j, 'fJ L.i ( ) + c Yj , 4>
j=l a 4>

and the log-likelihood is

n

logI:.(Yi, Y2, ... ,Yn , Bj , 4» - L lj'
j=l
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Using the chain l'ule, the score equations are

8 log .c(Yi, Y2, . .. ,~,Bj, </J)
=

8[3

Vve have,
1j - /-Lj

a(</J)

and

8/-Lj = b"(Bj) = V(J.Lj).
8()j

Therefore, the score equations reduce to

~ 8J1j. (Yj - /-Lj)
LJ = O.
j=l 8/3 a(4J)· V(ftj)

When </J is a known constant, the score equations can he written as

and the maximum likelihood estimator of (3 is the solution of these score

equations. It is important to mention that the score equations obtained in

the case of the classicallinear models have the same form, where a( cP) = a 2

and V (J.Lj ) = l.

For bath classical linear models and generalized linear models, the form

of the distribution function of the Yj's is known. In pl'actice it may be

unknown, but in most cases sorne characteristic features of the data will

be : how the mean response, ft, is affected by external stimuli or treatments

(covariates Xj); how the variability of the response changes with the average

response; whethel' the observations are statistically independent; etc. With

this information we have an idea of the form of the distribution even though
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(3.1)

1ft....
~

a complete specification of the distribution is not possible. This is the under

lying principle of the quasi-likelihood theory, where the relationship between

the mean Pj and the covariates is

g(J.Lj) = Xjf3, j = 1,2, ... ,n

with 9 being the link function, and the variance is assumed to be a known

function V of the mean, that is

Var(lj) = a(r/J) V (J'.Lj)

where t/J > a is a dispersion parameter. Where the classical linear models

and the generalized linear models require a complete specification of the

distribution of the response variable ta find the likelihood function, here only

the form of the mean and variance are needed ta find the quasi-likelihood

function. The quasi-likelihood estimator of f3 is the solution of the score like

equations

t 8J-Lj (Yj - J'.Lj) = O.
j=1 8[3 a(4J)V(JLj)

Here again, we see that the equations in (3.1) have the same form than the

score equations for the classical and generalized linear models. For more

details about the quasi-likelihood theory in the regression context, see Wed

derburn (1974) and McCullagh (1983).

The generalized estimating equations can be thought of as an extension

of quasi-likelihood theory to the case where there is more than one observa

tion per subject (i.e. Pj > 1). Hence we have, for subject j, the vector of

observations lj = (Yj1, Yj2, . .. ,YjPj)' and its expectation and variance are
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given by E(Yj) = /-Li = ().li1,/-Lj2' ... ,J.LjPj) and Var(Yj) - a(cP)Ej . Also,

we suppose the following relationships :

for j = 1,2, ... , n and k = 1,2, .'. ,Pj. The variance-covariance matrix E j

can be rewritten in the following form :

(3.2)

where Ri(a) is the correlation matrix for Yj and Aj is the (Pj x Pj) diagonal

matrix whose kth element on the diagonal is V (/-Ljk). The (s xI) vector 0:

fully characterizes the structure of R j (0:). The dimension of the correlation

matrix Rj(o:) may vary from one subject to another depending on the number

of repeated observations, but the structure is the same for aIl subjects. Since

the nuisance parameters QI, 0!2, •.. , 0:3 are usually unknown and need to he

estimated, we refer to Rj(o:) as a "working" correlation matrix. Also the

name "working" correlation matrix for Rj (0:) is used since the structure is

not expected to he correctly specified. The extension of the equation system

(3.1) to the repeated measurements case is

(3.3)

where

a/-L'. aaJ = ( :Jlk)), j = 1, 2, ... , n, k = 1, 2, ... , Pi' l = 1, 2, ... , m

and
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~j could he referred to as the "working" covariance matrix. It is interesting to

note that GEE reduce to score equations and maximum likelihood estimates

for (3 when the responses are multivariate Gaussian.

Derivation

Suppose n independent multivariate responses Yi, Y2, ... ,Yn . Suppose

also that Yj = (Yj1' Yj2,' .• , Yjpj) has density functions N(/-Lj, i:j ) where /-Lj =

Xj/3, fi is unknown and X j has the form presented in section 3.2.2. The

multivariate normal density of rj is

The likelihaod of the Jj's, j = 1,2, ... , n is

n l n

L(Y1 , Y2, ••. , Yn , /3) = (27f)-! 2:7=1 Pj II[ltjl-~] exp {-2" I:(Yj - J.lj)'i:j 1(Yj - /-Lj)}
j=l j=1

and the log-likelihood is

ln ln - ln -1
log L(Yi, 1"2", ., Yn, (3) = -- LPj log (21T) - - L log I~jl - 2" L(Yj-JLj)'Ej (rj-J.lj).

2 j=1 2 j=1 j=1

The score estimating equations arise by differentiating the log-likelihood

with respect ta (3. By the chain rule we have

alog Leyb Y2, ... ,Yn , (3)
8{3

_ a log L(Yi, Y2' ... , l'n, (3) . aJ.lj

aJ.lj 8/3
o
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We can see that if we put Êj = a(cjJ)Ej in equation (3.3), the generalized

estimating equatians are identical ta the score estimating equations in the

multivariate Gaussian case.

Going back ta the generalized estimating equations (3.3), ta find the

solution for the parameters estimates /3, an iteration between a modified

Fisher scoring for /3 and a moment estimation of ex and r/J was proposed by

Liang and Zeger (1986). The iterative procedure for the computation of /3
given current estimates of â and ~ of the nuisance parameters is

n n

/3i+l = /Ji - {L: Dj(/Ji) ~-l(~i)Dj(/Ji)}-l{I:Dj(/3i) l~-l(,8i) Sj(/3i)} (3.4)
j=l j=l

A a A ~

where D j ({Ji) = ~ l/lj(t3i} , Vj ({3i) - a( r/J)~j [,Bi, â{{Ji, <pCBi )}J,

Sj(/3i) = (Yj - J.Lj) IJLj(~d and J-Lj(!3i) = (J.Ljl (/3i) , /-lj2((Ji) , ... ,J.LjPj (/Ji))' where

J.Lik(!3i) = g-l(xjk/3i)' The GEE design insures that the regression coeffi

cients estimates /3 are consistent if the link function 9 is correctly specified

(Zeger and Liang, 1986). The correlation structure Rj(a) does not need to

be correctly specified as long as the subjects are independent.

The covariance of the estimates /3 is given in the theorem stated below.

This theorem, proved by Liang and Zeger (1986), also gives the result that,

under sorne assumptions, the estimator /J asymptotically follows a multivari

ate Gaussian distribution.

Theorem

Under rnild regularity conditions (see Serfling, 1980, pages 144-145) and

given that :

1. cl is ni-consistent estimator of Q' given {3 and <P;
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II. ~ is nt-consistent estimator of r/J given (3; and

III. 1 ÔÔ~j~;t/l) 1 ::; H(Y, (3) which is a function that is Op(l),

then nt (/3 - (3) is asymptotically multivariate Gaussian with zero mean and

covariance matrix V',8 given by

n n n

F{3 Hm n (~D'.V.-1D·)-1 {"""' D'·1I·-1cov(Y·) V.-1D·} ("""' D'.V.-1D·)-1
- n-+oo L.-J J J J L.J J J J 1 J L.J J J J

j=1 j=1 j=1
...

Mo
...

Mu

A consistent estimator of V.B can be obtained by replacing cov(lj) by

(}j - /-Lj) (lj - /-Lj)' and Œ, (3, cf; by their respective estimators in IIp. Thus,

the estimator of the variance of /J is

where, based on the final estimate fi obtained from the iterative equation

(3.4),

n

Mo - LDj(/3)~-l(Î3)Dj(/3)
j=1

and
n

NIl - 2: Dj(/J) ltj-l((3) Sj(/J) Sj((3) Vt 1 (/3) Dj(/J).
j=l

The estimator Var(/J) is called the sandwich estimator because the matrix

Ml is sandwiched between two instances of the matrix Mol.
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Tt is interesting to note that the asymptotic covariance matrix estimator

V;(,8) is robust ta the choice of ci and ~, as long as they are n~-consistent

estimators and that the matrix lvIa in V.a converges to a fixed matrix when

divided by n. Therefore it is not necessary that the observations for aIl

subjects have the same correlation structure. One has to be careful though

when there is missing data (Liang and Zeger, 1986). Since fJ and Va1'(fJ)

are robust ta the choice of Rj (Œ), the confidence intervals and other statis

tical tests about (J are asymptotically correct even if Rj(a) is misspecified,

but choosing a working correlation matrix structure close to the actual one

increases the efficiency of the different tests. That is the case, for example,

for multivariate Gaussian outcomes (Zeger and Liang, 1986).

The matrix 11110-
1 is a non-robust estimator of the covariance matrix of /J.

This estimator is more efficient than the estimator Var(/J) only when both

the working correlation structure and the mean-variance relationship for the

GEE analysis are correct. Since it is impossible to know if it is really the

case, this non-robust estimator of the covariance matrix is rarely used.

3.4 Working correlation matrix

As \\ras stated before, in the case of repeated measurements data, the different

observations for a subject are most often positively correlated. For each

subject this dependence is represented by the correlation matrix R j . For

example, for subject j the correlation matrix would have the form
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1 Pi12 Pi13 Pi1pj

Pj12 1 Pj23 Pi2pj
Rj =

Pjlpj Pj2pj Pj(pj-l)Pi 1

where pjkk' = corr(ljk, Yjk)' k, k' = 1,2, ... ,Pj and j = 1,2, ... ,n.

As mentioned in the previous section, the dimension (Pi x Pj) of Rj can

vary from subject to subject but the structure is fully specified by a (s x 1)

vector of unknown parameters, 0:, which is the same for aU subjects. Also,

as can be seen in the iterative equation (3.4), the vector of parameters 0: will

depend on the unknown scale parameter 4J. Thus, at a given iteration i, bath

ct and 4J can be estimated from the current Pearson residuals defined by

and where {lik is evaluated at the current estimated value of {3, i.e. Î1jk

g-l(xjki3i)' Then, the scale parameter 4J can be estimated by

n Pj "2

4>-1 = L L T
jk

.
j=1 k=l (n - m)

l Independence structure.

The independence structure is the identity matrix of dinlension

(Pi x Pi)' This is the simplest form and no nuisance parameter ct

need ta be estimated.
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1 0 0 0

a 1 a 0
Rj =

a 0 0 1

II Exchangeable structure.

The exchangeable structure is obtained when all correlations are

the same. This means corr(ljk, Y}k l ) = Cl! for any k, k' where

k =1= k'. In this case Rj (Q') has the form

1 a a Q'

Q' 1 a

The estimator of a is

III Stationary r-dependent structure.

This structure is characterized by the fact that the correlations q

occasions apart are the same for q = 1, 2, ... , r and the correla

tions more than r occasions apart are zero, i.e.
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corr(Yikl Yi,k+l)

corr(Yik, Yi,k+2)

corr(Yik, Yi,k+r) Qr

corr(Yik, Yi,k+r') - 0, r' > r.

The estimator of Œql 1 5 q 5 r, is

IV Auto-regressive (AR-l) structure.

In the case of the auto-regressive (AR-l) structure, the correla

tions between two responses of the same subject are equal to a

baseline correlation a to a power equal to the absolute difference

between the times of the responses. This means corr(Yikl Yjk') =
altjk-tjkd. Here are sorne examples for Ri (a) with an AR-1 struc

ture.

Ex. 1 :

Pi = 3, tjl = 1, tj2 = 2 and t j3 = 3.
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Ex. 2:

Pj = 5, tjt = 1, t j2 = 2, tj3 = 3, t j4 = 4 and tjS = 5.

1 Q 0:
2 Q3 0:4

Q 1 0: Q2 0:3

Rj(o:) = 0:2 Q 1 a: 0:2

Q3 (1'2 (1' 1 0:

0:4 0:3 0:
2 Q 1

Ex. 3:

Pj = 4, tjt = 1, t j2 = 3, t j3 = 4 and tj4 = 4.5.

1 Q2 0:3 Q3.5

0:2 1 0: 0:1.5

Rj(o:) =
0:3 aO.5Q 1

Q3.5 a1.5 0°.5 1

The estimator of a is given by the slope from the regression of

the log (Tjk, Tjk f ) on log (Itjk - tjkl D.

V Unspecified correlation structure.

For this structure the same number of observations for aIl the

subjects is needed, Le. Pj = p for aU j. Here, Rj(a:) has no

constrained sa that the vector a is of dimension (P(P;l) x 1). In

the next example, the explicit form of Rj(a) can be seen.
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Example:

p = 4 ~ p(p - 1) = 6.
2

The estimator of R(Q') is

Unfortunately, in sorne specifie cases~ the solution to the estimators of

R(a) given for each type of structures may not exist. Crowder (1995) gave

a counterexample for which there is no real solution for â in the case of the

auto-regressive correlation structure and he suggested sorne other ways ta

estimate R(a).
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Chapter 4

N urnerical exalllple

4.1 Description of the experiment

An illustration of how the different methods presented in chapters 2 and 3 can

be used in practice is performed using the data from example 6.2 in Jones and

Kenward (1989). In this example, a three treatment three period crossover

design was considered. The effects of the three treatments on blood pressure

were to be compared. Treatments A and B consisted of the trial drug at 20

mg and 40 mg respectively and treatment C was a placebo. For each of the

six possible treatment sequences, ABC, ACB, BAC, BCA, CAB and CBA,

there was two replicates for a total of twelve subjects. The response was the

level of systolic blood pressure (in mm Hg) taken under each treatment at

ten successive times : 30 and 15 minutes before treatment and 15, 30, 45, 60,

75, 90, 120 and 240 minutes after treatment. For this particular illustration,

only the response at 60 minutes after treatment will be considered.
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4.2 Results from the different statistical meth-

ods

The model (2.1) with same dispersion matrix for aIl sequences was assumed.

The OLS method gave FT = 5.57 with 2 and 18 degrees of freedom and the

p-value for the test OIl treatment effects was 0.0131. For the carryover effects

we obtained FA = 0.39 with 2 and 18 degrees of freedom, p-value = 0.6799.

For the MFA and EGLS methods an estimate of E was first calculated using

the estimator of E presented in section 2.4. In the matrix S below, the

variances are on the diagonal, the covariances are above the diagonal and

the correlations below the diagonal.

111.75 99.00 91.42

S = 0.92 103.67 118.75

0.57 0.77 228.50

The MFA method produced the following estimates and level of signifi

cance for treatment and carryover effects respectively : h2 = 10.276, h lT =

2, bT = 1.457 and p-value = 0.0573; hI). = 2, b). = 1.502 and p-value =
0.7742. The EGLS method gave FT = 20.84 with p-value < 0.0001 and

F;.. = 6.62 with p-value = 0.0070.

With the GEE method, the five different working correlation matrices

presented in section 3.4 were considered, namely, the identity, exchangeable,

2-dependent, AR-l and unspecified structures. A summary of aIl the p-values

obtained for both the treatment and carryover effects are given in Table 4.1.
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Table 4.1 P - values of the dif ferent statistical methods to test the absence of

treatment and carryover effects

Statistical methods

GEE with working correlation matrix structure

Effects OLS AlFA EGLS Identity Exch. 2 - Dept. AR-l Unsp.

treatment 0.0131 0.0573 < 0.0001 0.0008 0.0006 < 0.0001 < 0.0001 0.0002

carryover 0.6799 0.7742 0.0070 0.8020 0.7405 0.3023 0.3376 0.2572

At the 5% level of significance not aIl rnethods of analysis lead to the same

conclusions. For the treatment effects, only the MFA method arrives to the

conclusion of no treatment eifects but the p-value is close to 5% (5.73%).

For the carryover effects, the significance level of the EGLS nlethod is very

different than aIl the other statistical tests. The GEE method leads to the

same conclusions regardless of the working correlation matrix used. Note

however that the p-values can be quite different from one another (range

from 0.2572 to 0.8020 for the carryover effects).

The estimates of the covariates obtained with OLS and the GEE method

are given in Table 4.2. The corresponding standard errors and p-values are

also presented. As was mentioned before, one advantage of the GEE method

is that estimates of the covariates can be calculated. This is not possible

with the MFA method.

In light of the differences observed among the tests performed, the need

for an investigation on the performance of the different methods is justified.

This is the subject of the next chapter.
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Table 4.2 Goefficients estimates of the covariates and theÎ7' standard errors and p - values

Statistical methods

GEE with with correlation matrix structure

Covariates OLS Identity Exch. 2 - Dept. AR-1 Unsp.

treat. A estimate -0.1250 0.5667 -0.0381 -0.5716 -0.5091 -1.4576

s.e. 1.6867 1.7280 1.7438 1.4424 1.4646 1.5232

P - val-ue 0.9417 0.7430 0.9826 0.6919 0.7281 0.3386

treat. B estimate 4.9375 4.8167 4.9223 5.8963 5.8027 6.5092

s.e. 1.6867 1.5093 1.4980 1.4204 1.4243 1.6254

p - value 0.0090 0.0014 0.0010 < 0.0001 < 0.0001 < 0.0001

carry. A estimate -1.8750 0.2000 -1.6143 -3.1144 -2.9969 -3.4011

s.e. 2.2629 3.6637 2.5522 2.2178 2.2510 2.2218

p - value 0.4182 0.9565 0.5271 0.1602 0.1831 0.1258

carry. B estimate 1.5625 1.2000 1.5170 2.6213 2.5274 2.5846

s.e. 2.2629 2.8456 2.0403 1.8759 1.8846 1.8139

P - value 0.4987 0.6732 0.4572 0.1623 0.1799 0.1542

46



•

Chapter 5

Monte Carlo Simulations

5.1 Methodology

Monte Carlo simulations were performed using SAS PROC IML and the SAS

macro procedure GEE written by R. Karim (1989) in arder ta compare the

behavior of the OLS~ MFA, EGLS and GEE methods. The SAS program is

given in Appendix A. The three treatments three periods crossover design

with aU six possible sequences (ABC, ACB, BAC, BCA, CAB and CBA)

was considered. This "uniform balance" design is known ta have optimal

praperties when ~ = 0-21 (Jones and Kenward~ 1989, p.209). Three different

covariance structures were used in this simulation study and are presented in

Table 5.1. The first covariance matrix has a sphericity structure, hence the

OLS tests are exact. The second one has an auto-regressive-l structure~ and

the third has no specifie structure and is basically the estimated covariance

matrix of the example considered in the previous chapter.
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Table 5.1 Covariances matrices used for the Alonte Carlo simulations

(variances are on the diagonal, the covariances are above

and the correlations below the diagonal)

Code Type

1 SpheTicity

2 AR-l

3 No structure

Covariance Matrix

1.00 0.50 1.50

0.29 3.00 2.50

0.67 0.65 5.00

2.00 1.50 1.13

0.75 2.00 1.50

0.56 0.75 2.00

1.12 0.99 0.91

0.92 1.04 1.19

0.57 0.77 2.29

Four different sample sizes were used, namely 18, 36, 72 and 108 subjects

per experiment, that is 3, 6, 12 and 18 subjects per sequence respectively. The

last two sample sizes were used with the covariance matrix 3 only. Hence, a

total of eight simulation patterns were run. For each simulation pattern, two

thousand independent samples were generated following model (2.1) with a

multivariate normal distribution for the response variable Y. For each sample,

significance tests were carried out for carryover and treatment effects using

OLS, MFA, EGLS and GEE methods. The five different working correlation

structures described in section 3.4 were used for the latter method. The

empirical percentage of Type l error for each test was defined as the propor-
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tion of p-values smaller or equal to a specified nominal alpha. Three values,

Œ = 0.01, 0.05 and 0.10 were chosen. A summary of the simulation results

are presented in the next section.

5.2 Results and comments

The simulation results for the 5% nominal level alpha are given in tables

5.2 and 5.3 for treatment and carryover effects respectively. The results for

the 1% and 10% nominallevel give similar conclusions and are presented in

Appendix B. The standard error of the empiricallevel of Type l error for the

nominallevel Œ is given by

[
0(1-0)]1s.e. = N 2

where N is the number of independent samples generated for the simulation.

Hence, for the 5% nominallevel and two thousand independent samples, we

have

[0.05(1-0.05)]1 0 0049s.e. = 2000 2 =. .

If we want a 95% confidence interval for the empiricallevel of Type l error

(â) at the 5% nominallevel, we first need to compute the accuracy which is

equal to the standard error multiplied by the 97.5% quantile of the standard

normal distribution,

accuracy = s.e. ·Z(1_0.~5) = 0.0049 . 1.645 = 0.008
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and the 95% confidence interval is then

â ± 0.8%.

The first three methods of analysis were already compared by Bellavance,

Tardif and Stephens (1996) and they obtained very similar results. For the

class of covariance structure for which the OLS is exact (sphericity), the 95%

C.I. for the empiricallevel of Type 1 error includes 5% for the OLS method

for both the treatment and carryover effects. The OLS approach performed

also weB when the covariance structure was of AR-1 type, especially for the

carryover effect, but very badly with the no structure type.

For the MFA method, the case of three subjects per sequence for the

test of treatment effects gives adequate control over Type 1 error but is a

little liberal with six subjects per sequence and somewhat more liberal for

the test of carryover effects for both sampIe sizes considered. For bath the

EGLS and the GEE methods, the results are very liberal for the two lowest

sample sizes and are getting closer ta the nominallevel when the number of

subjects per sequence becomes larger. The 95% C.I. for the empiricallevel

of Type 1 error includes 5% for the EGLS method for bath the treatment

and carryover effects with twelve subjects per sequence. For the treatment

effects with the GEE method, the 95% C.I. for the empiricallevel of Type 1

error includes 5% only with the identity working correlation matrix and the

largest sampIe size. For the carryover effects with GEE method, this is the

case for aIl working correlation matrices and the largest sample size.
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Table 5.2 Empirical level of Type l error (%) for the test

of treatment effects at the 5% nominallevel

Statistical methods

Covariance Number of GEE with wo7"!ï.ing c07Telation matrix

Matrix subjects per OLS MFA EGLS

~ sequence Identity Exch. 2 - Dept. A.R -1 Unsp.

3 5.10 5.00 9.90 Il.10 13040 16.00 13.80 19.10

Sphericity

6 5.65 5.85 7.60 7.20 8.50 9.60 8.35 Il.70

3 6.35 4.60 9.70 Il.35 13.40 16040 12.30 20.90

Type AR-1

6 6.85 4.45 7.40 7.75 8.80 10.05 8.90 11.35

3 12.95 4.55 10.80 13.45 16.60 17.20 16.05 19.00

No structure

6 13.35 5.50 6.65 9.40 10.20 10.60 10.15 10.25

12 12.10 5.40 5.40 7.15 7.25 7.60 7.60 7.95

18 -- -- -- 4.70 6.30 6.15 6.05 6.55
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Table 5.3 Empiricallevel of Type I error (%) for the test

of carryover eff ects at the 5% nominallevel

Statistical methods

Covariance Numberof GEE with working correlation matrix

111atrix subjects per OLS MFA EGLS

L sequence Identity Exch. 2 - Dept. AR-I Unsp.

3 5.65 6.80 9.70 9.25 15.55 16.10 16.20 20.35

Sphericity

6 5.25 6.00 7.40 7.00 9.40 9.70 9.75 11.85

3 4.60 5.00 8.70 10.35 14.60 16.55 14.00 19.70

Type AR - 1

6 5.10 4.75 6.85 7.75 9.95 10.55 9.70 Il.30

3 12.55 4.90 10.25 10.90 17.80 18.30 17.40 20.65

No structure

6 13.05 4.55 7.05 7.00 9.35 10.30 10.25 11.35

12 12.80 5.00 5.85 6.20 7.75 7.85 7.55 8.05

18 -- -- -- 5.25 5.30 5.40 5.25 5.35

In light of the results in tables 5.2 and 5.3, the OL8 analysis is not robust

ta covariance structures that are not in the sphericity class. For the AR

1 type of structure, the empirical level of Type l error is accurate for the

test of carryover effects and a little liberaI for the test of treatment effects.

Note however that the specifie AR-l matrix used here is very "close" to the
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sphericity structure, so these findings are not surprising. For the unspecified

structure the OLS method gives very liberal results even with as much as

twelve subjects per sequence. AIl these observations about the behavior of

the OLS method suggest that the OLS F-tests will he unreliable and could

lead to serious errors in inference.

The EGLS method is almost always too liberal except in the case where

there is a large number of subjects per sequence. The same conclusion can be

drawn for the GEE method but the number of subjects per sequence has ta

be slightly larger than for the EGLS method. Also1a different choice of the

working correlation matrix will give a different empiricallevel of Type 1 error.

Even if the parameter estimates are expected to be equal asymptoticallY1 the

covariance matrix of the parameter estimates may change with the choice

of the working correlation matrix, even asymptoticallY1 therefore leading to

different empiricallevel of Type 1 error (see section 3.3). The 2-dependent

and unspecified working correlation matrices lead to the most liberal results.

The identity working correlation matrix gave better results but they were

still quite liberal.

Regardless of the choice of the working correlation matrix, the same trend

was observed : a larger number of subjects per sequence imply a more accu

rate empirical Type 1 error, and the identity working correlation matrix al

ways performed better than the other working correlation matrices. There

fore, in the case of the three treatment three period crossover design, eighteen

subjects per sequence (108 subjects total) are needed ta get an elnpiricallevel

of Type 1 error near 5% for the GEE method. This is a large sample size ta

use with crossover designs, especially in the medical area, since each subject
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has multiple observations. Just adding few subjects per sequence can add

considerable cast and can be very time consuming.

Finally, with the MFA method, aIl the 95% C.I. of the empirical Type

1 error include the nominal 5% level except for the sphericity case with six

subjects pel' sequence where the lower limit is very close to 5% and somewhat

less close with three subjects per sequence for the carryover effects. An

interesting point is that the MFA method performes as weIl with small sample

sizes as with larger sample sizes. Therefore, the MFA method is the one to

be preferred over the other methods studied here. Moreover, this method is

very easy to apply in practice. Its principal drawback is that predictions are

not possible ta compute since no ,B-coefficient estimates can be found with

this method, only tests of the different effects can be conducted.

Figure 5.1 presents the scatter plot of the p-values obtained [rmn the

GEE and MFA methods with the identity working correlation matrix for

the simulation case of three subjects per sequence and covariance matrix 1

(sphericity structure) for the test of treatment effects. In this graph it can

be seen that the GEE method is more liberal than the NIFA method. A

majority of the points are below the 450 line x = y and therefore implies

that the p-values of the MFA method are larger than the one with the GEE

method. Hence the GEE method will conclude to a treatment effects more

often than the MFA method given Ho = no treatment effects is exactly true.

This figure represents very weIl the results found in tables 5.2 and 5.3.
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Chapter 6

Concluding rernarks

In this thesis, the analysis of crossover designs was studied. In this type

of design, repeated measurements are observed for each subject. The diffi

culty arising from this type of data is that the responses within one subject

may be correlated. Since the usuaI, Iikelihood based, method of analysis for

crossover designs, the ordinary Ieast squares (OLS) method, does not con

sider different covariance structures for the responses of one subject, other

methods were aiso studied in this project. Two approximate IikeIihood based

methods that take into consideration the covariance structure were consid

ered, nameIy, the modified F-test approximation (MFA) and the empirical

generalized least squares (EGLS) method. Bellavance, Tardif and Stephens

(1996) examined tests of crossover design analysis with correlated en-ors for

these three methods. A covariance matrix needs to be estimated for the use

of the MFA and EGL8 tests. A brief review of the three likelihood based

methods and an estimate of the covariance matrix for the MFA and EGLS
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methods were given in chapter 2.

Another type of method was also studied in this work : the generalized

estimating equations (GEE) method. This method does not need a complete

specification of the joint distribution of the responses since it is based on

quasi-likelihood distributional assumptions. AIso, GEE can be used when the

distribution for the vector of responses has forms other than the multivariate

normal distribution. This is Dot the case for the other three methods studied

in this thesis. Moreover, different structures of the covariance matrix can

be modeled with this method. The details of the GEE method and the

covariance structures most commonly used were presented in chapter 3.

The performance of the four different methods 'vas evaluated for the 3

period - 3 treatment - 6 sequence crossover design with multivariate normally

distributed errors and small and medium sample sizes. The simulations per

formed were described in chapter 5. In these simulations the GEE method

needed a large number of subjects per sequence ta arrive to an adequate

empiricallevel of Type 1 error, namely eighteen subjects per sequence. Since

the sample sizes in many crossover trials are small and because large sample

sizes can be very expensive and time consuming, the GEE method is Ilot

the best method for the type of crossover designs studied here. The EGLS

method has similar sample size prablems. Referring ta the example presented

in chapter 4, it was observed in table 4.1 that the EGLS method arrived to

very different results than the other methods. This may be explained by

the bad performance of the EGLS method with smaIl sample sizes, which

was the case in the example of chapter 4 with only twelve subjects for six

sequences. These results suggest that the EGLS method and aiso the GEE
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method are very sensitive to the accuracy of the estimate of the covariance

matrix. The OLS analysis in cases other than when the covariance matrix

has a sphericity structure, does not improve with larger sampie sizes.

On the other hand, the MFA method has good Type l error accuracy in

aU cases considered, that is, with the three types of covariance structures

and with both smaller and larger sample sizes. It is also easy to apply. The

only down point of this method is that no estimates of the coefficients of the

covariates can be calculated and therefore no predictions can be computed.

In the case where this is of interest, a satisfactory method has yet to be .

developed. Where only the tests of different effects are of interest, the rvIFA

method is to be preferred over aIl the other methods studied here, including

the GEE method, unless a large number of observations is available to the

analyst.

The simulations were made only considering the nominal level alpha.

The MFA method was the only method performing weIl with regards to the

nominal level in aIl cases. A power analysis would need to be performed

to ensure that this method meets our expectations. If this is not the case,

research should continue to find a method that will perform weIl with regards

to both the nominal level and the power.
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AppendIX A

The following is the SAS program used to perforrn the Monte Carlo simulations presented
in Chapter 5. The SAS macro GEEl has been written by Mr. Rezaul Karim from Johns
Hopkins University. These particular settings are for the simulations with the unspecified
covariance structure and 3 subjects per sequence.

option pagesize=30S00;
option linesize=80;
option nodate nonumber;
proe printto;run;

proe printto print='e:\litte\eross\seq18a.out'
log='c:\litte\eross\logl.log';

/***********************************************************************
************************************************************************
**
**
**

PC version of GEEl
**
**
**

**
**
**
**
**
**

Due to the differences in ASCII and EBCDIC character sets, and
also due to the differences in translation tables used to eonvert
EBCDIC to ASCII (and ASCII to EBCDIC) in different computer
instalations, sorne 'special' characters may get changed
unexpectedly when you receive the SAS macro at your end.

**
**
**
**
**
**

** An easy check against this problem is to make sure that the **
** following special characters are eorrectly represented on the **
** SAS file you have received. If not -- make global changes for **
** these charaeters with the help of any text editor. **
** **
** Following is a list of sorne special characters used in the macro. **
**
**
**
**
**
**

1 l'
, .A ,

, [ ,
1] ,

'vertical bar'
'NOT sign'
'left square bracket'
'right square bracket'

**
**
**
**
**
**

************************************************************************
***********************************************************************/
/*

SAS Macro for Longitudinal Data Analysis:
=========================================
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GEE is a SAS macro for analyzing longitudinal data. This SAS 1ML
macro uses the GEE approach of Liang and Zeger (1986) to model
longitudinal data for a general class of outcome variables including
gaussian, poisson, binary and gamma outcomes. The program uses an
iterative procedure to estimate regression coefficients, treating the
correlation among observation on the same individual as a nuisance.
Final output from GEE includes: regression coefficients, naive and
robust estimates of variance and z-score.

Following command, with appropriate parameters, can be used
to invoke the macro. AlI parameters have been assigned default values,
so that they can be omitted if default values are acceptable. (Defaults
are shown within {}). Parameters may be given in any order.

%GEE DATA
YVAR

XVAR

ID
L1NK
VARI
N
CORR
M
R
BETA
OFFS
OUT

1TER
CRIT

SAS dataset,
= y-variable,

x-variables,
= id-variable,

link function,
mean-variance relation,
binomial denominator variable,
correlation structure,
dependence,
given correlation matrix,
initial estimate of beta,
offset variable,
output dataset,
maximum iterations,
convergence criterion

{ _LAST
{ y }
{ X }
{ ID }
{ 1 }

{ 1 }
{_1_}
{ 1 }

{ 1 }
{ l }
{ LSE
{ _0_ }
{ _NULL_
{ 20 }
{ 0.001 }

========================================================================

Date: 7/4/89
Author: M. Rezaul Karim
Department of Biostatistics
The Johns Hopkins University

========================================================================

==*/

%MACRO GEE ( DATA
YVAR

XVAR

ID
L1NK
VAR1
N
CORR
M

R

BETA

=_last_,
=y,
=x,
=id,
=1,
=1,
=_1_,
=1,
=1,
=1,
=0,
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OFFS =_0_,
OUT =_NULL_,
ITER =20,
CRIT =0.001) ;

OPTION nocenter;
PROC IML WORKSIZE=999j
RESET noname;

USE &DATA; SETIN &DATA NOBS nobs;

link={ &LINK };
vari={ &VARI };
corr= { &CORR };
m={ &M };
r={ &R };
n=INT(SQRT(NROW(r)#NCOL(r»); r=SHAPE(r,n,n);
beta={ &BETA };
labely={ &YVAR };
labelx={ &XVAR J';
labelo={ &OFFS }; IF labelo={'_O_'} THEN offset=O;
labeln={ &N }; IF labeln={'_l_'} THEN n=l;

START init; /****************************************************~*****/

Rl= { 'Data File: 1 &DATA};
*PRINT / 'Regression analysis using GEE:
) , ,
* 1============================='",
* Rl;

Rl={'Outcome variable: I};
R2={ICovariates: ,};
*PRINT labely [ROWNAME=R1],
* {&XVAR} [ROWNAME=R2];
Rl={ 1 Offset: ,};
*IF labeloÀ={'_O_I} THEN PRINT labelo [ROWNAME=Rl];

( Ver - 1.25

Ivi;.'.;;
~f'-

_l={' (Identity) ,};
_2={ 1 (Logarithm) ,};
_ 3={ , (Logi t) , } ;
_4= { 1 (Reciprocal) 1 } ;

Rl={ 'Link: ,};
*IF (link<l 1 link>4) THEN PRINT link [ROWNAME=Rl FORMAT=2.0]
* {, (Invalid Option 111) Il;
*ELSE PRINT link [ROWNAME=Rl FORMAT=2.0] _&LINK

_l={' (Gaussian) I};
_2= { , (Poisson) , } ;
_3={' (Binomial) ,};
_4={' (Gamma) ,};
Rl={lvariance: Il;
*IF (vari<l 1 vari>4) THEN PRINT vari [ROWNAME=Rl FORMAT=2.0]
* {I (Invalid Option 11!) 'l;
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*ELSE PRINT vari [ROWNAME=R1 FORMAT=2.0J &VARI
R1={'Denominator'}i
*IF vari=3 THEN PRINT labeln [ROWNAME=Rl];

FREE 1 2_3 4'-'

Rl={'Correlation: ' };
*IF corr=1 THEN DOi
* IF NCOL(r)=l THEN PRINT
* corr [ROWNAME=Rl FORMAT=2.0J {I (Independent) I}i
* ELSE PRINT

FORMAT=2.0] {, (Unspecified) , } ;

FORMAT=2.0] {I (Exchangeable) Il;

[ROWNAME=Rl FORMAT=2. OJ {I (R
[FORMAT=4.:2 J i

given) : I},

FORMAT=2.0]
FORMAT=2.0] {,- dependent) ,};

FORMAT=2.0]
FORMAT=2.0J {,- dependent) '}i

FORMAT=2.0]
FORMAT=2.0]

corr*
* r
* ENDi
R2={' (Stationary'}i
*IF corr=2 THEN PRINT
* corr [ROWNAME=Rl
* m [ROWNAME=R2
R2={1 (NonStationary'}i
*IF corr=3 THEN PRINT
* corr [ROWNAME=Rl
* m [ROWNAME=R2
*IF corr=4 THEN PRINT
* corr [ROWNAME=Rl
R2= { 1 (AR -,};
*IF corr=5 THEN PRINT
* corr [ROWNAME=Rl
* m [ROWNAME=R2
*IF corr=6 THEN PRINT
* corr [ROWNAME=Rl

Rl={'Total number of records read: Il;
*PRINT nobs [ROWNAME=Rl FORMAT=8.0] i

p=NROW (labelx) i

dmean=O; imean=Oi

READ VAR { &ID } INTO idk;
READ VAR labely INTO yvar;
READ VAR 1 abelx INTO xvar;
IF labelnA = { 1 _1_' } THEN DO; READ VAR labeln INTO n; ENDi
IF labeloÂ={'_o_'} THEN DO; READ VAR labelo INTO offset; END;

vsum=yvar 1 1xvar ;
IF NCOL(beta)=1 THEN DO;
xty=xvar'*(yvar/n-offset);
xtx=xvar'*xvar;
END;

war=J(l,p,l) ;
war=war#(war=xvar) ;

k=l; i=li ni=O;
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DO j=2 TO nobs;

REAn VAR { &:ID } INTO idj POINT j;
READ VAR labely INTO yvar;
READ VAR labelx INTO xvar;
IF labelnA = { 1 _1_ 1 } THEN DO; REAn VAR labeln INTO n; END;
IF labeloA = { '_0_' } THEN DO; READ VAR labelo INTO offset; END;

IF idk=idj THEN i=i+1;
ELSE DO;
imean=imean+vsum/i; dmean=dmean+vsum; vsum=O;
ni[kJ=i; k=k+l; idk=idj; i=l; ni=ni//{O}; END;

war=war#(war=xvar);
vsum=vsum+(yvar1 Ixvar);
IF NCOL(beta)=1 THEN DO;
xty=xty+xvar'*(yvar/n-offset);
xtx=xtx+xvar'*xvarj
END;
END;

ni[k]=i;
imean=(imean+vsum/i)/k;
dmean={(dmean+vsum)/nobs)//imean;
IF NCOL(beta)=1 THEN beta=SOLVE(xtx/xty);
ELSE beta=SHAPE(beta / P,l,O);
maxn=MAX (ni) ;

minn=MIN (ni) ;

R1={'Total number of clusters: ' };
*PRINT k [ROWNAME=R1 FORMAT=5.0] ;
R1={IMaximum and minimum cluster size: ' };
R2 = { , and 1 } ;

*PRINT maxn [ROWNAME=R1 FORMAT=5.0]
* minn [ROWNAME=R2 FORMAT=5.0];
Rl={'Observations: I, 'Cluster Means: I };
C1={ &YVAR &XVAR };
*PRINT 'Averages of Outcome variable and Covariates (over aIl)' "
* dmean [ROWNAME=R1 COLNAME=C1] 1;
*IF ALL(Awar ) THEN PRINT 1*** WARNING: No intercept term in the model! 1;

*PRINT / 'Initial estimate of regression coefficients:', labelx beta;
FREE dmean i idj idk imean j vsum xtx xty xvar yvar;
*show names;
FINISH; /** INIT
*******************************************************/

START esth;
/***********************************************************/
us=J(p/l,O) ;
mO=J(p/P,O) ;

nx=Oj
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DO j=l TO ki
nj=ni[j]; i=(nx+~): (nx+nj); nx=nx+nj;

REAn VAR labely INTO yvar POINT i;
REAn VAR labelx INTO xvar POINT i;
IF labelnA={'_l_'} THEN DO; READ VAR labeln INTO n POINT i; END;
IF labeloA={,_O_'} THEN DO; READ VAR labelo INTO offset POINT i; END;

*** Calculate ui and di;

Ip=xvar*beta+offseti

IF link=~ THEN DO; ui=lp; di=xvar; END;
ELSE IF link=2 THEN DO; ui=EXP(lp); di=ui#xvar; END;
ELSE IF link=3 THEN DO; ui=EXP(lp); ui=(n#ui)/(l+ui)i

di=(ui#(l-ui/n»#xvar; END;
ELSE IF link=4 THEN DO; ui;l/(lp); di=-(ui#ui)#xvar; END;

zi=di*beta+(yvar-ui);

*** Calculate a*zi and a*di;

IF vari=J.. THEN ui=l;
ELSE IF vari=2 THEN ui=l/SQRT(ui) ;
ELSE IF vari=3 THEN ui=l/SQRT(ui#(l-ui/n» ;
ELSE IF vari=4 THEN ui=l/ABS(ui);

di=di#ui; zi=zi#ui;

vinv=INV(r[l:nj,l:nj]);
us=us+di~*vinv*zi;

mO=mO+di~*vinv*di;

END; *** End of beta estimation loop;

beta=solve(mO,us)j
Cl={'Estimate ' };
*PRINT labelx beta [COLNAME=Cl];
FREE di i j mO nj nx us ui viny xvar yvar zij
*show namesj
FINISH; /** ESTB
*******************************************************/

START estr;
/***********************************************************/

IF corr=1 THEN DO; END; /* given correlation
*/
ELSE IF corr=2 THEN alp=J(l,m, 0) ;
*/
ELSE IF corr=3 THEN alp=J(maxn,maxn,O);
*/
ELSE IF corr=4 THEN alp=O;
*/

/* stationary m-dependent

/* non stationary m-dept

/* exchangeable
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EL5E IF corr=5 THEN alp=J(l,m,O}i /* AR-m

• */
EL5E IF corr=6 THEN alp=J(rnaxn,maxn,O}i /* unspecified
*/

sigma=Oi
nx=O;
DO j=l TO k;
nj=ni[jJ; i=(nx+l}: (nx+nj); nx=nx+nji

REAn VAR labely INTO yvar POINT i i

READ VAR labelx INTO xvar POINT i;
IF labelnÂ={'_l_'} THEN DO; REAn VAR labeln INTO n POINT i; END;
IF labeloÂ={'_O_I} THEN DO; READ VAR labelo INTO offset POINT i; ENDi

Ip=xvar*beta+offset;

IF link=l THEN DOi ui=lp; END;
ELSE IF link=2 THEN DO; ui=EXP{lp); END;
ELSE IF link=3 THEN DO; ui=EXP(lp); ui=(n#ui)/(l+ui); END;
ELSE IF link=4 THEN DOi ui=l/(lp) i END;
ei=yvar-ui;

IF vari=~ THEN ui=l;
EL5E IF vari=2 THEN ui=l/SQRT(ui) ;
ELSE IF vari=3 THEN ui=l/SQRT(ui#(l-ui/n)} i

ELSE IF vari=4 THEN ui=l/ABS(ui);
ei=ei#ui;
sigma=sigma+SSQ(ei)/nj;

IF corr=l THEN DO; END;
ELSE IF corr=2 THEN DO;

i=nj/(nj+l-(l:m»; alp=alp+COVLAG(ei,-m)#i; END;
ELSE IF corr=3 THEN alp=alp+ei*ei';
ELSE IF corr=4 THEN DO;

IF (nj>~) THEN alp=alp+(SUM{ei*ei')-SSQ(ei»/{nj#{nj-l» i END;
ELSE IF corr=5 THEN DO;

i=nj/(nj+l-(l:m»; alp=alp+COVLAG(ei,-m)#i; END;
ELSE IF corr=6 THEN alp=alp+ei*ei';

END; *** End of working covariance estimation loop;

IF corr=l THEN DO; END;
ELSE IF corr=2 THEN DO; alp=alp/sigma; alp[lJ=l;

r=SHAPE(alp,l,maxn,O); r=TOEPLITZ(r); END;
ELSE IF corr=3 THEN DO; r=alp/sigma;

DO j=l TO maxn; r[j,j]=l;
DO i=j+m TO maxn; r[i,j]=O ; r[j,i]=O END; END;
END;

ELSE IF corr=4 THEN DO; alp=alp/sigma;
r=J(l,maxn,alp); r[l]=l; r=TOEPLITZ(r); END;

ELSE IF corr=5 THEN DO; alp=alp/sigma; alp[l]=l;
r=SHAPE(alp,l,maxn,O) ;
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.: i=TOEPLITZ{alp[~:m-1]); alp=alp[1,2:m]*INV(i);
DO i=m+1 TO maxn; DO j=~ TO m-~;

r[iJ=r[i]+alp[j]#r[i-j]; END; END;
r=TOEPLITZ(r); END;

ELSE IF corr=6 THEN Dai r=alp/sigmai
DO j=l TO maxn; r[j,j]=~; END;
END;

FREE alp ei i j nj nx ui xvar yvar;
*show names;
FINISH; /** ESTR
*******************************************************/

/***********************************************************************
/
/* Main Program:
*/
/***********************************************************************
/

RON init;
IF NCOL(r) <=1 THEN r=I(maxn);

START; /** Check for consistency
***************************************/
crit=~i

IF corr=l THEN Dai
IF NCOL(r) <maxn THEN DOi

* PRINT 'ERROR: Dimension of the given correlation matrix must bel
* 'equal to the maximum cluster size';
crit=O; ENDi

END;
IF corr=2 1 corr=3 THEN DO;

IF m>=minn THEN DOi
* PRINT 'ERROR: Gorup size too small for m-dependent correlation. ';
* crit=O; ENDi

m=m+~; END;
IF corr=4 THEN DO; END;
IF corr=5 THEN DOi

IF m>=minn THEN DO;
* PRINT 'ERROR: Gorup size too small for AR-m correlation. J;

* crit=O; END;
m=m+1; END;

IF corr=6 1 corr=3 THEN DO;
IF maxn=minn THEN DOi END;
ELSE Dai

* PRINT 'ERROR: Unequal gorup size.'i
crit=O; END;

END;
FINISH; RUNi /** End for consistency check
*****************************/
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START ;. / ** Main i teration
**********************************************/
IF crit=O THEN STOP;

DO iter=l TO &ITER WHILE(crit>&CRIT) ;

Rl={'===> Iteration:'};
*PRINT iter [ROWNAME=Rl FORMAT=3.0]

save=beta;
IF corr>l THEN RUN estr;
RUN estb;

crit=MAX(ABS(l-save/beta»;

END; *** End of iterations;
*show names;

iter=iter-l;
*IF iter>=&ITER THEN PRINT ' , /
* {'No Convergence after'} {&ITER} (FORMAT=3.0J {'iterations.'};
*ELSE PRINT ' , /
* {'Convergence after'} iter [FORMAT=3.0] {'iteration{s). ,};

IF maxn>lO THEN DO;
save=r[l:lO,l:lO];

* PRINT 'Working Correlation:', save;
END;
*ELSE PRINT 'Working Correlation:', r;
FREE save;

crit=l;
FINISH; RUN; /* End of iteration
***************************************/

START; /** Calculation of variance
*************************************/
IF crit=O THEN STOP;
RUN estr;
sigma=SQRT(sigma/k) ;
mO=J(p,p,O); ml=J(p,p,O);
dev=O;

null= { '_NULL_' };
Cl={ FIT RES SRES };
IF null = {&OUT} THEN DO; END;
ELSE DO;

out={ 0 0 0 }; id={'12345678'};
CREATE &OUT FROM out (ROWNAME=id COLNAME=Cl] ;
SETIN &DATA;

END;

nx=Oi
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DO j=l TO k;
nj=ni[j]; i=(nx+l) : (nx+nj) ; nx=nx+nj;

REAn VAR labely INTO yvar POINT i;
REAn VAR labelx INTO xvar POINT i;
IF labelnÂ={'_~_'} THEN DO; REAn VAR labeln INTO n POINT i; END;
IF labeloÂ={'_O_'} THEN DO; REAn VAR labelo INTO offset POINT i; END;

*** Calculate ui and di;

lp=xvar*beta+offset;

IF link=l THEN DO;
ELSE IF link=2 THEN DO;
ELSE IF link=3 THEN DO;

ELSE IF link=4 THEN DO;

ui=lp; di=xvar; END;
ui=EXP(lp); di=ui#xvar; END;
ui=EXP{lp); ui=(n#ui)/(l+ui);
di=(ui#(l-ui/n»#xvar; END;
ui=l/(lp); di=-(ui#ui)#xvar; END;

ei=yvar-ui;
dev=dev+SSQ(ei)/nj;
IF null = {&OUT} THEN DO; END;
ELSE out=ui Il eii

*** Calculate a*ei and a*di;

IF vari=l THEN ui=l;
ELSE IF vari=2 THEN ui=l/SQRT(ui) ;
ELSE IF vari=3 THEN ui=l/SQRT(ui#{l-ui/n»;
ELSE IF vari=4 THEN ui=l/ABS(ui)i

di=(di#ui}/sigma; ei=(ei#ui)/sigma;

IF null = {&OUT} THEN DO; END;
ELSE DO;

out=out Il ei;
id=J(nj,l,CHAR(j,8,O» ;
SETOUT &OUT;
APPEND FROM out [ROWNAME=id];
SETIN &DATA;

END; /* End of output file process */

vinv=INV(r[l:nj,l:nj]) ;
mO=mO+di~*vinv*di;

i=ei"*vinv*di;
ml=ml+i~*i;

END; *** End of variance{beta) estimation loop;
nvar=INV{mO) ;
rvar=nvar*ml*nvar;

FREE di ei i j mO ml nj nx ui vinv xvar yvar;
*show names;
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FINISH; RUN; /* End of variance
****************************************/

START; /* Outputs
******************************************************/
IF crit=O THEN STOP;
sigma=sigma#sigma;
dev=dev/ki
*ns=~/SQRT(VECDIAG(nvar) i

rs=l/SQRT{VECDIAG(rvar»i
rbeta=beta#rs;

*DO i=~ TO Pi
* DO j=i+l TO Pi
* nvar[j,iJ=nvar[i,jJ#ns[iJ#ns[jl;
* rvar[j,iJ=rvar[i,jJ#rs[iJ#rs[jlj
* END;

* END;

Rl={'scale parameter:'};
R2={'Mean Squared Error: ,};
*PRINT sigma [ROWNAME=Rl],
* dey [ROWNAME=R2] /;

*PRINT 'Variance estimate (naive): f"

* nvar [ROWNAME=labelx COLNAME=labelx] ;

*PRINT 'Variance estimate (robust):' 1/

* rvar [ROWNAME=labelx COLNAME=labelxJ ,
* 'NOTE: Covariances are above diagonal and correlations are below'
* , diagonal. 1 , i

*ns=l/nsi
rs=l/rs;
pval=2*(1 - probnorm(abs(rbeta»)i

Cl={ 'Estimate' }i
C2 ={ , s. e . - Naive' };
C3= { , z-Naive' };
C4={ 's.e.-Robust' }i
C5={ 'z-Robust' };
CG= { 'p-value 1 };

*PRINT / 'Estimate, s.e. and z-score:', /
* labelx beta [COLNAME=C1J
* ns [COLNAME=C2 FORMAT=11.3]
* rs [COLNAME=C4 FORMAT=11.3]
* rbeta [COLNAME=CS FORMAT=8.2)
* pval [COLNAME=CG FORMAT=8.4J,;
*IF ALL(Âwar ) THEN PRINT '*** WARNING: No intercept term in the model!';

pvall=t(pval) i

69



cperl {o l 0 0 0 0 a};

• cper2 {O 0 l 0 0 0 a};
ctrtl = {o 0 0 1 0 0 a};
ctrt2 {O 0 0 0 1 0 a};
ccarl {O 0 0 0 0 1 a};
ccar2 {o 0 0 0 0 0 1};

cper cperl Il cper2;
ctrt ctrt1 1/ ctrt2;
ccar ccar1 Il ccar2;

resp j(nobs,1,O};
desi j (nobs, p, 0) i

do j=l to nobsi
REAn VAR { &ID } INTO idj POINT j i
REAn VAR labely INTO yvar;
resp [j,] = yvar;
REAn VAR labelx INTO xvari
desi[j,] = xvar;
end;

*numper = t(cper*beta)*inv(cper*rvar*t(cper}}*<cper*beta};
numtrt t(ctrt*beta)*inv(ctrt*rvar*t(ctrt})*(ctrt*beta) i

numcar = t(ccar*beta)*inv(ccar*rvar*t(ccar)}*(ccar*beta) i

numm = numtrt Il nurncar;

*PRINT 'Nurntrt, Nurncar ' ;
*print nummi

den = t(resp - (desi*beta»*{resp - (desi*beta});

*pvalper = 1 - probchi(numper, 2) i

pvaltrt 1 - probchi(numtrt, 2}i
pvalcar = 1 - probchi(numcar, 2};

pva12 = pvaltrt II pvalcar;

PRINT 'Pvaltrt, Pvalcar';
print pva12;

*PRINT' ',,' (c) M. Rezaul Karirn, 1989',
* 'Departrnent of Biostatistics, The Johns Hopkins University';
FINISH; RUN; 1* End of outputs
*****************************************/
QUIT;

%MENDi
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%MACRO simul(nombre);

%do 5=1 %to &nombre;

proe iml;

p1B=j (l,lB,l);
pl=j (l, 6, 1) ;
p3=j (1,3,1);

ul= j(324,l,1);

res={O 0 0,
1. 0 0,
o 1 o};

abc={1. 0 0,
o 1 0,

o 0 1.};

bca={O 1. 0,
o 0 l,
1 0 o};

cab={O 0 l,
1 0 0,
o 1 o};

aeb={1. 0 0,
o 0 l,
o 1. a};

bac={O 1. 0,
1 a 0,

o 01};

cba={a a l,
o 1. a,
1 0 a};

dl=t(p3)@abc;
d2=t(p3)@bea;
d3=t(p3)@cab;
d4=t(p3)@aeb;
d5=t(p3)@bae;
d6=t(p3)@cba;

r1.=t(p3)@(res*abc);
r2=t(p3)@(res*bea);
r3=t(p3)@{res*cab);
r4=t(p3)@(res*aeb);
r5=t(p3)@(res*bac);
r6=t{p3)@(res*cba);
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des=d1 Il d2 Il d3 Il d4 Il ds Il d6;w:~

resi=rl Il r2 Il r3 Il r4 Il rS Il r6;

periode = t(p18)@i(3) ;

sujet= i (18) @t(p3) ;

x= ul Il sujet Il periode Il des Il resi;

xl= u1 " sujet Il periode Il des ;

x2= u1 Il sujet Il periode Il resi;

pera={1., 0, -l.};
perb={O, 1., -1};

treatal={l., 0, -1};
treata2={0, -l, 1};
treata3={-l, l, o};
treata4={1., -1. , o};
treataS={O, l, -1};
treata6={-1, 0, 1};

treatb1={O, 1, -1.};
treatb2={1., -1, o};
treatb3={-1, 0, 1.};
treatb4={0, -l, 1};
treatbS={1., 0, -1};
treatb6={-l, l, o};

carrya1={O, l, o} ;
carrya2={0, 0, -1};
carrya3={O, -1, 1};
carrya4={O, 1, -1};
carryaS={O, 0, 1};
carrya6={O, -1, o};

carryb1={O, 0, l} ;
carryb2={O, 1., -l.};
carryb3={O, - l, o};
carryb4={O, 0, -l};
carrybS={O, 1, o} ;
carryb6={O, -1, l};

periodea pera;
periodeb perb;

do i=l to 17;

0
periodea periodea Il pera;
periodeb = periodeb Il perb;
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end;

6·; trtal treatal;
trta2 treata2;
trta3 treata3;
trta4 treata4;
trtaS treata5;
trta6 treata6;
trtbl treatblj
trtb2 = treatb2;
trtb3 treatb3;
trtb4 treatb4;
trtbS treatb5;
trtb6 treatb6;
caral carryaJ.;
cara2 carrya2;
cara3 carrya3j
cara4 carrya4;
caraS carryaS;
cara6 carrya6j
carbl carrybl;
carb2 carryb2j
carb3 carryb3;
carb4 carryb4;
carbS carrybS;
carb6 carryb6;

do i=l ta 2;
trtal trtal Il treatalj
trta2 trta2 Il treata2j
trta3 trta3 Il treata3;
trta4 trta4 Il treata4j
trtaS trtaS Il treataSj
trta6 trta6 Il treata6;
trtbl trtbl Il treatbl;
trtb2 trtb2 Il treatb2;
trtb3. = trtb3 Il treatb3;
trtb4 trtb4 Il treatb4;
trtbS trtbS Il treatbS;
trtb6 trtb6 Il treatb6j
caral caral Il carryaJ.;
cara2 cara2 Il carrya2j
cara3 cara3 Il carrya3j
cara4 cara4 Il carrya4j
caraS caraS Il carryaS;
cara6 cara6 Il carrya6j
carbl carbl Il carryblj
carb2 carb2 Il carryb2;
carb3 carb3 Il carryb3j
carb4 carb4 Il carryb4;
carbS carbS Il carrybS;
carb6 carb6 Il carryb6j

end;.'·r
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treata = trtal Il trta2 Il trta3 Il trta4 Il trtaS Il trta6;

• treatb trtbl Il trtb2 Il trtb3 Il trtb4 Il trtbS Il trtb6;

Il Il Il Ilcarrya caral cara2 cara3 cara4 caraS Il cara6;
carryb carb1 Il carb2 Il carb3 Il carb4 Il carbS Il carb6;

id={l, l, l}j
idl={1, 1, l}j
id2={1, 1, 1} ;

do i=2 to 18;
id2=idl#i;
id=id Il id2;

end;

sigma3={1.12 0.99 0.91,
0.99 1.04 1.19,
0.91 1.19 2.29};

i18=i (18) ;
i=i(54);

sig=ilS@sigma3;
rsig=root(sig) i

xx=x*(ginv(t{x)*x»*t(X)i
xlxl=xl* (ginv(t(xl) *xl»*t(xl) ;
x2x2=x2*(ginv(t(x2)*x2»*t(x2)i

c=xx - xlxlj
t=xx - x2x2;

e= i - XX;

rc= trace(c);
rt= trace{t);
re= trace(e) j

yn=norrnal(repeat(O,54,1»)i
y= t(rsig)*yn

yl= y[1:3,1] i

y2 = Y [4 : 6 , 1] i

y3= y[7:9,1];
y4= y[10:12,l] i

yS= y[13:1S,l];
y6= y[16:18,l] i
y7= y[19:21,1] i
yS= y[22:24,l] j
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y9= y[25:27,l} i

• y10= y[28:30,1];
y11= y[31:33,1];
y12= y[34:36,1];
y13= y[37:39,1] ;
y14= y[40:42,1] ;
yl5= y[43:45,1] ;
y16= y[46:48,lJ;
yl7= y[49:51,lJi
y18= Y[52:54,1} ;

gl= (y1 + y2 + y3) /3;
g2= (y4 + yS + y6)/3;
g3= (y7 + y8 + y9)/3;
9 4 = (y10 + yl1 + y12)/3;
9 S= (y13 + y14 + ylS)/3;
g6= (y16 + y17 + y1B)/3i

551= (yl - gl)*t(y1 - gl) ;
552= (y2 - gl)*t(y2 - 9 1 ) i
553= (y3 - gl) *t (y3 - 9 1 ) ;
554= (y4 - g2)*t(y4 - g2) ;
555= (ys - g2)*t(y5 - 9 2 ) ;
556= (y6 - g2)*t(y6 - g2) ;
557= (y7 - g3)*t(y7 - g3) ;
558= (y8 - g3)*t(yB - g3) i
5s9= (y9 - g3)*t(y9 - g3) i
ss10= (y10 - g4)*t(ylO - g4) ;
s511= (y11 - 9 4 }*t(yl1 - g4) ;
s512= (y12 - g4}*t(y12 - g4) ;
ssl3= (y13 - gS)*t(y13 - gS) i

s5l4= (y14 - gS)*t(y14 - 9 S ) i

5s15= (y1S - gS)*t(y15 - gS) i

5s16= (y16 - 9 6 )*t(y16 - 9 6 ) i

5s17= (y17 - g6)*t(y17 - g6) i

sslB= (y18 - g6)*t(y18 - g6) ;

S5=(S51+ss2+ss3+ss4+S5S+ss6+ss7+ssB+ss9+S510+
ss11+ss12+ss13+ss14+ss1S+ss16+ss17+5S1B)/12;

kk=t(root(ss» ;
ikk=inv (kk) ;

vv=ilOB@ikki

z=vv*y;
b=VV*Xi
e1=vv*x1;
e2=vv*x2i

••
ee=b*(ginv(t(b)*b})*t(b)i
e1e1=el*(ginv(t(e1)*el»*t(e1) ;
e2e2=e2*(ginv(t(e2)*e2»*t(e2) i
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bc=ee - e1e1;
bt=ee - e2e2;
be= i - eei

brc= trace (bc) ;
brt= trace(bt)i
bre= trace(be)j

v=i18@ssj

trcv= traee(e*v);
trtv= traee(t*v)i
trev= traee(e*v)i

he= (trev**2)/(trace (c*v*c*v»;
ht= (trtv**2)/{trace (t*v*t*v» i
he= (trev**2)/ (trace (e*v*e*v»i

ssbc= t(z)*be*z;
ssbt= t(z)*bt*zj
ssbe= t(z)*be*zi

ssc= t(Y)*C*Yi
sst= t(y)*t*Yi
sse= t(y)*e*Yi

fec=(bre*ssbc)/(brc*ssbe) i

fet=(bre*ssbt)/(brt*ssbe)i

fc={re*sse}/(rc*sse}i
ft={re*sst)/(rt*sse}i

ratioe=ssbc/ssbei
ratioc=ssc/ssei

fac=«rc*trev}/(re*trcv)*fei
fat=«rt*trev}/(re*trtv}}*fti

p_ec=l - probf(fec,brc,bre) i

p_et=l - probf(fet,brt,bre)i

p_C=l - probf(fe,re,re);
p_t=l - probf(ft,rt,re)j

p_ae=l - probf(fae,hc,he)i
p_at=l - probf(fat,ht,he};

C1={ ID Y U1 PERIODEA PERIODEB
TREATA TREATB CARRYA CARRYB } i

out={O 0 0 0 0 0 000 };
ereate donnee from out [colname=Cl]j
out=idllyllu11lperiodeallperiodeblltreatalltreatbllcarryallearrybi
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setout donnee;
append from out;

title Iii

reset noname;

print
print

quit;

p_ac p ec p_c;
p at p_et p_t;

%GEE (DATA=donnee, XVAR=u1 periodea periodeb treata treatb carrya
carryb) ;

run;

%GEE (DATA=donnee, XVAR=u1 periodea periodeb treata treatb carrya
carryb, CORR=2, M=2);

runi

%GEE (DATA=donnee, XVAR=u1 periodea periodeb treata treatb carrya
carryb, CORR=4);

run;

%GEE (DATA=donnee, XVAR=u1 periodea periodeb treata treatb carrya
carryb, CORR=5, M=1)j

run;

%GEE (DATA=donnee, XVAR=u1 periodea periodeb treata treatb carrya
carryb, CORR=6);

runj

%end;

%MEND simul;

%simul(2000) j

77



•
Appendix B

Table B.1 Empiricallevel of Type l error (%) for the test

of treatment ef fects at the 1% nominallevel

Statistical methods

Covariance Number of GEE with working correlation matrix

lvfatrix subjects per OLS AlFA EGLS

E sequence Jdentity Exch. 2 - Dept. AR-1 Unsp.

3 1.05 1.15 3.35 4.05 5.55 7.05 5.20 9.75

Sphericity

6 0.95 0.95 1.75 1.85 2.75 2.90 2.65 4.45

3 1.40 0.90 2.90 4.70 5.65 7.65 4.75 10.50

Type AR-1

6 1.60 1.25 1.65 2.25 2.55 2.95 2.30 4.05

3 3.95 1.00 3.45 5.65 7.25 7.55 7.00 10.40

No structure

6 4.50 1.10 1.80 3.60 3.70 3.95 3.45 4.45

12 3.80 0.65 1.40 1.50 1.60 1.40 1.50 1.65

18 -- -- -- 1.05 1.15 1.35 1.45 1.55
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Table B.2 Empiricallevel of Type 1 error (%) for the test

of treatment ef fects at the 10% nominallevel

Statist'lcal methods

Covariance Number of GEE with with correlation rnatrix

Matrix subjects per OLS MFA EGLS

~ sequence Identity Exch. 2 - Dept. AR-l Unsp.

3 10.10 10.70 17.60 17.95 20.95 23.80 21.70 27.75

Sphericity

6 10.00 10.30 13.95 13.60 14.75 15.50 15.15 19.15

3 12.95 9.65 15.85 18.30 20.15 24.30 1D.00 28.65

TypeAR-l

6 13.40 9.95 13.75 14.50 14.80 16.50 15.05 17.95

3 21.10 10.00 17.50 19.80 24.60 24.65 23.00 27.45

No structure

6 21.10 11.05 12.60 15.25 17.85 17.40 16.60 18.05

12 18.00 10.35 11.20 12.75 12.40 12.75 12.65 13.90

18 -- -- -- 10.45 11.15 11.35 10.95 Il.70
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Table B.3 Empiricallevel of Type 1 errar (%) for the test

of carryover ef fects at the 1%nominallevel

Statistical methods

Covariance Numbe7'of GEE with working correlation matrix

Alatrix subjects per OLS MFA EGLS

E sequence Identity Exch. 2 - Dept. AR-l Unsp.

3 1.20 1.85 3.20 3.70 7.15 7.70 8.00 10.15

Sphericity

6 0.95 1.55 1.95 2.00 3.05 3.40 2.85 4.45

3 0.80 1.30 3.20 3.25 6.35 7.85 6.65 10.70

Type AR-1

6 1.00 1.10 1.65 2.60 2.70 3.85 3.00 4.75

3 4.55 1.05 3.60 3.60 8.00 D.OO 8.10 11.10

No structure

6 3.45 0.50 1.90 1.60 2.55 2.90 3.15 3.50

12 3.85 0.65 1.55 1.60 1.80 1.75 1.55 1.75

18 -- -- -- 1.05 1.50 1.55 1.50 1.50
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Table BA Empiricallevelof Type 1 errar (%) for the test

of carryover effects at the 10% nominallevel

Statistical methods

Covariance Number of GEE with with correlation 7natrix

Matrix subjects per OLS MFA EGLS

E sequence Identity Exch. 2 - Dept. AR-1 Unsp.

3 11.10 11.95 16.60 15.65 21.75 23.25 23.45 27.60

Sphericity

6 9.95 11.15 12.55 12.45 15.75 16.80 16.05 17.65

3 8.45 9.75 14.60 17.20 21.75 25.40 21.85 2ï.60

Type AR -1

6 9.85 10.95 13.20 12.70 16.60 17.50 16.05 18.30

3 20.30 9.80 16.65 18.50 24.50 25.60 24.05 27.80

No structu7'e

6 21.10 9.75 12.25 12.60 16.65 17.20 17.45 17.95

12 19.95 10.50 10.90 12.25 13.80 13.35 13.15 ]3.65

18 -- -- -- 10.35 10.20 10.30 10.05 10.55
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