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Abstraci

The study of radiative iransfer in multufractal clouds is of great interest, an
important application being to Global Climate Models. In this work we develop
a formalism analogous lo the multifractal singularity formalism for
understanding photon scatiering statistics in radiative transfer in multifractals,
and test the results numerically on lognormal multifractals. Although the results
arc only exactly valid in the thick cloud limit, the approximation is found to be
quite accurate down to optical thickness of 7 =110, so the results may be
widely applicable. Furthermore we show the possibility of "renormalizing" the
multifractal by replacing it with a near equivalent homogeneous medium but

V4G where C| is the codimension

with a "renormalized"” optical thickness T
of the mean singularity of the cloud. We argue that this approximation is likely
to continue to be valid for multiple scattering, and is also compatible with recent
results for diffusion on multifractals. Finally we analyze cloud liquid water
content data and estimate the universal multifractal indices. We find that the
scaling is respected over the whole range Sm - 330km and that the cloud can in

fact be reasonably described by a lognormal muliifractal.



Résumé

L'étude des transferts radiatifs dans les nuages de type multifiactal est d'un
grand intérét, particuliérement en vue de des conséquences pour les Modeles de
Climat Globaux. Ce mémoire présente un formalisme analogue A celui des
singularités multifractales afin de compiendre les statistiques de la iétro-
diffusion des photons (transfert radiatif) dans un multifractal. Les prédictions
sont comparées aux résultats numériques obtenus avec des multifractals log-
normaux. Meéme si les résultats ne s'appliquent qu'aux nuages optiquement
épais, l'approximation s'est rélévée bonne pour des épaisseurs optiques de
I'ordre de T=1-10; ainsi ces résultats sont applicables assez généralement. De
plus, nous montrons qu'i! est possible de "renormaliser” le multifractal en le
remplagant par un milieu homogéne presque équivalent mais ayant une

MO+ oi €y est la co-dimension de fa singularité

épaisseur optique T
moyenne du nuage. Nous prétendons que cette approximation devrait étre
valable pour la rétro-diffusion multiple et qu'elle est compatible avec les
résultats récents de diffusion dans les multifractals. Finalement, nous
analysons les données de quantité liquide d'cau des nuages ct estimons les
parametres multifractals fondamentaux. Nous trouvons que I'invariance
d’échelle est respectée pour une fourchette de Sm a 330km et que le nuage peut

raisonablement étrc décrit par un multifractal log-normal.
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1. Introduction
1.1 Context

The problem of specifying the radiation field i an atmosphere which scatters hight
originated in Loid Rayleigh's investigations n 1871 on the illuminaton and polasizaton
of the sunlit sky But the fundamental equation of transfer governing Rayleigh's
particular probiem had to wait seventy-five years for thewr formulatton and solution
(Chandiasekhar 1946). The subject was given a {resh stait under more tractable
conditions, 'when in 1905 Aithur Schuster formulated a problem in radiative tansfer i an
attempt to explain the appeac.nce of absorption and emission lines 1 stellar spectia
(Schuster 1905). Since that time the subject of Radiative Transter has been mvestigated
principally by astrophysicists and geophysicisis, though it also generated nterest to the
physics community (e g. in the theory of the ditfusion of neutions)

The problem of determining radiative propetties of mhomogencons clouds 1s
notoriously difficult and remains an active ficld of research. In fact, all problems that
require a rcalistic account of the effect of tadration in a cloudy atmosphere must be
concerned with the spatal (and temporal) vartability of clouds and the impact of this
variability on the radiative process of interest. Many apphications readily come to mind, as
for example global climate models which require the radiative budget of some volume of
atmosphere.  Most numenical medels of the radiative effect of clouds on the Earth's
climate have assumed plane-parallel geometry and thus entail signiticant ctrors Other
applications are remote sensing studies of clouds and precipitation.

The term "mhomogencous clouds” is to be taken in a very broad sense We
include cloud ficlds as well as isolated 1ntemally homogeneous clouds of fimite horizontal
extent. Infact this field of icsearch has become known as "multidimenstonal” * radiative
transfer and exactly complements the well developed theory of planc-parallel media where
radiation ficld and/or optical properttes vary in the vertical only (see Lenoble 1977 for an
extensive review). The upcomng discussion 1s restucted to the horizontally
inhomogeneous atmosphete where we can distinguish thiee different approaches.  the
non-fractal, the fractal (monofractal), and the multifractal.

The study of fractals and multifractals 15 a relatively new ficld which n recent
years has gained growing recognition and a mushrooming interest, particularly in physics

and geophysics. Geophysical systems such as the atmosphere exhibit extreme vanability

*1n the following called "horizontally inhomogencous” to avoid any possible confusion with the term
"multiple (fractal) dimension”




over ranges of scale which can exceed factors of 109, The dynamical models of these
systems used for example in weather prediction, are typically scale invariant hence in
principle can admit multifractal solutions. A growing body of theoretical and empirical
work .., showing that geophysical systems do indeed obey scaling symmetries over
considerable ranges (for reviews, see Korvin 1992, see also papers in Scholz and
Mandelbrot 1989, Schertzer and Lovejoy 1991, Lam and De Cola 1993). Thanks to
advances 1n scaling ideas, particularly multifractals and generalized scale invariance,
modecls can now be sufficiently realistic that they can be used for simulating various
physical processes including transport phenomena.

Before we review some of the most important contributions to the radiative
transfer problem in inhomogeneous, scale invariant media, a very concise summary of the
non-fractal approaches is given here (for a more detailed overview see Lovejoy et al 1990
or Davis ¢t al 1992). Although the distinction is somewhat arbitrary, non-fractal
approaches can be divided into two categories:

In the first category, which is the most extensively studied in literature, clouds are
internally homogeneous but non plane parallel boundary conditions impose horizontal
gradients in the radiation field. Some researchers investigate simple geometrical shapes
(e.g. cubes, cylinders, spheres) by various methods (e.g. Preisendorfer and Stephens
1984, Stephens and Preisendorfer 1984), others study the statistical mixture of these
noninteracting cloud fields (e.g. Ronnholm et al. 1980, Welch and Zdunkowski 1981)
and also do rescarch on genuine cloud fields, modeled by one and two dimensional arrays
of these entities (e.g. Wendling 1977, Titov 1980, Davies 1984).

The second category consists of models in which the internal optical depth field
varies in at least one horizontal direction. To mention one of these physically more
relevant contributions, Stephens 1988a,b offers a general formalism and discusses
variability over many scales in connection with (two-dimensional) satellite imagery.

Starting with Gabriel et al 1986, fractal models of clouds have been used to
numerically study the radiative properties of extremely variable clouds. These authors
showed that even spatial variabilities confined to a range as small as a factor of 32 would
in principle be sufficient to explain the apparent large discrepancies (factors of 10 are
cited) between in situ and satellite estimates of cloud amount (the “albedo paradox”).
Since then, fractal models have been used in a series of papers (Lovejoy et al 1988, 1990;
Davis et al 1988, 1990; Gabriel et al 1990) who used simple fractal (“B”) models to
investigate the “bulk™ properties such as overall mean albedo and transmittance of clouds.
Theoretically and numerically it was shown that one obtains anomalous scaling for the
transfer associated with optically thick fractal clouds. Since in the latter the exponent is



smaller than one, the scaling exponent for homogeneous clouds, the general features of
heterogeneity is the tendency to make the atmosphere more transparent (and less reflective)
compared to an equivalent uniform atmosphere. The same authors also showed that the
diffusion approximation to the transport in optically thick fractal clouds may be poor:
radiative transfer and diffusion may, but do not necessarily, yield the same anomalous
transport exponents.

Note the basic distinction between optically thick and optically thin regimes.
Assuming that the mean cloud density is equal to one, and the external scale of the cloud 1s
equal one, the mass extinction coefficient K¢ can be used to characterize the optical
thickness and the transfer properties. The mass extinction coefficient Ke=(1-g2)Xgm
(where g is the asymmetry factor, g=0 for isotropic scattering) is the sum of the scattering
cocfficient g and the absorption coefficient x;. However, in the following we will
assume non-absorbing clouds, therefore the mass extinction coefficient 1s the cross section
per unit mass of the scattering particles, the water droplets. When K.<<1 (the thin limit)
the spatial variability of the cloud is unimportant, whereas when K¢>>1 (the thick limit), it
completely dominates the behavior and the homogencous (plane parallel) and fractal
results will be completely different, algebraically diverging as Ke.—. Since real clouds
are at Jeast moderately thick, it is obviously important that radiative transfer propertics be
inferred from cloud models with realistic scaling properties.

Mauy other researchers have now used fractal or multifractal cloud models for
modeling radiative transport, although most results so far have been numerically detived.
Cahalan 1989 has used Monte Carlo methods to study modecrately thick (x¢=1.5)
multifractal clouds allowing variability only in the horizontal- the optical depth was taken
to be constant in vertical columns. In keeping with his modest thickness, he found small
increases in transmittance (10-30%) compared to equivalent plane parallel models. These
modest effects are reproduced in other thin cloud simulations using a different monofractal
model called the “bounded cascade” model (Cahalan 1994). Similarly Barker and Davies
1992 have used thresholded two dimensional fractional Brownian motion monofractal
clouds to model numerically (Monte Carlo) the overall albedocs of moderately thick cloud
fields (1.4<k.<7). They investigated the bulk radiative response as a function of the
scaling exponent of the models, finding highly significant effects associated with
horizontal variability. Davis et al 1991 (sce Davis et al 1993 for a summary) was the first
to go beyond “bulk” flux estimates by numerically calculating detailed radiation ficlds.
This was done on large (1024x1024) two dimensional multifractai cloud models using a

class of universal multifractals (lognormal). For cross validation purposes both Monte




Carlo and relaxation techniques were used and the behavior was examined with x,
increasing up to 200 (well into the optically thick regime).

Multifractal clouds have the realistic property of being highly variable even at fixed
spatial scales. This means that obtaining reliable and efficient numerical algorithms to
model the transfer is a nontrivial task. In order to overcome some of the limitations of
both Monte Carlo and relaxation methods, Borde et al 1993 developed an accurate semi-
implicit numerical scheme and used it to investigate the relation between the singularities in
the radiation field and the cloud optical depth. Preliminary results include evidence that
their multifractal indices were related to each other in a theoretically predicted way.
Finally, by neglecting the correlations between more than two success've scatters, Evans
1993 has modified the backward Monte Carlo technique so as to obtain direct estimates of
cnsemble averaged optical properties of lognormal multifractal cloud fields. In the
relatively thin clouds he studied (x¢=0.6, 1.5), he found this approximation was quite

accurate.
1.2 Outline

While the numerical approaches discussed above certainly provide indispensable
tools for understanding radiation in scaling systems, in themselves they are insufficient to
resolve the two basic physical problems: the statistical relationship between the radiation
and cloud fields (as functions of resolution), and the scattering statistics describing the
random trajectories of individual photons. While we have already mentioned some first
steps in theoretically addressing the former, Lovejoy et al 1990 and Davis et al 1991 have
obtained some initial results concerning the latter. Unfortunately, while their results
(mostly direct transmittance statistics) apply to arbitrary multifractal clouds, they are only
valid in the asymptotic limit involving small distances (in the notation to be introduced
below, the large A limit).

In this work, we overcome the limitations of this approach by considering
asymptotically thick clouds; taking x, large and allowing the distances to extend over t.e
entire available range. Although the results * will be specific to a special type of universal
multifractal (the lognormal multifractals mentioned above), preliminary numerics indicate
that the same type of approach can be considerably generalized. Furthermore, the large
regime turns out to be attained for quite low K. (as low as 1-10), so that this does not
appear to be a scrious drawback. In any case, the extensive understanding of the
scattering statistics obtained below sheds light on the basic processes involved.

* The basic results were announced in Lovejoy et al 1993,




We justify the model of a lognormal multifractal cloud model by analyzing cloud
liquid water data. We are able to demonstrate an exceilent scaling of the FIRE (First
ISCCP Regional Experiment) data over the entire range of Sm-330km. Furthermore, we
estimate the universal multifractal indices. These results inspire confidence that lognormal
multifractals are indeed an appropriate model to describe real cloud liquid water content.

As the ultimate goal we try to provide a relationship between extremely variable
random media, such as clouds, and the radiation field. A better understanding of this
relationship is of fundamental importance for radiation budget calculations, climate models
(Ramanathan et al. 1983, 1989), and among others, satellite imagery of clouds (Gabricl et
al. 1988, Tessier et al 1993a).

The outline of this work is as follows: The next chapter establishes the basic theory
of multifractals and radiative transfer as well as it develops our theoretical approach to
describe the scattering statistics in multifractals. The results arc checked in chapter 3 by
numerical simulations and the range of validity is estimated. Our understanding of the
scattering statistics leads in chapter 4 to a potential technique of renormalizing the
multifractal clouds. It effectively reduces the multifractal transfer problem to a standard
homogenous transfer problem, but with a drastically reduced “effective’” cxtinction
coefficient. We argue that this approximation will be even valid in the multiple scattcring
case and show how this result can be understood in the context of some recent results on
diffusion in multifractals. Finally, in chapter 5, we analyze empirical cloud liquid water
data with the aim to experimentally test the validity of the multifractal cloud model and to
estimate the universal multifractal indices of real cloud data. All results of are then
summarized in chapter 6.



2. Basic Theory

The object of this chapter is to establish the basic concepts of multifractals and radiative
transfer which will then be used to develop the “singularity formulation of scattering in
multifractals” which relates extremely variable random media, such as clouds, to the

corresponding radiation field.
2.1 Scaling and Fractal Dimension

Before talking about multifractals it might be helpful to recapitulate the two
essential ideas behind fractals: scaling symmetry and the fractal dimension. The easiest
fractal one can think of is the Cantor set (1883), illustrated in figure 2.1. It is generated
by starting off with the unit interval and iteratively removing middle (open) sets (leaving
the endpoints as shown in the construction). When we apply this “cascade procedure” ad
infinitum, we are left with a set of points C = ,!'f}}, C, (where Cx is the set at the kth step),
which is the Cantor set. Each piece of the set is, when enlarged appropriately, similar to
the whole. This characteristic is called scale-invariant or simple scaling. Note that the
self-similarity in the deterministic Cantor set is not a necessary requirement of scaling. In
general, as most observations in nature show, when talking about scaling one rather
thinks of statistically self-similar objects (e.g. coastlines, rivers, lightning).

Unfortunately in geophysics we are rarely interested in geometrical sets but usually
much more intcrested in scalar fields (with values at each point) that arise in nature as a
result of nonlincar processes. However, fractal dimensions are still useful in "counting
the occurrence of a given phenomena”. If the phenomena is scaling, then the number of
occurrences Na(/) (at resolution [/ in space and/or time of a phenomena occurring on a set

A) follows a power law™ :
-D
Nah=(£)" 2.1.1

where L is the fixed largest scale and Df is the fractal dimension, generally not an integer,
and is not to be confused with the topological dimension. So, for example, the fractal
dimension of the Cantor setis Dy = :%i% whereas its topological dimension is Diop=0.
Let us also define a fractal codimension ¢, which becomes important once we talk about

multifractals. The codimension of a fractal set is simply the dimension of the embedding

* Here and below the sign = means cquality within constants and slowly varying factors such as
logarithms




space D (the topological dimension of the space in which the fractal is embedded, e.g. for
the Cantor set D=1) minus the fractal dimension: c=D-Dk.

L L - E—— L C

Figure 2.1: The first three iteration steps of the construction of the Cantor set,
2.2 Muliifractal Clouds

Geophysical scalar fields including cloud fields (chapter 5 below, Tessier et al.
1993a), temperature and wind fields (Schmitt et al. 1992, Schmitt 1992), rain (Lovcjoy et
al 1987, Tessier et al 1993a), topography (Lavallée et al. 1993), as well as ice (Francis ct
al 1994), pollution (Salvadori et al 1993) and the roughness of the ocean surface (Tessier
et al. 1993b), have been analyzed over various time and scales and have been shown to be
multifractal in nature. The multifractal models used here were first developed as
phenomenological models of turbulent cascades. Piesumably in hydrodynamic
turbulence, the governing nonlinear dynamical (Navier-Stokes) equations have three basic
properties that lead to the cascade phenomenon: 1) scaling symmetry , 2) a quantity
conserved by the cascade (energy fluxes from large to small scale), and 3) localness in
Fourier space (i.e. the dynamics are most effective between neighboring scales). Cascade
models are relevant in the atmosphere and in particular in clouds since the underlying
dynamics is of hydrodynamic turbulent origin. There is now a whole serics of such
phenomenological models: the "pulse-in-pulse” model (Novikov and Stewart 1964), the
lognormal model (Kolmogorov 1962; Obhukhov 1962; Yaglom 1966), the weighted-
curdling model (Mandelbrot 1974), the B-model (Frisch et al. 1989), the a-model
(Schertzer and Lovejoy 1983), the randoin B-model (Benzi et al. 1984), the p-model
(Meneveau and Sreenivasan 1987), and the continuous universal cascade models
(Schertzer and Lovejoy 1987b).

The key assumption in these phenomenological models of turbulence is that
successive steps define the fraction of the flux of the liquid-water density distributed over
small scales. Note that it is clear that the small scales cannot be regarded as adding




density, they only modulate the density passed down from larger scales. The hypothesis
is that the fraction of the density flux from the parent structure to an offspring is
distributed in a scale invariant way. If the resulting scaling field cannot be charactenized
Ly a unique fractal gecometric set, but by an infinite hierarchy of them, it is called a
multifractal (a term coined by Parisi and Frisch 1985).

This cascade procedure is easy to illustrate in the so called "discrete cascade
models” where the scales are discretized and a discrete multiplicative process determines
the density py, (at scale A1) (Figure 2.2). A large structure of characteristic length equal
to x, and density pg equal to | is broken up into smaller substructures of characteristic
length x)=x0/Ao (Ag=2 is the scale ratio between two consecutive steps in this particular
example). The density in each substructure is multiplicatively modulated by a random
factor (kceping the overall cnsemble average fixed < p, >=1. When this process is
repcated (the overall ratio A is increased) larger and larger values of p, appear,
concentrated on a smaller and smaller length. In the small scale limit, the result is highly
variable.

In this place we want to clarify the dimensions of the most frequently used
variables in this text: In the following mostly the nondimensions! variables (A, x, p, K,
Tp) will be used:

variable dimension physical interpretation
L 1n external scale of the cloud
! m distance within the cloud
x=Il/L - nondimensional distance within the cloud
A=L/ - Scale ratio corresponding to [
A - largest scale ratio of the cascade, corresponding to the
resolution of cloud variability
Pdim(Xx) kg/m3  |liquid-water (LW-) density at a point x in the cloud
p(x)= (%f"“%%; - nondimensional LW-density at a point x in the cloud
Kdim m2/kg  |mass extinction coefficient

nondimensional extinction coefficient. In this work it
is the nondimensional coupling constant between the
cloud and the radiation field, i.e. matter and radiation

K = Kgim<pPdm>L -

Tﬁ—; m mean free path; tvpical physical distance per scatter in
e the corresponding i:omogeneous cloud

T i photon path distance nondimensionalized by the mean
P free path, i.e. the distance measured in mean free paths

= KX = hcdm\ <pd|m>
Table 2.1: Dimension and physical interpretation of variables
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Figure 2.2: The left hand side shows the step by step construction of the "bare” multifractal cascade (o
model) starting with an initial uniform density At cach step the horizontal scale is divided by two, and
independent random factors are chosen cither <1 or >1, normalized to cnsure that <pp>=1. The largest
scale ratio is A=64. The right hand side shows the cffect of integrating over larger and Jarger scales and
yields a "dressed” cascade.



The multiple scaling properties of a process, measured at a scale x=A-1, can be

described by two complementary approaches:
The first examines the probability distribution. In the scaling regime A, the

measures p, have the property (Schertzer and Lovejoy 1987b):

Pr(p, 2 A7) =A"" 2.2.1

where: 7 is the arder of singularity. Therefore c(y) is a saling exponent of the probability
distribution. When the dimensios of the embedding space D is larger than the probability
distribution cxponent ¢( y) we may introduce the dimension function D(y) =D - c(y). Itis
simply the fractal dimension of the set of density measures p, exceeding the threshold A”

(Figure 2.3).
The other equivalent approach to describe the multifractal field is to specify the

scaling of the statistical moments < pf >. We define the multiple-scaling exponent K(q):

< pg >= ,lK(") , )« >1 2.2.2

where q is the moment. The moment exponent K(q) is related to the probability
distribution exponent c(?y) by the following Legendre transformation ( Parisi and Frisch

1985 ):

K(q)=max [qy ~c(P)]
c(y) = max,[qy - K(q)] 2.2.3

which implies a one to one relationship between orders of singularities and moments:

Y=K1(q)
q=c(7)

2.2.4

To fully specify the multiple scaling of the fields an infinite number of scaling
parameters, e.g. the entire K(q) or c(y) function, will be required. However, we will use
universal multifractals corresponding to stable attractive behaviors of multifractal
processes. Multifractals of this universality class can be characterized by only three
parameters (o, Cy, H). These are: the Lévy index, the codimension of the mean, and the
deviation of the observed field from the conserved field. The Lévy index a indicates the
class to which the probability distribution belongs; it tells us about the degree of

10



multifractality (0 < ar €2, a=0 corresponds to a monofractal). The parameter C) is the
fractal codimension of the field thresholded at the mean value of the field. it tells us about
the sparsity of the average level of intensity. Figure 2.3 tllustrates the fractal codimension
of a field thresholded at a value equal to AY. Parameter H measures the degree of
nonstationarity in the process; it is a measure of the conservation of the ficld over different
scales, e.g. H=0 is a conserved or stationary multifractal.

For universal multifractals the two scaling exponents of the probability distribution
and the moments are following functions:

(V) =C (e +1) 2.2.5a
K(g) =a4(q" ~9) 2.2.5b
with 0< o <2, oo # 1 and -+ L =1. For lognormal multifractals (a=2) this reduces to:

c(y) =& +1)’ 2.2.6a
K(q)=C,(q*-q) 2.2.6b

1
X

Figure 2.3: 1-dimensional lognormal multifractal cloud ficld analyzed over a scale ratio A=64. There is
a threshold on the field at the density pj= A” corresponding to the order of singularity y. The fractal
dimension of the set of density measures p), exceeding this threshold (cut in the graph) is given by the
function D(y)=1-c(y).




2.3 Bare and Dressed Multifractals

In multifractal theory it is important to distinguish between the "bare" and the
"dressed” quantities (Schertzer and Lovejoy 1987a). The bare quantity is obtained after
the cascade generating the cloud field has proceeded down to scale A. The corresponding
dressed quantity is obtained after integrating the completed cascade over the same scale
(Figure 2.2 above). This implies that the bare quantities have no small scale interactions,
whereas the dressed ones have a full range of interactions. A cascade whose development
is limited to the scale A 1s "bare" on this scale: no smaller activity is hidZen or "dressed".

We calculate the average transmission <T(x)> by considering the bare cloud
density field py, at scale x = A, since its probability distribution is known analytically
(eq. 2.5.7). Furthermore the bare/dressed difference of the fields is a random factor of the
order 1 for the non-extreme events* (low values of p, ) and therefore does not affect the
scaling. The dressed density whose low order exponents (of interest here) are the same as

those of the bare at the distance x=A-! is calculated as

j.pA(x')d('
Pra(x) =1 ] 2.3.1
dx’

where pa is the density at the smallest scale A-1 (scale of resolution). The difference
arises for high order of moments q larger than a critical order of moment qp beyond which
all the dressed moments diverge, < pJ >— oo for g > q,. The corresponding probability
distributions of the bare/dressed fields are the same (to within slowly varying and constant
factors) for the order of singularity 'y smaller than yp where yp is the critical singularity
corresponding to qp (Yyp=K’(gp), eq. 2.2.4). For q>qp, Y>Yp. the corresponding K(q)
and c(y) functions have discontinuities in their derivatives of various order. Due to a
formal analogy with thermodynamics, these are called “multifractal phase transitions” (for
further details see Schertzer and Lovejoy 1987a).

* The difference is the “hidden” factor which is of order one for smal} values, but which diverges for orders
of singulanties y larger than a critical value Yp; see Schertzer et al 1993.
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2.4 The Equation of Radiative Transfer

Although we will not make direct use of the radiative transfer equation in the
following it is important to relate our approach to this fundamental cquation. Whereas
here we just give a very concise summary, there arc numerous books written on the topic
(e.g. Chandrasekhar 1960) which discuss many conceivable viewpoints but say little
about the horizontally heterogeneous case of intercst to us.

For an arbitrary geotaetry the radiative transfer equation (without frequency
dependence) takes the form:

—

Q-VIF,Q) = —Kymp (1.0 - I, 2.4.1

plus boundary conditions. I(7,) is the radiance or specific intensity at a point defined
by the vector 7 and for radiation propagating in direction Q. Kqym is the mass extinction
coefficient and p(F) is the density of ihe material (e.g. liquid water content). J(7,Q)
defines the so called source function which has following form:

J(F,0) = -j‘-’g-jp(i,fz,ﬁ' M(F,QHAQ + (7, Q) 2.4.2

@, is the albedo for single scattering, p(F,.Q.Q') defines the phase function

o
characterizing the scattering in the direction Q of radiation arriving from the direction Q'
on a volume element at point Q. The phase function is normalized with
Ip(?,ﬁ,ﬁ' )dQ =4r. Finally JS(F,ﬁ) is a term arising from internal or external sources
of radiation or both.

In the following we assume no internal nor external sources of radiation (except
the incident radiation on top of the cloud). Since we are concerned about the direct
transmission T(x) in a one dimensional path through the cloud, light scattered into the path
is not considered, therefore the source function J(7,€2) becomes zero. We are left with a

homogeneous linear differential equation:

Ax) = — ke, P(X)(x) 2.4.3

with the solution:

—rl,,mj‘p(x)dx

T(x)=I(x)=10)-e ° 244



We recognize the exponent as the optical depth. In the following, by defining the incident
radiation 1(0) cqual to one, we can choose a stochastic interpretation, which physically
corresponds to the photon representation of light.. Equivalent to the direct transmission
we talk about the probabulity that a random photon distance x' between two consecutive
scatters exceeds a distance x, the actual distance in the cloud. The standard photon free

path probability distribution is then defined as:
Pr(x¥>x)=T(x)=e " | 24.5

Figure 2.4 1llustrates 1-dimensional "random photon walks" in various conserved
lognormal multifractal clouds (a=2, H=0) with (i.e. the extinction coefficient varies
between k=32 and k=128 and the codimension of the mean of the multifractal cloud C;
varies between C1=C.1 and C;=0.9). As one would expect, with increasing extinction
coefficient k the mean free path length of the photon decreases. Notice also the change of
the sparsity of the ficld due to changes of Cy. In chapter S we will analyze cloud liquid-
water-content data and find that the clouds can be described by lognormal multifractals
with C;=0.08, but with H=0.3.
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C1 - 0.1

Figure 2.4 Monte Carlo simulations of a photon "random walk" in different multifractal clouds In
each graph we plotted the 1-d density field (resolution A-1=1/512) and the photon random walk. The
photon enters the cloud at the middle of the cloud (shown by the arrow)) and moves either to the left or the
right (with the same probability) The x-axis represents the position in the cloud, whereas the y-axis
represents the cloud density as well as the "ume" of the walk (units arbitrary)  The simulated clouds on
the left/right side have a codimension of the mean Cy=0 1/Cj=09 Note that a mgher codimension of the
mean results n a sparser field (with higher denstty spikes’)  The simulated clouds in the upper row have
an extinction cocfficicnt of k=32, and the clouds n the lower row have an extinction coctficient of k=128
As expected, the mean free path length of the photon decreases with increasing extinction coefficient
Note also the periodic boundary conditions 1n the upper nght graph the photon left the cloud on the right
side and reentered the cloud on the left




2.5 Singularity Formulation of Scattering in Multifractal Clouds

To describe the photon free path distribution we adopt the formalism of the above
described multifractal theory (section 2.2). Therefore we map p, to the dimensionless

photon path distance 1, and write it as a function scaling with an order of singularity Y.

T, = Kx= K’ 2.5.1

Note that Tp, the dimensionless photon path distance, is not to be confused with the optical
depth 1. The nondimensional extinction coefficient k takes the place of the scaling
parameter A. For simplicity reason, we will no longer require a distinction between Xgim
and K, since they just differ by a constant. Instead of the probability distribution exponent
c(y) of the cloud density (as a function of the order of singularity y) we now talk about a
probability distribution exponent cp(Yp) of the photon path distribution (as a function of
the order of photon path singularity Yp). So we write the free photon path probability

distribution (compare to eq. 2.2.1) as:
(T)=Pr(t, 2 k)= k"7 2.5.2

By the same token we use the multifractal formalism to describe the scaling of the

moments of the free photon path distribution (compare toeq. 2.2.2)

K
<78 >= k@ 2.5.3

and anticipate that the two will be linked by a Legendre transform as in the standard
multifractal case.

In order to calculate the transmission through the cloud we remember that the
distance x corresponds to a scale, x=A—!, at which the bare density pj is constant:
p, = A”. Therefore the optical depth (eq. 2.4.4) is simply the cloud density multiplied by
the nondimensional extinction coefficient and the distance: 7(x)=xA"A"'. We are now
able to calculate the mean transmission through a distance x=A-! averaged over

singularities of the order ¥:

(T(/l")): Te"”"p(}')d}' 2.5.4
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where the optical depth7=xp,x =KkA"A"' = kA" =x". The last equality in the
previous expression defines y7. Since we will be interested in x large, but not necessarily
A large, we make the following transformation of variables:

(1-7¥7)
=1-——12] 2.5.5
=Ty
and obtain:
(T(A™)) = j e p(l - =4 )dy, 2.5.6

The further calculations for general multifractals will be given in future publications, the

results are given below. Here we treat the universal lognormal multifractal case for which
the probability density of the (bare) lognormal multifractal density field p, =A7 is

explicitly given:

p(y) = S B 2.5.7

and we write the integral 2.5.6:

= _IBX (4 aeca-y,] r
(T(x)) = _ logx j Gi-70! e " dy, 258
4C n(l- 7p ~oo

There are now two ways to proceed. Perhaps the clearest way mathematically is to
determine the Laplace transform of <T(x)> which yields the moment scaling exponent
Kp(q) in equation 2.5.3 via an exact calculation (see Appendix Al). The alternative is to
obtain the probability distribution exponent cy(p) (Appendix A2) by directly approximate
eq. 2.5.8 and then take the Legendre transform of the result. In either case, we obtain:

K@= -5+ G +4Gg -1+)). 2.5.9
1

This is an essential result and will allow us to approximate the overall transmission by
renormalizing the extinction coefficient (chapter 4). First, however, we return to the
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cnsemble averaged transmission function and determine the probability distribution
cxponcent of the photon path distribution, c,(1,)- We take the Legendre transform of the

moment scaling function of eq. 2.5.9:

c,(¥,)= mjlx(qyp - Kp(q)) 2.5.10

which yields a maximum for: y, = K’(g)=1+((1+C)* +4Cg) . Making this

substitution results in:

(1-a+c)i-7,)
4G,(-7,) 2.5.11

¢,(Y,) =

This result is consistent with using the Laplace method (see Appendix A2) for the integral
2.5.8: in the limit of large x evaluate the integral with y_ = 0. This asymptotic result
valid for large x establishes a one to one relation between orders of singularity in the cloud
field <y and orders of singularity in the photon path statistics: 7, = 74 with y<1 (eq.
2.5.5). The strong cloud density singularities y>1 represent such a high cloud density that
they play no role. The moderate cloud density singularities 0<y<1 contribute to the
regularities (yYp<0 ) in the photon statistics. On the other hand the cloud density
regularities (y<0) determine the singularities (¥p>0) in the photon statistics (see Figures
2.5, 2.6).

[ A

Figure 2.5: A graph of Y, = _y%l_ (obtained with yz=0) showing the physical branch (left), and
unphysical branch (night).
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Figure 2.6: Corparison of the cloud density probability didnbution exponent c(y) with the
corresponding bar: free path distribution exponent cp()'p). The codimension of the lognormal
multifractal cloud was chosen as C;=0.5, which corresponds to a minimum of the probability distribution
exponent c(y) at y=-C=-0.5.

In the case of general multifractals integral 2.5.6 can be approximated if the
probability distribution exponent c(y) satisfies the condition c'(y)<0 for small y. One

yields the following free path probability distribution exponent:

c,(7,)=c(1-=)a-7,) 2.5.12

The moment scaling exponent can then be obtained by Legendre Transformation.
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3. Numerical Simulations and Dressed Statistics

The goal of this part is to show, that the analytical bare approach of chapter 2
yiclds results consistent with the actual physical process. A photon traveling through a
cloud interacts with the cloud water/ice droplets at smallest scale, independent of how big
the frce path length will be. We therefore simulate lognormal multifractal clouds and the
photon transport through these clouds, obtaining a transmission function T(x). Analyzing
these findings by two different multifractal analysis techniques, leads to the "dressed"
probability distribution exponent ¢p d(Yp) and the moment scaling exponent K, 4(q), which
we compare to the analytically bare results.

3.1 Simulating the Multifractal Clouds

To compare the “bare” approximation developed above with the dressed statistics
we will simulate the transport through multifractal fields. To do this, the lognormal
multifractal clouds are simulated by a continuous cascade algorithm (Schertzer and
Lovejoy 1987b) which we briefly summarize. First we define the generator I', = logp, .
To yicld a multifractal p, field the generator must be exactly a 1/f noise, that is, its
generalized spectrum is E(k ) = k™ (this is necessary to ensure the multiple scaling of the
moments of p,). To produce such a generator, we generate a stationary gaussian noise
whose amplitude is determined by the codimension of the mean C). The resulting noise is
fractional integrated (power-law filtered in Fourier space) to give the desired k! spectrum.
Finally, the result is exponentiated to give pa, which will thus depend on C;. Because of
the fractional integration the entire process evolves two FFTs. Simulations were
performed using three C; different codimensions of the mean, C1=0.1, C}=0.5, C;1=0.9,
corresponding to increasingly violent fluctuations in the cloud model. Note that real cloud
liquid-water content fields have parameters estimated to be roughly
a=2,C =008 H=0.3 (chapter5).

3.2 Simulating the Transport
For the numerical simulations of the transport we simply discretize the optical

depth integral (2.4.4) and calculate the ensemble averaged transmission as a function of
path [ength Tp=Kx :
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(T(z, ))=<ew"\:mw> 3.2.1

The simulated multifractal cloud density field p,(x,) had the resolution (scale of
homogeneity) A™', with an overall optical depth of x (since <pp>=1 and the external scale
equal unity). To calculate the transmission through one realization (Fig. 3.1) the phuton
starting points inside the cloud were randomly chosen. Morcover, we implemented
periodic boundary conditions and calculated the transmission for 0 < T < k. Finally the
ensemble average was taken over the total number of realizations. This procedure was
repeated for increasing nondimensional extinction coefficients K =2"; n=1,2,...,10.
Figure 3.1 illustrates the numerical transport model.

0 I 4
Y 7R
X-l ?\
b S
~ Y
N
X21X3
R
FONESRT R, K
X4 —
1 =
-«
X

Figure 3.1: Schematic view of the numerical transpofi model. The scale of resolution for this
simulated cloud is A=!=1/7. Each element has a certam density pA (the darkness of the fields corresponds
to the density) . All photon starting points are at the beginning of the cloud. The cells with a lgher
density have a higher probability of scattering the photons.

3.3 The Probability Distribution Exponent

In order to obtain the dressed probability distribution exponent cp ¢(yp) for the simulated
data we used the "Probability Distribution/Multiple Scaling" technique (PDMS) (Lavallée
et al 1991a, Lavallée 1991). The method consists of directly exploiting the scaling of the
dressed probability distribution:

Pr(t, 2 k") = k™" 3.3.1
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The technique is distinguished from other histogram based techniques (e.g. Paladin and
Vulpani 1987, Atmanspacher et al. 1989) in that they overcome the nontrivial problem of
the (slowly varying) proportionality constants in the above equation, by examining the
histograms over a range of scales rather than a single scale. The drawback of these
methods is that they are sensitive to the correct normalization of the fields: the ensemble
average of the overall transmission must be close to zero (see 3.4a) for further
discussion).

First the logarithm of the probability distribution is plotted versus the logarithm of
x for cach fixed order of singularity ¥, We analyzed the probability distribution for
photon path lengths exceeding the threshold k77 : Pr( T,> x""), as well as the probability
distribution for photon path lengths below the threshold x™: Pr(z, < x™*) (Figure 3.2
and 3.3). If the probability distributions obey equation (3.3.1), these points lie on a
straight line, whose absolute slope is the dressed probability distribution exponent
Cp,d(¥p). In Figure 3.3 and 3.5 we compare the now obtained dressed probability
distribution exponent cp d(Yp) With the analytical derived bare probability distribution
cxponentc,(¥,) (eq. 2.5.11). Note the two distinct curves for the dressed probability
distribution exponent: The probability distribution Pr(7, > x’*) leads to the right rising
branch whereas the probability distribution Pr(7, < x77) leads to the left branch of

Cp,d(Yp)-
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log(k)

Figure 3.2: PDMS analysis of the free-photon path Iength probability distribution.  Simulation with
o=2, C1=0.1 , scale ratio of homogencity A=4096, 1000 realizations, 512 photon-starting points in each
realization. The upper 4 lines represent log,, Pr(t, < x77) whereas the lower 4 lines represent
[log,o Pr(7, > x77)]-1 versus log)o(x). The scaling holds down until log)0(x)=0 6 as indicated 1n the
text (low x breakdown) For Tp<- -0.3 and ¥p>0.6 the scaling 1s not provided anymore which is in good
agreement with the of theoretically predlcted hmits (y7"" = -033, y;'"™ =06).

- 35
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Figure 3.3: Comparison of the analytically derived bare ¢, (y,)-function with the numerically derived

€.a(¥,) function obtained from the slopes in the previous graph (in the range 8< xk<256). In the
predncted range of validity y;™ = -0.33<y, <0 6 = y,* there 1s a good agrcement between both curves.
The left branch represents Pr{t, < x") and the right branch represents Pr(r, >«x™).
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Figure 3.4: As figure 3.2 just with C|=0.5. Here the scaling holds down until log1(x)=0.9. For
¥p<-0.3 and Yp>0.8 the scaling is not provided anymore which is in good agreement with the of
theorctically predicted limits (y;“'" =-0.33, =(0.8).

cp( Yp)

-0.5 0.0 0.5 1.0

Figure 3.5: As figure 3.3 just with Cy=0.5. In the predicted range of validity

Yt =-033<y,<0.8=7y," there 15 a good agreement between both curves,



3.4 Limits of Validity for the Probability Distribution Exponent

a) Breakdown for low extinction coefficients

As mentioned in the previous chapter, the bare analytical result for the probability
distribution exponent cp(yp) was calculated by assuming a large nondimensional extinction
coefficient k. Here we want to estimate the lowest x at which the bare result actually
holds.

A low extinction coefficient K implies that the average transmission <T(x)> at the
Jargest scale x=1 is still reasonably high i.e. it cannot be approximated as zero (physically
this corresponds to a transparent cloud). Therefore the frce photon path distribution is not
normalized anymore, which resuits in a breakdown of the scaling in the PDMS graphs at
small extinction coefficients. Figure 3.2 and 3.4 show this bchavior for extinction
coefficients smaller logk =0.6(C1=0.1) and logx =0.9(C}=0.5). The barc result
however, has a total transmission equal zero, independent of the extinction coefficient k.
This can be easily derived from equation 2.5.11: For yp=1, which corresponds to a actual
photon path length equal to one, the probability distribution exponent ¢p is equal minus
infinity, which corresponds to zero transmission (x=1= y,=1,

c,=— = <T>=0).

We use this bare/dressed difference of the total transmission to estimate the lowest
x for which the bare approximation holds. An estimate of the lowest extinction coefficient
kappa Kmn at which the totai transmission differs significantly from zcro can be given by
the following formula.

K =llog FI'*€! 3.4.1
where F is the average transmission at largest scale F=<T(1)>. This can be derived from

the renormalization approach (see chapter 4). Figure 3.6 illustrates this estimation of the
lowest extinction coefficient.
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Figure 3.6: Estimates of the minimum extinction coefficient (Kmin) over which the asymptotic theory
15 expected to hold based on F=20%, 10%, 5% (lop to bottom) direct transmission through the cloud using
the renormalization formula (below)

b)_Limits on the Range of Photon Path Length Singularities

The other limit on the above estimated dressed probability distribution exponent
arises due to a limited range of photon path distances (corresponding to photon path
singularities Yp) which we were able to estimate. An examination of the simulated cloud
fields will help to answer this question. The simulated cloud fields underlie two basic
limitations:

(1) The simulated clouds are generated up to a finite resolution A~L, At this scale
of resolution the cloud has a constant density pa, it is homogeneous  Since in a
homogeneous medium the mean free path is x-!, we require k<A, otherwise the
multifractality is only apparent at larger scales than the scattering.

(2) Simulating the clouds implies a finite number of realizations, which can be
expressed quantitatively by the sampling dimension Dg (Schertzer and Lovejoy 1989)
which is defined similar to the fractal dimension (eq. 2.1.1):

N, = A% 34.2

s

For that reason being, there will be an almost surely maximum singularity Y™ as well as
an almost surely minimum stagularity y;"" present in the cloud sample. Note that the
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latter does not always exist, but it does in the lognormal case. These two restrictions can
easily be calculated by using the inverse cloud probability distribution exponent:

7:nm (mat)(DY) — (_‘_l(D'f' D‘) 3.4.3

We recall that the free photon path length is 7, = kv = xkA™" and is dependent on A.

min max

! Y\
With the above relationship 2.5.5 and using the large x approximation y_ = 0 we obtain:

Consequently it is for our purpose necessary to consider . as functions of A.

'"'“"“'”‘(A)—l 17(/1) 3.4.4
On the other hand:
logt
Y,(\) = T =1— 12 3.4.5

which derives simply from equation 2.5.1. We could now ecliminate log(A) and directly

min, max

obtain the minimum/maximum order of ph~ton singularity y, in terms of the

i, max

minimum/maximum order of cloud singularity ¥; independent of the scale ratio A. A
graphical method is however clearer: We plot both curves (eq. 3.4.4. and eq. 3.4.5)
versus log(A) and obtain the range of validity for the order of photon singulanity vy, (sce
Fig. 3.7). We note that with increasing extinction cocfficient x, the maximum order of
photon singularity y,** decreases and with increasing number of samples N or

increasing codimension of the mean Cj, the maximum order of photon singularity ¥,

increases as well.
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Figure 3.7: Range of validity for Yp due to finite sample size and finite resolution. Depending on the
extinction coefficient k one can see different imits 7Y, onYp which are shown by the intersection
points. Note that cach order of singularity Yp represents one most probable distances in the cloud, as
shown by the straight lines y (A). The shaded region is not accessible since it represents scales (A)
smaller than the highest resolution A (here A= 4096).

As Figure 3.7 shows, the left branch of the dressed photon free path probability
distribution exponent ¢, ,(y,) is in actual fact more strongly restricted by the resolution
limit (1) than through the above restriction due to the sampling dimension of the cloud (2).
More precisely the minimum order of photon singularity y;"" due to the smallest size of

resolution can be calculated as:

Yo =1- 3.4.6

For example an extinction coefficient k=256 and a scale of resolution A-1= 1/4096 leads
to the minimum order of photon singularity y;"= -033. This can be seen in Figure 3.3
and 3.5..
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3.5 Moment Scaling Exponent

The further analysis consists in compating the dressed moment scaling exponent
Kp.d(q) with the analytically bare moment scaling exponent Kp(q) (¢q. 2.5.9). Therefore
we check the scaling of the moments of the dressed photon path length with respect to K

K
< T >= K 3.5.1

This is done by plotting log < 74 > versus log k' (Figure 3.8; 3.10) after calculating the

dressed moments:

(r;):ﬁqufi’-‘i--—;téﬂ‘—"l 3.5.2

1=1

(T,  NWA{T(x,))
A-I

1=kX; (i=l,...,A). If the dressed moments are scaling ( i.e. they obey equation 3.5.1),

where is the discrete probability of the dimensionless photon path distance

the points for each specific moment q lie on a straight line, whose slope is Ky a(q) (Figure
3.8; 3.10). We then compare we the "dressed” moment scaling cxponent Kp (q) with the
analytically derived K(q) in Figure 3.9 and 3.11.
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Figure 3.8: Scaling of the moments of the dressed photon path length Tp as a function of x.
log,, < T, > versus logjo(x) for various values of q. There is a very good scaling for k>8 since the
lines are straight in that regaime. The scaling breaks down for smaller x since a unique normalization is
not provided anymore  Data from simulation with a=2, C1=0.1, 4096 realizations, 512

photons/reahization
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Figure 3.9: Comparnison of the moment scaling exponent function Kp(q) for the “bare” with Kp 4(q)
for the "dressed”™ photon path length for a ficld a=2, C{=0.1. In the range -0.5 < q < 6 both curves are in
very good agreement. The dressed Kp, d(qp) curve was obtained from the simulation with 4096 realizations,

512 photons/realization.
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Figure 3.10: Scaling of the moments of the dressed photon path length Tp as a function of x..
loglo < ‘tZ > versus log1g(x) for various values of q. There is a very good scaling for x>8 since the
lines are straight in that regime. The scaling breaks down for smaller X since a unique normalization is
not provided anymore. Data from simulaton with a=2, C1=0.5 4096 rcalisations, 512
photons/realization and the scaling regime (8<x<512).
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Figure 3.11: Comparison of the moment scaling exponent function Kp(q) for the “bare” with  Kp d(q)
for the “dressed” photon path length for a field a=2, C1=0.5 In the range -0.5 < q < 10 both curves are in
very good agreement. The dressed Kp d(qp) curve was obtained from the simulation with 4096 realizations,
512 photons/realization and the scaling regime (8<x<512).



3.6 Limits of Validity for the Moment Scaling Exponent

The range of validity for the numerical simulation of the moment scaling exponent
Kp(q) arises out of the same restrictions as for the photon singularities y¥p. The moment
scaling exponent Kp(q) is related to the probability distribution exponent cp(yp) by the
Legendre Transformation of 2.2.3. The order of moments are the derivatives of the
probability distribution exponent (eq. 2.2.4):

+G

' 1-0+G ) (-,
9=¢,(V,)="gar 3.6.1
thus the restrictions for the dressed moments simply are the slopes of the photon free path
probability distribution exponent at its minimum/maximum order of photon singularities
Y™, 7. This yields for example g™ =c,(~0.33) = 0.8 and ¢™* =¢,(0.8)=10.4 in
the case C;=0.5.

The moments for which there is a good agreement between the two moment
scaling functions Kp(q), Kp d(q) (Fig. 3.9; 3.11) represent photon distances which are the
most probable ones, since this range of order of moments q corresponds to very low
photon probability distribution exponents cp(Yp) which on the other hand means high
probabilities. It is obvious for g=1, since this moment is simply the expectation value of
the frec photon path (i.e. mean free path). In other words, the range of agreement belongs
to distances which have the most significant contribution to the transmittance (see the next

section).
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4. Renormalization

We can now relate the transmission statistics of lognormal multifractal clouds to
those of a homogeneous cloud. At first sight this scems to be a difficult task since we
already explained in the introduction that in the thick limit (x large) both types of clouds
will result in a completely different behavior of the radiative transfer properties. In this
chapter however we will show that the photon statistics of a multifractal cloud can be
approximated by the photon statistics of a "renormalized" homogeneous cloud in a certain
range of photon singularities. We will relate this to multiple scattering and to results of
diffusion on multifractals.

4.1 Direct Transmission

We seek to replace the multifractal cloud with a nearly equivalent homogeneous
cloud with "effective” extinction coefficient kg This cioud has the direct transmission
given by T(x) =¢*7* The moments of the nondimensional path length Tp=KX are then
given by:

1
<1i>= J’(xx)"p(x)dx 4.1.1
0

with p(x)=—4 = K,e """, In the limit of large Kegr we obtain

<>~ (-s-)"r(q +1) 4.1.2

14 rlﬂ

If we express Keff as a power of K i.e. K, = k“ above equation can be wrilten as
~ q-aq
<1} >=ql(q)x 4.1.3

i.e. a homogeneous cloud has a linear exponent: Kp hom(q)=g-ag. A linear Kp(q)
indicates exponential transmission T(x) (note that the Legendre transformation breaks
down in this case so that there is no corresponding cy(Yp) ). Now we compare this with
the Kp(q) for a lognormal multifractal cloud. The corresponding value of a will actually
be a slowly varying function of q, (as demonstrated in the Fig. 4.1)

-K,(q)
a,,,(q)="——,f—-'l— 4.1.4

(Y]
w




which for small q can be approximated by a,, = a,,(0) = T:lC—, To determine the optimum
value of q, to use for this approximation, we write <T > in terms of g=cp'(Yp) which
indicates which g contributes to different transmittances (Fig. 4.3). The maximum
transmittance occurs for q=0; this justifies our use of q=0 in the above. The maximum
deviation of apn(q) from ayn(0) for -0.5 < q <1 lies between 10% to 15% for
0.1< C; £0.9 respectively (Fig. 4.1). The linear approximation Kp(q) =q-qam(0) leads
to a renormalized extinction coefficient of the homogeneous cloud:

T
Ky =K 4.1.5

The linearity of the Kp(q) function, and hence accuracy of the approximation in the range
q = 0—3 can be seen in Figure 3.9; 3.11.

Figure 4.2 compares the direct transmission of a "renormalized" homogeneous
cloud with the transmission through a bare multifractal cloud and the transmission

through a dressed multifractal cloud.

0.8t — C,=0.1
6

0 al C, =09
0.2

05 0 05 1 1.5 2 25 3 q

Figure 4.1: The effective scaling exponent g=5/g= \/'(1 + C|)2 +4Cq-(1+ C,))/(2C‘q) is slowly
varying function which departs from the approximation a'= (1+C,)™" for ~0.5< g <'1 by less than 9%
for C1=0.1 (thick lines) and less than 15% for C; =0.9.
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Figure 4.2: Transmission through a multifractal cloud C1=0.5 (bare and dressed case) with x=4
compared to the transmission through a homogeneous cloud with the "renormalized” extinction coefficient

Kg = X" = 2.52. Note the natural logarithmic scale Ine<T(x)>.
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Figure 4.3: Transmission as a function of the moments T(q)/log(X)



4.2 Some Considerations on Multiple Scattering

We have scen that for direct transmittance, the near linearity of Ky(q) leads to the
possibility of “renormalizing” the multifractal: it is nearly equivalent to a homogeneous
medium with an cffective extinction coefficient Kefr~x?. This suggests that by using this
approximation we can extend our previous treatment beyond direct transmission to take
into account multiple scattering and obtain an approximation for the overall transmittance
and reflectance of a lognormal multifractal cloud. The main issue herein is the near
linearity of Kp(q) which means that the correlations between consecutive free photon paths
arc almost insignificant.

A detailed study of this will be published elsewhere. Here we test this idea by
considering the numerical transmission results on lognormal multifractal clouds (with
C=0.5) published in Davis et al 1991, 1993 (see Fig. 4.4). These simulations were
made using two dimensional discrete lognormal cascades with scale ratio factor 2 per step,
total range of scales 210, Cyclic boundary conditions were used in the horizontal and
photons were vertically incident. Isotropic discrete angle phase functions were used and
the resulting fields in each of the four directions at 90°, as well as the overall albedo and
transmission were calculated by both Monte Carlo and relaxation techniques (the
agreement of the two methods increased confidence in the results). The extinction
coefficient was increased by factors of two so that the total mean optical depth K(|%|)
increased from 12.5 to 200.

With the goal to obtain a theoretically predicted renormalization result, we recall
that for plane parallel clouds, with the same boundary conditions and the "Discrete Angle
(2,4)" radiative transfer phase functions (Lovejoy et al 1990), T = T+—%u—in—r)—t where t and
r are the discrete angle forward and backward scattering coefficients respectively. In
Davis ¢t al 1991 isotropic "Discrete Angle" phase functions were used (i.e. t=r=1/2).
Using this result and the effective extinction coefficient in place of the true optical depth
T= K <P >= Ky, We obtain:

(T) =——Lr—Jr— ) 4.2.1
144k

Fig. 4.4 shows the result of superposing this function on Davis et al’s results,
which are nearly power law even for x as low as 12.5. The total transmittances through
the renormalized homogeneous cloud show for all values of x only less than 20%
difference from the total transmittances through the multifractal cloud. The actual
(mulfiple scattering) result is slightly higher than the renormalization prediction, which is
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expected since a(q) < ITICT for all values of g>0 (negative values of q correspond to very
small path lengths, which contribute only insignificantly to the total transmittance).
Therefore the approximation leads to a slightly lower direct transmission, resulting also in
a lower total transraission. Closer examination shows that there is a slight curvature
suggesting that there are still some residual small K effects and that a better estimate might
be obtained by considering only his last two points. Indeed, this is remarkably close to
the theoretical renormalization result (a=2/3) since it yields a=0.65. These results suggest
that renormalization will give accurate results for bulk transport properties in multifractal
systems with other boundary conditions, even with modest optical thicknesses.

0.
log(D
simulation in 2-d multifractal cloud
-0.57
-1.07
renormalized homogencous cloud
-1.5+—/———r———r—r

1.0 1.5 2.0 2.5
Logg K)

Figure 4.4: Result on total transmission after multiple scattering through 2-d multifractal cloud (Cy
=0.5), published in Davis et al 1991, compared to the thick cloud limn of the transmission through a
homogeneous cloud with renormalized extinction coefficient Keff.



4.3 Comparison with Diffusion

The surprisingly accurate piediction of the Davis et al 1991 thick cloud numerics can
perhaps best be understood by considering the relation between radiative transfer and
diffusion in multifractals. In general, there will be two significant limits; the large A (wide
cascade range) and large extinction coefficient x (thick cloud) limits. Clearly, for fixed
and finite A, if the cloud is made thick enough, (x>>A) the mean free path will be much
smaller than a single resolution element and the photons will diffuse through each
homogeneous region of size A"l (see section 3.4b (1) ). The overall result will be photons
diffusing through the multifractal cloud. In actual fact, diffusion can still occur under
somewhat less stringent conditions when « is large, the main requirement being that weak
density rcgions become so rare that direct photon transmittance across a large fraction of
the cloud is statistically negligible. The multifractals with a<2 have precisely the property
that they are dominated by weak events (negative singularities) called “Levy holes”. Itis a
priori possible that, even with large x, if A is sufficiently large (the order of the limits
A—0o0 and K—eo is important i.e. with x fixed, but with A — ) they will have large
regions dominated by the holes, and hence lead to nondiffusive transfer.

However, in the case studied here, the parabolic shape of the cloud probability distribution
exponent c(Y) (eq. 2.2.6a) guarantees that large negative orders of moments y and the
corresponding weak regions are extremely rare, indeed, in the preceding development, we
have seen that the value of x is essentially irrelevant as long as it is sufficiently large. We
therefore anticipate that the photons will diffuse for large enough x. To make this
plausible, we cite a recent analytic result believed to be exact for diffusion in one
dimensional multifractals with existing moment scaling exponent K(-1)(Silas 1994):

2

(12>°‘:t2*K(—l) 4.3.1

which yields in the lognormal multifractal case:

1

(I7) ec g™ 432

for the RMS particle distance / after time t in a lognormal multifractal with codimension of
the mean cqual to C;. Since (Kgim<pdim>)~! is a typical diffusive distance per diffusion
step, for normal diffusion, we can write the nondimensional diffusion result:
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where N is the number of steps and t is the time per step). In the multifractal medium, the
particle “slows down”. However, the typical step can be used to define the effective x as
Keff ! and dimensional analysis combined with the anomalous diffusion result now yiclds:

[()J .t
Key 4 4.3.4

hence comparing this with the above result for normal diffusion, we obtain:

1
14C,

K

ej_’foc'c

4.3.5

The above multiple scattering idea is therefore completely consistent with the diffusion
results. Note that for diffusion in spaces with dimensions higher than one, the above
diffusion result is no longer exact, whereas our scattering arguments will be valid (to
varying degrees of approximation) in a space of any dimension.



5. Analysis of empirical cloud data

In this chapter we analyze the liquid-water-content (LWC) of stratocumulus cloud
data to experimentally test the validity of the universal multifractal cloud model. This
study establishcs the first investigation of the universal multifractal indices of cloud liquid-
water-content. We show that the examined clouds are very well scaling over the whole
examined range (Sm-330km) and can be described by lognormal universal multifractals.
As mentioned in section 2.2, universal multifractals are classified by three parameters (H,
Ci, o) which we determine.

5.1 The Cloud Liquid Water Data

The LWC-data was obtained from the FIRE (First ISCCP [International Satellite
Cloud Climatology Project] Regional Experiment) in June/July 1987 off the coast of
California (Albrecht et al. 1988). This project took place in order to study the extensive
fields of stratocumulus clouds that are a persistent feature of subtropical marine boundary
layers. Marine stratocumulus clouds are important components of the Earth’s climate
system since they significantly enhance the albedo over large areas of oceans. For
example, Randall et al. 1984 estimated that a four percent increase in the area covered by
these clouds could balance the warming that might be expected from a doubling of CO,.
This is an important reason for general-circulation models (GCMs), that are used fer
climate studies, to simulate realistically the distribution of marine stratocumulus clouds.
Observations such as those collected during the ISCCP clearly show major discrepancies
between the simulated and observed distribution of stratocumulus cloudiness.

The LWC measurements were taken with a King hot wire probe at a frequency of
20 Hz mounted on an aircraft flying with a speed of roughly 100 m/s. The principle of
operation of the sensor is the measurement of the power required to maintain the
temperature of a hot wire on which cloud droplets are impacting. The sensitivity (i.e.
minimum detectable concentration) was 0.02 g/m3 and the wire had a response time of
less than 1/30 s. The accuracy was 5% at 1 g/m3. For further instrumental details see
King et al 1980. Using the aircraft speed, the time series can be converted into distances,
i.e. the spatial resolution is about 5Sm.

The data set analyzed here is from different aircraft runs, the smallest containing
8192 points (corresponding to a range of scales Sm-41km), with the largest containing
65536 points (corresponding to a range of scales Sm-328km). Figure 5.1 shows a typical
fragment of the data. In Figures 5.2a,b we show the histogram of the raw data. The
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most probable density was p=0.32 g/m3. It is interesting to note, that there arc very few

data points with a density below 0.05g/m3,

0.4
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0.1 4
0 s
40 60 80 100
time (sec)

Figure 5.1: A typical fragment of the cloud LWC- data. Fragment from data sct #4,
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Figure §.2a: Histogram of the raw LWC-data
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Figure 5.2b: Histogram for the low and high values (zoom of 5.2a)

5.2 Power spectrum

Looking at the 1-D power spectrum (the squares of the moduli of the Fourier
components of the LWC-data, i.e. l[)klz) one can gain direct information about scaling
(power law behavior under changes in spatial resolution). Figure 5.3 shows that all five
LWC data sets are scaling over the whole range, corresponding to a range of spatial scales
from 5m-330km. The absolute slopes for each data set, obtained by linear regression, are
listed in table 5.1.

Number of data|Date Time Number  of|Absolute Slopes in power
set points spectrum = f3

1 30.6 - 26632 1.59

2 2.7 - 16384 1.54

3 14.7 - 65536 1.65

4 16.7 17:17 8192 1.70

5 16.7 18:19 12028 1.45

Table 5.1: Size and absolute spectral slope of the LWC-data sets.




E(k) (arbitrary units)
101 y—

. slope = -5/3

.,
en,
sy,
3
.,

10 Y =T rrrrYy T —vrrrrery Ly T rTYrYTYY Y v TTr-rrrYy

10°° 10°4 10°3 10°2 10!

k (m™)

Figure 5.3: Power spectrum of the 5 different data sets (averaged to 10 points per magnitude on the k-
axis). All the sets are very accurately scaling and have absolute slopes close to the value of the standard
turbulence theory P= 5/3 (strazght line on top of graph). 1n order to avoid overlap, the lines were offset
vertically by an order of magnitude each Number of sets used to compute the average from top to
bottom: 4, 3, 1, 2, S.

If cloud droplets were passive scalars, i.e. transported by the wind withowt
interacting with it, and if we neglect intermittency corrections, one obtains the standard
turbulence theory (Obhukhov 1949, Corrsin 1951). The theoretical value for the spectral
slope of the process is Biheo= 5/3. The so called Corrsin-Obhukhov law for passive
scalars is:

s
3

E(k)y=k 5.2.1
where k is the wave number. The values from the empirical data (Figure 5.3) obtained by
linear regression are in a range of 0.2 around this theoretical value (Table 5.1).

Since the power spectrum shows roughly the same slope for all 5 data sets the

original data can be split up into 15 pieces, each containing 8192 points. We assume that




these data sets of equal size are statistically independent and therefore the numbers of
samples is Ng=15. In the following the ensemble average refers to averaging over these
15 data scts. An ensemble averaged power spectrum (the ensemble average is taken over
the squares of the moduli of the Fouricr components, [(3k|2) yields B=1.70, slightly higher
then the passive scalar value in standard turbulence theory. Figure 5.4 shows that also

here very accurately scaling is obtained.
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Figure 5.4: Enscmblc averaged power spectrum (averaged to 100 points per magnitude on the k axis).
The cnsemble average of the squared moduli of the 15 equal sized data sets yields a power spectrum witha
spectral slope =17
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A particularly impressive example of the scaling is given in Fig. 5.3, the power
spectrum of the longest data set #3 (65536 points i.e., spanning the range of scales of Sm-
330 km) which 1s scaling throughout the entire range. Recall that scaling is a statistical
symmetry; hence it is broken on every single realization, the random fluctuations in the
spectrum are expected. It is plotted with a higher resolution (averaged to 100 points per
magnitude) 1n a separate graph (Figure 5.5). The standard model of atmospheric
dynamics (e.g. Monin 1972) divides the atmosphere into two fundamentally distinct
regimes which are scaling: a small scale three-dimensional turbulent regime and a large
scale two-dimensional turbulent regime. Unlike turbulence in three dimensions, in two
dimensions, vortex stretching is inhibited and vorticity is conserved. This leads to
quantitatively distinct two-dimensional and three-dimensional behavior: the standard




model assumes that these different regimes are separated by a "mesoscale gap” whose
scale is expected to be of the order of the height of the atmosphere (approximately 10krm).
This existence of the "gap" has been periodically questioned on empirical grounds since
the late 1960's, and due to the remarkable progress in scaling ideas in recent years, 1t also
seems out-dated from a theoretical point of view (Tessier et. al. 1993a). The power
spectrum below gives strong crederce to these doubts. It not only shows clear evidence
of scaling right through the crucial mesoscale, it is also the example of scaling covering
the widest range that we are aware of in the atmosphere (for a single data set).
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Figure 5.5: Power spectrum of data set number 3 (65536 points) (averaged to 100 points per
magnitude on the k axis) . The spectrum is excellent scaling with the spectral slope 8 =5/3 in the whole
range Sm-330km.
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5.3 Structure function

The structure function £(q) is a scaling exponent from which we can retrieve
universal multifractal indices H and C;. It has the following definition:

(japf) = 1@ 53.1

where I=)-! is the small scale and the largest scale is assumed to be equal to one. Notice
that by keeping the sign of the increment, the “structure” of the recursively coarsened
signal is rctained. The structure function is related to K(q) and H in the following way:

0 o) (g =i

which we obtain with equation 5.4.2 below and by substituting x by A. Note @y is the
conserved property of the process, ((pl> = constant (independent of scale) and here a is
equal to one (see paragraph 5.4 for a detailed explanation). Equation 5.3.2 relates the
structure function with the moment scaling exponent:

&(q)=qH - K(q) 53.3
Therefore for q=1 the structure function yields the parameters:

H=(() 53.4
C =L~ 53.5

which is retrieved by using the basic properties of the moment scaling exponent K(1)=0
and K’ (1)=C; (equation 2.2.5b).

The empirical structure function is obtained by a procedure known from the
previously estimated moment scaling exponent (section 3.5). At first the logarithm of the
moment log,o<|Ap]';> is plotted versus logjo()) keeping q fixed (Fig. 5.6). The lines
show fair scaling in the range 1.2<log(A)<3.0. The slopes of a least mean square fit in
that range yields the empirical estimate of (q) (Fig. 5.7). The structure function at q
equal to o * gives {(1)=0.29 and £'(1)=0.20. Therefore the degtee of stationarity of the
observed field is H=0.29, which is little below the passive scalar value of 1/3 (see nex
section). The codimension of the mean is estimated as C;=0.09.
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Note that for values of q larger than a critical value g=2.3 the structure function
becomes linear with a slope around 0.06 (Fig. 5.7). This indicates a phase transition for
values of q larger than acritical value q=2.3. A priori, it could be a sccond order phase
transition due to sampling limitations (qs), or a first order phase transition corresponding
to divergence of the moments (gqp); however in section 5.6 below we argue that it is more
likely to be of first order.

Davis et al 1994 caiculated the power spectrum, the structure function and the
moment scaling exponent K(q) of the absolute differences for a single rcalization (8192
data points) of the FIRE 87 data. Their estimates were H=0.28, C=0.1 and B=1.4.
Although we expect large sample to sample variations so that estimates based on one
single sample are not sufficient, their results are surprisingly close to the ones we
estimated. Particular large sample to sample variations are expected for the estimate of f3,

as seen in the previous section, so that their estimate of B is not very promising.
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Figure 5.6: Scaling of the gradients of the raw LWC-data. The graph shows logm(lAp'Z? versus
log10(A). In the range of 0.6<log)0(A)<3.0 the scaling is respected. A linear regression' in that regime
yields the structure function {(q) (see below). Following moments were plotted (q from top to bottom):
0.1,05.09, 1.0, 1.1, 1.5, 2.0, 2.5. Note the break in scales for large A, particularly for q larger than the
critical g=2.3. Moments of the order larger than this critical value will not converge anymore, thus the
statistics will be poor.
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Figure 5.7: Structure function §(q) versus q. From {(1) and {'(1) one yields the universal multifractal
indices H=0.29 and C1=0.09. Note that for values of q larger than a critical value q=2.3 the structure
function becomes linear corresponding to a multifractal phase transition.



5.4 Transformation of the Data into a Conserved Multifractal

Most analysis techniques used in the further analysis are sensitive to unconserved
mutltifractal fields (i.e. H#0). Therefore, in the first step the parameter H of our data is
estimated.

In real space the equivalent equation to Corrsin-Obhukhov law (eq. 5.2.1) is:

(ap(a)) = x! 5.4.1

Statistically, this means that the characteristic fluctuations Ap are scale invariant with
respect to A (using our notation: A=x-1). That is, the fields are not conserved and H=1/3.
We may write the passive scalar scaling for the density p as:

|Ap,|= o3 5.4.2

where @), has the conserved property ((p,_) = constant (independent of scale). Since we
have as yet no proper dynamical theory for the liquid-water distribution in the atmosphere,
we do not know the appropriate fields @) nor the corresponding value of a. In the
following discussion, therefore, the simplifying assumption is made that a=1 (changing
the value of a corresponds essentially to changing the parameter C), see eq. 5.5.5b). H
has a straightforward interpretation: it specifies how far the measured field p is from the
conserved field ¢: (|Ap|) =A". In other words, power-law filtering (also called
fractional differentiating) of the measured field p lcads to the conserved field ¢.

Fractional differentiating can be considered as a generalization of the usual
differentiation by a non-integer order. A differentiation of the integer order n can be
performed in Fourier space by multiplying the Fourier components by a factor of k. The
same operation for a non-integer order H is called fractional differentiation (or for H<0
fractional integration). In practice we multiply the Fourier components of the data p, by
lliS. Since we differentiate, the mean is equal to zero, which is achiceved by setting the Oth
Fourier component p,=0. After fast-Fourier transforming the data back into physical
space, the absolute value of the data is taken.

Figure 5.8 shows a fragment of the LWC-data after fractional integration. Since it
is the same fraction as shown in Figure 5.1 the effect of power law filtering can be clearly
seen. Singularities present in the field are accentuated, the field is rougher due to the
relative boosting of the high frequencies.
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Figure 5.8 LWC-data after fractional differcntiation by a factor of H=1/3. Same fragment from data set
#4 as in Figure S.1.



5.5 Double Trace Moment Analysis

The Double Trace Moment Technique is a powerful technique designed to directly
determine the universal multifractal indices o and Cj (Lavallée 1991, Lavallée et al.
1992). The basic idea of the DTM-technique is to directly exploit universality by
generalizing the trace moment. It introduces a second moment 1 by transforming the ficld
at the scale of resolution A: ¢, — (pR. The scaling behavior of this field is then studied
by looking at the various qth moments at increasing scales A (remember A<A). The
obtained q, n double trace moment at resolution A and A has the following scaling
behavior:

Trl((p‘)\)q = 2 I(p',‘\dxo =~ \K(g.m-(¢g-DD 5.5.1
A\ A
where Ay is the set A at resolution A and D is the dimension of the embedding space (here
D=1). The integration over Aj rescales the field and dresses the quantities. The sum is
over all the Ay sets. When n=1 the right hand side of eq. 5.5.1 reduces to the usual trace
moment. The above double scaling exponent K(q,n) is related to the moment scaling
exponent K(q) (see section 2.2) by the following relation:

K(q,m)=K(gn)-qK(m) 5.5.2

K(g,n) reduces to the (single) moment scaling exponent K(q) for n=1. Fig. 5.9 gives
some examples of various trace moments as a function of resolution; note that the scaling
is very accurately followed. Without going into details, we just mention here the real
advantage of the DTM-technique, which becomes apparent when it is applied to universal
multifractals:

K(g.m)=n"K(q) 55.3

o can therefore be estimated by the slope on a simple plot of log(K(q,n)) vs. log 7 for
fixed q. By varying q we improve the statistical accuracy. Cj can be estimated as the
intersection with the line n=1:

C, = K(q)-¢=L 5.5.4
1 (q) qa__q

Finally, note that eq.5.5.2 is only valid when the relevant statistical moments converge
(the critical value is qp) and when the sample size is sufficiently large to accurately



estimate the scaling exponents (the critical value is qg, corresponding to the maximum
order of singularity ys present in the finite sample, see section 3.4b). Whenever
max(qn,q)>min(qs.qp) the above relation will break down; K(qn) will become

independent of 1.
Note a consequence of the direct relation 5.5.3: If ¢ is a conserved universal

multifractal field, characterized by the indices (0ty, Cy(g)), the field @2 also is a universal

multifractal field with the indices (a‘p,, ,Cl ((P")):
a , = a¢ =a 5558
s a
Cl(w,,) =a C|(¢) 5.5.5b

This relation quantifies the assumption made at the beginning that a=1.

The DTM-Analysis was applied to the fractional differentiated data. The Double
trace moments were calculated for 4 different values of q: q=0.75, 1.5, 2.0, 2.5. For all
of these values the double trace moments show excellent scaling as shown in Figure 5.9
for g=1.5. The slopes of these graphs are equal to (K(q,n)). From the log(K(q,n)) vs.
log n (fixed q) graph (Figure 5.10) the universal multifractal indices can then be
estimated. Notice the remarkable long and straight line part for the curves which breaks
down for high values of n. In fact, the value of 1 for which the curves are bending
towards the horizontal is consistent with the theoretical estimate n =42,

The following parameters were estimated from the slopes and intercepts of the

straight parts:

q a C
0.75 1.98 0.061
1.50 1.99 0.063
2.00 1.99 0.063
2.50 1.99 0.063

Table 5.2: Estimated universal indices by the DTM-analysis technique.

The universal multifractal indices are: o = 1.99%0.01 and Cy= 0.06%0.01.
This value of C| can be compared to the estimate obtained by the structure function in
section 5.3: C1=0.09. Both values are very small so that a minor discrepancy is to be
expected. We averaged both values an obtained an overall estimate of C;=0.0810.02.
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Figure 5.9: Scaling of the double trace moments loglo(((pg"”)"> versus logjo(A). The lines
correspond to a linear interpolation obtained with the values of 1 (from top to bottom): 0.10, 0 20, 0 32,
0.46, 0.62, 0.83, 1.00, 1.21, 1.47, 2.15, 3.16.
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Figure 5.10: K(q,n) as a function of n on logjg-logjg scale, for the values (top to bottom) ¢=2.5,
2.0, 1.5,0.75. As expected for universal multifractals, the curves are hincar and parallel for a certain range
of the moments 1. The parameter & can be identified as the slope of these straight linc parts of the
curves, whereas C| is the value of the straight line at the intersection N=0. For large values of nj the
slopes are bending towards the horizontal since max(qn,q)>min(qs,qd).




5.6 Analysis of the statistical moments

The moment scaling exponent K(q) (discussed in chapter 2 and 3) can be estimated
directly by studying the scaling behavior of the dressed moments <@f > (see section
3.5). This is done by plotting log< @f > versus log(A) as shown in Figure 5.11. The
straight lines indicate that the scaling is well respected: the slopes are the corresponding
values of Ky(q). Figure 5.12 shows the empirical K4(q)-function compared to the
theoretical K(q)-function obtained using a=2 and C1=0.063. There is an excellent
agreement between the two curves in the range of -0.5<q<2.5. Note that the negative
moments for the empirical K4(q) curve appear to be well behaved. This is an indicator,
that the estimated data is lognormal (0=2), since negative moments of q exist only for this
type of universal multifractal.

For moments larger than the critical value q=2.3, the empirical Kg4(q) curve
becomes linear with a slope around 0.23 corresponding to a multifractal phase transition: it
can be a second order phase transition due to sampling limitations (qs), or a first order
phase transition corresponding to divergence of the moments (qp). The probability
distribution of the absolute filtered field ¢ helps us to distinguish between these two
qualitatively different multifractal phase transitions (Figure 5.13). The graph shows the
probability distributions for different amounts of dressing (various A's). All distributions
apparently have a hyperbolic tail,

Pr(p>y)ecy™ i y>>1 5.6.1

where y is the absolute value of the filtered LWC-data. This corresponds to a linear
behavior of the probability distribution exponent c(y) for orders of singularities y beyond a
critical value yp (sce below) ond divergence of moments with the critical value gp=2.3.
Since c(y) is related to K(q) via Legendre transformation we expect from the empirical
K(q) (Figure 5.12) yp=K'(q) for q>qp, i.e. Yp=0.23. In the next chapter we wili see,
that the empirical probability distribution exponent has indeed these features.

In section 5.3 where the structure function of the raw LWC-data was calculated,
the critical value of q, at which the structure function £(q) became linear, was also at
qp=2.3. The slope of the linear part was around 0.06. For values of q>qp this yields
K(q)=0.23q (using the above estimate of H=0.29 and equation 5.3.3). This value is in
excellent agreement with the slope estimated directly from the empirical K(q) function
(Fig. 5.12) yp=0.23 for q>qp.
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Figure 5.11: Scaling of the moments of the field ¢, |()g“)<((pl)q> versus log,y(A)-  The lines
correspond to a linear interpolation obtained with the values of q (from bottom to top) -0.75, -0.50,
-0.25, 0.25, 0.75, 1.50, 2.00, 2.50, 3.00, 3.50.
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Figure 5.12 : Comparison of the empirical esumate of Kd(q) with the lognormal universal multifractal
K(q) for a=2 and C)=0 063. There is an excellent agreement between the two curves for the moments
with -0.3<g<2.5. Note that for the empirical Kd(g) the negative moments are well behaved, which is an
tndicator that a=2.
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Figure 5.13: Probability-distribution logjo(Pr[@>y]) versus logjgly] of the LWC-data, dressed by
different amounts. A/A =2, 4, 8, 16 Note that the near superposition of the curves indicates the right
amount of fractional differentiating of the data, which implies a fair estimate of H=1/3. Furthermore the
distnbutions have a hyperbolic tail which 1s represented in the graph by the straight line whose absolute
slope 1s the cnitical order of moment gp=2.3.

5.7 Analysis of the probability distribution exponent

In order to confirm the universal multifractal indices estimated from the DTM in
section 5.5, we analyze the absolute values ¢ of the power law filtered data with the
PDMS technique (see section 3.3) and obtain the probability distribution exponent c(Y).
Remember that for each fixed order of singularity 7, the logarithm of the probability
distribution is plotted versus the logarithm of the scale parameter A (Figure 5.14). The
scaling is most accurately followed over the range of 16<A<2048. For each order of
singularity ¥, linear regression in the scaling regime of A yields an estimate of the
cmpirical ¢(y). We compare this with the theoretical probability distribution exponent for a
lognormal multifractal (a=2) with C;=0.063 (Figure 5.15). To obtain an overlap of both
curves, the theoretical curve was shifted by 0.023 to the left which corresponds to a minor
shift in y. As expected, the estimated c(y) curve follows a straight line with the slope
¢'(Y)=qp=2.3 for orders of singularities larger than the critical yp=K'(qp)=0.23. Note the
excellent agreement between the moment exponent behavior and the probability
distribution exponent behavior beyond the critical values qp, Yp.

N S
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Figure 5.14: PDMS analysis of the absolute values of the power law filtered (H=1/3) LWC-dma The
graph shows log|o(Pr[@>LAY]) versus logig(X) and 1s scaling i the range 16<A<2048. The lines are
obtained for the following orders of singularities ¥ (from top to bottom)- -0.10, 0 00, 006, 0.10, 0 16,
0.20, 0.30, 0.40.
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Figure 5.15: Comparison of the estimatcd probability distribution exponcnt with the theoretical ¢(y)-
curve for =2 and C}=0.063. The theoretical curve was shifted by a value a=0) 023 to the left, to obtain a
superposition of both curves. As cxpected, the estimated c(y) follows a straight Tine with the slope
¢’ (YD)=qD=2.3 for values of y larger than the cntical y[»=0.23, i.e. the tangent on the theoretical curve in
the shifted graph at y=2.1.




5.8 Evidence for lognormal multifractal clouds

We now try to answer the question, in which we are most interested in: can our
cloud-samples be described by lognormal universal multifractals (0=2) or are they rather
universal multifractals with an Levy index less than two (0=2-€, € small)? Although we
can dctermine o with quite high precision (1.99 + 0.01, see table 5.2), it is important to
know if 1t 1s exact equally two, since this qualitatively is a different class of universal
mulufractals than types where a<2. Lognormal multifractals are the only types of
universal multifractals where the derivative of the probability distribution exponent
becomes negative for small enough values of 7, corresponding to the existence of negative
moments q. This implies that the regularities of the cloud (regions with very low density)
become less probable the smaller the regularities (lower the density) become. Obviously,
as already pointed out in previous chapters, the statistical behavior of the low density
regions 15 very important in order to determine the radiative transfer properties (i.e. in
these regions the photon free path length is very long, hence most of the transport occurs
there). Furthermore the theoretical approach in section 2.5 needed a clearly defined
minimum of the probability distribution exponent c(y) for the Laplace-method to work.
Universal multifractals with 1<o<2 do not have a minimum since c(y)=0 for all ¥<Ymin,
where Ymn 15 the largest value for which c(y)=0.

In lognormal multifractals, the log-probability distribution is symmetric; Pr(¢g>x) =
Pr(A/@>x), with A a constant which depends here on A and C;. This can be seen by
considering the probability distribution exponent c(y) (eq. 2.2.6a): for lognormal
multifractals this function is a parabola with the vertex at y=-Cy, i.e -C} is the symmetry
point. All other types of umiversal multifractals with a less than two do not have such a
symmetry in the probability distribution exponent.

In order to find out 1f at least in principle it is possible to see that difference with
15 realizations with 8192 data points each, we simulated fields of the same size as the
empirical data with C=0.063 and a=1.99, a=2.0 respectively by means of the
continuous cascade algorithm (section 3.1). The data was then rescaled (dressed) by a
factor of 4, as we did with the empirical data to avoid possible oversampling problems
with the empincal data at finest resolution. We plotted log(Pr{¢>y]) and log(Pr{1/¢>y])
versus log(y) on top of each other for both simulated fields (Figure 5.16). Note that on a
log-log plot the latter probability distribution is the reflection of Pr{g<y]. The symmetry
18 ¢clear to sce n the lognormal multifractal case, however for =1.99 the distributions are

not symmetric.
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If we now make a similar plot with the empirical data, we find that both
distributions appear to have the same hyperbolic tail and thus show nearly symmetric
behavior (Figure 5.17). The existence of the symmetry indicates (assuming universality)
that 1.99 < o < 2. This increases the confidence that the experimental cloud data can best
be described by a lognormal multifractal. Figure S.17 shows that also the probability
distribution Pr[l/@>y] has a hyperbolic tail, which means that we found negative
temperature phase transitions.
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Figure 5.16: Probability distributions of a multifractal simulation (15 realization with 8192 data
points each) with a=2.0 and a=1 99 (dressed by a factor 4). The graph compares both probability
distributions: logo(Pr(¢>y)) and log|o(Pr(A/@>y)) versus logjg(y) for both fields. The constant A was
chosen for the optimum superposition, A=100 4522 8. Clear to sce 1s the symmetry of both distributions
in the lognormal mulufractal case (¢=2). However for a=1.99 both distributions are not symmetric.
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Figure 5.17: Probability-distribution of the LWC-data (dressed by a factor 4), The graph shows the
symmetry of both probability distributions: logjo(Pr(¢>y)) and log)o(Pr(A/@>y)) versus logio(y). The
constant A was chosen for the optimum superposition, A=100-3=2. The well respected symmetry of both
curves indicates that a=2. Furthermore the distributions have a hyperbolic tail which is represented in the
graph by the straight line with the absolute slope the critical order of moment gqp=2.3. The hyperbolic
tail for (Pr(A/gp>y)) corresponds to a negative temperature phase transition,



5.9 Conclusions of the empirical cloud data analysis

The “Singularity Formulation™ of scattering as well as the “Renormalization” approach,
introduced in chapter 2 and chapter 4 respectively, were developed for a lognormal
multifractal cloud model. The analysis of stratocumulus cloud data performed in this
chapter confirmed the applicability of lognormal multifractal clouds.

We analyzed empirical cloud liquid-water-content data in the spatial range between
Smto 330 km. The power spectra was scaling over the entire range, thus questioning the
existence of the “mesoscale-gap”. The spectral exponents were found close to the
theoretical value in turbulence for passive scalars with Biheo=5/3, in fact we found a
spectral slope of the ensemble averaged power spectrum B=1.7. This indicated that the
LWC-field was not conserved and H=1/3. A study of the structure function {(q) yiclded
C1=0.09 and H=0.29, the latter being close to the passive scalar value n standard
turbulence. These values of Cq and H are very close to those found by Davis et al 1994
using only a single sample. The structure function also suggested there was a multifractal
phase transition with critical exponent qp=2.3.

We fractionally differentiated (power law filtered) the ficlds by AH, retneving a
conserved field which was then analyzed. A Double-Trace-Moment (DTM) was applied
to directly estimate the universal multifractal indices and yielded a=1.99+0.01 and
C1=0.06+0.01. A comparison of the empirical moment scaling function with the
theoretical K(q)-function showed consistency with the DTM estimates up to a critical
exponent qp=2.3. In order to determine the nature of this phase transition we examined
the probability distribution function. A log-log plot indicated a hyperbolic tail
corresponding to divergence of moments with a slope qp=2.3. Furthermore a Probability
Distribution/Multiple Scaling (PDMS) analysis yielded the empirical ¢(y)-function and
confirmed the estimated multifractal indices with a first order phase transition occurring at
Yp=0.23.

Since it is of profound interest for the radiative properties of the cloud if it can be
described by a lognormal multifractal, we showed that the logs of the probability
distribution functions Pr(@¢>y) and Pr(1/¢>y) are nearly cqual, thus giving strong
evidence for a lognormal multifractal cloud. Since the asymptotic tail of Pr( ), > y) = y™*
this indicates the existence of a negative temperature phasc transition for q<qp

Summarizing, the following multifractal indices were found: a=2; C;=0.08-
+0.02; H=0.29 and a second order phase transition at qp=2.3.




6. Conclusions

In recent years it has been shown that a realistic study of the Earth’s climate
system, e.g. by general circulation models (GCM's), needs improved modeling of clouds
to take into account their strong inhomogeneity as well as to better understand their related
radiative properties. Most numerical modeling of the radiation effect of clouds has
assumed a plane-parallel geometry despite the considerable three dimensional variability,
in the density field, geometry and spacing. The purpose of this work is to justify the use
of multifractals as highly inhomogeneous models for clouds and to provide a formalism
retrieving radiative transfer properties in these media.

We analyzed stratocumulus cloud liquid water content data from the 1987 FIRE
experiment. The data showed excellent scaling over the entire spatial range of 5m-330km.
The universal multifractal indices were estimated with the results: a=2, C|=0.081+0.02
and H=0.29. With several methods we demonstrated that the examined cloud data
responded like a lognormal multifractal with =2, thus providing a motivation for
studying radiative transfer in universal lognormal multifractals.

In the main part of this work, we developed a formalism analogous to the
multifractal singulanty formalism for understanding photon scattering statistics in radiative
transfer in multifractals with existing negative moments g=c'(y)<0. Using the
nondimensional extinction coefficient x to characterize the optical thickness and the
transport properties proved to be a tractable approach to calculate the "bare” photon
statistics. The theory involved two fundamental quantities: (1) The moment scaling
exponent Kp(q) which characterizes the scaling of the moments of the free photon path
distribution, a1 d could be exactly calculated in the case of a lognormal multifractal
medium. (2) The probability distribution exponent cp(Yp) that determines the scattering
probabilities for photon path distances. It was approximated in two different ways,
leading to the same result. We performed extensive numerical tests of the results and
conscquently obtained the dressed statistics. We showed that the "bare" and the "dressed"
statistics are not significantly different and so justified our theoretical "bare" approach.
Although the results are only exactly valid in the thick cloud (large extinction coefficient )
limit, the approximation was found to be quite accurate down to x=1-10, so that the
results may be widely applicable.

It was shown that the near linearity of Ky(q) led to the possibility of
“renormalizing” the multifractal by replacing it with a near equivalent homogeneous

1/(14C))

medium but with an effective extinction coefficient where Cj is the codimension
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of the mean singularity of the cloud. The "renormalizing" approach provides an easy tool
to estimate the bulk radiative properties of a lognormal multifractal cloud. Finally, we
argued that this approximation was likely to continue to be valid for multiple scattering,
and was also compatible with recent results for diffusion on lognormai multifractals. We
compared our results with recent numerical calculations finding excellent agreement.

One limitation of these results was their restriction to the rather special lognormal
case (a=2). The key point in the above development is the approximation of the bare
multifractal properties by the dressed ones. When ai<2, this step is still straightforward
for the larger singularities, but may breakdown for the regularitics associated with the
numerous weak “Levy hole” events that will dominate the scattering. However,
preliminary numerics indicate that even here, similar treatment may be possible using
appropriate asymptotic dressed multifractal properties. This is an important arca for future
work.




Appendix
Al Evaluation of the Moment Scaling Exponent

The transmission is calculated as (2.5.6)

~logx

log x Ie4c.(1-y,)
4C|”(l - Yp) TS

[a-yo-a+ci-y,)]

(T(x)) = e*"dy,  All

In order to calculate the moment scaling exponent Kp(q) ( eq. 2.5.3) exactly we use the
fact that (T) = Pr(7, > kx) and so the probability density for ¥, is

2<T>
p(y,)dy, =- E» dy,. Al.2

P

The moments of Tp Can now be found from

1
a<T> g4,
(z,)= 155, k" dy,. Al3

The integral can be done exactly. Integrating by parts gives
1
(7,7)=-K%" +qlogk [(T) x"dy, , Al4

where we have used the fact that <T( 7p = 1)>= (T(x=1)y=¢". The trick now is to

reverse the order of integration and integrate over ¥, first. Using the definitions f =

1+C| the integral in eq. A1.4 can be written
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Usingj xle @ gy = \Ee'zm',we obtain
0
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With the shorthand s = v ({8 +404-8),
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Putting everything together:

A Pl 1 q-s
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(7,7)=-x"e"+ f@ k"™ ALI10

Al9

We conclude that except for the leading term which becomes small exponentially fast with
¥ (and which arose because th- external scale of the cloud is 1 ) the moment function is
scaling in x. If we write

K, (
(1: ")~x o @) Al.ll

P

Kp(q)=q—-516(1,ﬁz +4C,q—13) AlL.12
1

then
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A2 Laplace Method for the Evaluation of the Probability Distribution
Exponent

The transmission is calculated as (2.5.6). We can write that integral with « as the base:

1 X7t

o L _tay-a-co-r) -
(T(x))= |—BK__ |x G ' ]x “tdy, Al
4C|’r(1 - Yp) -

The Laplace method consists in evaluating the integral at the minimum of the exponent. In
the limit of large x this yields:

(1-r)-a+cra-y))  x

. A22
4C(1-7v,) log x

c,(Y,)= n}in(

The minimum occurs for ¥, =0 which leads to eq. 2.5.9. Note that the extent to which
the prefactor f(q) (eq. A1.10) affects the scaling shows up in the second order correction
to y1.
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