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Une classe génerale de potentiels non-linéaires satis-

: \\faisant le theoreme de localisation est deéfinie. Une equa-
tion de Klein-Gordon complexe et non-linéaire incorporaht
i'interaction électromagnétique est dérivée pour les états
stationnaires du :§oliton. Posant 1 'hypothése d'une petite
perturbation dépendante du temps, les équations d'onde sont

4

dérivées pour les ordres zéro et premier de la perturbation
et i1 est montré que le tout respecte les principales lois
de conservation. On prend la limite non-relativiste de l'e-
quation de Klein-Gordon non-lineéaire pour ensuite deduire
une équation intégrale,décrivant un atome d'hydrogene,vala-
ble pour la région de haute densité de charge. Une expres-
siéon formelle pour le coefficient d'Einstein décrivant la

transition spontanee d'un état excité a 1'état stable de

'1'atome est finalement atteinte,
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Abstract

A general class of nonlinear potentials satisfying the
localization theorem is given. A complex nonlinear Klein-
Gordon equation with an electromagnetic interaction is deri-
ved for the stationary states of the soliton. Assuming a
small time-depen;ient perturbation, wave equations are found
for zeroth and first order of the perturbation and important
congservation laws are proved to hold. The nonrelativistic
limit of the nonlinear klein—Gordon equation is carried out
and an integral equation describing the hydrogen atom is
obtained for the region of hig.h“charge density. An expres-
sion for the Einstein's coefficient describing spontaneous .
transition from an excited state to the ground state of the

atom is finally reached.
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Introduction

I-1 History

Solitons have been known now for more than a century.
Their history goes back to 1834 vwhen they were first observed
on wétef by J. Scott Russell in Scotla;xd. The interpretation
of the phenomenon caused many discussions amom; physicists
until a complete solvution was found in 1895. The soliton was
the solution of a nonlinear hydrodynamical equation . Reproduc-—
tion of original papers can be found in a book by T.D. Lee

f1] . The soliton was defined as a stable and nondispersive

wave-packet which was regular everywhere. .

Mie [2] was the first to try to describe electrons field theoreti-

‘ cally as extended structures in opposition to the idea of the point-

electron of classical electrodynamics. The latter gives rise
to infinite self-energy and implies that the field equations
are not valid at these points. However, Mie's theory involved

serious problems. The dependence of his lagrangian on the po-~

" tential implies that there is no gauge inwvariance. Later,

Born and Infeld [3,4} tried to .remove this difficulty by as-
suming that the lagrangian was a function of only the elec-

tromagnetic tensor E, . But this theory still retained a sin-

T e o o i ARl bt R




<

gularity and was therefore rejected. Rosen [5] , in 1938, tried
to build a theory with a potential-dependent lagragiah,to a-
void singularities, to which rle added new terms to make it
gauge invariant. The major drawback of this last attempt was
that electrons had a negative mass. The main interest in this
early history of the description of matter by solitons is the
idea to replace the point-particle by extended struct{lres,

the so-called energy-knots of Weyl [6] .

A}
i

For a while, there were just a Ec'gw attempts to descri-
be particles as solitons. One can think of the paper 'of Fin-

kelstein et al. about nonlinear spinor fields [7] ,or of the

L d

paper of Schiff about bosons [8], or of the work by ’Anderson‘
and Derrick [9,10]. However, these models were all having
problems with stability (11] .

Later on, Lee and collaborators found classicaly stable
extended structures which, in principle, could describe ele-
mentary particles. This was achieved by requiring, the conser-
vation of an additive quantum number, cailed charge, and by
assuming the presence of a néutral scalar field [12,13] . W
Coleman {14] worked on Lee's model and suggested that the

energy density of the soliton has to be bounded away from

zero at all time in a bounded domain by stating that a dis-
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sipative solution is such that: .

Lim max T (x,t)’ = 0’-
g 00'~
te+o0 X

where TOO id the energy density.

’

At about the same time, Bialynicki-Birula and Mycielski
[15,16] worked on a class c;‘f nonlinear Schr'édinger-tgge equa-
tions. By an appropriate choice of the domain of a free para-
meter, the energy is bounded away from zero and their solutions
are stable and localiéed in any number of dimensions. Fur1:.her-
more, Planck'ﬂs relation is wvalid in this picture. They also
pointed out that similar solutions existed for nonlinear
Klein-Gordon equations with complex scalar fields.

Following this, Werle [17] found e);plicit solutions for
a particular class of these Klein—Gordon (equati‘.ons which ex-
hibit confinement inside a finite volume. I:hen, Morris began
working on this problem and developed the localization theorem
[17,18] which permits to determine if a solution is really a
soliton and found a class of nonlinear potentials respecting
this theorem. He worked on the case of logarithmic nonlinea-
rities [19] but mostly on the case of the fractional potential
[20,21,22,23,24] . of these, two [20,22] deal with the electro-
magnetic potential. In the first, it és proved that -it is

stild possible to have a stable state of a soliton despite

i
2
!
3
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self-repulsion. In the second, the De Broglie relation and
the fine-structure constant are determined from a multisoli-

-~

ton gtability condition. N

At the Same time, Simonov and -Tjon [28) wﬁhd on a mo-
: -
del similar to that of Morris. They studied collisions of

solitons by computer simulation in one space dimension. They

. . 4
‘came out with very interesting results, especially the crea-

tion of small entitieés which they called breathers. There is
still much to be‘ done along these lines and work is in pro-
gress on this fsubject hy Valin and Morris [26] .

This historical introduction is b'X no means complete,
especially for the last ten years whe:{’ research on solitons
became intensive. The papers to which the reader is referred
relate mainly to classical solitons and more specifically to
nontopological classical solitons. The gquantum solitons and
the topological ;sol;i.tons form by themselves very large areas

of research and it would be beyond the scope of this work-"to

try to review everything that has been published about them.

For particle physicists, ‘the study-of solitons is impor-

tant because solitons present a/Bagic solution to the problem:

of the classical confinement of energy without the introduc-

tion of singularities. o ) .

v




I-2 Work Outline

In this work, a classical nontopological soliton is stu-
died when it is perturbed by the presence of an electromagn"z- 5
tic field. In the first chapters, the field is left as general
as possible but in the last one, it is restricted to the case

©

of a proton at the center of the soliton. The soliton is as-

[T,

sumed to have a charge different@ from zero. As the soliton is
used in this work to deéscribe the electron, this last assump-

tion is quite natural. N

-

In the first chapter are gathered a number of concepts
upon which further developments are based. First, the rele-
vant equations of classical field theory for complex scalar
fields ére set forth. The second part of this chapter consists
of an introduction to solitons: its definition, types and
examples. Third, a class of cdnfining pote'ntials are defined
and, in the last part, the localization theorem is introduced
and the proof is given that the solutions obtained with the
potentials defined in the third section are indeed confined

for all time.

In the second chapter, a perturbed wave function is used

with the nonlinear Klein-Gordon equation. Equations for cur-

rents and charges are also derived in this first section. In
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the second, the continuity equation is shown to hold up to the
first order of perturbation. Finally, in the last part, the

conservation of energy is studied up to first order also.

In the third chapter, the nonrelativistic limit of the
nonlinear Klein-Gordon equation is obtained and compared with
the linear Schrddinger equation for the hydrogen atom. Using
the fact that the soliton is highly concentrated at the cen-
ter “of its distribution, a time-dependent integral equation
describing the perturbed system is derived. In the last sec-
tion, the Einstein's coefficient for spontaneous transitions

in the atom is found innthe form of an integral.

- &

1l1- T.D. Lee, "Particle Physics and Introduction to Field
Theory", Hhrwood Acad. Publ., Chur, 1981, ppll7-122
>r Mie, Annalen der Physik, 1912, wvol. 37, p. 511
1912, wvol. 39, p. 1
1913, vol. 40, p. 1
3- Born,Infeld, Proc. Roy. Soc., 1934, vol. Al47, p. 522
4- Born,Infeld, Proc. Roy. Soc., 1934, vol. Al50, p. 141
5- N. Rosen, Phys. Rev., 1939, vol. 55, p. 94 )
6- H. Weyl, "Space-time Matter", Dover, NY, 19422, pp. 202-
203 ' ‘
7- Finkelstein,Le Levier,Ruderman, Phys$. Rev., 1851, vol. 83,
p. 326




8- H. Schiff, Proc. Roy. Soc. of London, Ser. A, 1962,
vol. 182, p. 277
9- Anderson,Derrick, J. of Math. Phys., 1970, vol. 11,
p. 1336 .
10- Anderson, J. of Math. Phys., 1971, vol. 12, p. 945
11- T.F. Morris, Can. J. of Phys., 1978, vol. 56, p. 1405
12- T.D. Lee, Phys. Rep., 1976, vol. 23C, p. 254
13- Friedberg,Lee,Sirlin, Phys. Rev. D, 1976, vol. 13,
) p. 2739 =
14- S. Coleman, "New Phenomena in Subnuclear Physics",
Plenum Press, NY, 1977, p. 298
15- Bialynicki-Birula,Mycielski, Bull. Acad. Pol. Sc.,
1975, vol. 23, p. 46l Vg
16- Bialynicki-Birula,Mycielski, Annals of Phys., 1976,
vol. 100, p. 62, )
17- T.F. Morris, Phys. Lett., 1978,vol. 76B, p. 337
18- T.F. Morris, Phys. Lett., 1978, vol. 78B, p. 87
19- T.F. Morris, Can. J. of Phys., 1978, vol. 56, p. 1405
20- T.F. Morris, Can. J. of Phys., 1979, vol. 57, p. 2171
21- T.F. Morris, Hadronic Journal . 1980, vol. 3, p. 1333
22- T.F. Morris, Hadronic Journal , 1980, vol. 3, p. 1360
23- Mathieu,Morris, Hadronic Journal , 1981, vol. 4, p. 1934
24- T.F. Morris, Hadronic Journal , k?Bl, vol. 5, p.,152
25- Simonov,Tjon, Annals of Phys., 1980, vol. 129, p. 110

26— Private communication

PRI

Bt A ok NN e ek e o R AL

- pew




Chapter 1

Useful Concepts

In this chapter, the general concepts that will be used
throughout this work will be developed. In the first section,
some basic equations of classical field theory will be recal-
led. The interaction between a complex scalar field and the
electromagnetic field will be 1ntroduced in a gauge invariant
manner. In the second section, a description of the soliton
will be given. This includes 1its definition, the distinction
between different kinds of solitons, as well as an example of
nontopological solitons. In the third part, a specific class
of self-confining potentials 1s introduced, and finally, in
the last section, a proof 1is given that these potentials give
rise to solitons by means of the localization theorem,

d

1-> Field Theory

As onlg complex scalar fields are studied in this work,
only the relevant equations of classical field theory are de-

veloped.




LT N TN Nken 7y Sookcre e tyin,

The coupling between the electromagnetic and complex
%
fields has to be gauge-~invariant. This is done in the now u-
sual way'developed in the 1930's by Pauli and Weisskopf [28] .

The lagrangian density is

(1.1) L =o. §)*"§) - v+ - 3

where U(§*¢) is the nonlinear potential ‘term and F, is the

electromagnetic tensor:

(1.2) E;,fa"A,')‘,AP - ’ f,\”ollrzr:i
/

The operator D is the covariant derivative and is defined by
(1.3) Doy, + LeA,
. ), = 3,‘ + 1t A,

Il"l the two;last expressions, A,‘ represents the electromagne-
tic potential with A, being the scalar potential . One can
easily obtain the equations of motion from equation (l.1) by
using the variation principle. This gives the following non-

linear Klejpn~Gordon equation:
(1.4) pog+u@gra=0 .

as well as a similar equation for §*. The canonical momenta

are given by

(1.5) m=28_= D)% where - =34

°9
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and therefore, the hamiltonian density can be written

(1.9) Hx‘rr<§+ n*é*+ E"A,, -d

and the total energy is

(1.10) E-= Sn a3x =g[§ FUE 43 EPE 480 4+ 1EA (9%-8%)

+ V0% U0 + ieA-(dyé* - 3*yh) +

The three-momentum P is defined as

¢

(1.11) Pp-= -g[ X T 4 &£ I+ Q_{YA‘] a3x

24+ ] aal

Some straightforward calculations lead to

u(g*9 )] a3x

(1.12) - -g[ 070* + §ogd - ica (OEd - 474 + (& - $a0)

12y

The conserved four-current is
(1.13) L= it( é*0. 8 - d(O. N ™)
and therefore, the charge q is .

(1.14) q- S Jod3x - ieg(i*noi - (o 1) adx -¢Q

3

d™x .




As the current must be conserved, one has the following con-

servation rule :

(1.15) 33, = 0 ‘ ‘\1

Repeated indices imply a summation except when otherwise stated.

In this work, a metric with signature (+,-,-,-) is used
as well as the natural system of units in w@ich c=l, Unless
otherwise specified, a primed function is the derivaéive of
this function with respect to’its argument. Greek indices run
from 0 to 3 and the latin ones , from 1 to 3. The ordinaryl

space vector is written x.

1-2 WSolitons

A soliton could be defined as a solitary wave that pro-
" pagates without dissipating towards the vacuum and recovers

its original shape after a collision. But, if one wants to

describe elementary particles as being solitons, this defini--

tion is too narrow because, for example, it cannot éescribe
reactions in which new particles are created. Lee [1,2] defi-

ned a classical soliton as a solution of a honlinear local

-11-
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field equation confifiled in a finite region of space and pos-
sessing a finite non-zero rest mass. The main idea is the lo-
calization of the field in space to which we shall return la-

ter in this chapter.

Solitons can be formed in two ways. One of them is to
impose speéial boundary conditions at infinity for the field
that will differ from the physical vacuum [3]. This implies
that the vacuum state must be degenerate. These are topologi-
cal solitons. As exaﬁples of models giving rise to such soli-
tons, one can quote the §4 model [4] or the sine-Gordon model
[S] . But there are difficulties with this kind of soliton as

e
pointed out by Loo [5]: first, spinleés solitons would be sta-
ble only in one dimension as stated by Derrick 's theorem (7]
and second, some models would force alternatiqn of solitons
and antisolitons., Both these facts are irreconciliable with

the aim to describe particles as solitons. But, these restric-

tions hold only for static and spinless fields.

The introductioq of spin and gauge fields can get rid of
the problems stated above. These theories lead to gauge mono-
poles [8,9] and the euclidian instantons [10] . These instantons
are indeed solitons in four-dimensional space which means they

have a limited extension in time. An example of a gauge mono-

R P




T TBITE Saw TR L St e R oot M wesipient of 4

poie can be studied [11] using the Georgi-Glgshnw model which
is a gauge theory of the symmetry group SO(3). 't Hooft and
Polyakov [8,9] have studied a special case of this model (nal)
which gives rise to a magnetic monopole of charge g= 4r_ ,

a result similar to what Dirac obtained by other means%lzj .
However, this is the only point in common betwean the two as em-
éhasized by Coleman [31] . These monopoles have been proved
to be very heavy which explains why they haven't been disco-
vered yet, if indeed they exist.

Topological solitons have very interesting properties
for particle physicists but there is still a lot to be done
about stability and multisolitcm'systems. Nontopological so-
litons, the ones used in the rest of this work, form the other
class. It is held together in a dynamical way by a nonlinear
potential. Its boundary condition is the same as the ,vacuum.
Therefore, the vacuum does not have to be degenerate as in
the previous case. However, one needs an additive conservation
law to ensure the existence of such a soliton. It is interes-
ting to note that these solitons can exist in any space dimen-

sion [13].

Lee [14] worked the following simple éxaniple in one spa-

ce dimension using a complex scalar field, § . The lagrangian

13-
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density is given by

(1.16) L=38* 34 - u(§*§) p=0,1
ax}_ Ox’
Usir'xg the variation principle, the equation of motion is found
to be ’
(L.17) ég + U'(Q*Q)j- o
° ’

If one chooses the minimum of the potential to be zero, U can

'be expanded in a power series of §*§
* 2 * 3 4

(1.18) u(d*d) = n“§*§ +6@") 8@ ) -....

The lagrangian is invariant under gauge transformation as
o

(L.19) @ »¢e" @

This implies [15] that the current is given by

(1.20) 5.= i _3& * - i _f ¢
dtY8*) Yo )

and that it satisfies

(1.21) 34 =33,=0

3%,

The time component of j, gives the charge density
(1.22)  o=i( 0% - §*9 )

The space integrai of the equation (1.22) gives the total.

Al




charge Q
(1.23) Q=89dx

which is a conserved quantity in time because of (1.21)

(1.24) Q=0

Therefore, for Q different from zero, § must be a variable
quantity with respect to time. To find the time dependence
of the lowest energy state, it suffices to do the following

steps [16] . The charge Q must obey the following mequallty

~

(1.25) Q=i %(é*@ - §*drax ¢ 2 36*@ dx

-

Using the Schwarz inequality for the last term, one gets

< [SM c}xr {Sé*é dx}i

The equality in equation (1.26) holds ‘only if § and § are li-
. L4

nearly dependent. From this, one can deduce that the equali-

(1.26) ]gé*é dx

ty in (1.25) holds only if

(1.27) 0+ iwd -0

with

(1.271) w = Q_ _where I- (’Q*Q dx

21
Following arguments due to Morris [29] , one can say that E and

-15-
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E are instantaneously equal for Cauchy data that satisfies

both equations (1.27) and (1.271) where

(1.272) E>EQ,§,§% = o> +S( I\Zél2 + U) dx
1T

Therefore, for Cauchy data which gives the minimum value of
the functional E, the equality must be true for all time in
(1.272). Thus, equation (1.27) is also valid for all time and

§ is a stationary state. Therefore, § has the form

(1.28) $(x,t)= gx) et

with #(x) a real quantity. Then, (1.17) can be written

(1.29) d®B+uw’d -4 U@ =0
dx dg ’
Multiplying by g;% and integrating, one obtains

(1.30) 3( ag 1%+ 1w?g® - 3 ur=o0 .

The potential must have the form given in figure 1.1 for
the case of polynomial potentials [13] in order to have non-

topological solitons as verified thereafter.

-V

LN | N

Fig. l.l: Sketch of the y\ I
X 2 2.2
potential V(g"]=% (U~ @)
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Using the mechanical analog of a palrtic],&moving in a poten-

tial (-V), one finds , , -

f

(1.31) x-a = § (2 Vg )Y ag
A B

where a is the integration constant ( x=3 when gSZ.—.—. A).

2

8
Al

Fig. 1.2: A nontopo-

logical soliton . :

It satisfies the bounda;'y condition for a nontopological soli-
_.ton which is /fi | )
+0 ' when x » too

All of this can be seen on figure 1.1 with the mec{lanica;l
analogy. Suppose there is a particle at ¢2=0 at time x= -:oo.
If the particle is displaced just off its equilibrium point,
thfi.s particle is going to n{iove in the potentiél well (—V)' up
to point A and come back to ¢2= 0 at time x= +'qa“vghich is the
behaviour described on figure 1.2 for a solitop. Thus, figure
1.1 represents the kind of potential needed tou desc;ribe non-
topological solitons. Furthermore, in the limit ¢2 - 0, using

equation (1.18), the potential is

(1.32) V + §(m? -w?) &

@ i g
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) 4
= 7
/ ] o
. . " 7 N o
‘Fig. 1.3: E(Q] for three- . . U // . — plane-whve
dimensional model studied | / ' . soliton
by Lee and collaborators ' a ' i
[13] - : : Q

. is now introduced upon which are imposed certain restrictions

which -implies that .

e n ! - £

(1.33) w2< n?

to ensuré this is a sol’it_on solution by forcing the upwards 4 /
concévity of V(¢2)' at u¢2== 0 . Otherwise, the solution is a

plane-wave as one can check with the same analogy that has

been .used above. So, there is a limitation on the values w
can take. Similar limitations in two or three space dimensions

can be derived [27] . Figure 1.3 gives a graphical represen-

tation of this condition in three dimensions where w=dE

/‘ «n‘ ? -
The existence of plane-wavz solutions allows decays of

solitong in piane—waves as can be seen J.n figure 1.3. In

v
+
w i

order to discard this poésibility, a new class of potentials - . .

N k]

to obtain the desired behaviour.
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1-3 Confining Potentials
In cases like the one represented by figure 1.3[2] r the
confinement is caused by the action of a field on another.

Instead, self-confining potentials will be used in this paper,

'i.e. fields coupled nonlinearly with-themselves. These poten-

tials should not allow any plane-wave states. In this section

is ‘defined this particular class of self-confining potentials.

*

/"

The self-confining potential U(#*g) has to satisfy con-
ditions that have been established by MorriS 17,18] . It is
a non-negative function of ¢g*J such that U(0)-0 and U' (0)=o00.
It is agsumed that the vacuum is non-degenerat/e so that U has
just one zero and that the vacuum state is a solution of the

wave equation. Furthemmore, with #:0 being the yvacuum, equa-

tion (1.4) limits the singularity of U'(0):

(L.34) Lim U'(g*g)& =0
g0

* For further convenience, some other conditions are added
that will limit the number of possible potentials but will
simplify the construction of proofs in the next section. Let
U(#*#) be bounded from below by a function u(¢g*¢) which sa-

tisfies the following conditions [19] :

a) u(g*d) is concave for (< g*f <oo

—19- 'Y

L




o

b)  ulgd)z g for 0<g*d <o0 and with 4> 0
c) u(0)=0 ,u'(l)=coc and u'(F*d)g » Oas & » 0

d4) u' (g*g) is convex for 0 <g*d «= oo

Condition (a) is obvious as U has to be a positive-«
definite and non-decreasing function with an infinite slope
at the origin. Condition (c) is just a repetition of the
conditions that had been imposed on the potential U, Condition
(d) is introduced to sJ:.mplify the proofs of dif ferent results
in the rest gf, this chapter. Finally, condition (tb) was pres-
cribed to ensure that Uwould be non-decreasing and theréfore,

never negative. This permits to write
@421 = (8% 10+ P08 ) @' + positive quanciey

The integral defines a Hilbert space of Sobolev type and this
Justifies the use of the Sobolev inequality to come later in
this work. Even if these properties eliminate some self-confining

potentials, there is still a large field to work in,

An example of such a potential is given by the fractional

‘potential [20] :

2

(1.35) u<¢*¢>=b(¢*¢1"‘+/, grd with }< a<l

One can easily check that (1.35) fulfills all the conditions

given pre\}ious ly.
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Now, it can be wverified that the plane—-wave solution does

'not exist for this class of potential. Let A , be equal to zero

- in equation (1.10) as it won't change the result. A plane-wave

solution is given by
(L.36) & =24 exp(-ikyx“)

+Putting this in equation (1.4), one gets for a given frequen-

cy k,

(1. 37) k‘z'-kg - U' (A*A)

4

Therefore, ki2 becomes negative as U' increases which means
that the wave is reflected back at a certain point. It can
also be shown that a plane-wave solution would contribute an
infinite amount of energy. Introducing (1.36) in equation

(1.10), one gets

2
i

3

(1.38) E-g[(kg + k% 1A*A + U(A*A) a°x

Using a box normalization , A= D where D is a constant and
v
V is the volume of the box, one easily obtains by integrating

over the wvolume of the box

2

1.39) 1=:=(k§+k.l ) D*D + U(Q%P_ v

Now, as U(g*d)2u(g*g) and u(0)=0 and using property (a) of

u, the following inequalities are found :

-2]l-
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(1.40) U(g*d) =u(g*g) = u' (B*8) g*d
Using this in (1.39) gives

2 )D*D + D*D u'( D*D )

2
(1.41) Ez(k0+ki o

For V 300, u'( D*D ) -2oc by property (c) and therefore the
energy E is infiXite. From these two last points, it can be
seen that the plane-wave solution cannot exist for this class
of potential. From now on, this is the only class that will

be considered. To finish this section, an example for a one-

dimensional case is given.

1

Simonov and Tjon [30] studied solvable models where they

~used that kind of potentjal. For a fractional potential such

as
(L.411) U= /12|¢|2 +)\l¢|2'°‘

with A>0 and 0> «>1l. The time-independent wave equation for

stationary states i%

(1.412) -V%g 4+ hgd g 2= k%8 = (w2 l"/uz ) &

d| gl

They worked out a solution in the same manner as has been do-

ne in the previous section:

(1.413) (dg )% - ( M=+ k% 1 g4 2% =0
x 1

-22-




which has for solution

(1.414) = ( A )% ( cosekx 1™
;2' -z .

for [x{< 7 =x

X 0

d=0 " for |xl>x0

The effective potential in (1.413) ¢can be written under the

form

(1.415) v=U(|gl ) -2 ¢ 2

and whose shape is shown on figure (1.4).

Fig. 1.4: Effective self~
confining potential as a

| #]

function of |4 ‘ |

1-4 Localization Theorem

In this last section, a criterion will be introduced in

_ order to be able to determine if a soliton solution will re-

e diamgrt,




I\

1
¥

main localized for all time starting from some imposed initial
conditions. This is of the greatest importance to have such a

criterion to be sure that the solutions which are obtained *

behave like solitons. -

1

Coleman [21} defined a dissipative solution to bé such !
that
(1.42) Lim sup Ty, (x,t)=0

Lo x

as mentioned earlier. Too is the energy ?ensity (= H of sec-
tion 1+1 ) and is p\ositive definite ( T00>0 ). So, a solution
contradicting (1.42) was stated to be non-dissipative, and therelo-
re, to be a soliton. 'However, in 1978, Morris [18] showed that _~~
there were some particular distributions which violated
the above condition. His work showed that contradiction of

(1.42) was necessary but not sufficient to ensure the exis-

tence ©of solitons. That lead him to define a localized field

as one that obeys the following conditions (18] =

A) TOO =0

- 3 . . .
B) { E gTood x 1s finite

C) For some fixed § =0, TOO>§ for all time through-

out some set of finite volume V> V0>0 !

It can be seen from these conditions that V§ is a lower bound

) )

24-
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for the energy E and therefore V0< V<E which is a necessary
geometrical condition for an extended %ocalized structure,.
These conditions are not too restrictive and they allow elec-
tromagnetic radiation as well as a flux of particles from the
soliton .

v
N

Let's write equation (1.10) under another form
! . '
(1.43) E-= STOO a3x = S{ 3P A \VECE 4+ (71?4 Zlnqu"
‘ i
+U(#*d)] a>x

where use has been made of equations (1.5) and (1.6), and

the fact

(1.44) a*a= |al >

Therefore, the enerqgy density is defined as

00

(1.45) T = 3FY F, + &E‘E' + ,;7-|2+ %lnj ¢l2 + Ulg*e)

J

.
This quantity is positive definite if U is a positive quanti-
ty. This is the case for the class of nonlinear potentials
defined in the previous section because of condition (b). U

00

and also T are zero only for tﬁg‘yacuum state.

Now, to prove the localization of the field with our

particular class of potentials, one has to proceed in three




. steps [22]:

1) A number of inequalities are prowved
3.1k
(1.46) =3[ (141° a’x]
/ (1.47) ap S|¢|2d3x! I(t)>a,
4 .3
(1.48) by~ Slgﬂ a°x = B(t]>b,
Ylhere the positive constants aj, a5, by, by

depend on the initial conditions

|
2] It is shown that volume measure zero cannot

contribute to integrals in (1.47) and (1.48]}.
3) The following inequality i% established over
some set of finite volume measure

(1.49) ¢'¢> 1

a,

”~

Smooth enough initial conditions are assigned in order to ha-

e finite values for the constants of motion as well as for

E and Q. The evolution of the field has to conform with
these given bounds . From equation (1.43), one can esta-
blish the following inequalities :
3
(1.50) E»> Szr*rr-d X
2 e a3
(1.51) Ez/u #*d d"x

where one of the conditions on U given in the last section

has been used for the gsecond relation. An expressiop for the

-26~—
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charge Q is obtained- by working out equation (1.14)

—

(1.52) Q = ig ( g*m* - g )dx
and Eherefore
(.53 o*< 4] {47 a’4’= 48,;4 2% {Ir|2a%

where the last inequality is just an application of the Scrmarz

inecuiality.Combining equations (1.50) and (1.53), one gets
2 3 2

(1.54) TI(t)= SM a’x 5 %’ a, .

and from (1.51)}, the upper bound is found to be

(1.55) a, > E_=I(t]
3

/!

These two last equations give the relation (1.47). The two
other relations can be proved by using a generalization of
Sobolev's inequality which can be found in an appendix of a

paper by Morris [23]. This inequality is the following :

a.s6). (o> 0,8 x = 1] (19 a3x]"

and, as the ene:;.:gy E is greater or equal to the left-hand si-
de of the previous inequality as can be seen in equation
(1.43), the proof of the first of the relations (equ. 1.46)
is completed. For relatior; (1.48) , one first uses the Schwarz

o

v




inequality

»
b

~ i
(1.57) Sm“ ax = S]¢f3)¢,d3x <[g 191° @] [ {19)% a’x]
which, combined with (1.46) and (1.51}), gives .

1.58) (4)Y 2> Sm" a’x= B
T

Therefore, the constant b2 has to be chosen such that

,> (4%
3k

(1.59) b

To prove the second part of equation (1,48), (1.43) is used

and this yields

(1.60) Ea'g TrTacx +S U (g*g) ax

Using (1.50) to eliminate the first term from the right—hand

. side of the previous equation, one gets

(1.61) E;‘[}Q2+IS ugrgrax] /T

-

where I is defined in relation (1.47). Furthemmore, as (a=b)%z0,
one has a2+b2;2ab. Applying this trivial inequality to the

bracket in (1.61), the following relation is obtained :

3X;Q[15qd3x]i .

3

(1.62) iozngu d

(1.63) E= [{va’x/ 1]

-28~-




U is now replaced by its lower bound u which, remembering
conditions (a) and (b) stated in the previous section, satis-

fies because of its concavity (24] :
(1.64) u(g*g) = u'(g*Lld*g

With (1.63) and (1.64) follows a new inequality

(1.65) E2 = L{ a8t a>x
2 I

As u' is a convex function by property (d) of last section,
one can use the Jensen's integral theorem on convex functions
v
[25] H
. If p(x) and q(x) are two functions on a segment

[a,b] such that X<p(§)s(§, q(x)=0, and ¥Y(u) is

a convex function defined on| Y,@] , then
b

3

(1.661 Yo aw a’x &p@) alx) dx
‘ >Y

P 20|30

q(x) a3x S qx) ax
a

Putting Y=u' and p=q-g*g , one obtains

.67) 1L { wigemeng ax= w Sm‘

I
jor

29—
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Now, using (1.47), (1.48) and (1.65), one gets

(1.68) E°% = u"( B(t) ) ' ' “
X It "

As E is finite and Q is non-zero, the argument of u' cannot
go to zero because u' (Q)=oo. Hence, B/I 1is bounded away from
zero and, as I(t)=> 2y v B(t) 1is itself bounded by some cons-
tant, bl' That completes the proof for this first part.

It must now be proven that sets of volume zero cannot
contribute to the integrals (1.47)and (1.48) because it would
imply that the (¢|2 and [¢]4 distributions could become sin-
gular in the limit of infinite time. Noting the fact that
(| ¥} 4 )g is a convex function, one can use Jensen's inequa-
lity with ‘f(u');u% ' P =[¢|4 , 9=1 inside a volume V and g =10

elsewhere to find'

3%
1.69) 1 S CIRBL d3x>[g g1 % &% 1
v v

2
r"ri
and hence
3
(1.701 g | ¢|6 a3x = [S ] 4d"sx] b?_
=
v v \7;

vi
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So, as the volume shrinks "to zero, | ]¢]6 d3x goes-to

infinity which is a contradiction with equation (1.46). The-
S _ refore, the [¢]4 diétribution cannot collapse., It can be pro-
ven that this is also the case for |¢12 using similar argu-
ments. These results ca;x alsc be obtained from Holder's ine-
; gquality : . -1 -1
i §2s = [f1ePe”  [f1919 ]
i \
| .. with pty gl
:g However , this inequality can be derived from Jensen's inequa-
{
i

x lity by the use of the convexity property. If g converges in
“ i » 3 » . » -

“a nonuniform manner to some discontinuous limit function,
the above results show that the discontinuity must be mild

- enough to be ex'cluded from the domain of integration [26] .

Té prove the last condition for localization, one can
use the following identity
(1.71) g|¢;4 ax = (B(E) )sz a3x
I(t)

* in combination with inequalities of part (1) which yields

a.i2) (jg)? (18] -, 1 x>0 -

a2
This implie)s that |¢|2> bl/a2 for a non~zero volume, There-

4 , Y .
fore, To°>/42 |¢12> ﬂzbl and the last condition for localiza-

)




tion, condition 3, is satisfied. .

Now that it‘has been irerifiearthat the class of nonlinear
"potentials studied in section Ehrée satisfy the 'localization theo—
hrem and give rise to solitons, we can move to the next chapter
where a perturbation will be introduced in the nonlinear Klein-

Gordon equafion given at the beginning of this chapter.

¢
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Chapter 2

—_—

Perturbation of a Charged Scalar Soliton

In this chapter, a small time-dependent perturbation will be intro-
duced in the Klein-Gordon equation (eq.’ 1.4) and the basic formulae will
be developed. Then, different conservation laws will be verified for the
zeroth and first arder of the perturbation. First, the contimiity equation
will be studied. Then, in integral form, charge conservation will lead to
a condition on the perturbed wave-function. Finally, it will be shown that

the divergence of the energy-momentim tensor is zero.

2-1 BasJ.cFomzlae
Starting with equation (1.4), expanding the different terms and se-
parating the time campments fram the space components, one abtains

(2.1) 3-v24+ i€( 2Ao§ +)'\°¢) +ic( 22V +4V-a) *52(‘3.\12‘53 ) $
. +0'(§*4) ¢-0 )

together with a similar equation' for §*. In the limit €~ 0, theeztem

[l

/l
x




could be neglected in eq(2.1) as well as in the following calcula—

tions. If the existence of stationary states is supposed, then
(2.2) $=ge 4
and the substitution is made in the first equation, which leads to

(2.3) #- 2iwg -w’g -V +it(2ng +AF+ 22 Vg +gTR)
2Ewh g + U@ + £2 (2] - a2 )p-0

If the supposition is made that ¢ is a perturbed state, i.e. geg(t),
it can be written
(2.4) ¢(t;&;§ g, + M (L) | ,
where & is time-independent and real. It is the unpertirbed state of
equation (2.3) and 7(t) is the perturbation that is considered as being
smll in camparisn with 4.

Without any perturbation, the systen is gpherically symmetric and
time-independent. Therefore, A andl.\Ocanbesettozero. Here, A, is
the sum of the self-field of the soliton and the external field and will

now be denoted by Aj . This ‘gives, using eq.(1.4),
2.5 (3y + itk ) (3 + i) ) (B ™) + 0t )8y e = 0

which leads to

2.6) [-? =¥+ 260k’ - A2+ 0@ )] gy =0

o b b ik e

Po—
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If one now considers the presence of a time-dependent
perturbation, the vector potential term has to be put into
the equations to take into account the possible currents.
Furthermore, Aois now composed of three terms Tthe two pre-
vious terms contained in ‘KO and the field a, arising from
the perturbation 7(t).This last term is the only one of the
three which is time-dependent., In the notation used here,
the state ;do is left unaffected by the perturbation and is
described by eqg.(2.6). To determine the equation describing
the perturbation, eq.(2.4) is used in eq.(2.3) and the re-

sult is simplified by“the use of eq.(2.6) and the Lorentz

condition,
(2.7) g AT =0

This yields, to first order in 1,

- 2

(2.8) . T - 28(w-tK) 7 - [o? + 92 - 26wk + 22 - v (D)7

0

g2 2 . 3 : -
+ U (TS (M+*) + 28( w - €A )a gy + 2ifa- Y8, =0
Here, it should be remarked that the perturbed four-
potential an. is considered to be of first order in 7/, and that
terms in éﬂ‘ have therefore been dropped. The complex conju-

gate of eq. (2.8) is

(2.9) * + 2i(u—£io) 'ri'- (w2 + v? -zswio + £ Xg - U'(sdg)] "

- 3f-
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With similar equations but without the presence of- the
electromagnetic field, Loo [1]) has shown that: war bounded by

some maximum value nmax by proving that, if ¥

int -in*t
(2.10) M (x,t) =‘V1(§) e +‘f’§(:_<) . ,
. ¥
{\ was real and therefore that N was oscillating between two

maxima, In the case studied here, it is not that simple becau-
se N could decay if the system emits radiation. Then, {} would
not be real. Thus, it will be assumed that 7 is bounded by a
maxim;nn value and that it can only decreases in time if the

system is isolated. If one wants to use eq.(2.10) for 7( , the

above assumption will mean approximately that

—

(2.11) O = S + ix $and Y :real constants
130

Furthermore, if. 7 is a bound state as it is the case in chap-
ter three, there should be a large number of oscillations be-

fore the system decays which is equivalent to the requirement

V«§
Now that the wave equations have been found for 7 and 7%,
the same will be done for the electromagnetic fields :
\ =

where J” is given by eq.(1.13) plus a term Jg due to the ex-
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ternal charge which is supposed fixed ( Qe

=0).
eg.(2.2) and (2.4) in eq.(1.13) yields for J

0
(2.13) g

Introducing

2€(w- €K ) g2+ 26(w= EX) )g M+ 7%) +

+ i€¢0(';(— ﬁ*) - 262a0¢0(7(+ n*) + 3, +<9(‘713)

and, for the current J,

(2.14) g = —i€[g (=M% - (T-N*)¥6,] -2¢%ad, + O (7°)
0 0 0 L

These terms can be separated in zeroth and first order in7N:
(2.15) 3, = 2f(w- €k, )82 + J°
* 0 0 0 0

(2.16) 3, = 26(w=EX) V(N +%) + i€y ( 7= 1*) - 26%a,8]

(2.17) J =0

(2.18) ] = ~it[g 0= 7% = (7- 7*V8,] -26%a8}

These currents can be introduced in eq.(2.12) to give the fol-
lowing differential equations

2= _ - 2 e
(2.19) -7"Ay= 26 ( w=- EA, )4y + I

-
.

(2.200 a - VZag= 2e(w- ER )G (+ 1) + iedy( - TH) -
¢

2 2
2E a0¢0

(2.21) 3 -v%a = -i€[49(1- 1% - ( 1-198,] - 26%ad]

-38-
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In summary, the complete system of equations describing
a perturbed soliton in the presence of an external electrosta-
tic field is composed of the equations (2.6), (2.8), (2.9),

and (2.19) to (2.21).

2-2 Continuity Equation and Charge Conservation

In the preceding section, a set of differential equations
has been derived to describe the system in zeroth and first
order of perturbation. In this section, it will be proved that
the equation of continuity is respected at each of these or-
ders and that the first order contribution of the perturbation
of the charge is zero. The equation of continuity, which is
included in Maxwell's equations, is written

(2.22) 4 J

+ Y3 =0
dat

0

and must be true to all orders of the perturbation. At zeroth
order, it is obvious that eq.(2.22) holds as 30 is time=-inde-
pendent and J is zero. For the first order, one has first to

calculate

, ) .. | L 2 5
(2.23) d j, = 2€(w=-€A, )G (M+ N*) + icg . (N-N*) - 2& a.¢
4= o 0 1% (T olT-17 %o

¥_39-
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and

;o (2,20 Ui = -it[gP -0 - (- W8] - 2677 -a

Adding these two equations, one gets

i

(2.25) g_{ Jo * Ul = €4 (=M *) + 26(w- EE) ) ( N+ M*)

. 2 2
- 1E¢ov (1(' ’n*) - 4¢& ¢02‘2¢0+
+ 1E(7- 11778,
where the Lorentz condition has been used. To prove that these

terms cancel, one has to substract eq. (2.9) from eq.(2.8),

multiply the result by ie¢o and make the substitution for the

first four terms in eq.(2.25). The first two steps give

(2.26) iedy [(N-7*) - 2i(w- €Ky ) (T+q%) = ¥2(-7*) -
- WP (- %) + 2EwR (- %) + 4ica.Td,
- ER2(-qM + U B (1 -1M] =0

Making the substitution gives

: . = 222 _ ., 42 2
2.27) 44, + V. = lt{[ w2- 28wk + E°AS - U’ (g) +9 ) “‘o}

0
(1-7%

because of eq. (2.6). This completes the proof that the equa-

-40-




tion of continuity holds for the first two orders. Now, it
will be showed that the integral of j o over all space does
not add anything to the total charge q of the ux;perturbed
system. To do so, one integrates eq.(2.26) over all space

and uses Green's theorem,
(2.28) Sdovth-q *) ax = S (7-1*)7%8, a3x

plus a vanishing surface integral. This leads to

/

@29 1e{{n-1n [- - 7% 2tuky - %87 + 00 )] 4

+ [('ﬁ-ﬁ*) - 2i(w-€A, )(7;+7i*) +
+ “5”39"1} ¢0} ax =0

Again with the help of eq. (2.6) to get rid of the first brac-

ket and the fact that

(2.30) Swog- Vg a’x = 28 1#2 a’x = -28;«532-3 ax

- 2 S aog:z ade

. i

one ends up with

(2.31) cal_S[iE( - gy + 288y (w=ERy ) (] +7%)
t
- 26%a g2la’x = 0

or, using eq.(2.16),

d gjo d3x =0 " N
dt

-qdl-
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This implies that this integral is a constant with
respect to time. Before the perturbation happened, this

integral was zero and hence is always zero :

(2.32) Sjo a3x = 0

This could have also been proven simply by integra-

ting eq. (2.27) :

. 3 I .
(2.33) d \j, @x = =\ Vij a'x = S j-ds = 0 \
azgf’ % ) |

It should be remarked before going on to the next section
that eq. (2.32) imposes a restriction on the perturbation

( 7. 1*, 3, ) that must be respected at all tinme.

2-3 Conservation, of Energy

-t

Finally, in this last section, it will be éhown that

the energy-momentum tensor respects the conservation law
(2.34) 3, =0

More specifically, it will be\proven to first two orders




-

A woa
g R dee

in Tfthat - .
(2.35) 5, 1% 4 3, TOF = 0 )

where T00 is given by the expression for H (= TOO) in eq.

(1.10).

(2.36) 190 = 4 3%ad - 53xl ) 31R5 =348 ) + n( 550 o 3041
(38 - 3%%) + §od + isa (o - dgm)
PRV v ieac(4r - §4T8) + £2a2peg

+ U(3%4)

However, expression (1.12) for the momen tum P will not be
used for TOk because it is not symmetric. Instead, the ex-
Pression given by Wentzel {2} for the scalar part and the

one by Barut {Q]for the electromagnetic part will be used.

(2.37) 19% = (3320 - 303 akAj - 3585+ a¥Fere grikg
- ieA) (%350 - §aK6%) —ieak( Goro geg |
+ ZEZAOAké*Q
Now, using eq.(2.2) and eq.(2.4) for §, separating A, in
its different components and keeping only the terms of

zeroth and first order in'?, the two last equations become

Ok 1Fy k k v o - k 3 k2
(2.38) T = 3R, (3 35 73430 £ (Y+ 103~ 26( w- ER))a’s]
* i (o= £ Ry [(17-7)9%g, - asoa’f( T*-7]
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and

(2.39) 190 = % |Sfy] + a‘io( dal-aly + Pafqe 70 + W28
+ 198012 4 i (w- B4 (-7 - Zewh R
- 2twa 2 - 2twi ¢(; T+ %) + T8 (T +7 %)
+ PRAL + 2¢ Aoaogso T A¢O('>7+73*)
+ U + U B T+ )

Putting these two last expressions in eqg. (2.35) yields

for zeroth order

(2.40) . 3 (7% + 3, 7% =3[ y a2+ (w-eKy 2R +| Ty 2
+ugh] +3,00)

which clearly gives’
&

0 0k _
(2.41) 3,7+ ak'r“) =0

)
because all the terms are time-independent. At first order,

the proof is more involved. It is easy to obtain

2.42) 3,1 = {-ala'Ry ¢ 3MEPhagr [w? - 2uE) v 7R Ao+
-

(0

U' (8,)] ¢0< 7+ 1*) - i(w- R )¢0 )

Y

- 2twaggl + Vb, V( 7+ 7%) + 267K a0¢0 }

+{a3a ¢ Tay 9,72 + 33K 3%, -3,29)
(fé+‘7}*)v 8, - y(v,m; W &, - 2 (- e Xy
2 %% - ilw-eR) [(*-1)1VP8 - g PP (q*-7 )]
+ L8 (TR [ Cq*=7)T8 - FTC 7*-1 )
26 (w-£Ky) g7 a + 26%8%2 VR ]
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. "Obviously, the second term of the second bracket is

identically zero because they are antisymmetric in j and k

and that these two indices run over the same values. It can

be seen that the terms in a_ and V.a will add up to zero by

means of the Lorentz condition. Then, eq.(2.42) can be sim-

plified to

(2.43)

0¥
Iy Ty

= (7+ 10 (wh 2008+ 782 + U (Bd) - 0P)g,

~i(w- R (T*-T)d; - i(w-¢ &)

[Cq*-q 1V%8- 6,7 (-] - 26 (w- €K )a 782
+ 1E(TRY) [ (y*=1) ¥y - BT 7*=77
4 26%2a. 9 + (3 + Vag) - (7K

+ (W)« (V2 + 77-2)

To solve this, one can replace ( -V2¢0 + U'(¢§) ) by

using eqg.(2.6) and can use equations (2.18) and (2.24) to

replace the third and fourth terms. After some manipulations,

this yields

(2.44)

o -

oy
ay T(l)

=204+ 7% (w- X)) %8, - il w-aio)¢0(f*-ﬁ )
v (w- ERIY .1 + 28(w- Eio)g'-wg
- 28(w- ER)aggl - (VA))- ] - 2€%45a VR,
- 28(w- eR)a. 782 + 26%2a TR + (3 + Ta)e
(Tay) + (D) (<7-Ta + 77 a)

\ )

~-45- .




which simplifies to
ov C o, = .2 -1 = :
(2.441) 3,7 "= 2(N+ N*) (w-£R)) g + €77 (w- k) Y]
| + (w= €K [ gy (T-7%) - 262,82
- (VE)ed + (P (e + Pxb )0

The last term comes from the relations

“:V L]
(2.45) -e = a + Yao
and

(2.46) Uxb = UxVxa = VY.a - ¥-a |

To simplify eq.(2.44) further, one can use eq.(2.23)
to replace the third term and get after some ‘gimplifica~-

tions

@41 31 = g w-gR) ( L+ d o) - (TR i+¢-xB)
- | ‘

" The first term is zero because of eq.(2.27) and eq.(2.47)

becomes
oy ' : o dun.
(2.48) 3T = (PR )-( ]+ e - Uxb)

which is equal to zero because the second parenthesis is

just one of the Maxwell's equations :

(2.49) YxB = J + 1:;

sy




Hence, it has been proven that the sttem respects
the principal conserivatio;x laws. That will allow us to go
on a new approximation level by taking the nonrelativistic
limit of eq.(2.8) and to study the hydrogen atom. But befo-
re, it sixould be noticed that the momentum would not be
conserved if a Coulomb-like potential was used to represent

the external potential.

1= D. Loo, " Small Oscillation Dynamics of $pecia1 Models
° of Charged Scalar Solitons ", Master's thesis pres, at
McGill Univ., Sept. 1982, pp. 50-59
2—- G. Wentzel, " Quantum Theory of Fields ", Interscience
Publ. Inc., NY, 1949, p. 68 ’
3- A.0. Barut, " Electrodynamics and Classical Theory of
Fields and Particles ", Dover, NY, 1980, p. 118
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Chapter 3

1

Nonrelativistic Limit of the Nonlinear Klein-

— h Gordon Equation and Spontaneous Emission

v

L In this chaptér, the nonrelativistic limit of the nonli-
near Klein-Gordon equation in + (eq.(2.8) ) will be derived
and compared with the linear case. Then, the special example
of hydrogen will be taken for the rest of the chapter. Using
'a specific nonlinear potential and a trial function for ¢0,
L ‘ one is able to' derive an integral equation describing the

atom in the high charge density region. Finally, an expression

- for the Einstein's coefficient for spontaneous emission is
\ worked out, the atom radiating because of the time-dependent
terms.

|
3-1 Nonrelativistic Limit of the Nonlinear Klein-Gordon

. Equation

It would be good to first rewrite the nonlinear Klein-

‘ Go (don equation for the perturbed N eq- (2.8) , keeping the




terms in Ez for completeness.

(3.1) - 20(w-gkpq -[uwf +77- 20K + €%K2 - v (gd)]y
+ U2 (e %) + 2e(w-gK)ayd, + 2ifa. T, =0

The usual way (1] to reach the nonrelativistic limit
of an equation such as eqx(3.1l) is to discard 7( as negli-
gihle because it is not multiplied by a factor wor w2. To

make sure that this method can be applied, the order of
\

magnitude of A will be found ( T =Y e %) For this, on-
ly the following terms are kept, because of their superior

order of magnitude,
. . 2 2
(3.2) '7‘(-21w7z-(uu - K )7:0

where the /.42 term is the mass term included in U'[See ap-
pendix 2]. The frequency w has the following form for a
soliton defined with a confining potential as in section
1-3
(3.3) w =/4+S where 0/<7_8<<‘)L

. o
Using eq.(3.3) in"eq.(3.2), one gets a gquadratic equation
in{l whose roots are

(3.301) Q; =-§ .or N, = = ch+5)

Therefore, the rest of this derivation will be done

-49—
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for the case {1 = -§ which permits to use the usual procedu-
re for the nonrelativistic limit. Neglecting £A; compared
to w in the term multiplying ng%d U" in front of U'[ See

appendix 2], equation(3.1) begbmes
/

+EKO )] W-+Ea

it a-Y¢8,

w

R 2
_(3.4) i =[ -g% _E_G' g

vwoe

One can compare this equation with the linear Schro-

dinger equation for an electromagnetic potential which is

3 2 b 2.2 . 2
(3.5) i 2 -V° + eA, - e“A, + ie A.V + e A
§ .27 0 .27_9 _= X 7/_‘_]§

where the Lorentz gauge has been applied to the original
equation instead of dropping the Aoterm as it 1s done in
the reference [2]. These two equations are quite similar
but this will be more evident after some manipulations.
First, The 8252 term can be neglected in eq.(3.5). Second,

the nonlinear potential U' can be written under the form

[see app. 2]
(3.6) ' (g5) = p’ + V' (g]) A

2

2
p4aR Ji%

where V'(¢O) = ab(¢2 a-1 /4

Therefore, adding the w term in eq.(3.4) to this/g term




yields, using eq. (3.3), ~

- -3

(3.7 - +

w/-'z
7 e

Now, eg.(3.4) reads

= 22 g2y
-§ +eRy - E2RL 4 V' (B2) T+ £ayd

(3.8) ) ii( = [-F

—

2w 2w
+ it a.Vd,
w

In the linear limit, 1i.e. S going to zero as well as
V', the two equations would look alike except for the two
last terms of eq. (3.8). The first,f£ a0¢0' represents the
effect of the perturbed scalar potential on the unpertur-
bed charge distribution and-the second, a.¥¢,, the effect
of the vector potential on the unperturbed charge distri-
bution. No such things exist in the linear theory as the
electron is considered a point particle and, therefore,
has no inner structure. The extra A-V¢ term 1n eq.(3.5)
can be considered negligible as it describes the effect
of the vector potential, due to the movement of the elec-
tron, on the electron itself., This is obviously of second
order and this term can be neglected as g-Y”Y was in e-

quations (3.4) and (3.8).

/
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3-2 integral Equation for the Stationary States of the

Hydrogen Atom

-

It is possible to £ind a formal solution of eq.(3.8).
by using Green's functions, If the first bracket of the
right-handuside of eq.(3.8) is considered as an unpertur- *|

bed Hamiltonian, there will be a discrete spectrum of ei-

genstates.
(.8h) oy = [-T-8 ¢ Ry - £R+ VDY, =,
w w

where ﬁn is the energy of the nth eigeﬁstate and is a real
quantity. If the function G is given by the equation
(3.82) i39G -HG = £( x-x' ) &§(t - t' ) ,

ot

it can be written as

(3.83) G(x',t'x, t) = ~i8(t'-t) 2f ()P (x) exp (-in (t'-t))
‘ n

with
(3.84) ’7n()_c,t) = \Pn(x) exp(-in,nt)

(3.85) B(t'-&) = 0 t'<t

The effect of the two other terms on the right-hand
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side of eq.(3.8) will be to induce transitions between the
eigenstates of H. Therefore, the wave-function describing
the whole system is simply given by the following expres-

sion (3]: -

(3.9) "Y((i_t',t') a'r]i(g_c',t') +ERG(>_(',t';)_g,t)[(ao(:_g,t)
J
+1alx,t) Y] gy (0 ax dt

o

where 'Vi(x_t,t) is the particular excited state in which the

system is at the beginning and the index on the bracket

means that the fields a, and a are :dependent on ‘?7i for the
- {

0
first order of approximation. The scalar potential term a,
is the solution of

. 2 ,
(3.10) a, -v a, = 3

where the charge i is

(3.1 Jg=e[2(w=8r) (Teq*) + 1 0= T* - 2€ a4,
% , ,

From this, it can be seen that a, depends upon 7( as
given by eq.(3.9). It should therefore be calculated for
each state 7] n and thet summation would have to be carried
out. This summation would introduce an additional time-

it

dependence other than e . But, in the order of appro-

ximation mentioned above, a, (7]) will be replaced by a, (7]n)

in eq.(3.9), which means that a, can be separated in the
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following manner

(3.13) aj(n,x,t) = aj(x) 1Lt ag* (x) 10,

{

The term jocan then be written under the simplified form

(3.14) jo(nrl(rt) = €[2(W'E§O)Y -+ (};*’— 2E¢0 a(')} ¢ge-ipnt
+ c.c.
=35 e it | oc.

Hence, eq.(3.10) becomes, for each state ?(n.

(3.15) -Qzab -Vzac') = 3p

A}
IS

(3.16)  -plag* - Vzab* = 3

This 1looks like the inhomogeneous Helmholtz equation but it

should be remarked that jO depends upon ag- If one defines

(3.17)  q® =35(x) + 2€%kay =€, [ 2(u-€A) + Q| Y0,

eq.(3.15) reads

(3.1 [2+q® - 2¢%2 Jay = -g(x)

A similar equation for the vector potential is reached
{
\

from eq. (2.21).

(3.181)  [72+0? - 2£2¢g]g' = -h(x)
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where ' /

(3.182) a(n,x,t) = a'(x) e hE 4+ arw(x) ol

and

(3.183) h (x)= -if (B VY _-YVg,) + c.c.

These last equations cannot easily be solved except
if ¢g(§) is a constant, which is not the case. A trial
function, for ¢O respecting all boundary conditions is gi-

ven in appendix 1 by the equation (Al.8) :

(3.184) #y(x) = A(1- £2R3H™/2 :

with

(3.19) m = 2(1l-a)~!

The form of this trial function, squared, is given in
fig. (3.1) . It can be seen that the distribution falls shar-
ply as, at one hundredth of the total radius, the charge
density g2 is equal to about 1.4 x10% of its value at the

center.

At this point, it is possible to continue at one of

many different approximation levels. First, if one wants
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g, ( full line ) and different steps in the proce-

dure of approximation.




2, s B * el

to solve the general case, a computer should be used to

s,o]:ve the system of equations :

4

(3.20) a) -V2A0 + 2021~ 272 )M Ry, = 2tw(l - r

2.-2 e

-4\ m

R 4™ 37
b) eq. (3.18)

c) eq.(3.181)

d) eq.(3.9)

L

f/where Jg is the proton charge density. Another way would

be to work out a solution for the region around the center
where the charge is highly concentrated. Writing the equa-
tion for “‘O' using the approximation of the potential for

r« R [App. 2], one gets

(3.21) -V, - (w-EAy) 2, + (u? + 2/4252_ ) By = 0
R

¢

i

. - .. \ .
Now, if it is supposed that GAO is negligible compared with

W, one gets an harmonic .oscillator and ¢0 has the form

2
(3.22) g.(r)= K exp( ‘f r” ) r= (x|
o -

2°R K :constant
Using the expression for R given in appendix 1, one obtains

(3.23) 4, = K exp ( - 54164 r2§?%)

This 1last expressi‘on could then replace /\(l-rzR-z)m/z in

the system of equations (3.20) but the system would still

have to be solved with a computer.
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To be able to solve this prablem analytically, a rougher
approximation has to be made. One can think of a triangle to
describe ﬁg [see fig. 3.1] :

3.24) g2(x) = ¥(1-xz)
R

where k is a positive constant such that ¢§=0 at about six
thousandth of the total radius of the soliton. So, all the

terms depend only on the variable r and if one puts

(3.25) a6 = aa r-l

and chooses to work out the case 1=0, the wave equation takes

the form
(3.26) d2 aa + (QZ - 282\2)a6 + 252)‘?’1&5 aa = -g(r)
. d 2 R
r

Trying first to solve the homogeneous equation, one puts

‘i n
= x
n=0cn

(3.27) aa

9 ~

.which leads to

(3.28) ¢, = o®~ 2832 ¢ = kc

0 170
2
- 2,22 2
(3.29) ¢ (Qy %EJ;)cm-z + 2¢°k Cm-3
m(m-1) ' m(m—-1)R
or _ o

(3.30) ey = 2ky ¢ o+ _ky cp,’ 5

. m(m-1) m(m=-1)
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2,
where ' oo A
(3.31) k= % - 2642
« 3
and '
2

(3.32) k, = 26%

<

The result for the homogeneous equation is then

. 2 3 4 .
(3.33)  (af) = 0[,1 + kyx +% k,x® + %_ kX + o } .
3 4 5 :
+c X+ 1 kx7 41 kKox 41l KqeX 4 eeeen
1 3 I ©2 I 1 J
; 22 2m 2m+l
(3.30)  (ah), =, Z[ *_ky  x ] +1}
" a7lm(2m—1) 2m (2m+l1)
+"°l {i’[ k, 2l ko x2(m+1)1 +X
Mm(2m+1) 2(m+l) (2m+1)

<,

The last equation gives the solution of the homogeneous

wave equation for aa :tputting ¢, equal to 1 and ¢, to zero in

0 1
eg.(3.34) for the first 1ndependent solution (a0 H1 and c‘on;y

Qversely for the second solution (a )HZ . The use of the method

of variation of parameters will yield a particular solution of

.oma

the inhomogeneous equation (3.26) under the form :

X T . o
(3.35)  (afp = \ L(af(s)) g (a5 (x))yp- (a"(r))aia"(s))m}q(s)ds

(ag(s) ) g4 (a"(s)) yom (a"(s)) g d (a” (s))
.0 Hla-g H2 ds

H1l




(I

-

-

©

Finally, this leads to a complete analytical solution for a,

“r

L

of the form

o ifl,t

(3.36) ao(r,t) =
r

( (aa(r))nl + (as(r))Hz + faa(r))P)
+c.c

if eq.(3.35) is Solvable. Even im that case, the integral
involves so many terms that it becomes difficult to handle. So,

one has to go to a next step of approximation to find an ex-

<

pression that could be used in.eq.({.9). The only way the
added term in ¢g could let the equation (3.18) have a usable
answer would be that ¢§ equal a constant over some domain.
Then, the idea would be toc use a step function for ¢§ . There

are many ways to define this  step function. First, cone may
try | ' ;

(3.37)  #%(x) , 0<r<rR =~ “
. - o - 0 ' .
= 0 ) ryR:

1

The result of eq. (3.18) with ¢g given by the preceding expres-
@

@
s

,sion is ' 14

(3.38) ‘aj(x) = 1 \ expl ik l-x'l ) g(x) a®x + c.c.
! [x - x|

a

where

2

V’
(3.39) k2

- 2_ .02 2
= Q- 2t° <gy> L Oﬁr{R

>

G s G s b S bt b
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2 .12 n
k. =0 L r>R

s a5 2(mn i
g(x) EC<g) "0 2(w=¢tAs) 40V Y, 0<re<R
g(x) =0 ‘ rsR

. One can calculate the height pf‘the step by using the

values given in the first appendix and find

2

J

4yR™ 77 R R

(3.40)  <g2> =_3 Q gla’x = 0 C(1- £2R°%r%r = 6.9x10°8

This will give

(3.41) €2 <¢g> = 471a ( 6.9x10°% ) = 2.8x107% (ew)?
Ar ;
R
where
(3.42) €2 = 47a = 4na —— E2 = Aya = 0.09
5 B h=]
and , N

(3.43) R = 7.66x10% = 7.66x109 (ev)”
e 5.11:105

1 1

= 0.15 (ev)~

As(lz is of the order of lOO(eV)z , it is obvious that

the discontinuity in the charge distribution is negligible.

But this choice of step function does not represent very well

the distribution as one can check.

-
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(3.44) ¢g 1.25 10"7x¢§(r=0),

;sg = 4.8 1027x¢§(r=.63n)

The soliton is so spread out that the caiéulation ofﬁy
<i§> includes a large part of space where, practically
speaking, nothings exists. A more realistic approach would
be to confine the charge in the region up to about four
mean square radii r, or sixteen thousandth of the total ra-
dius. The field a

0
(3.38) and (3.39) except for the upper limit of integration

would still be described by equations

I3

and the value of <¢g7 which would be changed for

2 2 _ _ 2
(3.45)  «#y> _ 0.06 X\“ = 1.83 7.3 (eV) ,
"R
Prom now on, the calculations that will be made in this
section will be for the region mentioned in the precedent pa-
ragraph ( r< 0.016R ). For more precise calculations, the rea-

der is referred to the set of equations (3.20). So, the solu-

tion of the problem in this approximation takes the form :

' . . g3,
(3.46) a) aj(x) = z% (‘ exp(ik jx-x'l) g(x') d@°x' + c.c.
. ‘ v EexT|

LR

b) a(x) = exp(ik, x-x') h(x') ax' + c.c.

1
i

; Jx=x"

3£

1

c) o (%) = lg exp(-1|x-x'1) ( 2£w¢g + Jg(n_c‘) ) a

[52
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d)](g,t) =7, x,t) + £ Uatx, tix', ") il
4r

A

.ol
S""P‘“‘i =2 (gxm) +i n(x") Pradxr]
L .
y kl,xﬂ‘ ‘

B, (x') d’x' at*

where ( <¢§> )H has replacedfba ing and h and

-

2 2_ ,c2 2
(3.47) Xk = (1 - 2E° <B5>, R
and

2 2 2
(3.48) 1" = 2¢ <¢0>r

The equation (3.464) is the integral equation describing
the perturbed system. It can still be worked out by using eq.

(3.83) for G in eq.(3.464) ,which yields

- 0 i (=R er
(3.49) 9 (x,) = Py (xie) - %%'){n(g,t)S‘fn(x yel (Fa=f)

DR
[ Qexp(iki [x'-x"|) (g(x") +

b

n(x")» Pax]

*

i
w
J Igl_gu
(]

I

3

Bo(x') B (t-t') &x' at’

¥

The time integration simply gives

-i0 ¢ et m oo =l =i E/2 LA :
(3.50) S e Tmo (t-t')dt 2§lni e | sin k{}nit i¥ n

= ¢ i=

X

n




_where
(3.501) (0, = 0,0, .
) ' |
Finally, using equations (3.17), (3.183), (3.46c) and &

{3.50) in eq. (3.49) yield a final expression for .

(3.51) 1 (x,8) =Y, (x,0) - i:,z L [a e b2 44y 0,7
ni nei

.- %_%:dit A

where the coefficients of the expansion dn are given by

.okl

(3.52) d_ = f*n(;')' xp(ik_|x'-x") [ {Bix") |24 4 O
: n n - {g"p nl¥'-x L{ 27 12w 2
5 [EI_EH’
‘ ‘ - LQ’exE(-’l “in_iiuln') ( 2£W83(§'.)+ Jg(?svn))d3x'll]
X 2”\) ’§n_§lnoi

‘f'n(g_t")}+ li( B (x)T™9 (X7 = ¥, (x")V"8, (x")- i_]‘}
w -

d%*} g, (x') d’x: : :
% ( .
with ;ﬁ:j

(3.53) @, = ( <¢§>r)”.
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| These two last equations form togéther an integral equa-
tion which describes the perturbed system of a soliton with a
proton at its center. All this exhibits clearly the mutual
feedback between the field a,and the wave-function 7", which
i; a purely a nonlinear phenomenon. The time-dependence of
the terms in eq.(3.51) clearly indicates that transitions are

possible from one state to another without the presence of

any external electromagnetic field.

3-3 Einstein's Coefficient for Spontaneous Transitions

-

The explanation of spontaneous transitions in atoms with
the usual linear theory requires the quantization of the elec-
tromagnetic field. In the scheme developed here, it is possi-
ble to find an expression for such transitions without quanti-
zation. The time-dependent wave-function 7/ gives rise to a
current in the atom that can emit radiation. As one is inte-
résted to study the fields in the radiation zone, some simpli-

fications will be made possible. The step approximation for

the‘charge distribution of the soliton will be kept in order

-§5=

.
L - R s Al
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to be able to continue these calculations analytically. It
will be supposed that the hydrogen atom has a radius of one
sixteen thousandth (.016) of the total radius and that the
rest of the scliton is empty space. The vector potential is
given by eq.(3.46b) in that approximation. It will also be
assumed that, over a small region around the border of the
step, there a function connecting the upper to the lower

step of the ¢0~distribution in order to avoid discontimuities. o

The effect of this fringe on a will be neglected.

In the radiation zone,!gw becomes negligible compared
to |x| , the point of observation. Thus, a can be written,

for an atom in the nth state,

_s aitR . ! 3
(3.54) a = -ig e KT \@()_{') IRE g3 TiOE

47 r

-

where the dependence on is understood and where k is in the

direction of x . The following definitions have been used :
1) = P - P
(3.55) d(x') CINA SR I/
(3.;6) r = |x| r' = x|
It should be remarked that, apart from a factor, d(x)is

the transition current from the state Yn to the ground state

¢0 . In the radiation zone, the B-field is given by [4]




. g s

(3.57) B = VUxa = ik xxa = ik lalsin®

r

where 8 is the angle between a and x . To calculate the ra-

A

diated power, one must find the time-average of lglz which
is simply

(3.58) <|B|{?®>= uB|® = %’ 1a/® sin’0

L

because of the simple time dependence of a. The Poynting

vector is given by

(3.59) (s> = IB|® x

r

and the power emitted by unit solid angle,

dp o= rx-<S> = kk’r?ja|? sin’s
ae

o

(3.60)

Using eq.(3.54) in eqg.(3.60) gives the expression

11 . . '2

(d(x") elk X' L o) &k
&~ 5.2 - |

(3.61) (dP .= €2k231n29,
327

Clr"I8

Therefore, the total power emitted by the atoms is

OHBR ¢
B 3 ]
(3.62) P =§<dP5do« =§ £2k2 ‘g(é(a_c') B X' 4oy a x|?
[ &
32n o
sin28 dex

-

If all the atoms were in the same state of energy Qi .
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and fell to the ground state ¢0, the total energy radiated

by the system is given by

(3.63) E = Nﬂi

where N is the total number of atoms . Prom the two last

equations, one can deduce something very similar to the

-

Einstein's coefficient for spontaneous emission which gives

the number of transitions per unit time per atom :

L ok o ' ;
(3.64) Aag, = 2 =g2k2 o [lcdx) oEE 4 ccnaix 2
E 32#551 Oy 3
sin26 dex

J\;.\\
_where N has been put equal to l. Using eq.(3.55) yields a

more detailed expression.

oWk
. 2
2,2 k-x' -
_(3.65) Ag; = Bk S !S[(Boyvn i N Bo)el- x4 c.c. a’x
32n£7i S

sin26 dot ~

Carrying out the angle integral leads to

0

2,2 ,

%l

-4

(3.66) A.. = £k (aoy*h - vnggo)eig.s'

fi
l21rﬂi

+ c.c.] d3x"2 I

/

o "3

S

To get any further with this formula would need to sol-
ve eq. (3.51) in¥. However, this equation does not seem to

be solvable analytically. Therefore, equation (3.65) is the
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final step one can reach to express Einstein's coefficient
before having to do some more approximations or to do com-
puter work. It must be remembered that this expression was
obtained with a crude approximation for the unperturbed
charge distribution and that it should be checked by nume-
rical calculations if the results obtained from eq. (3.66)
would be similar to those obtained without doing any approxi-

mation.

Another point‘muat be mentioned about calculations that
could be done from eq.(3.66). One cannot simply replace ¥ by
known wave-functions of the hydrogen atom but must normalize
because of the following. The unperturbed charge of a soliton

is given, neglecting RO’ by

(3.67) 30d3x = stgaig ax = e

where e is the charge of the electron. Therefore, the current
is . -

(3.68) 3 = [-itig 0y, - y W) - 2622’ glle MM 4 coc.

ngég d3x ‘2m2( S;gd:,%x)z

which means that k_ and h (%) must expressed in terms of e

ey Yot e b

et T camre o



in eq. (3.66) before doing any calculations.

2 2 2 2
(3.69) k= () - e <gg>, ,
20? ({ 82 a’x)? . g
(3.70) h (x) = -ie( B9y - Y Y8, ) \ '
2w&¢§ a’x ' A .
I

This should permit to calculate numerically the coef-
ficient for spontaneous emisgion fram an excited state to the
ground state. This formular should be good especiélly for |
trangsitions starting from a p-state, the other ones being A
suppressed by an additional factor a? for each higher mul-
tipole. To calculate transitions from an excited state to
another, it would be necessary to keep the second order
termms in 7 to have currentsof the form Wn21pm . To finish
this chapter, let's compare the expression for the Einstein':

coefficient found by semi-classical treatment in quantum
1]

mechanics [5] for transitions to the ground state in the di-

pole approximation ( eig'f = 1) and in rationalized units |
2 P 312 )

(3.7 A, = en, |l ggy, ax|?

3r "y
with ours,

L0ipR
2 2 - T 23 2
i - - !
(3.72) Ag. e” ki ‘S K¢OY ¥ ?nY¢o) tc.c. d7x
IZmy 13 . /
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where equations (A2.15) and (A2.16) have been used to re-
place the integral of ¢§ and h has been put egual to 1.

Taking the real part of the bracket in eq.(3.72) and put-

ting knzj7n gives ]

.O&R
(3.73) A, = ezﬂi IS Re( BO‘Z‘VH - \PBYBO) a3x
3w ° .

2

As Vg, is zera between 0 and .016R , one finally obtains

DR
2

2 3
(3.74) Ag, = e o, Re ( B,V )d7x

r 0

1- L.I. Schiff, "Quantum Mechanics", McGraw-Hill, NY, 1968,
pp. 468-469 "

. 2= Idem, p. 179

3- Bjorken, Drell, "Réiativistic Quantum Mechanics®, McGraw-
Hill, NY, 1964, p.88

4- J.D. Jackson, Classical Electrcdynamics'{ Wiley, NY,
1975, p. 395 -

5- L.I. Schiff, Ibid.,pp. 413-414

9
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Conclusion

In the first chapter,general concepts about solitons were
given as well as a general theorem, the theorem of locali-
_ zation, whichopermits to determine if a given model really
describes solitons. Also, a general class of nonlinear po-
tentials giving rise to solitons as verified with the lo-

calization theorem was defined.

Once this. was done, a Klein-Gordon equation with a

nonlinear potential was worked out for a stationary state’ -

LN

of the system. Then, a small perturbation was -introduced
and the equation was divided in zeroth and first order dif-
ferential equations, the second order terms being neglected.

]
Relevant guantities such as unperturbed and perturbed char-

ges and currents were derived. This allowed to verify that
the continuity equation and the conservation of energy were
respected for the first two orders of the perturbation.

Also, charge conservation permitted one to express a condition .
to be satisfied’by the perturbed wave-function.

Then, the nonrelativistic limit of .the nonlingar Klein-

v

o

LN




This is a very interesting result because the spontaneous emis-

o~ ]
L

Gordon equation'was reached after some simplifications and | .
the comparison with the linear Schrodinger equation showed o )
that they differ only by the presence of the added nonlinear

term and by two terms,dué to the effect of the perturbed e-

lectromagnetic fielf on the wnperturbed wave-function.

Usiﬁg the fractional potential model and’a specific
trial function for the unperturbed';tate leads to an inte-
gral equation which described, in the nonrelativistic limit,
the behaviour of the soliton in its central region. As al- .

most the whole charge distribution is concentrated in this

region, 'this equation:-can be considered as describing the . .

atom, - -

It was possible to derive an expression which gives the
probability ofy transition from an excited state to the ground
state in absenée of an external field. This expression looked '

/ . . [
quite like the Einstein's coefficient for spontaneous emission

as was seen at the end of the third chapter. Similar expres—\
sions could be derived for transitions from an excited state

to another excited state by keeping the second order terms,

sion of light in an atom cannot be explained in linear quantum




mechanics except if the electromagnetic field is quantized.
[ 9

| 2 Here, the transitions take place because of the dependence

. e

of some of the potential terms on the wave-function itself.
. ’ These terms arise because of the nonlinearity of the equa-

s
e

tions. , :
In cofrlusion, this last result ind.:icv‘ates that the

description of electrons by solitons deserve[s, more study,
. as experimental facts can be explained by this theory and

> as unpleasant things like infinite self-energy are removed
from the theory. However, one can roemark that the spin is
('&‘ - not qxplairied by this mgdel. The two most evident way's to
'solve this problem- is to add the spin in the same manner
it was done for the Schrodinger eciuation, or to work on a
nonlinear Dirac equation. Along that last line,“ one can
refer to the work of Ratada[l] or to the work of P. Mathieu
and TF Morris that should be published in the near futu-
re. Another drawback of the model developed here is the
size of the soliton which is rather ‘large.\bne can hope
that-this is duélto the choice of the trial function and

<
o . this.isynot,a fundamental problem. Nevertheless, the model

1

* .~ .+ appears to have some validity in the low energy limit.

. B | . : !
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- quantities or relations that describe a soliton as its total
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Appendix 1
Important Relations and Quantities

&
In this work, there is no derivation of the important.
radius, its root mean square radius, its self-energy, etc.
All of this was done by Morris in one of his papers ‘-[1] with
the same starting Lagrangian (eq. l.1). Th;\potential he used

was f:he fractional one :
(Al.1) U(g*@) = b(g*e)? t<a<l
4 »
In order to be able to use his results, the same potential is

used in the third chapter.

The results derived in his paper are based on the stabi-
lity of a multiparticle system. This condition gives the De —
Broglie relation between rest mass and frequency and leads
to a formula for the fine-—structure constant. Considering N,

solitons of charge Qi with a small interaction, Morris found

b

for which only one solution exists. This implies that all

. =75~



charges are equal :

(al.3) Q.= Q

l <

If this value of Q is associated with Planck's constant, the
relation (Al.2) becomes the De Broglie equation

!

b

(Al.4) E(Q) = Q w(Q) e

\ . - ,
As the electrical charge is :tQ , the fine-structure constant

is given by

(AL.5) o= (£0)° \
47Q kS
Using extensively virial theorems to eliminate as many
parameters as possible, Morris established some basic rela-
tions which can be used to determine fundamental quantities
of the system. But in order to get results under an usable

form, one has to use a trial function for ¢0 which respects

the boundary conditions

7~

(Aal.6) ¢0~ 0 and ¢0 - 0 as r » R

2y

where R is the total radius of the soliton, and also

(al.7) d g, = 0 at r=0
dr

a

The trial function is found to be

(Al.8) gy = A(1 -y y1/1-a with y= r/R

~76~—
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This gives the following interesting results

(Al.9) a = 1 ~ 4«2 l-a

2 2=
b= u?( 440 )
o M p

(Al.10) Radius of the soliton
R= (3 )! 77 =~ 560 rB
2}1« /
(Al.1ll) RMS radius )
r = <r® 303r)Y  « Rm 2.3r
c P e
Rl

(A1.12) Electrostatic energy of the self-field

I - Zgu (£Q )za-. 5.3 eV
”.

where P is identified as the inverse Compton wavelength

B
SF

E.,= sgsizid
W

can be seen in

(Al.13) E *’/(.2

1- T.F. Morris, Hadronic Journal , 1980, vol. 3, p. 1360

N
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’ . Appendél\izf\ . '
Fractional Potential Model

¢

The fractional potential is written under the form

q

(A2,1) ..U(g*d) - b(g*e)°

/
|

where a and b are parameters whose values are given in the
i

first appendix. It should be remarked that a differsfrom 1

Ey a quantity proportional toc(z which is very small (order

of 10—5). Therefore, for the unperturbed state do, one has

(A2.3) U(¢g) - bsz%a \

2(a-1)

(A2.4) U'(gl) - abgy , i

<

2(a-1)

* (a2.5) U"(g2)d) - ala-1)bd;

It is obvious that the last term is negligible in front
of the others because of the factor (a-1). '

As the soliton is highly condensed at the center of its
own distribution, it is of much interest to describe the sys-—

tem near the origin. To do so, the trial function introduced
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in the preceding appendix will be used.
(A2.6) g, = (1 - y2yi/i-a for r<R

= 0 for ‘'r>R
with

(A2.7) y =1
R

4

The constant A is found to be (1]
(a2.8) A= [ __3 ]” ]
or with Q=h=1, ’ _ .
(22.9)  h= ( 2%r«r? )
and the units of \ are [l]‘l,’ or [M]
From equations (A2.4), (A2.6) and (A2.9), the expression

for U* (¢g) can be writen

% o RZ yl-a (1 - YZ)-2‘1'

(A2.10) U'(#)) = ab(2
Using eq.(Al.9), this last expression becomes

(a2,11) v (g) = 270, PR )17 (1l 22

As (l-a) is Very‘ small, the quantity in the first could

" be put equal to 1 as long as it does not carry any units . 1

=

P4

K
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The quantity in the first parenthesis does not carry units

( [M] & {L] =l shen h = 1) and hence, one can further simplify

2 -2

(a2.12) U' @) = WL v2 )

Q0

For the region of few Bohr radii around the origin, whe-
re more than 99.9% of the charge of the electron is concentra-
N
ted , the following relation is verified

(82.13) y << 1 for r<lO 1

LY

This permits to keep only the first two terms of the develop-

ment in series of the parenthesis in (A2.12) :

(A2.14) U’ (563) '—=/u2 (14 2y%)

Therefore, the potential is felt by most of the electron as
an harmonic oscillator potential shifted by a constant quan-
tity /12.

’

It can be remarked that the expressions for do and U'
are the same for both cases, i.e. soliton free or bound in an
atom. The difference will be in the value of R that should be
less in the second case. One should also note that ¢0 is not

normalized to unity :

L
(A2.15) ng‘é(}_{) ax= M3 g a-y2 1™ &3y = k(1)
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where'K(l) represents a constant with units of length : i

(A2.16) K(1) = ( x(1l-a) )1'5 R | -
—5

o RNt 24

1- T.F. Morris, Hadronic Journal , 1980, vol.3, p. 1375
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