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'Résumé 

Une c~asse générale de potentiels non-linéaires satis

\\faisant le théorème de localisation est définie. Qne équa-
1 

tion de Klein-Gordon complexe et non-linéaire incorporant 

l'interaction électromagnétique est d~ri vée pour les états 

stationnaires du soli ton. Posant l' hypothèse d'une petite 
• 

perturbation dépendante du temps, les équations d'onde sont 

d " / l dr" . d /'1 b ' erl. vees pour es ,or es zero et premler e a pertur atl.on 

et il est montré que le tout respecte les principales lois 

de conserva tian. On prend la limite non-relativiste de l' é-

quation de Klein-Gordon non-linéaire pour ensuite deduire 

une équation intégrale ,'décri vant un atome d' hydrogène ,vala-

ble pour la région de haute densité de charge. Une expres

sion J formelle pour le coefficient d 'Einstein d~crivant la. 

transition spontanée d 'un ~tat excité a l'état stable de 

1 l'atome est finalement atteinte. 

co 
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Abstract 

A general class of nonlinear potentials satisfying the 

localization theorem is given. A complex nonlinear Klein

Gordon equation wi th an electromagnetic interaction is deri

ved for the stationary states of the soli ton. Assuming a 

amall time-dependent rrerturbation, wave equations are found 

for zeroth and first order of the perturbation' and important 

conservation laws are proved to hold. The nonrelati vistic 

limit of the nonlinear Klein-Gordon equation is carried out 

and an integral equation describing the hydrogen atom is 

obtained for the region of high" charge dens i ty. An expres

sion for the Einstein 1 s coeffic ient describing spontaneous 

transiticn from an excited state to the ground state of the 

atom is finally reached. 

• 
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In troduction 

I-l History 

Solitons have been known now for more than a century. 

Their history goes back to 1834 when they were first observed 

on water by J. Scott Russell in Scotland. The interpretation 

of the phenomenon caused rnany discussions arnong physicists 

• until a complete solution was found in 1895. The soliton was 

the solution of a nonlinear hydrodynamical equation . Reproduc-

tion of original pa pers can be found in a book by T.D. Lee 

[1] . The soli ton was defined as a stable and nondispersive 

wave:-packet which was regular everywhere. 

Mie [2] was the first te try te describe electrons field theoreti

. cally as extended structures in opposition ta the idea of the point-

electron of classical elec:trodynamics. The latter gives rise 

to infinite self-energy and implies that the field equations 

are not val~d at these points. However, Mie' 5 theory involved 

serious problems. The dependence of his lagrangian on the po-

tential implies that there is no gauge invariance. Later, 

Born and Infeld [3,4) tried to -remove this difficulty by as

suming that the lagrangian was a function of only the elec-

tromagnetic tensor F . But this theory still retained a si.n
l''' 
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gularity and was therefore rejected. Rosen [5] , in 1938, tried 

to build a theory with a potential-dependent lagragiah 1 to a-

void singularities, to which he adcded new terms to make i t 

gauge invariant. The major drawback of this last attempt was 

that electrons had a negative mass. The main interest in this 

ear1y history of the description of matter by solitons is the . 
idea to replace the point-partic1e by extended structures, 

the so-called energy-knots of Weyl [6] 

For a while, there were just a [~w attempts to descri

be partic1es as solitons. One can think of the paper' of F in

kelstein et al. about nonlinear spinor fields [71 ,or of the 

paper of Schiff about bosons [8J, or of the wo;k by , Anderson 1 

and Darrick [9, 10J. However, these models were aIl having 

problems wi. th stability [111 • 

Later on, Lee and colla1;;>orators found classicaly stable 

extended structures which, in principle, could describe e1e-

mentary particles. This was achieved by requiring. the conser-

vation of an additive quantum number, called charge, and by 

assuming the presence 0 f a neutral scalar fiel d [12,13]. 

Coleman [14] worked on Lee's model and suggested that the 

energy densi. ty of the soliton has to be bounded away from 

zero at all time in a bOWlded domain by stating that a dis-

-2-
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sipative solution is such that: 

Lim max TOO(~,t) = 0 
t .. OD "! 

where TOO is' the energy density.. 

At about the same Ume, Bialynicki-Birula and Mycielski 

[15,16] 
• 

worked on a class of nonlinear Schrodinger-t~.Be equa-

tions. By an appropriate choice of the domain of a free para-

meter, the energy' is bounded away from zero and their solutions 

are stable and 10calized in any number of dimensions. Further-

more, Planck ' s relation is valid in this picture. They also 

pointed out that similar solutions existed for nonlinear 

Klei.n-Gordon equ~tions with complex scalar fields. 

Following this, Wede [17] found explici.t solutions for 

a particular class of these Klein-Gordon equations which ex-

hibi.t confinement inside a finite volume. Then, Morris began 

working on this problem and developed the localization theorem 

[17, lB] which permits to det~rmine if a solution is really a 

soli ton and found a class of nonlinear potentials respecting 

this theorem. He worked on the case of logari thmic "nonlinea

rities [19] ,but mostly on the case' of the fractional potential 

[20,21,22,23,24] • Of the se , two [20,22] deal wi tll the electro-
'0 1 

magne tic potential. In the first, it 1.S proved that . it is 

stil.d. possible to have a stable state of a soli~n despite 

i' 
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-3-

., 

1 . . 



-

" 

C'''' . , 
j 

f 
l' 
1 . 
1 

cl • 1 • .IU ( 1 • 

," 

self-repulsion'. In the second, the De Broglie relation and 

the fi.ne-structure constant are determined from a multisoli-

ton stability condition. 

At the . sçe tue, Simonov and ;.Tjon [~J W~d o-n a mo

deI similar to that of Morris. They studied cohisions of 

solitons by computer simulation in' one space dimension. They 
. .( 

ca,me out wi th very interesting resu;l ts, especially the crea-

tion of small' ~ntitiés which they called breathers. There is 

still much to be done alonq these lines and work is in pro

gress on this ,isubject QY Valin and Morris [26]. 

" 
\... 

This historical introd-q,ction is by no means complete" 
(J 

especially for the last ten years when researcn on solitons 

became intensive. The papers to which the reader is referred 

relate mainly to classical solitons and more specifically to 

nontopoloqical classical solitons. The quantum solitons and 

the topological solitons form by themselves very large areas 

of research and i t would be beyond the scope of this work" to 

try to . review ev:erything that has been published about theln. 

For particle pnysicists, 'the studY'of solitons is impor

tant becaus~ solitons present abaf:lic solution to the problem' 

, ........ ..::z of the classical confinement of enerqy without the introduc-

tian of singularities. 
" 
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1-2 Work Outl~ne 

In this work, a classical I\ontopoloqical soliton is stu-
(!, 

died when it is perturbed by the presence of an electromagne-

tic field. In the first chapters, the field i.s left as general 

as possible but in the last one, it is restricted to the case 

of a proton at the center of the soliton. The soliton is as-

sumed ta have a Charge different from zero. As the soliton is 
<fJ 

used in this work to dèscribe the electron, this last assump-

tion is quite natural • 

. In the first chapter are qathered a nwnber of concepts 

upon which further developments are based. First, the rele-

vant equa tions of classical field theory for complex scalar 

fields are set forth. The second part of this chapter consists 

of an introduction to solitons: its definition, types and 

examples. Third, a class of confining potentials are defined 

and, in the last part, the localization theorem is introduced 

and the proof is given that the solutions obtained with the 

potentials defined in the third section are indeed confined 

for aIl time. 

In the second chapter, a perturbed wave function is used 

with the nonlinear Klein-Gordon equation. Equations for cur

rents and cn~rges are aiso derived in this first ·section. In 

-5 ... 
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the second, the continui ty equation is shown te held up te the 

(irst order of perturbation. Finally, in the last part, the 

conservation of energy is studied up to f irst order also. 

Il 

In the third...chapter, the nonrelativistic limit of the 

nonlinear Klein-Gordon equation is obtained and compared with 

the linear Schrodinger equation for the hydrogen atom. Using 

the fact that the soliton is. highly concentrated at the cen-

ter of its distribution, a time-dependent integral ~quatton 

describing the perturbed system is derived. In the 'last sec

tion, the Einstein loS coefficient for spontaneous transitions 

in the atom is found .iir~ the fOrIn of an in tegral. 
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Chapter l 

Use fuI Concepts 

In this chapter, the general concepts that will be used 

throughout this work will be developed. In the first section, 

some basic equations of class~cal field theory w~ll be recal-

led. The ~nteraction between a complex scalar field and the 

electromagnetic field will be ~ntroduced in a gauge ~nvariant 

manner. In the second sect~on, a description of the soliton 

will' be given. This includes ~ ts definit~on, the distinction 

between different k~nds of solitons, as weIl as an example of 

nontopological sol~tons. In the third part, a specific class 

of self-confining potent~als ~s introduced, and finally, in 

the last sect~on, a proof ~s given that these potent~als give 

rise to solitons by means of the localization theorem. 
fJ 

1-1: Field Theory 

As only comp1ex scalar fields are studied in this work, 

only the relevant equations of classical field theory are de-

veloped. 

-8-
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The coupling between the electrornagnetic and complex 
'\ 

fields has to be gauge-invariant. This is done in the now u~ 

suaI way developed in the 1930'g by Pauli and Weisskopf (28). 

The lagrangian density is 

where u (t *!) is the nonlinear poten tial 'terrn and F)')I is the 

electromagnetic tensor: 

lA )/:0,1,2,3 
v ' ( 

The operator D is the covariant derivative and is defined by 

(1. 3) 

In the two; last expressions, A" represents the electromagne

tic potential with AO being the scalar potential . One can 

easily obtain the equations of motion from equation (1.1) by 

using the variation principle. This gives the fo11owing non

linear Kle~Gordon equation: 

as weIl as a similar equation for t*. The canonical momenta 

are given by 

where .; = ~O; 

-9-
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(1.6) "'Ir:. ~ :: DO' 

d~" 

(1. 7) El' = di. :or F"O -.... 
JAl' 

and therefore, the hami1tonian density can be written 

and the total energy i5 

(1.10 ) E:: ~ H d
3

x - ~ [i F
l

; Fl' + , EÀE
A + ii~ + iEAO <ff*-it*> 

+ Y,t*·y, + iE~·('Y'* - t*if> + U(~*,)]d3x 

The three-momentum E i5 defined as 

(l.11) f- -~[ ~ yt* t, ~ it + ~'~Jtl d
3
x 

~t* ~t ;;}/-. 

Some strai'ghtforward calculations 1ead te " 

(1.12 ) 

'!'he conserved four-curren t i8 

i'AO (t*i' - fit*) + (~Oi - 'i A 
0

) 

YA .. ] d
3
x., 

(l.13) ~ - iE ( .*0...6 - • (O.t} *) 

and therefore, the charge q i8 

-10-
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As the current must be conserved, one has the fOllowing con-
'" 

servation rule : 

(1.15 ) 

Repeated indices imply a summation except when otherwise stated. 

In this work, a met,ric with signature (+,-,-,-) is used 

as weIl as the natural system of units in which cal. Unless 

otherwise specified, a primed function is the derivative of 

this function with respect to its argument. Greek indices run 

from 0 ta 3 and the latin ones , from 1 to 3. The ordinary 

space vector is written !_ 

1-2 Solitons 

A soli ton could be defined as a sOlitary wave that pro-

paqates without dissipating towards the vacuum and recovera 

its original,shape after a collision. But, if one wants to 

descr~ elementary particles as being solitons, this defini-· 
, 

tion ia 'too narrow because, for example',' it cannot describe 

reactions in wh.i.ch new particles ~re created. Lee (1,2J defi-
" 

ned a classical soliton as a solution of a nonlinear local 

-11-
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field equation confided in a finite region of space and pos

sessing a'finite non-zero rest mass. The main idea is the 10-

calization of the field in space to which we shall return la-

ter in this chapter. 

Solitons can b~ forrned in two ways. One of them is to 

impose special boundary conditions at infinity for the field 

that will differ from the physical vacuum [3]. This implies 

that the vacuum state must be degenerate. These are topologi

cal solitons. As examples of models giving rise to such soli

tons, one cao. quote the t 4 model [4} or the sine-Gordon model 

[5] • But there are difficulties wi th this kind of soli ton as' 
• r'"l 

pointed out by Loo [6]: first, spinle~s solitons would be sta-

ble only in one dimension as stated by Derrick' s theorem [7J 

and second, some models would force alternatiqn of solitons 

and antisolitons. Bath these facts are irreconciliable with 

the aim to describe particles as solitons. But, these restric-

tions hold only for static and spinless fields. 

The introduction of spin and gauge fields can get rid of 

the problems stated abdve. Thèse theories lead ta gauge mono

poles [8,9J and the euclidian instantons [lOJ. These instantons 

are indeed soli tons in four-dimensiona1 space which means they 

have a limited extension in tilDe. An example of a gauge mono-

-12-
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pote can be studied [llJ using the Georgi-Glashow model which 

i8 a gauge theory of the symmetry group SO(3). 't Hooft and 

~olyakov [8,9) have studied a special case of this model (nal) 

which gives rise to a magnetic monopole of charge g~ !!- ' 
e 

a result similar to what Dirac obtained by othe'!' means I12~ 

However, this is the only point in common between the two as an

phasized by Coleman [3l} . These monopoles have been proved 

to he very heavy which explains why they haven' t been disco

vered yet, if indeed they existe 

Topological solitons have very interesting properties 

for partiele ?hysicist8 but there is still a lot to be done 

about stability and multisoliton systems. Nontopological so-

litons, the ones used in the rest ~f this work, form the other 

class. It is held together in a dynamical way by a nonlinear 

potential. Its boundary co~di tion is the sarne as the ,vacuum. 

Therefore, the vaCU\lIll does not have to be degenerate as in 

the previous case. However, one needs an additive conservation 

law to ensure the existence of such a soliton. It is interes-

ting to- note that these solitons can exist in any space dimen-

sion (13). 

Lee (14) worked the followinq simple example in one spa

~e dimension using a complex scalar field, t . The 1agrangian 

-13-



dansi ty is gi ven by 

(1.16) i= d..* ~ - uc,*!> ~ - 0,1 
~x ... ~x,... 

Using the variation princip1e, the equation of motion i8 found 

tobe 

(1.17) ~.. U~{t*.)J. a 
d ~ 

If one chooses the, minimum of the potential to he zero, U can 

be expanded in a power series of t*t 

The 1agrangian i9 invariant under gauqe transformation as 

(1.19) 1 .. Je 1 

This imp1ies [15 J that the current is qiven by 

(1.20) jJ"= i a1.. t* 
d lcY"*) 

and that i t satisfies 

(1.21) ~=;r j = a 
dX ". ,. 

The time component of j)" gives the charge density 

(1. 22) 

The space integral of the equation (1. 22) gives the total. 

-14-
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charge Q 

which is a conservedquantity in tilDe because of (1.21) 

(1.24) Q= 0 

Therefore, for Q different from zero, t must be a variable 

quantity with respect to time. To find the tinte dependence 

of the lowest energy state, it suffices to do the following 
\ 

steps bl6] • 'l!le charge Q lII.lSt cbey the fo11a.ring i.nequa.li~. 

(1.25) Q= i ~ ('*~ - t*t)dx' 2 )~*~ dx 
, 

Using the Schwarz inequality for the last term, one gets 

. 
The equa1ity in equation (1.26) holds'only if' and • are 1i-

nearly dependent. From this, one can deduce that the equa1i-

ty in (1.25) holds only if 

(1. 27) ~ + iwt • 0 

with 

(1.2711 LU = Si... 
2I 

where I= (f*' dx 

Following arguments due to Morris [29J, one can say cnat E-and 

1 

-15-
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E are instantaneously equal for Cauchy dat~ that satisfies 

bath equations (1.21) and (1.271) where 

Therefore, for Cauchy data which gives the minimum value of 

the functional E, the equality must be true for aIl time in 

(1.2}2). Thus, equation (1.27) is also val id for aIl time and 

~,is a stationary state. Therefore, , has the form 

(1. 28) t (x, t) ,. 93 (x) 
-iwt e 

with ~(x) a rea1 quantity. Then, (1.17) can be written 

(1.29) d2!2$ +l.i~ - ~ d U(~2) = 0 

dx2 dçD2 

Multiplying by d~ and integrating, one ob tains 
ëIX 

(1. 30) 2 - , U (SIl ) = 0 

The potential must have the form given in figure 1.1 for 

the case of polynomial potentials (13) in order to have non-

topologica1 solitons as verified thereafter. 

Fig. 1.1: Sketch of the 
poten tial V ~21 ~S CU-lA) 2 fl2} 

, 
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Using the mechanical analog of a partic~moving in a poten

tial (-V), one .f,i.nds 

(1.31 ) 
~ ,'2 

x-a = ~ ( 2 V (ç6 ) }-! d~ 
A 

where a is the integration constant ( x-a when ~2_ A ). 

~2~ ______________________ ~ 

Fig. 1.2: A non topo

logical' soliton 

.. 

"A 

o a x' 

Ite satisfies the boundary condition for a na'ltcpological soli,. 
. ton which is l' 

(, 

952 .. o~''"'-· when x -+ ± 00 

, 
,AlI of this can be seen on figure 1.1 with the rnechanical 

analogy. Suppose there is a particle at 952: 0 at time x'= :. 00. 

If the particle is di'splaced just off i ts equilibrium point, 

this particle is going to rdove in the potentiàl weIl (-V) up 
, 1 

to point A and come back to 952.. 0 ,at time x= +QO"~hich is the 

behaviour described on figure 1.2 for a so1itop. Thus, figure 

1.1 represents the kind of potential needed to describe non

topological solitons. Furtherrnore, in the limit ~2 ~ 0, using 

equa tion Cl. 18), the poten tial is 

Cl. 32} V -+ ! Cm 2 
- w 2) ç62 

.. 

-17-

" 



( 

(. 

, " , 

...•. t 

'" 

which -implies that 

. " 
{ -

to ensure tliis is a solîton solution by forcing the upwards ".-
co~cavity of V(~2>, at' :~2,# 0 .. Otherwise, the solution is a 

plane-wave as one c~ che~k wi th the sarne analogy that has 

been ,used above. So, there is a limitation on the val ties (J) 

can takfa. Similar liml tations in two or three space dimensions 

can be deri ved [27] • Figure 1. 3 gi ves a graphical represen-

,tation of this condition in three dimensions 'where w= dE 

Fig. 1.3: E (0) for' three

dimensiona1 model stu~i.ed 

by Lee and collaborators 

[13] 
, ., 

" \ 

E 

OQ 

" - ~ plane-w&,ve 

soliton 

o 

;1 "" 1 
The existence of ~lane-w~ solutions allows decays of 

as can bii! seen ~ figure 1.3'0 In solitons in plane-waves , 
'J 

arder to discard this possi~ilitr, a new class of pptent';'als 
, . ' 

1s now in troduced upo~ which are imposed certain, res trictions 

to ob tain the des ired behaviour. 

.,:-' ,,-
> , 
-.?l-~. 

/ 
l 
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1-3 Confining Poten tials 

In cases like the one represented by figure 1.3{21 ,the 

confinement is caused by the a~ion of a field on another. 

Instead, self-confining potent~~ls w~ll be used in this paper, 

'i.e. fields coupled nonlinearly with°the~elves. These poten-

- tials should not allow any plane-wave states. In this section 

is 'defined this particular class of self-confining potentials. 

The self-confining potential UCsi*sdl has to satisfy con

ditions that have been established by MorriP(17 ,1S]. :tt is 

a non-negative function of f6*~ such that U (O)a 0 and U' (0 ):'00. 
) 

1 

It is assumed that the vacuum is non-degenerate 50 that U has 

just one zero and that the vacumn state is a solution of the 

wave èquation. Furthern'lore, with ~=Q being the vaculUll, equa-

tion (1. 4) limits the singulari ty of U· CO 1: 

(1 • 341 Lim u' L9l *~) si :: 0 

szS'''O 

• For' further convenience, sorne other conditions are added 

that will limi t the number of possible poten tials. but will. 

simplify the construction of proofs in the next section. Let 

U (SlI*~) be bounded from below by a function u (~*~) which sa

tisfies the following conditions (19]: 

a) u Csi*~) is concave for 0 <: ~*rJ < 00 

-19-
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b) u (ti*rJ) ~ jA2 rJ*rJ for 0 c: rJ*rJ ~ 00 and wi th r 2> 0 

c) u(O)- 0 u' (0)= QO and u'(rJ*rJ)rJ ... 0 as tI'" 0 

d) u' (rJ*srO ia convex for 0 oC rJ*rJ ~ 00 

Condition (al ia oQvious as U has to be a positive" 

definite and non-decreasing function with an infinite slope 

at the origin. condition (c) is just a repetition of the 

conditions that nad been imposed"on the potential U. Condition 

(d) is introduced to simplify the proofs of differe,nt results 

in the rest of this chapter. Finally, condition (b) was pres:-
." 

cribed to enstJ:œ that u would be non-decreasing and therefore, 

never negati ve. '!'his permits to wri te 

(1 •• 21) E ;; ~ ( ifll*· irJ + f'2rJ*s6 ) d3x + posi tive quanti ty 

The integral defines a Hilbert space of Sobolev type and this 

justifies the use of the Sobolev inequality ta corne later in 

this worX. Even if these properties eliminate sorne self-confining 

potentials, there is still a large field to work in. 

An example of such a potential is given by the frflctional 

'potential [20J : 

wi th , <. a <. 1 

One can easily check that (1. 35} fulfills aIl th.e conditions 
J 

qiven previously. 

-20-
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Now, it can be verifi.ed that the plane-wave solution does 

not exist for this class of potential. Let AJA be equal to zero 

in equati.on (1.10) as it won 1 t change the result. A plane-wave 

solution is g:iven by 

(1. 36) ç6 = A exp(-ik x~) 
JI 

,putting this :in equation (1. 4), one gets for a given frequen-

(1. 3i') k~ - k~ - U' (A*A) 

Th.erefore, k~ becomes negat:ive as U' :increases wh:ich means 
1. 

that the wave :Ls reflected back at a certain point. It can 

aiso be shown that a plane-wave solut:ion would con tribute an 

infinite amount of energy. Introducing (1. 36) in equation 

(1.101, one gets 

us:ing a box normalization , A· D where D is a constant and 

~ 
V :is the volume of the box, one easily obtains by i.ntegrating 

over the vol ume e f the box 

(1. 39) E oz ( k~ + ki ) D*D + U (O*D ) V 
V-

New, as U (~*~l~u ~*\d) and u (0)"0 and using property (a) of 

u, the following :inequaliti.es are found : 

-21-
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(1. 40) U (~*gJ) ~ u (gJ*{2S) ~ U 1 ({2S*gJ) {2S*{2S 

Using this in (1.39) gives 

(1. 41) 2 2 E ::!: ( kO + k i ) D*D + 0*0 u' ( D*D 
-V 

For V -'00, u' ( D*D ) ~DQ by property (c) and therefore the 
-V-

energy E is infinite. From these two last points, it can be 

seen that the plane-wave solution cannot exist for this class 

of potential. From now on, this is the only class that will 

be considered. To finish this section, an example for a one-

dimensiona1 case is given. 

Simonov and Tjon [30] studied solvable models where they 

used that kind of potent~a1. For a ~ractional potential such 

as 

with ~>O and 0=>0.>1. The time-independent wave equation for 

stationary states is 

2 2 2 2' 2 - 'il gJ + ~ gJ d lsil -0( = -k r6 := (w - t' ) {2S 

d 1 !151 2 

(1. 412) 

They worked out a solution in the sarne manner as has been do-

ne in the previous section: 

-22-



which has for solution 

(1.414) 

~= 0 

)
21« 

cos oc.k.x 
-r 

·• '_._11 • '_J 

for Ixl..(. TT - X o _:K 

, for Ixl >x
O 

The effective potential in (1.413T-can be written under the 

forro 

and whose shape is shown on figure (1.4). 

Fig. 1.4: Effective self

confining poten tial as a 

function of 1 r61 

1-4 Localization Theorem 

v 

In this last section, a criterion will be introduced in 

arder to be able to determine if a soliton sol~tion will re-

-23-
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main localized for aIl time starting from sorne imposed ini li a) 

conpi tians _ This is of the greates t importance to have Guch Cl 

criterion to be sure that the solutions which are obtained " 

behave like soli tons. 

Coleman [21] defined a dissipative solution to bé such 

that 

(1.42) Lim sup TOO(?f,t)= a 
t-+oo x 

as mentioned earlier. T OO is the energy density (7 H of sec-

tion 1"'1 ) and is positive definite ( TOO;;>-O ). 50, a solution 

contradicting (1.42) was stated to be non-dissipative, and thercio-
. 

re, ta be a soliton. However, in 197B, Morris [181 showeo that//, 

there \'lere sorne particular distributions which violatc~<l 

the above condition. His work showed that contradiction of 

(1.42) was necessary but not sufficient to ensure the exis-

tence -uf solitons. That lead him to define a localized field 

as one that obeys the following conditions (181: 

A) T
OO 
~ 0 

B) E -S T OOd3x is finite 

C) For sorne fixed ~ :> 0, TOO "> S for aIl time through

out sorne set of finite volume V> Va ..... 0 

It can be seen from these conditions that V, is a lower bound 

24-
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for the energy E and therefore V 0" V < ~ which is a necessary 
& 

geometrical condition for an extended localized structure. 

These conditions are not too restrictive and they allow eIec-• 
tromagnetic radiation as well as a flux of partic1es from the 

soliton • 

Let '9 write equatlon (1.10) under another fOrIn 

(1.43) + iE~ E" + 

where use has been made of equations (1.5) and (1.6), and 

the fact 

(1.44) a*a .. lal 2 

Th.erefore, the en~rgy density .is def.ined as 

(1.45) TOO- iF~J FA.) + SEA.E- + , lT12+ L 1 Dj ~12 + U~*~l 
j \. 

This quantity is positive defini te if U is a positive quanti-

ty. This i9 the case for the class of nonli.near potentials 

defined in the previous section because of condition (b). U 
00 . 

and also T are zero only for ~acuwn s tate. 

Now, to prove the localization of the field with our 

particu1ar class of potentials, one has to proceed in three 

-25-
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$1 i ••• J 1 r 11. 

" steps l22J: 

l.) A number of inequali ties are proved 

(,1.46,1 E~![Ç 1~16 d3Xf" 
<1.47) a 2> ~1~12 d

3x:. I(t» al. 

(1.48) h 2> 11~,4 d 3x == B(t}> b l 

rre the PO,~itive constants al' a2 , b l , b2 , 

4epend on the initial. conditions 
l ' 

21 :rIt i9 shown that volume measure zero cannot 

7 sr 

contribute to i.ntegrals in (1.47) and C1.48}. 

3} The foll.owing i.nequal.ity ifr established over 

some set of fi.nite volume measure 

Smooth. enough initial conditions are assigned in order to ha

,Ve finite val.lles for the. constants of motion as well as for 

E and Q. The evolution of the field has ta conform wi th 

these given bounds . From equation Cl. 4'3), one can esta-

blish tb,e fol.lowing inequalities 

Ll.SO} E-. ~ TT· 7'" d
3
x 

(l.51) ~~)-I2 ~ gl*~ d
3
x 

wher.e one of the conditions on U given in the 1ast section 

haB been used for the second relation. An expression for the . 

-26-
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charge 0 is obtained - by working out 'equation (1.14) 

(1. 52) Q - i ~ ( ~*"* 

and therefore 

where the last inequality is just an application of the scr.arz 

inecpmlity .Combining equations Cl. 50) and Cl. 531, one gets 

(1. 54) 

and fram CloSl}, the uppe;r bound is found to be 

(1. 55) a 2 :::o- E ~ l Ct l 

? 
These two last equations give the relation C1.471. The two 

other relations can be ,proved by using a. generalization of 

Sobolev 1 s inequality which can be found in an appendix of a 

paper by Morris [23]. This inequality is the followug : 

and, as the energy E is g;reater or equal to the. left .. hand 8i-

de of the previou8 inequality aa can he seen in equati.on 

(1.43), the proof of the first ot the re1ati.ons (equ. 1.461 

ia completed. For relation (1.48), one first uses the Schwarz 

-27-

; 

1 
J 
t 
t 
! 
i 



l 

inequa1ity 

which, combined with (1.46} aI'Jd (1.51), gives 

(1.58 ) 

Therefore, the constant b 2 has to be chosen such that 

(1.59) 

Ta prove the second part of equation [1.481, (1.43} i8 used 

and this yields 

Using Cl. 50) to eliIninate the fi.rst term from the righ.t-hand 

side of the previous equation, one gets 

2 where l i8 defined in relation <..1.47). Furthenno;-e, as (a-b) ~ 0, 

one has a 2 ... b 2 ~ 2ab. Applying this trivial inequality to the 

bracket in (1.61), the following relation i5 obta.ined 

(1.62) i02+I~U d3x~ Q II~q d
3x]' 

(1.63) E;!:. Q [ ~ U d
3x / l J S 

-28-
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U is now replaced by i ts lower bound u which, reme!t!bering 

condi tions Ca) and (b) stated in the previous section, satis

fies because of i ts concavity [24J : 

(1.64) u(~*çi);l: u'(~*ÇZf)tJ*~ 

Wi th Cl. 63) and (1. 64) follows a new inequali ty 

(1.65) E
2 ~ 1 ~ u' (~*~)91*tJ d

3x or l 

As u' is a convex function by property (d) of last section, 

one can use the Jensen' s in tegral theorem on convex functions 

[251 : 

If P (x) and q (x) are two functions on a segment - .... 

[a,bJ such that ~ ~p(!) ~~, q (~) ~ 0, and' '1' (u) i.s . 
a convex function defined on [ '{,~J, then 

b 

U.661 j '1' (p) q (x) d 3 x P (?f) q (!) 

a ~o/ b 

~ q~} d 3 x q (~n d
3x 

a 

Putting 1-u' and p.q.~*91 , one obtains 

(1.67) t ~ u' {ç6*9I}~*r4 d
3
x ~ u' ~l f6/ 4 

d
3x 

9~12 d
3

x 

-29-
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Now, using (1. 47), Cl.48) and (1. 65) , ,one gets 

(1. 6 8 ) E2 ~ u" ( B (t) ) 

~ mr 
a As E is finite and Q is non-zero, the argument of u' cannot 

go to zero because u 1 (0 )-00. Hence, B/I is bounded away from 

f zero and, as let» al' B(t) is itself bounded by sorne cons

tant, bl' That completes the proo'f for this first part. 

It mus t now be proven that sets of volume zero cannot 

contribute to the integrals (1.47)and (1.48) because it would 

imply that the 1 ç6/2 and r lij4 distributions cou1d become sin

gular in the limi t of infini te time. Noting the fact that 

( 1 çdl 4 ) ~ is a convex function, one can usë Jensen 1 s inequa

lit y with ., (li)",' u~ , p =I~' 4 , q = l inside a volume V and q - 0 

elsewhere to find ' 

(1.69) 1 
Tf 

and hence 

~ (1 ~ f 4 } \ d 3x .. [ S j si 1 4 

V V 

(1.701 ~ 1161 6 
d

3
x ;. [\ t6 4d3xt 

vi 
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Sa, as the vo;L<UIne Shr~nks 'to zero, t J ~J 6 d 3x goes-to 

:infinity whïch is a contradiction with equation (1.46). The

refore, the 1 <;61 4 distribution cannot collapse. It can be pro

ven that this is also the case for 1 Çl5/2 us ing similar argu-
&-

ments. These results can also be obtained fram Halder' s ine-

qua1ity : -1 

I~fg d3Xl ~ [~lfIP d
3XJP 

. 
with 

" 

However., this inequality call~ be derived from Jensen's i.nequa-

l'i.ty by the use of the conve~ity property. If Id converges in 

.' ., .... 
a nonuniform manner to sorne discontinuous limit function, 

the above results show that the discontinuity must be mild 

enough ta be exc1uded from the domain of integration [26] . 

To prove the last condition for locali..zation, one can 

use the following identity 

in cornbination with inequalities of part (1) which yiel.ds 

This implies th;at 1<;61 2
> b l /a2 for a non-zero volume. There-

\, 00, 2 2 2 
fore'~, T .:. f I~I 7 jJ bl and the last condition for localiza-

a2 
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tion, condition 3, is satisfied. 

Now that itnhas been verified that t~e class of non1inear , 

../ potentia1s studied in section threê satisfy the "localizaticn theo-

, rem and give ri se to solitons, we can move ta the next chapter 

where a perturbation will be intraduced in the non1inear Kléin-
, ~ -- -~ 0 < 

Gordon equation given at the beginning of this chapter. 
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Chapter 2 

Pertm:ba.tiœ of Il 0Iarged Scalar SoUtal 

In this à1apter, a aœ.ll t:ime-depenàent ~œ will be i.ntro

duoed in the IOein-GoI:dcn equatiœ (eq.o 1.4) am the basic fcmIIllae will 

he dewlcp!d.. 'lben, diffeœnt cx:nservatiœ laws will be verified far the 

zeroth and. first arder of the pertu.Ibatial. First, the cmtinuity equatial 

will be stucUed. 'lhen, in integra.l fcmn, àmge cawervatial will l.ead ta 

Il cxnli.tial CIl the pertUrhed ~functiœ. Finally, it will be shcwn that 

the diveLyE!Uœ of the energy-uoœnb.m tensor is zero. 

2-1 Basic Fom11ae 

starting vith equat.ial (le 4), expandi.Dj the diffe.rent term8 ard se-

parat:.i.D; the t:ime eXllp .. uents frcm the space '* ·"G1ents, cne abt:ains 

+ U' ( .. t ) cf - 0 

togatber vith a sUlI'jJar equatiœ' for t*. In the limit! .. 0, the (.2 teDl 
. 

! 
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could be neglected in eq (2.1) as well as in the follCMing calcula

tialS. If the existence of statiooary states is suppœed, then 

(2.2) i:l,s e -iliC 

arxi the substitutiœ is IlIÙ!)n the first equaticn, which leads to 

(2.3) ~ - 2iJ-f6 - 1A)2tJ - q2,s + iH 2 V + V + 2 ~. ~ ~ + ~ y.~ ) 
+2f:wV + U'(,s*!6>,s + E2 ( 1~12 - A~ )~ .. 0 

If the suppositioo isl!ll!lde that rd is a perturbed S'tate, i.e. ~(t), 

it cm he written 

(2.4) !IS(t) ~J," !ISO + '" (t) 
~l., 

where ,s0 is time-i.OOepeOOent am real. It is the ~ state of 

equaticc (2.3) and "l (t) is the perturbatial that is coosidered as beinq . . 
sœll in ~ with !DO. 

Withoot any perturbatial, the system is ~cally symnetric and 

t.ime-i.ndepeOOent. 'Jllerefore, ~ and Aa carl be set to zero. Here, ~ is 

the SŒl of the self-field of the solitcn and the externa.l field and will 

nat be denoted by ~ • 'lhlS 1 gi~, usirç eq a (1.4) , 

~c:h leads te 

(2.6) (- /J} - V
2 + 2 Ew,AÛ - E

2
;'; + U' <10 >] !ISO - 0

' 
p 

-JS-
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If one now considers the presence of a time-dependent' 
, . 

perturbation, 'the vector potential term has to be put into 

the equations to take into account the possible currents. 

Furthermore, AOis now cornposed of three terms~ne two pre

vious terms contained i~ AO and the field a O arising from 

the perturbation y(t) .This last terrn is the only one of the 

three which is time-dependent. In the notation used here, 

the state ~O is le ft unaffected by the perturbation and is 

described by eq. (2.6). To de termine the equation describing 

t?e perturbation, eq. (2.4) is used in eq.(2.3) and the re

sul t is simplified by \'the use of eq. (2.6) and the Lorentz 

condition, 

(2. 7) 

This yields, to first order in ft ' 

.. -' [22 22 2] 
( 2 • 8) 1\ - 2 i ( W - t AO) 17 - ~ + fJ - 2 EU) Aa + t Aa - U 1 (,s ) ~ 

+ U" (jZS2)JZ$2 (11 +'1*) + 2( W-(Ao)aOszSo + 2iE~·ys6o =0 

Bere, it should be remarked that the perturbed four-

potential a r i5 considered to be of first order in 1/, and that 

terms in ~l have therefore been dropped. The complex conju

qate of eq. (2.8) i8 
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With similar equations but without the presence of·the 

electromagnetic field, Loo [1] has shown that ~ =.ar bounded by 

some maximum value 1'1 by proving tha t, if 1· '(max 

, 

n. was real and therefore that '1l was oscillating between two 

maxima. In the case studied here, it is not that simple becau-

se "" could decay if the system emi ts radiation. Then, fi wou1d 

not be real. Thus, i twill be a5sumed that 7{ i5 bounded by a 

maximum value and that it can only decrease5 in time if the 

system i5 iso1ated. If one wants to use eq. (2.10) for 7{ , the 

above assumption will mean approximately that 

~ 
(2.11) n = ~ + i t ~ and ~ :rea1 constants 

))0 

Furthermore, if,1 i5 a bound state as it is the case in chap-

ter three, there should be a large number of oscillations be-

fore the system decays which is equivalent to the requirement 

Now that the wave equations have been found for ~ and ~~, 

the same will be done tor the e1ectromagnetic fields 

where Jr is given by eq. (1.13) plus a term J~ due to the ex-
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( 
ternal charge which is supposed fixed ( Je = 0). Introducinq 

, 
eq. (2.2) and (2.4) in eq. (l.I3) yields for JO 

( 2 .13 ) Jo = 2 E ( w - E AO ) ~~ + 2 €. ( LU - E AO ' ) ~ 0 ('1f+ 7! * ) + _ 

+ i f ~ 0 (i - i * ) - 2 E
2 
a 0 9f 0 ("1/ + 'rl * ) + J~ + (J (1I.';) 

and~ for the curren t .]" 

.These terms can be separated in zeroth and first order in 'rt : 

. . 
(2.16) jo =: 2E(w- EAo )~O('lt +1{*) + U-SO ( '1f- 71*) ... 

(2.17) J = 0 

These currents can be introduced in eq. (2.12) to give the fo1-

lowing differentia1 equations 

2- - 2 e (2.19) -VAO= 2E( UJ- EAO )ldO + JO 

(2.21) 
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In summary, the complete system of equations describinq 

a perturbed soliton in the presence of an external electrosta-

tic field is composed of the equations (2.6), (2.8), (2.9), 

and ( 2 • 19) to ( 2 • 21) • 

2-2 Continuity Equation and Charge Conservatiod 

In the preceding section, a set of differential equations 

;has been derived to de scribe the system in zeroth and first 

order of perturbation. In this section, i twill be proved that 

the equation of continuity is respected at each of these or-

ders and that the first order contribution of the perturbation 

of the charge is zero. The equation of continuity, which is 

included in Maxwell's equations, is written 

(2.22) d JO + V·J =: 0 
Ot - -

and must be true to aIl orders of the perturbation. At zeroth 

'order, it is obvious that eq. (2.22) holds as JO is time-inde

pendent and J is zero. For the first arder, one has first ta 

calculate 
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and 

Addinq these two equations, on~ gets 

.. .. . . 
(2.25) d jo + '!·i - iEIIIO(l-1f *) + 2E( f.IJ- €'AO > fil 0 ( '7(+ 71*) 

at 
- itlllOV2 (~- 1l *) - 4E2~O!·q~o+ 

+ ~f("-~*)V29fO 

where the Lorentz condition has been used. To prove that these 

terms cancel, one has to substract eq. (2.9) from eq.(2.8), 

multiply the result by i!~O and make the substitution for the 

first four terms in eq. (2.25). The first two steps give 

(2.26) iE~O [{~-l*) - 2i(W-€AO )(i+~*) - V2 {'11-'1l*> 

- w
2 ('7l-71*) + 2'EClJAO(~ - ~ *) + 4it!·~~O 

- E2A~ ( 7{ - ~ *) + U' (!d~)( l - ~ *)] =-0 

Making the substitution gives 

1 
), 

(2.27) it{[ w2_ 2hIJAO + E2A~ - u' (!ZS~) + ~2] !do} 

(~-'1*) 

• 0 

because of eq. (2.6). This completes the proof that the equa-
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tian of cantinuity halds for the first two orders. Now, it 

will be showed that the inteqral of jo over aIl space does 

not add anythinq to the total charge q of the unperturbed 

system. To do so, one inteqrates eq. (2.26) over aIl space 

and uses Green's theorem, 

plus a vanishinq surface integral. This leads ta 

(2 • 29) i E \ {( 1{ - , *) l- Ut 
2 

- V 2 + 2 E I)J AO - e. 2 A~ + U' (~~) J ~ 0 

+ [( if -~ *) - 2i ( UJ- E AO ) ( ~ + ~ *) + 

+ 4i~~~!·Y] -a} d
3
x .. 0 

Aqain with the help of eq. (2.6) to get rid of the firet brac

ket and the fact that 

(2.30) S 4~O!' Y~od3x ,. 2 ~ ! .~,s~ d
3
x .. 

.. 2 ~ ~O~2 d
3x' 

one ends up with 

or, using eq.(2.16), 
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This implies that this integral is a constant with 

respect to tÙDe. Before the perturbation happened, this 

integral was zero and hence lS always zero : 

(2.32 ) 3 
d X • 0 

This could have also been proven simply by inteqra-

tinq eq. (2.27) 

(2.33) 

It should be remarked before qoinq on to the next section 

that 'eq. (2.32) imposes a restriction on the perturbation 

( ~, l*' a O ) that must be respected at aIl time. 

2-3 Conservation, of En~~gy 

Final1y, in this last section, it will be shown that 

the energy-momentum tensor respects the conservation law : 

(2.'34) ;) T~i = 
Il 

0 

More specifically, it will be proven ta first two orders 

\ 
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in 1{ that 

(2.35) dO T
OO + a

k 
T Ok ,. 0 

where TOO is given by the expression for H (= TO O) in eg. 

(1.10J. 

(2.36) T
OO 

= \< a1AJ - I1 j
A

i ) ( a·A. -;y .A. ) + ;( ~iAO _ ~OAi) 
~ J J 1 

( ~iAO - dOA
i

) + ~*i + iEAo{ ~~* _ ~~*) 
+ y~. ~~* + ie~' ( ~y~. - ~.y<p) + E2A~<p*cp 

+ U(c}*cJ> 

However, expression (1.12) for the momentum ~ will not be 

used for T
Ok 

because it is not symmetric. Instead, the ex

pression given by Wentzel [2] for the scalar part and the 

one by Barut [3J for the electromagnetic part will be used. 

(2.37) TO
k = (;}jA

O 
- dOAj)( dkA. -d.AK} + $~CP*+ ~*~k~ 

, J J 

- iEAO ( ~* a k
{> - ~dkcp*) -ié Ak ( ~'*- ~*4> ) 

+ 2 €2A °Ak~*~ 

Now, using eq.(2.2) and eq.(2.4) for ~, separating A~ in 

its different components and keeping only the terms of 

zeroth and first order in 1 ' the two last equations become 

(2.38) TO
k 

= ~jAO C~kaj - djak ) + (i + l*>dkllSo- 2ê( w- €AO)akJ6~ 
+ i( u)- EAO) [<1*-1)ijkf60 - ~Od~( 1*-f)] 
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, 

and 

(2.39) TOO 
a ., J~~Ao 1 + d~AO ( ~~ a 0 - ~t) + u;} ~J 7{ + r*) + c).J2~O?. 

t IV~o 12 
+ i ( w- ~AO) ~o (7; - ~*) - 2'E UJAo~~'- '\ 

- 2tUolaoio - 2E(.ÙÂo~d ~+~ *) +~~O"fC1;'+1*)'J 
+ E2A~~ + 2t2K a ~2 + €2A2~(?7+ 71 *) 

-~ 0 0 0 0 0 0 ï • 

+ U(~2) + V' (~2)~ ('11+ 7) *) o 0 0\ 1 

Puttinq these two last expressions in eq. (2.35) yields 

for zeroth order 

(2.40), dOT O
O + ~kTOk. = dO[ ~ loiAOl 2 + (tu- eAo)2ld~ +1 Yldol

2 

+ u (Id~) ) + d k ( 0 ) 

which clearly gives' 
'\< 

-because aIl the terms are time-independent. At first order, 

the proof is more involved. It is easy to obtain 

(2.42) d7T~)Y = \-'~idiAO + diAO~i~0+[w2 - 2EUJA
O 

+ t2A~+ 

V 1 (93 )] 93 ( .; + ,~*) - H W - ê A ) ~ ( :;, - -h * ) o 0'[ l , 0 0 Il 
. 2 .• 2-' 2} 

- 2 ElU aOldo + 'l.~o· Y' ( ~+ 11'" ~ + 2 E AoaOIlSO 

+lajAo( -V2a. -a.V.a) + è)j(~kAO)( ~ka. -d.ak) 1 J J- - ) J 

- ( ~ + fi * )'1 2 ~ -" ( ~ + .;, * )·v Ils - 2 € ( tO - E. A ) -II 0 -"( ï - 0 0 

a.V,s2 - i(()J-€A )[( 7T*-1J)'ïPld - Ils V2 ('1I*-7I)] 
- - 011 0 01 1 

+ i€CyAo)·r (1J*-~ )Y~o- ~oy( ~*-r:)~ 

2 E ( UI - E Ao) ~~y. ~ + 2 E2 ~~~ • yAo r 
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'Obviously, the sècond term of the second bracket is 

identically zero because the y are antisymmetric in j and k 

and that these two indices' run over the same values. It can . 
be seen that the terms in ~o and y.~ will add up to zero by 

means of the Lorentz condition. Then, eq. (2.42) can be sim-

plified to 

(2.43) ~)lT~~ = (~.+ ~*) ( w
2

_ 2tcuAO" + ~2A~ + u' (fl$~) - '12 )!60 

-i(w- EA ) (1[*-~)~ - i( /)J- e A ) o 1 ~ 0 

[( 1*-'1 )V
2

!60- SlSov2 (~*-.~)] - 2t (UJ- tAO)~"~!6~ 
+ i E(VA ). [ ( 11 *- 17 ) 'Vr/J - $6 V( 11 *-l1-

- Ol "C - 0 0- ( {-
2 2 "'- •• • 

+ 2E !60~,!AO + (~+ Y'ao)'(~ÀO) 

+ (Y'Âo)' (-V~ + ~y.~) 

To solve this, one can replace ( -V2r/Jo + U' (r/J~) > by 

using eq. (2.6) and can Use equations (2.1,8) and (2.24) to 

repl~ce the third and fourth terms. After sorne manipulations, 

this yields 

(2.44) dvT~; = 2( ~+-';*) (UJ- f. AO)2SlS0 - i( W-êAO}~O(":*-~) 

+E-l(tu_ EAO)'~.i + 2E(\JJ- tAO)~"Y'~~ 
-' 2 t7- • 22-

- 2~(c.u- EAo>aos6o - (!AO}'J - 2 t. ~o~·2"Ao, 
- . 2 2 2 - .1 (1. 

2e{ ()J- tAoH!· Y~o + 2 E ~O~, i AO + ( a + 1aO)· 

(~AO) + (YAO)· (-y~y~ + 2Y·~) 
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which simplifies to 
'. of; 

(2. 441) dvT~I~" 2 (, + ~ *) (\.&1- tAO) 2!60 + E -l(.UI - 6AO
> ~.i 

+ (w- EAo> [it6o(~ -~ *) - 2E~o!6~~ 
- (~A~>·i -+- <Vio>" (-! + glcè )?' ,,~,,' 

The last terIn comes from the relations 

,jP 

(2.45) '-~ = a + yao 

and 

To ~implify eq. <2.44) further, one c~ use eq. (~.23) 

to replace the third te-rm and qet after seme 'simplifica

'tions 

(2.47) 
'1 

. The f irat term ia zero because of eq. (2. + 7) and e~. (2.47) 

becomes 

which is equal ta zero because the second parenthesis is 

just one of the ~el1's equations : 

~ 2 • 49 ) il§. J + E 
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Bence, i t hl1$, been proven that the system respects 
, 

the principal conserVation lavs. That will allov us to qo, 

on a new approximation level by takinq the nonrelativistic 

limit of eq. (2.8) and to study the hydroqen atome But befo

re, it should be noticed that the momentum would not be 

conserved if a Cou1omb-like potentia1 was used to represent 

the external potentia1. 

1- D. Loo, " Small Oscillation pynamics of Special Models 

of Charqed Scalar Solitons", Master's thesis pres. at 

McGill Univ., Sept. 1982, pp. 50-59 

2- G. Wentzel, • Quantum Theory of Fields ", Interscience 

Publ. Inc., Nt, 1949, p. 68 

3- A.O. Sarut, • Electrodynamics and C1assica1 The?ry of 

Fields and Particles ., ,Dover, NY, 1980, p. 118 
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Chapt~r 3 -. 
" 

, 
Nonre1ativistic Limit of the Nonlinear K1ein-

Gordon Equation and Spontaneous Emission 

1. In this chapter, the nonrelativistic limit of the nonli

near Klein-Gordon equatioq, in ',. (eq. (2. a) ) will be derived \ 

and· compared 'Ii th the linear case. Then, the special example 

of hydroqen will be taken for the rest of the chapter. Usi~g 

'a specifie nO~linear potential and a trial function for ~O' 

one is able to derive an integral equation describing the 

atom in' the high charge density region. Finally, an expression 

for the Einstein' s coefficient for spontaneous emission is 

worked out, the 4tom radiating beeause of the time-dependent 

terms. 

\ 
3-1 Nonrelativistic Limit of 'the Nonlinear 1t~ein-Gordon 

Equation 

It would be good to first rewrite the nonlinear Klein-
~~ . 

Go on equation for the perturbed 'l' eq. (2.8), keeping the 

\ -48-
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terme in E 2 for cOlllpletenes8. 

(3.1) ~- 2i(w- EÀo>Ï[-[uJ +V 2
_ 2EwAo ~ E2i~ - U'(IÎ~)]1 

+ U·(_~)IIf~(~+"l*) + 2E(w-gAO) a
0 f60 + 2H:!.;:1If0 -O 

The usll\tl way (1] to reach the nonrelativistic limit 
.. 

of an equation such as ecr: (3.1) is to discard 7( as neg1i-

qible because it is not mu1 tiplied by a factor UI or w2 • To 

malte sure that this method can be applied, the order of 

maqni tude of ~'Will be foun"d ( "[ -1' e -i.n.t ). For this, on-
\ 

ly the fol~owing terms are kept, because of their superior 

order of magnitude, 

where the JA2 term is the mass term included in U' [See ap

pendix 2]. The frequency w,has the following forro for a 

soliton defined with a confining potential as in section 

1-3 : 

where 

---------~,----

Osing eq:(3.3) in--eq.(3.2), one gets a quadratic equation 

in n whose roots are 

Therefore, the rest of this derivation will be done 
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fer the case n s - ~ which permi ts te use the usual procedu

re for the nonrelativistic limi~. Neglecting EAO compared 

te J..l in the term rnultiplyinq ~v~d U" in front of U ,[ See 

appendix 2], equation (3. i) be#-S 
(3.4 ) 

One can compare this equation with the linear Schro-

dinqer equation for an electromagnetic potential which lS 

(3.5) f r 2 '22 2 2] i ) .. i - Il + eAO - e A + i e A· 'V + !:.- ~ S 
2i' 2 t 9 t 21' 

where the Lorentz gauge has been applied to the original 

equation instead of dropping the Aoterm as it ~s done in 

the reference (2]. These two equations are qui te similar 

but this will be more evident after sorne manipulations. 

First, The ~2~2 terrn can be neglected in eq. (3.5). Second, 

the nonlinear potent~al U' can be written under the form 

[See app. 2] 

(3.6) 

where 

Therefere, adding the Ul term in eq. (3.4) 'te this ,. term 
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yields, using eq. (3.3), 

( 3. 7) -w + ~2 = -~ 
2" 2w 

Now, eq. (3.4 ) reads 

" 

[-V- - 0 + E Ao - c2A2 + 
2 -

( 3.8) i~ = V' (~O). ~ + E a
0 9S0 2w ~ 

+ H ~. :lszSo 
w 

Ifl the linear limi t 1 i. e. & going to zero as weIl as 

V', the two equations would look alike except foz:: the two 

last terms of eq.(3.8). The first,.taOIDO' represents the 

effect of the perturbed scalar potential on the unpertur

bed charge distribution and"'the second, ~. "lIDO' the effect 

of the vector potential on the unperturbed charge distri-

bution. No such things ex~st in the 1 inear theary as the 

electron i5 considered a point particle and, therefore, 

has no inner structure. The extra ~·"l.s term ln eq.(3.5) 

can be considered negligible as it describes the effect 

of the vector potential, due to the movement of the e1ec-

tron, on the elec'tron i tself. This i s obviou51y of second 

order and th15 term can be neg1ected as ~."!ï( was'in e

quations (3.4) and (3.8). 

...51-
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3-2 Integral Equation for the Stationary States of the 

Hydrogen Atom 

It is possible to f ind a formaI solution of eq. (3.8). 

by using Green's functions. If the first bracket of the 

right-hand side of eq. (3 _ 8) is considered as an unpertur-

bed Hami1~onian, there will be a discrete spectrum of ei-

genstates. 

(3.81) 

where On is the energy of the nth eigenstate and is a real 

quanti ty. If the function G is given by the equation 

( 3.82) i ~G - HG = ~3 ( x-x 1 ) ~ ( t - t 1 ) 

(jt 

i t can be wri tten as 

(3.83) 

with 

(3.85) e(t'-~ = 0 t'< t 
1 t' > t 

, 

The effect of the two other terDlS on the right-hand 
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side of eq. < 3.8) will be to induce transitions between the 

eigenstates of H. Therefore, the wave-function describing 

the ~hole system is simply given by the following expres

sion [3]: 

(3.9) 'Y{(?S',t') -'f/i(!',t') +g \G(?S' ,t';?S,t)[<aO(?f,t) 
u 

+ i ~ <!,t)· Y]i ,zSO (~) d
3 x dt 

w 

where7(i(?S,t) i8 the particular excited state in which the 

system is at 'the beginning and the index on the bracket 

me ans that the fields ao and a are ·dependen t on '/1. 
(l. 

for the 

first order of approximation. The scalar potential term a O 

is the solution of 

(3.10) 

where the charge j 0 is 

(3.11) j 0 = E. [ 2 ( LU - e AO) (1 +1f *) + i ( 1- l *) - 2 S JdOaO J 1110 

~ 
From thi s, i t can be seen that a O depends upon ~ as 

given by eq. (3.9). It should therefore be calculated for 

each state 1f n and the summation would have ta be carried 

out. This summation would introduce an addi tianal time-

-i!lt 
dependence other than e . But, in the order of appr,o-; 

'ximation rnentioned above, a O (~) will be replaced by a
O 

C?f n) 

in eq. (3.9), which means that a
O 

can be separated in the 
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following manner 

(3.13) a (n x t) = a' (x) e- iOllt + a'*(x> e i [)lIt o ' -' 0 - 0 -

The term jocan then be written under the simplified form 

+ c. c. 

:II J" e- i û.lI t + o c. c. 

Bence, eq. (3.10) becomes, for each state?[ n' 

(3.15) 

(3.16) 

This looks like the inhomogeneous BelIItx>ltz equati"on but it 

shou1d be remarked that j 0 de pends upon a O' If one defines 

eq. (3.15) reads 

(3.18) 

A simi1ar equation for the vector potential is reiached 

from eq. (2.21) . 

(3.181) 
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(3.182) !(n,!,t) :a: ! 1 (!) e - iQ
lIl
t + ! r • (!) eiOllt 

and 

(3.183) h (x)= -iE -n - (~oV.'f n -'fn~,sO) + c. c. 

These last equations cannot easi ly be solved except 

if J6~ (!) is a constant, which is not the case. A trial 

function, for ~O respecting aH boundary conditions is gi

ven in appendix l by the equation (AI.8) 

with 

(3. 19) -1 
m • 2 Cl-a) 

The form of this trial function, squared, is given in 
, 
fig. (3.1). It can be seen that the distribution fa1ls shar-

ply as, at one hundredth of the total radius, the charge 

density s6~ is èqua1 to about 1.4 II 10":4 of its value at the 

center. 

At this point, i t i5 possible to continue at one of 

ManY different approximation leve1s. First, if one wants 
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Fi g. 3.1 

This figure represents the trial function .for 

Sf$~ ( full Une ) and different steps 'in the proce-

dure of approximation. 

(. 
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to solve the general case, a computer should be used to 

s,ol ve the system of equations : 

(3.20) a) 

b) 

-v2 AO + 2 E. 2 (1- r 2R-2 .) m AO ,. 

eq. (3.18) 

c } eq. (3. 181 ) 

d) eq. (3.9) 

l' 

jWhere Je is the proton charge density. Another way would 
! 0 

be to work out a solution for the region around the center 

where the charge ia high1y concentrated. Wri ting the equa

tion for ~O' using the approximation of the potential for 

rI.(.. R [App. 2), one gets 

~ 
( \ 

Now, if i t is supposed that &AO is negligible compared wi th 

uJ, one gets an harmonie ,oscillator and !DO has the form 

(3. 22 ) ~ 0 (r) = K exp ( - 1: r 
2 

2 R 
r = I~I 

K :constant 

Using the expression for R given in appendix l, one obtains 

(3.23) !!So = K exp ( - 54164 r
2Ii2 ) 

This last expression could then replace À (l_r2 R- 2)m/2 in 

the system of equations (3.20) but the system wou1d still 

have to be solved with a computer. 
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To be able to solve this problem analytically, a rougher 

approximation has to be made. One can think of a triangle to 

describe P~ [See fig. 3.11 : 

(3 • 2 4 ) sd~ (r) - 't ( 1 - k r ) 
R 

where k is a post tive constant such that r6~=O at about six 

thousandth of the total radius of the soliton. So, aIl the 

terms depend only on the variable r and if one puts 

(3.25) -1 
a' - a- r o 0 

and chooses to work out the case 1-0, the wave equation takes 

the form 

,(3.26) 

Trying first to solve the homOC]eneou.s equation, one puts 

(3.27) ~ n a" = '- c x 
o n=O n 

.' "which leads to 

(3.28) c2 == r?- 2ê
2

}...2 Co - klcO 
2 

~ 
(3.29 ) cm == (rl - 2 E 2 ~ 2_ ) c + 2 e2 k c 

" / m-2 1 m-3 ., 
m (m-I) m(m-l)R 

or 
'ij 

(3.30> cm == 2k~ cm-2 + k~ cm- 3 
m(m-1) m Cm-I) 

.. , 
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where ). 

and 

~ 
Th lt f th h ' l'S then .... '+ . e resu or e oll)ogeneous equat~on 

(a") = Co [,1 + kl x
2 + l 3 + !-. k

1
X4 + } o H k 2x ..... 

6 6 ' 

+ Cl [ x + l k1x 
3 + 1 

4 1, k
l

X
5 + .... '. ] k 2x + 

"3 12- IO 

(3.34) (a;)) H = cotf [ k1 
x2m + k 2in+l] +1) 2 x 

~ m(2m-l) 2m(2m+l) 

+ ,cl {f[ k 2m+l + k
2 

x2 (m+1)] x 

~ m(.2!+1) 2 (m+l) (2m+l) 
+xj 

, , 

The last equation gi ves the solution of the homogeneous 

wave equation for a Ô :.putting Co equal to 1 and Cl to zero in 

eq. (3.34) for the ,fi.;-st independent :;olutipn (aD) Hl and con"" 

-overselr for the second solution (àà) H2 • The use of the method 

of variation of parameters will yield a particulélr solution of 

the inhomogeneous equation (3,26) under the forro : 

(3.35) 
~ 

(ail) = \ 
o P J 

A 

{(ao(s~ )Hl(aO (r»H2-' (aë(r»afa ë(S»H2)g(s)dS 

Canes»~ d (a"(» (alt(s» d (arr (s» o , HIdi s H2- H2
ds 

Hl 
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Finally, this leads te a complete analytical solution for a O ~. 

of the form 

(3.36) ao(r,t) -Hl t = e ft ("O'(r»Hl + (aë(r»H2 + (Ao(r»p' 

+ C.C 
r 

if eq.(3.35) is ~olvable. Even i~ that case, the lntegral 

invol ves so many terms that i t becomes d~fficul t to handle. 50, 

one has to go to a next step of approximation to flnd an eX-

pression that could. be used in .eq. (3.9). The only way the 

added ter.m in ~~ cpuld 

answer would he that gj2 o 

. 
let the equation (3.1B) have a usable 

equal a constant over some doma~n. 

2 Then, the idea would be to use a step function for ~o . There 

are Many ways to define this'step funct~on. F~rstl one May 

try ,! 
,~ , 

(3.3 i) o < r (R 

The re,_ult of eq. (3.1B) with JZS~ given by the preceding expres'. sion is 

(3.38) 'ac (x) 

where 

;1" 

(3.39) 

exp ( ikn 11-1 " 

I! - !J 
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r')R 

Oc:r<R 

r~R 

One can calculate the heiqht of the step by usiIiq the . 
valuès given in th!! first appendix and find 

(3.40) 2 
3 \ _~d3x 3,,2 \(1- r 2R- 2 rr2dr ,. <fD "> =- = 6.91(10 0 

4.R3 ~ J 

R2 v ~ 

This ",ill 91 ve 
• 

(3.41) s 4 'fOl 

7 
where 

'.) 

(3.42) E2 .. 4 "'0( - 411'Oc - • 2 é .. 4"oc. - 0.09 

0 b 
cp 

and 

(3.43) 4 ~ 1 1 R=- 7.66.10 • 7.66\10 (eV)- - 0.15 (eV)-

JA 5.l1xl05 

As Cl 2 is of the order of 100 (eV) 2 , i t is obvious that 

the discontinuity in the charge distribution is negligible. 

But this choice ot' step function does not represent very weIl 

the distribution as one can check • 

.. 
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( 

_ (3.44) 

.s~ = 4.8 lo27J_~(r=.é3R) 

The soliton is 50 spread out that the calculation of ~ 

<~~) includes a large part of space where, practlcally 

apeaking, nothinqs exists. A more realistlc approach would 

be to confine the charge in the region up to about four 
(. 1 

Mean square r~dii r or sixteen thousandth of the total ra-c 
dius. The field a O would still be described by ~quations 

(3.38) and (3.39) except for the upper limit of lntegration 

and the ,value of ~ _~ ~ which would be changed for 

(3.45) .:!6~ ) r ""' 0.06 \ 2 = 1. 8~ ,7 
2 = 7.3 (eV) 

From now on, the calculations that will be made in this 

section will be for the reglon mentioned in the precedent pa-

raqraph ( r <. O.016R ). For more precise calculations, the rea-

der, is referred ta the set 'of equations (3.20). 50, the solu

tion of the probleJl1 in this approximation l' takes the forro : 

(3.46) a) AO (!) = l \ exp (ik IX-x" ) 9 (~') d
3x' .... c.c. 

,b n - -
\ 

II-~ il " 
• c, 

.o .. a 
d 3x' b) !(!) -J~ exp (ikn I!-!" ) !!(!I) + c.c. 

I!--~ if 0 

AO{!> " 2 ~~ (!') d 3x\ c) = 
*~ 

exp (-ll!-! '1 ) ( 2 t:w 91 0 + ) 

I!:~I 

, \. 

, , 
1 

! 



\ 
\ where 

(3.47) 

and 

-iC-,t .. 
e 4 

.tM 
[ \exp(ikil!'-!"J) 

~ )xl-X-' 

(g(!") +!. ~(!,,). ~)d3X"] 

~ (Xl) d 3x' dt' 
o -

4&l 

< _~), ) ~ has replaceCi i~~ in 9 and !! and 
/-

"...-

The equation ('3. 46d) i8 the integral equation describinq 

the perturbed system. It can still be worked out by uSlnq eq. 

(3.83) for G in eq.(3.46d),which yields 

.... 
( \ exp(iki I!'-!"l ) (gC!") + !. h(!")·;j)d3x"] 

\oU 

~ I~' -lS"l 

The time integration simply gives 

(3.50) (' e-iU".t' {t-t')dt' == 2/"'1. -1 e-inf\~t/2 sin L.A t J ~Lni ~l!ni i ~ n 

= t i - n 
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, ,1 .. ~ , 

where 

(3.501).Cl . • n .-0 nI. 1. n 

Finally, usinq equations (3.17), (3.183), (3.46c) and • 

(3.50) in eq. (3.49) yield a final expression for 

,> 

wbere the coefficients of the expansion d
n 

are qiven by 

(3.52) 

with 

(3.53) 

d • n ~ t:~!')' r~"!XP!ikn Il!' -!"I) [ {'6l!") [2 ~ + " n 

o I!'-!"j , 
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These two last equations form together an inteqral equa

tion which desc'ribes the perturbed system of a soliton with a 

proton at its center. AlI this exhib~ts clearly the mutual 

feedback betwe~n the field a.l' and the wave- function -, 1 which 

is a purely a nonlinear phenomenon. The time-dependence of 

the terms in eq. (3.51) clearly indicates that transitions are 

possible from one state to another wi thout the presence of 

Any external e1ectromaqnetic field . 

3-3 Binstein's Coefficient for Spontaneous Transitions 

The explanation of spontaneous transitions in atoms with 

the usual linear theory requires the quantization of the elec-

tromagnet~c fkeld. In the scheme developed here, it is possi-

ble to find an expression for such transitions without quanti-

zation. The time-dependent wave-function ')! gives rise to a 

current in the atom that-can emit radiation. As one is inte-

rested to study the fields in the radiation zone, sorne simpli-

fications will be made possible. The step approximation for 

the' charge distribu'tion of the soliton will be kept in order 

-65-
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to be able to continue these calculations analytically. It 

will be supposed that the hydrogen atom has a radius of one 

sixteen thousandth (.016) of the total radius and that the 

rest of the ,soli ton is empty space. The vector potential is 

givenWby eq.(3.46b) in that approximation. It wlll also be 

assumed that, over a smali region around the border of the 

step, there a function connecting the upper to the lower 

step of the ~O -distribution ln order to avoid disccnunuities. -, 

'Ihe effect of t.ru.s fringe on ~ will be neglected. 

In the radiation zone, I~ 'I becomes negligible compared 

to I!! , the point of observation. Thus, a can be written, 

for an atom in the nth state, 

-iQt 
e + C.C. 

where the dependence on is understood and where k i5 in the 

direction of x • The following definitions have been used 

(3.55) d(~') = 

r' = I~'I 

It should be remarked that, apart from a factor, 9(~)is 

the transi tion current from the state f to the ground state 
n 

~O . In the radiation zone, the B-field i5 given by [41 : 
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(3.57) := ik x,.;a .. ik lai sine 
n- - n -

r 

where a is the angle between ! and ! _ To calculate the ra-
, 

diated power, one must find the tùne-average of 1~12 which 

lS simply 

because of the simple t~e dependence of !_ The Poynting 

vecto~ lS given by 

(3.59) <: §., := l~f2 ! -r 

and the power emitted by unit solid angle, 

(3.60) dP ";> = 
<~ 

r X • <S > = - . ~k2r2'~12 . 2$ S1.n 

Using eq. (3.54) in eq. (3.60) gives the expression 

Therefore, the total power emitted by the atoms ia 

.DI"R 
~ 

(3.62) P = \ < dP '') d<X. = ~ E
2

k
2 

1 ~(g(~ 1 ) 

àëX 32"2 0 

ik. x' /2 e - - + c.c.) d x' 

. 2e S1.n dO( 

If aIl the atoms were in the sarne state of energy n. 1. 

./ 
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and fell to the ground ~tate ~O' the total energy radiated 

by the system is given by 

(3.63) 

where N is the total number of atams . From the two last 

equations, one can deduce something very similar ta the 

Einstein's coefficient for spontaneous emission which gives 

the number of transitions per unIt time per atom : 

2 

<. ~ 

\ . where N has been put equal to 1. Us ing eq. (3.55) yields a 

more detailed expression. 

(3.65) + c.c. 3 1
2 

d x 

C~rying out the angle integral leads to 

(3.66) 
o .",11 

1\(~oY'fn - 'Vn~~o)ei~.~' + c.c·1 d
3X,/2 J 

'-o / 

To get any further with this formula would need to sol-

ve eq. (3.51) in 't'. However, this equation does not seem to 

be solvable analytically. Therefore, equation (3.65) i5 the 
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final step one can reach to express Einstein's coefficient 

before having to do sorne more approximations or'to do com-

puter work. It must be remembered that this expression was 

obtained wlth a crude approximation for the unperturbed 

charge distribution and that it should be checked by nume-

rical calculations if the results obtained from eq. (3.66) 

would be similar ta those obt~ined without doing any approxi-

mation. 

Another point must be mentioned about calculations that 

could be done from eq. (3.66). One cannat simply replace f by 

known wave-functlons of the hydrogen atom but must normalize 

because of the following. The unperturbed charge of a soliton 

is given, neglecting AO' by 

(3.67) :II e 

where e is the charge of the electron. Therefore, the current 

lS 

:z r -i e (SIS 0 ~ 'Y n - 'Y n YSIS 0 ) 
.. 

2 w ~~~ d
3

x 

~ -iUt e ,,+ c.c. 

which means that kn and hn(~) must expressed in terms of e 
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) 

in eg. (3.66) before doing any calculations. 

(3.69) k~ = n~-

This, should permit to calculate numerically the coef-
. 

ficient for spontaneous EIllissicn fran an excited state to the 

ground state. This formulalshould be good especially for 

transitions starting from a p-state, the other ones being 

suppres~y an additional factor oc
2 for each higher mul-

tipale. To calculate transItions from an excited stale ta 

another 1 i t would be necessary to keep the second order' 

terms in ~ to have currentsof the form 'fJ \l UJ • To, fin i sh n- rm 

this chapter, let 1 s compare the expression fQr t.he E~nstei ni, 

coefficient found by sem1-classical treatment in quantum 

me~hanics (5) for transitions to the ground state in the di

pole approximation ei~.~ =,1) and in rationalized units 

(3~71) 
2 

e ni 
3" 

vith ours, 

(3.72) 

Ir 3 1 2 
. fl$ 0'Y f n d x 
\ 

.Oil,~ 

1 ~ [(III o~ l' n -
10 
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\ 
\ 

where equations (A2.IS) and (A2.16) have been used to re-
1 

the integra1 of ~~ place and Tl has been put equal to L 
11 

-
Taking the real part of the bracket in eq. (3.72) and put-

ting k ~ fl gives n n 
q 

,o"t 
2 I~' Re ( d3x \2 (3.73) Afi = e Q. ~Oy. If n - 'fi nY.~O) ~ 

3." li 

(3.71) 

~I~R 2 

~ Re L ilo'l'l'nld3x 1 
o 

As ~~Q is zerQ between 0 and .Ol6R', one finally obtains 
"\< 

/ 

1- L.I. Schiff, ·OUantum Mechanics", McGraw-Hi1l, NY, 1968, 

pp. 468-469 

2- Idem, p. 179 

3- Bjorken, DreIl, "Relativistic Quantum Mechanics·, McGraw

Hill, NY, 1964,. p.88 

4- J.O. Jackson, "Classic~l Ëlectrodynamics·, Wiley, NY, 
/ 

1975, p. 395 

5- L.~. Schiff, Ibid.,pp. 413-414 

>. 

\ 
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Conclusion 

In the first cbIIptet:,general concepts about solitons were 

given as weIl as a general theorem, the theorem of locali-

zation, whichopermits to determine if a given model really . . 
deacribes solitons. Also, a general class of nonlinear po-

tentials giving rise to solitons as verified with the 10-

calization theorem vas defined. 

Once thi~was done, a Klein-Gordon equation with a 

nonlinear potential was worked out for à stationary state' 

of the system. Then, a small perturbation was -introduced J 

and the equation was divided in zeroth and fïrst arder dif-

ferential equations, the second orde~ terms bei~g neglected. 

Relevant quanti ties such as unperturb,ed and perturbed char

ges and currents were derived. This allowed to verify that 

'" the continuity equation and the conservation of energy were . , 
respected for the first two orders of the perturbation. 

Also, charge conservation permitted cne to express a CXIld.i.t:i.al 

to be satisfied by the perturbed wave-function. 

Then, the nonrelativistic limit of ,the nonlinear Kleïn-
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, 1 

Gordon eguation was reached after sorne simplifications and 

the comparison with the linear Schrodinger eguation showed ,~ 

that they aiffer only by the presence of the added nonlinear 
, , 

terrn and by two terms due to the effect of the perturbed e-

lectranagnetic fielf an the unperturbed wave-functian. 

Using the fractional potential' model and a specifie 

trial function for the unperturbed state leads to an inte-

gral egu~tion which described, in the nonrelativistic limit, 

the behaviour of the sol~ton in its central region. As ~l- • 

most, the whole charge distribution is concentrated in this 

region, 'this eguation' can be considered as describing the 

atom. 

It was possible ta derive an expression which gives the 

probability of" ~ransition from an excited state to the ground 

p state ih absende of an external field. This expression looked 
1 

quite liké the Einsteip's coefficient for spontaneous emission 

as was seen at the end of ~he third chapter. Similar expres-

sions could be 'derived for transitions from an excited state 

to another excited state by keeping the second arder terms. 

This is a very interesting result because the spontaneous emis

sion of llght in an atam cannot be explained in linear quantl,lIR 
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mechanics except if the electromagnetic field is quantized. 

Here
l
, the transitions take place because of the dependence 

of sorne of the potential terms on the wave-function itself. 

These terms arise because of the nonlinear1ty of the equa-

tions. 

In ~~luSion, ttlis last 'result indicates that the 

description of electrons by solit1'Jns deservet- more study, 

as experirnental facts can be explained by this theory and 

as unpleasant things like infinite self-energy are removed 

fram the theory. However, one can remark tha t the spin is 

not ~xplained by this mode 1. The two rnost ev ident ways to 

solve this problem, is to add the spin in the same rnanner . 

it was done for the Schrodinger equation 1 or to work on a 

nonl.i,near Dirac equation. Along that last line, one can 

'refer to the work of Ranada tl] or to the work of P. Mathieu 
,. 

and "T.F. Mor:ris that should be published in the near futu-

re. An?ther drawback of the model developed ,h~re is the 

~ize of t!?e soliton which is rather large:--One can hope 

that -this is due to the cho,ice of the trial function and 
i 

.6 

this. is flot ,a f~nd~rnental problem. Nevertheless, the mode! 

appears to have sorne validi ty in the ~ow enèrgy limit. 
1 

.<1,01 _________ _ 

1- Rani\da, Int. J. of Theor. Phys., 1977, vo1. ,16, p. 795 

1 
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Appendix 1 

Important Relations and Quant!Lties 

ln this work, there is no derivat~on of the important. 

quantities or relations that describe a soliton as its total 

radius, i ts root mean square radius, i ts self-energy, etc. 

Al. l' of this was done by Morris in one of his papers '{l~ with 

the same startl.ng Lagranqian (eq. 1.1). Th~tential he used 

was the fractional one : 

(AI.l) U(~*s6) - b(IZf*s6)a 

In order to be able to use his resul ts, the same potential is 

used in the third chjlpter. 

The results derived in his paper are based on the stabi

lit y of a multiparticle system. This condition gives the De 

Broglie relation between rest mass and frequency and leads 

rf\ to a formula for the fine-structure constant. Consiperinq Ni 

solitons of charge 0i with a small interaction, Morris found 

(Al. 2) E(Q.) = Q.UJ(-Q.) 
~ ~ ~ 

foX' which only one solution exists. This implies that aIl 
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charges are equal : 

(Al. 3) Q. - Q 
l <' 

If th~s value of Q is associated with Planck's constant, the 

relation (JÙ. 2) becornes the De Brogliee equation 

{Al. 4} 

. ~ , 

\ 
As the electrlcal charge is E Q , the fine-structure constant 

is given by 

(Al. 5) 

Using extensively virial theorerns to elirninate as many 

parameters as possible, Morris established sorne basic rela-

tiens which can be used to determine fllndamental quantities 

of t~ system. But in order to get results under an usable 

form, one has to use a trial function for ~O which respects 

the boundary condi tions 

~l. 6} siO" 0 and ~ ~O -+ 0 
dr 

as r -+ R 

where R is the total radius of the soliton, and also 

(Al. 7) d ~ = 0 
Or 0 

at r=O 

Q 

The trial function is foupd to be 

(Al.8) ~o = À ( l - y2 ) l/l-a 
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'!!lis gives the following intereati.ng results : 

{Al. 9) a - l - 40(2 
17 

(Al. 10) Radius of the soli ton 

(Al. 11) RMS radius 

2 r • <r? 
C 

( r B : Bohr radius) 

(Al. 12) Electrostatic energy of the self-field 

r i 3 
E SF :: i \ E Ei d x -

v 

{EO)2~S.3eV 
4". 

where f is identi,fied as the inverse Compton wavelenqth as it 

~ -can he s'een in 

(Al. 1. 3) E tI:S f Q 

1- T. F. Morris 1 Hadronic Journal , 1980, vol. 3, p. 1360 
Q 

"'" 

• 
. , " 1 
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Appendi~ 
,p. 

Fractional Potential Model 

The fractional potential is written under tne fo~ 

wher~ a and b are parameters whose values are given in the 
\ 

first append~x. It should be remarked that a differsfrom 1 

by a quantity proportional ta L'< 2 WhlCh is very small (order 

of 10-5 ). Therefore, for the unperturbed state ~or one has 

(A2. 3) U(çi~) -::. bs62a 
0 

(A2 .4) U I (~~) ~ ab~~ (a-l) 

(A2. 5) U"(~2)~2 o 0 
a (a-l) bs62 (a-1) 

0 

It is obvious that the 1ast term is negligible in front 

of the others because of the factor (a-Il. 

As the soliton is highly condensed at the center of its 

own distribution, it i5 of much interest to describe the sys-

tern near the origin. Ta do sa, the trial function introduced 

/ 
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in the precedinq appendix will be used. 

1 _ y2,1/1-a for r<R 

• 0 for 0 r> R 

with 

(A2. 7) Y = r_ 
i 

The constant À is found to be [IJ 

(Al. 8) ~ = ( Q )~ 
2~1TO(R2 

or with Q=h=l, 

(A2 .9) À= ( 2~7T<X.R2 -~ 
) 

1 

and the units of ~ are LI] _l,' or [M1 . 

From equations (A2.4), (A2.6) and (Al.9), the expression 

for U'{95~) can be writen 

Using eg. (Al. 9), this last expression becomes 

As (l-a) is very srnall, the quantity in the first could 
il 

. be put equal to 1 as long as it does not carry any units . 

.. 
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The quantity in the first parenthesis does not carry units 

( [MJ .. r L] -1 when h - 1) and hence 1 one can further simp1ify 

For the region of few Bohr radii around the origin, whe-

re more than 99.9% of the charge of the electron is concentra
.,) 

ted 1 the following relation is verified 

(A2.13) 
2 

Y « l for 

This permi ts to keep only the first two tenns of the develop-

ment in series of the parenthesis in (A2.l2) : 

(A2. 14 l U f ~~) = J} ( l + 2 Y 
2 

) 

Therefore, the potential is felt by mos~o~ the eleetron as 

an h.armonie oscillator potential shifted by a constant quan-

t
, 2 
lty" . , 

, 
It -can. be remarked that the expressions for iO and U 1 

are the sarne for both cases, Le. soliton free or bound in an 
, 

atome Tp.e difference will be in the value of R that should be 

less in the second case. One should also note that ~O LS nct 

nonna1ized to uni ty 

l' 

CA2.1S) ~Jd~~l 'd
3x= ~2R3 ~ Cl_y21m d

3 y = K(l) 
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where K (1) represents a constant with units of length 

K(l) = ( ~(~-a) ) 1.5 (A2.16) R = l 
2/ 

1- T.F. IMorri.s, Hadronic Journal, 1980, vo1.3, p. 1375 
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