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AbstJ-act 

The stfldy of radiative iransfer in multlfractal clouds is of great interest, an 

important application bcing to Global Climale Models. In this. work we develop 

a formalism analogous 10 the multifractal singularity formalism for 

under!,tanding photon scatwring statistics in radiatIVe transfer in muItifractals, 

and lC' .. t the results numerically on lognormal multifiractals. Although the results 

me only exactly valid in the th id cloud I.ÎInit, the approximation is found to be 

quitc accuratc down to optical thickncss of !,.:::: 1 _. 10, 50 the resulls may be 

widdy apphC"able. Furtherrnore wc !,how the possibility of "renormalizillg" the 

rnultifractal by rcplacing it with a near equivalent homogeneous m(~dium but 

with a "renormalizcd" optÏC'al thickness r l/t 
I+C1) where CI is the codimension 

orthe mcan singularity orthe cloud. We argue that this approximation is likely 

to continue to be vallid for multiple scattering, and is also compatible with recent 

rcsults for diffusion on multlfractals. Finally we analyz(~ cloud liquid water 

content data and estimate the universal multlfractaJ mdiœs. We find that the 

foIcaling is rcspccted over the whole range Sm - 330km and that the cloud can in 

fact be rcasonably dt:~scrirn!cI by a lognormal multifractal. 
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Résumé 

L'étude des transferts radiatifs dans les nuages de type l1lultiflactal est d'un 

grand intérêt, particulièrement en vue de des conséqucnces pour les Modèles de 

Climat Globaux. Ce mémoire présente un formaltsme analogue à cclui dcs 

singularités multifractales afin de complendrc les statistiques dc la létro

diffusion des photons (transfert radiatif) dans un multlfr:lctal. Lcs plédict ions 

sont comparées aux résultats numériques obtenus avec des l1lultifractals log

normaux. lVlêrr.e si les résultats ne s'applIquent qu'aux nuages optlquclllcnt 

épais, l'approximation s'est rélévée bonne pour des épaJ~~curs optiqucs de 

l'ordre de 't"'" 1-10; ainsi ces résultats sont appltcables as~e" généralemcnt. De 

plus, nous montrons qu'il est pOSSIble de "rcnormaliser" le Illultlfra.:tal en le 

remplaçant par un milieu homogène pre~que équivalent mai~ ayant une 

épaisseur optique rl/(l+C1) où CI est la co-dimcn<;ion de la ... ingularité 

moyenne du nuage. Nous prétendons que cctte approxlJnatlon devrait être 

valable pour la rétro-diffusion multiple et qu'elle est compati bIc avec les 

résultats récents de diffusion dans les multifractals. FlIlalcl11cnt, nous 

analysons les données de quantité Iiqu;de d'cau dc~ nuages ct c~tl!Jl(lOS les 

paramètres multifractals fondament?ux. Nous trouvon~ que l'invanance 

d'échelle est respectée pour une fourchette de Sm à 330km ct que le nuage peUl 

raisonablement être décrit par un mulllfraclai log-normal. 
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1. Introduction 

1,1 COlltext 

The problcm of "pecifying the radIation field ln an dt11lo~phelc \\hldl ~rattcr~ I1ght 

originated in LOld Raykigh'~ mvc~tlgation~ III 187\ on the IlluminatIOn and !10 \,I1I1:1llnn 

of the sunlit sky But the fundamental l'ql/arlOn of lran~fer go\'l'rrllllg RayleIgh'., 

particu\ar probicm had to wait "'l'venty-flve year~ for thel\' fllrlllulat\()11 ,lIId ... t1\UIIOll 

(Chan(ha~('khar 1946). Thc subJcct wa., glven a rre~h ~!illt undcr 11101 l' tl,lel.lhk 

condi tions, whcn in 1905 AI thur Schu ... ter fOl IllU\ ated (\ problem 111 1 adlal 1 ve Il an~rer III an 

attempt to explain thc appe<~;~~flce of ab~Olptlon and CI11I~ ... lOn 11llc~ III ... tclla[ "'pcel[a 

(Schuster 1905). Since Ihat time the ... ubJert of RadiatIve T[dll',fC(' ha,> hccn Iilvc""lga'cd 

pnncipally by astrophy,,[mt~ and geophy ... [ci~ts, thollgh it abo gCIIl'latcd 1IItCIC ... 1 10 Ihl' 

physics commulllty (c g. in thc theory of Ihe dif fu~ IOn of rH.'lItIOn~) 

The problcm of dctermintng raùlative propeltlc~ of IIIholllogCllCOll'" c1o\ld~ IS 

notorioll~ly difftClllt and [l'main... an active f[cld of re ... c.m:h. In fact, ail p\()hlclll~ that 

require a Icah~tlc account of thc erfect 0/ ladlatlon rn a r/oudy al/llo<.,phclc !Ill1"" he 

concerned wIth the ~patJaI (and temporal) vanah[hty of cloud ... and the Impact of tlm 

variabIhtyon the radIatIve procc~s of mtcrc~t. Many applIcatIOn ... rcaddy COIllC to IIIl1ld, a~ 

for ex ample global climate I110deb whlch rClJlIIrc the [aùl .. ltlvc hudgd of ... ollle volumc of 

atmosphcre. Mo~t numellcal meck:l, of the ralhatlvc cfreet of cloud .... on Ihe Earth'~ 

c1imate have a ...... ull1ed plane-parallcl gcomdry and thu ... entad "'Igndlcanl CI 1 or... Olher 

applicatIOns are rcmotc .... en~lllg ~tudic ... of cloud ... and p[ecipltation. 

The term "lllhomogcncoll~ c1olJd~" i ... to be takcn III a very broad ... cn ... e Wc 

include cloud fields as weil as isolated IIlternally homogcncoLl~ d()ud~ of fïmle hOI il.Ontal 

extent. In fact Ihis field of Ic ... carch ha~ bccome known a ... "multldul1cn .... IOnal" • radiative 

transfer and exaetly complement~ the weIl dcvdopcd Iheory 0/ plane-paralll'lmcd/a wlterc 

radiation field and/or optleal propertIc<" vary tn the vertical only hee Lel!ohlc 1977 for an 

cxten~ivc rcview). The upcomtng di~ClI""""I()n [<, rc ... tllctcd tn the hOi i/olltally 

inhomogeneom atl11o<"phcle w herc wc l'an dl ... t mglll'>h tlll el' d d-fcl ent a ppl ()adH~<". the 

non-fractal, the f\actai (llIol1ofractal), and the II1ultlf[(\etal. 

The study of fractal ... ancllllullifraclab 1 ... a relatlvcly ncw fIeld wlllch In rl'cent 

years ha~ gained growrng recognition and a 1Il1l ... hroomrng Intcre ... t, partlcularly III phy .... ic., 

and geophy~ics. Geophy~lcal ~y~tcm~ <"lIch "., thc atmo~pherc cxhlhit cxtrerne vanahllIty 

* ln the followmg cali cd "hontontally Inhomogcncou~" to avold any pO~~lhlc <..onfu~lon wllh the Icrm 
"multIple (fractal) dlmcn~lon" 



over range~ of scale which can exceed factors of 109. The dynamical models of these 

~y~tem~ u~ed for ex ample in weather prediction, are typically 5Icale invariant hence in 

principle can admit multifractal ~olutions. A growing body of theoretical and empirical 

work .:, ~howing that gcophysical ~ystems do mdeed obey scaling symmetries over 

comldcrahle range~ (for reVlews, see Korvill 1992, see also papers in Scholz and 

Mandclbrot 1989, Schertzer and Lovejoy 1991, Lam and De Cola 1993). Thanks to 

advance~ m ~caltng ideao;, partlcularly multifractals and gcnerahzed scale invariance, 

models can now he ..,ufflciently realistic that they can be used for simulating various 

physical proce~~es including transport phenomena. 

Bcfore we rcview sorne of the most important contributions to the radiative 

transfer problem in mhomogeneous, scale invariant media, a very concise summary of the 

non-fractal approaches is glven here (for a more detailed overview see Lovejoy et al 1990 

or Davis ct al 1992). Although the distinction is somewhat arbitrary, non-fractal 

approachcs can he dlvlded into two categories: 

ln the fir~t category, whlch is the most extensively studied in literature, c10uds are 

mternally hOl1logeneous bllt non plane parallel boundary conditions impose horizontal 

gradient~ in the radiation field. Sorne researchers investigate simple geometrical shapes 

(e.g. cubes, cylinders, spheres) by various methods (e.g. Preisendorfer and Stephens 

1984, Stephens and Preisendorfer 1984), others study the statistical mixture of these 

noninteracting cloud fields (e.g. Ronnholm et al. 1980, Welch and Zdunkowski 1981) 

and also do re~carch on gcnume cloud fields, modeled by one and two dimensional arrays 

ofthe~eentities (e.g. Wendling 1977, Titov 1980, Davies 1984). 

The second category conslsts of models in which the internai optical depth field 

varies in at lea~t one horizontal direction. To mention one of these physically more 

relevant contributions, Stephens 1988a,b offers a general formalism and discusses 

variabllity over many scales in connection with (two-dimensiona)) satellite imagery. 

Startmg wlth Gabriel et al 1986, fractal models of clouds have been used to 

IllnTIerically ~tlldy the radiative properties of extremely variable clouds. These allthors 

~howcd that ewn !o.patml variablhties confined to a range as small as a factor of 32 would 

in principle he ~ufflcient to explain the apparent large discrepancies (factors of 10 are 

citcd) bctwccn ill situ and satellite estimates of cloud amount (the "albedo paradox"). 

Sincc then, fraclal models have been used in a series ofpapers (Lovejoy et al 1988, 1990; 

Davis el al 1988, 1990; Gabriel et al 1990) who used simple fractal ("W') models to 

invcstigatc the "bulkt' properties such as overall mean a1bedo and transmittance of clouds. 

Theorctically and numerically it was shown that one obtains anomalous scaling for the 

transfer associated with optically lhick fractal c1ouds. Since in the latter the exponent is 
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smaller than one, the scaling exponent for homogeneous clouds, the gencral fcatures of 

heterogeneity is the tendency to make the atmosphere more transparent (and less reflective) 

compared to an equivalent uniform atmosphere. The saille allthors also showt.'d thatthe 

diffusion approximation to the transport in optically thick fractal clouds may he poor: 

radiative transfer and diffusIOn may, but do not ncccs ... anly, yicld the same anomalous 

transport exponents. 

Note the basic dIstinction between optically thick and optieally thm reglmes. 

Assuming that the mean cloud den!\ity is equal to one, and the external scale of the cloud IS 

equal one, the mass extinction coefficient Kc can be used to charactcnle the optieal 

thickness and the transfer properties. The mass extinction coefficient I\c=( l-g)K'dnn 

(where gis the asymmetry factor, g=O for isotropie scattering) is the sum of the scatlenng 

coefficient I\s and the absorption coefficient I\a. However, in the following wc will 

assume non-absorbing c1ouds, therefore the mass extinction coefficient IS the cross ~ccti()n 

per unit mass of the scattering particles, the water drop lets. Whcn I\c« 1 (the thin limit) 

the spatial variability of the cloud is unllnportant, whereas when 1\c»1 (the thick limit), it 

completely dominates the behavior and the homogeneous (plane parallel) and fractal 

results will be completely different, algcbraically divcrging as I\c~oo. Sincc real c10uds 

are at Jeast moderately thick, it is obviously important that radiative transfer propcrtie!\ he 

inferred from cloud models with realistie scaling properties. 

Maily other researchers have now used fractal or multifractal cloud modc\s for 

modeling radiative transport, although most results so far have been numerically delÎved. 

Cahalan 1989 has used Monte Carlo methods to ~tlldy moderately thick (Kc:::: 1.5) 

multifra~tal c10uds allowing variabilily only in the horizontal· the optleal dcpth wa~ taken 

to be constant in vertical columns. In keeping with his modest thickness, he found ~mall 

increases in transmittance (10-30%) compared to equivalent plane parallel modcl~. These 

mode st effects are reproduced in other thm cloud simulation~ u~ing a dlfferent monofractal 

model called the "bounded cascade" mode! (Cahalan 1994). Similarly Barkcr .,"d Davies 

1992 have used thresholded two dimen~ional fractional Browman motion monofractal 

c\ouds to model numerically (Monte Carlo) the overall albedoe~ of moderately lhick cloud 

fields (1.4~K'e~7). They inve~tigated the bulk radiative rco,pon~e a~ a funetion of the 

scaling exponent of the modeb, finding hlghly signiflcant effect~ ao,~ociated with 

horizontal variability. Davis ct al 1991 (see Davis ct al 1993 for a ~ummary) wao, the fir~l 

to go beyond "bulk" flux estimates by numerically ca\culating dctailed radiation fields. 

This was do ne on large (t024x1024) two dimensional multifractal cloud modcl~ using a 

c1ass of universal multifractals (lognormal). For cro~s validation purpose~ both Monte 
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Carlo and relaxation techniques were used and the behavior was examined with Ke 

incrcasing up to 200 (weil into the opticaHy thick regime). 

Multifractal c10uds have the realistlc prnperty of being highly variable even at fixed 

~patial scales. Thb means that obtaining reliable and efficient numerical algorithms to 

model the transfer is a nontrivial lask. ln order 10 overcome sorne of the limitations of 

both Monte Carlo and relaxation methods, Borde et al 1993 developed an accurate semi

implicit numericaJ !>cheme and used il to investigate the relation between the singuJarities in 

the radiation field and the cloud optical depth. Preliminary results include evidence that 

thcir multifraC'tal indices were related to each other in a theoretically predlcted way. 

Finally, by neglecting the correlations between more than two success~ve scatters, Evans 

1993 has modified the backward Montc Carlo technique so as to obtain direct estimates of 

ensemble averaged opticaJ properties of lognormal multifractal cloud fields. In the 

relatlvely thin c10uds he studied (Ke=0.6, 1.5), he found this approximation was quite 

accurate. 

J.2 Outli'ie 

White the numerical approaches discussed above certainly provide indispensable 

tools for undcrstanding radiation in scaling system5, in themselves they are insufficient to 

re!ololve the two basic physical problcms: the statistical relationship between the radiation 

and cloud fields (as functions of rcsolution), and the scattering statistics describing the 

random trajcctories of individual photons. While wc have already mentiûned sorne first 

sleps in thcoretieally addressing the former, Lovejoy et al 1990 and Davis et al 1991 have 

obtained sorne initial results concerning the latter. Unfortunately, white their results 

(mostly direct transmittance statistics) apply to arbitrary multifraetal clouds, they are only 

valid in the asymptotic limit involving small distances (in the notation to be introduced 

below, the large Â Iimit). 

In this work, we overcome the limitations of this approach by considering 

asymptotically thick c1ouds; taking K'e large and allowing the distances to extend over t:.e 

entire available range. Although the results • will he specifie to a special type of universal 

lTIultifractal (the lognormal multifractals mentioned above), preliminary numeries indicate 

thatthe same type of approach can be eonsiderably generalized. Furthellnore, the large k"e 

rcgimc turns out to be attained for quite low Ke (as low as 1-10), so that this does not 

appear to be a serious drawback. In any case, the extensive understanding of the 

sC<lUering ~tatistics obtained below sheds Iight on the basic processes involved. 

• Thc baSIC rcsults wcre announccd in LoveJoy et al 1993. 
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We justify the model of a lognonnal multifractal cloud model by analyzmg cloud 

Iiquid water data. We are able to demonstrate an excellent scaling of the FIRE (Firsl 

ISCCP Regional Experiment) data over the entire range of 5m-330km. Furthermorc. we 

estimate the universal mullifractal indices. These results inspire confidence thal lognomlal 

multifractals are indccd an appropriate model to dcscribe real cloud liquid water content. 

As the ultimate goal W~ try to provlde a relationship betwccn extrcl1lely varillhle 

random media, such as clouds, and the radiation field. A beuer under~tanding of this 

relationship is of nmdamental importance for radiation budget calculations. c1imate modcls 

(Rarnanathan et al. 1983, 1989), and among others, satellite irnagcry of c10uds (Gnbriel ct 

al. 1988, Tessier et al 1993a). 

The outline of this work is as follows: The next chapter establi~hes thc basic thcory 

of multifractals and radiative lransfer as weil as il devclops our thcorctical approach 10 

describe the scattenng statistics in multifractals. The results arc chcckcd in chaptcr 3 by 

numerical simulations and the range of validity is estimatcd. Our lIndcr~tanding of thc 

scattering statistics leads in chapter 4 to a potential technique of rcnormalizing the 

multifractal clouds. It effectively reduces the multifractal transfcr problem to a standard 

hornogenous transfer problem, but with a drastically rcduccd "cffectivc" extinction 

coefficient. We argue that this approximation will he cvcn valid in the multiplc scattcring 

case and show how this result can bc understood in the context of sorne rcccnt result!l on 

diffusion in multifractals. Finally, in chapter 5, wc analyze empirical cloud liquid water 

data with the aim to experimentally test the validity of the multifractal cloud model and 10 

estimate the universal multifractal indices of real cloud data. Ali re~ulls of arc then 

summarized in chapter 6. 
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2. Basic Theory 

The object of thi~ chapter is to establi~h the basic concepts of multifractals and radiative 

tran~fer which will then be used to develop the "singularity formulation of scattering in 

multifractals" which relates extremely variable random media, such as clouds, to the 

corresponding radiation field. 

2. J Scaling and Fractal Dimension 

Before talking about multifractals it might be helpful to recapitulate the two 

csscntial idcas bchmd fractals: scaling symmetry and the fractal dimension. The easiest 

fractal one can think of is the Cantor set (1883), iIlustrated in figure 2.1. Il is generated 

by !o.tarting off with the unit interval and iteratively removing middle (open) sets (Ieaving 

the cndpoints as shown in the con~truction). When we apply this "cascade procedure" ad 

mfinitum, wc arc left with a set of points C = lim C k (where Ck is the set at the kth step), 
k-Joo 

which is the Cantor set. Each piece of the set is, when enlarged appropriately, similar to 

the whole. This characteristic is called scale-invariant or simple scaling. Note that the 

!>elf-similarity in the deterministic Cantor set is not a necessary requirement of scaling. In 

general, as most observations in nature show, when talking about scaling one rather 

thinh of !>tatistically self-slmilar objects (e.g. coastlines, rivers, lightning). 

Unfortunately in geophysics we are rarely interested in geometrical sets but usuaIly 

much more intcrestcd in scalar fields (with values at each point) that arise in nature as a 

rcsult of nonlinear processes. However,fractal dimensions are still useful in "counting 

the occurrence of a given phenomena". If the phenomena is scaling, then the number of 

occurrences NA(l) (at resolution 1 in space and/or time of a phenomena occurring on a set 

A) follows a power law· : 

2.1.1 

where Lis the fixed largest scale and OF is the fractal dimension, generally not an integer, 

and is not to be confused with the topological dimension. So, for example, the fractal 

dimension of the Cantor set is DF = :~:; whereas its topological dimension is Otop=O. 

Let us .. Iso dcfine .. fractal codimension c, which becomes important once we talk about 

multifractals. The codimension of a fractal set is simply the dimension of the embedding 

• Hcrc and bclow the sign "'" mcans equality wilhlO constants and slowly varying factors such as 
logarithms 
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space D (the topological dimension of the space in whieh the fractal is emhcddcd, c.g. for 

the Cantor set D::: 1) minus the fractal dimension: c=D-OF. 

Co 

Cl 

- C
2 

C
3 

Figure 2.1: The first three iteration steps of the construction of the Cantor set. 

-- -- --

2.2 Multifractal Clouds 

Geophysical sealar fields induding cloud fields (chapter 5 below, Te!o.!o.ier ct al. 

1993a), temperature and wind fields (Schmitt ct al. 1992, Schmitt 1992), rain (Lovejoy ct 

al 1987, Tessier et al 1993a), topography (Lavallée et al. 1993), as weil a!o. ice (Francis ct 

al 1994), pollution (Salvadori et al 1993) and the roughness of the ocean surface (Tessier 

et al. 1993b), have been analyzed over various Ume and scales and have hcen !o.hown to he 

multifractal in nature. The multifractal models lIsed herc were f!fI .. t dcvelopcd il!.. 

phenomenological models of turbulent cascades. Plesumably in hydrodynamic 

turbulence, the goveming nonlinear dynamical (Navier-Stokes) equations have thrce hasic 

properties that lead to the cascade phenomcnon: 1) scaling symmetry , 2) a quantlty 

conserved by the cascade (energy fluxes from large to ~mall scale), and 3) localness in 

Fourier space (i.e. the dynarnics are most effective between neighboring seales). Ca!o.cade 

models are relevant in the atmosphere and in particular in cloud~ sincc the underlying 

dynamics is of hydrodynamic turbulent origin. Thcre is now a whole series of !o,uch 

phenomenological models: the "pul~e-m-pulse" model (Novlkov and Stewart 1964), the 

log normal model (Kolmogorov 1962; Obhukhov 1962; Yaglom 1966), the wc Ighted

curdling model (Mandelbrot 1974), the (3-model (Fri!..ch ct al. 1989), the Cl-model 

(Schertzer and Lovejoy 1983), the randoln (3-model (Benzi et al. 1984), the p-model 

(Menevcau and Sreenivasan 1987), and the continuou!.. univer!..al ca!o.cadc models 

(Schertzer and Lovejoy 1987b). 

The key assumption in these phenomenological models of turbulence i!o. that 

successi ve steps define the fraction of the flux of the liquid-water den~ity dlstributcd over 

sm ail seales. Note that it is dear that the small scales cannot be regarded as adding 
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dcn~ity, they only modulate the density passed down from larger seales. The hypothesis 

is that the fraction of the den !lit y flux frorn the parent structure to an offspring is 

distributcd in a ~calc InvarÎant way. If the re~ultmg sealmg field cannot be eharactenzed 

Ly a unique fractal geomctric set, but by an infinite hierarchy of them, it is called a 

multifractal (a terrn comcd by Parisi and Frisch J 985). 

This cascade procedure is cas)' to ilIustrate in the so called "discrete cascade 

modcls" whc!rc the scale~ are discretized and a discrete multiplicative process de termines 

the dcn!llly PÂ. (at seale À --1) (Figure 2.2). A large structure of characteristic length equal 

to Xo and dcn~ity Po cqual to 1 is broken up into sm aller substructures of characteristic 

length XI =xolÂo (Âo::2 is the scale ratio between two consecutive steps in this particular 

cxample). The dcn:,ity in each substructure is multiplicatively modulated by a random 

factor (kecping the O\'erall ensemble average fixed < p), >= 1. When this process is 

rcpcatcd (the overall ratIo À is increased) larger and larger values of p;. appear, 

conccntratcd on a ~maller and sm aller length. In the small se ale limil, the result is highJy 

variable. 

In this place we want to c1arify the dimensions of the most frequently used 

variables in thls text: In the following mostly the nondimensionël variables (À, x, p, K, 

'tp) will he used: 

variable dimension pllysical interpretation 

L ln external scale of the cloud 

1 m distance within the cloud 

x =l/L - nondimensional distance within the cloud 

À= LII - Scale ratio corresponding_ to 1 

A - largest scale ratio of the cascade, corresponding ta the 

resolution of cloud variability 

Pdim(X) kg/m3 liquid-water (LW-) densit~ at a Eoint x in the cloud 
p(x)= l'du. ( .) 

(l''hm( t)) - nondimensional LW -density at a point x in the cloud 

Kdim m2lkg mass extinction coefficient 

K :: Kdlln<Pdnn>L 
nondimensional extinction coefficient. In this work it - is the nondirnensional coupling constant between the 
cloud and the radiation field, i.e. matter and radiation 

J mean free path; typical physical distance per scatter in 
--lllln(gllln) m the corresponding il0mogeneous cloud 

t p - photon path distance nondimensionahzed by the mean 

= KX = IKdln'(Pd,m) 
free path, i.e. the distance measured in mean free paths 

Table 2.1: DnllcnslOn und physu:al interpretatIOn of vanables 
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Figure 2.2: The left hand sidc shows the stcp by step construction of the "bare" multifractal cac;cade (Cl

mode) starting with an initial uOIform density At each stcp the horllontal !>eale ie, dividcd by IWO. and 
independent random factors are chosen either < 1 or > 1. normahlcd to cn~ure that <PÀ>= 1. The large'!t 
seale ratio is A=64. The right hand si de shows thc effeet of integrating ovcr largcr and larger !>calc!> and 
yields a "dressed" cascade. 
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The multiple scaling properties of a process, measured at a scale x=Â-l, can be 

descri bed by two complcmentary approaches: 

The first examines the probability distribution. In the scaling regime Â, the 

measurcs PA have the property (Schertzer and Lovejoy 1987b): 

2.2.1 

where: y is the ,rder of si ngularity. Therefore c(y) is a ~aling exponent of the probability 

distribution. When the dimensiort l')f the embedding space D is larger than the probability 

distribution cxponent c( y) we may introduce the dimension function D(y) = D - c(y). It is 

simply the fractal dimension of the set of density measures PA exceeding the threshold IV 
(Figure 2.3). 

The other equivalertt approach to describe the multifractal field is to specify the 

scaling of the statisticaI moments < pl >. We define the multiple-scaIing exponent K(q): 

< p! >"" ,~K(q) , Â > 1 2.2.2 

where q is the moment. The moment exponent K(q) is related to the probability 

distribution exponent c("!) by the following Legendre transformation ( Parisi and Frisch 

1985 ): 

K(q) = maxy[qy - c(y») 

c( y) = maxq[qy - K(q») 2.2.3 

which implies a one to one relationship between orders of singularities and moments: 

y=K'(q) 

q =c'(y) 
2.2.4 

To fully specify the multiple scaling of the fields an infinite number of scaling 

parameters, e.g. the cntire K(q) or c(y) function, will be required. However, we will use 

universal multifractals corresponding to stable attractive behaviors of multifractal 

processes. Multifractals of this universality class can be characterized by onl)' three 

paramcters «l, C \, H). These are: the Lévy index, the codimension of the mean, and the 

deviation of the observed field from the conserved field. The Lévy index (l indicates the 

c1ass to which the probability distribution belongs; it tells us about the degree of 
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multifractality ( 0 ~ a ~ 2, (X=O corresponds to a monofractal). The parameter Clis the 

fractal codimension of the field thresholded at the mean value of the field. it tells us about 

the sparsity of the average levd nf intensity. Figure 2.3 iIlustrates the fractal codimcnsion 

of a field thresholded at a value equal to À. Y. Parameter H mcasures the degree of 

nonstationarity in the process; it is a measure of the conservation of the field over diffcrent 

seales, e.g. H=O is a eonserved or stationary multifractal. 

For universal multifractals the two scaling exponents of the probability distribution 

and the moments are following functions: 

(
YI )Q' e(y) = CI CI+Q' +a 

K(q) = ~(q(l _ q) 

2.2.5a 

2.2.5b 

with 0 < (l ~ 2, (X '# 1 and ~, + *" = 1. For lognormal multifractals (a=2) this rcduccs to: 

e(y) = ~I (JI + 1)2 

K(q) = C)(q2 - q) 

P 6 
À. 

4 

Â.=64 

1 
X 

2.2.6a 

2.2.6b 

Figure 2.3: I-dimensionallognormal multifractal cloud field analyzcd over a ~cale ratio À.=64. Thcrc is 
a threshold on the field at the density PÂ.= Â,Y corresponding to the order of singularity "f. The fractal 
dimension of the set of density measures PÂ. exceedmg thi!. threshold (eut in the graph) i~ given by the 
function D(1)= l-c(y). 
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2.3 Bare and Dressed Multifractals 

ln multifractal theory it is important to distinguish between the "bare" and the 

"dressed" quantities (Schertzer and Lovejoy 1987a). The bare quantity is obtained after 

the cascade generating the cloud field hali proceeded down to scale À. The corresponding 

drcssed quantity is obtained after integrating the completed cascade over the same scale 

(Figure 2.2 above). This implies that the bare quantities have no small scale interactions, 

whcrcas the dres~ed ones have a full range of interactions. A cascade whose development 

is Iimited ta the scale A IS "bare" on this scale: no smaIler activity is hidden or "dressed". 

We calculate the average transmission <T(x» by considering the bare cloud 

density field PÂ. at ~cale x::: À-l, since its probability distribution is known analytically 

(eq. 2.5,7). Furthermore the bare/dressed difference of the fields is a random factor of the 

order 1 for the non-extreme events· (lO'N values of p, y) and therefore does not affect the 

scaling. The dressed density whose low order exponents (of interest here) are the same as 

those of the bare at the distance x=Â.-l is calculated as 

j PA (li' )d~' 
P)",d(X)::: -,,-0 -=,--

Jdll' 
o 

2.3.1 

where PA is the density al the smallest scale A-l (scale of resolution). The difference 

arises for high order of moments q larger than a critical order of moment qO beyond which 

ail the dressed moments diverge, < pj >~ 00 for q > qD' The corresponding probabjJity 

distributions of the bare/dressed fields are the same (to within slowly varying and constant 

factors) for the order of singularity y smaller th an 'YI:> where YD is the criticaI singularity 

corresponding to qD (YD=K'(qo), eq. 2.2.4). For q>qD. Y>YD. the corresponding K(q) 

and c(y) functions have discontinuities in their derivatives of various order. Due to a 

formai analogy with thermodynamics, the se are caUed "multifractal phase transitions" (for 

further detlùls see Schertzer and Lovejoy 1987a). 

• The difference is the "hidden" factor which is of order one for smal: values, but which diverges for orders 
of slOgularttics y largcr th an a critieal value ID; see Schertzer et al 1993. 
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1.4 Tlle Equation of Radiative Transfer 

Although we will not make direct use of the radiative tran~fcr cquation in the 

following it is important to relate our approach to this fundamcntal cquation. Whereas 

here we just give a very concise summary. thcre arc numerous books wnttcn on thc topic 

(e.g. Chandrasekhar 1960) which discuss many conccivable vlcwpoints but say liulc 

about the hori.lOntally hcterogeneous case of intercst to us. 

For an arbitrary geor.1etry the radiative transfer equation (wilhollt frclJlIcncy 

dependel'ce) takes the form: 

2.4. J 

plus boundary conditions. [(r,n) is the radiance or specific intensity at a poim defined 

by the vector r and for radiation propagating in direction Q. lCdlm is the mass cxtinction 

coefficient and p(r) is the density of i:he material (e.g. liquid \,Iater content). J(r ,0.) 

defines the so calkd ~ource function which has following form: 

JCr,o.) = ~ f p(;,ô.,n: )/(;,6: )do.' + JfU=,o.) 2.4.2 

mo is the albedo for single scattering, p(r,n,Q') defines the phase functlOn 

characterizing the scattering in the direction fi of radiation arriving from the direction fi.' 
on a volume element at point n. The phase fun~tion is normalized with 

f p(r,O,Ô: )dn' = 41r. Finally Js(r,O) is a term arising from internai orcxtcrnal ~ourcc~ 
of radiation or both. 

In the foHov/ing we assume no internai nor external sources of radiation (exccpt 

the incident radiation on top of the cloud). Since we are conccrned about the direct 

transmission T(x) in a one dimensional path through the c1nud, light ~cattcrcd into the path 

is not considered, the.refore the source function J(r,n) become!. zero. We arc Icft with a 

homogeneous linear differential equation: 

d/(x) :::: -1( p(x)/(x) ----ax- d,roi 2.4.3 

with the solution: 

-Kdomj p(x)dt 

T(x) = l(x) = /(0)· e 0 2.4.4 
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Wc rccogniLe the exponent a!> the optical depth. In the following, by defining the incIdent 

radIation HO) cqual to one, we can choose a stochastic interpretatton, which physically 

corre~pond~ to the photon representation of jight.. EqUivalent to the direct transmission 

we talk about the probabJlity that a random photon distance x' between two consecutive 

... catter~ cxceeds a dl~tancc x, the aetllal distance in the cloud. The standard photon free 

path probabijity distnbutJOn is then defined as: 

Pr(x' > x) = T(x) = e-f(X) , 2.4.5 

Figure 2.4 Illustrates l-dimensional "random photon walks" in various conserved 

JognormaJ multifractal clouds (a=2, H=O) with (i.e. the extinction coefficient varies 

bctween 1\=32 and 1\=] 28 and the codimension of the mean of the multifractal cloud CI 

varies betwcen CI=O. 1 and CI=O.9). As one would expect, with increasing extinction 

coefficient 1\ the mean free path length of the photon decreases. Notice also the change of 

the sparslty of the field due to changes of CI. In chapter 5 we will analyze cloud liquid

water-content data and find that the clouds can be described by lognormal multifractals 

with CI'::::O.08, but WIth H:::::O.3. 
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Figure 2.4 Monte Carlo simulatIOns of a photon "random walk" in dlffcrent multlfractal cloud~ ln 
each graph we plotted the I-d density field (resolutlOn 1\-1=11512) and the photon random walk. The 
photon enters the cloud at the mlddle of the cloud (shown hy the arrow» and lllove~ clthcr to the Icft or thc 
right (with the same prohablhty) The x-axIs repre,>ents the po'>ltion ln the cloud, wherca,> the y-axi'> 
represcnts the cloud dcn~lty as weil a~ the "tlme" of the walk (Unit,> aroltrary) The \llIlulatcd L1oud, on 
the Icftlright side have a codnnemlon of the mean CI=O I/C)=O 9 Note that a hlgher Uldllllcn~J(>n of the 
mean results tn a ~par~er field (wllh hlgher denwy ",plkc~l) The \Illlulated L10lHh III the upper row have 
an extinctIOn coeffiCient of K=32, ,lnd the cloud" tn the lower row have an extlllLllon coefliLlent of K=J2R 
As expected, the mean free path Icngth of the photon dccrca~e~ wlth JnLTe,I\lIlg cxtlnLllon coefficient 
Note also the pCTlodtc boundary conditIOns ln the upper nght grdph the photon Icft the L10ud on the rlght 
side and rccntercd the cloud on the left 
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2.5 Singularity Formulation of Scattering in Multifractal Clouds 

To describc the photon free pa th distribution we adopt the formalism of the above 

de~cribed multifractal theory (section 2.2). Therefore we map PA to the dimensionless 

photon path distance t p and write it as a function scaling with an order of singularity 'Yp: 

r = lCl' = ~rp 
p 2.5.1 

Note that t p' the dimensionless photon path distance, is not to he confused with the optical 

depth t. The nondimensional extinction coefficient K takes the place of the scaling 

parameter À.. For simplicity reason, we will no longer require a distinction between 1G:Iim 

and K'c since they just differ by a constant. Instead of the probability distribution exponent 

c(y) of the cloud density (as a function of the order of singularity y) we now talk about a 

probability distribution exponent cp(yp) of the photon path distribution (as a function of 

the order of photon path singularity 'Yp)' So we write the free photon path probability 

distribution (compare to eq. 2.2.1) as: 

2.5.2 

By the same token we use the multifractal formalism to describe the scaling of the 

moments of the free photon path distribution (compare to eq. 2.2.2) 

2.5.3 

and anticipate that the two will be Iinked by a Legendre transform as in the standard 

multifractal case. 

ln order to calculate the transmission through the cloud we remember that the 

distance x corresponds to a seale, x=Â. -1, at which the bare density PÀ. is constant: 

PA = IV. Therefore the optical depth (eq. 2.4.4) is simply the cloud density multiplied by 

the nondimensional extinction coefficient and the distance: r(x) = ~,tr ,t-t. We are now 

able to caleulale the mean transmission through a distance x=À. -) averaged over 

singularities of the order y. 

-(T(À,-l») = J e-r<r lp( y)dy 2.5.4 
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where the optical depth r = I\PA. X = I\ÀY À. -1 = l\À,.y-1 = p(y, • The last equality in the 

previous expression defines Yt. Since we will he intcrcsted in IC large, but not necessarily 

Â. large, we make the following transfonnation of variables: 

and obtain: 

r=l- (1-rr) 
(1- rp) 

.. 
(T(;'-I») = 1 e-

KYr 
p(l- :=~; )drr 

2.5.5 

2.5.6 

The further calculations for general multifractals will be given in future publications, the 

results are given below. Hcre we treat the universallognonnaJ multifractal case for which 
the probability density of the (bare) lognormal multifractal dcnsity field PA. =;.y is 

explicitly given: 

2.5.7 

and we write the integral 2.5.6: 

2.5.8 

There are now two ways to proceed. Perhaps the c1earest way mathematically is to 

determine the Laplace transfonn of <T(x» which yields the moment scaling exponent 

Kp(q) in equation 2.5.3 via an exact calculation (sec Appendix AI). The alternative is to 

obtain the probability distribution exponent cp(Yp) (Appendix A2) by directly approximate 

eq. 2.5.8 and then take the Legendre transform of the result. In either case, we obtain: 

K/q)=q- 2~ (~(l+CI)2 +4C1Q -O+C1»). 
1 

2.5.9 

This is an essential result and will allow us to approximate the overall transmission by 

renormalizing the extinction coefficient (chapter 4). First, however, wc return to the 

17 



ensemble averaged transmission function and determine the probability distribution 

cxponcnt of the photon path distribution, cp(rp)' We take the Legendre transform of the 

moment scaling function of eq. 2.5.9: 

which yields a maximum for: rp =K'(q)=I+((l+C1)2+4C,QrY2 . Making this 

substitution results in: 

2.5.11 

This result is consistent with using the Laplace method (see Appendix A2) for the integral 

2.5.8: in the Jimit of large Je evaluate the integral with r r == O. This asymptotic result 

valid for large 1( establishes a one to one relation between orders of singularity in the cloud 

field y and orders of singularity in t:le photon path statistics: rp == f-r with y<l (eq. 

2.5.5). The strong cloud density singularities Y> 1 represent such a high cloud density that 

they play no role. The moderate cloud density singularities 0<"«1 contribute to the 

regularities (Yp<O) in the photon statistics. On the other hand the cloud density 

regularities (y<O) determine the singularities (Yp>O) in the photon statistics (see Figures 

2.5, 2.6). 

Yp 
6 

4 

2 

-2 -1 1 2 3 Y 
-2 

-4 

-6 

-8 

Figure 2.5: A graph of rp = Y~I (obtamed with 'Y't=O) showing the physical branch (Ieft), and 
unphysical bmnch (nghl). 
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Figure 2.6: Comparison of the cloud dcnsily probability di,tnbution uponent c(y) wilh the 
corresponding bar·! free path distribution exponent cp(Yp)' The COdlnlenmm of the log normal 
multifractal cloud '.\las chosen as CI =0.5. which corresponds to a minimum of the prohahility distrihution 
exponent c(y) at "F-C 1 =-0.5. 

In the case of general multifractals integral 2.5.6 can be approximatcd if the 

probabiIity distribution exponent c(y) satisfies the condition c'(y)<O for small y. One 

yields the following free path probability distribution exponent: 

2.5.12 

The moment scaling exponent can then he obtained by Legendre Transformation. 
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3. Numerical Simulations and Dressed Statistics 

The goal of this part Îs to show, that the analytical bare approach of chapter 2 

yields rcsults con!o.Îstent with the actual physical process. A photon traveling through a 

cloud interact~ with the cloud watcr/ice droplets at smaIJest scale, independent of how big 

the frce path Icngth will be. Wc therefore simulate lognormal multifractal cIouds and the 

photon tramport through these cJouds, obtaining a transmission function T(x). Analyzing 

thesc findings by two different multifractal analysis techniques, leads to the "dressed" 

probability distribution exponent Cp,d('Yp) and the moment scaling exponent Kp,d(q)~ which 

we compare to the analyticaJly bare results. 

3. J Simllialillg Ille MllltifTaclal Clouds 

To compare the "bare" approximation developed above with the dressed statistics 

we will simulate the transport through multifractal fields. To do this, the lognonnal 

multifractal c10uds are simulated by a continuous cascade algorithm (Schertzer and 

Lovcjoy 1 987b) which we briefly summarize. First we define the generator rÀ = 10gpÀ' 

To yield a multifractal PÀ field the generator must be exactly a IIf noise, that is, ilS 

gcneralized ~pcctrum is E(k) :::: k-' (this is necessary to ensure the multiple scaling of the 

moments of PÀ)' To produce such a generator, we generate a stationary gaussian noise 

whosc amplitude is dctermined by the codimension of the me an CI. The resulting noise is 

fr'lctionai inlegrated (power-Jaw filtcred in Fourier space) to give the desired k- I spectrum. 

Finally, the rc~ult is exponcntiated to give PÂ. which will thus depcnd on CI. Because of 

the fractional integration the entire process evolves two FFTs. Simulations were 

pcrformed using three CI di fferent codimensions of the mean, Cl =0.1, Cl =0.5, Cl =0.9, 

corrcsponding t~ increasingly violent fluctuations in the cloud model. Note that real cloud 

liquid-water content fields have parameters estimated to be roughly 

a:::: 2, CI::::: 0.08, H:::: 0.3 (chapter 5). 

3.2 Simllialillg tire TrampoTt 

For the numerical simulations of the transport we simply discretize the optical 

deplh integral (2.4.4) and calculate the ensemble averaged transmission as a function of 

path length tp=1CX : 
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3.2.1 

The simulated multifractal cloud density field Pli (x,) had the resolution (scale of 

homogeneity) KI, with an ove rail optical depth of K (since <PA>=I and the external sc ale 

equal unit y). To calculate the transmission through one realization (Fig. 3.1) the photon 

starting points inside the cloud were randomly chosen. Moreover. wc imp/emcnled 

iX riodic boundary conditions and calculated the transmission for 0 < t P < K. Pinally the 

ensemble average was taken over the total number of realizations. This procedure W&lS 

repeated for increasing nondirnensional extinction coefficients 1(' = 2"; 11= 1 ,2 •...• 10. 

Figure 3.1 ilIustrates the numerical transport model. 

o 
/ 

Xl 

1 k" I.c;;. ___ __ 

x 
Figure 3.1: Schematic view of the numencal transport model. The scale of rc,olution for thil> 
simulated cloud is A-I=ll7. Each clement has a certain dcnslty PA (the darkness of the field, corre'ponds 
to the density). Ali photon starttng points are at the bcgmning of the cloud. The ccll1l wilh a h'ghcr 
density have a higher probability of scattering the pholons. 

3.3 Tlle Probability Distribution Exponent 

In order to obtain the dressed probability distribution exponent Cp.d(Yp) for the simulated 

data we used the "Probability DistributionIMultiple Scaling" technique (PDMS) (Lavallée 

et al 1991a. Lavallée 1991). The method consists ofdirectly exploiting the !lcaling of the 

dressed probability distribution: 

3.3.1 
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The technique is distinguished from other histogram based techniques (e.g. Paladin and 

Vulpani 1987, Atmanspacher et al. 1989) in that they overcome the nontrivial problem of 

the (slowly varying) proportionality constants in the above equation, by examining the 

hi~togram!' over a range of scales rather than a single seale. The drawback of these 

rnethods i~ that they are sensitive to the correct norrnalization of the fields: the ensemble 

average of the overall transmission must be close to zero (see 3.4a) for further 

discussIOn). 

Flr!,t the logarithm of the probability distribution is plotted versus the logarithm of 

K for each fixed ord\!r of singularity )'p. We analyzed the probability distribution for 

photon path lengths exceeding the threshold p(YI': Pr( fp > p(YP
), as weil as the probability 

distribution for photon path Icngths below the threshold ep
: Pr( fI' < 1(YP

) (Figure 3.2 

and 3.3). If the probability distnbutions obey equation (3.3.1), these points lie on a 

straight line, whose absolute siope is the dressed probability distribution exponent 

Cp,d(Yp). In Figure 3.3 and 3.5 we compare the now obtained dressed probability 

distribution exponent Cp,d(Yp) with the analytical derived bare probability distribution 

cxponentcl'(Yp) (eq. 2.5.11). Note the two distinct curves for the dressed probabiJity 

dbtrihution exponent: The probability distribution Pr( fp > p(YP
) leads to the right rising 

branch whercas the probability distribution Pr( fI' < p(YP
) leads to the left branch of 

Cp,d(Yp)· 
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Figure 3.2: PDMS analysis of the frce-photon path length probablhty di~trihution. Simulation wlth 
a=2, Cl =0.1 , seale ratio of homogcneity A=4096, 1000 rcali.tallono;, 512 photon-starting poinl!. In cach 
realization. The upper 4 lines reprcsent loglO Pr( f < KY") whcrcas the lowcr 4 lines rcprc ... cnt 
[log lO Pr(fp > K Yp )] -1 versus log\Q(I\). The scaling h~lds down untillogIO(K)==O 6 ao; Indicatcd ln the 
text (Iow 1\ brcakdown). For î'p<-0.3 and Yp>0.6 the scahng IS not provldcd .mymorc whlch " in g(xxl 
agreement with the of theoretically predictcd hmits (r~lIn = -0 33, r~l:U == 06). 
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.'igure 3.4: As figure 3.2 just with CI =0.5. Hcre the scaling holds down until log lO(lC)=0.9. For 
'Yp<-O.3 nnrl 'Yp>0.8 Ihe scaling is nol provided anymore which is in good agreement with the of 
thcorctlcally prcdicted limits (r;,n = ~.33. r;:"" '" 0.8). 
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Figure 3.5: As figure 3.3 just with CI =0.5. In the predlcted range of validily 
r;nn = -0.33 < r p < 0.8 = r;"" thcre IS a good agreement between both curves. 
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3.4 Limits of Validity for tl.e Probability Distribution EXpollellt 

a) Breakdown for 10"' e.\1illctiOIl coefficients 

As mentioned in the previous chapter, the bare analytical reslIlt for th~ probability 

distribution exponent cp(yp) was calclliated by assuming a large nondimcl1!.ional extinction 

coefficient K. Here we want to estimate the lowest K at which the bare reslIlt actually 

holds. 

A low extinction coefficient K implies that the average transmissIOn <T(x» at the 

largest scale x= 1 is still reasonably high i.e. it cannot bc approximated as zero (physically 

this corresponds to a transparent cloud). Therefore the free photon path distribution is not 

normalized anymore, which results in a breakdown of the scaling in the PDMS graphs at 

small extinction coefficients. Figure 3.2 and 3.4 show this behavior for cxtinction 

coefficients smaller logK'=O.6(C)=O.I) and logK'::::O.9(CI=O.5). The hare re~ult 

however, has a total transmission equal zero, indcpendent of the extHlction coefficient K. 

This ean be easily derived from equation 2.5.11: For Yp= l, which corresponds to Cl actual 

photon path length equal to one, the probability distribution exponent cp is equal minus 

infinity, which corresponds to zero transmission (x = 1 ~ YI' = l , 

cp = -00 => < T >= 0). 

We use this bare/dressed difference of the total tran~mis~ion to estimate the lowcst 

K for which the bare approximation holds. An e~timate of the lowc~t extinction coefficlcnt 

kappa Kmm at which the totai transmission diffcrs significantly from zero can be given by 

the following formula. 

J( =llogFI1+C! mm 3.4.1 

where F is the average transmission at largest sc ale F=<T( 1 ». This can he derived from 

the renormalization approach (see chapter 4). Figure 3.6 iIIu~tratcs thi" c~timati()n of the 

lowest extinction coefficient. 

25 



6 

4 

2~~ __ ----------~ 

o o 2 o 4 o 6 0.8 1 

Figure 3.6: Estllllatcs of thc minimum cxtinction cocfficient (Kmin) over WhlCh the asymptotic theory 
11> cxpcctcd to hold based on F=20%, 10%, 5% (top to bottom) direct transmission through the cloud using 
the renonnalilation fonnula (bclow) 

b) Limits on the Range of Photon Pat" Length Singularities 

The other Iimit on the above estimated dressed probability distribution exponent 

arises due to a Iimited range of photon path distances (corresponding to photon path 

singularities 'Yp) which we were able to estimate. An examinatiotl of the simulated cloud 

fields will help to answer this question. The simulated cloud fields underlie two basic 

limitations: 

(1) The simulatcd clouds are generated up to a finite resolution A-I. At this scaIe 

of resolution the cloud has a constant density PA, it is homogeneous. Sinee in a 

homogeneous medium the mean free path is 1("1, we require K<A, otherwise the 

mllltifractaIity is only apparent at larger seales than the seattering. 

(2) Simlliating the cIouds implies a finite number of realizations, which can he 

expressed qllantitatively by the sampling dimension Ds (Sehertzer and Lovejoy 1989) 

which is defincd sil1lilar to the fractal dimension (eq. 2.1.1): 

3.4.2 

For lhat reason being, there will be an almost surely maximum singularity r~ as weil as 

an almost surely minimum siagularity r;ru" present in the cloud sample. Note that the 
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latter does not always exist, but it does in the lognormal case. Thcse two restrictions can 

easily be calculated by using the inverse cloud probability distribution cxponcnt: 

3.4.3 

We recall that the free photon pa th length is 'rp = let = KÀ- I and is depcndcnt on Â. 

Consequently il is for our purpo';e necessary to consider y~"n, r:ll
•
L
\ as funetions of Â. 

With the above relationship 2.5.5 and using the large K approximation y t "" 0 wc ohtain: 

YmlO.ffiaX(À) = 1- _1-
P I-y.().) 

On the other hand: 

3.4.4 

3.4.5 

which derives simply from equation 2.5.1. We could now climinatc log(Â.) and dircctly 

obtain the minimum/maximum order of ph"lton singularity r;lIo.rnn~ in terms of the 

minimum/maximum order of cloud singularity r~lIn.max it.dcpcndent of the scalc ratio Â.. A 

graphical method is however clearer: We plot both curves (eq. 3.4.4. and eq. 3.4.5) 

versus log(Â.) and obtain the range of validity for the order of photon ~ingulanty Yp (see 

Fig. 3.7). We note that with increasmg extinction coefficient K, the maXllllum order of 

photon singularity r;ax decreases and with increasing number of ~amples N!, or 

increasing codimension of the mean CI, the maximum ordcr of photon singularity r;:llU 
increases as weil. 
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Figure 3.7: Range of vahdlty for Yp duc to finile sample sile and finitc rcsoJution. Depending on the 
extinction C'lCfficlCnl K one can see dlffcrentltmits r;'", r;'" on Yp whlch are shown by the inlersection 
point". Note that cach order of smgularity yp reprcsents one most probable distances in the cloud, as 
.,hown by Ihe ~traJghl lines y r(À.). The shaded reg IOn is not accessible since it represents scales (À.) 
!-omaller than the hlghcst rcsolutlOn A (hcre A= 4096). 

As Figure 3.7 shows, the left branch of the dressed photon free path probabiJity 

distribution exponent cp.d<Yp) is in actual fact more strongly restricted by the resolution 

Iimit (1) than through the above restriction due to the sampling dimension of the cloud (2). 

More precisely the minimum order of photon singularity r;:un due to the smallest size of 

rcsolution can bc ca\culated as: 

Y
mlO = 1-~ plûgK 3.4.6 

For examplc an extinction coefficient K=256 and a sc ale of resolution A-l= 1/40961eads 

to the minimum order of photon singularity Y;un = -033. This can be seen in Figure 3.3 

and 3.5 .. 
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3.5 Moment Scalillg Exponent 

The further analysis conslsts in compalÏng the drcssed moment scallllg expOlll'nt 

Kp,d(q) with the analytically bare moment scaling eXpollcnt Kp{q) (eq. 2.5.9). Thcrcfore 

we check the scaling of the moments of the drcssed photon path lenglh with respect 10 1(: 

3.5.1 

This is done by plotting log < ~ > versus log,..' (Figure 3.8; 3.10) after calculating the 

dressed moments: 

A 

( 
_) = ~ v4 q (Tlr._. l)-(T( r, » 'p ~ 1\.' X, ,,_1 3.5.2 

1=1 

where (T(XI_I~_~(T(:.r. ») is the discrele probability of the dimcnsionlcss photon path distance 

't=KXj (i=l, ... ,A). If the dressed moments are scaling ( Le. they obey cquation 3.5.1 ). 

the points for eaeh specifie moment q lie on a ~traight line, whosc slope is Kp,d(q) (figure 

3.8; 3.10). We then compare we the "dressed" moment scaling exponent Kp,d(q) with the 

analytically derived Kp(q) in Figure 3.9 and 3.11. 
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Figure 3.8: Scaling of the moments of the dressed photon pa th length tp as a function of te. 
log,o < r~ > versus logIO(te) for various values of q. There is a very good scaling for 1<:>8 since the 
linc'i arc !.Iraighl JO Ihat reglme. The scaling breaks down for smaller te since a unique normalization is 
not provlded anymorc Data from simulation with (1=2. CI =0.1. 4096 realtzations. 512 
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Figure 3.9: Companson of Ihe moment scaling exponenl function Kp{q) for the "bare" with Kp,d{q) 
for the "dre~scd" photon pa th Icngth for a field (1=2. Cl =0.1. In the range -0.5 < q < 6 both curves are in 
very good agreement. The dresscd Kp.d(qp) curve was oblatned from the simulation with 4096 realizations. 
512 photons/rcali lallon. 
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Figure 3,11: Companson of the moment scaling exponcnt function Kp(q) for the "barc" wilh Kp.d(q) 
for the "dressed" photon path Icngth for a ficld (1::2, CI =0.5 ln the range -0.5 < q < 10 both curvc!. are in 
very good agreement. The dresscd Kp,d(qp) curve was obtaincd from the 'ilmuJatlon with 4096 realil.ation!., 
512 photons/realization and the scaling reglmc (8<1C<512). 
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3.6 IJ;mits of Va/idity for the Moment Scaling Exponent 

The range of validity for the numerical simulation of the moment scaling exponcnt 

Kp(q) arises out of the same restrictions as for the photon singularities j'p. The moment 

scaling exponent Kp(q) is related to the probability distribution exponent cp(Yp) by the 

Legendre Transformation of 2.2.3. The order of moments are the derivatives of the 

probability distribution exponent (eq. 2.2.4): 

3.6.1 

thus the restrictions for the dressed moments simply are the slopes of the photon free path 

probability distribution exponent at its minimum/maximum order of photon singularities 

r;m, r;ax. This yields for example qmm = c~( -0.33) = --0.8 and qmax = c~(0.8) = 10.4 in 

the case C)=0.5. 

The moments for which there is a good agreement between the two moment 

scaling functions Kp(q), Kp,d(q) (Fig. 3.9; 3.11) represent photon distances which are the 

most probable ones, since this range of order of moments q corresponds to very low 

photon probability distribution exponents cp(yp) which on the other hand means high 

probabilities. ft is obvious for q= l, since this moment is simply the expectation value of 

the frce photon path (i.e. mean free path). In other words, the range of agreement belongs 

to distances which have the most significant contribution to the transmittance (see the next 

section). 
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4. Renormalization 

We can now relate the transmission statistics of lognormat multifractal c10uds to 

those of a homogeneous cloud. At first sight this scems to be a difficult task since wc 

already explained in the introduction that in the thick limit (K large) both types of clouds 

will result in a completely different behavior of the radiative transfer propcrtics. In this 

chapter however we will show that the photon statistics of a mullifractHI cloud Ciln he 

approximated by the photon statistics of a "renormalized" homogcneous cloud in a certain 

range of photon singularities. We will relate this to multiple scaltering and to rcsults of 

diffusion on multifractals. 

4.1 Direct Transmission 

We seek to replace the multifractal cloud with a ncarly cquivillent hOlllogcncous 

cloud with "effective" extinction coefficient ICcff. This cloud has the direct transmission 

given by T(x) = e -K,U
X The moments of the nondimensional path length tp=KX arc then 

given by: 

1 

< r: >= J (n)qp(x)dx 4.1.1 
o 

with p(x) = - f- = I(~ffe - "é. In the Jimit of large Kerr we obtain 

< r: >== (":8 fr(q + 1) 4.1.2 

If we express Kefr as a power of 1( i.e. 1(~ff = 1(a above equation can be wriUen as 

4.1.3 

i.e. a homogcneous cloud has a linear exponent: Kp,hom(q)=q-aq. A tinear Kp(q) 

indicates exponential transmission T(x) (note that the Legendre transformation hrcah 

down in this case so that there is no corresponding cp(Yp». Now we compare thho, with 

the Kp(q) for a lognormal muttifractal cloud. The correspondmg value of a will actually 

he a slowly varying function of q, (as demonstrated in the Fig. 4.1) 

( ) 
_ q-Kp(q) 

am q - q 4.1.4 
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which for small q can be approximated by am ::= am(O) = I+IC
I 

. To determine the optimum 

value of q, to use for this approximation, we write < T> in terms of q=cp'(yp) which 

indicates which q contributes to different transmittances (Fig. 4.3). The maximum 

traflsmiUance occurs for q=O; this justifies our use of q=O in the above. The maximum 

deviation of am(q) from am(O) for -0.5 < q <1 lies between 10% to 15% for 

0.1 ::; CI ::; 0.9 respectively (Fig. 4.1). The linear approximation Kp( q):::: q-qam(O) leads 

to a renormalized extinction coefficient of the homogeneous cloud: 

4.1.5 

The Iinearity of the Kp(q) function, and hence accuracy of the approximation in the range 

q ::: 0 - 3 can be seen in Figure 3.9; 3.11. 

Figure 4.2 compares the direct transmission of a "renormalized" homogeneous 

cloud with the transmission through a bare multifractal cloud and the transmission 

through a drcssed multifractal cloud. 

0.8 

Cl =0.9 

0.2 

-0.5 0 0.5 1 1.5 2 2.5 3 q 

"'ig~re 4.1: ,The e~fcctive scaling exponent a, = S ~ q = (v'à + CI)2 + 4C;q - (1 + CI»). 1 (2Clq) is slowly 
varymg functlon whlch dcparts from the apprOXImatIOn a == (1 + CI ri for ~. 5 ~ q ~ 1 by Jess than 9% 
for CI =0.1 (thick Iincs) and Jess th an J5% for C J =0,9. 
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Figure 4.2: Transmission through a multifiactal cloud CI =0.5 (barc and drc!>scd case) wlth K=4 
compared to the transmission through a homogeneous cloud with the "rcnormalilcd" extinclJon coefficlcnt 
1("6 = Km. = 2.52. Notc the naturallogarithmic scale Ine<T(x». 
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Figure 4.3: Transmission as a function of thc moments T(q)!IogI0(1C) 
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4.2 Some Considerations on Multiple Scattering 

We havc seen that for direct transmittance, thc near linearity of Kp(q) leads to the 

possibility of "renormalizing" the multifractal: it is nearly equivalent to a homogeneous 

medium with an effective extinction coefficient KefFJCll. This suggests that by using this 

approximation we can cxtend our previous trcatment bcyond direct transmission to take 

into account multiple scattering and obtain an approximation for the overall transmiuance 

and reOcctance of a lognormal multifractal cloud. The main issue herein is the near 

linearity of Kp(q) which means that the correlations between consecutive free photon paths 

arc almost insignificant. 

A delai/cd study of this will be published elsewhere. Here we test this idea by 

considcring the numcrical transmission results on lognormal multifractal cJouds (with 

C)=O.5) published in Davis et al 1991, 1993 (see Fig. 4.4). These simulations were 

made using two dimensional discrete lognonnal cascades with scale ratio factor 2 per step, 

total range of scales 210. Cyclie boundary conditions were used in the horizontal and 

photons were vertically incident. Isotropie discrete angle phase functions were used and 

the rcsulting fields in each of the four directions at 900, as weil as the overaU albedo and 

transmission were calculated by both Monte Carlo and relaxation techniques (the 

agreement of the two methods increased confidence in the results). The extinction 

coefficient was increased by factors of two 50 that the total mean optical depth "'(Iii) 
increased from 12.5 to 200. 

With the goal to obtain a theoreticaHy predicted renormalization result, we recaU 

that for plane parallel c1ouds, with the same boundary conditions and the "Discrete Angle 

(2,4)" radiative transfcr phase functions (Lovejoy et al 1990), T = 1 1 where t and 
I+I(I-t+r)t 

r are the discrete angle forward and backward scattering coefficients respectively. In 

Davis ct al 1991 isotropie "Discrete Angle" phase functions were used (i.e. t=r= 1/2). 

Using this result and the effective extinction coefficient in place of the true optical depth 

t' = lI.'cff < P >= I\eff' we obtain: 

(T) = 1 == 21\ -dy 
l+tKrk. 

4.2.1 

Fig. 4.4 shows the result of superposing this function on Davis et al's results, 

which are nearly power law even for Kas low as 12.5. The total transmittances through 

the renormalized homogeneous cloud show for ail values of K only less than 20% 

difference from the total transmittances through the multifractal cloud. The actual .. 
(multiple scattering) result is slightly higher th an the renormalization prediction, which is 
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expected since a(q) ~ 1+IC
J 

for ail values of q>O (negative values of q correspond to very 

srnall path lengths, which contribute only insignificantly to the total transmittance). 

Therefore the approximation leads to a slightly lower direct transmission, rcslIlting also in 

a lower total transmission. Closer examination shows that there is a slight curvuture 

suggesting that there are still sorne residual small 1( effects and that a better ('stimate might 

be obtained by considering only his last two points. Indeed. this is remarkably close to 

the theoretical renonnalization result (a=2/3) smce it yields a==O.65. Thcsc rcslIlts suggcst 

that renormalization will give accurate results for bulk transport propcrties in Illllltifractal 

systems with other boundary conditions, even with mode st optical thickncsses. 

o.rn---------------....., 

simulation in 2-d multifraclal cloud 

-0.5 

-1. 

rcnonnalizcd homogcncous cloud 

_1.5-1--.......-----..-..-~.---..-,.......,r---I---,.---r---r--t 

1.0 1.5 2.0 

Figure 4.4: Result on total transmission after multiple !.cattering through 2-d multifractal cloud (C 1 
=0.5), published in Davis et al 1991, compared to the thick cloud limn of the transmi'ision lhrough a 
homogeneous cloud wilh renorrnalized extinction coefficient Keff. 
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4.3 Comparison with Diffusion 

The ~urprisingly accurate plediction of the Davis et al 1991 thick cloud numerics can 

pcrhaps best be understood by considering the relation hetween radiative transfer and 

diffusion in multifractals. In general, there will he two significant limits; the large A (wide 

cascade range) and large extinction coefficient K (thick cloud) limits. Clearly, for fixed 

and finire A, if the cloud is made thick enough, (JC»A) the mean free path will be much 

smaller than a single resolution element and the photons will diffuse through each 

homogeneous region of size A-t (see section 3.4b (1». The overaIl result will he photons 

diffusing through the multifractal cloud. In actual faet, diffusion can still occur under 

somewhat less stringent conditions when K is large, the main requirement being that weak 

dcnsity regions become so rare that direct photon transmittance across a large fraction of 

the cloud is statistically ncgligible. The multifractals with a<2 have precisely the property 

that they are dominated by weak events (negative singularities) called "Levy holes". It is a 

priori possible that. even with large K, if A is sufficiently large (the order of the Iimits 

A~oo and 1(~00 is important i.e. with 1( fixed, but with A ~ 00) they will have large 

rcgions dominated by the holes, and hence lead to nondiffusive transfer. 

However, in the case studied here, the parabolic shape of the cloud probability distribution 

exponent c(y) (eq. 2.2.6a) guarantees that large negative orders of moments y and the 

corresponding weak regions are extremely rare, indeed, in the preceding development, we 

have seen that the value of 1( is essentially irrelevant as long as it is sufficiently large. We 

thcrefore anticipate that the photons will diffuse for large enough Je. To make this 

plausible, we cite a recent analytic result believed to be exact for diffusion in one 

dimensional multifractaIs with existing moment scaling exponent K(-l)(Silas 1994): 

4.3.1 

which yields in the 10gnormal muItifractal case: 

4.3.2 

for the RMS particle distance 1 after lime t in a lognormal multifractal with codimension of 

the mean equal to CI. Since (lCdim<Pdim»-1 is a typical diffusive distance per diffusion 

step, for normal diffusion, we can write the nondimensional diffusion result: 
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4.3.3 

where N is the number of steps and 't is the time per step). In the multifmctal medium. the 

particle "slows down". However, the typical step can be used to define the effective Kas 

Kefr 1 and dimensional analysis combined with the anomalous diffusion result now yiclds: 

4.3.4 

hence comparing this with the above result for normal diffusion, wc obtain: 

4.3.5 

The above multiple scattering idea is therefore completely consistent with the diffusion 

results. Note that for diffusion in spaces with dimensions higher than one, the above 

diffusion result is no longer exact, whereas our scattering arguments will be valid (to 

varying degrees of approximation) in a space of any dimen~ion. 
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5. Analysis of empirical cloud data 

In this chapter we analyze the liquid-water-content (LWC) of stratocumulus cloud 

data to experimentaJJy test the validity of the universal multifractal cloud model. This 

!ltudy establishcs the first investigation of the universal multifractal indices of cloud liquid

water-content. We show that the examined clouds are very weil scaling over the whole 

examined range (5m-330km) and can he described by lognormal universal multifractals. 

As mentioned in section 2.2, universal multifractals are classified by three parameters (H, 

CI, (1.) which we deterrnine. 

5.1 The Cloud Liquid Water Data 

The L WC-data was obtained from the FIRE (First ISCCP [International Satellite 

Cloud Climatology Project] Regional Experiment) in June/July 1987 off the coast of 

California (Albrecht et al. 1988). This project took place in order to study the extensive 

fields of stratocumulus clouds that are a persistent fcature of subtropical marine boundary 

layers. Marine stratocumulus clouds are important components of the Earth' s climate 

system since they significantly enhance the albedo over large areas of oceans. For 

example, Randall et al. 1984 estimated that a four percent inerease in the area covered by 

these clouds could balance the warming that might he expected from a doubling of C02. 

This is an important reason for general-circulation models (GCMs), that are used fGr 

climate studies, to simulate realistically the distribution of marine stratocumulus clouds. 

Observations such as those collected during the ISCCP clearly show major discrepancies 

between the simulated and observed distribution of stratocumulus cloudiness. 

The L WC measurements were taken with a King hot wire probe at a frequency of 

20 Hz mounted on an aircraft flying with a speed of roughly 100 mis. The principle of 

operation of the sensor is the measurement of the power required to maintain the 

temperature of a hot wire on which cloud droplets are impacting. The sensitivity (i.e. 

minimum detectable concentration) was 0.02 g/m3 and the wire had a response lime of 

less than 1/30 s. The accuracy was 5% at 1 g/m3. For further instrumental details see 

King et al 1980. Using the aireraft speed, the time series can be converted into distances, 

i.e. the spatial resolution is about 5m. 

The data set analyzed here is from different aircraft runs, the smallest containing 

8192 points (corresponding to a range of seales 5m-41km), with the largesl containing 

65536 points (corresponding to a range of scales 5m-328km). Figure 5.1 shows a typical 

fragment of the data. In Figures 5.2a,b we show the histogram of the raw data. The 
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most probable density was p=0.32 g/m3. Il is interesting to note, that there arc very fcw 

data points with a density below 0.05g1m3. 
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Figure 5.1: A typical fragment of the cloud LWC- data. Fragment from data set #4. 
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Figure 5.2h: Histogram for thc low and hlgh values (zoom of 5.2a) 

5.2 Power spectrum 

Looking at the 1-0 power spectrum (the squares of the moduli of the Fourier 

components of the LWC-data, i.e. /PAJ) one can gain direct information about scaling 

(power law behavior under changes in spatial resolution). Figure 5.3 shows that ail five 

L WC data sets are scaling over the whole range, corresponding to a range of spatial scales 

from Sm-330km. The absolute slopes for each data set, obtained by linear regression, are 

lisled in table 5.1. 

Number of dala Date Time Number of Absolute Slopes in power 

set 1 points spectrum =f3 
1 30.6 ~ 26632 1.59 

2 2.7 ~ 16384 1.54 

3 14.7 - 65536 1.65 

4 16.7 17:17 8192 1.70 

5 16.7 18: 19 12028 1.45 

Table 5.1: Si/c and ahsolute spectral sI ope of the LWC-data sets. 
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Figure 5.3: Power spectrum of the 5 d.fferent data !>ct~ (avcragcd to 10 pOlnh pcr Illagllltude on the k
axis). AIl the sets are very accurately "cahng and have ab\olutc <,Iope~ do,>c to thc value 01 the '>tandard 
turbulence theory p= 5/3 (stra:ght hnc on top of graph). ln ordcr to aVOld overlap. the hne~ wcre """ct 
vertically by an order of magmtude each Number of sct~ u"cd to compute the average lrom top to 

bottom: 4. 3. 1. 2. S. 

If cloud droplets were passive scalars, i.e. tran~ported by Ihe wind wlthoul 

interacting with it, and if we neglect intermittency corrections, one obtam ... the ~tandard 

turbulence theory (Obhukhov 1949. Corrsin 1951). The thcoretical value for the ~pectral 

slope of the process is ~theo= 5/3. The so called Corrsm-Obhukhov law for pa~!'>ive 

scalars is: 

-~ 
E(k) =:: k 3 5.2.1 

where k is the wave nurnber. The values frorn the ernpirical data (Figure 5.3) obtaincd by 

linear regression are in a range of ±O.2 around thi~ theoretical value (Table 5.1). 

Since the power spectrum !.hows roughly the ~amc ... Iope for ail 5 data .,ct~ the 

original data can be split up into 15 pieces, each containing 8192 point!>. Wc a!'l!>urnc that 
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thclIe data scts of equal size are statistically independent and therefore the numbers of 

~ample~ i'i Ns= 15. In the following the en'iemble average refers to averaging over the se 

J 5 data ~et~. An enscmble averaged power spcctrum (the ensemble average is taken ovec 

the <;quare~ of the moduli of the Fourier components, IP, 12 ) yields (3:::::: 1.70, slightly higher 

then the pa~~ive lIcalar value in standard turbulence theory. Figure 5.4 shows that also 

hcrc very aecuratcly ~caling is obtained. 

E(k) (arbitrary units) 
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Figure 5.4: Ensemble averagcd power spectrum (averaged to 100 pOlOts pcr magnttude on the k axis). 
The enscmble averagc of the squared moduli of the 15 cqual sized data sets yields a power spectrum with a 
'ipcctral slope p= 1 7 

A particularly impressive example of the scaling is given in Fig. 5.3. the power 

spectrum of the longest data set #3 (65536 points i.e., spanning the range of scales of 5m-

330 km) which IS ~caling throughout the entire range. Recall that scaling is a statisticaI 

symmetry; he nec it is broken on every single realization, the random fluctuations in the 

speclrum are expected. It is plotted with a higher resolution (avecaged to 100 points per 

magnitude) 10 a ~eparatc graph (Figure 5.5). The standard model of atmospheric 

dynamic~ (c.g. Monin 1972) divides the almosphere into Iwo fundamentally distinct 

regimes which are scaling: a small seale three-dimensional turbulent cegime and a large 

scale Iwo-dimensional turbulent regime. Unlike turbulence in three dimensions, in two 

dimensions. vortex stretching is inhibited and vorticity is conserved. This leads to 

quomtitatively distinct two-dimensional and three-dimensional behavior: the standard 
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model assumes that these different regimes are separated by a "mcsoscale gap" whose 

seale is expected to be of the order of the height of the atmosphere (approximatcly IOkm). 

This existence of the "gap" has becn periodically qucstioncd on empiric'll grounds sinee 

the late 1960's, and due to the remarkable progress in scaling ideas in rcccni ycars. Il also 

seems out-dated from a theoretical point of view (Tessier et. al. 1993a). The power 

spectrum below gives strong crederce to these doubts. Il not only shows dear cvidcncc 

of scaling right through the crucial mesoscale, it is also the example of scaling covering 

the widest range that we are aware of in the atmo~phere (for a single data set). 
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Figure 5.5: Power spectrum of data set number 3 (65536 points) (avcragcd to 100 puinll. per 
magnitude on the k axis). The spectrum is excellent scaling with the spectral ,Iope f3 ",5/3 ln the whole 
range 5m-330km. 
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5.3 Structure function 

The \tructurc function Ç(q) is a scaling exponent from which wc can retrieve 

universaJ multifractal indices H and CI. It has the following definition: 

5.3.1 

where I=À·J is the small scale and the largest scale is assumed to he equal to one. Notice 

that by kccping the sign of the increment, the "structure" of the recursively coarsened 

!>ignaJ is retained. The structure function is related to K(q) and H in the following way: 

5.3.2 

which we obtain with equation 5.4.2 bclow and by substituting x by Â. Note <l'À is the 

conserved property of the proccss, (lP).) = constant (independent of scale) and here a is 

cqual to one (see paragraph 5.4 for a detailed explanation). Equation 5.3.2 relates the 

structure function with the moment sca\ing exponent: 

Ç(q) = qH - K(q) 

Therefore for q= 1 the structure function yields the parameters: 

H = ç(l) 

CI = ç(l) - Ç'(l) 

5.3.3 

5.3.4 

5.3.5 

which is retrieved by using the basic properties of the moment sca\ing exponent K(l)=O 

and K'( l)=CI (equation 2.2.5b). 

The empirical structure function is obtained by a procedure known from the 

prcviously e!>timated moment scaling exponent (section 3.5). At first the logarithm ofthe 

moment loglO (I~pl~) is plottcd versus log 1 0(À.) keeping q fixed (Fig. 5.6). The \ines 

show fair scaling in the range 1.2<log(À)<3.0. The slopes of a least mean square fit in 

that range yicld~ the cmpirical estimate of ç(q) (Fig. 5.7). The structure function at q 

cqual to 01 ' gi ves ç( 1 )=0.29 and Ç'( 1 )=0.20. Therefore the degree of stationarity of the 

observed field is H=0.29, which is !iule below the passive scalar value of Jl3 (see n~Âl 

section). The codimension of the mean is estimated as Cl=0.09. 
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Note that for values of q largcr than a critical value q=2.3 the structure fUllction 

becomes linear with a slope around 0.06 (Fig. 5.7). This indicatcs a phase transition for 

values of q larger than a critical value q;::::2.3. A priori. it could be ~l second order phase 

transition due to sampling limitations (qs), or a tirst order phase transition corresponding 

to divergence of the moments (qo); however in section 5.6 bclow wc argue that it is more 

likely to be of tirst order. 

Davis et al 1994 calculated the power spcctrum. the structure fllnction and the 

moment scal ing exponent K( q) of the absollite di fferences for a single rcaliz~ltion (8192 

data points) of the FIRE 87 data. Their estimatcs wcrc H=0.28. CI'::O.l .md p= lA. 

Although we expect large sample to sample variations so that estimates h~lsed on one 

single sample are not sufficient, their results are surprisingly close to the Orles we 

estimated. Particular large sample to sample variations are exrJCcted for the cstimate of Il. 
as seen in the previous section. so that their estimate of p is not very promising. 
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Figure 5.6: Scaling of the gradients of the raw LWC-data. The graph shows log 10 (l.&pI1 \ versus 
log IO(À). In the rangc of 0.6<log 100 .. )<3.0 the scaling is respected. A Iincar regression in thal regime 
yiclds the ~tructure function Ç(q) (sec below). Following moments were plotted (q from top to bottom): 
0.1, 0 5. 0.9, 1 .0, 1.1, 1.5, 2.0, 2.5. Note the break in scales for large À, particularly for q larger than the 
critical q::=2.3. Moments of the order largcr lhan this critical value will not converge anymore, thus the 
stalistÎCs will be poor. 
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Figure 5.7: Structure function Ç(q) versus q. From ç(l) and ç'(I) onc yields the universal multifractal 
indices H=0.29 and CI =0.09. Note that for values of q larger than a critical value q==2.3 the structure 
funclion becomcs linear corresponding to a multifractal phase transition. 
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5.4 Transformation of the Data into a Comerved Mldtifractal 

Most analysis techniques used in the further analysis are sensitive to uneonserved 

multifractal fields (i.e. H;ëÛ). There fore , in the first stcp the parmncter H of our data is 

estimated. 

In real space the equivalent equation to Corrsin-Obhukhov law (eq. 5.2.1) is: 

(l~p(x)I):= x* 5.4.1 

Statistically, this means that the characteristic fluctuations L\p are seale inv~,riant with 

respect to Â.. (using our notation: Â.=x- I ). That is, the fields arc not conserved and H= 1/3. 

We may write the passive scalar scaling for the density pas: 

5.4.2 

where 'PÎ.,. has the conserved property (lI'À.) = cons/afll (independent of scale). Since we 

have as yet no proper dynamical theory for the Iiquid-watcr distribution in the atmosphcre, 

we do not know the appropriate fields <PÀ nor the corresponding value of a. In the 

following discussion, therefore, the ~implifying assurnption is made that a= 1 (changing 

the value of a corresponds essentially to changing the parameter CI, see eq. 5.5.5b). H 

has a straightforward interpretation: il specifies how far the rneasured field p is from the 

conserved field cp: (IAPI):= À-H. In other words, power-Iaw filtering (also called 

fractional differentiating) of the measured field p Icads to the conserved field <p. 

Fractional differentiating can be considered as a generalization of the usual 

differentiation by a non-integer order. A differentiation of the integer order n can he 

perfonned in Fourier space by multiplying the Fourier components by a factor of kn• The 

same operation for a non-integer order His called fractional differentiation (or for H<O 
fraction al integration). In practice we rnultiply the Fourier componcnts of the data Pk by 

Ikl!. Since we differentiate, the mean is equal to zero, which is achicvcd by sctting the Oth 

Fourier component Po=O. After fast-Fourier transforrning the data back into physical 

space, the absolu te value of the data is taken. 

Figure 5.8 shows a fragment of the L WC-data afler fractional integration. Sincc it 

is the same fraction as shown in Figure 5.1 the effect of power law filtering can he clearly 

seen. Singularities present in the field are accentuated, the field is roughcr due to the 

relative boosting of the high frequencies. 
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Figure 5.8 L WC-data after fractional differcntiation by a factor of H= 1/3. Same fragment from data set 
#4 as in Figure 5.1. 
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5.5 Double Trace Moment Analysis 

The Double Trace Moment Technique is a powerful technique designed to directly 

determinc the universal multifractal indices (l and Cl (Lavallée 1991. Lavullée et al. 

1992). The basic idea of the DTM-technique is to directly exploit universality by 

generalizing the trace moment. It introduees a second moment 11 by transforming the field 

at the seale of resolution A: <PA -+ <9 ~. The scaling behavior of this field is then studied 

by looking at the various qth moments at increasing seales Â (rcmcmbcr Â<A). The 

obtained q, 11 double trace moment at resolution Â. and A has the following sculing 

behavior: 

T'À (<P~)q = \ tU<P~ dx D J) = ~K(q. m-(q-I)D 5.5.1 

where kA is the set A at resolution Â and D is the dimension of the embcdding spOlce (here 

D=1). The integration over Aï.. rescales the field and dresses the qUOlntities. The sum is 

over all the k).. sets. When 11=1 the right hand side of eq. 5.5.1 rcduccs to the usuul tracc 

moment. The above double scaling exponent K(q,l1) is relatcd to the moment scaling 

exponent K(q) (see section 2.2) by the following relation: 

K(q, T])= K(qT])-qK(T]) 5.5.2 

K(q,11) reduces to the (single) moment scaling exponent K(q) for 11= l. Fig. 5.9 gives 

sorne examples of various trace moments as a funclion of resolution; note lhat the scaling 

is very accurately followed. Without going into details, we just mention here the real 

advantage of the DTM-technique, which becomes apparent when it is applied to universal 

multifractals: 

5.5.3 

a can therefore be estimated by the slope on a simple plot of log(K(q,11» vs. log 11 for 

fixed q. By varying q we improve the statistical accuracy. CI can bc estimatcd as the 

intersection with the line 11= 1: 

5.5.4 

Finally, note that eq.5.5.2 is only valid when the relevant statistieal moments converge 

(the critical value is qD) and when the sample size is sufficiently large to accurately 
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estimate the scaling exponents (the critical value is qs, corresponding to the maximum 

order of ~ingularity 'Ys present in the finite sample, see section 3.4b). Whenever 

max(Q11,q»min(qs.qD) the above relation will break down; K(q,l1) will become 

indepcndent of 11. 

Note a consequence of the direct relation 5.5.3: If <p is a conserved universal 

multifractal field, characterized by the indices (a!p,Cl(cp»' the field <pa also is a universal 

multifractal field with the indices (fi !pc., CI( <pa»: 

This relation quantifies the assumption made al the beginning that a= 1. 

5.5.5a 

5.5.5b 

The DTM-Analysis was applied to the fractional differentiated data. The Double 

trace moments were caIculated for 4 different values of q: q=0.75, 1.5,2.0, 2.5. For ail 

of these values the double trace moments show excellent scaling as shown in Figure 5.9 

for q= 1.5. The slopes of these graphs are equal to (K(q,11». From the 10g(K(q,11» vs. 

log 11 (fixed Q) graph (Figure 5.10) the universal multifractal indices can then be 

estimated. Notice the remarkable long and straight line part for the curves which breaks 

down for high values of 11. In fact, the value of 11 for which the curves are bending 

towards the horizontal is consistent with the theoretical estimate 11 == !l.f. 
The following parameters were estimated from the slopes and intercepts of the 

straight parts: 

q a Cl 

0.75 1.98 0.061 

1.50 1.99 0.063 

2.00 1.99 0.063 

2.50 1.99 0.063 

Table S.2: Estimated univcrsal indices by the DTM-analysis technique. 

The universal multifractal indices are: a = 1.99±O.Ol and Cl= O.06±O.Ol. 

This value of CI can he compared to the estimate obtained by the structure function in 

section 5.3: CI'==O.09. 80th values are very small so that a minor discrepancy is to be 

expected. We averaged both values an obtained an overall estimate ofCI=0.08±O.02. 
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Figure 5.9: Scaling of the double trace moments IOglO(Cq>iFl»q) versus log 100 .. ). The lincs 
correspond to a Iinear interpolation obtained with the valucs of 11 (from top to hottom): 0.10. 0 20, 0 32, 
0.46,0.62,0.83, LOO, 1.21, 1.47,2.15,3.16. 
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Figure 5.10: K(Q,11) as a function of 11 on 10glO-loglO scale. for the valuc!> (top to bOllom) q=2.5. 
2.0. 1.5.0.75. As expected for universal multlfractals, thc curvcs are hnear and parallel for a certain range 
of the moments". The parame ter a can be identified as the slope of thc!>c str3lght line parts of the 
curves. whereas CI is the value of the straight line at the intersection Tl=O. For large values of 11 the 
slopes are bending towards the horiLOntal since max(q".q»mm(qs,qd). 
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5.6 Analysis of the statistical moments 

The moment scaling exponent K(q) (discussed in chapter 2 and 3) can he estimated 

directl} by studying the scaling behavior of the dressed moments < <P~ > (see section 

3.5). This is do ne by plotting log < <pî > versus logO .. ) as shown in Figure 5.11. The 

straight lines indicate that the scaling is weil respected: the slopes are the corresponding 

values of Kd(q). Figure 5.12 shows the empirical I<d(q)-function compared to the 

thcoretical K(q)-function obtained using (l=2 and CI =0.063. There is an excellent 

agreement between the two curves in the range of -0.5<q<2.5. Note that the negative 

moments for the emp:ricall<d(q) curve appear to he weil behaved. This is an indicator, 

that the estimated data is lognormal (a=2), since negative moments of q exist only for tbis 

type of universal multifractal. 

For moments larger than the critical value q==2.3, the empirical ~(q) curve 

bccomes Imear with a slope around 0.23 çorresponding to a muItifractal phase transition: it 

can he a second order phase transition due to sampling lirnihttions (qs), or a first order 

phase transition corresponding to divt'rgence of the moments (qD). The probability 

distribution of the absolute filtered fIeld <p helps us to distinguish between these two 

qualitatively different multifractal phase transitions (Figure 5.13). The graph shows the 

probability distributions for different amounts of dressing (various Â,'s). AlI distributions 

apparently have a hyperbolic tail, 

Pr(<p> y) ex y-Qo y» 1 5.6.1 

where y is the absolute value of the filtered L WC-data. This corresponds to a linear 

hehavior of the probability distribution exponent c(1) for orders of singularities 1 heyond a 

critical value 10 (see below) .md divergence of moments with the critical value qo==2.3. 

Since c(1) is related to K(q) 'lia Legendre transformation we expect from the empirical 

K(q) (Figure 5.12) 'YD=K'(q) for q>qD, i.e. 1D==0.23. In the next chapter we wili see, 

that the cmpirical probability distribution exponent has indeed these features. 

ln section 5.3 where the structure function of the raw LWC-data was calculated, 

the critical value of ct, at which the structure function Ç(q) became Iinear. was also at 

qD==2.3. The slope of the tinear part was around 0.06. For values of q>qD this yields 

K(q)::0.23q (using the above estimate of H==0.29 and equation 5.3.3). This value is in 

excellent agreement with the slope estimated directly from the empirical K(q) function 

(Fig. 5.12) 'YD==0.23 for q>qD. 
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Figure 5.11: Scalmg of the moments of the field cp, log)O«fI'A)q) vcr,u~ logJ()(À,). The lines 
correspond 10 a linear interpolation oblamed with the values of q (from bollOlIl to top)' -0.75. -0.50. 
-0.25, 0.25, 0.75, 1.50, 2.00. 2.50. 3.00. 3.50. 
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Figure S.12: Comparison of the empirical esllmate of I<d(q) wlth the lognormal univer.,al multifractal 
K(q) for a=2 and Cl =0063. There is an excellent agreement bctween the two curvc'i for thc moment., 
with -0.3<q<2.5. Note that for the empirical Kd(q) the negative moments are weil hehaved. which jl> an 
indicator that a=2. 
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Figure 5.13: Probabihty-dlstribution loglQ{Pr[q»y)) versus loglQ[Y] of the LWC-data, dressed by 
diffcrent amount!>. ')JA = 2. 4, 8, 16 Note that the near superposition of the curves indicates the right 
amoun\ of fractIOn al dlffcrcntlatmg of the data, whlch Implies a falf eshma\e of H=I/3. Furthermore the 
dl!.tnbution<; have a hypcrbohc tall whlch 15 rcprescnted In the graph by the straight linc whose absolute 
!llope IS the cnllcal order of moment QO=2.3. 

5.7 Analysis of tire probability distribution exponent 

ln order to confirm the universal multifractal indices estimated from the DTM in 

section 5.5, we analyze the absolute values <p of the power law filtered data with the 

PDMS technique (sec section 3.3) and obtain the probability distribution exponent c(y). 

Remember that for each fixed order of singularity y, the logarithm of the probability 

distribution is plotted versus the logarithm of the sc ale parame ter Â. (Figure 5.14). The 

1\caling is most accurately followed over the range of 16<Â.<2048. For each order of 

singularity y, linear regression in the scaling regime of Â. yields an estimate of the 

cmpirical c(y). We compare this with the theoretical probability distribution exponent for a 

lognormal mullifractal (a=2) wlth C,=O.063 (Figure 5.15). To obtain an overlap ofboth 

clirves, the theoretical clirve was shifted by 0.023 to the left which corresponds to a minor 

shift in y. As expected, the estimated c(y) curve follows a straight line with the slope 

c'(y)=qo==2.3 for orders of singularities larger th an the critical 'YD=K'(qo):::::(}.23. Note the 

excellent agreement between the moment exponent behavior and the probability 

distribution exponent behavior beyond the critical values qO, 'YD. 

56 



log(Pr) 
o 

~~::=:====::=: 
-1 

-2 

-3 

-44---------~----_r--------~----~~----~------r_----~~----~ 
o 1 2 3 4 log( À ) 

Figure 5.14: PDMS analysb of the absoJute value~ of the power law tïI tcret! (11= 1/3) LWC -Ilata The 
graph shows loglO(Pr [<p>).Y)) versus log !O().) and IS sealmg III the range 16<À<204H. TIll! IlIle, arc 
obtained for the followmg orders of ~tnguJaritles y (from top to hottolll)' -0.10. 0 00. () Ofl, 0.10. () 16. 
0.20, 0.30, 0.40. 
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Figure 5.15: Comparison of the cstimatcd probability di\tributuJn cxponcnt wllh thc thcorcllcal ç(y)

curve for a=2 and C} =0.063. The thcoretical eurve was ~hiftcd by a value a=O 023 to the Icft. to ohtain a 
superposItion of bolh curves. As expeeted, the estlmatcd e(y) follow,> a '>traight liuc wlth the .,Iope 
c' ('YO)=QD==2.3 for values of y Jarger th an the entieal YD"'O.23. i.e. the tangent un the thcoretlcal curvc In 

the shifted graph al "'Fl.l. 
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5.8 Evidence for lognormal mulli/raclal clouds 

We now try to an~wer the question, in which we are most interested in: can our 

c1oud-!'Iamplc!'l bc d(,"icribed by lognormal universal multifractals (a=2) or are they rather 

univcr~al multifractab with an Levy mdex less than two (a=2-E, E small)? Although we 

can determine a wlth quite high precision (1.99 ± 0.01., see table 5.2), it is important to 

know If Il IS exact equally two, ~mce this qualitatively is a different clasE of universal 

multlfractal .. lhan types where a<2. Lognormal multifractals are the only types of 

univer!'lal multlfractal~ where the derivative of the probability distribution exponent 

bccome~ ncgatlve for small enough values of y, corresponding to the existence of negative 

mornent"i q. Thl~ Irnplies that the regularities of the cloud (regions with very low density) 

bccome Ic~~ probable the smaller the regularities (Iower the density) become. Obviously, 

as alrcady pomtcd out in prevlous chapters, the statistical behavior of the low density 

regiol1lol IS very important in order to determine the radiative transfer properties (i.e. in 

thc~c regions the photon free path length is very long, hence most of the transport occurs 

thcre). Furthermore the theoretical approach in section 2.5 needed a clearly defined 

minimum of the probability distribution exponent c(y) for the Laplace-method to work. 

Univer!'lal multifractals with l<a<2 do not have a minimum since c(y)=O for ail 'Y<'Ymin, 

whcre Ynul1 I~ the largest value for which c(y)=O. 

ln lognonnal multifractals, the log-probability distnbution is symmetric; Pr(cp>x) = 

Pr( A Iq» x ), wIlh A a constant which depends here on À and C). This can be seen by 

con~idering the probabIlity distribution exponent c('y) (eq. 2.2.6a): for lognormal 

multifractul~ thi~ function is a parabola wlth the vertex at r=-CI, i.e -CI is the symmetry 

point. Ali other types of umversal multifractals with a less than two do not ha',e snch a 

symInetry in the probability distribution exponent. 

In order to find out If at least in principle it is possible to see that difference with 

15 rcali7ation~ wIlh 8192 data points each, we simulated fields of the same size as the 

empiric<ll data wlth CI =0.063 and a= 1.99, a=2.0 respectively by means of the 

contmuous ca~cade algonthm (section 3.1). The data was then rescaled (dressed) by a 

factor of 4. as we dld with the cmpincal data to avoid possible oversampling problems 

wllh the cmpincal data at fine~t resolution. We plotted log(Pr[<p>y)) and 10g(Pr[ lIcp>y)) 

vcr"u~ log(y) on top of cach other for both simulated fields (Figure 5.16). Note that on a 

log-log plot the latter probabihty distribution is the reflection of Pr[<p<y]. The symmetry 

IS c1ear to sec 111 the lognormal multifractal case, however for Cl= 1.99 the distributions are 

not ~yI1ll1letric. 
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If we now make a similar plot with the empirical dHta. wc find that both 

distributions appear to have the same hyperbolic tail and thus show nearly symmctric 

behavior (Figure 5.17). The existence of the symmetry indicatcs (assuming univcrsality) 

that 1.99 < (l :5 2. This increases the confidence that the experimcntal cloud data CHn bcst 

be described by a log normal multifractal. Figure 5.17 shows that also the probahility 

distribution Pr[ IIcp>y] has a hyperbolic tail, which means that we found ncgativc 

temperature phase transitions. 
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Figure 5.16: Probabihty distributIOns of a multifractal simulation (15 rcalization with 8192 data 
points cach) with Cl=2.0 and Cl=1 99 (dressed by a factor 4). The graph compares both probability 
dIstributIOns: loglO(Pr(c!»y» and loglO(Pr(Alcp>y» versus loglO(y) for both fields. The constant A was 
chosen for the optimum superposition, A= 10° 45=2.8. Clear to see IS the symmetry of both distributions 
in the lognomml multlfractal case (Cl=2). However for a= 1.99 both distributions are not symmetric. 
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Figure S.17: Probabihty-distnbution of the LWC-data (dressed by a factor 4). The graph shows the 
!lymmetry 01 buth probahility dlstrihutlOns: loglO(Pr(cp>y» and 10glO(Pr(Alcp>y» versus loglO(y). The 
constant A was cho!>en for the optimum superpoSitIon, A= 100.3=2. The weil respccted symmetry of both 
curvcs indicatcs that Cl=2. Furthermore the distnbutions have a hyperbolic tail which is represented in the 
gmph by the stralght line with the ahsotute stope the critlcal order of moment QD=2.3. The hyperbolie 
t:lil for (Pr(Ncp>y» corrc!>ponds to a negative temperature phase transition. 
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5.9 Conclusions of the e"'pirical cloud data a1lalysis 

The "Singularity Formulation" of scaltering as weIl as the "Renormalization" upproach. 

introduced in chapter 2 and chapter 4 respectively. were developcd for a lognormal 

multifractal cloud model. The analysis of stratocumulus cloud dat'l performcd in this 

chapter confimled the applicability of log normal multifractal c1ouds. 

We analyzed empirical cloud liquid-water-contcnt data in the spatial mngc bctween 

Sm to 330 km. The power spectra was scahng ovcr the entirc rangc, thus qucstioning the 

existence of the "mesoscale-gap". The spectral exponcnts were found closc to the 

theoretical value in turbulence for passive scalars \Vith ~lhco=5/3. in faet we found a 

spectral slope of the ensemble avcraged power spectrum ~= 1.7. This indic'lted that the 

LWC-field was not conserved and H::=1/3. A study of the structure functlon ç(q) yieldcd 

C 1"=0.09 and H::::O.29, the latter being close to the passive ... ealar valuc 111 standard 

turbulence. These values of CI and H are very close to those found by Davis et al 1994 

using only a single sam pie. The structure function also suggc~tcd therc was .. multifmctal 

phase transition with critical exponent qo"'2.3. 

We fractionally differentiated (power law filtered) the fields by À,H, rctnev1l1g a 

conserved field whlch was then analyzed. A Double-Tracc-Moment (DTM) was applied 

to directly estimate the universal multifractal indices and yicldcd Cl= 1. 99±O.O 1 and 

CI=0.06±0.OI. A comparison of the empirical moment ~caltng functlOn with the 

theoretical K(q)-function showed consisteney with the DTM cstimatcs up to a entieal 

exponent QD:::::2.3. In order to determine the nature of thi~ pha~e transition we exarnined 

the probability distnbution function. A log-log plot indicated a hyperbolic tatl 

corresponding to divergence of moments with a slope qD:::::2.3. FurtJ'crmore a Prohahility 

DistributionlMultiple Scaling (PDMS) analysis yielded the empmcal c(y)-functlon and 

confirmed the estimated multifractal indices with a first order pha\e tmn~ltion occurring at 

"(0:::::0.23. 

Since it is of profound interest for the radiative propertie~ of tlle cloud if it can he 

described by a lognormal multifractal, we showed that the log ... of the prohabihty 

distribution functions Pr(q»y) and Pr( 1 /<P>y) arc ncarly equal, thu~ giving ~trong 

evidence for a lognormal multifractal cloud. Sincc the asymptotlc tait of Pre X, > y) :::::: y-q" 

this indicatcs the existence of a negative tempcrature pha ... c tran~itlon for q<qf) 

Surnmarizing, the following multifractal indices were found: (l:::::2; CI =0.08-

±0.02; 8::::::0.29 and a second order phase tran~itlon at QD",2.3. 
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6. Conclusions 

ln recent years it has been shown that a realistic study of the Earth's c1imate 

system, c.g. by gcncral circulation models (GeM's), needs improved modeling of c10uds 

to take into account their strong inhomogeneity as weil as to better understand their related 

radiative propcrties. Most numerical modeling of the radiation effect of c10uds has 

a~sumed a plane-parallel gcometry despite the considerable three dimensional variability, 

in the dcnsity field, geometry and spacing. The purpose of this work is to justify the use 

of multifractals as highly inhomogeneous models for c10uds and to provide a formalism 

retrieving radiative transfer properties in these media. 

We analyzed stratocumulus cloud Iiquid water content data from the 1987 FIRE 

expcriment. The data showed excellent scaling over the entire spatial range of 5m-330km. 

The universal multifractal indices were estimated with the results: (X::::2, C,=O.08±O.02 

and H::::0.29. With several methods we demonstrated that the examined cloud data 

responded like a lognormal multifractal with (X=2, thus providing a motivation for 

studying radiative transfer in universallognormal multifractals. 

In the main part of this work, we developed a formalism analogous to the 

multifractal singulanty fonnalism for understanding photon scattering statistics in radiative 

transfer in multifractals with existing negative moments q=c'(y)<O. Using the 

nondimensional extinction coefficient 1( to characterize the optical thickness and the 

transport propertles proved to be a tractable approach to calculate the "bare" photon 

statistics. The theory involved two fundamental quantities: (1) The moment scaling 

exponent Kp(q) which characterizes the scaling of the moments of the free photon path 

distribution, aI j cOllld be exactly calculated in the case of a lognormal muItifractal 

medium. (2) The probability distribution exponent cp(Yp) that detennines the scattering 

probabilities for photon path distances. It was approximated in two different ways, 

leading to the sarne reslllt. We performed extensive numerical tests of the results and 

consequently obtained the dressed statistics. We showed that the "bare" and the "dressed" 

statistics are not significantly different and so justified our theoretical "bare" approach. 

Althollgh the reslIlts are only exactly valid in the thick cloud (large extinction coefficient 1() 

Iimit, the approx Imation was found to be quite accurate down to 1(::: 1-10, so that the 

rcsults may he widely applicable. 

It was shown that the near Iinearity of Kp(q) led to the possibility of 

urcnormalizing" the multifractal by replacing il with a near equivalent homogeneous 

medium but with an effective extinction coefficient 1(1I(1+C,) where Cl is the codimension 

62 



of the mean singularity of the cloud. The "renormalizing" approach provides an easy tool 

to estimate the bulk radiative properties of a lognomlal multifractal cloud. Finally, we 

argued that this approximation was Iikely to continue to be valid for multiple scattcring. 

and was also compatible with recent rcsults for diffusion on lognormalmultifractals. We 

compared our results with reeent numericaI calculations finding excellent agreemcnt. 

One limitation of these results was thcir rcstriction to the mther special lognormal 

case (a=2). The key point in the above development is the approxilmuion of the barc 

muItifractal properties by the dressed ones. When a<2, this step is stIll !>traightforward 

for the larger singularities, but may breakdown for the regularities associated with the 

numerous weak "Lcvy hole" events that will dominate thc scatlcring. Howevcr. 

preliminary numerics indicate that even herc, similar trcatment may be possible using 

appropriate asymptotic dressed muItifractal propcrties. This is an important area for future 

work. 
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Appendix 

A 1 Evaluation of the Moment Scaling Exponent 

The transmission is calculated as (2.5.6) 

Al.I 

ln order to caleu)ate the moment scaling exponent Kp(q) ( eq. 2.5.3) exaetly we use the 
faet that (T) = Pre 'rp > K'x) and so the probability density for Yp is 

A1.2 

The moments of tp can now he round from 

( q) = _ fI d < T > qy Pd 'rp d 1( Yp ' 

-00 Yp 

Al.3 

The integral can be done exaetly. Integrating by parts gives 

1 

('r/) = -I(qe- K + q log 1( f (T) I(qYPdyp , Al.4 

where we have used the fael that (T( Y p = l)) = (T(x = 1» = e- K
• The trick now is to 

reverse the order of integration and integrate over yp first. Using the definitions ~ = 
1 +C 1 the integral in eq. A 1.4 ean he written 

1 = fI (T) I(qYPdy = lOg K fOO e- KTr 1 (y )dy 
1 p 41l'C 2 f f' 

-~ 1 -~ Al.5 

where 

Al.6 
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.. 
Using J x -!e-(fil+bIX)dx = ~-2,[.jb. we obtain 

o 

With the shorthand s = -tt;U,82+4CI'i-,8). 

00 

Al.? 

1 = r=I=l(q-f Jexp(_I(Yr +s y togl(Uy = [-1 -I(q-~ f(s) Al.8 
l 'V ,82+4C\q -00 r? r " ,82 +4C,,, log f( 

Putting everything together: 

Al.9 

Al. 10 

We conclude that except for the Jeading term which becomes smalt exponentially fast wilh 

K (and which arose because thr external scale of the cloud is 1 ) the moment function is 

scaling in K, If we write 

AI.II 

then 

AI.12 
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A2 Laplace Method for the Evaluation 0/ the Probability Distribution 

Exponent 

The transmission is calculatcd as (2.5.6). We can write that integral with ~ as the base: 

A2.l 

The Laplace method consists in evaIuating the integraI at the minimum of the exponent. In 

the Iimit of largc K trus yields: 

A2.2 

The minimum occurs for rr ::::: 0 which leads to eq. 2.5.9. Note that the extent to which 

the prefactor f(q) (eq. Al. 10) affects the scaling shows up in the second order correction 

tOYt· 
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