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Abstract

A new numerical method has been developed to evaluate the fluid-dynamic .orces act-
ing on a cylinder immersed in flowing or quiescent fluid for eccentric configurations, in
connection with the flow-induced-vibration problem. The fluid-dynamic forces, gener-
ated by translational motion in quiescent fluid or by a flexural motion in axial(laminar)
flow, have been formulated based on a spectral collocation method. This numerical
method is capable of taking fully into account unsteady viscous effects and of predicting
viscous forces rigorously rather than approximately, in contrast with existing theories.

This approach uses suitable spectral expansions for fluid-dynamic parameters,
involving Chebyshev polynomials, Fourier series and exponential functions; in these
expansions, the a priori unknown coefficients are determined through a collocation
method. A variant of the spectral collocation method was developed for the three-
dimensional problem of flexural motions of the cylinder, with the aid of the finite-
difference method in a hybrid scheme. The method has been validated by applying it to
several types of steady and unsteady flows for which analytical solutions are available.
Considering the numerical results, semi-analytical and simplified analytical approaches
have been developed for estimating the fluid-dynamic forces. Good agreement with the
numerical results was found.

Experiments have been conducted to further test the validity of the numerical
method, involving oscillations of the outer cylinder in an annular configuration. The
unsteady pressure generated in either rocking or translational motion of this cylinder
was measured on the wall of the fixed inner cylinder at various axial and azimuthal loca-
tions. The theoretical model was found to be in good agreement with the experiments
designed to test it.

It was found that the present numerical method may be used to evaluate the
fluid-dynamic forces rigorously. The contribution of unsteady viscous forces to the
overall unsteady forces is significant for low values of the oscillatory Reynolds number,

especially in very narrow annuli.



Résumé

Une nouvelle méthode numérique est développée afin d’évaluer les forces hydro-
dynamiques agissant sur un cylindre immergé dans un fluide en écoulement et au repos,
pour des configurations éccentrées, en relation au probleme de vibrations induites par
V’écoulement. Les forces hydrodynamiques, généreés par le mouvement de transla-
tion dans un fluide au repos, ou par le mouvement en flexion dans un écoulement
axial(laminaire), ont été formulées en se basant sur une méthode spectrale de colloca-
tion. Cette méthode numérique prend en compte tous les effets de viscosité instable
et, contrairement aux théories existantes, prédit précisément les forces visqueuses.

Cette approche utilise des développements spectraux appropriés pour les parametres
hydrodynamiques, faisant appel aux polynomes de Chebyshev, aux séries de Fourier et
aux fonctions exponentielles. Dans ces développements, les coefficients a priori incon-
nus sont déterminés par une la méthode de collocation. Cependant, la méthode spec-
trale de collocation a été modifiée pour le probleme tri-dimensionnel des mouvements
en flexion du cylindre a I'aide de la méthode des différences finies utilisant un schéma
hybride. La méthode a été validée en I'appliquant a différents types d’écoulements sta-
tionnaires et instationnaires pour lesquels des solutions analytiques sont disponibles.
Au vu des résultats numeériques, des approches semi-analytiques et analytiques sim-
plifiées ont été développées pour estimer les forces hydrodynamiques. Un bon accord
avec les résultats numériques a été trouve.

Des expériences ont été menées avec le cylindre extérieur étant en oscillation dans
une configuration annulaire afin de confirmer la validité de la méthode numérique. La
pression instable générée par le mouvement de translation et de pivot du cylindre a
€té mesurée sur la paroi intéricure du cylindre fixe et & différents points axiaux et
circonférenticls. Un bou accord des résultats a été trouvé entre le modele théorique et
les expériences.

La présente méthode numeérique peut étre utilisée afin d’évaluer de fagon précise
les forces hydrodynamiques. La contribution des forces visqueuses instationnaires aux

forces instationnaires totales est significative pour de faibles valeurs du nombre de



Reynolds oscillatoire et particulierement pour les configuration annulaires étroites.
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Nomenclature

ORDINARY SYMBODLS

a Radius of the centre-body

AB,C,D Variables derived from the coordinate transformations,

defined in equation (4.5)

A, Cross-sectional area of the centre-body

b Radius of the outer cylinder

cs Friction coefficient

Cn Added mass coeficient, defined in equation (5.47)

C, Damping coefficient, defined in equation (5.47)

Dy Hydraulic diameter, 2H

€ Eccentricity of annulus

€,€o Lateral displacements of the moving cylinders for oscillations

in the plane of symmetry

e, Radial displacements of the moving cylinders

El Rigidity of flexible cylinder(Young’s modulus x moment of inertia)
f General fluid-dynamic paremeter or oscillation frequency

f Mean value of fluid-dynamic parameter

f Nondimensional fluid-dynamic parameter

o Equation of body surface

f. Velocity of oscillating structure

F Fluid-dynamic forces for oscillations in the plane of symmetry
Fi(6) Fourier expansions

91.90 Lateral displacements of the moving cylinders for oscillations

normal to the syinmetry plane

G Fluid-dynamic forces for oscillations normal to the symmetry plane
Giu.Ga Equivalent added mass coefficients, defined in eqation (2.38)
H Annuiar gup between two cylinders

ix



R Imaginary component of complex value

?,, i ie Unit vectors associated with the coordinate system
k Fluidelastic stiffness

L Length of cylinder

M Virtual mass, defined in equation (2.7)

P, Stagnation pressure

Inertia, damping and stiffness components of fluid force,

defined in equation (2.40)

R Real component of complex value
Re Reynolds number based on the hydraulic diameter
Re, Oscillatory Reynolds number
t Time
UV,W,P Steady flow velocities and pressure
Us,V*,W*,P* Flow velocities and pressure including unsteady component
u*,v*, w,p* Unsteady flow velocities and pressure
U, Friction velocity, \/;"_/-’;
T,(Z) Chebyshev polynomials
COORDINATE SYSTEMS
I,,T9,73 General coordiates
z,r,© Cylindrical coordinates
X.Z2,0 Nondimensiona! coordinates
GREEK LETTERS
a, Added mass coefficicnts for oscillation in the plane of symmetry
B, Added mass coeflicients for oscillations normal to the symmetry plane
By Eigenvalues
b,y Kronecker delta
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Penetration depth, \/2u/w

Azimuthal angle, defined in computational domain ~ see Figure 3.1.

Direction of the total mean flow velocity oscillating, defined

in equation (2.46)
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Viscosity of fluid

Kinematic viscosity of fluid

Density of fluid

Shear stress

Velocity potential

Reduced-motion potential, defined in equation (2.32)
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Eigenfunctions of the beam, defined in equation (2.31)
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SUPERSCRIPTS AND SUBSCRIPTS

refers to viscous damping effect
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stands for steady longitudial force
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Chapter 1

Introduction

1.1 DEFINITION OF THE PROBLEM AND PRE-
VIOUS WORK

When a structure submerged in fluid oscillates, the surrounding fluid must be displaced
to accommodate the motion of the structure. As a result, fluid-dynamic forces are
produced by the integrated effects of the pressure and skin friction, so that there is
generally fluid-structure coupling and interaction. The fluid-dynamic forces acting
on an oscillating structure have an important effect on the dynamics of a structure
surrounded by quiescent or flowing fluid. In general, fluid flow around the structure
has the potential to cause destructive vibrations. Hence, the study of flow-induced
vibrations is of great interest for design. The interested reader is referred to Chen'’s
(1. 2] and Paidoussis’s |3, 4] reviews on flow-induced vibration and instabilities.
Depending on the flow orientation relative to the structure, e.g. flow within or
over the structure, the vibrations are classified into different categories. For external
flows, for instance, flow-induced vibration arises from cross flow or from axial flow.
The main distinction between flow-induced-vibration phenomena depends on the fluid
mechanism involved; for cross-flow, as an example, the phenomena are affected by
separation of the fluid and vortex shedding. Although, in very few cases is the fluid
stream truly axial or normal to the structure, nevertheless, for most studies in the
field, the idealization is made that the flow is either purely axial or normal (e.g. to

a cylindrical structure); this may be fully justifiable for the purposes of research into
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the phenomena involved, but not necessarily for design purposes. The present work
is concerned with vibration of cylindrical structures in axial flow or in still fluid in an
annular passage, with the fluid being assumed to be incompressible.

Cylindrical structures subjected to annular flow are widely used in many engi-
neering constructions; e.g., control rods in guide tubes of PWR-reactors, feed water
spargers in BWR-type reactors, fuel-cluster stringers in AGR-type reactors, tubes in
the baffle regions of some kinds of heat exchangers and certain types of valves and
pistons. For sufficiently high flow velocities, the cylinders in such arrangements have
often developed self-excited oscillations, sometimes severe and occasionally destructive.
For this reason, increasingly more effort has recently been devoted to research in this
area. Work in the field can generally be classified as pertaining to either (a) the study
of stability related to the effect of the mean fluid flow on the system, or (b) the study
of the unsteady fluid-dynamic forces acting on an oscillating structure surrounded by
fluid or fluid flow. The present work belongs to the last class of problems.

The dynamics and stability of a cylinder in confined flow represent a coupled
fluid-structure interaction problem. Hence, it is essential to formulate the hydrody-
namic forces associated with the motion of the cylinder. In a linear analysis, the
unsteady, motion-related, fluid-dynamic forces may be conveniently separated into in-
ertia, damping and stiffness components. Therefore, it is a logical first step to develop
analytical tools which may be used to predict the inertial added-mass and damping
forces in flow or just in quiescent fluid. As is well-known, added mass and damping
are dependent on fluid parameters and system geometry. Studies of added mass can
be traced to Stokes [5] and a brief survey was presented by Muga and Wilson [6]. In
general, in a flowing fluid, the total damping is expressed as the sum of the damping
in stationary fluid plus flow-velocity-dependent damping. However, it is true that the
latter is dominant when the axial flow velocity is large or the viscosity of the fluid is
small. The papers in this area of interest to the present work will now be reviewed.

A considerable amount of work has been done on the dynamics of a cylinder im-

mersed in stationary confined viscous or inviscid fluid. Fritz developed a method for



calculating the inertial forces [7], in which an appropriate ideal-flow solution was pro-
posed, and then generalized forces were obtained via Lagrange's equations of motion.
The fluid-dynamic forces acting on oscillating rods in a stationary confined fluid have
been studied by potential-flow theory [8, 9, 10] and by viscous theory based on the
linearized Navier-Stokes equations of motion [11, 12, 13]. The systems studied were a
cylindrical beam or clustered beams within a rigid container, a cylindrical beam within
a cylindrical shell and two coaxial shells. The added-mass effect, which results from the
accelerations suffered by the fluid, becomes larger as the annular space is decreased.
As a result, the natural frequencies of the coupled system in stationary confined fluid
are lower than those of the system without fluid. The effect of fluid viscosity on
tLe system natural frequencies is negligibly small in most practical systems, and the
added-mass effect can be estimated rather easily by potential-flow theory. However,
the modal damping ratio is noticeably increased in some cases when the fluid viscosity
is included, especially for low natural frequencies, and the effect on the inertial forces is
not negligible in this case. Of course, the viscous damping component of fluid-dynamic
forces, specially when the gap is small, is always important and cannot be neglected;

For narrow annular configurations, where the viscous damping is specially im-
portant, in stationary confined fluid, three-dimensional effects on the hydrodynamic
forces, considering the end effect due to a finite-length annular region where both ends
of the annulus are open, have been studied by Mulcahy [14] using simplified Navier-
Stokes equations. The theory was formulated for various viscous penetration depths(to
be defined later) in the narrow annular space. As the ratio of length to radius of the
inner cylinder is decreased, this three-dimensional effect becomes significant. It was
also found that the added mass is insensitive to this ratio, while damping is sensitive
to variations of the viscous penetration depth when the gap is small.

In most of the studies mentioned before, the effect of steady axial flow was not
considered. The dynamics of a flexible cylinder subjected to steady axial flow was first
investgated by Paidoussis, both theoretically [15] and experimentally [16], for the sys-

tem in unconfined flow. The coupled-hydrodynamic forces acting on the cylinder were
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formulated according to slender-body theory, as proposed by Lighthill [17] for inviscid
fluid, and the viscous forces were formulated by simple linearized relationships, earlier
proposed by Taylor [18]. The elastic and inertia forces on the cylinder as well as the ten-
sion induced by drag forces were taken into account, and systems with various boundary
conditions (pinned-pinned, clamped-clamped, clamped-free) were considered. It was
demonstrated that small flow velocities damp free motions of the cylinder and gener-
ally diminish its natural frequencies as compared to those in still fluid. For sufficiently
high flow velocities, however, fluid-elastic instabilities may occur; both buckling (diver-
gence) and oscillatory instabilities (flutter) are possible, the former generally occurring
at lower flow velocities than the latter. It was shown that, in the case of cylinders :-up-
ported at both ends, oscillatory instabilities are specifically caused by frictional forces
and that, without fluid-dynamic drag, only buckling is possible. In general, the added
mass, which is associated with inertia forces, has a significant effect on the natural
frequencies of system, while hydrodynamic stiffness effects are responsible for the on-
set of finid-elastic instability by divergence. On the other hand, negative flow-induced
damping is responsible tor flutter; in this case, the critical flow velocity is defined as the
point where the energy extracted from the flow is equal to the energy of dissipation.
For a towed cylinder, the dynamics of the system display a more intricate dynamical
behaviour {19, 20].

In a subsequent paper [21], the theory was extended to confined viscous flow,
considering the effect of confinement of the fluid flow by a duct, in which the formulation
of the viscous forces was adjusted appropriately and the gravity and pressurization
effects were taken into account. If the flow about the cylinder 1s confined by a conduit
or by an adjacent structure, the virtual mass of the fluid associated with the lateral
motions of the system becomes large and the system loses stability much earlier, but the
fundamental behaviour is not altered. The theory was validated by comparison with
the experimental results [22], where it was found that, with increasing flow velocity, the
cylinder is subject, sequentially, to instabilities of increasing mode number; confinement

severely destabilizes the system. By takiug into account both inviscid [23] and viscous



hydrodynamic (21] coupling of small arbitary motions of cylinders, the dynamics of a
cluster of flexible cylinders was studied [24).

The system with steady axial flow in an annulus was later studied further and
more completely [25]. With the help of the generalized Fourier-transform techniques
developed by Dowell and Widnall [26], the inviscid forces for confined flow were derived
by the full (linear) potential-flow theory, rather than the slender-body approximation;
nevertheless, the viscous force formulation based on an adaptation of Taylor’s expres-
sions for unconfined flow was retained. The analysis was capable of estimating the
dynamics of a body of relatively small length-to-radius ratio, since the inviscid force
was not derived via the slender-body assumption. It was found that the potential-flow
refinement effectively raised the critical flow velocities for instability, since slender-body
theory overestimates the fluid-dynamic forces on a cylinder of relatively small length-
to-radius ratio. Interestingly, the effect of compressibility on stability was found to be
small in the subsonic regime and once again the fundamental behaviour of the system
was found to be almost the same as described in the foregoing.

In parallel to the foregoing, similar and notable research on the dynamics and
flow-induced vibration of cylinders in axial flow was conducted by Chen and co-workers
(1, 27). The experimental data for the turbulent-boundary-layer pressure [28] were
introduced in the theory [27] and the mechanisms of damping and virtual mass were
investigated for a rod with arbitrary end conditions.

In situations involving very narrow annular flows, the viscous effects, formulated
approximately by an adaptation of Taylor's expression, are no longer reliable, casting
some doubt on the validity of that aspect of the model; however, the inviscid model
is clearly applicable for rclatively narrow annuli. The viscous forces based on Taylor's
expressions are associated with skin friction and pressure drop and are therefore pas-
sive in the seuse that they do vot influence the unsteady flow around an oscillating
cylinder. Although this is quite reasonable for unconfined and weakly confined flows,
it is clearly not realistic for highly confined annular flows. Thus, an appropriate model

for evaluating viscous effects was necessary.



The first attempt to generate an analytical viscous model for cylindrical geometry
was made by Hobsou and co-workers [29, 30]. The model was formulated for dealing
with situations of sudden constriction or enlargement in an approximate manner, i.e.
with the help of some empirical relationships. The dynamics of a rigid cylinder sub-
jected to axial flow in very narrow passages of non-uniform cross-sectional area was
studied, for a rigid centre-body hinged at one point, neglecting the radial variation of
fluid velocity. The analysis was extended to predict the dynamical behaviour of an
actual fuel assembly oscillating in a channel of arbitrary shape [31]. It was shown that,
at sufficiently high flow velocities of the annular fluid, oscillatory instability occurs via
a negative-damping mechanism.

A more rigorous and purely analytical model was developed by Mateescu and
Paidoussis [32] for a rigid centre-body motion hinged at one point, where axial varia-
tions of the narrow passage were restricted to be gradual and smooth. The model was
based on potential-flow theory. It was then extended to take into account unsteady
coupled viscous effects [33] (1.e., the viscous-related modification of the unsteady pres-
sure) by a systematic, albeit approximate, solution of the Navier-Stokes equations,
which considered the unsteady viscous effects much more fully than heretofore. In
those studies, the radial variations in the unsteady annular flow were taken into ac-
count, despite the assumption of small annular clearance with respect to centre-body
radius. The fluid-dynamic pressures acting on a cylinder having rocking motion were
measured and compared with the theoretical ones [34). Good agreement between the
two results was found.

In subsequent papers, the thec;ry has been modified in order to develop the model
for the turbulent-fiow regime, based on a power-law velocity profile that fits the log-
arithmic form fairly well [35]. The dynamical behaviour of the system of a flexible
cylinder with fixed ends subjected to axial flow in a narrow annulus was then studied
[36, 37]), by assuming the annular space to have constant cross-sectional area. The
analytical unsteady-flow solutions for the unsteady pressure, based on potential-flow

theory or simplified viscous theory in laminar or turbulent regimes, were shown to be



in good agreement with the experimental results. It was found that, as the annular
gap becomes narrower, the system loses stability by divergence at progressively smaller
flow velocities, provided the gap size is such that inviscid-fluid effects are dominant.
However, this monotonic destabilizing effect of the inviscid forces (eventually predict-
ing instability at infinitesimally small low velocity for very narrow annuli) cannot be
physically correct. It is thus very interesting that the theory predicts that, for very
narrow annuli, viscous forces predominate, and this trend is reversed; thus, further
narrowing of the annular gap has a stabilizing effect on the system. In some cases
the system loses stability by flutter rather than divergence. Similar behaviour for a
biological system has been reported by Grotberg and Reiss [39], where the inclusion of
fluid-friction effects could alter the mode of loss of stability from divergence to flutter;

however, the physical system involved was quite different.

1.2 ANALYTICAL VERSUS NUMERICAL SO-
LUTIONS OF THE UNSTEADY FLOWS

The fundamental mechanism of annular-flow-induced instabilities is fairly well unde:-
stood and can be fairly well predicted. This is not true, however, for complex ge-
ometries. To be able to treat such system with complex geometries, especially cases
involving area discontinuities, diffuser sections and eccentric configurations in the an-
nular passage, some drastic simplifications or semi-empirical relationships have to be
used for analytical treatment of the problem. To improve on that, for complex geome-
tries, but also for more accurate formulations of the unsteady viscous forces in purely
cylindrical geometries, recourse has to be taken to numerical solution techniques.

In the past, exact solutions have been obtained for a few problems by direct inte-
gration of the differential equations. This was accomplished by separation of variables
or with the help of transformations that make the variables separable, leading to a
similarity solution; moreover, a number of simplifying assumptions were made in or-
der to make the problem tractable. The big advantage of an analytical solution is that

clean and general information, which is usually in closed form, can be obtained. In this
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way, one gets a much clearer understarding and better appreciation of the underlying
physical assumptions and limitations of the solution obtained. However, the number
of problems amenable to analytical solution is limited.

In an increasing number of engineering situations today, it is obvious that, to ob-
tain an approximate but realistic solution to complex problems, the numerical rather
than the analytical approach should be used. The numerical method is fast becom-
ing a new and powerful tool in solving solid-fluid interaction problems. For example,
Paidoussis and co-workers {40] presented a finite-element method for the free vibration
of cylinder clusters in still fluid and the hydrodynamic pressure exerting on a dam
due to small-amplitude seismic motion was proposed by Zienkiewicz and Nath [41).
Comparisons with the classical method of solution showed that, although it is less effi-
cient, the finite-element technique is able to solve more complex geometries. The ready
availability of previously unimaginable computer power has stimulated many changes
in research laboratories where the need to solve complex problems is important. With
the advent of high-speed computers, it is now possible to get an approximate solution
of high accuracy to problems in modern engineering practice, by numerical methods;
e.g. the finite-difference methods, the finite-element method, so on. Chenault [42]
and Newton et al. [43] used a finite-element method to study the frequency-dependent
added mass and damping effects in a two-dimensional ship-vibration problem. In order
to predict the response of a system conveying fluid, a numerical method that consid-
ered the non-linear terms appearing in the equation of motion of the structure was
presented [44).

By the use of the finite-element method, viscous damping and added mass coef-
ficients were obtained by Yang and Moran [45] for eccentric configurations, where the
system of discretized equations was obtained from the appropriate Navier-Stokes equa-
tions and continuity equation through Galerkin's method. The analysis was conducted
for the system having translational motion in stationary confined flow. It was found
that a finite-element method has limitations when the penetration depth is small.

A comprehensive research effort to develop numerical methods for unsteady vis-



cous flow has been initiated at McGill University, for annular-flow configurations in-
volving generally variable annular spaces and concentric or eccentric cylinders oscillat-
ing in laminar or turbulent viscous flows — not purely uniform flows. For concentric
configurations, an unsteady viscous model has been developed with a time-integration
method (a finite-difference formulation) based on a three-point-backward implicit time-
discretization scheme with a factored ADI scheme [46).

The numerical approach has the potential of providing information not accessible
by analytical methods. On the other hand, the numerical approach has disadvantages
such as truncation errors and round-off errors. Round-off errors can accumulate when
a large number of arithmetic operations are involved. In some types of calculations,
the magnitude of the round-off error is proportional to the number of grid points in
the problem domain. In this case, refining th= grid may decrease truncation errors but
increase round-off errors. Thus, clearly one has to choose the right tool for the task
at hand: an analytical, albeit idealized, solution for insight and ease of interpretation;
or a numerical method for a more realistic solution(especially for complex geometries),

but always with proper attention to its practical limitations.

1.3 THE CONTENT OF THIS THESIS

The scope of the research program undertaken in the present work is to develop a
numerical solution for unsteady flow problems generated by forced or self-excited oscil-
lations of the structure in axial or annular flow in non-uniform configurations, such as
eccentricities. These unsteady-flow solutions can also be used in the analysis of various
flow-induced-vibration vibration problems, as discussed before.

In order to investigate the hydrodynamic forces acting on a cylinder, a numerical
approach will be developed for both potential and viscous flows in an annular passage.
This is based on a spectral collocation method for solving the steady and unsteady
confined flows and is completely different from the numerical methods mentioned be-
fore. This approach uses suitable spectral expansions for the fluid-dynamic parame-

ters, involving Chebyshev polynomials, Fourier series and exponential functions. The
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discretized system equations are obtained through a collocation method, where the
governing equations and the boundary conditions are rigorously satisfied at specified
collocation points within the computational domain and on its boundary.

In most applications of the spectral methods [47, 48, 49, 50, 51] recently devel-
oped for fluid-dynamic problems, a spatial discretization is used in conjuction with a
temporal discretization based on a finite-difference approach. For example, Marcus
successfully developed a spectral approach using a time-splitting method based on a
finite-difference method for the study of the Taylor-Couette flow. The present spectral
collocation method takes a different approach for the study of the unsteady flow gen-
erated by oscillating boundaries at a specified frequency, which is consistently based
on spectral expansions for both time and space discretizations, by using Chebyshev
polynomials, Fourier expansions and exponential functions, as already mentioned.

In an attempt to predict the fluid-dynamic forces acting on a cylinder surrounded
by a viscous or an inviscid fluid in an eccentric annulus, the spectral collocation method
has first been applied to a system having “translational motion” in quiescent fluid,
where “translational motion” is understood to mean motion transverse to the flow,
such that the sides of the two cylindrical bodies remain parallel to each other. Then,
this method was used to solve the three-dimensional problem for a system having flex-
ural motion in a concentric annulus conveying viscous axial flow; in this case, the spec-
tral collocation method has been modified and used together with the finite-difference
method in a hybrid scheme. The finite-difference method based on the hybrid scheme
is used only for the axial variations of fluid parameters, while the axial domain is sub-
divided into a finite number of mesh points at which the spectral collocation method is
used for the radial and circumferential variations; in this Thesis, this method is calied
the collocation-finite-difference method. As a result, the fluid-dynamic forces including
the viscous effects can be evaluated rigorously rather than approximately, in contrast
with existing theories.

In Chapter 2, the equations of unsteady potential and viscous flows are derived

in a general form. To understand the mechanism involved in flow-induced vibration,
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the previous analytical solutions for unsteady annular flows developed by the author
are presented, for the case of the self-excited flexural motion of a cylinder treated as a
clamped-clamped beam as an example. The fluid-dynamic forces acting on the inner

cylinder can be evaluated by the theory.
In Chapter 3, for the problem of steady and unsteady flow, the spectral collocation

method is formulated. With the aid of a coordinate transformation, the problem is
transformed into a convenient computational domain, before the spectral collocation
method is applied.

In Chapter 4, the spectral collocation method is applied for validation to several
typical flow problems, such as the unsteady viscous motion between two oscillating
parallel plates, the annular viscous flow generated by a steady or oscillatory rotation
of one of its cylindrical boundaries, and the steady viscous low between two eccentric
cylinders. In all these typical problems, the present spectral solutions will be shown
to compare favourably with the analytical solutions; e.g., for the steady viscous flow
between two eccentric cylinders, developed by Piercy et al. [52] and more recently by
Snyder & Goldstein [53).

In Chapter 5, the fluid-dynamic forces acting on & cylinder oscillating in an
eccentric annulus filled with a quiescent viscous or inviscid fluid are obtained by the
spectral collocation method, when the cylinder executes translational motion. Then,
typical results for added mass and viscous damping coefficients are determined and
compared with the existing analytical results for potential flow [7, 9].

In Chapter 6, the unsteady viscous flow theory based on the collocation finite-
difference method is developed to formulate the three-dimensional problem. The sys-
tem under consideration undergoes flexural motions, as an example, and is subjected
to a steady axial flow (laminar flow), the solution of which is obtained in Chapter 4.
The fluid-dynamic forces, as influenced by the steady axial flow, are calculated by this
collocation finite-difference method. Utilizing the spectral collocation method, with the
aid of a separation of variables method. the unsteady fluid dynamic forces acting on

a flexible cylinder subjected to axial flow is investigated, and then compared with the
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previous analytical results presented in Chapter 2 for narrow annular configurations.
This semi-analytical method is less restricted to very narrow annuli, as compared to
the analytical solution refered to in the foregoing. The numerical results are discussed
and compared with the semi-analytical 12sults.

In Chapter 7, simplified analytical :iolutions for viscous damping are obtained,
with the help of the results obtained by the numerical method presented in previous
chapters. In terms of computational efficiency, it is better to obtain the viscous damp-
ing forces for very narrow configurations by this approximate method. The inviscid-
fluid model for added mass is acceptable; however, viscous damping cannot be neglected
and must be obtained by the methods of either Chapter 6 or Chapter 7. The general
results are compared with those obtained by the present numerical method.

In Chapter 8, experimental results, in which the unsteady pressure generated
by translational motion or rocking motion have been measured, are presented and
compared with the present numerical results. In the equilibrium configurations, the
cylinders are either concentric or eccentric, in the plane of oscillation or normal to it.

Finally, Chapter 9 is devoted to discussion and conclusions, as well as suggestions

for future work.
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Chapter 2

Problem Formulation and
Approximate Analytical Solutions

The principal aim of this chapter is to present the basic equations of fluid motion, in
general form, for flow-induced-vibration problems; they will eventually be used for es-
timating the fluid-dynamic forces acting on a cylinder in annular configurations. The
fluid-dynamic forces, which have inertia, damping and stiffness components, can be
evaluated by potential or viscous theory. The forces, obtained by integrating skin fric-
tion and pressure around the circumference of the cylinder, are expressed in terms of
steady and unsteady components. Even though the steady viscous forces, which are
mainly due to the steady skin friction and the mean pressure acting on the cylinder,
must be considered for predicting the dynamical behaviour of the system, it is a sec-
ondary problem at this stage. Thus, only the unsteady forces due to the oscillatory
motion of the cylinder will be discussed in the present numerical analysis.

As a step toward estimating fluid-dynamic forces for two eccentrically located
cylinders in quiescent fluid or annular flow, the basic equations of fluid motion for po-
tential and viscous flows are formulated for harmonic oscillatory motion of the cylinder.
At thisstage, the annular flow is assumed to be fully developed laminar flow. The time-
dependent lateral displacement of the oscillating centre body is assumed to be small.
Furthermore, the effect of flow separation can then considered to be negligible. As a
result, the equations of fluid flow can be expressed in linearized form.

In the study of flow-induced vibrations, it is essential to understand the coupied
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fluid-structure interaction mechanism. For this purpose, the self-excited flexural mo-
tion of a cylindrical beam subject to annular flow, which was undertaken analytically
for concentric configurations by the author [54], is presented in this chapter as an
example. The basic principles used in formulating the fluid problem for inviscid and
viscous flows are investigated.

The differential equation of motion of the flexible centre body constitutes a
boundary-value problem together with the boundary conditions, used to derive a typical
eigenvalue problem. The normal-mode-expansion theorem based on the separation-of-
variable method can play a major role in the transformation of the boundary value
problem into eigenvalue problem. By Galerkin’s method, the system equations can
be discretized, which eventually leads to the determination of the mass, damping and
stiffness matrices of the system. The dynamics of a flexible cylinder in an annulus are
presented by the previous analytical theory [37, 54] in this chapter as typical results.
In the present analysis based on the spectral method, the solution of the eigenvalue

problem remains to be done.

2.1 BASIC EQUATIONS OF FLUID MOTION

Most theoretical investigations in the field of fluid dynamics are based on a perfect,
i.e. frictionless and incompressible, fluid. In the motion of such a perfect fluid, two
contacting fluid layers experience no tangential force(shearing stress) but act on each
other with normal forces(pressure) only. However, the theory of perfect fluids fails
completely to account for the drag of a body. Because of the tangential or friction
forces between a fluid and solid wall, there exists no difference in relative tangential
velocity, i.e. there is no slip.

The existence of tangential stresses and the condition of no slip near solid walls
constitute the essential difference between a perfect fluid and a real fluid. In many
instances, the motion of certain fluids, such as water and air, agrees well with that of
a perfect fluid, because the shearing stresses are very small. As a result, the problem

can be simplified so as to become tractable. However, the viscous effects on the fluid-
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dynamic forces cannot be neglected in some cases, for example for unsteady fluid motion
due to the low-frequency oscillatory motion of a cylinder in a narrow annulus.

The equations of the unsteady potential flow and the steady and unsteady viscous
flows will be discussed, and then adapted to the present problem in the following
chapters. In the unsteady flow generated by the oscillatory motion of a cylinder with
either high frequency or low fluid viscosity (i.e., with high oscillatory Reynolds number
which will be defined later), the viscous effects are limited to a region near the surface
of the oscillating cylinder. According to the results given by Chen et al. [11] for a
viscous fluid and Chung et al. [9] for an inviscid fluid, the difference between the fluid-
dynamic forces acting on a cylinder in an annulus, obtained by the two theories for the
case of high oscillatory Reynolds number, is very small. The effects of fluid viscosity,
which may be of secondary importance in some cases, are neglected in a first attempt
to predict the fluid-dynamic forces acting on the cylinder by means of potential-flow
theory. Then the viscous effects on the fluid-dynamic forces are investigated by the
present viscous theory.

The system considered in the present analysis consists of a centre body located
concentrically or eccentrically in a cylindrical duct as shown in Figure 2.1. The radius
of the inner cylinder is a and the annular space between two cylinders is H(8); thus,
for the case of a constant H, the radius of the outer cylinder is b = a + H. The
flexible or rigid cylinder, immersed in quiescent fluid or in a steady flow, generally
executes oscillatory motion. The fluid-dynamic forces exerted on the inner and/or
outer cylinders are evaluated numerically based on the spectral method, which will be

presented in the following chapters.

2.1.1 Unsteady Potential Flow

In this section, the flow is presumed to be irrotational and incompressible, in addition
to being inviscid, 5o that motion of the fluid is governed by Laplace’s equation which is
derived from the continuity equation. The boundary conditions state that the normal

velocity of the body is equal to that of the fluid at the boundary surface between fluid
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and body. Without the complication of viscosity, the momentum equation is reduced
to the Bernoulli-Lagrange equation, from which the unsteady pressure force acting on
the cylinder can be obtained.

The Laplace equation in terms of the unsteady velocity potential @ is

V2<I>(zl,a:2,2:3, t) =0 , (2.1)

subject to boundary conditions

%+v¢-vn=o, (2.2)

on f, = 0, where z;,1,, T3 represent geometrical coordinates, e.g. r,0 and z for
cylindrical coordinates as will be shown in the form of Laplace equation in equation
(2.27), and fi(x;,x2,23,t) = 0 is the equation of the body surface. In the unsteady
motions with moving boundaries, the fluid domain deforms with time. The system
is usually employed in conjuction with a time-dependent coordinate transformation.
However, by the assumption of small-amplitude oscillations of the moving boundaries,
the geometrical effects of deformation of the fluid domain are of second order and will
be neglected in the present analysis.

The velocity potential, ®(z,, 2, 13,t), may be separated into steady and unsteady
components:

®(z), 12, T3,t) = @,(11, T2,73) + &(Z),7,, X3,1) . (2.3)

Cousidering the velocity potential, steady and unsteady velocities, V, and v, are
defined by

V, (11,12, 13) = V¢,(2),22,73)
v.(zloIQvI:’vn=v¢(1hx2v13't)' (24)

For concentric-flow passages, the steady-state component simply gives, because of cylin-
drical symmetry, 8¢,/0r = U, where U denotes the mean axial-flow velocity.
In order to obtain the inviscid-fluid dynamic force exerted on the surface, the

unsteady pressure may be written in the following form, usually known as the Bernoulli-
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Lagrange equation deduced from the momentum equation:

L)
at ?

where p is the fluid density and P, is the stagnation pressure. Thus, the inviscid fluid

1 -, 1
P—Py = §pU2— -2-p| Ve |2 - (2.5)

dynamic force, acting on the inner cylinder of radius a, can be obtained by integrating

the above equation around the circumference of the cylinder, as

2x
F,=- /o a(P = Poo)lrea c0s© dO (2.6)
which can be expressed in the general form as
3281 3e,
Fp= - (MW + Cv-ét- + ke;) ) (2.7)

where e; represents the displacement of the oscillating inner cylinder(the subscript I
stands for the inner cylinder); C, is the damping coefficient, k is the fluidelastic stiffness
coefficient, and M is the virtual mass. In Appendix A, these coefficients are presented
based on the slender-body theory [21] and then the critical flow velocity where a system
loses stability by divergence(buckling) are estimated in order to compare the results
with the analytical results obtained by the inviscid-flow theory, which will be presented

in Section 2.2.

2.1.2 Steady and Unsteady Viscous Flows

The basic equations of mass and momentum conservation are applied to the analysis
of viscous-fluid flow to get a complete and fundamental understanding of the fluid-
dynamic problem. In the study of viscous incompressible flow, it is necessary to obtain
the three components of velocity and pressure, as functions of space and time. These
four unknowns can be determined in principle from the governing equations, i.e. the
continuity equation based on the conservation of mass and the Navier-Stokes equations
based on the conservation of momentum. However, the complete general solution is
still not possible because of insurmountable mathematical difficulties.

Ideally, the hydrodynamic forces should be calculated from the governing equa-

tions together with boundary conditions. In viscous fluids, the surface forces acting on
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an element of fluid are considerably more complicated than in an inviscid fluid. These
are of two types: there is a normal force or normal stress similar to the pressure, but
it may not be the same in all directions and there are shear forces whose direction is
tangent to the surface on which they act.

In the present analysis, the viscosity and density of the fluid are assumed to be
constant. Thus, the Navier-Stokes equations, without body forces, and the continuity
equation are written as

DV

1
—— - viv
D pVP +v , (2.8)

vV.-Vv=0, (2.9)
where v is the kinematic viscosity of fluid and

DV gV
—_—= 4 (V.- V)V,

ot~ VY

in which the first and second terms on the right-hand side denote the local and convec-
tive derivatives, respectively, and V(r,,z,, z3,t) represents the velocity vector of the
fluid.

For cylindrical coordinates (r, ©, z), the above equations are rewritten as

ou~ our Ww-aour ou* 10P* —u[l 0 ( 6U') 1 92U 82U‘]

Vet T etV o Tl rar\"ar ) T reer T o
OW"  OWT WIOWS  aWe WV 119P
at or r 00 Oz r pr 00

10 (0W) 10w gwe_w- 2ov-
v r Or r or r2 092 or? r2  r200 |’
v ov: We-ove ove W2 4 1P

-bt_'*.v 6r+r86+var-r ;Br_
1.2 _Q_\_’_‘ 16""4_3’"' l’_’_ _2_3W' (2.10)
rar\'or JtFeer T o T T ee | 0
ou- ow- @ o _

where U®, V* and WW* denote the flow velocities, including the unsteady components,

in the axial, radial and circumferential directions, respectively.
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i For small-amplitude periodic motions of the structure, the fluid executes periodic

motions, and it is possible to separate the flow velocity into steady and unsteady

components, as follows:
V*z, 1, ©,t)=V,(z, 1, 0)+Vv*(z,1,0,1). (2.12)
The pressure can also be expressed as the sum of steady and unsteady terms
P*(z, 1, ©,t)= Pz, 1, ©)+p*(z, 1,0, t). (2.13)
The equations for the steady viscous flow are
(V, V)V, = —%VP, + VW2V, (2.14)

V-V,=0. (2.15)

By subtracting the steady-flow equations from the full Navier-Stokes equations, the

remained unsteady-flow equations can be expressed as

% +(V, - V)V + (v - V)V, = —%Vp‘ + Vv (2.16)

V.v=0, (2.17)

where the product terms between the unsteady components are neglected by the as-

sumption of small-amplitude motion of the structure. The boundary conditions based

on the no-slip condition can be expressed as
vi=1,, (2.18)

where {,. denotes the velocity of the oscillating structure.
The resultant forces acting on the structure per unit length, including unsteady

components, can be calculated by cousidering the following stress component:

av, v,
= =Phy (T2 =) (2.19)
4 where 91,/9z, denotes j—component derivative of the i directional flow velocity, u is

the fluid viscosity and é,, represents the Kronecker delta.
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The fluid-dynamic forces per unit length can be obtained by integrating the above

equation along the structure. Thus,
F,=— /‘ r,n,de (2.20)

which will be rewritten for cylindrical coordinates.

The viscous forces acting on a cylinder in confined flow may be separated into
steady and unsteady components. The steady viscous forces, which are dependent on
the derivatives of the motion with respect to the axial direction, are derived from the
longitudinal frictional force and from the pressurization of the flow to overcome the
pressure drop. The steady forces, obtained by a previous analytical method, will be
reviewed in this chapter as an example, but in the present numerical analysis they are
not considered. The unsteady viscous forces arise from the tangential friction forces
containing the effect of the viscous pressure distribution along the circumference in
a direction normal to the wall. Thus, free oscillations of a flexible centre body are
influenced by both steady and unsteady viscous forces.

The unsteady forces, acting on the inner cylinder per unit length, due to its

oscillatory motion can be obtained by

2r
Fi(z,t) = /0 a (T,., lr=a €OSO — Tr@ |r=a BIDO + Tz |r=q %) do (2.21)

where e; denotes the displacement of the moving cylinder and the stress components

can be rewritten

. o’
T"(I.r,e,t) = =-p +2p-57\
K . 1 y”
1e(z.r.6,t) = u {-a—auT + wT + ;%} ’
ou* o
T.(1.7.0.t) = ”{—6-7+ -5;} . (222)

in terms of the axial, radial and circumferential components of unsteady-flow velocity,
u*, v* and v°, and the unsteady pressure p°.
In the present analysis, motion of either the inner cylinder(centre body) or the

outer containing cylinder is considered. The forces acting on cylinder 1, due to motions
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of cylinder j oscillating in the plane of symmetry e; and in the normal to that plane

gj» can be written as

2, . ) ,
fo= - (a‘j % + ":j% + a:-'jei) = pra’’e; [R(F,) + X(F)]
92g; ' 0g; " A A
G = - (ﬁ-‘jat_? + ﬂej% + ﬂ.-jw) = pra’’g;[R(Gi) +¢3(G)] ,  (2.23)

where R and Q stand for the real and imaginary parts, respectively, of the nondimen-
sional fluid-dynamic forces, F; or G,. Physically, the forces associated with unprimed,
primed and double-primed coefficients in the above equations can be interpreted as the
fluid inertial force, the fluid damping force and the fluidelastic stiffness force, respec-
tively; note that a;; and 3;, are added mass matrices; a;j and ﬂ,fj are viscous damping
matrices; a,; and ;; are fluidelastic stiffness matrices. For translational motion in an-
nular space without axial flow, it was found that the unsteady forces can be expressed

in terms of Bessel functions [11].

2.2 ANALYTICAL APPROXIMATE SOLUTIONS
FOR UNSTEADY ANNULAR FLOWS

The system considered in the previous analysis [37] consists of a flexible cylindrical
centre-body, coaxially located in a narrow cylindrical annulus conveying fluid. The
flexible centre-body, of which both ends are supposed to be clamped, is free to oscillate
in flexure inside the duct. Only planar motions are considered. The system is coupled
by the fluid-dynamic forces acting on the flexible centre-body, due to the annular flow,
which is obviously unsteady.

A simplified analytical approach was developed in order to estimate the dynamical
behaviour of the system in a narrow annular passage in the presence of a fully-developed
laminar flow. The potential-flow solution obtained in the first stage of the analysis was
modified by adding a laminar-perturbation solution to account for the viscous effects.

The inner cylinder, which has length L and radius a, is considered to be an Euler-

Bernoulli beam characterized by flexural rigidity E/, cross-section area A, and density
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Ps. The annular gap is H, hence the radius of the outer cylinder is b = a + H. The
annular flow is characterized by the mean-flow velocity U, static pressure P, in the
annulus upstream and the fluid density p, which is considered constant; see Figure 2.2.

In order to simplify the solution, the following two flow fields were considered:
(a) a potential flow, representing the perturbation-flow field according to inviscid-flow
theory, and (b) a viscous-flow field, whose axial flow, far upstream, is considered fully
developed and laminar, and which includes the steady and unsteady viscous effects.

The equations of motion with the following principal differences to the existing
theory [21] were formulated. First, without using slender-body theory, the potential-
flow theory was developed, based on the assumption of a small annular gap with
respect to cylinder radius, so that the inviscid forces acting on cylinders of small length-
to-radius can be predicted. Second, the unsteady viscous forces are formulated by
considering the simplified Navier-Stokes ::quations instead of Taylor’s expressions, the
applicability of which is doubtful.

The equations of small lateral motions can be derived by considering the equilib-
rium of forces acting on a differential segment of the flexible centre-body subjected to
distributed external forces, based on Hamilton’s principle. In this case, the distributed
forces are due to the fluid motion. The equation of motion of the flexible centre-body

motion is expressed, as follows:

2
Ez% + p.A,%g =F,+ Fu+PF.,, (2.24)

subject to boundary conditions (at the fixed ends of the flexible cylinder)

e0.)=0. eLay=o0, 2l _g o dellt) 4 g
or or

where ¢)(z.1) is the lateral displacement of the inner cylinder, F, the inviscid-fluid
force, F,; the unsteady lateral viscous force and F,, the steady viscous force due to
longitudial steady skin friction and the mean pressure, acting on the centre-body per
unit length. For the case where the cylinder, although laterally fixed at both ends, can

slide axially at the downstream end, the steady viscous forces may be expressed in the
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following form [21]

OPn 0%; OP, ,L0Oe
Fy = [ 2 A(L-7) + / F,d]a ; + G AT, (2.26)

where P,, is the mean pressure in the duct, Fi(z) is the longitudinal steady viscous-
fluid force per unit length due to the longitudinal component of skin friction on the
inner cylinder.

The unsteady fluid-dynamic forces arise from the resultant of the unsteady pres-
sure forces and of the unsteady viscous shear stresses acting on the centre-budy surface.
This analysis has as its principal aim the determination of the unsteady fluid-dynamic
forces, firstly for the case of an unsteady potential(inviscid) flow and then considering
also the main effects of fluid viscosity on the forces. A full account of the procedure to

develop the steady and unsteady forces may be found in refs [37, 54].

2.2.1 Derivation of the Inviscid Forces

Based on the assumption of small-amplitude motion of the oscillating inner cylinder,
the inviscid forces were derived by potential flow theory. For incompressible fluid, the
governing equation is expressed, as the Laplace equation shown in equation (2.1), in
cylindrical coordinates, as follows:

0%® 0*® 109 10%*®
2% EL v
V@'a +6r2+r6r+r2892

subject to the boundary conditions, which are obtained by substituting the equations

=0, (2.27)

of body surface (fy(r,t) = r—a—e, for the inner oscillating cylinder and fy(r,t) = r-b

for the outer fixed cylinder) into equation (2.2),

08| _ e [280e 108 10
or| .. ot drodr rdo rab
o® % -
o, = " £ (228)

where the radial displacement, e,, at the azimuthal angle © is expressed in terms of

the lateral displacement, ¢;(z,t) = E(x)e*", of the inner cylinder as
e.(2,0,t) = ¢;(1,t)cos© = E(r)cos Oe*" . (2.29)
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Based on the normal-mode expansion for the motion of the clamped-clamped

cylinder, E(x) can be expressed in terms of the eigenfunctions, ¥,
E(z) =Y artu(z) = Y a[ve(z) + vau(z)] (2.30)
k k

where ¥, and v denote the trigonometric and hyperbolic components of these eigen-

functions, respectively,
Yk = —cos Bk + Ok sinfix , Yo = cosh Bz — 0y sinh fiz | (2.31)

and o, = (cosh BiL — cos §iL)/(sinh B¢ L — sin G L), the BL being the corresponding
eigenvalues of a clamped-clamped beam.
In view of equations (2.3) and (2.30), reduced potentials éx(z,r) may be intro-

duced as follows:
#(z,7,0,t) =Y ax di(z,7)cos© e, (2.32)
k

where by the separation of variables, ¢x(z,r) may be written as
®i(z,2) = filx) Fi(2) , (2.33)
in terms of the new coordinate 2 instead of r, defined by
z=r-a. (2.34)

Thus, the analytical solution, which is restricted to very narrow annuli where
r-—a < aand 1/r = 1/a, can be obtained by considering the following reduced form
of equation (2.27) as

6 0% 106 1
o Vo2 tae: ~a&%= 0. (2.35)

with the boundary conditions

%?;’i =0, %% = wii(r) + Uuy(1) | (2.36)
© Limhe “ 1m0

where the prime denotes differentiation with respect to x, and h = (b-a)/a = H/a.
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For brevity, the procedure for obtaining the solution for the reduced potential,
&i(z, z), effected by equation (2.33) is not given here. The solution of reduced potential
J);,, evaluated on the surface of the cylinder (z = 0), is found to be

2
O(7,0) = —a Y Gt [wiini(z) + Tdhur(2)] (2.37)

=]

where
G 2= 1/2 tanh(qch)
= (g8 - 1/4)tanh(gch) ’
_ —cl +1/2 tan(cl_h_)
(c}? +1/4)tan(cth)’

for f2a® > 5/4,

G

and

Gy = St 1/2 tanhlenh) o an gy (2.38)

¥~ (2 = 1/4) tanh(cxk) ’

in which g, c; and c{ are

o = [5/4+ B2 )?,  a=[5/4- B2 ?, ol =[-5/4+pa%V. (2.39)

Having determined ¢, and hence ®, the pressure on the surface of the cylinder
may be found, after suitable linearization, through the unsteady Bernoulli equation
(2.5). Therefore, the unsteady inviscid forces on the cylinder may be obtained by
integration, as shown in equation (2.6). Substituting the solution for the unsteady
velocity potential into the unsteady Bernoulli equation with the aid of d¢,/dz = U,

the unsteady inviscid force is found to be
Fy(z,t) = —pra®e“' Y as(~w? P2 + wPi + Py) , (2.40)
k

where Py, Py, and Py are the components of fluid force associated with inertial,
damping and stiffness effects, respectively, in the same form of equation (2.7); these
components are given by

2 2 2
Po=) Guvu. Pa =203 Guv,, Po=U0;Y (-1 Gutu - (2.41)

om) om] =]
As shown in the above equation, the effect of mean flow on the inviscid forces is to

produce a centrifugal force due to the cunvature of the flexible cylinder, and a Coriolis
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force due to the combined flow and rotation of the fluid element. The centrifugal and
Coriolis forces are associated with the stiffness and damping components of the inviscid

forces, respectively.

2.2.2 Determination of the Viscous Forces

The unsteady potential flow, which is of course irrotational, is expressed in terms of
the velocity potential ®(z,r, ©,t), as shown in the previous section. The analytical
solution of the potential flow, under consideration, is used to develop the approximate
method of the viscous flow with the simplified Navier-Stokes equations, based on the
following assumptions: the frequency of oscillation is not very high and the Reynolds
number, based on the hydraulic diameter of the annulus, Dy = 2H = 2ha, is relatively
small.

Taking into consideration the two flow fields, potential and viscous, the velocity
vector associated with the potential flow may be written as U[(1 + ﬁ,,);r + t“z,,?, + u"),,;e],
where the unsteady flow velocity can be obtained using the unsteady velocity potential
as shown in equation (2.4), and the associated perturbation pressure as p, = (P -
P..)/(pU?): 4, %, and & stand for the corresponding components of the nondimensional

flow velocity with respect to U. Then, one may write
U(z,1,.0,1) = Gy(z,r;0,t) + ip(z,7,0,1), (2.42)

and similarly, for . & and p where the components associated with viscous effects,
t,, ¥, ¥,, and p,, are considered to be dependent only slightly on © and t.

Using an approach similar to the one used in the previous section to develop
the unsteady equations (2.16) and (2.17), the Navier-Stokes equations are simplified
drastically by subtracting tue potential terms from the full equations for narrow annuli,
based on a set of assumptions, similar to those made in boundary-layer theory, which
are valid, because of the narrowness of the annular passage, namely: (a) the radial
component of viscous motion ¥, is negligible and (b) the circumferential and axial

variations in ¥ and u' are also negligible, compared to the radial variations in the same
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components. Taking the foregoing assumptions into account, the governing equations

for unsteady viscous flow reduce to the following equations in terms of nondimensional

parameters:
O% _Reldp, o0 _Reldp, 0 (243)
dY?  2h1dX' d8Y? 2nRO®°' "~ oY’ '
where the nondimensional coordinates are defined by
X=£, R=£, h=£, l=£, Y=2=R-1. (2.44)
a a a a a

With the aid of Figure 2.3, the total mean dimensionless velocity(over the gap

height) may be approximated by

V(X,0,t) =ticosd +wsind, (2.45)

where ¥ may be expressed as
sind = w/V ~ %(X,0,t), (2.46)

since the dimensionless total mean velocity is approximately equal to unity. This is
the key to this simplified treatment of unsteady viscous effects: the magnitude of the
total mean flow velocity remains approximately constant, but its direction fluctuates
circumferentially through a small angle ¥, associated with the circumferential mean
flow velocity.

In order to simplify the analysis, the average circumferential velocity across the
annular space, W, can be calculated from the potential flow obtained in the previous

section with the relationship W = (8¢/80)/(Ur), as follows:

.z'=-l-/"avdz=zi’i 3 fuWae| sin @ (2.47)
h o . Uh = ok sk ] .

where
Jot = Gutv(z) + Uvue(7))
and the W,, are expressed as integral forms as

. 1 A . 1LY
Wi = /; TS E +’.[cosh(qd )+ R;sinh(g.Y)je'/7dY ,
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Jo iy leos(clY) + Risin(c[Y)]e!/YdY ,  for (Bra)? > 5/4,
Wa = (2.48)
e ]—_':—Y'[COSh(CkY) + Ry sinh(c,Y)}e/¥dY , for (Bra)? < 5/4,

where
R = qrsinh(gch) — 1/2 cosh(qih)
' T —gicosh(geh) + 1/2 sinh(geh) ’
t _ cksin(c}h) + 1/2 cos(c}h) _ —cisinh(cgh) + 1/2 cosh(cy) (2.49)
2™ ¢ cos(clh) — 1/2 sin(clh) ’ ™ Ccecosh(ckh) — 1/2 sinh(cih) °

where ¢, c{, and g, are shown in equation (2.39).
Using the chain rule of differentiation, the first two equations of equation (2.43)
may be combined in terms of the new coordinates shown in Figure 2.3 leading to

PV(Y) _ Reldp,
T T WmTaE (2.50)

The solution to the above equation for velocity distribution is obtained based on the
no-slip condition on the wall, giving the parabolic shape

- _Repu 1y,
vy)=-gre v Y)]. 2.51)

Considering the total nondimensional flow rate, which is calculated by integration
of the above equation over the narrow annulus — the flow rate is approximately equal
to the cross-section area of annular passage since the total mean nondimensional flow
velocity is equal to 1 — and recalling that h < 1, the nondimensional pressure drop is

expressed

%, A1 __co 0Fma
0 hRe h~ or pU?’
where (OP,,)/(81) denotes the dimensional pressure drop per unit length and the nondi-

(2.52)

mensional friction coefficient ¢; is defined by

24
&=z (2.53)

which is equal to that for laminar fiow between concentric cylinders or between two
paralle] plates. Hence, the dimensional shear stress on the cylinder may be separated

into two components: an axial and a circumferential one,
T, = TcosV, Te = 76in Y, (2.54)
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where the time-independent shear stress on the surface of the cylinder, 7, is given by

-9 12 1 -
2 ) ,
T =pU o c,2pU (2.55)

The steady longitudinal force F; and the unsteady lateral viscous force F,; can

now be evaluated using

2% _
F = /0 7.0 d© = ¢;mapU?, (2.56)
2n .
Fy = /o [resin © + p'2p, cos O)a dO ,
= —pra’e' Y ar(wPu + Puo) (2.57)
k
where
- U2 + h c,U%2 + h &
Po=-Lo2r S CuWatn, Pro= -1 wWaty . (2.58)
s=1 =1

Thus, the steady and unsteady forces, including the inviscid forces, can be expressed
as the general forms shown in equation (2.23). In the above equations, the first and
second terms of the numerator, 2 + h, are associated with the viscous perturbation
pressure and shear stress, respectively.

Although the foregoing analysis applies to laminar flow, its extension to turbulent
flow, e.g., using an eddy-viscosity model, is quite feasible. The unsteady dynamic
pressure generated by rocking motion was predicted by the viscous theory for turbulent
flow under the same assumptions [35). The analysis can be adapted to the problem of
flexural motion of a cylinder, in order to obtain the nondimensional friction coefficient,
¢y, eventually used in predicting the viscous hydrodynanic forces. For turbulent flows
in narrow annular passages, the power law for the velocity distribution in the half-width
of annular space is

V‘y) =C [—(H/2 y ] (2.59)

where y, which is a coordmate norma.l to the surface of cylinder, is measured from
mid-distance between two cylinders and the friction velocity, u,, is expressed in terms
of the shear stress on the surface, 7, = —udV/0y | an/2. 8s

u = |2, (2.60)

P
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Considering the relationship between the total mean flow velocity and the maxi-
mum flow velocity at the mid-point between two cylinders and recalling equation (2.60),
the nondimensional pressure drop is expressed in the same form as for laminar flow

dpy _ _c_, OP, o

where
¢; = KRe™+%1 (2.62)
with
K=2[entis 11y

Taking n = 7 and C = 8.56 specfied by Blasius [55] for Re < 10%, the resultant value
of K is 0.084. For an eccentric annular flow passage, the friction coefficient, which is
related to the steady shear stresses on the walls, is estimated by a more complicated
method, based on the law of the wall or the velocity defect law [57, 58].

Utilizing the nondimensional friction coefficient for turbulent flow, the steady and
unsteady forces can be evaluated in the same forms as those for laminar low shown in

foregoing.

2.2.3 Typical Result of Dynamics and Stability

Introducing now nondimensional parameters

"= T‘(p.A) 9= (EI)L
_ prlL? PA,L? - {pra®lL? b
o=, M=, U—( =)0, (2.63)

together with equation (2.44), and considering the uasteady lateral forces with end
condition, the foilowing dimensionless equation of motion of the flexible centre-body is

obtained from equation (2.24)

- e, U (1+%) [(1—%6) -x] n - (1=2v)(2-6)p°
al L \*
2! S .
+cU i + 9 (aEI) (Fy+ Fu), (2.64)
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where 6 = 0 corresponds to the case of an axially-sliding downstream end, 6 =2 to a
sliding upstream end, and 6 = 1 to no axial sliding at either end; v is Poisson’s ratio,
P is the overpressure at the midpoint of the cylinder, and the prime and dot denote
differentiation by X and T, respectively.

In order to investigate the dynamics and stability of the system, the system of
equation (2.64) was discretized by Galerkin's method, utilizing the eigenfunctions ¥ as
comparison functions, and transformed into a standard eigenvalue problem, from which
the dimensionless eigenfrequencies, 1, may be obtained. A typical result obtained in
this manner is presented. The fluid-dynamic forces acting on the inner cylinder, which
executes a flexural motion, are presented in Chapter 6 and a comparison is undertaken
between analytical and numerical results.

The dynamical behaviour of the system is illustrated in Figure 2.4, where | =
Lfa=20, h=01, o =232.7, EI/(pra’L?) = 1.33 m/s, and p = 0.007 pa s;
4 is relatively large here(typical for oil) to highlight the effects of viscous flow. The
real and imaginary components of the lowest three eigenfrequencies as functions of U,
calculated according to (a) entirely inviscid (potential) theory, 4 = 0, and (b) unsteady
viscous flow, but excluding the steady viscous effects (i.e., pressurization effects, surface
traction and related pressure drop, which are time-independent). It is recalled that the
system loses stability if I(Q2,) < 0, by divergence when R(Q?,) = 0 and by flutter
otherwise.

According to potential theory for this case, the system loses stability at U = 2.13
(point A) in its first mode by divergence. At high flow this mode is restabilized at
U = 3.21(point B) and then the first and second mode loci coalesce and the system
loses stability by coupled-mode flutter at point C ( U =3.5). At higher U the system
is subject to a succession of coupled-mode flutter and divergence instability, as may
be seen in the figure. The critical flow velocity, obtained by an approximate method
based on slender-body theory for potential flow, is presented in Appendix A.

The presence of unsteady viscous forces has the following effects on the dynamics

of the system. The eigenfrequencies, in the stable region, are complex, rather than
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purely real as in the potential case:i.e. the system is subject to damping due to the
prescence of fluid in the annulus (sometimes refered to as squeeze-film damping). As
a result, it takes a higher flow to precipitate divergence; the system loses stability
at point A’ (not point a) for U = 2.29. Similarly, coupled-mode flutter occurs at a
higher flow velocity, ' = 3.56. Neverthless, the fundamental dynamical hehaviour of
the system remains the same as for potential flow. In this respect it is significant that

almost up to the point of loss of stability, the ¥(2,) remain essentially constant with

-~

U.
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Figure 2.1: Geometry of the centre-body in the cylindrical duct
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Figure 2.2: Geometry of the flexible centre-body oscillating in a duct with annular flow




Figure 2.3: Diagram showing transformation of coordinates and definition of the angle
v
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Figure 2.4: The (a) real and (b) imaginary components of the nondimensional eigenfre-
quencies versus the nondimensional flow velocity, for potential flow(- - - -) and viscous
flow( ): A, first mode; Wy, second mode; 8, third mode
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Chapter 3

Formulation of the Spectral
Collocation Method

3.1 GENERAL CONSIDERATION OF THE NU-
MERICAL METHOD

As seen in the previous chapter for unsteady annular flow as an example, the fluid-
dynamic forces have been formulated analytically, leading to a closed-form solution;
however, the model is restricted by the assumptions used in the formulation. Using
a numerical approach, solutions of wider applicability can be obtained by eliminating
such limitations. The present analysis is mainly concerned with numerical solutions for
steady and unsteady flows in annular constructions involving eccentricity. The presence
of eccentricity in annular configurations considerably adds to the complexity of the
problem. For this reason, very few accurate analytical solutions have been obtained
and then only for simplified cases. Because of the special interest in dynamical systems
involving eccentricity, sudden expansion, contraction, or diffuser sections and even in
the case of concentric configurations, it is desirable to provide more accurate solutions
for viscous flows than the existing analytical solutions.

For the study of steady and unsteady flows, a newly developed spectral method
will be presented. The numerical method is completely different from the recently
developed method based on time-integration by a finite-difference formulation [46).

Using convenient expansions, the fluid dynamic parameters can be expressed in
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terms of interpolation functions such as Chebyshev and Legendre polynomials and
Fourier series etc. containing a priori unknown coefficients. In this procedure, the
governing equations and boundary conditions are discretized in terms of unknown
coefficients, using a collocation method. In the present work, a linear boundary-value
problem, based on small-amplitude motion of the oscillating cylinder, is considered.

In order to discretize the fluid-dynamic governing equations, two numerical ap-
proaches have been formulated for two-dimensional problems of flow between two par-
allel plates or two eccentric cylinders and for the three-dimensional problems of flow
between cylinders. In the present work for eccentric configurations, the fluid parame-
ters are expressed in the radial and circumferential domains as interpolation functions.
In general, the unknown coefficients of expanded parameters confined in the radial
and circumferential coordinates are also dependent variables in the axial domain. For
two-dimensional problems, these coefficients are constant in the axial direction. The
governing equations expanded by the spectral method are imposed on a finite number
of collocation points in the radial and circumferential domains.

For three-dimensional problems, the collocation method is restricted to the ra-
dial and circumferential domains, while a finite-difference approximation based on the
hybrid scheme is used to discretize the problem for axial variations, where the axial
region is subdivided into a finite number of axial points. Eventually, the problem
of self-excited motions of flexible bodies in fluid flow in eccentric geometries will be
tackled, where the motion of the cylinder in time and space is not known a prion.

A similar hybrid scheme under the name “high-lateral-lux modification” was
introduced by Spalding for the finite-difference method [56]. The main principles and
application of the collocation finite-difference method will be presented in Chapter 6.

Similarly to any other numerical approach, the solution of & continuum problem
by the collocation method follows an orderly step-by-step process. To summarize in
general terms how the collocation method works, the steps will be succinctly listed
as follows. The first step is to choose suitable interpolation functions to represent the

variations of a field variable over the given domain. The second step is to transform
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the coordinates by considering the property of the polynomial functions selected in the
first step. The next step is to determine the degree of the interpolation functions. In
general, an approximate solution of high accuracy can be obtained by increasing the
degree(order) of these functions. But, with increasing the degree, it is obvious that the
system of discretized equations becomes larger, which can reduce the computational
efficiency of the method; sometimes, this may also have a detrimental effect on the
solution due to round-off errors, as mentioned before. It is therefore necessary to opti-
mize the degree of the interpolation functions. The final step is to select the collocation
points. In order to get a solution of high accuracy with a given degree of the interpola-
tion functions, it is required to assign more collocation points in the regions where the
variations are larger than at other regions. Generally, a pseudo-singularity problem in
the system equation may arise because of the inadequate number of collocation points
and/or unsuitable selection of the collocation points.

In summary, the nature of the solution depends not only on the interpolation
function, but also on its degree. Most often, the choice is a matter of engineering
judgement based on accumulated experience. Generally, the approximation improves
with increasing the size of the family of interpolation functions, as long as the pseudo-
singularity problem is not encountered. If by chance, the exact solution is contained in
the family of interpolation functions, this procedure gives the exact solution. At the
same time, it is very impotant that the numerical method utilized be as computationally
efficient and frugal as possible, in terms of memory requirements and time.

This newly developed spectral collocation method will first be applied to the study
of steady and unsteady flow between two parallel plates and two eccentric cylinders.
The spectral solutions will be validated by comparison with the available analytical
solutions in Chapter 4.

In two dimensional problems such as steady and unsteady flows between two
eccentric cylinders or two parallel plates, any fluid-dynamic parameters, at any location
in the physical domain, are dependent variables in the computational domain related to

the selected interpolation functions; they may also be functions of time, when the flow
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is unsteady. The specific form of the spectral expansion is chosen in accordance with
the physical problem involved. Considering a convenient coordinate transformation,
the problem can be defined in the computational domain, where the algebraic system
of equations is obtained from the governing equations, in addition to the boundary
conditions. Using the collocation method, the equations are discretized in terms of
the unknown coefficients. Using the Gauss-Seidel iteration method based on a pivot
point, the unknown coefficients can be determined. The solutions obtained in the
computational domain can be converted back to the physical domain by a coordinate

transformation.

3.2 SPECTRAL COLLOCATION METHOD FOR-
MULATIONS

The governing equations of the steady and the unsteady flows, represented by the
Navier-Stokes and continuity equations subjected to specific boundary conditions, form

systems of partial differential equations which can be expressed in matrix form as

2¢ 52 2
E(f of of of o o*f o*f

= < .. = = oo ENT
,611,632' 'azmoaxtfvazgv ’31'3,,) Oy E (ElvE27 ’Eﬂ) y (31)

where z;, 15, -+, T, are the independent variables, such as the geometrical coordinates
and times, and f = (f;, fo.+ -+, fn )T is the vector of fluid-dynamic parameters, such as
the velocity components and pressure.

In the present spectral collocation method, the following type of expansion is
considered for any fluid dynamic parameter £, (where n =1,2,.-., N), in the form

fu(x). 32 2m) = Y A Ty(2)) Filzg) explumnzy) (3.2)
)kl

n)

where A; 4, are a prioni unknown cocflicients. The appropriate interpolation functions
for the expansions must be chosen in accordance with the physical problem involved.
This is completely illustrated in Chapter 4 for typical unsteady ard steady flow prob-
lems. In the present work for eccentric configurations, T, and F; represent, respectively,

Chebyshev polynomials and Fourier series functions. The exponential functions are
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used for the time variable in unsteady flow with harmonically oscillating boundaries,

in which case the coefficients u; are related to the radian frequency of the oscillation,

w.

The choice of Fourier series as an interpolation function in the circumferential
direction stems from the obvious periodic character of the flow field with respect to
the azimuthal angle, while no such periodic character is obvious in the radial direction.
The Chebyshev expansion method defined in the direction normal to the wall is partic-
ularly suitable because of its fast convergence (exponential convergence as compared
to the algebraic convergence of the finite-difference solution) and capability to resolve
especially thin layer-penetration depth, 6, = m, in an unsteady viscous flow.

In the present spectral collocation method, the governing equations of the steady
or unsteady flow and the associated boundary conditions reduce to a system of algebraic
equations, where the coefficients of the flow variable expansions are the unknowns. The
solution of this system of equations determines completely the entire flow field (steady
or unsteady). To get the system equation with this spectral expansion, the governing
equations are imposed at M collocation points, Zim,Z2m,...,Zgm Where m =1,2,..M,
which leads, together with boundary conditions, to an algebraic system of equations
expressed in the general form

N
En (}: Y A% Ty(zsm) Filzhm) eIP(w::er)) =0, m=12---,M. (33)
n=1 )k}

In the determination of the unknown coefficients, A;'j,)',, of the spectral expansions,
it is necessary to assign more collocation points in regions with sharp gradients than
in other regions, in order to converge to the solution more easily: for example, when
the unsteady flow ficlds are generated by the oscillatory motion of a wall or a cylinder
with relatively small penctration depth.

Galerkin's approach in the spectral method for discretizing the fluid dynamic
governing equation was tried first, to be used instead of the present collocation method.
However, Galerkin's approach did not provide good accuracy and computing efficiency,

especially for unsteady problems where large velocity variations exist near the wall.
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Galerkin’s method cannot put weight on particular regions of the domain since the
governing equations are discretized by integration over the whole domain.

The present spectral-collocation method will be shown to provide accurate results
with good computing efficiency for a considerable range of unsteady and steady prob-
lems. This method permits clustering of the collocation points in important regions so

as reduce the number of terms in the spectral expansion for a desired accuracy.

3.3 COORDINATE TRANSFORMATION

For steady and unsteady flows in eccentric annular configurations, any fluid dynamic
properties are variables dependent on the radial and circumferential coordinates, r and
© shown in Figure 3.1, and also on time when the flow is unsteady. In this figure, a
and b denote the inner and outer cylinder radii, ha is the annular gap and e is the
eccentricity.

In order to generalize the problem by using the spectral collocation method, it is
necessary to transform the annular space (r and ©) between the eccentric cylinders into
the rectangular computational domain (Z and ). For this purpose, it is convenient to

define the following nondimensional coordinates:

Z= 1-2a'h’(€‘)‘), 6=0, (3.4)
where
H=ah(8)=bE'">~¢ cos® -a , (3.5)
with

e\?
E=1- (-) Sinze.
b
All functions baving continuous partial derivatives in the cylindrical domain can
be expressed in the form of functions in the computational domain by the chain rule.

Thus, by considering equation (3.4), the derivatives of a function f in the radial direc-

tion can be written as

8f _ 2 8 P (2 &
o = ah 92 52=(3) 7 (3.6)
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Let the fluid dynamic property f = f(Z,0) and the nondimensional coordinate
Z = Z(r,0); then by the chain rule the new coordinate Z has derivatives

8Z _ 9z 80 _1-Z oh

% - 96w h 90’
Pz d (0Z\ _ 1-2 (8h\' 1-2Z &h 3.7
5-55 = -a—a -8-3 —-—h2 ‘56 + h 'a—.:'ia (')
where
2
% = EsinO-%% (%) sin20 E~%
2 2 ‘
ge_’; = Z—cose—;l:-(g) cos20E'1-%-3 (%) sin?20 E-1, (3.8)

The partial derivatives of the fluid-dynamic property in the circumferential di-
rection can then be expressed in term of the computational domain as

of _ of 1-Z 0 of
00 00 h a6 oz’

’f 6’f+[l-—232h 1-2(@_)’]af J1-Z oh 8%

307 -~ 98 ho902 e \oe) |3zt e dzaw

. (d ﬂ)’ o _1-2 (@) af (39)
L 00) 02?2 h? \9e/ a9z
In this manner, the partial-differential equation defined in physical domain for ec-
centric configurations can be discretized in the computational domain with the spectral
collocation method.
For the unsteady viscous motion between oscillating and fixed parallel plates
(Figure 3.2), the derivatives in the normal direction of a fluid dynamic property f can

be expressed in the computational domain (-1 < Z < 1) as

8f _ 1 8f Ff _ 1 &4
o ~HIZ % ~ W9z (3.10)

where Z denotes the nondimensional parameter defined by Z = y/H, y is a coordinate
normal to the plates, which is measured from mid-distance between them, and 2H

represents the distance between two parallel plates.
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Let us consider the properties of Chebyshev polynomials in order to expand their
derivatives in series form. The following formulae relate the expansion coefficients a,

in the series

£2) = 3 auTa(2) (3.11)

n=0

to the expansion coefficients b, of

LF(Z) = S bTo(2), (3.12)

n=0

for various linear operators. The formulae for the derivatives are

LI2)=f(2 caba=2 3 pay, n+p=odd,
p=n+l
LHZ)=f(Z) : caba= S p@?-nda,, n+p=even, (3.13)
p=n+2

where cp =2 and c, =1(n >0).

As a result, it is possible to express the solutions of fluid parameters iu expansion
form of Chebyshev polynomials and Fourier series in the computational domain (-1 <
Z<l1, 0<0<2n).

The spectral collocation method can now be applied to several specific problems
for steady and unsteady flows, in order to validate the method, in Chapter 4. Then,
the method is extended in order to solve more complicated problems — for example,
the unsteady viscous flow problem of a cylinder subject to axial flow, which will be

studied in Chapter 6.
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Figure 3.1: Geometry of the annular space between two eccentric cylinders in the
physical plane (r, ©) and in the computational domain (Z,8)
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Figure 3.2: Unsteady viscous flow between two parallel plates
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Chapter 4
Validation of the Spectral Method

A spectral collocation method has been developed in the previous chapter of unsteady
flows in an annulus. Before applying it to problems, the method will be validated by
comparison with available analytical solutions for typical steady and unsteady fluid flow
problems. The dynamic characteristics of the fluid motions obtained for the typical
problems may be useful to judge numerical results given for more complicated but
similar problems.

Thus, for the validation purposes, the spectral collocation method is first applied
to the problems of (i) fully-developed laminar flow in an eccentric annulus and (ii) the
steady flow generated by cylinders rotating in a concentric annulus. The analytical
solutions are presented in Appendices B and C. Considering the steady viscous flow,
generated by rotational motion of one or both of the cylinders in a concentric annulus,
it should be mentioned that this method can be extended to the problem of oil lubri-
cated bearings in an eccentric annulus, where extremely large pressure differences are
obtained at high flow velocities. The velocity distributions along the radial direction
are presented by the numerical and the analytical methods.

In order to validate the spectral collocation method for unsteady fiow problems,
the theory is also applied to simple problems of unsteady viscous flows, where analytical
solutions are known: unstcady viscous flows between two parallel plates oscillating har-
monically and between concentric cylinders undergoing harmonic oscillatory rotation.

The numerical results are then compared to the analytical ones given in Appendices C
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and D.

In general, the accuracy of the numerical solution given by this method is depen-
dent on the number of the selected collocation points. In other words, it is possible
to get higher accuracy in the numerical solution by increasing the degree of the poly-
nomials considered, when singularity problems are not encountered. The influence of
the number of collocation points, m, or n and m, on accuracy of the present spectral
method is investgated by comparing the numerical results obtained for various values
of m, or n and m, with the exact analytical solutions. For this purpose, a rms average

error is calculated for each set of m, or n and m, values:
i

3

s = %ﬁj:(l ~ fuumd fna| (4.1)

where N denotes the number of points, uniformly distributed in the domain, in which
the numerical solution, fnum, is compared with the analytical solution, fynq-

The velocity profile for unsteady viscous flow has the form of a damped harmonic

oscillation, the fluid velocity, f(x, ), at a certain point z, has a phase lag ¢ with respect

to the motion of the wall. The nondimensional velocity amplitude, | f |, and the phase

angle ¢ have been calculated for the unsteady viscous flow between two parallel plates

and two concentric cylinders, as

iy Lf(zt) ] _ 3(f(2)) ,
| f(z) |= Tt ¢ = arctan 27 (4.2)

where f, ¢! represents the velocity of the moving structure, and R and < stand for

real and imaginary components, respectively.

4.1 STEADY VISCOUS FLOWS

4.1.1 Fully Developed Laminar Flow Between T'wo Eccentric
Cylinders

In the present work, the fully developed laminar-flow velocity distribution in an eccen-
tric annulus is obtained by the spectral collocation method, for comparison with the

analytical solution given by Piercy et al. [52]. This analytical method was developed
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based on a conformal transformation of the annular space from the physical coordi-

nates to bipolar ones. The cross-sectional geometry considered in the present problem

is shown in Figure 3.1.

The equation of motion for fully developed laminar flow, essentially a two dimen-

sional problem in r and ©, reduces to Poisson’s equation

U 18U  16%U Q

3 Yo Trge T (43)
where U(r, ©) is the fully developed axial flow velocity and Q is related to the pressure

drop by 2 gp
a

= e—— = tant , .
Iz constan (4.4)

where P(z) is the pressure and p is the fluid viscosity.

Considering equations (3.7) and (3.9) defined for the nondimensional computa-

tional domain (Z,8) by the coordinate transformation, Poisson’s equation becomes

o aou o U 2
Aﬁ+3-a—z-+CaZ50+D302 = Qh*, (4.5)

where
= 1+ D[(1- Z)K'/h],

= —vVD+D(1-2)[K"/h-2k'/R)Y,
= 2D(1 - 2)h'/h,

D = {h/[2+(1- Z)h))?,

QO o »

where h(0) represents the nondimensional annular space defined in equation (3.5) and
h'(9) and h"(6) denote its derivatives defined in equation (3.8).
The boundary conditions, based on the no-slip condition, on the inner and outer

cylinders (Z = £1), can be rewritten as
U(1,8)=0 and U(-1,6)=0. (4.6)

In this spectral collocation method, the following expansion in terms of Chebyshev

polynomials and Fourier series may be considered for the axial flow velocity

U(2.6) = 33 Up T,(2) Fu(6) . (4.7

=0 km0
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where F}. = cos k6, due to flow symmetry with respect to the plane 8 =0 in this case.
With this expansion, the governing equation (4.5) and the boundary conditions can

formally be expressed as

3 Un [AT/(2) Fu6) + B TZ) Fi(6) + C T/(2) Fi(6) + D Ty2) F"(6)]

=0 k=0
= QRr¥(0) , (4.8)
and
S UMT()RE) =0,
1=0k=0
Y Y UnT(-1) Fi(6) =0, (4.9)
1=0k=0

where the prime denotes differentiation with respect to the concerned coordinates; for
example, T' = dT'/dZ and F" = d?F/d§*.

Considering the properties of Chebyshev polynomials and their derivatives given
in equation (3.13), the governing equation is expressed as

)3HD { AT, F(0) 3= p(s* = %) Un

3=0k=0 CJ p=3+2

7 p=3+1

+T,(Z) [B Fi(6) + C F(8)] c3 f: pUn + DT,(Z) F'(6) U,k} = Qh¥(0) . (4.10)

Using the collocation method, equations (4.9) and (4.10) can be formulated as a
system of algebraic equations, with unknowns U,; and Up. At the collocation points,
equation (4.10) is rigorously satisfied, specifically at (n + 1) circumferential positions
corresponding to the angular coordinates 6, (k = 0,1,2,---,n) and also at (m~1) radial
positions corresponding to the nondimensional coordinates Z,(J = 1,2,--:,m - 1).
The boundary conditions are imposed on (2n+2) angular positionson the wall Z = £1.
The solution of this algebraic system of (n+1)x(m+1) equations completely determines
the flow in the annular space.

The present solution is compared in Figure 4.1 with the analytical solution, ob-

tained by Piercy et al. [52) and Snyder and Goldstein [53], which is derived in Appendix
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B; it is noted that the results of the two analytcal solutions are identical. The numerical
solution is obtained with n = m = 6 collocation points which are uniformly distributed
radially and azimuthally. The ratio of the radii of the inner and outer culinders, a/b,
is 0.5, the relative eccentricity, e/(b — a), is 0.6 and the relative pressure drop per unit
length, defined by equation (4.4), is —0.17m/s. The variation of the calculated average
rms error, ¥13, defined in equation (4.1), is shown in Table 4.1 for N = 180.

Table 4.1 The variation of the calculated rms average error with the number
of collocation points, n and m, for fully developed laminar flow
[a/b=0.5, e/(b-a) = 0.6, Q = -0.17m/s and N = 180]

n=m 3 5 7
Fms % | 29.11 | 0.34 { 0.02

As shown in Figure 4.1, the laminar flow velocity in a strongly eccentric annular
space is highly asymmetrical; the maximum axial velocity in the azimuthal plane © =
180° being more than ten times larger than the maximum one in the © = 0° plane.
This strong asymmetry is due to the large viscous stresses near the wall. By physical
intuition, the flow rate discharged per second may increase with the eccentricity and
the local shear stress around the wall may vary along the circumferential direction, as
compared to concentric ones. As a resuli, the effects of the steady axial flow due to
the eccentricity on the fluid dynamic forces acting on the cylinder are different from
those for concentric configurations.

Considering the resvits shown in Table 4.1 and Figure 4.1, excellent agreement
is found to exist between the present and the analytical solutions for n and m greater
tban 5. It was found that the accuracy of the numerical solution ccnverges relatively

fast, namely exponentially, with the number of collocation points.

4.1.2 Steady Viscous Flow in An Annulus Generated by Ro-
tating Concentric Cylinders

In this problem, the steady viscous flow between two concentric cylinders is generated

by steady rotational motion of the inner or outer cylinder. The spectral collocation
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method is used to solve the problem, and the numerical results are compared to the
analytical ones presented in Appendix C.

For this two-dimensional problem, any fluid dynamic parameters are dependent
only on the radial coordinate. The radial flow velocity and the circumferential variation
of fluid-dynamic parameters can be eliminated. Thus, the Navier-Stokes equations
reduce drastically to

w . a (W) =0, (4.11)

Tt T

subject to the boundary condition on the surface of the rotating cylinder:

r

W = aw at r=a,
when the inner cylinder rotates; or when the outer one is rotating,
W = bw at r=b;

and W = 0 on the stationary cylinder. In these equaions, W(r) represents the circum-

ferential flow velocity and w denotes the angular velocity of the rotating cylinder.
Using the convenient coordinate transformation based on the nondimensional

parameter Z = 1 - 2(r — a)/H, the problem is defined in the computational domain,

Z, in which the governing equation (4.11) can be expressed as

& di .
'&?—‘/—D_FZ-—D'”—O' (4-12)

subject to the boundary conditions
v |2=]= 1 - 6 [}

u IZ=-1= é ’

where D, defined in equation (4.5), is constant for a concentric annulus, é is 0 or 1
accordingly as the inner or outer cylinder is rotating, and the nondimensional flow
velocity is 1i(Z) = W /(aw) for inner cylinder motion or w(Z) = W/(bw) for outer

cylinder motion.
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Using Chebyshev polynimials, @(Z) is expanded as

W(Z) = W, T(2). (413)

J=0
Substituting this equation into equation (4.12), an algebraic system of (m+1) equations

is obtained in the form
S°W,i1!(2) - VBT}(2) - DTy(2)) =0, (4.14)
1=0

which is to be rigorously satisfied at (m—1) collocation points, Z;(J = 0,1,2,---,m—

1), and by two boundary couditions,

Y wT(1) = 1-6,

=0

S W,T(-1)
=0

I
o

The unknown coefficients W, are then determined from a set of algebraic equa-
tions consisting of the discretized governing equation and the boundary conditions.

For the viscous flow generated by rotational motion of a cylinder, the analytical
and numerical solutions are studied: when (a) the inner cylinder rotates and (b) the
outer cylinder rotates. By inspection of equation (4.14), the principal nondimensional
parameter characterizing the system is D, which is dependent only on the nondimen-
sional annular space, h = Hfa=b/a - 1.

In Figure 4.2, the velocity distributions are presented for various values of a/b
(0.4, 0.6 and 0.8), in cases (a) and (b) with m = 7. To investigate the influence of
the number of collocation points, m, uniformly distributed in the radial direction, the

calculated average rms error is presented in Table 4.2 for a/b = 0.6 with N = 40.

Table 4.2 The variation of the calculated rms average error with the number
of coliocation points, m, for steady viscous flow generated by
the rotational motion of the cylinder [a/b = 0.6

inner cylinder | outer cylinder
rotates rotates
m 3 5 3 5
rms % [730] 0.05 [[3.54] 0.03
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Taking account of the results shown in Figure 4.2, it is noted that the velocity
distribution is less affected by the ratio of two radii in case (b) than in case (a). With
decreasing a/b, both cases tend to the linear velocity distribution of Couette flow, as
it occurs between two flat plates.

Excellent agreement between the present numerical solution and the analytical
results is obtained for m greater than 5, and the accuracy of the present solutions

converges very fast as the number of collocation points is increased, as shown in Table

4.2 and in Figure 4.2.

4.2 UNSTEADY VISCOUS FLOWS

4.2.1 Unsteady Viscous Motion between Oscillating Parallel
Plates

The first test for unsteady viscous flow problems is the unsteady motion between two
infinitely long parallel plates, one of which executes an oscillatory motion in its plane
with periodic harmonic motion, while the other is fixed or has an oscillatory motion
in antiphase. As shown in Figure 4.3, the distance between the two plates is 2H, and
y denotes the coordinate measured from the centerline. The velocity of the oscillating
plate is U, e,

By eliminating the derivatives of the fluid dynamic parameters in the tangential
direction to the plate as well as the flow velocity normal to the plate, the governing

equation , derived from the Navier-Stokes equations, is expressed as

%: = uaaz—;,} , (4.15)

where v is the kinematic viscosity of fluid and u*(y, t) is unsteady flow velocity in the

tangential direction to the plates, which can be defined by
v (y.t) = U(y) e, (4.16)

where w represents the circular frequency of the oscillations.



In order to generalize the problem, it is convenient to define the following nondi-

mensional parameters;

. _ U _
Z= i=g, Re= , (4.17)

Yy
"'
where Re, is called the oscillatory Reynolds number, defined as the product of the
Reynolds number based on the plate velocity amplitude, Re = (UyH)/v, and the
reduced frequency, Q = (wH)/U,.

In this case, the following spectral expansion, based on Chebyshev polynomials,

can be considered for the nondimensional complex amplitude of velocity, i, as

i(2) = SIRW,) +:300) ) T,(2), (4.18)

1=0
where ® and Q stand for the real and imaginary components, respectively, of the
complex unknown U,. Hence, considering the equation (4.17), the guverning ean~tion

can be rewritten as

2 -
‘g—z% =1 Re.ﬁ 9 (4’19)

subject to the boundary conditions

@zz0y = 6,
u |z.| = ] ' (4.20)
where é = 0 when only the upper plate oscillates, and § = ~1 when the lower plate

also oscillates in antiphase with the upper one.
With the spectral expansion. the governing equation (4.19) is expanded as

S IR, +:13(U,)]IT,(Z) - tRe,T,(2)) =0, (4.21)
J=0
where the prime denotes the diffcrentiation with respect to Z. The no-slip boundary
conditions are also rewritten in the expanded form
SR, +S(U)) T =1,

=0
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SSIR(U;) + S Ty(~1) = 6. (122)

i=0
It is worth noting that both real and imaginary parts have to be satisfied in each of

the above equations.

The a priori unknown coefficients U,, which are now complex variables, are deter-
mined using the same procedure utilized in previous sections for steady viscous flows;
however, in this case it is necessary to select the collocation points more carefully, as
discussed in Chapter 3. To obtain good accuracy and computing efficiency in the case
of relatively high Re,, the collocation points need to be clustered near the wall, where
the largest velocity variations occur; they are assigned in the present analysis by

(J=1)n

m—l, J=1,2.---,m—1, (4.23)

Zj = 2sin

when only the upper plate oscillates, and

(2J - m)m

‘Z—(n-—z-;—?—)—, J=12,---,m-1, (4.24)

Zj = sin

when the two plates oscillate in antiphase; since, the penetration depth (6, = ‘ﬁu—/:),
regarded as a kind of viscous wavelength, is small relative to the space between the
two walls. For this case, the oscillatory Reynolds number, Re, = (wH?)/v, which is
proportional to the square of the ratio of the annular gap to the penertation depth, is
a principal characteristic parameter, as shown in the nondimensional governing equa-
tions.

The radial variations of the amplitude and the phase angle are presented in
Figures 4.3(a,b) for viscous flow between two plates for the following cases; (a) the
upper plate oscillates with Re, = 8.37 and (b) both plates oscillate with Re, = 52.3.
In the latter case, the variation of | u(Z) | and ©(Z) are shown only for Z > 0, the
flow being antisymmetric with respect to the plane Z = 0

As expected, the numerical solutions converge to the analytical ones as the num-
ber of the collocation points is increased. It was found that very good accuracy has
already been achieved for m = 10 in case (a) and m = 20 in case (b). For the plates os-

cillating in antiphase, more collocation points (m = 20) are required for good accuracy,
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since the nondimensional penetration depth of the viscous wave (nondimensionalized
with respect to the distance between plates and defined by 21r‘/2/Re,) is 2.5 times

smaller than in the case (a).

4.2.2 Unsteady Rotational Motion between Two Concentric
Cylinders

The unsteady viscous flow between two concentric cylinders is generated by the har-
monic rotational motion w*(r,t) = W, e of one cylinder while the other is fixed. On
the basis of the considerations discussed in Section 4.1.2 and shown in Appendix C for
concentric configurations, the Navier-Stokes equations reduce to

dlw d /v 1dw"
ta (5) -5 =0 (4.25)

where the unsteady flow velocity can be expressed in an expansion form as
m
w'(r,t) = W(r)e“' =W, Y _[R(W,) + « (W) T;(Z) e~ , (4.26)
=0
where T, denotes Chebyshev polynominals.
Taking account of the coordinate transformation, given in Chapter 3 for cylin-
drical coordinates, to get the solution in the computational domain, the governing
equation is expressed in terms of the nondimensional complex amplitude of velocity,

i = W/W,, as

du dw .  Re,.
E -— D'd—z' -+ Du - t—4—w =0 ) (427)

where Re, denotes the oscillatory Reynolds number defined as Re, = wH?/v, and Z is
the nondimensional parameter as Z = 1 — 2(r — a)/H. Based on the no-slip condition

at the wall, the boundary conditions can be expressed in nondimensional form as
W lz-l= 1-6 '

U|za1=6,

where & = 0 when the inner cylinder oscillates and 6 = 1 when the outer one oscillates.
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The unknown complex coefficients, W), are obtained by solving the algebraic sys-
tem of equations, obtained from the governing equation and the boundary conditions,
defined by

S ROW,) +0 S(W,)] {T;'(Z) - VDT!(2)+ (D - 154‘31) T,(Z)} =0  (428)
j=0

which is to be rigorously satisfied at (m ~ 1) collocation points, and

SARW;) +: SW) T,(1) =16,

=0

SARW,) +1 (W, T(~1) =5 (4.29)

=0
With the same procedure shown in the previous section for unsteady flow velocity

between two plates, the solutions of the unknown complex coefficients, W,, can be
obtained.

In Figures 4.4 and 4.5, the distribution of amplitude and phase angle are presented
when (a) the inner cylinder oscillates and (b) the outer cylinder oscillates. The present
results have been obtained for various values of the ratio a/b = 0.98, 0.8 and 0.4 with
constant Re, = 33.5 in Figure 4.4 and of the oscillatory Reynolds number Re, =
33.5(a/b = 0.8), 75.4 (a/b = 0.7) and 134.1 (a/b = 0.6) with constant b = 0.1 m in
Figure 4.5. The analytical solutions, derived for infinitesimally small clearance H ~ 0
in Appendix C, are presented here for Re, = 33.5 for comparison with the present
numerical results.

Considering the results, it is noted that the nondimensional amplitude and the
phase angle are strongly affected by the oscillatory Reynolds number, Re,; however
they are almost independent on the ratio a/b for a constant Re,. By increasing the
oscillatory Reynolds number, the viscous wavelength, which is related to the phase
angle , becomes smaller. In Figure 4.4, good agreement in the velocity profiles is
shown with the analytical resuits for a/b = 0.98 and Re, = 33.5 with m = 20 and the
analytical results. In case of a/b = 1, the results tend to converge to those for unsteady

viscous flow between two parallel plates.



4.3 REMARKS

The spectral collocation method developed in Chapter 3 has been presented here for
the study of steady and unsteady flows and for the validation of the method. Utilizing
suitable expansions, involving Chebyshev polynomials, Fourier series and exponential
functions for fluid-dynamic parameters, the a priori unknown coeflicients in these ex-
pansions are determined from the governing equations and boundary conditions, which
are rigorously satisfied at conveniently chosen collocation points.

This method has been applied to several typical problems for which analytical
solutions exist. Excellent agreement has been found, in all the flow problems consid-
ered, between the spectral solutions and the exact analytical ones. One can conclude
that the present numerical method has been validated by these comparisons.

In subsequent chapters, this method will be applied to the analysis of unsteady
eccentric annular flows generated by an oscillating rigid cylinder with confidence, as

well as to the study of flexural motions of a cylinder subjected to axial flow in a narrow

annular flow.
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Figure 4.1: Comparison of the present spectral method with the analytical solution for
the steady axial laminar flow between two eccentric cylinders (for b/a = 2, ¢/a = 0.6
and Q = -0.17 m/s), in terms of the radial variation of the axial velocity, U m/s, at
various azimuthal planes (0 = 0°, 90°, and 180°). e, present solution; —, Snyder &
Goldstein's analytical solution.
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Figure 4.2: Comparison of the present spectral method with the analytical solution for
the viscous flow between two concentric cylinders, one of which is steady rotation, in
terms of the radial variation of the nondimensional velocoty w(Z): (a) with the inner
cylinder rotating, ¢ = 0, and (b) with the outer cylinder rotating, § = 1. Present
solutions calculated for various values of the ratio of the radii: O, a/b = 0.4; A,
a/b= 0.6 and o, a/b = 0.8; —, analvtical solution.
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Figure 4.3: Comparison of the present spectral method with the analytical solution
for the unsteady viscous motion between two oscillating parallel plates, in terms of
nondimensional fluid velocity amplitude | 4(Z) | and phase , with respect to the
upper plate oscillation: (a) the lower is fixed, 6 = 0; (b) the lower plate oscillates
in antiphase, 6 = 1. ©, o, O, present solutions calculated with m = 5, 10 and 20,
respectively; —— analytical solution.
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Figure 4.4: Comparison of the present spectral method with the analytical solution for
the unsteady viscous motion between two concentric cylinders, when the inner cylinder
oscillates, in terms of the radial variation of the nondimensional velocity amplitude,
| w(Z) | and phase ¢, for an oscillatory Reynolds number Re, = 33.5: (a) with the
inner cylinder oscillating, § = 0; (b) with the outer cylinder oscillating, § = 1. Present
solutions calculated (a) for various values of the radii: o, a/b = 0.98; A, a/b= 0.8; O,
a/b = 0.4;—, analytical solution for H ~ 0.
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Figure 4.5: Influence of the oscillatory Reynolds number Re, = wH?/v, on the nondi-
mensional velocity amplitude, | w(Z) |, and phase, ¢, calculated with the present
spectral method for constant outer radius b = 0.1 m: (a) case of oscillating inner cylin-
der, § = 0, and (b) case of oscillating outer cylinder, 6§ = 1. —o—, Re, = 33.5 and
a/b=08, —A—, Re,=75.4 and a/b= 0.7, —O—, Re, =134.1 and a/b=0.6.
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Chapter 5

Study of Two-dimensional
Unsteady Annular Flows

The unsteady fluid motion generated by the harmonic motion of a cylinder in an
annular passage has an important effect on the hydrodynamic forces acting on it. To
determine the hydrodynamic forces, it is necessary to obtain first the unsteady pressure
distribution and skin friction generated by the vibrating cylinder in the annulus. In
general, this is a three-dimensional problem; however, the three-dimensional effect is
small when the radius of the cylinder is small compared to its length. In this case, a
two-dimensional formulation can provide a good approximation.

In flow-induced vibration studies, it is of interest to evaluate the added mass
and viscous damping coefficients, which are dependent on fluid properties as well as
geometry. In predicting the stability of a system in a confined fluid, the added mass and
damping are important considerations, as shown in Chapter 2. The spectral method
has first been applied to the unsteady potential flow and then to the unsteady viscous
flow, generated by periodic translational motion of a cylinder in an eccentric annulus.

The final aim of this chapter is to provide the formulae and the results for added
mass and fluid damping when a cylinder undergoes oscillatory motion in the plane
of symmetry and normal to the plane of the symmetry in an eccentric annulus. The
potential theory has been developed to obtain the added mass for incompressible,
inviscid and irrotational fluid. For the viscous fluid, the added mass, in phase with

the acceleration of the moving cylinder, and the viscous damping, in phase with the
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its velocity, are presented.

When a cylinder, immersed in viscous fluid, has oscillatory motion in an annluar
space, the viscous damping effect becomes important with decerasing annular space,
even though the viscosity of the fluid may be relatively small, as discussed in Chapter
1. However, the added mass can be estimated rather easily for a narrow annulus by
potential-flow theory. In the present study, the viscous effect on the added mass can
be evaluated by comparing the results obtained by potential-flow theory with those
obtained by viscous-flow theory, and viscous damping is investigated.

The results obtained by the potential-flow theory will also be used to validate the
present spectral method against the avaible analytical solutions of Chung and Chen
[9] for eccentric configurations and of Fritz [7] for concentric configurations. To have
meaningful comparisons with the available solutions, the same considerations are used
to solve this unsteady problem with the spectral collocation method. In the present
analysis, the problem is formulated based on the following assumptions: (a) the flow
is two dimensional with no axial-flow velocity and (b) the amplitude of the oscillatory

motion of the cylinder is small.

5.1 UNSTEADY POTENTIAL FLOW

By definition, the penetration depth, 6, = \/2—1//:, is very small when the viscosity of
fluid, v, is very small or the circular frequency of the motion of the cylinder, w, is very
large. In this case, the fluid flow can be assumed to be irrotational and inviscid.

The velocity potential associated with the motion of the inner or outer cylinder
can be solved in the computational domain by the spectral collocation method through
a coordinate transformation. Using the present numerical method, the self-added mass
of the moving cylinder and the mutual-added mass of the fixed cylinder are obtained by

integrating the unsteady pressure around the circumference for various eccentricities.
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5.1.1 Formulation of the Basic Equations

Let us consider an infinitely long cylinder undergoing a periodic translational motion
in an annular space, which is filled with incompressible and inviscid fluid, as shown in
Figure 3.1. In the unsteady potential-flow problem, the continuity equation reduces to
the Laplace equation in terms of the unsteady velocity potential ¢(z;, z,, z3, t) given
in equation (2.3). In cylindrical coordinates, r and 6, the governing equation when

there is no axial flow can be expressed as

P 10¢ 1 0%
o o tEger = 61
Considering equations (3.6) and (3.9), the Laplace equation, after transformation

into the computational domain (Z, ), becomes

26 9 _ 8%
A7t B 57+ C o7t P 32

2
5¢ 0, (5.2)

where A, B, C, and D are functions of Z = 1 — 2(r — a)/H aund h(#), as defined in
equation (4.5).

Assuming the frequency of the periodic motion of translation has circular fre-
quency w, the unsteady velocity potential ¢(Z,0,1t) is expressed by a set of expansions

in terms of Chebyshev polynomials, T,(Z), and Fourier series functions, Fi.(6):

#2,6,t) = twea? ey 2 ®,: T)(Z) Fi(0) (5.3)
1=0k=0

where aee*' denotes the displacement of the oscillating cylinder, ¢ being a nondimen-

sional amplitude.
With this spectral expansion, equation (5.2) can be rewritten in terms of the

selected interpolation functions as

Y Y ¢, [AT;(2) Fu(8) + BT,(Z) Fu(8) + C T;(Z) F(6) + D T,(2) F; (8)] =0,
=0 ku0
(54)
where the prime symbols denote differentiations with respect to Z for the Chebyshev

polynomials and with respect to @ for Fourier series functions.
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In order to formulate the problem completely, the boundary conditions on the
moving and fixed cylinders are added to the above governing equation. As shown in
equation (2.2) for unsteady potential flow, the normal flow velocities at the boundary
surfaces are equal to those of the moving and the fixed cylinders. Because of the eccen-
tricity, the normal-flow velocity can be decomposed into radial and the circumferential

components, v* and w*, in terms of the unsteady velocity potential, as

-« %__2 92___2.2 twt “ v
vo= g  ahdZ wee Eg%k 2) (@)
. _ 10 __VD [0¢ K'(9) a9
w= le =t [ao +(1-2) 379 3z (5.5)
9 e , h'(0
= \/I_)-;l—awfe‘“’ == q)Jk [T](Z) Fk(9)+(1—Z)";‘(%')27:(Z) Fk(0)

In the present analysis for eccentric configurations, the boundary conditions are
more complicated than those for concentric configurations. Let us consider oscillatory
motion; (a) in the plane of the symmetry and (b) normal to the plane of the symmetry,
© = 0. For both cases, the inner or outer cylinders execute the oscillatory motion,
identified by ep or g;, where e and ¢ stand for case (a) and (b), respectively. The
subscripts O and / represent the inner and the outer cylinder, respectively; for example,
ep denotes the oscillatory displacement of the outer cylinder in the plane of symmetry.
(a) Oscillatory motions in the plane of symmetry, © = 0.

Let us consider small oscillatory motion of the outer cylinder executing oscillatory
translation in the plane of symmetry © = 0, containing the axes of the two cylinders.
While the inner cylinder is fixed, the outer cylinder is oscillating with lateral displace-

ment, ep(t), which may be expressed as
eo(t) =aée*'. (5.6)
The boundary conditions on the fixed and moving cylinders can be expressed as

[r*(r.0)]o, =

[v°(r.8) cos(B - 8,) - u*(r,8) sin(6 - B8,)},., = %%o- co5 9, , (5.7)
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where
c0s0, = [1+h(O)] 7 cos©+7,

see Figure 3.1.
Using equation (5.5), these boundary conditions can be expanded as follows:

n

f‘:z &, T/(1) Fil6) =

33 @ [Ao T=1) Fu(6) + Bo Ty(~1) FL(6)] = cos©,, (5.8)
1=0 k=
where
Ag = _‘5(27)' cos(© - 0,) + 2By h'(o)/h(o) ) By = -m Sin(e - e") :

When the inner cylinder executes an oscillatory translation in the plane of sym-
metry © = 0 while the outer cylinder is fixed, the displacement on the moving cylinder
can be written as

e/(t) =aée“t, (5.9)

and the corresponding boundary conditions in this case are

—?0- }'": z": &, T}(1) Fu(B) = cosb ,

Z }: @ [A0 T)(—1) Fi(6) + Bo Ty(~1) F{(6)] =0. (5.10)

=0 k=0
It is obvious that in both cases when the translational motion takes place in the

plane of symmetry, the unsteady flow in the eccentric annular space is symmetric with
respect to © = 0. Hence. F,(0), which will be used in the expansion form of the

governing equation (5.1) for the velocity potential, may be defined by
Fi(6) = coskf . ' (5.11)

The collocation method can be applied now, as described in Chapter 4 for the
steady viscous flow between eccentric cylinders, to equations (5.4) and (5.8) or (5.10),

which will reduce these differential equations to an algebraic system of (n+1)x (m+1)
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equations. The solution for the coefficients ®,, of the velocity potential in expanded
form can then be obtained by the Gauss-Seidel iteration method based on pivot points.
(b) Oscillatory motions normal to the plane of symmetry, © = 0.

If the inner cylinder is fixed and the outer cylinder executes the translational

motion perpendicular to the plane of symmetry, © = 0, with displacement
go(t) = a ge™t, (5.12)

the boundary conditions on the fixed inner cylinder and on the moving outer cylinder

can be expressed as

}'_22 E $,c T;(1) Fi(0) =0,

=0 k=0

i 5: @, [4o T}(~1) Fu(8) + Bo Ty(~1) F{(0)] = sin®,, (5.13)

1=0 k=0

[~]

where Ay and B have the same expressions given in equation (5.8).
Similarly, when the outer cylinder is fixed and the inner cylinder axis has an
oscillatory displacement
gi(t) =age, (5.14)
the boundary condition on the fixed outer cylinder is given by equation (5.10), while
that on the moving inner cylinder can be expressed as

_3.) z"': Z &, T(1) Fy(8) = siné. (5.15)
por

=0
.-

In both cases, when the translational motion is normal to the plane © = 0, the
unsteady flow in the eccentric annular space can be considered (when the oscillation
amplitude is small) to be antisymmetric with respect to © = 0; hence, in such cases the
Fourier functions Fi(#) used in the velocity-potential expansion (5.3) can be defined
as

F.(6) =sinkf . (5.16)

The governing equation (5.4) together with the boundary conditions will also be
reduced to an algebraic system of (n+ 1) x (m + 1) equations, leading to the solutions

for the coeflicients ®,, of the velocity potential expansion.
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5.1.2 Unsteady Pressure Distribution and Resultant Pres-
sure Force

With the coefficients ®,, determined from the solution of the equations, the entire flow
field in the eccentric annular space is completely determined. Considering the govern-
ing equations and the boundary conditions in expanded forms, which are linearized
with respect to the amplitude of the displacement of oscillatory motion (based on the
small amplitude of motion assumption), it is obvious that the solution of the velocity
potential ®,; is independent on the amplitude of oscillatory motion; however, the fluid
parameters are linearly dependent on the amplitude of translational motion.

The unsteady pressure may be calculated now in the annular space by the Bernoulli-

Lagrange equation (2.5),

_ 0 1 (8¢ 1 8¢
P-Pao"'_p 8t+ (ar) +‘ (1‘ 39) ] 1 (517)

where P,, denotes the stagnation pressure in the fluid (existing in the absence of any
oscillatory motion). Assuming small-amplitude oscillations, so as to have a meaningful
comparison with Chung and Chen’s (1976) results, the second and third terms of the
right-hand side in the above equation can be neglected and the unsteady pressure can

be expressed in simple-harmonic-oscillation form,

P-P,=pulad®p(Z,0)ce", (5.18)
where p(Z, ) is a nondimensional reduced pressure defined by

p(Z,60) = Z Z ¢, T,(Z) Fi(0) , (5.19)

1=0 k=0

and where € = é or g, respectively, for oscillation in the plane of symmetry or normal
to it. The circumferential variation of the nondimensional reduced pressure p(1,8) on
the oscillatory inuer cylinder (Z = 1), when its axis oscillates in the plane of symmetry,
or normal to it, can be calculated for various relative eccentricities.

The resultant unsteady force, acting on the moving or fixed cylinder, in the direc-

tion of oscillatory motion can be obtained by integrating the unsteady pressure along
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the circumference of the cylinder. The unstzady force normal to the motion equals
zero: since, the pressure distribution around the circumference of cylinder is symmet-
ric with respect to the plane of the motion for oscillation in the plane of symmetry; for
the other case, the pressure distribution includes the antisymmetric components, but
its integrated effect is zero. The resultant unsteady force acting on the inner cylinder
in the direction of the motion per anit length, for oscillation in the plane of symmetry,
is given by

2%

Fi(t) = — /0 a p(1,0) cosO do , (5.20)

and, for oscillation normal to the plane of symmetry, it is given by
2%
Gilt) = —/0 a p(1,0) sin®do , (5.21)

where the subscript I stands for the inner cylinder.
Similarly, the resultant unsteady force per unit length acting on the outer cylin-
der, when the inner or outer cylinder oscillates in the plane of symmetry or normal to

the plane of symmetry, is given, respectively, by
2r
Fol(t) = /0 bp(~1,0) cosO, do, ,

and
2%
Go(t) =/o bp(—1,0) sin®, dO, , (5.22)

where the subscript O stands for the outer cylinder.
These integrals can be calculated in the computational domain (Z, § = ©), taking

account of equation (5.7) with the aid of Figure 3.1, by the following relationship:

c0s0,d0, = %(1 + h(8)| cos 6d8 + %h'(ﬂ)sin 8do = % 3" Cicos kédd
k

§in ©,d0, = % [1 + h(6)]sin6d6 + % h'(6) cos 6d = %Z Sesink@dd,  (5.23)
k

since h(#) and A'(@) are even and odd functions of the Fourier expansion, respectively.
In general, the hydrodynamic forces, acting on cylinder t in the direction of the

motion, due to the translational motion of cylinder ; are expressed in terms of added-
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mass coefficients, a;, for motions in the plane of symmetry and G,, for motions normal

to the plane of symmetry:

rZ 4 r? e
F, = —pr(—z—i) ay, at;’
i+ i
6. = -on(%52) 052, (5:24)

where r, and r, denote the radii of cylinders, 1 and j. For example, a;o and o, denote
the mutual-added-mass coefficients for the force acting on the inner cylinder due to
the outer-cylinder oscillation in the plane of the symmetry and for the force acting
on the outer cylinder due to the inner-cylinder oscillation normal to the symmetry,
respectively, where the subscripts / stands for the inner and O for outer cylinder.
Hence, e.g., the fluid-dynamic force acting on the inner cylinder due to its motion in
the plane of symmetry can be calculated by considering the self-added-mass coefficients
ayg.

Substituting equation (5.18) into equations (5.20) and (5.21), the added-mass

coeflicients for the resultant forces acting on the inner cylinder can be obtained

ap = _E‘b}ln(l) ’ ajo = a2 +b2 Z‘I’JIT

=0 1=0
m -20? &

B =-Y &,T,(1), Bio = T—b;}:‘l’;ﬂ}(l), (5.25)
=0 a®+ =0

where ®,, are obtained from the corresponding algebraic equation for each case.
Similarly, substituting equation (5.18) into (5.22) with the aid of equation (5.23),

the added-mass coefficients for the resultant forces acting on the outer cylinder can be

expressed as
2 m n
ago = 32-27¢,ka7( 1), ap; = b:,ZZ@,kaT( 1),
)=0k=0 3=04k=0

Boo = == zzé,.s.,r( 1), Bos = ,+b,}:):d>,,,s.T( 1), (5.26)

)-0 ku0 =0 k=0

where C; and S are defined in equation (5.23).
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By inspection of the expansion forms of the velocity potential, which are ex-
pressed in terms of even or odd Fourier functions according to the direction of oscil-
latory motion, the hydrodynamic forces normal to the direction of motion (calculated
by circumferential integration involving sin ©d© and cos ©dO instead of cos ©dO and
sin ©dO in equations (5.20) and (5.21), respectively) are zero; this is because the even
and odd terms of the Fourier-series functions are orthogonal to each other over the

domain in the circumferential direction.

5.1.3 Numerical Results for Inviscid Fluid-dynamic Forces

The numerical results for an inviscid fluid are presented to evaluate the fluid-dynamic
forces. For this purpose, the unsteady pressure on the surface of the cylinder and the
fluid-dynamic force have been expressed in terms of added mass coefficients.

The circumferential variation of the nondimensional reduced pressure p(Z = 1, 8)
on the inner cylinder (Z = 1), when the inner cylinder has translational motion (a) in
the plane of symmetry or (b) normal to the plane of symmetry, is shown in Figure 5.1
for various relative eccentrities e/(b — a) = 0, 0.4 and 0.8, and for b/a = 1.25. The
unsteady pressure distributions are symmetric in case (a) and antisymmetric in case
(b) about © = 0°, as expected by considering equations (5.11), (5.16) and (5.18). It
is of interest to find that the maximum values of | p(1, 8) |, which become larger with
the eccentricity, are on the axis of oscillatory motion (© = 0° or 180°) in case (a); and
they are near the axis (© = 90°) in case (b), but gradually move to the narrow region
with increasing eccentricity.

Before discussing the subsequent figures, the terms “self-added” and “mutual-
added mass” should be defined. Self-added mass is that associated with the moving
component, and mutual-added mass is that associated with another component due to
the motion of the first. Thus, for the case of two concentric cylinders, let us consider
that the inner one is moving while the outer is stationary; then we talk about the
self-added mass on the moving cylinder and the mutual-added mass on the stationary

one.



In Figure 5.2, the self-added mass and mutual-added mass coefficients of the inner
cylinder oscillating, obtained by the present method for concentric configuration with
various ratios b/a (m = 20), are compared with Fritz’s analytical results [7] which are
shown in Appendix E in detail for concentric configurations. In order to check the rate
of convergence of the solutions, the number of terms taken in the Chebyshev polyno-
mial expansion was varied; the results are shown in Table 5.1 and are also compared
with the Fritz’s results. The rate of convergence is faster in the case of the narrower
annulus than in the case of the wider one. Also the difference between the numerical
results and the analytical results appears to decrease faster with an increasing number
of collocation points, m. As aresut, a slight increase in the number of terms m taken
in the calculation is found to be needed for larger b/a, in order to obtain the same

accuracy. The agreement between the numerical and analytical results is very good.

Table 5.1 Veariation of the calculated mass coefficients a;; and aj0
with the number of collocation points, m, and their relative
difference with respect to Fritz's analytical results.

Comparison with
bfa [m| an | —a Fritz’s analytical results
1 —ay /oy, | 1—ap/aro,
3 [ 4.3117] 4.1457 5.35% 4.39%
1.25 | 5 | 4.5549 | 4.3355 0.01% 0.01%
7 | 4.5556 | 4.3360 |  0.0001% 0.0001%
__;'S 1.6409 | 1.0564 1.54% 0.96%
2 [7 [1.6654] 1.0662 0.07% 0.04%
9 | 1.6666 | 1.0666 0.0001% 0.0001%

The added-mass coefficients. defined in equation (5.24), are calculated with the
present spectral-collocation method for various relative eccentricities’e /(b—a), and the
results are shown iu Figures 5.3 and 5.4. To further validate the present method, the
results are compared with the analytical results obtained by Chung and Chen (1976)
in Figure 5.3 (b). The agreement between the present solution and the solution of
Chung and Chen is very good. (For the sake of this comparison, the same assumptions

as those made by Chung and Chen were also used in the application of the present
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spectral collocation method.)

The variation with the relative eccentricity e/(b — a) of the nondimensional un-
steady force coefficients 3, in the case of oscillatory translation normal to the plane of
symmetry is shown for b/a = 2 in Figure 5.4; one can notice that this variation is almost
identical with that of the coefficients a,, in Figure 5.3 (a), although the corresponding
resultant unsteady forces act in directions perpendicular to each other. Note that the
self-added-mass and mutual-added-mass coefficients of the two cylinders are strongly
influenced by eccentricity for narrow annular configurations (b/a = 1.25); however, in
case b/a = 2, the self-added-mass coefficients of the outer cylinders with eccentricity
is relatively small while both coefficients of the inner cylinder are still influenced by

eccentricity.

5.2 UNSTEADY VISCOUS FLOW

This section presents the numerical analysis for the inner cylinder, which has the trans-
lational motion in the plane of symmetry or normal to the plane of symmetry in a con-
fined viscous fluid. A system of discretized equations is obtained from the appropriate
Navier-Stokes and continuity equations and the boundary conditions through the spec-
tral collocation method. Asshown in Chapter 2, the nonlineanty in the Naver-Stokes
equations can be disregarded for small-amplitude motions of the cylinder.

Although for many engineering applications, the viscosity is small and the fluid
may be considered inviscid as a first approximation, near the surface of the cylinder
there exists a thin layer of rotational flow, as mentioned before. This flow region,
where the viscous effect is significant, is of great concern to the dynamic response of
the system for anoular configurations. In paticular, when the annular gap is small, the
viscous effect becomes pronounced.

The hydrodynamic forces acting on the inner cylinder, due to the oscillatory
motion of the inner cylinder, will be obtained through line integration of stresses and
pressures around the circumference of the cylinder. In general for this problem, the

resultant hydrodynamic forces have simple harmonic forms, based on the assumption
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of small-amplitude oscillations, and are decomposed into two parts, one in phase with
the acceleration and the other with the velocity of the motion. Thus, they can be
expressed in terms of added-mass and damping coefficients, which will be obtained by

considering the definitions shown in equation (2.23).

5.2.1 Formulation of the Basic Equations

We consider the inner cylinder of the system, surrounded by viscous incompressible
fluid, and undergoing periodic translational motion in an eccentric annulus. The motion
of the inner cylinder is assumed to be simple harmonic with circular frequency, w, and
its amplitude small. For this kind of two-dimensional problem without steady axial
flow, it is possible to eliminate the convective terms and the axial-component terms
from the governing equations, shown in equation (2.16) for unsteady fluid flow. The
linearized Naver-Stokes equations and the continuity equation in cylindrical coordinates
can be reduced to
o, L f10 (00 a0 v, 2o
ot  prod rdor\ Or r2 90t 12 r290]°
in‘__'_ 10p* u[l i) ( av‘) + 1 8% v 2 Bw‘] ’ (5.27)

o toor = V|rer\ar)trEee m el
ow a9, .
Fe-+-é;(rv)—0, (528)

where v* and w* denote the unsteady flow velocities in the radial and circumferential
directions, respectively.

Based on the no-slip condition at the interface hetween fluid and cylinder, the
boundary conditions on the fixed (r = b) and moving (r = a) cylinders can be ex-
pressed, in cases of oscillatory motion (a) in the plane of symmetry and (b) normal to

the plane of symmetry, as
v*(b,0)=w"(b,0)=0,

v°(a,0) = e,c0s0 = ;t—'-cose .

w*(a,.0) = -¢, 6in0 = -%'t-sine . in case (a),
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b

v*(e,®) = g, sin® = %sme,
w'(a,®) = g, cosO = -g—;cose, in case (b), (5.29)

where e, and g, represent the lateral velocity of the vibrating inner cylinder in cases
(a) and (b), respectively, and e; and g; denote the corresponding displacement of the

moving cylinder.

In order to generalize the present problem, it is convenient to define the following

nondimensional parameters

" w"* p‘ H
7= W = — D = - — h=—
tawee't ’ tawee !’ p= pauieewt ’ a’
2
o € - wa
b= 5= 2 Re, = —, (5.30)
Lawe! lawes! v

where ¢ and § denote the nondimensional amplitudes [equations (5.9) and (5.14)), of
the displacement of the oscillating inner cylinder, and € = f when the inner cylinder
has oscillatory motion in the plane of symmetry, or ¢ = § when it has oscillatory motion
normal to the plane of symmetry.

Considering the coordinate transformation with the above nondimensional pa-
pameters, it is not difficult to reformulate the governing equations (5.27) and (5.28) in

the computational domain (Z, 8) in a nondimensional form:

[ O*w ow 9%d 8w

JRespay Re'h\/_ D L(p) = +B—+C +D— - D (i - 2L(v))],

4 322 oz YAl 06
Re, ). Re. op 0% o %0 P 3 R
= h*v + haZ [ABZ°+BHZ+Cazao+D6 — D(v+ 2L(w))| (5.31)
2 ~VDi- VD L) = (5.32)
where the operator L f) is
a h’(0) )
Lfy=|z+0- h(0) az] /.

Considering the order of magnitude of A, B, C and D in the above equation with

the aid of equaticn (4.5), A is dominant as compared to the others for narrow annular
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passages, and the unsteady pressure drop in the circumferential direction is mainly due
to the radial variation and time derivative of the circumferential unsteady flow velocity.
In this spectral method, the nondimensional fluid parameters can be expressed
in terms of Chebyshev polynomials and Fourier expansions, as shown in the potential
theory. By inspection of the boundary conditions and consideration of the properties of
symmetry and antisymmetry of fluid parameters with respect to the plane of symmetry
© = 0, the fluid parameters can be expressed in terms of only even functions (cos kf)
or only in odd functions (sin k), according to the direction of the oscillatory motion
of cylinder; in case (&) or in case (b), as mentioned before.
(a) Oscillatory motions in the plane of symmetry, 6 = 0.
Using the spectral expansion for the oscillatory motion of the inner cylinder in
the plane of symmetry, the following types of expansions can be considered for the

fluid-dynamic properties in two-dimensional annular space

m

S S W T5(Z) s(k6)

1=0 k=0

b = 33 Vi Ti(Z) (k)

1=0 k=0

W

m-2 n

P = Y Y PuTy(2)c(k), (5.33)

3=0 k=0
where ¢(kf) and s(k, ) stand for the even terms (cos kf) and odd terms (sin k@) of
the Fourier expansions, respectively, and the unknown coefficients Wy, V), and P
are in complex forms due to the viscosity. In the above equations, the degree of the
Chebyshev polynomials for unsteady velocity is considered two degrees higher than
that for unsteady pressure in the present analysis because, generally the degree of the
interploation functions for the unsteady velocity components is higher than that for
the pressure distribution [59].

Taking account of the expansion forms shown in the above equations, the gov-
erning equations and the continuity equation can be expanded as

ZZ Wy [AT,(2)s(k8)+ B T,(Z)s(k8) +C T;(2)s(k6) + D T,(Z)s" (k6)

J=0 k=0
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—DT,(Z) s(kf) — ¢ }_z& s(ka)]

h'w) T}(2) c(kO)]

0
+ Puno)VD T, [ c(ko)+(1-2)’;'((:))rZ)c(ko)]=

+ 2V [T(Z) c (kb)) + (1= 2)—=

}'_"j 2 Vik [A T, (Z) c(k6) + B T,(Z) c(k8) + C Tj(Z) ¢ (k8) + D T;(Z) c' (k8)
§=0k=0

_DT,(Z) c(kf) ¢ 521:2 T(2) c(ko)]
h'(6)
h(6)

- Lij%&h(O) T(Z) c(k6) =0, (5.34)

- 2W,-,.[T,-(Z)s'(ko)+(1 Z)—= T(Z)s(kO)]

Y Vi [T)(2)c(k8) - VDIY(2) c(k0)]

H(6) .

"0) '(Z)s(k())]:O. (5.35)

Wy [T,(Z)s’(ko)+<1 %@

subject to the boundary conditions

Y S Vi Tj(1) c(kf) = cost,

7=0k=0

S Y W, T,(1) s(kf) = -sind,

1=0%=0

> S Vi Ty(-1e(kd) = 0,

1=0k=0
Y Y Wi Ti(-1) s(k6) = 0, (5.36)
=0 k=0

where ()’ and ()" denote the first and second-order differentiations, respectively, with
respect to the concerned parameter; for example, T = dT/dZ and ¢’ = d*c/d6?. In the
present analysis, the unknown coefficients can be determined by the collocation method,
whereby the governing equations and the continuity equation are satisfied at a certain
number of distinct locations within in the computional domain, say (3m—1)x(n+1). As
a result, the discretized set of equations can be obtained from the governing equations

and the boundary conditions 2 x (n +1). Thus, the solutions of the algebraic system of
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(3m+1) x (n+ 1) equations can be obtained completely in the computational domain,
which are convertible back to the physical domain.
(b) Oscillatory motions normal to the plane of symmetry © = 0.

In the spectral expansion when the inner cylinder has oscillatory motion normal
to the plane of symmetry, while the outer cylinder is fixed, the following types of
expansions can be considered for the fluid-dynamic properties in the two-dimensional
annular space by inspection of the boundary conditions and the properties of symmetry

and antisymmetry of fluid parameters:

f: i Wik T,(Z) c(k6) ,

J=0k=0

33V T(2) s(k6)

J=0k=0

m-2 n

Y Y P T,(2) s(ke) (5.37)

1=0 k=0

w

[ 5
]

p
in terms of unknown coefficients, Wi, V,r and P, which are separated into real and
imaginary components.

Considering the above equations in expansion form, the governing equations and

continuity equation can be written as

é’g Wik [A T;(Z) c(k6) + B T,(Z) c(k6) + C T,(Z) c (k6) + D T,(Z) " (k6)

~DT(Z) c(kb) - ¢ &hz T,(2) c(ke)]

+ 2Vu [T,(Z) s (k8) + (1 - Z)ﬂ T,(Z) s(kO)]

h(6)
Re,

+ zP,,—-h(O)\/_[T(Z)s(LB)Hl— )""0)

h(0)
Y Vi [AT](2)s(k8)+ B T,(Z) s(k6)+ C T,(Z) s'(k8) + D T,(Z) 5" (k6)

T(Z) (ko)] 0,

-DT,(Z)s(kd) - R“h’ T,(Z) s(w)]
¢ h' 0
1 [T,(Z)c(ko) +(1- h((0)) T)(2) (Lo)]
- .P,.%‘:h(o) T,(Z) s(k6) =0, (5.38)
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Y Ve [T(2) s(k9) - VDTZ) s(k9)

j=04=0
' h'(6
W [B@ G0+ 0 - 25 T2 k)] =0, (530
subject to the boundary conditions
5o S Vi Ty(1) s(kt) = sind,
1=0k=
f:f:W,kT (1) c(kf) = cos@,
J=0k=
f:ZV,kT( 1)s(k6) = 0,
1=0 k=0
S S Wa Ty(-De(ks) = 0. (5.40)
1=0k=0

Similarly to case (a), satisfying the governing equations and the continuity equa-
tion at a certain number of the collocation points and considering the boundary equa-
tions produces the discretized algebraic equations for the coeffcients, Vi, W;; and
P,;. Considering the obtained coefficients, which are the complex, the fluid-dynamic
parameters in the physical domain can be evaluated completely by the coordinate

transformations.

5.2.2 Shear Stress and Resultant Viscous Forces

The hydrodynamic forces, which can be separated into self-added-mass and viscous-
damping terms, acting on the inner cylinder can be calculated by line integration of the
stress components including pressure, as shown in Chapter 2. For the present analysis

in cylindrical coordinates, the stress component can be rewritten as

= —=p" 42 ?_i
Te = p par )
ou” w'  10v
wo = u{F+T+15) (84

where the unsteady pressure and unsteady-flow velocities are determined in terms
of Chebyshev polynomials and Fourier expansions through the spectral collocation

method.
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The resultant forces, acting on the inner cylinder per unit length, in the direction
of oscillatory motion can be calculated by circumferential integration of the stress

components on the wall as
2%
F = /0 a(Ter |r=a C0SO — Tg |r=q 5InO) dO

2x
G = _/0 Q(Tﬂ- |r=a sin© + Tre |r=a COS@) do, (542)

where F; and G, stands for the cases (a) and (b), respectively, and the stress compo-

nents on the surface of the inner cylinder can be expanded as

e = —patuRee 303 [p,,,T(l (k8) + —— VT (1)c( & )] , (5.43)
1=0 k=0 R h
e = potuée 33 = h W, T, (1)s(k8) + W, T;(1)s(k8) + V,T3(1) '(ko)]
=0 k=0
for case (a) and
T = —pWRGe 3 3 [P,,.T (1)5(k8) + Vo, (1)s(ka)] (5.44)
3=0 k=0

e = patuwlge 'y z

1=0 k=0 R h

for case (b), where the unknown coefficients are determined in complex form from the

WyeTy ()e(k8) + Wk, (De(k0) + VT, (1)5'(k8)

algebraic system of equations. Thus, the hydrodynamic forces can be separated into
real and imaginary components. Substituting equation (5.43) and (5.44) into equation

(5.42), these forces can be expressed in the form

82e, 8

F;= -,ma’c.,—— - Co— = pra®uaé e'[R(F) + (3(F)] ,

ot
_ 2~ B0 991 ot
G; = —pra C"'érT -G = pra’uag e [R(G) + (3(G)], (5.45)

where Cy; and C, represent the added-mass and viscous-damping coefficients, respec-
tively, and e; and g; denote the displacements of the moving cylinder in cases (a) and

(b), respectively: the nondimensional fluid-dynamic forces, F and G, are expressed in
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complex form as

F = f:{ n+ge WJ"1+W}1-VJ'1}T}(1)’
=0
G = —Y{Pa+ o Vi+Wh -Wu -V} T,), (5.46)
1=0
where
S AT2)de) = 33 VAT2) ),
53 2w, T(2)sk0) = 3o Wi T2)s(k6)
1=0k=0 1=0 k=0
S iT(2)s40) = ¥ 3 VATHZ)s(06),
1=0k=0 1=0 k=0
SY 2WTi2) k) = 3 WL T(2)e(ks)
J-Ok-O 1=0 k=0

From equation (5.45), by definition, the added-mass and damping coefficients can be

written as

Cu =R(F), C, = —pra®w(F), in case (a),
Cu=R(G), C, = —pra®wd(G), in case (b). (5.47)

Similarly to the case of potential-flow theory, the hydrodynamic forces normal to

oscillatory motion are zero.

5.2.3 Numerical Results for Viscous Fluid-dynamic Forces

To illustrate the influence of viscosity of the fluid on added mass and viscous damping
for the problem of harmonic oscillatory motion of the inner cylinder in an eccentric
annulus, the calculations have been conducted while varying the oscillatory Reynolds
number, Re,, the ratio of radii. b/a, and relative eccentricity, e/(b — a).

In these calculations, the collocation points (m - 1) along the radial direction are
clustered near the wall using equation (4.24) to obtain good accuracy and computing

efficiency, when the penetration depth is relatively small vis-a-v1s the annular space,
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6p/(b — a) < 0.1. In other cases, the calculations have been conducted with equally
distributed collocation points along the radial direction. Along the circumferential
direction, equally distributed collocation points (n+1) are selected, but with Fi(8) # 0
to avoid the pseudo-singularity problem.

For concentric configurations, the nondimensional flow velocities, v*(6 = 0°)/e,
and w*(© = 90°)/e, are ploted in Figure 5.5 along the radial direction for selected
values of the nondimensional parameters (Re, = 50,1740 and b/e = 1.25, with m = 8).
In this figure, the dotted line represents the circumferential-flow velocity obtained by
the present potential-flow theory. Considering equation (5.41) together with this figure,
it is expected that the skin-friction force becomes larger as the oscillatory Reynolds
number is increased. The distribution of the real parts of complex-flow velocity in the
circumferential direction has a parabolic shape for low values of Re,, while it has a
shape similar to that for turbulent flow at relatively high Re,.

The pressure distribution along the radial direction is nearly constant for annular
configurations and its amplitude in nondimensional form is almost of the same order
as the added-mass coefficients. Hence, these results are not presented.

When Re, is 50, 500 and 5000, and b/a is varied from 1.25 to 4, the added-mass
and viscous-damping coefficients for concentric configurations are shown in Figure 5.6.
It is found that the coefficients are strongly dependent on the oscillatory Reynolds
number; as it increases, these coefficients decrease. Physically, for fixed values of
the ratio of radii, b/a, and the viscosity of fluid, v, these coefficients decrease with
increasing the frequency of oscillatory motion, w. The two coeflicients exponentially
increase with decreasing b/a for the fixed oscillatory Reynolds number. Particularly
for narrow annular flow, it is necessary to take into account the viscous damping, even
if the oscillatory Reynolds number is high, corresponding to the case of low-viscosity
fluid or high-circular frequency. With increasing values of the oscillatory Reynolds
number, the added-mass coefficient is influenced less by the viscosity of the fluid, and
not much different from the result obtained by the potential-flow theory.

The influence of the relative eccentricity on the nondimensional pressure in com-
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plex form is illustrated in Figure 5.7 for b/a = 1.25 and Re, = 50 in the case of
oscillatory motion in the plane of symmetry and in Figure 5.8 in the case of oscillatory
motion normal to the plane of symmetry. The real part of it, which is relatec to the
added mass, is compared with the result (open circles for concentric configurations and
filled circles for eccentric opes e/(b — a) = 0.4) shown in Figure 5.1 for potential flow.
The character of the variation of R(p) and S(p) with the eccentricity is similar to that
for potential flow.

In Figure 5.9 for the case of b/a = 1.25 and Re, = 500 with the relative eccen-
tricity, the shear stress and unsteady pressure effects on the added-mass and damping
coefficients are investigated and the added-mass coeflicients are compared with the
corresponding ones for potential flow. It is found that these coefficients are mainly in-
fluenced by the unsteady pressure, rather than by the shear stress, but the coefficients
are slightly increased by the effect of the skin friction. The added-mass and viscous-
damping coefficients are shown in Figure 5.10 for the oscillatory motion in the plane of
symmetry and Figure 5.11 for the motion normal to the plane of symmetry. The effect
of the relative eccentricity, e/(b—a), on the coefficients is investigated with the selected
oscillatory Reynold number (Re, = 50, 5000) and the ratios of radii (b/a = 1.25, 2).
The numerical results have been calculated with m < 6 and n < 6 in case of Re, = 50
and with m < 10 and n < 4 in case of Re, = 5000, in order to minimize the round-
off error which may increase with the size of the matrix obtained from the algebraic
equations. In general, it is necessary to increase the number of terms in the Fourier
expansion with increasing eccentricity, and the number of Chebyshev polynomials with
increasing annular space. As the eccentricity increases, the magnitudes of these coef-
ficients increase and. due to the viscosity, the added-mass coefficients increase as the

oscillatory Reynolds number decreases.

5.3 REMARKS

The spectral method is applied in this chapter to the unsteady potential and viscous

flows generated by the small-amplitude harmonic translational motion of a cylinder in
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an annulus. The numerical results are presented to evaluate the general characteristics
of the added masses for both flows and the viscous damping for viscous flow in terms
of the radius ratio b/a with the eccentricity e/(b — a). For viscous flow, the oscillatory
Reynolds number Re, is an important parameter, as shown in equation (5.31).

To assess the validity of the results for potential flow, the present results are
compared with the analytical results given by Chung and Chen [9] for eccentric config-
urations and by Fritz (7] for concentric ones. The numerical results for both potential
and viscous flows are compared. The difference between the two sets of results can be
explained by the viscous effects caused by the shear stress and the unsteady pressure
drop in circumferential direction.

Considering the results obtained by potential and viscous flow theories for trans-
lational motion of the inner cylinder in an annulus, the following remarks should made:
(a) the present collocation method has been validated by comparing results with ana-
lytical ones. Therefore, the present method can be adapted for use in more complicated
unsteady flow problems, which remain unsolved at present; (b) the linear theory pre-
sented in this analysis is based on the assumption of small amplitudes (as a result,
the added-mass and viscous-damping coefficients are independent of the amplitude);
(c) the added-mass and viscous-damping coefficients are dependent on the oscillatory
Reynolds number, and these coefficients are influenced by the relative eccentricity; with
decreasing oscillatory Reynolds number and increasing eccentricity, these coefficients
increase; (d) for the high oscillatory Reynolds number, the added-mass coefficients
can be estimated approximately by potential-flow theory, but the viscous-dainping
coefficients, even for high oscillatory Reynolds number, should be considered in the
hydrodynamic forces for narrow annuli; (e) for narrow configurations, the added mass
is insensitive to variations of the oscillatory Reynolds number; however, the damping

is sensitive to it.
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Figure 5.1: The unsteady pressure in nondimensional form, p(1,0), on the oscillating
inner cylinder for various relative eccentricities ¢ = e/(b — a) and for b/a = 1.25. (a)
Case of oscillations in the plane of symmetry; (b) case of oscillations normal to the
symmetry plane.
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Figure 5.2: The added-mass coefficients, a;; and ag;, for concentric configurations, as
functions of the radius ratio, b/a. Comparison between the present solution and Fritz’s
solution: o, a;;: e, ag;: —. Fritz's analytical solution.
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Figure 5.3: The added-mass coefficients, a;;, ago and ag;, for oscillations in the plane
of symmetry, as functions of the relative eccentricity é = e/(b — a) for the cases: (a)
b/a =1.25 and (b) b/a = 2. Comparison between the present solution(-o-) and Chung

and Chen's solution(0).
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Figure 5.4: The added-mass coefficients, 8;;. 8po and fp,, for oscillations normal to
the symmetry plane, as functions of the relative eccentricity ¢ = e/(b— a) for b/a = 2.
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Figure 5.5: The distribution of the nondimensional amplitude of the unsteady flow
velocity for b/a = 1.25, Re, = 50(filled symbols) and Re, = 1, 740(open symbols) across
the annular space; (a) the circumferential and (b) the radial components. Viscous
theory; oe, real part; A A, imaginary part; - - - -, circumferential components obtained

for present potential flow.
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Figure 5.6: The (a) real and (b) imaginary components of the nondimensional fluid-
dynamic forces versus the radius ratio, b/a. for the selected oscillatory Reynolds
number:A, Re, = 50; e, Re, = 500; 0, Re, = 5000.
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Figure 5.7: Influence of eccentricity on the nondimensional pressure, p, obtained by
the present potential(o, @) and viscous(A, &; Re, = 50) theories for oscillations in
the plane of symmetry and for the case b/a = 1.25. Open symbols, é = e/(b — a) = 0;

filled symbols, é = 0.4.
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Figure 5.8: Influence of eccentricity on the nondimensional pressure, p, obtained by the
present potential(o, e) and viscous(A, A; Re, = 50) theories for oscillations normal
to the symmetry plane and for the case b/a = 1.25. Open symbols, é = e/(b~- a) = 0;
filled symbols, é = 0.4.
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Figure 5.9: Viscous effects on the (a) real and (b) imaginary components of the
nondimensional flvid-dynamic forces for oscillations in the plane of symmetry for
different eccentricitics é = e/(b — a) and for b/a = 1.25, obtained by the viscous
theory(Re, = 500):-o0-, only pressure considered; ~e-, full viscous effects considered.
—AO—, Results obtained by the potential theory.
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Figure 5.10: Influence of the relative eccentricity é = e/(b ~ a) on the nondimensional
fluid-dynamic forces considering full viscous effects for oscillations in the plane sym-
metry: —o—, Re, = 50 and b/a = 1.25; —e—, Re, = 50 and b/a = 2; —O—,
Re, = 5000 and b/a = 1.25.
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Figure 5.11: Influence of the relative eccentricity é = e/(b — a) on the nondimensional
fluid-dynamic forces considering full viscous effects for oscillations normal to symmetry
plane: —o—, Re, = 50 and b/a = 1.25; —e—, Re, = 50 and b/a = 2; —O—,
Re, = 5000 and b/a = 1.25.

98



Chapter 6

Study of Three-dimensional
Unsteady Viscous Flows

In connection with the spectral method, the governing equations were discretized
through the collocation method for unsteady fluid flow. In the previous chapter, the
convective terms and the axial components of the diffusion terms were not considered
for the translational motion of a cylinder without steady axial flow. For a system con-
sisting of a flexible cylinder subjected to axial flow, it is obvious that these terms must
be considered.

The fluid-dynamic forces acting on a flexible cylinder have been formulated by the
bybrid collocation finite-difference method, as well as by approximate semi-analytical
methods. In the present analysis, the steady viscous forces derived from the longitudi-
nal frictional force and from the pressurization of the flow are not considered; only the
unsteady fluid-dynamic forces are investigated. The numerical results are compared to
the semi-analytical results.

The inner cylinder subjected to steady axial flow in a concentric annulus is as-
sumed to have a simple flexural motion, as a clamped-clamped beam. In order to
simplify the problem and to get general information, only the first mode of the beam is
considered for the oscillatory motion of the flexible cylinder. This cylinder has length
L and radius a. The radius of the outer cylinder is b; hence the annular space between

two cylinders is H = b — a. The motions are assumed to be small.
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6.1 COLLOCATION FINITE-DIFFERENCE
METHOD

To formulate this three-dimensional problem with the spectral method, another in-
terpolation function is needed for the axial variation. Thus, the unknown coefficients
are also dependent on the axial coordinate. When a system of equations is obtained
by the collocation method with n interpolation functions for the axial variation, the
discretized-system equations migkt become n times larger, when the same number of
collocation points are selected for the radial and circumferential coordinates. As shown
in the previous chapters, the solutions given by the spectral method converged fast.
However, difficulties are encounted in the three-dimensional problem due to a relatively
large full matrix system, which might produce singularity problems in the mathemat-
ical procedure. In order to avoid this difficulty, a finite-difference method based on a
hybrid scheme is adapted for axial variations, which is characterized by an artificial
viscosity which helps to achieve convergence of the solution.

The hybrid scheme is related only to the axial domain, while the collocation
method is still used for the radial and circumferential domains. As a result, the axial
domain is subdivided into a certain number of grid points, where spectral expansions
for the fluid parameters are defined. The numerical details of the collocation method,
which remain the same as for the two-dimensional flow discussed in the previous chap-
ter, have not been repeated in this chapter. However, an attempt has been made
to clearly point out and emphasize the details of the finite-difference method for the
present analysis.

Based on the collocation finite-difference method, the governing equations of the
unsteady flow, obtained from the appropriate Navier-Stokes and continuity equations,
reduce to a system of algebraic equations leading to a block-tridiagonal system. Each
row of the matrix is concerned with three grid points based on the finite-difference
method, and the submatrices are related to the corresponding collocation points based

on the spectral method. To obtain a solution of the system, the LU decomposition
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method based on the factorization scheme given in Appendix F is used.

In most of the previous studies, the fluid-dynamic forces acting on the oscillating
cylinder subjected to axial flow have been developed based on uniform axial flow.
Therefore, the effect of laminar axial flow is still difficult to quantify systematically.
In this section, the fluid-dynamic forces have been formulated from the Navier-Stokes
equations, accounting for unsteady viscous flow effects much more fully than the semi-
empirical and approximate formulations utilized heretofore. Far upstream, the axial
flow is fully developed and its velocity can be calculated using the spectral method as
shown in Chapter 4. In order to formulate the unsteady viscous problem, the results

for steady viscous flow are utilized.

6.1.1 Hybrid Method Formulation

In this section, the basic concepts needed in the formulation of the hybrid scheme are
presented. The hybrid scheme was introduced by Spalding under the name “High-
lateral-flux modification” for the finite difference method [56]). The significance of
the hybrid scheme can be unaerstood by observing that it is identical to the central-
difference scheme for the mesh Reynolds number range -2 < Ren,(= (UAz)/v) <
2, and outside this range with an upwind scheme. As mentioned before, the axial
components of the diffusion terms and convective terms related with the steady axial
flow velocity must be considered for the present analysis. The addtion of these terms
does not alter the form of the discretized equations, when the axial derivative terms
are relatively small by the assumption of small amplitude motion.

Although the convection and diffusion terms connected to the axial variation are
the only new terms in this section, its formulation is not very straightforward. The
convection term has an inseparable connection with the diffusion term and, therefore,
the two terms need to be handled as one unit. Cousidering the connection between
the two terms, the hybrid scheme has been developed to easily converge to solution.
On the use of the central-difference scheme, there is one real constraint which will be

discussed further. Sometimes, it creates difficulties in obtaining convergent solutions.
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To simplify matters, only the convection and diffusion terms are considered for a
one-dimensional problem. The governing differential equation is

a 0 of
52 PUf) = 5= (ﬂg;) ) (6.1)

where U represents the steady-flow velocity in the axial direction and f denotes any
flow-field parameter, which will be obtained. .As shown in Chapter 4, the axial-flow
velocity, U, can be obtained from the Navier-Stokes equations for the steady flow,
which is separated from the full Navier-Stokes equations that include the unsteady
components based on small-amplitude motion. At this stage, our task is to obtain
a solution for f, which will be the unsteady fluid quantities in the present analysis.
For concentric configurations, the steady-flow velocity does not depend on the axial

coordinate under consideration.

Figure 6.1: Typical grid-points cluster for the axial variation

Using the central difference scheme with order (Az)? over the control volume

shown in the above figure, the first and second partial derivatives can be written as

(_3_f) o Je—Jw
P

or Az, + Az,
_6_2_{ = 2fE _ 2}? + 2f“’ (6 2)
ar? ), (Ar. + Az, )Ar, Az Az, (A1.4 Az,)Az,’ )

where the subscripts E and W present east and west sides with respect to the central

grid point P in the axial domain.
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For incompressible flow, substituting equation (6.2) inte equation (6.1) with the

aid of the following continuity equation

0

=) =0, (6:3)
the discretized equation becomes
apfp = apfe+awfw , (6.4)
where
- kU
“ = Az, 2
- n
W= AT
ap = ar+aw .

Reflecting on the implications of equation {6.4) which gives fp relative to fuw
and fg, it is realized that ag and aw should both be positive to properly imply the
expected behaviour of a viscous fluid. The expected behaviour would be such that a
decrease in the variable, f, of the fluid below or above the point P would distribute
toward a decrease in the variable, f, at the point P, through the effect of viscosity.
Also, the negative coefficient would imply that ap, which equals ag 4+ aw, is less than
| ag +aw |, which fails to satisfy the Scarborough criterion [62]. Then, a point-by-point
solution of the discretized equation may diverge. This is the reason why all the early
attempts to solve convective problems by the central difference scheme were limited to
low mesh Reynolds number.

To keep ar and ay'. shown in equation (6.4), positive in value requires

Re. = UAr

<2, (6.5)

which confirms our suspicion that the “correct™ representation is one that permits
viscous-like behaviour. The inequality can be satisfied for a sufficiently fine mesh
which, of course. is achieved at convergence. For some flow, the constraint of equation

(6.5) tends to require the usc of an excessively large number of grid points. This has
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motivated several investigators to consider ways of altering the difference scheme to

eliminate the mesh-Reynolds-number constraint.

The simplest remedy to the problem of the mesh-Reynolds-number constraint
is to introduce the hybrid scheme for the convective term as a “high lateral flux"
correction. The name ‘hybrid scheme’ is indicative of a combination of the central-
difference scheme for the mesh Reynolds number range —2 < Re,,, < 2 and the upwind
scheme outside this range. The truncation error associated with the upwind scheme
creates an artificial viscosity which tends to enhance viscous-like behaviour. In other
words, the formulation of the diffusion terms is left unchanged, but the convective
terms are calculated according to the mesh Reynolds number. Based on the upwind

scheme, the first-order derivative with order (Ax) can be expressed as

of\ _ 2(fp— fw) .
(5;)? =3 i wso (6.6)

In the present analysis, the axial-flow velocity is always positive; there is no adverse

pressure gradient in a constant width annular space.

Using the hybrid scheme, the discretized convective-diffusion equation can now

written as
apfp=agfr+aw fw if U>0, (6.7)
where
= B Y
%€ = AL +[o. 2 ¥’
= U
aw = AI., + HPUs ) D ’
ap = ar+ay,

where [[p.q] represents p for the upwind scheme (Ren > 2) or g for the central-

difference scheme (-2 < Ren, < 2).

104



6.1.2 Formulation of the System Equation for Unsteady Vis-
cous Flow

The unsteady fluid-dynamic forces acting on the inner cylinder are formulated by the
numerical method, considering the unsteady pressure and shear stresses. Using the
collocation finite difference method, a system of discretized equations is obtained from
the appropriate Navier-Stokes and continuity equations with the boundary conditions.
Based on small-amplitude motions of the cylinder, the governing equations can be
linearized, as shown in Chapter 2.

The inner cylinder, surrounded by incompressible viscous-fluid flow, has periodic
flexural motion in a concentric annulus. The vibrating motion is assumed to be simple
harmonic, with circular frequency w. For the three-dimensional problem with steady
axial flow, the unsteady governing equations are obtained by subtracting the steady
terms from the full Navier-Stokes equations. The linearized Navier-Stokes equations

and the continuity equation in cylindrical coordinates for the present analysis can be

reduced
au‘+v'a_U+w_.aU+Uau- +lap'_u li TE _1_3_2£ ?iy...
ot or r 00O or pdzx  |rdr\ or r290?  o9z?|’

Qw? 0wt 119p" _ 118 ( 0wy 18w 0w w 230
at or  prod® YIror\"or r2 902 dr2 r?2  r290|°
ov* o 10p° 10 ( ov 1 0%v* 8% v 20w"

or [ ( )+r759_2+'5§’r7_r25§]’ (6.8)

o V% Yoo =V rar Uar
Ouw Ow 0, .
% 35 5 =0, (6.9)

where u®, v* and w" denote the unsteady flow velocities in the axial, radial and cir-
cumferential directions, respectively. In the above equations, the production terms
between the unsteady components are neglected for small-amplitude motion, and the
circumferential variation of steady axial flow is zero for concentric configurations.

Considering the no-slip condition at the interface between fluid and cylinder, the
boundary conditionson the fixed (r = b) and moving (r = a) cylinders can be expressed
as

u'(z,b,0,t) = v°(2,0,0,t) = w*(2,0,0,t) =0,
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u*(z,a,0,t) = 0

v*(1,a,0,t) = e,(z,t) cosO = e—'(;—tﬁcose,

t
w*(z,a,0,t) = —e,(z,t) sinO® = —El—(a%d sin®© , (6.10)
where e,(z,t) represents the lateral velocity of the moving inner cylinder and e(z,t)

denotes the corresponding displacement which can be expressed in terms of the eigen-

function v;(z) of the first normal mode for a clamped-clamped beam
er(z,1) = E(z)e"" = a9 (z)e" . (6.11)

The present problem is generalized by the following nondimensional parameters,

which are similar in form to those in Chapter 5;

T L H ~_ U . P
X=1 =2 k=7 V=g P e gt !
R u " v . w*

i = — b= — W= ————

Lawe; pest Lawey pet! cawe jpett

5 2
gx)= X )2 8X) g, Ule o p 0@ 612)
tawe €1/2 v v

where é(X) denotes the nondimensional amplitude of velocity or displacement of the
moving - ‘inder and U represents the mean axial flow velocity. As shown in the above
equations, the nondimensional unsteady velocities and pressure are defined in terms
of €2 = é;5, where the subscript 1/2 stands for the corresponding local value at
X =1/2

Considering the coordinate transformation with the nondimensional parameters,
the governing equations (6.8) and (G.9), can be rewritten in the computational domain

{Z,6) in the nondimensional form

Re, ,. Re,h* 8 . Re(h . 8i ov

T - T Tt E {z"ﬁ'z”az}
3u Qi O’u h? &%
572~ VPaz*Pom t i a,\r] '

Re, ,. Re. 8p Reh - 30

tTh w - ‘/_ UBA =
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32 D 6w 3215 h? 8% av)]
~Vbyz W*ZT?T)@"D{"’ 2570'}_’
Re. 9. Re. 8p Reh . 00 _
—h*p + —_ 2 —h — aZ _U-é_é: =

5 % 31} a w h? 0% ow
| \/_ 302 + ‘-1'_2-54?5 -D {v+ 2—6-5'} (6.13)
oo . ow h ou
52— Dv—\/ﬁ-a—o;—ﬁ-gf—o, (6.14)

where D = {h/[2+ h(1 - Z)]}2. For a concentric annulus, the nondimensional annular
space, h, is constant.

In order to get the system equations based on the collocation finite difference
method, the nondimensional parameters can be expressed in terms of Chebyshev poly-
nomials and Fourier expansions, as shown in the previous chapter. As compared to
the previous expansion forms, the unknown coefficients are dependent on the axial
coordinate. Using the spectral expansion for the flexural motion of the inner cylinder,
the following types of expansions can be considered for the fluid-dynamic properties in
the three-dimensional annular space

m
1 = Z Ui(X)T,(Z) cosé,
7=0

3" W,(X) Ty(Z) siné
=0

i Vi(X) T,(Z) cosé ,

1=0

w

[
]

m-2

Y P(X)T,(Z) cos®, (6.15)
=0

p
where the unknown coefficients U,, W,,V, and P, can be decomposed into real and
imaginary components.

Taking account of the expansion forms shown in the above equations, the gov-

erning equations and continuity equation can be expressed based on the bybrid scheme

(U [T"(Z) VDT,(2) - DT)(2) - Bah? T,(2)

x| -¢ )’,mx.u.,ﬂm- k0 (L) Ty(2)
+V; U’T(Z) P
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+i ( Uj [2(AX¢+AX.,)AX.( ) - e ol [0,1]] To(2 )
E

=0 Py hl Ax.+Ax., T;(2)

Rew? "1
—P; T)(Z) W

+§ ( Ui [2(AX.+A1X-)AX.( 1+ ’;"I.AX¢+AX. ﬂ2 1]]] Tit2) ) =0,
7 4 | AX+AXw

i=0

g - —‘h2.['(Z) 2A .Ax') n(Z)—%%KT‘%?:EI,OBT}(Z)]
=\ -2y Ty(2) —-I.PR‘ h DT,(2)

'*'Z( W, [m( - 8 :Ax.+Ax.[I0 II]] Ti(2) )

W, [T;(2) - VD T'(Z) 2DT,-(Z) )
P

+>:0( W, [rarrdoas (B + el 2] T3(2) ), = 0,
J=

V,[1;(2) - vDTj(2) -2D Ty(2)

5_; =t B“"hzT(z) ( )22(AX.AX.)T(Z) 2%A'x—.£]mﬂ1'0nn(z)]
=0\ —2w, T(Z)—LP&*h T)(2)

3 Z ( Y [2(Ax.+Ax.)Ax.( )? - s lAX.+AX. IIO 1]]] T;(2) )

+3 (Vv [2(AX.+AIX.)A (32 + Eb -l 2 1]]] 3(2) ) =0, (6.16)

=0

> (v [n(2) - VBTy2)] - VBW,T;(2) ), Z( i eaxiaxo T(2) ),

1=0
}:;( ) tmaxsra 1(2) ), = 0. (6.17)
,S

subject to the boundary conditions

SUMT) = 0,

1-0

2\ (X)T,(1) = é&(X),

=0
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SW)T) = -a(x).
S UX) T-1) = o0,
=0

SVX) T(-1) = 0,
1=0

SWX)Tj(-1) = o0, (6.18)

=0
where the prime and the double prime denote, respectively, the first and second
derivatives with respect to the coordinates concerned; for example, U’ = dU/ /dZ and
T" = T [dZ2.

In the present analysis, a system of linear algebraic equations can be obtained by
satisfying the above equations at a finite number of collocation points in the compu-
tational domain (Z,0), and applying the equations at a finite number of grid points
distributed in the axial domain. As a result, the system of equations can be expressed,

as a block-tridiagonal system, in the general form
SAQ=R, (6.19)

where AQ and R are the vectors for the unknown coefficients and the boundary con-
ditions, respectively. The matrix S represents the block-tridiagonal matrix expressed

” o
p W, 0 0 O

0
Ex2 P, W, 0 O 0
Es » W3 O 0

.o . 0

[ B e I o o]

0 . (6.20)

0 . ) )
0 0 Ei2 P2 W
0 0 0 E-. P, W
0 0 0 0 E, P,

where E,, P, and W', are matrices of order 2 x [(m—1)+3 x(m+ 1)), concerned with the

COO0OO O

[ = R = B - B ]
(=B - o B B

ith grid point, and the subscript t denotes the number of total grid points considered.
When smooth variations of fluid quantities along the axial direction are expected,
it is convenient to have uniformly distributed grid points, AX, = AX,. In the present

analysis with the flexible cylinder, which experiences small-amplitude oscillations, it is
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possible to use a uniform mesh space. With this uniform step size, the submatrix can

be expressed as

E, =FEy=E3=..-=E,,
P =P=P=..-=F,
W1 =W2=W3=---=W.. (621)

Therefore, the storage required for the system equations can be reduced. For the
two-dimensional viscous-flow problem presented in the previous chapter, the system of
equations can be obtained by eliminating the convective terms and the axial derivatives
of the diffusion terms, eventually to be expressed as only submatrix P.

To obtain the numerical solution, the LU decompsition method is utilized, as
mentioned before. The LU decomposition method, which is one of the direct methods,
gives the solution in a finite and predeterminable number of operations. This method

has proven to be a very useful and efficient tool for solving the block-tridiagonal system

of equations.

6.1.3 Stress Components and Formulation of Fluid-Dynamic
Forces

In order to formulate the fluid-dynamic forces acting on the moving cylinder, the
stress components including the unsteady pressure, generated by the flexural motion,
are considered, as shown in the previous chapter. By circumferential line integration of
the stress components, the unsteady fluid-dynamic forces are obtained. The analysis
has now sufficiently progressed to evaluate the unsteady lateral forces.

The resulting fluid-dynamic forces, acting on the cylinder in the direction of

oscillatory motion, can be calculated by the following equation

2r
Fi(x,t) = /o a (r,, |rme COSO = T,@ |rume 5IDO + Trs |rma %) doe , (6.22)
where the stresses are expressed as
Te(Z.7.0,t) = -p°+ 2#%— R
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a » = -
Tfe(zvryevt) = ﬂ{'—au':‘_"'-u)_"'%%ye_} '

r
T"l‘(xv r, evt) - u {% + %‘} y (6-23)

The integral effect of the stress component 7., acting in z-direction on a surface whose
normal vector points in r-direction, on the fluid-dynamic forces is null.
Using the same procedure as in the previous chapter for viscous fluid, the resulting

forces can be expressed as
£i(z, t) = pra’uiaéy) {R[f‘(z)] + L%[F‘(:t)]} e, (6.24)

where the nondimensional fluid-dynamic force, F“(a:), in complex form, is

F@) = -3 {P@) + p V(@) - Wi@) + W@ - V@) T5),  (629)
=0 *
in which
m-—1]
Vie) = — 3 qVlz),  j+g¢=odd,
hc] q=3+1
m-1
Wz) = = 3 Wy(z), j+q=odd, (6.26)
’ th q=3+1

where ¢co = 2 and ¢, = 1(j > 0). The real and imaginary components of the resulting
forces, shown in the above equation are in-phase and in quadrature with displacement,

respectively.

6.1.4 Numerical Results

For studying the unsteady viscous flow generated by the oscillating inner cylinder
subjected to axial flow, first typical distributions of unsteady velocities and then the
unsteady fluid-dynamic forces are presented. In order to show the rate of convergence of
the numerical solution, the calculations have been conducted for various mesh spacings
defined for the finite-difference method. For self-excited flexural motion, it is of interest
to estimate the fluid-dynamic forces acting on a slender cylinder. The fluid-dynamic

forces obtained by the present numerical method are compared with the results given
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by the approximate method in the next section. In the present work, the length-to-
radius ratio remains constant, ! = L/a = 15. The program used for calculating the
fluid-dynamic forces and typical results are presented in Appendix G.

As shown before, the fluid-dynamic forces are decomposed into real and imag-
inary parts. The imaginary component, which is associated with the damping force,
is proportional to the velocity of the moving cylinder. The real component is due to
inertial excitation and fluid elastic effects. In this analysis, the effects of steady axial
flow and oscillatory Reynolds number on the unsteady fluid-dynamic forces will be dis-
cussed. Taking account of the nondimensional governing equations (6.13) and (6.14),
the nondimensional fluid variables are influenced by the Reynolds number Re, as well
as by the oscillatory Reynolds number Re,.

The variation of the calculated fluid dynamic forces with various mesh spacings
between two grid points is shown for the case of b/a = 1.05, Re = 300 and Re, = 5,000
in Figure 6.2 and 6.3 (the results are obtained with m = 8). In Figure 6.2, the results
at certain grid points (X = /L = 0.25, 0.5 and 0.75) are presented. As the spacing is
decreased, the results appear to converge to a certain value, and then abruptly diverge.
The character of these results might be caused by a truncation error for coarse mesh
spacings and by a round-off error for fine mesh spacings. In other words, the truncation
error might decrease slightly with decreasing mesh space; however, the round-off error,
which is usually generated for a large matrix system, becomes larger and eventually
dominates. The influence of mesh size, AX = 0.083, 0.1, 0.125 and 0.143, on the
fluid-dynamic forces along the axial coordinate is shown in Figure 6.3. Even though
its effect in the range of the present mesh spacing is small, the imaginary component is
more influenced than the real one by the spacing. Also, the effect of the mesh spacing is
slightly larger at upstream points (X' < 0.5) than at downstream ones (X* > 0.5) — this
tendency might be due to the mathematical procedure based on the LU decomposition
method. Considering these results, the suitable mesh spacing for the given problem
can be selected. For the present case, the optimized spacing should be AX = 0.1.

Typical results of the nondimensional amplitude of the unsteady velocities acrass
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the annular space are shown in Figure 6.4(a,b,c) for the case of b/a = 1.25, Re =
626 and Re, = 5,000 with m = 8 at X = 0.3, 0.5 and 0.7. As compared to the
results given for translational motion without axial steady flow (given in the previous
chapter), the (a) circumferential and (b) radial components have similar distributions;
the distributions of the axial ones are shown in Figure 6.4(c). By inspection of equations
(6.24) and (6.25), the nondimensional pressure p = p*/(pa®u?aé, ;2e*") has almost the
same order of magnitude as the forces; this means that the resulting forces are mainly
affected by unsteady pressure. Thus, the pressure distribution along the axial direction
is not shown in the present work.

The influence of the Reynolds number (Re = 0, 626 and 1,256) on the forces
along the axial direction is presented in Figure 6.5 for b/a = 1.25 and Re, = 5,000
for a mesh spacing AX = 0.1. It is found that the real component of fluid dynamic
forces is only slightly dependent on the Reynolds number; however, the imaginary
one is strongly influenced by the Reynolds number. As shown in the figure, it is
obvious that the real components are proportional to the acceleration of the moving
cylinder, mainly influenced by the inertia force. The damping forces, related to the
imaginary component, might be caused by the combined effects of the unsteady viscous
drag and the equivalent Coriolis force due to the mean flow (associated with cylinder-
motion-induced rotation of the fluid, superposed on the axial velocity). For flexural
motion in the first mode, the viscous drag and the Coriolis terms are symmetric and
antisymmetric with respect to the middle (X = 1/2), respectively, since the former
is in phase with displacement of the cylinder, while the other is proportional to the
first derivative of the displacement. With increasing Reynolds number (1.e., increasing
axial flow velocity). the equivalent Coriolis term becomes larger.

Calculations have been conducted to investigate the effect of the oscillatory
Reynolds number (Re, = 500. 5.000 and 10.000) for b/a = 1.25 and Re = 626
with AX = 0.1 and m = 6. The results are shown in Figure 6.6. For the low value of
Re, = 500, the cffect on the real part of the force (including the viscous effect as shown

in the previous chapter) is relatively large. The ratio of the imaginary component to
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the real one becomes smaller with increasing oscillatory Reynolds number; its effect
on the forces is less than 15% in the case of b/a = 1.25 with Re, = 5,000 or 10, 000.
However, the viscous effect on the damping force is important for very narrow annular

configurations.

6.2 APPROXIMATE SEMI-ANALYTICAL METH-
OD

The principal aim of this section is to estimate the fluid-dynamic forces acting on the
flexible inner cylinder with a simplified method. The numerical results obtained in
the previous section will be compared to the approximate results obtained in this sec-
tion. This is one of the necessary procedures to validate the newly develped numerical
method, since there are no other previous results to be used for comparison. For this
purpose, the approximate analytical method, developed in Chapter 2, will be modified
to obtain an improved unsteady viscous-flow solution.

The fluid-dynamic forces are formulated, first assuming the case of an unsteady
potential(inviscid) flow, and then considering also the main effects of fluid viscosity.
The unsteady inviscid force will be obtained by the numerical approach based on the
spectral method with the aid of the separation of variables method, which is more
rigorous than the previous analytical method; however, the viscous effects are approx-
imated analytically by the same principles as in Chapter 2. This is the reason why the
method is called semi-analytical. This analysis for potential flow is less restrictive on
the size of the annular passage, which will be shown later. The present results are also
compared to ones obtained by the previous analytical method discussed in Chapter 2,
especially for narrow annular configurations.

Based on the assumption of small-amplitude oscillations of the flexible centre-
body in an annulus, the two flow fields, potential and viscous, are considered to sim-
plify the approach of this problem. The unsteady viscous forces are formulated by
considering the mean-circumferential-flow velocity obtained by potental flow theory.

The direction of the mean-flow velocity, which is considered to oscillate, is then deter-
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mined, and the unsteady viscous pressure drop along the circumferential direction and
the shear stress acting on the wall are evaluated.

The axial steady flow is assumed to be a fully developed laminar flow character-
ized by the mean-flow velocity U, static pressure P,, and the fluid density p, which is

considered constant.

6.2.1 Derivation of the Inviscid Force

With no separation in the annular flow, the inviscid forces are derived by potential
flow theory. For incompressible fluid, the unsteady governing equation is expressed in
terms of the unsteady velocity potential ¢, in the form of the Laplace equation:

0% 9% 109 109%

2
Ve = 62+62+r6r+ 7 39? =0, (6.27)
subject to the boundary conditions
@ 8¢ ae, 1 6¢ _I_Q_c:
or| _. 8t or 3.1: 00 r e
0¢ -
—a? r=b , 6:1: z=-00 =v ’ (628)

where the radial displacement, e.(z,©,t), is expressed in terms of the eigenfunctions,
¥, of the corresponding beam - see equations (2.29) and (2.30).
Using the separation of variables method, the velocity potential ¢(z,r,©,t) may

be written in the form
&Hz,r,0,t) = Zauﬁk(x,r)cos Oe! | (6.29)
k
where the reduced potentials ¢x(z,7) can be expressed as

u(2.2) = filx)Fu(2Z) . (6.30)

in terms of new coordinate Z =1~ 2(r ~a)/H.
Taking into account the coordinate transformation, the reduced potentials, (2, 2),

must satisfy the Laplace equation in the computational domain (Z,6), i.e.

a?h? 3¢, 3¢y 3¢k
—-— — .31
YR + 377 -vD D¢ = (6.31)
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with the boundray conditions

0o = d¢c| _ ah _
oz g=1 0 3z P _?[‘ww’f(x) + Uy(z)] , (6.32)

where the prime denotes differentiation with respect to x, the nondimensional annular
space is expressed as h = (b—a)/a = H/a and D isshown in equation (4.5). Comparing
the above equations with equations (2.35) and (2.36), it is obvious that this potential
theory is not restricted to very narrow annuli. Considering the normal-mode expansion
for the motion of cylinder, which can be separated into trigonometric and hyperbolic

components, it is more convenient to define the reduced-motion potentials, $u, and

&2&, as follows:
- 2 -~ ~
Oe(2,2) =Y fu(2)Fur(2) = o1z, Z) + Pz, Z) (6.33)
s=1
where
$14(2, Z) = [Aacos Bz + Apsin fiz] 3 814, T(2) ,
J

é24(z, Z) = [Ba cosh Biz + By sinh fiz] 3 821, T3(2)
J

in terms of the eigenvalues, G,L, of the eigenfunctions and the expansion forms of
Chebyshev polynomials, T,(Z). In the above equations, the subscripts 1 and 2, stand
for the trigonometric and hyperbolic terms, respectively.

Substituting the reduced-motion potentials into the governing equation leads to

ahf;

2
> ) ]ti.,ﬂ}(Z):O, (6.34)

3 é.,T,(Z2) - VDd,,T'(2) - [D + (

=0
subject to the boundray conditions

m 2 .
Z Zfak(r)d)ab?:(-’l) =0,

)=0=|

m 2 . 2 -
>3 fule)bu, T(1) = =5 S luwba(2) + 0¥iu(2)] (6.35)

Julasm] ox]

where the two sets of solutions, s = 1 and 2, arising from +f? and —-£? in the above
equations can each be associated with either v, or Yo, defined in equation (2.31) for

the trigonometric and hyperbolic components of the eigenfunctions, respectively.
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Considering the +4 case for the trigonometric components, the boundary con-
ditions can be rewritten
ah = . o '
- -?[szl)lk(a:) + Uthy(2)] = [Aa cos Biz + Apsin Bez] Y @145T,(1) , (6.36)
=0
through which the constants, A, and A,;, may be determined. Proceeding similarly,
the constants, B, and B, associated with —f32, may also be determined. Hence, the

unknown constants are found to be

h " h g
y: —%[—Lw + UaifB] Ay = "%“[“"’ak +UBY,

h - h 2
B, = —92—[1,(.0 - Udkﬂk] , B, = —%[—Lwak + Uﬂk] ) (6.37)

and the boundary conditions are reduced to
ShuT(1) =1, Y dwT(-1)=0, (6.38)
7=0 7=0

where o, was defined in equation (2.31).

Imposing the governing equation (6.34) at a finite number (m — 1) of collocation
points, equally distributed in the radial direction and considering the above boundary
conditions, the solution of the reduced potential ¢ can be completely determined from
the algebraic equation obtained. Thus, the reduced potential can be evaluated on the

surface of the moving cylinder (Z = 1):

- 2 -
¢k(1‘, 1) = -az Gok[“"d’ck(z) + U'l).k(l‘)] ’ (639)
=1
where
h <~ - h .
Gu=r¢ z L JTN Gu == z $o, . (6.40)

Substituting the solution of the unsteady velocity potential into the unsteady
Bernoulli equation (2.5) with the aid of d¢,/dr = U and integrating around the cir-

cumference of the inner cylinder, the unsteady inviscid force is found to be

Fy(z,t) = -pwa’e“"‘z ai(~w?Pea + wPiy + Pwo) (6.41)
k
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where

2 2 2
Pia=Y Gu¥u, Pu=20Y Guvy, Puo=UFY (-1)Guvu.. (6.42)

o=1 s=1 s=1
The inviscid forces are expressed as the general form shown in Appendix A, where the
added mass x is dependent only on the cross-sectional geometry of the slender body.
However, in the present theory which is applicable to cylinders of small length-to-radius
ratio, the added mass is dependent on the eigenfunctions of the beam as well as the
geometry, as described in the above equation. Therefore, the G,; are equivalent added
mass coefficients in this analysis. The inviscid forces are linearly dependent on the

lateral displacement of the moving cylinder and on its derivatives with respect to x.

6.2.2 Determination of the Viscous Forces

As shown in the simplified unsteady viscous model of Chapter 2, perturbation terms due
to unsteady viscous effects are superimposed on the unsteady terms obtained above;

thus, the nondimensional pressure perturbation with respect to pU? is defined by
p(z,1,0,t) = p(z,7;0,1t) + Po(z,7,0,1), (6.43)

and simlarly, for the nondimessional velocity components with respect to the mean
axial flow velocity, i, ¥ and %, where the components, i,,, ,, t,, and p,, associated
with viscous effects are considered to depend only slightly on © and t.

It was found in Chapter 2 that, for laminar flow, the gradient of the pressure

perturbation p, due to the unsteady viscous effect is expressed as

& — —— (6.44)

where P,, denotes mean pressure, the nondimensional friction coefficient ¢, is defined
by

24

and Re = pU Dy [pis the Reynolds number based on the hydraulic diameter Dy = 2ha.

In the above equation, £ is a coordinate directed by the total mean flow velocity, which
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fluctuates circumferentially through a small angle 9 calculated as

r=b ar [ .
sind=v = — / r= Zk: i Z=:l f.kW,k] sin Oe** | (6.46)
where
fak = Gulwipa(z) + U, (2)]
and

Wa=3 [ = TR D) &

j=0
The dimensional shear stress on the cylmder in the circumferential direction is

found to be
Te = 7T 5in ¥, (6.47)

where

Now, the unsteady lateral viscous force F,, can be evaluated

2x -
Fy = - / [7e 5in © + pU?p, cos O}adO ,
= —pma e“"‘z:ak(LwPu + Pw), (6.48)
where
- U240 2 U22+h
P = -'0"2——"17 Y GuiWuti, P = 6,2 Z GuWaty . (6.49)
=1 o=

By inspection of the above equation, it is clear that the lateral viscous forces are
dependent on the Reynolds number and the geometry of the system. As mentioned in
Chapter 2, the effect of the pressure perturbation is 2/h times that of the shear stress,
considering the numerator, 2+ h =~ 2, in the above equation.

Considering the inviscid and lateral viscous forces without taking into account

the steady longitudial force, the fluid-dynami- forces are expressed in complex form as
F =F,+ Fy = pra’u alw,(L/2)c“"'[R(F) + ¢9(F)] (6.50)

where a,¥,(L/2)e*" denotes the lateral displacement of the moving cylinder at r =

L)2.
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6.2.3 Comparison with Previous Solutions

The equivalent added-mass coefficients defined in equation (6.40), G, are predicted
by the present theory and then compared with those obtained by the previous theory
described in Chapter 2 for situations where both should be applicable. The equivalent
added-mass coefficients obtained by the present inviscid-flow theory are presented for
slender cylinders (I = L/a = 20) with radius ratios, b/a = 1.05 and 1.1 (m = 6). As
shown in Table 6.1, it is seen that there is better agreement for a narrower annulus
(b/a = 1.05), where the narrow-annulus simplification of the previous theory applies
best. The added-mass coefficients obtained by slender-body theory [21], x = [(1 +
h)? +1)/[(1 + h)? — 1]. are also presented to compare with the results — see Appendix

A (x is independent on the eigenfunctions as compared to the present results).
Table 6.1 Comparison of equivalent added mass coefficients

for concentrically narrow annular flow;
|=L/a=20, (a)b/a =1.05 and (b) b/a=1.1

(a) | Previous Present Rel. Diff(%)
_Results(1) Results(2) | [(2) ~(1)]1/(2) |
k| G | G | G | Gu | AG | AGax
1 1849|2068 |1938] 21.79| 4.5 5.1
2 |1692]23.08|1766]| 2447 | 4.2 5.2
3 |1499 2797 | 1557 | 30.05 | 3.7 6.9
x = 20.01

(b) | Previous Present Rel. Diff(%)
| Results(1) | Results(2) | [(2) - (1)]/(2)
Gt | Gu éu G—zk 1k 2k
9.04 | 10.11 [992]11.21(8.8 9.9
8.27 | 11.28 1 9.00 | 12.67 | 8.1 11.0
73411366 7901576 | 7.2 13.3
A = 10.02

N sl =

In order to compare the present results with those obtained by the collocation
finite-difference method, the fluid-dymamic forces including this inviscid force are pre-
sented. Before comparing the prescnt approximate results to the numerical results, the

nondimensional fluid-dynamic forces. R(F) and S(F), obtained by the present approx-

120



imate method are compared with those of the approximate analytical method shown in
Chapter 2 for I = 15 and Re, = 5,000 (m = 6). In Figure 6.7, the result is calculated
for b/a = 1.05 and Re = 300, while in Figure 6.8 for b/a = 1.1 and Re = 400. It
is found that the discrepancy becomes smaller for the narrower case, where the both
theories are quite applicable. Hence, the present approximate results can be compared
with confidence to the present numerical results obtained in Section 6.1.

The present approximate results are compared to the numerical results with
AX = 0.1 and m = 7 for b/a = 1.05, Re = 300 and Re, = 5,000, where the two
theory can be applicable. Good agreement between two results is shown in Figure 6.9.
Even for a high oscillatory Reynolds number (Re, = 5,000), the viscous damping force

is important for very narrow annular configurations.

6.3 REMARKS

Using the collocation finite difference method, it is possible to predict the fluid-dynamic
forces acting on the moving cylinder, systematically. The fluid-dynamic force is depen-
dent on the oscillatory Reynolds number, as well as the ordinary Reynolds number.
However, the results cannot be expressed in terms of the oscillatory motion of cylinder
explicitly, which would be desirable for the stability analysis of the system.

The strength of the present semi-analytical theory is that the unsteady inviscid
forces are predicted numerically without the limitation, shown in the previous analyt-
ical theory, of a narrow annular space. Thus, for the system where unsteady inviscid
forces are dominant over fluid-dynamic forces, the semi-analytical theory is fairly ap-
plicable, for of a finite-length of cylinder and a slightly confined flow. The viscous
effects on the fluid-dynamic forces for narrow annular configurations can be estimated
by the present approximate method.

A number of significant observations may be made from the results. First, with
increasing axial-flow velocity, the Coriolis term, which is associated with the anti-
symmetric component of the damping forces with respect to X = 1/2 in the present

work, becomes larger, almost linearly with flow velocity. This could be important for
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wave-propagation studies. The second point of interest is that the fluid-dynamic forces
for relatively wide annuli with high oscillatory Reynolds number can be estimated by
potential-flow theory: the viscous effect is negligible in this case. However, for very
narrow annuli, the damping forces are stronger. These significant damping forces are
mainly caused by the unsteady viscous drag, which is more or less linearly dependent
on the amplitude of oscillatory motion. Finally, the effect of the unsteady pressure

perturbation on the fluid-dynamic forces becomes dominant with respect to the shear

stress effect with decreasing annular space.
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Figure 6.2: Variaton of (a) the real and (b) the imaginary components of the nondi-
mensional fluid-dynamic forces versus the mesh space AX for b/a = 1.05, Re = 300
and Re, = 5,000 (m = 8) at various axial positions: o, X' = r/L = 0.25; 0, X = 0.5:4,
X =0.75.
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Figure 6.3: Variaton of (a) the real and (b) the imaginary components of the nondimen-
sional fluid-dynamic forces versus axial positions, X = z/L. for b/a = 1.05, Re = 300
and Re, = 5,000 (m = 8) with various mesh space: o, AX = 0.083; ¢, AX =0.1; 4,
AX =0.125; A, AN =0.143.
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Figure 6.4: The nondimensional amplitude distribution of the unsteady flow veloci-
ties for bja = 1.25, Re = 626 and Re, = 5,000 across the annular space; (a) the
circumferential, (b) radial and (c) axial components. o, real part; e, imaginary part.




Figure 6.5: Influence of axial flow velocity on (a) the real and (b) the imaginary
components of the nondimensional fluid-dynamic forces for b/a = 1.25, L/a = 15, and
Re, = 5,000 with AX =0.1: O, Re=0; A, Re=626; 0, Re = 1,256.
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Figure 6.6: Influence of the oscillatory Reynolds number on (a) the real and (b) the
imaginary compouents of the nondimensional fluid-dynamic forces for b/a = 1.25,
L/a = 15, and Re = 626 with AN = 0.1: D, Re, = 500; A, Re, = 5,000; o,
Re, = 10,000.
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Figure 6.7: Comparison of (a) the real and (b) the imaginary components of the
nondimensional fluid-dynamic forces for b/a = 1.05, L/a = 15, Re = 300 and Re, =
5,000, obtained by two methods: — e —, the present semi-analytical method; -, the
previous analytical method.
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Figure 6.8: Comparison of (a) the real and (b) the imaginary components of the
nondimensional fluid-dynamic forces for b/a = 1.1, L/a = 15, Re = 400 and Re, =
5,000, obtained by two methods: — e —, the present semi-analytical method; -, the
previous analytical method.
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Figure 6.9: Comparison of (a) the real and (b) the imaginary components of the

nondimensional fluid-dynamic forces for b/a = 1.05, L/a = 15, Re = 300 and Re, =
5. 000, obtained by two methods: — e —, the numerical method; -, the semi-analytical

method.
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Chapter 7

Damping Forces Obtained by a
Simplified Analytical Method

When a cylinder vibrates in viscous fluid, the fluid-dynamic forces acting on the moving
cylinder are influenced by the fluid properties, including axial-flow velocity, and by
the geometry of the system. In general, the resulting forces become larger with the
confinement of the annulus. According to the results given in Chapter 5, the added-
mass coefficient is mainly affected by the geometry for narrow configurations, especially
in the case of a relatively high oscillatory Reynolds number Re,. The effect of Re, itself
on the added mass is relatively small. Thus, the added mass for narrow annuli can be
estimated by potential theory.

In contrast to the added mass, the damping coefficient is strongly dependent on
the oscillatory Reynolds number, as well as on the geometry of system. Specially for
narrow annular passages, the effect of viscous damping on the fluid-dynamic forces
should be considered for the analysis of stability, even if the viscosity of the fluid is
relatively small. Due to the confinement, the viscous drag force due to unsteady viscous
flow is an important component of the fluid forces.

As shown in the previous chapters, higher-order terms in the Chebyshev poly-
nomials are clearly needed as the oscillatory Reynolds number is increased, since the
penetration depth, defined by é, = ‘/27/;. is very small compared to the annular
space between the two cylinders. Thus a very large system of equations is necessary

for such problems. Potential-flow theory can of course be utilized to obtain the added
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mass, but the viscous forces cannot easily be estimated, because of the large size of the
matrices obtained by viscous-flow theory in the spectral collocation method. This is
a reason why the approximate method for obtaining the viscous forces with axial flow
was developed in Chapter 2 and subsequently in Section 6.2.

By assuming a relatively low frequency and Reynolds number, the previous an-
alytical theories, of Chapters 2 and 6 for the flexural motion of cylinder subject to
axial flow, have been formulated to estimate the fluid-dynamic forces. To approximate
the viscous force, a parabolic radial distribution of the unsteady circumferential flow
velocity in the annular flow was introduced. In the previous chapters devoted to the
spectral method, it was shown that the unsteady-flow velocity profile is different from
the parabolic one when the ratio of the penetration depth with respect to the annular
space is relatively small. The initial motivation was to modify the analytical method
and reduce this limitation.

For the future purpose of stability analysis, it is convenient to express the damp-
ing forces as explicit functions of the oscillatory frequency and motion of the moving
cylinder. With the full viscous theories shown in the previous chapters, the damping
coefficient contains the effect of the oscillatory Reynolds number, but the coefficient
was calculated when the oscillatory Renolds number was given. Thus, an iteration
procedure is required to obtain the eigenfrequencies of a system. On the other hand,
it is more convenient to obtain .2e damping force through an analytical method.

In this chapter, an apprrumate analytical method has been developed to estimate
the damping force for relatively narrow annular configurations: when (i) an inner(rigid)
cylinder executes translational oscillation in the plane of symmetry in an eccentric
annulus (in Section 7.1), and (ii) a flexible cylinder vibrates in its first mode as a
clamped-clamped beam in axial flow (in Section 7.2). This theory is developed for
both high and low oscillatory Reynolds numbers. To validate this theory, the results

are compared with those obtained by the full viscous theory in the previous chapters.
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7.1 UNSTEADY VISCOUS DRAG FORCE DUE
TO TRANSLATIONAL OSCILLATION

To develop the present analytical theory, the previously obtained results are care-
fully examined. According to these results, the unsteady pressure variation across
the annular gap is very small and the mean value of the unsteady-flow velocity in
the circumferential direction (in phase with the velocity of the moving cylinder) is
approximately equal to the velocity obtained by the potential-low theory. Moreover,
the second-order term of Chebyshev polynomials defined for the circumferential-flow
velocity is quite large for low oscillatory Reynolds numbers, which means that the
distribution of the velocity has a parabolic profile in this case. For high oscillatory
Reynolds numbers, the amplitude of the velocity at a certain point, which is situated
near the wall (r =a + 6, or 7 = b—§,), is almost the same as the corresponding one
given by potential-flow theory.

In the present analysis, the unsteady radial-flow velocity is not considered, in
order to simplify the problem, so that its effect on the drag forces is neglected. Phys-
ically, the unsteady skin friction on the surface is induced mainly by the unsteady
circumferential-flow velocity. Also, the unsteady pressure drop in the circumferential
direction is affected by the skin friction. Under these considerations, a drastically sim-
plified form of the Navier-Stokes equations is obtained; from that starting point, the

problem is formulated to evaluate the viscous drag force.

7.1.1 Formulation

Considering the assumptions defined for the present problem, the simplified momentum
equation is obtained. by integrating the Navier-Stokes equation across the annular
space for the element shown in Figure 7.1, as

"E'ﬁ-fa Tb-f['_( *2) éi dr-f[ pw'?) %t'e- dr,
6+4a0 e
(7.1)

133



where the skin frictions on the surfaces of the inner and outer cylinder are given by

ow* ov*
Ta = p 5 ) ™= —p o ! (7.2)

r=a

where w* denotes the unsteady circumferential flow velocity. By the assumption of

small amplitude motion of the cylinder in a narrow annular passage, the right-hand

side of equation (7.1) can be neglected.

Introducing the dimensionless parameters, p = p*/(pa?w?ee*!) and ¥ = w*/(1awee**)

as defined in Chapter 5, with the aid of a coordinate transformation, the governing

equation for a narrow annulus are nondimensionlized as

0p 2 1+h/2]0w ow
%= ‘Re, R [az - A (73)
and the shear stress is obtained by
- aw’ - 2 9 Lt 2 0@
T=pg = e taan (7.4)

where the oscillatory Reynolds number is defined by Re, = wa?/v and the nondimen-
sional coordinate Z =1 - 2(r - a)/H.

For the purpose of this simplified analysis, the mean-flow velocity @" across the
gap will be calculated by the potential theory given in Chapter 5. From the velocity
potential ¢ and the relationship (w* = 1/r) (3¢/00©), one can obtain by integrating

over the gap

ol 120, 1p 1
v =%l raed"af..z-h(z-l)L(¢’dZ' (7.5)

where the operator L(¢) can be expressed as L(¢) = 8¢/36 for a narrow annulus or
an annulus of relatively small eccentricity.

In the above equation. an analytical potential theory such as the previous one
for concentric configurations can be used to obtain the velocity potential ¢. However,
in the present analysis, the numerical solutions based on the following expansion form

are utilized

0 = uolee™ i f: ¢,.T,(Z)F:l6) , (7.6)
Jmo kul
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which bave already been defined in Chapter 5. For the present problem, the Fourier
function F, may be expressed as cosine functions &s shown in Chapter 5 due to
the flow symmetry with respect to the plane of eccentricity. Considering the ex-
pansion form with dimensionless parameters, the dimensionless mean-flow velocity,

1 = 0" [(cawee*), can be obtained from equation (7.5) as

%= gk s(kf) / 5-—,-;(7—) }: 8,Ti(2)dZ = k};ﬁ Wes(k6),  (1.7)
where 3(k8) denotes sinkf. By potential theory, the coefficients ¢, have already been
obtained. Hence, the coefficients W can be determined.

To solve the pressure drop along the circumferential direction, the shear stress
on the surface of the cylinders is considered by carefully investigating the distribution
of the unsteady circumferential-flow velocity across the annular space for both cases:
when (a) the ratio of the penetration depth with respect to annular gap is relatively
large and (b) the ratio is relatively small. This ratio is related to the oscillatory
Reynolds number by the definition, é,/H = \/2_/R_e, -a/H, where §, is the penetration
depth.

(a) Case of relatively low oscillatory Reynolds number

As discussed before, the circumferential-flow velocity w* has a parabolic profile
in this case. In this method, the dimensionless flow velocity @ may be approximated
in the following form

w(Z,0) = i(w Z* 4+ WZ + WY,) s(k6) (7.8)
k=0

subject to the boundary conditions — see equation (5.36)

}:‘_(u Z?2 4+ W Z + W) s(k6) |z<1= - sind,

Z(u 22+ W2 + W) 8(k6) |za1= 0.

Hence, the mean \-alue. W, may be obtained by integrating « over the annular gap

o=l i/ WhLZP 4+ WhZ+Wh)a(k0)dZ =3 (1w,'k + wg,) s(k6) . (7.9)
25 k=0 \3
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Taking account of two boundary conditions and of the above equation together with
equation (7.7), the three-unknown coefficients could clearly be expressed in terms of
W, in the form

3. 3 1 3. 1
Wi = -5W- 36, wh= -56, Wi = sWe+ 26, (7.10)

where § = 0 when k # 1, or § = 1 when k = 1; from which the skin friction on the

surface can be obtained. In view of equation (7.3), one ought to derive the following

equation from equation (7.8) with the known coefficients Wi, W}, and W}, to obtain

the pressure distribution,

ow - o =
— = - 8) s(k8) , —_— = (3W,. + 6) s(k#b) . .
3z, (3W + 26) s(k8) 3Z|,__, (3Wi + 6) s(k6) (7.11)

(b) Case of relatively high oscillatory Reynolds number
By inspection of the distribution of the unsteady circumferential-flow velocity
across the annular space for this case (see Figure 5.5), the radial derivative of the

velocity in phase with the velocity of the moving cylinder can be approximated in

terms of the penetration depth as

ow* o° + e,5in O ow* _
—aT r=a - 6? ‘ or r=b - 6P ’ (712)

through which the unsteady pressure drop shown in equation (7.1) may be determined.
In the above equation, the mean-flow velocity #* has already been obtained by potential
theory as shown in equation (7.5). To consider the boundary condition on the surface
of the moving inner cylinder, the lateral velocity of the moving cylinder, e,, is added
to the left-hand side of the first eqation.

Utilizing the dimensionless parameters in the transformed domain, the above

equation can be rewritten in nondimensional form

= -;63 f(w. +6) s(k8)
P k=m0

di
oz

2=l

- i‘ﬂ "W s(k9) . (7.13)
Zwm-) P km0

di
oz
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where the coefficients for the nondimensional mean-flow velocity, W;, are defined in
equation (7.7). Thus, the unsteady pressure drop and the skin friction on the surfaces

of the cylinders can be estimated, considering equations (7.1) and (7.2).

7.1.2 Unsteady Drag force

Having determined skin friction on the surfaces, the unsteady pressure disribution along
the circumference may now be found for both the relatively low and high oscillatory
Reynolds number. Then the unsteady drag force can be obtained by considering the
skin friction on the surface of the moving cylinder and the pressure drop along the
circumference of the inner cylinder.

For the case (a) of low oscillatory Reynolds number, substituting equation (7.11)

into equation (7.3) leads to
0p 12 14h/2 C
%= "R R g(wk +6/2) s(k0) . (7.14)
Proceeding similarly with equation (7.13), for the case (b) of high oscillatory

Reynolds number, the nondimensional pressure is expressed as

o _ _ [21+4h/2 ¢
3 - VRe, n ?_%(Wk +6/2) s(k6) . (7.15)

Taking account of the pressure and skin friction, the viscous drag forces may be

obtained by integrating its components around the cylinder as

o
Fy= -a/o (p‘cose + u%u;—

sin 6) do . (7.16)
However, some manipulation is required to bring p°, which is an implicit function of
©, into a convenient form. In this respect p° cos © is modified as

p°cosO = (p sin©) - g—:sme (7.17)

The integral of the first term of the nght-hand side in the above equation is equal to
zero. Hence, the equation of the drag force can be expressed in the nondimensional

form

Fq

. 2 (9p 2 ow )
2 2 (%] §
pa‘uiaée /o (60 hRe. 3z , )smﬂdo (7.18)

= (pra’ulaée“'Fy,
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where aée*! denotes the lateral displacement of oscillatory motion of the cylinder and

F is the nondimensional viscous-damping force.

Substituting equations (7.11) and (7.14) into the above equation for case (a) leads

to
Fy=F,+F,, (7.19)
where
Fp= %%?1%/2(‘% +1/2),
Fu= 77 Wi 42/3), (7.20)

in which the subscripts vp and vs stand for the unsteady pressure and the skin friction

terms, respectively. Thus, the damping coefficient due to the viscous drag can be

expressed as
Coa = —pra’uwFy . (7.21)

Similarly, for case (b),

~ _ [21+h/2,
F.,,_-‘/R—e. ——=(W1 +1/2),

" 1 -
F,, = -‘/2—&: W, . (1.22)

Considering these results, the viscous drag force is expressed in terms of an ex-
plicit function of the oscillatory Reynold number, since the coefficients &;; and W,

determined by the potential theory, are dependent on only the geometry of system.

7.2 UNSTEADY DAMPING FORCES DUE TO
FLEXURAL OSCILLATION OF A CYLIN-
DER

By inspection of the results given by the full viscous theory based on the collocation-
finite-difference method, the added-mass coefficient can be approximately calculated
by potential-flow theory for narrow annular configurations since it is mainly affected

by the geometry of the system. However, the damping forces are dependent on fluid
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properties as well as geometry. In general, it is well known that the damping force
acting on a flexible cylinder subject to an axial flow is decomposed into two terms: the
viscous-damping force due to the fluid viscosity, as can be seen in the previous section,
and a force due to the Coriolis effect associated with the axial flow.

According to the results given in the full viscous theory, the circumferential ve-
locity is almost linearly dependent on the velocity of the flexible cylinder and the
profile of this velocity along the radial direction is similar to that obtained in the two-
dimensional problem discussed in Chapter 5. Therefore, the viscous-damping forces
can be approximated by considering the unsteady pressure drop mainly due to the
radial derivative of the unsteady circumferential-flow velocity in annular flow. Hence,
the viscous-drag force due to flexural motion of the inner cylinder can be calculated
by considering the viscous-damping force Fy obtained by the approximate method for

the two-dimensional problem based on the lateral displacement, e;(L/2,1), as

e/(z,t)

Fa =kt

(7.23)

where subscript 3 stands for the three-dimensional problem and the lateral displace-
ment ¢;(z,t) of the inner cylinder is expressed ir terms of eigenfunction, y,(z), which

is the first-mode expansion for a clamped-clamped beam as shown in Chapter 2,
ei(z,t) = E(z)e“" = ay¥y(z) . (7.24)
Thus, the viscous-damping forces can be rewritten in the following form
Fo = pra®®aé(L)2) e F g, (7.25)
where é = €, /(ae*') and

e;(x.t)
C[(L/2,f) !

in which F,; = f’.,-f- F,, has already been obtained in the previous section as a function

Fa=Fy

of the oscillatory Reynolds numbers.
Taking account of the potential-flow theory based on the slender-body assump-

tion, the damping force due to the axial-flow. which is related to the Coriolis force,
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may be estimated by the following equation

2 0%e;(,t)

F.=-2pma

where the mean axial flow velocity U is obtained by integrating the axial-flow velocity
over the annular space and the ratio of confinement is equal to the added-mass coeffi-
cient determined by the slender-body potential-flow theory, as x = (b + a?)/(b? — @2).

Utilizing the normal-mode expansion for the flexural motion, the equivalent Cori-

olis force can be expressed as

F, = pna’uaée™'F, , (7.27)
where _
A UB_ ¥(z)
Fo==2—x—F~,
w Xoi(L]2)

in which the prime denotes differentiation with respect to z, and (L represents the

eigenvalue for the first mode of the flexible cylinder.

Considering the viscous drag force and the equivalent Coriolis force, the total
damping force acting on the flexible cylinder subject to steady axial flow in a narrow

annulus can be calculated approximately by

Fu = ipra®uaée! (Fg+ F.). (7.28)

7.3 RESULTS AND DISCUSSION

The main purpose of this section is to validate the approximate methods developed for
estimating the damping force as influenced by the oscillatory Reynolds number, the
geometry of system and the Reynolds number. For that purpose, the present results
obtained by the approximate methods are compared to the results given by the viscous
theory shown in Chapters 5 and 6.

When the inner cylinder executes translational motion in the plane of symmetry,
the calculations have been conducted for the cases of various ratios of the radii, b/a,

with a selected oscillatory Reynolds number, rather than attempting an exhaustive
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parametric study. In order to investigate the effect of axial flow on the damping force
acting on the inner cylinder in a narrow annulus, the damping force has been calculated
with the chosen Reynolds number based on hydraulic diameter 2ha. As shown before,
the governing equations formulated for the viscous theories are nondimensionalized in
terms of the Reynolds number.

In this study, we are mostly concerned with forces on the centre body per unit
length and their variation with length. With regard to the Coriolis force, it should be
remarked that the integrated force (for z € (0, L)) is zero — although its variation with
z is of interest and will be shown in the results that follows.

The viscous-drag force with increasing oscillatory Reynolds number will be dis-
cussed for b/a = 1.25 and b/a = 14. The viscous-drag coefficient Fy obtained for
cases of both low and high oscillatory Reynolds number is shown in Table 7.1, where
the results are compared to the corresponding numerical results based on the spectral
collocation method. The drag coefficient F; has the same definition as the imaginary
one S(F') defined in the previous numerical method.

From the results, it is found that the transition region, where both approximate
methods give approximately same value, is situated around 6,/H = 0.2. Above this
ratio of penetration depth, the method developed for low oscillatory Reynolds numbers
can be used, while the other one is more suitable for high Re,. Thus, it is true that the
viscous-drag force is dependent on the ratio of the penetration depth to the annular
space, which affects the circumferential flow velocity profile in the radial direction.

In Figure 7.2, the nondimensional damping forces for various oscillatory Reynolds
numbers (Re, = 50, 500. 5,000 and 50,000) are illustrated for concentric annular con-
figurations to show the effect of b/a. The results denoted by closed symbols represent
the nondimensional force f,, obtained by considering only the unsteady pressure. The
overall results F,. including the effect of skin friction, are denoted by the open sym-
bols. According to the results, the eflect of skin friction is relatively small; however,
the relative magnitude of the effect of the skin friction versus the unsteady pressure

becomes larger with increasing radius ratio b/a. By inspection of equations (7.20) and
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(7.22), this can be expected: the ratio between the two results is of the order of h. As
compared to the numerical results obtained by viscous-flow theory with the spectral

collation method of Chapter 5, good agreement is found between these results and the

numerical results.

Table 7.1 Comparison of the drag coefficients F; obtained by the approximate
method developed for (a) low and (b) high oscillatory Reynolds number
and by the numerical method with various ratios of the penetration

depth to the annular space.

Approximate | Numerical
bja | Re, | 6,/H | Result F; | Results Fy
(a) | (b)
5000 | 0.08 {0.22{ 0.52 0.53
1000 | 0.18 | 1.08| 1.16 1.46
1.25[ 500 | 0.25 [2.17 | 1.65 2.44
100 | 0.57 | 10.8| 3.68 11.0

50 | 0.80 | 21.7| 5.21 291
5000 | 0.05 | 0.06 [ 0.26 0.25
14 [500 | 0.16 |0.64 | 0.82 0.96

100 | 0.36 | 3.18 | 1.84 3.34
50 | 0.50 ]6.35] 2.60 6.61

When the inner cylinder has translational motion in the plane of axis symmetry in
an eccentric annulus, the nondimensional overall drag force Fyis presented in Figure 7.3
for b/a = 1.25, with oscillatory Reynolds numbers (a) Re, = 50 and (b) Re, = 5, 000.
For the former case, the calculation is done by the method developed for low oscillatory
Reynolds numbers and for the latter case by the method developed for high oscillatory
Reynolds numbers. These results are also compared to the numerical solutions. The
present approximate method (developed in Section 7.1) is found to be adequate.

In Figure 7.4, the overall damping force including the effect of the axial flow
(Re = 626 and 1,256) given by the prescnt approximate method (developed in Section
7.2) is compared to the numerical results shown in Chapter 6 in case of b/a = 1.25.

As shown in the figure, the nondimensional damping force may be decomposed into
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two components for the given flexural motion (the first mode vibration as a clamped-
clamped beam): (i) the symmetric component with respect to the middle point r =
L/2, which is related to the unsteady viscous-drag force and (ii) the antisymmetric one,
which is associated with the Coriolis force (axial flow effect). It is shown in Figure 7.4(a)
that the antisymmetric component becomes large with increasing Reynolds number.
The damping force, containing the effect of the unsteady viscous drag and the axial
flow, predicted by the approximate method agrees well with the numerical ones, which
means the full viscous theory shown in Chapter 6 is validated indirectly; however the
comparisons have been conducted for a special case — slender cylinders subject to
narrow annular flow.

Taking account of the above results, the interesting remarks are as follows; (i) the
present approximate method can be utilized for estimating the damping force, espe-
cially for narrow configurations where the damping force has an important role in the
dynamics of system and the virtual mass can be estimated by potential theory; (ii) the
damping force can be expressed in terms of the circular frequency of the moving cylin-
der explicitly through the approximate method — this expression is very convenient to
analyse the stability of the system; (iii) the unsteady viscous drag force is propotional

to 1/Re, for relatively low oscillatory numbers and to 1//Re, for relatively high ones.
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Figure 7.1: The shear stress acting on surface elements of the inner and outer cylinders
due to the unsteady circumferential-flow velocity:.
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Figure 7.2: Nondimensional viscous-damping force obtained by the approximate
method for the translational motion of the inner cylinder in concentric configurations;
considering only unsteady pressure(closed symbols), and unsteady shear stress and
pressure(open symbols). —, numerical results obtained with the spectral method of

Chapter 5.
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Figure 7.3: Effect of annular eccentricity on the viscous-damping force obtained by
the approximate method for the translational motion of the inner cylinder and for
b/a = 1.25: o, Re, = 50; A, Re, = 5,000. Compared with the numerical results

obtained with the spectral collocation method of Chapter 5 (—).
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Figure 7.4: Nondimensional viscous-damping force obtained by the approximate
method (—) and by the collocation finite-difference method of Chapter 6 (o, Re =
626:A. Re =1,256), for the first-mode flexural oscillations of the inner cylinder: (a)

Re, = 5,000: (b) Re, = 500.
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““Chapter 8

Experiinental Investigations and
Comparison with Theory

In parallel to the foregoing theoretical models of which the ultimate objéctive is to
predict the unsteady flow field in annular flow—either turbulent or laminar, the problem
has also been studied experimentally; the results of the experimental investigations are
presented in this chapter.

Experiments have been performed partly to validate the theory which has been
developed for the present problem in the foregoing. For this purpose, the unsteady
pressure generated by the oscillatory motion of the outer cylinder in the annular con-
figurations was measured on the surface of the fixed inner cylinder, to compare with
the theoretical results. This was found to be a reliable and convenient way of testing
the theory. Once the motion-related unsteady pressure is known, the forces acting on
the moving parts of the annular flow passage may be easily calculated by adding the
shear stress effect: hence, the stability of the centre-body may then be evaluated.

Using an carlicr experimental apparatus designed for concentric configurations,
experimental investigations were made to study flow-induced-vibration problems (35,
60)]. In that set of experiments also. the quantity that was measured was the unsteady
pressure. In those tests, a rigid, cylindrical centre-body was forced to oscillate in
a rocking mode about a hinge point with air flow in the annulus, while the outer
conduit was rigid and immobile. The experiments in this other apparatus have been

characterized by high axial-flow velocities, which permitted the validation of the theory
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developed for turbulent flow in concentric annuli. In contrast, no experiments were
performed with that apparatus for unsteady laminar flows, which may be important
especially in very narrow annuli. The evaluation of the eccentricity effects on the
unsteady pressure analyzed in Chapter 5 for the translational motion could not be
examined using the earlier apparatus. This was the reason why a new apparatus was
constructed, where rocking and lateral(translation) motions would be equally feasible,
with low flow velocity as well as high flow velocity.

In the design, the following important modifications, as opposed to the previous
apparatus, were introduced: (a) the possibility of conducting experiments for eccentric
arrangements, with the oscillation either in the plane of eccentricity or normal to it;
(b) the facility of having very low flow velocity, so that the flow in the annulus could be
laminar rather than turbulent. For future works, this new apparatus has Jhe possibility
of having axial variations in the annular passage, either smooth or abrupt.

To accommodate all these possibilities, it was found convenient, in this new appa-
ratus, to oscillate part of the outer cylindrical conduit, while the centre-body remains
immobile. In the present experimental tests, the rigid outer cylinder, containing qui-
escent fluid or steady axial flow(laminar flow), executes a rocking motion in concentric
configurations or a translational motion in eccentric configurations.

To eliminate the viscous-flow-related effects, such as flow separation and/or vortex
shedding which are not considered in the present theory, a smooth transition between
cylindrical and annular flows is assumed both upstream and downstream. This is
insured by connecting smooth ogives to the fixed centre-body at both ends as shown
in Figure 8.1. The constant cross-section, from the upstream ogive to the test section
where the pressure was measured, is long enough to obtain developed laminar flow.
Also, the tests have been conducted at low amplitudes of oscillation, characterized by
an amplitude/gap ratio smaller than 0.15.

In view of the theoretical results shown in Chapter 5, it is obvious that the fluid-
dynamic forces are mainly influenced by the geometry of the system for high oscillatory

Reynolds number, Re, = (wa?)/v. The radius ratio b/a, for the present experimental
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results, was 1.21. For simplicity of design, the test was performed in air rather than in

water,

8.1 EXPERIMENTAL APPARATUS

As mentioned before, the unsteady pressure generated by the forced vibration of the
outer cylinder was measured and then compared to the theoretical results given by the
present theory based on the numerical approach.

The test section consists of a rigid cylindrical centre-body of uniform cross-section
connected to the fixed ogives at the upstream and downstream ends, as depicted in
Figure 8.1. The ogive, together with a mesh and a honeycomb, placed near upstream
end, help to render the annular flow as uniform as possible. The constant-cross-section
moving outer conduit was oscillated harmonically. In the basic configuration of the
annular gap, two cylinders were either concentric or eccentric, in the plane of oscillation
or normal to it. Obviously, tkre was relative motion between the oscillating part of
the outer cylinder and the rest of the outer cylindrical conduit, which wes immobile.
Various flange desigus, as shown in Figure 8.2(a, b and c), were tried to reduce the
effect of this relative motion. A fuller explanation will be given later.

The unsteady pressure was measured by six pressure transducers situated at
different locations along the length of the centre-body, X = z/L = 0.342, 0.421, 0.5,
0.578 and 0.657 (L = 965 mm), as shown in Figure 8.3. In the middle, X = 0.5,
two transducers were located at diametrally opposed locations in order to compare the
corresponding measured unsteady pressures; for example, the phase difference between
two signals might be 180° for concentric configurations, when the cylinder executed
either translational or rocking motion. At each axial location, the transducer was
installed inside the hollow centre-body in a recessed housing hole, with a very small hole
(0.8 mm diameter and 3.2 mm deep) used for measuring the pressure in the annulus, to
minimize the effect of the hole on the flow field. To measure the pressure distribution
along the azimuthal direction, the inner cylinder was designed to be rotated.

According to previously obtained experimental results, the relative difference be-
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tween the pressures measured on the walls of the outer and inner cylinders was found
to be very small for narrow annuli; this was also found to be the case in the present
theoretical results. For this reason, the pressure on the surface of the outer cylinder
was not measured in the present tests.

The outer conduit itself was oscillated by means of an electro-dynamic shaker and
its displacement was measured by an accelerometer mounted on the base plate of the
shaker. The oscillation of the shaker is transmitted to the moving outer cylinder via a
set of yokes designed for the translational or rocking motion. For the rocking motion
experiments, the hinge was located at X = 0.237 and the shaker was connected to the
outer cylinder at X = 0.815. In the case of translational motion, the moving cylinder
is connected in the middle (X = 0.5) to keep its weight balanced.

The signals from the pressure transducers and the accelerometer were processed
through a dual-channel FFT digital signal analyzer. Utilizing the present apparatus,
the following parameters were varied in the experiments: (a) oscillation frequency;
(b) oscillation amplitude; (c) eccentricity of the annulus; (d) axial-flow velocity. The
test can also be conducted for various hinge points and axial locations of the pressure
transducers. The possible range of oscillation frequency and amplitude were limited by
the dynamical characteristic of the system. In order to have a meaningful comparison
with the theoretical results and to avoid impacts between the inner and outer cylinders,
the amplitude of motion was not very high.

To describe the apparatus in detail, its different components are presented sep-
arately as follows: (1) the external conduit including the oscillating outer-cylinder,;
(2) the fixed centre-body connected to the ogives; (3) the “transmission” mechanism

linking the shaker to the outer cylinder; {4) the blower and the connecting flow system.

8.1.1 The External Conduit

The external pipe consists of two main sections, oscillating and fixed parts. The inner
radius of the pipe was b = 53.8 mm and its wall thickness was 3.2 mm. The central sec-

tion, which executes the oscillatory motion, was 965 mm long. The central section was
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allowed to oscillate in a one-degree-of-freedom motion provided by the electromagnetic
exciter assembly.

The fixed cylindrical conduit of the same diameter as the moving portion contin-
ued on either side, and housed the ogives as well as the fixed centre-body. The inlet
axial flow was regularized with the aid of several meshes, a honeycomb screen and
an ogive, to eventually obtain the developed laminar flow as mentioned before or at
high velocity a uniform turbulent flow. These parts were secured on the vertical plates
which were fixed on a long I-beam at certain locations along the axial direction. The
system was made horizontal rather than vertical (as was the case with the previous
apparatus).

As discussed before, it is necessary to overcome the problem of a discontinuity
arising from the relative motion between the oscillatory and fixed parts of the outer
cylinder. The “obvious” solution of using flexible rubber seals was found unsatisfactory,
because locked-in stresses in the rubber seals combined with the slight flexibility in the
shaker actuator gave rise to small but important asymmetries to the desired motion.
Utilizing a sponge instead of rubber, as a “felt” shown in Figure 8.2(a), the problem
was improved but not entirely solved especially for high-amplitude oscillatory motion.
The arrangement shown in Figure 8.2(b) using two larger-diameter flanges separated
by a very small gap was found to be the best solution to the problem, although it dose
not achieve total sealing. The closed arrangement of Figure 8.2(c) was occasionally

used, but only with zero mean flow in the annulus.

8.1.2 The Fixed Centre-body

The fixed centre-body is comprised of three parts: the central test section, facing
by the oscillating outer cylinder, and the upstream and downstream sections. The
pressure transducers were mounted in the central test section. The fixed upstream
and downstream sections were composed of two parts: an ogival part and a constant
cross-section part. The constant cross-section part was connected to the test section.

The ogival part was shaped so as to have varying parabolic profile; it was designed to
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allow a smooth and uniform transition from cylindrical to annuler flow, or vice-verse.
Thus, fully developed annular flow to the test section is allowed through the constant
cross-section part.

The central test section of the centre-body was made up of two sections(split
longitudiually to mount the pressure transducer inside the cylinder) and was connected
to the upstream and downstream sections at both ends in sliding contact (male and
female) to allow rotation to the central test section for measuring the unsteady pressures
at various azimuthal locations. An O-ring between the male and female parts prevented
any air leakage into the hollow inner cylinder. Undesired rotations were prevented with
the aid of a set of screws. The radius of the inner cylinder(apart from the ogives) was
constant a = 44.8 mm. The length of the test section was 965 mm and the upstream
and downstream sections, including the constant cross-section part, were 1000 mm
long. The contant cross-section part between the ogive and the test section was 500
mm long, so that the ratio of the entrance length, from the ogive to the test section,
with respect to the annular space was 50, which might be enough to obtain a sufficiently
developed laminar flow.

Each of the upstream and downstream bodies was held in place at two locations.
This was accomplished by a set of screws, which were secured into pairs of reinforcing
balf rings to the outer pipe, at each location. Utilizing the set of screws with a spindle,
and measuring the lead of the screw(calibrated appropriately), one could adjust the

eccentricity.

8.1.3 Shaker and Transmission

The harmonic oscillation was generated by a Briiel & Kjaer electromagnetic shaker
(exciter body B&KK 4801 mounted with exciter head B&K 4812). The maximum peak-
to-peak amplitude limit was 12.7 mm. the maximum force rating was 445 N, and the
possible frequency range was from 5 Hz to 10 kHz effectively.

The harmonic signals generated by the shaker controller (B&K exciter control

type 1047) were fed into a power amplifier (B&Kk 2707) that amplified them to levels
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appropriate to drive the shaker. The shaker controller controlled the frequency and
the displacement amplitude of the shaker moving element. In order to make use of the

frequency-constant-parameter programming capability, an accelerometer was fixed on
the base plate of the shaker head and its signal was fed back into the shaker controller
through a charge amplifier, the latter conditioning the accelerometer signal into a form
suitable for the shaker controller feed-back input circuit.

The oscillatory motion of the central outer cylinder was restricted by a pair of
vertical rigid plates parallel to each other, which were placed between the shaker and
the cylinder, as a yoke, to give purely transverse transtion. For rocking motion about
a hinge, the oscillation was executed via a rigid plate with two pivot points or, in the
latest version of the experimental apparatus, via a flexible slender plate. The pivoting
points or the flexibility of the yoke were designed to allow rocking(rotational motion),
and to avoid problems associated with trying to impose purely vertical motion(which

then tends to move the hinge and produces rattling).

8.1.4 The Blower and the Connecting Flow System

The flow through the annulus was provided by an external air source. In the present
work, to compare with the theory developed for laminar flow, a vacuum-cleaner type
blower was used in the suction mode for generating laminar or low-velocity turbulent
flow in the annulus.

It was found that, for turbulence-level flow, the noise level generated by the blower
was relatively small as compared to the expected pressure signal. Thus, without using
an acoustic filter, the signal acquired from the pressure transducers could be processed
by a signal analyzer.

The flow rate was measured by means of an orifice plate mounted near the down-
stream end of a straight pipe(3 m long and 40 mm in diameter) which was secured at
its other end to the downstream section of the outer pipe. This length was required
to obtain the fully developed flow near the inlet of the orifice plate. The flow rate was

controlled by means of the circumferential slots located at the downstream end near
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the blower.

8.2 INSTRUMENTATION FOR MEASUREMENT

During each test, the following physical parameters have to be measured: the unsteady
pressure, the displacement of the centre-body with a certain circular frequency, and
the flow velocity. As mentioned before, the pressure as well as the displacement were
analysed by means of signal processing through a FFT(Fast Fourier Transform) digital
signal analyzer, from which the pressure amplitude and the phase angle with respect
to the displacement could be obtained.

In the present experiments, the following instruments were used to obtain the
required data: (1) six piezoelectric pressure transducers; (2) one accelerometer; (3) one

digital spectrum FFT analyzer; (4) one differential alcohol manometer.

8.2.1 Piezoelectric Pressure Transducer

In previous tests [35], a differential-pressure transducer was used for the concentric
case. In the present work, the differential-pressure transducer was no longer useful
for eccentric configurations, since the unsteady component of the pressure is no longer
antisymmetric at diametrally opposed points. In other words, through the differential-
pressure transducer, the eccentric effect on the pressure could not be measured. This
was the main reason for which the piezoelectric pressure transducer(112A23) was chosen
for these experiments instead of the differential-pressure transducer.

The main specifications of the piezoelectric pressure transducer are as follows:

Output Range: 25V

Useful overrange: 344.7 kPa (50 psi)

Resolution: 6.89 Pa (0.001 psi)

Sensitivity: 7.25% 1.45 mV/kPa (50 + 10 mV/psi)
Resonant Frequency: 250 kHz

Lincarity: 1.0
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Utilizing this pressure transducer, the steady or static component has been un-
detectable and the signal had an acceptable level without special conditioning, which

is a distinct advantage for the present work.

8.2.2 Accelerometer

The displacement of the centre-body was measured by an accelerometer(B&K type
4381) which was m ‘unted on the shaker head. The accelerometer signal was first fed
into the charge amplifier(B&K type 2624). One of two-output signals from the charge
amplifier was used for the constant displacement control through the feedback loop of
the shaker controller system, while the other was monitored by the spectrum analyzer
which gave the centre-body displacement.

As opposed to the earlier apparatus [35], it was not necessary to consider the
flexibility of the transmission yoke. since the transmission components were relatively
simple and more directly connected; moreover, the transmisson was sufficiently rigid in
the moving direction. As a result, the difference of the accelerations measured on the

base plate and on the surface of the moving cylinder was small enough to be considered

negligible.

8.2.3 Spectrum Analyzer

A dual-channel FFT digital spectrum analyzer(Hewlett-Packard 3582A) was used to
monitor the signals from the pressure transducers and from the accelerometer. In
Figure 8.4, a schematic of signal processiug is shown. The amplitude of either signal
could be obtained fromn the power spectrum, while the phase difference between pressure
and acceleration could similarly be obtained from the cross-spectrum of the those two
quantities. The information was available for each individual spectral component by
means of a cursor that can be positioned accordingly.

The main advantage of using the FFT analyzer was that the signal due to the

secondary effects (e.g. the noulinearlity of fluid motion, unexpected secondary motions
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of the cylinder, the random noise from turbulence, and acoustic wave pressure com-
ponents) can be adequately separated from the main signal. The other advantage of
this instrument is that it can accept signals down to ;V range without special signal
conditioning, which was very useful, since the signal levels in these experiments were
just above the resolution of the pressure tranducer.

The frequency range of the dual-channel digital analyzer is 0.02 to 25 kHz. With
suitable frequency spans in the range of 5 Hz up to 25 kHz, to provide better frequency
resolution, the signal can be analysed. The instrument can measure inputs from 31.6
volts down to 1 uV, without resorting to external signal conditioning. Its dynamic
range is 70 dB. The use of this analyzer permitted us to obtain the transducer and
accelerometer readings accurately in the frequency range of 20-70 Hz, in which the

present experimental tests were performed.

8.2.4 Differential Alcohol Manometer

To calculate the flow rate, the pressure drop across the orifice plate was measured
by a differential Lambrecht alcohol manometer, the range of which was 0-200 mm of
alcohol. Its two taps were connected upstream and downstream of the orifice plate.
The calculation of the flow rate, from which the mean-flow velocity and the Reynolds
number in the annulus can be determined, will be described in the next section as part

of the preliminary experimental work.

8.3 PRELIMINARY EXPERIMENTAL WORK

In order to obtain the signal with a desired accuracy, every aspect of data acquisition
was studied for each parameter to be measured, and the pressure transducer and the
accelerometer were appropriately calibrated. Special attention was paid to the mea-
surements of the pressure signal, the centre-body displacement and the annular fiow
rate. As mentioned before, the unsteady pressure was influenced by the type of con-
nection between the moving and fixed parts of the outer pipes. After several trial tests,

the most suitable connection was found.
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8.3.1 Calibration of the Instruments

To assess the dynamical behaviour of the instrumentation with an accuracy relevant to
the order of magnitude of the signals, appropriate calibration procedures are required,
especially for the pressure transducer and the accelerometer, as well as for the orifice
plate; however, in the present work, the discharge coefficient of the commercial orifice
plate as a function of Reynolds number was taken from the calibration data for the
commercial orifice plate, which was already verified during a previous test.

(a) The pressure transducer

Before the dynamic calibration started, it was necessary to have a pressure trans-
ducer with known sensitivity. A PCB 106B pressure transducer (sensitivity 43.51
mV /kPa and resolution 0.69 Pa) was used as a reference pressure transducer, since it
has a higher sensitivity and lower resolution than the actual transducer to be calibrated.

The experimental apparatus for dynamic calibration, shown in Figure 8.5, consists
of a plexiglass cylinder of which the free end is covered by a rubber membrane and the
fixed end has two pressure transd-icer housing holes. The membrane was held tightly
by a ring against the edges of the cylinder by means of eight screws in order to prevent
air leakage. Two small circular plates of diameters slightly iess than the inside diameter
of the cylinder provide an oscillatory displacement of the membrane by means of a yoke
which was clamped to the base plate of the electromagnetic shaker (B&K 4801).

The reference pressure transducer was flush-mounted to the fixed end of the cylin-
der and the pressure transducer to be calibrated was mounted in another housing hole
which had the same configuration as in the actual measurements on the centre-body.
As mentioned before, both were installed recessed. The electrical output signal pro-
portional to the deflection of the membrane was generated by the harmonic oscillatory
motion of the shaker. Using the reference signal from the flush-mounted one, the sen-
sitivities of the actual pressure transducers were found to be in the range of 6.09 — 7.25
mV/kPa.

(b) The accelerometer

Taking into account the actual measurement configurations, the accelerometer
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was calibrated by the aid of a B&K accelerometer calibration Exciter (B&K 4294),
acceleration of which is fixed (10 m/s? with 59.2 Hz). To calibrate the accelerometer,
it was mounted on the device and then connected to the charge amplifier with the
cable in the same arrangement as for actual measurements. The sensitivity of the

accelometer was measured to be 1.02 mV/(m/s?).

8.3.2 Measurement of Flow Velocity

In the present work, it was expected that the actual flow rate was slightly larger the
measured one due to the leakage at the flanges between the fixed and the moving
parts of the outer pipe. However, as mentioned before, the air leakage was minimized
by keeping the gap very small. For this purpose, the radial width of the flanges was
relatively large with respect to the gap. This, together with the relatively low pressure
difference with respect to the ambient, insured that the leakage flow was quite small.

Looking at Figure 8.1, an orifice plate was installed at the downstream end, near
the pump, between two flanges to measure the flow rate. The flow in the basic duct of
diameter D was forced through an obstruction of diameter d, as shown in Figure 8.6.
The ratio of the radii 8 = d/D is a key parameter. For the present work, the diameters
were D = 40.0 mm and d = 12.7 mm so that § = 0.318

Applying the Bernoulli and continuity equations for incompressible steady fric-

tionless flow to estimate the pressure changes, one obtains
T T
~ D%V, = —=d*V,,
3 1=2d0

1 1
Po=p+ §pV.’ =p+ -2-pV22. (8.1)

Eliminating ), one can obtain the flow velocity V; in terms of the pressure change

(p1 = p2); thus,
v < [2e=p)]"
T -89

where the pressure difference was calculated by reading the manometer. However, this

(8.2)

is surely inaccurate because of the friction due to the viscosity which was neglected.
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Thus, an experimental calibration of the device must be carried out to fit the relation

1/2

Vo =g [M (8.3)

p(1-p4]
where the dimensionless discharge coefficient c4 accounts for the discrepancies in the

above approximate analysis. By dimensional analysis, it is expected that the coefficient

is expressed as

Cg = f(ﬂ9 RCD), (8‘4)
where
Rep = -V—ll—)-
v

Utilizing the discharge coefficient given for the commercial orifice with D : 0.5D
tapping shown in Figure 8.6, the flow velocity V5 can be calculated through an iteration
procedure. Thus, it is not difficult to obtain the Reynolds number in the annulus from

the calculated flow rate, with the aid of the continuity equation.

8.4 EXPERIMENTAL RESULTS AND COMPAR-
ISON WITH THE THEORY

Unsteady pressure at each pressure transducer location was measured, when the outer-
cylinder, subject to axial flow or in quiescent fluid, executed the translational motion,
in the plane of eccentricity or normal to it; or, alternatively, when it was subjected
to the rocking motion about a hinge point. Experiments have been conducted with
the following arrangements: (1) with the centre-body concentrically mounted vis-a-vis
the outer pipe, for both cases; (2) with the centre-body eccentrically mounted, for the
former case only.

Before the results are presented, attention will be brought to a point that proved
to have some importance, experimentally. It was found that the repeatability of the
results was not good when the fixed and moving outer cylinders were connected by
rubber or sealed by a sponge between the flanges, due to the shear stresses coming

from its deformation. However, in the limited range of frequency 25 — 45 Hz with

160



the sponge, the repeatability of the results was acceptable. Fixed blockades as shown
in Figure 8.2(c), in smooth contact with the moving cylinder, were used (at the two
ends of the moving portion) in the case of translational motion without axial flow;
grease was added liberally between the moving cylinder and the blockades to reduce
the surface friction forces as well as to prevent air leakage. For other cases, two flanges
of large diameter were used, and a very small gap between them (less than 1mm). With
these arrangements, it was found that the repeatability of the results for the present
work were pretty good and the results for low axial flow velocity can be considered
acceptable.

The ultimate objective of the analytical effort is to develop theoretical models for
accurately predicting the flow field in annular flow, either turbulent or Jaminar. The
latter situation is especially important in applications involving very narrow annuli.
For high turbulent flows, the experimental experimental test had been conducted with
pretty good comparison to the theoretical result using the previous apparatus. It was
therefore important to have experimental data for systems in laminar flow, or low-
intensity turbulent flow. In the present experiments with axial flow, the flow velocity
was low (U =~ 2.2 m/s), so that Re = U2H/v =~ 2,900. Although, this is not low
enough for laminar flow, it nevertheless represents a low turbulence-level flow.

A final remark concerns the presentation of the results. The pressure presented
here is actual unsteady pressure, (raher than differential pressure in the previous exper-
iments). Moreover, unlike the previous results, the nondimensional unsteady pressure,
p was plotted versus the azimuthal angle © for various frequencies f = w/(2r). The

dimensionless pressure p was defined in the previous chapters as

. p(r.0.1) ) p(z,r,O,1)
p(T,O) = W, and p(I, T,0) = W‘ (8.5)

for the translational and the rocking motion, respectively, where the nondimensional
displacement, € and ¢, /2, were defined with respect to the radius of the inner cylinder
a and the subscript 1/2 stands for the local value at the middle point X = 1/2, as

shown in Chapter 6. In fact, the dimensionless parameter p is independent of the small
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amplitude of the moving cylinder as shown in the previous chapters, either for viscous
flow or for inviscid flow.

The experimental results are compared with the theoretical ones obtained with
the spectral method for potential theory. As discussed by Chen et al. [9] for sufficiently
high values of the oscillatory Reynolds number, Re, > 15,000 approximately, it is
possible to neglect viscous effects with little loss of accuracy. For the case of these
experiments, 29,000 < Re, < 56, 860 is clearly sufficiently large. Also it was shown in
Chapter 6 that in the case of the three-dimensional problem and b/a = 1.25, Re, =
10,000, the effect of low flow velocity was small compared to the inertia effect, and
the unsteady pressure was linearly dependent on the vibration amplitude. Thus, the
theoretical results, to which experiments will be compared, were obtained without
considering the flow velocity of laminar flow, by means of two-dimensional-flow theory,
where the pressure is taken to be linearly proportional to the amplitude of motion.

As a preliminary result without axial flow, the amplitudes of the dimensional
unsteady pressure p° versus the frequency are presented in Figure 8.7, when the outer
cylinder executes rocking motion with an amplitude of 1 mm at the shaking position,
558 mm from the hinge. The pressure was measured at the middle X = 1/2, while
the sponge as a felt was filled between the fixed and the moving flanges. It was found
that the pressure distributions along the length of the cylinder are proportional to the
acceleration of the moving body, in parabolic shape versus the frequency, which means
that inertia effects are dominant, as expected. Discrepancies between the experimental
and theoretical results are most marked at low and high frequencies. The discrepancy
at high frequencies is probably associated with end effects, for example due to shear
deformation of sponge. For low-frequency oscillation, the low level of the pressure
signal is probably the cause of these discrepancy, since high noise/signal level almost
certainly affects the accuracy. Because of this, in the cases where the axial flow effect
is expected to be minimal. the tests have been conducted with either a very small gap
or with a closed arrangement as discussed before.

The experimental dimensiouless pressure, exerted on the inner cylinder, versus
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the azimuthal angle § = © are shown in Figures 8.8 — 8.10, to compare with the
theoretical ones. The amplitudes of the oscillations were 1 mm (at 41.6 Hz), 0.5 mm
(at 52 Hz) and 0.3 mm (at 66.4 Hz). For eccentric annuli, the motions were executed
in the plane of the symmetry of the eccentric configurations (Figure 8.9) and normal
to it (Figure 8.10).

Several features should be noted, as follows:

1. The measured unsteady pressure distributions are symmetric about © = 0 in
Figures 8.8 for concentric configurations and in Figure 8.9 for an eccentric ar-
rangement with translational motion in the plane of eccentricity, or they are
skew-symmetric in Figure 8.10 for an eccentric arrangement wiih oscillation nor-

mal to the plane of eccentricity, as expected.

2. The pressure readings increase with frequency; however, the nondimensional pres-
sure is almost constant with it. Considering the present results, it was found that
the nondimensional unsteady pressure, p, depend more or less on the geometry
and it can be assumed that p* is linearly proportional to vibration amplitude in
cases of high-frequency oscillation—the viscous effects were found to be minimal

in the present tests.

3. At these low flow velocities and for the translational motion, the effect of the
axial flow velocity is very small and can be neglected, as expected. This means
that the unsteady pressure field for purely transverse flow is dominated by the

oscillation-induced cross-flow.
4. Agreement between theory and experiment was found to be good.

Figure 8.11 presents the axial variation of the dimensionless unsteady pressure with
distance away from the hinge, along the centre-body. The amplitude of oscillation
was 1 mm with 34.4 Hz oscillation for the result of Figure 8.11(a) and 0.75 mm with

42.6 Hz oscillation for those of Figure 8.11(b) at the point of shaking. The following
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observations may be made with respect to the experimental results for the rocking

motion:

1. Asdiscussed before, the pressure increases more or less linearly with distance from
the hinge-point. In the case of the higher frequency, Figure 8.11(b), agreement
with this linearity condition is better; this is at least partially due to the slightly

higher pressure reading, and hence better signal-to-noise ratio.

2. There is little difference in the reading for zero and non-zero annular flow velocity

for the present case with low flow velocity.

3. Agreement between theory and experiment is seen to be good, except for the two
readings in of the low-frequency test, Figure 8.11(a), close to the ends of the mov-
ing pipe, which were probably affected by end effects due to local discontinuities,

as well as low signal-to-noise ratio in the case of small /L.

For these experiments, the phase difference for the motion of the cylinder is not
presented and no comparisons with theory have been made. The reason for this is
twofold: (a) the theoretical phase difference including the flow-velocity effect was less
than 10° for the high values of Re, involved; (b) it was difficult to determine the
phase difference with the desired accuracy, in the experiments. The cause of this latter
difficulty is related to the fact that the pressure levels were generally rather low and
hence signal-to-noise ratios were not as high as desired.

Agreement between the experimental and numerical results was found to be
within 10%, except the two readings close to the ends of the moving pipe shown
in Figure 8.11(b). The range of uncertainty in the results, i.e. the maximum vari-
ation between pressure measurements from the six transducers, was less than +0.4
nondimensional units of p defined by equation 8.5.

Considering experimental results, what should be stressed here is the importance
of the “end effects”. In lateral transverse motion of the outer cylinder, the local discon-
tinuities at the two ends could make a great deal of difference to the pressure reading,

especially in the vicinity of these discontinuities, but sometimes considerably further
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in. Similarly, in the rocking mode experiments, the inevitable protrusion of the ends
of the oscillating outer-cylinder generated pressure readings which were quite different
from the theoretical prediction, the theory having been developed for uniform or at
least smooth flow.

Also concerning the experimental results, the viscous effects and the low-flow-
velocity effect on the pressure were not visible for the present annular passage; how-
ever, they might be important for estimating the stability of a system in a very narrow
annular passage. By inspection of the theoretical results shown in the previous chap-
ters, it is clear that the viscous damping becomes larger with decreasing the annular
passage. Thus, future experiments will have to be done to measure the unsteady pres-
sure for narrower annular configurations. In this respect, another inner cylinder and
set of ogives of larger diameter have to be manufactured to obtain a narrower annular
configuration.

Finally, for engineering applications, the theory and experimental tests for nonuni-
form and/or discontinuous annular passages, such as a body protruding into the annular
flow must be dealt with in future work. A recent paper of Hobson and Jedwab [61]

shows how intricate and challenging the flow can be in non-uniform annular passage.
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Figure 8.1: Schematic diagram of the experimental apparatus in which either transverse
or rocking motion of the central part of the outer pipe could be imposed by the shaker.
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Figure 8.2: Sealing arrangements between the moving and stationary parts of the outer
pipe: (a) felt rings between flanges; (b) close-fitting flanges; (c) flange with lubricated
rubbing contact with oscillating cylinders(for zero axial flow only).
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Figure 8.7: Unsteady pressure measurements X' = 1/2 versus oscillatory frequency f,
in translational motion for a concentric arrangement with felt rings between flanges
(see part (a) of Figure 8.2).
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Figure 8.8: Unsteady dimensionless pressure versus the azimuthal angle O, in transla-
tional motion for a concentric arrangement. Oscillating frequency: (a) f = 41.6Hz; (b)

f = 52.0Hz; (c) f = 66.4Hz. —, potential flow theory; o,experimental results without
axial flow; A, experimental results with axial low Re ~ 2,900.
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Figure 8.9: Unsteady dimensionless pressure versus the azimuthal angle ©, in transla-
tional motion for an eccentric arrangement with oscillation in the plane of eccentricity;
nondimensional eccentricity e/(b — a) = 0.5. Oscillating frequency: (a) f = 41.6Hz;
(b) f = 52.0Hz; (c) f = 66.4Hz. —, potential flow theory; o, experimental results

without axial flow; A, experimental results with axial low Re ~ 2, 900.
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Figure 8.10: Unsteady dimensionless pressure versus the azimuthal angle ©, in transla-
tional motion for an eccentric arrangement with oscillation normal to plane of eccentric-
ity; nondimensional eccentricity e/(b—a) = 0.5. Oscillating frequency: (a) f = 41.6Hz;
(b) f = 52.0Hz; (c) f = 66.4Hz. —, potential flow theory; o, experimental results

without axial flow.
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Figure 8.11: Measured unsteady dimensionless pressure versus position along the
centre-body in rocking motion, for L, = 229 mm (L = 965 mm) and for frequen-
cies of oscillation (a) f = 34.4Hz (Re, = 29,460) and (b) f = 42.6Hz (Re, = 36,480).
—, potential flow theory; o.experimental results with no axial flow; Q.experimental
results with axial flow Re =~ 2,900.



Chapter 9

Conclusions

9.1 DISCUSSION AND SUMMARY

The unsteady flows generated by the oscillatory motion of cylinder in an annulus have
been studied by a newly developed numerical method. The main aim of this study
is to evaluate the fluid-dynamic forces acting on a cylinder immersed in inviscid or
viscous fluid for concentric and eccentric configurations. This new numerical method,
based on a spectral collocation, is capable of taking fully into account unsteady viscous
effects and of predicting the viscous forces for complex geometries, rigorously rather
than approximately. For the purpose of verification of the numerical method, semi-
analytical and simplified analytical methods have been developed to estimate the forces.

The spectral method has first been applied to a system having translational
motion(two-dimensional problem) in quiescent flow for eccentric configurations and
then to a system having flexural motion in axial flow for concentric configurations, with
the aid of a hybrid scheme, also involving a finite-difference method (three-dimensional
problem). In the former case, cylinders were taken to be infinite rigid bodies, while
in the latter case the flexible inner cylinder was considered to be clamped at both
extremities. In both problems, the fluid-dynamic parameters are expressed as spectral
expansions involving Chebyshev polynomials, Fourier series and exponential functions.
These expansions contain a priori unknown coefficients which are determined by a collo-
cation approach from the governing equations and the boundary conditions of the flow;

these expansions are perfomed in a convenient computational domain, obtained with
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the aid of a coordinate transformation, in which the governing equations are imposed
at appropriatly chosen collocation points. For the three-dimensional problem, the LU
decompsition method is utilized to solve a block-tridiagonal system of equations, while
the submatrices are treated with the Gauss-Seidel iteration method.

The spectre! collocation method has been validated by applying it to several
types of steady and unsweady flows for which analytical solutions are available: (a)
the steady viscous flow between two fixed eccentric cylinders; (b) the steady viscous
flow generated by the steady rotational motion of one of the cylinders in a concentric
annular space; (¢) the unsteady viscous flow between two parallel plates which have
oscillatory motion; (d) the unsteady viscous flow generated by oscillatory rotational
motion of cylinders in an concentric annular space. Excellent agreement was found, in
all these typical flow problems, between the spectral solutions and the analytical ones.
Therefore, one can conclude that the present spectral collocation method might be
applied to the analysis of the unsteady viscous flow problems in annular configurations
with confidence.

The spectral collocation method has now been applied to the potential flow gen-
erated by the translational motion of cylinder, in order to verify the method for flow-
induced vibration problem. The numerical results obtained for the inviscid case have
been compared to the available analytical solutions given by Chung and Chen [9] for
eccentric configurations and by Fritz (7] for concentric configurations. With meaningful
comparison under the same considerations, the numerical method has been validated.

The fluid-dynamic forces were formulated under the assumption of small am-
plitudes of motion. As a result, linearized equations were derived from the Laplace
equation for inviscid flow and from the Navier-Stokes and continuity equations for vis-
cous flow. The resulting forces have been calculated while varying (i) the geometry
of the system, including the eccentricity, (ii) the oscillatory Reynolds number, repre-
senting the product of the Reynolds number and the reduced frequency, and (iii) the
Reynolds number based on the hydraulic diameter.

It should be remarked that, in the present analysis, the flow in the narrow annular
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passage is assumed to be a fully developed laminar flow. The velocity distribution in
the eccentric annular domain has been obtained by the spectral method and then the
results are utilized for developing the unsteady flow model.

In parallel to the numerical models, the semi-analytical and simplified analytical
approaches have been developed to estimate the fluid-dynamic forces and the viscous
damping forces, respectively, as mentioned before. The fluid-dynamic forces are for-
mulated by the semi-analytical method, considering the inviscid effects and the main
effects of fluid viscosity. This semi-analytical method can be applicable to a system
of narrow annular flow; moreover, the inviscid luid-dynamic forces are predicted, rig-
orously, without the restriction about annular space. By inspection of the velocity
distribution of the circumferential flow velocity across the annular space, the viscous
damping forces are approximated by a simplified analytical method for either low or
high oscillatory Reynolds numbers. The big advantage of this simplified method is
that the fluid-dynamic forces can be easily estimated for very narrow annular flow,
where the forces can be expressed as explicit function of the circular frequency of the
moving cylinder; this is useful for future studies of the stability of such systems. The
results obtained by these methods are compared to the numerical results to validate the
newly developed numerical method. Good agreement was shown for narrow annular
configurations.

With the aid of the present numerical theory and the approximated analytical
theories, both qualitative and quantitative aspects of the results have already been
discussed in the corresponding chapters in fair detail. A number of significant results

were obtained, as follows.

1. The ratio of the penetration depth to the annular space width, which is related to
the oscillatory Reynolds number Re, and the nondimensional annular space h, is
an important parameter for characterizing the unsteady viscous fluid motion; e.g.,
the unsteady viscous drag force is proportioal to either 1/Re, for low oscillatory

Reynolds numbers or 1/\/Re, for high ones.
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2. The viscous effects on the fluid-dynamic forces can be neglected for sufficiently
high oscillatory Reynolds number; however, the viscous damping forces are im-

portant for very narrow annuli, as expected.

3. The viscous damping forces are mainly influenced by the unsteady viscous drag

due to the oscillatory motion for low axial flow velocity.

4. The viscous effects are caused by the unsteady viscous pressure perturbation
rather than shear stress effects. This tendency becomes larger with decreasing

annular space.

It is interesting to note that the pressure variation across the narrow annular space is
negligible. Also it is found that the fluid-dynamic forces are exponentially increased
with decreasing the anular space.

Although, the treatment of the viscous effect is based on translational motion or
flexural motion of the clamped-clamped beam, these conclusions may be considered
to be reasonable as an attempt to assess the influence of the viscous effect on the
fluid-dynamic forces for any boundary conditions.

Comparison of this numerical theory with the closest analytical available ones
validated all aspects that could be compared. However, as expected, the key element
which is unique to this theory in three-dimensional viscous flow problems, i.e., the
prediction ¢f the unsteady fluid-dynamic forces is different and superior to those of
previous theories, by taking into account the viscous related changes in the unsteady
flow field. In the present analysis, the viscous effects are more rigorously considered
by an adaptation of the formulation applicable to more complex geometries including
eccentricity or relatively wide annuli, and the effect of axial(laminar) flow on the un-
steady flow field is predicted systematically rather than approximately by means of a
numerical solution of the Navier-Stokes equations. Hence, for the fluid-d ynamic forces
acting on an oscillating flexible cylinder. this theory is superior to the previousiy avail-
able ones. However, for future stability analysis, the simplified analytical methods can

be utilized rather easily to estimate the forces, including viscous effects, with a very
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good computational efficiency.
Experiments described in the last part of this thesis have been conducted partly to

test the validity of the presented numerical theory. The unsteady pressure generated by
the oscillation of the outer cylinder was measured on the wall of the fixed inner cylinder
at various axial azimuthal locations. This was found to be a reliable and convenient
way of testing the theory. Either lateral translation or rocking motion was imposed.
In the equilibrium configurations the two bodies are either concentric or eccentric, in
the plane of oscillation or normal to it. The experiments have been performed for high
values of the oscillatory Reynolds number. As discussed in the numerical results for
sufficiently high values of the oscillatory number, it is possible to neglect viscous effects
with little loss of accuracy.

Experiments have shown that the effect of the axial flow velocity on the un-
steady pressure is minimal for low flow velocities(Re ~ 2,900) and low amplitudes
(displacement /radius~0.04). The pressure is more or less linearly dependent on the
amplitude of the moving cylinder, which means that linear theory is applicable, based
on the assumption of small amplitude motion; moreover, the viscous effects can be
negligible for high values of the oscillatory Reynolds number. It should be remarked
here that local discontinuities at both ends of the moving part could make a great deal
of difference to pressure readings, mainly in the vicinity of these discontinuities.

The experimental results are compared with the theoretical ones obtained by the
potential flow theory based on the spectral method. It was seen that that agreement
between theory and experiment is good and potential-flow theory was found to be

adequate for the high values of the oscillatory Reynolds number.

9.2 MAIN CONTRIBUTIONS OF THIS THESIS

The main aim of this thesis is to present a newly developed numerical approach, based
on a spectral collocation method, for solving confined viscous flows with oscillating
boundaries, which are related to the flow-induced-vibration problems. This approach

uses suitable spectral expansions for the fluid-dynamic paremeters, as discussed before.
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The main contributions of the present work can be summarized as follows.

. A new and efficient numerical model has been developed to accurately evaluate

the unsteady flow field and the fluid-dynamic forces on oscillating rigid centre-

bodies or outer cylinders in eccentric annuli.

. A hybrid collocation finite-difference method was developed for three-dimensional

unsteady flow problems, specifically for obtaining the fluid-dynamic forces on

flexible centre-bodies oscillating in concentric annuli.

. Alternative approaches, semi-analytical and simplified analytical, are presented

for the determination of the unsteady fluid-dynamic forces, with extensive dis-
cussion on their applicability to various systems; they are used for the validation
of the numerical models mentioned above, and can be efficiently applied in the

analysis of the fluid-elastic instabilities.

. A detailed experimental investigation for eccentric configurations was first un-

dertaken as part of this thesis, to author’s best knowledge. The numerical results

were validated with these experimental results.

Furthermore, the following important advantages of the various approaches developed

in this thesis were established.

1. The fluid-dynamic forces, including viscous effects, can be evaluated more rigor-

ously by the numerical methods developed than by analytical theories; moreover,
the accuracy of the numerical solution converges fast, exponentially, with the

number of collocation poiats.

. The semi-analytical approach ic fairly applicable for the system where unsteady

inviscid forces are dominant in the fluid-dynamic forces (e.g., for high values of
the oscillatory Reynolds number), even in the case of a finite length of cylinder
and only slightly confined flow. This analysis is less restricted in the size of the

annular space as compared to the previous analytical models [54].
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3. The damping force is estimated rather easily by the simplified analytical method;
this approach is very useful for very narrow annular configurations, where the
added mass is mainly influenced by the geometry, although the viscous damping

forces are very important, even in this case.

This numerical approach is expected to be a very useful tool in the analysis of

other, similar fluid-structure interaction problems, involving oscillatory boundaries.

9.3 SUGGESTIONS FOR FUTURE WORK

In order to determine the fluid-dynamic forces acting on a flexible cylinder, the problem
has been formulated based on the assumpticn of laminar flow and a simple mode
shape of vibration in uniform annular passage. Therefore, there are several possible
directions in which this work can be extended. In this sense, it is suggested that
the present numerical analysis should be extended for turbulent flow and for systems
with discontinuous geometries, such as a step variation of the annular passage. Also,
the study of the stability of the system should be undertaken by using numerical and
analytical tools developed here.

In view of the difficulty of the experiments involving flexural motion of a slen-
der cylinder subjected to narrowly confined axial flow, the numerical results obtained
here are not compared with experimental results; however, this comparison is very
interesting from the point of view of the flow-induced vibration and stability analy-
sis. Obviously, it is necessary to have experimental verification, showing how good
the present theory is, especially in evaluating the viscous effects on the fluid-dynamic
forces. To get sufficiently large pressure signals, even for low oscillation frequencies,
50 as to see the viscous effects, it is suggested to have experimental tests in narrower
annuli filled with water.

The experimental results highlight the importance of the end effects, which are
also preseit in engineering systems: hence, a possible next phase of work should deal

with nonuniform and/or discontinuous annuler flow passages. An attempt should be
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made to extend the theory for this problem, the importance of which is self-evident.
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Appendix A

The Approximate Method Based
on Inviscid Slender-body Theory
and Comparison of Critical Flow
Velocities

The system consists of a flexible inner cylinder, which has radius a, cross-sectional area
A, = ma?, length L, density p, and flexural rigidity EI. The radius of the confining
duct is ag = a + H, and the undisturbed flow velocity is U.

Considering small lateral motions of the flexible cylinder immersed in inviscid
flow, the equation of motion based on slender body theory is given by

2 _ 2
EI%:T' +p,A,%,% =-M (?g‘t +UZ?E) er=Fp, (A1)

in terms of the displacement of the moving cylinder, e, as proposed by Lighthill [17],
where F, represents the inviscid fluid-dynamic forces. In the above equation, the virtual
mass, M is expressed as xpA, wherz p is fluid density. For concentrically confined flow,

X is expressed as follows:
_(a+H)?+a?
X= (a+ H)? —a?’

where H denotes the annular space between the two cylinders. Thus, it is clear that

(A.2)

the added mass increases with confinement.

Thus, the inviscid fluid-dynamic forces can be expressed as

6281 afl
Fp= - (AIW'-I-C‘,—at—-{-kEI . (A.3)
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where the damping coefficient, C,, and the stiffness coeficient, k, are related to the
centrifugal and Coriolis forces, respectively. Hence, it should be remarked that the sys-
tem is generally nonconservative; hence, inviscid theory contains a component related
to damping(Coriolis force). Nevertheless, the effect of this force is aull for cylinder
supported at both ends(as is the case here). Considering thes equation (A.l), it is
obvious that the coeflicients C, and k depend on the flow velocity.

At this stage, the critical flow velocity, where the system loses stability by buck-
ling, may be found particularly easily, considering Euler’s method of equilibrium. Elim-

inating the time derivatives from equation (A.1) yields

6‘e, 20 e
Elg— + MU= =0, (A4)

where e; = T aze'®* (the destabilizing force in this case is propotional to MU?).
As a result, a system with clamped ends loses stability by divergence, of which
the critical flow velocity can be approximated by Paidoussis [21] in a simple form,

because of the simplicity of the slender-body formulatiou, as

- 1| EI
Us = 21‘/; DAL (A.5)

Table A Comparison of the nondimensional critical flow velocity U., obtained
with the potential-flow verisons of the slender-body theory [21]
and the inviscid version of previous theory [37]

Vaule of U, Percent discrepancy
l=L/a|h= H/a|Slender-body | Previous based on first
theory theory column
0.05 1.39 1.49 7.2
20 0.10 1.94 2.13 9.8
0.15 2.34 2.64 12.8
0.01 0.627 0.631 0.7
100 0.05 1.387 1.425 2.7

It is instructive to compare the results with those given by the previous analytical
theory [37], which was developed based on the assumption of narrow annulus as shown
in Chapter 2, but considering only the inviscid fluid-dynamic forces. For this purpose,

the nondimensional critical flow velocity, Ue, = Uey/ \/(E I)/(pAL?), are calculated by

A-2
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both methods and then the typical results are shown in Table A for narrow annulus.
The difference between two results becomer with increasing L/a and decreasing the
annular gap H/a, where slender-body theory and the narrow-annular simplification of

the previous theory, respectively, apply best.
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Appendix B

An Analysis of Fully Developed
Laminar Flow between Two
Eccentric Cylinders

An analysis, developed for fully developed laminar flow in an eccentric annulus by
Piercy et al. [52] and more recently by Snyder et al. (53], is presented to validate the
present numerical method. By the analytical method based on the bipolar transfor-
mation, an exact solution for the velocity distribution is calculated and then compare
with that obtained by the numerical method shown in Chapter 4.

The geometry considered in the analysis is presented in the Figure B. The radii
of two infinitely-long cylinder are a and b. Because of the asymmetry of the geometry,
solution is obtained in bipolar coordinate system rather than in cylindrical coordinate
system.

The Navier-Stokes equations in this essentially two-dimensional problem reduce
to the Poisson equation, which may be expressed in the rectangular coordinates, z, y
and z, in the form
&l U | Q

=4 (B.1)

VU = e e =
il A

where
a’ dP

4u dr
in which U(y.z) is the axial flow velocity, P(r) is the pressure and u = pv is the

fluid viscosity. In the analysis, the pressure gradient in the axial direction, dP/dz,

B-1



is constant because of the the assumption of fully developed laminar flow and the
viscosity is assumed constant. The above equation is subjected to the usually no-slip
boundary conditions expressed by U = 0 at the inner and outer surfaces.

Using a plane harmonic function expressed as

W:U—%(y2+z2), (B.2)
the governing equation (B.1) can be rewritten
i\ L
2 = — —_—

V¥(y, z) = 5 + £y (B.3)

y 3

-

b
., B «

ccath B

Figure B. Eccentric annulus geometry in the physical plane (y, z)
and in the bipolar plane (£, 7).

This solution must satisfy the following equation, due to the flow symmetry with

respect to the plane of the eccentricity, as

63—\;‘ =0. (B.4)
y=0
To solve the problem. the bipolar coordinates (£,n) are defined by the transfor-
mation
y+ iz =ctan§j§i) . (B.5)

where ¢ is a constant. Thus, one can get relations between the physical and bipolar

coordinates in the form

csinf csinh7n
T e 3 B me— B.6
y coshn +cos§ coshn + cos§ (BG)
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__.._._2_Cy_.__ 2n M
tan{ = y2+22-¢c’ ¢ T2+ (z-c)?’ (B.7)
2
2 _ 2 '
y° + [z — ccoth1] m ; (B.8)
where
¢ =asinha = bsinh g, (B.9)
with \ 2 5.
b-a2-¢ b2-a’+e
cosha = T ’ COShﬂ = ——Eb—e——- ’ (B.IO)

and y and z are related to the cylindrical coordinates r and ©, as
y=-rsin®, z=ccotha —rcos© . (B.11)

Equation (B.8) shows that lines of constant 7 represent circles in the physical
plane with centre at (ccothn,0) and and radius ¢/sinh%. The inner and and outer
surface of the annulus are thus represented by lines of constant  which will be designed
as a and [, respectively.

Tranforming equation (B.3) into bipolar coordinates, one gets

0’\1’ v

V2Q(¢,n =0, B.12
€N =3a + 37 (B.12)
subject to the boundary conditions
_ Q2 2cosha ) .
¥(£,a)= - [l ho s cosf] ,  at the surface of the inner cylinder ,
Qc 2cosh 8 )
Y(,B8)= [ PV f] . at the surface of the outer cylinder ,
(B.13)
and the equation (B.4) can be expressed in the new coordinates (£,7) as
%?- =0, Z\P =0. (B.14)
{ =0 £ =ty

Considering the geometry of the system and equation (B.14), the solution to

equation (B.12) may be assumed in the form

Y=E+En+ Z[A,.e'"’ + B,e™""] cosnf , (B.15)
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1 The unknown coefficients can be determined, applying the boundary conditions

expressed in the expanded form as

V(¢ a) = ’Q"lzé Fl — 2cotha {1 +2 f:(—l)"e"""«:osnﬁ}] ,
L n=1
QC2 [ = 1_-na
U(¢,B8) = - 1- 2coth,5{1 +2) (-1)'e ™™ cos nf}] , (B.16)
L n=]

with the aid of the comparison of its order n. Thus, the unknown coefficients are

_ 2002 coth3 — cotha

Eo a? a-[ '

Qc

B=% [1_20 coth,@—ﬂcotha] ’
a a-—_

Qc coth # — coth a
= 4-52—(—1)'. e2na __ o2nf !

e2"8 coth f — e cotha
e2nu — e2nﬁ

An

(B.17)

B, = 4%(—1)"

Substituting equation (B.15) into equation (B.2), the general solution is obtained

in the form
= - Qc? 2cosé
- ny ny _ )
U(€E,n) = Ey +E1T)+'§[A,.e + B,e™""] cosné + o 1 coshn T cosE |’ (B.18)
where the last terms come from
2cosé

2, .2
482l -
y coshn + cos§

with the aid of the coordinate transformation.
The velocity profile in cylindrical coordinates must be expressed in terms of the
bipolar coordinates (£, ), utilizing the relations between the two coordinates shown in

equations (B.6) and (B.11).

A
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Appendix C

Steady and Unsteady Annular
Viscous Flows between Rotating

Cylinders

An annular viscous flow between two concentric cylinders of radii a and b = a+ H,
where H = ah is the annular space, is generated by the steady or oscillatory rotation of
one of the cylinders, while the other is fixed. The present spectral collocation method,
presented in Chapter 4, is used to slove the problem and then the results are compared
with these analytical results to validate the numerical method.

In this case, by eliminating the radial flow velocity and the circumferential vari-
ation of fluid dynamic parameters from full Navier-Stokes equations, the governing

equations reduce drastically to
w2 dP

-—r— = -E;- N (C.l)
1W= 190 ow- w-
> = hr (T) = (€.2)

where W* denotes the circumferential velocity. Equation (C.1) determines the radial
pressure distribution resulting from the motion.

Introducing a new coordinate defined by
r=e%, or g=lr, (C.3)

the radial derivatives are expressed as
ow= _ an ra?w- _ *w owr

or _ ¢ o~ 9 g (C4)

r
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Substituting the above equations into the equation (C.2), the governing equation
can reduce, in nondimensional form, to

) (ar")? 0\ . _
___(1+ a a)“’""’ (C.5)

with the aid of w = W*/W, and r* = r/a where W, represents reference flow velocity.

C.1 STEADY ROTATIONAL FLOW

In the case when the moving cylinder is rotating with a steady peripheral velocity W,

equation (C.5) is rewritten

2T
—d-a'é' —w=0 ’ (Cﬁ)
subject to the boundary conditions
tblr‘:l = 1 - 6 ' wlr‘:l-@-h = 6 A (C'7)

where 6 = 0 or 1 accordingly as the inner or outer cylinder is rotating, and where the

nondimensional circumferential velocity is defined by
w=W/W,. (C.8)
Analytically, the general solution of the above equation is in the form
w=Ce?+ Coe™?; (C.9)

thus, in the physical domain, it is expressed, considering the coordinate transformation
shown in equation (C.3), as

w = Ciar" + CQ"'I".‘ . (C.10)
ar

where the unknown coefficients, C; and C, can be determined by the boundary condi-
tions.
The analytical solution for this steady rotation case can be obtained as

ey 1] . 1 . (1+h)?
w(f)—h(2+h){6(l+h)(r —F)—(l-é)[r -— ]} (C.11)

C-2



ot
Ii—n_w Pqi

C.2 OSCILLATORY ROTATIONAL fLOW

The unsteady flow, generated by an harmonic oscillatory motion of a cylinder with the

peripheral(i.e. tangential) velocity w* = W,e*! in annulus, will be discussed. For this

case, equation (C.5) reduces to

d*i «2] .
3;2— - {1 + (Re,r 2] w=0, (C.12)
where the nondimensional reduced velocity is defined by

- - ‘ID(T, t)

w(r ) = W ’

and the oscillatory Reynolds number by
2

Re, = - (C.13)
which is explained as the product between the Reynolds number based on the peripheral
velocity amplitude of the cylinder, Re = Wya/v and the reduced frequency, Q =
wa/W,. The differential equation (C.12) is subjected to the boundary conditions,

equation (C.7), where again 6 = 0 or 1 for the case of inner or outer cylinder oscillation,

respectively.

Thus, the analytical solution may be expressed for the case of very narrow annular

clearance h < 1 or r* = 1, in the form
W= Aje® + Ae™ ", (C.14)
where o? denotes
o? = (14 tRe,) = (14 Re?)"”* (cos B +1sin B) , (C.15)

in terms of § = arctan Re,.
Taking into account of the boundary conditions, the approximate analytical so-

lution is obtained

-/ e 1 o .o 1 o 1+ h 20
(C.16)

C3
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where the complex constant, a, is expressed as

a= (1 + Re‘f)l/‘1 (cos B/2+ ¢sin §/2) .

C4

(C.17)



Appendix D

Unsteady Viscous Motion between
Oscillating Parallel Plates

A further example which leads to a simple exact solution of the Navier-Stokes equations
is afforded by the unsteady flow between two infinitely long plates, 2H apart, one of
which executes harmonic oscillation parallel to itself with a velocity uj(t) = U,e*~*
while the other plate is fixed (u3 = 0) or has an antiphase motion, u; = —Upe*“*. Let y
denote the coordinate perpendicular to tha wall, measured from mid-distance between

the plates. In this case, the Navier-Stokes equations reduce to

% = u%% , (D.1)

where v is the kinematic viscosity of fluid; since, the flow velocity normal to the wall
and the derivatives of dynamic fluid parameters in the direction of the motion can be

eliminated in the equation. This equation may further be reduced to the form

S o Rei=0, (D.2)

subject to the boundary conditions

where 6 = 0 in case when the lower plate (Z = ~1) is fixed, or § = —1 when it oscillates

in antiphase with respect to the upper one (Z+1). In the above equations, Z = y/H is

D-1



a nondimensional coordinate, Re, = wH? /v is the oscillatory Reynolds number, which
can be viewed as the product between the Reynolds number based on plate-velocity
amplitude Re = U, H/v and the reduced frequency defined by = wH /U,; @ represents

a nondimensional is reduced velocity defined by

W(Z) = %‘fgg . (D.3)

The analytical solution to equation (D.2) for this unsteady flow is
W = A % + Ape~?? | (D.4)

where the complex constant a is expressed as as

a=(1+¢)y/Re,/2. (D.5)

Considering the boundary conditions on the oscillating and fixed plates, the com-
plex constants A; and A, are determined. The resulting analytical solution is

. _ sinh[a(Z + 1)]
u2)= sinh(2a) '

(D.6)

for the case the upper plate (Z = 1) oscillating with respect to a fixed lower one

(Z=~1),0r

sinh[a(Z + 1)] + sinh[a(Z — 1)]
sinh(2a) '

for the case when the two plates oscillate in antiphase.

W(Z) = (D.7)



Appendix E

Inviscid Fluid-dynamic Forces on
A Cylinder in Concentric Annular

Configurations

The presence of fluid can significantly affect the dynamic motion of a cylinder in annular
configurations. A method for evaluating fluid-dynamic forces for use in the dynamic
analysis of moving cylinder immersed in incompressible, frictionless fluid was developed
by Fritz, for small amplitude motion. However, the theory can be adapted to several
unsteady fluid-dynamic problems, and the results associated with the present problem
in concentric annulus are presented to estimate these forces. In this analysis, the
cylinder is assumed to execute translational motion.

A frictionless, incompressible fluid in irrotational motion will have no loss of
potential energy and may be called an inertial Lagrangian system. The fluid-dynamic

forces F, acting on a cylinder are given by Lagrange’s equation:

F,:....‘.i..a_TL.!,.?_Ti

dt 0z, Oz, ' (E.1)

where z, are the generalized coordinates of motion and Ty is the fluid kinematic energy.
By the assumption of small amplitude motion, it is reasonable to neglect the nonlinear
contributions associated with the last term in equation (E.1). Hence, the equation

reduces to
F=-——-—-L. (E.2)



-

For the present analysis, the system consists of cylinders of which radii are a and
b as shown in Figure E.1. The displacements of the moving inner and outer cylinders

are denoted by e; and eg, respectively.

Figure E. Two-cylinder motion with fluid coupling
Hence, the kinematic energy per unit .cngth of system is
b r2x ]
T, = / / = pr dr dO(v*? + w™?) , (E.3)
aJo 2
where the radial and circumferential velocities, respectively, are expressed as

" = (%—A)cos@,
r

v = (g + A) sin® (E.4)

with

_ 1 2de, 2deo
4= (a T ) ’

Substituting equation (E.3) into equation (E.2) yields
d’e a2+t  d%
F; = —pmadlay dizl +pr—3—ai0 dt’o .
a’+b®  d%y

d?e
—prblann —2
prbapo T + pm 5 aop; o2

(E.S)

Fo
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where Fp and F; are the fluid-dynamic forces actiug on the inner and outer cylinders,
respectively. The self-added(ay; and app) and mutual-added( aso and ag;) coefficients
are given by
S _ 2 1+ a? +b?
o= 0= T /e " "2 —a?)

a? + b

@00 = QN = f 3

(E.6)
where, i.e,, ap; is the mutual-added mass coeflicient acting on the outer cylinder due
to oscillatory motion of the inner cylinder. As compared with the approach based
on slender-body theory shown in Appendix A, the self-added mass coefficients are in
the same form. Typical results and comparison with the present numerical results are

presented in Chapter 5.
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Appendix F

Block-tridiagonal System of
Equations

When a system of partial differential equations is approximated by an implicit formu-
lation involving three grid points at each level, a block-tridiagoral system is produced.
A block-tridiagonal is one whose only non-zero submatrices are in the diagonal and
either side of it. In the present analysis, a system of linear algebraic equations can
be obtained by applying the governing equations to a finite number of grid points dis-
tributed in the axial domain, based on the hybrid scheme. As a result, the system of

equations can be expressed as a block-tridiagonal system in the general form
SAQ=R, (F.1)

where AQ and R are the vectors for the unknown coefficients and the boundary con-
ditions, respectively. S represents the block-tridiagonal matrix expressed as

(A, C, 00 0 O O
B, A, C, 0 0 0 0
By A; C; 0 0 0
o - - - 0 0
0 0 . . . 0
0 0 0 By Az Cip 0
0 0 0 0 By A Coy
0 0 0 0 O B A |

where A,, B, and C, are matrices of order m.

-

; (F.2)

oo o oo

COoOOo0O0O0CO

To solve the system of equations, the elimination method with factorization, is

utilized. In the first equation, A; AQ, + C; AQ; = R, involves only AQ, and AQ».
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Using this equation and the second one to eliminate AQ,, the new second equation
involves only AQ, and AQ3. Continuing this procedure to the last equation where
AQq-) has been eliminated, the new last equation only involes AQ;. Therefore, AQ,
can be determined and the result is applied to the new (¢ — 1)th equation to determine
AQ-;. Applying the solution of the ith equation to the (i —1)th equation up to i = 2,
AQ;-; is determined. The algorithm for doing all of this will now be described.

Let us consider the following factorization,

S=LU=

[T, 0 0 0 0 0 0 07fA O 0 0O O 0 0]

B, T, 0 0 0 0 0 0 I A, 0 0 0 O 0 0

0 B3 I'3; 0 0 0 0 0 0 I A3 00 O 0 0

0 0 -0 0 0 0 0o 0 - 0 O 0 0

0 0 o - . 0 0 0 o 0 0 .- - 0 0o o}’

0 0 0 0 B TI'ys 0 0 0 0 0 0TI A2 0 O

0 06 00 0 B, Iy 0 0 0 0 00 I A, O

| 0 0 00 O O B I,JjlO O 00O O I A

(F.3)
where [ is the identity matrix of order m. The square matrices I', andA; are determined
as follows:
P,:A;, and A1=A,‘10;,
['=A - BA.,, for i=23,4,---,t,

and

A =AT'C, . for i=23,4,.-.,t—1.

The system of equations given by equation (F.1) is now equivalent to
LY=n, (F.4)

where

Y =UAQ. (F.5)



b

Rewriting equation (F.4), one obtains

', 0 0 0 O 0 0 0] ©h ] R,
By, T, 0 0 O 0 0 0 Y2 R,
0 B I's 0 O 0 0 0 Y, Ry
o o - - 0 0 0 0 . .
0O 00 - - 0 0 O N I (F.6)
0 0 0 0 Bi—a Iy 0 O Yi-2 R, 2
o 0 00 O B, T4 O Y1 R,
| 0 0 0 0 O 0 B, Ty f | R,
from which
),1=FI-IR2’
and
K=r|—1(Ri—B|K—l)v for 1=21 3,4,"',t.
Equation (F.5) is then expressed as
I Ay, 0O 0 00 O 0 1 AQ, ] [ Y] ]
0 I A, 0 00 O 0 AQ, Y,
0 0 I A; OO0 O 0 AQ; Y,
o0 0 - -0 O 0 . .
00 0 0 0 0 N O R
00 0 0 O01I A2 O AQ:-2 Y2
00 0 0 00 I A AQ- )
00 0 0 00 O I || AQ: | | Y ]
from which
AQ =Y,
and
AQ, =Y, - AAQ . for 1=t t-2,t-3,t-4,---,2,1.
In the present analysis. the submatrices of equation (F.2) become for equal axial
spacing
A =A=A3=---=A,,
B, =B;=B;=---=B,,
Ci =Ca=Cy=---=C,. (F.8)

Therefore, the system of equations is drastically simplified and the storage required for

the system of equations can be substantially reduced.
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Appendix G

The Computer Program and
Typical Results

The program is used for calculating the fluid-dynamic parameters including the un-
steady pressure generated by the oscillatory motion of the inner cylinder, eventually
computing the fluid-dynamic forces acting on the inner cylinder. The system, pre-
sented in Chapter 6, consists of a fiexible inner cylinder, as a clamped-clamped beam,
subjected to axial flow in a concentric annulus. The fluid-dynamic forces can be stud-
ied for different geometries and fluid properties. This program has been modified to
tackle the two-dimensional problem discussed in Chapter 5.

The whole program is written in FORTRAN. It can be run on a personal digital
computer. All calculations are carried out in real and complex arithmetic with double
precision. The program is composed of a main program and sub-programs. The main
program is subdivided into four parts. In the first part, the axial flow velocity is
calculated for laminar flow. Considering the results of steady axial flow velocity and
using the collocation method for discretizing the governing equations, the submatrices
W, P, E(see section 6.1.2) are obtained by the finite-difference method and the inverse
matrix, P-! and its determinant are computed in the second part. Utilizing the LU
decomposition method, the unknown coefficients for the fluid parameters in expanded
form under the spectral method, are determined in part three. Finally, the fluid-
dynamic parameters and the resulting forces are calculated.

The sub-program consists of subroutines SHORTEN, AMPLY and DISP. The
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inversion and determinant of matrix A are computed in the subroutine SHORTEN by
the shortened method based on the Gauss-Seidel iteration procedure with respect to
pivot point. The subroutine AMPLY is used for complex matrix multiplication. The
lateral displacements of the moving flexible cylinder based on the first mode expansion
are calculated in the subroutine DISP. The value of Chebyshev polynomials for given
Z are computed in the subfunction CBSP.

A sample listing of the program and its output results (for b/a = 1.25, L/a =
15, dP/dx = —5Pa/m, p = 0.0015 Pa-s, p = 1000 kg/m3, e/(b—a) = 0 and Re, = 500)
are shown in the pages that follow. In the program, the input data(e.g. RA, FRE, FM)
are used to calculate the nondimensional parameters(as numerical input data) shown
in equation (6.12). For example, the frequency FRE is not used explicitly, but only to
calculate Re,.

The output should be read as follows. First, the radial variation of the axial flow
velocity, which is used to formulate the unsteady flow problem, is presented with its
unknown coefficients U,; — see equation (4.7); in the output, “r” denotes the real(e.g.
in Ur) and “i” the imaginary part, and the different columns zorrerpond the different
values of j above. Second, the complex dimensional unsteady flow parameters, e.g u*
in m/s and p® in Pa, are calculated at specific positions (X, Z, F1(©) = 1), considering
the corresponding unknown coeflicients presented. Finally, the complex dimensionless
fluid-dynamic forces F are presented along the axial locations X. Of the four numbers
given, e.g. CM(X), the first involves only the contribution of pressure, whereas the last

involves also all shear stress effects.
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$STORAGE: 2
$NOFLOATCALLS

SLARGE

cc

ik MAIN PROGRAM #rrdrdrdrirkinkd

cc

448

452

PROGRAM UEIL
IMPLICIT REAL*8 (A-H,0-2)

IMPLICIT INTEGER (I-N)

PARAMETER (MC=~8 MF=1,NF=60,NF1=61,MX=43)

DIMENSION UMS(MF,MC) ,DR(MF,MC),DI(MF,MC),QNT (NF)

DIMENSION RR(MF,MC),RI(NF,MC),Q(NF),QT(NF),QN(NF,MX)

DIMENSION XR(MF,MC),XI(MF,MC), PR(MF,MC),PI(MF,MC)

DIMENSION A(NF,NF1),AA(NF,NF1),B(NF,NF),C(NF,NF)

DIMENSION DSR(MF,MC),DSI(MF,MC),RSR(MF,MC),RSI(MF,NC)
DIMENSION AP(NF,NF),Y(NF,NF)

ZQUIVALENCE (AA(1,1),QN(1,1))

EQUIVALENCE (Y(1,1),AP(1,1))

EQUIVALENCE (B(1,1),XR(1,1)),(B(1,2),DR(1,1)),(B(1,3),RR(1,1))
EQUIVALENCE (B(1,4),XI(1,1)),(8(1,5),DI1(1,1)),(B(1,6),RI(1,1))
EQUIVALENCE (B(1,7),PR(1,1)),(B(1,8),DSR(1,1)),(B(1,9),RSR(1,1))
EQUIVALENCE (B(1,10),PI(1,1)),(B(1,11),DS1(1,1))

EQUIVALENCE (B(1,12),RSI(1,1))

COMMON A,AA

CHARACTER*10 FNAME2

FORMAT(A)

WRITE(%,452)

FORMAT(' OUTPUT FILE NAME-'\)
READ(*,448) FNAME2
OPEN(6,FILE=FNAME2, STATUS='NEW')

WRITE(*,500)

READ(*,%) RB,RA,FRE,ADP,VF,FM,EO,EC
WRITE(%,502) RB,RA,FRE,ADP,VF P, EO,EC
WRITE(*,504)

READ(*,*) IANS

IF(IANS.EQ.2) GO TO 1

WRITE(6,502) RB,RA,FRE,ADP,VF,M,E0,EC

WRITE(*,507) -
READ(*, w)MN ,MJ ML,XL,NU,ND
WRITE(*,S508)MN,MJ ML, XL ,NU,ND
WRITE(*,504)

READ(*,%) IANS

IF(IANS.EQ.2) GO TO 3
WRITE(6,508)MN ,MJ,ML,XL,NU,ND
NM=B#MN¥M] - L*MN

NM1=NM+1

DV=VF/MN

PIE=2.DO*DASIN(1.DO)
OMG=FRE*2 . DO*PIE
EON=E0/OMG /RA
XD=1.D0/DBLE(ML-NU-ND)
RAN=RA/RB

ECN=EC/RB

ECC=~EC/(RB-RA)

CKe- . 25DO*ADP /VF
S=OMG*RA**2 /DV



: WRITE(6,506 )RAN,ECC,S
’ CD=DBLE(MN-1)
IF(DABS(CD) .LT.1.D-13) CD=1.D13
SOD=. 9DO*PIE/CD
$0Z=2.D0/DBLE(MJ-3)
cc
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCE
c PART ONE c
CCCCCCECCEECCCCCCCCCCCCCECCCCCCCCCCCCCCCCCCe
INMN#MJ
IN1=UN+1
ND2=NM/2
L=0
IF(DABS(CK) .LT.1.D-13) G0 TO 11
DO 22 I=1,MN
DEG=SOD*DBLE(I-1)+.005D0*P1E
CA=1.D0-ECN**2# (DSIN(DEG) ) #*2
RO=-EC*DCOS ( DEG)+RB#*CA*+. 5
He-1.DO+RO/RA
CB= . SDO*RB*ECN+*2#DSIN(2.DO*DEG)*CA*# ( - . 5)
DHT=(EC*DSIN(DEG) -CB) /RA
CB~. 25DO*RB*ECN#*4# (DSIN(2 . DOXDEG) ) **2%CA** (-1.5)
CB=CB+RB*ECN#*2+DCOS (2 . DO*DEG) *CA%* ( - . 5)
D2HT=(EC*DCOS (DEG) -CB) /RA
DO 22 LZ~1,MJ-2
Z=SO0Z*DBLE(LZ-1)-1.D0
Hl=H/(2.DO+H*(1.D0-Z))
AS=((1.D0-Z) /H*DHT) **2
BS=2.D0%(Z-1.D0)/(H¥*2)*DHT**2+(1.D0-Z) /H*D2HT
CS=2.D0*(1.D0-Z) /HADHT
Dl=1.D0+H1%*2%AS
D2=-H14 1% 2#BS
D3=H1#+24CS
DémH1#%2
IF(L2.EQ.1.0R.LZ.EQ.MJ-2) GO TO 12
GO TO 15
12 Lel#l
WRITE(*, %)L
A(L,JN1)=0.DO
DO 16 J1=1,MJ
J=Jl-1
DJ=DBLE(J)
CJ=1.D0
1F(J.EQ.0) CJ=2.DO
TJ=CBSP(J,2)
DO 16 KF=l,MN
DK1=DBLE(KF-1)
MXF=(KF-1)*MJ+J1
DC~DCOS (DK1#DEG)
IF(EC.LT.1.D-14)DC~1.D0
A(L,MKF)=A (L, MKF)+TJ*DC
16 CONTINUE
15 Lelel
WRITE(*,*)L
A(L,JINL)=CK* (RA*H) **2
DO 26 Jl=1,MJ
JaJ1-1
DJ=DBLE(J)
CJ=1.D0
IF(J.EQ.0) CJ=2.DO0

S
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28

32

36

3
cC

TJ=CBSP(J,Z)
J2=J+2
DO 25 KF=1,MN
DK1~DBLE(KF-1)
DC=DCOS (DK1#*DEG)
DS=DSIN(DK1+*DEG)
IF(EC.LT.1.D-13) DC=1.D0
1F(EC.LT.1.D-13) DS=1.D0
IF(EC.LT.1.D-13) DK1=1.D0
DO 28 JP=J2,MJ-1,2
DJP=DBLE(JP)
X Fa(KF-1)*J+JP+1

ACL,MKF)=A (L, MKF) +TIJ*DJP* (DI P##2-DJ##2) /CI*DC#D1

CONTINUE

DO 29 JP=J1,MJ-1,2
DIP=DBLE(JP)
MKFe(KF-1)*MJ+JP+1

A(L,MKF)=A(L,MKF)+2 . DO*TJ /CI*DJP*D24DC

A(L,MKF)=A(L,MKF) -DK1#2.DO*TJ /CJ*DJP*D3*D5

CONTINUE
MKF=(KF-1)*4J+J1
A(L, MKF)=A(L , MKF) - DK1##*2#TJ*D4*DC
CONTINUE
CONTINUE
CONTINUE
CALL SHORTEN(JN,JIN1)
X=0
DO 32 I=1,MN
DO 32 Jel,MJ
KeK+1
UMS(I,J)=AA(K,JN1)
CONTINUE
WRITE(6,512) MJ ,MN
WRITE(6,516) ((UMS(1,J) ,J=1,MJ),I=1,MN)
M2=14
$0Z1=2 . DO/DBLE (MJ2-1)

DO 34 I=1,MN
DEG=PIE/CD*DBLE(I-1)
DJ=1.8D2*DEG/PIE
CC=1.D0-ECN#*#*2% (DSIN (DEG) ) ##2
RO=- EC*DCOS (DEG)+RB*CC#*+ .5
H=-1.DO+RO/RA
DO 34 J=1,MJ2

2=SOZ1*DBLE(J-1)-1.DO
U=0.D0
DO 36 KSl=) ,MJ
KS=KS1-1
TS=CBSP(KS,2Z)
DO 36 KQ=1.MN
FQ=DCOS (DEG*DBLE(KQ-1))
U=U+UNS (KQ, KS1) *FQ*TS
CONTINUE
WRITE(6,514) DJ,U
CONTINUE

cceeeceecceeecceecccecceccecccceceecceccceccceccccc

C

PART TWO

c

ceeeeceececeeeeeccceeeccececeeccceecccccccceeccccce

Do 35 I-1,JN



DO 35 J=-1,JN1
A(1,J)=0.D0

35 CONTINUE
11 ND2~NM/2

37

40
38

1~0
DO 42 I=1,MN

DEG=SOD*DBLE(I -1)+.005DO*PIE
CA=1.D0-ECN¥*2%(DSIN(DEG) ) #*2
ROw=-EC#*DCOS (DEG) +RBYCA** 5
He-1.DO+RO/RA
Ch=. SDO*RB*ECN#*2#DSIN(2.DO*DEG) *CAY# (- . 5)
DHT=(EC*DSIN(DEG)-CB) /RA
CB= . 25DORBAECN 4% (DSIN(2.DOXDEG) YWk 2% CAY®(-1.5)
CB=CB+RB*ECN#*24DC0S (2 . DOYDEG) *CA**(-.5)
D2HT= (EC*DCOS (DEG)-CB) /RA
DO 42 1Z«1,MJ-2
2=SOZ*DBLE(L2-1)-1.DO
1F(S.GT.2.D3)X=PIE/DBLE(MJ-3)*DBLE(LZ-1)
IF(S.GT.2.D3)2Z=-DCOS (X)
HleH/(2.D0+H*(1.D0-2))
AS=( (1.D0-2) /H*DHT)##2
BS=2 .DO%(Z-1.D0)/(H¥*2)*DHT**2+(1.D0-Z) /HAD2HT
CS=2 .DO*(1.D0-2) /H*DHT
Dl=1.DO+H1"*2#AS
D2=-H1+H1**24RS
D3=H1#*2%CS
D41 wk2
IF(LZ.2Q.1) GO TO 37
IF(L2.EQ.MJ-2) GO TO 38
G0 TO 39
=146
WRITE(*,")L
A(L,NM1)=0.DO
A(L-1,NM1)=0.D0
A(L-2,NM1)=0.D0
A(L-3,MM1)=0.D0
A(L-4 ,N¥1)=0.D0
A(L-5,NM1)=0.DO
DO 40 Jlel, M)
JaJ1-1
CJ=1.D0
IF(J.EQ.0) CJ=2.D0
T)=CBSP(J,2)
DO 40 KF=1,MN
DK1=DBLE(KF-1)
DX=DBLE(KF)
DC=DCOS (DK1#*DEG)
DS=DSIN(DK*DEG)
1F(EC.LT.1.D-13) DC=1.D0
IF(EC.LT.1.D-13) DS=1.D0
MXF=(KF-1)")+J1
A(L ,MXP)=A(L ,MKF)+TJ*DC
A(L-1,MXFeND2)=A(L-1 ,MKF+ND2)+TJI*DC
A(L-2,10KFeIN)=A(L-2 , MKF+IN)+TJ*DS
A(L-3 MXFeND24+JIN)=A(L-3 ,MKF+ND2+JN)+TJ#D5S
ACL-G MFe20IN)eA(L-& MKFe2¢IN)+TI*DC
A(L-S , MKFeND2+20JN)wA(L-5 , MKFeND242%JIN)+TJ#DC
CONTINUE
O TO 39
LeL+6
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41
39

481

WRITE(*,*)L
A(L,KM1)=0.D0
A(L-1,N41)=0.D0
A(L-2,NM1)=-DSIN(DEG)
IF(EC.LT.1.D-13) A(L-2,NM1)~-1.D0
A(L-3,NM1)=0.D0
A(L-4,NM1)=DCOS (DEG)
IF(EC.LT.1.D-13) A(L-4,NM1)=1.D0
A(L-5,NM1)=0.D0
DO 41 J1=1,M)
J=J1-1
CJ=1.D0
1F(J.1Q.0) CJ=2.D0
TJ=CBSP(J,Z)
DO 41 KFel MN
DK1=DBLE(KF-1)
DK=DBLE (KF)
DC=DCOS (DK1*DEG)
DS=DSIN(DK*DEG)
IF(EC.LT.1.D-13) DC~1.DO
IF(EC.LTY.1.D-13) DS=1.DO
MKF=(KF-1)"J+J1
A(L,MKF)=A(L,MKF)+TJ*DC
A(L-1,MKF4+ND2)=A (L-1,MKF+ND2)+TJ*DC
A(L-2,MKF+IN)=A (L-2 ,MKF+JN)+TJ*DS
A(L-3, MKF+ND2+JN)=A(L-3 , MKF+ND2+JN)+TJ*DS
A(L-4 , MKF42#JN)=A (L-4 ,MKF+2%JN)+TJ*DC
A(L-S ,MKF+ND2+2#*JN)=A(L-5 ,MKF+ND2+2*JN)+TJ*DC
CONTINUE
L=1+8
WRITE(*,*)L
A(L,NM1)=0.D0
A(L-1,NM1)=0.D0
A(L-2,NM1)=0.D0
A(L-3,MM1)«0D.D0
A(L-4,NM1)=0.D0
A(L-5,M41)=0.D0
A(L-6,NM1)=0.D0
A(L-7,N41)=0.D0
U=0.D0
UZ=0.D0
UF=0.D0
DO 461 Jl=1 M)
J=Jl-1
DJ=DBLE(J)
CJ=1.D0
1F(J.2Q.0) CJ~2.DO
TJI=CBSP(J.2)
DO &46] KF=1 MN
DK1=DBLE(KF-1)
DC=DCOS (DK1*DEG)
DS1=DSIN (DKI*DEG)
IF(EC.LT.1.D-13) DC~1.DO
IF(RC.LT.1.D-13) DSl-1.DO
IF(EC.LT.1.D-13) DK1=0.DO
DO 481 JP=J1l WJ-1.2
DJP=DBLE(JP)
CA«2.DO*TJ/CIeDI PeDC
U2=U2+CATUMS(KF ,JPel)
CONTINUE
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CA=-DK1*DS1+TJ
UF=UF+CA*UNMS (KF, J1)
U=UHUMS (KF , J1)*TJ*DC
461 CONTINUE
UZ=UZ/RA/OMG
U=U/RA/OMG
UF=UF/RA/OMG
DO 46 J1=1,MJ
JaJ1-1
DJ=DBLE(J)
CJ=1.D0
IF(J.EQ.0) CJ=2.D0
TJ=CBSP(J,2)
J2=J42
DO 45 KF=l,MN
DK1=DBLE(KF-1)
DK=DBLE(KF)
DC=DCOS (DK1#DEG)
DS=DSIN(DK*DEG)
DC1=DCOS ( DK*DEG)
DS1=DSIN(DKI1*DEG)
IF(EC.LT.1.D-13) DC=1.D0
IF(EC.LT.1.D-13) DS=1.D0
IF(EC.LT.1.D-13) DCl=1.DO
IF(EC.LT.1.D-13) DS1=1.DO
IF(EC.LT.1.D-13) DKl1~1.DO
IF(EC.LT.1.D-13) DK=1.DO
DO 48 JP=J2,MJ-1,2
DJP=DBLE (JP)
CA=TJIWDJI P# (DJP#k2 - DI**2) /CI*D]
MKF=(KF-1)#MJ+JP+1
A(L,MKF)=A(L,MKF)+CA*DC
A(L-1,MKF+KD2)=A(L-1,MKF+ND2)+CA*DC
A(L-2,MKF4JN)=A(L-2,MKF+JN)+CA*DS
A(L-3,MKF+JN+ND2)=A(L-3 , MKF+JN+ND2 ) +CA*DS
A(L-4 ,MKF+2%JN)=A (L-4 ,MKF+2*JN) +CA*DC
A(L-5,MKF+2*JN+ND2)=A(L- 5 ,MKF+2*JN+ND2)+CA*DC
48  CONTINUE
DO 49 JP=J1,MJ-1,2
DJP=DBLE(JP)
CA=2.DO*TJ /CI*DIPHD2
MKF=(KF-1)#MJ+JP+1
A(L,MKF)=A (L, MKF)+CA*DC
A(L-1,MKF+ND2)=A(L-1,MKF+ND2)+CA*DC
A(L-2,MKF+JN)=A(L-2 ,MKF+JN)+CA*DS
A(L-3,MKF+JN+KD2)=A(L-3, MKF+JN+ND2 ) +CA*DS
A(L-4,MKF+2%JN)=A (L-4 ,MKF+2*JN)+CA*DC
A(L-5,MKF+2%JN+ND2)=A(L- 5, MKF+2*IN+ND2)+CA*DC
CA=2.DOTJ /CI#DJP#D3*DK]
CB~2,DO*TJ /CI*DJP*D3*DK
A(L,MKF)=A (L, MKF) - CA*DS1
A(L-1,MKF+ND2)=A(L-1,MKF+ND2) - CA*DS1
A(L-2,MKF+JN)=A(L-2,MKF+JN)+CB*DC1
A(L-3 ,MKF+ND2+JN)=A (L- 3, MKF+ND2+JN)+CB*DC1
A(L-4 ,MKF+2%JN)=A(L-4 ,MKF+2%JN) - CA*DS1
A(L-S.MKF+2%JN+ND2)=A(L- 5, MKF+2+JN+ND2) - CA*DS1
CA=4 .DO*TJ /CI*DIP*H1##2% (1.D0-2) /H*DHT
A(L-2,MKF+2%JN)=A(L-2,MKF+2#JN)+CA#*DC
A(L-3,MKF+2%JN+ND2)=A(L- 3, MKF+2#JN+ND2 )+CA*DC
A(L-4 MKF+JIN)=A(L-& ,MKF+JN) -CA*DS



49

A(L-S5,MKF+ND24JN)=A(L-5 ,MKF+ND2+JN) -CA*DS
CA=2 .DO¥TJ /CI*DIP
A(L-6,MKF+2%JN)=A(L-6 ,MKF4+2%JN)+CA*DC
A(L-7 ,MKF+2%JN+ND2)=A(L-7 , MKF+2*JN+ND2 ) +CA*DC
CA=~2 . DO¥1J /CI*DIP*H1*(1.D0-Z) /H*DHT
A(L-6,MKF+JN)=A(L-6,MKF+JN) - CA*DS
A(L-7 ,MKF+ND2+JN)=A(L- 7, ,MKF+ND2+JN) -CA*DS
IF(JP.GT.MJ-3) GO TO 49
MKFe(KF-1)%(MJ-2)+JP+1
CB=-TJ/CI*DJIP#S#*H1* (1 .D0-Z)*DHT
A(L-2 ,MEKF+3#JN)=A(L-2 ,MKF+3*JN)+CB*DC
A(L-3,MKF+3%JN+ND2)=A(L-3 , MKF+3*JN+ND2 ) +CB*DC
CB=TJ /CI*DJP*S*H
A(L-4 MKF+3%JN)=A(L-4, MKF+3%JN)+CB*DC
A(L-S,MKP4+3%IN4ND2)=A(L-5 , MEF+3*JN+ND2)+CB*DC
CONTINUE
CA=-DR1M*24TI*D4
CB=-DK#**2¢TJ*D4
MKF=(KF-1)"J+J1
A(L,MEF)=A(L,MKF)+CA*DC
A(L-1,MKF4RD2)=A(L-1 ,MKF+ND2)+CA*DC
A(L-2 ,MKF+JN)=A (L-2,MKF+JN)+CB*DS
A(L-3 ,MKF+JN+ND2)=A(L-3 ,MKF+JN+ND2)+CB*DS
A(L-4 ,MKF42%JN)=A(L-4 ,MKF+2*JN)+CA*DC
A(L-5,MKF+2#IN+ND2)=A(L-5 ,MKF+2%JN+ND2)+CA*DC
CA=-S*H"*2/4 . DOTJ
A(L,MKXF+ND2)=A (L, MKF+ND2) -CA*DC
A(L-1,MKF)=A(L-1,MKF)+CA*DC
A(L-2 ,MKF+JN4ND2)=A(L-2 ,MKF+JN+ND2) -CA*DS
A(L-3,MKF+IN)=A(L-3 ,MKF+JN)+CA*DS
A(L-4 ,MKF+2%*JN4+ND2)=A(L-4 ,MKF+2*JN+ND2) - CA*DC
A(L-5 MKF+2%IN)=A(L-5 ,MKF+24JN)+CA*DC
A(L-2 ,MKF+JN)=A (L-2 ,MKF+JN) -H1%*2#DS*TJ
A(L-3,MKF+ND2+4JN)=A(L-3 ,MKF+ND2+JN) - H1##2*DS*TJ
A(L-4 ,MKF4+2#JN)=A(L-6 ,MKF+2#JN) -H1#*24DC*TJ
A(L-S,MKF+2*JN4+ND2)=A(L- 5, MKF+2*JN+ND2) - H1 ##24DC*TJ
A(L-6,MKF4+2#JN)=A(L-6,MKF+2*JN) ~-H1*DC*TJ
A(L-7 MEF4+2%JN+ND2)=A(L-7 ,MKF+2*JN+ND2) - H1 *DC#TJ
A(L-2,MKF4+2%JN)=A(L-2 ,MKF+2*JN) -2 . DO*DK1*H1+*2*DS1*TJ
A(L-3,MKF+2#JN+ND2)=A(L-3 ,MKF+2#JN+ND2) - 2. DO*DK1*H1**24DS1%*TJ
A(L-4 MKF+JIN)=A(L-4 ,MKF+JN) - 2. DO*DK*H1#+42%DC1#TJ
A(L-5,MKF+ND24+JN)=A(L-5 ,MKF+ND2+JN)-2. DO*DK*H]1**24DC1*TJ
A(L-6 ,MXF+IN)=A (L-6 ,MKF+JN) - H1#DK*DC1*TJ
A(L-7 ,MKF+ND2+JN)=A(L-7 ,MKF+ND2+JN) -H1*DK*DC1#TJ
CA=UZ#SwH/2 . DOXDC*TJ
A(L,MKF+2*JN)=A (L MKF+2%*JN)+CA
A(L-1 MKF42%JN+ND2)=A(L-1 MKF+2*JN+ND2)+CA
CA=S*HWw*2/(2 .DO+H*(1.D0-2))/2.D0
CA=CA® (UF+(1.D0-2) /M*DHT*UZ)
A(L ,MRF+JN)=A(L MKF+JN) -CA*TJ*DS
A(L-1 ,MKF4+JN4ND2)=A(L-1,MKF+JN+ND2) - CA¥TJ*D5
CA=- (H/XD/XL)**2/2 . DO*TJ
A(L MKF)=A(L,MKF)+CA*DC
A(L-1,MKF+ND2)=A (L-1,MKF+ND2)+CA*DC
A(L-2 . MXF+JN)=A(L-2 ,MKF+JN)+CA*DS
A{L-3 MKF+JN+ND2)=A(L-3 ,MKF+JN+ND2)+CA*DS
A{L-4 MKF+2¢JN)=A(L-4 ,MKF+2%JN)+CA*DC
A(L-5 ,MKF+2%IN+ND2)=A(L-5 ,MKF+2#JN+ND2)+CA*DC
CA=(H/XD/XL)**2 /4 . DO*TJ
B(L,MKF)=B(L,MKF)+CA*DC
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321

B(L-1,MKF+ND2)=B(L-1,MKF+ND2)+CA*DC
B(L-2,MKF+JN)=B(L-2,MKF+JN)+CA*DS
B(L-3,MKF+JN+ND2)=B(L- 3 ,MKF+JN+ND2 ) +CA*DS
B(L-4 , MKF+2%IN)=B(L-4 , MKF+2*JN)+CA*DC

B(L-5, MKF+2+IN+ND2)=B (L-5 ,MKF+2#JN+ND2)+CA*DC
C(L,MKF)=C(L,MKF)+CA*DC
C(L-1,MKF+ND2)=C(L-1,MKF+ND2)+CA*DC
C(L-2,MKF+JN)=C(L-2,MKF+JN)+CA#DS

C(L-3, MKF+JN4ND2)=C(L- 3 , MKF+JN+ND2)+CA*DS
C(L-4 , MKF4+2*IN)=C (L-4 , MKF+2%*JN)+CA*DC

C(L-5 , MKF+2%IN+ND2)=C (L- 5 ,MKF+2%*JN+ND2 ) +CA*DC
CC=4 . DO

REP=S*U*XL#*XD

IF(REP.LT.2.D0)CC=8.D0
CA=S*UWH**2/XD/XL/CC*TJ
B(L,MKF)=B (L, MKF)+CA*DC
B(L-1,MKF+ND2)=B(L-1,MKF+ND2)+CA*DC
B(L-2,MKF+JN)=B(L-2,MKF+JN)+CA*DS
B(L-3,MKF+JN4ND2)=B(L-3 , MKF+JN+ND2) +CA*DS
B(L-4 , MKF+2*JN)=B(L-4 ,MKF+2*JN)+CA%DC
B(L-5,MKF42%JN4+ND2)=B(L- 5 , MKF+2#*JN+ND2) +CA*DC
IF(REP.LT.2.D0)GO TO 421

CA=- SAU#H*+2 /XD /XL/CC*TJ
A(L,MKF)=A(L,MKF)+CA*DC
A(L-1,MKF+ND2)=A(L-1,MKF+ND2)+CA*DC
A(L-2,MKF+JN)=A(L-2,MKF+JN)+CA®DS

A(L-3, MKF+JN+ND2)=A(L- 3, MKF+JN+ND2)+CA*DS
A(L-4 ,MKF+2#IN)=A(L-4 , MKF+2*JN ) +CA*DC
A(L-5,MKF+2%JN+ND2)=A(L- 5 , MKF+ 2% JN+ND2 ) +CA*DC
GO TO 422

CA=- SYUWH#®#2 /XD /XL/CC*TJ
C(L,MKF)=C(L,MKF)+CA*DC
C(L-1,MKF+ND2)=C(L-1,MKF+ND2)+CA*DC
C(L-2,MKF+JN)=C(L-2 ,MKF+JN)+CA*DS
C(L-3,MKF+JN4ND2)=C(L- 3, MKF+JN+ND2)+CA*DS
C(L-&4 ,MKF+2*JN)=C(L-4 ,MKF+2+*JN)+CA*DC
C(L-5,MKF4+2*IN+ND2)=C(L- 5 ,MKF+2%JN+ND2)+CA*DC
CA=H/XD/XL/4 . DO*TJ
B(L-6,MKF)=B(L- 6 ,MKF)+CA*DC
B(L-7,MKF4ND2)=B(L-7,MKF+ND2)+CA*DC

C(L-6 ,MKF)=C(L- 6 ,MKF) - CA*DC
C(L-7,MKF+ND2)=C(L-7, ,MKF+ND2) - CA*DC
IF(J1.CT.MJ-2) GO TO 45

MKF=(KF-1)%(MJ - 2)+J1

CB=H*H1*DK1#S*TJ /2.DO

A(L-2 ,MKF+3%JN)=A(L-2,MKF+3*JN)+CB*DS]
A(L-3,MKF+3%JN+ND2)=A(L- 3, MKF+3*JN+ND2)+CB#DS1
CA=S*H*#*2/XD/XL./8 .DO*TJ
B(L,MKF+3%JN)=B (L ,MKF+3%*JN)+CA*DC
B(L-1,MKF+ND243%*JN)=B(L-1,MKF+ND2+3*JN)+CA*DC
C(L,MKF43*JN)=C (L,MKF+3%*JN)-CA*DC
C(L-1,MRF+ND2+3%JN)=C(L- 1, MKF+ND2+3#*JN) - CA*DC
CONTINUE

CONTINUE
CONTINUE

DO 321 I=1,NM
Q(1)=A(1,M1)
DO 321 J=1,NM
AP(1.3)=A(1,J)
CONTINUE
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CALL SHORTEN(NM,NM1)
DO 322 I=-1,MM
DO 322 J=-1,MM
A(1,J)=AA(1,J)
322 CONTINUE

cc
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCLLLLLLCLiLLL

c PART THREE c
Cccf(rlllllllll|(.lt|l:h(_(llllll(lllullll(ll((.(
CALL AMPLY(A,C,AA,NN)
DO 323 J=1,NM
C(1,J)=AA(I,J)
323 CONTINUE
CALL AMPLY(B,C,QN,NNM)
DO 324 1=1,MM
po 324 J=1,NM
A(1,J)=-QN(I,J)+AP(1,J)
324 CONTINUE
CALL SHORTEN(MM,NM1)
DO 328 I~1,NN
DO 328 J=1 ML
Y(1,J)=0.D0
328 CONTINUE
DO 330 I-2,ML
Xe-DBLE (NU)*XD+XD#DBLE(1-1)
CALL DISP(EON,1.X,EX)
IF(X.LT.0.D0) EX=0.D0
IF(X.GT.1.D0) EX=0.D0
D0 331 J=1,NM
QT(J)=EX*Q(J)
QNT(J)=0.D0
331 CONTINUE
DO 334 Il=1,NM
DO 332 Jl=1,NM
QNT(I1)=QNT(I1)+B(I1,J1)*Y(J1,I-1)
332 CONTINUE
QNT(11)=QT(I1)-QNT(11)
334  CONTINUE
DO 336 Il=-1,NM
DO 336 Jl=1,NM
Y(I1, 1)=Y(I1, 1)+AA(11,J1)*QNT(J1)
336 CONTINUE
WRITE(6,519)X,(Y(J,1),J=1,NM)
330 CONTINUE
DO 338 J-1,NM
QN(J ,ML)=Y(J ML)
338  CONTINUE
DO 340 1=ML-1,1,-1
Xe=-DBLE (NU)*XD+XD*DBLE(I-1)
PO 341 J=1,NM
QNT(J)=0.D0
341 CONTINUE
DO 342 Il=1,NM
DO 344 J1l=) NM
QNT(I1)=QNT(I1)+C(11,J1)*QN(J1,I+1)
kIAA CONTINUE
QN(I1,1)=Y(I1,1)- QNT(I1)
342 CONTINUE
WRITE(*,519)X, (QN(J 1) J=1, M)
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340
cc

WRITE(6,519)X, (QN(J,I),J=1,NM)
CONTINUE

ccccecececececeeccccececceceeccccececcececcceccece

c

PART FOUR c

cccceeccecceccecececeecceecccececcceeccceececcececcee

52

53

DO 350 L~1,ML
X=XD*DBLE(L-1) -DBLE(NU)*XD
WRITE(6,526)X
K=0
DO 52 I=]1,MN
DO 52 J=1,MJ
K=K+1
XR(I,J)=QN(K,L)
XI(1,J)=QN(K+ND2,L)
DR(I,J)=QN(K+JN,L)
DI(1,J)=QN(K+JN+ND2,L)
RR(I,J)=QN(K+2*JN,L)
RI(I,J)=QN(K+2*JN+ND2, L)
CONTINUE
K=0
DO 53 I=1,MN
DO S3 J=1 ,MJ-2
K=K+1
PR(I,J)=QN(K+3*JN,L)
PI(1,J)=QN(K+3*JN+ND2, L)
CONTINUE
WRITE(6,516) ((XR(1,J),J=1,M]),I=1, MN)
WRITE(6,516) ((XX(1,J),J=1,M]), 1=l MN)
WRITE(6,516)((DR(I,J),J=1,MJ), 1«1 MN)
WRITE(6,516)((D1(1,J),J=1,MJ),1I=1 ,MN)
WRITE(6,516)((RR(1,J),J=1 ,M]), 6 1=1 ,MN)
WRITE(6,516)((RI(1,J),J=1,MJ),I=1 MN)
WRITE(6,517)((PR(1,J),J=1,MJ-2),1=1 MN)
WRITE(6,517)((PI(1,J),J=l MJ-2),1I=1,MN)

Kl=5

IF(MN.EQ.1) Klel

D1=-DBLE(K1-1)

IF(MN.EQ.1) Dl=l

DO 54 ID=1,K1

DEG=PIE/D1+DBLE(ID-1)

DJ~1.8D2*DEG/PIE

DO 54 1Z-1,11
Z~.2D0*DBLE(12-1)-1.D0
RX=0.D0

GX=0.D0

RC=0.D0

GC=0.D0

RN=0 . DO

GN=0.D0

RP=0.D0

GP=0.D0

DO 36 K=1,MN
DK1«DBLE(K-1)
DK=DBLE(K)
DC=DCOS (DK1*DEC)
DS=DSIN{DK*DEG)
I1F(EC.LT.1.D-13) DC~1.DO
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IF(EC.LT.1.D-13) DS=1.D0

DO 56 J=1,MJ
TJ=CBSP(J-1,2)
RX=RX+XR(K,J ) *TJ*DC*RA*OMG
CX=GX+XI (K, J ) *TI*DCHRA*ONG
RC=RC+DR(K,J ) ¥TI*DS*RA*ONG
GC=GC4+DI (K, J ) *TI*DS*RA®OMG
RN=RN4+RR(K,J ) *TJ#DCARA*OMG
CN=GN+RI(K,J ) *TJ*#DC*RA*OMC
1IF(J.CT.MJ-2) GO 70 56
RP=RP+PR(K,J ) *TI*DCHFM* (OMGHRA ) #%2
GP=GP+PI (K ,J ) ¥*TJADCHFM# (OMGARA ) #*2

56 CONTINUE

AX~DSQRT (RX#*24+GX#*2)

AC=DSQRT(RCH*24GC¥*2)

AN=DSQRT (RN#+*2+GCN#+*2)

APP=DSQRT (RP¥*2+GPi*2)

WRITE(6,520)DJ, 2,RX,GX, RC,GC,RN,GN,RP,GP , APP

54 CONTINUE
350 CONTINUE

JN2=JN#2
JN21=JN2+1
DEX~1 .58815DO*EO
WRITE(6,526)DEX
DO 81 I=1 MM
Do 81 J=1 ML
Y(I,3)=QN(1,J)
81 CONTINUE
DO 82 Il=1,ML
X=XD*DBLE(IL-1) -DBLE(NU)*XD
K=0
DO 57 1=1 MN
DO 57 J=1,MJ
K=K+l
XR(I,J)=Y(K,IL)
X1(1.J)=Y(K+ND2,IL)
DR(1,J)=Y(K+JN,IL)
DI(1,J)=Y(K+JN+ND2,6IL)
RR(Y,J)=Y(K+2%*JN,IL)
RIC1,J)=Y(K+2%*JIN+ND2,IL)
$7 CONTINUE
K=0
DO 58 l=1 ,MN
DO 58 J=i . MJ-2
KeKel
PR(1.J)=Y(K«3wJN, IL)
PI(Y,J)=Y(K+I*IN+ND2,IL)
58 CONTINUE
DO 59 l=],JN2
DO 59 Je=1,JIN21
A(1,0)=0.D0
59 CONTINUE
L=0
DO 60 =] MN
DEC=SOD*DBLE(I-1)+.005D0*PIE
CA=l .DO-ECNwe22 (DSIN(DEC) )**2
RO=- EC*DCOS (DEG ) +RB*CA®™* . 5
H=-1.D0+RO/RA
DO 60 L2=]1 .M
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Z=2.DO/DBLE(MJ-1)*DBLE(1Z2-1)-1.D0
L=142
WRITE(*®,*)L
DO 62 Jl-1,MJ
JaJ1-1
CJ=1.D0
IF(J.EQ.0) CJ=2.D0
TJ=CBSP(J,2Z)
DO 62 KF=1,MN
DK1=DBLE(KF-1)
DC=DCOS (DK1*DEG)
IF(EC.LT.1.D-13) DC=1.D0
CA=0.D0
CB=0.D0
DO 64 JP=J1 MJ-1,2
DIP=DBLE(JP)
CA=CA+DIP#RR(KF,JP+1)
CB=CB+DJP*RI (KF,JP+1)
64 CONTINUE
MKF=(XF-1)*MJ4+J1
A(L,MKF)=A(L,MKF)+TJ*DC
A(L-1 ,MKF+JN)=A(L-1,MKF+JN)+TJ*DC
A(L,IN21)=A(L,IN21)+2.DO*TJ /CI*DC/H*CA
A(L-1,IN21)=A(L-1,JIN21)+2.DO%*TJ/CI*DC/H*CB
62 CONTINUE
60 CONTINUE
CALL SHORTEN(JN2,JN21)
K=0
DO 66 I=1,MN
DO 66 J=1,MJ
K=K+1
RSR(I,J)=AA(K,IN21)
RSI(1,J)=AA(K+JN,JN21)
66 CONTINUE

DO 68 I=1,JN2
DO 68 J=1,JN21
A(1,J)=0.D0
68 CONTINUE
=0
DO 70 I=1,MN
DEG=SOD*DBLE(1-1)+.005DO*PIE
CA=1.DO-ECN#*2+#(DSIN(DEG) ) **2
RO=-EC*DCOS (DEG)+RB*CA®+ 5
H=-1.DO+RO/RA
DO 70 L2-1,M0
2=2 .DO/DBLE(MJ-1)*DBLE(1Z-1)-1.D0
L=1+2
WRITE(*,®)L
DO 72 Ji-1l,MWJ
J=Jl-1
GJ=1.D0
IF(J.IQ.0) CJ=2.D0
TI=CBSP(J.2)
DO 72 KF=]1 MN
DK=DBLE(KF)
DS=DSIN(DK*DEG)
IF(EC.LT.1.D-13) DS~1.D0
Ca=0.D0
CB=0.D0
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DO 74 JP=J1 MI-1,2
DIP=DBLE(JP)
CA=CA+DJP*DR(KF,JP+1)
CB=CB+DJP#*DI (KF,JP+1)
74 CONTINUE
MKF~(KF- 1)*MJ4+J1
A(L,MKF)=A(L ,MKF)+TJ*DS
A(L-1,MKF+JN)=A(L-1,MKF+JN)+TJ*DS
A(L,JIN21)=A(L,JIN21)+2 .DOWIJ /CI*DS/H*CA
A(L-1,JN21)=A(L-1,IN21)+2.DO*TJ/CI*DS /H*CB
72 CONTINUE
70 CONTINUE
CALL SHORTEN(JN2,JN21)
K=0
DO 76 I=1,MN
DO 76 J=1,MJ
K=K+1
DSR(1,J)=AA(K,JN21)
DSI(I,J)=AA(K+JIN,IN21)
76 CONTINUE
80 FR1=0.DO
FI1=0.DO
FR2=0.D0
F12=0.D0
FR3=0.DO
F13=0.DO
FR4=0.DO
F14=0.D0
DO 78 Jl=l W
J=Jl-1
TJ=1.D0
IF(J1.GT.M-2) GO TO 79
FR1=FR14PR(1,J1)*TJ
F1l=FI14PI1(1,J1)»TJ
79 FR2«FR2+(DR(1,J1)-2.DO*DSR(1,J1))*TJ
F12«F124(DI1(1,J1)-2.DO*DSI(1,J1))*TJ
FR3=FR3-RR(1,J1)*TJ
F13«F13-RI1(1,J1)*TJ
FR4=FRG4+4 . DO*RSR(1,J1)*TJ
Fl4=F144+4 . DO*RSI(1,J1)*TJ
78 CONTINUE
WRITE(6,526)X
Fl=FI11%*OMG*RA/DEX
FR=FR1*OMG*RA/DEX
WRITE(6,522)F1,FR
CA=VF/(RA*DEX*FM)
Fl=Fl4F12%CA
FR=FR+FR2%CA
WRITE(6,522)F1,FR
Fl=FI1+F13%CA
FR=FR+FRI*CA
WRITE(6,522)F1,FR
FlaFleFI&L*CA
FR=FRAFRA4*CA
WRITE(6,522)FI.FR
82 CONTINUE
Cc
ccceceeeceecceececcccececceceecceececececcecceeecceeeeccececcccceecccecceccececcece
500 TORMAT(/,9X,'ENTER? (1) RB:OUTER CYL.DIA. (2) RA.INNER CYL.DIA °*
/./.15%,° (3) FRE.FREQ. (4) ADP:+P. DROP (5) VF.VISC. FLUID',./,
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g J’,‘,’

/15X’ (6) FM:DENS FLUID (7) EO:AMP.  (8)EC:ECCEN.')

502 FORMAT(SX, 'RB=',F9.5,5K,'RA=",F9.5,5X, ‘FRE=' ,F9.3,5X, ‘ADP=' ,F9.5,
//.5X,'VF=* ,F9.5,5K, ‘ Fi='F9.3,5X, 'EO=' ,F9.5,5X, "EC=" ,F9.5)

504 FORMAT(/,10X,‘#* IS THIS TRUE ? ** YES=1, NO=2')

506 FORMAT(/,10X,’'a/b=',F7.3,5X,'s/(b-a)=",F7.3,5K, S=' F9.2)

507 FORMAT(/,SX,'ENTER? (1) MN: F EXP <5 (2) MJ: CB EXP <10 (3) ML:
JAXIAL POS.*,/,10K, 7 (4) XL: L/A’,/,15K, 4% NM=8#MJ#MN-4*MN <61°,/,
/10X, (5)NU: NO OF UPSTREAM  (6)ND:NO OF DOWNSTREAM')

508 FORMAT(/,5X, ‘MN=',13,5K,'MJ=",13,5X, 'ML=",13,/,5X, 'XL~' ,F6.3,/,5X,
/'NU=",13,5X, ‘ND=' , 13, 5X, ' ML=ND+NU+NXD" )

512  FORMAT(/,10X,’ ((UMS(I,J),J=0,’,12,'),1=0,’,12,*)")

513 FORMAT(/,2(3(6F10.5,/),4F10.5,/))

514 FORMAT(SX, ‘DEG=’,F8.2,5X, U= F9.4)

516 FORMAT(8F10.4)

517 FORMAT(6F10.4)

519 FORMAT(/,5X,'X=',F7.4,/,2(3(8F10.5,/),6F10.5,/))

520 FORMAT(F5.1,1X,F4.1,2X,2F8.5,2X,2F8.5,2X,2F8.5,2X,3F8.4)

522 FORMAT(2X, *CM(X)=',F9.4,5X, 'CV(X)=' ,F9.4)

526 FORMAT(/,5X,'X=',F9.4)

CCCCCCCCCCCCCCCCCCCCECCCCECCCCEECCCCCECCCCCCCCCCCCCCCCCCCCCCCECCCCCCCCCeee

STOP

END
cC
dekkdikkk SUB-PROGRAM Wi ddeidirdrdririek
ccC
gceeceeceeceeccecececeececeeecceececcccecceccccece
c AMPLY CM~AM*BM C

ccegecececceeececccececccecceccececececeecceccceececccce
SUBROUTINE AMPLY(AM,BM,CM,N)
REAL*8 AM(60,61),BM(60,60),CM(60,61)
INTEGER I,J,N,K
DO 10 I=1,N
DO 10 J=1,N
10 CM(1,J)=0.D0
DO 40 1-1,N
DO 40 J=1,N
DO 40 K=-1,N
40 CM(I,J)=CM(I,J)+AM(I1,K)*BM(K,J)
RETURN
END
c
c€ceeccececccececceecccceccecccccceeceececeee
c DISP=AK*(ETK+EHK) c
cceeececeececcceecceccccerccececccccceceeceece
SUBROUTINE DISP(AK,K,X, EX)
REAL*8 AK,ETK,EHK,SK,BK,X,EX
BK=4 . 7300407
SK=.9825022
ETK=-DCOS ( BK*X)+SK*DSIN(BK*X)
EHK=DCOSH(BK*X) - SK*DS INH(BK*X)

EXeAK* (ETK+EHK)

RETURN

END
c
c€cecceeeeecceeeccceecccceceeccccececececceccccce
c CHEBYSHEV POLYNOMIAL c

(o] of ol of o] ool of o of o ol o o o o of of e el o o o o of ol ol o o o] o o o o o{ ol o o
FUNCTION CBSP(N,Y)
REAL*8 TN,PIE,DZ,Z,CBSP,Y
INTEGER I,N
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c

TN=1.D0
P1E=~2.DO*DASIN(1.D0)
1F(N.EQ.0) GO TO 3
D0 1 I=-1,N
DZ=(2.DO*DBLE(I)-1.DO)*PIE/(2.DO*DBLE(N))
Z=DCOS (DZ)
TN=(Y-Z)*IN

TNe2 . DO**(N-1)*TN
CBSP=TN

RETURR

END

(('ll(ll‘(llllll|l(lllll(llllllllllll(lll[[.(.

c

SHORTEN METHOD c

C(‘(_‘{‘C{‘l‘l‘f'l‘f’l‘l‘l‘l‘l‘l‘(‘f'l'l"t‘l‘l‘f‘('l'l‘l"f‘f‘(‘l‘f‘l‘l‘(‘t‘(‘(‘l‘ﬂ{'

w

16

SUBROUTINE SHORTEN(N,N1)

IMPLICIT REAL*8 (A-H,0-2)

IMPLICIT INTEGER (I1-N)

PARAMETER (NF=-60,NF1=61)

DIMENSION A(NF,NF1),AA(NF,NF1),COL(NF),ROW(NF1) NC(NF1), KNR(NF)

COMMON A,AA
po 1 1=-1,N1

IF(1.GT.N) GO T0 1
NR(I)=X
NC(1)=1
DET~1.D0
DO 2 K=1,N
CLARGE=~( .0DO
DO 3 I=K,N
DO 3 J=K,N

CLARGO=DABS (A(1,J))

IF(CLARGO.LT.CLARGE) GO TO 3
CLARGE=CLARGO

Ip=1
JP=J

PIVOT=A(1,J)

CONTINUE
IF(CLARGE.GT.1.D-12) GO TO 16
WRITE(*,101)

READ(*,*) IANS

1F(IANS.EQ.2) GO TO 13
WRITE(*,*)K, PIVOT
IF/JP.EQ.K) GO TO &
J=NR(JP)

NR (JP)=NR (K)

NR(K)=J
* INTERCHANGE COLUMS *
DO 5 1=1,N
SAVE=A(I1,JP)
A(I,JP)=A(1,K)
A(1,K)=SAVE
IF(IP.EQ.K) CO TO 6
1=NC(1P)

NC(IP)=NC(K)
NC(K)=1

* INTERCHANGE ROWS
DO 7 Je=l,N1
SAVE=A(IP,J)
A(IP,J)=A(K.J)
A(K,J)=SAVE
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6 D08 I-1,Nl
IF(1.GT.N)GO TO 8
COL(I)=A(1,K)

8 ROW(I)=A(K,I)
DO 9 I=-1,N
DO 9 J=1,N1

9 A(1,J)=A(1,J)-COL(I)*ROW(J)/PIVOT
DO 10 I=1, N1
IF(I.GT.N) GO TO 10
A(I,K)=-COL(I)/PIVOT

10  A(K,I)=ROW(I)/PIVOT
A(K,K)=1.D0/PIVOT

2 CONTINUE

GO TO 15

13 WRITE(*,%)K
DO 14 J=K,N

14 A(J,N1)=0.DO

c * PLACE IN CORRECT ORDER *
15 DO 11 I-1,N
DO 11 J=-1,N1

11  AA(NR(I),NC(J))=A(I.J)

101 FORMAT(3X,’'DO YOU WANT TO HAVE MORE ITERATION ? YES=1, NO=2')
RETURN
END
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ARNRR AT AR A A A R A A A A Tt Ao e A A A T S A A A A de b s e s o e e
INPUT DATA used for obtaining the nondimensional parameters(numerical
input data), as shown in equation (6.12)
: radius of the inner cylinder, a
RB: radius of the outer cylinder, b
FRE: oscillation frequency, f
ADP: steady pressure drop alnog the axial direction, - dP/dx
VF: viscosity of fluid
M. density of fluid
EO: 1lateral velocity of moving cylinder at X=1/2, ev/ak
EC: eccentricity, e

Degree (order) of the interpolation functions considered
MN: Fourier series
MJ: Chebyshev polynomials

Number of the mesh points: ML
Length-to-radius ratio: XL

Oscillatory Reynolds number: §
AR R AR A AR A Ardr A A A ok A A A A A A s ok s s e e ok

LR IR BE IR BE BF BE IR IR S IR R NE BN ST NS
LR R RN R E E R

RB=-  .05000 RA=  .04000 FRE=- .057 ADP= 5,00000
VF=- .00115 M= 1000.000 EO=-  .00100 EC=  .00000

MN= 1 M- 8 ML~ 15
XL~15.000

a/b=  .800 e/(b-a)=  .000 S=  500.01

Yibhkkkkkadt Radial variation of axial flow velocity wiksdak

Ujl j=0 1 2 3 4 5 6 7
.0270 .0005  -.0270  -.0005 .0000 .0000 .0000 .0000
z-  -1.000 U= .0000
Z= -.846 U= .0149
Z- -.692 U=  .0274
Z= -.538 U= .0376
Z= -.385 U=  .0453
z- -.231 U=  .0506
2~ -.077 U=  .0535
2= .077 U-  .0538
z- 231 U-  .0515
- .385 U= .0466
2= .538 U= .0391
Z- .692 U= .0289
z- .846 U= .0158
2- 1.000 U= .0000

warsw Radial variations of unsteady fluid ,.arameters wawdwx
(real, ipaginary parts and amplitude(only for p+))

X- .0000
Ur-..0602 -.0058 .0272 . 0065 .0133 -.0007 -.0003 .0000
i .0053 .0069 -.0047 -.0079 -.0017 .0009 .0011 .0000
Wr 0383 .0023 -.0266 -.0018 -.0116 -.0005 - 0001 .0000
i- 0055 -.0001 .0055 . 0001 .0009 .0000 -.0008 .0000
Vr 0010 .0002 -.0012 -.0003 .0003 .000] 0000 .0000
1-.000% -.0001 .0008 .0001 - .0002 .0000 .0000 .0000
Pr .15)9 .0006 .0001 -.0001 .0000 .0000
i .0)58 -.0001 .0000 .0001 .0000 .0000

G-19



Ur-

Wr
i-.

Vr
i-

Pr

Ur-.

r
i{-

Vr
{-

Pr

omabrNvOMEO®O

[

K=

.2087
.0478
.2061

0297

.0254
.0029
. 6549
.2614

v
LI T
- N

OCwmoasrvORNTOa®O

[

X=
771

.1676

3405

.0503
.0516
.0030
.6305
.5461

nN

.
DR S SR )

¢ e 4 e & e & « e 4
OmOASENONNITOD®O

ur
.00000 .00000
-.00054 -.00004
-.00072 -.00004
-.00073 -.00002
-.00073 .00002
-.00078 .00010
-.00089 .00021
-.00100 .00029
-.00099 .00029
-.00072 .00017
.00000 .00000

. 2000

-.2373 .0765
.1130 -.0253
-.0038 -.1728
.0023 .0366
.0245 -.0051
- .0006 .0039
.0052 .0011
.0025 .0008

us
,00000 .00000
-.00007 -.00098
.00003 -.00137
-.00008 -.00125
-.00076 -.00064
-.00230 .00049
-.00475 .00199
-.00766 .00338
-.00974 .00388
-.00854 .00272
.00000 .00000

.4000

-.5%912 .0887
.3133 -.0941
-.0210 -.3327
.0091 . 0805
.0564 -.0015
-.0012 .0041
.0034 .0013
.0060 .0018

u*
.00000 .00000
.00192 -.00213
.00304 -.00315
.00299 -.00285
.00127 -.00109
-.00266 .00215
-.00884 .00636
-.01615 .01018
-.02149 .0114
-.01909 .00804
.00000 .00000

.00000
.00054
.00075
.00079
.00078
.00077
.00080
.00085
.00084
.00063
.00000

.2068
-.1194
-.0154
-.0010
-.0031

.0009

:0002

.00000
.00287
.00419
.00459
.00462
.00464
.00478
.00430
.00455
.00301
.00062

.5209
-.3341
-.0279
-.0059
-.0057

.0018

.0002

.00000
.00436
.00686
.00806
.0085¢4
.00874
.00882
.00852
.00727
.00421
- .00146

.00000
.00006
.00012
.00014
.00014
.00013
.00014
.00015
.00013
.00006
.00000

.1291
-.0307
-.0560
-.0022

.0010
-.0010
-.0003

.0000

. 00000
.00025
.00063
.00085
.00092
.00092
.00091
. 00082
.00057
.00016
.00000

.2849
-.0931
-.0626
-.0239

.0003
-.0010

-0000

. 00000
.00022
. 00099
. 00166
.00204
.00214
.00196
.0014¢
. 00067
.00014
.00000
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.00000
.00000
.00001 -
.00002 -
.00003 -
.00004 -
.00004 -
.00003 -
.00002 -
.00001
.00000

.0309
.0037
-.0025
-.0010
.0000
-.0002
.0000
.0000

.00000
.00003
.00012
.00023
.00035
.00045
.00054
.00060
.00063
.00063
.00062

(S T |

1] * L] L] 1]

.0727
L0144
-.0020
-.0029
-.0003
-.0005
.0000
.0000

. 00000

.00005

.0oo18 -
.00036 -
.00056 -
.00077
.00097
.00116
.00131
.00142 -
.00146

.00000
.00000
.00001
.00001
.00002
.00002
.00002
.00002
.00001
.00000
.00000

.0031
.0081
.0012
-.0047
.0001
.0000

.00000
.00001
.00003
.00006
.00009
.00011
.00011
.00010
.00006
.00002
.00000

.0035
.0196
.0044
-.0064
.0000
.0000

.00000
.00000
.00001
.00005
.00008
.00012
.00013
.00012
.00008
.00003
.00000

.1356
1355
.1355
.1355
.1357
.1360
.1363
.1367
1371
.1373
1374

.1308
.1307
.1307
.1307

.1309
.1311
L1314
L1317
.1319
.1321

p*

- . 0005
.0027
. 0002

-.0002
.0001
. 0000

p*

.0319 0075
.0319 ,0075
.0319  ,0075
.0319
.0320
.0320
.0321
.0321
.0321
.0321
.0321

.0075
.0075
0074
.0074
.0074
.0074
.0074
.0074

.0540
.0540
0541
.0541
L0542
.0542
.0543
.0545
.0546
.0549
L0551

-.0024
. 0064
. 0004

-.0002
. 0000
.0000

p*

1307

L1127
1127
.1128
.1129
L1131
1133
L1135
.1138
.1162
L1147
1153

.0328
0328
.0328
.0328
.0328
.0329
.0329
.0330
.0330
.0330

0330

L1459
L1459
. 1459
.1459
L1461
L1464
.1468
L1472
.1476
L1479
L1480

1727

L1726

1726
1727

1729

1731

L1734
.1738

1243

L1748
L1753
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7t rree e weos Th orrar

Ur-.
Wr
i-
Vr
i-
Pr

Ur-
Wr

Vr

Ur
Ur.
Vr-

Pr.

x-
3495

.2854
.2591
.0323
.0460
.0002
.0810
.5522

~N

x—

.1366
.2904
.0527
.0136
L0154
.0024
Pr-.
.2720

3555

CmarMOMERA®mO

N

x-

.0309
.1819
.0315
L0404
.0018
.0016
.1588
.0469

D I T T
OO LoD O

.6000
-.6306 .0525
.3962 -.1876
-.0288 -.2996
.0141 .0819
.0558 .0057
-.0012 . 0002
-.0019 .0004
.0057 .0018

u¥

.00000 .00000
.00269 -.00175
.00431 -.00268
.00453 -.00214
.00279 .00033
-.00150 .00473
-.00831 .01022
-.01631 .01485
-.02207 .01589
-.,01958 .01091
.00000 .00000

.8000
-.3037 -.0108
.2686 -.2262
-.0182 -.1071
.0122 .0293
.0234 .0079
-.0005 -.0033
-.0045 - . 0006
.0018 .0008

uw

.00000 00000
.00148 -.00009
.00263 -.00014
.00314 .00060
.00253 .00270
.0004) .00609
-.00311 .00995
-.00729 .01273
-.01026 .01260
-.00911 .00824
.00000 .00000

1 0000
-.0151 - . 0548
.0880 -.1701
-.0029 .0127
.0061 -.0222
.0000 .0024
-.0001 -.0023
-.0009 - . 000}
-.0006 . 0000

.5639
-.4306
-.0227
-.0107
-.0048

.0017

.0004

.0001

.00000
.00288
.00510
.00659
.00745
.00780
.00766
.00689
.00522
.00242
-.00146

.2791
-.3015
-.0058
-.0105
-.0016

.0008

.0007

.0000

. 00000
.00014
. 00089
.00178
. 00247
.00276
. 00253
.00179
.00073
- . 00029
-.00062

.on
-.1065
.0018
- .0060
.0001
.0002
.0001
.0001

LI T T |

.2976
.1213
.0140
.0476
.0012
.0000
.0001
.0000

L] ] 1] L]

.00000
.00020
.00051
.00142
.00210
.00231
.00193
.00106
.00003
.00073
.00000

.1516
-.0792
.0321
- . 0464
-.0017
.0009
.0003
.0000

.00000
.00062

.00019
.00077
.00095
.00058
.00019
.00093
.00106
.00000

.0265
-.0155
.0200
-.0218
- . 0006
. 0007
.0001
.0000
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.0695
.0288
.0008
-.0035
-.0005
-.0005
.0000
.0000

.00000
.00003
.00011
.00023
.00038
.00057 -
.00077 -
.00099 -.
.00120 -.
.00138 -.
. 00146

0262
.0322
.0026
-.0019
-.0003
-.0003
.0000
.0000

.00000
.00001
.00002
.00001
.00002
. 00008
.00018
.00030
. 00043
. 00056
.00062

-.0020
.0207
.0013

-.0002
.0000

-.0001
.0000
.0000

-.0006
.0235
.0041

-.0020

-.0001
.0000

.00000
.00001
.00003
.00003
.00002
.00001
.00003

00004
00004
00002

.00000

-.0042
.0150
.0009
.0035

-.0001
.0000

.00000
.00002
.00005
.00008
.00010
.00010
.00008
.00005
. 00002
. 00000
.00000

-.0026
.0038
-.0012
.0036
.0000
-.0001

0029

.0055
.0002
.0000
.6000
.0000

.0172
.0172
.0171
.0170
.0169
.0168
.0167
.0165
.0165
.0165
.0167

p*
.1141
.1141
.1141
.1142
L1143
.1145
.1148
.1151
. 1155
.1160
.1165

-.0015
.0007

.

0001
0002

.0000

.0732
.0732
.0733
.0734
.0736
.0738
.0741
.0744
L0747
.0749
.0748

0000

p*
. 0564
. 0564
.0563
. 0564
.0564
. 0564
. 0565
. 0566
. 0568
.0570
.0572

0000
0021
0002
0001
0000
0000

L1154
.1154
.1154
.1155
.1156
.1158
.1160
.1163
.1167
1171
1177

.0924
.0924
.0924
.0925
.0927
.0929
.0932
.0935
.0938
.0941
.0941
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ux
.00000 .00000
.00016 .00082
.00068 .00140
.00127 .00212
.00166 .00330
.00166 .00480
.00124 .00612
.00058 .00658
-.00004 .00569
-.00030 .00335
.00000 .00000

.00000
. 00057
.00071
.00059
. 00041
.00033
.00042
. 00064
.00082
. 00069
.00000

. 00000
.00062
.00084
.00075
.00058
. 00054
.00070
.00098
.00111
.00082
.00000

v
. 00000
.00001
.00003
. 00005
.00006

~.00007

. 00006

- . 00005

. 00003

-.00001

. 00000

. 00000 -
.00001 -
.00003 -
.00005 -
. 00006 -
.00007 -
.00006 -.
.00004 -
.00002 -.
.00001 -
.00000 -

.0329
.0329
.0329
.0329
.0329
.0330

0330

.0331

0332
0332

.0332

*xkrdnd Nondimensional Fluid-dynamic forces, F* whddimtidmidtdkthisiin
CV(X): -imaginary part
B T N T L Tt T ravararararansararpravery

*

x—
CM(X)=
CM(X)=
CM(X)=
CM(X)=

.x.
CM(X)=
CM(X)=
CM(X)=
CM(X)=

X=
CM(X)=
CM(X)=
CM(X)=
CM(X)=

x-
CM(X)=-
CM(X)=
CM(X)=
CM(X)=-

x-
CM(X)=
CH(X)=
CM(X)=
CM(X)=

x-
CH(X)=
CM(X)=
CM(X)=
CH(X)=

x-
CH(X)=
CH(X)=
CU(X)=
CH(X)=

CM(X): real part,

wowvuun W W NN = et b

(VR Y ]

1000

.1382
.1382
1382
.1382

.0000
L3246
3237
.3237
3237

.1000
.0492
.0514
0514
.0514

.2000
L4064

4213

L6213
4213

. 3000
.8894
.9252
.9252
.9252

.4000
.0337
.0945
.0945
.0945

.5000
L4754
.5588
.5588
.5588

CV(X)=
CV(X)=
CV(X)=
CV(X)=-

CV(X)=
CV(X)=
V(X)=-
CV(X)=

CV(X)=
CV(X)=
CV(X)=
cV(X)=-

CV(X)=
CV(X)=
CV(X)=
CV{X)=

CV(X)=
CV(X)=
CV(X)=
CV(X)=

CV(X)=-
CV(X)=
CV(X)=
CV(X)=

CV(X)~-
CV(X)=
V(X)=
cV(X)=

[ - . W ~N s O hhOAn W W W W Lol oudl ol

W ww

. 5448
.5632
.5632
.5632

.4026
L4496
44696
.4496

.6792
.8129
.8127
.8127

.9965
L2484
.2676
2476

6844
.0199
.0185
.0185

L7644
.1226
.1208
.1208

.5379
.8502
8482
.8482

CH(X)=
CM(X)=
CM(X)=
CM(X)=-

CH(X)=
CN(X)=
CH(X)~
CN(X)=

CM(X)=
CM(X)=
CH(X)=-
CM(X)=

CM(X)=
CM(X)=
CM(X)=
CM(X)=

CM(X)=-
CM(X)=
CM(X)=
CM(X)=

CM(X)=
CM(X)=-
CH(X)=
CH(X)-
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*

X .6000
5.0849 CV(X)=-
5.1827 CV(X)=-
5.1827 CV(X)=
5.1827 CV(X)=-

p O .7000
3.9663 CV(X)=-
4.0661 CV(X)=-
4.0661 CV(X)=-
4.0661 CV(X)=~

X .8000
2.4948 CcV(X)~-
2.5844 CV(X)=
2.5844 cv(X)=-
2.5844 CV(X)=-

X .9000
1.0814 CV(X)=
1.1507 CV(X)=-
1.1507 CV(X)=
1.1507 CV(X)=

X~ 1.0000
.4205 CV(X)=-
4720 CV(X)~
.4720 CV(X)~-
4720 CV(X)=-

X= 1.1000
.0606 CV(X)=
.0936 CV(X)~
.0936 CV({X)=
.0936 CV(X)~

P*
.0099
.0099
.0098
.0098
.0098
.0098
.0097
.0097
.0097
.0096
.0096

L7270
.9399
.9380
.9380

-1.
-1.
-1
-1.

-3.
-3.
-3.
-3.

-3.
-3,
-3.
-3

-1
-1.
-1,
-1.

8255
7356

.7370

7370

2657
2821
2829
2829

1474
2198
2200
2200

L4513

5041
5041
5041

.3659
.3880
.3880
.3880

.0344
.0344
L0344
.0343
L0344
L0344
L0344
L0345
L0345
.0346
.0346



