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Abstract 
 

Diffuse Large B-Cell Lymphoma (DLBCL) is the most common and aggressive 

subtype of Non-Hodgkin’s Lymphoma (B-NHL), accounting for a significant proportion of 

lymphoma-related mortality. Despite advances in treatment, approximately 30-40% of 

DLBCL patients experience relapse or exhibit refractory disease (rrDLBCL), underscoring 

the critical need to better understand the mechanisms driving therapeutic resistance. This 

thesis used mouse modelling and multiplexed immunofluorescence imaging to explore 

the complex interplay between tumour cells and the tumour microenvironment (TME), 

focusing on how the TME contributes to the progression, immune evasion, and 

therapeutic resistance of DLBCL. 

The first part of this work examined the TME in mouse models of cancer using 

advanced spatial profiling technologies. Employing highly multiplexed immunofluorescent 

imaging via the PhenoCycler platform, we characterized the TME in pre-clinical models 

of lymphoma, alongside other cancer types such as breast cancer and melanoma. This 

technology allowed for high-resolution mapping of immune cells, endothelial cells, and 

fibroblasts within tumours, revealing distinct patterns of cell-cell interactions across 

different cancer models. The methodology developed in this study also provided a tunable 

approach for the analysis of archival tissues, offering a valuable resource for 

understanding the TME of various cancer models. 

The second part of the thesis utilized the PhenoCycler methodology on mouse and 

human tissues to examine a novel driver of therapeutic resistance in rrDLBCL: Signal 

Transducer and Activator of Transcription 6 (STAT6). In a previous study, our group 

identified recurrent gain-of-function STAT6D419 mutations in rrDLBCL, and we 
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hypothesized that these mutations induced therapeutic resistance via modulation of the 

TME. To this end, we established a mouse model that recapitulates critical features of 

human STAT6-mutant DLBCL, including elevated phospho-STAT6 levels, increased 

infiltration of CD4+ T cells, and resistance to doxorubicin chemotherapy. We used this 

model to describe mechanistically how STAT6D419-mutant tumour cells attract CD4+ T 

cells: STAT6D419 tumour cells express significantly higher levels of the chemokine CCL17, 

which leads to the enhanced recruitment CCR4+ CD4+ T cells into the tumour. Functional 

assays further confirmed that inhibition of CCR4 using a small molecule antagonist 

reduced CD4+ T cell infiltration and restored doxorubicin sensitivity in STAT6D419N 

tumours. The findings were extended to human rrDLBCL samples, where we confirmed 

elevated CCR4+ CD4+ T cell infiltration in STAT6-mutant tumours. Overall, these results 

suggested that targeting the CCR4-CCL17 axis may offer a novel strategy to overcome 

therapeutic resistance and improve outcomes for patients with STAT6D419 mutant 

rrDLBCL.  

In conclusion, this thesis employed newly developed techniques in spatial biology 

to advance our understanding of the TME in DLBCL, with a particular focus on the STAT6 

signalling axis and its impact on immune infiltration and therapeutic resistance in 

rrDLBCL. By leveraging mouse modelling and cutting-edge spatial biology techniques, 

we provided new insights into the cellular and molecular mechanisms underlying 

rrDLBCL, offering promising therapeutic avenues for targeting the TME to enhance 

treatment efficacy in relapsed and refractory cases. 
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Résumé 

Le lymphome diffus à grandes cellules B (DLBCL) est le sous-type le plus courant 

et agressif du lymphome non hodgkinien (B-NHL) représentant une part significative de 

la mortalité liée aux lymphomes. Malgré les avancées thérapeutiques, environ 30 à 40 % 

des patients atteints de DLBCL connaissent une rechute ou présentent une maladie 

réfractaire (rrDLBCL), soulignant le besoin crucial de mieux comprendre les mécanismes 

sous-jacents à la résistance thérapeutique. Cette thèse utilise la modélisation murine et 

l’imagerie immunofluorescente multiplexée pour explorer les interactions complexes 

entre les cellules tumorales et le microenvironnement tumoral (TME), en se concentrant 

sur la contribution du TME à la progression, à l’évasion immunitaire et à la résistance 

thérapeutique du DLBCL. 

La première partie de ce travail examine le TME dans des modèles murins de 

cancer en utilisant des technologies avancées de profilage spatial. Grâce à l’imagerie 

immunofluorescente multiplexée, via la plateforme PhenoCycler, nous avons caractérisé 

le TME dans des modèles précliniques de lymphome, ainsi que dans d’autres types de 

cancer tels que le cancer du sein et le mélanome. Cette technologie a permis une 

cartographie haute résolution des cellules immunitaires, des cellules endothéliales et des 

fibroblastes au sein des tumeurs, révélant des schémas distincts d’interactions cellule-

cellule entre différents modèles de cancer. La méthodologie développée dans cette étude 

offre également une approche modulable pour l’analyse des tissus archivés, constituant 

une ressource précieuse pour comprendre le TME de divers modèles de cancer. 

La seconde partie de la thèse a utilisé la méthodologie PhenoCycler sur des tissus 

murins et humains pour examiner un nouveau moteur de la résistance thérapeutique 
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dans le rrDLBCL: le transducteur de signal et activateur de transcription 6 (STAT6). Dans 

une étude précédente, notre groupe a identifié des mutations récurrentes STAT6D419 à 

gain de fonction dans le rrDLBCL, et nous avons émis l’hypothèse que ces mutations 

induisaient une résistance thérapeutique via la modulation du TME. Pour cela, nous 

avons établi un modèle murin qui reproduit des caractéristiques clés du DLBCL humain 

avec mutation STAT6, notamment des niveaux élevés de phospho-STAT6, une infiltration 

accrue de cellules T CD4+ et une résistance à la chimiothérapie à base de doxorubicine. 

Nous avons utilisé ce modèle pour décrire de manière mécanistique comment les cellules 

tumorales STAT6D419 attirent les cellules T CD4+ : les cellules tumorales STAT6D419 

expriment des niveaux significativement plus élevés de la chimiokine CCL17, entraînant 

un recrutement accru de cellules T CD4+ CCR4+ dans la tumeur. Des tests fonctionnels 

ont confirmé que l’inhibition de CCR4 à l’aide d’une molécule antagoniste réduit 

l’infiltration des cellules T CD4+ et rétablit la sensibilité à la doxorubicine dans les tumeurs 

STAT6D419N. Ces résultats ont été étendus à des échantillons humains de rrDLBCL, où 

nous avons confirmé une infiltration élevée de cellules T CD4+ CCR4+ dans les tumeurs 

mutées STAT6D419. Dans l’ensemble, ces résultats suggèrent que le ciblage de l’axe 

CCR4-CCL17 pourrait offrir une nouvelle stratégie pour surmonter la résistance 

thérapeutique et améliorer les résultats pour les patients atteints de rrDLBCL mutant 

STAT6D419. 

En conclusion, cette thèse a employé des techniques récemment développées en 

biologie spatiale pour approfondir notre compréhension du TME dans le DLBCL, en 

mettant particulièrement l’accent sur l’axe de signalisation STAT6 et son impact sur 

l’infiltration immunitaire et la résistance thérapeutique dans le rrDLBCL. En tirant parti de 
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la modélisation murine et des techniques de biologie spatiale de pointe, nous avons 

apporté de nouvelles connaissances sur les mécanismes cellulaires et moléculaires 

sous-jacents au rrDLBCL, offrant des pistes thérapeutiques prometteuses pour cibler le 

TME et améliorer l’efficacité des traitements dans les cas de rechute et réfractaires. 
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Contribution to Original Knowledge 
 

DLBCL is the most commonly diagnosed lymphoid malignancy in adults. Numerous 

studies have taken genomic approaches to understand the heterogeneity of this disease, 

but this has not resulted in a change to the standard of care, as all patients receive the 

same therapy, R-CHOP. In this thesis of work, the TME is studied as another layer of 

DLBCL disease heterogeneity, with the overarching goal of identifying treatment 

modalities that could improve outcomes for a subset of patients. Specifically, this thesis 

used highly multiplexed immunofluorescence imaging and mouse models to uncover a 

novel therapeutic strategy for patients with rrDLBCL that have mutations in the gene 

STAT6. Indeed, we found that the TME can be therapeutically targeted in STAT6-mutant 

rrDLBCL, to restore sensitivity to chemotherapy.  

 

• In Chapter 2, we utilized mouse models of lymphoma for multiplexed 

immunofluorescent imaging, with the PhenoCycler-Fusion platform, to determine 

the constitution and cellular organization of the murine lymphoma TME.  

• In this publication, we were the first to report PhenoCycler imaging for murine 

FFPE tissues. This manuscript represented a major effort to identify and optimize 

antibody clones that stain various murine FFPE tissues with high fidelity. Following 

the publication of this work, many research groups have requested collaborations 

to perform similar experiments on their own experimental tissues.  

• In Chapter 3, we developed and described a mouse model of STAT6D419N-mutant 

DLBCL. The development of this mouse model allowed us to ask detailed 
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questions regarding the mechanism of therapeutic resistance in STAT6D419-mutant 

rrDLBCL and allowed us to screen a novel therapeutic target: CCR4.  

• The work performed in Chapter 3 allowed us to suggest the FDA-approved 

monoclonal antibody Mogamulizumab for the treatment of STAT6D419-mutant 

rrDLBCL.   

• In Chapter 3, we were the first team to spatially characterize the TME of rrDLBCL, 

using biopsies tissues from patients. This data will be analyzed for other 

experimental questions of interest, especially pertaining to TME-mediated 

mechanisms of resistance to therapy.  
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Chapter 1: Introduction and Literature Review 
 
1.1  Preface 
 

Lymphoma is a disease arising from the uncontrolled proliferation of either T or B 

lymphocytes. When involving B lymphocytes, lymphoma is classified as Hodgkin’s (cHL) 

or Non-Hodgkin’s Lymphoma (B-NHL). cHL is among the most curable cancers, with a 

five-year survival rate of 85% (1). B-NHL, on the other hand, is 6.5 times more prevalent 

than cHL (2), and its most common subtype, Diffuse Large B Cell Lymphoma (DLBCL), 

is much more aggressive. In 2024, it is estimated that 11700 Canadians will be diagnosed 

with DLBCL, and of those, 3100 will die from their disease (1). Moreover, while other 

common cancer types are decreasing in incidence and mortality rates, DLBCL incidence 

and mortality are projected to increase. These humbling statistics serve to emphasize the 

importance of studying DLBCL, to better improve patient outcomes. 

In this body of work, DLBCL is studied using mouse modelling. In particular, this 

research considers how the non-malignant components of the tumour, the so-called 

Tumour Microenvironment (TME), can support DLBCL growth and therapeutic resistance. 

Moreover, the research methodology takes advantage of recent developments in spatial 

tumour profiling, which employs oligonucleotide-conjugated antibodies for highly 

multiplexed immunofluorescent tumour imaging of proteins within the TME of both mouse 

and human tissues.  
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1.2  B Cells 

1.2.1 B Cell Maturation 

To understand how lymphoma develops, one must first understand the unique 

features of B cells that render them susceptible to malignant transformation. In normal 

physiology, B cells contribute to the humoral and adaptive immune responses by maturing 

following activation by an antigen into antibody-producing plasma cells or into long-lived 

memory B cells. However, they must first undergo maturation in the bone marrow, where 

they originate from hematopoietic stem cells (HSCs). The maturation steps that they 

undergo will ensure that each B cell in circulation will express a unique and functional B 

cell receptor (BCR) that is not reactive to self-antigens. B cell maturation consists of a 

series of tightly regulated developmental steps, where cells transition linearly between 

pro-B cell, pre-B cell, immature B cell, and mature naïve B cell states (3, 4).   

In the pro-B cell state, B cells rearrange their immunoglobulin heavy chain (IgH) 

through a process known as Variable, Diversity and Joining (VDJ) recombination to create 

a unique antigen-binding sequence. VDJ recombination involves the random 

recombination of IgH variable (V), diversity (D), and joining (J) gene segments, leading to 

transcription and translation of a functional µ heavy chain, which will form part of the pre-

BCR to be expressed on the cell surface (5). Once the pre-BCR is expressed, B cells are 

now in the pre-B cell state, which is characterized by light chain (IgL or IgK) 

recombination, including recombination of the V and J segments (6). The new 

recombinant sequence is then also transcribed and translated to produce a K or L light 

chain protein that is combined with the recombinant heavy chain and is expressed on the 

cell surface, as a complete BCR. Of note, the BCR not only consists of the surface-bound 
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recombinant heavy and light chain Ig proteins, but also includes the heterodimeric 

CD79A/ CD79B signaling unit. CD79A/B is critical for downstream tonic and antigen 

dependent survival signals.  

Once the recombinant BCR is expressed, the B cell is at the immature B cell phase, 

whereby the BCR will be tested for self-reactivity through negative selection. If the BCR 

strongly recognizes self-antigen, the B cell will undergo apoptosis, as a mechanism to 

decrease autoimmunity. Mature naïve B cells that survive negative selection will exit the 

bone marrow, circulate through the blood, and home to the secondary lymphoid organs 

(SLOs), including the spleen, lymph nodes, tonsil, and mucosa-associated lymphoid 

tissue (MALT).  

1.2.2 The Germinal Center Reaction 

When B cells in SLOs encounter antigen, they become activated and begin to 

transition through the germinal center (GC) reaction. Activation occurs through antigen 

binding to the mature BCR, leading to B cell antigen processing and presentation via 

Major Histocompatibility Complex II (MHCII) molecules (7, 8). Antigen-presenting B cells 

will be able to interact with T follicular helper (Tfh) cells to receive “help” signals that allow 

them to migrate to the follicular area of the SLO (8, 9), and form the GC. The GC consists 

of two distinct zones: the dark zone and the light zone. In the dark zone, B cells are termed 

“centroblasts”, rapidly divide, and undergo somatic hypermutation, which will introduce 

mutations into the Ig gene variable regions. This leads to the development of a pool of B 

cells with diverse affinities for the antigen (10). Following somatic hypermutation, 

centroblasts will migrate to the light zone, where they will now be termed “centrocytes”, 

and cell division will halt (11).  
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To best ensure the B cells with the highest and most specific affinity for antigen will 

continue to mature into memory B cells and plasma cells, centrocytes in the light zone 

undergo affinity maturation. In affinity maturation, follicular dendritic cells (FDCs) in the 

light zone present antigen to the newly mutated centrocytes. Only the centrocytes with 

high-affinity antibodies are able to bind the antigen, and will be able to receive survival 

signals from Tfh cells (12), through receptors termed CD40, ICOS, and PD-L1 on the 

centrocyte binding to CD40L, ICOSL, and PD-1 on the Tfh cell (13). The centrocytes that 

are not selected will undergo apoptosis (14). 

Tfh cells also secrete cytokines that induce centrocytes to undergo class switch 

recombination, which is the process that allows B cells to produce different antibody 

classes (15). TGF-β secreted by Tfh cells will induce class switch to IgA or IgG2, IL-4 will 

induce class switch to IgE or IgG1, and IFN-γ will induce class switch to IgG2a (16). Each 

of these classes are adapted to respond to different types of pathogens, thus allowing the 

humoral immune system to respond to infection in a highly specific fashion. 

After successful selection and class switch, high-affinity B cells differentiate into 

plasma cells, which function to produce antibodies, or into memory B cells, which provide 

long-term immunity and can quickly respond to future encounters with the same antigen 

(Figure 1.1). Indeed, the diversity and affinity of antibodies that are generated in response 

to immune challenge is dependent on the fidelity of the GC reaction, which is controlled 

by the coordination of several transcription factors, including NF-κB, IRF4, BCL6, 

BLIMP1, and Myc (17), and intracellular signaling pathways, including PI3K/ AKT, MAPK, 

and JAK/ STAT pathways (18-20). 
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Critically, GC B cells are unique, as the features described above are reminiscent of 

the some of the canonical hallmarks of cancer (21), including phenotypic plasticity, 

genomic instability, resistance to DNA damage, and extended replicative potential (22). 

When malignant transformation occurs, lymphoma cells derived from GC B cells retain 

many of these phenotypes, as will be discussed below.  

 

 
 
Figure 1.1 The Germinal Center Reaction. (Adapted from De Silva & Klein, 2015 (23)) 
Once naive B cells in SLOs encounter antigen, they will enter the GC reaction, which 
functions to generate B cells with high antigen affinity that can differentiate into plasma 
cells or long-lasting memory B cells.  
 

1.3  Diffuse Large B Cell Lymphoma 

1.3.1 Malignant Transformation 

For successful somatic mutation and affinity maturation to occur, GC B cells 

attenuate cell proliferation and DNA damage checkpoints (24). This renders them 

particularly susceptible to malignant transformation, and DLBCL, and other similar 
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aggressive and indolent lymphomas, arise from B cells transiting through the GC reaction 

(22). Indeed, the mutations that present in lymphoma cells are often reflective of the stage 

of the GC reaction where the mutation was acquired.  

As a further matter, GC B cells are prone to mutation. In the dark zone, somatic 

hypermutation is achieved via expression of 1) activation-induced cytidine deaminase 

(AID), and 2) the error-prone DNA polymerase eta (Polη) (25, 26). AID targets the V 

region of the Ig heavy and light chain and introduces single strand breaks into DNA by 

converting cytosine to uracil. When repairing AID-induced damage, Polη will introduce 

point-mutations, leading to the generation of new B cell antibody clones. While this 

process is a necessary feature of the humoral immune response, off-target mutations can 

occur. Both gain-of-function (GOF) and loss-of-function (LOF) mutations in non-Ig genes 

can engender B cells with selective survival advantages that evolve to malignancy.  

For instance, in the GC reaction, expression of the transcriptional repressor BCL6 

is critical for downregulating expression of cell cycle checkpoint genes (including 

CDKN1A and CDKN1B (27)) and genes involved in the DNA damage response pathway 

(including TP53 (28)). Repression of these genes allows dark zone B cells to bypass 

survival checkpoints as they undergo somatic hypermutation (29). Concordantly, GOF 

BCL6 mutations are recurrent in B cell lymphomas, and drive tumour cell proliferation and 

survival. Interestingly, BCL6 also plays a role in the light zone, through silencing gene 

expression of the anti-apoptotic protein BCL2. This repression poises GC B cells to 

undergo apoptosis if they are not selected during affinity maturation. However, in 

lymphoma, BCL2 translocations bypass this repression, by driving BCL2 expression 
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through alternative enhancers and promoters, leading to tumour cell resistance to 

apoptosis.  

Moreover, in the light zone, GC B cells require interactions with FDCs and Tfh cells 

(the so-called “immune synapse”) for survival signals through their BCR, allowing them 

to avoid apoptosis and exit the GC reaction for further differentiation (30). In lymphoma 

cells, the requirement for survival signals from the immune synapse can be evaded 

through genetic lesions that enable T cell-independent B cell survival (ie. LOF mutation 

of B2M or MHCII) or cause constitutive BCR activation (ie. GOF mutation of CD79B). In 

Table 1.1, additional examples of genes that are recurrently mutated in DLBCL and their 

normal function in the GC are listed (non-exhaustive).  

 

Table 1.1 Recurrent Mutations in DLBCL and Association with Germinal Center 
Function (Adapted from Mlynarczyk et al. 2019 (22)) 
 
Gene Normal Function In DLBCL 
Gain of Function Mutations or Gene Amplifications/ Translocations 
BCL2 Restrict apoptosis in the light zone Restrict apoptosis in tumour cells 

BCL6 Resistance to apoptosis, DNA-damage 
tolerance, cell cycle progression 

Survival, proliferation, differentiation blockade, 
DNA damage 

CARD11 GC initiation and B cell activation Survival 

CCND3 Cell expansion in the dark zone Proliferation 

CD79A/B B cell activation Survival 

EZH2 GC formation and repression of cell 
proliferation checkpoints Differentiation blockade, proliferation 

FOXO1 Transcription factor for dark zone gene 
expression Survival and proliferation  

MYC GC entry Cell growth 

MYD88 B cell activation Survival 

NFKBIZ B cell activation Survival 

PD-L1 Mediates interaction with Tfh cells Immune escape 
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STAT6 GC entry and maintenance, class switch 
recombination  

Cell survival, resistance to apoptosis, immune 
escape 

TCF3 Transcription factor for dark zone gene 
expression Survival and proliferation 

Loss of Function Mutations 
B2M MHC-I expression on cell surface Immune escape 

CIITA MHC-II expression on cell surface Immune escape 

CREBBP GC exit Differentiation blockade, proliferation, immune 
escape 

EP300 GC exit Differentiation blockade, immune escape 

GNA13 GC maintenance Dissemination of lymphoma outside of the GC  

KMT2D GC exit, plasma cell differentiation Differentiation blockade, cell survival 

TMEM30A BCR expression Survival signaling, immune escape 

PRDM1 Plasma cell differentiation Differentiation blockade 

TNFSRF14 Mediates interaction with Tfh cells, to 
restrict B cell expansion Activation of BCR signaling 

TP53 DNA damage checkpoint Genomic instability 

 

1.3.2 Diagnosis, Staging, and Treatment of DLBCL 

Once malignant transformation occurs, patients may present to their doctor with 

complaints of fatigue, weight loss, fever, night sweats, and/ or swollen lymph nodes. To 

diagnose DLBCL from these non-specific symptoms, a biopsy of the affected lymph node 

is required. Histopathological examination will confirm the presence of large, atypical B 

cells (31). Moreover, a PET-CT scan will be used to identify other organs with disease 

involvement (32), which is critical for disease staging (33). Based on the Ann Arbor and 

Lugano staging systems, Stage I DLBCL has disease involvement of a single lymph node 

region or single lymphoid structure, Stage II DLBCL involves two or more lymph node 

regions/ lymphoid structures on the same side of the diaphragm, Stage III DLBCL involves 

two or more lymph node regions/ structures on both sides of the diaphragm, and Stage 

IV DLBCL has additional extranodal involvement (34).  
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Regardless of disease stage at diagnosis, the standard of care therapy for newly 

diagnosed DLBCL is the poly-chemoimmunotherapy R-CHOP, which consists of 8 cycles 

of Rituximab, Cyclophosphamide, doxorubicin Hydrochloride, Oncovin (Vincristine), and 

Prednisone. The CHOP components in R-CHOP include standard chemotherapy agents 

designed to kill rapidly dividing cells by interfering with DNA synthesis and cellular 

replication. Cyclophosphamide, an alkylating agent, damages DNA, preventing cancer 

cell division; Doxorubicin, an anthracycline, intercalates DNA and inhibits topoisomerase 

II, causing DNA strand breaks; Vincristine, a vinca alkaloid, disrupts microtubule 

formation, halting mitosis; and Prednisone, a corticosteroid, reduces inflammation and 

can induce cell death in certain lymphoma cells. Rituximab is a monoclonal antibody 

specifically targeting CD20, an antigen on the surface of B cells, which promotes immune-

mediated killing of both malignant lymphoma cells and normal B cells. This regimen is 

very effective, and with R-CHOP, more than 60% of patients will be cured. There have 

been attempts to improve clinical outcomes by intensifying R-CHOP, through increased 

dose concentration (R-megaCHOEP, (35)) or decreased time between treatment cycles 

(R-CHOP-14, (36)).  However, these strategies increased toxicity and did not impart a 

survival benefit.  

Recent clinical trials have also explored other therapies that might be used in the 

frontline setting for DLBCL. For instance, given that recurrent GOF mutations in CD79A/B 

are found in DLBCL, the POLARIX study evaluated the use of the CD79B-directed 

antibody-drug conjugate polatuzumab vedotin in the place of vincristine in R-CHOP (37). 

This therapy, termed pola-R-CHP, led to a modest improvement in progression free 

survival (PFS; 76.7% patients without progression for pola-R-CHP vs 70.2% in R-CHOP 
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treated), but did not impact overall survival (OS). Another less successful attempt to target 

BCR-signaling was in the PHOENIX trial, which used the BTK inhibitor ibrutinib in 

combination with R-CHOP. Ibrutinib + R-CHOP had favourable outcomes in patients 

younger than 60 years of age, but in patients older than 60, ibrutinib + R-CHOP worsened 

OS and PFS, and resulted in an increase in serious adverse events (38). Beyond BCR-

signaling, apoptosis pathways have also been targeted in clinical trials. In the CAVALLI 

study, the BCL2 inhibitor venetoclax was tested in combination with R-CHOP for newly 

diagnosed DLBCL showing BCL2 positivity (39). Venetoclax + R-CHOP showed a modest 

improvement in OS and PFS, but also showed increased toxicity and incidence of adverse 

events. To date, none of these therapies have been widely adopted for the treatment of 

DLBCL.  

1.3.3 Relapsed and Refractory DLBCL 

While most DLBCL patients respond to R-CHOP, approximately 10-15% of 

patients will be refractory to treatment, and another 20-25% will experience relapse within 

24 months of treatment. In the scenario of relapsed and refractory DLBCL (rrDLBCL), 

many different treatment paradigms have been tested. Prior to 2024, the standard of care 

for rrDLBCL was salvage chemotherapy, usually consisting of gemcitabine, cisplatin, and 

dexamethasone (40), followed by autologous stem cell transplant (Figure 1.2A; ASCT). 

Despite this aggressive treatment, two year OS for rrDLBCL patients is often reported to 

be less than 20% (41). However, the approval of chimeric antigen T cell receptor (CAR-

T) therapy has vastly improved projected outcomes for rrDLBCL patients, with up to 46% 

of patients showing a complete response (42). CAR-T therapy is a type of personalized 

immunotherapy, that involves genetically modifying a patient’s T cells to express chimeric 
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antigen receptors that specifically target cancer cells (Figure 1.2B). In the case of 

DLBCL, CAR-T cells are targeted to the B cell marker CD19. The ZUMA-7 and 

TRANSFORM clinical trials demonstrated that CAR-T has improved efficacy compared 

to salvage chemotherapy and ASCT (43, 44), and vastly improved the outcome for 

patients with rrDLBCL, becoming the new standard of care for second-line treatment of 

DLBCL. 

 

 

Figure 1.2 Treatment Strategies for rrDLBCL. A. Schematic showing ASCT and high 
dose chemotherapy. Stem cells are collected from the blood or bone marrow of patients 
and are stored while the patient receives high dose chemotherapy. Following 
chemotherapy, stem cells are infused back into the patient. B. Schematic showing CAR-
T therapy. T cells are collected from the blood of patients and are genetically modified ex 
vivo to express a CAR directed to CD19. The CAR-T cells are then infused back into the 
patient. Figure made with Adobe Illustrator.  
 

Despite the successes of CAR-T, the biology of rrDLBCL is still relatively 

understudied compared to diagnostic DLBCL, and the factors which influence therapeutic 

resistance are poorly understood. This is typically attributed to a paucity of tissue and 

biopsy samples collected at DLBCL relapse available to study. Regardless, using the 

available materials, several studies have taken a genomic approach to identify mutations 
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that are enriched at relapse. These studies aimed to determine if there are gene mutations 

that predict response to R-CHOP, or if any gene mutations emerge at DLBCL relapse 

that could represent sub-dominant clones that expand under the select pressure of 

chemotherapy. 

To this end, a series of four unrelated studies performed whole exome sequencing 

(WES) on diagnostic and relapse DLBCL samples, with the aim of identifying gene 

mutations that could form the basis for therapeutic resistance (45-48). Critically, the 

sample size in each of the studies was low to moderate, ranging from 6 patients to 47 

patients, with only a subset of those being matched with diagnostic samples to track clonal 

evolution of mutations. Within these studies, Morin et al. identified mutations in TP53, 

CCND3, KMT2C, FOXO1, NFKBIZ, and STAT6 as enriched at relapse compared to 

diagnosis, while Mareschal et al. additionally identified mutations in IRF4, REL, CDKN2A 

and HYAL2, and Park et al. identified mutations MYD88, B2M, SORCS3, and WDFY3. 

While Greenawald et al. reported that several mutations are increased in prevalence at 

relapse, including BCL2 and CREBBP, they were also the first to report mutations that 

decreased in prevalence at relapse: in the genes CARD11, PIM1, and CD79B. Of these 

mutated genes, additional studies on TP53 (49), FOXO1 (50) , NFKBIZ (51), and STAT6 

(52) have begun to model how mutations affect protein structure and function, to change 

cellular dynamics and confer a growth advantage to rrDLBCL cells. However, no studies 

to date have posited potential treatment paradigms for when mutations in any of these 

genes are identified at relapse.  

With the advent of liquid biopsy to perform genetic profiling of tumours non-

invasively (53), the potential pool of rrDLBCL samples for characterization expanded. 
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Indeed, Rushton et al. took advantage of circulating tumour DNA (ctDNA), to explore the 

mutational spectrum of 135 rrDLBCL samples, compared with a “meta-cohort” of 1670 

diagnostic DLBCLs (54). In their dataset, 6 genes were recurrently mutated at relapse: 

TP53, KMT2D, CREBBP, FOXO1, NFKBIE, and MS4A1. Mutations in MS4A1, which 

encodes CD20 (the B cell marker and target of Rituximab), were predominantly 

truncating, resulting in CD20 expression loss, or missense mutations in the 

transmembrane domain that inhibited the binding of Rituximab or other CD20-targeted 

antibodies. Outside of the context of relapse, MS4A1 mutations are exceedingly rare, and 

therefore represent the emergence of Rituximab-resistance clones at relapse. Rushton 

et al. also found that mutations in TP53 and KMT2D were present in the majority of 

rrDLBCLs, but upon analysis of paired diagnostic and relapse samples, it was revealed 

that these mutations are “clonally stable”, meaning that they are also present at diagnosis. 

Thus, TP53 and KMT2D may be implicated in R-CHOP resistance and could be utilized 

to identify patients at high-risk for failure of frontline therapy.  

1.3.4 Subtyping of DLBCL 

There are approximately 150 genes that are recurrently mutated in DLBCL, defined 

as occurring in >5% of patients (55). To this end, DLBCL is an incredibly heterogenous 

disease, and substantial research efforts have aimed to subtype DLBCL into groups that 

differ in prognosis or therapeutic vulnerability.  

The first widely adopted subclassification of DLBCL used gene expression profiling to 

distinguish two subtypes of DLBCL based on cell of origin (COO): germinal center B cell-

like (GCB) and activated B cell-like (ABC). GCB-DLBCL tumours tend to express genes 

that are commonly expressed in GC B cells, while ABC-DLBCL tumours express genes 
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associated with chronic BCR signaling (including NF-κB activation) (56). Clinically, these 

subtypes can be distinguished using the Hans algorithm, which utilizes 

immunohistochemical (IHC) staining for CD10, BCL6, and MUM1, to classify patients as 

GCB or NON-GCB DLBCL (57). A 2009 update to the Hans algorithm further 

demonstrated that the additional evaluation of GCET1 and FOXP1 by IHC can 

discriminate more clearly between GCB and ABC-DLBCL (58). While this classification 

has been extremely helpful in identifying targeted therapies that might be effective in 

specific patients, especially since ABC-DLBCL has inferior PFS to GCB-DLBCL, 

approximately 10-15% of cases cannot be classified with this binary.  

More recent attempts to subclassify DLBCL have examined gene mutations with the 

shared underlying hypothesis that the combinations of mutations that drive individual 

cases of DLBCL are predictive of therapeutic vulnerability. In April of 2018, both Chapuy 

et al. and Schmitz et al. published their work in this regard. Chapuy et al. performed WES 

to identify the structural variants, copy number alterations, and single nucleotide variants 

that were present in 304 DLBCL tumours. They then used a consensus clustering method 

to define the common drivers of DLBCL, leading to identification of five genetic signatures 

of DLBCL (59), termed Cluster 1 (C1) through Cluster 5 (C5; Figure 1.3).  

C1 tumours frequently showed BCL6 structural variants, mutations in NOTCH2 and 

its negative regulator SPEN, mutations in members of the NF-κB signaling pathway, and 

inactivating mutations that could confer immune escape (ie. B2M, PDL1, PDL2). The 

majority of C1 tumours were classified as ABC-DLBCL. C2 DLBCLs were characterized 

by bi-allelic inactivation of TP53 via mutations and chromosome 17p copy loss, and C2 

consisted of both ABC and GCB-DLBCL. C3 DLBCLs exhibited BCL2 structural variants, 
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in addition to mutations in epigenetic and chromatin modification genes, such as KMT2D, 

CREBBP, and EZH2. C4 DLBCLs were similar to C3 DLBCLs, as they are both primarily 

GCB-DLBCLs, and have mutations in genes that code for proteins with epigenetic 

function. However, while C3 DLBCLs primarily show alterations in chromatin modifying 

proteins, C4 DLBCLs have frequent mutations in histone-associated genes. C4 DLBCLs 

also have mutations in BCR/ PI3K signalling intermediates, and mutations in genes within 

the RAS/ JAK/ STAT pathway. The final cluster by Chapuy et al, C5, was another ABC-

DLBCL cluster, defined by mutations in MYD88 and CD79B, and by 18q chromosomal 

gain, leading to increased BCL2 expression.  

 

 

Figure 1.3 DLBCL Subtypes. (Adapted from Sehn & Salles, 2021 (34)). Schematic 
showing each identified subtype of DLCBL, including driving gene mutation. Arrows show 
how each subtype corresponds to other published subtypes. Potential therapeutic targets 
are indicated by green bars.  
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In their subclassification system, Schmitz et al. used exome and transcriptome 

sequencing, in addition to targeted amplicon resequencing and array-based copy-number 

analysis to profile 574 DLBCL tumours (60). With this pipeline, four genetic subtypes were 

identified, termed MCD, BN2, EZB, and N1. Roughly speaking, MCD tumours were 

similar to C5, BN2 tumours were similar to C1, and EZB tumours were similar to C3 

(Figure 1.3). N1 tumours did not have a clear parallel to the Chapuy et al. subtypes, but 

instead were primarily ABC-DLBCLs, and were defined by NOTCH1 mutations and 

aberrations in genes that control B cell differentiation, such as IRF4, ID3, and BCOR. 

As a follow-up, in 2020 Wright et al. published a probabilistic classification tool, termed 

“LymphGen”, using the same 574 patients samples from Schmitz et al. as a discovery 

cohort, and a 332 patient cohort from Ennishi et al. (61), in addition to the 304 patient 

cohort from Chapuy et al. for validation. With LymphGen, two additional subtypes were 

added to the Schmitz classification: ST2 and A53 (62). ST2 corresponded to the Chapuy 

C4 subtype, while A53 corresponded to C2. Moreover, Wright et al. demonstrated that 

the EZB subtype could be stratified as Myc-positive or Myc-negative, with Myc-positive 

EZB tumours having significantly worse prognosis and enrichment of double hit high-

grade B cell lymphoma (HGBCL-DH) cases (so-called “double hit”, due to genetic 

abnormalities in both the MYC and BCL2 or BCL6 genes). Wright et al. also suggested 

potential therapeutic targets for each DLBCL subtype. For instance, BTK inhibitors, which 

function to reduce chronic-BCR signaling, could be used to treat MCD tumours, due to 

their increased prevalence of mutations in MYD88 and CD79B, but BTK inhibitors could 

also be effective in the treatment of BN2 tumours, due to their reliance on NF-κB signaling. 

Similarly, a BCL2 inhibitor such as Venetoclax could be used to treat MCD lymphomas 
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due to their enrichment BCL2 amplifications. Thus, these findings led the authors to 

speculate that LymphGen could be used for the retrospective analysis of clinical trials, to 

determine if the top responders to each targeted agent corresponds with their predicted 

therapeutic vulnerabilities.  

Moreover, LymphGen subtypes can be integrated into pre-clinical studies, to screen 

the efficacy of novel therapeutics based on molecular classification, as the studies 

discussed above emphasize the importance of genetically diverse models that reflect the 

range of mutations seen in patient samples. Indeed, attempts to generate mouse models 

of DLBCL have taken into consideration COO and LymphGen classifications, to study 

specific genetic alterations and their impacts on tumor biology and drug response.  

 

1.4 Mouse Models of DLBCL 
 
1.4.1 Genetically Engineered Mouse Models 

To mimic the molecular features that are observed in human DLBCL, a variety of 

Genetically Engineered Mouse Models (GEMMs) have been developed, whereby 

DLBCL-associated genes are overexpressed, deleted, or mutated, leading to 

“spontaneous” tumour formation. Many of these GEMMs employ the Cre/LoxP system, 

using mice that allow for B cell and GC B cell conditional gene knockout, such as Cd19Cre, 

Mb1Cre, AicdaCre, and Cd21Cre mice. Other GEMMs take advantage of B cell and 

hematopoietic cell specific promoter regions, such as Eµ enhancer, Iµ promoter, and Vav 

promoter sequences, to overexpress genes of interest (63). With these GEMMs, gene 

alterations that are characteristic of LymphGen subtypes can be specifically induced in B 

cells, allowing for the study of tumourigenesis and tumour progression. Using GEMMs, 
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EZB, BN2, and MCD LymphGen subtypes have been modelled; however, no GEMMs of 

ST2, A53 or N1 DLBCL subtypes have yet been reported.  

As stated above, EZB-DLBCL is characterized by overexpression of BCL2, and 

mutations in epigenetic modifiers, such as EZH2, KMT2D, and CREBBP. In one model, 

known as the VavP-BCL2 model, BCL2 gene expression is driven by the Vav promoter, 

leading to BCL2 overexpression in hematopoietic cells and subsequent GC B cell 

malignant transformation. VavP-BCL2 mice develop somatically mutated, clonal B cell 

lymphomas (64). When VavP-BCL2 mice are crossed with mice that either carry 

mutations in Ezh2 (65), have deletion of Kmt2d (66), or have homo- or heterozygous 

Crebbp deletion (67), lymphomagenesis is enhanced. These findings underscore how 

different gene alterations cooperate to induce lymphomagenesis.  

BN2-DLBCL is characterized by BCL6 structural variants. To model this, HA-

tagged Bcl6 was inserted into the IgH Iµ promoter (68). These mice, termed IµHA.Bcl6/wt 

mice, develop spontaneous lymphoma when they are between 13 – 15 months old. 

IµHA.Bcl6/wt tumors display a mature B cell phenotype and are histologically reminiscent of 

human DLBCL. However, these mice have yet to be combined with other gene mutations 

that are characteristic of BN2-DLBCL, such as Notch2 and Spen, and therefore do not 

yet model the full genetic spectrum of BN2-DLBCL.  

 MCD-DLBCLs are defined by mutations in MYD88 and CD79B and are commonly 

classified as ABC-DLBCL. To model this, a GEMM was developed with a conditional 

Myd88 p.L252P mutant allele. These mice were crossed with Cd19Cre, AicdaCre, and 

Cd21Cre, leading to mouse strains that develop splenomegaly and DLBCL-like disease in 

30% of mice (69). Several attempts to refine this model have increased the prevalence of 
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mice displaying aggressive lymphoma phenotypes. For instance, by overexpressing 

BCL2 using the Rosa26 locus, DLBCL was observed in 80% of mice (69). Further 

incorporation of Prdm1 deletion and Spib overexpression led to lymphomas with pre-

memory and light-zone B cell characteristics, which are reminiscent of ABC-like DLBCL 

(70). 

 GEMMs have the power to replicate the complex temporal development of DLBCL, 

and they enable the study of specific genetic alterations in the context of immune 

competence. However, they are still unable to fully model the true genetic complexity of 

DLBCL, as more than 150 genes are recurrently mutated in DLBCL. Confounding this, 

DLBCL GEMMs often have long latency periods before tumours develop, and tumours 

do not penetrate across all offspring in the cohort. While these inconsistencies in tumour 

development mimic a human population, low penetrance and long latency make GEMMs 

more resource intensive and costly for large-scale studies, particularly those studies 

performing drug development and drug testing. Due to these drawbacks, syngeneic 

mouse models offer distinct advantages over GEMMs for the study of DLBCL. 

1.4.2 Syngeneic Mouse Models   

 Syngeneic mouse models utilize tumor cells that are derived from a specific strain 

of mouse, that are maintained ex vivo and are transplanted back into the same strain of 

mouse to induce tumour formation. This approach ensures that the immune system of the 

recipient mouse is compatible with the tumour cells, avoiding immune rejection. As 

compared to GEMMs, syngeneic mouse models are highly reproducible and scalable, 

which is beneficial for pre-clinical studies that require multiple cohorts and treatment 

arms. Moreover, murine tumour cell lines can be genetically modified ex vivo, to 
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overexpress, mutate, or delete genes of interest, allowing for studies that examine the 

functional consequences of specific gene modifications on tumour development and 

treatment responses, without the time and resources required to develop a new GEMM. 

Thus, syngeneic mouse models are often favoured for DLBCL studies that aim to screen 

novel therapeutics.  

 One of the most used syngeneic mouse models in DLBCL research is A20. A20 

cells were derived from a spontaneous tumour that arose in an aged female BALB/C 

mouse (71), and are known to express B cell markers, such as CD19 and CD20, and can 

produce both IgM and IgH (72). Molecular cytogenetics have confirmed that A20 is driven 

by c-Myc translocation and copy number gain (73). Due to their aggressive nature when 

implanted into immunocompetent BALB/C mice, A20 tumours have been used to study 

minimal residual disease following R-CHOP treatment (74). A20 cells are also known to 

express PD-L1 (75), and have therefore been extensively used to test novel 

immunotherapies for the treatment of DLBCL, including various immune checkpoint 

inhibitors and CAR-T (76, 77). Critically, A20 cells can grow subcutaneously when 

implanted under the skin, but they have also been reported to grow in organs such as the 

spleen, eye, brain, and liver, depending on the implantation strategy (78-80). Thus, A20 

cells allow for the study of lymphoma growth in extranodal sites having varied TMEs.  

 The other most commonly used syngeneic lymphoma model is Eµ-Myc. Eµ-Myc 

tumour cells were originally derived from the Eµ-Myc GEMM, which express Myc under 

the control of the IgH Eµ promoter on a C57BL/6 background (81). While Eµ-Myc tumours 

are Myc driven, additional alterations in genes including Tp53, Ezh2, and Bcl2 have been 

reported (82-84). Eµ-Myc tumours are exceedingly aggressive. When Eµ-Myc cells are 
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transplanted into immunocompetent C57BL/6 mice, large tumour masses form in the 

lymph nodes and spleen. Indeed, the Eµ-Myc transplant model has been used to study 

how genomic changes impact tumour progression (85, 86), and has been used to screen 

novel targeted agents (87, 88), proving to be a valuable mouse model of aggressive 

lymphoma.  

While syngeneic mouse models have been widely used, some elements of these 

models have been criticized. Since syngeneic models use murine cancer cells, results 

may not always translate to human biology or predict human therapeutic outcomes 

accurately. Moreover, syngeneic models rely on cancer cell lines that are clonally 

homogenous and often driven by a single oncogene, and therefore inherently will not fully 

capture the complexity and heterogeneity of human cancer.  

1.4.3 Patient-Derived Xenograft Models  

Patient-derived xenograft models (PDXs) are established by implanting a piece of 

tumour tissue from a human patient into an immunocompromised mouse, where it can 

grow and then be propagated via serial transplant into new mice. PDX models maintain 

the genetic heterogeneity observed in the original patient for at least 10 passages (89), 

and are therefore a powerful reflection of human cancer.  

PDX models of DLBCL have proven to retain the same histological and COO 

classification as the original human tumour (90, 91). Moreover, PDXs have been used to 

successfully predict therapeutic vulnerability. Using a panel of 8 different DLBCL PDXs, 

Chapuy et al. showed that only DLBCL PDXs that were dependent on chronic BCR-

signaling through spleen tyrosine kinase (SYK)/ PI3K/ AKT for survival were sensitive to 

the SYK inhibitor entospletinib (90). Similarly, Zhang et al. used PDX DLBCL models to 
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demonstrate that acquired resistance to Ibrutinib could be overcome with the PI3K 

inhibitor idelalisib (91). Thus, PDX models have proven to be incredibly useful for the 

testing of hypotheses related to the efficacy of targeted therapies.  

The critical drawback to PDX models is that they must be implanted into 

immunodeficient mice. Therefore, while PDXs powerfully model human DLBCL genetic 

heterogeneity, they are lacking the non-malignant component of the tumour: the TME. 

Indeed, the TME of DLBCL has proven to be another layer of disease heterogeneity, 

which must be taken into consideration when designing rational novel therapeutics. 

Accordingly, the most recent attempts to subclassify DLBCL include consideration of the 

TME. 

 

1.5 The Tumour Microenvironment of DLBCL 

1.5.1 Components and Subtypes of the TME in DLBCL 

Biological heterogeneity in DLBCL is not only achieved through genomic lesions, 

but also through differences in abundance and spatial organization of the components of 

the TME. In DLBCL and other cancers, the TME is a complex and dynamic ecosystem of 

tumour cells, immune cells, stromal cells, vasculature, extracellular matrix (ECM), and 

cytokines/ chemokines (Table 1.2). The TME not only influences disease progression and 

prognosis, but also plays an important role in therapeutic resistance or therapeutic 

susceptibility.   

The TME contributes to tumour growth and survival through multiple mechanisms, 

including immune evasion, metabolic reprogramming, angiogenesis, and remodeling of 

the ECM (92, 93). Immune cells within the TME, such as macrophages, Tregs, and 
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myeloid-derived suppressor cells (MDSCs), often create an immunosuppressive milieu 

that enables tumor persistence. These cells secrete immunosuppressive cytokines, which 

can contribute to the upregulation of immune checkpoint molecules such as PD-L1 and 

CTLA-4 (94), leading to T-cell exhaustion and reduced anti-tumour immunity. Conversely, 

CD8+ cells and NK cells within the TME have the potential to mediate anti-tumour 

responses but are often rendered ineffective due to these immunosuppressive signals. 

Key signaling pathways that support tumour growth and can be activated in tumour 

cells by cells of the TME include the NF-κB, JAK/STAT, and PI3K/AKT/mTOR pathways. 

The NF-κB pathway, frequently activated in DLBCL, is a critical mediator of inflammation 

and immune evasion, promoting the survival of both malignant B cells and 

immunosuppressive cells in the microenvironment (95). The JAK/STAT signaling axis 

drives tumor growth by enhancing survival signals in both tumor and stromal cells while 

simultaneously suppressing anti-tumor immunity (96, 97). Additionally, overactivation of 

the PI3K/AKT/mTOR pathway can facilitate tumor cell proliferation, survival, and 

resistance to apoptosis (98). 

 

Table 1.2 Components of the Tumour Microenvironment  

TME Component Function in 
Normal Biology 

Contribution to 
Tumour Growth/ 
Survival 

Anti-Tumour 
Function 

CD8 T cell Adaptive immune 
response 

Immune exhaustion Direct tumour cell killing 

CD4 T cell 
Adaptive immune 
response 

Tumour promoting 
inflammation, 
immunosuppression 

Maintenance of CD8 
response, occasional 
tumour cell cytotoxicity 

Regulatory T cell 
Regulation of 
immune response 

Suppression of T cell 
mediated tumour 
cytotoxicity 

Production of anti-
tumour cytokines, 
suppression of tumour 
promoting inflammation 
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Natural Killer cell Innate immune 
response 

Tumour promoting 
inflammation 

Direct tumour cell killing 

Plasma cell Humoral immune 
response 

Pro-tumour cytokine 
production 

Production of anti-
tumour antibodies 

Mast cell 
Innate immune 
response 

Tumour promoting 
inflammation, 
promotion of tumour 
angiogenesis  

Secretion of anti-
tumour cytokines and 
chemokines 

Macrophage/ 
Monocyte 

Innate immune 
response  

Immunosuppression, 
promotion of tumour 
metastasis and 
chemoresistance  

Tumour cell 
phagocytosis, secretion 
of anti-tumour 
cytokines and 
chemokines 

Dendritic cell 
 

Adaptive immune 
response 

Inhibition of other 
immune cells 

Mediation of an 
adaptive anti-tumour 
response  

Neutrophil 
Innate immune 
response 

Inhibition of other 
immune cells, and 
enhancement of tumour 
metastasis  

Direct tumour cell killing 

Endothelial Cell 
Tissue 
vascularization 

Tumour 
vascularization, 
increased metastatic 
potential 

Accessibility of anti-
tumour immune cells or 
therapeutic agents to 
tumour core 

Extracellular 
Matrix (ECM) 

Tissue structure Immunosuppression, 
induction of therapeutic 
resistance  

Physical restraint of 
tumour growth 

Fibroblast 
Tissue structure Facilitation of tumour 

metastasis, 
immunosuppression 

Suppression of tumour 
growth, recruitment of 
anti-tumour immune 
cells 

Cytokines/ 
Chemokines 

Communication 
between different 
cells 

Promotion of tumour 
cell survival and 
angiogenesis, 
maintenance of tumour 
stem cells 

Induction of anti-tumour 
immune cell activity, 
restoration of anti-
tumour immune 
function 

 

Large scale attempts to create DLBCL TME subtypes have taken advantage of the 

abundance of available DLBCL transcriptomic data using a technique called 

CIBERSORT. With CIBERSORT, single cell RNA sequencing (scRNAseq) data is 

collected from a subset of representative tissues, then cell types within the dataset are 

identified and annotated. This data is used to create a matrix with “barcode genes” that 

can discriminate between each cell type within the tissue. The matrix can be applied to 
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bulk RNAseq data, to infer cell type proportions (99). Thus, CIBERSORT allows 

researchers to measure the abundance of different cell types within dissociated and bulk 

processed tumour samples, representing the powerful potential to use publicly available 

datasets to answer novel questions related to the DLBCL TME. In one of the first uses of 

CIBERSORT to profile the DLBCL TME, Ciavarella et al. identified the presence of CD4 

T cells, dendritic cells, and myofibroblasts from gene expression profiling data obtained 

from sequenced FFPE tumour specimens (100). The presence of these three cell types 

correlated with favourable patient prognosis, independently of COO classification.  

In a more ambitious attempt, Steen et al. used an offshoot of CIBERSORT, called 

EcoTyper, to create a reference map of 45 normal and malignant lymphoid tissues, from 

scRNAseq data, and then applied this reference map to bulk transcriptomic data from 

1577 DLBCL patients. Thirteen cell types which typically constitute the majority of the 

cellular compartment of DLBCL could be identified: B cells, plasma cells, CD8 T cells, 

CD4 T cells, regulatory T cells (Tregs), Tfh cells, natural killer (NK) cells, monocytes and 

macrophages, dendritic cells (DCs), neutrophils, mast cells, endothelial cells, and 

fibroblasts (101). Moreover, Steen et al. used their methodology to characterize the cell 

states of the B cells within the DLBCL tumours, identifying 5 different B cell states (S1 

through S5), which are representative of the differentiation state of the B cell, but do not 

closely map back to LymphGen classification. By integrating DLBCL cell state with non-

tumour TME composition, Steen et al. identified nine different lymphoma ecotypes (LEs), 

8/9 of which were prognostic.  

LE1 – LE4 were associated with poor patient prognosis, with LE1 and LE2 showing 

the highest abundance of tumour cells, with additional infiltration of DCs and 
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macrophages in LE1, and plasma cell infiltration in LE2. LE3 tumours were characterized 

by the presence of DCs and CD4 T cells but were also often double-hit lymphomas. LE4 

tumours had a complex tumour ecosystem of CD4 and CD8 T cells, Tregs, macrophages, 

fibroblasts, and neutrophils. LE5 was not associated with patient prognosis and consisted 

largely of lymphoid cells – CD4 T cells, CD8 T cells, Tfh cells, and NK cells – and 

endothelial cells. LE6 – LE9 were associated with favourable patient prognosis. LE6 

tumours had DCs, endothelial cells, mast cells, Tregs, Tfh cells, fibroblasts and plasma 

cells. LE7 tumours had NK cells, endothelial cells, DCs, Tfh cells, and mast cells. LE8 

tumours had plasma cells, Tregs, and fibroblasts. LE9 tumours had fibroblasts, 

macrophages, Tregs, neutrophils, CD4 T cells, and CD8 T cells. The authors posit that 

these different lymphoma ecotypes are a unique perspective on lymphoma heterogeneity, 

expanding beyond COO and LymphGen classifications, and may be able to identify 

opportunities for therapeutic targeting.  

In a similar study, Kotlov et al. also used CIBERSORT on 4655 DLBCLs from 

independent cohorts to identify components of the TME and describe 4 different 

lymphoma microenvironments (LMEs). The four LMEs were termed “germinal center-

like”, due to the presence of cell types commonly found in germinal centers, 

“mesenchymal”, due to the abundance of stromal cells and enrichment of ECM pathways, 

“inflammatory”, due to the presence of inflammatory cells and cytokines, and “depleted”, 

due to the overall reduced presence of many microenvironmental components (102). 

Each of these DLBCL LMEs consisted of both ABC and GCB tumour types and were 

distributed between the different LymphGen classifications. Critically, LME classification 

was associated with clinical outcome, with the germinal center LME having the most 
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favourable response to R-CHOP, and the depleted LME having the worst response, 

particularly enriched for patients who experience disease relapse. Moreover, Kotlov et al. 

demonstrated that when ECM components are derived from cancer-associated 

fibroblasts, there is a favourable prognosis compared to when ECM components are 

derived from macrophages, concordant with findings by Ciavarella et al, which show that 

myofibroblasts are associated with favourable prognosis, and findings by Steen et al, 

which show enrichment of fibroblasts in their most positively prognostic LE9 subtype. 

Indeed, the results of these studies suggest that clinical trials for novel therapeutic agents 

should not only consider DLBCL COO and LymphGen subtypes but should also consider 

the composition of the TME as a predictive and prognostic factor. However, to date there 

is no unified method for classifying the DLBCL TME.  

1.5.3 Techniques to Study the TME 

While CIBERSORT has been a powerful tool for the assessment of the DLBCL 

TME, using widely available transcriptomic data, it is not a direct measure of cell type 

abundance in the TME, but rather an in-silico approximation. To directly measure the 

abundance of components of the TME, flow cytometry has been classically used, due to 

its wide application in clinical hematology. With flow cytometry, samples from dissociated 

tissues or peripheral blood are stained with a panel of fluorescently conjugated antibodies 

marking cell lineage or cell status. The samples are then run through a flow cytometer, 

which can read the fluorescent signal on each individual cell (103), allowing for their 

classification and quantification.  

Flow cytometry has been used extensively in DLBCL. Largely, studies have 

focused on tumour-infiltrating T cells (TILs). It has been found that CD4+ T cells, and 
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particularly CD45RO+ CD4 T cells, are associated with favourable prognosis (104-106). 

However, PD-1 expression on CD4 and CD8 T cells in DLBCL is associated with inferior 

prognosis (107). In a recent study, other immune cell subsets were also assessed in 

diagnostic DLBCL. With a cohort of 102 biopsy samples, Yu et al. measured the presence 

of normal B cells, T cells, NK cells, plasma cells, monocytes, and granulocytes (108). This 

study validated the positive prognostic impact of T cells, but further showed that increased 

proportions of NK cells correlate with improved survival, and the increased presence of 

granulocytes correlated with poor survival. Additional correlation analysis demonstrated 

that normal B cells are positively correlated with T cells, and granulocytes are positively 

correlated with monocytes.  

However, flow cytometry and CIBERSORT both use blood or dissociated tissue to 

surmise information about the DLBCL TME composition. Therefore, these techniques do 

not have the ability to take into consideration how different cell types spatially cluster 

together in neighbourhoods that impact their overall function. For instance, a CD8 T cell 

may express an anti-tumour cytotoxic protein like IFN-γ or GZMB, but it must be in close 

physical proximity to a tumour cell for those cytotoxic granules to be tumoricidal. Thus, 

spatial tumour profiling techniques have been rapidly applied to DLBCL biology to better 

understand how cellular interactions impact disease biology (Table 1.3).  
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Table 1.3 Comparison of Techniques to Study the TME of DLBCL 
 

Technique Sample 
Input 

Maximum 
Number of 
Markers 

Label Data 
Acquisition 

Spatial 
Resolution 

CIBERSORT Bulk RNAseq Whole 
transcriptome N/A Bioinformatic No 

Flow Cytometry Dissociated 
Tissue 40+* 

Fluorescently 
conjugated 
antibody 

Flow 
cytometer No 

Spatial 
Transcriptomics 

Histological 
section 

Whole 
transcriptome 

Barcoded 
microbeads RNAseq 1-10 cells 

Multiplexed IF Histological 
section Up to 7** Antibody Fluorescence 

microscope Single cell 

MIBI Histological 
section 40+ 

Metal 
conjugated 
antibody 

Mass 
cytometer Single cell 

IMC Histological 
section 40+ 

Metal 
conjugated 
antibody 

Mass 
cytometer Single cell 

PhenoCycler Histological 
section 

100+ 
 

Oligonucleotide 
conjugated 
antibody 

Fluorescence 
microscope Single cell 

*40 colour flow cytometry is only possible when using a spectral flow cytometer. Most 
common flow cytometers are equipped to detect up to 18 colours.  
** 7 colour multiplexed IF is only possible with the use of extensive experimental 
controls, or with the use of cyclic staining techniques, such as Opal. 

 

Spatial technologies take advantage of histological specimens to map tumour 

composition. For instance, newly developed technologies can perform whole 

transcriptome sequencing on fresh frozen or FFPE samples mounted to glass slides, by 

using mRNA capture probes that are associated with spatially defined barcode 

sequences. In DLBCL, spatial transcriptomics have been used to probe the association 

between tumour cell phenotypes and immune cell phenotypes, in the context of their 

physical localization. For instance, spatial transcriptomics has shown that macrophages 

from reactive lymph nodes have different gene expression profiles, depending on their 
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localization in the dark zone, light zone, or interfollicular zone. In DLBCL, where normal 

lymph node spatial organization is lost, macrophages have a different and distinct gene 

expression profile, which correlates with COO and overall patient survival (109). 

Moreover, spatial transcriptomics have been used by Dai et al. to show that DLBCL 

tumour cells with high glycolysis activity are often in an immunosuppressive TME, 

characterized by CD8 T cell exclusion and macrophage abundance (110). However, due 

to the high cost per sample, spatial transcriptomics is often applied to a small subset of 

samples, and results are then validated with a larger cohort using more classical methods, 

such as IHC or multiplexed immunofluorescence (IF). Indeed, Dai et al. validated their 

DLBCL glycolytic signature by using IHC staining for four different glycolysis proteins.  

IHC, multiplexed IF, and other antibody-based tissue imaging paradigms have the 

additional advantage of single cell resolution, while spatial transcriptomics is limited by a 

1 – 10 cell resolution. With classical IHC, staining is often not performed for more than 

two markers per tissue, which severely limits its capability to interrogate the complex 

TME. IF, on the other hand, provides the opportunity to multiplex antibodies, by using a 

wider variety of fluorophores for visualization of staining or by using cyclic staining 

techniques. Autio et al. used a series of 4-plex IF staining panels, to evaluate CD4 T cell 

regulation, CD8 T cell regulation, CD8 T cell cytotoxicity, and Th1 T cells in a cohort of 

188 DLBCL patients. They found that the expression of immune checkpoints on T cells in 

the TME, particularly TIM3, were associated with poor outcome for R-CHOP treated 

patients (111).  In a similar study, Xu-Monette et al. performed cyclic IF on tissues from 

405 patients. Their focus was also the DLBCL T cell compartment, but with additional 

markers included for NK cells, macrophages, and DLBCL cells (112). In their study, high 
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PD1 expression on CD8 T cells and high PD-L1 expression on macrophages were found 

to predict poor response to R-CHOP, while PD-L1 expression on tumour cells was 

predictive on superior patient survival, particularly when PD-L1+ DLBCL cells were in 

close proximity to PD1+ CD8 T cells. Thus, multiplexed IF not only increases the number 

of markers that can be analyzed as compared to traditional IHC, but also allows for spatial 

analysis of cell types, making it possible to study the physical interaction between immune 

and tumour cells within the TME.  

However, multiplexed IF has distinct limitations. Some tissues and cell types may 

have considerable autofluorescence, which interferes with the discrimination between 

true positive and false positive signal. Additionally, fluorophores are prone to 

photobleaching, which can be problematic in scenarios requiring prolonged or repeated 

imaging. Multiplexed IF is also limited by the number of markers that can be stained in a 

single tissue, with a typical maximum of 7 markers per tissue. Both imaging mass 

cytometry (IMC) and Multiplexed Ion Beam Imaging (MIBI) overcome these limitations. 

These techniques are capable of imaging more than 40 markers in a single tissue, by 

using unique metal isotope conjugated antibodies. Tissues are stained with a panel of 

antibodies, and then either laser ablation (IMC) or an ion beam (MIBI) are used to release 

the isotopes from the tissue, where they are then measured by a mass spectrometer. 

Since marker detection with these methods is based on mass spectrometry of metal 

isotypes, data quality is not affected by autofluorescence. Moreover, the use of metal-

tagged antibodies allows for multiplexing that does not need to take into consideration 

spectral overlap between fluorophores.  
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In DLBCL, IMC was used by Colombo et al. to profile 33 cases of DLBCL, with the 

aim of characterizing DLBCL immune cell spatial architecture and correlating their 

findings with DLBCL molecular subtype and responsiveness to R-CHOP. It was found 

that in tumours with low immune cell infiltration, macrophages were the predominant TME 

cell type, whereas CD4 T cells were the predominant TME cell type in tumours with 

greater immune infiltration. CD4 T cells were also found to have 2.88 times greater 

expression in C4 DLBCL tumours, as compared to the other Chapuy subtypes, indicating 

that the C4/ MCD tumour type is enriched for this TME cell type. In terms of 

responsiveness to R-CHOP, patients who were refractory to treatment were found to have 

increased expression of PD-L1/2, ICOS, VISTA, and pSTAT3. IMC profiling of DLBCL 

was also used to study fibroblastic reticular cells (FRCs) and their interactions with CD8 

T cells (113). It was found that GZMB+ (cytotoxic) CD8 T cells had increased interactions 

with FRCs in patients with the best prognosis. In patients with the worst prognosis, CD8 

T cells expressed markers of terminal exhaustion, including TIM3, LAG3, and PD1, and 

had decreased interactions with FRC cells. These results implicate the fibroblastic 

compartment as a contributor to DLBCL T cell immunostimulatory activity, further 

highlighting the diverse cellular interactions in DLCBL that impact patient outcomes. 

In similar studies, MIBI has been used to profile the DLBCL TME. Using a 27-plex 

staining panel, Wright et al. found three different TME types in DLBCL: immune-deficient, 

dendritic cell (DC)-enriched, and macrophage-enriched (114). Upon correlation of DLBCL 

TME subtype with Chapuy et al. DLBCL clusters, macrophage-enriched DLBCLs were 

exclusively found to be in DLBCL clusters C1, C4, and C5, which are associated with 

immune evasion, while DC-enriched and immune-deficient TMEs were found within all 
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clusters (C1—C5). However, no correlation with clinical outcome was presented. Reiss 

et al. performed a similar study with MIBI, and identified 9 different immune cell types, 

plus tumour cells, in 85 DLBCL tumour samples (115). They found that tumour cells 

express significantly higher levels of the immune suppressive markers PD-L1 and IDO1 

when they are in immune-enriched environments, suggesting that immune suppression 

in tumour cells might be induced when they are near certain immune cells. 

Overall, these studies, using a variety of techniques to study the DLBCL TME, 

have had diverse findings. Despite the differences in methodology and sample size, 

several trends in data have manifested. Typically, the presence of CD4 T cells was 

associated with favourable prognosis. Similarly, the presence of fibroblasts or ECM-

related signatures tended to predict moderately improved survival. Macrophages were 

usually found to be associated with immune depletion or immune escape, and the 

expression of exhaustion markers, such as PD1, TIM3, and LAG3 on CD4 and CD8 T 

cells correlated with poor prognosis. While many more studies will emerge which utilize 

CIBERSORT, flow cytometry, spatial transcriptomics, multiplexed IF, IMC, and MIBI, to 

interrogate the DLBCL TME, recent studies have also taken advantage of a new 

multiplexed imaging platform that has a much higher capability for multiplexing: 

PhenoCycler.  

1.5.4 PhenoCycler Highly Multiplexed Immunofluorescence Imaging 

PhenoCycler, previously known as CODEX, takes advantage of the strengths of 

multiplexed IF and the strengths of IMC/ MIBI, while allowing for increased multiplexing 

relative to both technologies. Rather than metal conjugated antibodies, PhenoCycler uses 

antibodies that are conjugated to unique DNA oligonucleotide “barcodes”. Due to the 
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numerous potential combinations of unique DNA sequences, PhenoCycler allows for the 

staining of a single tissue with up to 100 different antibodies, which will be visualized with 

fluorescence. While fluorescence imaging is typically limited by spectral overlap of 

fluorophores, PhenoCycler bypasses this restriction via the iterative imaging of antibodies 

in the staining panel. Complementary oligonucleotide “reporters” are conjugated to either 

ATTO550, AF647, or AF750 fluorophores, which are washed onto the tissue using a 

robotic fluidics system. Thus, with PhenoCycler, three antibodies will be imaged at time, 

then the reporters will be stripped from their barcodes, and three new fluorescent 

reporters will be washed onto the tissue and imaged. The experiment will proceed in this 

cyclic fashion, until all markers in the staining panel are visualized (Figure 1.4).  

 

 
 
Figure 1.4 Schematic of PhenoCycler Tissue Staining. With PhenoCycler, tissues 
are stained with a panel of up to 100 different oligonucleotide conjugated antibodies in a 
single step. Then tissue staining is iteratively imaged, by washing on fluorescently 
tagged reporters which bind to their complementary barcode.  
 

 

PhenoCycler has been recently used to characterize the DLBCL TME, with a 

particular focus on the subtyping of infiltrating T cells. Unsurprisingly, DLBCL tissues were 
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found to have disrupted structure as compared to normal lymph nodes. Neighbourhood 

analysis demonstrated that DLBCL tumours were lacking naïve and memory T cells, and 

cytotoxic T cells. Instead, PD1+ TIM3+ T cells were found to strongly co-localize with 

tumour cells and macrophages in DLBCL, thereby enhancing T cell exhaustion (116). In 

a smaller study, PhenoCycler was also used to identify the presence of TIGIT+ T cells in 

DLBCL tissues. When T cells were TIGIT+, they tended to create close contacts with 

tumour cells, and mouse modelling demonstrated that therapeutically targeting TIGIT 

induced durable tumour remission (117).  

1.5.5 Tumour Cell Modulation of the TME  

As discussed above, the majority of studies which have used spatial technologies 

to study the DLBCL TME have taken “discovery” approaches, rather than hypothesis-

driven approaches. The overarching goal of these studies has been to describe and 

classify the DLBCL TME to better understand the cellular components of the TME, and 

how their organization may predict therapeutic responses. Now that an abundance of 

experimental data is available regarding genomic/ transcriptomic and TME subtypes of 

DLBCL, more specific experimental questions can be posed.  

For instance, studies that have integrated tumour cell mutations and phenotypes 

with microenvironmental characteristics are in short supply. In one such study, TMEM30A 

LOF mutations in DLBCL were examined in the context of DLBCL therapeutic sensitivity 

and immune cell infiltration. When TMEM30A was lost in B cells, antigen-dependent BCR 

signaling was enhanced, which conferred a survival advantage to TMEM30A mutant 

clones during malignant transformation. Critically, TMEM30A KO tumours had increased 

macrophage invasion, and were thereby uniquely sensitive to anti-CD47 therapy, which 
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functions to induce macrophage phagocytosis of tumour cells (118). This study serves to 

highlight that many of the gene mutations that are enriched in DLBCL are involved in 

signaling pathways that are activated when DLBCL cells are in contact with different 

immune cell types within the SLO, and many other mutations in DLBCL cause evasion of 

immune destruction. Indeed, targeted studies which investigate how specific gene 

mutations impact the DLBCL TME are warranted.  

 

1.6 STAT6 in DLBCL 

1.6.1 STAT6 Structure and Function 

Signal Transducer and Activator of Transcription 6 (STAT6) belongs to the STAT 

family of related proteins, which all function to transmit cytokine signals at the plasma 

membrane into gene expression changes in the nucleus. While a variety of cytokines and 

growth factors are known to activate STAT-family signaling, activation of STAT6 

specifically depends on IL-4 or IL-13 stimulation, which signal through heterodimers 

composed of three possible subunits. IL-4 signals through both IL-4Rα complexed with 

the common gamma chain (γC), and through IL-4Rα complexed with IL-13Rα1 (119). IL-

13 is also able to signal through the former but is additionally known to bind to with high 

affinity to IL-13Rα2, which is a non-signaling subunit, functioning as a “cytokine sink” (120, 

121). Upon cytokine binding, the two receptor subunits will dimerize, allowing for 

downstream signaling through JAK proteins: IL-4Rα associates with JAK1, γC associates 

with JAK3, and IL-13Rα1 associates with JAK2/ TYK2 (121). IL-4/ IL-13 binding leads to 

phosphorylation of JAK1, which in turn will phosphorylate tyrosines in the IL-4Rα 

cytoplasmic domain (122), creating docking sites for STAT6. JAK1 can then 
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phosphorylate STAT6 at Tyrosine 641 (Y641), which promotes STAT6 homodimerization 

and nuclear translocation (Figure 1.5). In the nucleus, STAT6 acts as a transcriptional 

activator or transcriptional repressor.  

 

 

Figure 1.5 Schematic of IL-4/ IL-13 Signaling. Upon IL-4/ IL-13 binding to their 
receptors, phosphorylation of the IL-4Ra intracellular domain will induce STAT6 
recruitment, where it will then be phosphorylated by JAK proteins on Tyrosine 641. 
Following STAT6 phosphorylation, the protein will homodimerize, and the translocate to 
the nucleus, where it can bind to DNA and regulate transcription of target genes.  
 

 Indeed, the protein sequence of STAT6 reflects the domains required for these 

functions, with five distinct modules: the coiled coil domain, the DNA-binding domain, the 

linker domain, the SH2 domain, and the transactivation (TAD) domain (Figure 1.6). The 

SH2 domain is responsible for STAT6 recruitment to IL-4Rα phospho-tyrosine residues 

and has been a focus of therapeutic targeting to reduce STAT6 phosphorylation (123, 

124). STAT6 dimerization also occurs through the SH2 domain, and dimerization is 
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stabilized upon Y641 phosphorylation (125). Within the coiled coil domain, amino acids 

136-140 are critical for STAT6 nuclear import through importin-α3 (126). While STAT6 

can be imported into the nucleus independently of phosphorylation and dimerization 

(126), dimerization is required for STAT6 to interact with DNA through the DNA binding 

domain (125). Moreover, transcriptional activity of STAT6 can be modulated through other 

protein partners like CREBBP, p300 and NCoA-1, which interact with the STAT6 TAD 

domain (127, 128).  

 

 
 
Figure 1.6 Functional Domains within the STAT6 Protein Sequence. (Adapted from 
Li et al. (125)) Schematic representation of the STAT6 protein, with functional domains 
annotated. Phosphorylation at Tyrosine 641 (Y641) is central to STAT6 activation and 
nuclear translocation.  
  

 

STAT6 regulates the expression of various transcriptional targets across different 

cell types, including B cells, T cells, myeloid cells, and non-immune cells (129). In B cells, 

STAT6 controls key genes involved in proliferation, survival, and immune function, such 

as CD23 (FCER2), BCL-XL (BCL2L1), and IL-4Rα (IL4Ra) (130-133). STAT6 is similarly 

important for T cell and myeloid cell function, particularly in the context of Th2 and 

alternative macrophage activation (ie “M2”-differentiation). STAT6 directly controls 

transcription of GATA3 (134), which is the master transcription factor for Th2 

differentiation. In myeloid cells, STAT6 promotes the expression of Arginase 1 (ARG1) 

and the Mannose Receptor C Type 1 (MRC1), which are both “M2”-Marcophage markers 



 60 

(135, 136). In non-immune cells, STAT6 activation plays a significant role in regulating 

processes such as tissue remodeling and fibrosis, by regulating genes like MUC5AC in 

epithelial cells COL1A1 and COL1A2 in fibroblasts (137, 138).  

1.6.2 STAT6 in Hematological Malignancies 

STAT6 is frequently overactivated or mutated in several hematological 

malignancies, including DLBCL, cHL, follicular lymphoma (FL), primary mediastinal B-cell 

lymphoma (PMBCL), and cutaneous T-cell lymphoma (CTCL). In these cancers, STAT6 

has been demonstrated to play a role in promoting tumor cell survival and proliferation. It 

also regulates key cellular processes, including intercellular signaling, cell cycle 

progression, and genomic stability, as demonstrated in CTCL, where STAT6 controls the 

production of Th2 cytokines. Indeed, STAT6 inhibition was found to induce to cell cycle 

arrest and downregulation of cytokine production (136). 

In PMBCL, STAT6 exhibits a complex relationship with BCL6. Studies have shown 

that STAT6 is a transcriptional repressor of BCL6, and the two proteins are not co-

expressed within the same cell (139). Interestingly, paired knockdown of STAT6 and 

BCL6 in PMBCL cells sensitizes tumors to R-CHOP, indicating that intratumoral 

heterogeneity is a mechanism of drug resistance, and it is in part driven by STAT6 

expression (140). Genomic analyses in PMBCL have identified STAT6 mutations in 36-

43% of patients, particularly in the DNA-binding domain (141, 142). Further reinforcing 

the role of STAT6 signaling in PMBCL, 24-30% of PMBCL cases harbor mutations in 

IL4R, with evidence suggesting that the I242N mutation in IL4R represents a GOF 

alteration that drives oncogenic STAT6 signaling (143). 
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In FL, around 10-13% of cases exhibit STAT6 mutations, most commonly in the 

DNA binding domain, leading to heightened IL-4-induced expression of target genes such 

as CCL17, FCER, and CISH, due to increased nuclear residency of STAT6 (144, 145).  

Mechanistically, the STAT6 mutant protein in FL has been found to bind to the PARP14 

promoter, which is a co-activator of STAT6, creating a self-reinforcing regulatory circuit 

that amplifies STAT6-mediated transcription (130).  

In cHL, constitutive phosphorylation of STAT6 has been observed in Hodgkin 

Reed-Sternberg (HRS) cells in 78% of cases and in multiple cell lines. This has been 

attributed to IL-13 production by HRS cells, leading to STAT6 activation. Indicating a role 

of STAT6 in HRS cell survival, antibody-mediated neutralization of IL-13 significantly 

reduced STAT6 phosphorylation and cellular proliferation (146). In support of these 

findings, knockdown of STAT6 in cHL cell lines was found to induce apoptosis (147). A 

recent study which performed profiling of ctDNA from cHL patients found that STAT6 was 

mutated in 34% of patients, and IL4R was mutated in 10% of patients. In particular, IL4R 

mutations were classified as GOF, as IL-13-induced STAT6 phosphorylation was 

increased when the mutation was present (148).  

Collectively, these findings highlight STAT6 as a key oncogenic driver in a range 

of lymphomas, with diverse roles in regulating tumor cell proliferation and survival. 

Targeting STAT6 and its downstream pathways offer a promising therapeutic strategy, 

particularly in malignancies where STAT6 mutations or dysregulated activity are 

prevalent. 
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1.6.3 STAT6 D419 Mutation 

 STAT6 mutations in hematological malignancies have been found in all regions of 

the gene. However, mutations in the D419 hotspot, which is in the DNA binding motif, 

seem to be of particular significance. Germline STAT6D419 mutations are associated with 

severe immune dysregulation. Sharma et al. identified the STAT6D419 variant in 16 

patients from 10 families, all presenting with early-onset allergic disorders. These patients 

exhibited a range of immune abnormalities, including atopic dermatitis, eosinophilic 

gastrointestinal disease, asthma, food allergies, and anaphylaxis (149). Indeed, the 

mutation confers a GOF phenotype, characterized by sustained STAT6 phosphorylation 

and increased expression of STAT6 target genes, leading to a skewing towards a Th2 

immune response. Similarly, Minskaia et al. described a germline STAT6D419H mutation 

in a family affected by early-onset atopic dermatitis, food allergies, eosinophilic asthma, 

and anaphylaxis (150). In functional studies on patient fibroblasts and PBMCs, the 

mutation was found to lead to heightened IL-4-induced STAT6 signaling, with higher 

levels of total and phosphorylated STAT6 compared to wild-type controls. Critically, 

Minskaia also found that one patient in their family cohort also developed follicular 

lymphoma. Thus, STAT6D419 mutations may play a role in lymphoma development.  

 At DLBCL diagnosis, STAT6 mutations are present, but are found all over the 

gene. However, at relapse, STAT6 mutations are enriched at the D419 hotspot (45), 

suggesting that there is functional significance for STAT6 GOF in R-CHOP resistance. 

Given the enrichment of STAT6D419 mutations at DLBCL relapse, our group undertook a 

research study aimed at understanding the functional significance of this mutation in 
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DLBCL growth and resistance to therapy, with the underlying hypothesis that STAT6D419 

mutations would confer a selective survival advantage (52).  

 We found that STAT6D419 tumour cells had increased expression of phospho-

STAT6 in the nucleus of DLBCL cell lines upon IL-4/ IL-13 stimulation, consistent with 

studies by other groups (130, 144, 150). Moreover, we found that the increased phospho-

STAT6 nuclear residency was associated with increased transcription of target genes. 

However, DLBCL cells lines expressing a STAT6D419 mutation did not have increased 

proliferation in the presence or absence of IL-4 stimulation, nor did STAT6D419 tumour 

cells have increased resistance to the individual components of R-CHOP. Thus, our 

results assert that the expression of STAT6D419 does not inherently confer resistance of 

DLBCL cells to chemotherapy.  

1.6.4 The TME and STAT6 

 Our findings that STAT6D419 tumour cells were not less sensitive to R-CHOP could 

potentially be explained by the experimental procedures used. DLBCL cell lines grown in 

culture lack many of the features of tumours in vivo. For instance, DLBCL cells in culture 

lack 3D architecture and spatial heterogeneity and have homogenous access to nutrients 

and growth factors. They are also lacking an intact microenvironment, which would 

normally consist of numerous cell types that influence growth and resistance to therapy. 

This is of particular significance in the context of STAT6D419 tumours, as many of the 

genes that are upregulated in STAT6D419 tumour cells relative to STAT6WT tumour cells 

encode proteins that control intercellular interactions, including the chemokine CCL17 

(Figure 1.7).  
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Figure 1.7: STAT6 D419N Mutation in Lymphoma Cells. (Adapted from Benoit & 
Abraham et al. (52)) 1. In STAT6WT and STAT6D419N lymphoma cells, IL-4 is required for 
STAT6 phosphorylation. 2. Following phosphorylation, both STAT6WT and 
STAT6D419N will dimerize and translocate to the nucleus. 3. However, STAT6D419N has 
increased nuclear retention as compared to STAT6WT. 4. STAT6D419N promotes 
increased transcription of select gene targets, such as CCL17. 5. Increased transcription 
of CCL17 by STAT6D419N leads to increased production and secretion of CCL17, which 
functions to recruit CD4+ T-cells. 
 

 CCL17 is involved in the recruitment of CCR4-expressing immune cells to the 

TME, including CD4+ T cells (151). Indeed, when IHC staining was performed on 

rrDLBCL patient biopsies, the samples that were positive for phospho-STAT6 had 

significantly increased CD4+ T cells. The role of these CD4+ T cells in therapeutic 



 65 

resistance or clonal expansion following the selective pressure of R-CHOP was not 

determined.  

 Beyond T cells in DLBCL, it has also been shown that inhibition of STAT6 in CTCL 

skin explants leads to a decrease in CCL17 expression, and a concomitant decrease in 

expression of anti-inflammatory (so-called “M2-like”) macrophage markers (136). Given 

the extensive crosstalk between different cell types in the TME, especially in the context 

of differential responsiveness to cytokine/ chemokine signaling, it is probable that STAT6 

GOF has the potential to remodel many different elements the TME to promote resistance 

to therapy.  

 

1.7 Rationale and Objectives 

We hypothesize that STAT6D419 GOF mutations in DLBCL contribute to remodelling 

of the TME leading to therapeutic resistance. Specifically, we predict that increased 

chemokine expression by STAT6D419 tumour cells attracts immune cells that confer a 

survival advantage to DLBCL cells. Moreover, we aim to test if STAT6D419-induced 

microenvironmental remodelling presents novel therapeutic vulnerabilities which can be 

exploited to restore sensitivity to chemotherapy.  

 In order to study STAT6D419 modulation of the TME, a lymphoma model with an 

intact immune system is required. Thus, this study used mouse modelling to determine 

how STAT6D419 impacts TME composition and spatial organization, and if this correlates 

with response to therapy. However, prior to studying STAT6D419-mediated 

microenvironmental remodelling, we aimed to thoroughly define the spatial organization 

and intercellular interactions within the TME of two different murine models of lymphoma, 
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using PhenoCycler imaging. Critically, prior to the work described in this thesis, 

PhenoCycler imaging had not been described for murine FFPE tissues.  

 

The detailed objectives of this thesis are as follows:  

1. To develop tools and analytical techniques to study the TME of both murine and 

human lymphoma. 

2. To determine how different mouse models of lymphoma differ in their 

microenvironmental composition and spatial organization. 

3. To determine if mouse-modelling of STAT6D419-mutant lymphoma faithfully 

recapitulates critical features of human disease. 

4. To investigate mechanisms of STAT6D419-mediated microenvironmental 

remodelling.  

5. To identify novel therapeutic strategies for STAT6D419 mutant rrDLBCL. 

6. To define the microenvironmental composition and spatial organization of 

rrDLBCL, with a specific focus on STAT6D419-mutant patients.  

 
 
  



 67 

Chapter 2: Tunable PhenoCycler imaging of the murine pre-clinical 
tumour microenvironments.  
 
This chapter was published as an original research article (open access): 

MJ Abraham, C Goncalves, P McCallum, V Gupta, H Chou, N Gagnon, SEJ Preston, F 

Huang, NA Johnson, WH Miller, KK Mann, & SV del Rincon. Tunable PhenoCycler 

Imaging of the Murine Pre-Clinical Tumour Microenvironments. Cell and Bioscience. 

2024. doi: 10.1186/s13578-024-01199-4; PubMed PMID 38311785. 

The online version of this article, and all supplementary material associated with it, can 

be found at: https://cellandbioscience.biomedcentral.com/articles/10.1186/s13578-024-

01199-4 

2.1 Abstract 

Background: The tumour microenvironment (TME) consists of tumour-supportive 

immune cells, endothelial cells, and fibroblasts. PhenoCycler, a high-plex single cell 

spatial biology imaging platform, is used to characterize the complexity of the TME. 

Researchers worldwide harvest and bank tissues from mouse models which are 

employed to model a plethora of human disease. With the explosion of interest in spatial 

biology, these panoplies of archival tissues provide a valuable resource to answer new 

questions. Here, we describe our protocols for developing tunable PhenoCycler 

multiplexed imaging panels and describe our open-source data analysis pipeline. Using 

these protocols, we used PhenoCycler to spatially resolve the TME of 8 routinely 

employed pre-clinical models of lymphoma, breast cancer, and melanoma preserved as 

FFPE.   

Results: Our data reveal distinct TMEs in the different cancer models that were imaged 

and show that cell-cell contacts differ depending on the tumour type examined. For 

https://cellandbioscience.biomedcentral.com/articles/10.1186/s13578-024-01199-4
https://cellandbioscience.biomedcentral.com/articles/10.1186/s13578-024-01199-4


 68 

instance, we found that the immune infiltration in a murine model of melanoma is altered 

in cellular organization in melanomas that become resistant to αPD-1 therapy, with 

depletions in a number of cell-cell interactions.   

Conclusions: This work presents a valuable resource study seamlessly adaptable to 

any field of research involving murine models. The methodology described allows 

researchers to address newly formed hypotheses using archival materials, bypassing 

the new to perform new mouse studies.   

 

2.2 Introduction 

Over the past two decades, there has been growing appreciation for the role of the 

tumour microenvironment (TME) in cancer biology (1, 2). As such, the central dogma of 

tumour progression has evolved to assert that oncogenic mutations underlie the 

transformation of normal cells to malignant cells, and subsequently, non-transformed cells 

are recruited via secretion of soluble factors, such as cytokines, chemokines, and 

extracellular vesicles, to support further cancer cell survival and propagation (3-6). The 

non-transformed cellular elements of the TME, including immune cells, fibroblasts, and 

endothelial cells, interact with tumour cells, and both cellular composition and intercellular 

interactions within the TME are critical influencers of cancer cell growth, metastasis, and 

response to therapy. Many emerging therapeutics, most notably immune checkpoint 

inhibitors (ICIs), specifically target components of the TME to elicit tumour control.   

Phenotyping of the murine TME has helped to understand the response to novel 

combinatorial therapies and to track changes in tumour progression from initiation to 

metastatic disease (7, 8), with multi-parameter flow cytometry being the most widely used 
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technique to study the composition of the TME (9). In this method, malignant tissues are 

dissociated into single cell suspensions, stained with a panel of antibodies, and run 

through a flow cytometer, allowing for the identification of cells within the TME. However, 

a recent body of work has highlighted that TME composition alone is only part of a much 

bigger picture, and spatial information (e.g. cell-cell interactions) is crucial to further 

understand tumour progression and response to treatment. Immunofluorescence (IF) 

imaging of tumour sections, on the other hand, can preserve tissue architecture but is 

usually restricted to detection of 1 or 2 markers. To overcome these limitations, a surge 

of highly multiplexed tissue imaging technologies has emerged in the last 10 years (10-

13), aimed at providing single cell spatial phenotyping of the TME and other complex 

tissue types.  

PhenoCycler, formerly known as CODEX (CO-Detection by indexing (13)), has 

shown immense promise in the highly multiplexed imaging space. In brief, antibodies 

targeting desired proteins are conjugated to unique oligonucleotide “barcodes” and are 

then used to stain fresh frozen or formalin-fixed paraffin-embedded (FFPE) tissues. The 

PhenoCycler instrument is then used to automate the cyclic process of tissue washing, 

hybridizing up to three fluorescent “reporters” to primary antibodies oligonucleotide 

“barcodes”, imaging the tissue, then removing the fluorescent reporters before starting a 

new cycle process. This iterative process is repeated until all antibodies in a staining 

panel have been visualized (14). Reporters are complementary oligonucleotides to the 

unique barcodes, and are tagged with either fluorophores ATTO550 AF647, or AF750. 

As of this writing, PhenoCycler has been used to image up to 101 different markers in 

single tissue (15, 16), and has been used to spatially profile human cancers such as 
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cutaneous T cell lymphoma (17), follicular lymphoma (18), diffuse large B cell lymphoma 

(19), Hodgkin’s lymphoma (20), bladder cancer (21), colorectal cancer (22), basal cell 

carcinoma (23), glioblastoma (24), breast cancer (25), and head and neck squamous cell 

carcinoma (26), and human non-cancerous conditions such as ulcerative colitis (27), 

diabetic nephropathy (28), functional dyspepsia (29), vitiligo (30), and Alzheimer’s 

disease (31).   

Comparatively fewer publications have used PhenoCycler technology to image 

murine tissues, and all have reported staining for fresh-frozen samples (13, 32-36). 

However, many research groups maintain archives of FFPE murine tissues. FFPE tissue 

blocks can be successfully sectioned and imaged with minimal evidence of degradation 

for up to 30 years (37), and FFPE tissues from multiple cohorts or experimental conditions 

can be easily combined into a single tissue microarray (TMA). Thus, we aimed to develop 

a tunable murine PhenoCycler antibody panel optimized for FFPE staining, thereby 

enabling researchers to utilize their archival materials to test newly developed hypotheses 

with existing material and bypassing the need to perform new mouse studies.  

Herein we describe our protocol for the conjugation of antibodies that are optimized 

for IF staining of murine tissues preserved as FFPE and provide our protocols for 

PhenoCycler staining and open-source data analysis, which enables visualization of 

staining, cell segmentation, cell classification, and neighbourhood/proximity analysis. The 

protocols described below are tunable and offer flexibility to researchers who wish to use 

their own antibodies of interest for highly multiplexed staining. Furthermore, we 

demonstrate the feasibility of this approach with TME data obtained using 16-plex 
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PhenoCycler staining on FFPE tissues from pre-clinical mouse models of lymphoma, 

breast cancer, and melanoma.   

  

2.3 Materials and Methods 

Our tunable PhenoCycler workflow has four major components: 1) antibody 

selection; 2) antibody conjugation and optimization; 3) tissue staining and imaging; and 

4) data analysis (Figure 2.1).   

 

 

Figure 2.1: Workflow for selection of antibodies, antibody conjugation, and 
PhenoCycler staining 
Schematic showing the workflow outlined in this Research Resource.  
  

2.3.1 Selection and Validation of Antibodies for Conjugation, and Quality Control of 

Staining  

Due to epitope masking associated with FFPE preservation (38), the careful 

selection of antibodies is critical to successful PhenoCycler staining. Below, we describe 

our IF staining protocol for the selection of antibody clones which can prioritized for 
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barcode conjugation. All antibodies should be tested on the tissue they are ultimately 

meant to stain.  

Deparaffinization and Antigen Retrieval   

1. Mount 4 µm microtome tissue sections onto SuperFrost Plus slides (Fisherbrand).  

2. Deparaffinize slides using the following solutions, for 5 minutes each: Xylene (1), 

Xylene (2), 100% EtOH (1), 100% EtOH (2), 95% EtOH, 70% EtOH, 50% EtOH, and 

running tap water.   

3. Transfer slides to a PT Link Pre-treatment machine filled with 1X Tris-EDTA 

antigen retrieval buffer (pH 9.0) and cook at 90°C for 20 minutes. After 

depressurization, cool slides for 1 hour.  

i.Note: Less toxic alternatives, such as HistoChoice, can be used in place of 

Xylene.   

ii.Note: Recipes for all solutions used in these protocols can be found in Table 2.1. 

Recipes listed below will be underlined.   

Blocking  

4. Rinse slides in tap water and dry the glass around the tissue with a Kimwipe. Circle 

tissue with a hydrophobic PAP pen, and rinse with 2 changes of IF Wash Buffer.  

5. Block slides for 30 minutes at room temperature with Primary Blocking Buffer, then 

rinse with 2 changes of IF Wash Buffer.  

6. Block slides for another 30 minutes at room temperature with FC Blocking Buffer, 

then rinse with 2 changes of IF Wash Buffer.  
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Table 2.1. Recipes for IF Staining, Antibody Conjugation, and PhenoCycler Staining 
Solutions.  
 

Solution Name  Composition  

10X Tris-EDTA Antigen 
Retrieval Buffer, pH 9.0  

6.05 g Tris  
1.85 g EDTA  
400 mL ddH2O  

• Adjust to pH 9.0  
• Complete to 500 mL with ddH2O  

Store at 4°C for up to 30 Days  

1X Tris-EDTA Antigen 
Retrieval Buffer, pH 9.0  

50 mL 10X Tris/EDTA Buffer pH 9.0  
450 mL ddH2O  
250 μL Tween20  

• Mix well and make fresh.   

10X Tris Buffered Saline 
(TBS)  

80 g NaCl  
2 g KCl  
30 g Tris  

• Adjust pH to 7.4  
• Complete to 1000 mL with ddH20  

IF Wash Buffer  
200 mL 10X TBS  
800 mL ddH2O  
250 uL Tween20  

Primary Blocking Buffer  
1000 μL IF Wash Buffer  
20 μL Goat or Donkey Serum  

• Vortex to mix.  

FC Blocking Buffer  
500 μL FC Block  
5 μL Anti-Mouse HRP  

• Vortex to mix.  

Antibody Buffer  
1000 μL IF Wash Buffer  
1 μL Goat or Donkey Serum  

• Vortex to mix.  

Prepared DAPI  
500 μL PBS  
1 μL 1mg/mL DAPI  

• Vortex to mix.  

Antibody Reduction Master 
Mix (A)  
(for 1 conjugation)  

6.6 µL Reduction Solution 1 (A)  
275 µL Reduction Solution 2 (A)  

• Thawed aliquots of Reduction Solution 1 (A) should 
not be re-used  

Bleaching Solution  
0.8 mL 10M NaOH  
2.7mL 50% H2O2  
26.5 mL 1X PBS  

Staining Buffer with 
Blockers (A)  
(for 2 samples)  

362 µL Staining Buffer  
9.5 µL N Blocker (A)  
9.5 µL G2 Blocker (A)  
9.5 µL J Blocker (A)  
9.5 µL S Blocker (A)  

Post-Staining Fixation (A)  1 mL 16% PFA  
9 mL Storage Buffer (A)  

Final Fixative Solution (A)  1000 µL 1X PBS  
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20 µL Fixative Reagent (A)  
• Thawed aliquots of Fixative Reagent (A) should not 

be re-used  

Screening Buffer (A)  

3.5 mL 10X PhenoCycler Buffer (A)  
24.5 mL Nuclease-Free Water  
7 mL DMSO  

• Allow the Screening Buffer to equilibrate to room 
temperature prior to use  

Reporter Stock Solution 
(A)  
(for 5 cycles)  

1220 uL Nuclease Free Water  
150 uL 10X PhenoCycler Buffer (A)  
125 uL Assay Reagent (A)  
5 uL Nuclear Stain (A)   

  
  

Primary and Secondary Antibody Incubation  

7. Dilute primary antibody in Antibody Buffer and incubate slides in primary antibody 

at 4°C overnight in a humidity chamber.  

i.Note: For initial optimization, we try 10 ug/ml antibody dilution (approximatively 1 

in 100).  

ii.Note: Staining specificity can be improved for some antibodies by incubating with 

a higher antibody concentration (eg. 20 ug/ml), for 30 minutes at 37°C.   

8. Rinse slides with 3 changes of IF Wash Buffer.  

9. Incubate slides for 1 hour at room temperature with secondary antibody conjugated 

to AlexaFluor647, diluted 1 in 500 in Antibody Buffer.   

10. Rinse slides with 3 changes of IF Wash Buffer.  

Counterstaining, Mounting, and Imaging  

11. Stain tissue with prepared DAPI for 15 minutes, then rinse slides 3 times with IF 

Wash Buffer.  

12. Mount coverslips onto slides with Flouromount-G, and then allow to dry for 15 

minutes.  
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13. Image slides with the same microscope that will be used for PhenoCycler image 

acquisition.  

i. Note: Acquiring on the same microscope used for the Phenocycler image 

acquisition will give a better representation of the final staining. In this study we 

used the Fusion microscope from Akoya Biosciences.  

ii. Note: The results from optimization staining will help in the subsequent steps in 

assessing the efficacy of the antibody conjugation by comparing both stains.  

Assessing IF Staining   

Assessing staining quality is challenging. Appropriate negative and positive tissue 

controls are required. If possible, staining assessment by a pathologist can guide 

selection of the most appropriate antibody clones. Ideally, a TMA comprising an array of 

different tissues and pathologies will provide the opportunity for robust assessment of 

antibody specificity and sensitivity, but whole-tissue slides can be used if a TMA is not 

available. Critical parameters to consider include:  

a. if staining pattern within the tissue consistent with reported literature. Multiple 

online resources can be used, such as ProteinAtlas.   

b. Signal to Noise Ratio (SNR): this parameter will guide the user to which fluorescent 

reporter to use. For example, if the SNR is very high, the dim AF750 reporter should 

but used, while the bright AF647 can be used for markers with low SNR.  

  

2.3.2 Antibody Conjugation to an Oligonucleotide Barcode  

Once an antibody has shown strong and specific signal by IF, it can proceed to 

conjugation. Antibodies can be conjugated to barcodes which have complementary 
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reporters in ATTO550, AF647, or AF750 fluorophores. IF screening will inform which 

fluorophore will give optimal results. In general, antibodies which show very strong and 

specific staining should be conjugated to barcodes that have complementary reporters in 

AF750, antibodies which have weaker signal and lower abundance should be conjugated 

with barcodes that have complementary reporters in AF647, and antibodies which have 

medium abundance and weak to medium signal strength should be conjugated with 

barcodes that have complementary reporters in ATTO550.   

Antibody conjugation requires reagents from Akoya Biosciences, and thus follows 

their recommended protocol. A more detailed protocol can be found here: 

https://www.akoyabio.com/wp-content/uploads/2021/01/CODEX-User-Manual.pdf   

  

Pre-experiment Notes  

• Antibodies to be conjugated must be carrier-free. The presence of BSA or other 

stabilizing agents will interfere with conjugation.  

• If conjugating more than one antibody, carefully label all MWCO columns prior to 

starting. We recommend conjugating no more than 3 antibodies at a time, to reduce 

the risk of cross-contamination.   

• Reagents which are purchased from Akoya and used “as-is” will be annotated as 

(A). Reagents that are purchased from Akoya but need preparation prior to use will 

be underlined and annotated as (A).   

Conjugation Reaction  

1. For each antibody to be conjugated, add 450 µL of Filter Blocking Solution (A) to 

a labelled 50 kDa MWCO column, then spin at 12,000g for 2 minutes. Following 

https://www.akoyabio.com/wp-content/uploads/2021/01/CODEX-User-Manual.pdf
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centrifugation, discard flowthrough and aspirate any remaining liquid out of the filter 

unit.  

i. Note: This is the only step where the liquid should be aspirated out of the filter 

unit. In all subsequent steps, the remaining liquid contains the 

unconjugated/conjugated antibody.  

2. Add 50 µg of each antibody to be conjugated to their respective filter units, at an 

adjusted volume of 100 µL. Spin down tubes at 12,000 g for 8 minutes and discard 

the flowthrough.  

3. Add 260 µL of Antibody Reduction Master Mix (A) to the top of each filter unit, 

close this lid, vortex for 3 seconds, then allow to sit at room temperature for 30 

minutes.   

i. Note: do not allow this reaction to exceed 30 minutes, as it can result in 

irreversible antibody damage.  

4. Spin down tubes at 12,000 g for 8 minutes, then discard the flowthrough.   

5. Add 450 µL of Conjugation Solution (A). Spin down again at 12,000 g for 8 minutes, 

then discard the flowthrough.  

6. During the second centrifugation, prepare each assigned Barcode (A) by adding 

10 µL of molecular biology grade nuclease free water, then add 210 µL of Conjugation 

Solution (A) to the resuspended barcodes.   

7. Add the barcode solution to the filter. Close the lid and vortex for 3 seconds. 

Incubate the antibody conjugation reaction at room temperature for 2 hours.   

8. Spin down tubes at 12,000 g for 8 minutes, then discard the flowthrough.   
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9. Add 450 µL of Purification Solution (A) to each filter, and spin down tubes at 12,000 

g for 8 minutes, then discard the flowthrough.   

10. Repeat Step 9 for a total of 3 purifications. At the end of the third purification, the 

filter will contain the conjugated antibody.  

11. For each antibody, label a fresh tube with the antibody name and the barcode ID. 

Add 100 µL of Antibody Storage Solution (A) to each filter. Then, invert the filter unit 

into the new collection tube, and spin down at 3,000 g for 2 minutes.  

i. Note: The final volume of the antibody will be around 120 µL  

ii. Note: For long term storage, transfer antibodies to autoclaved screw top tubes, 

to reduce evaporation.   

Validation of Conjugation to an Oligonucleotide Barcode  

12. Cast a 10% SDS-PAGE gel, with 2 wells for each antibody whose conjugation is 

being validated, plus an additional well for the protein ladder (ie. if validating 4 

antibodies, you would need a total of 9 wells, so a 10-well gel will suffice). Set up gel 

running apparatus, as you would for a typical western blot.  

i.Note: Details on SDS-PAGE gel casting can be found here: https://www.bio-

rad.com/webroot/web/pdf/lsr/literature/Bulletin_6201.pdf   

13. Add 1 µL of unconjugated antibody to a tube with 9 µL of 1X lammeli loading dye. 

Add 0.5 µL of conjugated antibody to a different tube with 9.5 µL of 1X lammeli.  

14. Boil samples for 5 minutes on a heating block at 95 °C.  

15. Load samples and protein ladder into the gel and run until resolved.   

i.Note: We typically run our gels at 90 V for 1.5 hours.  

https://www.bio-rad.com/webroot/web/pdf/lsr/literature/Bulletin_6201.pdf
https://www.bio-rad.com/webroot/web/pdf/lsr/literature/Bulletin_6201.pdf
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16. Following running, carefully remove the gel from the cassette, and place in a glass 

container. Fill the glass container with GelCode Blue Reagent.   

17. Allow the gel to incubate in the GelCode reagent with gentle rocking, until the 

solution changes from pale brown to blue.   

18. Carefully discard the GelCode reagent and replace with distilled water. Allow the 

gel to rinse with gentle rocking for 20 minutes. Wash 3 times with distilled water in the 

same fashion for 20 minutes each.   

19. Following washing, blue antibody bands should resolve around 50 kDa. Image 

the bands with any gel imaging apparatus, such as a ChemiDoc.  

20. Conjugation occurred successfully if there is an upward shift in weight from the 

unconjugated antibody to the conjugated antibody.   

  

2.3.3 Optimization of Conjugated Antibodies  

Prior to performing a complete PhenoCycler experiment, conjugated antibodies 

must be further quality controlled and titrated. To do this, tissues are stained with the 

conjugated antibody of interest, and PhenoCycler reporters are manually applied and 

imaged. Staining fidelity is then assessed, and proper staining conditions are noted for 

larger multiplexed staining experiments.  

  

Tissue Staining and Fixation  

1. Follow steps 1 – 3 for Deparaffinization and Antigen Retrieval, described above.   
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2. To quench auto-fluorescence, place the slide in glass container and cover with 

Bleaching Solution. Sandwich the glass container between two LED lamps for 45 

minutes at room temperature.  

3. Replace the Bleaching Solution with fresh Bleaching Solution and repeat LED 

photobleaching for 45 minutes at room temperature (39).  

i. Note: we find that this extended LED photobleaching step helps decrease auto-

fluorescence associated with FFPE tissue staining.   

ii. Note: The amount of H2O2 can be increased to 10% in tissue which demonstrate 

high levels of autofluorescence, such as heart or liver.   

4. Wash the tissue 4 times in 1X PBS for 5 minutes per wash.  

5. Dry the glass around the tissue with a Kimwipe, and circle tissue with a PAP pen.  

6. Cover the tissue with Staining Buffer (A) and allow the tissue to equilibrate at room 

temperature for 30 minutes.   

7. While the tissue is equilibrating, prepare the antibody solution. Antibodies are 

diluted in Staining Buffer, completed with N Blocker, G2 Blocker, J Blocker, and S 

Blocker (A).   

8. Stain tissue by adding prepared antibody onto the tissue.  

i. Note: Staining time and temperature need to be optimized for each antibody. 

Common staining conditions include 3 hours at room temperature, or overnight 

at 4 °C.  

9. Following antibody incubation, wash tissue 3 times in fresh Staining Buffer.  

i. Note: For highly multiplexed experiments where antibody staining conditions 

differ, staining can be done sequentially. For instance, 3 antibodies can be 
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applied for 30 minutes at 37 °C, then tissue can be washed in buffer and the 

remaining antibodies in the staining panel can be applied overnight at 4 °C.  

10. Perform first tissue fixation, by incubating tissue in Post-Staining Fixation Solution 

(A) for 10 minutes at room temperature. Rinse tissue 3 times with PBS.  

11. For the second fixation, transfer slides to a Coplin jar on ice filled with pre-chilled 

methanol. Allow to incubate for 5 minutes, then quickly transfer back to PBS. Rinse 3 

times with PBS.  

12. For the third and final fixation, add Final Fixative Solution (A) to slides, and 

incubate in a humidity chamber at room temperature for 20 minutes. Rinse tissue 3 

times with PBS.  

13. Transfer slide to Coplin jar with Storage Buffer (A).   

i. Note: Slides can remain in Storage Buffer (A) at this step for up to 5 days at 4 

°C.   

Manual Application of PhenoCycler Reporters and Tissue Imaging  

14. Prepare Screening Buffer (A) and allow to equilibrate to room temperature for 20 

minutes before use.   

15. Rinse slides in 3 changes of Screening Buffer (A) for 1 minute each, to allow the 

tissue to equilibrate to the new buffer.   

16. Prepare the Reporter Stock Solution (A) and add 2.5 µL of each reporter to be 

tested to 97.5 µL of Reporter Stock Solution (A).   

i.Note: More than one antibody/reporter can be tested at a time, provided the 

reporters are conjugated to different fluorophores. For instance, if tissue is 

stained with CD4-BX001 and CD19-BX002, 2.5 µL of both RX001-AF750 and 
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RX002-ATTO550 can be diluted into 95 µL of Reporter Stock Solution (A) for 

marker visualization in a single step.   

17. Pipette the prepared Reporter Stock Solution (A) onto the tissue and incubate 

protected from light for 5 minutes.   

18. Rinse slides in 3 changes of Screening Buffer (A), for 1 minute each.  

19. Rinse slides with 1 change of 1X PhenoCycler Buffer (A).  

20. Mount coverslips onto slides with Flouromount-G, and then allow to dry for 15 

minutes.  

21. Image slides with the same microscope that will be used for PhenoCycler image 

acquisition.  

Assessing PhenoCycler Staining   

When assessing the quality of a conjugated antibody, it is important to keep in 

mind the SNR from the previous step, as it will be used as a reference to compare for 

quality control. At this stage, multiple antibody concentrations should be tested as well as 

multiple incubation times and temperatures in order to get the best SNR. We also 

recommend performing one final staining with two extra markers: one that should co-

localize and one that should not with the conjugated antibody being tested. This step will 

allow you to assess any non-specific binding of conjugated antibody and adjust staining 

and acquisition parameters for best SNR. Staining intensity and pattern should match the 

one obtained by standard IF staining.  
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2.3.4 PhenoCycler Multiplexed Imaging  

Once all antibodies have been conjugated and optimized, you may proceed to a 

full PhenoCycler staining experiment. Prior to beginning, all antibodies must be assigned 

to a cycle, a step that requires some thoughtful consideration. Each cycle will consist of 

up to 3 different antibodies, conjugated to barcodes that have reporters with different 

fluorophores. For instance, cycle 2 may consist of imaging CD4-BX001, CD19-BX002, 

and CD11b-BX003, which have RX001-AF750, RX002-ATTO550, and RX003-AF647 

complementary reporters. When designing cycles, we try to include markers that are not 

likely to be present on the same cell type (ie, CD4, a marker of helper T cells, may be put 

in cycle 2, while CD3, a pan-lymphocyte marker, may be put in cycle 3). The first and last 

cycle of each staining experiment will consist of only DAPI (“Blank” cycle).  

  

Tissue Staining and Reporter Plate Preparation  

1. Follow steps 1 – 13 for Tissue Staining and Fixation, using all conjugated 

antibodies in the staining panel. Leave slide in Storage Buffer (A) until prepared to 

proceed to a full PhenoCycler Image Acquisition run.  

i. Note: For full PhenoCycler staining experiments, antibodies should not exceed 

40% of the total Complete Staining Buffer solution, or insufficient blocking will 

occur.   

2. Prepare enough Reporter Stock Solution (A) for the number of cycles in the 

experiment (each cycle requires a maximum of 250 µL of Reporter Stock Solution 

(A)).  
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3. For each cycle, label an amber 1.5 mL Eppendorf tube, and add 5 µL of each 

reporter for the assigned cycle. Complete to a volume of 250 µL using Reporter Stock 

Solution (A). Mix the contents gently by pipetting up and down.   

i. Note: keep reporters on ice until use, and spin down prior to pipetting to collect 

any accumulated liquid in the cap.   

ii. Note: the first cycle and the final cycle will consist of Reporter Stock Solution (A), 

with no florescent reporters added (ie. “Blank” cycles)  

4. For each assigned cycle, pipette the reporter solution into a black-walled 96-well 

plate. Cover the wells with adhesive foil.   

5. The reporter plate can be stored at 4 °C for up to two weeks or can be used 

immediately for the PhenoCycler experiment.  

PhenoCycler Image Acquisition  

Images are acquired using the default PhenoCycler protocol. In this study, we used 

the Phenocycler-Fusion system combining Phenocycler instrument with the Fusion 

microscope to streamline acquisition. We used acquisition parameters of the different 

antibodies defined during the titration step to acquire the fully stained tissue.  

  

2.3.5 Open-Source Data Analysis  

Following a complete PhenoCycler staining experiment, PhenoCycler software will 

process images for downstream analysis. Imaging processing includes tile stitching and 

background correction. The final multiplexed image will be in QPTIFF format, which can 

be imported and visualized by many image analysis programs.   

In this pipeline, we use the open source QuPath software, v3.2, which can be found here:  



 85 

https://github.com/qupath/qupath/releases/  

Cell segmentation is achieved using StarDist, which can be found here:  

https://github.com/qupath/qupath-extension-stardist/releases  

The pre-trained model we used for StarDist Segmentation can be found here:  

https://github.com/qupath/models/tree/main/stardist  

The StarDist .groovy file used in this study and sample Classifier data can be found here:  

https://github.com/MMdR-lab/mouseCODEX-paper   

  

Setup   

1. Create directory including StarDist segmentation extension (qupath-extension-

stardist-0.5.0.jar), the pre-trained StarDist model (dsb2018_heavy_augment.pb), and 

stardist_segmentation_0.5px.groovy file.    

2. To install the StarDist extension into QuPath, open QuPath and drag and drop the 

segmentation extension (qupath-extension-stardist-0.5.0.jar) directly into the open 

QuPath window.  

3. Create a list of the channel names in the order of acquisition in a .txt file with a 

separate line for each name.  

  

QuPath Image Import  

1. Create a new project in QuPath and add the PhenoCycler QPTIFF as a new image. 

Double click to open the image, and a pop-up will prompt you to select the image 

type. Set the image type as Fluorescence and keep “Auto-generate pyramids” 

selected.  

https://github.com/qupath/qupath/releases/
https://github.com/qupath/qupath-extension-stardist/releases
https://github.com/qupath/models/tree/main/stardist
https://github.com/MMdR-lab/mouseCODEX-paper
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i. Note: QPTIFF files are generated by the Phenocycler-Fusion system. For 

researchers using the Phenocycler combined to standard microscope, single 

channel OME-TIFF files can be combined into multiple channel OME-TIFF in 

ImageJ prior to proceeding.  

2. Once the QPTIFF image is opened, all markers (i.e. αSMA, CD3, CD4, CD8, 

CD11b, CD11c, CD19. CD31, CD45, c-Myc, F4/80, FoxP3, Ki67, MelanA, MPO, and 

NaKATPase) will be simultaneously visible on the tissue, labeled as the fluorophore 

they were conjugated to in the order of cycle acquisition.  

3. To set channel names, copy the list of channel names to the clipboard and then 

select the corresponding channels in the “Brightness/Contrast” dialog from the “View” 

dropdown menu and paste. Click apply to confirm.  

4. In the “Brightness/Contrast” dialog box, you can toggle markers on and off, change 

their pseudo-colouring, and adjust their min/max display.   

5. Make the channel names available as classifications in the “Annotations” tab by 

right-clicking or selecting the vertical ellipsis next to “Auto set” and choosing “Populate 

from image channels”.  

QuPath Cell Classification and Cell Segmentation  

6. To classify cells into phenotypes, a training image is used. The training image will 

contain 5 or 6 representation regions of interest, pooled into a single image.   

i.To create a training image, select “Training images” from the “Classify” dropdown 

menu, and select “Create region annotations”.   
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ii.Using the default settings of: Width- 500; Height- 500; Size units- µm; 

Classification- Region*; and Location- Viewer Centre, create regions throughout 

the tissue which contain the cell phenotypes you wish to annotate.   

iii.Save the image.  

iv.From the “Classify” dropdown menu, select “Training images”, and select “Create 

training image”.    

v.From the popup menu, select “Region*” as the Classification, type “50,000” px as 

Preferred image width, and toggle “Rectangles only”, then click OK.   

vi.A training image will appear in the Project Image List dropdown menu.   

vii.Open the training image, and save the project.  

7. To segment the training image into cells, StarDist is used. Using the rectangle 

annotation tool, select the entire region.  

8. To segment the annotated region into cells, drag and drop the 

stardist_segmentation_0.5px.groovy file into the open QuPath window. When the 

script editor appears, select “Run”.  

i. Note: If an annotation is not selected, the error “Please select a parent object!” 

will appear.  

9. A dialog box will appear, prompting the selection of the segmentation file. Choose 

the dsb2018_heavy_augment.pb file located in the directory you created in step 1.  

10. Once segmentation is complete, you will be able to see cell detections in red 

overlay on the image. You can toggle the visibility of the cell detections using the 

overlay capacity slider bar at the top of the image window.   
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11. To proceed with cell classification, from the “Classify” dropdown menu, select 

“Training images” and select “Create duplicate channel training images”. From the 

popup window, select the markers that you wish to use to enable cell classification. 

Check the “Initialize Points annotations” box then select “OK”. There will now be 

duplicate training images in the Project Image List dropdown menu for each marker 

in the staining panel. These duplicate channels will be used for manual annotation of 

cell phenotypes.  

i.Note: cell classification should be done in a single duplicate training image for 

phenotypes that are characterized by mutually exclusive markers (ie. lineage 

markers). For instance, if CD8+ T cells are classified as CD3+ CD8+, 

macrophages are classified as CD11b+ F4/80+, and fibroblasts are classified as 

CD45- αSMA+, they can be used in a classifier together.   

ii.Note: in this project, we trained two classifiers to detect a total of 10 cell types. 

The first classifier was trained to detect CD8, FoxP3, CD31, F4/80, and CD11c. 

The second classifier was trained to detect CD4, CD19, MPO, αSMA, and Ki67+ 

tumour cells.   

12. Open the duplicate image for the first cell type(s) you wish to classify.  

13. Open the points annotation tool, add an annotation, and right click to set the 

annotation class (ex. if you are classifying helper T cells, set the class to CD4). Add 

a second annotation and set the class to “Ignore*”.  

i.Note: an “Ignore” class is necessary for cell classification. This cannot be 

skipped.   
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14. Using point annotation, annotate 30-60 cells of your class of interest, and 

annotate another 30-60 cells as “Ignore*”. The “Ignore*” cells should be mutually 

exclusive from the cell you are classifying. For instance, if you are classifying CD4+ 

T cells, you could select CD8+ T cells, B cells, or tumour cells for the “Ignore*” class. 

This helps train the classifier to better detect your cells of interest.   

15. From the “Classify” dropdown menu, select “Train object classifier”.  

i.Set Object filter to “Cells”  

ii.Set Classifier to “Artificial neural network (ANN_MLP)  

iii.Set Feature to “All measurements”  

iv.Set Classes to “Selected classes”  

v.Set Training to “Unlocked annotations”  

16. Click “Live update”. The cell mask on the training image should update to show 

where your cell phenotype has been detected.   

17. Manually assess if the cell classifier is accurately detecting your cell phenotype 

of interest. If there are many false positive detections, continue to add annotations for 

“Ignore*”. If there are many false negative detections, continue to add annotations for 

your cell type of interest.   

18. Once you are content with the cell classifier, enter the object classifier name, and 

click “Save”.  

19. Repeat steps 12 – 18 for all cell phenotype classes you wish to annotate in your 

tissues.   

20. Open the main image from the Project Image List.  
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21. Using the rectangle or polygon annotation tool, select the regions you wish to 

analyze. Following steps 7 – 9, use StarDist to segment the annotation region into 

cells.   

22. Classify cells into phenotypes by opening the “Classify” dropdown menu, 

selecting “Object classification”, then selecting “Load object classification”. Select the 

classifiers you wish to apply to the tissue, then select “Apply classifiers sequentially”.  

i.Note: If more than one classifier is used to detect cell types, there may be 

redundancy in classification (ie, some cells will be annotated as more than one 

class). For instance, in this study, our first classifier detected FoxP3+ cells, and 

our second classifier detected CD4+ cells. Thus, when the classifiers were 

applied together, regulatory T cells were classified as FoxP3+ CD4+.   

ii.Note: Due to cell segmentation noise, sometimes dual classifiers may not make 

biological sense. It is up to the researcher to manually assess each cell class, 

and collapse classes as necessary.   

23. Now, each cell will be annotated as a Phenotype. To export this data for spatial 

analysis with CytoMAP:  

i.Save the QuPath project.  

ii.From the “Measure” dropdown menu, select “Export Measurements.”  

iii.Select the image you wish to export measurements from, and choose “cells” as 

the export type. Change separator type to “Comma (.csv)”.  

iv.Click “Populate”, then select the columns to include from the dropdown list: Image 

Name, Image, Class, Centroid X, Centroid Y, and Cell Mean for each marker. 

The resulting .csv file will contain the fluorescence intensity of each marker for 
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each cell within the image, plus all cells will be annotated for their cellular 

phenotypes.  

CytoMAP Spatial Analysis   

24. In MATLAB, install the CytoMAP plugin in the “Add-Ons” drop down menu.  

i.For desktop use without MATLAB downloaded, an installer for the compiled 

version of CytoMAP is available at https://gitlab.com/gernerlab/cytomap/-

/tree/master/. Follow the installation prompts  

25. Open CytoMAP. From the “File” dropdown menu, select “Load Table of Cells”, 

then select the .csv file generated in step 23.   

i.Be mindful of .csv formatting when uploading.  CytoMAP may not recognize 

certain symbols, such as ampersands or slashes.   

26. A popup dialog box will prompt you to select the X axis. Click “Ch_Centroid_X_m” 

and click “Okay”.  

27. A popup dialog box will prompt you to select the Y axis. Click “Ch_Centroid_Y_m” 

and click “Okay”.  

28. A popup dialog box will prompt you to select the Z axis. Click “There is no Z (make 

a fake one)” and click “Okay”.  

29. A “File Import Options” box will pop up. Select “Load”.  

30. Select “Annotate Clusters”, and from the Select Classification Chanel dialog box, 

select “Ch_Class”. From the Annotate Class popup box, select “Save Annotations”. 

Close the Save Annotations box.   

https://gitlab.com/gernerlab/cytomap/-/tree/master/
https://gitlab.com/gernerlab/cytomap/-/tree/master/
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31. To make a heatmap showing the cellular mean intensity of the markers in the 

staining panel within the different cell phenotypes, click the “Extensions” dropdown 

menu, and select “cell_heatmaps.m”  

i.Choose the cell phenotypes you wish to include.  

ii.Choose the Channel MFIs you wish to include.  

iii.Normalize per Sample.  

iv.Select “MFI normalized to mean MFI of all cells”.  

v.Select “Phenotype” for what to compare.  

vi.Select “Individual Heatmap for each Sample”  

vii.Select “linear” for scale.   

viii.Click “Okay”.  

i. Note: If multiple .csv files are imported and annotated, you may choose to 

generate a combined heatmap.   

32. To cluster cells into neighborhoods, select “Define Neighborhoods”.   

i.Choose “Raster Scanned Neighborhood” for Neighborhood Type.  

ii.Type “50” for Neighborhood Radius.  

iii.Select “Fast Way”  

iv.Click “Okay”  

33. Once the loading bar for Defining Neighborhoods has finished, click “Cluster 

Neighborhoods into Regions”.  

i.Select all Phenotypes for sorting.  

ii.Use setting “Composition: Number of Cells/ Number of Cells in Neighborhood”  
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iii.Use setting “MFI normalized to mean MFI per neighborhood” and Normalize per 

Sample.  

iv.For Colour scheme, select “sum(y,2)  

v.For Number of Regions, select “Davies Bouldin (default)”  

vi.For Model name, select “Create New Model”  

vii.For Data Input Type, select “Raster Scanned Neighborhood”.  

viii.For Algorithm, select “NN Self Organizing Map”.  

ix.Click “Okay”  

x.Enter a unique name for the Model.  

34. Two figures will popup, one showing the Number of Clusters and the Davies 

Bouldin values, and the other showing the newly defined regions superimposed on 

the tissue image.   

i. Note: In tumour tissues, overall cellular disorganization leads to fewer definitive 

regions.   

35. To generate a heatmap showing the spatial relationships between cells in the 

tissues, select “Cell-Cell Correlation”.  

i.Select the Phenotypes you wish to include.  

ii.For Neighborhood Type, select your unique Model name.  

iii.For data preparation, select “Cellularity: Number of Cells / Neighborhood”.  

iv.Normalize per Sample.  

v.Select “Individual Heatmap for each Sample”.  

vi.For Colour Scale, select “linear”.  

vii.For Calculation, select “Pearson Correlation Coefficient”.  
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viii.For Transform, select “None”.  

ix.For Confidence Interval, select “1”.  

36. CytoMAP can be used for other types of spatial analysis, and details can be found 

here:  

https://cstoltzfus.com/posts/2021/06/CytoMAP%20Demo/  

2.4 Results 

2.4.1 Development of a Tunable PhenoCycler Antibody Panel for Staining Murine 

FFPE Tissue  

Using the protocols described above, we selected 16 antibodies which could be 

used to phenotype most common cells found in the murine TME (Figure 2.2A). Each of 

these antibodies were conjugated to Akoya PhenoCycler barcodes (Table 2.2) and were 

optimized for PhenoCycler staining. Each barcode has a complementary reporter 

conjugated to either ATTO550, AF647, or AF750, and barcodes were selected for each 

antibody with this in mind. In general, antibodies that showed very strong SNR were 

conjugated to barcodes with AF750-tagged complementary reporters, whereas 

antibodies that corresponded to antigens of lower abundance and lower expression were 

conjugated to barcodes with AF647-tagged complementary reporters, and antibodies that 

marked antigens of medium abundance and weak to medium SNR were conjugated to 

barcodes with ATTO550-tagged complementary reporters. With this staining panel, we 

were able to quantify tumour cells, endothelial cells, fibroblasts, myeloid cells 

(macrophages, neutrophils, and dendritic cells) and lymphoid cells (helper T cells, 

cytotoxic T cells, regulatory T cells, and B cells) in the murine TME (Figure 2.2B). We 

found that the highly multiplexed PhenoCycler staining had similar fidelity to single-plex 
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IF stains for each antibody included in the staining panel (Supplemental Figure 2.1). 

Furthermore, the protocols for analysis described above were used to examine how the 

spatial relationships between these cell types change across tumour models and 

experimental conditions.    

 

 

Figure 2.2: 16-plex PhenoCycler staining of murine FFPE tissues 
A. Table showing the antibodies included in our Murine FFPE PhenoCycler staining 
panel, and the cell type they are used to identify. B. Images showing successful 
PhenoCycler staining of each antibody in the staining panel. In each image, DAPI is 
blue, and each individual marker is white. The colour of the outer border indicates the 
tissue type in the image. Scale bar is 50 µM.   
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Table 2.2. Primary Antibody Table.  
 
Antibody  Company  Clone  Catalog No.  Barcode  Reporter  
αSMA  Abcam  1A4  ab240654  BX014  RX014-ATTO550  
CD3  Abcam  CD3-12  ab255972  BX017  RX017-ATT0550  
CD4  Invitrogen  4SM95  14-9766-82  BX002  RX002-ATTO550  
CD8  Invitrogen  4SM15  14-0808-82  BX005  RX005-ATTO550  
CD11b  Abcam  EPR1344  ab209970  BX003  RX003-AF647  
CD11c  Cell Signaling  D1V9Y  39143SF  BX015  RX015-AF647  
CD19  Cell Signaling  D4V4B  86916SF  BX027  RX027-AF647  
CD31  Dianova  SZ31  DIA-310-BA-2  BX026  RX026-ATT0550  
CD45  R&D Systems  Polyclonal  AF114-SP  BX007  RX007-AF750  
c-Myc  Abcam  Y69  ab168727  BX001  RX001-AF750  
F4/80  Cell Signaling  D2S9R  25514SF  BX020  RX020-ATTO550  
FoxP3  Cell Signaling  D6O8R  72338SF  BX019  RX019-AF750  
Ki67  Akoya  B56  PN 232179  BX047  RX047-ATTO550  
MelanA  Abcam  EPR20380  ab222483  BX004  RX004-AF750  
MPO  R&D Systems  Polyclonal  AF3667-SP  BX013  RX013-AF750  
NaK-ATPase  Abcam  EP1845Y  ab167390  BX023  RX023-ATTO550  
 

2.4.2 Generation of a Multi-Cancer TMA for PhenoCycler Staining  

Given that there is conservation amongst the cell types found in the TME across a 

number of tumour types (40), we generated a TMA with tumour cores banked from widely 

used pre-clinical mouse models of lymphoma, breast cancer, and melanoma, and 

matched normal tissues, with the goal of performing spatial phenotyping of the murine 

TME. To achieve this, archival FFPE tissue blocks were sectioned and stained with H&E 

and an anti-CD45 antibody to facilitate selection of immune-rich regions within the 

tumours for core-punching (Figure 2.3A). From each tissue block, two to three 1 mm 

cores were included, for a total of 84 cores (Figure 2.3B).   
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Figure 2.3: Generation of a murine tissue microarray (TMA) for PhenoCycler 
Staining 
A. Representative H&E and CD45 staining from murine tumour tissues. H&E and CD45 
staining was used to select regions of interest for TMA core punching. Scale bars 
represent 100 µm. Bottom row shows H&E staining of the tissue cores, following TMA 
generation. Each TMA core is 1mm in size. B. Table indicating the types and numbers 
of cores included in our multi-cancer murine TMA.   
 

For the lymphoma portion of the TMA, cores from A20 and Eµ-Myc tumours were 

included. A20 is a commonly used mouse model of B Cell Non-Hodgkin’s Lymphoma (B-

NHL), syngeneic to BALB/C mice (41). Upon tail vein injection, A20 cells will home to the 

liver to form an aggressive extranodal lymphoma, and samples from day-27 post-A20 tail 

vein injection were included in the TMA, with matched adjacent non-tumour bearing liver 

tissue (ie, tissue from a non-tumour bearing liver lobe). Eµ-Myc is a B-NHL model 

syngeneic to C57BL/6J mice, which forms tumours primarily in the spleen and cervical 

and inguinal lymph nodes. Samples from the lymph nodes of non-tumour bearing mice 

and from the cervical lymph nodes of mice at day-14 post-Eµ-Myc injection were included 

in the TMA.   

Tumour samples grown from the 66cl4 and 4T1 murine triple-negative breast cancer 

cell lines were included in the multi-cancer TMA. Both cell lines are capable of forming 
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primary tumours following inoculation into the mammary fat pads of syngeneic BALB/c 

mice (42). However, they differ in their metastatic potential and route of dissemination 

(43). 66cl4 cells are weakly metastatic and tend to travel via the lymphatic system to the 

lung (43). Samples from our previously published (44) cohort of 66cl4 tumours from day-

33 post-injection (roughly 1750 mm3 in size) were included. The highly aggressive 4T1 

model is metastatic to the bone, lung and liver and predominantly does so via the 

vasculature (43) (45). We included samples from primary 4T1 tumours harvested day-10 

post-injection when they are 600 mm3. Additionally, to define differences between the 

TME of primary and metastatic 4T1 tumours, samples were included from mice with 4T1 

liver metastases, generated using the intrasplenic injection model of experimental 

metastasis (46).   

Finally, to enable comparison of ICI-resistant and ICI-susceptible murine melanoma 

models, melanomas from the Tyr::CreER/BRafCA/+/Ptenlox/lox conditional melanoma model 

(47) and the YUMMER1.7 syngeneic melanoma model (48) were included. The 

Tyr::CreER/BRafCA/+/Ptenlox/lox transgenic mouse is a well-described murine model of 

melanoma, which allows 4-hydroxytamoxifen-inducible melanocyte-targeted BRAFV600E 

expression and simultaneous PTEN inactivation (referred to hereafter as 

BRAFV600E/PTEN-/-). Murine BRAFV600E/PTEN-/- melanomas are characterized by low 

immune cell infiltration and are therefore known to be “immune cold” and resistant to ICI-

therapy (49, 50). YUMMER1.7 cells were derived from a BRAFV600E/PTEN-/- melanoma 

following subsequent exposure to ultraviolet radiation to increase mutational burden, 

making YUMMER1.7 melanomas sensitive to ICI treatment (48). We included samples 
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harvested at 2000 mm3 from YUMMER1.7 melanomas treated with either αPD-1 

immunotherapy or IgG control.    

2.4.3 Comparing the TME of Nodal and Extranodal Murine B Cell Non-Hodgkin’s 

Lymphoma  

B-NHL is the most commonly diagnosed lymphoid malignancy, arising from the 

abnormal proliferation of B lymphocytes. B-NHL frequently arises in secondary lymphoid 

organs, such as the lymph nodes or spleen, but extranodal involvement is common and 

has been shown to correlate with adverse outcomes (51).  Studies have demonstrated 

that B-NHL has distinct biological features between different extranodal sites (52-54), and 

mouse modelling provides the opportunity to functionally examine how varied TMEs can 

impact the B-NHL immune cell infiltration, specifically as A20 tumours develop in the 

murine liver (Figure 2.4A), while Eµ-Myc tumours develop in the lymph nodes (Figure 

2.4B).   

Following PhenoCycler staining, DAPI-based segmentation (StarDist) of images was 

performed to extract single-cell marker expression, and cells were classified into 

phenotypes based on marker expression (Figure 2.4C; see protocols below). In A20 and 

Eµ-Myc tumours, we were able to detect dendritic cells, B cells, endothelial cells, CD4+ 

T cells, CD8+ T cells, macrophages, regulatory T cells (Tregs), tumour cells, neutrophils, 

and fibroblasts. Of note, in these tissues and in the tissues derived from other tumour 

types, CD31+ endothelial cells formed close contacts with αSMA+ fibroblasts, leading to 

fluorescence spillover of CD31 and αSMA lineage markers following cell segmentation. 

We classified these cells as “EndoFib”, representing close contacts between endothelial 

cells and fibroblasts. This was similarly observed with tightly packed CD4+ and CD8+ T 
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cells in lymphoma tissues only, and we termed these cells “T Cells” in downstream 

analyses. Despite these challenges in cell segmentation, the proportions of immune cell 

types found in the A20 TME by PhenoCycler correlated closely with archival flow 

cytometry immunophenotyping of dissociated A20 tumours, showing that these two 

methodologies can similarly identify cells in the TME (Figure 2.4D).   

The A20 B-NHL TME was characterized by high infiltration of immune cells (55.12%), 

relative to adjacent non-tumour bearing liver (16.27%) (Figure 2.4E). The A20 immune 

infiltration was comprised of dendritic cells (defined as CD11b+ CD11c+), macrophages 

(defined as CD11b+ F4/80+), CD8+ T cells (defined as CD3+ CD8+ FoxP3-), and Tregs 

(defined as CD3+ CD4+ FoxP3+), while immune cells in the adjacent liver were almost 

exclusively macrophages (likely Kupffer cells), consistent with what is expected in normal 

liver. We analyzed spatial interactions between the different cell phenotypes in A20 

tumours using CytoMAP to calculate the probability of different cell types being within 50 

µM of each other (55) (see methods). We found that Tregs were in close proximity to T 

cells (correlation coefficient = 0.695) and CD8+ T cells (correlation coefficient = 0.6011). 

Furthermore, tumour cells were spatially segregated from immune cells such as CD8 T 

cells (correlation coefficient = -0.1289), macrophages (correlation coefficient = -0.1287), 

and Tregs (correlation coefficient = -0.1942; Figure 2.4F-G). These results suggest that 

tumour cells tend to localize together within the extranodal B-NHL tumour mass while 

immune cells localize together at the tumour periphery and highlight that Tregs are a 

critical mediator of CD8+ T cell immunosuppression in A20 tumours.   
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Figure 2.4: PhenoCycler imaging of the murine nodal and extra-nodal B-cell 
lymphoma tumour microenvironment 
A. Schematic of the A20 model of extranodal B-NHL, and representative images of Ki67 
staining in healthy liver and A20 tumour-bearing liver. B. Schematic of the Eµ-Myc model 
of nodal B-NHL, and representative images of Ki67 staining in healthy lymph node and 
an Eµ-Myc tumour-bearing lymph node. C. Heatmap showing the normalized cellular 
mean intensity of markers within the PhenoCycler staining panel, in different phenotypes 
of cells in A20 and Eµ-Myc tumours. D. Scatter plot comparing the proportions of different 
cell phenotypes as determined by PhenoCycler staining versus archival flow cytometry 
data, for A20 tumours. Pearson r = 0.8551, p = 0.0142. E. Proportions of different cell 
types in adjacent healthy liver and A20 tumour-bearing liver. F. Heatmap showing 
neighborhood analysis of A20 tumours, as Pearson correlation coefficient between cells. 
Blue hue indicates cells are likely to be in further proximity, while red hue indicates that 
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cells are likely to be in closer proximity. G. Representative image of an A20 tumour core. 
H. Proportions of different cell types in healthy lymph nodes and Eµ-Myc tumour-bearing 
lymph nodes. I. Heatmap showing neighborhood analysis of A20 tumours, as Pearson 
correlation coefficient between cells.  J. Representative image of an Eµ-Myc tumour 
core.  
 

As expected, non-tumour bearing murine cervical lymph nodes consisted almost 

entirely of immune cells (84.04%); however, the presence of Eµ-Myc tumours drastically 

decreased this proportion (16.41%). In Eµ-Myc tumours, the overall immune composition 

was altered relative to healthy lymph nodes, with an increase in neutrophils (defined as 

CD11b+ MPO+), and a decrease in Tregs, dendritic cells, and CD8+ T cells (Figure 

2.4H). Eµ-Myc tumours also had an increased proportion of stromal cells, including 

fibroblasts and endothelial cells (23.09% in Eµ-Myc tumours, compared to 15.96% in 

healthy lymph node). Spatial analysis further demonstrated that Eµ-Myc tumours are 

relatively disorganized (Figure 2.4I), and different cell types seem to be randomly 

distributed throughout the tumour. For instance, while CD8+ T cells and Tregs can be 

detected (Figure 2.4J), they are spatially segregated and are likely not functionally 

interacting (correlation coefficient = 0.2058).  

Our data shows that the presence of A20 extranodal tumours induces the 

recruitment of immune cells to the liver, while the presence of Eµ-Myc nodal tumours 

leads to immune cell displacement from the lymph nodes. Furthermore, as it has been 

previously suggested (56), our data suggest that A20 tumours rely on Tregs to induce 

immunosuppression and achieve immune evasion, while Eµ-Myc tumours are immune-

depleted, and therefore do not require inhibitory immune cell interactions to achieve 

immunosuppression. Thus, these two models of B-NHL employ drastically different 

strategies to avoid immune destruction.   
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2.4.4 Defining Differences in the TME of Primary and Metastatic Murine Breast 

Cancer  

Breast cancer is a heterogeneous disease, comprised of different molecular 

subtypes. Patients with triple-negative breast cancer (TNBC) have the worst prognosis, 

largely due to aggressive tumour behaviour, increased risk of metastasis, and resistance 

to conventional anti-cancer therapies (57). Treatments which target the TME in TNBC 

have gained increased attention in recent years, spurred on by data demonstrating the 

strong immunogenicity of this tumour type (58) and success of combined chemotherapy 

and immunotherapy in clinical trials (59, 60). Understanding the cellular landscape of 

TNBC tumours will undoubtedly be beneficial for the continued development of successful 

TME-targeting therapies.   

Towards this goal, we used PhenoCycler to image primary tumours from the 

commonly used pre-clinical murine 66cl4 and 4T1 TNBC models, as well as 4T1 liver 

metastases (Figure 2.5A-B). Using the protocols described below, we performed cell-

segmentation and cell-clustering to identify cell phenotypes (Figure 2.5C). In these 

tumours, we could identify the same immune and stromal cell types as were found in 

lymphoma tumours. However, while lymphoma tumour cells were characterized by Ki67 

positivity, we found that tumour cells in breast cancer models could be stratified based on 

Ki67 expression (Figure 2.5D), and both Ki67+ and Ki67- tumour cells were numerous 

enough to merit individual classification. Interestingly, the percentage of Ki67+ tumour 

cells was higher in the more aggressive 4T1 samples compared to 66cl4 (Figure 2.5E; 

percentage of Ki67+ tumour cells among total tumour cells: 66cl4: 41.13%; 4T1: 80.65%; 

4T1-liver: 63.47%). The proportion of CD45+ immune cells was similar in all tumour 
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sample types (Figure 2.5E; 66cl4: 45.39%; 4T1-primary: 52.52%; 4T1-liver: 49.84%), 

with macrophages representing the dominant immune cell type (Figure 2.5E-F: 66cl4: 

39.35%; 4T1-primary: 40%; 4T1-liver: 38.59%) in line with previously published reports 

(61).   

In addition to the composition of the immune cell landscape, cell neighbourhood 

analyses highlighted further differences between tumour types. Immune cells in 66cl4 

tumours were largely localized together in restricted regions, but were found to be 

intermingling with other cell types throughout 4T1 tumours (Figure 2.5G-I). In particular, 

4T1 tumours were observed to have strong spatial interactions between CD8+ T cells and 

endothelial cells (correlation coefficient = 0.6198), and Ki67+ tumour cells and 

macrophages (correlation coefficient = 0.5448; Figure 2.5H). In contrast, the interaction 

between endothelial cells and CD8+ T cells is lost in 4T1 liver metastases (correlation 

coefficient = -0.1667) compared to the primary tumour, with a concomitant increase in 

interactions between endothelial cells and neutrophils (correlation coefficient = 0.4064) 

and total neutrophil abundance (Figure 2.5J-K; 4T1: 0.19%; 4T1-liver: 0.88%). These 

data corroborate observations that formation of 4T1 liver metastases is heavily reliant on 

the infiltration of neutrophils into the TME (62), suggesting that proximity to the vascular 

endothelium may be indicative of immune cell influx patterns.   
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Figure 2.5: PhenoCycler imaging of the murine breast cancer tumour 
microenvironment 
A. Schematic of the 66cl4 murine model of breast cancer. B. Schematics of the 4T1 
murine models of breast cancer and breast cancer liver metastasis. C. Heatmap showing 
the normalized cellular mean intensity of markers within the PhenoCycler staining panel, 
in different phenotypes of cells in 66cl4 and 4T1 tumours. D. Representative image 
showing Ki67+ and Ki67- tumour cells. E. Proportions of different cell types in 66cl4 and 
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4T1 tumours. F. Representative images of macrophages and T cells in 66cl4 and 4T1 
primary tumours. G. Heatmap showing neighborhood analysis of 66cl4 tumours. as 
Pearson correlation coefficient between cells.  H. Heatmap showing neighborhood 
analysis of 4T1 primary tumours, as Pearson correlation coefficient between cells.  I. 
Representative images showing immune cell infiltration patterns in 66cl4 and 4T1 
tumours. J. Heatmap showing neighborhood analysis of 4T1 liver metastases, as 
Pearson correlation coefficient between cells.  K. Representative images comparing 
immune and stromal cell types in 4T1 primary and 4T1 liver metastases.   
 

These data illustrate the utility of PhenoCycler technology to profile the immune 

landscape of murine TNBC tumours, as we characterized immune cell composition of 

FFPE-processed murine tumour types while layering on top cellular distributions in space. 

We propose that future applications of PhenoCycler technology, using in-depth antibody 

panels which assess immune cell function or polarization, may aid in uncovering 

therapeutic options to augment anti-tumour immunity in TNBC patients.  

2.4.5 Characterizing the TME of ICI-Resistant and ICI-Susceptible Murine Melanoma  

Melanoma is one of the most immunogenic cancer types, due to its high mutational 

burden, which leads to the production of neoantigens that are recognized by patrolling 

immune cells. To this end, ICI therapies have revolutionized the treatment of melanoma, 

but innate and acquired resistance remain as clinical challenges. Furthermore, clinical 

studies have shown that ICI resistance is associated with changes in TME composition 

(63, 64).   

We used two immune competent murine models of melanoma for PhenoCycler 

staining: the BRAFV600E/PTEN-/- model and the YUMMER1.7 model (Figure 2.6A). 

BRAFV600E/PTEN-/- melanomas exhibit high intratumoural heterogeneity and melanoma 

cell plasticity, are known to be immune “cold”, and are insensitive to ICI treatment. 

Conversely, YUMMER1.7-derived tumours are highly immunogenic and are susceptible 
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to ICI-mediated tumour inhibition (48). In our previous work, we have shown that αPD-1 

immunotherapy reduced the growth of YUMMER1.7 tumours and improved the overall 

survival of mice, but most tumours failed to go into complete remission (50), mimicking 

the human clinical scenario where more than half of patients experience disease 

progression following αPD-1 treatment (65). Thus, we aimed to determine if tumour 

regrowth following αPD-1 treatment is associated with TME remodeling by comparing 

isotype control (IgG)-treated tumours with αPD-1-treated tumours (αPD-1-relapsed), 

harvested when tumours were 2000 mm3. Additionally, samples from BRAFV600E/PTEN-/- 

tumours facilitated further comparison between an ICI-resistant and an ICI-sensitive 

murine model of melanoma.   

PhenoCycler images from these murine melanomas were cell-segmented and 

classified based on marker expression (Figure 2.6B). Similarly to breast cancer, we found 

that two distinct populations of tumour cells were present: Ki67+ and Ki67- (Figure 2.6C). 

BRAFV600E/PTEN-/- tumours were composed of 79.98% Ki67- tumour cells, and 2.88% 

Ki67+ proliferating tumour cells (Figure 2.6D). These data are consistent with our 

previous work demonstrating that BRAFV600E/PTEN-/- melanoma cells typically undergo 

phenotype switching from a more proliferative to a more invasive state, that is 

characterized by slower proliferation. The remaining 17.12% of cells within 

BRAFV600E/PTEN-/- tumours were stromal cells (5.29%) and immune cells (11.83%). The 

majority of the immune cells were found to be macrophages, with minimal T cell 

infiltration. Consistent with the fact that BRAFV600E/PTEN-/- tumours are immune “cold”, 

spatial analysis demonstrated that cells within these tumours did not have preferential 
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interactions with each other (Figure 2.6E) and appeared randomly distributed within the 

tissues (Figure 2.6F).  
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Figure 2.6: PhenoCycler imaging of the murine melanoma tumour 
microenvironment  
A. Schematics of the BRaf/Pten and YUMMER1.7 murine models of melanoma. B. 
Heatmap showing the normalized cellular mean intensity of markers within the 
PhenoCycler staining panel, in different phenotypes of cells in BRaf/Pten and 
YUMMER1.7 tumours. C. Normalized Ki67 mean fluorescence intensity in Ki67+ tumour 
cells and Ki67- tumour cells. D. Proportions of different cell types in BRaf/Pten tumours. 
E. Heatmap showing neighborhood analysis of BRaf/Pten tumours, as Pearson 
correlation coefficient between cells.  F. Representative image of BRaf/Pten tumour core. 
G. Proportions of different cell types in YUMMER1.7 tumours, treated with IgG control or 
αPD-1. H-I. Heatmap showing neighborhood analysis of YUMMER1.7 tumours treated 
with IgG control (H) or αPD-1 (I), as Pearson correlation coefficient between cells.  J. 
Representative image of YUMMER1.7-IgG tumour core. K. Representative image of 
YUMMER1.7-αPD-1 tumour core.  
 

As compared to BRAFV600E/PTEN-/- tumours, YUMMER1.7 tumours had a significantly 

higher proportion of proliferative (Ki67+) tumour cells, which was slightly decreased upon 

resistance to αPD-1 treatment (Figure 2.6G; 23.23% in IgG-treated samples versus 

18.22% in αPD-1-relapsed samples). Furthermore, both IgG-treated and αPD-1-relapsed 

YUMMER1.7 tumours were more immunogenically “hot” with increased immune cell 

abundance as compared to BRAFV600E/PTEN-/- tumours (IgG-treated: 39.11% immune 

cells; αPD-1-relapsed: 37.1% immune cells). Whie IgG-treated and αPD-1 relapsed 

YUMMER1.7 tumours had similar immune cell invasion, there were distinct differences in 

cellular organization. Spatial analysis of YUMMER1.7-IgG tumours showed strong 

interactions between CD8+ T cells and macrophages (correlation coefficient = 0.6482), 

and CD8+ T cells and dendritic cells (correlation coefficient = 0.4957; Figure 2.6H). 

YUMMER1.7-IgG Ki67+ tumour cells were in close proximity to these immune cells 

(CD8+ T cell/ Ki67+ tumour cell correlation coefficient = 0.3529; macrophage/ Ki67+ 

tumour cell correlation coefficient = 0.3535; dendritic cell/ Ki67+ tumour cell correlation 

coefficient = 0.2486), as compared to Ki67- tumour cells (CD8+ T cell/ Ki67- tumour cell 
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correlation coefficient = -0.2316; macrophage/ Ki67- tumour cell correlation coefficient = 

-0.1342; dendritic cell/ Ki67- tumour cell correlation coefficient = -0.1013). However, Ki67- 

tumour cells were in closer contact with CD4+ T cells (Ki67+ tumour cell/ CD4+ T cell 

correlation coefficient = -0.0339, Ki67- tumour cell/ CD4+ T cell correlation coefficient = 

0.1932). In αPD-1-relapsed tumours, all of these cellular contacts were reduced (Figure 

2.6I-K), supporting reduced tumour-immune cell interaction as a mechanism of acquired 

ICI resistance in melanoma.   

All together, these results support that Ki67+ proliferative melanoma cells have higher 

immunogenicity. In agreement with this, BRAFV600E/PTEN-/- tumours have a substantially 

increased proportion of Ki67- tumour cells, correlating with a decreased proportion of 

infiltrating immune cells. Moreover, in YUMMER1.7-IgG tumours, Ki67+ tumour cells 

maintain close contacts with immune cells. In αPD-1-replapsed YUMMER1.7 tumours, 

there is no preferential interaction of Ki67+ or Ki67- tumour cells with immune cells, 

indicating immune dysfunction upon the emergence of ICI-resistance. To this end, our 

data supports the notion that ICI-resistance is associated with decreased interactions 

between immune cells and tumour cells (66), as αPD-1-relapsed YUMMER1.7 tumours 

have similar macrophage infiltration as compared to IgG controls, yet the tissue 

organization is altered such that there are limited cellular contacts between macrophages 

and tumour cells.   
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2.5 Discussion 

2.5.1 PhenoCycler Imaging of Murine FFPE Tumour Tissues  

The TME is a central player in many of the biological challenges associated with 

cancer treatment, such as immune escape, disease metastasis, and drug resistance. 

Thus, it is critically important to assess both the composition and the spatial dynamics of 

the TME in mouse models that are commonly used in pre-clinical cancer research. 

Previously, PhenoCycler imaging of murine tissues had been limited to fresh frozen 

tissues. Here, we detail imaging FFPE murine tissues and provide our protocols for the 

optimization and conjugation of antibodies for this purpose. To illustrate the feasibility of 

this approach, we provide data showing successful staining of murine lymphoma, 

melanoma, and breast cancer tissues.   

Immunofluorescence imaging of FFPE tissues is not without challenges. FFPE tissues 

tend to have high auto-fluorescence, which can distort true positive staining. Additionally, 

formalin-fixation induces protein cross-linking, leading to epitope masking and difficulties 

in primary antibody binding (38). However, many research groups archive tissues from 

previous pre-clinical studies in FFPE format; thus, it is a worthwhile endeavor to optimize 

antibodies for highly multiplexed imaging of murine FFPE tissues, to allow for the 

utilization of archival materials. To this end, the selection of antibody clones with an ideal 

SNR was a critical first step towards this goal. Following clone selection, antibodies were 

carefully optimized, for parameters such as concentration, incubation time and 

temperature, and imaging exposure time.   

In this dataset, we first showed that the TME of murine B-NHL is altered between the 

A20 and Eµ-Myc models of B-NHL, suggesting two different mechanisms of immune 
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evasion. Then, we demonstrated that the distribution of the immune microenvironment 

differs between models of murine TNBC, and showed how measurement of interactions 

between endothelial and immune cells may relate to TME infiltration. Finally, using 

samples from murine melanoma, we examined how the TME is altered in the context of 

ICI-resistance, and found that ICI-susceptible tumours have increased spatial interactions 

between immune cells and tumour cells. Our data asserts that the careful selection of a 

mouse model is critical when designing experiments to study the TME. For instance, Eµ-

Myc or BRAFV600E/PTEN-/- models may be appropriate to study therapeutics that are 

predicted to increase immune cell trafficking or retention in the TME; while A20, 66cl4, 

4T1, or YUMMER1.7 models could be useful to study therapeutics that re-activate 

immune cells already present in the TME. Furthermore, we demonstrate that 

PhenoCycler imaging of murine tumours can be employed both to test and to generate 

hypotheses. As an example of this, we hypothesized that the TME would be altered in 

different models of B-NHL, and our data found close cellular contacts between CD8+ T 

cells and Tregs in A20 B-NHL tumours, but not in Eµ-Myc tumours. Thus, one may 

hypothesize that Tregs in A20 function via direct inhibitory interactions with CD8+ T cells 

to suppress anti-tumour immunity (67), and to further investigate this, ex vivo functional 

assays could be employed. Throughout this study, there are numerous examples where 

our findings via PhenoCycler imaging have been hypothesis generating and could be 

further explored with in vitro or in vivo experimentation.  

2.5.2 Analysis of Highly Multiplexed Immunofluorescence Staining Data  

While many labs may be eager to begin highly multiplexed imaging of their 

experimental tissues, data analysis can appear to be a daunting task. Above, we provide 
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our workflows for open-source analysis of PhenoCycler imaging data. In our analysis 

pipeline, we primarily use QuPath software for cell classification (68), and CytoMAP for 

spatial analysis (55). In QuPath, images are segmented into single cells using a StarDist 

plugin (69, 70). In some cases, cell segmentation failed to discriminate individual cells 

when close contacts resulted in fluorescence spillover. This was particularly true in the 

case of intact blood vessels, where αSMA+ fibroblasts formed close contacts with CD31+ 

endothelial cells. In our dataset, we referred to these as “EndoFib” cells, and considered 

them to be a distinct entity. We also note that alternate segmentation methods that 

incorporate a cell membrane marker to define cellular boundaries may need to be utilized 

when the primary cell type of study is irregularly shaped or multinucleated, such as a 

fibroblast or a neuron (71).   

To classify cells into phenotypes, we manually annotated a small number of cells 

based on their marker expression and used object-based classification methods in 

QuPath to extend this cell classification to the whole tissue. While this method of analysis 

proved to be highly successful in our hands, other analysis pipelines may allow more 

cursory or in-depth higher-plex image analysis. For instance, following cell segmentation, 

cellular mean intensity of all markers can be exported to a comma-separated values 

(CSV) file, which can be analyzed with FlowJo or other programs (so-called “hand-

gating”). However, the success of hand-gating is limited by cell segmentation noise (72). 

Another alternative is to perform unsupervised clustering analysis, using pipelines such 

as Seurat, but we note that over-clustering has the potential to identify false phenotypes, 

and therefore must be used with caution. Overall, the analysis pipeline described above 

is an excellent starting point for novices in multiplexed immunofluorescence image 
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analysis and can be built upon to allow for more sophisticated analyses which answer 

increasingly complex experimental questions.   

2.5.3 Limitations of the Technology  

While the PhenoCycler system for highly multiplexed fluorescent imaging has 

distinct advantages over other highly multiplexed imaging platforms, such as non-

destructive tissue imaging, limited spectral overlap in fluorescence due to iterative cycles 

of imaging, and the use of robotic automation to increase throughput, there are also 

limitations to this technology. For instance, it is expensive and time consuming to identify 

antibody clones that are suitable for PhenoCycler immunofluorescence imaging. 

Additionally, the conjugation of an antibody to a DNA barcode can occasionally result in 

antibody dysfunction, and it is costly to research labs to correct problems of this nature. 

The process of identifying antibody clones suitable for PhenoCycler imaging represents 

a significant bottleneck in the PhenoCycler workflow, especially when generating custom 

antibody panels.  

Furthermore, while PhenoCycler has been proven to image up to 100 markers, 

there is limited opportunity for signal amplification to aid in the visualization of targets of 

low abundance. To this point, there have been attempts to integrate tyramide-based 

signal amplification into the PhenoCycler workflow (20), but the proposed strategy 

requires iterative staining and stripping cycles, thereby increasing the risk of tissue 

damage and decreasing automation.   

2.4.5 Concluding Remarks  

As new technologies in highly multiplexed imaging continue to emerge, we predict that 

many labs will require refined protocols for image acquisition and data analysis. Highly 
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multiplexed imaging provides the opportunity to visualize many diverse cell types in their 

native environments, and the insights provided from these types of experiments are 

instrumental in advancing the field of cancer research. Thus, we predict that the number 

of publications which employ highly multiplexed imaging will explode over the next 

decade. To this end, data must be appropriately collected and analyzed, and we hope to 

empower research groups to begin working towards this goal with the protocols provided 

above.  
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2.7 Supplementary Materials for Chapter 2 
 

 
 

Supplemental Figure 2.1: Immunofluorescence optimization of antibodies for 
murine FFPE staining 
Images showing successful immunofluorescence staining of each antibody that was 
optimized for PhenoCycler oligonucleotide barcode conjugation. In each image, DAPI is 
blue, and each individual marker is red. In each case, AF647-tagged secondary 
antibodies were used. The colour of the outer border indicates the tissue type in the 
image. Scale bar is 15 µM.   
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Supplemental Table 2.1: Reagents and Tools Table 

Reagent or Resource  Reference or Source  Identifier or Catalog 
No.  

Experimental Models  
BALB/C Mice  Charles River  BALB/cAnNCrl  
C57BL/6J Mice  The Jackson Laboratory  Strain #:000664  
Braf/PTEN Mice  The Jackson Laboratory  Strain #:013590  
A20  ATCC  TIB-208  
Eµ-Myc  Lab of Dr. Jerry Pelletier  N/A  
66cl4  Lab of Dr. Josie Ursini-Siegel  N/A  
4T1  ATCC  CRL-2539  
YUMMER1.7  Lab of Dr. Marcus Bosenberg  N/A  
Drugs and Treatments  
4-Hydroxytamoxifen  Sigma-Aldrich  H6278  
IgG Control  Bio X Cell  2A3, BE0089  
aPD-1  Bio X Cell  RMP1-14, BE0146  
Chemicals and Reagents      
Tris  Bio Basic  TB0195  
EDTA  Bio Basic  EB0185  
Sodium Chloride  Bio Basic  SB0476  
Potassium Chloride  Bio Basic  PB0440  
Sodium Hydroxide 10N  VWR  BDH7247-1  
50% H2O2  Sigma-Aldrich  516813-500ML  
Paraformaldehyde 16%  Electron Microscopy Sciences  15710  
Tween20  VWR  0777-1L  
IHC and IF Reagents and Tools  
SuperFrost Plus Slides  Fisher  22-037-246  
Xylenes  Fisher  X5-4  
Ethanol  Commercial Alcohols  P016EAAN  
Hydrophobic Barrier PAP Pen  Thermo Scientific  R3777  
Harris’ Hematoxylin  Sigma-Aldrich  638A-85  
Eosin Y Solution  Sigma-Aldrich  HT110116  
Donkey Serum  Jackson ImmunoResearch  017-000-121  
FC Blocking Reagent  Made in house    
ECL Anti-mouse IgG, Horseradish 
peroxidase linked whole antibody 
from sheep  

Cytiva  NA931V  

Mouse CD45 Antibody  R&D Systems  AF114  
Dnk pAb to Goat IgG (HRP 
polymer)  

Abcam  Ab214881  

ImmPACT DAB Substrate Kit, 
Peroxidase  

Vector Laboratories  SK-4105  

https://www.fishersci.ca/shop/products/fisherbrand-superfrost-plus-microscope-slides-2/22037246
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AF647 donkey anti-rabbit IgG  Invitrogen  A31573  
Donkey anti-Rat IgG DyLight 650  Invitrogen  SA5-10029  
AF647 donkey anti-goat IgG  Invitrogen  A21447  
DAPI (1 mg/mL)  Thermo Scientific  62248  
Flouromount-G  Invitrogen  00-4958-02  
24x55mm No. 1.5 Thickness Cover 
Slips  

Epredia  152455  

PhenoCycler Antibody Conjugation and Tissue Staining  
Lammeli Loading Dye  Bio-Rad  #1610737EDU  
GelCode Blue Stain Reagent  Thermo Scientific  24590  
1X D-PBS  Wisent  311-425-CL  
Methanol  Commercial Alcohols  P016MEOH  
Akoya Reagents  
10X PhenoCycler Buffer  Akoya  7000001  
Staining Kit  Akoya  7000008  
Conjugation Kit  Akoya  7000009  
Black-walled 96-well plate  Akoya  7000006  
Adhesive foil  Akoya  7000007  
Assay Reagent  Akoya  7000002  
Nuclear Stain  Akoya  7000003  
Flow Cell  Akoya  240204  
Software  
QuPath  Bankhead et al. (68)    
StarDist  Schmidt et al. (69)    
MatLab  MathWorks    
CytoMAP  Stoltzfus et al. (55)  

Weigert et al. (70)  

  

GraphPad Prism  Dotmatics    
Other  
Microtome  Leica  RM2125 RTS  
PT Link for Pre-Treatment  Agilent    
LED Lamps    20000 Lux Intensity  
AxioScan 7  Zeiss    
PhenoCycler-Fusion  Akoya    

  

  

https://my.akoyabio.com/ccrz__ProductDetails?sku=7000001&cclcl=en_US
https://my.akoyabio.com/ccrz__ProductDetails?sku=7000008&cclcl=en_US
https://my.akoyabio.com/ccrz__ProductDetails?sku=7000009&cclcl=en_US
https://my.akoyabio.com/ccrz__ProductDetails?sku=7000006&cclcl=en_US
https://my.akoyabio.com/ccrz__ProductDetails?sku=7000007&cclcl=en_US
https://my.akoyabio.com/ccrz__ProductDetails?sku=7000002&cclcl=en_US
https://my.akoyabio.com/ccrz__ProductDetails?sku=7000003&cclcl=en_US
https://my.akoyabio.com/ccrz__ProductDetails?sku=240204&cclcl=en_US
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Bridging Text 
 

In Chapter 2, we developed experimental and analytical tools to study the murine 

TME. We were the first research team to develop a PhenoCycler antibody panel for 

murine FFPE tissue, and we reported our methodology for selecting and screening 

antibody clones which show high fidelity staining in a variety of murine FFPE tissues. 

These antibodies were conjugated to DNA-oligonucleotides and were used in a 

PhenoCycler staining experiment. To this end, highly multiplexed PhenoCycler imaging 

was performed on tissues derived from 8 different murine models of cancer, and matched 

normal tissues. We also reported our pipeline for PhenoCycler image analysis, using 

open-source software that requires minimal knowledge of coding languages. The analysis 

pipeline described how to visualize PhenoCycler images in QuPath, perform cell 

segmentation, classify cells into phenotypes, and perform spatial analyses.  

Regarding the specific aims of this thesis, we described how the TME differed 

between two different models of syngeneic murine lymphoma: A20 and Eu-Myc. A20 was 

found to be richer in lymphoid infiltration, with increased cellular contacts between 

different cell types, while Eu-Myc tumours had increased prevalence of tumour cells and 

stromal components, with decreased cellular contacts between different cell types. We 

therefore propose that A20 is an ideal model to study therapeutic interventions where the 

function of cells already present in the TME is modulated, and Eu-Myc is an ideal model 

to study how an “immune cold” TME impacts disease progression. Eu-Myc could be 

further used identify therapeutic interventions that may increase immune cell trafficking 

to the TME.  
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Indeed, in Chapter 3, the Eu-Myc model was used to study how STAT6D419N 

mutation impacts CD4+ T cell invasion into the TME. Moreover, PhenoCycler imaging of 

both murine and human tissues was employed to answer specific questions related to 

STAT6D419-mutant-mediated modulation of the TME. Therefore, the techniques and 

mouse models that were developed in Chapter 3 created a foundation for the research in 

Chapter 3, that aimed to ask experimental questions with direct clinical relevance to the 

human rrDLBCL population.  
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Chapter 3: The CCL17-CCR4 Axis is Critical for Mutant STAT6-
Mediated Microenvironmental Remodeling and Therapeutic 
Resistance in Relapsed and Refractory Diffuse Large B Cell 
Lymphoma 
 
 
This chapter has been published as a pre-print: 

MJ Abraham, C Guilbert, N Gagnon, C Goncalves, A Benoit, R Rys, SEJ Preston, RD 

Morin, WH Miller Jr., NA Johnson, SV del Rincon, & KK Mann. The CCL17-CCR4 Axis is 

Critical for Mutant STAT6-Mediated Microenvironmental Remodelling and Therapeutic 

Resistance in Relapsed and Refractory Diffuse Large B Cell Lymphoma. BioRxiv. 2024. 

doi: 10.1101/2024.12.13.628396. 

The online version of this article, and all supplementary material associated with it, can 

be found at: https://www.biorxiv.org/lookup/doi/10.1101/2024.12.13.628396 

 

3.1 Abstract 
 

Relapsed and refractory Diffuse Large B Cell Lymphoma (rrDLBCL) presents a 

significant challenge in hematology-oncology, with approximately 30-40% of DLBCL 

patients experiencing relapse or resistance to treatment. This underscores the urgent 

need to better understand the molecular mechanisms governing therapeutic resistance. 

Signal Transducer and Activator of Transcription 6 (STAT6) has been previously identified 

as a gene with recurrent D419 gain-of-function mutations in rrDLCBL. When STAT6D419 

mutations are present in DLBCL tumour cells, we have demonstrated that transcription of 

the chemokine CCL17 (aka TARC) is increased, and tumours have increased infiltration 

of CD4+ T cells. However, the significance of increased T cell infiltration had not been 

determined. In the present study, we developed a mouse model of STAT6D419N mutant 

https://www.biorxiv.org/lookup/doi/10.1101/2024.12.13.628396
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DLBCL, that recapitulates the critical features of human STAT6D419 mutant DLBCL, 

including increased expression of phospho-STAT6, increased CD4+ T cell invasion, and 

resistance to doxorubicin treatment. With this model, we found CD4+ T cells in 

STAT6D419N tumours have higher expression of the receptor for CCL17, CCR4.  Using ex 

vivo functional assays we demonstrate that STAT6D419N tumour cells are directly 

chemoattractive to CCR4+ CD4+ T cells, and when CCR4 is inhibited using a small 

molecule antagonist, CD4+ T cells in STAT6D419N tumours are reduced and STAT6D419N 

tumours regain therapeutic sensitivity to doxorubicin. Using PhenoCycler imaging of 

human rrDLBCL samples, we find that STAT6D419 tumours indeed have increased 

expression of phospho-STAT6+ and increased cellular interactions between phospho-

STAT6+ tumour cells and CD4+/ CCR4+ CD4+ T cells. Thus, our data identifies CCR4 

as an attractive therapeutic target in STAT6D419 mutant rrDLBCL. 

 

3.2 Introduction 
 

Diffuse Large B Cell Lymphoma (DLBCL) is the most commonly diagnosed 

lymphoid malignancy in adults. The first-line treatment for DLBCL is the poly-

chemoimmunotherapy R-CHOP, which leads to complete remission for most patients. 

However, approximately 30-40% of patients will be refractory to R-CHOP or will relapse 

following treatment (relapsed/refractory DLBCL: rrDLBCL). Thus, it is critically important 

to better understand mechanisms of therapeutic resistance, with the overall goal of 

identifying treatment modalities with increased efficacy for rrDLBCL patients.  

One interesting target in rrDLBCL is Signal Transducer and Activator of 

Transcription 6 (STAT6). STAT6 is mutated or overactivated in several hematological 
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malignancies, including cutaneous T cell lymphoma (CTCL) (1), primary mediastinal B 

cell lymphoma (PMBCL) (2-5), follicular lymphoma (FL) (6-9), and classical Hodgkin’s 

lymphoma (cHL) (10-12). In these cancer types, STAT6 signaling promotes tumour cell 

survival, proliferation, and resistance to apoptosis, leading to the classification of STAT6 

as a potential therapeutic target in lymphoma. In DLBCL, STAT6 is not frequently 

overactivated, except in the case of relapsed/refractory disease, where our group has 

previously reported that mutations at the D419 gain-of-function hotspot are enriched (13). 

Indeed, we have shown that the presence of STAT6D419 mutation in DLBCL cell lines 

leads to increased IL-4/13-dependent phospho-STAT6 nuclear residency. This correlates 

with increased expression of STAT6 transcriptional targets, including the chemokine 

CCL17 (aka TARC), which is chemoattractive to CCR4+ immune cells, including CD4+ T 

cells. Concordantly, in human rrDLBCL, we found that increased tumour-cell derived 

CCL17 is associated with increased CD4+ T cell invasion, specifically in STAT6-mutant 

samples (14).  

Overall, research from our group and others has demonstrated that hyperactivation 

of STAT6, whether resulting from increased levels of IL-4/13 in the tumour 

microenvironment (TME) or due to gene mutation, can lead to tumour cell autonomous 

and microenvironmental changes. However, the clinical significance of these findings in 

rrDLBCL remains unclear. For instance, it is unknown if the CD4+ T cell infiltrate in 

STAT6D419-mutant tumours is skewed towards a specific polarization state or if these T 

cells contribute to disease progression and therapeutic resistance. Moreover, while we 

hypothesize that CCL17 is the main chemoattractant driving CD4+ T cell recruitment, this 

has not been experimentally proven. Recent publications have asserted that the spatial 
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organization of tumours is just as important as their cellular constitution (15), but it is 

unknown if or how STAT6D419 mutation induces tumour restructuring, and if CCL17-CCR4 

plays a role. Finally, STAT6D419 mutations are enriched in rrDLBCL, but in vitro data 

indicates that STAT6D419 mutant tumour cells do not have increased resistance to any of 

the individual components of R-CHOP (14). It is still unknown if STAT6D419-mutations 

might contribute to therapeutic resistance due to changes in the TME.  

In this study, we aimed to develop a mouse model that could recapitulate critical 

features of STAT6D419-mutant DLBCL, including increased phospho-STAT6 positivity in 

tumour tissue and increased CD4+ T cell invasion. With this model, we could address the 

outstanding questions related to STAT6D419-driven microenvironmental modification. 

Using flow cytometry, ex vivo functional assays, and highly-multiplexed 

immunofluorescent PhenoCycler imaging, we demonstrate that STAT6D419N-mutant 

tumour cells are more chemoattractive to CCR4+ CD4+ T cells. Additionally, we show 

that STAT6D419N tumours are indeed resistant to doxorubicin. Importantly, we 

demonstrate that blocking CCL17-induced CD4+ T cell recruitment to the STAT6D419N 

TME, using a small molecule inhibitor of CCR4, re-sensitizes tumours to doxorubicin 

treatment. In human STAT6D419-mutant DLBCL biopsy tissues, we show that tumour cells 

have increased expression of phospho-STAT6 and CCL17. Moreover, STAT6D419-mutant 

tissues have increased interactions between phospho-STAT6+ tumour cells and CD4+/ 

CCR4+ CD4+ T cells as compared to STAT6WT rrDLBCL samples. Thus, our data 

identifies CCR4 as an attractive therapeutic target for rrDLBCL patients with overactivated 

STAT6 signaling.  
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3.3 Results 

3.3.1 The Immunocompetent mSTAT6D419N-Eµ-Myc Lymphoma Closely Recapitulates 

Critical Features of STAT6D419 Mutant rrDLBCL. 

 Using in vitro models, we have previously demonstrated that STAT6D419 lymphoma 

cells have a similar proliferative rate and therapeutic sensitivity as STAT6WT lymphoma 

cells (14). However, our previous data also indicated that STAT6D419 mutation may 

function to induce therapeutic resistance via modulation of the TME. Thus, we developed 

an immunocompetent mouse model of STAT6D419N lymphoma, to study how mutated 

STAT6 impacts microenvironmental dynamics. To do this, we generated Eµ-Myc 

lymphoma cell lines overexpressing either murine (m) STAT6WT or STAT6D419N. These 

lymphoma cells can be injected into C57BL/6 mice via tail vein, where they home to the 

lymph nodes and spleen, and produce an orthotopic model of B cell lymphoma (Figure 

3.1A). Disease burden can be followed via ultrasound (Figure 3.1B), and mice reach 

endpoint at 14-days post-injection, when cervical lymph node (cLN) size has exceeded 

100 mm3. Critically, both Eµ-Myc-mSTAT6WT tumours and Eµ-Myc-mSTAT6D419N tumours 

grow at the same rate (Figure 3.1C), and neither genotype provides a survival advantage 

in the context of primary disease.  

 To characterize these tumours over their development, lymph nodes were 

harvested at early-, mid-, and late-disease (days 8, 11, and 14 post-injection, 

respectively). At early and late disease, Eµ-Myc-mSTAT6WT and Eµ-Myc-mSTAT6D419N 

tumours had a similar percentage of Ki67+ cells within the lymph nodes (Figure 3.1D-E). 
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However, at mid-disease, Eµ-Myc-mSTAT6D419N tumours had significantly less Ki67+ 

tumour cells, despite no difference in tumour weight (Figure 3.1F). To characterize this 

discrepancy, we performed IHC co-staining for CD4 and phospho-STAT6 (Figure 3.1G). 

Consistent with patient samples, we found that Eµ-Myc-mSTAT6D419N tumours had 

increased CD4 and phospho-STAT6 positivity (Figure 3.1H), and these two metrics were 

positively correlated (Figure 3.1I). This could be further recapitulated with flow cytometry 

(antibodies used for flow cytometry found in Sup. Table 3.1), where we found that Eµ-

Myc-mSTAT6D419N tumours were composed of an increased proportion of CD4+ T cells 

(represented as % of CD45+ cells within the tumour mass) and had a significantly 

increased total abundance of CD4+ T cells (Figure 3.1J). These differences were not 

observed at early or late disease (Sup. Figure 3.1A-B).  No differences in proportion or 

abundance of CD8+ T cells were observed at any timepoint (Figure 3.1K, Sup. Figure 

3.1C-D). Thus, our mouse model of STAT6D419N-mutant lymphoma closely replicates the 

human disease it is designed to model.  
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Figure 3.1: STAT6D419N-Eµ-Myc murine lymphoma tumours recapitulate critical 
features of human STAT6D419 lymphoma 
A. To study the impact of STAT6D419 mutation on the lymphoma TME, 8-10 week old 
female C57BL/6 mice were injected via tail vein with mSTAT6WT or mSTAT6D419N Eµ-
Myc tumour cells. B. Ultrasound images of tumour-free, mid-disease (day 11 post-
injection), and late disease (day 14 post-injection) Eµ-Myc tumours, in the cLN. The 
anatomical structure that looks like a hatched line is the trachea. In all images, the 
cLN/tumour is outlined in red. C. cLN volume, quantified by ultrasound imaging, over 
time in mSTAT6WT or mSTAT6D419N Eµ-Myc tumour bearing mice. D. Representative 
Ki67 staining of early-, mid-, and late-disease mSTAT6WT and mSTAT6D419N Eµ-Myc 
tumours (day 8, day 11, and day 14, respectively). E. Quantification of Ki67 positive 



 132 

cells in mSTAT6WT and mSTAT6D419N Eµ-Myc tumours. At day 11, mSTAT6D419N Eµ-
Myc tumours have significantly fewer Ki67+ cells. F. Weights of mSTAT6WT and 
mSTAT6D419N Eµ-Myc tumours at day 11. Concordant with ultrasound data, mSTAT6WT 
and mSTAT6D419N cLN tumours are the same weight at this this time point. G. 
Representative images of CD4 (brown) and phospho-STAT6 (pink) IHC co-staining in 
day 11 mSTAT6WT and mSTAT6D419N Eµ-Myc tumours. CD4 staining is consistently 
membranous, while phospho-STAT6 is expressed in both the cell cytoplasm and 
nucleus. H. Quantification of CD4 and phospho-STAT6 H-scores (see methods) in day 
11 mSTAT6WT and mSTAT6D419N Eµ-Myc tumours. mSTAT6D419N Eµ-Myc tumours have 
significantly increased CD4 and phospho-STAT6 expression. I. Correlation of CD4 and 
phospho-STAT6 expression in each tissue. Pearson correlation r = 0.7610. J. 
Quantification of CD4+ T cells in day 11 mSTAT6WT and mSTAT6D419N Eµ-Myc tumours. 
CD4+ T cells are live, single cells, that are CD45+, CD3+, and CD4+. Data is expressed 
as a percentage of CD45+ cells in each tissue, and as the total number of CD4+ T cells 
in each tissue. K. Quantification of CD8+ T cells in day 11 mSTAT6WT and 
mSTAT6D419N Eµ-Myc tumours. CD8+ T cells are live, single cells, that are CD45+, 
CD3+, and CD8+. Data is expressed as a percentage of CD45+ cells in each tissue, 
and as the total number of CD8+ T cells in each tissue. Detailed statistics and n for 
each figure can be found in Sup. Table 3.5. 
 
 
3.3.2 mSTAT6D419N-Eµ-Myc Tumours have Increased CCR4+ Th1 Cells and Increased 

Hallmarks of Inflammation 

We next questioned how CD4+ T cells are being enhanced in the Eµ-Myc-

STAT6D419N TME. It is well-established that the STAT6 transcriptional target CCL17 is 

overexpressed by STAT6D419-mutant lymphoma cells in response to IL-4 stimulation (6, 

7, 14), and CCL17 can drive recruitment of CCR4+ immune cells, including CD4+ T cells. 

We first examined the expression of CCR4 on CD4+ T cells in Eµ-Myc-mSTAT6WT and 

mSTAT6D419N day 11 tumours. Flow cytometry analysis revealed a significant increase in 

the total number of CCR4+ CD4+ T cells in mSTAT6D419N tumors compared to mSTAT6WT 

tumors (Figure 3.2A). This suggests that mSTAT6D419N tumors more effectively recruit or 

retain CCR4+ CD4+ T cells, consistent with the previously described increase in CCL17 

in STAT6D419 tumours (7, 14).  
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We further compared the polarization states of CD4+ T cells in mSTAT6WT and 

mSTAT6D419N tumours by quantifying regulatory T cells (Tregs), T follicular helper cells 

(Tfh), inflammatory T helper cells (Th1), and anti-inflammatory T helper cells (Th2) using 

flow cytometry (Figure 3.2B). Among these subsets, only Th1 cells were significantly 

increased in mSTAT6D419N tumors, indicating a skewed immune profile favoring Th1 cell 

recruitment or expansion. Indeed, a higher percentage of Th1 cells in mSTAT6D419N 

tumors were CCR4-positive compared to those in mSTAT6WT tumors. Additionally, Th1 

cells in mSTAT6D419N tumors exhibited a significantly higher mean fluorescence intensity 

(MFI) of CCR4 expression (Figure 3.2C).  

 

 

Figure 3.2: STAT6D419N-Eµ-Myc tumours have increased prevalence of CCR4+ Th1 
cells 
A. Quantification of CCR4+ CD4+ T cells in day 11 mSTAT6WT and mSTAT6D419N Eµ-
Myc tumours. CCR4+ CD4+ T cells are live, single cells, that are CD45+, CD3+, CD4+, 
and CCR4+. Data is expressed as a total number of CCR4+ CD4+ T cells in each 
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tissue. B. Quantification of Tregs (CD45+ CD3+ CD4+ FoxP3+), Tfh cells (CD45+ CD3+ 
CD4+ FoxP3- PD1+ CXCR5+), Th1 cells (CD45+ CD3+ CD4+ FoxP3- Tbet+), and Th2 
(CD45+ CD3+ CD4+ FoxP3- GATA3+) in in day 11 mSTAT6WT and mSTAT6D419N Eµ-
Myc tumours. Data is expressed as a total number of cells in each tissue. C. Expression 
of CCR4 on Th1 cells in day 11 mSTAT6WT and mSTAT6D419N Eµ-Myc tumours, 
expressed as total percentage of Th1 cells that are CCR4+ (CD45+ CD3+ CD4+ 
FoxP3- Tbet+ CCR4+), and as the mean fluorescence intensity (MFI) of CCR4 
expression on Th1 cells. D. Gene set enrichment analysis (GSEA) obtained from 
RNAseq of isolated tumour cells (ie. CD19+ cells) from day 11 mSTAT6WT and 
mSTAT6D419N Eµ-Myc tumours. Teal colouring indicates enrichment of pathways 
associated with inflammation and inflammatory signaling. NES = Normalized 
Enrichment Score.  
 

To explore the broader impact of immune changes on the tumour compartment, 

we isolated Eµ-Myc cells from mSTAT6WT and mSTAT6D419N mid-disease tumours, using 

CD19 microbeads, and performed bulk RNA sequencing. Gene set enrichment analysis 

(GSEA) indicated that mSTAT6D419N tumour cells had increased hallmarks of 

inflammation (Figure 3.2D), consistent with the elevated presence of Th1 cells. Of note, 

Th1 cells in mSTAT6WT and mSTAT6D419N tumours did not express more interferon-

gamma (IFNγ), nor did they show increased expression of activation or degranulation 

markers (CD69 and CD107a, respectively; Sup. Figure 3.2A-C). Additionally, the 

expression of these markers was not changed on CD8+ T cells (Sup. Figure 3.2D-F). 

These findings demonstrate that mSTAT6D419N mutation leads to the increased presence 

of CCR4+ Th1 cells, that may contribute to an enhanced inflammatory response signature 

in mSTAT6D419N tumour cells.  

3.3.3 mSTAT6D419N Tumours are Chemoattractive to CCR4+ CD4+ T Cells. 

To experimentally validate that STAT6D419N tumor cells attract CCR4+ immune 

cells, we conducted a series of ex vivo assays designed to assess the chemoattractive 

properties of Eµ-Myc-mSTAT6WT and mSTAT6D419N tumor cells. We first tested the ability 
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of Eµ-Myc tumour cells in culture to attract various CCR4+ immune cells, including CD4+ 

T cells, eosinophils, dendritic cells, macrophages, NK cells, and CD8+ T cells. In this 

experiment, mSTAT6WT and mSTAT6D419N Eµ-Myc cells were plated in a 6-well dish and 

were stimulated with IL-4. One hour following stimulation, bulk splenocytes from non-

tumour bearing mice were plated overtop the Eµ-Myc tumour cells, using a 5 µm pore 

membrane. Splenocytes were allowed to migrate towards the tumour cells for 16 hours, 

then migrated cells were collected and characterized by flow cytometry (Figure 3.3A). 

Concordant with our previous studies, qPCR confirmed that mSTAT6D419N tumour cells 

indeed produced significantly more CCL17 in response to IL-4 stimulation than 

mSTAT6WT tumour cells (Figure 3.3B). Indeed, IL-4-stimulated tumour cells induced 

significant migration of CCR4+ splenocytes, predominantly compared of CD4+ T cells 

(Figure 3.3C). As predicted, STAT6D419N cells induced significantly greater migration of 

CCR4+ CD4+ T cells as compared to STAT6WT cells. This migration was blocked by pre-

treating splenocytes with the CCR4 inhibitor AZD2098 (16). These findings demonstrate 

that STAT6D419N tumor cells are more effective at attracting CCR4+ CD4+ T cells, 

highlighting the functional impact of increased CCL17 production by mSTAT6D419N tumour 

cells. 

In vivo, there is extensive crosstalk between tumour cells, immune cells, and 

stroma, that is not recapitulated with splenocytes from tumour-naïve mice migrating 

towards tumour cells stimulated with a single cytokine. Thus, we next attempted to more 

closely model the complexity of an intact TME ex vivo, to better characterize CD4+ T cell 

migration. To do this, mice were injected with either mSTAT6WT or mSTAT6D419N tumor 

cells, and at mid-disease, tumors and spleens were harvested and dissociated. CD4+ T 
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cells were enriched from the tumour-bearing spleens, and tumor supernatants were 

collected from lymph nodes (Figure 3.3D). Thus, with this model, CD4+ T cells have been 

polarized due to tumour exposure, and tumour supernatants represent the secretome of 

an intact TME. Chemokine/cytokine profiling of tumour supernatants demonstrated that 

mSTAT6D419N tumours tended to express higher levels of many cytokines/chemokines, 

including Th1-associated cytokines IFNγ, IL-2, TNFα, and IL-12, and the CCR4-ligands 

and STAT6 transcriptional targets CCL17 and CCL22 (Figure 3.3E). Supernatants from 

either mSTAT6WT or mSTAT6D419N tumours were then used as chemoattractants to CD4+ 

T cells derived from tumour-bearing spleens (Figure 3.3F).  

We found that significantly more CCR4+ CD4+ T cells migrated towards 

STAT6D419N supernatant compared to STAT6WT supernatant, regardless of whether the 

CD4+ T cells were derived from STAT6WT or STAT6D419N tumour-bearing mice (Figure 

3.3G). This migration was markedly reduced when CD4+ T cells were pretreated with 

AZD2098, indicating the role of CCR4-CCL17 interaction in transmigration of CD4+ T 

cells towards tumour supernatant. We further phenotyped the migrated T cells, and found 

that similar proportions of Treg, Tfh, Th1, Th2, and naive/unclassified CD4+ T cells 

migrated towards both STAT6WT and STAT6D419N supernatants (Figure 3.3H), suggesting 

that the chemoattractive effect of STAT6D419N supernatant is not specific to any CD4+ T 

cell subset. These experiments collectively demonstrate that STAT6D419N tumors possess 

a heightened ability to attract CCR4+ CD4+ T cells through increased production of 

CCL17, thereby enhancing the CD4-rich microenvironmental characteristics of 

STAT6D419N tumours.  
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Figure 3.3: STAT6D419N-Eµ-Myc tumours are directly chemoattractive to CCR4+ 
CD4+ T cells. 
A. Schematic demonstrating the workflow for determining the ability of mSTAT6WT and 
mSTAT6D419N Eµ-Myc tumour cells, +/- mIL-4 to attract different cell types from tumour-
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naïve spleen, +/- AZD2098. B. Quantification of Ccl17 expression in mSTAT6WT and 
mSTAT6D419N Eµ-Myc tumour cells, following 1 hour of mIL-4 or vehicle stimulation. C. 
Quantification of CCR4+ splenocytes that migrated towards mSTAT6WT or mSTAT6D419N 
Eµ-Myc tumour cells, as determined by flow cytometry. (Ci) shows all migrated cells. 
(Cii) is the same data but excluding CD4+ T cells for better visualization of other 
migrated cellular subsets.  D. Schematic demonstrating the workflow for collecting 
tumour-exposed CD4+ T cells from spleen and day 11 mSTAT6WT and mSTAT6D419N 
Eµ-Myc day 11 tumour supernatants. E. Waterfall plot showing the log2 fold change in 
expression of cytokines and chemokines between mSTAT6WT and mSTAT6D419N Eµ-
Myc day 11 tumour supernatants. F. Schematic demonstrating the workflow for 
determining the ability of mSTAT6WT and mSTAT6D419N Eµ-Myc day 11 tumour 
supernatants to attract CD4+ T cells from tumour-exposed spleen. G. Quantification of 
CCR4+ CD4+ T cells enriched from either STAT6WT or STAT6D419N Eµ-Myc day 11 
tumour bearing mice that migrated towards STAT6WT or STAT6D419N Eµ-Myc day 11 
tumour supernatants. H. Data from (G), expressed as CD4+ T cell polarization state (ie. 
Treg, Th1, Th2, Tfh, or Naïve/ Unclassified).  
 
 
3.3.4 mSTAT6D419N Eµ-Myc Tumours are Resistant to Doxorubicin Treatment 

 In vitro, mSTAT6D419N Eµ-Myc tumour cells do not have altered sensitivity to any 

of the individual components of R-CHOP (17). However, our data indicate that 

mSTAT6D419N mutation drives increased frequency of CCR4+ CD4+ T cells, leading to 

evidence of enhanced tumour cell inflammatory signaling, which is known to correlate 

with doxorubicin resistance in human DLBCL patients (18-20). Thus, we hypothesized 

that an intact tumour microenvironment is required to truly realize the impact of STAT6D419 

mutation on therapeutic response, and that our mouse model of STAT6D419-mutant 

lymphoma may not recapitulate the results previously obtained in vitro.  

 To investigate this, mice were injected with Eµ-Myc mSTAT6WT or mSTAT6D419N 

tumour cells on Day 1, then were given 3 mg/kg of doxorubicin at day 11, day 13, and 

day 15 post-injection (Figure 3.4A). Over the course of disease, tumours were monitored 

via ultrasound. We found that mSTAT6WT tumours returned to baseline size by day 15 

post-injection, indicating the efficacy of doxorubicin treatment. However, mSTAT6D419N 
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tumour volume stabilized during doxorubicin treatment, but tumours continued to grow 

immediately upon the cessation of treatment (Figure 3.4B). Additionally, ultrasound 

monitoring of the secondary tumour site, the inguinal lymph node (iLN), revealed that 

100% of mice with mSTAT6WT tumours had sustained disease clearance in the iLN, 

whereas 40% of mice with mSTAT6D419N tumours had bilateral iLN relapse (Figure 3.4C). 

While not achieving statistical significance (Gehan-Breslow-Wilcoxon test p = 0.0764), 

this led to decreased overall survival of mSTAT6D419N tumour bearing mice treated with 

doxorubicin (Figure 3.4D). 

 

Figure 3.4: mSTAT6D419N-Eµ-Myc tumours are resistant to doxorubicin treatment. 
A. Schematic demonstrating the timeline for 3 x 3 mg/kg doxorubicin treatment and 
relapse monitoring for mSTAT6WT and mSTAT6D419N Eµ-Myc tumour bearing mice. B. 
Growth curve of mSTAT6WT and mSTAT6D419N Eµ-Myc tumours, treated with either 3 x 
3 mg/kg doxorubicin or vehicle control. Red shaded area indicates the days where 
doxorubicin treatment was given. C. Pie charts showing the proportion of mice with 
secondary tumour site (ie. the iLN) relapse following 3 x 3 mg/kg doxorubicin treatment. 
D. Kaplan-Meier survival curve of mSTAT6WT and mSTAT6D419N Eµ-Myc tumour bearing 
mice following 3 x 3 mg/kg doxorubicin treatment. E. Schematic demonstrating the 
timeline for 10 mg/kg doxorubicin treatment and relapse monitoring for mSTAT6WT and 
mSTAT6D419N Eµ-Myc tumour bearing mice. F. Treatment response of mSTAT6WT and 
mSTAT6D419N Eµ-Myc tumour bearing mice following 10 mg/kg doxorubicin. Connecting 
lines show the pre- and post-treatment cLN volumes in individual mice. If the slope of 
the connecting line is negative, mice are considered to have had a complete response 
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to doxorubicin. Pre-treatment is day 11 post-Eµ-Myc injection, and post-treatment is day 
15 post-Eµ-Myc injection. G. Pie charts showing the proportion of mice with iLN relapse 
following 10 mg/kg doxorubicin treatment. H. Kaplan-Meier survival curve of mSTAT6WT 
and mSTAT6D419N Eµ-Myc tumour bearing mice following 10 mg/kg doxorubicin 
treatment. 
 
 We next changed our treatment paradigm, to more closely model primary-

refractory disease, by giving each mouse a single high-dose doxorubicin treatment of 10 

mg/kg at day 11 post-injection, which represents a timepoint where tumours have 

established, and our data indicates that mSTAT6D419N tumours have CCR4+ CD4+ T cell 

invasion (Figure 3.4E). Similar to our findings with 3 x 3 mg/kg doxorubicin, we found that 

100% of mice bearing mSTAT6WT tumours decreased to baseline size, while only 50% of 

mice bearing mSTAT6D419N tumours decreased in size (Figure 3.4F). This was 

recapitulated in the iLN, where 100% of mice bearing mSTAT6WT tumours had durable 

disease clearance in the iLN, while 50% of mice bearing mSTAT6D419N tumours had 

bilateral iLN relapse, and another 10% had unilateral iLN relapse (Figure 3.4G).  

Accordingly, mSTAT6WT tumour bearing mice had a trend towards improved overall 

survival (Gehan-Breslow-Wilcoxon test p = 0.1211; Figure 3.4H).  

Tumours collected at disease endpoint showed no difference in tumour burden or 

skewing in the proportions of CD4+ T cells, and CD8+ T cells between mSTAT6WT and 

mSTAT6D419N tumours (Sup. Figure 3.3A-D). These results indicate that the 

mSTAT6D419N-driven changes in the TME at day 11 are sufficient to engender resistance 

to doxorubicin, but that changes in the TME are not retained or exaggerated at disease 

relapse in this mouse model.  
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3.3.5 PhenoCycler Imaging Reveals Preferential Spatial Interactions between 

phospho-STAT6+ Tumour Cells and CCR4+ CD4+ T cells in Eµ-Myc Tumours  

Recent publications have demonstrated that the spatial organization of tumours at 

a single cell level is an additional layer of disease heterogeneity that must be understood 

to make conclusions about the contribution of the TME to disease progression (21, 22). 

Moreover, the cellular interactions within a tumour can be predictive of therapeutic 

responses (15, 23-25). To interrogate how cellular interactions are altered in the context 

of mSTAT6D419N lymphoma, we developed a custom highly multiplexed PhenoCycler 

spatial imaging antibody panel (Sup. Table 3.2), specifically optimized for murine FFPE 

imaging. Using this imaging panel, we were able to visualize tumour structure and 

myeloid/ lymphoid infiltration. Moreover, we included markers for the intercellular STAT6 

signaling axis, including phospho-STAT6, IL4R, CCL17, CCL22, and CCR4. To examine 

the spatiotemporal dynamics involved in Eµ-Myc tumour development, we generated a 

tissue microarray (TMA) with cores collected from Eµ-Myc mSTAT6WT and mSTAT6D419N 

tumours at early-, mid-, and late-disease, and disease relapse (Figure 3.5A, Sup. Figure 

3.4A-B). This TMA was imaged with PhenoCycler (Figure 3.5B), and analysis was 

performed to classify the different cell types found within each core and to characterize 

their spatial interactions. 

With PhenoCycler, we identified cellular clusters corresponding to tumor cells, B 

cells, CD8+ T cells, CD4+ T cells, Tregs, macrophages, dendritic cells (DCs), neutrophils, 

fibroblasts, and endothelial cells (Figure 3.5C). Fewer than 5% of cells remained 

"unclassified”, due to overlapping marker expression and cell segmentation noise. When 
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these classifications were overlaid onto multiplexed tumor images in a Voronoi diagram, 

the accuracy in distinguishing different cell types within the TME was clear (Figure 3.5D).  

 

Figure 3.5: PhenoCycler imaging reveals that phospho-STAT6+ tumour cells are 
in close proximity to CCR4+ CD4+ T cells.  
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A. Schematic showing the timeline for collection of FFPE samples from mSTAT6WT and 
mSTAT6D419N Eµ-Myc tumours for PhenoCycler staining. B. For this experiment, an Eµ-
Myc TMA was generated for PhenoCycler staining with a 35-plex custom antibody panel 
optimized for murine FFPE staining. With PhenoCycler, antibodies marking tumour cells, 
immune cells, and stromal cells can be used to stain tissue in a single step. 
Immunofluorescent images are acquired with the PhenoCycler-Fusion system. Images 
are analyzed and different cell types within each tissue are classified. C. Heatmap 
showing the mean expression of different markers with cell classifications. D. Voronoi 
overlay showing accurate classification of different cell types within Eµ-Myc tumour 
tissues. E. Volcano plots showing the change in abundance of different cell types over 
the course of Eµ-Myc tumour evolution. Coloured dots above the grey dashed lines 
indicate cell types that have significantly changed in abundance between the indicated 
time points.  F. Proportions of different cell types in mSTAT6WT and mSTAT6D419N Eµ-
Myc tumours at early-, mid-, late-disease, and relapse. G. Heatmap showing the mean 
expression of FoxP3, Ki67, and CCR4 in different CD4+ T Cell subsets (ie. Treg, CD4, 
and CCR4+ CD4). H. Heatmap showing the mean expression of phospho-STAT6, IL4R, 
CCL17, and CCL22 in tumour cells and phospho-STAT6+ tumour cells. I. Proportion of 
CCR4+ CD4 T cells among total CD4+ T cells in mSTAT6WT and mSTAT6D419N Eµ-Myc 
tumours at early-, mid-, late-disease, and relapse. J. Proportion of phospho-STAT6+ 
tumour cells among total tumour cells in mSTAT6WT and mSTAT6D419N Eµ-Myc tumours 
at early-, mid-, late-disease, and relapse. K. Spatial distance calculations between the 
annotated cell types. Blue hue indicates that cells are found further apart, while red hue 
indicates that cells are found closer together. 
 

Using these classifications, we first sought to characterize how the TME of Eµ-Myc 

tumours evolve over the course of disease progression (Figure 3.5E). As expected, from 

early- to mid-disease, Eµ-Myc tumours showed significant expansion the tumour cell 

compartment, and a decrease in endothelial cells, Tregs, DCs, and non-transformed B 

cells. As tumours progressed to late disease, the tumour cell compartment increased 

even further, with additional expansion of stromal components, including endothelial cells 

and fibroblasts. At the late disease timepoint, there was also a relative decrease in all T 

cell subsets, concordant with human data that suggests that exclusion of T cells from 

lymphoma tumours is an indicator of aggressive disease (26). Tumours collected at 

disease relapse were almost indistinguishable from late-disease treatment-naïve 

tumours, apart from a small decrease in CD4+ T cells at relapse compared to untreated 



 144 

late-disease tumours. Thus, our PhenoCycler data are consistent with a loss in cellular 

heterogeneity with disease progression where tumour cells continue to expand and TME 

constituents are lost.  

We next compared how the proportions of different cell types varied between 

mSTAT6WT and mSTAT6D419N tumours in early-disease, mid-disease, late-disease, and 

relapsed tumours. Although we saw an increase in CD4+ T cells in mSTAT6D419N tumours 

at mid-disease by flow cytometry, we found no significant differences in the proportions 

of any of the different cell types in mSTAT6WT and mSTAT6D419N tumour at any time point 

(Figure 3.5F). Therefore, we next aimed to further segment cells into more specific 

subtypes and polarization states, to see if any differences would emerge. We were able 

to identify M1-like, M2-like, M0-like, and PD-L1+ macrophages within our macrophage 

subclassification (Sup. Figure 3.5A-B), TCF1+, PD1+, Ki67+, and GZMB+ CD8+ T cells 

within our CD8 subclassification (Sup. Figure 3.5C-D), CCR4+ CD4+ T cells within our 

CD4+ T cell subclassification (Figure 3.5G), and phospho-STAT6+ tumour cells within 

our tumour cell subclassification (Figure 3.5H). When the proportions of these different 

cell types were compared over time, we found both pSTAT6+ tumour cells and CCR4+ 

CD4+ T cells significantly increased in prevalence from early to mid-disease (Sup. Figure 

3.5E).  

Given our interest in the chemoattraction of phospho-STAT6+ tumour cells to 

CCR4+ CD4+ T cells, we next examined the proportions of these cell types within their 

parent population across time. We found that CCR4+ CD4+ T cells were increased in 

proportion in mid-, late- and relapsed-disease as compared to early-disease, but that 

there were no significant differences between mSTAT6WT and mSTAT6D419N at any time 
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point (Figure 3.5I). The proportion of phospho-STAT6+ tumour cells showed a similar 

trend (Figure 3.5J). Thus, we next examined how phospho-STAT6 expression impacted 

the immediate environment of the tumour cell. When we measured the mean distance 

between CD4+ T cells and tumour cells, CCR4+ CD4+ T cells and tumour cells, CD4+ T 

cells and phospho-STAT6+ tumour cells, and CCR4+ CD4+ T cells and phospho-STAT6+ 

tumour cells we found that in mid-, late-, and relapsed-disease, the cells with the closest 

proximity were phospho-STAT6+ tumour cells and CCR4+ CD4+ T cells (Figure 3.5K). 

Interestingly, at early disease, regardless of CCR4 and phospho-STAT6 expression 

status, CD4+ T cells were the furthest distance away from tumour cells, indicating that 

the physical proximity of CD4 T cells and tumour cells is gained as the tumours evolve. 

The observed increase in proximity at later disease timepoints is independent of tumour 

genotype, indicating that activation of STAT6 signaling is sufficient to induce the 

interaction of tumour cells with CD4+ and CCR4+ CD4+ T cells. Thus, our results support 

the notion that expression of phospho-STAT6 in Eµ-Myc tumour cells leads to the 

recruitment of CCR4+ CD4+ T cells.  

3.3.6 Treatment of mSTAT6D419N Eµ-Myc Tumours with the CCR4 Inhibitor AZD2098 

Re-Sensitizes them to Doxorubicin 

 We aimed to investigate how inhibiting CCR4 would affect the growth of Eµ-Myc 

tumors, following our discovery that phospho-STAT6 expression in tumor cells enhances 

the recruitment of CCR4+ CD4+ T cells. To do this, we treated Eµ-Myc tumor-bearing 

mice with AZD2098 and monitored tumor growth and changes in the TME over time 

(Figure 3.6A). AZD2098 was administered via oral gavage twice weekly, and we found 

that it successfully blocked the mid-disease invasion of CD4+ T cells into mSTAT6D419N 
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tumors (Figure 3.6B). Further analysis showed that AZD2098 did not affect the numbers 

of Tregs or Tfh cells in either mSTAT6WT or mSTAT6D419N tumors. However, as previously 

noted, Th1 cells were more abundant in mSTAT6D419N tumors compared to mSTAT6WT, 

and treatment with AZD2098 resulted in a modest decrease in Th1 cells in mSTAT6D419N 

tumors. Consistent with CCR4's role in Th2 cells (27, 28), AZD2098 treatment reduced 

Th2 cells in both mSTAT6WT and mSTAT6D419N tumors (Figure 3.6C). Despite these shifts 

in TME composition, AZD2098 treatment did not significantly alter the growth rate of either 

mSTAT6WT or mSTAT6D419N tumors (Figure 3.6D). 

Encouraged by AZD2098's ability to reduce CD4+ T cell infiltration in mSTAT6D419N 

tumors to levels comparable to mSTAT6WT, we hypothesized that the addition of 

AZD2098 could restore doxorubicin sensitivity in mSTAT6D419N tumors (Figure 3.6E). As 

in previous experiments, 100% of mSTAT6WT tumors responded completely to 

doxorubicin alone, whereas only 20% of mSTAT6D419N tumors responded (Figure 3.6F). 

Remarkably, combining AZD2098 with doxorubicin resulted in a complete response of 

100% of mSTAT6WT tumors and 80% of mSTAT6D419N tumors. While mSTAT6D419N 

tumors treated with doxorubicin alone resumed growth immediately after treatment 

cessation, tumors treated with the combination of doxorubicin and AZD2098 did not 

regrow until approximately one-week post-treatment (Figure 3.6G). Additionally, 80% of 

mSTAT6D419N tumors treated with doxorubicin alone showed bilateral inguinal lymph node 

relapse, whereas those treated with the combination showed only unilateral relapse, 

indicating a minor reduction in systemic disease (Figure 3.6H). Overall, the combination 

treatment significantly improved survival in mice bearing mSTAT6D419N tumors, but not in 

those with mSTAT6WT tumors (Figure 3.6I). These findings demonstrate that inhibiting 
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the CCL17-CCR4 signaling axis re-sensitizes mSTAT6D419N Eµ-Myc tumors to 

doxorubicin treatment. 

 

Figure 3.6: CCR4 inhibition resensitizes mSTAT6D419N-Eµ-Myc tumours to 
doxorubicin treatment.  
A. Schematic demonstrating the timeline for determining the impact of AZD2098 
treatment on mSTAT6WT and mSTAT6D419N Eµ-Myc TME composition and tumour 
growth. B. Quantification of CD4+ T cells in mSTAT6WT and mSTAT6D419N day 11 Eµ-
Myc tumours, following treatment with AZD2098 or vehicle control. C. Quantification of 
Tregs (CD45+ CD3+ CD4+ FoxP3+), Tfh cells (CD45+ CD3+ CD4+ FoxP3- PD1+ 
CXCR5+), Th1 cells (CD45+ CD3+ CD4+ FoxP3- Tbet+), and Th2 (CD45+ CD3+ CD4+ 
FoxP3- GATA3+) in mSTAT6WT and mSTAT6D419N day 11 Eµ-Myc tumours, following 
treatment with AZD2098 or vehicle control. D. Growth curve of mSTAT6WT and 
mSTAT6D419N Eµ-Myc tumours, treated with either 2 times weekly 10 mg/kg AZD2098 or 
vehicle control. E. Schematic demonstrating the timeline for 3 x 3 mg/kg doxorubicin and 
10 mg/kg AZD treatment and relapse monitoring for mSTAT6WT and mSTAT6D419N Eµ-
Myc tumour bearing mice. F. Treatment response of mSTAT6WT and mSTAT6D419N Eµ-
Myc tumour bearing mice following 3 x 3 mg/kg doxorubicin and 10 mg/kg AZD2098. 
Connecting lines show the pre- and post-treatment cLN volumes in individual mice. Pre-
treatment is day 11 post-Eµ-Myc injection, and post-treatment is day 18 post-Eµ-Myc 
injection. Star indicates the cLN volume is from day 15 post-Eµ-Myc injection, and the 
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mouse did not survive until day 18 post-Eµ-Myc injection. G. Growth curve of mSTAT6WT 
and mSTAT6D419N Eµ-Myc tumours, treated with 3 x 3 mg/kg doxorubicin and 10 mg/kg 
AZD2098, or vehicle controls. Red shaded area indicates the days where doxorubicin 
treatment was given. H. Pie charts showing the proportion of mice with secondary tumour 
site (ie. the iLN) relapse following 3 x 3 mg/kg doxorubicin and 10 mg/kg AZD2098 
treatment. I. Kaplan-Meier survival curve of mSTAT6WT and mSTAT6D419N Eµ-Myc tumour 
bearing mice following combination treatment with 3 x 3 mg/kg doxorubicin with 10 mg/kg 
AZD2098. 
 
3.3.7 PhenoCycler Imaging of STAT6D419-Mutant rrDLBCL Patient Samples Shows 

Increased Expression of phospho-STAT6, CCL17, and CCR4 

To validate our results in human samples, we performed PhenoCycler imaging on 

a DLBCL TMA with biopsy tissues collected at disease relapse. We additionally included 

slides with full biopsy specimens from 6 patients with STAT6D419-mutant DLBCL, to 

compare how the presence of STAT6 mutation impacts the CCL17-CCR4 signaling axis 

(Figure 3.7A-B). Of these STAT6D419-mutant tissue biopsies, three were relapse biopsies 

from DLBCL patients, one was a diagnostic DLBCL biopsy from a patient who proceeded 

to relapse, one was a diagnostic primary mediastinal B cell lymphoma (PMBCL) biopsy, 

and one was a diagnostic follicular lymphoma biopsy, that proceeded to transform into 

DLBCL (GCB) involving the central nervous system (DLBCL-CNS).  

 Using PhenoCycler, we were clearly able to visualize tumour cells, T cells, myeloid 

cells, fibroblasts, and endothelial cells within human DLBCL tissues (Figure 3.7C, Sup. 

Figure 3.6). Similarly to the Eµ-Myc TMA, samples were analyzed by segmenting images 

into cells, then performing unsupervised clustering based on cellular expression of the 

lineage markers CD11b, CD11c, CD14, CD15, CD20, CD21, CD31, CD3, CD4, CD8, 

CD68, FoxP3, Ki67, MPO, PAX5, pan-CK, and αSMA (Figure 3.7D). We then compared 

the proportion of these different cell types in rrDLBCL and STAT6D419-mutant samples 
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(Figure 3.7E). Concordant with our previous observations (14), STAT6D419-mutant 

rrDLBCL samples were among the highest expressors of CD4+ T cells. Intriguingly, the 

STAT6D419-mutant sample from diagnostic DLBCL, FL, and PMBCL had relatively fewer 

CD4+ T cells.  

 We next examined phospho-STAT6 and CCL17 expression in tumour cells, and 

CCR4 expression in CD4+ T cells (Figure 3.7F). In tumour cells in STAT6D419-mutant 

samples, phospho-STAT6 and CCL17 expression was significantly increased, as 

measured by mean fluorescence intensity (MFI) of each marker (Figure 3.7G). 

Additionally, the expression of CCL17 and phospho-STAT6 were significantly positively 

correlated (Figure 3.7H). CCR4 showed a similar increase in expression in CD4 T cells 

from STAT6D419-mutant patients, and this was also significantly positively correlated with 

phospho-STAT6 expression (Figure 3.7I-J).  

 Finally, we asked if CD4+ and CCR4+ CD4+ T cells have increased proximity to 

phospho-STAT6+ tumour cells in STAT6D419-mutant samples. To do this, we measured 

the proportion of total tumour cells versus phospho-STAT6+ tumour cells that have direct 

cellular contact with CD4+/ CCR4+ CD4+ T cells (Figure 3.7K). When these 

measurements were performed, we found that the proportion of total tumour cells 

interacting with CD4+ T cells or CCR4+ CD4+ T cells was unchanged between STAT6WT 

and STAT6D419-mutant tissues. However, we found that proportion of CD4+ T cells 

interacting with phospho-STAT6+ tumour cells was significantly increased in STAT6D419-

mutant biopsies, and the proportion of CCR4+ CD4+ T cells interacting with phospho-

STAT6+ tumour cells trended towards increased in STAT6D419-mutant biopsies. Thus, 

these results strongly imply that the CCL17-CCR4 axis is over-activated in STAT6D419 
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rrDLCBL tissues, leading to alterations in TME organization, and favouring interactions 

between CD4+ T cells and phospho-STAT6+ tumour cells.  

 

 
Figure 3.7: PhenoCycler Imaging of human rrDLBCL biopsies reveals increased 
phospho-STAT6, CCL17, and CCR4 in STAT6D419-mutant tumors 
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A. Schematic depicting the human DLBCL samples used in this study for PhenoCycler 
imaging. A TMA was constructed with cores from rrDLBCL tissues. Additionally, whole 
biopsies from STAT6D419-mutant patients were imaged. B. Patient characteristics for the 
biopsies included in this study. C. Representative images of a STAT6WT rrDLBCL TMA 
core, and a STAT6D419N rrDLBCL biopsy. D. Heatmap showing the mean expression of 
different markers with cell classifications. E. Proportions of different cell types in 
STAT6WT rrDLBCL and STAT6D419-mutant lymphoma biopsies. STAT6D419 biopsies 
included a diagnostic biopsy (open circle), a follicular lymphoma biopsy (triangle), and a 
primary mediastinal B cell lymphoma (square). F. Representative images of pSTAT6, 
CCL17, and CCR4 in a STAT6WT and STAT6D419N rrDLBCL biopsy. G. Mean 
fluorescence intensity (MFI) of phospho-STAT6 and CCL17 in tumour cells in STAT6WT 
and STAT6D419-mutant biopsies. H. Correlation of phospho-STAT6 and CCL17 in each 
biopsy. Pearson correlation r = 0.8019. I. MFI of CCR4 in CD4+ T cells in STAT6WT and 
STAT6D419-mutant biopsies. J. Correlation of phospho-STAT6 and CCR4 in each 
biopsy. Pearson correlation r = 0.5969. K. Interaction proportion between CD4+ T cells 
and tumour cells, CCR4+ CD4+ T cells and tumour cells, CD4+ T cells and phospho-
STAT6+ tumour cells, and CCR4+ CD4+ T cells and phospho-STAT6+ T cells. 
 
 
3.4 Discussion 
 

In the present study, we directly demonstrate that mutation of STAT6 at residue 

D419 is sufficient to drive microenvironmental remodelling, largely via the CCL17-CCR4 

axis. Using an immunocompetent mouse model, we showed that STAT6D419N mutant 

tumours have increased invasion of CCR4+ CD4+ T cells, coupled with resistance to 

doxorubicin treatment. Moreover, ex vivo functional assays demonstrated that 

STAT6D419N tumour cells are directly chemoattractive to CCR4+ CD4+ T cells. When Eµ-

Myc-mSTAT6D419N tumour bearing mice were treated with the small molecule CCR4 

inhibitor AZD2098, we observed that CD4+ T cell infiltration was reduced, and mice were 

re-sensitized to doxorubicin treatment. In human STATD419 tumour samples, we confirm 

that expression of phospho-STAT6 in tumour cells is increased relative to STAT6WT 

rrDLBCL samples. Similarly to our mouse model, we observed increased tumour cell 

expression of CCL17 and increased cellular interactions of phospho-STAT6+ tumour cells 
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with CD4+ T cells. Thus, our findings via mouse modelling are highly relevant to the 

human rrDLBCL population.  

Given the increase in phospho-STAT6 expression observed in human and murine 

STAT6D419 DLBCL tumours (13), we initially hypothesized that STAT6D419-mutant tumour 

cells might be more chemoattractive to IL-4-producing CD4+ T cells, such as Th2 or Tfh 

cells, that may then function to maintain STAT6 phosphorylation. However, our data 

indicates that STAT6-mutant lymphoma tumour cells actually have increased abundance 

of CCR4+ Th1-polarized CD4+ T cells, and not Th2 or Tfh cells. This is a surprising 

finding, especially given that CCR4 expression is typically associated with Th2 cells and 

Tregs; but we note that we are not the first to describe CCR4 expression on Th1 cells (27, 

29, 30). Indeed, the mSTAT6-mutant TME has increased Th1 associated cytokines, and 

mSTAT6 mutant tumour cells display evidence of an inflammatory gene signature. 

Concordant with previously published literature (18-20, 31, 32), this inflammatory TME is 

associated with therapeutic resistance to doxorubicin. Upon treatment of STAT6 mutant 

tumours with the CCR4 inhibitor AZD2098, CD4+ T cell invasion is reduced, and 

therapeutic sensitivity to doxorubicin is restored. Thus, our data show that the 

inflammatory TME induced by STAT6D419N mutation contributes to therapeutic resistance.  

Our study utilized the power of multiplex imaging to define tumour/ TME cellular 

heterogeneity within the context of spatial information. In both mouse and human tumors, 

phospho-STAT6+ tumor cells were closely associated with CD4+/CCR4+ T cells, an 

interaction which when inhibited reversed doxorubicin-resistance. This emphasizes the 

importance of understanding not only what cell types are present in the TME, but also 

their association with each other. While flow cytometry allows screening of larger number 
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of cells comprising the TME, the PhenoCycler adds information regarding location. Of 

note, a current limitation of this study is the dependence upon region selection for the 

TMA and a single 2D section per tumor. Thus, if differences in proportions of cells are 

subtley modified or tumor-region specific, PhenoCycler imaging of TMA cores may not 

have the power to discriminate the changes. We additionally note that both murine tumour 

types have the same Eµ-Myc parent, with the only difference being overexpression of 

either mSTAT6WT or mSTAT6D419N; hence, subtle differences are expected. In human 

STAT6D419 mutant tumours, co-mutation with other genes of the EZB DLBCL subtype, 

such as BCL6, CREBBP, and p300, are always observed (13, 14, 33). We propose that 

the interplay between EZB gene mutations and STAT6D419 mutation may be central to 

STAT6-mediated modifications to the TME. This might explain why our PhenoCycler 

results in human were much more exaggerated as compared to mouse.  

In rrDLBCL patient samples, we found that phospho-STAT6 and CCL17 are more 

highly expressed in tumour cells of STAT6D419-mutant patients, and expression of 

phospho-STAT6 was positively correlated with tumour cell expression of CCL17 and 

CD4+ T cell expression of CCR4. Additionally, we found that phospho-STAT6+ tumour 

cells in STAT6D419 tumours have increased interactions with CD4+ T cells and CCR4+ 

CD4+ T cells, as compared to STAT6WT rrDLBCL tumours. These results expand our 

previous findings (14), to assert that phospho-STAT6 expression in rrDLBCL tumours 

contributes to TME remodelling via favouring interactions of tumour cells with the CD4 T 

cell compartment, largely due to the CCL17-CCR4 axis.  

CCR4 has been established as a therapeutic target in Mycosis fungoides (MF) and 

Sezary syndrome (SS), due to tumour cell upregulation of CCR4. Indeed, the CCR4-



 154 

targeted monoclonal antibody Mogamulizumab was FDA approved for the treatment of 

relapsed and refractory MF and SS in 2018 (34, 35). CCR4 has also been previously 

described as a potential therapeutic target in DLBCL. In a study using imaging mass 

cytometry (IMC), it was reported that CCR4 is expressed on PD1+ Tregs in the DLBCL 

and cHL TME. In DLBCL, CCR4+ Tregs are in close proximity to PD1+ CD4+ T cells and 

PD1+ CD8+ T cells, while these interactions are not present in cHL tumours (22). The 

authors suggest that these cellular interactions may be a mechanism of immune evasion 

in DLBCL relative to cHL and may be one factor that underlies the lack of therapeutic 

susceptibility of DLBCL tumours to immune checkpoint inhibitors. Accordingly, in a Phase 

I clinical trial (NCT03309878) Mogamulizumab was tested in combination with the anti-

PD1 antibody Pembrolizumab for the treatment of rrDLBCL (36); however, due to the 

presence of serious adverse events, the trial was discontinued prior to Phase II. If 

Mogamulizumab was to be revisited for the treatment of rrDLBCL, future clinical studies 

could have phospho-STAT6 tumour cell positivity by IHC or IF as inclusion criteria, to 

select for patients who may have clinical benefits that outweighs the chance of adverse 

events.   

While our results indicate a critical role for the CCL17-CCR4 axis in STAT6D419-

mediated microenvironmental remodelling, they do not preclude the potential for other 

mechanisms of action underlying STAT6D419-mediated doxorubicin resistance. For 

instance, STAT6 is a transcription factor that controls expression of genes such as CD23, 

CISH, IL2RA, BCL-6, BCL-XL, CDK2 (4, 6, 37) . These proteins play roles in B cell 

activation, resistance to apoptosis, cell cycling. Thus, future studies may investigate the 

cellular and molecular responses of STAT6D419 tumour cells to doxorubicin, with a specific 
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focus on how altered regulation of these genes impacts tumour cell survival in an intact 

TME. As such, our study did not address specifically why CCR4+ CD4+ T cells engender 

therapeutic resistance in STAT6D419N mutant tumours. In future studies, single cell 

transcriptomic approaches will be used to determine the specific phenotype of CCR4+ 

CD4+ T cells, and how they might drive tumour growth and chemoresistance.  

In summary, our findings highlight the importance of investigations focused on the 

intricate interplay between DLBCL tumour cells and the TME. Indeed, the full functional 

impact of STAT6D419 mutations could only be realized by utilizing an immunocompetent 

mouse model. Given that many of the gene mutations that are enriched in DLBCL are 

predicted to modify the interaction of the tumour cell with the TME, we emphasize that 

future studies should take a TME-centric approach to better understand the efficacy of 

immunomodulatory agents in DLBCL, especially given the rise of CAR-T therapy for 

rrDLBCL treatment. Overall, a better understanding of the mechanisms of therapeutic 

resistance and immune escape in DLBCL could improve clinical outcomes, particularly 

for those with relapsed and refractory disease.  

 
 
3.5 Materials and Methods 
 

All reagents and tools can be found in Supplementary Table 3.4.  

3.5.1 Cell Culture 

MEFARF-/- and Phoenix-AMPHO cells were grown in DMEM media supplemented 

with 10% fetal bovine serum (FBS) and 0.5% penicillin-streptomycin (P/S). To generate 

mitotically inactive MEFs for co-culture, MEFARF-/- cells were given 40 Gy accumulated 

irradiation using a MultiRad225 (Faxitron) with a 0.5mm Cu filter and set to 225.0 kV and 
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17.8 mA. Following irradiation, cells were frozen in FBS supplemented with 10% DMSO. 

Eµ-Myc cells were co-cultured with irradiated MEFARF-/- (iMEF) cells in 50% DMEM/ 50% 

Iscove’s media, supplemented with FBS (10%), P/S (0.5%), and β-mercaptoethanol (50 

nM). 

To produce murine STAT6WT and STAT6D419N lymphoma cell lines, Phoenix-

AMPHO packaging cells were transfected with pMIG plasmids containing WT or D419N 

mutant mSTAT6 and a GFP reporter. Retrovirus supernatant was used to transduce Eµ-

Myc cells by spinoculation (centrifugation at 800 x g for 30 minutes at room temperature 

with 6 μg/mL polybrene, every 12 hours for 2 consecutive days). Successfully transduced 

GFP+ cells were sorted with a BD FACSAria Fusion Cell Sorter at the Lady Davis Institute 

Flow Cytometry Facility and were maintained in cell culture. 

3.5.2 Mouse Modelling 

All mouse experiments were performed in accordance with an Animal Use Protocol 

approved by the McGill University Animal Care Committee. Mice were housed in the 

animal facility of the Lady Davis Institute for Medical Research.  

1x106 mSTAT6WT or mSTAT6D419N Eµ-Myc cells in 0.1mL of sterile PBS were 

injected into 8–10-week-old female C57BL/6 mice via tail vein on Day 1. Tumour cells 

homed to lymph nodes, and disease burden was monitored using a VEVO-3100 

Ultrasound machine, with Vevo LAB software used for tumour volume calculation. Mice 

were sacrificed if tumour volume in the cLN exceeded 100 mm3, or if they showed signs 

of weight loss and hind-leg paralysis.  

Where indicated, mice were treated with doxorubicin (2 mg/mL; Jewish General 

Hospital Oncology Pharmacy) or AZD2098 (MedChemExpress). Doxorubicin was given 



 157 

as three doses of 3 mg/kg or one dose of 10 mg/kg, via intraperitoneal injection using a 

sterile 28-gauge needle. AZD2098 was purchased as powder, prepared at 2 mg/mL, in 

10% DMSO and 90% corn oil, and mice were gavaged twice weekly at a dose of 10 

mg/kg. 

At the indicated time points, mice were humanely sacrificed using isoflurane 

anesthesia, CO2, and cervical dislocation. Tumours were harvested and processed for 

flow cytometry, or were saved in FFPE blocks. 

3.5.3 Immunohistochemistry 

For Ki67 staining, FFPE tumor and lymph node sections were deparaffinized using 

three changes of xylene and were hydrated through graded alcohols. Antigen-retrieval 

was performed for 20 minutes at 95 °C, using a PT Link Antigen Retrieval machine 

(Agilent) with Tris-EDTA pH 9.0 buffer. Endogenous peroxidases were quenched with 

4.5% H2O2 for 15 minutes, and slides were blocked with 2% donkey serum for 30 minutes. 

They were then stained with Ki67 antibody (1:400; Cell Signaling Technology) for 30 

minutes at 37°C and incubated in anti-rabbit secondary antibody for one hour at room 

temperature, followed by 1 minute DAB exposure. Slides were counterstained with 

hematoxylin, blued with blueing buffer, and were mounted with coverslips and Permount. 

For pSTAT6-CD4 co-staining, slides were prepared with the same deparaffinization, 

antigen retrieval, and quenching/blocking steps. Then slides were incubated with CD4 

antibody (1:50; Invitrogen) for 30 minutes at 37°C and incubated in anti-rat secondary 

antibody for one hour at room temperature, followed by 2 minutes DAB exposure. 

Following DAB exposure, slides were again quenched and blocked. They were then 

incubated overnight at 4°C with pSTAT6 antibody (1:250; Cell Signaling Technology), and 
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then were incubated in anti-rabbit secondary antibody for one hour, followed by a 

Magenta Red (Agilent) detection protocol. Slides were then counterstained with 

hematoxylin, blued with blueing buffer, and mounted. For all slides, images were acquired 

in brightfield with an AxioScan 7 (Zeiss) and were analyzed using QuPath 0.5.1-x64 

software (38). Where applicable, staining was quantified based on percent positivity for a 

given marker, based on an intensity cut-off, or was quantified as H-Score. H-Score is 

calculated by indexing each cell within the tissue as having negative, weak, moderate, or 

strong staining for the given marker, based on three different intensity cut-offs. Then, the 

following formula was used to score the tissues, out of a maximum of 300: 

H-Score = (0* (% of negative cells)) + (1* (% of weak staining cells)) + (2* (% of moderate 

staining cells)) + (3* (% of strong staining cells)) 

3.5.4 Flow Cytometry 

cLN tumours were harvested at the indicated time points, and were gently crushed 

in a 1mL Eppendorf tube using a pestle. Following crushing, cells were passed through a 

70 µm cell strainer. Single cells obtained from tumour dissociation were counted and 

2x106 cells per sample were plated in a 96-well V-bottom plate. Cells were incubated with 

fixable aqua live/dead stain (30 minutes; Invitrogen), Fc block (30 minutes), and then were 

incubated with fluorescently conjugated antibodies (30 minutes). For intracellular staining 

of transcription factors, cells were fixed and permeabilized (eBioscience), then were 

incubated in fluorescently conjugated intracellular staining antibodies diluted in 

permeabilization buffer. The flow antibodies used in this study can be found in 

Supplementary Table 3.1. Data was acquired on an LSRFortessa (BD; Lady Davis 

Institute Flow Cytometry Core), and FlowJo (BD) was used for all flow cytometry data 
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analysis. Following analysis, the number of each cell type of interest was normalized to 

total tumour cell count, and data was presented as total number of each cell type found 

within each tumour.  

3.5.5 RNA Sequencing and qPCR 

For RNA sequencing, CD19+ cells were purified from 3 biological replicates each 

of mSTAT6WT and mSTAT6D419N Eµ-Myc Day 11 cLN tumours, using CD19 microbeads 

(Miltenyi), as per manufacturer protocol. RNA was extracted from purified B cells using 

the Absolutely Total RNA Purification Kit (Agilent Technologies), as per manufacturer 

protocol. RNA sequencing was performed at Genome Quebec. Paired read 100 bp 

sequencing runs were performed on an Illumina NovaSeq 6000 S2 PE100.  

For qPCR, RNA was extracted from tumour cells using the E.Z.N.A. total RNA 

isolation kit (OMEGA Bio-Tek). cDNA was synthesized from 1 mg of total RNA, using the 

iScript cDNA Synthesis Kit (Bio-Rad). mRNA expression was quantified using the 

QuantStudio 7 Flex PCR System with SYBR Green.  

3.5.6 Ex Vivo Chemoattraction 

For experiments with chemoattraction towards tumour cells in vitro, Eµ-Myc-

mSTAT6WT or Eµ-Myc-mSTAT6D419N cells were plated at a confluence of 3x105 cells/mL, 

overtop of iMEF cells. After 24 hours, tumour cells were stimulated with 5 ng/mL of murine 

(m) IL-4 (PeproTech) or vehicle control. After 1 hour, cells from a duplicate plate were 

collected for RNA isolation and qPCR analysis, to confirm CCL17 upregulation in mIL-4 

stimulated Eµ-Myc-mSTAT6D419N tumour cells. In tandem, spleens from female tumour 

naïve C57BL/6 mice were harvested and dissociated. Red blood cells (RBCs) were lysed 

for 10 minutes on ice (eBioscience). Splenocytes were treated with either 10 µM AZD2098 
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(MedChemExpress) or vehicle control for 1 hour at room temperature. Following tumour 

cell incubation in mIL-4 and splenocyte incubation in AZD2098, 1x106 bulk splenocytes 

were plated overtop the stimulated or non-stimulated Eµ-Myc tumour cells, using a 5 µm 

pore transparent membrane. Splenocytes were allowed to migrate towards Eµ-Myc 

tumour cells for 16 hours. Migrated splenocytes were collected and stained with fixable 

aqua live/dead stain. They were then incubated with Fc block (30 minutes), then were 

stained with fluorescently conjugated antibodies to detect B cells, CD4+ T cells, CD8+ T 

cells, DCs, macrophages, NK cells, and eosinophils. Cells were not fixed, in order to 

preserve tumour cell endogenous GFP expression. The entire sample was acquired on 

an LSRFortessa, and FlowJo was used for analysis. The plated tumour cells were 

distinguished from migrated cells via expression of GFP and CD19, and tumour cells were 

excluded from the migrated cell counts. 

For chemoattraction towards tumour supernatants, cLN tumours and spleens were 

harvested at day 11 post- Eµ-Myc-mSTAT6WT and Eµ-Myc-mSTAT6D419N tumour cell 

injection. cLNs were crushed in a 1mL Eppendorf tube with 500uL total volume of PBS 

and were incubated on ice for 20 minutes. Following incubation, tubes were spun down 

at 300 x g for 10 minutes, and tumour supernatants were collected (see below). Spleens 

were also dissociated, with 10-minute RBC lysis. Following dissociation, CD4+ T cells 

were purified from splenocytes (Miltenyi), as per manufacturer protocol. Following 

purification, CD4+ T cells were treated for 1 hour at room temperature with either 10 µM 

AZD2098 or vehicle control. While CD4+ T cells were incubating in AZD2098, equal 

volumes of tumour supernatants or PBS control were plated in a 12-well plate. 5x105 

CD4+ T cells were plated overtop the Eµ-Myc-mSTAT6WT and Eµ-Myc-mSTAT6D419N 
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tumour supernatants, using a 3 µm pore transparent membrane. CD4+ T cells were 

allowed to migrate towards tumour supernatants for 16 hours, then were collected for 

CD4+ T cell quantification and phenotyping by flow cytometry.  

3.5.7 Chemokine/Cytokine Profiling 

At day 11 post-Eµ-Myc injection, Eµ-Myc-mSTAT6WT and Eµ-Myc-mSTAT6D419N 

tumours were dissociated, as described above. Tumour samples were allowed to 

incubate on ice on 20 minutes, then were spun down at 300 x g for 10 minutes. The 

supernatant was collected and was either used fresh for chemoattraction experiments or 

stored at -80 °C for cytokine profiling. The cell pellet was counted. To determine the 

cytokine/chemokine constitution of tumour supernatants, 44-Plex Mouse 

Cytokine/Chemokine profiling was performed with Eve Technologies (Calgary, AB, 

Canada), and cytokine/chemokine expression was normalized to total cell number in each 

tumour.  

3.5.8 Generation of an Eµ-Myc TMA  

FFPE tissue blocks containing Eµ-Myc cLN tumours from early-, mid-, late-, and 

relapsed-disease were sectioned and stained with H&E, to facilitate region selection for 

core punching. Fatty regions or regions that showed evidence of necrosis were avoided. 

The TMA was generated with the Jewish General Hospital Research Pathology Core. 

From each tissue block, one to three 1 mm cores were included (Sup. Figure 3.4).  

3.5.9 PhenoCycler Staining 

PhenoCycler staining was performed as described previously (39-41). FFPE 

murine and human lymphoma tissue sections were baked for 1 hour at 60 °C, 

deparaffinized using xylene, and were hydrated through graded alcohols. Antigen-
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retrieval was performed for 20 minutes at 95 °C, with Tris-EDTA pH 9.0 buffer. Tissue 

autofluorescence was quenched by bathing slides in a solution of 4.5% H2O2 and 20 mM 

NaOH prepared in PBS, sandwiched between LED lights at 25000 lux, for 45 minutes at 

room temperature. Slides were then washed with PBS (3 x 5 minutes) and hydration 

buffer (Akoya Biosciences; 2 x 5 minutes). Slides were equilibrated in staining buffer 

(Akoya Biosciences; 30 minutes) while the antibody staining cocktail was prepared in 

staining buffer supplemented with N, G, J, and S blockers (Akoya Biosciences) and 

oligonucleotide-conjugated antibodies diluted at the concentrations indicated in 

Supplementary Table 3.2 and Supplementary Table 3.3. Antibody staining occurred in 

two steps. The first step used antibodies optimized for 30-minute incubation at 37 °C 

(indicated in Sup. Table 3.2 and Sup. Table 3.3). After the first staining step, slides were 

washed in three changes of staining buffer before proceeding. The second step used 

antibodies optimized for overnight (ON) incubation at 4 °C. After overnight staining, slides 

were washed in three changes of staining buffer, and were fixed with 1.6% PFA for 10 

minutes, ice-cold methanol for 5 minutes, and fixative solution (Akoya Biosciences) for 20 

minutes. Slides were then stored until imaging with a PhenoCycler-Fusion instrument (up 

to 2 days).  

The slides were mounted with a flow cell (Akoya Biosciences), to allow for 

automated fluidics that wash on and off fluorescently conjugated oligonucleotides that are 

complementary to the oligonucleotides that are conjugated to each antibody (aka 

“reporters”), while allowing the slide to stay mounted to a fluorescent microscope. To 

image slides, a reporter plate was prepared that included solutions containing 

PhenoCycler-Fusion buffer, DAPI, salmon sperm DNA, and up to three different reporters. 
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The reporter plate solutions were washed onto the tissue cyclically, using the 

PhenoCycler-Fusion instrument, until all antibodies in the staining panel were visualized. 

The final outcome was qptiff files with highly multiplexed immunofluorescent images.  

Following staining, the flow cell was removed using 24-hour incubation in Citrisolv. The 

Citrisolv was washed off, using grading alcohols, then H&E staining was performed. 

Slides were then mounted and imaged with an AxioScan 7 (Zeiss).  

3.5.10   PhenoCycler Data Analysis  

Multiplexed qptiff images were uploaded to Enable Medicine, where cell 

segmentation was performed using DeepCell, with DRAQ5 as a nuclear marker and NaK-

ATPase (mouse) or B-actin (human) as membrane markers. Quality control, within the 

Enable Medicine platform, was used to exclude tumour cores of poor quality or individual 

cells that showed evidence of staining artifacts (ie. increased signal sum, decreased 

signal variation, and abnormalities in cell size or nuclear signal). Unsupervised clustering 

was then performed to identify major cell types, using Leiden clustering, set to detect 50 

neighbours, with a UMAP minimum distance of 0.1 and a clustering resolution of 0.5. The 

accuracy of clustering was visually confirmed using Voronoi diagrams, and Leiden sub-

clustering was used to further refine clusters to ensure accurate cell classification. Sub-

clustering was also used to subclassify cells based on the expression of markers of 

interest. Spatial neighbour calculations were performed in Enable, by calculating the 

mean distance between cell types of interest within samples. 

3.5.11   Patient Data 

The patient cohort used for PhenoCycler imaging consisted of FFPE preserved 

samples obtained prospectively from patients treated in Montreal QC, at the Jewish 
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General Hospital. The biobanking of this project was approved by the research ethics 

board at the Jewish General Hospital, in accordance with the declaration of Helsinki.  

Patients were all treated with curative intent R-CHOP-like regimens. At disease relapse, 

tissue biopsies were collected for biobanking. Using banked specimens, one-millimeter 

cores of rrDLCBL FFPE tissue were used to construct a TMA, with the Jewish General 

Hospital Research Pathology Core. 4uM TMA sections were mounted onto SuperFrost 

slides and were stained with a 52-plex PhenoCycler antibody cocktail, following the 

protocol described above. For STAT6D419 mutant samples, whole sections were mounted 

onto SuperFrost slides, with two sections from two different patients per slide. Patient 

metadata included age, sex, cell-of-origin (COO), and STAT6 mutational status. 

3.5.12   Statistical Analysis 

A detailed list of statistics used, including test used, same size, and p-value, for each 

figure can be found in Supplementary Table 3.5.  

3.5.13   Data Availability Statement  

All raw data will be made available upon reasonable request to the corresponding 

author. 
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3.7 Supplementary Materials for Chapter 3 
 
 

 
 
Supplementary Figure 3.1: mSTAT6D419N Eµ-Myc tumours have no difference in 
number or proportion of CD4+ or CD8+ T cells at early and late disease as 
compared to mSTAT6WT Eµ-Myc tumours.  
A. Quantification of CD4+ T cells in day 8 mSTAT6WT and mSTAT6D419N Eµ-Myc 
tumours. CD4+ T cells are live, single cells, that are CD45+, CD3+, and CD4+. Data is 
expressed as a percentage of CD45+ cells in each tissue, and as the total number of 
CD4+ T cells in each tissue. B. Quantification of CD4+ T cells in day 14 mSTAT6WT and 
mSTAT6D419N Eµ-Myc tumours. C. Quantification of CD8+ T cells in day 8 mSTAT6WT 
and mSTAT6D419N Eµ-Myc tumours. CD8+ T cells are live, single cells, that are CD45+, 
CD3+, and CD8+. D. Quantification of CD8+ T cells in day 14 mSTAT6WT and 
mSTAT6D419N Eµ-Myc tumours.  
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Supplementary Figure 3.2: mSTAT6D419N Eµ-Myc tumours have no difference in 
expression of IFNγ, CD69, and CD107a in Th1 cells and CD8+ T cells as compared 
to mSTAT6WT Eµ-Myc tumours.  
A. Expression of IFNγ on Th1 cells in day 11 mSTAT6WT and mSTAT6D419N Eµ-Myc 
tumours, expressed as total percentage of Th1 cells that are IFNγ+ (CD45+ CD3+ 
CD4+ FoxP3- Tbet+ IFNγ+). B. Expression of CD69 on Th1 cells in day 11 mSTAT6WT 
and mSTAT6D419N Eµ-Myc tumours, expressed as total percentage of Th1 cells that are 
CD69+ (CD45+ CD3+ CD4+ FoxP3- Tbet+ CD69+). C. Expression of CD107a on Th1 
cells in day 11 mSTAT6WT and mSTAT6D419N Eµ-Myc tumours, expressed as total 
percentage of Th1 cells that are CD107a+ (CD45+ CD3+ CD4+ FoxP3- Tbet+ 
CD107a+). D. Expression of IFNγ on CD8+ T cells in day 11 mSTAT6WT and 
mSTAT6D419N Eµ-Myc tumours, expressed as total percentage of CD8+ T cells that are 
IFNγ+ (CD45+ CD3+ CD8+ IFNγ+). E. Expression of CD69 on CD8+ T cells in day 11 
mSTAT6WT and mSTAT6D419N Eµ-Myc tumours, expressed as total percentage of CD8+ 
T cells that are CD69+ (CD45+ CD3+ CD8+ CD69+). F. Expression of CD107a on 
CD8+ T cells in day 11 mSTAT6WT and mSTAT6D419N Eµ-Myc tumours, expressed as 
total percentage of CD8+ T cells that are CD107a+ (CD45+ CD3+ CD8+ CD107a+).   
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Supplementary Figure 3.3: mSTAT6WT and mSTAT6D419N Eµ-Myc tumours have no 
difference in tumour burden or expression of CD4+ and CD8+ T cells, following 
relapse from doxorubicin treatment.  
A. Weights of mSTAT6WT and mSTAT6D419N relapsed Eµ-Myc tumours, following 3x3 
mg/kg or 10mg/kg doxorubicin treatment. B. Quantification of tumour cells in relapsed 
mSTAT6WT and mSTAT6D419N Eµ-Myc tumours. Tumour cells are live, single cells, that 
are CD45+, CD19+, and GFP+. Data is expressed as a percentage of CD45+ cells in 
each tissue. C. Quantification of CD4+ T cells in relapsed mSTAT6WT and mSTAT6D419N 
Eµ-Myc tumours. CD4+ T cells are live, single cells, that are CD45+, CD3+, and CD4+. 
Data is expressed as a percentage of CD45+ cells in each tissue. D. Quantification of 
CD8+ T cells in relapsed mSTAT6WT and mSTAT6D419N Eµ-Myc tumours. CD8+ T cells 
are live, single cells, that are CD45+, CD3+, and CD8+. Data is expressed as a 
percentage of CD45+ cells in each tissue. 
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Supplementary Figure 3.4: Construction and analysis of an Eµ-Myc TMA.  
A. Table showing the design of an Eµ-Myc TMA, with cores included from early- (day 8), 
mid- (day 11), late- (day 14), and relapsed-disease, from both Eµ-Myc mSTAT6WT and 
mSTAT6D419N tumour-bearing cLNs. Biological replicates indicate the number of mice 
that tissues were taken from, and technical replicates indicates the total number of core 
punches per tissue. If cores were of low quality, they were excluded from analysis, and 
this is reflected in the final number of cores used for analysis. B. Representative images 
of a low-quality and high-quality core on the Eµ-Myc TMA. Low quality cores were 
excluded from analysis. C. Sample image of DeepCell membrane-based cell 
segmentation. The first panel shows DAPI nuclear staining, and NaK-ATPase 
membranous staining. The second panel shows the cell segmentation mask, overlayed 
in red.   
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Supplementary Figure 3.5: Analysis of expanded cell classifications from Eµ-Myc 
PhenoCycler imaging.  
 A. Heatmap showing the mean expression of MHCII, CD86, CD206, and PDL1 in 
different Macrophage subsets (ie. M0-like, M1-like, M2-like, and PD-L1+). B. Proportion 
of different macrophage subsets among total macrophages in mSTAT6WT and 
mSTAT6D419N Eµ-Myc tumours at early-, mid-, late-disease, and relapse. C. Heatmap 
showing the mean expression of GZMB, Ki67, PD1, LAG3, and TCF7 in CD8+ T cell 
subsets (ie. CD8, GZMB+ CD8. Ki67+ CD8, PD1+ CD8, and TCF7+ CD8). D. 
Proportion of different CD8+ T cell subsets among total CD8+ T cells in mSTAT6WT and 
mSTAT6D419N Eµ-Myc tumours at early-, mid-, late-disease, and relapse. E. Volcano 
plots showing the change in abundance of different cell types over the course of Eµ-Myc 
tumour evolution. Coloured dots above the grey dashed lines indicate cell types that 
have significantly changed in abundance between the indicated time points.  
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Supplementary Figure 3.6: Cell segmentation and classification of human DLBCL 
PhenoCycler images.  
Cell segmentation overlay and Voronoi overlays showing accurate classification of 
different cell types within human tumour tissues. 
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Supplementary Table 3.1. Antibodies for Flow Cytometry 
 
Antibody Clone Fluorophore Supplier Catalog No.  
CD45 30-F11 BUV395 eBioscience 363-0451-82 
CD19 1D3 AF700 BD Pharmingen 557958 
CD19 1D3 PE-Cy7 BD Pharmingen 552854 
CD3 145-2C11 BV650 BD Horizon 564378 
CD4 RM4-5 APC-Cy7 BD Pharmingen 565650 
CD8 53-6.7 PerCP-Cy5.5 BD Pharmingen 551162 
PD-L1 MIH5 BUV737 BD OptiBuild 741877 
CXCR5 L138D7 PE/Dazzle594 Biolegend 145522 
PD-1 J43 BV421 BD Horizon 562584 
GATA3 L50-823 BV711 BD Horizon 565449 
FoxP3 FJK-16s FITC Invitrogen 11-5773-82 
Tbet O4-46 AF647 BD Pharmingen 561267 
CCR4 2G12 PE-Cy7 Biolegend 131214 
IFNγ XMG1.2 PE BD Pharmingen 562020 
CD69 H1.2F3 PE-Cy5 Biolegend 104510 
CD107a 1D4B BV786 BD Horizon 564349 
CD11b M1/70 e450 Invitrogen 48-0112-82 
CD11c HL3 BV786 BD Horizon 563735 
F4/80 BM8 PE Invitrogen 12-4801-82 
NKp46 29A1.4 APC eBioscience 11-3351-80 
SiglecF E50-2440 PE-CF594 BD Horizon 562757 
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Supplementary Table 3.2. Antibodies for Mouse PhenoCycler Staining (35-plex) 
 
Antibody Barcode Fluorophore Staining Concentration 
c-Myc BX001 AF750 1 in 25, ON 
CD4 BX002 ATTO550 1 in 200, ON 
CD11b BX003 AF647 1 in 200, ON 
p-STAT6 BX004 AF750 1 in 25, ON 
CD8 BX005 ATTO550 1 in 200, ON 
MHCII BX006 AF647 1 in 50, ON 
CD45 BX007 AF750 1 in 100, ON 
MPO BX013 AF750 1 in 200, ON 
αSMA BX014 ATTO550 1 in 200, ON 
CD11c BX015 AF647 1 in 50, ON 
CCL17 BX016 AF647 1 in 100, ON 
CD3 BX017 ATTO550 1 in 100, ON 
FoxP3 BX019 AF750 1 in 100, ON 
F4/80 BX020 ATTO550 1 in 100, ON 
LAG3 BX021 AF647 1 in 50, ON 
CCL22 BX022 AF750 1 in 100, ON 
NaK-ATPase BX023 ATTO550 1 in 200, ON 
Ly6G BX024 AF647 1 in 100, ON 
CD206 BX025 AF750 1 in 100, ON 
CD31 BX026 ATTO550 1 in 50, ON 
CD19 BX027 AF647 1 in 50, ON 
Tbet BX029 ATTO550 1 in 50, ON 
PD-L1 BX030 AF647 1 in 100, ON 
CD86 BX032 ATTO550 1 in 50, ON 
GATA3 BX033 AF647 1 in 50, ON 
IFNγ BX036 AF647 1 in 50, ON 
IL4R BX037 ATTO550 1 in 50, ON 
CD44 BX040 ATTO550 1 in 50, ON 
CD107a BX042 AF647 1 in 100, ON 
GZMB BX043 AF750 1 in 50, ON 
PD-1 BX046 AF647 1 in 100, ON 
Ki67 BX047 ATTO550 1 in 200, ON 
TCF7 BX055 ATTO550 1 in 100, ON 
CitH3 BX078 ATTO550 1 in 100, ON 
CCR4 BX106 AF647 1 in 100, ON 
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Supplementary Table 3.3: Antibodies for Human PhenoCycler Staining (52-plex) 
 
Antibody Barcode Fluorophore Staining Concentration 
CD31 BX001 AF750 1 in 100, ON 
TIGIT BX002 ATTO550 1 in 100, ON 
CD4 BX003 AF647 1 in 200, ON 
pSTAT6 BX004 AF750 1 in 25, ON 
TIM3 BX005 ATTO550 1 in 200, ON 
TCF1/7 BX006 AF647 1 in 100, ON 
CD20 BX007 AF750 1 in 400, ON 
CD15 BX010 AF647 1 in 100, ON 
αSMA BX013 AF750 1 in 200, ON 
PAX5 BX014 ATTO550 1 in 200, ON 
CD68 BX015 AF647 1 in 200, ON 
CCL17 BX016 AF647 1 in 100, ON 
CD45RO BX017 ATTO550 1 in 200, ON 
panCK BX019 AF750 1 in 200, ON 
IFNγ BX020 AF647 1 in 200, ON 
CD45 BX021 AF647 1 in 200, ON 
CCL22 BX022 AF750 1 in 100, ON 
NaK-ATPase BX023 ATTO550 1 in 100, ON 
CD11c BX024 AF647 1 in 100, 30 min 37 °C 
CD8 BX026 ATTO550 1 in 200, ON 
CX3CR1 BX027 AF647 1 in 100, ON 
CD56 BX028 ATTO550 1 in 200, ON 
HLA-A BX029 ATTO550 1 in 200, ON 
FoxP3 BX031 AF647 1 in 200, ON 
CD21 BX032 ATTO550 1 in 200, ON 
HLA-DR BX033 AF647 1 in 400, ON 
CD11b BX034 ATTO550 1 in 200, ON 
CD163 BX035 ATTO550 1 in 200, ON 
CTLA4 BX036 AF647 1 in 100, ON 
CD14 BX037 ATTO550 1 in 200, ON 
VISTA BX040 ATTO550 1 in 100, ON 
GZMB BX041 ATTO550 1 in 200, ON 
CX3CL1 BX042 AF647 1 in 100, 30 min 37 °C 
CD19 BX043 ATTO550 1 in 200, ON 
MNK1 BX045 AF647 1 in 50, ON 
PD-1 BX046 AF647 1 in 100, ON 
Ki67 BX047 ATTO550 1 in 200, ON 
GATA3 BX049 ATTO550 1 in 100, ON 
CD86 BX050 AF647 1 in 100, ON 
Tbet BX052 ATTO550 1 in 100, ON 
p-eIF4E BX054 AF647 1 in 50, 30 min 37 °C 
LAG3 BX055 AF647 1 in 100, ON 
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TOX BX060 ATTO550 1 in 200, ON 
PD-L1 BX067 AF647 1 in 200, ON 
CitH3 BX078 ATTO550 1 in 100, ON 
CD3 BX080 AF647 1 in 200, ON 
CD38 BX089 ATTO550 1 in 100, ON 
MPO BX098 ATTO550 1 in 200, ON 
CCR4 BX106 AF647 1 in 100, ON 
CD45RA BX113 ATTO550 1 in 100, ON 
B-Actin BX117 AF750 1 in 200, ON 
eIF4E BX518 AF647 1 in 100, ON 
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Supplementary Table 3.4: Reagents and Tools 
 
Reagent or resource Reference or source Identifier 
Cell lines 
Eµ-Myc Parental Dr. Jerry Pelletier NA 
MEFARF-/- Dr. Jerry Pelletier NA 
Phoenix-AMPHO ATCC CRL-3212 
Eµ-Myc mSTAT6WT This study NA 
Eµ-Myc mSTAT6D419N This study NA 
Antibodies for IHC 
Ki67 Rabbit mAb Cell Signaling Technology 12202S 
CD4 Monoclonal Antibody Invitrogen 14-0042-82 
Phospho-STAT6 (Tyr641) Rabbit 
mAb Cell Signaling Technology 56554S 

EnVision+ System- HRP Labellled 
Polymer Anti-Rabbit Dako K4003 

Goat Anti-Rat IgG H+L (HRP 
Polymer) Abcam ab214882 

Dyes and Stains 
LIVE/DEAD Fixable Aqua Dead 
Cell Stain Kit ThermoFisher L34966 

DAPI ThermoFisher D1306 
DRAQ5 Biolegend 424101 
Harris’ Alum Hematoxylin Mercury 
Free Sigma-Aldrich 638A-85 

Eosin Y Solution Sigma-Aldrich HT110116-
500ML 

ImmPACT DAB Substrate Kit, 
Peroxidase Vector Laboratories SK-4105 

EnVision FLEX HRP Magenta 
Substrate Chromogen System Agilient Technologies GV92511-2 

Drugs, reagents, and other consumables 
Doxorubicin Jewish General Hospital Oncology 

Pharmacy 1201 

AZD2098 MedChemExpress HY-U00064 
Recombinant Murine IL-4 PeproTech 214-14 
FoxP3/ Transcription Factor 
Fixation/ Permeabilization 
Concentrate and Diluent 

eBioscience 00-5521-00 

CD19 MicroBeads, mouse Miltenyi Biotec 130-121-301 
CD4+ T Cell Isolation Kit, mouse Miltenyi Biotec 130-104-454 
LS Columns Miltenyi Biotec 130-042-401 
5.0 um 6-well PET insert Sarstedt 83.3930.500 
3.0 um 12-well PET insert Sarstedt 83.3931.300 
Sample Kit for PhenoCycler-
Fusion Akoya Biosciences 7000017 

10X Buffer Kit for PhenoCycler-
Fusion Akoya Biosciences 7000019 

Antibody Conjugation Kit Akoya Biosciences  7000009 
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Salmon sperm DNA, sheared 
(10mg/mL) Invitrogen AM9680 

Permount Mounting Medium Fisher Scientific SP15-500 
Trypan Blue, 0.4% Solution Wisent 609-130-EL 
RPMI Wisent 350-000-CL 
ISCOVE Wisent 319-105-CL 
DMEM Wisent 319-005-CL 
Fetal bovine serum Wisent 080-450 
Penicillin-streptomycin Wisent 450-201-EL 
β-mercaptoethanol Sigma M3148-100mL 
Software 
FlowJo v10.10 BD Biosciences  
Prism (version 6.0) GraphPad  
Illustrator 2024 Adobe  
QuPath v0.5.1   
Enable Medicine Platform Enable Medicine  
Instruments 
BD LSRFortessa Flow Cytometer BD Bioscience  
FACSAria Fusion Cell Sorter BD Bioscience  
VEVO-3100 FUJIFILM VisualSonics  
Mastercycler X50a Eppendorf  

QuantStudio 7 Flex Applied Biosystems by Life 
Technologies  

PT Link, Pre-Treatment Module for 
Tissue Specimens Agilent Dako  

AxioScan 7 Microscope Slide 
Scanner Zeiss  

Countess 3 Automated Cell 
Counter ThermoFisher AMQAX2000 

PhenoCycler-Fusion Akoya Bioscience  
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Supplementary Table 3.5: Statistics 
 
Figure Test Used n Comparisons and p-values 
Figure 1 

1C 
2way ANOVA, 
with Sidak’s 
multiple 
comparison test 

mSTAT6WT = 5 
mSTAT6D419N = 5 

Day 4 mSTAT6WT vs Day 4 
mSTAT6D419N, p = 0.5284 
Day 8 mSTAT6WT vs Day 8 
mSTAT6D419N, p = 2372 
Day 11 mSTAT6WT vs Day 11 
mSTAT6D419N, p = 0.0217 
Day 13 mSTAT6WT vs Day 13 
mSTAT6D419N, p = 0.5142 

1E 
2way ANOVA, 
with uncorrected 
Fisher’s LSD 

D8 mSTAT6WT = 5 
D8 mSTAT6D419N = 5 
D11 mSTAT6WT = 8 
D11 mSTAT6D419N = 8 
D14 mSTAT6WT = 5 
D14 mSTAT6D419N = 5 

Day 8 mSTAT6WT vs Day 8 
mSTAT6D419N, p = 0.7096 
Day 11 mSTAT6WT vs Day 11 
mSTAT6D419N, p = 0.0001 
Day 14 mSTAT6WT vs Day 14 
mSTAT6D419N, p = 0.8429 

1F Unpaired t test, 
two-tailed 

D11 mSTAT6WT = 8 
D11 mSTAT6D419N = 8 

Day 11 mSTAT6WT vs Day 11 
mSTAT6D419N, p = 0.8012 

1H Unpaired t test, 
two-tailed 

D11 mSTAT6WT = 8 
D11 mSTAT6D419N = 8 

CD4 H-score: Day 11 
mSTAT6WT vs Day 11 
mSTAT6D419N, p = 0.0047 
Phospho-STAT6 H-score: Day 
11 mSTAT6WT vs Day 11 
mSTAT6D419N, p = 0.0138 

1I Pearson 
correlation 

Number of pairs = 16 
D11 mSTAT6WT = 8 
D11 mSTAT6D419N = 8 

r = 0.7610 
p = 0.0006 

1J Unpaired t test, 
two-tailed 

D11 mSTAT6WT = 8 
D11 mSTAT6D419N = 8 

% of CD45: Day 11 mSTAT6WT 
vs Day 11 mSTAT6D419N, p = 
0.0047 
Number of cells: Day 11 
mSTAT6WT vs Day 11 
mSTAT6D419N, p = 0.0267 

1K Unpaired t test, 
two-tailed 

D11 mSTAT6WT = 8 
D11 mSTAT6D419N = 8 

% of CD45: Day 11 mSTAT6WT 
vs Day 11 mSTAT6D419N, p = 
0.3459 
Number of cells: Day 11 
mSTAT6WT vs Day 11 
mSTAT6D419N, p = 0.4188 

Figure 2 
2A Unpaired t test, 

two-tailed 
D11 mSTAT6WT = 10 
D11 mSTAT6D419N = 10 

Day 11 mSTAT6WT vs Day 11 
mSTAT6D419N, p = 0.0122 

2B Unpaired t test, 
two-tailed 

Tregs/ Tfh D11 
mSTAT6WT = 7 
Tregs/ Tfh D11 
mSTAT6D419N = 7 
Th1/ Th2 D11 
mSTAT6WT = 10 

Tregs: mSTAT6WT vs 
mSTAT6D419N, p = 0.0793 
Tfh: mSTAT6WT vs 
mSTAT6D419N, p = 0.9008 
Th1: mSTAT6WT vs 
mSTAT6D419N, p = 0.0153 
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Th1/ Th2 D11 
mSTAT6D419N = 10 

Th2: mSTAT6WT vs 
mSTAT6D419N, p = 0.0943 

2C Unpaired t test, 
two-tailed 

D11 mSTAT6WT = 10 
D11 mSTAT6D419N = 10 

CCR4+ Th1: mSTAT6WT vs 
mSTAT6D419N, p = 0.0317 
CCR4+ MFI Th1: mSTAT6WT vs 
mSTAT6D419N, p = 0.0017 
 

Figure 3 

3B 
2way ANOVA, 
with Tukey’s 
multiple 
comparison test 

mSTAT6WT -IL-4 = 3 
mSTAT6WT +IL-4 = 5 
mSTAT6D419N -IL-4 = 3 
mSTAT6D419N +IL-4 = 5 

mSTAT6WT -IL-4 vs mSTAT6WT 

+IL-4, p = 0.7936 
mSTAT6D419N -IL-4 vs 
mSTAT6D419N +IL-4, p = 0.0053 

3C 
2way ANOVA, 
with Tukey’s 
multiple 
comparison test 

mSTAT6WT -IL-4 = 5 
mSTAT6WT +IL-4 = 5 
mSTAT6WT +IL-4 
+AZD2098 = 5 
mSTAT6D419N -IL-4 = 5 
mSTAT6D419N +IL-4 = 5 
mSTAT6D419N +IL-4 
+AZD2098 = 5 

CD4: mSTAT6WT -IL-4 vs 
mSTAT6WT +IL-4, p = 0.0008 
CD4: mSTAT6WT +IL-4 vs 
mSTAT6WT +IL-4 +AZD2098, p < 
0.0001 
CD4: mSTAT6WT +IL-4 vs 
mSTAT6D419N +IL-4, p < 0.0001 
CD4: mSTAT6D419N -IL-4 vs 
mSTAT6D419N +IL-4, p < 0.0001 
CD4: mSTAT6D419N +IL-4 vs 
mSTAT6D419N +IL-4 +AZD2098, 
p < 0.0001 
CD8, NK cell, macrophage, DC, 
eosinophil: mSTAT6WT -IL-4 vs 
mSTAT6WT +IL-4, p > 0.9999 
CD8, NK cell, macrophage, DC, 
eosinophil: mSTAT6WT +IL-4 vs 
mSTAT6WT +IL-4 +AZD2098, p > 
0.9999 
CD8, NK cell, macrophage, DC, 
eosinophil: mSTAT6WT +IL-4 vs 
mSTAT6D419N +IL-4, p > 0.9999 
CD8, NK cell, macrophage, DC, 
eosinophil: mSTAT6D419N -IL-4 
vs mSTAT6D419N +IL-4, p > 
0.9999 
CD8, NK cell, macrophage, DC, 
eosinophil: mSTAT6D419N +IL-4 
vs mSTAT6D419N +IL-4 
+AZD2098, p > 0.9999 

Figure 4    

4B 
2way ANOVA, 
with Sidak’s 
multiple 
comparison test 

mSTAT6WT +Veh = 5 
mSTAT6D419N+Veh = 5 
mSTAT6WT + 3x3 mg/kg 
Doxo = 4 
mSTAT6D419N + 3x3 
mg/kg Doxo = 5 

mSTAT6WT +Veh vs 
mSTAT6D419N+Veh, p = 0.8641 
mSTAT6WT +Veh vs mSTAT6WT 

+ 3x3 mg/kg Doxo, p = 0.0009 
mSTAT6D419N+Veh vs 
mSTAT6D419N + 3x3 mg/kg Doxo, 
p = 0.8151 
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mSTAT6WT + 3x3 mg/kg Doxo vs 
mSTAT6D419N + 3x3 mg/kg Doxo, 
p = 0.0511 

4D Gehan-Breslow-
Wilcoxon test 

mSTAT6WT + 3x3 mg/kg 
Doxo = 10 
mSTAT6D419N + 3x3 
mg/kg Doxo = 10 

mSTAT6WT + 3x3 mg/kg Doxo vs 
mSTAT6D419N + 3x3 mg/kg Doxo, 
p = 0.0764 

4F 
2way ANOVA, 
with uncorrected 
Fisher’s LSD 

mSTAT6WT + 10 mg/kg 
Doxo = 10 
mSTAT6D419N + 10 mg/kg 
Doxo = 10 

Pre: mSTAT6WT + 10 mg/kg 
Doxo vs mSTAT6D419N + 10 
mg/kg Doxo, p = 0.2061 
Post: mSTAT6WT + 10 mg/kg 
Doxo vs mSTAT6D419N + 10 
mg/kg Doxo, p = 0.0023 
mSTAT6WT: Pre vs Post, p = 
0.0615 
mSTAT6D419N: Pre vs Post, p = 
0.0164 
 

4H Gehan-Breslow-
Wilcoxon test 

mSTAT6WT + 10 mg/kg 
Doxo = 10 
mSTAT6D419N + 10 mg/kg 
Doxo = 10 

mSTAT6WT + 10 mg/kg Doxo vs 
mSTAT6D419N + 10 mg/kg Doxo, 
p = 0.1211 

Figure 6 

6B 
2way ANOVA, 
with Tukey’s 
multiple 
comparison test 

mSTAT6WT + Veh= 9 
mSTAT6D419N + Veh = 9 
mSTAT6WT + 10 mg/kg 
AZD2098 = 9 
mSTAT6D419N + 10 mg/kg 
AZD2098 = 8 

mSTAT6WT + Veh vs 
mSTAT6D419N + Veh, p = 0.0774 
mSTAT6WT + Veh vs mSTAT6WT 

+ 10 mg/kg AZD2098, p = 
0.9613 
mSTAT6D419N + Veh vs 
mSTAT6D419N + 10 mg/kg 
AZD2098, p = 0.0445 

6C 
2way ANOVA, 
with Tukey’s 
multiple 
comparison test 

mSTAT6WT + Veh= 9 
mSTAT6D419N + Veh = 9 
mSTAT6WT + 10 mg/kg 
AZD2098 = 9 
mSTAT6D419N + 10 mg/kg 
AZD2098 = 8 

Treg: mSTAT6WT + Veh vs 
mSTAT6D419N + Veh, p = 0.9940 
Treg: mSTAT6WT + Veh vs 
mSTAT6WT + 10 mg/kg 
AZD2098, p = 0.6536 
Treg: mSTAT6D419N + Veh vs 
mSTAT6D419N + 10 mg/kg 
AZD2098, p = 0.3958 
Tfh: mSTAT6WT + Veh vs 
mSTAT6D419N + Veh, p = 0.7400 
Tfh: mSTAT6WT + Veh vs 
mSTAT6WT + 10 mg/kg 
AZD2098, p = 0.9737 
Tfh: mSTAT6D419N + Veh vs 
mSTAT6D419N + 10 mg/kg 
AZD2098, p = 0.9185 
Th1: mSTAT6WT + Veh vs 
mSTAT6D419N + Veh, p = 0.0551 
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Th1: mSTAT6WT + Veh vs 
mSTAT6WT + 10 mg/kg 
AZD2098, p = 0.9970 
Th1: mSTAT6D419N + Veh vs 
mSTAT6D419N + 10 mg/kg 
AZD2098, p = 0.1324 
Th2: mSTAT6WT + Veh vs 
mSTAT6D419N + Veh, p = 0.7550 
Th2: mSTAT6WT + Veh vs 
mSTAT6WT + 10 mg/kg 
AZD2098, p = 0.1055 
Th2: mSTAT6D419N + Veh vs 
mSTAT6D419N + 10 mg/kg 
AZD2098, p = 0.0170 

6D 3way ANOVA 

mSTAT6WT + Veh= 3 
mSTAT6D419N + Veh =4 
mSTAT6WT + 10 mg/kg 
AZD2098 = 3 
mSTAT6D419N + 10 mg/kg 
AZD2098 = 5 

Time, p < 0.0001 
mSTAT6WT vs mSTAT6D419N, p = 
0.8843 
Veh vs AZD2098, p = 0.3360 

6F 
2way ANOVA, 
with uncorrected 
Fisher’s LSD 

mSTAT6WT + Doxo = 5 
mSTAT6D419N + Doxo = 5 
mSTAT6WT + Doxo + 
AZD2098 = 5 
mSTAT6D419N + Doxo + 
AZD2098 = 5 

Pre: mSTAT6WT + Doxo vs 
mSTAT6D419N + Doxo, p = 
0.6611 
Pre: mSTAT6WT + Doxo vs 
mSTAT6WT + Doxo + AZD2098, 
p = 0.7703  
Pre: mSTAT6D419N + Doxo vs 
mSTAT6D419N + Doxo + 
AZD2098, p = 0.4867 
Post: mSTAT6WT + Doxo vs 
mSTAT6D419N + Doxo, p = 
0.0003 
Post: mSTAT6WT + Doxo vs 
mSTAT6WT + Doxo + AZD2098, 
p = 0.9994 
Post: mSTAT6D419N + Doxo vs 
mSTAT6D419N + Doxo + 
AZD2098, p = 0.0006 
mSTAT6WT + Doxo: Pre vs Post, 
p = 0.3082 
mSTAT6D419N + Doxo: Pre vs 
Post, p = 0.0135  
mSTAT6WT + Doxo + AZD2098: 
Pre vs Post, p = 0.4645 
mSTAT6D419N + Doxo + 
AZD2098: Pre vs Post, p = 
0.6449 

6I 
Gehan-Breslow-
Wilcoxon test, 
Bonferroni 
corrected 

mSTAT6WT + Doxo = 5 
mSTAT6D419N + Doxo = 5 
mSTAT6WT + Doxo + 
AZD2098 = 5 

mSTAT6WT + Doxo vs 
mSTAT6D419N + Doxo, p = 
0.0070 
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mSTAT6D419N + Doxo + 
AZD2098 = 5 

mSTAT6WT + Doxo + AZD2098 
vs mSTAT6D419N + Doxo + 
AZD2098, p = 0.0248 
mSTAT6WT + Doxo vs 
mSTAT6D419N + Doxo + 
AZD2098, p = 0.1446 
mSTAT6D419N + Doxo vs 
mSTAT6D419N + Doxo + 
AZD2098, p = 0.0095 

Figure 7 

7G Unpaired t test, 
two-tailed 

STAT6WT = 31 
STAT6D419N =6 

phospho-STAT6: STAT6WT vs 
STAT6D419N, p < 0.0001 
CCL17: STAT6WT vs 
STAT6D419N, p < 0.0001 

7H Pearson 
correlation 

Number of pairs = 37 
STAT6WT = 31 
STAT6D419N =6 

r = 0.8019 
p < 0.0001 

7I Unpaired t test, 
two-tailed 

STAT6WT = 31 
STAT6D419N =6 

CCR4: STAT6WT vs 
STAT6D419N, p = 0.0003 

7J Pearson 
correlation 

Number of pairs = 37 
STAT6WT = 31 
STAT6D419N =6 

r = 0.5969 
p < 0.0001 

7K Unpaired t test, 
two-tailed 

STAT6WT = 31 
STAT6D419N =6 

CD4 and Tumour: STAT6WT vs 
STAT6D419N, p = 0.369 
CCR4+ CD4 and Tumour: 
STAT6WT vs 
STAT6D419N, p = 0.767 
CD4 and pSTAT6+ Tumour: 
STAT6WT vs 
STAT6D419N, p = 0.021 
CCR4+ CD4 and pSTAT6+ 
Tumour: STAT6WT vs 
STAT6D419N, p = 0.124 

Figure S1 

S1A Unpaired t test, 
two-tailed 

D8 mSTAT6WT = 3 
D8 mSTAT6D419N = 4 

% of CD45: Day 8 mSTAT6WT 
vs Day 8 mSTAT6D419N, p = 
0.7900 
Number of cells: Day 8 
mSTAT6WT vs Day 8 
mSTAT6D419N, p = 0.2898 

S1B Unpaired t test, 
two-tailed 

D14 mSTAT6WT = 5 
D14 mSTAT6D419N = 4 

% of CD45: Day 14 mSTAT6WT 
vs Day 14 mSTAT6D419N, p = 
0.0934 
Number of cells: Day 14 
mSTAT6WT vs Day 14 
mSTAT6D419N, p = 0.1598 

S1C Unpaired t test, 
two-tailed 

D8 mSTAT6WT = 3 
D8 mSTAT6D419N = 4 

% of CD45: Day 8 mSTAT6WT 
vs Day 8 mSTAT6D419N, p = 
0.8780 
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Number of cells: Day 8 
mSTAT6WT vs Day 8 
mSTAT6D419N, p = 0.4364 

S1D Unpaired t test, 
two-tailed 

D14 mSTAT6WT = 5 
D14 mSTAT6D419N = 4 

% of CD45: Day 14 mSTAT6WT 
vs Day 14 mSTAT6D419N, p = 
0.1788 
Number of cells: Day 14 
mSTAT6WT vs Day 14 
mSTAT6D419N, p = 0.2048 

Figure S2 

S2A Unpaired t test, 
two-tailed 

D11 mSTAT6WT = 10 
D11 mSTAT6D419N = 10 

Day 11 mSTAT6WT vs Day 11 
mSTAT6D419N, p = 0.3681 

S2B Unpaired t test, 
two-tailed 

D11 mSTAT6WT = 10 
D11 mSTAT6D419N = 10 

Day 11 mSTAT6WT vs Day 11 
mSTAT6D419N, p = 0.7515 

S2C Unpaired t test, 
two-tailed 

D11 mSTAT6WT = 10 
D11 mSTAT6D419N = 10 

Day 11 mSTAT6WT vs Day 11 
mSTAT6D419N, p = 0.3017 

S2D Unpaired t test, 
two-tailed 

D11 mSTAT6WT = 10 
D11 mSTAT6D419N = 10 

Day 11 mSTAT6WT vs Day 11 
mSTAT6D419N, p = 0.8248 

S2E Unpaired t test, 
two-tailed 

D11 mSTAT6WT = 10 
D11 mSTAT6D419N = 10 

Day 11 mSTAT6WT vs Day 11 
mSTAT6D419N, p = 0.7978 

S2F Unpaired t test, 
two-tailed 

D11 mSTAT6WT = 10 
D11 mSTAT6D419N = 10 

Day 11 mSTAT6WT vs Day 11 
mSTAT6D419N, p = 0.6957 

Figure S3 

S3A Unpaired t test, 
two-tailed 

mSTAT6WT + 3x3 mg/kg 
Doxo = 4 
mSTAT6D419N + 3x3 
mg/kg Doxo = 4 
mSTAT6WT + 10 mg/kg 
Doxo = 8 
mSTAT6D419N + 10 mg/kg 
Doxo = 10 

3x3 mg/kg Doxo: mSTAT6WT vs 
mSTAT6D419N, p = 0.5393 
10 mg/kg Doxo: mSTAT6WT vs 
mSTAT6D419N, p = 0.8210 

S3B Unpaired t test, 
two-tailed 

mSTAT6WT + 3x3 mg/kg 
Doxo = 4 
mSTAT6D419N + 3x3 
mg/kg Doxo = 4 
mSTAT6WT + 10 mg/kg 
Doxo = 8 
mSTAT6D419N + 10 mg/kg 
Doxo = 10 

3x3 mg/kg Doxo: mSTAT6WT vs 
mSTAT6D419N, p = 0.7304 
10 mg/kg Doxo: mSTAT6WT vs 
mSTAT6D419N, p = 0.1555 

S3C Unpaired t test, 
two-tailed 

mSTAT6WT + 3x3 mg/kg 
Doxo = 4 
mSTAT6D419N + 3x3 
mg/kg Doxo = 4 
mSTAT6WT + 10 mg/kg 
Doxo = 8 
mSTAT6D419N + 10 mg/kg 
Doxo = 10 

3x3 mg/kg Doxo: mSTAT6WT vs 
mSTAT6D419N, p = 0.7585 
10 mg/kg Doxo: mSTAT6WT vs 
mSTAT6D419N, p = 0.8938 

S3D Unpaired t test, 
two-tailed 

mSTAT6WT + 3x3 mg/kg 
Doxo = 4 

3x3 mg/kg Doxo: mSTAT6WT vs 
mSTAT6D419N, p = 0.7290 
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mSTAT6D419N + 3x3 
mg/kg Doxo = 4 
mSTAT6WT + 10 mg/kg 
Doxo = 8 
mSTAT6D419N + 10 mg/kg 
Doxo = 10 

10 mg/kg Doxo: mSTAT6WT vs 
mSTAT6D419N, p = 0.5891 
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Chapter 4: Discussion and Future Directions 
 
4.1 Summary of Results and Study Limitations 

 In recent years, it has been increasingly appreciated that the TME is a crucial driver 

of therapeutic response and therapeutic resistance in many different cancer types. 

Therefore, in this thesis of work, we aimed to spatially study the TME of murine and 

human DLBCL to understand how tumour-cell driven TME remodelling impacts 

therapeutic resistance. To do this, mouse models of DLBCL were employed, and custom 

antibody panels for highly multiplexed PhenoCycler imaging were developed.  

In Chapter 2, the use of PhenoCycler technology enabled in-depth, hypothesis-

generating observations related to TME composition of various mouse models of cancer. 

This is crucial, as these studies revealed how immune cell abundance and spatial 

organization can vary in the TME across cancer types, enhancing our understanding of 

immune evasion, metastasis, and drug resistance mechanisms. PhenoCycler imaging of 

Eµ-Myc and A20 murine models of lymphoma demonstrated that Eµ-Myc tumours have 

relatively decreased lymphoid infiltration relative to A20 tumours. Indeed, Eµ-Myc 

tumours are “disorganized”, meaning that very few preferential interactions between 

different cell types were observed.  

In Chapter 3, Eµ-Myc was used to model STAT6D419-mutant rrDLBCL. This model 

was optimal for this study, as we were able to detect a relative increase in CD4+ T cell 

infiltration in mSTA6D419N tumours, coupled with increased tumour-cell expression of 

phospho-STAT6. Moreover, STAT6D419N-Eµ-Myc tumours demonstrated resistance to 

doxorubicin, which could be reversed by blocking CD4+ T cell infiltration into the TME. 

The results from Chapter 3 emphasized the importance of focusing on TME dynamics in 
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the context of specific oncogenic mutations. The combination of PhenoCycler imaging of 

human and murine tissues with functional assays using cells derived from 

immunocompetent mouse models thus represents a powerful paradigm for screening 

TME-based therapeutic targets for DLBCL treatment. 

However, there were distinct limitations associated with the experimental 

techniques and models used. While PhenoCycler allows for in-depth phenotyping of the 

murine and human TME, it is limited by the 2D region selected for imaging, especially in 

the context of a TMA. Moreover, the selection of antibodies that are included or excluded 

from the staining panel represents the bias of the experimenter, in contrast to techniques 

such as spatial transcriptomics, that capture the heterogeneity of the TME in an unbiased 

manner. Additionally, mouse models of human disease, especially syngeneic models, are 

inherently flawed, as they cannot fully capture the genetic heterogeneity and sequential 

clonal evolution of tumorigenesis that is characteristic of human disease.  

The rationale for selection of PhenoCycler analysis techniques, mouse models of 

lymphoma, and the drug target for STAT6D419-mutant lymphoma that were used in this 

thesis, and their limitations as they pertain to these studies, are discussed in further depth 

below.   

 

4.2 Analysis of Highly Multiplexed Imaging Data 

 In Chapters 2 and 3, different approaches for cell segmentation and cell 

classification of PhenoCycler imaging data were used. The merits and drawbacks of these 

different methods are discussed below.  
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4.2.1 Cell Segmentation 

 Cell segmentation is the process of isolating and creating borders around 

individual cells within a histological image, thereby allowing for the classification of single 

cells into phenotypes and enabling spatial analyses. Cell segmentation is a critical first 

step in PhenoCycler image analysis, as the fidelity of cell segmentation will define the cell 

boundaries that determine cellular expression of different markers in each cell for all 

downstream analysis steps.  

 In Chapter 2, cell segmentation was achieved using StarDist in QuPath software 

(152, 153). StarDist is a nuclear expansion-based cell segmentation algorithm (Figure 

4.1). It works by identifying the nuclei of each cell, based on DAPI or DRAQ5 expression, 

then projecting radially from the nuclei to predict the cell boundary. StarDist was found to 

effectively segment tumour and immune cells but showed less effective cell segmentation 

for irregularly shaped cells, such as fibroblasts. Therefore, in Chapter 3, DeepCell, a 

membrane-based cell segmentation method, was employed (154). With DeepCell, 

nuclear expansion was used in combination with a membrane marker that delineated the 

cell boundary. For murine tissues, this marker was NaK-ATPase, and for human tissues, 

this marker was β-actin. As both membrane markers outlined each cell’s outermost 

structure, DeepCell provided a more accurate representation of different cell shapes 

compared to StarDist’s predicted cell boundary. However, to use DeepCell in this fashion, 

pre-planning is required, and a suitable membrane marker must be incorporated into the 

staining panel. With StarDist, only nuclear staining is required, thus it is more amenable 

to the segmentation of a wider variety of immunofluorescent images.   
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Figure 4.1: Cell Segmentation by nuclear expansion versus membrane marker 
expression. 
Schematic demonstrating the different segmentation outcomes when nuclear expansion 
versus membrane marker-based segmentation is used on the same hypothetical image. 
Nuclear expansion fails to correctly delineate the borders of irregularly shaped cells. 
 
 
 To use membrane-based segmentation, the selection of a marker which uniformly 

stains the membranes of different cell types is a critical step. In unpublished data, we 

have observed drastically different staining patterns of the membrane markers NaK-

ATPase, β-actin, and β-catenin in the different cell types within tissues such as liver, 

heart, colon, and skin. While this has not been a problem in DLBCL tissues that are 

primarily composed of immune cells, it is still an important consideration when designing 

PhenoCycler imaging panels. Different membrane markers must be screened to 

determine the one with the most uniform staining across the tissue. Alternatively, newer 

cell segmentation methods, such as RAMCES and InstanSeg, have demonstrated that 
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utilizing multiple different membrane markers within the same tissue can increase the 

fidelity of cell segmentation for different cell types within the same tissue (155, 156).  

4.2.3 Cell Classification 

In Chapter 2, cells were classified by manually annotating the different cell types found 

within representative training images, then using an Artificial Neural Networks (ANN)- 

based machine learning algorithm to apply these cell classifications across entire tissue 

cores. In Chapter 3, cells were classified by using unsupervised clustering. In both cases, 

cells were identified with high accuracy.  

The supervised learning approach requires knowledge of different cell types within the 

TME for accurate cell classification. However, as the user’s existing knowledge is being 

leveraged to train the ANN model, classification tends to closely align with known 

biological cell types. Moreover, the approach described in Chapter 2 does not require the 

use of coding languages, such as Python or R, and is therefore accessible to scientists 

of different academic backgrounds. Despite these strengths, the accuracy of classification 

depends heavily on the breadth and quality of the manually annotated training set. If the 

annotated images do not include a wide range of cell types and tissue architectures, the 

model may not generalize well to an entire tissue. For instance, in Chapter 3, PhenoCycler 

imaging was performed on tissues from more than 30 different DLBCL patients. In this 

scenario, it is challenging to select representative regions from a subset of patients which 

will generalize well across the entire cohort. Moreover, manual annotation is subject to 

user bias and error. Mislabeling in the training set can misguide the algorithm, potentially 

leading to systematic errors in the classifications. 
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Unsupervised clustering, on the other hand, removes bias, as it is data driven. Cells 

are grouped into clusters based on similarities in marker expression profiles, and clusters 

are then manually annotated to identify different cell types. As cell types are discovered 

based exclusively on data patterns, unsupervised clustering can identify rare cell 

phenotypes within tissues. However, unsupervised clustering carries the risk of over-

clustering or under-clustering, which can respectively result in the labelling of false cell 

types or can miss biologically relevant distinctions.  

Ultimately, the choice between these methods depends on the research questions 

that are being asked. Critically, many research questions may be answered without the 

need for highly multiplexed spatial imaging, so the definition of a specific and narrow 

hypothesis should be an initial step in experimental design. The broad classification of 

different cell types within the TME of different tumour types in Chapter 2 benefited from a 

supervised, knowledge-based approach, while Chapter 3’s higher-plex and more detailed 

subclassification of tumor and immune cells in multiple different patients was better suited 

to the granularity of unsupervised clustering. Whichever method is chosen, the 

classification results should closely align with visual inspection, ensuring that the results 

reflect the biological reality of the tissue. Together, these methods offer complementary 

approaches for understanding cellular diversity within the TME, enabling a contextually 

supported analysis of tumor biology, not only for DLBCL, but for other various cancer 

types. 
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4.3 Mouse Modelling to Study the DLBCL TME  

4.3.1 Spatiotemporal TME Evolution 

 In Chapter 2, the Eµ-Myc and A20 syngeneic murine models of lymphoma were 

employed, and PhenoCycler tumour imaging was performed on both these tissue types 

from a single time point in disease: at humane endpoint, when tumour volume is sufficient 

to induce distress in the mouse. However, in Chapter 3, Eµ-Myc mSTAT6WT and 

mSTAT6D419N tumours were spatially profiled over the course of disease development, 

with timepoints from early-, mid-, late- and relapsed-disease. The approach used in 

Chapter 3 demonstrated that the prevalence and spatial organization of the non-tumour 

cellular components of the TME evolve alongside the tumour.   

We observed that lymphoid cells, including CD8+ T cells, CD4+ T cells and Tregs, 

are excluded from Eµ-Myc tumours at late disease, while the stromal compartment, 

including fibroblasts and endothelial cells, is expanded. Additionally, at disease relapse, 

we observed that CD4+ T cells were further decreased in prevalence as compared to 

treatment naïve endpoint tumours. The stromal compartment of solid tumours is known 

to provide structural support for the expanding tumor mass, but can further function to 

contribute to an immunosuppressive environment by creating physical and molecular 

barriers to immune cell infiltration (157). Thus, early in disease progression, the tumor 

may be relatively more accessible to immune cells, but as the tumor advances, it 

establishes a more fortified microenvironment that minimizes immune cell infiltration (113, 

158, 159). Moreover, the progressive depletion of CD4+ T cells from mid-disease to 

disease relapse could be reflective of their physical exclusion from the TME but could 

further be a result of the selective pressure exerted by doxorubicin treatment, leading to 
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a depleted microenvironment that is even less responsive to immune surveillance. These 

results mimic early reports from human DLBCL data, which suggests that the TME 

becomes more “immune cold” at disease relapse (160).  

 These results emphasize the importance of selecting an appropriate endpoint for 

experiments that examine immune and stromal spatial dynamics in the TME. Our findings 

in Eµ-Myc show how the TME can shift from an “immune-responsive” to an “immune-

evasive” state over time, in a way that single-timepoint analyses might miss. By capturing 

the TME at multiple timepoints, we can discern the sequential alterations in cellular 

composition and spatial interactions that influence disease progression and therapeutic 

response. 

4.3.2 Immunocompetent Mouse Models and Genetic Diversity  

 Immunocompetent mouse models are essential for studying the TME, as they 

retain a fully functional immune system, allowing for investigations centered around the 

interactions between immune cells and tumour cells, which are known to be vital to 

disease progression and therapeutic response. Indeed, in our previous in vitro work, we 

found that STAT6D419-mutant tumour cells did not have altered sensitivity to any of the 

individual components of R-CHOP (52). Therefore, we predicted that if differences in 

therapeutic sensitivity were present between STAT6WT and STATD419N tumours, an intact 

TME would be required in order for these differences to be apparent. This was indeed the 

case, as mSTAT6D419N-Eµ-Myc tumours in vivo demonstrated significant resistance to 

doxorubicin treatment, which could be reversed using treatment with a small molecule 

inhibitor of CCR4, which functioned to reduce CD4+ T cell infiltration into the TME.  
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 However, syngeneic immunocompetent mouse models lack genetic diversity, and 

do not demonstrate the stepwise accumulation of oncogenic mutations that are 

characteristic of human tumourigenesis. To this point, intratumoural heterogeneity in 

DLBCL is hypothesized to underlie intrinsic and acquired resistance to therapy, and the 

study of clonal rrDLBCL genetic alterations is how STAT6D419 mutations were identified 

in the first place (45). Indeed, STAT6D419-mutations in human DLBCL have thus far only 

been identified in GCB/EZB tumours, suggesting that STAT6-GOF may provide a 

selective survival advantage specifically in the context of this DLCBL tumour type. 

Therefore, to better understand microenvironmental dynamics in STAT6D419-mutant 

rrDLBCL, alternate mouse models with increased genetic diversity could be explored.  

Discussed below are mouse models that could be used to further study STAT6D419-

mutant DLBCL.  

4.3.3 Other Mouse Models Not Employed in this Study 

 In 2023, a GEMM with a whole-body STAT6D419N mutation was published (161). 

This mouse model was used to investigate the role of STAT6-GOF in dermatitis and 

eosinophilic inflammation, as germline heterozygous STAT6D419-mutations have been 

recorded in families with early-onset allergic disease (149, 150). It was found that homo- 

and heterozygous STAT6D419N mice displayed phenotypes associated with heightened 

eosinophilic responses and skin inflammation, consistent with STAT6’s role in amplifying 

immune signaling pathways. It has not yet been reported if these mice have developed 

spontaneous lymphoma-like malignancies. However, if these mice were to develop 

lymphoma, their tumour cells would present an attractive opportunity for the development 

a new model of syngeneic DLBCL. In this scenario, the STAT6D419N tumour cells would 
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demonstrate the accumulation of mutations that are required to result in malignant 

transformation. Therefore, these tumour cells would be a better representation of human 

DLBCL genetic diversity. Murine STAT6D419N tumour cells could be maintained ex vivo 

and could be re-implanted into WT mice, where they could be used to study tumour 

immune cell infiltration and therapeutic responses. The additional advantage of this model 

would be that the tumour cells contain the STAT6D419N mutation, while the host would 

express STAT6WT, which is what is seen in most cases of STAT6D419-mutant rrDLBCL.  

 Similarly, a tumour biopsy from a STAT6D419-mutant DLBCL patient could be used 

to develop a novel PDX model. As with other PDX models, it would be predicted that a 

STAT6D419-mutant PDX would maintain the genetic characteristics and therapeutic 

vulnerabilities of human STAT6D419-mutant DLBCL (90, 91). However, as discussed in 

Chapter 1, PDX models are typically used with immunocompromised mice, thereby 

critically impeding the ability to study tumour-host interactions. Moreover, both the 

GEMM-derived tumor model discussed above and a STAT6D419-mutant PDX model would 

rely on fresh tumor material, which may or may not engraft and propagate effectively in 

the host mouse. For these reasons, a STAT6D419-mutant PDX model is likely unfeasible.  

 The most practical approach, albeit time-consuming, would be the development of 

a new GEMM of STAT6D419N lymphoma, by putting the STAT6D419N mutant allele under 

the control of a B cell specific promoter/ enhancer, such as Eu, Iu, or Vav. This strategy 

would restrict STAT6D419N expression to B cells but would still require the additional 

accumulation of mutations for malignant transformation. Moreover, this mouse could be 

crossed with other GEMMs of the EZB subtype, to potentially accelerate 

lymphomagenesis, but to also more faithfully model the genetic diversity in human 
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STAT6D419-mutant DLBCL. Such a GEMM would facilitate investigations into the role of 

STAT6D419N in B cell transformation, tumor progression, and therapeutic resistance, 

offering a robust, immune-competent model for studying rrDLBCL in a controlled genetic 

and immunologic context. 

 
4.4 CCR4 as a Therapeutic Target in STAT6-mutant rrDLBCL 

4.4.1 CCR4 Inhibitors 

 In Chapter 3, the small-molecule CCR4 inhibitor AZD2098 (162) was used to 

reverse STAT6D419N-mediated doxorubicin resistance. CCR4 is a G protein-coupled 

receptor (GPCR) with CCL17 and CCL22 (aka TARC and MDC) acting as its major 

agonists. These two chemokines have different binding affinity for CCR4, with CCL17 

showing lower binding affinity for CCR4 and the ability to interact with CCR4 in its major 

conformation, and CCL22 showing higher binding affinity and the ability to interact with 

both the major and minor conformation (163, 164). Upon binding of either chemokine, 

downstream β-arrestin signaling through p38 and rho-associated protein kinase (ROCK) 

is responsible for inducing T cell migration (165). Inhibiting CCR4 prevents various 

immune cells from undergoing CCL17/ 22 -dependent migration to sites of inflammation.  

 In previous studies, inhibition of the CCR4/ CCL17 axis has been suggested for 

the treatment of diseases driven by excessive Th2 responses, such as asthma and atopic 

dermatitis (166, 167). In cancer, CCL17 has been shown to promote tumour cell 

proliferation and metastasis (168-170). Moreover, CCL17 was demonstrated to induce 

the transformation of human keratinocytes into cutaneous squamous cell carcinoma 

(171). Beyond the effect of CCL17 on the tumour cell compartment, it has also been 
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shown to modulate the TME through recruitment of Tregs that inhibit CD8+ T cell cytotoxic 

responses (172, 173). 

 It has only been in recent years where CCR4 inhibition has been considered for 

the treatment of hematological malignancies. The use of the FDA-approved monoclonal 

antibody, Mogamulizumab, is discussed below.  

4.4.2 Mogamulizumab for CTCL and DLBCL 

Mogamulizumab (aka Poteligeo) is approved for the treatment of relapsed or 

refractory CTCL and certain adult T cell leukemias/lymphomas (ATLL), where malignant 

T cells overexpress CCR4. The mechanism of action is via the binding of Mogamulizumab 

to CCR4, facilitating antibody-dependent cellular cytotoxicity (ADCC) of CCR4-

expressing tumour cells (174). Beyond direct cytotoxicity to tumour cells, depletion of 

CCR4-expressing Tregs also reduces immune suppression in the TME, potentially 

allowing for anti-tumor immune responses to become more effective (175). Indeed, in 

clinical trials, Mogamulizumab demonstrated a significant therapeutic benefit over 

standard therapies, leading to its approval as a second-line treatment for relapsed or 

refractory CTCL (174, 176). 

 In DLBCL, Mogamulizumab is still under investigation, particularly for NOS-

DLBCLs, where the tumour cells themselves express higher levels of CCR4 (177). 

However, the main rationale of Mogamulizumab for DLBCL treatment is to disrupt the 

recruitment and accumulation of immunosuppressive and anti-inflammatory cells, such 

as Tregs and Th2 cells, in the TME, potentially sensitizing the tumour to ICI (178). As 

such, targeting the TME through T cell functional modulation represents a novel angle for 

treating R-CHOP resistant cases of DLBCL. In an early-phase clinical trial, 
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Mogamulizumab in combination with Pembrolizumab showed promise in improving 

immune activation and reducing tumour progression in DLBCL (179). However, adverse 

events were significant, and the trial was discontinued.  

 In our study, while we found that AZD2098 reduced Th2 infiltration in the Eµ-Myc 

TME, we also found that Th1 cells were reduced by AZD2098, specifically in Eµ-Myc 

mSTAT6D419N tumours. These findings highlight the complexity of targeting CCR4 as a 

TME-modulating agent, as our results show that the tumour genotype has a distinct 

impact of the outcome of CCR4-inhibitor treatment. While Th1 cells are typically 

considered to be central to anti-tumour immune responses, our results instead imply that 

CCR4+ Th1 cells in Eµ-Myc-mSTAT6D419N tumours support tumour-promoting 

inflammation, and that their depletion leads to improved sensitivity to doxorubicin. Future 

studies might further examine if CCR4+ Th1 cells are functionally distinct from CCR4- 

Th1 cells, and how they differentially impact tumour progression. If Mogamulizumab were 

to be tested for the treatment of STAT6D419-mutant lymphoma, these studies would be 

critical for contextualizing the expected anti-tumour immune responses.  

4.4.3 Other Therapeutic Targets for STAT6D419-DLBCL 

In Chapter 3, AZD2098 was used to therapeutically target mSTAT6D419N-Eµ-Myc 

tumours, as we aimed to investigate if the observed doxorubicin resistance was 

attributable to changes in the TME. Therefore, we chose to therapeutically target a protein 

that was present on cells of the TME, rather than a protein with enhanced expression in 

the STAT6D419N tumour cells themselves. To this end, various other strategies, which 

specifically target enhanced STAT6 signaling in the tumour cell, could be explored to treat 

STAT6D419-mutant rrDLBCL (Figure 4.2).  
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Figure 4.2: Alternate therapeutic targets for STAT6D419-mutant DLBCL. 
Schematic demonstrating the different therapeutic targets for STAT6D419-mutant DLBCL. 
IL-4Ra and JAK inhibitors are both FDA approved for various disease. STAT6 inhibitors 
are currently in clinical testing.  
 

The first potential therapeutic target is IL-4Ra, which is the IL-4 receptor subunit that 

is required for both IL-4- and IL-13-dependent STAT6 activation. In our previous study, 

we demonstrated that STAT6 phosphorylation in STAT6D419-mutant tumour cells is 

dependent on IL-4 or IL-13 stimulation (52). Thus, inhibiting the signaling of IL-4/13 

through their common receptor has the potential to block oncogenic STAT6 activation in 

STAT6D419-mutant tumour cells. Dupilumab, an FDA-approved monoclonal antibody 

against IL-4Rα used in allergic diseases and asthma, could theoretically attenuate STAT6 

signaling in DLBCL. This reduction in STAT6 activity may decrease proliferation and 
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survival signals within the tumour cells and potentially resensitize them to therapies like 

R-CHOP.  

Similarly, JAK1 inhibitors could be used to the same effect. Following IL-4/13 binding 

to their receptors, JAK1 is the next downstream protein that is activated, which functions 

to induce STAT6 phosphorylation. Various JAK1 inhibitors have been developed and FDA 

approved, such as Abrocitinib and Baricitinib. Similarly, various other less specific JAK 

inhibitors function to inhibit JAK2 or JAK3 in addition to JAK1, such as Ruxolitinib and 

Tofacitinib.  By inhibiting JAK1, JAK-inhibitors could effectively reduce STAT6 activation, 

potentially reversing the pathological effects of STAT6D419 mutations in DLBCL. 

While there are currently no FDA-approved therapeutics, the continued development 

of direct STAT6 inhibitors could offer another therapeutic option specifically designed to 

treat tumours harboring GOF mutations in STAT6. The small molecule STAT6 inhibitor 

AS1517499 has been used in in vitro and in vivo research to study diverse diseases such 

as asthma, renal and lung fibrosis, breast cancer, and colon cancer (180-184). In these 

studies, AS1517499 has proven to inhibit STAT6 phosphorylation, modulate immune 

responses, and ameliorate disease.  

Finally, we have provided compelling evidence that STAT6D419-mutations in rrDLBCL 

function to remodel the TME, favouring the expansion of the CD4+ T cell compartment. 

Thus, it is appealing to speculate that STAT6D419-mutant rrDLBCL may be uniquely 

sensitive to therapeutics that reinvigorate T cell responses in the TME, such as ICIs. 

STAT6 GOF mutations are known to promote a pro-inflammatory, T cell-enriched TME, 

creating a potential context where immune modulation could effectively counter tumour 

immune evasion mechanisms. In support of this idea, evidence from other tumour models 
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suggests that blocking STAT6 signaling can reverse immunosuppressive conditions 

within the TME (185), further highlighting the potential efficacy of ICIs in STAT6D419-

mutant rrDLBCL. 

 

4.5 Future Directions 

4.5.1 Spatiotemporal Profiling of A20 Murine Lymphoma 

 In Chapter 2, the A20 model of murine B cell lymphoma was introduced and 

utilized, but in Chapter 3, only Eµ-Myc was used to investigate STAT6D419N-mediated 

TME remodelling. Therefore, STAT6 mutations could be introduced into A20 tumour cells, 

and the experiments in Chapter 3 could be repeated. This would provide an exciting 

opportunity confirm our previous results or identify alternate mechanisms of STAT6 GOF 

intrinsic tumour growth or impact on the TME.  

 However, the more exciting outstanding research questions surrounding the A20 

tumour model relate to spatiotemporal and organotrophic growth. Specifically, a future 

experiment could perform PhenoCycler imaging of A20 tumours across different organs 

at different stages of disease development. In this experiment, we could map cellular 

composition and spatial organization of A20 tumours, including immune and stromal cell 

interactions, to capture organ-specific TME adaptations that may support or inhibit tumor 

growth. 

 This experiment would reveal how site-specific factors shape immune responses 

within the TME across disease stages, potentially identifying regional differences in 

immune cell recruitment, activation, and polarization. If such differences were found, 

novel opportunities for therapeutic targeting could be proposed. These results would be 
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highly translatable to the human DLBCL population, as 30% of DLBCL patients have 

extranodal disease.  

4.5.2 Non-CD4 Components of the STAT6D419N TME 

Chapter 3 largely focused on CD4+ T cell expansion in the STAT6D419N TME. 

However, chemokine profiling showed that much is different in mSTAT6D419N tumours as 

compared to mSTAT6WT tumours. Future experiments could extend the focus on 

STAT6D419N-driven changes within the TME to explore the roles of myeloid cells, which 

were largely underexamined in current studies. Given the influence of STAT6D419N on 

TME composition via CCL17-mediated CD4+ T cell recruitment, it is plausible that this 

signaling pathway also affects myeloid populations, either directly or through secondary 

interactions. Myeloid cells, such as macrophages, dendritic cells, and myeloid-derived 

suppressor cells (MDSCs), are integral to immune modulation in the TME, influencing 

tumour growth, immune cell recruitment, and therapeutic resistance. Profiling myeloid cell 

populations in the STAT6D419N TME, including their abundance, phenotypes, and spatial 

organization relative to CD4+ T cells, would provide insights into how STAT6D419N 

mutations reshape the broader immune landscape and uncover any compensatory or 

synergistic effects with T cell recruitment. 

4.5.3 Mechanism of STAT6D419-mutant-mediated Therapeutic Resistance  

 One major outstanding question related to STAT6D419N-mediated TME remodelling 

is the specific mechanism of action whereby CCR4+ Th1 cells engender doxorubicin 

resistance. While we demonstrate that mSTAT6D419N tumour cells isolated from the TME 

have increased evidence of inflammation, this does not directly show if and how CCR4+ 

Th1 cells play a role.  
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To explore the mechanisms by which CCR4+ Th1 cells contribute to doxorubicin 

resistance in STAT6D419N tumours, future experiments could focus on the functional 

properties of Th1 cells within the TME and their interactions with tumour cells. One 

approach would be to preform single cell RNA sequencing (scRNAseq) of the cells in the 

mSTAT6WT and mSTAT6D419N TME, to determine if the phenotypes of different CD4+ T 

cell types differ between these two tumour types. This experiment could potentially 

identify a TME-signature that is associated with doxorubicin resistance that could be 

validated in other publicly available human and murine scRNAseq datasets.  Another 

approach would be to isolate CCR4+ Th1 cells from the TME of mSTAT6D419N and 

mSTAT6WT Eµ-Myc tumours and develop a co-culture with tumour cells in vitro. RNAseq 

could be performed to specifically determine whether these cells are responsible for 

inducing the inflammatory signature that was observed in mSTAT6D419N tumour cells in 

vivo. Moreover, the addition of doxorubicin to these co-cultures could reveal if interactions 

between Th1 cells and tumour cells confer resistance by enhancing survival signals or 

potentially by limiting doxorubicin uptake.  

4.5.4 The TME of Diagnostic versus Relapsed DLBCL 

 In Chapter 3, we are the first team to report spatial immunophenotyping of the 

human DLBCL TME using samples obtained at disease relapse. However, due to the 

focused research questions that were being addressed, the full characterization of this 

human PhenoCycler dataset is not fully realized. The acquired PhenoCycler dataset can 

be leveraged to gain further insight into the progression of DLBCL, by performing future 

experiments wherein PhenoCycler imaging of human DLBCL tissues at diagnosis could 

be done, to compare the spatial organization of the TME at diagnosis versus relapse.  
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By profiling immune and stromal cell populations at both diagnosis and relapse, it 

will be possible to describe novel changes in cell abundance, spatial distribution, and 

cellular interactions that emerge as disease advances. Spatial profiling of immune cell 

subsets, such as T cells, macrophages, and DCs, will identify any shifts in localization 

relative to tumour cells, stromal cells, and other immune cells that could influence their 

overall function. Tracking these alterations from initial diagnosis to relapse, in matched 

patient samples if possible, will provide a clear picture of how the TME evolves under 

therapeutic pressure and will identify cellular patterns associated with treatment 

resistance. These analyses would not only provide insights into the cellular dynamics 

driving rrDLBCL but could also help identify biomarkers predictive of relapse and position 

researchers to suggest potential therapeutic targets that pre-empt or counteract these 

changes. 

 
 
4.6 Concluding Summary 
 

The detailed objectives of this thesis were defined as follows:  

1. To develop tools and analytical techniques to study the tumour microenvironment 

of both murine and human lymphoma. 

2. To determine how different mouse models of lymphoma differ in their 

microenvironmental composition and spatial organization. 

3. To determine if mouse-modelling of STAT6D419-mutant lymphoma faithfully 

recapitulates critical features of human disease. 

4. To investigate mechanisms of STAT6D419-mediated microenvironmental 

remodelling.  
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5. To identify novel therapeutic strategies for STAT6D419 mutant rrDLBCL. 

6. To define the microenvironmental composition and spatial organization of 

rrDLBCL, with a specific focus on STAT6D419-mutant patients.  

 

The aims of this thesis were addressed as follows:  

1. In Chapter 2, a custom 16-plex PhenoCycler panel was developed and utilized to 

study the TME of various murine cancers. In Chapter 3, this panel was extended 

to 35-plex, allowing for deeper analysis of cell state and activation status in the 

context of STAT6D419N-mutation. Moreover, a 52-plex PhenoCycler panel was 

used to phenotype the TME of human rrDLBCL. Of note, we are the first to develop 

panels and report successful PhenoCycler imaging of murine FFPE tissues. We 

are also the first to perform PhenoCycler imaging on human rrDLBCL biopsies.  

2. Chapter 2 demonstrated that the A20 and Eµ-Myc murine lymphoma tumour 

models have distinct differences in immune cell composition and spatial 

organization, with A20 having increased expression of lymphoid cells and 

increased interactions between immune cells of the TME, and Eµ-Myc tumours 

having a relatively expanded stromal compartment and depletions in a number of 

cell-cell interactions. These results highlight how these two models can be used to 

answer different research questions related to the DLBCL TME.  

3. In Chapter 3, Eµ-Myc mSTAT6D419N tumours were found to faithfully recapitulate 

human STAT6D419-mutant rrDLBCL tumours, with increased expression of 

phospho-STAT6, increased invasion of CD4+ T cells, and resistance to 

doxorubicin treatment. This mouse model represents a powerful tool to identify and 
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screen therapeutics that could specifically be used to treat STAT6D419-mutant 

rrDLBCL patients.  

4. Mechanistically, Chapter 3 demonstrated that STAT6D419N tumour cells remodel 

the TME via increased secretion of CCL17, leading to increased recruitment of 

CCR4 expressing CD4+ T cells. The CCR4+ CD4+ T cells are predominantly 

polarized towards a Th1-like state, leading to evidence of enhanced inflammation 

in the mSTAT6D419N TME. Tumour inflammation is associated with resistance to 

chemotherapy, thereby identifying a potential rationale for why STAT6D419-mutant 

tumour cells are identified specifically at DLBCL relapse.  

5. Chapter 3 demonstrated that STAT6D419N tumours can be resensitized to 

doxorubicin by blocking CCL17-mediated CD4+ T cell recruitment to the TME 

using a small molecule inhibitor of CCR4, AZD2098. Critically, the CCR4-targeted 

monoclonal antibody Mogamulizumab is FDA-approved for other hematological 

malignancies, demonstrating the direct clinical relevance of these findings.  

6. The final figure of Chapter 3 demonstrated that human STAT6D419-mutant rrDLBCL 

samples have increased tumour cell expression of phospho-STAT6 and CCL17, 

and that CD4+ T cells in STAT6D419-mutant rrDLBCL also have increased 

expression of CCR4. Thus, our novel findings using a murine model of lymphoma 

are directly relevant to the human rrDLBCL population, and successfully identified 

a therapeutically actionable axis for the treatment of a subset of rrDLBCL patients.  
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