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Abstract 
A new numerical method has been developed to evaluate the fluid-dynamic .orees act­

ing on a cylinder immersed in flowing or quiescent f1uid for er,~entric configurations, in 

connection with the flow-induced-vibration problem. The ftuid-dynamic forces, gener­

ated by translation al motion in quiescent f1uid or by a flexural motion in axial(Iaminar) 

80w, have been formulated based on a spectral collocation method. This numerica1 

method is capable of taking fully into account unsteady viscous eft'ects and of predicting 

viscous forces rigorously rather than approximately, in contrast with existing tbeories. 

This approach uses suitable spectral expansions for fluid-dynamic parameters, 

involving Chebyshev polynomials, Fourier series and exponential functions; in these 

expansions, the a priori unknown coefficients are determined through a collocation 

method. A variant of the spectral collocation method was developed for the three­

dimensional problem of 8exural motions of the cylinder, with the &id of the fini te­

dift'erence method in a hybrid scheme. The method has been validated by applying it to 

severaJ types of steady and unsteady flows for which analytical solutions are availabie. 

Considering the numerical resuIts, semi-analytical and simplified analytical approaches 

have been developed Cor estimating the fluid-dynamic forces. Good agreement with the 

numerical results was Cound. 

Experiments have been conducted to further test the validity of the numerical 

method, involving oscillations of the outer cylinder in an annular configuration. The 

unsteady pressure generated in either rocking or translational motion of this cylinder 

was measured on the wall of the fixed inner cylinder at various axial and azimuthal loca­

tions. The thf'Oretical model was found to be in go ad agreement with the experiments 

designed to test il. 

Il "t'IS found that the present numerical method May be used to evaluate the 

f1uid-dynamic forces rigorously. The contribution of unsteady \iscous forces to the 

o\'t!rall unsteady forces is significant for lo\\' \'&lues of tbe oscillatory Reynolds number, 

especially in very narro'" annuli. 



Résumé 
Une nouvelle méthode numérique est développée afin d'évaluer les forres hydro­

dynamiques agissant sur un cylindre immergé dans un fluide en écoulement et au repos, 

pour des configurations éccentrées, en relation au problème de vibrations induites par 

l'écoulement. Les forces hydrodynamiques, généreés par le mouvement de transla­

tion dans un fluide au repos, ou par le mouvement en flexion dans un écoulement. 

axial(laminaire), ont été formLIées en se basant sur une méthode spectrale de colloca­

tion. Cette méthode numérique prend en compte tous les effets de viscosité instable 

et, contrairement aux théories existantes, prédit précisément les forces visqueuses. 

Cette approche ut.ilise des développements spectraux appropriés pour les paramètres 

hydrodynamiques, faisant appel aux polynômes de Chebyshev, aux séries de Fourier et 

aux fonctions exponentielles. Dans ces développements, les coefficients a priori incon­

nus sont déterminés par une la méthode de collocation. Cependant, la méthode spec­

trale de collocation a été modifiée pour le problème tri-dimensionnel des mouvements 

en flexion du cylindre à l'aide de la méthode des différences finies utilisant un schéma 

hybride. La méthode a été validée en l'appliquant à différents types d'écoulements sta­

tionnaires et instationnaires pour lesquels des solutions analytiques sont disponibles. 

Au vu des résultats numériques, des approches semi-analytiques et analytiques sim­

plifiées ont été dé\·cloppées pour estimer les forces hydrodynamiques. Un bon accord 

avec les résultats numériques a été trouvé. 

Des expérit'n("('S ont été menées R\'CC le cylindre extérieur étant en oscillation dans 

une configuration annulaire afin de confirmer la validité de la méthode numérique. La 

pression instable génrrét- par le mOU\'cment de translation ct de pivot du cylindre a 

été mesurée sur IR PRIoi int~rieur(' du ("ylindre fixe et à différents points axiaux et 

circonrérenticls. t'n bon ac("ord des résultats 8 été trouvé entre le modèle théorique et 

les expériences. 

La présent~ m~thodf' numérique' peut être utilisée afin d'évaluer de façon précise 

les forces hydrodynamiques. La contribution des forces visqueuses instationnaires aux 

forces instatiounaires totalf'& est iignifiC'ath'e pour de faibles valeurs du nombre de 

ii 



1 Reynolds oscillatoire et particulièrement pour les configuration annulaires étroites. 
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Chapter 1 

Introduction 

1.1 DEFINITION OF THE PROBLEM AND PRE­
VIOUSWORK 

When a structure submerged in ftuid oscillates, the surrounding ftuid must be displaced 

to accommodate the motion of the structure. As a result, fluid-dynamic forces are 

produced by the integrated effects of the pressure and skin friction, so that there is 

generally ftuid-structure coupling and interaction. The ftuid-dynamic forces acting 

on an oscillating structure have an important effect on the dynamics of a structure 

surrounded by quiescent or flowing ftuid. In general, ftuid ftow around the structure 

has the potential to cause destructive vibrations. Hence, the study of ftow-induced 

vibrations is of great interest for design. The interested reader is referred to Chen's 

[1. 2] and Païdoussis's [3, 4] reviews on ftow-induced vibration and instabilities. 

Depending ou the flow orientation relative to the structure, c.g. flow within or 

over the structure. the vibrations are classified into different categories. For E!xtemal 

ftows, for instance, ftow-induced vibration arises from cross flow or from axial ftow. 

The main distinction between flow-induced-vibration phenomena depends on tlbe ftuid 

mechanism involved; for cross-ftow, as an example, the phenomena are affected by 

separation of the ftuid and vortex shedding. Although, in very few cases is tbe fluid 

stream truly axial or Dormal to the structure, Devertheless. for most studies iD the 

field, the idealization is made that the ftow is either purely axial or Dormal (e.g. to 

a cylindrical structure); this may be fully justifiable for the purposes of research iDto 
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J the phenomena involved, but not necessarily for design purposes. The present work 

is concerned with vibration of cylindrical structures in axial flow or in still fluid in an 

annular passage, with the fluid being assumed to be incompressible. 

Cylindrical structures subjected to annular flow are widely used in many engi­

neering constructions; e.g., control rods in guide tubes of PWR-reactors, feed water 

spargers in BWR-type reactors, fuel-cIuster stringers in AGR-type reactors, tubes in 

the bafBe regions of some kinds of heat exchangers and certain types of valves and 

pistons. For sufficiently high flow velocities, the cylinders in such arrangements bave 

often developed self-excited oscillations, sometimes severe and occasionally destructive. 

For this reason, increasingly more effort has recently been devoted to research in this 

area. Work in the field can generally be cJassified as pertaining to either (a) the study 

of stability related to the effect of the mean fluid flow on the system, or (b) the study 

of tbe unsteady fluid-dynamic forces acting on an oscillating structure surrounded by 

fluid or fluid flow. The present work belongs to the last class of problems. 

The dynamics and stability of a cylinder in confined Dow represent a cou pIed 

fluid-structure interaction problem. Hence, it is essential to formulate the hydrody­

namic forces associated with the motion of tbe cylinder. In a linear analysis, the 

unsteady, motion-related, fluid-dynamic forces may be conveniently separated into in­

ertia, damping and stiffness components. Therefore, it is a logical first step to develop 

analytical tools which may be used to predict the inertial added-mass and damping 

forces in flow or just in quiescent ftuid. As is well-known, added mass and damping 

are dependent on fluid parameters and system geometry. Studies of added mass can 

be traced to Stokes (51 and a brief survey was presented by Muga and Wilson [6}. ln 

general. in a flowing fluid. the total damping is expressed as the sum of the damping 

in stationar)' fluid plus flow-velocity-dependent damping. However, it is true that the 

latter is dominl\llt when the axial flo\\" velocity is large or the viscosity of the fluid is 

small. The papers in this area of interest to the present work will now be reviewed. 

A considerable amount of work has bccn done on the dynamics of a cylinder im· 

mersed in stationary confined viscous or invi.scid fluid. Fritz developed a method for 
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calculating the inertial forces [7], in which an appropriate ideal-flow solution was pro­

posed, and then generalized forces were obtained via Lagrange's equations of motion. 

The fluid-dynamic forces acting on oscillating rods in a stationary confined fluid have 

been studied by potential-flow theory [8, 9, 10] and by viscous theory based on the 

linearized Navier-Stokes equations of motion [11, 12, 13). The systems studied were a 

cylindrical b~am or clustered beams within a rigid container, a cylindrical beam within 

a cylindrical shell and two coaxial shells. The added-mass effect, which results from the 

accelerations suffered by the fluid, becomes larger as the annular space is decreased. 

As a result, the natural frequencies of the cou pied system in stationary confined fluid 

are lower than those of the system without fluid. The effect of ftuid viscosity on 

the system natural frequencies is negligibly small in most practical systems, and the 

added-mass effect cao be estimated rather easily by potential-flow theory. However, 

the modal damping ratio is noticeably increased in some cases when the fluid viscosity 

is included, especially for low natural frequencies, and the effect on the inertial forces is 

not negligible in this case. Of course, the viscous damping component of fluid-dynl'mic 

forces, specially wh en the gap is small, is always important and cannot be neglected; 

For narrow annular configurations, where the viscous damping is specially im­

portant, in stationary confined fluid, three-dimensional effects on the hydrodynamic 

forces, considering the end effect due to a finite-Iength annular region where both ends 

of the annulus are open, have been studied by Mulcahy [14] using simplified Navier­

Stokes equations. The theory was formulated for various viscous penetration depths(to 

be defined later) in the nanow annular space. As the ratio of length to radius of the 

inner cylinder is decreased, this thret--dimensional effect becomes significant. It was 

also found tbat thl" added mass is insensith"l" to tbis ratio. while damping is sensitive 

to variations of the ,"iscous penetration deptb ~ .. hen the gap is small. 

In most of tht" studies mentiont"d before. the effect of steady axial flow was not 

considert"d" The dynamics of a flexiblt" cylinder subjectecl to steady axial flow was 6rst 

investgated by Païdoussis. both tht"Oretically (15) and experimentally [161. for tbt" sys­

tem in unconfinE"d 80"·. The coupled-bydrodynamic forces acting on the cylinder were 
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fonnulated according to slender-body theory, as proposed by Lighthill (17) for inviscid 

fiuid, and the viscous forces were formulated by simple linearized relat.ionships, earlier 

proposed by Taylor [18]. The elastic and inertia forces on the cylinder as weil as the ten­

sion induced by drag forces were taken into account, and systems with various boundary 

conditions (pinned-pinned, clamped-clamped, clamped-free) were considered. It was 

demonstrated that srr.all flow velocities damp free motions of the cylinder and gener­

ally diminish its natural frequencies as compared to those in still fluid. For sufficiently 

high flow velocities, however, fiuid-elastic instabilities may occur; both buckling (diver­

gence) and oscillatory instabilities (flutter) are possible, the former generally occurring 

at lower flow velocities than the latter. It was shown that, in the case of cylinders .'Up­

ported at both ends, oscillatory instabilities are specifically caused by friction al forces 

and that, without fiuid-dynamic drag, only buckling is possible. ln general, the added 

mass, which is associated with inertia forces, has a significant effect on t.he naturai 

frequencies of system, while hydrodynamic stiffness effects are responsible for the on­

set of ftuid-elastic instability by divergence. On the other hand, negative flow-induced 

damping is responsible tor flutter; in this case, the critical flow velocity is defined as tbe 

point where the energy extracted from the flow is equal to the encrgy of dissipation. 

For a towed cylinder, the dynamics of the system display a more intricate dynamicai 

behaviour [19, 201. 

In a subsequent paper [21], the theory was extended to confined viscous flow, 

considering the effect of confinement of the fluid flow by a duct, in which the formulation 

of the ,'iscous forces was adjusted appropriately and the gravit y and pressurization 

effects were taken into account. If the flo,," about tbe cylinder 15 confined by a conduit 

or by an adjacent structure. the "irtual mass of tbe fluid associated with the laterai 

motions of the system becomes large and the system loses stability much earlier. but tbe 

fundamental behaviour is not altered. The tbeory WLe; "alidated by comparison with 

tht" experimental results (22). where it was found that, with increasing flow velocity, the 

cylinder is subject, sequentially, to instabilities of incrt'asing mode number: confinement 

severely destabilizes the system. Dy takiug ioto aecount both in\'iscid 123] and viscous 
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hydrodynamic [21] coupling of small arbitary motions of cylinders, the dynamics of a 

cluster of flexible cylinders was studied [24]. 

The system with steady axial flow in an annulus was later studied further and 

more completely [251. With the help of the generalized Fourier-transform techniques 

developed by Dowell and Widnall [261, the inviscid forces for confined flow were derived 

by the full (linear) potential-ftow theory, rather than the slender-body approximation; 

uevertheless, the viseous force formulation based on an adaptation of Taylor's expres­

sions for unconfined ftow was retained. The analysis was capable of estimating the 

dynamics of a body of relatively smalilength-to-radius ratio, sinee the inviscid force 

was not derived via the slender-body assumption. It was found that the potential-flow 

refinement effectively raised the critical ftow velocities for instability, since slender-body 

theory overestimates the fluid-dynamic forces on a cylinder of relatively smalilength­

to-radius ratio. Interestingly, the effect of compressibility on stability was found to be 

small in the subsonic regime and once again the fundamental behaviour of the system 

was found to be almost the same as described in the foregoing. 

In parallel to the foregoing, similar and notable research on the dynamics and 

flow-induced vibration of cylinders in axial flow was conducted by Chen and co-workers 

[1. 27]. The expcrimental data for the turbulent-boundary-Iayer pressure [281 were 

introduced in tll(' theory (27) and the mechanisms of damping and virtual mass were 

investigated for a rod witb arbitr8J)' end conditions. 

In situations in\'ohing very narrow annular flows, the viscous effects, formulated 

approximately by an adaptation of Taylor's expression, are no longer reliable, casting 

sorne doubt ou tbr \1Ùidity of that aspt"Ct oC the model; however, the inviscid model 

is clearly applirablr for n'lath'ely narrow annuli. Tbe viscous forces based on Taylor's 

expressions arr ..... 4tOCiattd ~'itb skiu friction and pressure drop and are thereCore pas­

sivp iD thl' 5CUsr tbat tbry do Dot inftuence the unsteady flow around an oscillating 

C)·linder. Altht)ugh Ibis is quitt Il'uonable for uDcoDfined and v .. eakly confined flows, 

it i. .. drarly Dot rralistic for highly C"oDfintd annular flows. Thus, an appropriate rnodel 

for P\1Ùuating "isrous effcct!. ~'a& Ut<'E'SS&r)·. 
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1 The first attempt to generate an analytical viscous model for cylindrical geomctry 

was made by HobsOi! and co-workers [29, 30]. The model was formulated for dealillg 

with situations of slldden constriction or enlargernent in an approximate manner, i.e. 

with the help of sorne empirical relationships. The dynamics of a rigid cylinder sub­

jected to axial fiow in very narrow passages of non-uniform cross-sectional area was 

studied, for a rigid centre-body hinged at one point, neglecting the radial variation of 

fluid velocity. The analysis was extended to predict the dynamical behaviour of an 

actual fuel assembly oscillating in a channel of arbitrary shape [31]. It was shown that, 

at sufficielltly high flow velocities of the annulaI' fluid, oscillatory instability occurs via 

a negative-damping rnechanism. 

A more rigorous and purely analytical model was developed by Mateescu and 

Païdoussis [32} for a rigid centre-body motion hinged at one point, ",rhere axial varia­

tions of the narrow passage were restricted to be graduaI and smooth. The model was 

based on potential-flow theOI)'. It was then extended to take into account unsteady 

coupled viscous effects [33] (t. e., the viscous-related modification of the ùnstcady pres­

sure} by a systematic, albeit approximate, solution of the Navier-Stokes cquations, 

which considered the unsteady viscous effects much more fully than heretofore. In 

those studies, the radial variations in the unsteady annular flow were taken into oc­

count, despite the BSSumption of small annular clearance with respect to centre-body 

radius. The fluid-dynamic pressures acting on a cylinder having rocklllg motion were 

measured and comparf'd with the theoretical ones [34]. Good agreement between the 

two results was round. 

In subsequent paJX"rti, the theory has becn modified in order to develop the model 

for the turbulent-fio'" regillll', based on a power-Iaw velocity profile that fits the log­

arithrnic foml fairly w~ll (35]. Tht' dynamical behaviour of the system of a flexible 

r.ylinder with fixed ends subjl'C'ted 10 axial fio,," in a narrow annulus was then studled 

[36. 31]. bl' assuming tbl' annular lpace to have constant cross-sectional area. The 

analytical ullsteady-8ow solutions for tht' ullsteady pressure, based on potential.flow 

theory or simplifiE'd \"Ï5cous theory in laminar or turbulent regimes, werr shown to be 
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in good agreement with the experimental results. It was found that, as the annular 

gap becomes narrower, the system loses stability by divergence at progressively smaller 

tiow velocities, provided the gap size is such that inviscid-tiuid effects are dominant. 

However, this monotonie destabilizing effect of the inviscid forces (eventually predict­

ing instability at infinitesimally small Bow velocity for very narrow annuli) cannot be 

physically correct. It is thus very interesting that the theory predicts that, for very 

narrow annuli, viscous forces predominate, and this trend is reversed; thus, further 

narrowing of the annular gap has a stabilizing effect on the system. In some cases 

the system loses stability by Butter rather than divergence. Similar behaviour for a 

biological system has been reported by Grotberg and Reiss [39}, where the inclusion of 

fluid-friction effects cou Id alter the mode of loss of stability from divergence to Butter; 

however, the physical system involved was quite different. 

1.2 ANALYTICAL VERSUS NUMERICAL SO­
LUTIONS OF THE UNSTEADY FLOWS 

The fundamental mechanism of annular-flow-induced instabilities is fairly well unde~'­

stood and can be fairly well predicted. This is not true, however, for complex ge­

ometries. To be able to treat sucb system witb complex geometries, especially cases 

involving area discontinuities, diffuser sections and eccentric configurations in the an­

nular passage, some drastic simplifications or semi-empirical relationships have to be 

used for analytical treatment of the problem. To improve on that, for complex geome­

tries, bu t also for more accurate formulations of the unsteady viscous forces in purely 

cylindrical geometries. recourse bas to be taken to numerical solution techniques. 

In the pasto exact solutions bave been obtained for a few problems by direct inte­

gration of tbe differential equations. This was accomplished by separation of variables 

or with the help of transformations that make the \viables separable, leading to a 

similanty solution: moreover, a number of simplifying assumptions were made in or­

der to make thE' problem tractable. The big ad\'&Iltage of an analytical solution is that 

cleu and genE'ral information. which is usually in closed form, can be obtained. In this 

7 



1 

.. 

way, one gets a much clearer understul!.ding and better appreciation of the underlying 

physical assumptions and limitation., of the solution obtained. However, the number 

of problems amen able to analytical solution is limited. 

In an increasing number of engineering situations today, it is obvious that, to ob­

tain an approximate but realistic solution to complex problems, the numerical rather 

than the analytical approach should be used. The numerical method is fast becom­

ing a new and powerful tool in solving solid-fluid interaction problems. For example, 

Paidoussis and co-workers [40] presented a finite-element method for the free vibration 

of cylinder c1usters in still fluid and the hydrodynamic pressure exerting on a dam 

due to sm ali-amplitude seismic motion was proposed by Zienkiewicz and Nath (41). 

Comparisons with the classical method of solution showed that, although it is less effi­

cient, the finite-element technique is able to solve more complex geometries. Tbe ready 

availability of previously unimaginable computer power has stimulated many changes 

in research laboratories where the need to solve complex problems is important. With 

the advent of high-speed computers, it is now pos&ible to get an approximate solution 

of high accuracy to problems in modem engineering practice, by numerical methods; 

e.g. the finite-difFerence methods, the finite-element method, so on. Chenault [42] 

and Newton et al. [43] used a finite-element method to study the frequency-dependent 

added mass and damping effects in a two-dimensional ship-vibration problem. In order 

to predict the response of a system conveying fluid, a numerical method that consid­

ered the non-linear terms appearing in the equation of motion of the structure was 

presented [441. 

By tbe use of the finite-element rnethod. viscous damping and added mass coef­

ficients were obtained by Yang and Moran [45] for eccentric configurations. where the 

system of discretized equations was obtained from the appropriate Navier-Stokes equa­

tions and continuity equatioD througb Galerkin'6 method. The analysis was conducted 

ror tbr system having translational motioD iD ItatioD&ry cODfined flow. It was round 

that a finit~elemeDt metbod bas IimitatioD& wbrn the penetration deptb is small. 

A comprehensive researcb effort to de,·elop numerical methods for unsteady vis-
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cous flow has been initiated at McGill University, for annular-ftow configurations in­

volving generally variable annular spaces and concentric or ecccntric cylinders oscillat­

ing in laminar or turbulent viscous ftows - not purely uniform f1ows. For concentric 

configurations, an unsteady viscous model has been developed with a time-integration 

method (a finite-differenceformulation) based on a three-point-backward implicit time­

discretization scherne with a factored ADJ scheme [46]. 

The numerical approach has the potential of providing information Dot accessible 

by analytical methods. On the other band, the numerical approach has disadvantages 

such as truncation errors and round-off errors. Round-off errors can accumulate when 

a large number of arithmetic operations are involved. ID sorne types of calculations, 

the magnitude of the round-off error is proportional to the number of grid points in 

the problem domaine In this case, refining thl.~ grid May decrease truncation errors but 

increase round-off errors. Thus, clearly one has to choose the right tool for the task 

at hand: an analytical, albeit idealized, solution for insight and ease of interpretation; 

or a numerical method for a more realistic solution(especially for complex geometries), 

but al ways with proper attention to its practical limitations. 

1.3 THE CONTENT OF THIS THESIS 

The scope of the research program undertaken in the present work is to develop a 

numerical solution for unsteady flow problems generated by forced or self-exciteà oscil­

lations of the structure in axial or annular 80w in non-uniform configurations, sucb as 

eccentricities. These unsteady-ftow solutions can also be used in the analysis of various 

8ow-induced-vibration vibration problems. as discussed before. 

In order to investigate the hydrodynamic forces acting on a cylinder. a numerical 

approach will be dl'veloped for both potential and viscous flows in an annular passage. 

This is based on a spectral collocation method for solving the steady and unsteady 

confined 80ws and is completely difl'erent from the numerical methods mentioned be­

fore. This approach uses suitable spectral expansions for the ftuid-dynamic parame­

ters. involving Chebyshev polynomials. Fourier series and exponential functions. The 
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discretized system equations are obtained through a collocation method, where the 

governing equations and the boundary conditions are rigorously satisfied at specified 

collocation points within the computational domaîn and on its boundary. 

In most applications of the spectral methods [47,48, 49, 50, 51] recently devel­

oped for ftuid-dynamic problems, a spatial discretization is used in conjuction with a 

temporal discretization based on a finite-difference approach. For example, Marcus 

successfully developed a spectral approach using a time·splitting method based on a 

finite-dift'erence method for the study of the Taylor-Couette flow. The present spectral 

collocation method takes a different approach for the study of the unsteady flow gen­

erated by oscillating boundaries at a specified frequency, which is consistently based 

on spectral expansions for both time and space discretizations, by using Chebyshev 

polynomiaIs, Fourier expansions and exponential functions, as already mentioned. 

In an attempt to predict the tiuid-dynamic forces acting on a cylinder surrounded 

by a viscous or an inviscid fluid in an eccentric annulus, the spectral collocation method 

has first been applied to a system having "translational motion" in quiescent fluid, 

where "translational motion" is understood to mean motion transverse to the flow, 

such that the sides of the two cylindrical bodies remain parallel to each other. Then, 

this method was used to solve the three-dimensional problem for a system having flex­

uraI motion in a concentric annulus conveying viscous axial flow; in this case, the spec­

tral collocation method has been modified and used together with the finite-difference 

method in a hybrid scheme. The finite-difference method based on the hybrid scheme 

is used only for the axial variations of ftuid parameters, while the axial domain is sub­

divided into a fini te number of mesh points at which the spectral collocation method is 

used for the radial and circumferential variations: in this Thesis, this method is caIled 

the collocation-finite-differeuce metbod. As a result, the ftuid-dynamic forces inciuding 

the "iscous effcl'ts cau be e\'aluated rigorously rather tban approximately, in contrast 

with existing theories. 

ln Chapter 2. tbe equations of unsteady potential and viscous flows are derived 

in a general form. To understand the mechanism involved in flow-induced vibration, 
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the previous analytical solutions for unsteady annular flows developed by the author 

are presented, for the case of the self-excited flexural motion of a cylinder treated as a 

clamped-clamped beam as an example. The fluid-dynamic forces acting on the inner 

cylinder can be evaluated by the theory. 

ln Chapter 3, fol' the problem of steady and unsteady fiow, the spectral collocation 

method is formulated. With the aid of a coordinate transformation, the problem is 

transformed into a convenient computational domain, before the spectral collocation 

method is applied. 

ln Chapter 4, the spectral collocation method is applied for validation to several 

typical flow problems, such as the unsteady viscous motion between two oscillating 

parallel plates, the annulaI" viscous fiow generated by a steadY or oscillatory rotation 

of one of its cylindrical boundaries, and the steady viscous flow between two eccentric 

cylinders. In aIl these typical problems, the present spectral solutions will be shown 

to compare favourably with the analytical solutions; e.g., for the steady viscous fiow 

between two eccentric cylinders, developed by Piercy et al. [52] and more recently by 

Snyder & Goldstein [53). 

ln Chapter 5, the fluid-dynamic forces acting on a cylinder oscillating in an 

eccentric annulus filled with a quiescent viscous or inviscid ftuid are obtained by the 

spectral collocation method, when the cylinder executes translation al motion. Then, 

typical results for added Dl8SS and viscous damping coefficients are determined and 

compared with the existing analytical results for potential flow [7, 9]. 

ln Chapter 6. the unsteady viscous flow theory based on the collocation finite­

diff'erence method is dt"\'eloped to fC:-!Ululate the three-dimensional problem. The sys­

tem under consideration uodergoes flexural motions. as an example, and is subjected 

to a steady axial flow (laminar flow), the solution of which is obtained in Chapter 4. 

The fiuid-dynamic forces. as influcllced by the steady axial flo\\'. are calculated by this 

collocation finit~diff'erence method. Utilizing the spectral collocation method, with the 

aid of a separation of \'ariables method, the unsteady fluid dynamic forces acting on 

a flexible cylinder subjected to axial flO\\' is in\'estigated. and then compared with the 
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previous analytical results presented in Chapter 2 for narrow annular configurations. 

This semi-analytical method is less restricted to very narrow annuli, as compared to 

the analytical solution refered to in the foregoing. The numerical results are discussed 

and compared with tbe semi-analyticall \~ults. 

In Chapter 7, simplified analytical HOlutions for viscous damping are obtained, 

with the help of the results obtained by tue numerical method presented in previous 

chapters. lu terms of computationaJ efficiency, it is better to obtain the viscous damp­

ing forces for very narrow configurations by this approximate method. The inviscid­

ftuid model for added mass is acceptable; however, viscous damping cannot be neglected 

and must be obtained by the methods of either Chapter 6 or Chapter 7. The general 

resuIts are compared with those obtained by the present numerical method. 

In Chapter 8, experimental resuIts, in which the unsteady pressure generated 

by translational motion or rocking motion have been measured, are presented and 

compared with the present numerical results. In the equilibrium configurations, the 

cylinders are either concentric or eccentric, in tbe plane of oscillation or normal to il. 

Finally, Chapter 9 is devoted to dis<.ussion and conclusions, as weil as suggestions 

for future work. 

12 



1 

Chapter 2 

ProbleDl Formulation and 
Approximate Analytical Solutions 

The principal aim of this chapter is to present the basic equations of fluid motion, in 

general fonn, for flow-induced-vibration problems; they will eventually be used for es­

timating the fluid-dynamic forces acting on a cylinder in annular configurations. The 

tluid-dynamic forces, which have inertia, damping and stiffness components, can be 

evaluated by potential or viscous theory. The forces, obtained by integrating skin fric­

tion and pressure around the circumference of the cylinder, are expressed in terms of 

steady and unsteady components. Even though the steady viscous forces, which are 

mainly due to the steady skin friction and the mean pressure acting on the cylinder, 

must be considered for predicting the dynamicaI behaviour of the system, it is a sec­

ondary problem at this stage. Thus, only the unsteady forces due to the oscillatory 

motion of the cylinder will he discussed in the present numerical analysis. 

As a step toward estimating fluid-dynamic forces for two eccentrically located 

cylinders in quiesceut 6uid or annular flow. the basic equations of fluid motion for po­

tentiaI and viscous 80\\'5 art' formulated for harmonie oscillatory motion of the cylinder. 

At this stage. the anllular flo\\' is assumed to he fully developed laminar flow. The time­

dependeut lateraI displacclIleut of the oscillatiug centre body is assumed to he small. 

Furthermore. thr efl'ect of flo~' separation can then considered to be negligible. As a 

result. the equatious of fluid 80'" cau bt expressed in linearized form. 

In the study of ftow-iuduced \·ibrations. it is essentiaI to understand the COUJlled 
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fluid-structure interaction mechanism. For this purpose, the self-excited flexural mo­

tion of a cylindrical beam subject to annular flow, which was undertaken analytically 

for concentric configurations by the author [54], is presented in this chapter 88 an 

example. The basic principles used in formulating the fluid problem for inviscid and 

viscous flows are investigated. 

The differential equation of motion of the flexible centre body constitutes a 

boundary-value problem together with the boundary conditions, used to derive a typical 

eigenvalue problem. The normal-mode-expansion theorem based on the separation-of­

variable method can play a major role in the transformation of the boundary value 

problem into eigenvalue problem. By Galerkin 's method, the system equations can 

be discretized, which eventually leads to the determination of the mass, damping and 

stiffness matrices of the system. The dynamics of a flexible cylinder in an annulus are 

presented by the previous analytical theory [37, 54] in this chapter as typical results. 

In the present analysis based on the spectral method, the solution of the eigenvalue 

problem remains to be done. 

2.1 BASIC EQUATIONS OF FLUID MOTION 

Most theoretical investigations in the field of fluid dynamics are based on a perfect, 

i.e. frictionless and incompressible, fiuid. In the motion of such a perfect fluid, two 

contacting fhlid layers experience no tangential force(shearing stress) but act on eacb 

other with normal forces(pressure) only. However, the theor'Y of perfect fluids fail[) 

completely to account for the drag of a body. Because of the tangential or friction 

forces between a fluid and solid wall, tbere exists no difference in relative tangential 

velocity, i.e. there is no slip. 

The existence of t&Dgentiai stresses and the condition of no slip near solid walls 

constitute the essential difference between a pencet ftuid and a real ftuid. In many 

instances, the motion of cenain fluids. sucb as water and air. agrecs weIl with tbat of 

a perfect fluid. because the shearing stresses are very small. As a result. the problem 

can be simplified 50 as to bCC'ome tractable. Howe\'er. tbe viscous effects on tbe fluid-
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{ dynamic forces cannot he neglected in some cases, for example for unsteady fluid motion 

due to the low-frequency oscillatory motion of a cylinder in a narrow annulus. 

The equations of the unsteady potential ftow and the steady and unsteady viscous 

flows will he discussed, and then adapted to the present problem in the following 

chapters. In the unsteady flow generated by the oscillatory motion of a cylinder with 

either high frequency or low fluid viscosity (i.e., with high oscillatory Reynolds number 

which will he defined later), the viscous effects are limited to a region near the surface 

of the oscillating cylinder. According to the results given by Chen et al. [11] for a 

viscous fluid and Chung et al. [9] for an inviscid fluid, the difference between the ftuid­

dynamic forces acting on a cylinder in an annulus, obtained by the two theories for the 

case of high oscillatory Reynolds number, is very small. The effects of ftuid viscosity, 

which may be of secondary importance in some cases, are neglected in a first attempt 

to predict the fluid-dynamic forces acting on the cylinder by means of potential-ftow 

theory. Then the viscous effects on the fluid-dynamic forces are investigated by the 

present viscous theory. 

The system considered in the present analysis consists of a centre body located 

concentrically or eccentrically in a cylindrical duct as shown in Figure 2.1. The radius 

of the inner cylinder is a and the annular space hetween two cylinders is H(9); thus, 

for the case of a constant H, the radius of the outer cylinder is b = a + H. The 

flexible or rigid cylinder, immersed in quiescent fluid or in a steady ftow, generally 

executes oscillatory motion. The fluid-dynamic forces exerted on the inner and/or 

outer cylinders are evaluated numerically based on the spectral method, which will be 

presented in the following chapters. 

2.1.1 Unsteady Potential Flow 

In this section. the flo\\' is presumed to be irrotational and incompressible, in addition 

to being inviscid, &0 that motion of the fluid is govemed bl' Laplace's equatioD which is 

derh'ed from the continuit}' equation. The boundary conditions state that the normal 

velocity of the body is equal to that of the fluid at the boundary surface between fluid 
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and body. Without the complication of viscosity, the momentum equation is reduced 

to the Bernoulli-Lagrange equation, from which the unsteady pressure force acting on 

the cylinder can be obtained. 

The Laplace equation in terms of the unsteady velocity potential t is 

(2.1) 

subject to boundary conditions 

on 16 = 0, where Xl,X2,X3 represent geometrical coordinates, e.g. r,e and x for 

cylindrical coordinates as will be shown in the form of Laplace equation in equation 

(2.27), and 16(XIt X2,X3, t) = 0 is the equation of the body surface. In the unsteady 

motions with moving boundaries, the ftuid domain deforms with time. The system 

is usually employed in conjuction with a time-dependent coordinate transformation. 

However, by the assumption of small-amplitude oscillations of the moving boundaries, 

the geometrical effects of deformation of the ftuid domain are of second order and will 

be neglected in the present analysis. 

The velocity potential, t(X2, X2, Xa, t), may be separated into steady and unsteady 

components: 

(2.3) 

Considering the velocity potential, steady and unsteady velocities, V, and v·, are 

defined by 

(2.4) 

For concentric-flov .. passages, the steady-state component sim ply gives, because of cylin­

dricaJ symmetry, 8,p,/lJr = O. where 0 denates the meao axial-ftow velocity. 

ln arder to obtain the inviscid-ftuid dynamic force exerted on the surface, the 

uDSteady pressure may be written in the following form, usually known as the Bernoulli-
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Lagrange equation deduced from the momentum equation: 

(2.5) 

where p is the fluid density and Poo is the stagnation pressure. Thus, the inviscid fluid 

dynamic force, acting on the inner cylinder of radius a, can be obtained by integrating 

the above equation around the circumference of the cylinder, as 

{2ft 
F, = - Jo a(P - Poo)lr=acos9d9, (2.6) 

whic.h cao be expressed in the general form as 

( 
ô2el ôel ) 

F, = - M ôt2 + Cil ôt + kel , (2.7) 

where el represents the displacement of the oscillating inner cylinder(the subscript 1 

stands for the inner cylinder); Cil is the damping coefficient, k is the fluidelastic stiffness 

coefficient, and M is the virtual mass. In Appendix A, these coefficients are presented 

based on the slender-body theory [21] and then the critical flow velocity where a system 

loses stability by divergence(buckling) are estimated in order to compare the results 

with the analytical results obtained by the inviscid-flow theory, which will be presented 

in Section 2.2. 

2.1.2 Steady and Unsteady Viscous Flows 

The basic equations of mass and momentum conservation are applied to the analysis 

of viscous-fluid flo\\" to get a complete and fundamental understanding of the fluid­

dynamic problem. ln thl" study of viscous incompressible flow, it is necessary to obtain 

thf." three components of veloC'Ïty and prt"SSure, as functions of space and time. These 

four unknowns can bf." detennined in principlf." from the goveming equations, i.e. the 

continuity equation based on the consen'lltion of mass and the Navier-Stokes equations 

ba.sed on thf." consen'ation of momentum. Howe\'er. the complete general solution is 

still Dot possible beca .. of iDSurmouDtable mathematical difficulties. 

Ideally. tht hydrodynamic forces should he calculated from the goveming equa­

tions together with boundary conditioDS. In viscous fluids, the surface forces acting on 
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1 an element of fluid are considerahly more complicated than in an inviscid fluid. These 

are of two types: there is a normal force or normal stress similar to the pressure, but 

it may not be the SaIne in ail directions and there are shear forces whose direction is 

tangent to the surface on which they act. 

In the present analysis, the viscosity and density of the ftuid are assumed to he 

constant. Thus, the Navier-Stokes equations, without body forces, and the continuity 

equation are written as 
DV 1 2 
-=--VP+IIVV, 
Dt P 

V·V=O, 

where Il is the kinematic viscosity of ftuid and 

DV ÔV 
-= -+(V·V)V 
Dt ôt ' 

(2.8) 

(2.9) 

in which the first and second terms on the right-hand side denote the local and convec­

tive derivatives, respectively, and V(Xl, X2, X3, t) represents the velocity vector of the 

fluid. 

For cylindrical coordinates (r, e, x), the above equations are rewritten as 

aw· ôw· w· aw· ôW· W·V· Il ôp· -+V·_-+--+U·_+ +--- = 
&t ôr r ae ax r p r ae 

[
1 ô (ÔW.) 1 a2w· 82

"'.. W· 2 av"] 
Il -- r- +---+----+--

r ar Br r 2 oa2 Ox2 r 2 r 2 ae ' 
8\'· a,,· "t· av" av· w·2 1 ap· 
aï + v· ar + -;::- ae + u· ar - 7 + P ar = 

,,[!~ (r 8\'·) +.!. a2
\,. + a2

\,. _ l''' _! Ôll'.] 
r ôr Or r 2 ôe2 ôr2 r 2 r 2 ôe ,(2.10) 

au· 81V· a 
{Jz + {Je + a;(rV·) = 0 , (2.11) 

where U" , \l" and n'" denote the ftow velocities, including the unsteady components, 

in the axial, radial and circumferential directions, respectively. 
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For small-amplitude periodic motions of the structure, the fluid executes pE'riodic 

motions, and it is possible to separate the flow velocity into steady and unsteady 

components, as follows: 

V·{x, r, e, t) = V..{x, r, e) + v·(x, r, e, t) . 

The pressure cao also be expressed as the sum of steady and unsteady terms 

p·{x, r, e, t) = P,(x, r, e) + p·(x, r, e, t) . 

The equations for the steady viscous flow are 

1 2 {V, . V)V, = --V P, + vV V" 
p 

V· V, = o. 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

By subtra.cting the steady-ftow equations from the full Navier-Stokes equations, the 

remained unsteady-ftow equations can be expressed as 

(2.16) 

V ·v· = 0, (2.17) 

where the product terms between the unsteady components are neglected by the as­

sumptioo of sm ali-amplitude motion of the structure. The boundary conditions based 

011 the no-slip condition can be expressed as 

v· = r., t (2.18) 

where ft. denott"S the "elocity of thf' oscillating structure. 

Tht> resultllnt fort"l'S acting OD thE' structure per unit length, including unsteady 

compoDeDts. CAli he calculated by rousideriug the following stress component: 

(
ÔV. av,) 

"'1 = -P6'1 + Il iJz
J 
+ az. t 

(2.19) 

... heR' ôl :/ôzJ dCDotes j-rompoDt"Dt deri''8tive orthe i directioDal Dow velocity, IJ is 

thl" ftuid ,isc06ity and 6tJ rt"pl't'SeDl6 the KronPCker delta. 
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l The lluid-dynamic forces per unit length can be obtained by integrating the above 

equation along the structure. Thus, 

Fil = -1 T.JnJdf, 

which will be rewritten for cylindrical coordinates. 

(2.20) 

The viscous forces acting on a cylinder in confined llow may be separated into 

steady and unsteady components. The steady viscous forces, which are dependent on 

the derivatives of the motion with respect to the axial direction, are derived from the 

longitudinal frictional force and from the pressurization of the flow to overcome the 

pressure drop. The steady forces, obtained by a previous analytical method, will be 

reviewed in this chapter as an example, but in the present numerical analysis they are 

not considered. The unsteady viscous forces arise from the tangential friction forces 

containing the effect of the viscous pressure distribution along the circumference in 

a direction normal to the wall. Thus, free oscillations of a flexible centre body are 

influenced by both steady and unsteady viscous forces. 

The unsteady forces. acting on the inner cylinder per unit length, due to its 

oscilla tory motion can be obtained by 

(2.21) 

where el denotes the displacement of the moving cylinder and the stress components 

cao be rewri t t en 

T .... (.r,r.a,t) 

Tre(.r. r, a, t) 

T .. ,(z.r.a.t) = (2.22) 

in terms of the- axial. radial and CÎrcumfcrential components of unsteady-llow velocity. 

u·. v· and u'-. ud the uDStea.dy pressu~ p •. 

In tbe present analysis, motion of either the inner cylinder(centre body) or the 

outer cODtaining C)'linder is cODsidered. The forces acting on cylinder i. due to motions 
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of cylinder j oscillating in the plane of symmetry ej and in the nonnal to that plane 

gj, can be written as 

(2.23) 

where Il and 9' stand for the real and imaginary parts, respectively, of the nondimen­

sional fluid-dynamic forces, Êi or â.. Physically, the forces associated with unprimed, 

primed and double-primed coefficients in the above equations can be interpreted as the 

fluid inertial force, the fluid damping force and the fluidelastic stiffness force, respec­

tively; Ilote that Qij and {Ji, are added mass matrices; Q~j and P;j are viscous damping 

matrices; cr:; and P;j are fluidelastic stiffness matrices. For translational motion in an­

nular space without axial flow, it was found that the unsteady forces can be expressed 

in terms of Bessel functions [11]. 

2.2 ANALYTICAL APPROXIMATE SOLUTIONS 
FOR UNSTEADY ANNULAR FLOWS 

The system considered in the previous analysis [37] consists of a flexible cylindrical 

centre-body, coaxially located in a narrow cylindrical annulus eonveying fluid. The 

flexible centre-body, of which both ends are supposed to be c1amped, is free to oscillate 

in flexure inside the duet. Only planar motions are eonsidered. The system is cou pied 

by the fluid-dyoamic forces acting on the flexible centre-body, due to the annular flow, 

which is obviousl)' unsteady. 

A simplified anal~1ical approach was developed in order to estimate the dynamical 

beha\'iour of the system in a narrow annular passage in the presence of a fully-developed 

laminar flow. The potential-flo\\' solutioo obtained in the first stage of the analysis was 

modified by adding a laminar-perturbation solution to account for the viscous etrects. 

Tbe iODer cyliDder, which bas length L and radius a, is considered to be an Euler­

Bernoulli beam characterized by flexural rigidity El, cross-section area A. and deosity 
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P.. The annular gap is H, hence the radius of the outer cylinder is b = a + H. The 

annular flow is characterized by the mean-flow velocity Ü, static pressure Poo in the 

annulus upstream and the fluid density p, which is considered constant; see Figure 2.2. 

In order to simplify the solution, the following two flow fields were considered: 

(a) a potential flow, representing the perturbation-ftow field according to inviscid-flow 

tbP.Ory, and (b) a viscous-flow field, whose axial flow, far upstream, is considered fully 

developed and laminar, and which includes the steady and unsteady viscous effects. 

The equations of motion with the following principal ditferences to the existing 

theory [21] were formulated. First, without using slender-body theory, the potential­

flow theory was developed, based on the assumption of a small annular gap with 

respect to cylinder radius, so that the inviscid forces acting on cylinders of smalllength~ 

to-radius can be predicted. Second, the unsteady viscous forces are formulated by 

considering the simplified Navier-Stokes '.:quations instead of Taylor's expressions, the 

applicability of which is doubtful. 

The equations of smalliateral motions can be derived by considering the equili~ 

rium of forces acting on a differential segment of the flexible centre-body subjected to 

distributed external forces, based on Hamilton 's principle. In this case, the distributed 

forces are due to the fluid motion. The equation of motion of the flexible centre-body 

motion is expressed, as follows: 

subject to boundary conditions (at the fixed ends of tbe flexible cylinder) 

8('/(L, t) = 0 , 
ôx 

(2.24) 

(2.25 ) 

where t/(x.t) is the lateraI displacement of the inner cylinder, Fp the inviscid-fluid 

force, F., the unsteady laleral viscous force and F". the steady viscous force due to 

longitudiaI steady skin friction and tbe mean pressure, acting on tbe centre-body per 

unit length. For the case where the cylinder, althougb laterally fixed at both ends, can 

slide axially at the downstream end, the steady \'ÎSCous forces may be expressed in the 
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following fonn [21] 

[ 
BPm iL] B2el BPm lJel 

F". = - Bx A.(L - x) + ~ F,dx Bx2 + Bx A Bx ' (2.26) 

where Pm is the mean pressure in the duet, F,(x) is the longitudinal steady viseous­

fluid force per unit length due to the longitudinal eomponent of skin friction on the 

inner cylinder. 

Tbe unsteady ftuid-dynamie forces arise from the resultant of the unsteady pres­

sure forces and of the unsteady viscous shear stresses acting on the centre-body surface. 

This analysis has as its principal aim the determination of the unsteady ftuid-dynamic 

forces, firstly for the case of an unsteady potential(inviscid) flow and then considering 

also the main effects of ftuid viscosity on the forces. A full aceount of the procedure to 

develop the steady and unsteady forces may be found in refs [37, 54]. 

2.2.1 Derivation oC the Inviscid Forces 

Based on the 8SSumption of small-amplitude motion of the oscillating inner cylinder, 

the inviscid forces were derived by potential flow theory. For incompressible fluid, the 

governing equation is expresscd, as the Laplace equation shown in equation (2.1), in 

cylindrical coordinates, as follows: 

(2.27) 

subject to tbe boundary conditions, which are obtained by substituting tbe equations 

of body surface (J,(r, t) = r-a -er for the inner oscillating cylinder and I,,(r, t) = r-b 

for the outer fixed cylinder) into equation (2.2). 

Dt _ Ber + [~Be" +! ~ .!. Ber] 
Dr 8t Dx Br r Be r De 

__ 
Dt at 

= o. --ü 
Dr _, ar ~.-oo - , (2.28) 

where tbe radial displacement. e". at tbe azimuthal angle e is expressed in terms of 

the lateral displacement. t/(z.t) = E(z)~'. of the inDer cyliDder as 

e,,(z.e,t) = t/(x,t)cose = E(x) cos ee"'" . (2.29) 
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Based on the normal-mode expansion for the motion of the clamped-clamped 

cylinder, E( x) can be expressed in terms of the eigenfunctions, tPk, 

E(x) = E ak1Pk(x) = L ak[tPu:(X) + tP2k(X)] , (2.30) 
k A: 

where tPu and tP2A: denote the trigonometric and hyperbolic components of these eigen­

functions, respectively, 

and (J'k = (coshPtL - cos PtL)/(sinh PkL - sin,BkL), the {JA:L being the corresponding 

eigenvalues of a clamped~clampoo beam. 

In view of equations (2.3) and (2.30), reduced potentials ~I:(x, r) may be intro­

duced as follows: 

'" A t cP(x, r, e, t) = ~ ak lPA:(x, r)cose elWJ 
, (2.32) 

k 

where by the separation of variables, cPl:(x, r) may be written 88 

(2.33) 

in terms of the new coordinate z instead of r, defined by 

z=r-a. (2.34) 

Thus, the analytical solution, which is restricted to very narrow annuli where 

r - a <: a and llr ~ lIa, can be obtained by considering the following reduced fonn 

of equation (2.27) as 

82~A: + Ô2~k + 1. 8~k _ .!.~k = 0 
8x2 8:2 a 8z 0 2 • 

(2.35) 

with the boundary conditions 

8~A: T- =0. - .. "- (2.36) 

where tbe prime den otes differentiation with respect to x, and h = (b - a)/o = HIa. 
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For brevity, the procedure for obtaining the solution for the reduced potential, 

tÎJ.(x, z), eft'ected by equation (2.33) is not given here. The solution of reduced potential 

tÎJ., evaluated on the surface of the cylinder (z = 0), is found to be 

where 

and 

2 

~Ie(X, 0) = -a L G •• [tw"'.Ie(X) + Ü", •• (x)] , 
.=1 

91c - 1/2 tanh( 91th) 
G1

1c = (ql- 1/4) tanh(qlth) , 

G - -cl + 1/2 tan(clh) for p:a2 > 5/4, 
21e - (c12 + 1/4)tan(clh)' 

G - Cie - 1/2 tanh(clth) for pla2 < 5/4 , 
21e - (q -1/4) tanh(clth) , 

in which qle, Cie and cl are 

(2.37) 

(2.38) 

Having detennined tP, and hence t, the pressure on the surface of the cylinder 

may be found, after suitable linearization, through the unsteady Bernoulli equation 

(2.5). Therefore, the unsteady inviscid forces on the cylinder may be obtained by 

integration, as shown in equation (2.6). Substituting the solution for the unsteady 

velocity potential into the unsteady Bernoulli equation with the aid of df/J./dx = Ü, 

the unsteady inviscid force is found to be 

F,,(z,t) = _p1I'a2eAW1 L a .. ( _",2 Plc2 + t.WPltl + PIcfJ) , 
It 

(2.40) 

where Pt2. Ptl • and PIlfJ are the components of 8uid force associated with inertial. 

damping and stitTness efl'ects, respecth·ely. in the same fonn of equation (2.7); these 

components are given by 

2 2 2 

PA:2 = L G.letIJ .... p.) = 20 E G •• ,·: ... PIcfJ = 02P: L( -1)·G ... tIJ.1t . (2.41) 
•• 1 •• 1 •• 1 

As shown in the abo\'e' equation. the effect of mean 80w on the inviscid forces is to 

produce a centrifugai force due to the CUf\'&tUI'l" of the 8exible cylinder, and a Coriolis 
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force due to the combined flow and rotation of the fluid element. The centrifugai and 

Coriolis forces are associated with the stiffness and damping components of the inviscid 

forces, respectively. 

2.2.2 Determination of the Viscous Forces 

The unsteady potential flow, which is of course irrotational, is expressed in terms of 

the velocity potential t(x, r, e, t), as shown in the previous section. The analytical 

solution of the potential flow, under consideration, is used to develop the approximate 

method of the viscous ftow with the simplified Navier-Stokes equations, based on the 

following assumptions: the frequency of oscillation is not very high ,lWd the Reynolds 

number, based on the hydraulic diameter of the annulus, DH = 2H = 2ha, is relatively 

small. 

Taking into consideration the two ftow fields, potential and viscous, the velocity 

vector associated with the potential flow may be written as Ù[(l + up)Ïz + vpi,. + wieJ, 
where the unsteady ftow \'clocity can be obtained using the unsteady velocity potential 

as shown in equation (2.4), and the associated perturbation pressure as Pp = (P­

Poc )/(pÙ2): u, V, and th stand for the corresponding components ofthe nondimensional 

flow velocity with respect to Ù. Then, one may write 

ü(r,r,e,t) = ü,,(x,r;9,t) + up(x,r,e,t), (2.42) 

and similarly, for Ï'. Ü' and p where the components associated with viscous effects, 

al", 11." tV", and P •• are considered to be dependent anly slightly on e and t. 

Using an appraach similar ta the ODe used in the previous section to develop 

the unsteady equatioDS (2.16) and (2.1 i), the Navier-Stokes equations are simplified 

drastically by subtrat'tiug lor poteutial terms from the full equations for narrow annuli, 

based on a set of assumptions. similar to thase made in boundary-Iayer theory, which 

&l'f' valid, becaUM' of th~ n&rrO\\'Dt"SS of the annular passage, namely: (a) the radial 

component of "iscous motion (' .. Ï5 negligible and (b) the circumferential and axial 

variations in ii and Ù' art" also negligible, compared to the radial variations in the same 
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( components. Taking the foregoing assumptions into account, the governing equations 

for unsteady viscous flow reduce to the following equations in terms of nondimensional 

parameters: 

where the nondimensional coordinates are defined by 

x 
X= -, 

a 
r 

R --- , 
a 

H 
h --- , a 

L 
1_-- , 

a 
z 

Y=-=R-l. 
a 

(2.43) 

(2.44) 

With the aid of Figure 2.3, the total mean dimensionless velocity( over the gap 

height) may be approximated by 

V(X, e, t) = ü cos 17 + tD sin 17 , (2.45) 

where {} may be expressed as 

sin 17 = tD/V ~ tD(X, e, t) , (2.46) 

since the di ï1ensionless total mean velocity is approximately equal to unity. This is 

the key to this simplified treatment of unsteady viscous eft'ects: the magnitude of the 

total mean flow velocity remaios approximately constant, but its direction fluctuates 

circumferentially through a small angle {}, associated with the circumferential mean 

flow velocity. 

In order to simplify the analysis. the average circumferential velocity across the 

annular space. w, cu he calculated from the potential flow obtained in the previous 

section with the relationship 10 = (8f/J/OS)/(Ür), as follows: 

ii- = ~ t ii-a = ~ m.-lt 'HW •• ] siDge~l_ (2.47) 

where 

and the Hf.A- are expressed as iDtfgl'aI forms as 
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ft ïfy[cos(clY) + R~sin(cll")]el/Y dY 1 

W2k= f: l;y[cosh(CkY ) + R2 sinh(ckY)]e1
/
Y dY , 

where 

for (tlka)2 > 5/4 , 

for (tlka)2 < 5/4, 

R _ qksinh(qkh) - 1/2 cosh(qkh) 
1 - -qk cosh( qkh) + 1/2 sinh( qkh) , 

R! - clsin(clh) + 1/2 cos(clh) R
2 

= -cksinh(ckh) + 1/2 COSh(Ck) 
2 - cl cos(clh) - 1/2 sin(clh) , ckcosh(Ckh) - 1/2 sinh(ckh) 1 

where Ck, cl, and qk, are shown in equation (2.39). 

(2.48) 

(2.49) 

Using the chain rule of differentiation, the first two equations of equation (2.43) 

may be combined in terms of the new coordinates shown in Figure 2.3 leading to 

ô2V(Y) Re 1 ôp" 
ôY2 = 2h Ta[· (2.50) 

The solution to the above equation for velocity distribution is obtained based on the 

no-slip condition on the wall, giving the parabolic shape 

Rep" [1 ] V(Y)=--- -Y(h-Y) 
2h ô~ 2 . 

(2.51 ) 

Considering the total nondimensional flow rate, which is calculated by integratioo 

of the above equation over the narrow anoulus - the flow rate is approximately equal 

to the cross-section area of annular passage since the total mean nondimensional ftow 

velocity is equal to 1 - and recalling that h <:: 1, the nondimensiooal pressure drop is 

expressed 
ôp" 24 1 CI ôPm a - = ___ = __ ""'-1 _.-.--

ô{ h Re h - ÔX pU2 • 
(2.52) 

where (ôPm)/(ôx) denotes the dimensiooal pressure drop per unit leogth and the nondi­

mensional friction coefficient cI is defined by 

24 
cl= -. Re 

(2.53) 

wbich is equal to tbat for laminar flo .. · between concentric cylinders or between two 

parallel plates. Hence, tht' dimensionalshear stress on the cylinder rnay be separated 

into two components: an axial and a circurnferential one, 

T. = TCOSt7, Te = Tsin" , (2.54) 
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where the time-independent shear stress on the surface of the cylinder, T, is given by 

-2 12 1-2 
T = pU - = cI-pU . 

Re 2 
(2.55) 

The steady longitudinal force F, and the unsteady lateral viscous force Fvl can 

now be evaluated using 

where 

F, = 102
" T~a de = C {trop(j2 , 

Fvl = 102
" [Te sin e + p(j2pv cos e]a de , 

= _p1fa2elVlt L a~(twP~l + P~) , 
~ 

(2.56) 

(2.57) 

(2.58) 

Thus, the steady and unsteady forces, including the inviscid forces, can be expressed 

as the general fonns shown in equation (2.23). In the above equations, the first and 

second terms of the numerator 1 2 + h, are associated with the viscous perturbation 

pressure and shear stress, respectively. 

Although the foregoing analysis applies to laminar flow, its extension to turbulent 

ftow, e.g., using an eddy-viscosity model, is quite feasible. The unsteady dynamic 

pressure generated by rocking motion was predicted by the viscous theory for turbulent 

flow under the same assumptions [35]. The analysis can be adapted to the problem of 

ftexural motion of a cylinder, in order to obtain the nondimensional friction coefficient, 

CI, eventually used in predicting the viscous hydrodynanic forces. For turbulent flows 

in narrow annular passages, the power law for the velocity distribution in the half-width 

of annular space is 

\'(y) = C [~(HI2 - 1/)] , 
Ur " 

(2.59) 

where 1/. which is a coordinate nonnal to the surface of cylinder. is measured from 

mid·distance between t\PiO cylinders and the friction velocity. Ur. is expressed in terms 

of the shear stress on the surface. 'T. = -p8\'/8y 1 •• H/2. as 

~ 
Ur = V"p' 
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Considering the relationship between the total mean flow velocity and the maxi­

mum Dow velocity at the mid-point between two cylinders and recallingequatioD (2.60), 

the nondimensional pressure drop is expressed in the same form as for laminar flow 

ôp" cI ôPm a -=--"."",---..-
ô~ h - lJx pU2 ' 

(2.61) 

where 

(2.62) 

with 
.l!L.. 

K = 2 [4 1/nn ; 1 ~r+l . 
Taking n = 7 and C = 8.56 specfied by Blasius (55] for Re < 105 , the resultant value 

of K is 0.084. For an eccentric annular flow passage, the friction coefficient, which is 

related to the steady shear stresses on the walls, is estimated by a more complicated 

method, based on the law of the wall or the velocity defect law (57, 58}. 

Utilizing the nondimensional friction coefficient for turbulent flow, the steady and 

unsteady forces can be evaluated in the same forms as those for laminar Dow shown in 

foregoing. 

2.2.3 Typical Result of Dynamics and Stability 

Introducing now nondimensional parameters 

el ,., --- . a 

ptrL2 
(1 -­- . p,A, 

. = ( El ) 1/2 ..!-. 
T A L2' P, 1 

- 2 n = PA,L 
El 

(2.63) 

together with equation (2.44), and considering the unsteady lateraI forces with end 

condition. the following dimensionless equation of motion of the flexible centre-body is 

obtained from equation (2.24) 

,r - c,Û21 (1 + r,) [(1 - ~6) -Xl,.," - (1 - 2v)6(2 - 6)llrj' 

+ ('IÛ2~,.,. + ii = (a~l) ~ (F, + Fu,) • (2.64) 
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where 6 = 0 corresponds to the case of an axially·sliding downstream end, 6 = 2 to a 

sliding upstream end, and 6 = 1 to no axial sliding at either end; v is Poisson's ratio, 

fi is the overpressure at the midpoint of the cylinder, and the prime and dot denote 

ditrerentiation by X and t, respectively. 

ln order to investigate the dynamics and stability of the system, the system of 

equation (2.64) was discretized by Galerkin 's method, utilizing the eigenfunctioDS "'Ir as 

comparison functions, and transformed into a standard eigenvalue problem, from which 

the dimensionless eigenfrequencies, nn, may be obtained. A typical result obtained in 

this manner is presented. The fluid-dynamic forces acting on the inner cylinder, which 

executes a flexural motion, are presented in Chapter 6 and a comparison is undertaken 

between analytical and numerical results. 

The dynamicai behaviour of the system is illustrated in Figure 2.4, where 1 = 

LIa = 20, h = 0.1, CT = 323.7, EII(p1ra2L2) = 1.33 mIs, and /J = 0.007 pa s; 

JI. is relatively large here( typical for oil) to highlight the effects of viscous ftow. The 

real and imaginary components of the lowest three eigenfrequencies as functions of Û, 

calculated according to Ca) entirely inviscid (potential) theory, /J = 0, and (b) unsteady 

viscous ftow, but excluding the steady viscous effects ( i. e., pressurization etrects, surface 

traction and related pressure drop, which are time-independent). It is recalled that the 

system loses stability if 9(nn) < O. by divergence when R(nn) = 0 and by flutter 

otherwise. 

According to potential theory for this case, the system loses stability at Û = 2.13 

(point A) in its first mode bl' divergence. At high flow tbis mode is restabilized at 

Û = 3.21(point B) and then the first and second mode loci coalesce and the system 

loses stability by coupled-mode flutter at point C (Û = 3.5). At higher Û the system 

is subject to 8 succession of coupled-mode flutter and dhrergence instability, as may 

be &een in the figure. The critical flol\" velocity. obtained bl' an approximate method 

based on slender-body theory for potential 8ow, is presented in Appendix A. 

The presence of unsteady viscous forces has the following effects on the dynamics 

of the syi;tem. The eigenfrequencies, in the stable region, are complex, rather than 
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1. purely real as in the potential case:i.e. the system is subject to damping due to the 

prescence of fluid in the annulus (sometimes refered to as squeeze-film damping). As 

a result, it takes a higher flow to precipitate divergence; the system loses stability 

at point A' (not point a) for Û = 2.29. Similarly, coupled-mode flutter occurs at a 

higher flow velocity, Û = 3.56. Neverthless, the fundamental dynamical hehaviour of 

the system remains the same as for potential flow. In this respect it is significant that 

almost up to the point of 10ss of stability, the 9(S1n ) remain essentially constant with 

Û. 
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Figure 2.4: The (a) real and (b) imaginU)' components of the nondimensional eigenfre­
quencies versus the Dondimensional flo,," velocity, for potential flow(. - - .) and viscous 
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Chapter 3 

ForRlulation of the Spectral 
Collocation Method 

3.1 GENERAL CONSIDERATION OF THE NU­
MERICAL METHOD 

As seen in the previous chapter for unsteady annular f10w as an example, the f1uid­

dynamic forces have been formulated analytically, leading to a closed-form solution; 

however, the model is restricted by the assumptions used in the formulation. Using 

a numerical approach, solutions of wider applicability can be obtained by eliminating 

sucb limitations. The present analysis is mainly concemed with numerical solutions for 

steady and unsteady fiows in annular constructions involving eccentricity. The presence 

of eccentricity in annular configurations considerably adds to the complexity of the 

problem. For this resson, very few accurate analytical solutions have been obtained 

and then only for simplified cases. Because of the special interest in dynamical systems 

involving eccentricity, sudden expansion, contraction. or diffuser sections and even in 

the case of concentric configurations, it is desirable to provide more accurate solutions 

for viscous flows than the existing anaiytical solutions. 

For the study of sleady and uDSteady flows, a Dewly developed spectral method 

will he preseDted. The numerical method is completely difl'erent from the recently 

developed method based on timt--integration by a finite-difl'erence formulation [46]. 

Using convenient expansions, the 8uid dynamic parameters can be expressed in 
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terms of interpolation functions such as Chebyshev and Legendre polynomials and 

Fourier series etc. containing a priori unknown coefficients. ln this procedure, the 

goveming equations and boundary conditions are discretized in terms of unknown 

coefficients, using a collocation method. ln the present work, a linear boundary-value 

problem, based on smaIl-amplitude motion of the oscillating cylinder, is considered. 

In order to discretize the ftuid-dynamic goveming equations, two numerical ap­

proaches have been formulated for two-dimensional problems of ftow between two par­

allel plates or two eccentric cylinders and for the three-dimensional problems of ftow 

between cylinders. In the present work for eccentric configurations, the ftuid parame­

ters are expressed in the radial and circumferential domains as interpolation functions. 

In general, the unknown coefficients of expanded parameters confined in the radial 

and circumferential coordinates are also dependent variables in the axial domain. For 

two-dimensional problems, these coefficients are constant in the axial direction. The 

goveming equations expanded by the spectral method are imposed on a finite number 

of collocation points in the radial and circumferential domains. 

For three-dimensional problems, the collocation method is rest.ricted to the ra­

dial and circumferential domains, while a finite-difference approximation based on the 

hybrid scheme is used to discretize the problem for axial variations, where the axial 

region is subdivided into a finite number of axial points. Eventually, the problem 

of self-excited motions of flexible bodies in fluid ftow in eccentric geometries will be 

tackled, where the motion of the cylinder in time and space is not known a pnon. 

A similar hybrid scheme under the name "high-lateral-flux modification" was 

introduced by Spalding for the finite-difference method [56). The main principles and 

application of the collocation finite-difference method will be presented in Chapter 6. 

Similarly to any other numerical approacb. the solution of Il continuum problem 

bl' the collocation method follows an orderly step-by-step process. To summarize in 

geDeral terms how the collocation method works. the steps will be succinctly listed 

as follows. Tht" first step is to choose suitable interpolataon lunchons to represeDt the 

variations of a field variable over the giveD domain. The secoDd step is to tronsform 
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~ .. the coordinates by considering the property of the polynomial functions selected in the 

tirst step. The next step is to de termine the degree 0/ the interpolation functions. In 

general, an approximate solution of high accuracy can be obtained by increasing the 

degree( order) of these functions. But, with increasing the degree, it is obvious that the 

system of discretized equations becomes larger, which can reduce the computational 

efticiency of the method; sometimes, this may also have a detrimental eft'ect on the 

solution due to round-off errors, as mentioned before. It is therefore necessary to opti­

mize the degree of the interpolation functions. The final step is to select the collocation 

points. In order to get a solution of high accuracy with a given degree of the interpola­

tion functions, it is required to assign more collocation points in the regions where the 

variations are luger than at other regions. Generally, a pseudo-singularity problem in 

the system equation may arise because of the inadequate number of collocation points 

and/or unsuitable selection of the collocation points. 

In summary, the nature of the solution depends not only on the interpolation 

function, but also on its degree. Most often, the choice is a matter of engineering 

judgement based on accumulated experience. Generally, the approximation improves 

with increasing the size of the family of interpolation functions, as long as the pseudo­

singularity problem is not encountereâ. If by chance, the exact solution is contained in 

the family of interpolation functions, this procedure gives the exact solution. At the 

same time, it is very impotant that the numerical method utilized be as computationally 

efficient and frugal as possible, in tenns of memory requirements and time. 

This newly developed spectral collocation method will first be applied to the study 

of steady and unsteady flow between two parallel plates and two eccentric cylinders. 

Tbe spectral solutions will be validated by comparison with the available analytical 

solutions in Chapter 4. 

ln two dimensionaJ problems 5uch as steady and uDsteady 80ws between two 

eccentric cylinders or two parallel plates. auy fluid-dynamic parameters, at &Dy location 

in tht" physical domain. art" dl'pendent ,viables in tht" computational domain related to 

the selected intt"rpolation functions; they may also be functions of time, when the flow 
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~t. is unsteady. The specifie form of the spectral expansion is chosen in accordance- with 

the physical problem involved. Considering a convenient eoordinate transformation, 

the problem can be defined in the computational domain, where the algebraic system 

of equations is obtained from the governing equations, in addition to the boundary 

conditions. Using the collocation method, the equations are discretized in terms of 

the unknown coefficients. Using the Gauss-Seidel iteration method based on a pivot 

point, the unknown coefficients can be determined. The solutions obtained in the 

computational domain can be converted back to the physical domain by a coordinate 

transformation. 

3.2 SPECTRAL COLLOCATION METHOD FOR­
MULATIONS 

The goveming equations of the steady and the unsteady flows, represented by the 

Navier-Stokes and continuity equations subjected to specifie boundary conditions, form 

systems of partial differential equations which can be expressed in matrix form as 

where Xl, X2, ••• ,Xm are the independent variables, such as the geometrical eoordinates 

and times. and f = (/1.12.··· ,/n)T is the vector offluid-dynamic paramet.ers, sueh as 

the velocity COmpODf."nts and pressure. 

ln the prf."S('nt spectral collocation method. tbe following type of expansion is 

considered for any fluid dynamic parameter f,. (where n = 1.2,···, N), in the fonn 

f,,(X •• X2 ... •• Xm) = LA~~)JT,(rJ)Ft(x,...)exp(LWlxd, (3.2) 
}.JtJ 

where A~~J are a pnori UDkDOV.ll coefficients. The appropriate interpolation functions 

for the expansions must ~ chosen iD accordance with the physical problem iDvolved. 

This is completf."ly ilIustrated in Chapter 4 for tl'pica! uDSteady aLd steady flow proD­

lems. In the pr~nt work for eccentric configurations. ~ and Ft represent. respectively, 

Chebyshev polynomials and Fouri" Berles functions. The exponential functions are 
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used for the time variable in unsteady flow with harmonically oscillating boundaries, 

in which case the coefficients "'1 are related to the radian frequency of the oscillation, 

w. 

The choice of Fourier series as an interpolation function in the circumferential 

direction stems from the obvious periodic character of the flow field with respect to 

the azimuthal angle, while no such periodic character is obvious in the radial direction. 

The Chebyshev expansion method defined in the direction normal to the wall is partic­

ularly suitable because of its fast convergence (exponential convergence as compared 

to the algebraic convergence of the finite-diff'erence solution) and capability to resolve 

especially thin layer-penetration depth, 6, = J211/W, in an unsteady viscous flow. 

In the present spectral collocation method, the goveming equations of the steady 

or unsteady ftow and the associated boundary conditions reduce to a system of algebraic 

equations, where the coefficients of the ftow variable expansions are the unknowns. The 

solution of this system of equations determines completely the entire ftow field (steady 

or unsteady). To get the system equation with this spectral expansion, the governing 

equations are imposed at M collocation points, Xl m ,X2m, ... ,%qm where m = 1,2, ... M, 

which leads, together with boundary conditions, to an algebraic system of equations 

expressed in the general form 

In the determination of the unknown coefficients. A~~J' of the spectral expansions, 

it is necessary to assign more collocation points in regions with sharp gradients than 

in other regions. in order to con"erge to the solution more easily: for example, when 

tbt> unsteady fio\\' fi('lds arr generated bl' tht> oscillatory motion of a wall or a cylinder 

"'ith relath'ell' smal1 pent'tration depth. 

Galerkin's approacb in tbe spectral metbod for discretizing the ftuid dynamic 

gOYel11ing equation ... as tried first. to he used instead of the present collocation metbod. 

However. Galerkin's approach did not provide good accuracy and computing efficiency. 

especial1y for unsteady problems "'bel'!' large velodty \'Bl'Îations exist near the wall. 
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GalerklD's method cannot put weight on particular regions of the domain since the 

goveming equations are discretized by integration over the whole domain. 

The present spectral-collocation method will be shown to provide accurate results 

with good computing efficiency for a considerable range of unsteady and steady proh­

lems. This method permits clustering of the collocation points in important regions so 

as reduce the number of terms in the spectral expansion for a desired accuracy. 

3.3 COORDINATE TRANSFORMATION 

For steady and unsteady flows in eccentric annular configurations, any fluid dynamic 

properties are variables dependent on the radial and circumferential coordinates, r and 

9 shown in Figure 3.1, and also on time when the flow is unsteady. In this figure, a 

and b denote the inner and outer cylinder radii, ha is the annular gap and e is the 

eccentricity. 

In order to generalize the problem by using the spectral collocation method, it is 

necessary to transform the annular space (r and e) between the eccentric cylinders into 

the rectangular computational domain (Z and 8). For this purpose, it is convenient to 

define tbe following nondimensional coordinates: 

r-a 
z= 1-2ah(9)' (3.4) 

where 

H=ahee)=bE1/2 -ecose-a, (3.5) 

witb 

E = 1 _ (~) 
2 

sin2 e . 

Ali functions ba,"ing continuous partial derivatives in the cylindrical domain can 

he expressed in tbe form of functions in tbe computational domain by the chain ruie. 

Thus, bl' cODSideriDg equatioD (3.4), the derivath"es of a function J iD tbe radial direc­

tion can he wri tten as 

81 2 ôl 
a;: = -;;h ai ' EPI (2)' lPl 

ôr2 = ah 8Z2 • 
(3.6) 
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Let the fluid dynamic property f = I(Z,B) and the nondimensional coordinate 

Z = Z(r, e)j then by the chain rule the new coordinate Z has derivs.tives 

az az ô9 1- z ah 
aB - ae ô(J = --;;- a9 ' 

a2z .!. (8Z) =_l-Z (~r l-Z ;Ph (3.7) a92 - 86 ôB h2 ae + h 892 ' 

where 

ah e . 6 1 b (e) 2 • 2(J E-1 
ôe - - sIn - -- - sIn 2 , 

a 2a b 

ô
2
h = !cos6 _! (~)2 c0629 E-~ _ !! (!)4 sin229 E-t , (3.8) 

a92 a a b 4a b 

The partial derivatives of the fluid-dynamic property in the circumferential di­

rection can then be expressed in term of the computational domain as 

81 a f 1 - Z ôh al 
ae = aB + h ôa az ' 

(J2 f [1 - Z B2 h 1 - Z (ah) 2] a f 1 -Z 8h lJ2 f 
= éJB2 + h ôe2 - h2 ae ôZ + 2--;;- éJa az 88 

(
1- Z éJh)2 lJ21 _ 1 - Z (éJh)2 al 

+ h ae ôZ2 h2 ae az' (3.9) 

ln this manner, the partial-diff'erential equation defined in physical domain for ec­

centric configurations can be discretized in the computational domain with the spectral 

collocation method. 

For the unsteady viscous motion between oscillating and fixed parallel plates 

(Figure 3.2), the deri\'atives in the Donnal direction of a fluid dynamic property 1 can 

be expressed in the computational domain (-1 < Z < 1) as 

allaI 
iü = H az ' (3.10) 

when Z denotes the nondimensioDal parameter de&ned by Z = II/H. 11 is a coordinate 

Donnal to the plates. "'hich is measured from mid-distance between them, and 2H 

represents tht' distance between two parallel plates. 
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1 Let us consider the properties of Chebyshev polynomials in order to expand their 

derivatives in series form. The following formulae relate the expansion coefficients an 

in the series 
00 

/(Z) = L anTn(Z) (3.11) 
n=O 

to the expansion coefficients 6n of 

00 

L/(Z) = L bnTn(Z) , (3.12) 
n=O 

for various !inear operators. The formulae for the derivatives are 

Lf(Z) = {(Z) 

Lf(Z) = J" (Z) 

00 

cnbn = 2 L pap, 
p=n+l 

00 

c;.bn = E p(p2 - n2)a, , 
p=n+2 

where Co = 2 and en = 1 (n > 0). 

n+p = odd, 

n + p = even, (3.13) 

As a result, it is possible to express the solutions of fluid parameters iù expansion 

form of Chebyshev polynomials and Fourier series in the computational domain (-1 < 

Z < l, 0 < 8 < 211'). 

The spectral collocation method can now be applied to several specifie problems 

for steady and unsteady fiows, in order to validate the method, in Chapter 4. Then, 

the method is extended in order to solve more complicated problems - for example, 

the unsteady viscous flow problem of a cylinder subject to axial flow, which will be 

studied in Chapter 6. 
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Figure 3.1: Geometry of tbe annular space between two eccentric cylinders in the 
physical plane (r. 9) and in the computational domain (Z.8) 
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Chapter 4 

Validation of the Spectral Method 

A spectral collocation method has been developed in the previous cbapter of unsteady 

flows in an annulus. Before applying it to prohlems, the method will he validated by 

comparison with available analytical solutions for typical steady and unsteady ftuid fiow 

problems. The dynamic characteristics of the fiuid motions obtained for the typical 

problems may be useful to judge numerical results given for more complicated but 

similar problems. 

Thus, for the validation purposes, the spectral collocation method is first applied 

to the problems of (i) fully-developed laminar fiow in an eccentric annulus and (ii) the 

steady flow generated by cylinders rotating in a concentric annulus. The analytical 

solutions are presented in Appendices B and C. Considering the steady viscous fiow, 

generated by rotation al motion of one or both of the cylinders in a concentric annulus, 

il should be mentioned that this metbod can be extended to tbe problem of oillubri­

cated bearings in aD f'Ccentric annulus. where extremely large pressure differences are 

obtained at high ftOt" \'elocities, The \~locity distributions along the radial direction 

are presented by thl' numerieal and the analytical methods. 

ln order to \-alidatr thl' spectral collocation method for unsteady fiow problems, 

the theory is a1so applied to sim pIt problems of unsteady viscous fiows, where analytical 

solutions are kuaal1: UDStCady \iscous Bows between two parallel plates oscillating har­

monically and bt-t.'ftn conC't"ntric rylinders undergoing harmonie osdllatory rotation. 

Tbe numerieal rftult& an tben compared to tbe analytical ones given in Appendices C 

4i 



1 andD. 

In general, the accuracy of the numerical solution given by this method is depen­

dent on the number of the selected collocation points. In otber words, it is possible 

to get higher accuracy in the numerical solution by increasing the degree of the poly­

nomials considered, when singularity problems are not encountered. The influence of 

the number of collocation points, m, or n and m, on accuracy of the present spectral 

method is investgated by comparing the numerical results obtained for various values 

of m, or n and m, with the exact analytical solutions. For this purpose, a 7mB average 

error is calculated for each set of m, or n and m, values: 

[
1 N li rms = N ~(1 - !num/ fana)~ , (4.1) 

where N denotes the number of points, uniformly distributed in the domain, in which 

the numerical solution, fnum, is compared with the analytical solution, fana. 

The velocity profile for unsteady viscous flow has the form of a damped harmonie 

oscillation, the fluid velocity, f(x, t), at a certain point x, has a phase Iag t.p with respect 

to the motion of the wall. The nondimensional velocity amplitude, 1 Î l, and the phase 

angle cp have been calculated for the unsteady viscous flow between two parallel plates 

and two concentric cylinders. as 

1 Î(x) 1= 1 ~(x.t! 1. 
pf!'MI 

t.p = arctan 9(~(x)) 
R(f(x)) • 

(4.2) 

where lb e"'" represeDts the velocity of the moviog structure, and Rand 9 stand for 

real and imagiuBJ')' components. respectively. 

4.1 STEADY VISCOUS FLOWS 

4.1.1 Fully Developed Laminar Flow Between Two Eccentric 
CyliDders 

ID the present work. the fully developed laminar·flow velocity distribution in an eccen­

tric annulus is obtained bl' tbr spectral collocation method. for comparison with the 

analytical solution given b~' Piere')' et Al. (52J. This analytical method was developed 
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based on a conformal transformation of the annular space from the physical coordi­

nates to bipolar ones. The cross-section al geometry considered in the present problem 

is shown in Figure 3.1. 

The equation of motion for fully developed laminar ftow, essentially a two dimen­

sion al problem in r and e, reduces to Poisson's equation 

82U 18U 182U Q 
8r2 +; 8r + r28e2 = 4a2 ' (4.3) 

where U(r,9) is the fully developed axial ftow velo city and Q is related to the pressure 

drop by 
a2 dP 

Q = --- = constant, 
4J.l dx 

(4.4) 

where P(x) is the pressure and Il is the ftuid viscosity. 

Considering equations (3.7) and (3.9) defined for the nondimensional computa-

tillnal domain (Z,9) by the coordinate transformation, Poisson's equation becomes 

a2u au a2u 82U 2 
Aaz2+Baz+CaZ89+D892 =Qh , (4.5) 

where 

A - 1 + D[(l - Z)h' Ih]2 , 

B - -VD + D(l - Z)[h" /h - 2(h' /h)2] , 

C - 2D(l- Z)h' /h, 

D - {h/[2 + (1 - Z)h]}2 , 

where h(9) represents the nondimensional annular space defined in equation (3.5) and 

h' (~) and h" (8) den ote its derivatives defined in equation (3.8). 

The boundary conditions, based on the no-slip condition, on the inner and outer 

cyliuders (Z = ±1), can be rewritten as 

U(l.S)=o and U(-l,S) = o. (4.6) 

In this spectral collocation method. the following expansion in terms of Chebyshev 

polynomials and Fourier Beries may be considered for the axial flow velocity 
fil ft 

U(Z,S) = EL Ujt T,(Z) Ft(S) • (4.7) 
"80".0 
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where Fit = cosk8, due to flow symmetry with respect to the plane 8 = 0 in this case. 

With this expansion, the governint, equation (4.5) and the boundary conditions can 

formall) be expressed as 

and 

m ft 

EL U,A: [A T;' (Z) F1:(8) + B T;(Z) FI:(8) + C T;(Z) F~(8} + D T,(Z) Fil (8)] 
i=01:=O 

tri ft 

E E UiA: ~(l) FA:(8) = 0 , 
,=01:=0 

m n 

LE U,k TJ(-1} Fk(8) = 0, 
,=01:=0 

= Qh2(8) , (4.8) 

(4.9) 

where the prime denotes differentiation with respect to the concerned coordinates; for 

example, T' = tlT/dZ and pli = cPF/d82• 

Considering the properties of Chebyshev polynomials and their derivatives given 

in equation (3.13), the governing equation is expressed as 

+1:,(Z) [B Fk(8) + C F;Un]!. f: p Upit + D ~(Z) Fil (9) V/l} = Qh2(O). (4.10) 
CI p=,+l 

Using the collocation method, equations (4.9) and (4.10) can be formulated as a 

system of algebraic equations, with unknowns V,t and VpIe. At the collocation pomts, 

equation (4.l0) is rigorously satisfied, specifically at (n + 1) circumferential positions 

corresponding to the angular coordinates 81c (k = 0,1.2,··· ,n) and also at (m-l) radial 

positions corresponding to the nondimensional coordinates ZAJ = 1,2,···, m - 1). 

The boundary conditions are imposed on (211+2) angular positions on the wall Z = ±1. 

The solution of this algebraic system of (n+ 1) x (m+ 1) equations completely determines 

the flo9.· in the annular space. 

Tbe present solution is eompared in Figure 4.1 witb the analytical solution, oh­

tained by Pierey et al. 152) and Snyder aud Goldstein 153), which is derived in Appendix 
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B; it is noted that the results ofthe two analytcal solutions art identical. The numerical 

solution is obtained with n = m = 6 collocation points which are uniformly distributed 

radially and azimuthally. The ratio of the radii of the inner and outer culinders, a/h, 

is 0.5, the relative eccentricity, e/(b - a), is 0.6 and the relative pressure drop per unit 

length, defined by equation (4.4), is -O.17m/s. The variation of the calculated average 

n'nS error, l'mS, defined in equation (4.1), is shown in Table 4.1 for N = 180. 

Table 4.1 The variation of the calculated rms average error with the number 
of collocation points, 11 and m, for fully developed laminar flow 
[alh = 0.5, e/(h - a) = 0.6, Q = -0.17m/s andN = 180] 

1 ~% 129~111 o.~41 o.~21 
As shown in Figure 4.1, the laminar flow velocity in a strongly eccentric annular 

space is highly asymmetrical; the maximum axial velocity in the azimuthal plane e = 

1800 being more than ten times larger than the maximum one in the e = 0° plane. 

This strong asymmetry is due to the large viscous stresses near the wall. By physical 

intuition, the flow rate discharged per second may increase with the eccentricity and 

the local shear stress around the wall may vary along the circumferential direction, as 

compared to concentric ones. As a resuh, the effects of the steady axial ftow due ta 

the eccentricity on the fluid dynamic forc'es acting on the cylinder are different from 

those for concentric configurations. 

Considering the results shown in Table 4.1 and Figure 4.1, excellent agreement 

is found to exist between the present and the analytical solutions for n and m greater 

than 5. It was found that the accuracy of the numerical solution cC'nverges relatively 

fast. namely exponentially, with the numbe,r of collocation points. 

4.1.2 Steady Viscous Flow in J\n Annulus Generated by Ro­
tating Concentric Cylinclers 

In this problem. the steady ,"iscous ftow bet,,"een two concentric cylinders is generated 

by steady rotational motion of the inner or outer cylinder. The spectral collocation 
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1 method is used to solve the problem, and the numerical results are compared to the 

analytical ones presented in Appendix C. 

For this two-dimensional problem, any fiuid dynamic parameters are dependent 

only on the radial coordinate. The radial flow velocity and the circumferential variation 

of fiuid-dynamic parameters cao be eliminated. Thus, the Navier-Stokes equations 

reduce drastically to 

d'lw + ~ (W) = 0 , 
dr2 dr r 

(4.11 ) 

subject to the boundary condition on the surface of the rotating cylinder: 

w=aw at r = a, 

when the inner cylinder rotates; or when the outer one is rotating, 

at r = b; 

and W = 0 on the stationary cylinder. In these equaions, W(r) represents the circum­

ferential flow velocity and w denotes the angular velocity of the rotating cylinder. 

Using the convenient coordinate transformation based on the nondimensional 

parameter Z = 1 - 2(r - a)/ H, the problem is defined in the computational domain, 

Z, in which the governing equation (4.11) cao be expressed as 

tPÛJ v'DdÛJ • -- D--Dw=O 
dZ2 dl · 

(4.l2) 

subject to the boundary conditions 

wbere D. defined in equation (4.5), is constant for a concentric annulus. 6 is 0 or 1 

accordingly as the inDer or outer cyliDder is rotating. and tbe nondimensional flow 

velocity is tÏl{Z) = "'ï(aw) for inner cylinder motion or ÛJ(Z) = W/(hw) for outer 

cyliDder motion. 
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Using Chebyshev polynimials, ÛJ(Z) is expanded as 

m 

weZ) = LW, T,(Z). (4.13) 
j=O 

Substituting this equation into equation (4.12), an algebraic system of (m+ 1) equatioDS 

is obtained in the form 

m 

E W,[T,'(Z) - rvr;(Z) - D7j(Z)] = 0, (4.14) 
1=0 

which is to be rigorously satisfied at (m - 1) collocation points, ZJ (J = 0, 1,2, ... ,m-

1), and by two boundary conditions, 

m 

LW,T,(l) - 1- 6, 
1=0 

m 

E W,T,(-l) = 6. 
1=0 

The unknown coefficients W, are then detennined from a set of aIgebraic equa­

tions consisting of the discretized govt'rning equation and the boundary conditions. 

For the viscous flow generated by rotationaI motion of a cylinder, the analytical 

and numerical solutions are studied: when (a) the inner cylinder rotates and (b) the 

outer cylinder rotates. By inspection of equation (4.14), the principal nondimensional 

parameter characterizing the system is D, which is dependent only on the nondimen­

sional annular space, h = HIa = b/a-1. 

In Figure 4.2. the velocity distributions are presented for various values of o/b 

(0.4. 0.6 and 0.8), in cases (a) and (b) with m = 7. To investigate the influence of 

the number of collocation points, m, unifonnly distributed in the radiaI direction, the 

calculated averagt" mu error is presented in Table 4.2 for o/b = 0.6 with N = 40. 

Table 4.2 Tht" \'ariation of the calculated rms average error with the number 
of collocation points, m, for steady viscous fla\\' generated by 
the rotational motion of the cylinder (olb = 0.6] 

iDDer cyliDder outer cylinder 
rotaies rotates 

m 3 S 3 S 
Pmi % 7.30 O.OS 3.S4 0.03 



1 Taking account of the results shown in Figure 4.2, it is noted that the velocity 

distribution is less aft'eeted by the ratio of two radii in ease (b) than in ease (a). With 

decreasing a/h, both cases tend to the linear velocity distribution of Couette ftow, as 

it oecurs between two fiat plates. 

Excellent agreement between the present numerical solution and the analytical 

results is obtained for m greater than 5, and the aceuracy of the present solutions 

converges very fast as the number of collocation points is increased, as shown in Table 

4.2 and in Figure 4.2. 

4.2 UNSTEADY VISCOUS FLOWS 

4.2.1 Unsteady Viscous Motion between Oscillating Parallel 
Plates 

The first test for unsteady viseous fiow problems is the unsteady motion between t,wo 

infinitely long parallel plates, one of which exeeutes an oscillatory motion in its plane 

with periodic harmonie motion, while the other is fixed or has an oscillatory motion 

in antiphase. As shown in Figure 4.3, the distance between tbe two plates is 2H, and 

y denotes the eoordinate measured from the centerline. The velocity of the oscillating 

plate is U" e""'. 

By eliminating the derivatives of the ftuid dynamic parameters in the tangential 

direction to the plate as weil as the ftow velocity normal to the plate, the governing 

equation , derived from the Navier-Stokes equations, is expressed as 

(4.15) 

where " is the kioematic \isc05ity of ftuid and u· (y, t) is unsteady flow velocity in the 

t&DgentiaI direction to tbe plates. ~'biclJ C&D be defined by 

(4.16) 

where WJ represeots the circular frequent')' of the oscillations. 
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ln order to generalize the problem, it is convenient to define the foUowing nondi­

mensional parameters; 

A U u--- U" , 
WH2 

Re.=­
v 

(4.17) 

where Re. is called the oscillatory Reynolds number, defined as the product of the 

Reynolds number based on the plate velocity amplitude, Re = (U,H)/v, and the 

reduced frequency, S1 = (wH)/U". 

In this case, the following spectral expansion, based on Chebyshev polynomiaJs, 

can be considered for the nondimensional complex amplitude of velocity, û, as 

m 

û(Z) = Er R(UJ ) + t 9(UJ ) 1 ~(Z) , (4.18) 
J=O 

where ft and 9' stand for the real and imaginary components, respectively, of the 

complex unknown Ur Hence, considering the equation (4.17), the goveming eo'l!'~tion 

can be rewritten as 

subject to the boundary conditions 

Û IZ=-l - 6, 

Ü Ihl - l, 

( 4.19) 

( 4.20) 

where ~ = 0 when only the upper plate oscillates, and 6 = -1 wh en the lower plate 

aJso osciUates in antiphase with the upper one. 

With the spectral expansion. the go\'erning equation (4.19) is expanded as 

'" LI I(L~) +, ~(UJ») (T;' (Z) - LRe.r,(Z») = 0 • (4.21) 
)-0 

where the primr denott'S the difl'crentiatioD " .. ith respect to Z. The Dc>sJip boundary 

conditions ~ also rnTÏtten iD the expanded form 

III 

EII(L') +19(U,») ~(1) = l, 
1-0 



l m 

E[R(Uj ) + t~(uJ)) T,( -1) = fJ . (4.22) 
j=O 

It is worth noting that both reai and imaginary parts bave to be satisfied in eacb of 

the above equations. 

The a priori unknown coefficients U" which are now complex variables, are deter­

mined using the same procedure utilized in prcvious sections for steady viscous flows; 

however, in this case it is necessary to select the collocation points more carefully, as 

discussed in Chapter 3. To obtain good accuracy and computing efficiency in the case 

of relatively high Re" the collocation points need to be clustered near the wall, where 

the largest velocity variations occur; they are assigned in the present analysis by 

, (J - 1)11' 
ZJ = 2S10 2(m -2) - l, 

when only the upper plate oscillates, and 

, (2J - m)1I' 
ZJ = S10 2( m - 2) , 

J = 1,2 ... · ,m - l, ( 4.23) 

J=1,2,"',m-l, (4.24) 

when the two plates oscillate in antiphase; since, the penetration depth (fJI' = v2vjw), 

regarded as a kind of viscous wavelengtb, is smail relative to the space between the 

two waHs. For this case, the oscillatory Reynolds number, Re, = (wH2 )jv, which is 

proportional to the square of the ratio of the annular gap to the penertation depth, is 

a principal characteristic parameter, as shown in the nondimensional governing equa­

tions. 

The radial variations of the amplitude and the phase angle are presented in 

Figures 4.3(a.b) for viscous flow between two plates for the following cases; (a) the 

upper plate oscillates with Re, = 8.3i and (b) both plates oscillate wlth Re, = 52.3. 

In the latter case, the variation of 1 û(Z) 1 and ",(Z) are shown only for Z ~ O. the 

flow being antisymmetric "'ith respect to the plane Z = 0 

As expected. tbe Dumerical solutioDs converge to tbe anaJytical ones as the num­

ber of tbe collocation points is iDcreased. Il was found that very good accuracy has 

already heen achieved for m = 10 in case Ca) and m = 20 in case (b), For the plates os­

cillatiDg in antiphase, more collocation points (m = 20) are required for good accuracy, 
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1 sinee the nondimensional penetration depth of the viscous wave (nondimensiona1ized 

with respect to tbe distance between plates and defined by 21r J2/ Re,) is 2.5 times 

smaller tban in tbe case (a). 

4.2.2 Unsteady Rotational Motion between Two Concentric 
Cylinders 

The unsteady viscous ftow between two concentric cylinders is generated by the har­

monie rotational motion w·(r, t) = Wo~' of one eylinder wbile the other is fixed. On 

the basis of the considerations discussed in Section 4.1.2 and shown in Appendix C for 

concentric configurations, tbe Navier-Stokes equations reduce to 

rPw· +.!!.. (W·) _ .!. dw· = 0 
dr2 dr r v dt ' 

(4.25) 

wbere the unsteady ftow velocity can be expressed in an expansion fonn as 

m 

w·(r,t) = W(r) eUolt = Wo:El R(WJ ) + t. 9'(WJ )] Tj(Z) eu.lt , (4.26) 
;=0 

wbere ~ denotes Cbebyshev polynominals. 

Taking account of tbe coordinate transformation, given in Cbapter 3 for eylin­

drical coordinates, to get the solution in tbe computational domain, the goveming 

equation is expressed in tenns of tbe nondimensional eomplex amplitude of velocity, 

Ü' = WjWo, as 
tPÛl ~DdÛJ D A Re, A 0 --yu-+ W-t.-W= 
dZ2 dZ 4 ' 

(4.27) 

wbere Re, denotes the oscillatory Reynolds number defined as Re, = wJ(l/v, and Z is 

the nondimensional parameter as Z = 1 - 2(r - a)/ H. Based on tbe no-slip condition 

at the ,,·all. the boundary conditions can be expressed in nondimensional form as 

w Iz-.= 1 - 6 t 

where /1 = 0 ... hen the inner cylinder oscillates and /1 = 1 when the outer one oscillates. 
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The unknown complex coefficients, W" are obtained by solving the algebraic sys­

tem of equations, obtained from the goveming equation and the boundary conditions, 

defined by 

which is to be rigorously satisfied at (m - 1) collocation points, and 

m 

I:[ R(Wj ) + 1. 9'(W,») T,(I) = 1 - D , 
j=O 

m 

L[ R(W,) + 1. 9(W,)] T,( -1) = D . (4.29) 
,=0 

With the same procedure shown in the previous section for unsteady Dow velocity 

between two plates, the solutions of the unknown complex coefficients, W" can be 

obtained. 

In Figures 4.4 and 4.5, the distribution of amplitude and phase angle are presented 

when (a) the inner cylinder oscillates and (b) the outer cylinder oscillates. The present 

results have been obtained for various values of the ratio alb = 0.98, 0.8 and 0.4 with 

constant Re. = 33.5 in Figure 4.4 and of the oscillatory Reynolds number Re. = 

33.5 (alb = 0.8), 75.4 (alb = 0.7) and 134.1 (a/b = 0.6) with constant b = 0.1 m in 

Figure 4.5. The analytical solutions, derived for infinitesimally small clearance H ~ 0 

in Appendix C, are presented here for Re. = 33.5 for comparison with the present 

numerical results. 

Considering the results, it is noted that the nondimensional amplitude and the 

phase angle are strongly affected by the oscillatory Reynolds number, Re.; however 

they are almost independent on the ratio alb for a constant Re •. By increasing the 

oscillatory Reynolds number. the \'iscous wavelength. which is related to the phase 

angle. becomes smaller. In Figure 4.4, good agreement in the velocity profiles is 

shown WÎth the analytical results for alb = 0.98 and Re. = 33.5 with m = 20 and tbe 

analytical results. In c:ase of alb ~ 1. the results tend to converge to thase for unsteady 

VÎ5Cous flow between two parallel plates. 
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4.3 REMARKS 

The spectral collocation method developed in Chapter 3 has been presented here for 

the study of steady and unsteady ftows and for the validation of the method. Utilizing 

suitable expansions, involving Chebyshev polynomials, Fourier series and exponential 

functions for lIuid-dynamic parameters, the a priori unknown coefficients in these ex­

pansions are determined from the governing equations and boundary conditions, which 

are rigorously satisfied at conveniently chosen collocation points. 

This method has been applied to severa! typical problems for which analytical 

solutions exist. Excellent agreement has been found, in all the ftow problems consid­

ered, between the spectral solutions and the exact analytical ones. One can conclude 

that the present numerical method has been valid3ted by these comparisons. 

In subsequent chapters, this method will be applied to the analysis of unsteady 

eccentric annular ftows generated by an oscillating rigid cylinder with confidence, as 

well as to the study of ftexural motions of a cylinder subjected to axial ftow in a narrow 

annular ftow. 
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Figure 4.1: Comparison orthe present spectral method with the analytical solution for 
tbe steady axiallaminar Dow between two eccentric cylinders (for bla = 2, ela = 0.6 
and Q = -0.17 mIs), in terms of the radial variation of the axJal velocity, U rn/s, at 
MOUS azimuthal planes (8 = 00

, 90°, and 180°). '. present solution; -, Snyder & 
Goldstein 's analytical solution. 
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Figure 4.2: Comparison of thl' prestu! spt'Ctral method with the analytical solution for 
tbe viscous flo\\' bt't"'eeD ''''0 concentric cylinders. ODe of which is steady rotation, in 
lerms of tbl' radial ,viatioD of the DondimensioDal velocoty ÛI(Z): (a) with the iODer 
cyliDder rolating. ~ = O. and Cb) ";lb the outer cyliDder rotatiDg, 6 = 1. Present 
6Olutions calculatt'<! for \v10US \oaJUt"5 of tbe ratio of tbe radii: 0, alb = 0.4; 6. 
al" = 0.6 and 0,016 = 0.8: -. lUlalytical solution. 
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Figure 4.3: Comparison of the present spectral method with the analytical solution 
for tbe unsteady \'iscous motion betwecn t",o oscillating parallel plates. in tenns of 
nondimensional fluid ,'elocity amplitude 1 ü(Z) 1 and phase !p, with respect to the 
upper plate oscillation: Ca) tbe 1000'er is fixed, ~ = 0; (b) tbe lower plate oscillates 
in antiphase. 6 = 1. 0, 0, C, present solutions ca.1culated with m = 5. 10 and 20. 
respectively; -, analytica1solution. 
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Figure 4.4: Comparison of the present spectral method with the analytical solution for 
tbe unsteady \'iscous motion between two concentric cylinders, wh en the inner cylinder 
oscillates. in terms of tbe radial \'8.l'Îation of tbe nondimensional velocity amplitude, 
1 ÛI(Z) 1 and pbase .". for an oscillatory Reynolds number Re, = 33.5: (a) with tbe 
inDer cylinder oscillating. 6 = 0; (b) with the outer cylinder oscillating, IJ = 1. Present 
solutions calculated (a) for \'Brious "alues of tbe radii: 0, alb = 0.98; A. alb = 0.8; 0, 
alb = 0.4;-, analytical solution for H ~ o. 
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Figure 4.5: Influence of tbe oscillatory Reynolds oumber Re, == wH2 Iv. on the Dondi­
mensional velocity amplitude, 1 ÛJ(Z) 1. and phase, ~, calculated with the present 
spectral method for constant outer radius b == 0.1 m: (a) case of oscillating iODer cylio­
der, ~ = 0, and (b) case of oscillating outer cylinder, IJ :: 1. -0-, Re, = 33.5 and 
alb = 0.8; -~-, Re, = 75.4 and alb = 0.7: -0-, Re, = 134.1 and alb = 0.6. 
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Chapter 5 

Study of Two-dimellsional 
Unsteady Annular }"lows 

The unsteady fluid motion generated by the harmonie motion of a cylinder in an 

annular passage has au important effect on the bydrodynamic forces acting on it. To 

determine the hydrodynamic forces, it is necessary to obtain first the unsteady pressure 

distribution and skin friction generated by the vibrating cylinder in the annulus. In 

general, this is a three-dimensional problem; however, the three-dimensional effect is 

small when the radius of the cylinder is small compared to its length. In this case, a 

tw~dimensional formulation can provide a good approximation. 

In How-induced vibration studies, it is of interest to evaluate the added mass 

and viscous damping coefficients, which are dependent on Huid properties as weil as 

geometry. In predicting the stability of a system in a confined Huid, the added mass and 

damping are important considerations, as shown in Chapter 2. The spectral method 

bas first been applied to the unsteacly potential flow and then to the unsteady viscous 

How. generated by periodic translational motion of a cylinder in an eccentric annulus. 

The final aim of this chapter is to provide the formulae and the results for added 

ffiass and Huid damping wh en a cylillder undergoes oscillatory motion in the plane 

of symmetry and normal to tbe plane of the symmetry in an eccentric annulus. The 

potential tbeory has been developed to obtain the added mass for incompressible, 

inviscid and irrotational ftuid. For the vÎ5Cous ftuid, the added mass, in phase with 

the ACceleration of the mo\Oing cylinder, and the viscous damping, in phase with the 
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its velocity, are presented. 

When a cylinder, immersed in viscous ftuid, has oscillatory motion in an aunluar 

space, the viscous damping effect becomes important with decerasing annular space, 

even though the viscosity of the ftuid may he relatively small, as discussed in Chapter 

1. However, the added mass cau be estimated rather easily for a narrow anoulus by 

potential-flow theory. In the present study, the viscous effect on the added mass can 

be evaluated by comparing the results obtaioed by poteotial-ftow theory with those 

obtained hy viscous-flow theory, and viscous damping is investigated. 

The results obtained by the potential-flow theory will also be used to validate tbe 

present spectral method against the avaible analytical solutions of Chung and Chen 

19) for ecceotric configurations and of Fritz 171 for concentric configurations. To have 

meaningful comparisons with the availahle solutions, the same considerations are used 

to solve this unsteady problem with the spectral collocation method. In the present 

analysis, the problem is formulated based on the following assumptions: (a) the flow 

is two dimensional with no axial-flow velocity and (b) the amplitude of the oscillatory 

motion of the cylinder is small. 

5.1 UNSTEADY POTENTIAL FLOW 

By definition, the penetration depth, Dp = J2v/w, is very small when the viscosity of 

fluid, 1/, is very small QI the circular frequency of the motion of the cylinder, w, is very 

large. In this case, the ftuid flow can be assumed to be irrotational and inviscid. 

The velocity potential associated with the motion of the inner or outer cylinder 

can he solved in the computational domain hy the spectral collocation method through 

a coordinate transformation. Vsing the present numerical method, the self-added mas~ 

of the mo\'ing cylinder and the mutual-added mass of the fixed cylinder are obtained hy 

integrating the unsteady pressure around the circumference for \'arious eccentricities. 
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5.1.1 Formulation of the Basic Equations 

Let us consider an infinitely long cylinder undergoing a periodic translational motion 

in an annular space, which is filled with incompressible and inviscid ftuid, as shown in 

Figure 3.1. In the unsteady potential-ftow problem, the continuity equation reduces to 

the Laplace equation in tenns of the unsteady velocity potential4>(xl, X2, X3, t) given 

in equation (2.3). In cylindrical coordinates, r and e, the goveming equation when 

there is no axial ftow can be expressed as 

8
2

4> + ! 84> + ~ a2
t/J = 0 ar2 r ar r 2 ae2 • 

(5.1) 

Considering equatiolls (3.6) and (3.9), the Laplace equation, after transformation 

into the corn pu tational domain (Z, 9), becomes 

(5.2) 

where A, B, C, and D are functions of Z = 1 - 2(r - a)/ H and h(9), as defined in 

equation (4.5). 

Assuming the frequency of the periodic motion of translation has circular fre­

quency w, the unsteady veloci ty potential 4>( Z, 9, t) is expressed by a set of expansions 

in terms of Chebyshev polynomials, ~(Z), and Fourier series functions, FA:(9): 

m ft 

(/>(Z, 9, t) = 1. W E 0
2 e"'" L L 4-,A: T,(Z) FA:(8) , (5.3) 

,=OA:=O 

where aff"'" denotes the displacement of the oscillating cylinder, f being a nondimen­

sional amplitude. 

With this spectral expansion, equation (5.2) can be rewriUen in terms of the 

selected interpolation runetions as 

m " L L ~,A: [A -r;' (Z) F,,(iJ) + B r;(Z) F.(9) + C -r;(Z) F~(iJ) + D 1',(Z) F;' (9)] = 0 t 

,-OIcaO 

(5.4) 

where the prime symbols denote differentiations with respect to Z for the Chebyshev 

polynomials and with respect to 9 for Fourier series funetions. 
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1 ln order to formulate the problem completely, the boundary conditions on the 

moving and fixed cylinders are added to tbe above governing equation. As shown in 

equation (2.2) for unsteady potential tlow, the normal tlow velocities at the boundary 

surfaces are equal to those of the moving and the fixed cylinders. Because of the eccen~ 

tricity, the normal-flow velocity cau be decomposed into radial and the circumferential 

components, v· and w·, in terms of the unsteady velocity potential, as 

v" -

w" -

-

In the present analysis for eccentric configurations, the boundary conditions are 

more complicated than those for concentric configurations. Let us consider oscillatory 

motion; (a) in the plane ofthe symmetry and (b) normal to the plane of the symmetry, 

e = O. For both cases, the inner or outer cylinders execute the oscillatory motion, 

identified by eo or 9/. where e and 9 stand for case (a) and (b), respectively. The 

subscripts 0 and 1 represent the inner and the outer cylinder, respectively; for example, 

eo denotes the oscillatory displacement of the outer cylinder in the plane of symmetry. 

(a) Oscillatory motions in the plane of s:;mmetry, e = O. 

Let us consider small oscillatory motion of the outer cylinder executing oscillatory 

translation in tht' plane of symmetry e = 0, containing the axes of the two cylinders. 

\\'hile the inner cylinder is fixed, the outer cylinder is oscillating with la.tera.1 displace­

ment. eo(t). ""hich ma)' br expressro as 

ra(t) = a ë eiI.JI . (5.6) 

The boundary conditions on the 6xed and moving cylinders can be expressed as 

It··(r.a)) ..... = O. 

(v·(r. a) cos(a - s.) - u··(r. a) sin(a - aD)] ...... = d;; cosSo • (5.7) 
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( where 
a e 

cosSo = (1 + h(9)] ;; cos 9 +;; , 

see Figure 3.1. 

Using equation (5.5), these houndary conditions can he expanded as follows: 

m n 

L L c),A: T;(I) FA:(8) = 0 , 
,=0 A:=O 

m n 

L E c),A: [Ao7j(-I)FA:(8)+BoT;(-I)FH8)] =cos90 , (5.8) 
,=0 A:=O 

where 

Ao = - h~) cos(9 - So) + 2Bo h'(8)jh(8) , 
1 

Bo = -1 +h(8) sin(9 - 9 0 ), 

When the inner cylinder executes an oscillatory translation in the plane of sym­

metry e = 0 while the outer cylinder is fixed, the displacement on the moving cylinder 

can he wri tten as 

(5.9) 

and the corresponding houndary conditions in this case are 

m ft 

L L t,A: [AoT,(-l)FA:(B)+BoT,(-l)F;«(J)] =0. (5.10) ,.0 .=0 
It is oh,'ious that in both cases when the translational motion takes place in the 

plane of symmetry. the uDSteady 80w in the eccentric annular space is symmetric with 

respect to e = O. Hence. Ft (8}. which will be used in the expansion form of the 

governing equation (5.1) for thl' velocity potential. may he defined by 

(5.11) 

The collocation method can he applied now, as described in Chapter 4 for the 

stearly viscous 80'9.' bet,,'een ecccntric cylinders. to equations (5.4) and (5.8) or (5.10), 

which will reduct" these diff'erential equations to an algebraic system of (n + l) x (m + l) 
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J equations. The solution for the coefficients ~ JI.: of the velocity potential in expanded 

form can then he ohtained by the Gauss-Seidel iteration method based on pivot points. 

(b) Oscillatory motions normal to the plane of symmetry, e = o. 
If the inner cylinder is fixed and the outer cylinder executes the translational 

motion perpendicular to the plane of symmetry, e = 0, with displa.cement 

90(t) = a il e'WoIt , (5.12) 

the boundary conditions on the fixed inner cylinder and on the moving outer cylinder 

can be expressed as 
m n 

E L c)Jk r,(l) Fk(O) = 0 , 
J=O k=O 

m n 

L L 4»JA; [Ao r;(-I) FA;(O) + Bo T,(-I) F;(O)] = sin 9 0 , 

J=O k=O 

(5.13) 

where Ao and Bo have the same expressions given in equatioll (5.8). 

Similarly, when the outer cylinder is fixed and the inoer cylinder axis has an 

oscillatory displacement 

9/(t) = a il etWolt 
, (5.14) 

the boundary condition on the fixed outer cylinder is given hy equation (5.10), while 

that on the moving inner cylinder can be expressed as 

2 m n 

- h(O) E. E 4-,k r,(l) Fk(O) = sine. (5.15) 

ln both cases, wh en the translational motion is normal ta the plane e = 0, the 

unsteady flow in the eccentric annular space can he considered (when the oscillation 

amplitude is small) to he antisymmetric with respect ta e = 0; hence, in such cases the 

Fourier functions Ft (9) used in the velocity-potential expansion (5.3) can be defined 

as 

(5.16) 

The governing equatioD (5.4) together witb the boundary conditions will also be 

reduced to an algehraic system of (n + 1) x (m + 1) equations,leading to the solutions 

for tbe coefficients tJA- of tbe velocity potential expansion. 
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1 5.1.2 Unsteady Pressure Distribution and Resultant Pres­
sure Force 

With the coefficients. Jk determined from the solution of the equations, the entire flow 

field in the eccentric annular space is completely detennined. Considering the govem­

ing equations and the boundary conditions in expanded forms, which are linearized 

with respect to the amplitude of the displacement of oscillatory motion (based on the 

smaIl amplitude of motion assumption), it is obvious that the solution of the velocity 

potential tJk is independent on the amplitude of oscillatory motion; however, the fluid 

parameters are linearly dependent on the amplitude of translationaI motion. 

The unsteady pressure may be caIculated now in the annular space by the Bernoulli­

Lagrange equation (2.5), 

p-p .. =-p [:+~ (:~)\~ (; :n ' (5.17) 

where Poo denotes the stagnation pressure in the ftuid (existing in the absence of any 

oscillatory motion). Assuming small-amplitude oscillations, so as to have a meaningful 

cornparison with Chung and Chen's (1976) results, the second and third terms of the 

right-hand side in the above equation can be neglected and the unsteady pressure can 

be expressed in simple-harmonie-oscillation fonn, 

(5.18) 

where p(Z,8) is a nondimensional reduced pressure defined by 

m ft 

P (Z,8) = L L tJk T,(Z} Fk(8) , (5.19) 
1=0 t""O 

and where f = ê or 9, respectively, for oscillation in the plane of symmetry or normal 

to it. The circurnferential variation of the nondimensionaI reduced pressure p(1,8) on 

the oscillatory inuer cylinder (Z = 1), wh en its axis oscillates in the plane of symmetry, 

or nonnal to it, can be calculated for various relative eccentricities. 

The resultant unsteady force, acting on the moving or fixed cylinder, in the direc­

tion of oscillatory motion can be obtained by integrating the unsteady pressure along 
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1 the circumference of the cylinder. The unst~ady force normal to the motion equals 

zero: since, the pressure distribution around the circumference of cylinder is symmet­

ric with respect to the plane of the motion for oscillation in the plane of symmetry; for 

the other case, the pressure distribution includes the antisymmetric components, but 

its integrated effect is zero. The resultant unsteady force acting on the inner cylinder 

in the direction of the motion per unit length, for oscillation in the plane of symmetry, 

is given by 
f27r 

F1(t) = - Jo a p(l,e) cose de, (5.20) 

and, for oscillation normal to the plane of symmetry, it is given by 

(27r 
G J (t) = - Jo a p( 1, e) sin e de , (5.21) 

where the subscript 1 stands for the inner cylinder. 

Similarly, the resultant unsteady force per unit length acting on the outer cyl in­

der, when the inner or outer cylinder oscillates in the plane of symmetry or normal to 

the plane of symmetry, is given, respectively, by 

[2" 
Fo(t) = Jo b p( -1, e) cos 9 0 deo , 

and 

Go(t) = 102
" bp(-1,9) sin90 d90 , 

where the subscript 0 stands for the outer cylinder. 

(5.22) 

These integrals can be calculated in the complltational domain (Z, 8 = 9), taking 

account of equation (5.7) \Vith the aid of Figure 3.1. by the following relationsbip: 

cos9odSo =~!I + h(8)]cos8d8+ ~h'(8)sin8d8 = ~ L,Clrcosk8d8. 
t 

sin9od9o = i Il + h(8)1sin8d9 + ~ h'(8)cos8d8 = ~ L S"sink9d8, 
t 

(5.23) 

siDce h(8) and h'(8) are even and odd functions of the Fourier expansion. respectively. 

In general, the hydrodynamic forces. acting on cylinder t in the duection of the 

motion, due to the translational motion of cylinder } are expressed in terms of added-
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mass coefficients, ai, for motions in the plane of symmetry and P., for motions normal 

ta the plane of symmetry: 

(5.24) 

where ri and T, denote the radii of cylinders, i and j. For example, 010 and /301 denote 

the mutual-added-mass coefficients for the force acting on the inDer cylinder due ta 

the outer-cylinder oscillation iD the plane of the symmetry and for the force acting 

on the outer cylinder due to the inner-cylinder oscillation normal ta the symmetry, 

respectively, where the subscripts 1 stands for the inner and 0 for outer cylinder. 

"ence, f.g., the 8uid-dynamic force acting on the inner cylinder due ta its motion in 

the plane of symmetry can be calculated by considering the self-added-mass coefficients 

Substituting equation (5.18) into equations (5.20) and (5.21), the added-mass 

coefficients for the resultant forces acting on the inner cylinder can be obtained 

m 

011 = - E ~Jl~(l) , 
,=0 
m 

11/1 = - L 4lJ .T,(l) • (5.25) 
,-0 

wbere 4l,1e are obtained from the corresponding algebraic equation for each case. 

Similarly, substituting equation (5.18) into (5.22) with the aid of equation (5.23), 

the added-mass coefficients for the resultant forces acting on the outer cylinder can he 

expressed as 

(5.26) 

wbere CI: and St are defined in equation (5.23). 
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By inspection of the expansion forms of the velocity potential, which are ex­

pressed in terms of even or odd Fourier functions according to the direction of oscil­

latory motion, the hydrodynamic forces normal to the direction of motion (calculated 

by circumferential integration involving sin 9de and cos 8de instead of cos 9dS and 

sin 9d9 in equations (5.20) and (5.21), respectively) are zero; this is because the even 

and odd terms of the Fourier-series functions are orthogonal to each other over the 

domain in the circumferential direction. 

5.1.3 Numerical Results for Inviscid Fluid-dynamic Forces 

The numerical results for an inviscid fluid are presented to evaluate the fluid-dynamic 

forces. For this purpose, the unsteady pressure on the surface of the cylinder and the 

fluid-dynamic force have been expressed in terms of added mass coefficients. 

The circumferential variation of the nondimensional reduced pressure p( Z = 1,0) 

on the inner cylinder (Z = 1), wh en the inner cylinder has translation al motion (a) in 

the plane of symmetry or (b) normal to the plane of symmetry, is shown in Figure 5.1 

for various relative eccentrities e/(b - a) = 0, 0.4 and 0.8, and for b/a = 1.25. The 

unsteady pressure distributions are symmetric in case (a) and antisymmetric in case 

(b) about e = 0°, as expected by considering equations (5.11), (5.16) and (5.18). It 

is of interest to find that the maximum values of 1 p(1,8) 1, which bccome larger with 

the eccentricity, are on the axis of oscillatory motion (9 = 0° or 180°) in case (a); and 

they are near the axis (8 = 90°) in case (b), but gradually move to the narrow region 

with increasing eccentricity. 

Before discussing the subsequent figures, the terms "self-added" and "mutual­

added mass" should be defined. Self-added mass is that associated with the moving 

component, a.nd mutuaI-added mass is that associated with another component due to 

the motion of the first. Thus. for the case of two concentric cylinders, let us consider 

that the inner one is moving while the outer is sta.tionary; then we talk about the 

self-added mass on the mO\"Ïng cylinder and the mutual-added mass on the stationary 

one. 
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In Figure 5.2, the self-added mass and mutual-added mass coefficients of the inner 

cylinder oscillating, obtained by the present method for concentric configuration with 

various ratios b/a (m = 20), are compared with Fritz's clJlalytical results [7] which are 

shown in Appendix E in detail for concentric configurations. In order to check the rate 

of convergence of the solutions, the number of terms taken in the Chebyshev polyno­

mial expansion was varied; the results are shown in Table 5.1 and are also compared 

with the Fritz's results. The rate of convergence is faster in the case of the narrower 

annulus than in the case of tbe wider one. Also the dift'erence between the numerical 

results and the analytical results appcars to decrease faster with an increasing number 

of collocation points, m. As a resut, a slight increase in the number of terms m taken 

in the calculation is found to be needed for larger b/a, in order to obtain the same 

accuracy. The agreement between the numerical and analytical results is very good. 

Table 5.1 Variation of the calculated mass coefficients 011 and 010 

with the number of collocation points, m, and their relative 
difference with respect to Fritz's analytical results. 

Comparison witb 
b/a m 011 -OJO Fritz 's analytical results 

1 - QU/OUF. 1 - Oro/OlOF. 

3 4.3117 4.145i 5.35% 4.39% 
1.25 5 4.5549 4.3355 0.01% 0.01% 

i 4.5556 4.3360 0.000l% 0.0001% 
5 1.6409 1.0564 1.54% 0.96% 

2 1 1.6654 1.0662 0.07% 0.04% 
9 1.6666 1.0666 0.0001% 0.0001% 

Tbe addcd-mass coefficients. dcfined iD equation (5.24), are calculated with the 
• 

present spectral-('olloratioD method for \"afÏous relative eccentricities eJ(b-a), and the 

results are shown in Figun-s 5,3 &ud 5.4. To (urther validate the present method, the 

results are comllMt'd witb tbr analytical results obtained by Chung and Chen (1976) 

in Figure 5,3 (b). Tbt' agnoement between the present solution and the solution of 

Cbung and Cbl'D is \'ef)' good. (For tbt' sake of this comparison. the same assumptions 

as thosc madt' by Chung and Cht"D were also used in tbe application of the present 
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spectral collocation method.) 

The variation with the relative eccentricity p,/(b - a) of the nondimensional un­

steady force coefficients /JI} in the case of oscillatory translation normal to the plane of 

symmetry is shown for b/ a = 2 in Figure 5.4; one can notice tbat this variation is almost 

identical with that of the coefficients QI} in Figure 5.3 (a), although the corresponding 

resultant unsteady forces act in directions perpendicular to each other. Note that the 

self-added-mass and mutual-added-mass coefficients of the two cylinders are strongly 

influellced by eccentricity for narrow annular configurations (b/a = 1.25)~ however, in 

case b/a = 2, the self-added-mass coefficients of the outer cylinders with eccentricity 

is relatively smaU while both coefficients of the inner cylinder are still influenced by 

eccentricity. 

5.2 UNSTEADY VISCOUS FLOW 

This section presents the numerical analysis for the inner cylinder, which has tbe trans­

lational motion în the plane of symmetry or normal to the plane of symmetry in a con­

fined viscous fiuid. A system of discretized equations is obtained from the appropriate 

Navier-Stokes and continuity equations and the boundary conditions through tbe spec­

tral collocation metbod. As shown in Chapter 2, the nonlineanty in the Naver-Stokes 

equations can be disregarded for sm ali-amplitude motions of the cyhnder. 

Although for many engineering applications, the ViscoSlty is small and the fluid 

may be considered iu\'iscid as a first approximation, ne8.r the surface of the cyhnder 

there exists a thin layer of rotational Dow, as mentioned before. This flow region, 

where the viscous efl'ect is significant, is of great con cern to the dynamic response of 

the system for annulu configurations. ln p .. ticular. wh en the annular gap is srnall. the 

viscous effect becomes pronounced. 

The hydrodynamic forces acting on the inDer cylinder. due to the oscillatory 

motion of tbe inner cylinder. v;m ~ obtained througb line integration of stresses and 

pressures &round tht circumfercllct of the cylinder. In general for thi~ problem, tbe 

resultant hydrodynamie Corets havt' simple harmonie forros, based on the assumptioD 
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1 of small-amplitude oscillations, and are decomposed into two parts, one in phase with 

the acceleration and the other with the velocity of the motion. Thus, they can be 

expressed in terms of added-mass and damping coefficients, which will be obtained by 

considering the definitions shown in equation (2.23). 

5.2.1 Formulation of the Basic Equations 

We consider the inner cylinder of the system, surrounded by viscous incompressible 

fluid, and undergoing periodic translational motion in an eccentric annulus. The motion 

of the inner cylinder is assumed to be simple harmonic with circular frequency, w, and 

its amplitude small. For this kind of two-dimensional problem without steady axial 

flow, it is possible to eliminate the convective terms and the axial-component terms 

from the governing equations, shown in equation (2.16) for unsteady fluid flow. The 

linearized Naver-Stokes equations and the continuity equation in cylindrical coordinates 

cao be reduced to 

ôw· Il ôp· -+---8t pr ae 
ôv· 1 ap· 
-+--
8t p Br 

(5.27) 

(5.28) 

where v· and w· denote the unsteady flow velocities in the radial and circumferential 

directions. respectively. 

Based on the no-slip condition at the interface hetween fluid and cylinder, the 

boundary conditions on the fixed (r = b) and moving (r = a) cylinders cao be ex­

pressed. in cases of oscillatory motion (a) in the plane of symmetry and (b) normal to 

the plane of symmetry. as 

1'-(0, a) 

u'-(o. a) 

t'-Ch. a) = w·(b, a) = 0 , 

el 
- et' cosa = 'lii cos a , 

. a e,. e 
- -el' SID = - ôt sm • 
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1 v*(a, 9) = 9" sine g/ • e 
= ôt sm , 

w*(a, 9) = 9" cose g/ e 
=ôtCOS, in case (b), (5.29) 

where e" and g" represent the lateral velocity of the vibrating inner cylinder in cases 

(a) and (b), respectively, and el and 91 denote the corresponding displacement of the 

moving cylinder. 

In order to generalize the present problem, it is convenient to define the following 

nondimensional parameters 

v* w· A p* H 
iI= 

tOWfeUAJ
' ' 

Û1 - taweeW' ' P = pa2w2Ee~t ' h --- , 
a 

e" 9" wa2 

ê= 
taweUAJt ' 

fi - tawe"'" ' 
Re, = -, 

Il 
(5.30) 

where ê and fi denote the nondimensional amplitudes [equations (5.9) and (5.14)], of 

the displacement of the oscillating inner cylinder, and e = Î wben the inner cylinder 

has oscillatory motion in the plane of symmetry, or f = il when it bas oscillatory 1D0tion 

normal to the plane of symmetry. 

Considering the coordinate transformation with the above nondimensional pa­

pameters, it is not difficult to reformulate the goveming equations (5.27) and (5.28) in 

the computational domain (Z, 0) in a nondimensional form: 

Re'h2 • L- W 
4 

Re'h2 • 
1- V + 

4 

,R;'hVDL(p) = [A:; +B:~ +C :;:0 +D: -D (ÛI- 2L(V»] 
Re, aft [a2

i1 ôv ô2i1 82
ÛJ • A ] 'Th az = A az? + B ÔZ + C ôZôfJ + D 802 - D(v + 2L(w» (5.31) 

:; -lDv - ID L(û,) = 0 , (5.32) 

where the operator L(f) is 

[
Ô h'(fJ) éJ] 

L(/) = ôB + (1 - Z) h(B) éJZ J. 

Considering the order of magnitude of A. S. C and D in tbe above equation with 

the &id of equaticn (4.5). A is dominant as compared to the otbers for narrow annular 
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passages, and the unsteady pressure drop in the circumferential direction is mainly due 

to the radial variation and time derivative of the circumferential unsteady ftow velocity. 

In this spectral method, the nondimensional fluid parameters can he expressed 

in terms of Chebyshev polynomials and Fourier expansions, as shown in the potential 

theory. By inspection of the boundary conditions and consideration of the properties of 

symmetry and antisymmetry of fluid parameters with respect to the plane of symmetry 

a = 0, the ftuid parameters can he expressed in terms of only even functions (cos kO) 

or only in odd funetions (sin k6), aceording to the direction of the oseillatory motion 

of cylinder; in case (a) or in case (h), as mentioned before. 

(a) Oscillatory motions in the plane of symmetry, e = o. 
Using the spectral expansion for the oseillatory motion of the inner cylinder in 

the plane of symmetry, the following types of expansions can he considered for the 

fluid-dynamic properties in two-dimensional annular space 

m ft 

ÛJ = EL: W,k Tj(Z) s(k9) , 
,=Ok=O 
m ft 

V = EL: V;r.: 1j(Z) c(k8) , 
,=Ok=O 

m-2 ft 

p = L L PJk T,(Z) c(k9) , (5.33) 
J=O k=O 

where c(k9) and s(k,9) stand for the even terms (cos kO) and odd terms (sin k9) of 

the Fourier expansions, respectively, and the unknown coefficients W,,,, v, .. and P,k 

are in complex forms due to the viscosity. In the above equations, the degree of the 

Chebyshev polynomials for unsteady velocity is considered two degrees higher than 

that for unsteady pressure in the present analysis hecause, generally the degree of the 

interploation functions for the unsteady velocity components is higher than that for 

the pressure distribution 159). 

Taking account of the expansion forms shown in the ahove equations, the gov­

eming equations and the continuity equatioD can be expanded as 

m ft 

E L ",~k [A~' (Z) 8(k9) + B ~(Z) 8(1-9) + C ~(Z) s'(k9} + D ~(Z) s" (kO) 
J.OhtO 
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(' -D T,(Z) s(k9) -, R;. h2 T,(Z) S(k8)] 

( 

+ 21';. [T,(Z) c'(k6) + (1- Z) ~(~1 T;(Z) c(k9)] 

+ 'P;. R;. h(9)YD [1j(Z) c'(k9) + (1 - Z)~~? T;(Z) c(k9)] = 0, 

m ft 

LE l'iA: [A T;' (Z) c(k8) + B T,(Z) c(k8) + C T;(Z) c' (k8) + D T;(Z) Cil (k8) 
j=OIc=O 

-D T;(Z) c(k9) - t R;, h2 1j(Z) C(k8)] 

[
, h'(8) , ] 

- 2Wj lc 1j(Z) s (k8) + (1- Z) h(8) ~(Z) s(kiJ) 

- "PjA: R;, h(8) ~(Z) c(k8) = 0 , (5.34) 

m ft 

LE Y,1c [~(Z) c(k8) - ../DT;(Z) c(k8)] 

-W,. [T,(Z) s'(k6) + (1 - Z) ~~? T;(Z) S(kO)] = O. (5.35) 

suhject to the boundary conditions 

m ft 

L: LV;I: 1j(I) c(k8) 
;=OA:=O 
m ft 

L L WJA: T,(I) s(k8) 
J=O 1:=0 
m ft 

L L V;k T,( -1) c(k8) 
J=Ok=O 
m ft 

EL "'jk Tj ( -1) s(k8) 
,-=01:=0 

- cos 8 , 

- - sin8 , 

- 0, 

- 0, (5.36) 

where ()' and ()" denote the first and second-order differentiations, respectively, with 

respect to the concerned pararneter: for example, T = ar/dZ and t' = tPc/diJ2. ln the 

present analysis, the unknown coefficients can be determined by the collocation method, 

whereby the goveming equations and the continuity equation are satisfied at a certain 

Dumber of distinct locations within in the computional domain, say (3m -1) x (n+ 1). As 

a result. the discretized set of equations can be obtained from the goveming equations 

and the boundary conditions 2 x (n + 1). Thus, the solutions of the algebraic system of 
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1 (3m+ 1) x (n+ 1) equations can be obtained complet.ely in the computational domain, 

which are convertible back to the physical domain. 

(b) OsciUatory motions normal to the plane of symmetry e = o. 
In the spectral expansion when the inner cylinder has oscillatory motion normal 

to the plane of symmetry, while the outer cylinder is fixed, the following types of 

expansions can be considered for the ftuid-dynamic properties in the two-dimensional 

annular space by inspection of the boundary conditions and the properties of symmetry 

and antisymmetry of fluid parameters: 

m n 

ÛJ = }: LWjk T,(Z) c(k9) , 
j=Ok=O 

m n 

il = L L lI;k T,(Z) s(kO) , 
j=Ok=O 

m-2 n 

fi = ~ L Pjk T,(Z) s(k9) , (5.37) 
,=0 k=O 

in terms of unknown coefficients, W,k, Y,k and P,A:. which are separated into real and 

imaginary components. 

Considering the ab ove equations in expansion form, the governing equations and 

continuity equation can be written as 

m n 

L L W,k [A T;'(Z) c(k9) + B T;(Z) c(kO) + C T;(Z) c'(kO) + D T,{Z) c"(k9) 

-D T,(Z) c(k6) - L R;, h2 T,(Z) c(k8)] 

, [, h'(O) 1 1 + 2\',k T,{Z) s (k9) + (1- Z) h(O) ~(Z) s(k9) 

Re, rr:. [, h'(O) 1 1 + tP"kTh(8)v D T,(Z) s (k8) + (1 - Z) h(O) ~(Z) s(kO) = 0 • 

"~k [A~' (Z) a(k8) + B T;(Z) &(kO) + CT; (Z) s' (k8) + D T,(Z) s" (kO) 

-D T,(Z) &(k8) - 1 ~e, h2 ~(Z) s(k6)] -

21\~. [7;( Z) c' (M) + (1 - Z) ~((:: or; (Z) c( k9)] 

tP,k R;, h(8) ~(Z) a(k8) = 0 , 
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• P; J .,! L Ji! 

( m fi 

L L: Y,k [~(Z) s(kfJ) - VD1';(Z) s(k8)] 
;=Oj=O 

-W;. [T,(Z) c· (k9) + (1 - Z)~f:? :t;(Z) c(M)] = 0, (5.39) 

subject to the boundary conditions 

m fi 

L L VjA: 1j(1) s(k8) - sinfJ, 
,=Ok=O 
m fi 

L L: W;A: T;(l) c(k8) - cosfJ, 
;=0 A:=O 
m n 

r:LVjk~(-1)s(k8) - 0, 
,=Ok=O 
m n r: L W,k 7j( -1) c(kO) = O. 

,=Ok=O 
(5.40) 

Similarly to case (a), satisfying the goveming equations and the continuity equa-

tion at a certain number of the collocation points and considering the boundary equa­

tions produces the discretized algebraic equations for the coeffcients, V;k, W jk and 

P,k' Considering the obtained coefficients, which are the complex, the fluid-dynamic 

parameters in the physical domain can be evaluated completely by the coordinate 

transformations. 

5.2.2 Shear Stress and Resultant Viscous Forces 

The hydrodynamic forces. which can be separated into self-added-mass and viscous­

damping terms. acting on the inner cylinder can be calculated by line integration of the 

stress components induding pressure, as shown in Chapter 2. For the present analysis 

in cyJindrical coordinates. the stress component can be rewritten as 

(5.41) 

where the unsteady pressUI'f' and unsteady-flow velocities are determined in terms 

of Chebyshe\' polynomials and Fourier expansions through the spectral collocation 

method. 
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The resultant forces, acting on the inner cylinder per unit length, in the direction 

of oscillatory motion cao be calculated by circumferential integration of the stress 

components on the wall as 

FI = fo21r a (rIT 1,,=0 cos e - rra 1,,=0 sin e) de , 

GI = fo21r a (r"" 1,,=0 sin e + r"a 1,.=0 cosS) de, (5.42) 

where FI and GI stands for the cases (a) and (b), respectively, and the stress compo­

nents on the surface of the inDer cylinder can he expanded as 

(5.43) 

for case (a) and 

(5.44) 

rra = pa2w2 geIMJt È t Ri. r-h2W
'kT;(1}C(kiJ) + W,kT,(l)c(kiJ) + V,k~(l)S'(kiJ)] , 

,=Ok=O e. 

for case (b), where the unknown coefficients are determined in complex form from the 

algehraic system of equations. Thus, the hydrodynamic forces can be separated into 

real and imaginary components. Substituting equation (5.43) and (5.44) into equa.tion 

(5.42), these forces can be expressed in the form 

2 lPel ôel 2 • • 
FJ = -p1rO CAl Ôfl - Cc' ôt = p7rO w2aé ekolt[R(F) + t~(F)] , 

G 2C ô
2
g, C ôg/ 2 2 • kojt(a(G") C'-(G')] 1 = -p7rO AI ôt'l - C' ôt = p7rO W ag e :n + i.~ , (5.45 ) 

where CAl and CI' !'t'present tbe added-mass and viscous-damping coefficients, respec­

tively, and ~I and 91 denott the displacements of the moving cylinder in cases (a) and 

(b). respectively; the Dondimensional ftuid·dynamic forces, t and C, are expressed in 
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( complex form as 

ft - - f {P,l + R
t 

(V,tI - W}l + "'il -l'jI} Tj{l) 1 

,=0 e, 

t; - - f {Pjl + Rt 
[l-j\ + W}l - W,l - V,l} T;(l) , (5.46) 

,=0 e, 

where 

m ft 4 . m " LE ;;l'jk T,(Z) c(k8) = E L V;~ T,(Z) c(k9) , 
j=Ok=O j=ObO 

m ft 2 m ft 

L L h WJk r;(Z) s(k8) = E L wlk T,(Z) s(k9) , 
J=Ok=O 1=Ok=O 

m ft 4 m ft 

LE h V,k T;(Z) s(k8) = E L v,~ Tj(Z) s(k9) , 
1=Ok=O ,=Oi=O 

m ft 2 m ft 

L L h WJk T;(Z) c(k8) = EL W}k T,(Z) c(k9) . 
,=Ok=O J=Oi=O 

From equation (5.45), by definition, the added-mass and damping coefficients cao be 

written as 

CM = !l(t) , 

CM = R(G) t 

Cv = -p1ra2w~(j), 
Cv = - p1ra2w~( G) , 

in case (a) , 

in case (h) . (5.47) 

Similarly to the case of potential-flow theory, the hydrodynamic forces normal to 

oscillatory motion are zero. 

5.2.3 N umerical Results for Viscous Fluid-dynamic Forces 

To illustrate the influence of viscosity of the fluid on added mass and viscous damping 

for the prohlem of harmonie oscillatory motion of the inner cylinder in an eccentric 

annulus. the calculatioDS have beeD conducted while varyiDg the oscillatory Reynolds 

numher. Re,. the ratio of radii. b/a. and relative eccentricity, e/(b - a). 

ln these calculations, the collocation points (m - 1) along the radial direction are 

c1ustered near the wall using equation (4.24) to obtain good accuracy and computing 

efficiency, wh en the penetration depth is relatively small vis-à-VIS the annular space, 
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-f 
< 

6"j(b - a) < 0.1. In otber cases, the calculations bave been conducted with equally 

distributed collocation points along the radial direction. Along the circumferentia.l 

direction, equally distributed collocation points (n + 1) are selected, but with Ft ( 8) ~ 0 

to avoid the pseudo-singularity problem. 

For concentric configurations, the nondimensional ftow velocities, v*(9 = OO)je" 

and w"'(9 = 900 )jel1 are ploted in Figure 5.5 along the radial direction for selected 

values ofthe nondimensional parameters (Re. = 50, 1740 and bja = 1.25, with m = 8). 

In this figure, the dotted line represents the circumferential-flow velocity obtained by 

the present potential-flow theory. Considering equation (5.41) together with this figure, 

it is expected that the skin-friction force becomes larger as the oscillatory Reynolds 

number is increased. The distribution of the real parts of complex-ftow velocity in tht' 

circumferential direction has a parabolic shape for low vailles of Re" wb Ile it has a 

shape similar to that for turbulent flow at relatively high Re •. 

The pressure distribution a10ng the radial direction is nearly constant for annular 

configurations and its amplitude in nondimensional form is almost of th.! sa.me order 

as the added-mass coefficients. Hence, these results are not presented. 

When Re, is 50, 500 and 5000, and bja is varied from 1.25 to 4, the added-mass 

and viscous-damping coefficients for concentric configurations are shown in Figure 5.6. 

It is found that the coefficients are strongly dependent on the oscillatory Reynolds 

number; as it increases, these coefficients decrease. Physically, for fixed values of 

the ratio of radii, bja, and the viscosity of fluid, Il, these coefficients decrease with 

increasing the frequency of oscillatory motion, w. The two coefficients exponentially 

increase with decreasing bj a for the fixed oscillatory Reynolds number. Particularly 

for narro\\' annular flo\\', it is necessary to take into account the viscous damping, even 

if the oscillatory Reynolds number is high, corresponding to the case of 10w-viscOSlty 

fluid or high-circular frequency. \Vith increasing values of tbe oscillatory Reynolds 

number, the added-mass coefficient is influenced less hy the viscosity of the 6uid, and 

not much different from the result obtained hy the potentiaJ-60w theory. 

The influence of the relative eccentricity on tbe nondimensionaJ pressure in corn-
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( plex form is ilIustrated in Figure 5.7 for b/a = 1.25 and Re. = 50 in the case of 

oscillatory motion in the plane of symmetry and in Figure 5.8 in the case of oscillatory 

motion normal to the plane of symmetry. The real part of it, which is relate<' to the 

added mass, is compared with the result (open circles for concentric configurations and 

filled circles for eccentric ooes el(b - a) = 0.4) shown in Figure 5.1 for potential fiow. 

The character of the variation of R(p) and $l{p} with the eccentricity is similar to that 

for potential ftow. 

In Figure 5.9 for the case of bla = 1.25 and Re. = 500 with the relative eccen­

tricity, the shear stress and unsteady pressure eft'ects on the added-mass and damping 

coefficients are investigated and the added-mass coefficients are compared with the 

curresponding ones for potential flow. It is found that these coefficients are mainly in­

fluenced by the unsteady pressure, rather than by the shear stress, but the coefficients 

are slightly increased by the eft'ect of the skin friction. The added-mass and viscous­

damping coefficients are shown in Figure 5.10 for the oscillatory motion in the plane of 

symmetry and Figure 5.11 for the motion normal to the plane of symmetry. The effect 

of the relative eccentricity, e/(b-a), on the coefficients is investigated with the selected 

oscillatory Reynold number (Re. = 50, 5000) and the ratios of radii (b/a = 1.25, 2). 

The numerical results have been calculated with m < 6 and n < 6 in case of Re. = 50 

and witb m < 10 and n < 4 in case of Re. = 5000, in order to minimize the round­

oft' error which may increase with the size of the matrix obtained from the algebraic 

equations. In general. it is necessary to increase the number of terms in the Fourier 

expansion with iocreasiog eccentricity, and the number of Chebyshev polynomials with 

increasing annular space. As the eccentricity iDcreases, the magnitudes of these coef­

ficients increase and. due to the viscosity. the added-mass coefficients increase as the 

oscillatory Reynolds number decreases. 

5.3 REMARKS 

The spectral method is applied in this chapter to the uDSteady potential and viscous 

80ws generated by the small-amplitude harmonie translational motion of a cylinder in 
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1 an annulus. The numerical results are presented to evaluate the general characteristics 

of the added masses for both fiows and the viscous damping for viscous fiow in terms 

of the radius ratio b / a with the eccentricity e / ( b - a). For viscous flow, the oscillatory 

Reynolds number Re. is cm important parameter, as shown in equation (5.31). 

To assess the validity of the results for potential fiow, the present results are 

compared with the analytical results given by Chung and Chen [9] for eccentric config­

urations and by Fritz [7) for concentric ones. The numerical results for both potential 

and viscous fiows are compared. The difference between the two sets of results cao be 

explained by the viscous effects caused by the shear stress and the unsteady pressure 

drop in circumferential direction. 

Considering the results obtained by potential and viscous flow theories for trans­

lational motion of the inner cylinder in an annulus, the following remarks should made: 

(a) the present collocation method has been validated by comparing results witb ana­

lytical ones. Therefore, the present method can be adapted for use in more complicated 

unsteady fiow problems, which remain unsolved at present; (b) the linear theory pre­

sented in this analysis is based on the assumption of small amplitudes (as a result, 

the added-mass and viscous-damping coefficients are independent of the amplitude); 

(c) the added-mass and viscous-damping coefficients are dependent on the oscillatory 

Reynolds number, and these coefficients are infiuenced by the relative eccentricity; with 

decreasing oscillatory Reynolds number and increasing eccentricity, these coefficients 

increase; (d) for the high oscillatory Reynolds number, the added-mass coefficients 

can be estimated approximately by potential-flow theOI·Y, but the viscous-damping 

coefficients. even for high oscillatory Reynolds number. should be considered in the 

hydrodynamic forces for narrow annuIi; (e) for narrow configurations, the added mass 

is insensitive to variations of the oscillatory Reynolds number; however. the dampmg 

is sensitive to il. 
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Figure 5.1: Tbe ullstt'ady prt'SSure in DOlldimeDsional form, p(l,O), on the oscillating 
inner cylinder for \vious relative C('rentricities ë = e/(b - a) and for b/a = 1.25. (a) 
Case of oscillatiom in the plane of symmctry: (b) case of oscillations normal to the 
symmetry plane. 
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Figure 5.2: Tbe added-mass coefficients, Q Il and 001, for concentric configurations, lU) 

functions ofthe radius ratio. b/a. Comparison between the present solution and Fritz's 
solution: o. 01/: •• 00/: -. Fritz's analytical solution. 
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Figure 5.3: The added-mass coefficients, 011, 000 and 00/, for oscillations in the plane 
of symmetry. as functions of the relative eccentricity è = ej(b - a) for the cases: (a) 
bja = 1.25 and (b) bla = 2. Comparison between the present solution(-o-)and Chung 
and Chen 's solution(O). 
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Figure 5.4: Tbe added-mass coefficients, 0". 000 and 00/, for oscillations normal to 
the symmetry plane. as functions of tbe relative eccentricity P. = e/(b - a) for b/a = 2. 
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Figure 5.5: The distribution of the nondimensional amplitude of the unsteady flow 
velocity for b/a = 1.25. Re, = 50(611ed symbols) and Re. = 1. 740(open symbols) &Cross 
the annular space; (a) the circumferential and (b) tbe radial components. Viscous 
theory; O •• real part; A Â. imaginaI)' part; - - - -, circumferential components obtained 
for present potential flow. 
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Figure 5.6: Tbe (a) real and (b) imaginaI")' components of the nondimensional fluid­
dyoamic forces \'ersus the radius ratio. bla, for the selected oscillatory Reynolds 
Dumber:A. Re, = 50; -, Re, = 500; 0, Re, = 5000. 
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Figure 5.i: Influence of eccentricity on the nondimensional pressure, p, obtained by 
the present potentia1( 0, .) and viscous(6, Â: Re, = 50) theories for oscillations in 
the plane of symmetry and for tbe case bla = 1.25. Open symbols, ë = e/(b - a) = 0; 
filled symbols, f = 0.4. 
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Figure 5.8: Influence of eccentricity on the nondimensional pressure, p, obtained by the 
present potential( o •• ) and viscous( 6. Â; Re, = 50) theories for oscillations normal 
to tbe symmetry plane and for tbe case bla = 1.25. Open symbols, ë = el(b - a) = 0; 
filled symbols. è = 0.4. 
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Figure 5.9: Visrous efl'ects 00 the (a) real and (b) imaginary componeots of the 
oondimensional fluid-dyoamic forces for oscillations in the plane of symmetry for 
difl'ereot eccentricitit'S t = e/(b - a) and for bla = 1.25. obtaioed by the viscous 
theory(Re, = 500):-0-, ooly prcssuft' coosidered; -e-, full viscous efl'ects coosidered. 
-A-, Results obtaiDoo by tbe potl"Dtial theory. 
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Figure 5.10: InftueDct' of tbt' relative eccentricity e = ej(b - a) on the nondimensional 
fluid-dynamic forces considering full viscous effects for oscillations in the plane sym­
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Figure 5.11: Influence of the relative eccentricity è = e/(b - a) on the nondimensional 
fiuid-dynamic forces considering full viscous eff'ects for oscillations normal to symmetry 
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Chapter 6 

Study of Three-dimensional 
U nsteady Viscous Flows 

In connection with the spectral method, the governing equations were discretized 

through the collocation method for unsteady ftuid ftow. In the previous chapter, the 

convective terms and the axial components of the diffusion terms were not considered 

for the translational motion of a cylinder without steady axial flow. For a system con­

sisting of a ftexible cylinder subjected to axial ftow, it is obvious that these terms must 

be considered. 

The ftuid-dynamic forces acting on a flexible cylinder have been formulated by the 

hybrid collocation finite-difference method, as well as by approximate semi-analytical 

methods. In the present analysis, the stearly viscous forces derived from the longitudi­

nal friction al force and from the pressurization of the ftow are not considered; only the 

unsteady 8uid-dynamic forces art> investigated. The numerical results are compared to 

the semi-analytical results. 

The inner cylinder subjected to steady axial flo\\' in a concentric annulus is 85-

sumed to have a simple flexural motion. as a clamped-clamped beam. ln order to 

simplify the problem and to get general information. only the first mode of the beam is 

considered for the oscillatory motion of the flexible cylinder. This cylinder has length 

L and radius 4. The radius of the outer cylinder is b; hence the annular space between 

two cylinders is H = b - a. The motions are assumed to be small. 
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6.1 COLLOCATION FINITE-DIFFERENCE 
METHOD 

To fonnulate this three-dimensional problem with the spectral method, another in­

terpolation function is needed for the axial variation. Thus, the unknown coefficients 

are also dependent on the axial coordinate. When a system of equations is obtained 

by the collocation method with n interpolation functions for the axial variation, the 

discretized-system equations migh.t become n times larger, when the same number of 

collocation points are selected for the radial and circumferential coordinates. As shown 

in the previous chapters, the solutions given by the spectral method converged fast. 

However, difficulties are encounted in the three-dimensional problem due to a relatively 

large full matrix system, which might produce singularity problems in the mathemat­

ical procedure. In order to avoid this difficulty, a finite-difference method based on a 

hybrid scheme is adapted for axial variations, which is characterized by an artificial 

viscosity which helps to achieve convergence of the solution. 

The hybrid scheme is related only to the axial domain, while the collocation 

method is still used for the radial and circumferential domains. As a result, the axial 

domaio is subdivided into a certain number of grid points, where spectral expansions 

for the fluid parameters are defined. The numerical details of the collocation method, 

which remain the same as for the two-dimensional flow discussed in the previous chap­

ter, have Dot been repeated in this chapter. However, an attempt has been made 

to clearly point out and emphasize the details of the finite-difference method for the 

present analysis. 

Based on the collocation finite-difference method. the goveming equations of the 

unsteady flow. obtained from tbe appropriate Navier-Stokes and continuity equations. 

reduce to a system of algebraic equations leading to a block.-tridiagonal system. Each 

row of the matrix is concerned with three grid points based on the finite-difference 

method, and tbe 6ubmatrices are related to the corresponding collocation points based 

on the spectral method. To obtain a solution of the system. the LU decomposition 
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t method based on the factorization scht:!me given in Appendix F is used. 

In most of the previous studies, the fluid-dynamic forces acting on the oscillating 

cylinder subjected to axial flow ha.ve been developed based on uniform axial flow. 

Therefore, the effect of laminar axial flow is still difficult to quantify systematical!y. 

In this section, the tluid-dynamic forces have been formulated from the Navier-Stokes 

equations, accounting for unsteady viscous flow effects mu ch more fully than the semi­

empirical and approximate formulations utilized heretofore. Far upstream, the axial 

flow is fully developed and its velocity can be calculated using the spectral method w: 

shown in Chapter 4. In order to formulate the unsteady viscous problem, the results 

for steady viscous flow are utilized. 

6.1.1 Hybrid Method Formulation 

In this section, the basic concepts needed in the formulation of the hybrid sebeme are 

presented. The hybrid scheme was introduced by Spalding under the name "High­

lateral-flux modification" for the finite difference method 156]. Tbe significance of 

the hybrid scheme can be unaerstood by observing that it is identical to the central­

difference scheme for the mesh Reynolds number range -2 < Rem {= (U~x)/I/) < 

2, and outside this range with an upwind scheme. As mentioned before, the axial 

components of the diffusion tenns and convective terms related with the steady axial 

flow velocity must be considered for the present analysis. The addtion of these terms 

does not alter the forrn of the discretized equations, wh en the axIal derivative terms 

are relatively small by the assumption of small amplItude motion. 

Although the convection and diffusion terms connected to the axial variation are 

the only new terms in this section, its formulation is not very straightforward. The 

convection term has an iuseparablt' connection with the diffusion term and, therefore, 

the two terms need to he handled as 011t' unit. Considering the connection between 

the two terms. the hybrid &ehr.me has heen developed to easily converge to solution. 

On the use of the central-difference scheme. there is one real constraint which will be 

discussed further. Sometimes. it creates difficulties iD obtaining convergent solutions. 
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To simplify matters, only the convection and diffusion terms are considered for a 

one-dimension al problem. The governing ditferential equation is 

a a ( af ) -(pUI) = - p- , ax ax ax (6.1) 

where U represents the steady-f1ow velocity in the axial direction and 1 denotes any 

flow-field parameter, which will he obtained .• ;s shown in Chapter 4, the axial-ftow 

velocity, U, can he obtained from the Navier-Stokes equations for the steady f1ow, 

which is separated from the full Navier-Stokes equations that include the unsteady 

components based on small-amplitude motion. At this stage, our task is to obtain 

a solution for f, which will be the unsteady f1uid quantities in the present analysis. 

For concentric configurations, the steady-flow velocity does not depend on the axial 

coordinate under consideration. 

w p E 

Figure 6.1: Typical grid-points cluster for the axial variation 

Using the central difference scheme with order (o6x)2 over the control volume 

shown in the ahove figure, the first and second partial derivatives can be written as 

fE: - fw 
AXt + AXII1 ' 

2fc 2fp 2fw 
AXf'AxlI1 + (Ax, + Ax lI1 )Ax lII ' 

(6.2) 

where the subscripts E and ",' present east and west sides with respect to the central 

grid point P in the axial domain. 
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1 For incompressible flow, substituting equation (6.2) into equation (6.1) with tbe 

aid of the following continuity equation 

ô 
ôx(pU) = 0, (6.3) 

the discretized equatioll becomes 

apJp = aEJE + aw Jw , (6.4) 

where 

Il pU 
aE - --- , 

~xe 2 

aw -
Il pU -+-
~xw 2' 

ap - aE+aW· 

Reflecting on the implications of equation (6.4) wbich gives Jp relative to Jw 

and JE, it is realized that aE and aw should both be positive to properly imply the 

expected behaviour of a viscous fluid. The expected behaviour would be su ch that a 

decrease in the variable, J, of the Buid below or above the point P would distribute 

toward a decrease in the variable, J, at the point P, through the effect of visco&ity. 

Also, the negati\'E.' coefficient would imply that ap, which equals aE + aw, is les~ tban 

1 aE+aW l, which fails to satisfy the Scarborough criterion [62]. Then, a point-by-pomt 

solution of the discretized equation may diverge. This is the reason why all the early 

attempts to sol\'(' ron\'ccti\'E.' problcms by the central difference scheme were limited to 

low mesh Reynolds number. 

To keep Oc and oU'. sbown in equation (6.4). positive ID value requires 

U~I 
Rtm = -<2. 

" 
(6.5) 

~ .. bich confirms our suspirion that the "correct" representation is one tbat permits 

viscaus-Iike bt"ba\'iaur, ThE' iot"<Juality can he satisfied for a sufficiently fine mesh 

which. of COUI'S('. is achie\'ro al rOD\'ergence. For sorne 60\\', the constraint of equation 

(6.5) tends ta n-quirE.' thE.' US(' of an excessivel)' large number of grid points. This bas 
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motivated several investigators to consider ways of altering the difference scheme to 

eliminate the mesh-Reynolds-number constraint. 

The simplest remedy to the problem of the mesh-Reynolds-number constraint 

is to introduce the hybrid scheme for the convective term as a "high lateral flux" 

correction. The name 'hybrid scheme' is indicative of a combination of the central­

difference scheme for the mesh Reynolds number range -2 < Rem < 2 and the upwind 

scheme outside this range. The truncation error associated with the upwind scheme 

creates an artificial viscosity which tends to enhance viscous-like behaviour. In other 

words, the formulation of the diffusion terms is left unchanged, but the convective 

terms are calculated according to the mesh Reynolds number. Based on the upwind 

scheme, the first-order derivative with order (Ax) can be expressed as 

(al) 2(Jp - Iw) 
8x p - Axr+ax lII 

if u>o. (6.6) 

In the present analysis, the axial-flow velocity is always positive; there is no adverse 

pressure gradie~t in a constant width annular space. 

Using the hybrid scheme, the discretized convective-diffusion equation can now 

written as 

ü U >0, (6.7) 

where 

o.E - l' rr pUn ~.r~ + 0, -2 ' 
l' pUn aM' - ~.rtp + UPU, 2 ' -

o.p - o.E + 0", , 

where Hp, qD rcprescnts p for thl' upwilld scheme (Rem > 2) or q for the central· 

difference scheme (-2 < Re. < 2). 
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J 6.1.2 Formulation of the System Equation for Unsteady Vis­
cous Flow 

The ulJsteady fluid-dynamic forces acting on the inner cylinder are formulated by the 

numerical method, considering the unsteady pressure and shear stresses. U~ing the 

collocation finite difference method, a system of discretized equations is obtained from 

the appropriate Navier-Stokes and continuity equations with the boundary conditions. 

Based on small-amplitude motions of the cylinder, the governing equations can be 

lineanzed, as shown in Chapter 2. 

The inner cylinder, surrounded by incompressible viscous-fluid flow, has periodic 

flexural motion in a concentric annulu.,. The vibrating motion is assumed to be simple 

harmonic, with circular frequency w. For the three-dimensional problem with steady 

axial flow, the unsteady governing equations are obtained by subtracting the stcady 

tenus from the full Navier-Stokes equations. The linearized Navier-Stokes equations 

and the continuity equation in cylindrical coordinates for the present analysis can be 

reduced 

au· .au w· 8U au· 1 ap· [1 ô (8U.) 1 82u· 82U.] 
8t + v ar + -;:- 8e + U 8r + p 8r = JI ;:- 8r r 8r + r 2 ô92 + ôr2 ' 

-+U-+---=JI -- r- +--+---+-- , aw· aw· Il ôp· [1 a (aw.) 1 a2w· a2w· w· 2 av.] 
8t ar pr 89 r ar ôr r 2 ae2 ax2 r2 r 2 ae 

-+U-+--=JI -- r- +--+-------av· av· l ap· [1 8 ( av.) 1 a2v· ô2v· v· 2 aw.] 
éJt ax p ar r 8r ar r 2 ô82 ôx2 r2 r 2 ae (6.8) 

au· aw· a 
ax + ae + ar (rv·) = 0 , (6.9) 

where u·, v· and w· denote the unsteady flow velocities in the axial, radial and cir­

cumferential directions, respectively. In the above equations, the production terms 

between tbe unsteady components are lleglected for srnall-amplitude motion, and tbe 

circumferential variation of steady axial flow is zero for concentric configurations. 

Consideriug the no-slip coudition at the interface between fluid and cylinder, tbe 

boundary cODditioDSon the fixed (r = b) and moving (r = a) cylinderscan be expressed 

as 

u·(.r,b,9,t) = v·(x,b,e,t) = w·(x,b,e,t) = 0, 
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4tr 
'l 

u*(x,a, e, t) - 0 

v*(x,a, e, t) eJ(x, t) 
= e,,(x, t) cos a = ôt cos a , 

w*(x,a, 9, t) = -et/(x,t) sina = el(x, t) . e 
ôt sm , (6.10) 

where e,,(x, t) represents the lateral velocity of the moving inner cylinder and eJ(x, t) 

denotes the corresponding displacement which can be expressed in terms of the eigen­

function 1Pl(X) of the first normal mode for a clamped-clamped beam 

(6.11) 

The present problem is generalized by the following nondimensional parameters, 

which are similar in form to those in Chapter 5i 

x X-­- L' 
L 

1 = -, 
a 

u· 
û= 1 

tOWEl/2e'M" 

H 
h --- , 

a 

ê(X) = e,,(X, t) , 
taweUolt 

A (X) _ ê(X) 
e,. - A , 

el/2 

A U 
U=(j' 

Re = Ü2ha , 
v 

A p* 
p= 2 2 ' pa W El/2e"'l' 

wa2 

Re. = -, (6.12) 
v 

wbere ê(X) denotes the nondimensional amplitude of velocity or displacement of the 

moving·~ 1inder and Ü represents the mean axial Dow velocity. As shown in the above 

equations, the nondimensional unsteady velocities and pressure are defined in terms 

of El/2 = ê1/2' where the subscript 1/2 stands for the corresponding local value at 

X = 1/2. 

Considering the coordinate transformation with the nondimensional parameters, 

the goveming equations (6.8) and (6.9), can be rewritten in the computational domain 

(Z,8) in the nondimensional form 

Re- h2 A 

1- U 
4 

Re- h2 A 

1- W 
4 
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(6.13) 

(6.14) 

where D = {h/[2 + h(l- Z)])2. For a concentric annulus, the nondimensional annular 

space, h, is constant. 

In order to get the system equations based on the collocation finite difference 

method, the nondimensional parameters can be expressed in terms of Chebyshev poly­

nomials and FOlder expansions, as shown in the previous chapter. As compared to 

the previous expansion forms, the unknown coefficients are dependent on the axial 

coordinate. Using the spectral expansion for the flexural motion of the inner cylinder, 

the following types of expansions can be considered for the ftuid-dynamic properties in 

the three-dimensional annular space 

m 

Û = E Uj(X) ~(Z) cos 8 , 
,=0 
m 

W = E W,(X) ~(Z) sin8, 
,=0 
m 

il = E Y,(X) ~(Z) cos 8 , 
,=0 
m-2 

p = E P,(X) ~(Z) cos 8 , (6.15) 
,=0 

where the unknown coefficients U" W, 1 \j and P, can he decomposed into real and 

imaginary components. 

Taking account of the expansion Corms shown in the above equations, the gov­

eming equations and continuity equation cao be expressed based on the hyhrid scheme 

as 
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m . 

+ E ( W, [2(~x.+lX",)~x. (~)2 - ~ ~ 4X.~~X ... [0, ID] 7j(Z) ) E 
j=O 

+ f: ( W, [2(~X.+~X ... )4X.,(t)2 + ,t ~Xcf~x.[2, 1]] 1j(Z) )w = 0, 
}=o 

m (' ~ [T,'(Z) - v'D7j(Z) - 2D 7j(Z) ) 

:; -L +h2 T,(Z) - ~)2 2(~X~4X_) T,(Z) - ~~ 4X.f~x .. nl, OD 7j(Z)] 
- -2W, T,(Z) - tP,Th 7j(Z) p 

m 

+ L (~[2(~x.+lX_)~x;(,)2 - ,t 4X.!~x.ŒO,I]] T;(Z))E 
,,,,0 

m 

+ L ( V, [2(~x.+lx.).1, ... (~)2+ ~, 4X.f~x .. n2,1]] T,(Z) )w = 0, (6.16) 
,=0 

m m 

L ( lj [T,(Z) - VD7j(Z)] - v'Dw,T;(Z) ) p - L ( Vj ~2(4X.~~X.) ~(Z) ) E 
,=0 ,=0 

m 

+ L ( V, t2(~X.~4X.) ~(Z) )W = O. 
,=0 

subject to the boundary conditions 

m 

L U,(X) T,(l) - 0 t ,.0 
m 

L '~(X) ~(l) - ër(.X). ,.0 
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1 m 

L Wj(X) T,(1) - -êr(X) , 
;=0 

m 

L Uj(X) T;( -1) - o , 
,=0 

m 

L V,(X) T;( -1) - o , 
,=0 
m 

L W,(X) T;( -1) - o . (6.18) 
,=0 

where the prime and the double prime denote, respectively, the first and second 

derivatives with respect to the coordinates concerned; for example, Û' = dÛ / dZ and 

Til = rPT/dZ2• 

In the present analysis, a system of linear algebraic equations cao be obtained by 

satisfying the above equations at a finite number of collocation points in the compu­

tational domain (Z,8), and applying the equations at a finite number of grid points 

distributed in the axial domain. As a result, the system of equations can be expressed, 

as a block-tridiagonal system, in the general form 

SA.Q= R, (6.19) 

where t::aQ and R are the vectors for the unknown coefficients and the boundary con­

ditions, respectively. The matrix S represents the block-tridiagonal matrix expressed 

as 
Pl W I 0 0 0 0 0 0 
E2 P2 W2 0 0 0 0 0 
0 E3 P3 W3 0 0 0 0 

s= 0 0 0 0 0 
(6.20) 

0 0 0 0 0 
0 0 0 0 E'-2 P'-2 "',-2 0 
0 0 0 0 0 E'-l P,-l W'-l 
0 0 0 0 0 0 E, P, 

where E,. P, and H", are matrices of order 2 x l( m -1) + 3 x (m + I)L concerned with the 

ith grid point. and the subscript t denotes the number of total grid points considered. 

When smooth variations oC8uid quantities &long the axial direction are expected, 

it is convenient to have uniform)y distributed grid points. t::aX~ = AX.,. In the present 

analysis with the flexible cylinder. which experiences small-amplitude oscillations. it is 
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possible to use a uniform mesh space. With this uniform step size, the submatrix can 

be expressed 88 

El = E2 = E3 = ... = E, , 

Pl = P2 = P3 = ... = P, , 

WI =W2 =W3 =···=W,. (6.21) 

Therefore, the storage required for the system equations can be reduced. For the 

two-dimensional viscous-ftow problem presented in the previous chapter, the system of 

equations can be obtained by eliminating the convective terms and the axial derivatives 

of the diffusion terms, eventually to be expressed 88 only submatrix P. 

To obtain the numerical solution, the LU decompsition method is utilized, 88 

mentioned before. The LU decomposition method, which is one of the direct methods, 

gives the solution in a fini te and predeterminable number of operations. This method 

has proven to be a very useful and efficient tool for solving the block-tridiagonaI system 

of equations. 

6.1.3 Stress Components and Formulation of Fluid-Dynamic 
Forces 

In order to formulate the tiuid-dynamic forces acting on the moving cylinder, the 

stress components including the unsteady pressure, generated by the tiexural motion, 

are considered. as shown in the previous chapter. By circumferentialline integration of 

the stress components, the unsteady ftuid-dynamic forces are obtained. The analysis 

has now sufficiently progressed to evaluate the unsteady lateraI forces. 

The resulting ftuid-dynamic forces, acting on the cylinder in the direction of 

oscillatory motion, can be calculated by the following equation 

{2ft ( . der) 
FI(r.t) = Jo a 1'''''1 .... cose - Tre 1 .... sin 9 + 1',... Ira. dz d9, 

where tbe stresses are expressed as 

ôv· 
1'..,.(.r.r.9.t) = -p. + 2#1 ôr ' 
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{ 
ôw· w· 1 ûv· } 

Tre(X, r, a,t) - Il ôr + -;:- +; ae 

{
ôu. ÔV.} 

Trz(X, rt a,t) - Il ôr + ÔX ' (6.23) 

The integral eft'ect of the stress component Trz , acting in x-direction on a surface whose 

normal vector points in r-direction, on the ftuid-dynamic forces is null. 

Using the same procedure as in the previous chapter for viscous fluid, the resulting 

forces can be expressed as 

(6.24) 

where the nondimensional 8uid-dynamic force, F(x), in complex form, is 

F(x) = - f: {~(x) + -Rt lV,\x) - W}(x) + W,(x) - v,(x)} Tj(l) , (6.25) 
,=0 e. 

in which 

8 m-l 

\.jt(x) - -h L qVq(x) , 
cJ q=,+1 

j +q = odd, 

8 m-l 

Wl(x) = -h L qWq(x) , 
c, q=,+1 

j +q = odd, (6.26) 

where Ci) = 2 and cJ = l(j > 0). The real and imaginary components of the resulting 

forces, shown in the above equation are in-phase and in quadrature with displacement, 

respectively. 

6.1.4 Numerical Results 

For studying the- unsteady viscous flo\\' generated by the oscillating inner cylinder 

subjected to axial flow, first typical distributions of unsteady velocities and then tbe 

uDsteady 8uid-dyuamic forces are presented. ln order to show the rate of convergence of 

the numerical solution, the calculations have- been conducted for various mesh spacings 

defined for the fiDit~difl'ereDce metbod. For self-excited 8exural motion, it is of Înterest 

to estimate the fluid-dynamic forces acting on a sien der cylinder. The 8uid-dynamic 

forees obtained by the p~Dt nummcal method are compared with the resulu given 

III 



cf' 
~ by the approximate method in the next section. In the present work, the length-to­

radius ratio remains constant, 1 = Lia = 15. The program used for calculating the 

ftuid-dynamic forces and typical results are presented in Appendix G. 

As shown before, the ftuid-dynamic forces are decomposed into real and imag­

inary parts. The imaginary component, which is associated with the damping force, 

is proportion al to the velocity of the moving cylinder. The rea! component is due to 

inertial excitation and ftuid elastic effects. In this ana!ysis, the effects of steady axial 

flow and oscillatory Reynolds number on the unsteady ftuid-dynamic forces will be dis­

cussed. Taking account of the nondimensiona! goveming equations (6.13) and (6.14), 

the nondimensional ftuid variables are influenced by the Reynolds number Re, as weil 

as by the oscillatory Reynolds number Re,. 

The variation of the calculated ftuid dynamic forces with various mesh spacings 

between two grid points is shown for the case of b/a = 1.05, Re = 300 and Re, = 5,000 

in Figure 6.2 and 6.3 (the results are obtained with m = 8). In Figure 6.2, the results 

at certain grid points (X = xl L = 0.25, 0.5 and 0.75) are presented. As the spacing is 

decreased, the results appear to converge to a certain value, and then ahruptly diverge. 

The character of these results might be caused by a truncation error for coarse mesh 

spacings and by a round-off error for fine mesh spacings. In other words, the truncation 

error might decrease slightly with decreasing mesh space; however, the round-off error, 

which is usually generated for a large matrix system, becomes larger and eventually 

dominates. The influence of mesh size, AX = 0.083, 0.1, 0.125 and 0.143, on the 

fluid-dynamic forces along the axial coordinate is shown in Figure 6.3. Even though 

its eft'ect in the range of the present mesh spacing is small, the imagin&ry component is 

more influenced than the real one by the spacing. AIso, the effect of the mesh spacing is 

slightly larger at upstream points (X < 0.5) than at downstream ones (X > 0.5) - this 

tendent y might be due to the mathematical procedure based on the LU decomposition 

method. Considering these results, the luitable mesh spacing for the given problem 

CaD be selected. For the present C&Se, the optimized spacing should be AX = 0.1. 

Typical results of the nondimensional amplitude of the unsteady velocities acrnss 
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,1 the annular space are shown in Figure 6.4(a,b,c) for the case of b/a = 1.25, Re = 
626 and Re. = 5,000 with m = 8 at .X. = 0.3, 0.5 and 0.7. As compared to the 

results given for translational motion without axial steady flow (given in the previous 

chapter), the (a) circumferential and (b) radial components have similar distributions; 

the distributions of the axial ones are shown in Figure 6.4( c). By inspection of equations 

(6.24) and (6.25), the nondimensional pressure fi = p. /(pa2w2aêl/2el4tl') has almost the 

same order of magnitude as the forces; this means that the resulting forces are mainly 

affected by unsteady pressure. Thus, the pressure distribution along the axial direction 

is not shown in the present work. 

The influence of the Reynolds number (Re = 0, 626 and 1,256) on the forces 

along the axial direction is presented in Figure 6.5 for b/a = 1.25 and Re. = 5,000 

for a mesh spacing Il.X = 0.1. It is found that the real component of fluid dynamic 

forces is only slightly dependent on the Reynolds number; however, the imaginary 

one is strongly influenced by the Reynolds number. As shown in the figure, it is 

obvious that the real components are proportional to the acceleration of the moving 

cylinder, mainly influenced by the inertia force. The damping forces, related to the 

imaginary component. might be caused by the combined effects of the unsteady viscous 

drag and the equh'lLlent Coriolis force due to the mean flow (associated with cylinder­

motion-induced rotation of the ftuid, 6uperposed on the axial velocity). For flexural 

motion in the first mode, the viscous drag and the Coriolis terms are symmetric and 

antisymmetric •• ith respect to the middle (X = 1/2), respectively, sinee the former 

is in phase with displacement of the cylinder, while the other is proportional to the 

first deri\'8ti\'(> of the displaremeDt. With increasing Reynolds number (I.e., increasing 

axial flo,," velocily). tb(> equhalent Coriolis term becomes larger. 

Calculation.c; ha\? ~D cOllductM to in\'estigate the effect of the oscillatory 

Reynolds numlM'r (Re, = 500. 5.000 and 10,000) for b/a = 1.25 and Re = 626 

with tJ.,X = 0.1 and m = 6, Tht' l'ftults are shawn in Figure 6.6. For the low value of 

Re, = 500, the efl'«t OD thr real pan of thl' force (including the viscous effect as shown 

iD the pre"ious chapter) is relath-rly large. The ratio of the imaginary component to 
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the real one becomes smaller with increasing oscillatory Reynolds number; its effect 

on the forces is less than 15% in the case of bl a = 1.25 with Re, = 5,000 or 10,000. 

However, the viscous effect on the damping force is important for very Barrow annular 

configurations. 

6.2 APPROXIMATE SEMI-ANALYTICAL METH­
OD 

The principal aim of this section is to estimate the fluid-dynamic forces acting on the 

flexible inner cylinder with a simplified method. The numerical results obtained in 

the previous section will be compared to the approximate results obta.;ned in this sec­

tion. This is one of the necessary procedures to validate the newly develped numerical 

method, since there are no other previous results to be used for comparison. For this 

purpose, the approximate analytical method, developed in Chapter 2, will be modified 

to obtain an improved unsteady viscous-flow solution. 

The fluid-dynamic forces are formulated, first assuming the case of an unsteady 

potential(inviscid) flow, and then considering also the main effects of fluid viscosity. 

The unsteady inviscid force will be obtained by the numerical approach based on the 

spectral method witb tbe aid of the separation of variables method, which is more 

rigorous than the previous analytical method; however, the viscous effects are approx­

imated analytically by the same principles as in ChSLpter 2. This is the reason why the 

method is called semi-analytical. This analysis for potential ftow is less restrictive on 

the size of the annular passage, which will he shown later. The present results are also 

compared to ones obtaiDed bl' the previous analytical method discussed in Chapter 2, 

especially for n~' uoulu configurations. 

Bued on tbr uaumption of .mall-amplitude oscillations of the flexible centre­

body in an aDoulus. tht t.'O 801'0' fitlds, potential and viscous, are considered to sim­

plify tht approach of this problem. Tht uusteady viscous forces are formulated by 

considering tbr mtu-circumftreotiaJ-8ow velocity obtaioed by potental ftow theory. 

Tht direction of tbr meaD-8OY.· \'elocitl', which is considered to oscillate, is tben deter-
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1 mined, and the unsteady viscous pressure drop along the circumferential direction and 

the shear stress acting on the wall are evaluated. 

The axial steady flow is assumed to be a fully developed laminar flow character­

ized by the mean-ftow velo city Ü, static pressure Poo and tbe fluid density p, which is 

considered constant. 

6.2.1 Derivation of the Inviscid Force 

With no separation in the annular ftow, the inviscid forces are derived by potential 

ftow theory. For incompressible fluid, the unsteady governing equation is expressed in 

terms of the unsteady velocity potentiall/J, in the form of the Laplace equation: 

2 82l/J ô2l/J 1 ôt/J 1 82l/J 
V l/J = 8x2 + ôr2 + ;- Br + r 2 8e2 = 0 , 

subject to the boundary conditions 

8l/J _ 8er + [8t/J ôer + ! 8l/J ! 8er] 
8r ôt 8x ÔX r 8e r ôe r=ca 

= 0, 
Br r=" 

8t/J 
Bx 

=ù, 
2=-00 

(6.27) 

(6.28) 

where the radial displacement, er(x, e, t), is expressed in tenns of the eigenfunctions, 

tPlr, of the corresponding beam - see equations (2.29) and (2.30). 

Using the separation of variables method, the velocity potential t/J(x, r, e, t) may 

be written in the form 

4>{r,r,e,t) = Lal:~l:(x,r)cosee""'t , 
1: 

where the reduced potentials ~I:(:r, r) can be expressed as 

in terms of new coordinate Z = 1 - 2( r - a) / H . 

(6.29) 

(6.30) 

Taking ioto account the coordinate transformation, the reduced potentials, 4>1r(r, Z), 

must satisfy the Laplace equation in the computational domain (Z,9), i.e. 

a2h21P~1: lP4>1: _ r;:;Da~1: _ D;' = 0 
4 ôr2 + ôZ2 vu az ..,1: , (6.31) 
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{ 

with the boundray conditions 

Ô~k 
ôZ = 0, 

Z=-I 

(6.32) 

where the prime denotes differentiation with respect to x, the nondimensional annular 

space is expressed as h :,::: (b- a) / a = H / a and D is shown in equation (4.5). Comparing 

the ab ove equations with equations (2.35) and (2.36), it is obvious that this potential 

theory is not restricted to very narrow annuli. Considering the normal-mode expansion 

for the motion of cylinder, which can be separated into trigonometric and hyperbolic 

components, it is more convenient to define the reduced-motion potentials, ~lk and 

~k, as follows: 

2 

~1c(X, Z) = L f.k(X)F.Ic(Z) = ~u:(x, Z) + ~1c(X, Z) , (6.33) 
.=1 

where 

J 

~Ic(x, Z) = [Ba cosh PIcX + Bb sinh,Bkx] L i 2IcJT;(Z) , 
j 

in terms of the eigenvalues, PItL, of the eigenfunctions and the expansion forms of 

Chebyshev polynomials, T,(Z). In the above equations, the subscripts 1 and 2, stand 

for the trigonometric and hyperbolic terms, respectively. 

Substituting the reduced-motion potentials into the goveming equation leads to 

(6.34) 

subject to the boundray conditions 

m 2 

L Lf.k(r)t.IcJ~(-l) = 0, ,.0 ••• 

(6.35) 

where the two sets of solutions. 1 = 1 and 2. wisilJg from +111 and -Pl in the above 

equations can each be associated witb either 'Pu: or tPu. defined in equation (2.31) for 

the trigonometric and hyperbolic components of the eigenfunctioDS, respectively. 
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1 Considering the +f3l case for the trigonometric components, the boundary con~ 

dit ions can be rewritten 

(6.36) 

through which the constants, Aa and Ab, may be determined. Proceeding similarly, 

the constants, Ba and B" associated with -fJl, may also be determined. Hence, the 

unknown constants are round to be 

ah -
AG .: -Tl-LW + UUkfJk] , 

ah -
Ba = -T[LW - UO'kfJkl , (6.37) 

and the boundary conditions are reduced to 

m m 

L .'kJT,(1) = l , E i.A:;Ij( -1) = 0, (6.38) 
)=0 J=O 

where UA: was defined in equation (2.31). 

Imposing the governing equation (6.34) at a finite number (m -1) of collocation 

points, equally distributed in the radial direction and considering the above boundary 

conditions, the solution of the reduced potential tPk can be completely detennined from 

the algebraic equation obtained. Thus, the reduced potential can be evaluated on the 

surface of the moving cylinder (Z = 1): 

2 

~k(X, 1) = -a L G,k[ulnp,k(x) + Üt/J.k(.:r)] , (6.39) 
,=1 

where 
h m h m 

Gu: = 2" L t 1kJ • G2A: = '2 L 4J2kJ ' (6.40) 
'cO ,-0 

Substituting the solution of the unsteady velocity potential ioto the unsteady 

Bernoulli equatioo (2.5) 'ftith the aid of dt/J,/dx = Ü and integrating around the CÎr­

cumference of the ioner cylinder. the unsteady iDviscid force is found to be 

F,(z. t) = -p7l"a'eAW
' L: aA:( _",2 Pt, + ""'Pt1 + PiO ) , 

t 
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( 

where 

2 

Pk2 = L G.Ir'I/J.Ic, 
.=1 

2 2 

Pl:1 = 2Ü L G_lrtP:lc' PIcO = ü2pl L,( -l)-G.Ir'I/J_1c . (6.42) 
_=1 _=1 

The inviscid forces are expressed as the general form shown in Appendix A, where the 

added mass X is dependent only on the cross-sectional geometry of the slender body. 

However, in the present theory whirb is applicable tn cylinders of smalliength-to-radius 

ratio, the added mass is dependent on the eigenfuDctions of the beam as weil as the 

geometry, as described in the above equation. Therefore, the G.I: are equivalent added 

mass coefficients in this analysis. The inviscid forces are Iinearly dependent on the 

lateral displacement of the moving cylinder and on its derivatives with respect to x. 

6.2.2 Determination of the Viscous Forces 

As shown in the simplified unsteady viscous model of Chapter 2, perturbation terms due 

to unsteady viscous eff'ects are superimposed on the unsteady terms obtained above; 

thus, the nondimensional pressure perturbation with respect to pÜ2 is defined by 

p(x,r,9,t) =p,,(x,r;9,t) +p,(x,r,9,t), (6.43) 

and simlarly, for the nondimessional velocity components with respect to the mean 

axial flow velocity, il, v and w, where the components, u", v"' w", and PlI' associated 

with viscous effects are considered to depend only slightly OD 9 and t. 

lt was found in Chapter 2 that, for laminar flo,,", the gradient of the pressure 

perturbation fi" due to the unsteady viscous effect is expressed as 

Ôp,. 24 1 Cf ôPm a 
-=---=--~- ........ 8{ h Re h - ô:r plJ2 ' (6.44) 

where Pm denotes mean pressure, the nondimensional friction coefficient cI is defined 

by 
24 

cI = Ft ' (6.45) 

ud Re = pÜ D H / #J is the Reynolds number based on the hydraulic diameter D H = 2ha. 

ln the above equation, ( is a c:oordinate directed bl' the total mean flow velo city, which 
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:ftuctuates circumferentially through a small angle il calculated as 

1 1,.=6 ak r'IIII 2 ] 
sin f} = W = H r=a iiJdr = ~ W l.~ /.k W. 1c sin Se""" , (6.46) 

where 

and 
m fI 2 A 

W.1e = ~Jl 2 _ h(Z _ 1) ~.lej7j(Z) dZ . 

The dimensional shear stress on the cylinder in the circumferential direction is 

found to be 

1'8 = 'T sin d, (6.47) 

where 
-2 12 1-2 

T = pU Re = C'2PU . 

Now, the unsteady lateral viscous force F,,/ can be evaluated 

F,,/ - - 10
2ft 

(1'8 sin e + p[;2p" cos 9]ade , 

2 '" - -- -p7ra e~ .L. ak(r.wPlcl + PlO) , (6.48) 
le 

where 

(6.49) 

By inspection of the above equation, it is clear that tbe lateral viscous forces are 

dependent on the Reynolds number and the geometry of the system. As meotioned in 

Chapter 2, the efl'ect of the pressure perturbation is 2/h tim~ that of the shear stress, 

considering the numerator. 2 + h ~ 2. in the above equation. 

Considering the in\'iscid and laleral "iscous forces witbout taking ioto accouot 

the steady longitudial force. the ftuid-dyoamk forces are expressed in complex form as 

(6.50) 

where al"'1(LI2)~' denotes the lateral displacement of the moving cylinder at :r = 
L/2. 
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6.2.3 Comparison with Previous Solutions 

The equivalent added-mass coefficients defined in equation (6.40), Gd are predicted 

by the present theory and then compared with those obtained by the previous theory 

described in Chapter 2 for situations where both should be applicable. The equivalent 

added-mass coefficients obtained by the present inviscid-flow theory are presented for 

slender cylinders (1 = LIa = 20) with radius ratios, bla = 1.05 and 1.1 (m = 6). As 

shown in Table 6.1, it is seen that there is better agreement for a narrower annulus 

(bla = 1.05), where the narrow-annulus simplification of the previous theory applies 

best. The added-mass coefficients obtained by slender-body theory [21], X = [(1 + 
h)2 + 1]/[(1 + h)2 - 1]. are also presented to compare with the results - see Appendix 

A (X is independent on the eigenfunctions as compared to the present results). 

Table 6.1 Comparison of equivalent added mass coefficients 
for concentrically narrow annular flow; 
1 = LIa = 20, (a)bla = 1.05 and (b) bla = 1.1 

(a) Previous Present Rel. Diff(%) 
Results{l) Results(2) [(2) - (1 )]/(2) 

k Gl~ G2k G1k G2k AGu: ÂG21c 

1 18.49 20.68 19.38 21.79 4.5 5.1 
2 16.92 23.08 17.66 24.47 4.2 5.2 
3 14.99 27.97 15.57 30.05 3.7 6.9 

= 2(J .~1 

(b) Previous Present Rel. Difl'(%) 
Results(1 ) Results(2) (2) - (1)]/(2) 

k Glk G2k Gli G2k lk 2k 
1 9.04 10.11 9.92 11.21 8.8 9.9 
2 8.27 11.28 9.00 12.67 8.1 11.0 
3 7.34 13.66 7.90 15.76 7.2 13.3 

=1 ~.~2 

ID order to compan the pre&f'Dt re&ult.& .. ith thase obtained by the collocation 

finitpodifl'erenœ mttthod. thtt fluid.dYDamic: forces including this inviscid force are pre­

sented. Before comp&rÏng the present approximate results to the Dumerical results, the 

nODdimensional8uid-dynamir fon-~. R(F) and 9(F), obtained by the present approx-
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1 imate method are compared with those of the approximate analyticaI method shown in 

Chapter 2 for 1 = 15 and Re, = 5~ 000 (m = 6). In Figure 6.7, the result is calculated 

for b/a = 1.05 and Re = 300, while in Figure 6.8 for b/a = 1.1 and Re = 400. It 

is found that the discrepancy becomes sm aIler for the narrower case, where the both 

theories are quite applicable. Hence, the present approximate results can be compared 

with confidence to the present numerical results obtained in Section 6.1. 

The present approximate results are compared to the numerical results with 

l::.X = 0.1 and m = 7 for b/a = 1.05, Re = 300 and Re, = 5,000, where the two 

theory can be applicable. Good agreement between two results is shawn in Figure 6.9. 

Even for a high oscillatory Reynolds number (Re, = 5,000), the viscous damping force 

is important for very narrow annular configurations. 

6.3 REMARKS 

Using the collocation fini te difference method, it i~ possible to predict the fluid-dynamic 

forces acting on the moving cylinder, systematically. The fluid-dynamic force is depen­

dent on the oscillatory Reynolds number, as weil as the ordinary Reynolds number. 

However, the results cannat be expressed in terms of the oscillatory motion of cylinder 

explicitly, which would be desirable for the stability analysis of the system. 

The strength of the present semi-analytical theory is that the unsteady inviscid 

forces are predicted numerically without the limitation. shown in the previous analyt­

ical theory, of a narrow annular space. Thus. for the system where unsteady inviscid 

forces are dominant o\'er Buid-dynamic forces. the semi-analytical theory is fairly arr 
plicable. for of a finite-Iength of cylinder and a slightly confined flow. The viscous 

effects on the fluid-dynamic forces for narrow annular configurations can be estimated 

by the present approximatt> metbod. 

A number of signi6cant obsen"8tions mal' be made from the resuIts. First. with 

iDcreasing axial-flow \'elocity, the Coriolis term. which is associated with the anti­

symmetric compoDent of the damping forces with respect to X = 1/2 in the present 

work. becomes larger, almost linearly witb Bo\\' velocitl'. This could be important for 
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w&ve-propagation studies. The second point of interest is that the fluid-dynamic forces 

for relatively wide annuli with high oscillatory Reynolds number can be estimated by 

potential-flow theory: the viscous eft'ect is negligible in this case. However, for very 

narrow annuli, the damping forces are stronger. These significant damping forces are 

mainly caused by the unsteady viscous drag, which is more or less linearly dependent 

on the amplitude of oscillatory motion. Finally, the eft'ect of the unsteady pressure 

perturbation on the fluid-dynamic forces becomes dominant with respect ta the shear 

stress efl'ect with decreasing annular spa.ce. 
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Figure 6.2: Variaton of (a) the real and (h) tbe imaginal)' components of the nondi­
mensional ftuid·dynamic forces versus the mesb spacc ~X for bla = 1.05, Re = 300 
and Re, = 5.000 (m = 8) at \-arious a.xial positions: •. X = xl L = 0.25; o. X = 0.5;~. 
X = 0.i5. 
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Figure 6.3: Variaton of (a) the real and (b) tbe imagin&r)' components of the Dondimen· 
sional fluid-dynamir forces versus axial positions, X = r/L. for b/a = 1.05, Re = 300 
and Re, = 5.000 (m = 8) with "arious mesh space: 0, !lX = 0.083; ., ~x = 0.1; 6, 
àX = 0.125; Â. ~X = 0.143. 
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Chapter 7 

Damping Forces Obtained by a 
SilDplified Analytical Method 

When a cylinder vibrates in viscous fluid, the fluid-dynamic forces acting OD the moving 

cylinder are influenced by the fluid properties, including axial-flow velocity, and by 

the geometry of the system. In general, the resulting forces become larger with the 

confinement of the annulus. According to the results given in Chapter 5, the added­

mass coefficient is mainly affected by the geometry for narrow configurations, especially 

in the case of a relatively high oscillatory Reynolds number Re •. The effect of Re. itself 

on the added mass is relatively small. Thus, the added mass for narrow annuli can be 

estimated by potential theory. 

In contrast to the added mass, the damping coefficient is strongly dependent on 

the oscillatory Reynolds number, as weB as on the geometry of system. Specially for 

narrow annular passages, the effect of viscous damping on the fluid-dynamic forces 

should be considered for the analysis of stability, even if the viscosity of the fluid is 

relatively small. Due to the confinement, the viscous drag force due to unsteady viscous 

flo" .. is an important component of the fluid forces. 

As shown in the pre\'ious chapters, higher-order terms in the Chebyshev poly­

nomials are clearly needed as the oscillatory Reynolds number is increased, since the 

penetration depth, denned bl' 6, = {211/W, is very small compared to the annular 

space between the two cylinders. Thus a very large system of equations is necessary 

for sucb problems. Potential-flow theory can of course be utilized to obtain the added 
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mass, but the viscous forces cannot easily be estimated, because of the large size of the 

matrices obtained by viscous-flow theory in the spectral collocation method. This is 

a reuon why the approximate method for obtaining the viscous forces with axial flow 

was developed in Chapter 2 and subsequently in Section 6.2. 

By assuming a relatively low frequency and Reynolds number, the previous an­

alytical theories, of Chapters 2 and 6 for the flexural motion of cylinder subject to 

axial flow, have been formulated to estimate the fluid-dynamic forces. To approximate 

the viscous force, a parabolic radial distribution of the unsteady circumferential f10w 

velocity in the annular f10w was introduced. In the previous chapters devoted to the 

spectral method, it was shown that the unsteady-ftow velocity profile is different from 

the parabolic one when the ratio of the penetration depth with respect to the annular 

space is relatively small. The initial motivation was to modify the analytical method 

and reduce this limitation. 

For the future purpose of stability analysis, it is convenient to express the damp­

ing forces as explicit functions of the oscillatory frequency and motion of the moving 

cylinder. With the full viscous theories shown in the previous chapters, the damping 

coefficient contains the effect of the oscillatory Reynolds Dumber, but the coefficient 

was calculated when the oscillatory Renolds number was given. Thus, an iteration 

procedure is required to obt,ain the eigenfrequencies of a system. On the other hand, 

it is more convenient to obtain '."he damping force through an analytical method. 

In this chapter. an apprf'\;Jmate analytical method has been developed to estimate 

the damping force for relatively narrow annular configurations: when (i) an inner(rigid) 

cylinder executes translational oscillation in the plane of symmetry in an eccentric 

annulus (in Section i.l), and (ii) a flexible cylinder vibrates in its first mode as a 

clamped-clamped beam in axial ftow (in Section 7.2). This theory is developed for 

both high and lo\\' oscillatory Reynolds numbers. To validate this theory, the results 

are compared with those obtained by the full viscous tbeory iD the previous chapters. 
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:1 7.1 UNSTEADY VISCOUS DRAG FORCE DUE 
TO TRANSLATIONAL OSCILLATION 

To develop the present analytical theory, the previously obtained results are eue­

fully examined. According to these results, the unsteady pressure variation &Cross 

the annular gap is very small and the Mean value of the unsteacly-flow velocity in 

the circumferential direction (in phase with the velocity of the moving cylinder) is 

approximately equal to the velocity obtained by the potential-ftow theory. Moreover 1 

the second-order t..lrm of Chebyshev polynomials defined for the circumferential-ftow 

velocity is quite large for low oscillatory Reynolds numbers, which means that the 

distribution of the velocity has a parabolic profile in this case. For high oscillatory 

Reynolds numbers, the amplitude of the velocity at a certain point, which is situated 

near the wall (r = a + 6" or r = b - 6,,), is almost the same as the corresponding one 

given by potential-flow theory. 

In the present analysis, the unsteady radial-flow velocity is not considered, in 

order to simplify the problem, so that its effect on the drag forces is neglected. Phys­

ically, the unsteady skin friction on the surface is induced mainly by the unsteady 

circumferential-flow velocity. Also, the unsteady pressure drop in the circumferential 

direction is affected by the skin friction. Under these considerations. a drastically sim­

plified form of the Navier-Stokes equations is obtained; from that starting point, the 

problem is formulated to evaluate the viscous drag force. 

7.1.1 Formulation 

Considering the assumptions defined for the present problem. the simplified momentum 

equation is obtained. bl' integrating the Navier-Stokes equation across the annular 

space for the element sho"'D in Figure ;.1. as 

----1'. -1',= --(pw)- - dr- --(pw) - - dT, H lJp· III 8 .2 [Jw.j f.11 8 -2 (Jw-j 
r ae • r89 8t 8+Ae • riJ9 8t e 

(7.1 ) 
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where the skin frictions on the surfaces of the inner and outer cylinder are given by 

ôw· 
1'a = JJ­

ôr r=a 

lJw· 
1'b= -1'-

lJr r::b 
(7.2) 

where w· denotes the uDsteady circumferential ftow velocity. By tbe assumption of 

small amplitude motion of the cylinder in a narrow annular passage, the right-hand 

side of equation (7.1) can be neglected. 

Introducing the dimensionless parameters,p = p·/(pa2w2f.f""I') and ÛJ = w· /(I,OWEe"'I') 

88 defined in Chapter 5, with the aid of a coordinate transformation, the goveming 

equation for a narrow annulus are nondimensionlized as 

ôp 2 1 + h/2 [aÛJ ôÛJ ] 
ôIJ = L Re, h2 az Z=1 - az Z=-1 ' 

(7.3) 

and the shear stress is obtained by 

ôw' 22 2 ôÛJ .,. = 11- = -"pa W Ee""'-- , lJr hRe,ôZ 
(7.4) 

where the oscillatory Reynolds number is defined by Re, = wa2 Iv and the nondimen­

sional coordinate Z = 1 - 2( r - a) / H. 

For the purpose of tbis simplified analysis, the mean-flow velocity w· across the 

gap will be calculated by tbe potential theory given in Chapter 5. From the velocity 

potential (jJ and the relationship (w· = l/r) (lJfP/ôe), one can obtain by integrating 

over the gap 

-. 1 r. 1 lJt/J d 1 11 1 L()dZ 
U' = H • ;89 r =; -1 2 _ h(Z _ 1) tP , (7.5) 

where tbe operator L(ê) can be expressed as L(tP) = lJfP/ô8 for a narrow annulus or 

an annulus of relati\'l"ly 6mall eccentricity. 

In thl" abO\? equatioD. an analytical potential theory sucb as the previous one 

for cODcentric ronfiguratioDS can bto used to obtain the velocity potential fP. However, 

in the present anal~'&is. thf' Dumerical solutions based on the following expansion fonn 

&ft utilized .. . 
~ = wa2fr" LE .,.T,(Z)F.(8) • (7.6) 

1· .... 0 
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which have already been defined in Chapter 5. For the present problem, the Fourier 

function Fit may be expressed as cosine functions as shown in Chapter 5 due to 

the flow symmetry with respect to the plane of eccentricity. Considering the ex­

pansion form with dimensionless parameters, the dimensionless mean-flow velocity, 

ft = w*, (UJJJJleIl.lJI), cao be obtained from equation (7.5) as 

where s(k9) denotes sink9. By potential theory, the coefficients tjlt have already been 

obtained. Hence, the coefficients "'le cao be determined. 

To solve the pressure drop along the circumferential direction, the shear stress 

on the surface of tbe cylinders is considered by carefully investigating the distribution 

of the unsteady circumferential-flow velocity across the annular space for both cases: 

when (a) the ratio of the penetration depth with respect to annular gap is relatively 

large and (b) the ratio is relatively small. This ratio is related to the oscillatory 

Reynolds number by the definition, 6,,/ H = J2/ Re.' a/ H, where fJ" is the penetration 

depth. 

(a) Case of relatively low oscillatory Reynolds number 

As discussed before, the circumferential-flow velocity w· has a parabolic profile 

in this case. ln this method, the dimensionless flow velocity ÛI rnay be approximated 

in the following form 

ft 

û'(Z,8) = E(W4.,Z2 + w,t.,Z + WJ,.) s(k8) , 
... 0 

6ubject to the boundary conditions - sec equation (5.36) 

• LC"'4tZ2 + U·.'6:Z + n~) s(k8) IZ=I= - sin8 • 
... 0 

• l),r4.tz2 + u',t.Z + "'~) l(k9} Iz--,= O. 
hO 

(7.8) 

Hence, the mean ,"alue, ~" may he obtained by iDtegrating W over the &Dnular gap 

ft = ! t l' (n·~z2 + li o.t.z + n~) l(k8) dl = t (-3
1 "'46: + WJ.,) .(k8), (7.9) 

2 ... 0 -, .... 0 
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Taking account of two boundary conditions and of the above equation together with 

equation (7.7), the three-unknown coefficients could clearly he expressed in tenns of 

W~ in the form 

(7.10) 

where 6 = 0 when k ~ 1, or 6 = 1 when k = 1; from which the skin friction on the 

surface can he ohtained. In view of equation (7.3), one ought to derive the following 

equation from equation (7.8) with the known coefficients WJk' wlk and W~, to obtain 

the pressure distribution, 

ÔÛJ 
ôZ = -(3Wk + 26) s( k6) , 

Z=l 

aÛJ az = (3Wk + 6) s(k6) . 
Z=-l 

(7.11) 

(b) Case of relatively high oscillatory Reynolds Dumber 

By inspection of the distribution of the unsteady circumferential-flow velo city 

across the annular space for this case (see Figure 5.5), the radial derivative of the 

velocity in phase with the velocity of the moving cylinder can be approximated in 

terms of the penetration depth as 

Bw·1 _ w· + ev sin e 
Br "'0 6" 

ôW·1 = _ w· , 
ar r=b 6" 

(7.12) 

through which the unsteady pressure drop shown in equation (7.1) may be determined. 

In the ahove equation, the mean-fiow velocity we has already been obtained by potential 

theor-y as shown in equation (i.5). To consider the boundary condition on the surface 

of the moving inner cylinder, the lateral velocity of the moving cylinder, e", is added 

to the left-hand side of the first eq,,"tion. 

Utilizing the dimensionless parameters in the transformed domain, the above 

equation can be l't'written in nondimensional form 

ôti' oh Il _ 

- = -- I)W .. + 6) ,(k6) , 
ôZ Z-l 26~ bO 

lJü' al.· -. aï = 26 L R .. ,(k6). 
%--1 P hO 

(7.13) 
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1 where the coefficients for the nondimensional mean-flow velocity, W~, are defined in 

equation (7.7). Thus, the unsteady pressure drop and the skîn friction on the surfaces 

of the cylinders can be estimated, considering equations (7.1) and (7.2). 

7.1.2 Unsteady Drag force 

Having determined skin friction on the surfaces, the unsteady pressure disribution along 

the circumference may now be found for both the relatively low and high oscillatory 

Reynolds number. Then the unsteady drag force can be obtained by considering the 

skin friction on the surface of the moving cylinder and the pressure drop along the 

circumference of the inner cylinder. 

For the case (a) of low oscillatory Reynolds number, substituting equation (7.11) 

into equation (7.3) leads to 

ap 12 1 + h/2 n -
J:118 = -t-

R 
h2 ~)Wk + ~/2) s(kO) . 

v e. k=O 
(7.14) 

Proceeding similarly with equation (7.13), for the case (h) of high oscillatory 

Reynolds number, the nondimensional pressure is expressed as 

8i> = -LV 2 1 + h/2 È(W. + 6/2) .(k6) , 
ÔO Re. h k=O 

(7.15) 

Taking account of the pressure and skin friction, the viscous drag forces may be 

obtained by integrating its components around the cylinder as 

Fd = -a 10
2r (p. cos e + p. ô;- sin e) de . 

o r.=a 

(7.16) 

However. some manipulation is required to bring p., which is an implicit function of 

e, into a convenient forme In this respect, p. cos e is modified as 

- e d ( - . 9) dp·. e p cos = de p SlD - de SlD . (7.17) 

The integral of the first term of the right-hand side in the above equation is equaJ to 

zero. Hente, tbe equation of the drag force tan be expressed in the nondimensional 

fonn 

(7.18) 
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• where aêeu.Jt denotes the lateral displacement of oscillatory motion of the cylinder and 

Fd is the nondimensional viscous-damping force. 

Substituting equations (7.11) and (7.14) into the Aboye equation for case (a) leads 

to 

(7.19) 

where 
A -121 + h/2 -

Fflp = Re, h2 (W1 + 1/2) , 

A -6 1 -
Fil, = Re, h (W1 + 2/3) , (7.20) 

in which the suhscripts vp and vs stand for the unsteady pressure and the skin friction 

terms, respectively. Thus, the damping coefficient due to the viscous drag can he 

expressed as 

Similarly, for case (b), 

2 A 

Cvd = -p1ra WFd • 

A {21+h/2 -
Fflp = -V Re; h (W1 + 1/2) , 

(7.21) 

(7.22) 

Considering these results, the viscous drag force is expressed in terms of an ex­

plicit funetion of the oseillatory Reynold number, sinee the coefficients t jk and ",k, 

determined by the potential theOJ'Y, are dependent on only the geometry of system. 

7.2 UNSTEADY DAMPING FORCES DUE TO 
FLEXURAL OSCILLATION OF A CYL IN­
DER 

By inspection of the results given hy the full viscous theory based OD the collocation­

fiDite-difl'erence method, the added-mass coefficieDt can be approximately calculated 

by potential-8ow thecry for narro\\' annular configurations siDce it is maiDly afl'ected 

by the geomctry of the system. However. the dampiDg forces are depeDdeDt OD 8uid 

138 



-

properties as well as geometry. In general, it is weIl known that the damping force 

acting on a flexible cylinder subject to an axial flow is decomposed into two terms: the 

viscous-damping force due to the ftuid viscosity, as can be seen in the previous section, 

and a force due to the Coriolis effect associated with the axial flow. 

According to the results given in the full viscous theory, the circumferential ve­

locity is almost linearly dependent on the velocity of the flexible cylinder and the 

profile of this velocity along the radial direction is similar to that obtained in the two­

dimensional problem discussed in Chapter 5. Therefore, the viscous-damping forces 

can Le approximated by considering the unsteady pressure drop mainly due to the 

radial derivative of the unsteady circumferential-ftow velocity in annular ftow. Hence, 

the viscous-drag force due to ftexural motion of the inner cylinder can be calculated 

by considering the viscous-damping force Fd obtained by the approximate mcthod for 

the two-dimensional problem based on the lateral displacement, el(LI2, t), as 

(7.23) 

where subscript 3 stands for the three-dimensional problem and the lateral displace­

ment e,(x, t) of the inner cylinder is expressed il! terms of eigenfunction, tPl (x), which 

is the first-mode expansion for a clamped-clamped beam as shown in Chapter 2, 

(7.24) 

Thus, the viscous-damping forces can be rewritten in the following form 

(7.25) 

where ê = e Il ( a(!'-") alld 
. . t,(.r. t) 
F~ = Fd t,(L/2. t) • 

in which Fd = t., + F •• has a1ready been obtained in the previous section as a function 

of the oscillatoly Reynolds numbers. 

Taking account of the pOlcntiaJ-flow theory based on the sleoder-body 8S5um~ 

tion. thl' damping (orcl' due to tht axial-fio,,". which is related to tbe Coriolis force. 
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1: ma.y be estimated by the following equation 

F. 2 
2U- éPe](x,t) 

t! = - p1rO 8x ôt X, (7.26) 

where the mean axial flow velocity Ü is obta.ined by integrating the axial-flow velocity 

over the annular space and the ratio of confinement is equal to the added-mass coeffi­

cient determined by the slender-body potential-flow theOlY, as X = (b2 + a2)/(1J2 - 0 2). 

Utilizing the normal-mode expansion for the flexural motion, the equivalent Cori­

olis force can be expressed as 

(7.27) 

where 
A ÜPl tI1 (x) 

Fe = -2-;;-Xt/Jl(L/2) , 

in which the prime denotes differentiation with respect to x, and PIL represents the 

eigenvalue for the first mode of the flexible cylinder. 

Considering the viscous drag force and the equivalent Coriolis force, the total 

damping force acting on the flexible cylinder subject to steady axial ftow in a narrow 

annulus can be calculated approximately by 

2 2 ,- A 

FIJ' = Lp'rra w aêe"'" (F d3 + Ft:) . (7.28) 

7.3 RESULTS AND DISCUSSION 

The main purpose of this section is to validate the approximate methods develC\ped for 

estimating the damping force as in8uenced by the oscillatory Reynolds number, the 

geometry of system and the Reynolds number. For that purpose, the present results 

obtained by the approximate methods are compared to the results given by the viscous 

theory shown in Chapters 5 and 6. 

When the inDer cyliDder executes traoslatioDal motioD iD the plane of symmetry, 

tbe calculations bave been conducted for the cases of various ratios of the radii, 6/0, 

with a selected oscillatory Reynolds Dumber, rat ber than attempting an exhaustive 
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parametric study. In order to investigate the etrect of axial tlow on the damping force 

acting on the inner cylinder in a narrow annulus, the damping force has been calculated 

with the chosen Reynolds number based on hydraulic diameter 2ha. As shown before, 

the goveming equations formulated for the viscous theories are nondimensionalized in 

terms of the Reynolds number. 

In this study, we are mostly concerned with forces on the centre body per unit 

length and their variation with length. With regard to the Coriolis force, it should be 

remarked that the integrated force (for x E (0, L» is zero - although its variation with 

x is of interest and will be shown in the results that follows. 

The viscous-drag force with increasing oscillatory Reynolds number will be dis­

cussed for b/a = 1.25 and bla = 1.4. The viscous-drag coefficient Fd obtained for 

cases of both low and high oscillatory Reynolds number is shown in Table 7.1, where 

the results are compared to the corresponding numerical results based on the spectral 

collocation method. The drag coefficient id has the same definition as the imaginary 

one ~(i) defined in the previous numerical method. 

From the results, il is found that the transition region, where both approximate 

methods give approximately same value, is situated around 6,1 H = 0.2. Above this 

ratio of penetration depth, the method developed for low oscillatory Reynolds numbers 

cao be used, while tbe other one is more suitable for high Re,. Thus, it is true tbat tbe 

viscous-drag force is dependent on tbe ratio of the penetration depth to the annular 

space, which afferls the circumferential f10w velocity profile in the radial direction. 

In Figure 7.2. the nondimensional darnping forces for various oscillatory Reynolds 

numbers (Re. = 50. 500. 5,000 and 50.000) are illustrated for concentric annular con­

figurations to sho,,' th(" elrcl of blo. The results denoted by closed symbols represent 

tbe nondimensionaJ force i., obtainro bl' considering only the unsteady pressure. The 

Q\'eral) nsult& t~. ÎDcluding the eff'«t of skiD friction. are denoted by the open sym­

bols. Accordinl to the Mulla. the elect or IkiD friction is relatively small; however, 

the ~lativr magnitude of tbr eff'f'C't of tbe skiD friction versus the unsteady pressure 

becomes larger "'ith iDcreasing radius ratio bla. By inspection of equations (7.20) and 
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(7.22), this can be expected: the ratio betwecn the two results is of the order of h. As 

compared to the numerical results obtained by viscous-flow theory with the spectral 

collation method of Chapter 5, good agreement is found between these results and the 

numerical results. 

Table 7.1 Comparison of the drag coefficients Fd obtained by the approximate 
method developed for (a) low and {b} high oscillatory Reynolds number 
and by the numerical method with various ratios of the penetration 
depth to the annular space. 

Approximate Numerical 
bja Re. 6p jH Result Fd Results Fd 

(a) _(b) 
5000 0.08 0.22 0.52 0.53 
1000 0.18 1.08 1.16 1.46 

1.25 500 0.25 2.17 1.65 2.44 
100 0.57 10.8 3.68 11.0 
50 0.80 21.7 5.21 22.1 

5000 0.05 0.06 0.26 0.25 
1.4 500 0.16 0.64 0.82 0.96 

100 0.36 3.18 1.84 3.34 
50 0.50 6.35 2.60 6.61 

Wh en the inner cylinder bas translational motion in the plane of axis symmetry in 

an eccentric annulus. the nondimensional overall drag force Fd is presented in Figure 7.3 

for bla = 1.25. with oscillatory Reynolds numbers (a) Re. = 50 and (b) Re. = 5,000. 

For the former C&Se. thr calculation is done bl' the method developed for low oscillatory 

Reynolds numbers and for tbl" latter case by the method developed for high oscillatory 

Reynolds numbers. TbeM' results lU? also compared to the numerical solutions. The 

present approximate mt'tbod (de\'eloped in Section 7.1) is found to be adequate. 

ln Figure ;.4. thr O\'erall damping force including the effect of the axial flow 

(Re = 626 ud 1.256) 1Î\'en bl' tbe present approximate method (developed in Section 

7.2) is compared to tbe numericaJ ftSults aho"'"11 in Chapter 6 in case of bla = 1.25. 

As aho,,'D in the figure. tbl' nondiDlt'USional damping force may be decomposed into 

142 



1 two components for the given flexural motion (the first mode vibration as a clamped­

clamped beam): (i) the sym!Detric component with respect to the middle point x = 

L/2, which is related to the unsteady viscous-drag force and (ii) the antisymmetric one, 

which is associated with the Coriolis force (axial flow effect). It is shown in Figure 7 .4( a) 

that the antisymmetric component becomes large with increasing Reynolds number. 

The damping force, containing the effect of the unsteady viscous drag and the axial 

ftow, predicted by the approximate method agrees weIl with the numerical ones, which 

means the full viscous theory shown in Chapter 6 is validated indirectly; however the 

comparisons have been conducted for a special case - slender cylinders subject to 

narrow annular flow. 

Taking account of the above results, the interesting remarks are as follows; (i) the 

present approximate method can be utilized for estimating the damping force, espe­

cially for narrow configurations where the damping force has an important role in the 

dynamics of system and the virtual mass can be estimated by potential theory; (ii) the 

damping force can be expressed in terms of the circular frequency of the moving cylin­

der explicitly through the approximate method - this expression is very convenient to 

analyse the stability of the system; (iii) the unsteady viscous drag force is propotional 

to 1/ Re. for relatively low oscillatory numbers and to l/.Jl[ë, for relatively high ones. 
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Figure 7.1: The sbear stress acting on surface elements of the inner and outer cylinders 
due to the unsteady circumfcrential-ftow velocity. 
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Figure 7.2: Nondimensional viscous-damping force obtained by the approximate 
method for the translational motion of the inner cylinder in concentric configurations; 
considering only unsteady pressure(closed symbols). and unsteady shear stress and 
pressure(open symbols). -, numerical results obtained with the spectral method of 
Chapter 5. 
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Figure Î.3: Effect of anoular eccentricity 00 the viscous-dampiog force obtained by 
tbe approximate metbod for tbe translatiooal motion of tbe iooer cylinder and for 
b/o = 1.25: e. Re, = 50; Â. Re, = 5.000. Comparee! witb the numerical results 
obtaioed witb tbe spectral collocation method of Chapter 5 (-). 
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Figure 7.4: Nondimeusional viscous-dampiog force obtained by the approximate 
method (-) and by the collocation finitE"-difference metbod of Chapter 6 (0, Re = 
626 ;~, Re = 1.256), for tht' first-mode ftexura) oscillations of tbe inner cylinder: (a) 
Re, = 5.000; (b) Re, = 500. 

147 



-

( 

Experilnental Investigations and 
Cornparison with Theory 

In parallel to the foregoing theoretical models of which the ultimate objective is to 

predict the unsteady flow field in annular flow-either turbulent or laminar, the problem 

has also been studied experimentally; the results of the experimental investigations are 

presented in this chapter. 

Experiments have been performed partly to validate the theory which has been 

developed for the present problem in the foregoing. For this purpose, the unsteady 

pressure generated by the oscillatory motion of the outer cylinder in the annular con­

figurations was measured on the surface of tbe fixed inner cylinder, to compare witb 

the theoreticaJ results. Tbis was round to be a reliable and convenient way of testing 

the theory. Once the motion-related unsteady pressure is known, the forces acting on 

the moving parts of the annular flo,,' passage may be easily calculated by adding the 

shear stress effect: hence. the stability of the centre-body may then be evaluated. 

Using an t'ulicr expcrimentaJ apparatus designed for concentric configurations, 

experimental iU\,(.'5liglltions were madt' to study 80w-induced-vibration problems (35, 

60). In lhat set of CXpl'rilllcuts also. thl' quautity that was measured was the unsteady 

pressure. lu t1l06(' tt"Sts. a rigid. C'yliudrical centre-body was forced to oscillate in 

• rowng Dlodr about a bingr poiDt Ytith air 80w in the aDnulus, while the outer 

conduit "'as rigid and immobile. Thr experiments in this otber apparat us have beeD 

characterized by hig1l axiaJ-IIOYt· \'elocities ... ·bicb prrmitted the validation of the theory 
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J developed for turbulent flow in concentric annuli. In contrast, no experiments wert' 

performed with that apparat us for unsteady laminar ftows, which may he important 

especially in very narrow annuli. The evaluation of the eccentricity effects on the 

unsteady pressure analyzed in Chapter 5 for tbe translational motion could not bl' 

examined using the earlier apparatus. This was the reason wby a Dew apparat us WIIB 

constructed, where rocking and lateral(translation) motions wou Id be equally feasible, 

with low flow velocity as weIl as high ftow velocity. 

In the design, the following important modifications, as opposed to the previous 

apparatus, were introduced: (a) the possibility of conducting experiments for eccentric 

arrangements, with the oscillation either in the plane of eccentricity or normal to it; 

(h) the facility of having very low flow velocity, so that the flow in the annulus cou Id be 

laminar rather than turbulent. For future works, this new apparat us has "he possibility 

of having axial variations in the annular passage, either smooth or abrupt. 

To accommodate ail these possibilities, it was found convenient, in tbis new appa­

ratus, to oscillate part of the outer cylindrical conduit, while tbe centre-body remains 

immobile. In the present experimental tests, tbe rigid outer cylinder, containing qui­

escent fluid or steady axial flow(laminar flow), executes a rocking motion in concentric 

configurations or a translational motion in eccentric configurations. 

To eliminate the viscous-flow-related effects, such as flow separa.tion and/or vortex 

shed ding which are not considered in the present theory, a smooth transition betwE'en 

cylindrical and annular ftows is assumed both upstream and downstream. This is 

insured by connecting smootb ogives to the fixed centre-body at both ends as shown 

in Figure 8.1. The constant cross-section, from tbe upstream ogive to the test section 

wbere the pressuft' .;as measured, is long enough to obtain developed laminaf flow. 

Also, the tests ha\'(' been conducted at 10"" amplitudes of oscillation. characterized by 

an amplitude/gap ratio smallcr tban O.lS. 

ID \i~l''' of th~ theoretical results shown in Chapter S, it is oh\ious tbat the ftuid­

dyuamic forces are mainly influ~nced by the geometry of the system for high oscillatory 

Reynolds Dumber. Re. = (wa2)/II. Tbe radius ratio bla, for the present experimental 
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• results, was 1.21. For simplicity of design, the test was performed in air rather than in 

water. 

8.1 EXPERIMENTAL APPARATUS 

As mentioned before, the unsteady pressure generated by the forced vibration of the 

outer cylinder was measured and then compared to the theoretical results given by the 

present theory based on the numerical approach. 

The test sect;on consists of a rigid cylindrical centre-body of uniform cross-section 

connected to the fixed ogives at the upstream and downstream ends, as depicted in 

Figure 8.1. The ogive, together with a mesh and a honeycomb, placed near upstream 

end, help to render the annular flow as uniform as possible. The constant-cross-section 

moving outer conduit was oscillated harmonically. In the basic configuration of the 

annular gap, two cylinders were either concentric or eccentric, in the plane of oscillation 

or normal to it. Obviously, th'~re was relative motion between the oscillating part of 

the outer cylinder and the rest of the outer cylindrical conduit, which was immobile. 

Various ftange designs, as shown in Figure 8.2(a, b and c), were tried to reduce the 

effect of this relative motion. A fuller explanation will be given later. 

The unsteady pressure was meilSured by six pressure transducers situated at 

different locations along the length of the centre-body, X = x/L = 0.342, 0.421,0.5, 

0.578 and 0.657 (L = 965 mm), as shown in Figure 8.3. In the middle, X = 0.5, 

two transducers were located at diametrally opposed locations in order to compare the 

corresponding measured unsteady pressures; for exampIe, the phase difference between 

two signals migbt be 1800 for con cent rie configurations, wh en the cylinder executed 

either translational or roding motion. At each axial location. the transducer was 

installed inside tbe hollo .. · centre-body in a recessed housing hole, with a very sm ail hole 

(0.8 mm diameter and 3.2 mm deep) used for measuring the pressure in the annulus, to 

minimize the effect of the hole on the fla..- field. To measure the pressure distribution 

along the lLZimuthal direction, the inner cylinder wu designed to be rotated. 

According to pre\iously obtained experimental resuIts, the relative difference he-
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1 tween the pressures measured on the walls of the outer and inner cylinders was found 

to be very small for narrow annuli; this was also found to be the case in the present 

theoretical results. For this resson, the pressure on the surface of the outer cylinder 

was not measured in the present tests. 

The outer conduit itselfwas oscillated by means of an electro-dynamic shaker and 

its displacement was measured by an accelerometer mounted on the base plate of the 

shaker. The oscillation of the shaker is transmitted to the moving outer cylinder via a 

set of yokes designed for the translational or rocking motion. For the rocking motion 

experiments, the hinge was located at X = 0.237 and the shaker was connected to the 

outer cylinder at X = 0.815. In the case of translationsl motion, tbe moving cylinder 

is connected in the middle (X = 0.5) to keep its weight balanced. 

The signaIs from tbe pressure transducers and the accelerometer were processed 

through a dual-channel FFT digital signal analyzer. Ut.ilizing the present apparat us , 

the following parameters were varied in the experiments: (a) oscillation frequency; 

(b) oscillation amplitude; (c) eccentricity of the annulus; (d) axial-flow velocity. The 

test can also be conducted for various hinge points and axial locations of the pressure 

transducers. The possible range of oscillation frequency and amplitude were limited by 

the dynamical characteristic of the system. In order to have a meaningful comparison 

with the theoretical results and to avoid impacts between the inner and outer cylinders, 

the amplitude of motion was not very high. 

To describe the apparat us in detail. its different components are presented sep­

arately as follows: (1) the external conduit including the oscillating outer-cylinder; 

(2) the fixed centre-body connected to the ogives; (3) the "transmission" mechanisrn 

linking the shaker to the outer cylinder; (4) tbe blower and the connecting 80w system. 

8.1.1 The External Conduit 

The extemal pipe consists of two main sections. oscillating and fixed parts. The inner 

radius of the pipe \\'as b = 53.8 mm and its ",all tbickness was 3.2 mm. 'The central sec­

tion. which executes the oscillatory motion. W85 965 mm long. The central section was 
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allowed to oscillate in a one-degree-of-freedom motion provided by the electromagnetic 

exciter assembly. 

The fixed cylindl'ical conduit of the same diameter as the moving portion contin­

ued on either side, and housed the ogives as weil as the fixed centre-body. The inlet 

axial 80w was regularized with the aid of several meshes, a honeycomb sereen and 

an ogive, to eventually obtain the developed laminar flow as mentioned before or at 

high velocity a unifoml turbulent 80w. These parts were secured on the vertical plates 

which were fixed on a long I-beam at certain locations along the axial direction. The 

system was made horizontal rather than vertical (as was the case with the previous 

apparatus). 

As discussed before, it is necessary to overcome the problem of a discontinuity 

arising from the relative motion between the oscillatory and fixed parts of the outer 

cylinder. The "obvious" solution oC using 8exible rubber seals was Cound uosatisfactory, 

because locked-in stresses in the rubber seals combined with the slight flexibility in the 

shaker actuator gave rise to small but important asymmetries to the desired motion. 

Utilizing a sponge instead of rubber, as a "felt" shown in Figure 8.2(a), the problem 

was improved but not entirely solved especially for high-amplitude oscillatory motion. 

The arrangement shown in Figure 8.2(b) using two larger-diameter flanges separated 

by a very small gap was found to be the best solution to the problem, although it dose 

Dot achieve total sealing. The c10sed arrangement of Figure 8.2(c) was occasionally 

used, but on1y with zero mean flow in the annulus. 

8.1.2 The Fixed Centre-body 

The fixed centre-body is comprised of three parts: the central test section, facing 

by the oscillating outer cylinder. and the upstream and downstream sections. The 

pressure transducers were mouDted in the central test section. The fixed upstream 

and downstream sections were composed of two parts: an ogival part and a constant 

cross-section part. The constant cross-section pan was connected to the test section. 

The ogival part \Vas sbaped 50 as to ha\'e \1llying parabolic profile; il wu designed to 
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1 allow a smooth and uniform transition from cylindrical to annult'r flow, or vice-verse. 

Thus, fully developed annular flow to the test section is allowed through the constant 

cross-section part. 

The central test section of the centre-body was made up of two sections(split 

longitudiually to mount the pressure transducer inside the cylinder) and was connected 

to the upstream and downstream sections at bath ends in sliding contact (male and 

female) to allow rotation to the central test section for measuring the unsteady pressures 

at various azimuthallocations. An Q-ring between the male and female parts prevented 

any air leakage into the hollow inner cylinder. Undesired rotations were prevented with 

the aid of a set of screws. The radius of the inner cylinder(apart from the ogives) was 

constant a = 44.8 mm. The length of the test section was 965 mm and the upstream 

and downstream sections, including the constant cross-section part, were 1000 mm 

long. The contant cross-section part between the ogive and the test section was 500 

mm long, 50 that the ratio of the entrance length, from the ogive to the test section, 

with respect ta the annular space was 50, which might be enough ta obtain a sufficiently 

developed laminar flow. 

Each of the upstream and downstream bodies was held in place at two locations. 

This was accomplished by a set of screws, which were secured into pairs of reinforcing 

half rings to the outer pipe, at each location. Utilizing the set of screws witb a spindle, 

and measuring the lead of the screw( calibrated appropriately), one could adjust the 

eccentricity. 

8.1.3 Shaker and Transmission 

The harmonie oscillation \\'as generated by a Drüel 1: I\jaer electromagneüc shaker 

(exciter body B!:I~ 4801 moullted "'itll exciter head B&I\ 4812). The maximum peak­

to-peak amplitude limit "'u 12.7 mm. the maximum force rating was 445 N. and tbe 

pœsible frequency range "'as from 5 Hz ta 10 kHz efl'ectively. 

The hannonic signais generated by the shaker controller (B&I\ exciter control 

type 1047) were fed into a power amplifier (B&I\ 2707) tbat amplified them to levels 
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( appropriate to drive the shaker. The shaker controller controlled the frequency and 

the displacement amplitude of the shaker moving element. In order to make use of the 

frequency-constant-parameter programming capability, an accelerometer was fixed on 

the base plate of the shaker head and its signal was fed back into the shaker controller 

through a charge amplifier, the latter conditioning the accelerometer signal into a fonn 

suitable Cor the shaker controller Ceed-back input circuit. 

The oscillatory motion of the central outer cylinder was restricted by a pair of 

vertical rigid plates parallel to each other, which were placed between the shaker and 

the cylinder, as a yoke, to give purely transverse transtion. For rocking motion about 

a hinge, the oscillation was executed via a rigid plate with two pivot points or, in the 

latest version of the experimental apparatus, via a flexible slender plate. The pivoting 

points or the flexibility of the yoke were designed to allow rocking(rotational motion), 

and to avoid problems associated with trying to impose purely vertical motion(which 

then tends to move the hinge and produces rattling). 

8.1.4 The Blower and the Connecting Flow System 

The flow through the annulus was provided by an extemal air source. In the present 

work, to compare with the theory developed for laminar flow, a VBCuum-cleaner type 

blower was used in the suction mode for generating laminar or low-velocity turbulent 

flow in the annulus. 

It was found that, for turbulence-Ievel flow, the noise level generated by the blower 

was relatively small as compared to the expected pressure signal. Thus, without using 

an acoustic filter, the signal acquired from the pressure transducers could be processed 

by a sigual analyzer. 

The Dow rate W8S measured by means of an orifice plate mounted near the down­

stream end of a slraight pipe( 3 m long and 40 mm in diameter} which was secured al 

its otber end to tbe downstream section of the outer pipe. This length was required 

to obtain the fully dE'\'eloped flow near thl" inlet of thl" orifice plate. The flow rate was 

controlled b,' means of the circumferential slots located al the downstream end ne&r 
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the blower. 

8.2 INSTRUMENTATION FOR MEASUREMENT 

During each test, the following physical parameters have to be measured: the unsteady 

pressure, the displacement of the centre-body with a certain circular frequency, and 

the flow velocity. As mentioned before, the pressure as well as the displacement were 

analysed by means of signal processing through a FFT(Fast Fourier Transform) digital 

signal analyzer, from which the pressure amplitude and the phase angle with respect 

to the displacement could be obtained. 

In the present experiments, the following instruments were used to obtain the 

required data: (I) six piezoelectric pressure trallsducers; (2) one accelerometer; (3) one 

digital spectrum FFT analyzer; (4) one differential alcohol manometer. 

8.2.1 Piezoelectric Pressure Transducer 

In previous tests 135], a differentiai-pressure transducer was used for the concentric 

case. ln the present work, the differentiai-pressure transducer was no longer useful 

for eccentric configurations, since the unsteady component of the pressure is no longer 

antisymmetric at diametrally opposed points. In other words, through the differential­

pressure transducer. the eccentric effect on the pressure could not be measured. This 

was the main resson for ",'hich the piezoelectric pressure transducer( 112A23) was chosen 

for these experiments instead of the differentiai-pressure transducer. 

The main specifications of the piezoelectric pressure transducer are as follows: 

Output Range: 

Ulit'ful O\'t'rraugt': 

Resolution: 

Seoaili\ity: 

Resonant Fl'«lul'nc,·: 

Liot'arity: 

2.5 \' 

344.7 kPa (50 psi) 

6.89 Pa (0.001 psi) 

;.25:i: 1.45 mV /kPa (50 ± 10 mV /psi) 

250 kHz 

1.0 
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Utilizing this pressure transducer, the steady or static component has been un­

detectable and the signal had an acceptable level witbout special conditioning, which 

is a distinct advantage for the present work. 

8.2.2 Accelerometer 

Tbe displacement of the centre-body was measured by an accelerometer(B&K type 

4381) whicb was m 'unted on the sbaker head. The accelerometer signal was first fed 

into the cbarge amplifier(B&K type 2624). One of two-output signaIs from the charge 

amplifier was used for the constant displacement control througb the feedback loop of 

the shaker controller system, while the other was monitored by the spectrum analyzer 

whicb gave tbe centre-body displacement. 

As opposed to tbe earlier apparat us [35], it was not necessary to consider the 

ftexibility of the transmission yoke. since tbe transmission components were relatively 

simple and more directly connected; moreover, tbe transmisson was sufficiently rigid in 

tbe moving direction. As a result, tbe difl'erence of the accelerations measured on the 

base plate and on tbe surface of the moving cylinder was smal1 enough to be considered 

negligible. 

8.2.3 Spectrum Analyzer 

A dual-channel FIT digital spectrum analyzer(Hewlett-Packard 3582A) was used to 

monitor tbe signais from tbe pressure transducers and from tbe accelerometer. In 

Figure 8.4. a scbemati(' of signal processiug is sbown. The amplitude of either signal 

could be obtained frOID ,br power sptCtrum. " .. bilt" the pbase difference between pressure 

and acceleration could 5iDlilarly bt- oblained from the cross-spectrum of the those two 

quantities. Thl' infomlatioo .·as .,'ailable for each indi\'idual spectral compooeot bl' 

means of a cursor tbat can bf' positioned accordingly. 

Tbe main .,hut.gr of usillg Ihl' FIT analyzer was tbat the signal due to the 

RCondary efft'Ct!' (t.g. tbe oouhul"ulity of fluid motion. unexpected seconda!')' motions 
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1 of the cylinder, the random noise Crom turbulence, a.nd acoustic wave pressure COlll­

ponents) can be adequately separated from the main signal. The other adva.ntage of 

this instrument is that it ca.n accept signals down to l'V range without special signal 

eonditioning, which was very useful, sinee the signal levels in these experiments were 

just above the resolution of the pressure tra.nducer. 

The frequency range of the dual-channel digital analyzer is 0.02 to 25 kHz. With 

suit able frequency spans in the range of 5 Hz up to 25 kHz, to provide better frequency 

resolution, the signal can he analysed. The instrument ean measure inputs from 31.6 

volts down to 1 l'V, without resorting to external signal conditioning. Its dynamic 

range is 70 dB. The use of this analyzer permitted us to obtain the transducer and 

aceelerometer readings accurately in the frequency range of 20-70 Hz, in which the 

present experimental tests were performed. 

8.2.4 Differentiai Alcohol Manometer 

To calculate the fiow rate, the pressure drop across the orifice plate W8S measured 

hy a differential Lambrecht aleohol manometer, the range of which was 0-200 mm of 

alcohol. Its two taps were connected upstream and downstream of the orifice plate. 

The calculation of the ftow rate, from which the mean-ftow velocity and the Reynolds 

number in the annulus can be determined. will be described in the next section as part 

of the preliminary experimental work. 

8.3 PRELIMINARY EXPERIMENTAL WORK 

ln order to obtain the signal witb a desired aceuracy, every aspect of data acquisition 

was studied for eath parameter to be measured, and the pressure transducer and the 

accelerometer were appropriately calibrated. Special attention was paid to tbe mea-

6urements of the pressure signal, the centre-body displacement and the annular Dow 

rate. As mentioned before, the uDsteady pressure was inftuenced by the type of con­

nection between the moving and fixed parts of the outer pipes. After severa! trial tests, 

the most suitable connectioD was found. 
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8.3.1 Calibration of the Instruments 

To assess the dynamical behaviour of the instrumentation with an accuracy relevant to 

the order of magnitude of the signais, appropriate calibration procedures are required, 

especially for the pressure transducer and the accelerometer, as well as for the orifice 

plate; however, in the present work, the discharge coefficient of the commercial orifice 

plate as a function of Reynolds number was taken from the calibration data for the 

commercial orifice plate, which was already verified during a previous test. 

(a) The prf'ssure transducer 

Before the dynarnic calibration started, it was necessary to have a pressure trans­

ducer with known sensitivity. A peB 106B pressure transducer (sensitivity 43.51 

mV /kPa and resolution 0.69 Pa) was used as a reference pressure transducer, since it 

has a higber sensitivity and lower resolution than the actual transducer to be calibrated. 

The experimental apparat us for dynamic calibration, shown in Figure 8.5, consists 

of a plexiglass cylinder of which the free end is covered by a rubber membrane and the 

fixed end bas two pressure tranSd"lCer housing holes. The membrane was held tightly 

by a ring against the edges of the cylinder by means of eight screws in order to prevent 

air leakage. Two small circular plates of diameters slightly l~ss than the inside diameter 

of the cylinder provide an oscillatory displacement of the membrane by means of a yoke 

which was clamped to the base plate of the electromagnetic shaker (B&K 4801). 

The reference pressure transducer was flush-mounted to the fixed end of the cylin­

der and the pressure transducer to be calibrated was mounted in another housing hole 

which had the same configuration as in tbe actual measurements on the centre-body. 

As mentioned before, both were installed recessed. The electrical output signal pr~ 

portional to tbe deflection of the membrane was generated by the harmonie oscillatory 

motion of tbe shaker. Using the reference signal from the flush-mounted one, the sen­

sith·ities of the actual pressure transducers were found to be in the range of 6.09 - 7.25 

mV/kPa. 

(b) The accelerometer 

Taking into &ecount tbe &etual D1easurement configuratioDS, the accelerometer 
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1 was calibrated by the aid of a B&I< accclerometer calibration Exciter (B&K 4294), 

acceleration of which is fixed (10 m/s2 with 59.2 Hz). To calibrate the accelerometer, 

it was mounted on the device and then connected to the charge amplifier with the 

cable in the same arrangement as for actual measurements. The sensitivity of the 

accelometer was measured to be 1.02 mV/(m/s2). 

8.3.2 Measurement of Flow Velocity 

In the present work, it was expected that the actual tlow rate was slightly luger the 

measured one due to the leakage at the flanges between the fixed and the moving 

parts of the outer pipe. However, as mentioned before, the air leakage was minimized 

by keeping the gap very small. For this purpose, the radial width of the Banges was 

relatively large with respect to the gap. This, together with the relatively low pressure 

difference with respect to the ambient, insured that the leakage flow was quite small. 

Looking at Figure B.1, an orifice plate was installed at the downstream end, near 

the pump, between two flanges to measure the Dow rate. The Dow in the basic duet of 

diameter D was forced through an obstruction of diameter d, as shown in Figure 8.6. 

The ratio of the radii {J = d/ Dis a key parameter. For the present work, the diameters 

were D = 40.0 mm and d = 12.7 mm 50 that {J = 0.318 

Applying the Bernoulli and eontinuity equations for incompressible steady fric­

tionless flow to estimate the pressure changes, one obtains 

7r 2 7r ..J2 -D \1,1 = -a-\!.2 
4 4' 

(8.1) 

Eliminating V1, one can obtain the 80w velocity V2 in terms of the pressure change 

(Pl - 1'2); thus. 

\!. = 2(PI - 1'2) 
[ ]

1/2 

2 p(1-{J4) , (8.2) 

where the pressure difference was calculated by reading the manometer. However, this 

is surely inaccurate because of the friction due to the visc05ity which was neglected. 
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Thus, an experimental calibration of the device must be carried out to fit the relation 

(8.3) 

where the dimensionless discharge coefficient Cd accounts for the discrepaocies in the 

above approximate aoalysis. By dimensional aoalysis, it is expected that the coefficient 

is expressed as 

where 

Cd = J(fJ, ReD), 

\tlD 
ReD=-· 

v 

(8.4) 

Utilizing the discharge coefficient given for the commercial orifice with D : O.5D 

tapping shawn in Figure 8.6, the ftow velocity 1t2 can be calculated through an iteration 

procedure. Thus, it is not difficult to obtain the Reynolds number in the annulus from 

the calculated ftow rate, with the aid of the continuity equation. 

8.4 EXPERIMENTAL RESULTS AND COMPAR­
ISON WITH THE THEORY 

Unsteady pressure at each pressure transducer location was measured, when the outer­

cylinder, subject to axial flow or in quiescent fluid, executed the translational motion, 

in the plane of eccentricity or normal to it; or, alternatively, when it was subjected 

to the rocking motion about a hinge point. Experiments have been conducted with 

tbe following arrangements: (l) with the centre-body concentrically mounted vis-à-vis 

the outer pipe, for both cases; (2) with the centre-body eccentrically mounted, for the 

former case only. 

Before tbe results are presented, attention will be brougbt to a point that proved 

to have some importance, experimentally. It was found that the repeatabilityof the 

results was not good when the fixed and moving outer cylinders were connected by 

rubber or sealed by a sponge between the flaoges, du~ to tbe sbear stresses coming 

from its deronnation. Howl'ver, in the limited range of frequency 25 - 45 Hz WÎth 
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the sponge, the repeatability of the results was accept.able. Fixed blockades as shown 

in Figure 8.2(c), in smooth contact with the moving cylinder, were used (at the two 

ends of the moving portion) in the case of translational motion without axial flow; 

grease was added liberally between the moving cylinder and the blockades to reduce 

the surface friction forces as weIl as to prevent air leakage. For other cases, two ftanges 

of large diameter were used, and a very small gap between them (less than Imm). With 

these arrangements, it was found that the repeatability of the results for the present 

work were pretty good and the results for low axial tlow velocity can be considered 

acceptable. 

The ultimate objective of the analytical effort is to develop theoretical models for 

accurately predicting the ftow field in annular flow, either turbulent or laminar. The 

latter situa.tion is especially important in applications involving very narrow annuli. 

For high turbulent flows, the experimentaJ experimental test had been conducted with 

pretty good comparison to the theoretical result using the previous apparat us. It was 

therefore important to have experimental data for systems in laminar How, or low­

intensity turbulent flow. In the present experiments with axial flow, the flow velocity 

was low (Ü ~ 2.2 mis), so that Re = Ü2H/v ~ 2,900. J\lthough, this is not low 

enough for laminar flow, it nevertheless represents a low turbulence-Ievel flow. 

A final remark concerns the presentation of the results. The pressure presented 

here is actual unsteady pressure, (raber than differential pressure in the previous exper­

iments). Moreover, unlike the previous results, the nondimensional unsteady pressure, 

fi was plotted versus tbe azimuthal angle e for various frequencies f = wl(21r). The 

dimensionless pressure fi was defined in the pre\'ious chapters as 

a.1ld "( 6) p·(x,r,e,t) 
P x, T, = 2 ' 

fJl.t.J2a f.1/2~1 
(8.5) 

for tbe translational and the roding motion, respectively, where the nondimensional 

displacement, f and fl/2. were defined witb respect to tbe radius of tbe inner cylinder 

a and the subscript 1/2 stands for the local \'alue at the middle point X = 1/2. as 

shawn in Chapter 6. In fact, the dimeusionless parameter fi is independent of tbe sma.ll 

161 



• 

( 

amplitude of the moving cylinder as shown in the previous chapters, either for viscous 

ftowor for inviscid flow. 

The experimental results are compared with the theoretical ones obtained with 

the spectral method for potential theory. As discussed by Chen et al. [9] for sufficiently 

high values of the oseillatory Reynolds number, Re. > 15,000 approximately, it is 

possible to neglect viseous effects with little loss of accuracy. For the case of these 

experiments, 29,000 < Re. < 56,860 is clearly sufficicntly large. Also it was shown in 

Chapter 6 that in the ease of the three-dirnensional problt:m and b/a = 1.25, Re. = 

10,000, the effect of low Dow velocity was small compared to the inertia effect, and 

the unsteady pressure was linearly dependent on the vibration amplitude. Thus, the 

theoretical results, to whicb experiments will be compared, were obtained without 

considering the ftow velocity of laminar Bow, by means of two-dimensional-ftow theory, 

where the pressure is takcn to be linearly proportion al to the amplitude of motion. 

As a preliminary result without axial flow, the amplitudes of the dimensional 

unsteady pressure p. versus the frequency are presented in Figure 8.7, when the outer 

cylinder executes rocking motion with an amplitude of 1 mm at the shaking position, 

558 mm from the hinge. The pressure was measured at the middle X = 1/2, while 

the sponge as a felt was filled between the fixed and the moving Banges. It was found 

that the pressure distributions along the length of the cylinder are proportion al to the 

acceleration of the mO\iog body, in parabolic shape versus the frequency, which means 

that inertia efects arf' dominant, as expected. Discrepancies betweeo the experimentaI 

and theoretical results are most marked at low and high frequeocies. The discrepaocy 

at high frequeot'Ïes i.s probably associated with eod efeets, for example due to shear 

deformatioo of sponge. For 10w-frequeuC')' oscillation, the low level of the pressure 

signal is probably tllr cauS(' of th~ discrepancy. since high noisejsignallevel aImost 

certainly affects thl' ftt'C'uraC'y. 8('(",,\15(' of thi.c;. io the cases where the axial flow efect 

is expected to lM' minimal. tbr test6 ha\'f' been coüducted with eitber a very small gap 

or .. 'itb ft closed arrangement as disC'ussed before. 

The experimcntal dimrllsioolt'liS pressure. exerted OD the ioner cylioder, versus 
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the azimuthal angle (J = e are shawn in Figures 8.8 - 8.10, to compare with the 

theoretical ones. The amplitudes of the oscillations were 1 mm (at 41.6 Hz), 0.5 mm 

(at 52 Hz) and 0.3 mm (at 66.4 Hz). For eccentric annuli, the motions were executed 

in the plane of the symmetry of the eccentric configurations (Figure 8.9) and normal 

to it (Figure 8.10). 

Several features should be noted, as follows: 

1. The measured unsteady pressure distributions are symmetric about e = 0 in 

Figures 8.8 f'lf concentric configurations and in Figure 8.9 for an eccentric ar­

rangement with translational motion in the plane of eccentricity, or they are 

skew-symmetric in Figure 8.10 for an eccentric arrangement with oscillation nor­

mal to the plane of eccentricity, as expected. 

2. The pressure readings increase with frequency; however, the nondimensional pres­

sure is almost constant with it. Considering the present results, it wa.') found that 

the nondimensional unsteady pressure, p, depend more or les& on the geomctry 

and it can be assumed that p. is linearly proportion al to vibration amplitude in 

cases of high-frequency oscillation-the viscous effects were found to be minimal 

in the present tests. 

3. At these low fio\\' velocities and for the translational motioIl, the effect of thf' 

axial fio\\' velocity is very small and can be neglected, as expected. Thl& meaIlS 

that the unsteady pressure field for purely transverse fiow b dominated by the 

oscillation-induced cross-fiow. 

4. Agreement bet\\'een theory and experiment was round to be good. 

Figure 8.11 presents tbt' axial \'1U'iation of the dlmensionless unsteady pressure \\'itb 

distance away from tht' hiuge. aJong the centre-body. The amplitude of oscillation 

was 1 mm witb 34.4 Hz oscillation for the result of Figure 8.11(a) and 0.75 mm with 

42.6 Hz oscillation for those of Figure 8.11(b) at the point of sbaking. The following 
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observations may be made with respect to the experimental results for the rocking 

motion: 

1. As discussed before, the pressure increases more or less linearly with distance from 

the hinge-point. In the case of the higher frequency, Figure 8.11(b), agreement 

with this Iinearity condition is betterj this is at least partially due to the slightly 

higher pressure reading, and hence better signal-to-noise ratio. 

2. There is little difference in the reading for zero and non-zero annular fiow velocity 

for the present case with low ftow velocity. 

3. Agreement between theory and experiment is seen to be good, except for the two 

readings in of the low-frequency test, Figure 8.11(a), close to the ends of the mov­

ing pipe, which were probably afTected by end effects due to local discontinuities, 

as weil as low signal-to-noise ratio in the case of small xl L. 

For these experiments, the phase difference for the motion of the cylinder is not 

presented and no comparlsons with theory have been made. The rE'ason for this is 

twofold: (a) the theoretical phase difference including the fiow-velocity effect was less 

than 10° for the high values of Re. involved; (b) it was difficult to determine the 

phase difference with the desired accuracy, in the experiments. The cause of this latter 

difficulty is related to the fact that the pressure leveis were generally rather low and 

h('uce signaJ-to-noise ratios were not as high as desired. 

Agreement between the experimental and numerical results was found to be 

within 10%. except the two readings close to the ends of the moving pipe shown 

in Figure 8.11(b). The range of uncertainty in the results, i.e. the maximum vari· 

ation between pressun" mcasuremcnts from the six transducers, was less than ±0.4 

Dondimensional units of p dcfiued by equation 8.5. 

Considering expcrimeutal resuIts, what should he stressed here is the importance 

of the "end effects". ln lateraJ transverse motion of the outer cylinder, the local discon­

tinuities at tbt> two ends could make a great deal of difference to the pressure reading, 

especially in thr ,·icinity of thest> discontinuities. but 60metimes considerably further 
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1 In. Similarly, in the rocking mode experiments, the inevitable protrusion of the ends 

of the oscillatillg outer-cylinder generated pressure readings which were quite dift'erent 

from the theoretical prediction, the theory having been developed for uniform or at 

least smooth Dow. 

Aiso concerning the experimental results, tbe viscous effects and the low-ftow­

velocityeft'ect on the pressure were not visible for tbe present annular passage; how­

ever, they might be important for estimating the stability of a system in a very Barrow 

annular passage. By inspection of the theoretical results shown in the previous chap­

ters, it is c1ear that the viscous damping becomes larger with decreasing the annular 

passage. Thus, future experiments will have to be donc to measure the unsteady pres­

sure for narrower annular configurations. In this respect, another inner cylinder and 

set of ogives of larger diameter have to be manufactured to obtain a narrower annular 

configuration. 

Finally, for engineering applications, the theory and experimental tests for nonuni­

form and/or discontinuous annular passages, su ch as a body protruding into the annular 

flow must be dealt with in future work. A recent paper of Hobson and Jedwab (61] 

shows how intricate and challenging the flow can be in non-uniform annular passage. 
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Chapter 9 

Conclusions 

9.1 DISCUSSION AND SUMMARY 

The unsteady ftows generated by the oscillatory motion of cylinder in an annulus have 

been studied by a newly developed numerical method. The main aim of this study 

is to evaluate the fluid-dynamic forces acting on a cylinder immersed in inviscid or 

viscous fluid for con cent rie and eccentric configurations. This new numerical method, 

based on a spectral collocation, is capable of taking fully into account unstea.dy viscous 

effects and of predicting the viscous forces for complex geometries, rigorously rather 

than approximately. For the purpose of verification of the numerical method, semi­

analytical and simplified analytical methods have been developed to estimate the forces. 

The spectral method has first been applied to a system having translational 

motion(two-dimensional problem) in quiescent fIow for eccentric configurations and 

then to a system having flexural motion in axial flow for concentric configurations, with 

the aid of a hybrid scheme, also involving a finite-difference method (three-dimensional 

problem). b the former case, cylinders were taken to be infini te rigid bodies, while 

in the latter case the flexible inner cylinder was cfJnsidered to be clamped at both 

extremities. In both problems, the fluid-dynamic parameters are expressed as spectral 

expansions Ï1l\'olving Chebyshev polynomials, Fourier series and exponential functions. 

These expansions con tain 0 priori unknown coefficients which are determined by a collo­

cation approach from the sO\'eroing equations and the boundary conditions of the flow; 

these expansions are perfomE'd in a convenient computational domain, obtained with 
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1 the aid of a coordina.te transformation, in which the governing equations are imposed 

at appropriatly chosen collocation points. For the three-dimensional problem, the LU 

decompsition method is utilized to solve a block-tridiagonal system of equations, while 

the submatrices are treated with the Gauss-Seidel iteration method. 

The spectrpl collocation method has been validated by applying it to several 

types of steady and unsLeady fiows for which analytical solutions are available: (a) 

the steady viscous fiow between two tixed eccentric cylinders; (b) the steady viscous 

ftow generated by the steady rotational motion of one of the cylinders in a concentrlc 

annular space; (c) the unsteady viscous fiow between two parallel plates which have 

oscillatory motion; (d) the unsteady viscous flow generated by oscillatory rotational 

motion of cylinders in an concentric annular space. Excellent agreement was found, in 

all these typical fiow problems, between the spectral solutions and the analytical ones. 

Therefore, one can conclu de that the present spectral collocation method might be 

applied to the analysis of the unsteady viscous Dow problems in annular configurations 

with confidence. 

The spectral collocation method has now been applied to the potential fiow gen­

erated by the translational motion of cylinder, in order to verify the method for ftow­

induced vibration problem. The numerical results obtained for the inviscid case have 

been compared to the available analytical solutions given by Chung and Chen [9] for 

eccentric configurations and by Fritz [7] for concentric configurations. With meaningful 

comparison under the same considerations, the numerical method has been validated. 

The fiuid-dynamic forces were formulated under the assumption of small am­

plitudes of motion. As a result, linearized equations were derived from the Laplace 

equation for inviscid flow and from the Navier-Stokes and continuity equations for vis­

cous flow. The resulting forces have been calculated while varying (i) the geometry 

of the system, iucluding the eccentricity, (ii) the oscillatory Reynolds number, repre­

senting the product of the Reynolds number and the reduced frequency, and (Hi) the 

Reynolds number based on the hydraulic diameter. 

It should be remarked that, in the present analysis, the fiow in the D&rrOW annular 
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passage is assumed to be a fully developed laminar flow. The velo city distribution in 

the eccentric annular domain has been obtained by the spectral method and thp.n the 

results are utilized for developing the unsteady flow model. 

In parallel to the numerical models, the semi-analytical and simplified analytical 

approaches ha.ve been developed to estimate the fluid-dynamic forces 8.lid the viscous 

damping forces, respectively, as mentioned before. The fluid-dynamic forces are for­

mulated by the semi-analytical method, considering the inviscid effects and the main 

efects of fluid viscosity. This semi-analytical method can be applicable to a system 

of narrow annular flow; moreover, the inviscid fluid-dynamic forces are predicted, rig­

orously, without the restriction about annular space. By inspection of the velocity 

distribution of the circumferential flow velocity across the annular space, the viscous 

damping forces are approximated by a simplified analytical method for either low or 

high oscillatory Reynolds numbers. The big advantage of this simplified method is 

that the 8uid-dynamic forces can he easily estimated for very narrow annular flow, 

where the forces can be expressed as explicit function of the circular frequency of the 

moving cylinder; this is useful for future studies of the stability of such systems. The 

results ohtained by these methods are compared to the numerical results to validate the 

newly developed numerical method. Good agreement was shown for narrow annular 

configurations. 

With the aid of the present numerical theory and the approximated analytical 

t.heories, both qualitative and quantitative aspects of the results have already been 

discussed in the corresponding chapters in fair detail. A number of significant results 

were obtained. as follows. 

1. The ratio of the penetration depth to the annular space width. which is related to 

the oscillatory Reynolds numher Re, and the nondimensional annular space h. is 

an important parameter for characterizing the uDsteady viscous 8uid motion; e.g., 

the unsteady viscous drag force is proportioal to either 1/ Re. for low oscillatory 

Reynolds numhers or l/.;Re; for high ones. 
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1 2. The viscous effects on the fluid-dynrumc forces can be neglected for sufficiently 

high oscillatory Reynolds number; however, the viscous damping forces are im­

portant for very narrow annuli, as expected. 

3. The viscous damping forces are mainly influenced by the unsteady viscous drag 

due to the oscillatory motion for low axial flow velocity. 

4. The viscous effects are caused by the unsteady viscous pressure perturbation 

rather than shear stress effects. This tendency becomes larger with decreasing 

annular space. 

It is interesting to note that the pressure variation across the narrow annular space is 

negligible. Also it is found that the fluid-dynamic forces are exponentially increased 

with decreasing the anular space. 

Although, the treatment of the viscous effect is based on translational motion or 

flexural motion of the clamped-clamped beam, these conclusions may be considered 

to be reasonahle as an attempt to assess the influence of the viscous effect on the 

ftuid-dynamic forces for any boundary conditions. 

Comparison of this numerical theory with the closest analytical available ones 

validated aIl aspects that could he compared. However, as expected, the key clement 

which is unique to this theory in three-dimensional viscous flow problems, i.e., the 

prediction <.! the unsteady fluid-dynamic forces is different and superior to those of 

previous theories, by taking into account the viscous related changes in the unsteady 

flow field. In the present analysis, the viscous effects are more rigorously considered 

by an adaptation of the formulation applicable to more complex geometries including 

eccentricityor relatively ",ide aIllluli. and the effect ofaxial(laminar} flow on the un­

steady flo\\' field is predicted systematically rather tban approximatel~' by means of a 

numerical solution of the Navier-Stokes equations. Hence. for the fluid-d:rnamic forces 

acting on an oscillating flexible cylinder. this theory is 6uperior to the previously avail­

able ones. However, for future stability analysis, the simplified analytical methods can 

he utilized rather easily to estimate the forces, including viscous effects, with a very 
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good computational efficiency. 

Experiments described in the last part of this thesis have been conducted partly to 

test the validity of the presented numericlÙ theory. The unsteady pressure generated by 

the oscillation of the outer cylinder was measured on the wall of the fixed inner cylinder 

at various axial azimuthal locations. This was found to be a reliable and convenient 

way of testing the theory. Either lateral translation or rocking motion wu imposed. 

In the equilibrium configurations the two bodies are either concentric or eccentric, in 

the plane of oscillation or normal to it. The experiments have beeü performed for high 

values of the oscillatory Reynolds number. As discussed in the numerical results for 

sufficiently high values of the oscillatory number, it is possible to neglect viscous efects 

with little loss of accuracy. 

Experiments have shown that the effect of the axial Bow velocity on the un­

steady pressure is minimal for low flow velocities(Re ~ 2,900) and low amplitudes 

(displacement/radius~O.04). The pressure is more or less linearly dependent on the 

amplitude of the moving cylinder, which means that linear theory is applicable, based 

on the assumption of small amplitude motion; moreover, the viscous efects can be 

negligible for higb values of the oscillatory Reynolds number. It should be remarked 

here that local discontinuities at both ends of the moving part could make a great deal 

of difference to pressure readings, mainly in the vieinity of tbese discontinuities. 

The experimental results are compared with the theoretical ones obtained by the 

potential flow theory based on the spectral method. It was seen that that agreement 

between theOJ")' and experiment is good and potential-ftow theory was found to be 

adequate for thr high \'alues of the oscillatory Reynolds number. 

9.2 MAIN CONTRIBUTIONS OF THIS THESIS 

The main aim oC tbis tbesis is to prt'Seut a Dewly developed numerical approach, based 

OD a spectral collocation method. for iOhiog coofiDed viscous Dows with oscillating 

boundaries. ,,'bich art' relatt"d to the Dow-ioduced-vibration problems. This approa.ch 

uses suitable spt"Ctral expansions for the fluid-dynamic paremeters, as discussed beCore. 
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The main contributions of the present work can he summarized as follows. 

1. A new and efficient numerical model has been developed to accurately evaluate 

the unsteady flow field and the fluid-dynamic forces on oscillating rigid centre­

bodies or outer cylinders in eccentric annuli. 

2. A hybrid collocation finite-difference method was developed for three-dimensional 

unsteady flow problems, specifically for ohtaining the fluid-dynamic forces on 

flexible centre-bodies oscillating in concentric annuli. 

3. Alternative approaches, semi-analytical and simplified 8.nalytical, are presented 

for the determination of the unsteady fluid-dynamic forces, with extensive dis­

cussion on their applicability to various systems; they are used for the validation 

of the numerical models mentioned ahove, and can he efficiently applied in the 

analysis of the fluid-elastic instabilities. 

4. A detailed experimental investigation for eccentric configurations was first un­

dertaken as part of this thesis: to author's best knowledge. The numerical results 

were validated with these experimental results. 

Furthermore, the following important advantages of the va.rious approaches developed 

in this thesis were estahlished. 

1. The Buid-dynamic forces, induding viscous effects, can he evaluated more ri gor­

ously hy the numerical methods developed than by analytical theories; moreover, 

the accuracy of the numerical solution converges fast, exponentially, with the 

numher of collocation pojnts. 

2. The semi-analytical approach i~ fairly applicable for the system where unsteady 

inviscid forces are dominant in tht' Buid-dynamic forces (t.g., for high values of 

the oscillatory Reynolds Dumher), even in the case of a fini te length of cylinder 

and only slightly confined flo~,.. This anaJysis is less restricted in the size of the 

annular space as compared to the previous analytical models (541. 
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3. The damping force is estimated rather easily by the simplified analytical methodj 

this approach is very useful for very narrow annular configuration~, where the 

added mass is mainly inftuenced by the geometry, although the viscous damping 

forces are very important, even in this case. 

This numerical approach is expected to be a very useful tool in the analysis of 

other, similar ftuid-structure interaction problems, involving oscillatory boundaries. 

9.3 SUGGESTIONS FOR FUTURE WORK 

In order to determine the fluid-dynamic forces acting on a flexible cylinder, the problem 

has been formulated based on the assumption of laminar flow and a simple mode 

shape of vibration in uniform annular passage. Therefore, there are several possible 

directions in which this work can be extended. In this sense, it is suggested that 

the present numerical analysis should be extended for turbulent flow and for systems 

with discontinuous geometries, such as a step variation of the annular passage. AIso, 

the study of the stability of the system should be undertaken by using numerical and 

analytical too15 developed here. 

In view of the difficulty of the experiments involving flexural motion of a slen­

der cylinder subjected to narrowly confined axial flow, the numerical results obtained 

here are not compared with experimental results; however, this comparison is very 

interesting from the point of view of the flow-induced vibration and stability analy­

sis. Obviously, it is necessary to have experimental verification, showing how good 

the present theory is. especiaUy in evaluating the viscous effects on the fluid-dynamic 

forces. To get sufficiently large pressure signaIs. even for low oscillation frequencies, 

50 as to sec the ,·iscous effects, it is suggested to have experimental tests in narrower 

annuli filled with water. 

The experimental results higblight the importance of the end effects, which are 

also present in engineering systems: bence. a possible next phase of work should deal 

"'ith nonuniform and/or discontinuous annular flow passages. An attempt should be 
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made to extend the theory for this problem, the importance of which is self-evident. 
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Appendix A 

The Approximate Method Based 
on Inviscid Slender-body Theory 
and Cornparison of Critical Flow 
Velocities 

The system consists of a flexible inner cylinder, which has radius a, cross-section al area 

A .. = 1ra2 , length L, density P .. and flexural rigidity El. The radius of the confining 

duet is ad = Q, + H, and the undisturbed flow velocity is Ü. 

Considering small lateral motions of the flexible cylinder immersed in inviscid 

fiow, the equation of motion based on slender body theory is given by 

ô"el 82el ( 8 _ â)2 
El âx4 +p"A .. 8t2 = -M ôt +U ax el = Fp, (A.!) 

in terms of the displacement of the moving cylinder, el, as proposed by Lighthill II 71, 

where F, represents the inviscid fluid-dynamic forces. In the ab ove equation, the virtual 

mass, Mis expressed as XPA, wher:: p is fluid density. For concentrically confined flow, 

X is expressed as follows: 
(a + H)2 + a2 

X = (a + H)2 _ a2 ' 
(A.2) 

where H denotes the annular space between the two cylinders. Thus, it is clear that 

the added mass increases with confinement. 

Thus, the inviscid fluid-dynamic forces can be expressed as 

F. = - (M~; +C. ~' + ke,) . (A.3) 
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where the damping coefficient, Cil' and the stift'ness coeficient, k, are related to the 

centrifugai and Coriolis forces, respectively. Hence, it should be remarked that the sys­

tem is generally nonconservative; hence, inviscid theory contains a component related 

to damping(Coriolis force). Nevertheless, the eft'ect of this force is :lUll for cylinder 

supported at both ends(as is the case here). Considering thes equation (A.l), it is 

obvious that the coefficients Cv and k depend on the flow velocity. 

At this stage, the critical ftow velocity, where the system loses stability by buck­

ling, may be found particularly easily, considering Euler's method of equilibrium. Elim­

inating the time derivatives from equation (A.l) yields 

El ére/ MÜ2ô2e
/ = 0 

ôx4 + ôx2 ' 
(A.4) 

where el = E G/ce,or (the destabilizing force in this case is propotional to MÜ2). 

As a result, a system with clamped ends loses stability by divergence, of which 

the critical flow velocity can be approximated by Païdoussis [21] in a simple form, 

because of the simplicity of the slender-body formulatiOil, as 

- [1 (ET 
Uer = 21rV xV p;ti) . (A.5) 

Table A Comparison of the nondimensional critical ftow velocity Üm obtained 
\\'ith the potential-ftow verisons of the slender-body theory [21] 
and the inviscid version of previous theory [37] 

Vau le of Um Percent discrepancy 
1 = LIa h = Hfa Siender-body Previous based on first 

theOl'Y theory column 
0.05 1.39 1.49 7.2 

20 0.10 1.94 2.13 9.8 
0.15 2.34 2.64 12.8 
0.01 0.627 0.631 0.7 

100 0.05 1.38i 1.425 2.7 

It is instructlve to compare the results with those gh'ell by the previous analytical 

theory (37). which was developed based 011 the assumption of narrow anoulus as shown 

in Chapter 2. but coosideriog onl)' the in\'iscid ftuid-dynamic forces. For tbis purpose, 

tbe nondimensional critical flow velocity, Üm = Ü~I J(E /)/(pAL2). are calculated by 

A-2 



1 both methods and then the typical result.s are shown in Table A for narrow annulus. 

The difference between two results becomer with increasing Lia and decreasing the 

annular gap Hia, where slender-body theory and the narrow-annular simplification of 

the prevïous theory, respectively, apply best. 
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Appelldix B 

An Analysis of Fully Developed 
Laminar Flow between Two 
Eccentric Cylinders 

An analysis, developed for fully developed laminar fiow in an eccentric annulus by 

Piercy et al. [52] and more recently by Snyder et al. [53], is presented to validate the 

present numerical method. By the analytical method based on the bipolar transfor­

mation, an exact solution for the velocity distribution is calculated and then compare 

with that obtained by the numerical method shown in Chapter 4. 

The geometry considered in the analysis is presented in the Figure B. The radii 

of two infinitely-long cylinder are a and b. Because of the asymmetry of the geometry, 

solution is obtainoo in bipolar coordinate system rather than in cylindrical coordinate 

system. 

The Navier-Stokes equations in tbis essentially two-dimensional problem reduce 

to the Poisson equatioD. wbich mal' he expressed iD the rectangular coordiDates, x, y 

and =. in the foml 

wbcre 
0 2 dP 

Q=--
41J dz 

(B.l) 

in •• hich U(y. =) is tbr axial flo" .. \?Iocitl'. P(r) is the pressure and Il = pli is the 

fluid viscosity. In tlae analYliÏ5. thr pressure gradient in the axial direction, dP/dz, 

B-l 



1 is constant because of the the assumption of full y developed laminar fiow and the 

viscosity is assumed constant. The above equation is subjected to the usually no-slip 

boundary conditions expressed by U = 0 at the inner and outer surfaces. 

Using a plane harmonic function expressed as 

\li = U - ~ (y2 + Z2) , 
a 

the governing equation (B.1) can be rewritten 

y 

ô2 'l! ô2'J! 
V 2

\l1(y, z) = 8y2 + ôz2 = o. 

~ 

7t ~ ............ .,....---..... 

a 

-7t ............ --------

Figure B. Eccentric annulus geometry in the physical plane (y, z) 
and in tbe bipolar plane ({,11). 

(B.2) 

(B.3) 

This solution must satisf)' the following equation, dut' to the flow symmf'try with 

respect to the plane of tbe eccentricity, as 

ô\}J = 0 . 
ôY" ... o 

(B.4) 

To solve the problem. the bipolar coordinates ({,11) are defined by the transfor· 

mation 
{+ ''1 

11 + ,; = (' tan - • 
2 

(B.5) 

where c is a constant. Thus. one cu get relations between the pbysical and bipolar 

coordinates in the fonn 

csin{ 
1/=---";""-

cash '1 + t'05 ( 

csinh 11 .. ------.. - cosh 11 + cos ( , 
(B.6) 

8-2 



t (B.7) 

(B.B) 

where 

c = asinha = bsinhIJ , (B.9) 

with 
b2 _ a2 + e2 

cosh IJ = 2be ' (B.IO) 

8.&d Y and z are related to the cylindrical coordinates T and e, as 

y = -rsine, z = ccotha - rcos9 . (B.11) 

Equation (B.8) shows that lines of constant 7] represent circles in the physical 

plane with centre at (c coth 71, 0) and and radius cl sinh 7]. The inner and and outer 

surface of the annulus are thus represented by Hnes of constant 7] which will be designed 

as 0' and IJ, respectively. 

Tranforming equation (B.3) into bipolar coordinates, one gets 

82\lJ 82\lJ 
V2\11(~, 7]) = 8e + ôrr = 0 , 

subject to the boundary conditions 

(B.12) 

\fi ({, a) = Qt? [1 _ 2 cosh Q ], at the surface of the inner cylinder , 
0 2 cosh 0' + cos ~ 

\fI({,IJ) = Qc? [1 - 2coshJ3 ]. at the surface of the outer cylinder, 
01. cosbP + cos { 

(B.13) 

and the equation (B.4) can bt' expressed in the ne",' coordinates U,7]) as 

ôlJIl Tc = O. 
\ (.0 

(B.14) 

Considering the geometry of the system and equation (B.14), the solution to 

equation (B.12) may he assumed in the fonn 

oc 

II' = Eo + El 7] + E [Ant'''' + Bnt-n,,) cosn{ • (8.15) 

--1 
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The unknown coefficients can be determined, applying the boundary conditions 

expressed in the expanded farm as 

w({, al = ~; [1 - 2coth a {1 + 2 ËH lRe-no .:os n{}] , 

w({,Pl = ~; [1 - 2cothP {1+ 2 ËHl1e-RO cos n{ }] , (B.16) 

with the aid of the comparison of its order n. Thus, the unknown coefficients are 

Eo = 2 Qc2 coth {J - coth 0' , 

a2 0' - {J 

El = Që [1- 2Cl' coth,B - {J cotha] , 
a2 Cl' - {J 

An = 4 Qc2 ( -1 )n coth {J - coth a , 
a2 e2na _ e2nf3 

Qè- e2nIJ cath {J - e2na coth (} 
Bn = 4-

2 
(-1 ra --~~-~::----

a e2na - e2nf3 
(B.17) 

Substituting equation (B.15) into equ(!.t!on (B.2), the general solution is obtained 

in the form 

where the last terms come from 

2 2 1 2cos~ 
y + z = - cosh T] + cos ~ , 

with the aid of the coordinate transformation. 

The velocity profile in cylindrical coordinates must he expressed in terms of the 

bipolar coordinates ({. T]), utilizing the relations hetween the two coordmates shown in 

equations (B.6) and (B.11). 
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Appendix C 

Ste11dy and U nsteady Annular 
Viscous Flows between Rotating 
Cylinders 

An annular viscous flow between two concentric cylinders of radii a and b = a + H, 

where H = ah is the annular space, is generated by the steady or oscillatory rotation of 

one of the cylinders, while the other is fixed. The present spectral collocation method, 

presented in Chapter 4, is used to slove the problem and then the results are compared 

with these analytical results to validate the numerical method. 

In this case, by eliminating the radial flow velocity and the circumferential vari­

ation of fluid dynamic parameters from full Navier-Stokes equations, the goveming 

equations reduce drastically to 
W·2 dP 
p--­

r - dr ' 

! ôW· =.!.~ (r ôw.) + 1-r· 
I! ôt r ôr ôr r2 ' 

(C.I) 

(C.2) 

where }-l'. denotes the circumferential velocity. Equation (C.l) determines the radial 

pressure distribution resulting from the motion. 

Introducing a new coordinate defined by 

r = t' , 

tbe radial derivatives are expressed as 

ôH'· ôn'· 
r---

ôr - Bq • 

or q = ln r • 

ô2W· B2w BW· 
r-=---

ôr2 ôq2 ôq· 

C-l 

(C.3) 

(CA) 



J Substituting the above equations into the equation (C.2), the governing equation 

can reduce, in non dimension al form, to 

(C.5) 

with the aid of ÛJ = W· /W,. and r* = r / a where W,. represents reference flow velocity. 

C.l STEADY ROTATIONAL FLOW 

In the case when the moving cylinder is rotating with a steady peripheral velocity Wb, 

equation (C.5) is rewritten 
crw . 0 
dq2 - W = , (C.6) 

subject to the boundary conditions 

Wl,.-=l+h = () , (C.7) 

where () = 0 or 1 accordinglyas the inner or outer cylinder is rotating, and where the 

nondimensional circumferential velocity is defined by 

ÛJ = W/Wb • (C.B) 

Analytically, the general solution of the nbove equation is in the form 

(C.9) 

thus, in the physical domain, it is expressed, considering the coordinate transformation 

shown in equation (C.3), as 

. C - C 1 ur = laT + 2-, ar-
(C.lO) 

where the unknown coefficients, Cl and C2 cao be determined by the boundary condi­

tions. 

The analytical solution for this 6teady rotation case cao be obtained as 

ÛJ(r-) = l {6(1 + h) (re _1.) _ (1 _ 6) [re 
_ (1 + h)2]} 

h(2 + h) r- r-
(C.ll ) 
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C.2 OSCILJ.JATORY ROTATIONAL ~"LOW 

The unsteady flow, generated by an harmonie oscillatory motion of a cylinder with the 

peripheral( i.e. tangential) velocity w* = Woe"'" in annulus, will be discussed. For this 

case, equation (C.5) reduces to 

tflÛl [ R *2]. 0 dq2 - 1 + t e.r w = , 

where tbe nondimensional reduced velority is defined by 

A( *) _ w(r,t) 
wr -w. " oe'W 

and the oscillatory Reynolds number by 

wa2 

Re, = -, 
Il 

(C.12) 

(C.l3) 

which is explained as the product between the Reynolds number based on the peripheral 

velocity amplitude of the cylinder, Re = Woa/II and the reduced frequency, n = 

wa/Wo' The differential equation (C.12) is subjected to the boundary conditions, 

equation (C. 7), where again cS = 0 or 1 for the case of inner or outer cylinder oscillation, 

respectively. 

Thus, the analytical solution may be expressed for the case of very narrow annular 

clearance h « 1 or r- :::::: 1, in the form 

(C.l4) 

where 0 2 denotes 

( )
1/2 

0
2 = (1 + tRe,) = 1 + Re~ (cos 13 + Lsin 13), (C.15) 

in terms of 13 = arctan Re,. 

Taking into account of the boundary conditions, the approximate analytical ~ 

lution is obtalDed 

w(r·) = 1 [6(1 + h)O (reo _ ...!..) _ (1 _ 6) (reo _ (1 + h)20)] 
(1 + h )20 - 1 r*O r*o' 

(C.16) 
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where the complex constant, 0:, is expressed as 

( )
1/4 

Ct= l+Re~ (cos/3/2+tsinf3/2). (C.17) 
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Appendix D 

U nsteady Vis cous Motion between 
Oscillating Parallel Plates 

A further example which leads to a simple exact solution of the Navier-Stokes equations 

is atrorded by the unsteady ftow between two infinitely long plates, 2H apart, one of 

which executes harmonic oscillation parallel to itself with a velocity ui(t) = U.e&4Mt 

while the other plate is fixed (u2 = 0) or has an antiphase motion, u2 = -U"eUAJ
'. Let y 

denote the coordinate perpendicular to tha wall, measured from mid-distance between 

the plates. In this case, the Navier-Stokes equations reduce to 

(D.l) 

where Il is the kinematic viscosity of ftuid; since, the flow velocity normal to the wall 

and the derivatives of dynamic fluid parameters in the direction of the motion can he 

eliminated in the equation. This equation may further be reduced to the form 

éJ2ü R' 0 ôZ2 -, e,1l = , (D.2) 

6uhject to the houndary conditions 

ülz_1 = l , 

ilz_-I = ~ , 

where ~ = 0 in cast" _'hen thl' lower plate (Z = -1) is fixed, or 6 = -1 when it oscillates 

in &Dtiphase with respect to the up~r one (Z + 1). In the ahove equations, Z = y/H is 
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1 a nondimensional coordinate, Res = wH2/v is the oscillatory Reynolds number, which 

can be viewed as the product between the Reynolds number based on plate-velocity 

amplitude Re = U"H/v and the reduced frequency defined by n = WH/Ub; û represents 

a nondimensional is reduced velocity defined by 

û( Z) = u( z, t) . 
U"e1MJ1 (0.3) 

The analytical solution to equation (D.2) for this unsteady flow is 

(DA) 

where the complex constant 0' is expressed as as 

(D.5) 

Considering the boundary conditions on the oscillating and fixed plates, the corn­

plex constants Al and A2 are determined. The resulting analytical solution is 

û(Z) = sinh[o(Z + 1)] , 
sinh(2a) 

(D.6) 

for the case the upper plate (Z = 1) oscillating with respect to a fixed lower one 

(Z = -1), or 
û(Z) = sinh[o(Z + 1)] + sinh[Q(Z - 1)1 , 

sinh(2a) 

for the case when the two plates oscillate in antiphase. 
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Appendix E 

Inviscid Fluid-dynamic Forces on 
A Cylinder in Concentric Annular 
Configurations 

The presence of ft uid can significantly affect the dynamic motion of a cylinder in annular 

configurations. A method for evaluating ftuid-dynamic forces for use in the dynamic 

analysis of moving cylinder immersed in incompressible, frictionless ftuid was developed 

by Fritz, for small amplitude motion. However, the theory can be adapted to severa! 

unsteady ftuid-dynamic problems, and the results associated with the present problem 

in concentric annulus are presented to estimate these forces. In this analysis, the 

cylinder is assumed to execute translationa! motion. 

A frictionless, incompressible ftuid in irrotational motion will have no loss of 

potential energy and may be called an inertial Lagrangian system. The Buid-dynamic 

forces F, acting on a cylinder are given bl' Lagrange's equation: 

(E.1) 

where x) are the genera!ized coordinates of motion and T, is the fluid kinematic energy. 

By the assumption of small amplitude motion, it is reasonable to neglect the nonlinear 

contributions associated with the last term in equation (E.1). Hence, the equation 

reduces to 

(E.2) 

&1 
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For the present aualysis, the system consists of cylinders of which radii are a and 

bas shown in Figure E.l. The displacements of the moving inner and outer cylinders 

are denoted by eJ and eo, respectively. 

to 
Figure E. Two-cylinder motion with ftuid coupling 

Hence, the kinematic energy per unit .~ngth of system is 

where the radial and circumferential velocities, respectively, are expressed as 

with 

v· = (~ - A) cos e , 

w· = (~ + A) sin e , 

A = 1 (a2deJ _ b2deo) 
b2 - a2 dt dt' 

B = b
2
a
2 

(deI _ deo) . 
b2 - a2 dt dt 

Substituting equation (E.3) into equation (E.2) yields 

, tPel 0' + b2 ,peo 
F, - -(J'Ira °11 di2 + p7r 2 010 dt2 • 

2 tPeo a'2 + b2 ,pel 
Fo - -p1rb 000 dt2 + p7r-~OOldt2 • 

&2 

(E.3) 

(E.4) 

(E.5) 
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where Fa and FI are the fluid-dynamic forces actiüg on the inner and outer cylinders, 

respectively. The self-added( QIl and aaa) and mutual-added( aro and aOJ) coefficients 

are given by 

(E.6) 

where, i.e" aOI is tbe mutual-added mass coefficient acting on the outer cylinder due 

to oscillatory motion of the inner cyJinder. As compared witb the approa.ch based 

on slender-body theory shown in Appendix A, the self-added mass coefficients are in 

the same form. Typical results and comparison with the present numerical results are 

presented in Chapter 5. 
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Appendix F 

Block-tridiagonal SysteIn of 
Equations 

When a system of partial dift'erential equations is approximated by an implicit formu­

lation involving three grid points at each level, a hlock-tridiagoral system is produced. 

A block-tridiagonal is one whose only non-zero submatrices are in the diagonal and 

either side of it. In the present an alysis , a system of linear algebraic equations can 

be ohtained by applying the governing equations to a fini te number of grid points dis­

tributed in the axial domain, based on the hybrid scheme. As a result, the system of 

equations cao he expressed as a block-tridiagonal system in the general form 

SAQ=R, (F.I) 

where AQ and R are the vectors for the unknown coefficients and the boundary con-

ditions, respectively. S represents the block-tridiagonal matrix expressed as 

Al Cl 0 0 0 0 0 0 
B2 A2 C2 0 0 0 0 0 
0 B3 A3 C3 0 0 0 0 

s= 0 0 0 0 0 
(F.2) 

0 0 0 0 0 
0 0 0 0 B'-2 A,-2 C,-2 0 
0 0 0 0 0 B'-l A,-l C'_I 
0 0 0 0 0 0 B, A, 

where Ait B. and C. are matrices of order m. 

To solve the system of equations. the elimination method with factorization, is 

utilized. ln the first equation, AI .6.Ql + Cl llQ2 = RI. involves only llQI and llQ2· 
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Using this equation and the second one to eliminate .6.Q2, the new second equation 

involves only l1Q2 and t:lQ3. Continuing this procedure to the last equation where 

ÔQ'_I has heen eliminated, the new last equation only involes l1Qt. Therefore, l1Q, 

can he determined and the result is applied to the new (t - 1 )th equation to determine 

ÔQ'_I' Applying the solution of the ith equation to the (i -l)th equation up to i = 2, 

ÔQi-1 is determined. The algorithm for doing ail of this will DOW he described. 

Let us consider the following fa.ctorization, 

S=LU= 

rI 0 0 0 0 0 0 

~ l Al 0 0 0 0 0 0 0 
B2 r2 0 0 0 0 0 1 A2 0 0 0 0 0 0 
0 B3 r3 0 0 0 0 0 0 1 Aa 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 B'-2 r'-2 0 0 0 0 0 0 1 A,-2 0 0 
0 0 0 0 0 B'-1 r'-1 0 0 0 0 0 0 1 A'-l 0 
0 0 0 0 0 0 B, r, 0 0 0 0 0 0 1 A, 

(F,3) 

where 1 is the identity matrix of order m. The square matrices r. andAi are determined 

as follows: 

rI = Al. and Al = Aï1CI , 

r. = AI - B.AI_l , for i = 2, 3. 4,' .. , t • 

and 

A, = A~IC. , for i = 2. 3. 4.··, • t - 1 . 

The sy:;tem of t'<)uations gh'en hy equation (F.l) is now equivalent to 

Ll'= R. (F.4) 

,,'bere 

)" = UàQ. (F.5) 
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,1 Rewriting equation (FA), one obtains 

rI 0 0 0 0 0 0 0 YI RI 

B2 r2 0 0 0 0 0 0 Y2 R2 

0 B3 r 3 0 0 0 0 0 Y2 R2 

0 0 0 0 0 0 
(F.6) 

0 0 0 0 0 0 -
0 0 0 0 Bt-2 r t - 2 0 0 Yi-2 Rf_2 

0 0 0 0 0 Bf- 1 r'_1 0 1~-1 R'-l 

0 0 0 0 0 0 B, r, }~ R, 
from which 

Yi = rï1R
2' 

and 

y. = r;-l(Ri - B.Y.-d , for l = 2, 3, 4, ... , t . 

Equation (F.5) is then expressed as 

1 Al 0 0 0 0 0 0 tl.QI YI 
0 1 A2 0 0 0 0 0 tl.Q2 Y2 

0 0 1 A3 0 0 0 0 tl.Q2 Y2 
0 0 0 0 0 0 (F.7) 
0 0 0 0 0 0 -
0 0 0 0 0 1 A,-2 0 tl.Qt-2 Y,-2 
0 0 0 0 0 0 1 A,-l tl.Q,_1 Y,-l 
0 0 0 0 0 0 0 1 tl.Q, Yi 

from which 

tl.Qf = l~ , 
and 

tl.Q. = 1~ - A.~Q,+1 • for i = t, t - 2, t - 3, t - 4, ... , 2, 1 . 

In the present analysis. the submatrices of equation (F.2) become for equal axial 

spacing 

AI = A2 = A3 = ... = A, • 

B, = B2 = B3 = ... = B, • 

Cl = C2 = C3 = ... = Ct . (F.B) 

Therefore. the system of equations is drastically simplified and the storage required for 

the system of equations cao be substantially reduced. 

F-3 



1 

c 

Appendix G 

The COlllputer Program and 
Typical Results 

The program is used for calculating the fluid-dynamic parameters inc1uding the un­

steady pressure generated by the oscillatory motion of the inner cylinder, eventually 

computing the fluid-dynamic forces acting on the inner cylinder. The system, pre­

sented in Chapter 6, consists of a flexible inner cylinder, as a clamped-clamped beam, 

subjected to axial flow in a concentric annulus. The fluid-dynamic forces can be stud­

ied for different geometries and fluid properties. This program has been modified to 

tackle the two-dimensional problem discussed in Chapter 5. 

The whole program is written in FORTRAN. It can be run on a personal digital 

computer. Ali calculations are carriP.d out in real and complex arithmetic with double 

precision. The program is composed of a main program and sub-programs. The main 

program is subdivided into four parts. In the first part, the axial flow velocity is 

calculated for laminar flow. Considering the results of steady axial flow velocity and 

using the collocation method for discretizing the goveming equations, the submatrices 

W, P. E(see section 6.1.2) are o!>tained by the finite-difference method and the inverse 

matrix, p-I and its detenninant are computed in the second part. Utilizing the LU 

decomposition method. the unknov.-n coefficients for the fluid parameters in expanded 

form under the spectral method. are determined in part three. Finally, the fluid­

dynamic parameters and the resulting forces are calculated. 

The sub-program consists of &ubroutines SHORTEN, AMPLY and DISP. The 
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inversion and determinant of matrix A are computed in the subroutine SHORTEN by 

the shortened method based on the Gauss-Seidel iteration procedure with respect to 

pivot point. The subroutine AMPLY is used for complex matrix multiplication. Tbe 

lateral displacements of the moving flexible cylinder based on the first mode expansion 

are calculated in the subroutine DISP. The value of Chebyshev polynomial:.; for given 

Z are computed in the subfunction CBSP. 

A sample listing of the program and its output results (for b/a = 1.25, LIa = 
15, dP/dx = -5 Pa/m,1' = 0.0015 Pa·s, p = 1000 kg/m3

, e/(b-a) = 0 and Re, = 500) 

are shown in the pages that follow. In the program, tbe input data( e.g. RA, FRE, FM) 

are used to calculate the nondimensional parameters(as numerical input data) shawn 

in equation (6.12). For example, the frequency FRE is not used explicitly, but only to 

calculate Re •. 

The output should be read as follows. First, the radial variation of the axial flow 

velocity, which is used to formulate the unsteady flow problem, is presented with its 

unknown coefficients U}l - see equation (4.7); in the output, "r" denotes the real( e.y. 

in Ur) and "i" the imaginary part, and the different columns r.orre::pond the different 

values of j above. Second, the complex dimensional unsteady fiow parameters, e.g u· 

in mIs and p. in Pa, are calculated at specifie positions (X, Z, FI(S) = 1), considering 

the corresponding unknown coefficients presented. Finally, the complex dimensionles.<; 

fiuid-dynamic forces Ê' are presented aIong the axial locations X. Of the four numbers 

given, e.g. CM(X), the first involves only the contribution of prf'ssure, whereas the 185t 

involves also aIl shear stress effects. 
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$STORAGE: 2 
$NOFLOATCALLS 
$1AIlGE 
CC 
* ••••••• MAIN PROGRAH •••••••••• 
CC 

c 

c 
c 

c 

PROGRAH UEIL 
lMPLICIT ~*S (A-H,O-Z) 
IMPLICIT INTIGER (I -N) 
PAlWlETER (MC-S,MF-l,lfF-60,NF1-61,MX-43) 
DIMENSION lJMS(1IF ,MC) ,DR(MF ,MC) ,DI(MF ,MC) ,QNT(NF) 
DIMENSION U(IIF ,MC) ,II(IIF ,MC) ,Q(lfF) ,QT(HF) ,QN(NF ,MX) 
DIMENSION n(1IF ,MC) ,XI(IIF ,MC) ,PR(MF ,MC) ,PI(II}' ,MC) 
DIMENSION A(RF,NF1) ,AA(HF ,Nn) ,I(NF ,NF) ,C(NF,NF) 
DIMENSIOa'J DSR(IIF,MC) ,DSI(MF ,MC) ,RSI(MF,MC) ,RSI(MF,MC) 
DIMENSION AP(NF,NF),Y(HF,NF) 
EQUIVALENCE (AA(l,I),QN(l,l» 
EQUIVALENCE (Y(l,I),AP(l,l» 
EQUIVALENCE (1(1,1),n(l,I»,(I(l,2),DR(l,l»,(1(1,3),RR(l,l» 
EQUIVALENCE (1(1,4),XI(l,I»,(I(l,5),DI(l,I»,(1(1,6),II(1,1» 
EQUIVALENCE (l(l,7),PR(l,l»,(I(l,8),DSR(1,1»,(1(1,9),RSR(1,1» 
EQUIVALENCE (l(l,10),PI(l,l»,(1(1,11),DSI(I,I» 
EQUIVALENCE (l(l,12),RSI(l,I» 
COttMON A,M 

CHARACTER*10 FNAME2 
448 FORMAT (A) 

WltITE('" ,452) 
452 FORMAT(' OUTPUT FILE NAME·' \) 

READ(* ,448) FNAHE2 
OPEN(6,FlLE-FNAHE2,STATUS-'NEW') 

1 WltITE(*,500) 
READ(*,*) RB,RA,FRE,ADP,VF,FH,EO,EC 
WltITE(* ,502) U,RA, FIE ,ADP, VF, ni, BO, Be 
WltITE(* ,504) 
READ(*,*) IANS 
IFCIANS.EQ.2) GO TO 1 
WRITE(6,502) RI,RA, FIU:,ADP, VF ,nI,EO,EC 

3 WltITE(*,507) 
READ(*,*)KN,MJ,ML,XL,NU,ND 
WltITE(*,508)MN,HJ,HL,XL,NU,ND 
WltITE(* ,504) 
READ(*, *) IANS 
IF{IANS.EQ.2) CO TO 3 
WltITE(6,508)MN ,HJ ,KL,XL,NU,ND 
NI1-8*HN*HJ -4*MN 
NK1-NH+l 
DV-vr,IFM 
PIE-2.DO*DASIN(1.DO) 
OMG-F'U*2 • DO*PIE 
ION-!O/ONC/RA 
XD-l. DO/DILE(ML-NU-ND) 
KAN-RAIIl! 
ECN-Eelll 
ECC-EC/(RI-RA) 
CK-- • 25DO*ADP /VF 
S-oKC*RA**2/DV 

G-3 



1 WRITE(6,506)RAN,ECC,S 
CD-DBLE(HN-l) 
IF(DAlS(CD).LT.1.D-13) CD-1.D13 
SO~. 9DO*PIE/CD 
SOZ-2.DO/OBLE(KJ-3) 

cc 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C PART ONE C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

JN-KN*HJ 
JNl-.JN+1 
ND2-tU1/2 
L-O 
IF(DABS(CK) .LT.loD-13) GO TO 11 
DO 22 1-1,MN 
DEG-SOD*DBLE(I-1)+.005DO*PIE 
CA-l.DO-ECN**2*(DSIN(DEG»**2 
aD--EC*DCOS(DEG)+RB*CA**.5 
K--l. DO+R.O/BA 
Ca-.5DO*R.B*ECN**2*DSIN(2.DO*DEG)*CA**(-.5) 
DHT-(EC*DSIN(DEG)-CB)/RA 
Ca-.25DO*RB*ECN**4*(DSIN(2.DO*DEG»**2*CA**(-1.5) 
CB-CB+RB*ECN**2*DCOS(2.DO*DEG)*CA**(-.5) 
D2HT-(EC*DCOS(DEG)-CB)/RA 
DO 22 LZ-1,1U-2 

Z-SOZ*DBLE(LZ-1)-1.DO 
Hl-K/(2.DO+H*(1.DO-Z» 
AS-«1.DO-Z)/H*DHT)**2 
BS-2.DO*(Z-1.DO)j(K**2)*DHT**2+(1.DO-Z)fH*D2HT 
CS-2.DO*el.DO-Z)/H*DKT 
D1-1.DO+H1**2*AS 
D2--KIHtl **2*BS 
D3-H1**2*CS 
04-H1**2 
IF(LZ.EQ.1.0R..LZ.EQ.KJ-2) GO Ta 12 
GO 10 15 

12 L-L+1 
VRITE(*,*)L 
A(L,JN1)-o.DO 
DO 16 Jl-l,KJ 
J-Jl·l 
DJ-DBL!eJ) 
CJ-l.DO 
IFeJ.EQ.O) CJ-2.DO 
TJ-CBSP(J ,Z) 
DO 16 KF-l.HN 

DK1-DBL! (KF -1) 
MKF-CKF-l)*HJ+Jl 
DC-DCOS(DK1*DEG) 
IFCEC.LT .1.D-14)DC-l.DO 
A(L,KKF)-A(L.KKF)+TJ*DC 

16 CONTINUE 
lS L-L+l 

VUTl(*,*)L 
A(L,JN1)-cK*(R.A*H)**2 

DO 26 JI-I.IU 
J-Jl-l 
DJ-DBLE(J) 
CJ-1.DO 
IFeJ.EQ.O) CJ-2.DO 
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TJ-CBSP(J ,Z) 
J2-.1+2 
DO 25 Kr-l,lIN 
Dltl-DILI(U-1) 
DC-DCOS(DK1*DBC) 
DS-DSII(DK1*DBC) 
IF(EC.LT.l.D-13) DC-1.DO 
IF(IC.LT.l.D·13) DS-1.DO 
IF(IC.LT.1.D-13) DK1-l.DO 
DO 28 JN2,MJ-1,2 
DJP-DILI(.JP) 
t~-(KF-l)*MJ+JP+l 
A(L,IIKF)-A(L,IIKF)+TJ*DJP*(DJP**2-DJ**2)/CJ*DC*D1 

28 CORTltnJE 
DO 29 Jp..J1.JU-1,2 
DJP-DILE(JP) 
MKF-(KF-1)*JU+JP+l 
A(L.MKF)~(L.IIKF)+2.DO*TJ/CJ*DJP*D2*DC 
A(L.MKF)~(L.IIKF)-DK1*2.DO*TJ/CJ*DJP*D3*DS 

29 COITINUE 
1IKF-(KF-l)*MJ+Jl 
A(L,KKF)~(L,KKF)-DK1**2*TJ*D4*DC 

25 CONTINUE 
26 CONTINUE 
22 cotn'INUE 

CAU SHORTEN(JN ,JI1) 
1-0 
DO 32 1-1,MN 

DO 32 J-I,JIJ 
I-K+1 
UKS(I,J)~(K,JN1) 

32 CONTINUE 
VRITE(6,512) MJ,MN 
VRITE(6,516)«UKS(I,J),J-I,MJ),I-l,MN) 
HJ2-14 
SOZl-2.DO/DILE(MJ2-1) 

DO 34 1-I,MN 
DEG-PIE/CD*DBLE(I·I) 
DJ-I.8D2*DEG/PIE 
CC-l.DO·ECN**2*CDSINCDEG»**2 
RD--EC*DCOS(DEC)+RI*ee**.5 
H-·l.DO+RO!RA 
DO 34 J-l,KJ2 
Z-SOZl*DBLE(J-I)·l.DO 
U-o.DO 
DO 36 ICSl-l,KJ 
KS-KSl·1 
TS-eBSP(KS, Z) 
DO 36 1C~1 ,KN 
~DCOS(DEG*DILECKQ·I» 
U-U+UMSCKQ.KSI)*FQ*TS 

36 CONTINUE 
VRlTE(6,514) DJ,U 

34 CONTINUE 
CC 
ccceeeeeeeeecceececcecccccecccccccccccccccccccc 
c PART TVO e 
ccceeceeceeeeeecccceceeccccececcccccccccccceecc 

DO 35 1-1,JN 
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DO 35 J-I,JHI 
ACI,J)-o·DO 

35 CONTINUE 
11 HD2-MK/2 
~ 
DO 42 I-I,IIN 
DIG-SOD*DILE(I-I)+.OO5DO*PIE 
CA-l.DO-ECH**2*(DSIN(DEG»**2 
ao--IC*DCOS(DEG)+RI*CA**.5 
11--1. DO+IO/IA 
CI-.5DO*II*ICR**2*DSINC2.DO*DEG)*CA**C-.5) 
DHT-(IC*DSINCDEG)-CI)/RA 
CI-. 25DO*II*1CN**4*CDSIN(2.DO*DEG»**2*CA**(-1.5) 
CJ-CB+RI*ICH**2*DCOS(2.DO*DEG)*CA**(-.5) 
D2HT-(EC*DCOS (DEG) -CI) IRA 
DO 42 LZ-l,1U - 2 
Z-SOZ*DILI(LZ-I)-I.DO 
IFCS.GT.2.D3)X-PIE/DILECNJ-3)*DILE(LZ-1) 
IF(S.GT.2.D3)Z--OCOS(X) 
HI-H/(2.DO+H*(l.DO-Z) ) 
AS-«I.DO-Z)/H*DHT)**2 
1&-2.DO*(Z-1.DO)/CH**2)*DHT**2+(1.OO-Z)/H*D2HT 
CS-2.DO*(I.DO-Z)/H*DHT 
DI-l.DO+HI**2*AS 
D2--H1+H1**2*IS 
D3-II1 **2*CS 
D4-Hl**2 
IF(LZ.IQ.l) GO 'r0 37 
IFCLZ.EQ.KJ-2) GO'fO 38 
GO TO 39 

37 ~L+6 
VRITEC*,*)L 
A(L,NKl)-o.DO 
A(L-l.NK1)-o .DO 
ACL-2 .NK1)-o .DO 
A(L- 3 ,NK1)-o. DO 
A(L-4 ,NK1)-o. DO 
A(L- 5 ,NK1)-o.DO 
DO 40 JI-l,lU 
J~1-1 
CJ-l.DO 
IFCJ • EQ. 0) CJ-2. DO 
'rJ-CISP(J ,Z) 
DO 40 KF-l.HN 
DKI-DILE(KF-l) 
DK-DILE(ltF) 
DC-DCOS (OKI *DEC) 
D5-DSIN(DK*DEC ) 
IFCEC.Lr.l.D-13) DC-l.DO 
IFCIC.LT.I.D-13) DS-l.DO 
1KF-(KF-l)*MU+JI 
A(L,IIU)~CL,JIKF)+TJ*DC 
A(L-l,KKF+ND2)~(L·l,KKF+ND2)+'rJ*DC 
ACL-2,KKF+JN)~(L·2,JIKF+JN)+TJ*DS 
ACL· 3 ,tOCF+ND2+JN>-A(L· 3 ,tOCF+ND2+JN)+'rJ*DS 
A(L-4,KKF+2*JN)-A(L-4,KKF+2*JN)+TJ*DC 
A(L· S ,JItF+ND2+2*JN)-A(L· S ,KKF+ND2+2*JN )+'rJ*DC 

40 CONTINUE 
GOTOn 

38 ~L+6 

G-6 



1 

( 

VRlTE(*,*)L 
A(L,RK1)-o. DO 
A(L-1.JIl1)-o.DO 
A(L-2,NK1)-·DSIN(DEG) 
IF(IC.LT .1.D·13) A(L·2.NK1)··1.DO 
A(L-3,NK1)-o.DO 
A(L-4 ,NK1)-DCOS (DIG) 
IF(IC.LT.l.D·13) A(L-4.NK1).1.DO 
A(L-S,NK1)-o.DO 
DO 41 Jl-1.MJ 
J-.J1-1 
CJ-1.DO 
IF(J.IQ.O) CJ-2.DO 
TJ-CISP(J ,Z) 
DO 41 1CF-1,IIH 
Dlt1-DBU(ICF-1) 
DIt-DIU(U) 
DC-OCOS (Dlt1*DEG) 
DS-DSIN (DIt*DIe:) 
IF(IC.LT.1.D-13) OO-l.DO 
IF(EC.LT.1.D-13) DS-1.DO 
1IIŒ'-(KF-1 )*MJ+J 1 
ACL,MKF)~(L,MKF)+TJ*DC 
A(L·l,MKF+ND2)-A(L·1,MKF+ND2)+TJ*DC 
ACL·2,MKF+JN)-A(L.2,KKF+JN)+TJ*DS 
ACL-3,MKF+ND2+JN)-ACL-3,MKF+ND2+JN)+TJ*DS 
ACL-4,MKF+2*JN)-ACL-4.KKF+2*JN)+TJ*DC 
ACL_S,KKF+ND2+2*JN).ACL-S,KKF+ND2+2*JN)+TJ*DC 

41 CONTINUE 
39 L-L+I 

VRITE(*, *)L 
A(L.NM1)-o.DO 
A(L-l,NK1)-o.DO 
ACL·2,NK1)-o.DO 
A(L·3,NK1)-o.DO 
A(L-4.NK1)-o.DO 
ACL- 5 ,1I(1)-o.DO 
A(L-6,HM1)-o.DO 
A(L·7,NKl)-o.DO 
U-O.DO 
VZ-o.DO 
ur-o.DO 

DO 461 J1-1,MJ 
.1-.11-1 
DJ-DILE(J) 
CJ-l.DO 
IFCJ.IQ.O) CJ .. 2.DO 
TJ-CIS'CJ • Z) 
DO "1 U-1,1IN 
Dll-DlLE C 1CF·1) 
DC-DCOS (Dln -DEC) 
DSl-DSINCDK1*DEC) 
IrCIC.L%.1.D·13) DC-l.DO 
IrCIC.tr.l.D·l') DSl-l.DO 
JrCEC.LT .1.D·13) DlCl-o.DO 
DO "1 "'-.11,""-1. 2 

DJP.DILE(J') 
CA-2 • DC)e'tJ ICJ-DJ,.OC 
UZ-UZ+CA.mcsCKF .J'+1) 

411 CONTINUE 
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1 CA--DKl*DSl*TJ 
UF-UF+CA*~(KF,Jl) 
u-D+UKS(KF,Jl)*TJ*DC 

461 CONTINUE 
UZ-UZ/lAlOIIC 
1J-U/IA/CIIG 
UF-uF /IA/OIIC 
DO 46 Jl-l, MJ 
J-Jl-l 
O.1-DI1.I(J) 
CJ-1.DO 
IF(J.IQ.O) CJ-2.DO 
T-J-CISP(J , Z) 
J2-.1+2 
DO 45 lCF-l,JIN 

DICl-DILE(ICF-l) 
D1C-DILE(U) 
DC-DCOS(DKl*DEG) 
D5-DSIN(D1C*DIG) 
DCl-DCOS(DK*DEG) 
DSl-DSIN(DlCl*DEG) 
IF(IC.LT.l.D·13) DC-l.DO 
IF(IC.LT.l.D·13) D5-1.DO 
IF(EC.LT.l.D·13) DCl-l.DO 
IF(EC.LT.l.D·13) DS1-l.DO 
IF(EC.LT.l.D·13) URl-l.DO 
IF(IC.LT.l.D·13) DK-l.DO 
DO 48 JP-J2,IU·l,2 

DJP-DII.E(JP) 
CA-TJ*O.1P*(DJP**2-DJ**2)/CJ*Dl 
MKF-(KF-l)*IU+JP+l 
A(L,KKF)-A(L,KKF)+CA*DC 
A(L·l,KKF+ND2)-A(L·l,MKF+ND2)+CA*DC 
A(L·2,KKF+JN)-A(L-2,MKF+JN)+CA*DS 
A(L·3,KKF+JN+ND2)-A(L·3,MKF+JN+ND2)+CA*DS 
A(L·4,KKF+2*JN)-A(L·4,KKF+2*JN)+CA*DC 
A(L·5,KKF+2*JN+ND2)-ACL-S,HKF+2*JN+ND2)+CA*DC 

48 CONTINUE 
DO 49 JP-.11,HJ·l,2 
DJP-DBLE(JP) 
CA-2 . DO*TJ /CJ*DJP*D2 
KKF-(KF·l)*HJ+JP+l 
A(L,KKF)-A(L,MKF)+CA*DC 
A(L·l,KKF+ND2)-A(L·l.MKF+ND2)+CA*DC 
A(L·2,KKF+JN)-A(L·2.KKF+JN)+CA*OS 
A(L·3,KKF+JN+ND2)-A(L·3,KKF+JN+ND2)+CA*OS 
A(L·4,KKF+2*JN)-A(L-4,MKF+2*JN)+CA*DC 
A(L·5,KKF+2*JN+ND2)-A(L·5,HKF+2*JN+ND2)+CA*DC 
CA-2 . DO*TJ /CJ*DJP*D3*DKl 
C&-2 . DO*TJ /CJ*DJ P*D3*OK 
A(L,HKF)-A(L,KKF)·CA*OSl 
A(L· l ,KKF+ND2)-A(L· l ,KKF+ND2)·CA*DSl 
A(L·2,KKF+JN)~(L·2,KKF+JN)+CB*DCl 
A(L-3,KKF+ND2+JN)~(L·3,KKF+ND2+JN)+CB*DCl 
A(L-4,KKF+2*JN)-A(L-4,HKF+2*JN)·CA*DSl 
A(L·5.KKF+2*JN+ND2)-A(L·5.KKF+2*JN+ND2)·CA*DSI 
CA-4.DO*TJ/CJ*DJP*Hl**2*(1.DO·Z)/H*DHT 
ACL·2,KKF+2*JN)-A(L-2.KKF+2*JN)+CA*DC 
A(L·3,KKF+2*JN+ND2)-A(L·3.KKF+2*JN+ND2)+CA*DC 
A(L·4,KKF+JN)-A(L-4.KKF+JN)·CA*DS 
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ACL_S,MKF+ND2+JN)-ACL-S,MKF+ND2+JN)-CA*DS 
CA-2.DO*TJ/CJ*DJP 
ACL-6,MKF+2*JN)~CL-6,MKF+2*JN)+CA*DC 
ACL_7,KKF+2*JN+ND2)~CL-7,KKF+2*JN+ND2)+CA*DC 
CA_2.DO*TJ/CJ*DJP*Hl*(1.DO-Z)/H*DHT 
ACL-6,MKF+JN)~CL-6,KKF+JN)-CA*DS 
ACL-7,MKF+ND2+JN)~CL-7,MKF+ND2+JN)-CA*DS 
IF(JP.G'1'.KJ-3) GO TO 49 
MKP-(KF-l)*(MJ-2)+JP+l 
CI--TJ/CJ*DJP*S*Hl*Cl.DO-Z)*DHT 
A(L-2,MIF+3*JN)~(L-2,MKF+3*JN)+CI*DC 
A(L_3,MIP+3*JN+ND2)-A(L-3,KKF+3*JN+RD2)+ca*DC 
CI-TJ/CJ*DJP*S*H 
A(L_4,MIl+'*JN)~(L-4,NKF+3*JN)+CI*DC 
A(L_S,MIP+'*JN+ND2)-A(L-5,KKF+3*JN+MD2)+Ca*DC 

49 CONTINUE 
CA--DK1**2*TJ*D4 
Ca--DK**2'ItTJ*D4 
MKF-(KF-l)*"J+Jl 
A(L,MKF)-A(L,MKF)+CA*DC 
A(L_l,MKF+MD2)-A(L-l,MKF+ND2)+CA*DC 
A(L-2,MKF+JN)-A(L-2,MKP+JN)+ca*DS 
A(L_3,MKF+JN+ND2)~(L-3,MKF+JN+ND2)+CI*DS 
A(L-4,MKF+2*JN)~(L-4,MKF+2*JN)+CA*DC 
A(L_5,MXF+2*JN+ND2)~(L-S,MKF+2*JN+ND2)+CA*DC 
CA--S*H**2/4.DO*tJ 
A(L,MKF+llD2)-A(L,IIKF+ND2) -CA*DC 
ACL-l,MKF)~CL-l,MKF)+CA*DC 
A(L-2,KKF+JN+ND2)-A(L-2,MKF+JN+ND2)-CA*DS 
ACL-3,MKF+JN)-A(L-3,IIKF+JN)+CA*DS 
A(L_4,MKF+2*JN+ND2)-A(L-4,HKF+2*JN+ND2)-CA*DC 
A(L-S,KKF+2*JN)-A(L-S,KKF+2*JN)+CA*DC 
A(L-2,MKF+JN)-A(L-2,HKF+JN)-Hl**2*DS*TJ 
A(L_3,KKF+ND2+JN)_A(L_3,MKF+ND2+JN)-Hl**2*DS*TJ 
A(L-4.KKF+2*JN)-A(L-4,KKF+2*JN)-Hl**2*DC*TJ 
A(L_5.MKF+2*JN+ND2)-A(L-S.HKF+2*JN+ND2)-Hl**2*DC*TJ 
A(L-6.KKF+2*JN)-A(L-6,KKF+2*JN)-Hl*DC*TJ 
ACL-7,MKF+2*JN+ND2)-ACL-7.MKF+2*JN+ND2)-Hl*DC*TJ 
A(L_2.MKF+2*JN)_A(L_2.KKF+2*JN)_2.DO*DK1*Hl**2*DS1*TJ 
A(L.3,MKF+2*JN+ND2)-A(L-3,MKF+2*JN+ND2)-2.DO*DK1*Hl**2*DS1*TJ 
A(L_4.HKF+JN)_A(L_4.MKF+JN)-2.DO*DK*Hl**2*DC1*TJ 
A(L_S.MKF+ND2+JN)_A(L_S.MKF+ND2+JN)-2.DO*DK*Hl**2*DCl*TJ 
A(L-6.MKF+JN)-A(L-6,HKF+JN)-Hl*DK*DC1*TJ 
A(L-7.HKF+ND2+JN)-A(L-7.HKF+ND2+JN)-Hl*DK*DC1*TJ 
CA-UZ*S*H/2,DO*DC*TJ 
A(L,KKF+2*JN)-ACL,KKF+2*JN)+CA 
A(L-l,HKF+2*JN+ND2)-A(L-l,KKF+2*JN+N02)+CA 
CA-S*H**2/(2.DO+H*(l,DO-Z»/2.DO 
CA-CA*CUF+(l,DO-Z)/H*DHT*UZ) 
A(L,KKF+JN)-A(L,KKF+JN)-CA*TJ*DS 
A(L-l,MKF+JN+ND2)-A(L-l,KKF+JN+ND2)-CA*TJ*DS 
CA--(H/XD/XL)**2/2,DO*TJ 
A(L,KKF)-A(L,KKF)+CA*DC 
A(L-l,MKF+MD2)-A(L-l,KKF+ND2)+CA*DC 
A(L-2,MKF+JN)-A(L-2.HKF+JN)+CA*DS 
A(L.3,MKF+JN+ND2)-A(L.3,KKF+JN+ND2)+CA*OS 
A(L-4,MKF+2*JN)-A(L-4,KKF+2*JN)+CA*DC 
A(L·5.MKF+2*JN+ND2)-A(L-5.HKF+2*JN+~2)+CA*DC 
CA-CH/XO/lL)**2/4.DO*TJ 
B(L,KKF)-BCL,KKF)+CA*DC 
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I(L-l.MKF+ND2)-I(L-l,MKF+ND2)+CA*DC 
I(L-2.MKF+JN)-B(L-2,KKF+JN)+CA*DS 
I(L-3.MKF+JN+HD2)-I(L-3,MKF+JN+ND2)+CA*DS 
I(L-4.MKF+2*JN)-I(L-4,MKF+2*JN)+CA*DC 
I(L-S.MKF+2*JN+ND2)-I(L-S,KKF+2*JN+ND2)+CA*DC 
C(L ,MKF)-C (L,MKF)+CA*DC 
C(L-l,MKF+ND2)-C(L-l,KKF+ND2)+CA*DC 
C(L-2,MKF+JN)-C(L-2,KKF+JN)+CA*DS 
C(L-3,MKF+JN+RD2)-C(L-3.MKF+JN+ND2)+CA*DS 
C(L-4,MKF+2*JN)-C(L-4,MKF+2*JN)+CA*DC 
C(L-S,MKF+2*JN+ND2)-C(L-S,KKF+2*JN+ND2)+CA*DC 
Cc-4.DO 
ur-S*U*XL*ID 
IF(IIP.LT.2.DO)CD-S.DO 
CA-S*U*II**2/ID/XLICC*TJ 
I(L,MKF)-I(L,MKF)+CA*DC 
I(L-l,MKF+ND2)-B(L-l,KKF+ND2)+CA*DC 
I(L-2,MKF+JN)-B(L-2,KKF+JN)+CA*DS 
I(L-3,MKF+J~2)-I(L-3,MKF+JN+ND2)+CA*DS 
I(L-4.MKF+2*JN)-B(L-4,MKF+2*JN)+CA*DC 
I(L-S,MKF+2*JN+ND2)-I(L-S,KKF+2*JN+ND2)+CA*DC 
IF(UP.LT.2.DO)GO TO 421 
CA--S*U*H**2/XD/XL/CC*TJ 
A(L,MKF)-A(L,MKF)+CA*DC 
A(L-l,MKF+ND2)-A(L-l,KKF+ND2)+CA*DC 
A(L-2,MKF+JN)-A(L-2,KKF+JN)+CA*DS 
A(L-3,MKF+JN+ND2)-A(L-3,MKF+JN+ND2)+CA*DS 
A(L-4,MKF+2*JN)-A(L-4,KKF+2*JN)+CA*DC 
A(L-S,MKF+2*JN+ND2)-A(L-5.KKF+2*JN+ND2)+CA*DC 
GO TO 422 

421 CA--S*U*H**2/XD/XL/CC*TJ 
C(L,MKF)-CCL,MKF)+CA*DC 
C(L-l,MKF+ND2)-C(L-l,KKF+ND2)+CA*DC 
C(L-2,MKF+JN)-C(L-2,KKF+JN)+CA*DS 
C(L-3,MKF+JN+ND2)-C(L-3,KKF+JN+ND2)+CA*DS 
C(L-4,KKF+2*JN)-C(L-4,KKF+2*JN)+CA*DC 
C(L-5,MKF+2*JN+ND2)-C(L-5,KKF+2*JN+ND2)+CA*DC 

422 CA-H/XD/XL/4.DO*TJ 
I(L-6,MKF)-I(L-6,KKF)+CA*DC 
I(L-7,MKF+ND2)-B(L-7,MKF+ND2)+CA*DC 
C(L-6,MKF)-CCL-6,KKF)-CA*DC 
C(L-7,MKF+ND2)-CCL-7,KKF+ND2)-CA*DC 
IF(Jl.CT.HJ-2) GO TO 45 
HKF-(KF-l)*(MJ-2)+Jl 
CI-H*Hl*DK1*S*TJ/2.DO 
A(L-2 ,KKF+3*JN)-A(L-2 ,KKF+3*JN) +C8*DS 1 
A(L-3,MKF+3*JN+ND2)-A(L-3,HKF+3*JN+ND2)+CB*OSl 
CA-S*H**2/XD/XL/8.DO*TJ 
8(L,KKF+3*JN)-BCL,HKF+3*JN)+CA*DC 
I(L-l,MKF+ND2+3*JN)-BCL-l,HKF+ND2+3*JN)+CA*DC 
C(L,KKF+3*JN)-C(L,KKF+3*JN)-CA*DC 
C(L-l,KKF+ND2+3*JN)-C(L-l,KKF+ND2+3*JN)-CA*DC 

45 CONTINUE 
46 CONTINUE 
42 CONTINUE 

DO 321 J-l,RH 
Q(I)-A(1,NH1) 
DO 321 J-1,RH 
AP(I.J)-ACl,J) 

321 CONTINUE 
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CALL SHORTIN(NK,MK1) 
DO 322 1-1,. 

DO 322 .1-1,111 
A(I,J)-AA(I,J) 

322 CONTINUE 
cc 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C PAiT THREE C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

CALI. AMPLY(A,C,AA,NK) 
DO 323 1-1," 

DO 323 .1-1,111 
CCI ,J)-M(I ,J) 

323 CONTINUE 
CALI. AMPLY(I,C,QN,IIM) 
DO 324 1-1,. 

DO 324 .1-1,111 
ACI ,J)--QH(I,J)+AP(I ,J) 

324 COITllftJ1 
CALI. SHORTDI(lIM,Rll1) 
DO 321 1-1,tIC 

DO 32. .1-1,111. 
Y(I,J)-o.DO 

328 CONTINUE 
DO 330 1-2,111. 
X--D'LI(JU)*ID+~DILE(I-1) 
CALL DIS,(IQR,l.X,Il) 
IF(X.LT .O.DO) a-o.DO 
IFCX.cr.1.DO) a-o.DO 
DO 331 J-l,1II 
QT(J)-EX'*Q(J) 
QNTCJ)-O.DO 

331 CONTI~! 
DO 334 Il-l,NK 

DO 332 JI-l,HM 
QNT(I1)-QNT(I1)+B(Il,J1)*V(Jl,I-1) 

332 CONTINUE 
QNT(I1)-QT(II)-QNT(Il) 

334 CONTINUE 
DO 336 Il-l,NK 

DO 336 JI-l,HM 
Y(Il,I)-Y(Il,l)+AA(Il,J1)*QNT(Jl) 

336 CONTINUE 
WRITE(6 ,5l9)X, (VP ,I> ,J-l,HM) 

330 CONTINUE 
DO 338 J-l,NK 
QN(J ,HL)-Y(J ,HL) 

338 CONTINUE 
DO 340 I-KL·l,l,-1 
X-·DBLE{NU)*XD+>U>*DBLE(I-l) 

DO 341 J-l,NK 
QNT(J)-o.DO 

341 CONTINUE 
DO 342 Il-l,HM 

DO 344 Jl-l,NK 
QNT{Il)-QNT{Il)+C(Il.Jl)*QN{Jl.I+l) 

344 CONTINUE 
QN(Il.I)-VCIl.I)- QNT(Il) 

342 CONTINUE 
WRlTE(*. 519)X, (QN(J ,I) ,J-l.NH) 
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VRITI(6, 519)X, (QN(J ,1) ,J-l,MM) 
340 CONTINUE 

CC 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C PART FOUR C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

c 
c 

DO 350 Ù"l,ML 
X-XD*DILB(L·l)·DILE(NU)*XD 
VRITI(6,526)X 
K-o 
DO 52 I-l,1IN 

DO 52 J-l,1LJ 
K-I+l 
1I(l,J)-QN(K,L) 
XI(I,J)-QN(K+HD2,L) 
DI(I,J)-QN(K+JN,L) 
DI(I,J)-QN(K+J~2.L) 
RR(I,J)-QN(K+2*JN,L) 
R1(I,J)-QN(K+2*JN+RD2,L) 

S2 CONTINUE 
K-o 
DO 53 I-l,1IN 

DO 53 J-l,lLJ· 2 
K-I+l 
PR(I,J)-QN(K+3*JN,L) 
PI(I,J)-QN(K+3*JN+ND2,L) 

S3 CONTINUE 
VRlTE(6, 516) «XR(1,J) ,J-l,KJ), 1-1 ,lIN) 
VRITE(6,516)«XI(I,J) ,J-1,KJ) ,1-1 ,MN) 
VRITE(6, 516) «DI(1,J) ,J-1 ,KJ), 1-1 ,lIN) 
VRITE(6,516)«DI(I,J),J-1,KJ),I-l,MN) 
WRITE(6, 516) «RR.(1 ,J) ,J-1 ,MJ) ,1-1 ,MN) 
WRITE(6,S16)«Rl(I,J),J-l,KJ),1-1,MN) 
WRITE(6,S17)«PR(I,J),J-1,KJ-2),I-1,KN) 
WRlTE(6. 517) «PI(1 ,J) ,J-l ,MJ -2),1-1 ,MN) 

Kl-5 
IF(KN.EQ.l) Kl-1 
Dl-OlLE (K1-1) 
IF(KN.EQ.l) D1-1 
DO S4 I~l,Kl 
DEG-PIE/Dl*DlLE(ID-l) 
DJ-1.8D2*DEC/PlE 
DO S4 lZ-l, 11 
Z-.2DO*DILE(IZ-l)·1.DO 
lUt-O.DO 
GX-O.DO 
RC-O.DO 
GC-O.DO 
RN-O.DO 
GN-O.DO 
RP-O.DO 
CP-O.DO 
DO 56 le-l,lIN 

DKI-DI1.E(K-l) 
DK-DlLE(K) 
DC-OCOS(DK1*DEG) 
DS-DSlN(DK*DEG) 
lFCEC.LT.l.D-13) DC-l.DO 
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IF(IC.LT.l.D-13) OS-l.DO 
DO 56 J-l,KJ 
TJ-CISP(J-l,Z) 
ax-RX+XlCK,J)*TJ*DC*RA*OMG 
ax-œ+XICK,J)*TJ*DC*IA*OMG 
1c-RC+Dl(K,J)*TJ*DS*IA*OMG 
Cc-cc+DICK,J)*TJ*DS*IA*OMG 
IN-U+IICK,J )*TJ*DC*IA*CIIG 
CM-Clf+IICK,J)*TJ*DC*IA*OMG 
IF(J.CT.tu -2) CO ro S6 
u-aP+PlCIC,J)*TJ*DC*DI*COMC*RA)**2 
CP-CP+Pl(K,J)*TJ*DC*FM*C~)**2 

56 COftIJUI 
Al-DSQlT(U**2+GX**2) 
AC-DSQlT(IC**2+CC**2) 
All-DSQlT(1II**2+CN**2 ) 
APP-DSQlT(1P**2+CP**2 ) 
VlITI(6,520)DJ,Z,IX,GX,RC,GC,RN,CN,IP,GP,APP 

54 CQIITIRUE 
350 cotn'IRUE 

JII2-JM*2 
JN21-.1N2+1 
OIX-1. SI815DO*EO 
VlIT1(6,526)DEX 
DO Il 1-1,111 

DO Il J-l,1IL 
Y(I ,J)~(I,J) 

81 CONTINUE 
DO 12 l1.-l,1IL 
X-XD*DILE(IL-l)-OILE(NU)*XD 
K-o 
DO 57 l-l,MN 

DO 57 J-l,tu 
K-K+1 
DU ,J)-Y(K,IL) 
Il(l,J)·Y(K+ND2,lL) 
DRC1,J)·YCK+JM,IL) 
01Cl,J)-YCK+JM+ND2,IL) 
RRC1,J)-Y(K+2*JN,IL) 
IICI,J)-Y(K+2*JN+ND2,IL) 

57 CONTINUE 
K-o 
DO 51 I-l,MN 

DO 51 J-l,IU·2 
1-IC ... 1 
PI(I,J)-YCK~3*JN,IL) 
'I(I,J)-Y(I+3~JN+ND2,lL) 

58 CONTINUE 
DO 59 1-I,JN2 

DO St J-I,JN21 
ACl,J)-o.DO 

59 carnllUl 
L-O 
DO '0 J-I,MN 

DEG-SOD*DlLECI-I) •. 005~PIE 
CA-I. DO-ECN**2*CDSIN(DEC) )"2 
lo--!C*DCOS(DEC)+~*CA**.5 
.... ·I.DO+IOIIA 
DO 60 U-l.KJ 
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Z-2.DO/OILE(HJ-l)*DILE(LZ-l)-l.DO 
~Lt-2 
VRIU(* ,*) L 
DO 62 Jl-l,IU 
J...Jl-l 
CJ-l.DO 
IF(J.IQ.O) CJ-2.DO 
TJooCISP(J.Z) 
DO 62 D'-l,lIN 

DKl-DILI(U-l) 
DC-OCOS(Dltl*DEC) 
IF(IC.LT.l.D-13) DO-1.DO 
CA-o.DO 
CI-O.DO 
DO 64 JP...J1,HJ-1,2 
DJP-DILE(JP) 
CA-cA+DJP*U(U' ,JP+I) 
CI-CI+DJP*RI(U' ,JP+1) 

64 COMTIlIUE 
MD'-(D'-1)*KJ+J1 
A(L,MKF)-A(L,MKF)+TJ*DC 
A(L-l,KKF+JN)-A(L-I,MKF+JN)+TJ*DC 
A(L,JN21)~(L,JN21)+2.DO*TJ/CJ*DC/H*CA 
A(L-l,JN21)-A(L-l,JN21)+2.DO*TJ/CJ*DC/H*CB 

62 CONTINU! 
60 CONTINU! 

CALL SHORTEN(JN2,JN21) 
K-o 
DO 66 I-l,MN 

DO 66 J-l,HJ 
K-K+l 
RSR(l,J)-AA(K,JN2l) 
RSI(I,J)-AA(K+JN,JN21) 

66 CONTINUE 

DO 68 I-l,JN2 
DO 68 J-l,JN2l 
A(I,J)-o.DO 

68 CONTINUE 
L-O 
DO 70 I-l.MN 
DEG-SOD*DILE(I-l)+.005DO*PIE 
CA-l.DO-ECN**2*(DSIN(DEG»**2 
aD--EC*DCOS(DEG)+RB*CA**.5 
H--l.DO+RO/RA 
DO 70 LZ-l,HJ 
Z-2.DO/OBLECHJ-l)*DBLE(LZ-l)·1.DO 
L-L+2 
VRITEe·te)L 
DO 72 Jl-l,1U 
J--.Jl·l 
CJ-1.DO 
IF(J.IQ.O) CJ-2.DO 
TJ-cJSPCJ ,Z) 
DO 72 IF-l.MN 

DK-DILECKF) 
DS-DSINCDKeDEC) 
IFCIC.LT.1.D-13) DS-l.DO 
CA-o.DO 
Ca-o.DO 
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DO 74 JP-J1,KJ-1,2 
DJP-DILE(JP) 
CA-cA+DJP*DI.CU ,JP+l) 
CB-CI+DJP*DI CU ,JP+1) 

74 COHTIRUE 
MICF-(KF·1)~+J1 
ACL,MKF)~(L,MIF)+TJ*DS 
A(L-1,MKF+JN)-A(L-1,MKF+JN)+TJ*DS 
A(L,JN21)-A(L,JN21)+2.DO*TJ/CJ*DS/H*CA 
A(L-1,JN21)~CL·1,JN21)+2.DO*TJ/CJ*DS/H*CI 

72 CORTIlIUE 
70 COlft'IIIUI 

CALL S~TIR(JN2,JN21) 
It-o 
DO 76 1-1,111 

DO 76 J-1,1I.1 
It-K+l 
DS1(I,J)-Al(K,JN21) 
DSI(I,J)-Al(It+JN,JN21) 

76 CORTllIUI 
10 ".1-0.00 

FU-o.OO 
ru-o.OO 
FI2-o.OO 
FR3-0.DO 
FI3-0.OO 
FR4-0.OO 
FI4-0.OO 
DO 78 Jl-1,KJ 
J~l·l 
TJ-1.OO 
IF(J1.GT.KJ·2) GO TO 79 
FRI-FR1+PR(l,J1)*TJ 
F11-F11+PI(1,Jl)*TJ 

79 FR2-FI.2+(DR(I,J1)-2.DO*DSI.(l,Jl»*TJ 
FI2-FI2+(DI(l,J1)·2.DO*DSI(l,Jl»*TJ 
FR3-FRl-RR(I,J1)*TJ 
F13-F13-1.1(l,Jl)*TJ 
FR4-FR4+4.DO*RSR(l,JI)*TJ 
FI4-FI4+4 .DO*RSI (l,Jl)*TJ 

78 CONTINUE 
URITE(6.526)X 
FI-FIl *OHG*RA/DEX 
FR-FR 1 *OKC*RA/DEX 
URITE(6.522)FI,FR 
CA-VF/(RA*DEX*FH) 
FI-FHFI2*CA 
FR-FR+FR.2*CA 
URITE(6.522)Fl,FR 
FI-FI+F11*CA 
FR-FR+f1l3*CA 
URITE(6,522)Fl.FR 
FI-F1+n4*CA 
n-...... Fa4*CA 
URITI(6.522)Fl.FR 

12 CONTINUE 
C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCccceccecccceecccccc 

!lOO fORKAT(/.9X,'ENTER? (1) U:O\1TD CYL.DIA. (2) RA.nmER CYL.DIA • 
1./.ISX,·(3) FRE:FREQ. (4) AD,:+,. DROP (5) vr.VISC. FLUID' .1. 
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--- -------------------------------w 

11SX' (6) ftI:DENS rwID (7) EO:AHP. (8)EC:ECCEN.') 
S02 FORMAT(5X, ' ..... ,F9.S,5X, 'IA-' ,F9.5,SX, 'FRE-' ,F9.3,5X, • AD"" ,F9.S, 

Il ,5X, 'VF-' ,F9.5,5X,' 111-'F9.3, 5X, '10-' ,19.5,5X, 'EC-' ,1'9.5) 
S04 FORMAT(/,10X,'** 15 THIS TRUE ? ** YES-l, N0-2') 
506 FORMAT(/ ,10X, 'a/b-' ,F7. 3, 5X, ' _/(b·a)-' ,F7 • 3, 5X, ' S-' ,F9. 2) 
S07 FORMAT(/ ,5X, 'ENTER? (1) lIN: F EXP <S (2) lU: CI EXP <10 (3) ML: 

IAXIAL POS.' ,I,10X,' (4) XL: LIA' ,1,15X, '.'* NM-I*KJ*MN·4*MN <61' ,/, 
110X,' (S)NU: NO OF UP5TllEAK (6)ND:NO OF DOUN5TllEAK') 

508 FORMAT(/ ,5X, '101-' ,I3,SX, 'IU-' ,Il,5X, 'ML-o' ,Il,/, 5X, 'x,u.' ,F6.3,/ ,5X, 
l'NU-' ,I3,5X, 'ND-' ,I3,5X, , KL-NI>+NU+HXD , ) 

512 FOIUlAT(/ ,10X,' «UIIS(l,J) ,J-o, ' ,12,') ,1-0, ' ,12,')') 
513 FORMAT(/,2(3(6FI0.5,/),4FlO.5,/» 
514 FOIUlAT(5X, 'DEG-' ,F8.2,5X, 'u-' ,F9.4) 
516 FORMAT(IF10.4) 
517 FORMAT(6F10.4) 
519 FOlUIAT(/ ,SX, 'X-' ,F7 .4,1 ,2(3(8FI0.5,/) ,6FI0.5,/» 
520 FORMAT(F5.1,lX,F4.1,2X,2FS.S,2X,2F8.5,2X,2FS.5,2X,3F8.4) 
522 FORMAT(2X,'CM(X)-' ,F9.4,5X,'CV(X)-' ,1'9.4) 
526 FOlUIAT(/,5X,'X-' ,n.4) 

CCCccCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCcCCCCCCCcCCCCCCCCccCCCCCCCCcCc 
STOP 
END 

cc 
'**'****'*'* SUI·PROGRAM .............. . 
CC 
CCCCCcCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C AllPLY CH-AM'*IK C 
CCCCccCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCcC 

SUIllOUTINE AKPLY(AK,IK,at,N) 
~'*8 AM(60,6l) ,1M(60,60) ,CH(60,6l) 
INTECER I,J ,N,K 
DO 10 I-l,N 

DO 10 J-l,N 
10 CK(I,J)-O.DO 

DO 40 I-l,N 
DO 40 J-l,N 

DO 40 K-l,N 
40 CK(I,J)-CK(I,J)+AM(l,K)'*BH(K,J) 

RETURN 
END 

c 
cCCCCCCCCCCCCCCCcCCCCCCCCCCCCCCCCCCCCCCCCC 
C DI SP-AK'*(ETK+EHK) C 
ecce ecce ecce ecce ecce ecce ecce CCC ecce ecce CCC 

SUBROUTINE DISP(AK,K,X,EX} 
REAL*8 AK, ETK,EHK,SK,BK,X,EX 
BK-4. 7300407 
SK-.9825022 
ETK-· DCOS (BK*X}+SK'*DSIN(BK*X) 
EHK-DCOSH(BK*X)·SK'*DSINH(BK*X) 
EX-AK*(ETK+EHX} 
R.ETURN 
END 

C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C CHEBYSHEV POLYNOMIAL C 
ecce ecce CCC ecce ecce ccc CCC CCC ecce ecce ecce CCC 

FUNCTION CBSP(N,Y) 
REAL*8 TN,PIE,DZ,Z,CBSP,Y 
INTECER I,N 
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( TN-1.DO 
PIB-2.DO*DASIN(1.DO) 
IF(N.IQ.O) GO TO 3 
DO 1 1-1,N 
DZ-(2.DO*DILECl).1.DO).PlE/C2.DO*DBLE(N» 
Z-DCOS(DZ) 

1 TN-(Y-Z)*TN 
TN-2.DO**(N-l)'*TN 

3 CISP-TN 
UTUIN 
END 

c 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C SHOIlTIN JŒ'l'HOD C 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

SUIllOUTINE SHOITER(N ,N1) 
LNPLICIT ~*8 (A-H,O-Z) 
IMPLICIT INTEGIR. (I-N) 
PAIWI!TIR (RF-60,NFl-61) 
DIMENSION A (NF ,NF1) ,M(NF ,NF1) ,COL(NF) ,ROV(NF1) ,NC(m) ,NR(NF) 

CQMMON AtM 
DO 1 1-1.N1 
lF(I.cr.N) GO TO 1 
D(I)-1 

1 HC(l)-1 
DIT-l.OO 
DO 2 K-l,N 
CLAllGE-O • 000 
DO 3 l-K,N 

DO 3 J-K,N 
CLARGO-DAlS(A(I,J» 
IF(CLARGO.LT.CLARGE) co TO 3 
CLARGE-CLARGO 
IP-l 
JP-J 
PlVOT-A(I,J) 

3 CONTINUE 
IFCCLARGE.CT.l.D-12) GO TO 16 
WITE(* ,101) 
READ(*, *) IANS 
!~(IANS.EQ.2) CO TO 13 

16 ~\ITE(*,*)K,PIVOT 
IF'JP.EQ.K) GO TO 4 
J-NR(JP) 
NR(JP)-NR(K) 
NR(K)-J 

c * INTERCHANGE COLUHS * 
DO ~ 1-1,N 
SAVE-A(I,JP) 
ACI,JP)-A(I,K) 

5 A(I,K)-SAVE 
4 IF(IP.EQ.k) GO TO 6 

I-NCClP) 
NC(IP)-NCClC) 
NC(k)-I 

C * INTERCHANGE ROIIS .. 
DO 7 J-1,N1 
SAVE-A(lP,J) 
A(lP,J)-ACK,J) 

7 A(K,J)-SAVE 
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6 DO 8 I-l,Nl 
IF(I.CT.N)GO TC 8 
COL(I)-A(I,K) 

8 ROV(I)-A(K,I) 
DO 9 I-l,N 

DO 9 J-l,Nl 
9 A(I,J)-A(I,J)-COL(I)*ROV(J)/PIVOT 

DO 10 1-1, Nl 
IF(I.CT.N) GO TO 10 
A(I,K)--COL(I)/PIVOT 

10 A(K,I)-ROV(I)/PIVOT 
A(K,K)-l.DO/PIVOT 

2 CONTINUE 
CO TO 15 

13 VRITE(*,*)K 
DO 14 J-K,N 

14 A(J,N1)-o.DO 
C * PLACE IN CORRECT ORDa * 

15 DO 11 1-1,N 
DO 11 J-l,N1 

Il AA(NR(I),NC(J»-A(I,J) 
101 FORMAT(3X, 'DO Y~U VANT TO HAVE MORE ITERATION? YlS-l, N0-2') 

RETURN 
END 
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*************************A*******A********'*'~******A*A****************** * INPUT DATA u.ed for obtAlnins the nondi.enaiona1 par_eters (nuaerical * 
* input data), a. ahovn in equation (6.12) * 
* RA: radiua of the innu cylinder, a * 
* RB: radiua of the outer cylinder, b * 
* FRE: oacUlation frequency, f * 
* ADP: ateady pr .. aure drop alnog the axial direction, - dP/dx * 
'* VF: viaco.lty of fluid * 
* FM: denalty of fluid * 
'* EO: lateral veloclty of IIOving cyUnder at X-l/2, ev/ak * 
'* Ee: eceentricity, e * 
'* 
'* 
'* 
'* 

Degree(order) of the interpolation functions considered 
MN: Fourier aerie. 
lU: Ch.byshev polynolltals 

* 
* 
* 
'* 

'* * '* NUIlber of th, .eah point.: ML * 
'* Length-to-radius ratio: XL '* 
* OaelUatory Reynolcla nwaber: S * 
*******************************************************************A********** 

RB- .05000 RA- .04000 
ftI- 1000.000 

FRE­
Ea-

.057 
.00100 

ADP- 5.00000 
VF- .OOUS EC- .00000 
MN- 1 MJ- 8 HL- 15 
XL-l5.000 

a/b- .800 e/(b·a)- .000 S- 500.01 

*********** Radial variation of axial flow velocity ****** 

Ujl j-O 1 2 3 4 5 6 
.0270 .0005 •. 0270 •. 0005 .0000 .0000 .0000 

z- ·1.000 u- .0000 
z- · .846 U- .0149 
z- · .692 u- .0274 
Z- · .538 u- .0376 
Z- '.385 U- .0453 
Z- · .231 u- .0506 
z- -.077 u- .0535 
z- .077 u- .0538 
z- .231 u- .0515 . - .385 u- .0466 -z- .538 u- .0391 
Z- .692 u- .0289 
z- .846 u- .0158 
z- 1.000 u- .0000 

*** .. * Radial variations of unsteady nuld ,.aralIIeters ******* 
(real. imaginary parts and _p11tude(only for pA»~ 

x- .0000 
Ur· .0402 • .0058 .0272 .0065 .0133 - .0007 • .0003 

1 .0053 .0069 • .0047 • .0079 - .0017 .0009 .0011 
Wr 0383 .0023 • .0266 • .0018 •. 0116 - .0005 · 0001 

j·0055 · .0001 .0055 .0001 .0009 .0000 · .0008 
Vr 0010 .0002 • .0012 • .0003 .0003 .0001 0000 

1· .0006 • .0001 .0008 .0001 - .0002 .0000 .0000 
Pr .1539 .0006 .0001 • .0001 .0000 .0000 

1 .0358 · .0001 .0000 .0001 .0000 .0000 
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:1 
z u* "* v* p* 

-1.0 .00000 .00000 .00000 .00000 .00000 .00000 .0319 .0075 .0328 
- .8 - . 00054 -. 00004 .00054 -.00006 .00000 .00000 .0319 .0075 .0328 
-.6 - .00072 - .00004 .00075 - .00012 .00001 - .00001 .0319 .0015 .0328 
- .4 - .00073 -.00002 .00079 -.00014 .00002 -.00001 .0319 .0075 .0328 
-.2 - .00073 .00002 .00078 - .00014 .00003 -.00002 .0320 .0015 .0328 

.0 - .00078 .00010 .00077 - .00013 .00004 -.00002 .0320 .0074 .0329 

.2 -.00089 .00021 .00080 -.00014 .00004 -.00002 .0321 .0074 .0329 

.4 - .00100 .00029 .00085 - .00015 .00003 -.00002 .0321 .0074 .0330 

.6 - .00099 .00029 .00084 - .00013 .00002 - .00001 .0321 .0074 .0330 

.8 -.00072 .00017 .00063 - .00006 .00001 .00000 .032l .0014 .0330 
1.0 .00000 .00000 .00000 .00000 .00000 .00000 .0321 .0074 0330 

x- .2000 
Ur-.20S7 - .2373 .0765 .2068 .1291 .0309 .0031 - .0005 

1 .0478 .1130 -.0253 - .1194 - .0307 .0037 .0081 .0027 
Wr .2061 - .0038 -.1728 - .0154 '.0560 - .0025 .00l2 .0002 
1·. 0297 .0023 .0366 -.0010 · .0022 -.0010 - .0047 - .0002 

Vr .0254 .0245 - .0051 - .0031 .0010 .0000 .0001 .0001 
1-.0029 - .0006 .0039 .0009 '.0010 · .0002 .0000 .0000 

Pr .6549 .0052 .0011 -.0008 '.0003 .0000 
1 .2614 .0025 .OOOS .0002 .0000 .0000 

Z u* "* v* p* 
-1.0 .00000 .00000 .00000 .00000 .00000 .00000 .1356 .0540 .1459 
-.8 - .00007 -.00098 .00287 - .00025 .00003 -.00001 .1355 .0540 .1459 
-.6 .00003 -.00137 .00419 - .00063 .00012 -.00003 .1355 .0541 .14';9 
• .4 - .00008 -. 00125 .00459 - .00085 .00023 -.00006 .1355 .0541 .1459 
-.2 - .00076 -.00064 .00462 - .00092 .00035 - .00009 .1357 .0542 .1461 

.0 -.00230 .00049 .00464 - .00092 .00045 - .00011 .1360 .0542 .1464 

.2 -.00475 .00199 .00478 - .00091 .00054 -.00011 .1363 .0543 .1468 

.4 -.00766 .00338 .00490 - .00082 .00060 -. 00010 .1367 .0545 .1472 

.6 -.00974 .00388 .00455 - .00057 .00063 -.00006 .1371 .0546 .1476 

.8 - .00854 .00272 .00301 - .00016 .00063 - .00002 .1373 .0549 .1479 
1.0 .00000 .00000 -.00062 .00000 .00062 .00000 .1374 .0551 .1480 

x- .4000 
Ur·.3771 -.5912 .0887 .5209 .2849 .0727 .0035 - . 0024 

1 .1676 .3133 -.0941 -.3341 - .0931 .0144 .0196 .0064 
Wr 3405 - .0210 - .3327 - .0279 - .0626 - .0020 .0044 .0004 

1·.0503 .0091 .0805 -.0059 - .0239 · .0029 - .0064 - .0002 
Vr .0516 .0564 -.0015 - .0057 .0003 · .0003 .0000 .0000 

1· .0030 - .0012 .0041 .0018 • .0010 • .0005 .0000 .0000 
Pr .6305 .0034 .0013 •. 0004 • .0002 .0000 

1 .5461 .0060 .0018 .0002 .0000 .0000 

Z u* "* "... p* 
-1.0 .00000 .00000 .00000 .00000 .00000 .00000 .1308 .1127 1727 

• .8 .00192 - .00213 .00436 - .00022 .00005 .00000 .1307 .1127 .1726 
-.6 .00304 - .00315 .00686 -.00099 .00018 - .00001 .1307 .1128 1726 
- .4 .00299 -.00285 . 00806 -.00166 . 00036 -. 00005 .1307 .1129 1727 
• .2 .00127 -.00109 .00aS4 - .00204 .00056 -.00008 1307 .1131 .1729 

.0 - .00266 .00215 .00874 ·.00214 .00077 - .00012 .1309 .1133 1731 

.2 - .00884 .00636 .00882 - .00196 .00097 - .00013 .1311 .1135 .1734 

.4 - .016lS .01018 .00U2 -.00146 .00116 - .00012 .1314 .1138 .1718 

.6 - .02149 .01144 .00727 - .00067 .001ll - .00008 .1317 .1142 1743 

~ 
.8 - .01909 .00804 .00421 .00014 .00142 - .00003 .1319 .1147 .1748 

1.0 .00000 .00000 - .00146 .00000 .00146 .00000 .1321 .1153 .17!>3 

." 
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1 
x- .6000 

Ur· .3495 -.6306 .0525 .5639 .2976 .0695 -.0006 -.0029 

1 .2854 .3962 - .1876 -.4306 - .1213 .0288 .0235 .0055 

Wr .2591 - .0288 -.2996 - .0227 - .0140 .0008 .0041 .0002 

1- .0323 .0141 .0819 - .0107 - .0476 - .0035 -.0020 .0000 

Vr .0460 .0558 .0057 -.0048 -.0012 - .0005 -.0001 • (JOOO 

1- .0002 - .0012 .0002 .0017 .0000 - .0005 .0000 .0000 

Pr .0810 - .0019 .0004 .0004 .0001 .0000 

1 .5522 .0057 .0018 .0001 .0000 .0000 

Z u* v* vit p* 

-1.0 .00000 .00000 .00000 .00000 .00000 .00000 .0172 .1141 .1154 

-.8 .00269 -.00175 .00288 .00020 .00003 .00001 .0172 .1141 .1154 

-.6 .00431 -.00268 .00510 -.00051 .00011 .00003 .0171 .1141 .1154 

-.4 .00453 -.00214 .00659 -.00142 .00023 .00003 .0170 .1142 .1155 

-.2 .00279 .00033 .00745 -.00210 .00038 .00002 .0169 .1143 .1156 

.0 - .00150 .00473 .00780 -.00231 .00057 -.00001 .0168 .1145 .1158 

.2 - .00831 .01022 .00766 - .00193 .00077 -.00003 .0167 .1148 .1160 

.4 - .01631 .01485 .00689 -.00106 . 00099 -. 00004 .0165 .1151 .1163 

.6 - .02207 .01589 .00522 .00003 .00120 -.00004 .0165 .1155 .1167 

.8 - .01958 .01091 .00242 .00073 .00138 -.00002 .0165 .1160 .1171 

1.0 .00000 .00000 - .00146 .00000 .00146 .00000 .0167 .1165 .1177 

x- .8000 
Ur· .1366 -.3037 - .0108 .2791 .1516 .0262 ".0042 - .0015 

1 .2904 .2686 - .2262 -.3015 - .0792 .0322 .0150 .0007 

Wr .0527 • .0182 - .1071 - .0058 .0321 .0026 .0009 - .0001 

1 .0136 .0122 .0293 - .0105 - .0464 -.0019 .0035 .0002 

Vr .0154 .0234 .0079 - .0016 - .0017 - .0003 - .0001 .0000 

1 .0024 - .0005 - .0033 .0008 .0009 - .0003 .0000 .0000 

Pr·.3555 ·.0045 - .0006 .0007 .0003 .0000 
1 .2720 .0018 .0008 .0000 .0000 .0000 

Z u* V* vit p* 
-1.0 .00000 .00000 .00000 .00000 .00000 .00000 - .0732 .0564 .0924 

- .8 .00148 -.00009 .00014 .00062 - .00001 .00002 -.0732 .0564 .0924 

- .6 .00263 ".00014 .00019 .00043 - .00002 .00005 - .0733 .0563 .0924 

".4 .00314 .00060 .00178 - .00019 - .00001 .00008 - .0734 .0564 .0925 

- .2 .00253 .00270 .00247 ".00077 .00002 .00010 - .0736 .0564 .0927 

.0 .00043 .00609 .00276 -.00095 .00008 .00010 - .0738 .0564 .0929 

.2 - .00311 .00995 .00253 -.00058 .00018 .00008 -.0741 .0565 .0932 

.4 -.00729 .01273 .00179 .00019 .00030 .00005 - .0744 .0566 .0935 

.6 - .01026 .01260 .00073 .00093 .00043 .00002 - .0747 .0568 .0938 

.8 - .00911 .00824 -.00029 .00106 .00056 .00000 -.0749 .0570 .0941 

1 0 .00000 .00000 -.00062 .00000 .00062 .00000 - .0748 .0572 .0941 

x- l 0000 
Ur .0309 · .0151 - .0548 .0171 .0265 - .0020 - .0026 .0000 

1 .1819 .0880 - .1701 ".1065 - .0155 .0207 .0038 - .0021 
\Ir· .0315 · .0029 .0127 .0011 .0200 .0013 - .0012 - .0002 

1 .0404 .0061 - .0222 " .0060 - .0211 - .0002 .0036 .0001 
Vr· .0011 .0000 .0024 .0001 - .0006 .0000 .0000 .0000 

1 .0016 -.0001 - .0023 .0002 .0007 - .0001 -.0001 .0000 
Pr· .lSlI • .0009 - .000:' .0001 .0001 .0000 

1 .0469 •. 0006 .0000 .0001 .0000 .0000 

( 
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Z u* w* ".. p* 

-1.0 .00000 .00000 .00000 .00000 .00000 .00000 - .0329 .0099 .0344 
-.8 .00016 .00082 - .00057 .00062 - .00001 .00001 - .0329 .0099 .0344 
-.6 .00068 .00140 - .00071 .00084 - .00003 .00003 - .0329 .0098 .0344 

,; - .4 .00127 .002l2 - .00059 .00075 - .00005 .00005 - .0329 .0098 .0343 
" -.2 .00166 .00330 - .00041 .00058 - .00006 .00006 - .0329 .0098 .0344 

.0 .00166 .00480 - .00033 .00054 - .00007 .00007 - .0330 .0098 .0344 

.2 .00124 .00612 - .00042 .00070 - .00006 .00006 - .0330 .0097 .0344 

.4 .00058 .00658 - .00064 .00098 -.00005 .00004 - .0331 .0097 .0345 

.6 - .00004 .00569 - .00082 .00111 - .00003 .00002 - .0332 .0097 .0345 

.8 - .00030 .00335 - .00069 .00082 - .00001 .00001 - .0332 .0096 .0346 
1.0 .00000 .00000 .00000 .00000 .00000 .00000 - .0332 .0096 .0346 

******* Nondlmen.1onal Flu1d-dynaalc forc •• , F~ ********************** 
* CM(X) : raal part, CV(X): - i •• glnary part * 
********************************************************************** 

X- - .1000 x- .6000 
CM(X)- .1382 CV(X)- .5448 CH(X)- 5.0849 CV(X)- .7270 
CH(X)- .1382 CV(X)- .5632 CH(X)- 5.1827 CV(X)- .9399 
CM(X)- .1382 CV(X)- .5632 CM(X)- 5.1827 CV(X)- .9380 
CH(X)- .1382 CV(X)- .5632 CH(X)- 5.1827 CV(X)- .9380 

'X- .0000 x- .7000 
CH(X)- .3246 CV(X)- 1.4026 CH(X)- 3.9663 CV(X)- -1. 8255 
CM(X)- .3237 CV(X)- 1.4496 CH(X)- 4.0661 CV(X)- -1. 7356 
CM(X)- .3237 CV(X)- 1.4496 CH(X)- 4.0661 CV(X)- -1. 7370 
CH(X)- .3237 CV(X)- 1.4496 CH(X)- 4.0661 CV(X)- -1. 7370 

X- .1000 x- .8000 
CH(X)- 1.0492 CV(X)- 3.6792 CH(X)- 2.4948 CV(X)- -3.2657 
CH(X)- 1.0514 CV(X)- 3.8129 CH(X)- 2.5844 CV(X)- -3.2821 
CM(X)- 1.0514 CV(X)- 3.8127 CH(X)- 2.5844 CV(X)- -3.2829 
CM(X)- 1.0514 CV(X)- 3.8127 CM(X)- 2.5844 CV(X)- -3.2829 

X- .2000 x- .9000 
CH(X)- 2.4064 CV(X)- 5.9965 CH(X)- 1.0814 CV(X)- -3.1474 
CH(X)- 2 4213 CV(X)- 6.2484 CH(X)- 1.1507 CV(X)- -3.2198 
CH(X)- 2.4213 CV(X)- 6.2476 CM(X)- 1.1S07 CV(X)- -3.2200 
CH(X)- 2.4213 CV(X)- 6.2476 CH(X)- 1.1507 CV(X)- -3 2200 

X- .3000 x- 1.0000 
CH(X)- 3.8894 CV(X)- 6.6844 CM(X)- .4205 CV(X)- -l.4513 
CH(X)- 3.9252 CV(X)- 7.0199 CH(X)- .4720 CV(X)- -1.5041 
CH(X)- 3.9252 CV(X)- 7.0185 CM(K)- .4720 CV(X)- -1. 5041 
CH(X)- 3.9252 CV(X)- 7.0185 CH(X)- .4720 CV(X)- -1.5041 

X- .4000 X- 1.1000 
CH(X)- 5.0337 CV(X)- 5.7644 CK(X)- .0606 CV(X)- -.3659 
CM(X)- 5.0945 CV(X)- 6.1226 CK(X)- .0936 CV(X)- -.3880 
CH(X)- 5.0945 CV(X)- 6.1208 CH(X)- .0936 CV(X)- -.3880 
CH(X)- 5.0945 CV(X)- 6.l208 CHeX)- .0936 CV(X)- -.3880 

x- .5000 
CH(X)- 5.4754 CVeX)- 3.5379 
CHeX)- 5.5588 CV(X)- 3.1502 
CHeX)- 5.5588 CV(X)- 3.1412 
CH(X)- 5.5588 CV(X)- 3.'412 
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