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ABSTRACT 

 

 The proliferation of cyanobacteria and harmful algal blooms have long been considered a 

major threat to water quality, human and ecosystem health, and freshwater biodiversity. Over 

recent decades, increases in the frequency and magnitude of blooms have been documented in 

many lakes worldwide, which in turn has galvanized efforts to identify the underlying drivers of 

cyanobacteria biomass and their community structure. Despite the attention on cyanobacteria as 

a target metric of water quality, there has been no systematic sampling program or 

complementary examination of the factors influencing cyanobacterial abundance and their toxins 

in lakes at a national scale in Canada. My PhD thesis utilizes a large-scale lake sampling 

program involving hundreds of lakes to provide a broad view of contemporary dynamics of 

cyanobacteria across Canada. Specifically, it aims to (1) quantify the spatial patterns of 

cyanobacteria biomass and identify their predictors; (2) assess the congruency between 

traditional and modern methods of generating community composition; and (3) quantify the 

abundance of cyanotoxins (microcystins) and their predictors. In my first chapter, I showed that 

cyanobacteria biomass was significantly higher in central Canada (within the Prairies and Boreal 

Plains ecozones), where several bloom-forming and toxin-producing taxa dominated (i.e., 

Aphanizomenon, Microcystis and Dolichospermum). Through a series of empirical modelling 

approaches, I showed that despite considering an exhaustive range of variables, the results 

corroborate earlier studies identifying nutrients, particularly phosphorus, as the best predictor of 

cyanobacteria biomass and community composition. In this chapter, I was also able to shed light 

on an often overlooked component of cyanobacteria predictive models; biotic variables. 

Specifically, I found daphnid and copepod biomass were positively related to cyanobacteria 
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biomass, which could be due to a variety of factors including predation release of zooplankton, 

alternative food sources for zooplankton and/or evolutionary adaptations. Overall, given that a 

large matrix of potential predictors were considered, and yet the best models explained only 

~50% of the variation of cyanobacteria, I believe that we have potentially reached a maximum in 

predictive power in analysing snapshot samples on morphologically identified cyanobacteria. In 

my second chapter, I conducted a comparative analysis using two different methods of 

taxonomic assignment of cyanobacteria communities: traditional light microscopy and 

contemporary DNA metabarcoding. Using a 370 lake-dataset, I quantified the congruency 

between cyanobacteria communities generated by each taxonomic method and found a moderate 

but significant agreement between methods. The two methods were most congruent in the 

nutrient-rich lake subset, and at coarser levels of taxonomic assignment. Overall, we 

demonstrated that microscopy and DNA metabarcoding do not necessarily yield identical 

cyanobacteria communities but give complementary information. Finally, in my third chapter, I 

investigated the concentration, distribution and predictors of total microcystins and characterized 

their specific congener profiles across Canadian lakes. Microcystin concentrations were 

generally low relative to regulatory guidelines, but high values were observed in the Prairies and 

Boreal Plains lakes. A key finding of this chapter was that a variety of less-commonly found 

microcystin congeners were present across Canadian lakes, but the two most abundant were MC-

LR and MC-LA. Overall, the relative abundance of congener composition was only moderately 

correlated to environmental variables, suggesting other factors regulate their production. Overall, 

my PhD thesis provided key data to evaluate cyanobacteria abundances and composition across a 

large-scale landscape of Canadian lakes. I have demonstrated the overwhelming importance of 

phosphorus and other nutrients as the leading predictors of cyanobacteria and their toxins. The 
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large geographic extent and standardized quality of my dataset make the model results and 

comparative analyses more generalizable to researchers and managers of temperate, boreal and 

subarctic watersheds. Finally, my thesis highlighted the strengths and weaknesses of snapshot 

sampling, of which is also relevant to lake management decisions.  
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RÉSUMÉ 

 

 La prolifération des cyanobactéries et des efflorescences d’algues nuisibles est depuis 

longtemps considérée comme une menace pour la qualité de l’eau, la santé humaine et des 

écosystèmes et la biodiversité des eaux douces. Au cours des dernières décennies, 

l’augmentation de la fréquence et magnitude des efflorescences a été documentée dans plusieurs 

lacs mondiaux, ce qui a galvanisé les efforts visant à identifier les facteurs qui promouvaient la 

biomasse des cyanobactéries et de leur structure communautaire. Malgré l’attention aux 

cyanobactéries comme mesure cible de la qualité de l’eau, il n’y a pas eu de programme 

d’échantillonnage systématique ou d’examen complémentaire des facteurs influençant 

l’abondance des cyanobactéries et de leurs toxines dans les lacs à l’échelle nationale au Canada. 

Ma thèse de doctorat utilise un programme d’échantillonnage de lacs à grande échelle avec des 

centaines de lacs pour fournir un portrait global des dynamiques contemporaine des 

cyanobactéries à travers le Canada. Spécifiquement, elle vise à (1) quantifier les modèles 

spatiaux de la biomasse des cyanobactéries et à identifier leurs prédicteurs; (2) évaluer la 

congruence entre les méthodes traditionnelles et modernes pour générer la composition des 

communautés; et (3) quantifier l’abondance des cyanotoxines (microcystines) et leurs 

prédicteurs. Dans mon premier chapitre, j’ai démontré que la biomasse des cyanobactéries était 

significativement plus élevée dans le centre du Canada (dans les écozones des Prairies et des 

Plaines boréales), ou plusieurs taxons formant des efflorescences et produisant des toxines 

dominaient (c’est-à-dire Aphanizomenon, Microcystis et Dolichospermum). Avec une série 

d’approches de modélisation empirique, j’ai démontré que malgré la prise en compte d’une 

gamme exhaustive de variables, les résultats corroborent avec les études antérieures identifiant 
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les nutriments, en particulier le phosphore, comme le meilleur prédicteur de la biomasse et de la 

composition des communautés de cyanobactéries. Dans ce chapitre, j’ai également été en mesure 

d’éclairer sur une composante souvent négligée des modèles de prédiction des cyanobactéries: 

les variables biotiques. Plus précisément, j’ai constaté que la biomasse des daphnies et des 

copépodes était positivement liée à la biomasse des cyanobactéries, ce qui pourrait être dû à une 

variété de facteurs, notamment la libération de la prédation de zooplancton, les sources de 

nourriture alternatives pour le zooplancton et/ou les adaptations évolutives. Dans l’ensemble, 

étant donné qu’une grande matrice de prédicteurs potentiels a été prise en compte et que les 

meilleurs modèles ont expliqué ~50% de la variation des cyanobactéries, je pense que nous 

avons potentiellement maximisé le pouvoir prédictif dans l’analyse des échantillons ponctuels 

sur les cyanobactéries morphologiquement identifiées. Dans mon deuxième chapitre, j’ai mené 

une analyse comparative en utilisant deux méthodes différentes d’assignation taxonomique des 

communautés de cyanobactéries: la microscopie optique traditionnelle et le métabarcodage de 

l’ADN. En utilisant un ensemble de données sur 370 lacs, j’ai quantifié la congruence entre les 

communautés de cyanobactéries générées par chaque méthode taxonomique et l’accord modéré 

mais significatif entre les méthodes. Les deux méthodes étaient plus congruentes dans le sous-

ensemble des lacs riches en nutriments, et à des niveaux plus grossiers d’assignation 

taxonomique. Dans l’ensemble, nous avons démontré que la microscopie et le métabarcodage de 

l’ADN ne donnent pas nécessairement des communautés de cyanobactéries identiques mais 

fournissent des informations complémentaires. Enfin, dans mon troisième chapitre, j’ai étudié la 

concentration, la distribution et les prédicteurs des microcystines totales et caractérisé les profils 

de leurs congénères spécifiques dans les lacs canadiens. Les concentrations de microcystines 

étaient généralement faibles par rapport aux directives réglementaires, mais plus élevées dans les 
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lacs des Prairies et des Plaines boréales. L’une des principales conclusions de ce chapitre est 

qu’une variété de congénères de microcystines moins courante étaient présente dans les lacs 

canadiens, mais que les deux plus abondants étaient MC-LR et MC-LA. En général, l’abondance 

relative des congénères n’était que modérément corrélée aux variables environnementales, ce qui 

suggère que d’autres facteurs régulent leur production. En général, ma thèse de doctorat a fourni 

des données essentielles pour évaluer l’abondance et la composition des cyanobactéries à une 

plus grande échelle spatiale dans les lacs canadiens. J’ai démontré l’importance écrasante du 

phosphore et d’autres nutriments comme principaux prédicteurs des cyanobactéries et de leurs 

toxines. La grande étendue géographique et la qualité standardisée de mon ensemble de données 

rendent les résultats du modèle et les analyses comparatives plus généralisables aux chercheurs 

et aux gestionnaires des bassins versants tempérés, boréaux et subarctiques. Enfin, ma thèse a 

mis en évidence les forces et les faiblesses de l’échantillonnage ponctuel, qui est également 

pertinent dans les processus décisionnels en gestion des lacs.                 
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PREFACE 

 

Thesis format and style  

 This is a manuscript-based thesis in accordance with McGill University’s regulations. It 

is comprised of three manuscripts numbered Chapter I, Chapter II and Chapter III, all of which 

have been published in a peer-reviewed academic journal. The thesis begins with a general 

introduction, which provides background information, context and the objectives of the thesis. 

Each chapter is linked by a connecting statement and the general conclusions highlight the most 

significant findings of the thesis. Supplementary materials are included as appendices for each of 

the three chapters. 

 

The three manuscripts that comprise the body of the thesis are as follows:  

 

MacKeigan, P. W., Z. E. Taranu, F. R. Pick, B. E. Beisner, and I. Gregory-Eaves. 2023. Both  

biotic and abiotic predictors explain significant variation in cyanobacteria biomass across lakes 

from temperate to subarctic zones. Limnol. Oceanogr. 1–16. doi:10.1002/lno.12352 

 

MacKeigan, P. W., R. E. Garner, M. È. Monchamp, and others. 2022. Comparing microscopy  

and DNA metabarcoding techniques for identifying cyanobacteria assemblages across hundreds 

of lakes. Harmful Algae 113. doi:10.1016/j.hal.2022.102187 

 

MacKeigan, P. W., A. Zastepa, Z. E. Taranu, J. A. Westrick, A. Liang, F. R. Pick, B. E. Beisner, 

and I. Gregory-Eaves. 2023. Microcystin concentrations and congener composition in relation to 
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environmental variables across 440 north-temperate and boreal lakes. Sci.  Total Environ. 884. 

doi:10.1016/j.scitotenv.2023.163811 

 

To make the formatting style consistent throughout this thesis, references and the 

numbering of figures and tables have been modified to follow the formatting guidelines from the 

journal Limnology and Oceanography. The use of first-person plural refers to all co-authors 

included in each chapter. First person singular is used in all other sections of the thesis. All 

tables, figures, and appendices related to each chapter can be found at the end of each respective 

chapter. 

 

Contribution of Authors 

Each chapter was conceptualized and written in close collaboration with my supervisors: 

Irene Gregory-Eaves and Beatrix Beisner. I contributed to formulating the overarching research 

goals and developed the hypotheses. The data used in each chapter was generated from samples 

collected by the NSERC Canadian LakePulse Network (LakePulse Network), of which I 

participated in the field work. I led the formal analyses including much of the laboratory work, 

performed all statistical analyses and wrote the original drafts of all manuscripts. Co-authors 

contributed ideas to each chapter, provided material resources and critically reviewed and edited 

each manuscript. Much of the funding was acquired by Irene Gregory-Eaves and Beatrix Beisner 

and the rest of the LakePulse Network. 

 

Chapter I 
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The original project idea was conceptualized by Irene Gregory-Eaves and Beatrix 

Beisner. I was responsible for curating all of the metadata, creating the statistical framework, 

data analyses and writing of the original manuscript. I, along with the LakePulse sampling teams, 

conducted all of the field work to generate the dataset. The curated zooplankton data was 

provided by Cindy Paquette. Zofia Taranu and Frances Pick, along with all co-authors, 

contributed to reviewing and editing the manuscript. 

 

Chapter II 

The framework for chapter II was developed by Irene Gregory-Eaves and I. The 

extraction of DNA was performed by Vera Onana, Rebecca Garner and Susanne Kraemer in 

David Walsh’s laboratory at Concordia University. Library preparation and 16S rRNA 

sequencing was performed in Jesse Shapiro’s laboratory at the University of Montreal by Vera 

Onana, Susanne Kraemer and Naíla Barbosa da Costa. All phytoplankton counts were performed 

by Michael Agbeti. I performed the bioinformatic and statistical analyses, in consultation with 

Rebecca Garner and Marie-Ève Monchamp. All participating authors were involved in reviewing 

and editing the manuscript.  

 

Chapter III 

The framework for chapter III was developed by Irene Gregory-Eaves and my 

supervisors. I prepared all of the cyanotoxin extracts and conducted measurements of total 

microcystin concentrations in Arthur Zastepa’s laboratory at the Canadian Centre for Inland 

Waters in Burlington, Ontario. Anqi Liang taught me how to perform the ELISA method and 

performed the analysis on a few remaining samples that needed to be re-run. I selected and 
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prepared the samples to for microcystin congener analysis, which was performed in Judy 

Westrick’s laboratory at Wayne State University. All participating authors were involved in 

reviewing and editing the manuscript.  

 

Statement of Originality 

As a consequence of ongoing eutrophication and climate warming, cyanobacteria remain 

a persistent threat to many freshwater lakes around the world. The research projects that 

comprise this thesis are an original and exhaustive in their evaluation of the structure of 

cyanobacteria communities as well as of the predictors of cyanobacteria biomass and their toxins 

across Canadian lakes. Grounding the analyses in a large-scale lake sampling program with 

standardized sampling, my work provides a comprehensive consideration of both abiotic and 

biotic variables (the latter of which are often ignored). Across these chapters, the strength of this 

body of work lies in: 1) the geographic scope; 2) the standardization of variable collection (e.g., 

a single taxonomist completed all of the phytoplankton counts); 3) the wide range of predictors 

considered for both the cyanobacteria and toxin response models; and 4) the comparative 

analysis of traditional vs. emerging genetic approaches.  

 

Chapter I 

 To date, cyanobacteria response models from large-scale datasets have provided support 

for increasing nutrients and climate change related effects as the leading drivers of cyanobacteria 

biomass (Huisman et al. 2018). However, large-scale analyses are often restricted to just a few 

predictors, and as a result, predictive power is generally low. Furthermore, several biotic 

processes have not been widely considered, and as such it was not clear when I started my thesis 
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if these predictors could improve models substantially. In chapter I, we quantified the 

composition of cyanobacteria communities from 640 lakes across Canada and used a series of 

empirical modelling techniques to identify the best predictors of cyanobacteria biomass and the 

biomasses of several key toxin and bloom-forming taxa. Despite the inclusion of an exhaustive 

suite of approximately 50 biotic and abiotic predictors, we found that cyanobacteria biomass was 

overwhelmingly explained by nutrients, primarily total phosphorus. While some top predictors 

varied by cyanobacteria genus, all models included total phosphorus. An additional key finding 

was that although biotic predictors of cyanobacteria have been overlooked in many large-scale 

studies, we found strong, positive relationships between cyanobacteria biomass and the biomass 

of daphnids and copepods. Although contrary to the traditional viewpoint, there is evidence that 

zooplankton groups may be indirectly promoting cyanobacteria growth through several 

mechanisms. Overall, this chapter is relevant for lake and watershed managers as our models 

emphasize the importance of regulating nutrients, especially phosphorus for controlling 

cyanobacteria biomass. Additionally, we identified limited regional variation within models 

suggesting the cyanobacteria response models are consistent across temperate to subarctic 

ecosystems, and therefore can provide foundational information to lakes across the country.   

 

Chapter II 

 The conventional approach for cyanobacteria identification and enumeration is 

morphology-based taxonomy with light microscopy. In recent decades, the development of high-

throughput sequencing technologies has led to the greater use of DNA metabarcoding, which can 

increase sample processing time, reduce costs and circumvent biases associated with 

microscopy. In view of the fact that both methods are used to quantify the composition of 
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cyanobacteria communities today, it is important to evaluate how well traditional and genetic 

methods compare. Considering certain taxa are capable of forming blooms and producing toxins, 

comparisons are particularly useful to those who are making decisions which method to use. 

Chapter II addresses this gap by analyzing hundreds of lakes from the LakePulse dataset, where 

DNA and phytoplankton samples were taken in parallel. We observed moderate congruence 

between DNA metabarcoding and microscopy, with the highest level of concordance occurring 

at coarser levels of taxonomic identification (i.e., Order) and when only lakes of higher nutrient 

state were considered. Since cyanobacteria bloom in eutrophic and hypereutrophic lakes, my 

work highlights that DNA metabarcoding could be a meaningful way to monitor eutrophication. 

However, DNA metabarcoding across all lakes tend to give complementary rather than identical 

data, as this genetic approach is more sensitive to the detection pico-sized taxa. Meanwhile, 

microscopy can account for taxa that do not as yet have representation in DNA reference 

databases. This chapter also reviews many of the biological and technical issues that may 

influence the congruency between methods, of which provides guiding information to managers.  

 

Chapter III 

 A major concern arising from cyanobacterial blooms is the ability of some species to 

produce an array of toxins that have water quality and health implications for humans and lake 

biota. Hepatotoxin microcystins are among the most commonly cyanotoxins found in lakes. As a 

result of their toxicity and potential increase in lakes worldwide, there has been a widespread 

effort to incorporate them into monitoring programs and identify their drivers. To date, field 

studies have produced varied results when attempting to determine which environmental 

conditions are linked to microcystin production. This could be due to the uncertainty about 
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microcystins' physiological functions or a lack of standardized sampling. In chapter III, I 

conducted a broad-scale field study of microcystins in 440 lakes across Canada. We first 

quantified the concentration of total microcystins, then modeled the occurrence and 

concentration of microcystin using wide set of biotic and abiotic predictors. We found that the 

percentage of Canadian lakes with detectable microcystins low and similar to other temperate 

regions. We also showed that the best predictors of microcystins were variables related directly 

to cyanobacteria biomass (i.e., phosphorus and the biomass of particular genera). Perhaps the 

most novel addition of chapter III is microcystin congener analyses, which is one of the largest 

datasets available. We targeted 14 microcystin congeners using a tandem liquid chromatography-

mass spectrometry technique, across a 190-lake subset. Among the key findings were that the 

two most toxic forms, MC-LR and -LA were the most widely detected, but a variety of less 

commonly found congeners were also present across Canadian lakes. The relative composition 

of congeners was only moderately correlated with environmental variables. Overall, this chapter 

provides key data and models that are insightful to researchers as well as lake managers.   
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GENERAL INTRODUCTION 

 

Cyanobacteria and harmful algal blooms 

Cyanobacteria (formerly referred to as blue-green algae) are a diverse group of 

photosynthetic prokaryotes. They are among the oldest known oxygen-producing organisms on 

Earth, with fossil records dating 3 to 3.5 billion years ago (Schopf 2012; Whitton 2012). Their 

photosynthetic activity is thought to have significantly altered the Earth’s atmosphere, resulting 

in the Great Oxygenation Event some 2.4 billion years ago (Garcia-Pichel et al. 2019; Chorus 

and Welker 2021). Cyanobacteria are omnipresent and represent one of the most abundant 

organisms on Earth with an estimated thousand million metric tons (1015; ~1 million Petagrams) 

of wet biomass (Garcia-Pichel et al. 2003; Bonilla and Pick 2017). Due to their long evolutionary 

history, they have evolved to inhabit a wide range of environmental conditions, spanning tropical 

and polar regions. They can occur in terrestrial habitats such as deserts and soil, but are 

especially capable of dominating phytoplankton assemblages in aquatic ecosystems (Whitton 

2012; Bonilla and Pick 2017). The cyanobacteria phylum is highly diverse taxonomically, 

morphologically and in their levels of biological organization. There are an estimated 6,000-

8,000 species, many of which have yet to be discovered (Guiry 2012; Guiry and Guiry 2020). 

Taxa vary substantially in size, from picocyanobacteria (~0.6 µm) (detection limit of light 

microscopy) to taxa that form large colonies visible to the naked eye  (~5 mm) (Bonilla and Pick 

2017). Cyanobacteria can also exist in the pelagic or littoral zones of lakes either as single cells 

(unicellular), colonies or filaments. Traditionally, their taxonomic classification was based on 

morphological characteristics such as cell size, shape and the presence of specialized cells 

(Rippka et al. 1979). More recently, the advancement of molecular tools has identified new 
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species and continues to revise previous taxonomic organization (Komárek 2016). In addition to 

being taxonomically and morphologically diverse, they possess a number of physiological traits 

and tolerances that make them highly competitive over eukaryotic phytoplankton in aquatic 

ecosystems (Mantzouki et al. 2016).  

Although cyanobacteria are a natural component of phytoplankton communities in all 

lakes, under certain conditions, they can form dense aggregations commonly referred to as 

blooms. Throughout the water column, it is possible for them to form blooms at least temporarily 

in lakes of all trophic levels (Paerl and Paul 2012). Over the course of their evolutionary history, 

cyanobacteria have developed an extensive set of traits that enable them to form blooms and 

dominate phytoplankton assemblages (Carey et al. 2012; Mantzouki et al. 2016; Huisman et al. 

2018). Foremost, several taxa have the ability to fix atmospheric nitrogen (diazotrophy), 

providing them with an additional source of inorganic nitrogen when availability is low. They 

are the only phytoplankton capable of directly accessing this pool of nutrients. Nitrogen fixation 

is typically carried out inside specialized cells called heterocysts and performed by several 

common bloom-forming cyanobacteria, including Dolichospermum, Aphanizomenon and 

Nodularia among other. Heterocysts are characterized by thick cell walls to limit the diffusion of 

oxygen, which would otherwise inactivate the enzyme complex responsible for nitrogen fixation 

(Muro-Pastor and Hess 2012; Huisman et al. 2018). However, because this process is 

energetically costly and requires high light intensities, its use is limited in turbid waters and is 

typically restricted to conditions wherein alternative nitrogen sources are depleted (Chorus and 

Welker 2021).  

Many cyanobacteria are also capable of regulating their buoyancy in the water column 

(Walsby 1994). Through the synthesis of hollow protein structures referred to as gas vesicles, 
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buoyant cells can regulate their carbohydrate ballast to migrate between several meters to a few 

millimetres over the course of a day (Molot et al. 2014). This provides a competitive advantage 

as it not only allows them to adjust their position in the water column and gain access to nutrients 

and light, but also to shade non-buoyant phytoplankton (Huisman et al. 2018).  

Lastly, cyanobacteria possess complex carbon concentrating mechanisms that allow them 

to utilize different forms of inorganic carbon (Pick and Lean 1987; Visser et al. 2016). These 

include three uptake systems for bicarbonate and two for CO2 (Visser et al. 2016; Huisman et al. 

2018). During dense blooms, cyanobacteria can deplete surface waters of dissolved CO2, which 

raises pH and shifts the predominant form of inorganic carbon (Huisman et al. 2018). These 

uptake mechanisms allow them to respond to changes in carbon availability and maintain 

photosynthetic rates. Additional traits that may facilitate growth include their large storage 

capacity for nutrients, accessory pigments for efficient light harvesting, and resting stages in the 

form of akinetes for overwintering or during periods of environmental stress (Mantzouki et al. 

2016; Bonilla and Pick 2017). 

Blooms of cyanobacteria have been of concern to lake managers and relevant 

stakeholders for decades as they are associated with a multitude of factors that risk human, 

ecosystem and economic health. The synthesis of various toxins, herein referred to as 

cyanotoxins, is often considered the most severe effect that cyanobacteria can have, particularly 

to human and animal health (Merel et al. 2013; Carmichael and Boyer 2016). Cyanotoxins are 

produced by many genera and exhibit a range of toxicities including hepatotoxins that can 

damage the liver (e.g., microcystins), neurotoxins that target the nervous system (e.g., anatoxin-

a, saxitoxins) and cytotoxins that effect cellular structure in multiple organs (e.g., 

cylindrospermopsin) (Chorus and Welker 2021). Human intoxication may occur from a number 
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of exposure routes including drinking water or during recreation activities (Lévesque et al. 2014; 

Chorus and Welker 2021). Moreover, their harmful effects are not limited to humans as pet, 

livestock and other wildlife exposures from interactions with impacted waters have resulted in 

poisonings and animal deaths (Backer et al. 2013; Merel et al. 2013; Ash and Patterson 2022). 

Aside from cyanotoxins, cyanobacteria can also produce taste and odor compounds that present a 

risk to lakes used for drinking water and recreation. The most common of these metabolites are 

geosmin and 2-methylisoborneol (MIB), which produce strong earth and musty odors at 

relatively low concentrations (Jüttner and Watson 2007; Chorus and Welker 2021). Although 

these metabolites are not considered a risk to human health, they can lower public trust and 

increase the cost of water treatment (Chorus and Welker et al. 2021).  

Cyanobacteria can alter the physical and chemical characteristics of lakes, generally 

associated with cultural eutrophication, which in turn affect resident biotic communities. During 

high growth periods, increased photosynthetic rates can deplete CO2 concentrations, increasing 

the pH of surface waters. Additionally, aerobic decomposition of cyanobacteria biomass 

consumes oxygen, causing hypoxia and anoxia in bottom waters of stratified water bodies. These 

conditions can result in mortalities of fish and invertebrates, and further degrade water quality 

through internal nutrient loading (Paerl and Otten 2013; Molot et al. 2014). Altogether, 

cyanobacteria blooms impose a substantial financial burden on lake managers, communities and 

governments in the form of costs related to water treatment, monitoring, and losses in 

recreational use and property value (Dodds et al. 2008; Smith et al. 2019). For example, it is 

estimated that the per annum costs of freshwater algal blooms across the United States total $4.6 

billion (Kudela et al. 2015; Ho et al. 2019). If bloom frequency and magnitude increase in the 

future, these costs will only go up. 
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Despite ongoing efforts to mitigate cyanobacteria development in many lakes worldwide, 

numerous studies predict global expansion and the rise in cyanobacteria bloom frequency and 

magnitude (O’Neil et al. 2012; Huisman et al. 2018). However, reports on the occurrence and 

negative effects of blooms are not a new phenomenon (Huisman et al. 2018). For example, 

Francis (1878) was the first scientific documentation of toxic cyanobacteria resulting in the mass 

mortality of livestock (Huisman et al. 2018). Additionally, some have argued that the perceived 

increase in cyanobacteria stems from heightened awareness and increased reporting (Ewing et al. 

2020; Hallegraeff et al. 2021). While this may have an effect, several paleolimnological and 

satellite-imagery based studies report quantitative data that suggests cyanobacteria are increasing 

in many parts of the world in recent decades. For instance, by analyzing three decades of high-

resolution satellite imagery data from large lakes around the world, Ho et al. (2019) found that 

peak phytoplankton bloom intensity increased over time in > 65% of the lakes considered. An 

analogous trend was observed by Taranu et al. (2015), who conducted an analysis of pigments 

from more than 100 sediment cores taken across north temperate lakes and found that 

cyanobacteria trends increased at a significantly greater rate than other phytoplankton groups, 

especially since ~1945. Overall, cyanobacteria pose a persistent threat to the health of fresh 

waters today. For that reason, their continues to be a need to understand the factors that promote 

their dominance.  

 

Environmental factors that promote cyanobacteria 

For decades, the direct drivers of cyanobacteria biomass have been extensively studied in 

lakes worldwide. Empirical models from regional and large-scale datasets have identified a 

variety of physical, chemical and biological factors that act to promote their biomass as well as 
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their relative dominance (Paerl and Paul 2012; Huisman et al. 2018). Historically, nutrients, 

which have long been recognized as the most important variables for regulating cyanobacteria 

biomass (O’Neil et al. 2012; Pick 2016).  

The problem of cultural eutrophication persists today in many freshwater ecosystems 

(MacDonald et al. 2011; Huisman et al. 2018). Increasing nutrient inputs stem from a multitude 

of anthropogenic sources including non-point sources (i.e., urban and agricultural land), 

atmospheric deposition, and legacy nutrients from internal loading (Carpenter et al. 1998; Smith 

and Schindler 2009; Orihel et al. 2017). Cyanobacteria can become an increasingly dominant 

component of phytoplankton communities as a result of these increases (Watson et al. 1997).  

Both total phosphorus (TP) and total nitrogen (TN) have been shown to have a significant 

predictive power in large-scale datasets (Downing et al. 2001; Dolman et al. 2012; Beaulieu et al. 

2013), including in Canadian lakes (Beaulieu et al. 2014). In particular, TP is heavily cited as the 

most important predictor and key limiting nutrient across lakes (Downing et al. 2001; Giani et al. 

2005; Carvalho et al. 2013). For example, using 99 large temperate lakes, Downing et al. (2001) 

found the risk of cyanobacteria becoming dominant increases above 20-30 µg/L of TP, and 

plateaus at ~100 µg/L. A similar relationship was observed in a 102-German lake study from 

Dolman et al. (2012), who found a sigmoidal relationship between cyanobacteria biomass and 

TP at ~50 µg/L. Further support for TP, particularly from anthropogenic sources comes from 

experimental studies (e.g., Schindler 1977) and paleolimnological evidence (Taranu et al. 2015). 

In large datasets, TN has also been identified as a strong predictor (Kosten et al. 2012). In a 

modelling analysis of over 1,100 lakes across the continental United States, Beaulieu et al. 

(2013) identified TN as the best predictor of cyanobacteria biomass, potentially as a result of 

intrinsically higher nitrogen demands and nitrogen fixation indirectly increasing TN. The role of 
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the N:P ratio has also been considered in predictive models and nutrient management (Downing 

et al. 2001). Its importance stems from resource theory, whereby nitrogen fixing cyanobacteria 

become dominant to offset imbalances when nitrogen is limiting (Smith 1983; Pick 2016). 

However, low N:P ratio may simply be the result of increasing eutrophication from phosphorus 

enrichment, which in turn may be directly driving the increase in biomass. Overall, nutrients, 

particularly TP and TN are an essential prerequisite from biomass growth (Chorus et al. 2021). 

Although increasing biomass is largely attributed to nutrients, increased temperatures and 

climate warming have also been identified as key factors promoting cyanobacteria growth 

(O’Neil et al. 2012; Paerl and Paul 2012; Huisman et al. 2018). There is evidence that lakes 

worldwide have increased in temperature by 0.34°C/decade between 1985 and 2009 (O’Reilly et 

al. 2015). This can directly and indirectly promote the dominance of cyanobacteria, giving them 

a competitive advantage under warming conditions (Huisman et al. 2018). First, increasing 

temperature can increase cyanobacteria through enhanced growth rates. Several taxa, particularly 

Microcystis, have presumed higher growth optima relative to eukaryotic algae (Robarts and 

Zohary 1987). Temperature can also enhance the strength of thermal stratification and limit 

mixing, benefitting cyanobacteria that regulate their buoyancy (Wagner and Adrian 2009). 

Further, shorter ice cover during winter and an elongated growing season can both benefit 

cyanobacteria growth (Huisman et al. 2018). Indirectly, temperature can regulate the supply of 

nutrients through enhanced mineralization and anoxia-mediated phosphorus release during 

periods of increased stratification (Kosten et al. 2012; Paerl and Barnard 2020). Large-scale 

datasets also highlight the predictive strength of temperature (Kosten et al. 2012; Beaulieu et al. 

2013). For example, across a 143 lake latitudinal transect, Kosten et al. (2012) identified 

temperature as the best predictor, followed by TN and TP. Globally, temperatures are projected 
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to increase 2°C by the end of the 21st century (IPCC 2021). Although nutrients are the 

prerequisite, this increase in temperature may act synergistically to promote cyanobacteria in 

many lakes worldwide (Taranu et al. 2012; Richardson et al. 2018).     

Despite the overwhelming support for nutrients and temperature, several additional 

environmental factors have been identified as important secondary drivers of increasing 

cyanobacteria biomass. Many of which are indirectly related to nutrients and temperature. For 

instance, hydrological changes via intense precipitation events can trigger nutrient resuspension 

and increase inputs from terrestrial sources (Paerl and Paul 2012; Errat et al. 2022). Additionally, 

increased salinity through droughts and anthropogenic ion sources (e.g., salting of roads) have 

been positively linked to cyanobacteria (Amorim et al. 2020). Several taxa show a tolerance to 

saline conditions, including common bloom-forming genera such as Dolichospermum and 

Microcystis (Merel et al. 2013). Lastly, in many large-scale analyses, cyanobacteria have been 

associated with high alkalinity, pH and dissolved inorganic carbon (DIC) (Carvalho et al. 2011; 

Huisman et al. 2018; Richardson et al. 2018). Although cyanobacteria directly influence pH, they 

can maintain high growth rates under these conditions by using different forms of inorganic 

carbon (Paerl and Paul 2012; Huisman et al. 2018). 

Previous empirical models from large spatial scale datasets have identified many 

conditions that favor the dominance of cyanobacteria. However, models are regularly restricted 

to a limited number of candidate predictors, and explanatory power is often low. Furthermore, 

since cyanobacteria are a diverse group with different ecological niches, the one-size-fits-all 

model may not be appropriate for all cyanobacteria. The relative importance of key drivers has 

been shown to differ between taxa and functional groups (Rigosi et al. 2014; Shan et al. 2019; 

Vuorio et al. 2020). However, a comprehensive understanding of what promotes specific genera 
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is still lacking. Finally, although the issue of cyanobacterial blooms persists and appears to be 

worsening in many lakes worldwide, including in Canada (Pick 2016), there has not been a 

systematic sampling program that incorporates an expanded set of predictors across a broad 

range of lake types. 

 

Interactions between cyanobacteria and zooplankton   

In laboratory and field studies, conflicting results have been observed regarding how 

zooplankton communities respond to increasing cyanobacteria biomass (Ger et al. 2014; Ger et 

al. 2016). With a traditional view of eutrophic lakes, increased nutrient availability causes the 

phytoplankton community to become dominated by bloom-forming and toxic cyanobacteria, 

which are largely considered inedible to most zooplankton grazers. This inedibility distorts the 

transfer of energy and carbon to higher trophic levels and selects for zooplankton that can coexist 

with, rather than control, cyanobacteria growth (Ger et al. 2014). Here, there are three attributes 

that make cyanobacteria inedible to zooplankton grazers: 1) filamentous and colonial 

morphology resulting in mechanical interference, 2) the production of toxins and other secondary 

metabolites that have lethal and sub-lethal effects, and 3) their poor nutritional quality due to a 

lack of polyunsaturated fatty acids (PUFAs) and sterols used in zooplankton growth and 

reproduction (Fulton and Paerl 1987; Demott et al. 1991; Ger et al. 2014; Ger et al. 2016). These 

attributes can result in a decrease of larger-bodied generalist zooplankton, an increase in 

selective feeders and/or a shift towards grazing on more edible phytoplankton (Ger et al. 2014). 

Under these conditions, total zooplankton biomass may decrease due to a selection for smaller-

bodied taxa with more selective feeding, such as Bosmina (Ghadouani et al. 2006). 
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In contrast, several field studies have found that cyanobacterial biomass tends to be 

associated with increased zooplankton abundances (Chislock et al. 2013; Cremona et al. 2018; 

Briland et al. 2020). For example, in a time-series analysis of a shallow eutrophic lake, Cremona 

et al. (2018) assessed the influence of 28 biotic and abiotic predictors of cyanobacteria biomass 

and found a strong, positive relationship with copepod and Cladoceran abundance. The positive 

association between cyanobacteria and zooplankton may stem from several tolerance traits, 

primarily, selective feeding and a physiological adaptation to toxins (Ger et al. 2016). Copepods 

show a high degree of selective feeding, opting for alternative prey when available. Many taxa 

use chemosensory signals such as toxins and other metabolites, or cell size as detection cues to 

avoid consumption (Ger et al. 2011; Ger et al. 2014; Agasild et al. 2019). Large, generalist taxa 

such as Daphnia are unable to do this and as a result, may experience a reduction in feeding rates 

with higher colonial cyanobacteria abundances (Ghadouani et al. 2004). Selective feeding 

strategies by copepods may be the mechanism behind the observed linear increase in copepod 

biomass with cyanobacteria detected in multiple recent field studies (Shan et al. 2019; Amorim 

et al. 2020).  

Long-term exposure to cyanobacteria blooms in historically eutrophic lakes has been 

shown to select for more tolerant genotypes to toxin exposure (Sarnelle and Wilson 2005; 

Chislock et al. 2013; Ger et al. 2016). Daphnia in particular has been shown to develop tolerant 

genotypes, whereby clones isolated from high nutrient lakes are more likely to be tolerant and 

show less inhibition from exposure to toxic cyanobacteria than clones from low nutrient lakes 

(Sarnelle and Wilson 2005). For example, Chislock et al. (2013) found that Daphnia clones 

exposed to over 80 years of eutrophication were not only able to graze upon cyanobacteria, but 

also supress a Microcystis bloom with high microcystin concentrations. Further evidence of rapid 
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evolution comes from Hairston et al. (2001), who found that hatched Daphnia genotypes from 

diapaused eggs preserved in lake sediments showed more tolerance to toxic cyanobacteria when 

retrieved from historical periods of intense eutrophication. In addition to tolerant genotypes, 

zooplankton can also maintain growth with cyanobacteria through phenotypic changes 

(Ghadouani and Pinel-Alloul 2002), food supplementation (Briland et al. 2020) and trophic 

upgrading (Bec et al. 2006). To date, many of these biotic processes have not been considered in 

cyanobacteria predictive models, particularly large-scale studies.  

 

Cyanotoxins and microcystins 

One of the major public health concerns from modifying the frequency and magnitude of 

cyanobacteria blooms in many lakes worldwide is that numerous taxa are known to produce a 

variety of toxins and other bioactive metabolites that can be harmful (Carmichael and Boyer 

2016; Chorus and Welker 2021). There exist several classes of cyanotoxins that are typically 

organized according to chemical structure and mode of toxicity. Structurally, they can be 

classified as cyclic peptides, alkaloids, amino acids and lipopolysaccharides (Chorus and Welker 

2021). These chemicals can have adverse health effects on vertebrates by acting as hepatotoxins, 

neurotoxins, cytotoxins, dermatoxins and irritants (Chorus and Welker 2021). Different toxins 

can be produced within the same genus, and the same toxin can be produced across different 

genera (Bonilla and Pick 2017). They exhibit a range of toxicities and reports regarding human 

and animal poisonings are documented from lakes worldwide (Bláha et al. 2009; Buratti et al. 

2017).   

Among the many types of cyanotoxins, the microcystins are found globally, including in 

Canada (Kotak and Zurawell 2007; Loftin et al. 2016; Mantzouki et al. 2018). Microcystins are a 
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diverse group of toxins with producing strains found in all orders and by many common bloom-

forming taxa such as Microcystis, Dolichospermum and Planktothrix (Huisman et al. 2018; 

Chorus and Welker 2021). The list of toxin producers is expanding as we learn more, and now 

includes taxa from planktonic and benthic habitats as well as pico-cyanobacteria such as 

Aphanocapsa (Bernard et al. 2017; Chorus and Welker 2021). Structurally, microcystins are 

cyclic heptapeptides comprised of a seven amino acid chain. To date, there are 275 known 

congeners, which differ principally at two positions with variable amino acids (Bouaïcha et al. 

2019). Congener names reflect the variation at these positions, for example, MC-LR contains a 

Leucine (L) and an Arginine (R) at the second and fourth position of the seven amino acid chain 

respectively. Amongst congeners, there is considerable variation in toxicity and levels of 

persistence in the environment (Chernoff et al. 2020; Chorus and Welker 2021). In the 

environment, microcystins succumb to several fates and accumulate in different pools within 

ecosystems (Shingai and Wilkinson 2022) including: 1) bioaccumulation in biotic communities 

(Kozlowsky-Suzuki et al. 2012; Flores et al. 2018), and 2) storage in sediment (Zastepa et al. 

2015). Furthermore, microcystins are subject to several degradational processes including 

photodegradation and biodegradation by bacteria and fungi (Chorus and Welker 2021).   

Microcystins operate primarily as a liver toxin and are associated with numerous adverse 

acute and chronic health effects to humans and wildlife (Carmichael and Boyer 2016). They act 

as potent inhibitors of protein phosphatase type 1 and type 2a in the cytoplasm of liver cells. This 

causes an increase in the phosphorylation of proteins, resulting in cell death (Chorus and Welker 

2021). Exposure to low concentrations can cause headaches, nausea, vomiting, and skin irritation 

(Carmichael and Boyer 2016). Meanwhile high exposure is associated with liver damage, cancer 

(Zhang et al. 2015), and although exceedingly rare, has been implicated in the deaths of humans 
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(Pouria et al. 1998), pets (Backer et al. 2013) and wildlife (Miller et al. 2010). Humans can be 

exposed via several pathways including oral ingestion through drinking or recreational activities, 

via food irrigated with contaminated water and supplements, or exposed through the inhalation 

of aerosols (Carmichael and Boyer 2016; Plaas and Paerl 2021). As a result of their toxic effects, 

many governmental bodies have established drinking water and recreational exposure guideline 

limits. For example, the World Health Organization (WHO) and Health Canada have drinking 

water guidelines of 1 µg/L and 1.5 µg/L of total microcystins, respectively.  

Microcystins are produced intracellularly within the thylakoid but are released to the 

environment upon cell death. They are synthesized through two multi-enzyme complexes 

referred to as non-ribosomal peptide synthetases (NRPS) and polyketide synthase (PKS). These 

complexes are encoded by a large gene cluster that spans 55 kb and is comprised 10 genes 

(mcyA-J), organized in two operons (Chorus and Welker 2021). There has been numerous 

laboratory and field based studies that have attempted to identify the factors that regulate their 

synthesis (Kaebernick and Neilan 2001; Dai et al. 2016). Factors identified to date include 

nutrients, pH, salinity, light and temperature (Kaebernick and Neilan 2001; Neilan et al. 2013). 

From large-scale studies, microcystins are positively related to increasing total cyanobacteria 

biomass (Wood et al. 2012), and the biomass of specific taxa such as Planktothrix (Dolman et al. 

2012) and Microcystis (Giani et al. 2005). Several studies have provided support for the role of 

temperature, whereby microcystin production is increased when temperatures exceed 20°C 

(Mowe et al. 2015; Walls et al. 2018). Higher concentrations of microcystins may be the result 

increased cyanobacteria growth rates at higher temperatures, or function to protect cells from 

oxidative stress when photosynthetic rates are high (Dziallas and Grossart 2011; Dai et al. 2016; 

Omidi et al. 2018). Additionally, large-scale analyses reinforce the link between microcystins 
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and nutrients, particularly TN (Yuan and Pollard 2014; Taranu et al. 2017; Buley et al. 2021). 

Microcystins are nitrogen rich compounds (14% by mass) and have been shown to increase their 

synthesis with there is greater nitrogen availability (Davis et al. 2009; Gobler et al. 2016). 

Overall, microcystins have shown contradictory responses to environmental drivers, perhaps due 

to their elusive physiological function (if any) (Bonilla and Pick 2017; Omidi et al. 2018). 

 As microcystin congeners display a range of toxicities and levels of persistence, there has 

been an increasing effort to understand the environmental factors that promote specific variants. 

Congeners can be produced by several genera and multiple variants can be produced 

simultaneously (Puddick et al. 2014). Despite this, most research has focused on the MC-LR 

congener, which was previously considered the most toxic (Diez-Quijada et al. 2019). However, 

broad-scale surveys have highlighted the prominence of other congeners in different regions, 

including MC-LA in North American lakes (Taranu et al. 2019), and MC-YR across European 

waterbodies (Mantzouki et al. 2018). To date, the composition of microcystin congeners has 

been shown to be shaped by temperature related variables (Mantzouki et al. 2018), weather and 

nutrients (Taranu et al. 2019) and nitrogen species (Monchamp et al. 2014). For example, the 

dominant congener has been shown to shift with increasing nitrogen availability, mainly from 

MC-LR to MC-RR; the latter of which is a more nitrogen rich compound (Van de Waal 2014). 

Despite the growing interest, congener specific data are missing from many regions, including 

most Canadian lakes. Furthermore, explanatory power for modelling congener profiles remains 

low. 

 

Incorporating DNA based methods to cyanobacteria management 
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 Accurately identifying biological assemblages is a fundamental component of ecology 

and essential to ecosystem management (Pawlowski et al. 2018). This is particularly true of 

cyanobacterial communities, as they can contain toxin-producing and other nuisance taxa that are 

of interest to many stakeholders (Huisman et al. 2018). Traditionally, the taxonomic 

classification of cyanobacteria was inferred from morphological characteristics identified by 

microscopy (Reynolds 2006; Chorus and Welker 2021). As previously stated, these include 

features like the size and shape of cells, and the presence and position of specialized cells such as 

heterocysts. Although identifications based on microscopy continue to be used today, this 

method is associated with several technical biases and limitations that may hamper the 

classification of cyanobacteria communities. For example, microscopy is considered a time-

consuming and laborious process and there are observer biases amongst taxonomists (Lee et al. 

2014; Bailet et al. 2020). Cryptic taxa and pico-cyanobacteria (0.2-2 µm) are typically 

overlooked (Li et al. 2019; Esenkulova et al. 2020). Finally, phenotypic changes between 

different environments and culture conditions add to the difficulty of deciphering cyanobacterial 

communities (Komárek 2006; Li et al. 2019).       

With advances in molecular genetic methods, such as high-throughput sequencing, DNA-

based approaches have become more widely used for quantifying and characterizing aquatic 

biodiversity (Hering et al. 2018; Pawlowski et al. 2018). Methods that utilize DNA in 

biomonitoring often rely on metabarcoding, whereby DNA is extracted from field samples and a 

marker gene that is taxonomically revealing for a particular group of organisms is amplified, 

sequenced and annotated against a reference database (Hébert et al. 2003). This approach allows 

researchers and managers to overcome many of the biases related to microscopy as they can 

detect cryptic, pico-sized and rare taxa (Pawlowski et al. 2018). For cyanobacteria, the most 
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widely used marker gene for analyzing their taxonomy has been the 16S rRNA gene. This gene 

is a structural component that encodes ribosomal RNA of the small ribosome subunit. 

Sequencing of the 16S rRNA gene can provide taxonomic information as it has both highly 

conserved regions, whereby primers can be developed to target a broad group of bacteria, such as 

Cyanobacteria. The gene also has nine hypervariable regions that are sensitive to genetic 

changes, which can be used to distinguish species (Chorus and Welker 2021). Detailed 

taxonomic analyses of the 16S rRNA gene have revealed that their evolutionary relationships do 

not necessarily correspond to morphological changes (Lane et al. 1985; Komárek 2006; 

Komárek 2016). Phylogenetic reconstructions have reorganized some of their taxonomy, with 

new names being given to many taxa in recent years (Komárek 2016).  

Molecular genetic methods, particularly DNA metabarcoding, are becoming more cost-

effective and faster in processing time, making these approaches increasingly useful for 

monitoring aquatic communities. They have been used to investigate cyanobacteria communities 

in lakes and drinking water reservoirs worldwide (Gao et al. 2018; Casero et al. 2019) and have 

been incorporated in several paleolimnological assessments to understand how their species 

composition has changed through time (e.g., Monchamp et al. 2016; Tse et al. 2018; Pilon et al. 

2019). With the growing use of molecular methods, and the continuing use of microscopy, 

knowledge regarding the congruency and variability between methods is essential for researchers 

and managers deciding which approach is most suitable to their study. The benchmarking of 

molecular methods against morphological-based taxonomy has been performed on a variety of 

aquatic organisms including fish (Hänfling et al. 2016), macroinvertebrates (Cowart et al. 2015; 

Elbrecht et al. 2017; Leese et al. 2021) and phytoplankton (Eiler et al. 2013; Abad et al. 2016; Li 

et al. 2019; Bailet et al. 2020), which show varying degrees of congruency (Pawlowski et al. 
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2021). A recent meta-analysis by Keck et al. (2022) found that across 215 comparative datasets, 

DNA metabarcoding was more congruent with traditional taxonomic methods in larger 

organisms such as fish. Meanwhile with smaller organisms, such as planktonic ones, there were 

differences in the communities generated with each method. These comparative analyses 

produce vital taxonomic information regarding your community of interest. Despite this, there 

has not been an assessment of cyanobacteria communities generated by DNA metabarcoding and 

microscopy from the same samples across a broad range of lake types.          

 

Large-scale sampling of Canadian lakes 

Canadian lakes comprise a significant portion of the landscape and provide many 

ecosystem services. Lakes occupy 10% of the country’s territory and Canada is home to 37% of 

Earth’s total lake area (Minns et al. 2008; Messager et al. 2016; Huot et al. 2019). With over a 

million lakes greater than 10 hectares, Canada is faced with the difficult task of monitoring and 

managing the multitude of stressors that may be influencing their structure and function (Pick 

2016; Huot et al. 2019). Despite this, there was no standardized sampling program of lakes 

across Canada until quite recently. The LakePulse Network was established to target this gap and 

set about to sample over 650 lakes following a standardized sampling program (Huot et al. 

2019). The network’s overarching goal is to assess the health status of Canadian lakes, identify 

their most pressing stressors and understand how they have altered aquatic communities and 

ecosystem services (Huot et al. 2019). Cyanobacteria and their blooms are well-described 

indicators of lake health and are a target metric of water quality for managers across the country. 

Their documented increases media report and in empirical studies across many lakes serve as 
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important indicators of eutrophication and climate warming; two of the most pressing issues 

lakes face today (Reid et al. 2018).  

 

Thesis objectives 

To address many of the limitations and research gaps that have been identified in this 

review, my thesis aims to generate a broad overview of cyanobacteria patterns and predictors 

across Canadian lakes. One of the central shortcomings towards improving our understanding of 

their distribution has been a lack of a standardized sampling protocol applied across Canada. My 

PhD thesis was part of the LakePulse Network and was designed to consider a broader range of 

biotic and abiotic predictors to provide a contemporary and historical understanding of the 

drivers of cyanobacteria and their toxins across a wide range of Canadian lakes. The objectives 

of the first chapter were to quantify the biomass of cyanobacteria and identify their community 

composition across a ~640 lake dataset. Using a very large range of predictors, this chapter 

utilizes a series of empirical modelling techniques to identify the best predictors of total 

cyanobacteria biomass. To account for the widescale applicability of models, this chapter 

assesses how the relationship between cyanobacteria and its predictors vary by region. The last 

objective of this chapter was to identify the predictors of their community composition, and since 

taxa occupy different ecological niches, assess the predictors of certain genera of interest. 

With the advancement of molecular techniques, DNA metabarcoding has become a 

widely used method for measuring diversity and identifying the community composition of many 

aquatic groups, including cyanobacteria. With the ongoing use of both light microscopy and 

DNA metabarcoding, there remain questions regarding their comparability. Using a subset of 

lakes in Chapter I, the second chapter of my thesis quantifies the congruency between 
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cyanobacteria communities generated by traditional light microscopy and DNA metabarcoding. 

Furthermore, using the 16S rRNA sequencing data generated for this chapter, the second 

objective was to assess the regional variation of Microcystis genotypes. 

Factors related to the production of particular cyanotoxins were also unclear when I 

began this project on 2017. The objective of the third chapter was to quantify the concentration 

of total microcystins (i.e., the most commonly found toxin) across a 440-lake subset. This 

chapter aims to identify their key predictors using the same expanded range of standardized 

biotic and abiotic variables and a similar modelling method from chapter I. The second objective 

of this chapter was to quantify the abundance of microcystin congeners and identify the 

environmental variables the lead to their respective dominances. To do so, I measured the 

concentration of 14 microcystin congeners from a 190-lake subset and performed correlational 

analyses that consider environmental and cyanobacterial community composition as predictors. 
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Abstract 

The development of cyanobacteria blooms is of increasing concern in many lakes worldwide, 

and as a result, modeling their predictors is vital for understanding where and why they occur. In 

this study, we developed and analyzed a 640-lake data set that spans Canada and twelve 

ecozones to identify the drivers of cyanobacteria biomass and of several key toxin- and bloom-

forming genera (Microcystis, Aphanizomenon and Dolichospermum). The database consisted of 

an exhaustive list of potential predictors (n=55), including water chemistry, land-use and 

zooplankton variables. We applied a series of empirical modeling approaches to identify 

significant predictors and thresholds (generalized linear and additive models, mixed effect 

regression trees), all while accounting for ecozone variability. Across all modeling approaches, 

and ecozones total phosphorus (TP) was identified as the most important predictor of total 

cyanobacterial and focal genera biomass. In addition, cyanobacteria across Canada showed 

significant associations with increasing dissolved organic and inorganic carbon, and several ions. 

Despite the widely held notion that cyanobacteria are often toxic and/or a poor food source for 

zooplankton, we found a positive relationship between cyanobacteria and zooplankton, 

particularly with daphnid and copepod biomass. Localized top-down forces and evolutionary 

adaptations resulting from long-term exposure in eutrophic lakes are among the possible 

explanations for this observed positive association. By considering a suite of complementary 

modeling approaches, we found that non-linear models provided greater predictive power and 

the random ecozone effect was minor due to the overarching importance of local abiotic and 

biotic factors. 
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Introduction 

 The ecological functioning of many lakes worldwide is being challenged by numerous 

human-induced stressors such as eutrophication and climate change (Reid et al. 2018). These 

stressors often result in conditions favorable for excessive phytoplankton growth, with many 

lakes becoming dominated by cyanobacteria and other harmful algae (O’Neil et al. 2012; 

Huisman et al. 2018). Blooms of cyanobacteria are visible colorations of the water that are of 

particular concern to lake managers and relevant stakeholders as they present a risk to human 

and animal health through the production of toxins along with taste and odor compounds (Merel 

et al. 2013; Pick 2016). Additionally, blooms indirectly lower oxygen concentrations in bottom 

waters that can kill fish and benthic invertebrates, and lead to internal nutrient loading (Paerl and 

Otten 2013; Molot et al. 2014; Huisman et al. 2018). 

 Despite efforts to mitigate blooms, several studies have reported their global 

exacerbation. Ho et al. (2019) analyzed three decades of high-resolution satellite imagery data 

from large lakes (surface area > 100 km2) around the world and found that peak summertime 

phytoplankton bloom intensity increased in over two-thirds of their lakes. Moreover, an analysis 

of cyanobacterial pigments from over 100 north-temperate lake sediment cores found that 

cyanobacteria abundance has increased substantially relative to other phytoplankton groups (e.g. 

diatoms), particularly since ~1945 (Taranu et al. 2015). Due to their potentially negative impacts 

on aquatic ecosystems, and their projected increase, cyanobacteria remain a primary pressing and 

emerging threat to freshwater biodiversity (Reid et al. 2018).  

 Several lines of evidence have identified numerous physical, chemical and biological 

predictors that act to promote high cyanobacteria biomass or dominance, most relating directly or 

indirectly to eutrophication and climate warming (O’Neil et al. 2012; Paerl and Paul 2012; 
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Huisman et al. 2018) (Table S1). Large-scale statistical models based on at least 50 lakes have 

been useful in generalizing the key drivers of cyanobacteria across broad regions and lake types 

(Table S1). Generally, macronutrients (i.e., total phosphorus (TP), total nitrogen (TN)) and 

temperature have emerged as the best predictors of cyanobacterial biomass (Downing et al. 2001; 

Kosten et al. 2012; Beaulieu et al. 2013), with these factors potentially acting synergistically to 

further promote biomass (Taranu et al. 2012) (Table S1).  

 Although valuable, previous large-scale empirical models are commonly restricted to few 

predictor variables (Table S1). Many likewise omit integral components of the lake-landscape 

ecosystem such as watershed land-use, and biological community metrics. The latter represents 

an important shortcoming given that different zooplankton groups have been shown to be 

negatively or positively correlated with cyanobacteria biomass (e.g., Cremona et al. 2018). 

Compared to eukaryotic algae, cyanobacteria are generally considered a poor food source for key 

zooplankton grazers (e.g., Daphnia) because of their potential toxicity, poor nutritional value 

(low amounts of polyunsaturated fatty acids and sterols), and aggregatory morphology typical of 

numerous taxa (Von Elert et al. 2003; Ger et al. 2016a). Smaller-bodied, specialist zooplankton 

grazers have been reported to compete more successfully than larger-bodied generalists such as 

Daphnia under bloom conditions (Ghadouani et al. 2006; Ger et al. 2016a; Fig. S12 A-B). 

Smaller zooplankton may enable positive feedback for cyanobacteria biomass by selectively 

feeding on other phytoplankton, thereby minimizing the presence of competitors for 

cyanobacteria (Leitão et al. 2018). Despite the interest in large-scale predictive cyanobacteria 

models, there has been no systematic evaluation of the relative importance of abiotic and biotic 

factors explaining variation in cyanobacterial biomass across a broad suite of lake types. 

Furthermore, there is an insufficient understanding of which conditions best explain community 
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composition and regional variability in response models, as well as the predictors of some 

potentially harmful genera.  

In this study, we develop large-scale cyanobacteria predictive models by quantifying the 

importance of abiotic (physiographic, water quality, land use, and climate) and biotic 

(zooplankton) variables across 640 Canadian lakes using standardized sampling and analytical 

protocols (Huot et al. 2019; NSERC Canadian Lake Pulse Network 2021). Our study presents an 

opportunity to study a wide range of potential cyanobacteria predictors across a landscape 

covering over 400,000 km2. We hypothesized that increasing nutrients (TP and TN) would be 

overarching positive drivers of cyanobacteria biomass, but that other factors would act both at 

local and regional scales to modulate these relationships, and thus, account for much of the 

remaining unexplained variation. Primarily, we expected that variability in water temperature 

and residence time would account for substantial residual variation given that cyanobacteria have 

higher temperature growth optima relative to other phytoplankton, can regulate their buoyancy 

during thermal stratification of the water column and cannot establish blooms in fast flushing 

waters (Huisman et al. 2018). We also hypothesized that lakes from the same ecozone would 

show greater similarity in their cyanobacteria responses than those from other regions, as 

ecozones are defined by their geology, climate and vegetation. Thus, we expected that ecozone 

identity would be a significant factor in cyanobacteria biomass prediction. 

Numerous studies have also shown that due to physiological and life history variation, the 

importance of biomass drivers would differ between cyanobacteria taxa and functional groups 

(Rigosi et al. 2014; Shan et al. 2019; Amorim et al. 2020). We constructed empirical models for 

three cyanobacteria taxa that are common bloom-forming genera in temperate lakes: Microcystis, 

Aphanizomenon and Dolichospermum (the latter two also capable of fixing atmospheric 
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nitrogen). Given that Microcystis has a higher maximum growth rate at warmer temperatures 

(Paerl and Huisman 2009; Paerl et al. 2011), and inspired by Shan et al (2019), we hypothesized 

that Microcystis biomass would be related mainly to increasing water temperature, followed by 

increasing TP as well as cladoceran and copepod biomass. In contrast, we hypothesized that the 

biomass of Dolichospermum and Aphanizomenon would be most strongly related to increasing 

nutrients (Rigosi et al. 2014). Lastly, we were also interested in exploring which variables 

explained differences in cyanobacteria community composition.  

 

Materials and methods 

Lake selection 

 The LakePulse Network represents the first pan-Canadian survey aimed at investigating 

the health and functioning of Canadian lakes within the geographic range of 52° to 118° West 

and 41° to 60° North. A total of 664 lakes were sampled once across three summers (2017, 2018, 

2019) following a standardized protocol for over a hundred variables to create a nationwide 

dataset (NSERC Canadian Lake Pulse Network, 2021). Lakes were selected following a 

stratified random sampling design using ecozones, lake sizes (0.1-1km2, 1-10km2, 10-100km2) 

and watershed human impact index categories (low, medium, high) as stratification groups (Huot 

et al. 2019. Lakes had a minimum depth of 1 m and were located within 1 km of a road for 

accessibility purposes. Lakes were sampled across twelve Canadian ecozones (regions with 

unique geological, climatic and ecological features; Ecological Stratification Working Group, 

1996). 

Sample collection 
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 In total, 55 variables grouped as physiographic, water quality, land use, zooplankton, 

climate data were collected and used as potential predictors for cyanobacteria biomass (Table 

S2). Sampling occurred during the period of maximum thermal stratification (between July and 

early September) to limit seasonal variability (Huot et al. 2019). For each lake, the sampling 

station was located at the deepest point (“Index site”) using a depth sounder (see details in 

NSERC Canadian Lake Pulse Network, 2021). Briefly, field teams used an acid washed, 

integrated tube sampler to collect surface water for water quality and phytoplankton samples. At 

the Index site, water was collected across a depth equal to twice the Secchi disk depth (euphotic 

zone) or 2 meters (tube length), whichever was shallower. 

 To characterize the crustacean zooplankton community, an integrated water-column 

sample was collected using a 100 μm mesh Wisconsin net at the same index site. In the field, 

zooplankton samples were narcotized and preserved in ethanol. Samples were identified and 

biomass estimated by BSA Environmental Services (Ohio, U.S.A.; details in Paquette et al. 

2021). 

 A multiparameter meter (RBRmaestro) was deployed to sample the entire water column 

for temperature, dissolved oxygen, and specific conductivity. Lake physiographic variables were 

determined using HydroLAKES v.1.0 (Messager et al. 2016). The percentage of different land 

use types (agriculture, forestry, mines, natural landscape, pasture urban and water) were 

characterized for each watershed, as described by Huot et al. (2019). Climate variables were 

recorded over thirty days leading up to the sampling date, and were accessed from ERA5-Land 

hourly data (Muñoz Sabater 2019). Climatic variables were then averaged over a 7-day and 30-

day period to provide a weekly and monthly average, respectively. 

Phytoplankton counting and identification 
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From the Index site, a 120 mL subsample of surface water (euphotic zone) was fixed and 

preserved in acid Lugol’s iodine solution. Phytoplankton samples were collected and analyzed 

for 96% of lakes of the original LakePulse nationwide dataset (n = 640). Identifications were 

conducted on 2-10 mL aliquots following Utermöhl’s sedimentation method (Lund et al. 1958) 

using a Zeiss Axiovert 40 CFL inverted microscope at 250 X and 500 X magnifications and a 

minimum of 400 units enumerated. Biomass was calculated from recorded abundance and 

specific volume estimates based on geometric solids(Rott 1981; Hillebrand et al. 1999). 

Identifications done by a single taxonomist and were based on the following keys: Komárek and 

Anagnostidis (1998, 2005) and Komárek (2013). 

Data analysis 

All statistical analyses were conducted in R v. 4.1.0 (R Core Team 2021). To identify 

predictors of total cyanobacteria biomass, we used several modeling approaches to evaluate the 

predictive strength of a pool of 55 potential explanatory variables. Response variables were 

either total cyanobacteria or genus-specific biomass (mg/L). A summary of our statistical 

workflow is provided in Fig. S1. 

To select the most parsimonious set of predictors for downstream analyses, we followed 

Feld et al. (2016). Briefly, unrecorded values (NAs) for each variable were first replaced by 

medians of the respective ecozones (see Table S2). Next, variables were transformed with either 

logarithmic, square root, or logit transformations to ensure that variables were normally 

distributed with a small constant (Xi+1) being added to zero values including the biomasses of 

each zooplankton group and the biotic response variables of cyanobacteria, Microcystis, 

Aphanizomenon and Dolichospermum biomasses (Table S2). Predictors were evaluated for 

collinearity using Variance Inflation Factors (VIFs) (vifstep function in the usdm package; Naimi 
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2015), setting a VIF threshold of 10 (Borcard et al. 2018). After discarding variables due to 

collinearity, Random Forest (RF) was used to reduce the variable list and select the strongest 

potential predictors for further analyses. RF regression trees were fit for total cyanobacteria, 

Microcystis, Aphanizomenon and Dolichospermum biomass using the rfsrc function in the 

randomForestSRC package (Breiman 2001; Ishwaran and Kogalur, 2016) by bootstrapping data 

subsets and ranking predictors by importance as single and interactive terms in the model (Feld 

et al. 2016). We retained the top 20 variables ranked by each RF for  subsequent analyses. 

To first examine linear relationships and quantify inter-ecozone correlations, we 

constructed a linear mixed-effect model (LMMs) using the nlme package (Pinheiro et al. 2016). 

We developed a LMM with cyanobacterial biomass as a response variable, by applying a  

“beyond optimal” model (all 20 fixed effects and ecozone as a random effect), followed by a  

stepwise selection of  of the top 20 potential predictors using BIC values and p < 0.05 as the 

inclusion criterion. To meet model assumptions, lakes without cyanobacteria detected were 

removed, leaving 602 sites. Since the relationships between cyanobacteria biomass and the set of 

selected environmental predictors are in some cases non-linear, we then applied generalized 

additive mixed models (GAMMs) using the gam function in the mgcv package (method = 

REML, select = TRUE; Wood 2021) and followed a similar variable selection approach as done 

with the LMM (ecozone as a random effect). Given that we also wanted to identify the best 

predictors of the biomass of the three focal genera from this same lake set, we applied modeling 

approaches appropriate for these data (i.e., zero-altered hurdle model to address the inflated 

number of zeros in the responses). To do so, the presence-absence of each genus was first 

modeled with a binomial generalized linear mixed model (GLMM) (part 1 of hurdle model), then 

GAMMs were constructed only on lakes that had detected biomass (part 2 of hurdle model) 
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(Zuur and Ieno 2016). Lastly, we used linear mixed-effect regression trees (LMRTs) for the 

biomass of all cyanobacteria and the focal genera to identify predictor thresholds and interactions 

among drivers (glmertree function and package; Fokkema et al. 2018). Ecozone was included as 

a random effect in each model to determine whether relationships (intercepts and/or slopes) 

varied across the nation. 

 Finally, we used a multivariate redundancy analysis (RDA) (rda function in the vegan 

package; Oksanen et al. 2019) to examine the ensemble of predictors in relation to the 

cyanobacteria community composition. This analysis also helped evaluate whether the focal 

species dominated the community across ecozones. The community biomass matrix was 

Hellinger transformed and the environmental variables were normalized and scaled. Variation 

partitioning (rdacca.hp package (Lai et al. 2022)) was used to quantify and explain the unique 

and shared portions of variation explained by cyanobacteria drivers more commonly-tested in 

broad-scale studies (water quality) versus those typically omitted (land use and zooplankton) 

(Table S2). 

 

Results 

Distribution of cyanobacteria across Canada 

 Total cyanobacteria biomass (mg/L) was measured across all 640 lakes and varied 

considerably (Fig. 1; Table S3; median biomass = 0.16 mg/L, max = 903 mg/L). On average, 

cyanobacteria was 36% of total phytoplankton biomass, reaching their greatest biomasses in the 

Prairies and Boreal Plains ecozones (Fig. 1; representing ~62% and 58% of the phytoplankton 

biomass in these central Canadian ecozones). This pattern echoes trends in trophic state, with 

82% of lakes in the Prairies and Boreal Plains being eutrophic or hypereutrophic, compared to 
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just 19% of lakes in the Atlantic Highlands and Atlantic Maritimes (trophic state based on TP 

thresholds in Wetzel (2001)).   

 In total, 31 cyanobacteria genera were identified with microscopy. Aphanocapsa occurred 

in 63% of lakes (Fig. 2; Table S3), followed by Dolichospermum (47%), Microcystis (34%), 

Limnothrix (34%) and Aphanizomenon (27%). Communities in central Canada were dominated 

by large colonial bloom-forming taxa, primarily Microcystis, Aphanizomenon and Planktothrix 

(Fig. S2 A,B; Fig. S3). On average, bloom-forming taxa represent 60% of biomass across all 

lakes but was >80% in central Canadian ecozones (Fig. S4). In Eastern Canada, Aphanocapsa 

was the dominant (Fig. 2). Dolichospermum exhibited less regional specificity; representing on 

average 15% to 25% of cyanobacteria biomass across all ecozones (Fig. 2; Fig. S2 C). 

Models of total cyanobacteria biomass 

After reducing the potential predictor list from 55 to 20 with the RF analysis (Fig. S1; 

Table S2), we identified the most parsimonious set of predictors for total cyanobacterial biomass 

as TP, DOC, TN, Ca2+, DIC, cyclopoid copepod biomass, Na+, daphnid biomass, % pastureland 

and residence time using LMM analysis (Table 1). Although the inclusion of ecozone as a 

random intercept was significant, this random effect only accounted for 3% of the residual 

variance (difference between marginal R2 and conditional R2; Table 1). Thus, baseline 

cyanobacteria biomass did not vary substantially among ecozones. For the fixed effect slopes, 

the linear modeling approach showed that total cyanobacteria biomass was positively related to 

the above predictors, with the exception of DIC and Na+ which were negatively related (Table 1). 

To account for potential non-linear trends and improve model fit, we also developed 

GAMMs by considering the top 20 RF-selected predictors. After removing non-significant 

terms, the final model explained 55% of the variation and incorporated TP, DOC, DIC, Na+, 
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daphnid biomass, color, residence time as fixed factors, with ecozone as a random effect (Table 

1; Fig. 3). In this model, hump-shaped relationships were visible in the partial fits of TP, DOC, 

DIC and color (Fig. 3; Fig. S6). Many predictors between the linear and non-linear models were 

similar, but the GAMM identified nonlinearities, explained more variation and captured the 

effect of color which had a pronounced unimodal fit that would have been modeled as a flat line 

in the LMM. Additionally, although the relationship between cyanobacteria and nitrogen was 

significant in the LMM and consistent across ecozones (Fig. S10), TP was the stronger predictor 

across both model types (Table 1), with the highest percentage of cyanobacteria biomass 

occurring at low TN:TP (Fig. S11). 

LMRTs were then used to identify key thresholds in predictor variables and their 

interactions. Similar to the LMM and GAMM results, we found TP to be the most important 

variable but the LMRT identified key thresholds, including elevated cyanobacteria biomasses in 

lakes with TP above 41 µg/L (node 1; threshold = 41 µg/L and node 2; threshold = 17 µg/L; Fig. 

4A). Cyanobacteria biomass was also greater in sites with longer residence times (node 6; 

threshold = 227 days) and higher Ca2+ (node 9; threshold = 8.6 mg/L); these results echo the 

LMM and GAMM findings. Meanwhile Ca2+ was significant in the LMM but not the GAMM. In 

all three model types, ecozone accounted for a small percentage of the variance and moderate 

intra-ecozone correlation, suggesting that cyanobacteria biomass was only slightly more similar 

within than among ecozones (Table 1; Fig. S5A).  

Genus-specific cyanobacteria models 

 We applied a two-part hurdle approach with the focal cyanobacterial genus data because 

of the presence of many zeros in the 602 lake set. The presence of Microcystis (binomial 

GLMM; part 1) increased with the biomass of small cladoceran and warmer water-column 
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temperatures, while the biomass of Microcystis (GAMM; part 2) continued to increase with TP, 

cyclopoid copepod biomass, water-column temperature and % pastureland. Ecozone 

significantly explained the presence of Microcystis (part 1 of hurdle model; Fig. S5B), but once 

present, the continued increase in Microcystis was driven by local lake factors (part 2 of hurdle 

model) (Table 2). Threshold increases in Microcystis biomass occurred when TP increased 

beyond 51 µg/L (node 2) and again beyond 70 µg/L (node 1). Interestingly, the first TP node (70 

µg/L) was higher than that for total cyanobacteria biomass (41 µg/L). Other Microcystis 

threshold responses recapitulate the hurdle model, with increasing cyclopoid copepod biomass 

(node 9; threshold = 14 µg/L), water-column temperature (node 3; threshold= 17°C), and soluble 

reactive phosphorus (SRP) (node 4; threshold = 12 µg/L) emerging as significant (Fig. 4B).  

 Of the three focal genera, the fixed effects best predicted Aphanizomenon presence 

(Table 2). On the other hand, the generalized models (part 2) for Aphanizomenon and 

Microcystis biomasses were comparable (Table 2). TP was the most important variable in 

modeling the presence and biomass of Aphanizomenon. The binomial model (part 1) identified 

increasing TP, daphnid biomass, depth, color, dissolved oxygen and decreasing Na+ as key 

drivers of Aphanizomenon presence, while The GAMM for Aphanizomenon identified TP, 

daphnid biomass, altitude, color, %forestry and Na+ as drivers of the continued rise in 

Aphanizomenon biomass. The most parsimonious LMRT for Aphanizomenon identified two 

initial splits for TP (node 1; threshold = 47 µg/L, node 2; threshold = 21 µg/L). A third split was 

identified, with greater amounts of daphnid biomass being associated with higher 

Aphanizomenon biomass (node 5; threshold = 6.8 µg/L) (Fig. 4C). 

 The presence and biomass of Dolichospermum was the least well predicted of the three 

genera (Table 2). Dolichospermum presence and biomass increased in deeper lakes. 
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Dolichospermum presence was driven by DOC, daphnid biomass, dissolved oxygen, 

precipitation and K+. Dolichospermum biomass was additionally driven by TP, DIC and copepod 

biomass. The LMRT identified DIC (node 1; threshold = 2.1 µg/L), DOC (node 3; threshold = 

4.4 µg/L), depth (node 5; threshold = 4.4 m) and then TP, but at much lower threshold than the 

other two focal genera and total cyanobacteria (node 7; threshold = 18 µg/L) (Fig. 4D). Like the 

LMRTs for Microcystis and Aphanizomenon, the random effect accounted for little additional 

residual variance (Fig. S5 B-D). Overall, TP was the only predictor significant across the 

biomass of all three genera; a relationship of which was consistent across ecozones (Fig. S7-9). 

However, genera were also associated with greater biomasses of zooplankton groups, which may 

be driven by several mechanisms (Fig. S12C) including food supplementation (Fig. S13).   

Factors associated with variation in cyanobacteria community structure 

 To identify the factors that explain variation in the cyanobacteria overall community, a 

redundancy analysis (RDA) paired with variation partitioning was performed (Fig. 5; Table 3). 

Forward selection of the RDA identified TP, depth, daphnid biomass, color, DIC, Na+, SO4
2-, 

DO, % urban land and 30-day sum of heat degree days as the most important explanatory 

variables, and resemble those identified from modeling biomasses (Fig. 5). However, the amount 

of variation explained for the full community was lower compared to analyses on individual 

biomasses, with the RDA and variation partitioning explaining 13% of the total variation (Fig. 5; 

Table 3). The cyanobacteria community was primarily distributed along a trophic gradient (RDA 

axis 1). The constrained ordination biplot showed that Aphanizomenon and Microcystis were 

associated with higher TP concentrations, primarily sites in the Boreal Plains and Prairies. These 

lakes were also those with higher daphnid biomass, DIC, color and ions. In contrast, the 

picocyanobacteria (i.e., Aphanocapsa, Chroococcus and Merismopedia) were associated with 
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lower TP and sites primarily from Eastern Canada. Along the second RDA axes, 

Dolichospermum was associated with deeper systems with higher profundal DO and % urban 

lands; echoing findings from the Dolichospermum-specific models. Finally, variance partitioning 

showed that predictors grouped under water quality accounted for the greatest unique proportion 

of community composition variation, followed by the zooplankton groups and physiographic 

variables (Table 3). 

 

Discussion 

 Based on the analysis of 640 lakes across Canada, we conducted a rigorous statistical 

modeling of total cyanobacteria and genera-specific biomasses. In agreement with much of the 

earlier literature, total phosphorus (TP) emerged as the most important explanatory variable of 

total cyanobacteria biomass, the biomass of select bloom-forming genera, as well as community 

composition. However, we also identified several other significant water quality predictors 

(including TN, DOC, DIC, Ca2+ and Na+), physiographic (water residence time and depth) and 

zooplankton variables. The zooplankton results are perhaps the most interesting because while 

the traditional view is to expect daphnid biomass to be negatively associated with cyanobacteria 

due to their potential toxicity, colonial morphology and poor food quality, we found instead that 

total cyanobacteria biomass was positively related to zooplankton biomass, especially daphnid 

and cyclopoid copepod biomass. Lastly, we examined spatial variation in baseline values within 

models and found that the within ecozone correlation in biomass value was moderate. 

Predictors of cyanobacteria community composition 

 Water quality variables explained most of the variation community composition, despite 

the inclusion of several variable categories (Table 3). Most taxa were organized along the first 
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RDA axis, which reflected primarily a trophic state gradient. High TP sites were associated with 

Microcystis and Aphanizomenon biomass, with many from the Boreal Plains and Prairies. These 

sites and taxa were also associated with higher daphnid biomass, DIC, ions (Na+ and SO4
2-) and 

color. At the opposite end of the RDA axis, small cyanobacteria such as Aphanocapsa were 

associated with lower nutrient lakes in eastern Canada. No other environmental variables were 

associated with these taxa, highlighting the importance of TP in determining community 

composition. Support for the predominant importance of trophic state explaining variation in 

cyanobacteria community composition extends to lakes worldwide (Beaulieu et al. 2014; Wood 

et al. 2017).  

 Along the second RDA axis, Dolichospermum clustered separately from the other 

dominant taxa being associated with deeper lakes with high profundal dissolved oxygen. Our 

results generally agree with the literature which reports this taxon as abundant in deeper systems 

and capable of blooming in low nutrient lakes (Mantzouki et al. 2016; Salmaso et al. 2015). The 

importance of depth further supports our univariate results, as depth was the only variable 

significant in modeling both Dolichospermum presence and biomass. Depth was also included in 

its genus-specific LMRT, with increasing biomass in lakes deeper than 4.4m (Fig. 4D). 

Nutrients as the top predictors of cyanobacteria biomass across Canada 

 Across Canadian lakes, we identified TP as the top predictor of total cyanobacteria 

biomass (Table 1) in both linear and non-linear modeling methods, irrespective of region (Fig. 

S6-9). Our findings, notably the non-linear responses, echo earlier work such as Downing et al. 

(2001) who identified an increasing risk of cyanobacteria dominance above 20-30 µg/L of TP, 

plateauing at approximately 100 µg/L. More recently, Carvalho et al. (2013) noted a similar 

initial linear response in cyanobacteria biomass from TP of 20 to 100 µg/L, followed by an 
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asymptote just above 100 µg/L. Our non-linear modeling and LMRT identified a threshold at 

approximately 40 µg/L, above which our highest cyanobacteria biomasses occurred; a slightly 

greater inflection point (50 µg/L) was reported by Dolman et al. (2012). In many of these large-

scale analyses, the relation between cyanobacteria and nitrogen remains linear, and as a result, 

can explain more variation than TP (Downing et al. 2001; Dolman et al. 2012). In the case of our 

Canadian lake set, TN was a significant predictor of cyanobacteria biomass only in the linear 

model (Table 1; Fig. S10), whereas TP explained more variation across all the statistical models. 

Several studies have also pointed to a modest relationship between cyanobacteria dominance and 

the TN:TP ratio, especially when both nutrients are in sufficient supply (Downing et al. 2001; 

Chorus et al. 2021). Our univariate models showed weak support for the role of the N:P in 

predicting cyanobacteria biomass, although we did observe a similar threshold as described in 

Smith (1983) when examining cyanobacteria dominance, where below N:P of 29:1 there was 

generally higher and much more variable percent cyanobacteria (Fig. S11).  

 Our models for the biomasses of Microcystis, Aphanizomenon and Dolichospermum also 

identified TP as the top predictor across model types, although with different thresholds (Table 

2; Fig. 4B-C). Microcystis had the highest TP threshold at approximately 70 µg/L whereas the 

TP threshold for Aphanizomenon was 47 µg/L and Dolichospermum was the lowest at 18 µg/L. 

Similarly, Vuorio et al. (2020) found that the highest TP threshold was observed for Microcystis 

at 50 µg/L. 

Positive relationship with zooplankton biomass 

 Interactions between zooplankton and cyanobacteria have been of interest in laboratory 

and field studies for decades, but contradictory results have emerged across studies (Haney 1987; 

Ger et al. 2014). As a result of various cyanobacterial grazing defenses, total zooplankton 
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biomass could decrease with increasing cyanobacteria biomass. The mechanical interference and 

poor nutritional value of many cyanobacteria (Ger et al. 2014; 2016a), along with their 

production of toxic metabolites (DeMott et al. 1991), are all factors causing potential negative 

effects on zooplankton and may reinforce cyanobacteria dominance. However, opposite 

relationship and mechanisms have also been put forward and align with our observations. In all 

our statistical cyanobacteria models, the biomass of either one or several zooplankton groups 

were selected as significant positive predictors, with specific groups being selected to separate 

low from high cyanobacteria biomass sites. For example, increasing cyclopoid biomass was 

selected in the hurdle (part 2) and LMRT for Microcystis, which tends to increase when 

cyclopoid biomass is above 13 µg/L of cyclopoid copepods (Table 2; Fig. 4B). Similarly, 

daphnid biomass was selected as a significant predictor of Aphanizomenon biomass (part 2 of 

hurdle model) and was a threshold predictor of Daphnia (Fig. 4C). 

 Zooplankton adaptations and physical factors can explain the positive relationships 

between cyanobacteria and zooplankton biomass (Fig. S12C). First, zooplankton commonly 

exposed to cyanobacterial blooms can supplement their diet with other more edible algal groups 

and heterotrophic flagellates that co-exist with cyanobacteria (Briland et al. 2020). In turn, the 

consumption of more palatable algae may indirectly promote cyanobacteria through a reduction 

of competitive pressure Cremona et al. (2018). We found a slight positive correlation between 

the biomass of cyanobacteria and all other algal groups (Fig. S13), and as such, zooplankton in 

the cyanobacteria-dominated lakes may have access to more palatable food sources. 

Additionally, cyanobacteria may indirectly fuel the microbial loop and zooplankton growth 

through trophic upgrading (Bec et al., 2006), whereby heterotrophic nanoflagellates that ingest 

cyanobacteria can upgrade the fatty acid quality, thus increasing food quality for zooplankton. 
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 An active avoidance of harmful cells can also enable zooplankton to coexist with high 

cyanobacteria biomass (Tillmanns et al. 2011; Ger et al. 2016a). Copepods in particular have 

shown a high degree of selectivity, making use of chemosensory signals (toxins and other 

secondary metabolites) as detection cues (Ger et al. 2014; Ger et al. 2016b), even distinguishing 

between potentially toxic and non-toxic Microcystis strains (Ger et al. 2011). Prey selectivity in 

copepods (Ger et al. 2011; Leitão et al. 2018) may explain the importance of cyclopoid copepod 

in the models for Microcystis. After TP, cyclopoid copepod biomass was a significant predictor 

of increasing Microcystis biomass (Table 2), which was highest in lakes with cyclopoid copepod 

biomass greater than 13 µg/L (Fig. S5B). 

 Selection for tolerant Daphnia genotypes and phenotypes may further contribute to the 

observed positive relationship between Daphnia and cyanobacteria biomass, as numerous sites 

have been eutrophic for decades or more. Increasing Daphnia biomass was selected in both 

linear and non-linear models for total cyanobacteria biomass, and in the Aphanizomenon 

Dolichospermum hurdle models (Table 2). Daphnid biomass was higher compared to other 

crustacean zooplankton in the most eutrophic ecozones (Paquette et al. 2021). Daphnids have 

been shown to evolve a tolerance to toxic cyanobacteria (Microcystis) in less than 10 generations 

(Gustafsson and Hansson 2004; Tillmanns et al. 2011). Furthermore, their tolerance and 

detoxification strategy may be strengthened by a longer exposure history to blooms (Sarnelle and 

Wilson 2005). Daphnia pulicaria, in particular, has been shown to have high tolerance to 

nutrient enrichment by exhibiting rapid clonal evolution, metabolic variation and local adaptation 

(Chislock et al. 2019; Ghadouani and Pinel-Alloul 2002), allowing it to increase growth rates and 

fecundity in hypereutrophic lakes (Moody et al. 2022). In our study, 80% of all Daphnia biomass 

was D. pulicaria.  
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 Lastly, the positive relationship between cyanobacteria and zooplankton groups may also  

be the result of reduced fish predation and its cascading effects on the food web. The highest 

biomasses of cyanobacteria and zooplankton were recorded in the Prairies and Boreal Plains. 

Many of these shallow, eutrophic lakes may be fishless, or experience regular winter fish kills 

(Jackson et al. 2007; Balayla et al. 2010), thus resulting in stronger zooplankton control over 

phytoplankton. 

Weak effect of water temperature  

 Contrary to our hypothesis, water temperature did not emerge as a significant predictor of 

total cyanobacteria biomass across Canadian lakes. While some large-scale analyses have found 

temperature as a strong predictor (Beaulieu et al. 2013), these studies captured a much larger 

temperature gradient across sites than ours. Our study sampling occurred over a shorter time 

window and a more limited latitudinal range (range in temperature: Kosten et al. (2012) = 22oC; 

Beaulieu et al. (2013) = 27oC, present study = 18°C). It is also possible that the indirect effects of 

temperature were captured by lake depth and altitude, which did emerge as significant variables 

in the genus specific models for Dolichospermum and Aphanizomenon (Table 2). Only in the 

models for Microcystis did we detect a direct temperature signal with increased water column 

temperature predicting presence as well as increased biomass (Table 2). The LMRT identified an 

average water-column temperature threshold of 17°C, above which Microcystis biomass 

increased (Fig. 4B). Microcystis is commonly considered to have a higher temperature optima 

relative to other cyanobacteria (Paerl and Otten 2013). 

Support for additional water quality predictors  

 Several additional chemical and physical variables were identified as second tier 

predictors. DIC and numerous major ions (including Ca2+ and Na+) exhibited hump-shaped 
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relationships with total cyanobacteria biomass. DIC was selected in both linear and non-linear 

models for total cyanobacteria and was the top distinguishing variable between low and high 

Dolichospermum biomass (Table 2; Fig. 4D). Here, DIC exhibited a slight negative response in 

the linear model, but with the GAMM it became clear that the relationship is non-linear. 

Cyanobacteria possess carbon concentrating mechanisms and can utilize different forms of 

inorganic carbon depending on availability (Talling 1976; Pick and Lean 1987). With this, their 

photosynthesis is less impaired, particularly in high pH environments. For ions, Ca2+ was 

selected in the linear model and as the second most important splitting variable of low and high 

biomass sites after TP in the LMRT (Fig. 4A). Meanwhile, Na+ was included in the final linear 

and non-linear models for cyanobacteria biomass. Like DIC, Na+ exhibited a slight negative 

relationship with cyanobacteria in the linear model, but GAMMs identified a non-linear 

relationship. Conditions likely become uninhabitable for cyanobacteria at the highest 

concentrations of DIC and Na+, which led to the observed negative relationship in the linear 

model. Combining this analysis with the GAMM captured cyanobacteria’s full response along 

the extensive gradient. Calcium, Na+ and overall salinity have been positively and negatively 

linked to cyanobacteria in a number of studies, including a temporal analysis of ten Brazilian 

reservoirs, where Ca2+ and Na+ had the most positive effects on non-heterocystous filamentous 

cyanobacteria and picocyanobacteria (Amorim et al. 2020). Several freshwater genera are 

tolerant of increasing salinity, including Dolichospermum and Microcystis (Merel et al. 2013). 

The highest cyanobacteria biomasses were recorded in the Prairies and Boreal Plains, regions in 

which many lakes are high in salinity and ion content. However, increasing major ion 

concentrations are unlikely to directly promote cyanobacteria across Canadian lakes; rather, 

tolerance to salinity could provide cyanobacteria with a competitive advantage up to certain 
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thresholds where conditions become too harsh. Several of these same variables, including DIC, 

Na+ and K+, were also significant predictors of composition, as well as Aphanizomenon and 

Dolichospermum biomass. These relationships were again negative in the linear models, 

suggesting the genera may initially benefit from increased ions, but are not present at the highest 

concentrations of DIC and ions. Overall, it is difficult to decipher whether the association we 

observed between DIC and ions with cyanobacteria is mechanistic or just correlative. 

Our DOC findings resemble the results from a previous mesocosm study, where brown, 

DOC-rich waters had a humped-shaped relationship with cyanobacteria (Feuchtmayr et al. 

2019). DOC was included in our final models for both total cyanobacteria and Dolichospermum 

biomass (Table 1, 2). DOC was also selected after DIC in the genus specific LMRT for 

Dolichospermum. Across all of our lakes, DOC was moderately related to color (r2 = 0.42). We 

also observed that DOC was positively related to nutrient concentrations (TP~DOC, r2 = 0.45), 

as has been reported in a continental study of lakes in the US (Stetler et al. 2021). Overall, our 

findings were concordant with DOC and nutrients being positively associated with algal 

production metrics, especially in low to intermediate DOC sites. However, this relationship was 

disappeared in high DOC and colored lakes due to light limitation.  

 Among physical variables, we found longer water residence time promoted increasing 

cyanobacteria biomass (Table 1; Fig. 4A), as observed in other regions (Giani et al. 2020). 

Several cyanobacteria have slower reproductive and growth rates compared to many smaller 

phytoplankton (Paerl and Otten 2013). As a result, cyanobacteria may directly benefit from 

decreased flushing rates from longer residence times. 

Reflections on statistical approaches  



 [91] 

 Across the statistical analyses included in this study, there was consistency in the 

importance of TP as a predictor. The use of multiple analyses provided additional insights. For 

example, the LMRT identified the unique importance of temperature for Microcystis, daphnid 

biomass for Aphanizomenon and depth for Dolichospermum. We chose to start with linear 

models as this work builds on decades of literature set in this approach, but as expected, the 

GAMMs demonstrated some important nonlinearities and increase proportion of variance 

explained with a smaller number of predictors. Differences in predictors between linear and non-

linear approaches were apparent but most of these variables were relatively weak unique 

predictors. We suggest that when sampling across a broad environmental gradient, one should 

adopt non-linear models as they can provide stronger explanatory power and may uncover the 

true relationship between the predictor and response (e.g., DOC). In contrast, if the study is local 

or along a more constrained gradient, the relationships may come out as linear. If interested in 

key thresholds for setting management guidelines and water quality advisories, LMRTs are 

effective in detecting what tipping points, and identify how they may vary depending on the 

study organism. In contrast, GAMMs can help better understand the ecological questions.  

 Despite the efforts to standardize sampling and taxonomy, as well as considering an 

exhaustive suite of predictor variables across a large gradient of lakes, the amount of variation 

explained overall remained modest. We may have approached the predictive limit of 

cyanobacteria models when based on snap-shot sampling (one-time in summer). Further 

improvements are likely to be gained through repeated sampling and growing season averages to 

capture seasonal variability. 

 

Conclusions 
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 Our pan-Canadian study considered a wider range of biotic and abiotic predictor 

variables than most to date. Overall, we corroborated that nutrients, notably TP, as the most 

important driver of total cyanobacteria biomass and community composition. In addition, 

analyses identified a positive relationship between total cyanobacteria and all zooplankton 

groups, the latter of which may indirectly promoting cyanobacterial growth through selective 

grazing and microbial trophic upgrading of cyanobacteria. Several additional drivers of 

cyanobacteria biomass were retained in this study of north-temperate to subarctic lakes, and the 

linear, non-linear and threshold models used herein can serve as a key baseline for both 

fundamental (GAMMs) and applied (LMRT) research.  
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Tables Chapter I 

Table 1. Best linear mixed model (LMM) and generalized additive mixed model (GAMM) for 

cyanobacteria biomass across lakes where cyanobacteria were identified (n=602). Ecozone was 

tested as a random effect intercept. The final model predictors for each response variables are 

listed with significance level denoted as ***p < 0.001; **p < 0.01; *p < 0.05. The marginal R2 

(marg r2) represents the amount of variation explained by the fixed effects. The conditional R2 

(cond r2) describes the amount of variation explained by both fixed and random effects. Standard 

deviation of the random intercept and residual are given (σ). For the GAMM, results include the 

R2 and deviance explained for the full model as well as the p-values and estimated degrees of 

freedom (edf) for each predictor. 

 

Linear mixed effect model (LMM) 
Significant linear 
predictors 

Model coefficients 
(SE) 

Marg r2  Cond r2 σ- 
intercept 

σ- 
residual 

      
logTP 0.51(0.07)*** 0.44 0.47 0.21 0.99 
logDOC 0.15(0.07)*     
logTN 0.23(0.08)**     
logCa2+ 0.29(0.08)***     
logDIC -0.27(0.09)**     
logCYCL 0.11(0.05)*     
logNa+ -0.29(0.06)***     
logDAPH 0.19(0.05)***     
logitPasture 0.16(0.05)**     
logRES_TIME 0.14(0.05)**     
      

Generalized additive mixed model (GAMM) 
Significant additive 
predictors 

edf p-value F-value Dev.expl  R2 adj 

      
s(logTP) 5.43 <0.001 24.2 57.4% 0.55 
s(logDOC) 2.80 <0.001 3.40   
s(logDIC) 3.32 <0.001 2.55   
s(logNA+) 3.51 <0.001 2.33   
s(logDAPH) 0.95 <0.001 2.69   
s(logCOLOR) 3.06 <0.001 3.10   
s(logRES_TIME 1.82 <0.001 1.41   
s(ecozone) 5.74 0.006 1.28   
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Table 2. Genera-specific hurdle models showing the best binomial generalized linear mixed 

model (GLMM; part 1) and generalized additive mixed models (GAMM; part 2) for three select 

genera. The GLMM is based on the presence-absence of each genus across all lakes (n=640). 

The GAMM models are based on biomass from lakes where that genus was present: Microcystis 

(MCYST, n=220), Aphanizomenon (APHZ, n=175), Dolichospermum (DOLI, n=303). Ecozone 

was tested as a random effect in each model and included where significant. The final model 

predictors for each response variables are listed with the significance level denoted as ***p < 

0.001; **p < 0.01; *p < 0.05. The marginal R2 (marg r2) represents the amount of variation 

explained by the fixed effects. The conditional R2 (cond r2) describes the amount of variation 

explained by both fixed and random effects. Results for the GAMM include the R2 and deviance 

explained (dev.expl%). N.S = not significant. 

 Binomial GLMM  GAMM  
Taxon Predictors Intercepts (SE) Predictors edf (F-values) 
MCYST logSMCLAD 0.31(0.11)** logTP 2.78(7.41)*** 
 TEMP_WATERCOL 0.56(0.13)*** logCYCL 1.80(1.70)*** 
   DO 2.03(0.87)* 
   TEMP_WATERCOL 1.42(0.58)* 
   logitPASTURE 0.90(0.97)** 
     
 Marg r2= 0.08 Cond r2= 0.50 R2 adj= 0.57 Dev.expl (%) = 58.5 
APHZ logTP 1.02(0.17)*** logTP 2.79(4.21)*** 
 logDAPH 0.33(0.12)** logDAPH 0.91(1.09)*** 
 logDEPTH 0.39(0.15)** sqrtALTITUDE 0.95(0.92)** 
 logCOLOUR 0.30(0.14)* logCOLOUR 2.44(1.47)*** 
 DO 0.28(0.10)** logitFORESTRY 1.74(0.59)* 
 logNa+ -0.31(0.14)* logNa+ 2.42(0.87)* 
     
 Marg r2= 0.22 Cond r2= 0.28 R2 adj= 0.55 Dev.expl (%) = 58.1 
DOLI logDOC 0.63(0.14)*** logTP 4.65(9.61)*** 
 logDEPTH 0.44(0.11)*** logDIC 2.71(1.74)*** 
 logDAPH 0.34(0.09)*** logCYCL 0.79(0.42)* 
 DO 0.35(0.09)*** logDEPTH 1.62(0.59)* 
 sqrtPCPN7 0.31(0.11)** logCALA 1.49(0.61)* 
 logK+ -0.35(0.12)**   
 sqrtPCPN30 -0.23(0.11)*   
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 Marg r2= 0.12 Cond r2= N.S.  R2 adj= 0.34  Dev.expl (%) = 36.1  
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Table 3. Partitioning of variance in the structure of the full cyanobacteria community according 

to physiography, water quality, land-use, zooplankton and climate variable matrices. Partitioning 

of cyanobacteria biomass and the biomass of focal genera are also included. Total variation 

explained by the full model is represented by adjusted R2. The values represent the unique 

contributions of each predictor group towards the explained variation (shared variation not 

shown). See Table S2 for the list of variables in each category. 

 Variance 
explained 

Physiography Water 
quality 

Land-use Zooplankton Climate 

Cyanobacteria 
community 
 

0.13 0.014 0.042 0.000 0.010 0.007 

Total 
cyanobacteria  

0.48 0.019 0.138 0.002 0.019 0.002 

Microcystis  0.44 0.006 0.098 0.005 0.023 0.010 

Aphanizomenon  0.34 0.024 0.103 0.000 0.016 0.001 

Dolichospermum  0.16 0.032 0.063 0.000 0.009 0.014 
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Figures Chapter I 

 

Figure 1. Map of log transformed total cyanobacteria biomass across study sites (n=640). 

Ecozones are color coded.  
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Figure 2. Cyanobacterial characterization of lakes by ecozone (west to east) represented by 

mean relative biomass of core genera (%). The number of lakes varies by ecozone: Taiga 

Cordillera (n=3), Boreal Cordillera (n=30), Pacific Maritime (n=67), Semi-Arid Plateaux (n=36), 

Montane Cordillera (n=69), Taiga Plains (n=25), Boreal Plains (n=71), Prairies (n=68), Boreal 

Shield (n=89), Mixedwood Plains (n=56), Atlantic Highlands (n=59), Atlantic Maritime (n=67). 
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Figure 3. Fitted GAMM values (blue lines) for log cyanobacteria biomass (µg/L) versus select 

explanatory variables in the final model (full list of predictors shown in Table 1). The 95% 

confidence intervals are displayed (grey bands) on each plot. 
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Figure 4. Linear mixed-effect regression trees for total cyanobacteria biomass (µg/L) (A), 

Microcystis biomass (B), Aphanizomenon biomass (C) and Dolichospermum biomass (D). 

Ecozone was tested as a random effect in each model and results for this are shown in 

supplemental Fig S5. 
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Figure 5. Redundancy analysis of the relationship between genera biomass with environmental 

variables. Key cyanobacteria genera are represented by black arrows, and environmental 

variables are shown in red. Sites are colored according to ecozone. Cyanobacteria genera with 

low loadings in the RDA (axis 1 or 2 scores less than 0.1) are not shown. 
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Appendices Chapter I 

Table S1. List of cyanobacteria predictive modelling publications with large-scale (≥50 lake) datasets. This table expands on similar 

versions by Beaulieu et al. (2014) and Giani et al. (2020). 

Author Region No. of sites Predictors tested Top predictors 
     
Watson et al. 1997 North 

temperate 
91 Total phosphorus Total phosphorus 

     
Downing et al. 2001 Worldwide 99 Total phosphorus, total nitrogen, 

TN:TP ratio 
Total phosphorus, total nitrogen 

     
Carvalho et al. 2011 United 

Kingdom 
134 Area, altitude, mean depth, alkalinity, 

water, colour, retention time, total 
nitrogen, total phosphorus, chlorophyll 

Water colour, alkalinity, retention 
time, total phosphorus  

     
Dolman et al. 2012 Germany 102 Total phosphorus, total nitrogen Total phosphorus and total nitrogen 
     
Kosten et al. 2012 Europe and 

South America 
143 Water temperature, total phosphorus, 

total nitrogen, pH, conductivity, depth, 
secchi depth, area, latitude 

Water temperature, total nitrogen, total 
phosphorus 

     
Beaulieu et al. 2013 United states 1147 Water temperature (surface and water 

column), total phosphorus, total 
nitrogen, TN:TP ratio, pH, 
conductivity, depth, area, latitude 

Total nitrogen, water temperature and 
total phosphorus 

     
Carvalho et al. 2013 Europe 1506 Total phosphorus, alkalinity Total phosphorus, alkalinity 
     
Beaulieu et al. 2014 Canada 149 Total phosphorus, total nitrogen, total 

Kjeldahl nitrogen, pH, TN:TP ratio, 
Total phosphorus, total nitrogen 
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conductivity, strength of stratification, 
water temperature, nitrite, nitrate, 
ammonium  

     
Doubek et al. 2015 United States 236 Land use (pasture, crop, agriculture, 

developed), water temperature, depth, 
surface area, total nitrogen, total 
phosphorus, TN:TP ratio 

Anthropogenic land use (predicts 
cyanobacterial dominance), total 
phosphorus and total nitrogen 
(predicts cyanobacterial biovolume) 

     
Mowe et al. 2015 Worldwide 186 Total phosphorus, total nitrogen, 

TN:TP ratio, precipitation, water 
temperature 

Total phosphorus, total nitrogen, 
precipitation 

     
Rigosi et al. 2014 United States 1076 Total phosphorus, total nitrogen, water 

temperature 
Water temperature, total phosphorus 

     
Filstrup et al. 2016 United States 137 Total phosphorus, total nitrogen, 

TN:TP ratio, light availability 
Total phosphorus, total nitrogen, 
TN:TP ratio, light availability 

     
Ghaffar et al. 2016 United states 116 Total phosphorus, total nitrogen, 

TN:TP ratio 
Total phosphorus, total nitrogen 

     
Chapra et al. 2017 United states 310 Inorganic phosphorus, organic 

phosphorus, organic nitrogen, Nitrate, 
Nitrite, ammonium, dissolved oxygen, 
water temperature 

Inorganic phosphorus, inorganic 
nitrogen, water temperature, 
hydrological variables 

     
Richardson et al. 
2018 

Europe 494 Total phosphorus, air temperature, 
retention times  

Total phosphorus, air temperature, 
retention times (varied by lake type) 

     
Ho et al. 2019 Worldwide 71 Temperature, precipitation, historic 

fertilizer use 
Temperature, precipitation, historic 
fertilizer use 
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Ho and Michalek 
2020 

United States 1260 Seasonal air temperature (spring, 
summer and annual), water 
temperature (surface, water column, 
bottom), seasonal precipitation 
(spring, summer, annual), total 
nitrogen, total phosphorus, fertilizer, 
area, depth, latitude, longitude, day of 
the year, stratification 

Total nitrogen, total phosphorus, 
spring air temperature, depth 

     
Rose et al. 2019  United States 60 Drainage area, depth, surface area, 

Secchi depth, chlorophyll-a, total 
phosphorus, inorganic phosphorus, 
total nitrogen, TN:TP ratio, developed 
land (open space, low-high intensity), 
barren land, deciduous forest, 
evergreen forest, mixed forest, shrub, 
grassland, pasture, cultivated crops, 
woody wetlands, emergent herbaceous 
wetlands 

Chlorophyll-a, inorganic phosphorus, 
total phosphorus, mixed forest land, 
developed-open space land, 
developed- low intensity land, 
drainage area 

     
Liu et al. 2020 United States 998 Diatom inferred phosphorus, total 

nitrogen, total phosphorus, TN:TP 
ratio, conductivity, depth, pH, surface 
water temperature, average 
temperature in upper 2 m  

Surface temperature, pH, diatom 
inferred phosphorus, total nitrogen, 
total phosphorus, TN:TP ratio, 
conductivity, depth, average 
temperature (relative importance of 
each varies by deep vs. shallow lakes 
and natural vs. man-made) 

     
Mellios et al. 2020 Europe 822 Latitude, elevation, surface area, mean 

depth, maximum depth, chlorophyll-a, 
total nitrogen, total phosphorus, 
TN:TP ratio, mean air temperature, 
maximum air temperature 

Chlorophyll-a, total nitrogen. Mean 
depth and TN:TP ratio (when the data 
is divided int shallow and deep lakes)  
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Table S2. List of environmental variables and descriptive summary of the predictors from 640 lakes used in the current study. 

Whether they were selected for after assessing collinearity using VIFs is indicated by VIF selected (VIF <10). RF selected refers to 

which variables were selected for each response variable by the random forests (Tot=total cyanobacteria biomass, M=Microcystis 

biomass, A=Aphanizomenon biomass, D=Dolichospermum biomass). Variables are organized into five broader categories: 

physiography, water quality, land-use, zooplankton and climate. 

Variables Units Abbreviation Minimum Maximum Median % NA VIF 
Selected  

RF 
Selected 

Physiography         
Lake area  km2 AREA 0.0009 99.03 0.6922 0 No  
Lake depth m DEPTH 0.25 151 7.7 0 Yes Tot, A, D 
Circularity - CIRCULARITY 0.0079 0.9269 0.3092 0 Yes M 
Discharge m3/sec DISCHARGE 0 9218 0.133 4.4 Yes  
Watershed area km2 WATERSHED 0.2080 37,459 14.51 0 Yes A 
Altitude m ALTITUDE 2 1555 341 0 Yes Tot, M, A, 

D 
Residence time days RES_TIME 0.1 270,759 402.5 6.1 Yes Tot, M 
Shoreline length m SHORE_LENGTH 155 218,835 5177 0 No  
Slope 100m ° SLOPE100 0.09 25.1 2.955 4.4 Yes D 
Human population People/km2 POPULATION 0 335,522 31.5 0 Yes A 
Water quality         
Conductivity mS/cm CONDUCTIVITY 0.0062 40.77 0.1682 10.9 No  
Specific conductivity uS/cm SPEC_CONDUCTIVITY 7.369 37,392 185.8 10.9 No  
Temperature- 
euphotic 

°C TEMP_EUPHOTIC 11.80 29.73 20.32 6.7 Yes  

Temperature- water 
column 

°C TEMP_WATERCOL 6.1 30 17.4 6.7 Yes M 

Average Brunt-
Väisälä 

s-1 BRUNT_VAISALA 0 0.0075 0.0008 11.1 Yes  
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Dissolved oxygen mg/L DO 1.85 15.34 8.936 19.2 Yes M, A, D 
Colour mg/L Pt COLOUR 0 369.5 20.59 3.3 Yes Tot, A 
Dissolved organic 
carbon 

mg/L DOC 0.12 220.2 8.498 3.0 Yes Tot, M, A, 
D 

Dissolved inorganic 
carbon 

mg/L DIC 0.0675 879 16.13 1.6 Yes Tot, A, D 

Total phosphorus µg/L TP 1.39 10,053 18.87 1.4 Yes Tot, M, A, 
D 

Total nitrogen mg/L TN 0.025 4.358 0.248 8.3 Yes Tot, M, A, 
D 

Soluble reactive 
phosphorus 

µg/L SRP 0.5 4,066 4.961 0.31 Yes Tot, M, A 

Total nitrogen: Total 
phosphorus ratio 

- TNTP 0.5446 114.9 10.92 9.5 No  

Calcium mg/L CA 0.005 535.5 19.17 0.16 Yes Tot, A, D 
Potassium mg/L K 0.005 279.2 0.9871 0.16 Yes Tot, M, A, 

D 
Sodium mg/L NA 0.01 14,804 5.622 0.16 Yes Tot, A, D 
Chloride mg/L CL 0.015 12,358 5.59 1.3 Yes Tot, M 
Magnesium mg/L MG 0.005 2,249 4.918 0.16 No  
Sulfate mg/L SO4 0.02 16,971 4.75 1.1 Yes Tot, M, D 
Land use         
Agriculture % AGRI 0 0.8623 0 0 Yes Tot, M, A 
Forestry % FORESTRY 0 0.5086 0.0025 0 Yes A 
Mines % MINES 0 0.2322 0 0 Yes  
Natural landscape % NATLAND 0.0213 0.9839 0.7162 0 No  
Pasture % PASTURE 0 0.4771 0 0 Yes Tot, M 
Urban % URBAN 0 0.9264 0.0196 0 Yes  
Water % WATER 0.0007 0.6675 0.1029 0 Yes Tot, M 
Zooplankton         
Total zooplankton µg/L ZOOP 0.3133 13,848 75.73 5.6 Yes Tot, M, A, 

D 
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Cyclopoid µg/L CYCL 0 2,643 7.638 5.6 Yes Tot, M, A, 
D 

Calanoid µg/L CALA 0 13,403 15.82 5.6 Yes D 
Cladoceran µg/L CLAD 0 11,665 25.88 5.6 No  
*Daphnid µg/L DAPH 0 11,663 12.61 5.6 Yes Tot, M, A, 

D 
Chydorid µg/L CHYD 0 214.03 0 5.6 No  
*Bosminid µg/L BOSM 0 2,561 0.2787 5.6 No  
Small cladocerans µg/L SMCLAD 0 2,571 2.339 5.6 Yes M 
Climate         
7-day average air 
temperature 

°C AIRTEMP7 6.5959 26.25 17.42 0 Yes D 

30-day average air 
temperature 

°C AIRTEMP30 10.09 23.06 17.43 0 No  

7-day total 
precipitation 

m PCPN7 0.0002 1.141 0.1886 0 Yes D 

30-day total 
precipitation 

m PCPN30 0.0340 2.933 0.9941 0 Yes D 

7-day net solar 
radiation 

J/m2 SOLAR7 2,615,096 8,046,217 5,321,336 0 Yes  

30-day net solar 
radiation 

J/m2 SOLAR30 4,052,577 7,724,438 5,648,340 0 Yes  

7-day average wind 
speed 

m/s WIND7 0.5323 5.757 2.183 0 No  

30-day average wind 
speed 

m/s WIND30 0.6651 5.5684 2.264 0 Yes M, A, D 

7-day total heat 
degree days 

days HDD7 0 79.19 8.549 0 No  

30-day total heat 
degree days 

days HDD30 0 239.1 39.82 0 Yes  



 [121] 

Water quality variables expect Brunt-Väisälä were integrated from the euphotic, defined as twice the Secchi depth, up to a maximum 

of 2 m below the surface. *Daphnids include: Daphnia, Ceriodaphnia, Simocephalus, Scapholeberis. *Bosminids include: Bosmina, 

Eubosmina. 
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Table S3. Biomass (µg/L) summary statistics for each cyanobacteria genus detected  

across all study lakes (n=640), and the number of lakes they were detected in.  

Value for total cyanobacteria biomass is also reported. 

Taxon Maximum 
(µg/L) 

Mean  
(µg/L) 

Median 
(µg/L) 

Lakes  
(n) 

Anabaena 5,447 19.09 0 27 
Anabaenopsis 42,400 75.38 0 2 
Aphanizomenon 707,768 12,621 0 175 
Aphanocapsa + 
Synechocystis 

6,295 75.62 4.277 402 

Aphanothece 117.6 0.75 0 24 
Arthrospira 160.4 0.2506 0 1 
Chroococcus 8,468 26.95 0 157 
Chrysosporum 1,467 2.292 0 1 
Coelosphaerium 72.17 0.1868 0 3 
Cuspidothrix 2,998 8.136 0 6 
Dolichospermum 212,350 2,231 0 303 
Geitlerinema 8,115 14.01 0 17 
Gloeotrichia 1,069 2.993 0 3 
Gomphosphaeria 461.9 2.005 0 10 
Limnothrix 14,750 96.84 0 218 
Lyngbya 144,343 273.8 0 6 
Merismopedia 164.2 3.27 0 119 
Microcystis 155,776 1,053 0 220 
Nodularia 30,282 47.51 0 3 
Oscillatoria 779.5 1.957 0 4 
Phormidium 157.17 0.626 0 18 
Planktolyngbya 2,900 15.96 0 24 
Planktothrix 258,085 984 0 79 
Pseudanabaena 10,852 21.49 0 70 
Rhabdoderma 164.6 0.6376 0 14 
Rhabdogloea 1.804 0.003 0 2 
Romeria 588.1 1.541 0 5 
Snowella 134.7 1.638 0 38 
Spirulina 240.6 1.068 0 4 
Synechococcus 8.554 0.0297 0 21 
Woronichinia 3,897 20.64 0 84 
Total 
cyanobacteria 

920,516 17,604 158.2 602 

Aphanocapsa and Synechocystis were counted together. The minimum for  

each genus was 0 µg/L. 
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Figure S1. Statistical workflow schematic. Each analysis used in this study is listed along with 

its purpose. 
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Figure S2. Cyanobacteria biomass (µg/L) or selected genera of interest Microcystis (A), 

Aphanizomenon (B) and Dolichospermum (C). 

 

 

 

Figure S3. Mean total biomass (µg/L) of cyanobacteria genera by ecozone. 
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Figure S4. Bar plot of average % bloom-forming biomass by ecozone. Bloom forming taxa 

included Chrysosporum, Dolichospermum, Anabaena, Anabaenopsis, Aphanizomenon, 

Cuspidothrix, Arthrospira, Gloeotrichia, Gomphosphaeria, Limnothrix, Oscillatoria, 

Microcystis, Nodularia, Planktothrix, Spirulina, and Woronichinia. 
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Figure S5. Random effect plots (ecozone) from the linear mixed-effect regression trees analysis 

for total cyanobacteria biomass (A), Microcystis (B), Aphanizomenon (C) and Dolichospermum 

(D). Random effect intercepts (mean cyanobacteria biomass) are indicated for each ecozone.  
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Figure S6. Relationship between cyanobacteria biomass and total phosphorus faceted by 

ecozone. Trends are depicted using a loess curve.  

 

Figure S7. Relationship between Microcystis biomass and total phosphorus faceted by ecozone. 

Trends are depicted using a loess curve.  
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Figure S8. Relationship between Aphanizomenon biomass and total phosphorus faceted by 

ecozone. Trends are depicted using a loess curve.  

 

Figure S9. Relationship between Dolichospermum biomass and total phosphorus faceted by 

ecozone. Trends are depicted using a loess curve.  
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Figure S10. Relationship between cyanobacteria biomass and total nitrogen faceted by ecozone. 

Trends are depicted using a loess curve.  
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Figure S11. Percent cyanobacteria biomass by the ratio of TN:TP (µg/L). The dashed line 

represents the 29:1 ratio, identified by Smith (1983) as the threshold at which cyanobacteria are 

favored below. 
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Figure S12. Depicted relationships between total cyanobacteria and zooplankton groups. (A) 

Hypothesized relationships between zooplankton and cyanobacteria in oligotrophic to 

mesotrophic lakes. (B) Traditional relationships between cyanobacteria and zooplankton in 

eutrophic to hypereutrophic lakes. Here, cyanobacteria proliferate with increased nutrients, 

limiting the amount of energy transfer to higher trophic levels due to inedibility. Smaller 

zooplankton are selected, therefore total zooplankton biomass decreases. (C) Observed 

relationships between cyanobacteria and zooplankton groups in our lakes. Higher cyanobacteria 

biomass correlated with greater biomasses of all zooplankton groups. 
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Figure S13. Relationships between the biomass of other phytoplankton groups (µg/L) and 

cyanobacteria biomass. The red line represents the LOESS trend, and the points are colored by 

Daphnia biomass (µg/L). 
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Connecting statement between Chapters I and II 

 

 In the first chapter of my thesis, we quantified the biomass and community composition 

of cyanobacteria across a large set of Canadian lakes. We found significantly higher biomass 

within the Prairies and Boreal Plains ecozones, where Microcystis, Aphanizomenon and 

Dolichospermum were the dominant genera. However, Aphanocapsa, a group of 

picocyanobacteria, was the most prevalent taxon across all lakes. While considering a broad suite 

of predictor variables that have been documented to have a hypothesized relationship with 

cyanobacteria, we developed empirical models for total cyanobacteria biomass and that of three 

key genera of interest. Our results demonstrated the importance of total phosphorus as the 

leading predictor of the biomass of total cyanobacteria, as well as of several key genera and 

overall cyanobacterial community composition. We observed different phosphorus thresholds for 

individual genera considered. The empirical models developed in chapter I also highlighted the 

predictive power and positive correlation between cyanobacteria and the biomass of zooplankton 

variables (i.e., Daphnia and copepod biomass). Lastly, we observed a limited effect of ecozone 

across models, suggesting the fixed effects alone account for most of the regional variation 

within models.  

 Up to the present, including in chapter I, monitoring programs have mostly relied on 

taxonomists to identify phytoplankton assemblages using morphological characteristics by light 

microscopy. However, this traditional method is often considered time-consuming, is unable to 

distinguish cryptic taxa and requires a significant amount of expertise by the taxonomist, of 

whom also have individual biases. Consistently and accurately characterizing the phytoplankton 

assemblage are foundational to many aquatic bioassessment programs, particularly for the 
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cyanobacteria, as several bloom-forming and toxin-producing taxa may pose a number of 

ecosystem and human health risks. In recent years, the advancement and cost-effectiveness of 

next-generation sequencing technologies has allowed for this method to become more efficient 

and may alleviate some of biases associated with light microscopy. With the growing use of 

molecular methods, and some continued use of light microscopy, the comparability of methods 

has been brought into question. Researchers and lake managers are faced with the decision of 

which method employ if budgets are limited. To address these issues, the second chapter of my 

thesis assessed the congruency between cyanobacteria communities generated by light 

microscopy and DNA metabarcoding. Using a subset of 379 lakes from chapter I, I developed a 

statistical approach to quantify the comparability of traditional, morphologically-based data as 

well as metabarcoding data were. Lastly, this chapter reviewed several of the technical and 

biological factors that may have resulted in community differences between methods. 
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Abstract 

Accurately identifying the species present in an ecosystem is vital to lake managers and 

successful bioassessment programs. This is particularly important when monitoring 

cyanobacteria, as numerous taxa produce toxins and can have major negative impacts on aquatic 

ecosystems. Increasingly, DNA-based techniques such as metabarcoding are being used for 

measuring aquatic biodiversity, as they could accelerate processing time, decrease costs and 

reduce some of the biases associated with traditional light microscopy. Despite the continuing 

use of traditional microscopy and the growing use of DNA metabarcoding to identify 

cyanobacteria assemblages, methodological comparisons between the two approaches have 

rarely been reported from a wide suite of lake types. Here, we compare planktonic cyanobacteria 

assemblages generated by inverted light microscopy and DNA metabarcoding from a 379-lake 

dataset spanning a longitudinal and trophic gradient. We found moderate levels of congruence 

between methods at the broadest taxonomic levels (i.e., Order, RV=0.40, p < 0.0001). This 

comparison revealed distinct cyanobacteria communities from lakes of different trophic states, 

with Microcystis, Aphanizomenon and Dolichospermum dominating with both methods in 

eutrophic and hypereutrophic sites. This finding supports the use of either method when 

monitoring eutrophication in lake surface waters. The biggest difference between the two 

methods was the detection of picocyanobacteria, which are typically underestimated by light 

microscopy. This reveals that the communities generated by each method currently are 

complementary as opposed to identical and promotes a combined-method strategy when 

monitoring a range of trophic systems. For example, microscopy can provide measures of 

cyanobacteria biomass, which are critical data in managing lakes. Going forward, we believe that 

molecular genetic methods will be increasingly adopted as reference databases are routinely 
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updated with more representative sequences and will improve as cyanobacteria taxonomy is 

resolved with the increase in available genetic information. 

 

Introduction 

Photosynthetic cyanobacteria are ubiquitous in inland waters and may form at least 

temporary blooms in lakes of all trophic states (Paerl and Paul 2012). The reported incidence of 

cyanobacteria has risen considerably in recent decades (Winter et al. 2011; Ho et al. 2019) and 

they have become relatively dominant over other widespread phytoplankton groups in many 

north temperate lakes in the last century (Taranu et al. 2015). Their proliferation can have major 

negative impacts on aquatic ecosystems. Toxins produced by cyanobacteria have adverse health 

effects on aquatic animals, domestic pets and humans (Azevedo et al. 2002; Miller et al. 2010; 

Pick 2016). Moreover, the decomposition of blooms may deplete oxygen, leading to bottom 

water anoxia that can cause fish kills and promote further declines in water quality through 

internal loading (Paerl and Otten 2013; Huisman et al. 2018). Owing to the plethora of health and 

economic consequences, key priorities of lake managers are to monitor cyanobacteria, to identify 

their environmental drivers, and to mitigate their harmful effects (Downing et al. 2001; Paerl et 

al. 2011; O’Neil et al. 2012). These priorities rest on the ability to correctly determine 

cyanobacteria community structure and identify potentially troublesome taxa. 

 Correctly identifying and quantifying the species present in an ecosystem is essential to 

bioassessment programs (McElroy et al. 2020). Conventional assessments are performed by 

trained taxonomists who identify taxa via morphological and structural traits (Reynolds 2006; 

Gao et al. 2018; Vuorio et al. 2020) which include the organization, shape and size of cells as 

well as specialized cells (Castenholz 2015; Li et al. 2019a). Light microscopy is still widely used 
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today to identify and count algal cells (Utermöhl 1958; Karlson et al. 2010; Li et al. 2019b). 

Whilst routine, it is considered a time-consuming process that requires expertise honed through 

experience and interpretation of taxonomic literature, which can vary amongst analysts leading 

to observer bias (Gao et al. 2018; Rimet et al. 2018; Bailet et al. 2020). The availability of 

taxonomic expertise is also of concern, with the supply of newly trained taxonomists struggling 

to meet the demand (Esenkulova et al. 2020; Santi et al. 2021). Despite the widespread use of 

this method, considerable technical issues impose limitations (described in Komárek 2006; 

Kormas et al. 2011; Abad et al. 2016; Li et al. 2019a; Esenkulova et al. 2020). For instance, the 

detection of picocyanobacteria (cells 0.2–2 μm in diameter) using standard light microscopy is 

limited; often a completely different form of microscopy is used to examine this group (i.e., 

fluorescence). Identification based on morphology can be confounded by the presence of cryptic 

species (e.g., Engene et al. 2018; Esenkulova et al. 2020; Li et al. 2020; Vuorio et al. 2020), by 

cyanobacteria species that lack distinguishing features or by the clustering of filamentous, 

bloom-forming species that make taxonomic distinction more challenging (Li et al. 2019b). 

Lastly, phenotypic variation from changing environmental and culturing conditions can lead to 

diverging identifications between taxonomists, including of reference strains (Komárek and 

Anagnostidis 1989; Komárek 2006; Lee et al. 2014; Li et al. 2019a). 

Molecular genetic techniques such as DNA metabarcoding, where a short taxonomically 

informative DNA region is amplified, sequenced and annotated against a reference sequence 

library (Taberlet et al. 2012), are increasingly being used for assessing aquatic species 

biodiversity in the 21st century (Clark et al. 2018). Molecular genetic techniques may overcome 

limitations of microscopy as they can yield faster and high throughput sample processing, detect 

rare, cryptic and small-sized species, and are generally considered more cost-effective (Eiler et 
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al. 2013; Abad et al. 2016; Pawlowski et al. 2018; Santi et al. 2021). The taxonomy of 

cyanobacteria is continuously going through reorganization with the development of such 

molecular tools (Komárek 2016a, 2016b). Metabarcoding frequently targets the 16S rRNA gene 

or the internal transcribed spacer region to identify cyanobacteria taxa and elucidate patterns of 

their biodiversity (Komárek 2006; Woodhouse et al. 2016). These have provided a more 

comprehensive community profile of cyanobacteria blooms in several ecosystems (Parulekar et 

al. 2017; Batista et al. 2018; Oliveira et al. 2019), including drinking water reservoirs (Gao et al. 

2018; Casero et al. 2019). Furthermore, the genotypic analysis could provide a new level of 

ecological information as they can provide insight into cryptic species or ecotypes (Callahan et 

al. 2017). However, there are several limitations and biases introduced at each step of the 

metabarcoding procedure beginning with water sampling, DNA extraction method (Vasselon et 

al. 2017), marker gene selection (Kermarrec et al. 2013), PCR amplification, choice of 

bioinformatic pipeline used to process high-throughput sequencing data (Bailet et al. 2020) and 

clustering level of sequences (Tapolczai et al. 2019). Additionally, molecular approaches cannot 

discern between life-stages (Costa et al. 2016), and incomplete taxonomic coverage or erroneous 

taxonomic annotations in DNA reference libraries limit and confound the number of taxa that 

can be reliably identified to species (Komárek and Anagnostidis 1989; Eiler et al. 2013;  

Apothéloz-Perret-Gentil et al. 2017; Pawlowski et al. 2018). 

With growing recognition of the potential to enhance biodiversity studies with molecular 

genetic techniques, some studies have focused on how the taxonomic composition of 

communities compares between conventional morphological identification and that inferred from 

DNA metabarcoding (Pawlowski et al. 2018; Keck et al. 2021). Comparative studies have been 

performed on a variety of phytoplankton communities (Kormas et al. 2011; Costa et al. 2016; 
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Albrecht et al. 2017; Batista et al. 2018; Rimet et al. 2018; Casero et al. 2019; Li et al. 2019a; 

Huo et al. 2020) and have shown varying levels of congruence between the relative sequence 

abundance and/or the occurrence of taxa obtained by metabarcoding and the counts or biomass 

of organisms identified with microscopy. A recent meta-analysis comparing methods from 215 

aquatic community datasets revealed that metabarcoding of microorganisms gave 

complementary, as opposed to identical, community data generated by microscopy (Keck et al. 

2021). Numerous explanations have been provided to explain differences between communities 

obtained with each method, including incomplete reference libraries (Abad et al. 2016), marker 

gene copy number variation (Kembel et al. 2012), primer bias (Elbrecht and Leese 2015; 

Elbrecht et al. 2017) and microscopy-based constraints such as observer bias (Gao et al. 2018). 

 Despite the relevance to lake managers and basic science programs, there is a paucity of 

work performed across a wide suite of lakes comparing metabarcoding and traditional 

microscopic identifications of cyanobacteria from exactly the same samples (but see Li et al. 

2019a). As a part of the NSERC Canadian Lake Pulse Network (Huot et al. 2019), we sampled 

over 300 lakes across Canada and assessed the correlation of cyanobacteria community data 

generated with each method. We quantified the congruence between the microscopic and 

metabarcoding datasets, considering several key issues including the presence of picoplankton, 

sequencing depth and lake type differences. Furthermore, we conducted an exploratory analysis 

of genotypic diversity from one cosmopolitan, bloom-forming cyanobacteria genus, Microcystis, 

to determine whether there is any apparent ecological structure to their distribution across lakes. 

 A global synthesis of Microcystis molecular analyses revealed its variable spatial 

distribution and genome diversity (Harke et al. 2016). Here, we hypothesized that regional 

patterns of Microcystis genotypes would emerge, with strains adapting to specific lake types (i.e., 
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trophic state). Overall, our findings provide new insights into cyanobacterial community 

structure across Canada and highlight some of the limitations of each taxonomic identification 

approach that must be considered in future applications. 

 

Materials and Methods 

Lake selection 

Three hundred and seventy-nine lakes spanning seven Canadian ecozones were sampled 

following a standardized protocol (NSERC Canadian Lake Pulse Network 2021) across eastern 

and central Canada (Huot et al. 2019; Fig. 1). A full description of lake selection within the 

context of the NSERC Canadian Lake Pulse Network is available in Huot et al. (2019). Briefly, 

sampled lakes were selected from a subset of natural Canadian lakes located within 1 km of a 

road and with a maximum depth of at least 1 m. Lakes were selected using a random sampling 

design that was stratified across ecozones, lake sizes (0.1-1km2, 1-10km2, 10-100km2) and 

watershed human impact index categories. Ecozones (from east to west: Atlantic Highlands, 

Atlantic Maritime, Boreal Shield, Mixedwood Plains, Boreal Plains, Prairies and Semi-Arid 

Plateaux) are regions with distinct geological, climatic and ecological features, and range from 

approximately 52° to 118° West and 41° to 60° North (Ecological Stratification Working Group 

1996). Maps of sites were constructed using ArcGIS 10.5.1Ó (ESRI 2016) with the NAD 83 

Canada Atlas Lambert coordinate reference system. Ecozone shapefiles were sourced from the 

Canada Council of Ecological Areas (Wiken et al. 1996). 

Sample collection 

Lakes were sampled in 2017 or 2018 during the season of maximum thermal 

stratification (between July and early September) to minimize seasonal variability (Huot et al. 
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2019). Sampling equipment was soaked in concentrated HCl, then triple rinsed with lake water 

from the sampled lake before use to avoid cross-contamination. The sampling station was located 

at the deepest point of each lake (as measured on site using a depth sounder). Surface water was 

sampled using an integrated tube sampler inserted up to the shallower of the following two 

possible depths: (a) twice the Secchi disk depth (i.e., the approximate limit of the euphotic zone) 

or (b) two meters (the tube length). Carboys of sampled lake water were shielded from direct 

sunlight inside icepack-chilled coolers until they were processed, within a few hours. For 

microscopic analysis, a 120 mL subsample of surface water was fixed and preserved in Lugol’s 

iodine. For 16S rRNA gene analysis, up to 500 mL of lake water was first pre-filtered through an 

acid-washed 100 µm nylon mesh (Nitex), then vacuum-filtered through a Durapore 0.22 µm 

membrane (Sigma-Aldrich, St. Louis, USA) using a Gast Pressure pump (Fisher Scientific, 

Quebec, Canada) until the filter clogged. The filters were immediately frozen at −80°C and kept 

frozen until analysis. Please refer to the NSERC Canadian Lake Pulse Network Field Manual for 

the detailed sample collection protocols (NSERC Canadian Lake Pulse Network 2021). 

Morphological identification 

Microscopic identification of the phytoplankton samples were all conducted by the same 

taxonomist (M.A.) on 2–10 mL aliquots following Utermöhl’s sedimentation method (Lund et 

al., 1958) using a Zeiss Axiovert 40 CFL inverted microscope at 250 X and 500 X 

magnifications. A minimum of 400 units were counted along 2–10 transects of the chamber per 

sample. Counting units were single-celled individuals, filaments or colonies, depending on the 

organization of the algae. Weight biomass was calculated from recorded abundance and specific 

volume estimates based on geometric solids (Rott 1981; Hillebrand et al. 1999). Identifications 
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were based primarily on the following texts: Komárek et al. (1998, 2005) and Komárek et al. 

(2013). 

DNA extraction, sequencing & bioinformatic processing 

As described in Kraemer et al. (2020), DNA was extracted from the filters with DNeasy 

PowerWater DNA isolation kits (Qiagen., Hilden, Germany) following the manufacturer’s 

protocol with the following additional steps: after bead beating and centrifugation (step 7 of the 

detailed protocol), 1 μL of RNase A was added, followed by a 30-min incubation at 37 °C. A 

250 bp fragment of the 16S rRNA gene V4 region was amplified using the universal bacterial 

primers U515_F (5'-GTGCCAGCMGCCGCGGTAA-3') and E806_R (5'-

GGACTACHVGGGTWTCTAAT-3') (Caporaso et al. 2011). Each PCR contained a 25 μL total 

volume with the following components: 5 µL Phusion High Fidelity Buffer (5X), 0.5 µL dNTPs 

(10 mM), 1.8 µL of each primer (5 µM), 0.25 µL Phusion polymerase, 13.65 µL ultrapure 

nucleic acid-free water and 2 µL of genomic DNA. PCR conditions were an initial denaturation 

at 98 °C for 30 s, followed by 22 cycles of 98 °C for 20 s, 54 °C for 35 s, 72 °C for 30 s, and a 

final elongation at 72 °C for 1 min. Sequencing of 250 bp paired-end fragments was performed 

on an Illumina MiSeq platform in six runs in B. Jesse Shapiro’s laboratory at Université de 

Montréal. 

Reads were processed using the DADA2 package in R (Callahan et al. 2016). They were 

trimmed and filtered, amplicon sequence variants (ASVs) were inferred, paired-end reads were 

merged, and chimeras were removed. Taxonomy was assigned to ASVs against the SILVA 

database v.132 (Quast et al. 2012) at a minimum bootstrap confidence level of 80%. We enriched 

the SILVA database with additional 16S rRNA gene sequences of unrepresented cyanobacteria 

including Aphanocapsa and Planktolyngbya. These additional sequences were pulled in June of 
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2017 from NCBI and Ramos et al. (2017), a curated database of cyanobacteria strains. We chose 

to conduct our analyses on ASV and genus level groupings. To confirm taxonomic assignments, 

sequences of the most abundant ASVs were crosschecked using NCBI BLAST. We extracted all 

ASVs assigned to cyanobacteria to obtain a site by ASV matrix. For all subsequent analyses, we 

removed ASVs assigned to chloroplasts, non-photosynthetic cyanobacterial groups and 

sequences which could not be assigned below phylum level. Since we knew a priori that the 

identification of cyanobacteria based on light microscopy is difficult for taxa without easily 

distinguishable features, genus level or complex groupings were constructed to account for this 

bias (Table S1). Groupings were first proposed by the lead author (P.M.) and then finalized by 

our taxonomist (M.A.) by reviewing the list of taxa identified by light microscopy and clustering 

closely related cyanobacteria that are easily mistaken for one another. The taxonomist confirmed 

these groupings without knowledge of the metabarcoding results. All taxon names from 

molecular genetic and microscopy data were harmonized according to the taxonomy used in the 

continuously updated Algaebase (Guiry and Guiry 2020). 

Statistical analyses 

All statistical analyses were performed in R v.4.0.2 (R Core Team 2020). The 

composition of the cyanobacteria assemblages obtained with microscopy and metabarcoding 

were compared across sample matrices. For this, we first performed Principal Component 

Analyses (PCA) using the vegan R library (Oksanen et al. 2019) on each site by species matrix 

considering each dataset at genus or complex level. Prior to performing PCAs, matrices were 

Hellinger-transformed using the decostand() function, which converts the data into the square 

root of relative abundances (Legendre and Gallagher 2001). For the data based on microscopic 

identification, we used the calculated density (cell/mL) and biomass (µg/L) of each group as the 
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units of observation. The sequence abundance of each ASV was used to represent the 

metabarcoding identification. PCAs were performed separately on each sample matrix and 

taxonomic method, and the first three axes of sites scores were extracted using the scores() 

function and visually compared. Sites were categorized by trophic state according to total 

phosphorus concentration thresholds by Wetzel (2001): oligotrophic (total phosphorus 0 - 10 

µg/L), mesotrophic (10 - 30 µg/L), eutrophic (30 - 100 µg/L), and hypereutrophic (>100 µg/L). 

We applied an RV coefficient to quantify similarity between two competing matrices using the 

first three PCA axes (which captured the largest fraction of variation). The RV coefficient is a 

generalization of the Pearson correlation that correlates two matrices of quantitative data with 

corresponding rows (sites), homologous to an R2 (Legendre and Legendre 2012). RV coefficients 

between sample matrices were computed with the coeffRV() and their statistical significance was 

calculated using RV.rtest(), from the library FactoMineR (Lê et al. 2008) and ade4 (Dray and 

Dufour 2007), respectively. To address inherent differences or challenges associated with each 

taxonomic method, several iterations of the community matrices were compared including 

removing picocyanobacteria (cells < 2µm) and lakes with fewer than 500 sequences assigned to 

cyanobacteria. In order to reduce noise in both datasets and eliminate artefacts potentially 

introduced by sequencing errors, we removed low abundant genera (i.e., below 2% relative 

abundance in any single lake) and did not consider unassigned sequences at the genus level when 

computing RV coefficients between matrices (Pawlowski et al. 2018). The 2% relative 

abundance rule removed 5 genera (Aphanothece, Arthrospira, Limnothrix, Oscillatoria and 

Spirulina) from the metabarcoding dataset that were identified in the microscopy dataset, 

however this had no effect on the strength of correlation between methods. 
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Results 

Cyanobacteria community structure revealed by light microscopy 

Across the 379 lakes, a total of 31 cyanobacteria genera were identified using 

morphological characteristics, with an average of 12 genera detected in each lake. The 

cyanobacteria represented between 0.28% to 100% of the total phytoplankton cell abundance, 

ranging from 4 cells/ mL to 761,679 cells/mL, and with a median of 340 cells/mL. The highest 

cell densities were recorded in central Canada within the Prairies and Boreal Plains ecozones 

(Fig. 1). The most frequent genera by relative abundance of cell densities across all sites were 

Microcystis (53.8%), Aphanizomenon (16.7%), Aphanocapsa (8.8%), Dolichospermum (6.7%), 

and Woronichinia (5.8%). When taxa that are more difficult to distinguish were grouped into 

complexes, we observed that the relative abundances of cell densities were dominated by the 

Synechococcus complex, Microcystis, Aphanizomenon complex, Dolichospermum complex and 

Lyngbya complex (Table 1; Fig. 2A). 

Cyanobacteria community structure revealed by 16S rRNA gene metabarcoding 

After quality filtering and preprocessing, 16S rRNA gene metabarcoding using universal 

bacterial primers yielded 41,786,071 sequences amongst 41,289 ASVs (total across all samples). 

Of these, 4,103 were identified as singletons or doubletons and were subsequently removed from 

the dataset. The number of sequences was highly variable among lakes ranging from 14,334 to 

576,574 with a median of 95,337 sequences per lake. After removing ASVs that were assigned to 

other phyla, chloroplasts or non-photosynthetic cyanobacteria (Monchamp et al. 2019), a total of 

1,016 ASVs remained, comprising 3,675,227 sequences, with a median of 4,203 cyanobacteria 

sequences per lake. 
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Most of the 1,016 cyanobacteria ASVs were numerically rare. We were able to assign 

56% of the ASVs to genus level, which comprise 98.4% of all cyanobacteria sequences. 

Following the data filtration steps described above, we identified 57 cyanobacteria genera, 

including 174 ASVs assigned to Cyanobium, 63 to Aphanizomenon, 38 to Pseudanabaena, 34 to 

Dolichospermum, and 10 to Microcystis. The top five genera with the highest sequence 

abundances represented just over 80% of cyanobacteria sequences: Cyanobium (38.7%), 

Planktothrix (17.4%), Aphanizomenon (11.6%), Microcystis (7.6%), and Dolichospermum 

(5.8%). When the molecular dataset was grouped into the complexes defined as hard to 

distinguish taxa by light microscopy, we found that Microcystis, the Synechococcus complex 

(which includes Cyanobium), and the Aphanizomenon complex had the greatest relative 

sequence abundances (Table 1; Fig. 2A). 

Coherence between light microscopy and 16S rRNA gene metabarcoding 

Direct comparisons between molecular and microscopic datasets were made using DNA 

sequence counts and cell density (cells/mL) or biomass (µg/L). Although all of the main 

comparisons were done using cell density, biomass was checked as it is a commonly used metric 

to analyze phytoplankton community structure. Based on the screened datasets, there were 30 

and 33 genera from the microscopy and metabarcoding datasets, respectively. Of these, we found 

that 19 genera were shared across analytical platforms, with 11 unique to microscopy and 14 

unique to metabarcoding (Fig. S3). When direct comparisons were made using genus complexes, 

we detected 17 genera/complexes with microscopy and 18 with metabarcoding with high overlap 

between groups (Fig. 2B). 

The proportion of the dominant genera/complexes identified by each method differed in 

magnitude but followed a similar pattern along a trophic gradient (Fig. 3). In the metabarcoding 



 [148] 

approach, the Synechococcus complex represented 78% of sequences in oligotrophic lakes but 

was reduced to 29% in hypereutrophic sites. Similarly, the Synechococcus complex decreased in 

relative abundance from 45% in oligotrophic lakes to just 13% in hypereutrophic lakes in the 

microscopy dataset. Microcystis and the Aphanizomenon complexes became more dominant in 

the cyanobacteria assemblages of eutrophic and hypereutrophic sites in both datasets. A notable 

difference between methods was the evenness of assemblages across trophic states. Microscopy-

generated communities consistently contained at least several genera and complexes with over 

10% relative abundance, whereas metabarcoding results showed that sites tended to be 

dominated by one or two complexes in each trophic state (Fig. S4).    

Microscopy- and molecular-generated communities showed comparable dominance 

patterns in terms of average relative abundance (Fig. 2A, Table 1) but diverged in frequency of 

occurrence (Fig. 2B). For example, the Synechococcus complex was dominant in both the 

metabarcoding and microscopy datasets (i.e., mean relative abundance of 61% across all sites in 

the former, compared to 36% in the latter). The divergence in mean relative abundances and 

frequency of occurrence results are expected for the Synechococcus complex as the single-celled 

picocyanobacteria will be underestimated with Utermöhl microscopic analyses (Fig. S1 and S2). 

In contrast, average relative abundances for the Planktothrix complex and Microcystis were 

similar between microscopy and metabarcoding. However, subtle differences were noted: 

microscopy detected on average more Merismopedia (5.04% vs. 0.05% with metabarcoding), 

Chroococcus complex (5.04% vs. 0.29%), Lyngbya complex (9.40% vs. 1.14%) and 

Dolichospermum complex (11.89% vs. 2.65%). These differences were consistent even when we 

considered the microscopy data in terms of biomass. In addition, microscopic analyses 

distinguished fewer generalist taxa, with just one complex (i.e., the Synechococcus complex) 
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detected in more than 200 lakes (Fig. 2B). In contrast, the metabarcoding dataset had five 

complexes that were present in over 300 lakes (Fig. 2B), including the Synechococcus complex 

which was detected in every lake in this study. 

Analysis of the variation in cyanobacteria community composition by ordination showed 

generally similar patterns between taxonomic platforms. The PCA biplot of the community 

identified by microscopy showed a clear trophic gradient, with oligotrophic and mesotrophic 

lakes largely distinguished from hypereutrophic lakes. Microcystis, Aphanizomenon complex and 

Planktothrix complex were characteristic of eutrophic sites, whereas Synechococcus complex 

was characteristic of oligotrophic and mesotrophic sites (Fig. 4). The first two axes of the PCA 

carried out on cyanobacteria composition based on microscopy explained 44% of the variance. A 

similar pattern of variation was observed for the metabarcoding generated community, with the 

same complexes split along a trophic gradient. Here, the first two axes of the PCA explained 

56% of the variance (Fig. 5). 

Using RV coefficients, we calculated the level of correspondence between sample 

matrices and taxonomic methods using the site scores of PCA axes 1, 2 and 3. In particular, we 

calculated the correlation between methods across all sites as well as just the eutrophic to 

hypereutrophic lakes, where cyanobacteria bloom monitoring tends to be more concerted. We 

also considered a range of taxonomic levels as well as a minimum threshold of sequences 

retained. Finally, a separate analysis was performed with picocyanobacteria removed, in 

recognition that these will be underestimated with the Utermöhl microscopy approach. Overall, 

we found the strongest correlations between sample matrices and taxonomic methods when 

broader taxonomic levels were considered (i.e., order level in sites with TP >30 µg/L: RV = 0.40, 

p < 0.0001), or when we examined only eutrophic-hypereutrophic communities where an 
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adequate number of sequences (>500 sequences) was analyzed and picocyanobacteria were 

removed (RV = 0.34, p < 0.0001; Fig. 6).  

Distribution of Microcystis ASVs 

In total, 10 ASVs were assigned to Microcystis, and collectively occurred in 351 of the 

379 lakes. Individual ASVs ranged widely in occurrence and relative abundance. For example, 

the most common Microcystis ASV, “ASV0004,” was found in 309 lakes and varied between 

0.18% and 100% relative abundance of all Microcystis sequences. In contrast, ASV0053 

occurred in 186 predominantly oligotrophic and mesotrophic lakes and represented on average 

5% of Microcystis sequences. Using PCA to visualize the variation in Microcystis assemblages 

across our sites, we found a clear trophic gradient (the first two axes of this ordination explained 

69.3% of the variation). Frequently occurring Microcystis ASVs were also oriented along a 

trophic state gradient, with ASVs 0004 and 0016 associated with more eutrophic to 

hypereutrophic sites. Conversely, ASV 0053 was more characteristic of mesotrophic and 

oligotrophic lakes (Fig. 7). 

 

Discussion      

 We found a broad congruence between cyanobacteria assemblages identified using 

morphological and molecular genetic techniques in 379 lakes ranging in size and trophic state. 

Both methods captured the expected shift in community composition along a trophic gradient, 

with a decrease in picocyanobacteria relative abundance and an increase in common bloom 

formers such as Microcystis and Aphanizomenon in eutrophic to hypereutrophic sites. Though 

the molecular genetic approach detected more rare and benthic taxa than microscopy, most of 

these taxa accounted for a small percentage of genetic sequences and rarely reached 2% relative 
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abundance in any lake. The greatest correspondence between methods was recorded when 

broader levels of taxonomic assignment were applied (i.e., Family and Order), and when the 

analysis was restricted to eutrophic and hypereutrophic lakes. Our findings are relevant for lake 

managers as they can assume with confidence that cyanobacteria community data from both 

methods are relatively comparable in lakes prone to bloom events. Because they are relatively 

fast and cost-effective, metabarcoding techniques may be employed even more widely in the 

future as reference libraries continue to improve. 

Cyanobacterial community structure across Canadian lakes 

The structure of cyanobacteria communities at this landscape-scale showed a relationship 

with lake trophic state that was expected based on previous research (Fig. 3; Watson et al. 1997). 

Across the analytical platforms, we detected similar trends in the dominant taxon complexes 

along a trophic gradient, but at the genus-level resolution we detected some differences in 

dominant taxa (Figs. 3 and S4). For example, approximately 50% of the cyanobacteria 

community based on cell counts from oligotrophic and mesotrophic lakes was represented by the 

Synechococcus complex, mainly species of Aphanocapsa. From these same sites, amplicon 

sequencing also identified the Synechococcus complex as the dominant group, representing over 

75% of the cyanobacteria community; however, Cyanobium demonstrated a clear predominance 

in these lakes (Figs. 3 and S4). Interestingly, based on fluorescence microscopy taxonomy, 

Cyanobium cells are typically called Synechococcus or Synechocystis. As we transitioned into 

nutrient-rich sites, Microcystis, Aphanizomenon complex, and Planktothrix complex were 

characteristic of eutrophic and hypereutrophic lakes in both datasets (Figs. 4 and 5). However, 

the relative abundances of these complexes did not always concord. Although we identified 
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statistically significant clusters corresponding to lake trophic status using both survey methods, 

several taxonomic differences were observed and are discussed in detail below (Figs. 4 and 5).  

Congruence between the microscopic and metabarcoding datasets 

With the growing use of DNA sequencing techniques to assess biodiversity in aquatic 

ecosystems, there is a need to quantify the congruence between these methods with more 

traditional ways of identifying community structure (Pawlowski et al. 2021, 2018). 

Phytoplankton surveys from around the world have incorporated and compared microscopy and 

molecular genetic analyses, and have recorded a range of correlations including some strong 

relationships between sequences and cell counts or biomass (Eiler et al. 2013; Stoeck et al. 2014; 

Xiao et al. 2014; Abad et al. 2016; Costa et al. 2016; Rimet et al. 2018; Li et al. 2019a;  

Esenkulova et al. 2020; Huo et al. 2020; Vuorio et al. 2020). However, there remain few studies 

specifically quantifying the congruency in cyanobacteria assemblages between survey methods. 

This is a necessary step towards the benchmarking of molecular analyses and a gap this study 

addresses. 

Highest congruency in eutrophic and hypereutrophic lakes 

Within the phytoplankton literature, inconsistencies between the relative abundances of 

different dominant taxa identified by each method have also been reported (Abad et al. 2016; 

Albrecht et al. 2017; Esenkulova et al. 2020). Some authors stress the complementary role that 

molecular based approaches serve to traditional microscopy (Esenkulova et al. 2020; Keck et al. 

2021). A clear strength of metabarcoding is the identification of cryptic species, as well as pico-

sized taxa which are often impossible to differentiate with microscopy (Costa et al. 2016; Vuorio 

et al. 2020). Across our 379 lakes, the microscopy and 16S rRNA gene sequence analyses were 

in broad agreement for the genus complexes, particularly in eutrophic and hypereutrophic sites, 
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despite reducing the number of genera prior to constructing the complexes. When considering 

how the genus complexes compared across study sites, eight of the top ten complexes emerged 

from both microscopy and metabarcoding, but in a different order of relative abundance (Table 

1). The most significant difference occurred in the Synechococcus complex, which is comprised 

largely of unicellular and colonial picocyanobacteria, that represented an average of 9% of the 

cell counts but was the overwhelmingly dominant complex of the metabarcoding data, 

representing 41% of sequences. This five-fold difference in relative abundances highlights the 

sensitivity of molecular based analyses to capture a larger portion of the picocyanobacteria 

assemblage. Although the most abundant genus complexes were the same, they were identified 

by metabarcoding in more samples, suggesting that metabarcoding more effectively identified a 

broader diversity of cyanobacteria (Figs. 2A and 2B). Our findings are consistent with numerous 

other cyanobacteria metabarcoding studies of water and sediment core samples, where 

picocyanobacterial taxa are often dominant and overall richness tends to be greater than with 

microscopic counts (Monchamp et al. 2016; Li et al. 2019a; Vuorio et al. 2020).  

While assessing the correlation between methods at different taxonomic levels, the 

highest correlation was recorded at the broadest taxonomic grouping (i.e., Order level) (Fig. 6 

and S1). At this level, microscopy and metabarcoding were approximately 40% in concordance 

within the eutrophic sites. The strength of correlation gradually declined at Family and Genus 

level, with the lowest observed correlation occurring when picocyanobacteria were removed 

from both datasets to account for the detection limits of microscopy. However, removing the 

picocyanobacterial fraction resulted in the deletion of over 75% of the cyanobacteria sequences, 

leaving a fraction of the original data to compare. To account for this, we screened the data to 

only retain sites with a minimum threshold of sequences and found that the correlation increased 
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again. Establishing a minimum threshold of sequences to make adequate comparisons might be 

something other studies should consider in the future. Overall, we found that when comparing 

high sequence sites with the picocyanobacteria bias eliminated, correlations between methods 

reached over 30% at the genus level. In all instances of method comparisons, correlations were 

systematically higher when just eutrophic lakes were considered versus the entire lake dataset. 

This trend is best explained by the fact that the oligotrophic and mesotrophic sites are 

represented by greater richness of rare taxa; often taxa that cannot be identified microscopically 

and/or ones that are more often missing from the reference databases (Vuorio et al. 2020). 

Eutrophic and hypereutrophic lakes were characterized by greater proportions of Microcystis, 

Aphanizomenon complex and Dolichospermum complex: groups that were consistently detected 

by both methods. 

Technical issues that may influence congruency between methods 

Differences observed between methods may stem from numerous biases that make 

perfect congruency impossible (Pawlowski et al. 2021, 2018). We briefly discuss some of the 

biological and technical sources of bias below, but see (Pawlowski et al. 2018) for an exhaustive 

discussion. To start, the sample volumes settled (2–10 mL for microscopy versus up to 500 mL 

for metabarcoding), and underlying units used for microscopy (individual cells) and those used 

for metabarcoding (ASV sequences) are quite different, making direct comparison imperfect 

(Pawlowski et al. 2018; Vuorio et al. 2020). As discussed previously, we evaluated the influence 

of sequencing depth by conducting analyses with a minimum sequence threshold. For technical 

factors, several studies comparing taxonomic approaches have found DNA extraction efficiency 

and primer amplification bias to be the leading cause of discrepancies (Elbrecht and Leese 2015; 

Elbrecht et al. 2017). Applying a primer set designed specifically to amplify cyanobacteria 
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(Nübel et al. 1997) or regions of the 16S rRNA gene more variable than V4 could enhance the 

assessment of freshwater cyanobacteria diversity, particularly picocyanobacteria (Huber et al. 

2019). Furthermore, sequencing a short (~250 bp) gene fragment with universal primers may 

have limited the taxonomic resolution, yet we were able to assign 56% of ASVs to genus level 

after extensive data curation. If the available representative sequences had missing or incomplete 

sections on the V4 region, then this might explain why some taxa were identified by microscopy 

but were not assigned via metabarcoding, despite having sequence representation in the database 

(i.e., Aphanocapsa, Aphanothece and Limnothrix). However, it is worth recognizing that the 

fraction of unassigned ASVs from the total pool of cyanobacteria reads was very small (1.6%). 

The most striking difference between microscopy and metabarcoding was the proportion 

of picocyanobacteria detected by each method (Fig. S2). For cells below the detection limit of 

light microscopy and Utermöhl (i.e., approximately 1 μm in diameter), it can be difficult to even 

distinguish a heterotrophic bacterium from a photosynthetic one. In addition, pico-sized cells that 

may not sink within the Utermöhl counting chamber are often missed or underrepresented by 

microscopy (Albrecht et al. 2017; Batista et al. 2018). Furthermore, picocyanobacteria can lack 

distinctive morphological characteristics commonly used for visual identification. Yet, 

sufficiently counting the picocyanobacteria is important given their ubiquity in temperate lakes, 

their importance in biogeochemical cycles (Callieri 2008) and the capability of some taxa/strains 

to produce toxins (Jakubowska and Szeląg-Wasielewska 2015). In many oligotrophic to 

mesotrophic lakes, picocyanobacteria can reach concentrations as high as 105 cells/mL in 

summer in contrast to other cyanobacteria and eukaryotes at 103 cells/mL: a potential 100 times 

difference in abundance/sequences (Pick and Agbeti 1991). Microscopy overwhelmingly 

identified Aphanocapsa, whereas metabarcoding yielded a dominance of Cyanobium. Similar 
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mismatches between microscopy and metabarcoding have been reported previously. For 

example, in study of a coastal lagoon, another pico-sized genus, Aphanothece, was very 

abundant in the microscopic counts, whereas metabarcoding yielded no sequences of 

Aphanothece, but rather a dominance of Cyanobium (Albrecht et al. 2017). Moreover, in a 

comparative analysis of over 50 lakes and reservoirs, (Li et al. 2019a) observed no Cyanobium 

based on microscopy, despite the presence of Cyanobium in most samples detected by 

metabarcoding. In each study, inconsistencies were ascribed to similar cell shapes between 

genera, thus making morphological distinction challenging. In addition to picocyanobacteria, the 

Utermöhl method may also underestimate the abundance of buoyant, colonial cyanobacteria such 

Microcystis, whose colonies can float at the top of the chamber. Although our microscopy 

dataset was still able to detect large abundances of Microcystis, this effect may lead to minor 

discrepancies and should be taken into consideration. 

Biological issues that may influence congruency between methods 

Among the biological biases, copy number variation is known to decrease the 

quantitative value of metabarcoding data (Kembel et al. 2012; Schirrmeister et al. 2012). 

Heterocystous cyanobacteria have been shown to contain up to five 16S rRNA gene copies, 

whereas genera in the Synechococcales and Chroococcales orders generally have only one or 

two copies (Kembel et al. 2012; Schirrmeister et al. 2012). The high copy number of the 16S 

rRNA gene among heterocystous cyanobacteria can lead to their overestimation in PCR-based 

methods. Copy number has also been reported to vary as a function of cell size in other 

phytoplankton groups, such as diatoms (Godhe et al. 2008). To explore whether cell size could 

influence the coherence between methods, we also ran RV coefficients with cell biomass data (as 
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opposed to density) but found very similar results (Fig. S5). As such, we think that with 

cyanobacteria, the variation in cell numbers is more important than the variation in cell sizes. 

Incomplete reference databases 

Lastly, the most cited reason for incongruence of taxonomic assemblages obtained from 

microscopy and metabarcoding analyses are incomplete reference databases (Xiao et al. 2014; 

Zimmermann et al. 2015; Vasselon et al. 2017; Pawlowski et al. 2018). Although we constructed 

genus complexes to account for this bias, some of the most abundant taxa observed by 

microscopy either lacked corresponding sequences in the enriched SILVA database, or were 

restricted to a small number of partial sequences (i.e., Aphanocapsa, Aphanothece, Chroococcus, 

Merismopedia and Limnothrix). To improve identification, more reference sequences are needed 

for rare taxa and the many small (0.2 - 2 μm) colonial cyanobacteria that were detected in a 

higher number of samples by microscopy. In addition to missing taxa from curated reference 

databases, sequences deposited with incorrect taxonomy can lead to erroneous designations 

downstream (Komárek and Anagnostidis 1989; Komárek 2010; Lee et al. 2014). Strain and 

sequence names will need to be updated as the taxonomy of cyanobacteria is changing as we 

generate more molecular information. For example, several species previously named 

Aphanizomenon are now Cuspidothrix; a change that may not be corrected in sequence 

databases. Further phylogenetic analyses may help validate the taxonomic assignment of 

sequence data. 

ASV level diversity reveals structured Microcystis profiles 

 A potential strength of the metabarcoding approach is its ability to detect cryptic taxa and 

identify whether these taxa occupy distinct ecological niches. We explored these issues by 

examining the distinction of key ASVs within Microcystis, which was a dominant genus detected 
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in both methods (Table 1). Previous work has identified different strains and genotypes of 

Microcystis, demonstrating that multiple genotypes can coexist in the same environment, while 

identifying some distinction in their ecological niches (Berry et al. 2017; Otten et al. 2017; Guan 

et al. 2018; Tromas et al. 2018; Chun et al. 2020; Cook et al. 2020; Jankowiak and Gobler 2020; 

Smith et al. 2021). For example, the succession of Microcystis genotypes have been shown to 

vary inter-annually (Ninio et al. 2020) and seasonally, with dominant genotypes differing 

between summer and autumn blooms in the Daechung Reservoir (Korea), and during different 

phases of blooms (Chun et al. 2020). A network analysis conducted on a microbial time series 

from the same reservoir by (Chun et al. 2020) revealed that other members of the community 

(bacterial and eukaryotic) were associated with certain Microcystis genotypes in summer but 

associated with different genotypes in the fall. Spatial and temporal variation in Microcystis 

genotypes have also been correlated to environmental drivers including temperature (Ninio et al. 

2020) and phosphorus gradients (Berry et al. 2017). Based on a PCA of Microcystis ASVs across 

our sites, we found a clear distribution of taxa along a trophic gradient (Fig. 7). Although a single 

Microcystis ASV comprised the majority of sequences assigned to Microcystis, ASVs varied 

across different trophic states. This trend is relevant as both spatial and temporal changes in the 

dominant Microcystis genotype have corresponded to shifts in bloom toxicity (Gobler et al. 

2016; Berry et al. 2017; Chun et al. 2020; Ninio et al. 2020). Important ASV level variation has 

been reported in other cyanobacteria genera as well. For example, Costa et al. (2016) found that 

during a bloom of Anabaenopsis elenkinii, one genotype was always the most abundant. The 

authors attributed the presence of other, less abundant genotypes as an adaptive strategy to 

maintain the population with changing ecological conditions. Access to genotype level 
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information supports the use of molecular genetic techniques in lake management programs. We 

encourage more work in this relatively emerging area of study. 

 

Conclusions 

 Our large microscopy and metabarcoding datasets from 379 lakes revealed both a clear 

separation of the cyanobacteria communities from lakes of different trophic state and moderate 

levels of congruence between datasets, particularly in eutrophic to hypereutrophic lakes where 

picocyanobacteria are less dominant. We believe this work shows that metabarcoding could 

become more widely applied in water quality status assessments, providing the means to 

efficiently monitor eutrophication, one of the main environmental problems in surface 

freshwaters (Eiler et al. 2013). However, for the molecular work to achieve its full potential, 

more work is needed in developing and curating reference databases. These findings highlight 

some of the challenges in the taxonomic classification of cyanobacteria. 
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Tables Chapter II 

Table 1. Comparison of the ten most common taxonomic complexes and ungrouped genera 

detected with microscopy (biomass and density) and DNA metabarcoding (reads) across all 379 

lakes. 

Microscopy biomass (%) Microscopy density (%) 16S rRNA sequences (%) 

Aphanizomenon C. 64.2 Microcystis 53.8 Synechococcus C. 41.2 

Dolichospermum C. 12.9 Aphanizomenon C. 16.8 Planktothrix C.  17.4 

Microcystis 9.38 Synechococcus C. 8.88 Aphanizomenon C. 11.6 

Planktothrix C. 8.54 Dolichospermum C. 6.95 Snowella C. 7.88 

Lyngbya C. 3.33 Snowella C. 5.81 Microcystis 7.60 

Synechococcus C. 0.48 Lyngbya C. 3.91 Dolichospermum C. 5.80 

Nodularia 0.44 Planktothrix C. 1.70 Pseudanabaena C. 4.05 

Chroococcus C. 0.22 Pseudanabaena C.  1.10 Lyngbya C. 1.98 

Pseudanabaena C. 0.19 Romeria 0.45 Nodularia 0.37 

Snowella C. 0.14 Chroococcus C. 0.24 Rhabdogloea C. 0.26 

C. indicates genus complex. 
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Figures Chapter II 

 

Figure 1. Distribution of log transformed cyanobacteria density (cells/mL) across 379 sites. 

Water samples for microscopy and DNA metabarcoding analyses were collected at each site. 

 

 



 [177] 

 

Figure 2. Average relative abundance (A) and frequency of occurrence (i.e., the number of lakes 

in which each taxon was observed) (B) for complexes and ungrouped genera detected by DNA 

metabarcoding and microscopy. Standard error bars are included for the relative abundances of 

each group. 
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Figure 3. Average relative abundance of cyanobacteria complexes and ungrouped genera across 

trophic states. Number of reads were used for DNA metabarcoding (left panel), and cell 

abundance was used for microscopy (right panel). 
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Figure 4. PCA biplot of the cyanobacteria community identified by microscopy (cells/mL). 

Genus complexes and ungrouped genera abundances were Hellinger transformed prior to the 

ordination. 
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Figure 5. PCA biplot of the cyanobacteria community identified by DNA metabarcoding (reads). 

Genus complexes and ungrouped genera reads were Hellinger transformed prior to the 

ordination. 

 

 

 



 [181] 

 

Figure 6. RV coefficients between microscopy (density- cells/mL) and DNA metabarcoding 

(reads) approaches on PCA site scores. Grey bars represent matrix comparisons using all 379 

sites, and green bars represent comparisons between just eutrophic sites. ≥500 refers to 

comparisons done only on sites with at least 500 sequences. All RV coefficients were significant 

(p < 0.0001). 
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Figure 7. PCA biplot of the ASVs assigned to Microcystis using DNA metabarcoding (reads). 

Genus complexes and ungrouped genera reads were Hellinger transformed prior to the 

ordination. 
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Appendices Chapter II 

Table S1. List of genera included in each complex.  
Genus or complex name  
Synechococcus C. Cyanobium, Synechococcus, Synechocystis, 

Cyanothece, Aphanocapsa, Aphanothece 
 

Merismopedia Merismopedia 
 

Pseudanabaena C. Pseudanabaena, Prochlorothrix 
 

Rhabdogloea C. Rhabdogloea, Rhabdoderma 
 

Snowella C. Snowella, Gomphosphaeria, Woronichinia, 
Coelosphaerium 
 

Romeria Romeria 
 

Chroococcus C. Chroococcus, Limnococcus 
 

Microcystis Microcystis 
 

Annamia Annamia 
 

Geitlerinema Geitlerinema 
 

Lyngbya C. Lyngbya, Leptolyngbya, Limnolyngbya, 
Limnothrix, Nodosilinea, Planktolyngbya 
 

Planktothrix C. Planktothrix, Oscillatoria, Planktothricoides, 
Phormidium, Tychonema 
 

Anabaenopsis Anabaenopsis 
 

Aphanizomenon C. Aphanizomenon, Cuspidothrix 
 

Dolichospermum C. Dolichospermum, Anabaena, Chrysosporum 
 

Gloeotrichia C. Gloeotrichia, Calothrix 
 

Nodularia Nodularia 
 

Nostoc Nostoc 
 

Gloeobacter Gloeobacter 
 

Spirulina C. Arthrospira, Spirulina 

C. indicates genus complex. Only genera that reached a 2% relative abundance in one  
lake from either dataset is listed.  
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Figure S1. Relative abundances of cyanobacteria grouped at Order level analyzed by DNA 

metabarcoding (reads) and microscopy (cells/mL). Boxplots includes the median, standard 

deviation, and 25 and 75% percentiles over the whole set of 379 lake samples. 
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Figure S2. Relative abundances of picocyanobacteria assigned by DNA metabarcoding (reads) 

and microscopy (cells/mL). Boxplots includes the median, standard deviation, and 25 and 75% 

percentiles over the whole set of 379 lake samples. 

0

25

50

75

100

Metabarcoding Microscopy

R
el

at
iv

e 
ab

un
da

nc
e 

(%
)



 [186] 

 

Figure S3. Venn diagram showing which genera were uniquely detected and co-detected 

between methods. Only genera that reached 2% relative abundance in at least one lake are 

included. The asterisk(*) indicates that Synechocystis was counted with Aphanocapsa; it was not 

identified as its own genus in the microscopy dataset. 
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Figure S4. Taxonomic composition of cyanobacteria assemblages from each of the sampled 379 

lakes. Each bar represents the relative abundance of cyanobacteria genus complexes and 

ungrouped genera. The inner ring is comprised of each community generated by microscopy 

(cells/mL). The outer ring is comprised of each community generated by DNA metabarcoding 

(reads). Lakes are featured on the centered map and colored according to trophic state. 
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Figure S5. RV coefficients between microscopy (biomass- µg/L) and DNA metabarcoding 

(reads) approaches on PCA site scores. Grey bars represent matrix comparisons using all 379 

sites, and green bars represent comparisons between just eutrophic sites. ≥500 refers to 

comparisons done only between sites with at least 500 sequences. 
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Connecting statement between Chapters II and III 

  

The comparison developed in chapter II identified a moderate level of congruence 

between microscopy and DNA metabarcoding. In particular, the cyanobacteria communities 

generated by each method were more comparable at coarser taxonomic levels (i.e., Order), with 

correlation coefficients peaking at approximately 40%. Both methods also became more similar 

along a trophic gradient, with greater congruency apparent when comparing lakes of higher 

nutrient state. This finding is especially relevant to researchers and managers monitoring 

eutrophication and resulting blooms, as it shows both DNA metabarcoding and microscopy may 

be applied to accurately identify community structure under the most eutrophic conditions. 

Where the methods differed more significantly was under oligotrophic and mesotrophic 

conditions. In these lakes, the composition of cyanobacteria generated from DNA metabarcoding 

was dominated by picocyanobacteria; a size fraction of cells that can be difficult to isolate and 

morphologically distinguish using inverted microscopy of Lugol’s preserved samples. This 

highlighted the complementary rather than identical information DNA can provide to 

morphological methods. It is possible that congruency among approaches will improve in the 

future if: a) fluorescence microscopy is used as an additional method to more fully capture the 

picocyanobacterial community and b) reference databases of cyanobacterial sequences become 

more fully populated.   

The datasets generated in chapter I and II showcased how cyanobacteria communities 

vary across Canadian lakes, and how the two methods of taxonomic assignment agree more 

closely in lakes of high nutrient state. In these eutrophic lakes, both microscopy and DNA 

metabarcoding showed increased relative abundances of several potential toxin-producing 
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cyanobacteria, particularly, Microcystis, Aphanizomenon, Dolichospermum and Planktothrix. 

Many of these taxa represented the majority of cyanobacteria biomass and were the dominant 

genera in various lakes across Canada. The third chapter in my thesis examined another key issue 

relevant for lake management: predicting the occurrence and concentration of cyanotoxins. 

Specifically, this chapter investigated the geographic distribution and predictors of microcystins, 

one of the most widespread group of cyanotoxins. Using a subset of 440-lakes, I quantified the 

concentration of total microcystins and developed empirical models that consider an exhaustive 

range of biotic and abiotic predictors. Chapter III also quantified the abundance of microcystin 

congeners and identified the variables that correlated to their respective concentrations. Given 

that congeners vary considerably in toxicity and persistence, and that there is very limited 

information on their abundances across temperate to subarctic lakes there is a need to gain a 

greater understanding of the factors that may influence their production.  
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Abstract 

Understanding the environmental conditions and taxa that promote the occurrence of 

cyanobacterial toxins is imperative for effective management of lake ecosystems. Herein, we 

modeled total microcystin presence and concentrations with a broad suite of environmental 

predictors and cyanobacteria community data collected across 440 Canadian lakes using 

standardized methods. We also conducted a focused analysis targeting 14 microcystin congeners 

across 190 lakes, to examine how abiotic and biotic factors influence their relative proportions. 

Microcystins were detected in 30% of lakes, with the highest total concentrations occurring in 

the most eutrophic lakes located in ecozones of central Canada. The two most commonly 

detected congeners were MC-LR (61% of lakes) and MC-LA (37% of lakes), while 11 others 

were detected more sporadically across waterbodies. Congener diversity peaked in central 

Canada where cyanobacteria biomass was highest. Using a zero-altered hurdle model, the 

probability of detecting microcystin was best explained by increasing Microcystis biomass, 

Daphnia and cyclopoid biomass, soluble reactive phosphorus, pH and wind. Microcystin 

concentrations increased with the biomass of Microcystis and other less dominant cyanobacteria 

taxa, as well as total phosphorus, cyclopoid copepod biomass, dissolved inorganic carbon and 

water temperature. Collectively, these models accounted for 34% and 70% of the variability, 

respectively. Based on a multiple factor analysis of microcystin congeners, cyanobacteria 

community data, environmental and zooplankton data, we found that the relative abundance of 

most congeners varied according to trophic state and were related to a combination of 

cyanobacteria genera biomasses and environmental variables.  
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Introduction 

The severity of cyanobacterial blooms is projected to increase in some waterbodies 

worldwide throughout the 21st century (Chapra et al. 2017; Kakouei et al. 2021). Increases in the 

frequency and duration of blooms in inland waters have been linked to a variety of 

environmental drivers including, but not restricted to, eutrophication (Pick and Lean 1987; 

Schindler et al. 2008) and increasing temperature (Kosten et al. 2012; Paerl and Paul 2012). A 

major concern is that many cyanobacteria can produce an array of toxins and other bioactive 

metabolites (collectively referred to here as cyanotoxins) that can be harmful to humans and 

wildlife.  

 Microcystins (MCs) are the most prevalent and commonly measured form of 

cyanotoxins, in Canada and worldwide (Kotak and Zurawell 2007; Orihel et al. 2012). MCs are 

cyclic heptapeptides with more than 275 congeners identified to date (Bouaïcha et al. 2019; 

Spoof and Catherine 2017). They vary in structure and toxicity, and are produced by a growing 

list of planktonic and benthic cyanobacteria genera distributed globally (Chernoff et al. 2020; 

Chorus and Welker 2021). Toxigenic strains arise in several of the common bloom-forming 

genera such as Microcystis, Dolichospermum and Planktothrix, as well as some 

picocyanobacteria (e.g., Aphanocapsa and Synechococcus) (Bernard et al. 2017; Chorus and 

Welker 2021). Although MCs are produced and stored within cells, they can leak into 

surrounding water following senescence and cell lysis (McKindles et al. 2020). Within and 

outside cells, MCs are relatively stable, resistant to chemical hydrolysis and oxidation at neutral 

pH, and can persist in the water weeks after the disappearance of a bloom (Zastepa et al. 2014; 

U.S. EPA 2019). Within the environment, MCs can bioaccumulate in food webs (Flores et al. 

2018; Kozlowsky-Suzuki et al. 2012) and are stored in lake sediments (Zastepa et al. 2015). 
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Human health implications arise via several exposure routes including dermal contact or 

ingestion from contaminated drinking and recreational waters, inhalation of atmospheric aerosols 

(Plaas and Paerl 2021), or consumption of contaminated food such as fish and algal dietary 

supplements (Jia et al. 2014; Miller and Russell 2017; Roy-Lachapelle et al. 2017). To reduce 

human exposure, recreational and drinking water regulatory (1.0 µg/L) and advisory 

concentrations (recreational thresholds at 2-4, 5-20, >20 µg/L) have been created by the World 

Health Organization (WHO) as well as many countries and jurisdictions. 

 The distribution of toxigenic strains and occurrence of MCs are associated with eutrophic 

conditions but are also influenced by numerous physical, chemical and biological factors 

(reviewed in Dai et al. 2016). Several large-scale surveys and meta-analyses have identified 

significant correlations between MCs and total phosphorus (TP) (Kotak et al. 2000; Orihel et al. 

2012; Scott et al. 2013), dissolved inorganic and total nitrogen (TN) (Buley et al. 2021; Dolman 

et al. 2012; Giani et al. 2005), temperature (Mowe et al. 2015), pH (Buley et al. 2021), dissolved 

organic carbon (DOC) (Beaver et al. 2014), and watershed morphology (Hayes and Vanni 2018). 

Others have also found positive relationships between MCs and zooplankton, including 

cladocerans and copepods, likely due to the presence of other edible algae or a tolerance by some 

zooplankton to toxic cyanobacteria (Wang et al. 2022). Despite the ubiquity of MCs in large-

scale datasets (Loftin et al. 2016), and the interest in modeling MCs as a target metric of water 

quality, uncertainties remain regarding the relative importance of MC predictors in field studies. 

Previous studies using large-scale datasets have often been limited to few predictors and have 

showed mixed results. These discrepancies may be the result of blooms being highly dynamic, 

and a lack of standardized sampling design and analytic techniques among studies (Buley et al. 

2021; Tillmanns and Pick 2011). Herein, we have developed a large dataset that includes 
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measurements of both total microcystins and specific congeners that vary in their toxicities. We 

considered a broader range of standardized predictors than previous studies to advance our 

understanding of the patterns and drivers at a continental scale. 

 While total MC concentrations have been included in many local and several national-

scale lake management programs (e.g., National Lakes Assessment (NLA) and the European 

Multi-Lake Sampling programs), analyses of the distribution and drivers of MC congeners 

remain overlooked at large scales. Moreover, although the number of identified congeners has 

increased in recent years, attention has focused primarily on MC-LR and -RR (Díez-Quijada et 

al. 2019). Thus far, congener composition has been associated with temperature (Mantzouki et 

al., 2018), nitrogen forms (Monchamp et al. 2014), as well as climate and nutrient conditions 

(Taranu et al. 2019). Such environmental predictors have also been related to changes in 

cyanobacteria community structure, but in much smaller datasets (Monchamp et al. 2014). Total 

MCs are commonly measured using enzyme-linked immunosorbent-based assays (ELISA) 

which targets the ADDA-moiety specific to microcystins and their congeners, although this 

technique is unable to distinguish congeners. Given the growing list of identified congeners, their 

range in toxicities and degradation rates, the ELISA approach may mis-represent the potential 

risk posed by MCs in a particular waterbody (Chernoff et al. 2020; Zastepa et al. 2014). 

 Based on the results from other large-scale surveys, we hypothesized that cyanobacteria 

biomass, nutrient concentrations (primarily TN), and temperature would be the strongest 

predictors of total microcystin concentration (Taranu et al. 2017; Yuan et al. 2014). We also 

hypothesized that congener relative abundances would be strongly correlated to cyanobacteria 

community composition and nutrient variables, mainly TN (Monchamp et al. 2014; Taranu et al. 

2019). Overall, this study is an essential resource for understanding the conditions that promote 
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cyanotoxin production across many lakes and ecozones in an era of accelerated environmental 

change.   

 

Materials and methods 

Lake selection 

 As part of the NSERC Canadian LakePulse Network (Huot et al. 2019), we focused on 

440 lakes sampled once across two summers (2018, 2019) following a standardized protocol 

(NSERC Canadian Lake Pulse Network, 2021). Lakes were selected from twelve ecozones 

(regions defined by unique climate, geology and vegetation; Wiken et al. 1996) following a 

stratified random block design, using three lake sizes (0.1-1km2, 1-10km2, 10-100km2) and three 

watershed human impact categories (low, medium, high) as the stratification groups (Huot et al. 

2019). Additionally, lakes were supposed to have a minimum depth of 1 m and be located within 

1 km of road access. To minimize seasonal effects, sampling occurred between the end of June to 

the beginning of September, a time which corresponds to the period of maximal thermal lake 

stratification.  

Sample collection and processing 

 From each lake, a suite of physiographic, water quality, land use, plankton and climate 

variables were collected and categorized into thematic groups (Table S1). Full descriptions of 

methods are found in Huot et al. (2019) and the LakePulse field manual (NSERC Canadian Lake 

Pulse Network, 2021). Briefly, physiographic variables such as lake depth, watershed size, slope 

and residence time were obtained from HydroLAKES v. 1.0 (Messager et al. 2016). The 

percentages of different land use categories (agriculture, forestry, mines, natural landscape, 

pasture, urban and water) were estimated for the watershed of each lake (Huot et al. 2019). 
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Climate variables were calculated as averages or sums of 7 and 30 days before each sampling. 

These data were accessed from ERA5-Land hourly data (Muñoz Sabater 2019).  

 The deepest point of each lake was selected to collect surface water for water quality, 

plankton and microcystin analyses. Here, an integrated sample representing the euphotic zone, 

defined as twice the Secchi disk depth to a maximum of 2-m, was taken using and acid-washed 

integrated tube sampler. Water samples were used to measure a variety of water quality 

parameters. In brief, TP was analyzed using a standard protocol at the Université du Québec à 

Montréal (UQAM) (Wetzel and Likens 2000) using molybdenum-blue method following 

potassium persulfate digestion. Similarly, water samples for SRP were filtered through 0.45 µm 

filters in the field and then followed the TP analytical protocol but without the first oxidation 

step. TN was analyzed using an OI Analytic Flow Solution 3100, following a potassium 

persulfate digestion, coupled with a cadmium reactor. Ions were filtered in the field through 0.45 

µm filters and measured by the Biogeochemical Analytical Service Laboratory at the University 

of Alberta following two protocols. Anions were determined by ion chromatography using a 

Dionex DX-600 and followed the US EPA Method 300.1. Cations were measured using an 

inductively coupled argon plasma optical emission spectrometer following the US EPA Method 

200.7. DIC and DOC were also filtered in the field through 0.45 µm filters and later analyzed 

with an OI Analytical Aurora 1030W TOC Analyzer using a persulfate oxidation method at 

UQAM. 

 In addition to this integrated surface-water sample, full water-column profiles for 

temperature, pH, dissolved oxygen, and specific conductivity were measured using a 

multiparameter RBR logger. Using a 100 μm mesh Wisconsin net, an integrated water-column 

zooplankton sample was collected. Zooplankton samples were narcotized with CO2 and 
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preserved in ethanol (70% final concentration) immediately after collection. Samples were 

identified and biomass was estimated by BSA Environmental Services laboratory (Ohio, U.S.A.; 

further details on zooplankton sampling provided in Paquette et al. (2021)). 

Phytoplankton counting and identification 

 Phytoplankton samples were collected from the sampling site of each lake. A 120 mL 

subsample of surface water was fixed and preserved in acidic Lugol’s iodine solution. Samples 

were identified and biomass was calculated by a sole taxonomist following Utermöhl’s 

sedimentation method (Lund et al. 1958) using an inverted microscope. Taxonomic names were 

provided to species level. Further details regarding the phytoplankton identification protocol are 

available in MacKeigan et al. (2022). 

Total microcystin and congener sample processing 

 For all 440 lakes included in this analysis, a 250 mL subsample of surface water was 

stored in a clean amber plastic bottle, immediately frozen and then shipped for laboratory 

processing. Total MCs were determined by enzyme-linked immunosorbent assay (ELISA). First, 

samples were lysed through three freeze-thaw cycles, filtered through 0.2 µm syringe filters, then 

analyzed on ELISA kits acquired from Abraxis, LLC (duplicates were carried out on 10% of 

lakes). The ELISA detection limit was 0.1 µg MC-LR/L.  

 Based on the ELISA results, a subset of 190 lakes were selected to measure the MC 

congener profiles. This subset included all lakes which had a detectable amount of MC from 

ELISA or had high cyanobacteria biomasses. We also randomly selected an additional 10% of 

lakes from the remaining 250 without detectable MC concentrations. The full analytical protocol 

for measuring the congeners is described in Zastepa et al. (2023). In brief, fourteen MC 

congeners targeted: MC-LR, MC-RR, MC-YR, MC-LA, MC-LY, MC-LW, MC-LF, MC-WR, 
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MC-HtyR, MC-HilR, D-Asp3-MC-RR, D-Asp3-MC-LR, Dha7-MC-LR, and Leu1-MC-LR. 

Microcystin standards were purchased from Enzo Life Sciences (Farmingdale, NY, USA), 

GreenWater Laboratories (Palatka, FL) and National Research Council Canada (Ottawa, Ontario, 

Canada). Metabolites were first extracted using a four-step process. Microcystins were measured 

using a Thermo Scientific TSQ AltisTM triple quadrupole mass spectrometer (Waltham, MA, 

USA) with a TriPlusTM RSH EQuan 850 system. Congeners were separated in under 6 minutes. 

These measurements were conducted at Wayne State University (Detroit, MI, USA). 

Data analysis 

 A series of modeling approaches were used to identify the most parsimonious set of 

predictors of total microcystins and MC congener composition. In all modeling approaches, we 

considered ~50 potential predictors including physiographic, water chemistry, land use, 

zooplankton, climate and cyanobacteria taxonomic data. Our response variables were the 

concentration of total MC or the full MC congener matrix. These analyses were performed using 

435 out of the 440 lakes in the dataset, as five lakes did not have phytoplankton count data. 

 All statistical analyses were conducted in R version 4.1.0 (R Core Team, 2021). For 

modeling total MC concentrations, we followed the data preparation and exploratory analyses 

outlined in Feld et al. (2016) to reduce the number of predictors to a robust subset for 

downstream quantitative analyses. First, missing values (NA) were replaced by medians from 

their respective ecozones. Variables were then log10, square root, or logit (used for land use 

percentage data; Fox and Weisberg 2011) transformed to normalize their distribution. For 

predictors with zero values, including cyanobacteria (total and individual genera) and 

zooplankton (Cyclopoid, Calanoid, Cladoceran, Daphnid, Chydorid, Bosminid, and small 

cladocerans), a small constant (X+1) was added to offset their distribution. Since we were 
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interested in potential direct relationships between MCs and the three most common genera in 

terms of biomass (i.e., Microcystis, Dolichospermum and Aphanizomenon), we included the 

common genera as individual predictors and considered the remaining cyanobacteria biomass 

(CBBother) as a fourth biomass variable. Collinearity among predictor variables was then assessed 

using Variance Inflation Factors (VIFs) (vifstep function in the usdm package; Naimi 2015), 

setting a VIF threshold of 10 or higher to indicate high collinearity (Borcard et al. 2018). After 

removing collinear variables, random forest (RF) models were constructed to rank the 

importance of the remaining 45 candidate predictors. RFs were fitted using the cforest function 

using the party package (Hothorn et al. 2021). While considering the potential mechanistic links 

between MC concentrations and highly ranked predictors, the top 20 predictors identified by the 

RF were selected for ensuing quantitative modeling analyses (Feld et al. 2016). 

 To account for the high number of non-detects in the MC data (70% of the dataset), we 

employed a zero-altered hurdle model approach, whereby the presence-absence of total MC is 

modeled first in a binomial generalized linear model (GLM), then the concentrations from lakes 

with a detectable amount of MC (30% of lakes) is modeled in a GLM fit with a gamma 

distribution (Zuur and Ieno, 2016). This technique was first used to model MC concentrations by 

Taranu et al. (2017) using data from the NLA in the USA, which contained a similar distribution 

of MC detects (present in 32% of lakes). This model type was justified as ecologically relevant 

for this distribution of data as the predictors determining MC presence may differ from those 

predicting its increase. It also allows the retention of a large number of observations and reduces 

biased estimates of standard errors potentially introduced when ignoring the high number of non-

detects (Taranu et al. 2017; Zuur and Ieno 2016). For each component of the two-part model, the 

most parsimonious predictors were fitted following a stepwise selection of variables using 
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Bayesian Information Criterion (BIC) values and p < 0.05 as the inclusion criterion. Only the top 

20 transformed environmental predictors identified in the RF analysis were considered in each 

part of the hurdle model. 

 For the multivariate MC congener data (n=190), we examined which environmental and 

cyanobacterial variables were best correlated with composition using a multiple factor analysis 

(MFA). The MFA is a correlative analysis that computes a principal component analysis (PCA) 

for each matrix. The PCAs are then centered and weighted according to the first eigenvalue and 

presented in one ordination plot to visualize relationships among three or more multivariate data 

matrices (Borcard et al. 2018). The MFAs were performed using the FactomineR package in R 

(Lê et al. 2008). The matrices considered were the MC congener composition, environmental 

variables, zooplankton groups and the cyanobacteria community assemblage. Prior to running 

the MFA, congener concentrations were converted to relative abundances, environmental and 

zooplankton variables were transformed, centered and scaled, and the cyanobacteria community 

biomass matrix was Hellinger transformed using the vegan package (Oksanen et al. 2019). To 

provide a bridge to the multivariate hurdle model on total MCs, a second MFA was run using 

only the lakes which had at least one congener detected (n=123). Lastly, to quantify and explain 

the unique and shared portions of variation explained among predictor groups, we ran a variation 

partitioning analysis using the varpart() function of the vegan package. This was performed on 

both 190- and 123- lake datasets. 

 

Results 

Cyanobacteria community structure 
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 We captured wide gradients in cyanobacteria biomass and water chemistry across the full 

collection of 440 lakes (Table S1 and S2). Cyanobacteria taxa were detected in 92% of lakes, but 

across lakes we detected considerable variation in biomass (median = 0.23 mg/L, maximum = 

681.5 mg/L) (Fig. S1A and B). On average, cyanobacteria represented 40% of total 

phytoplankton biomass across all sites. In total, 31 genera were identified by microscopy. 

Aphanocapsa was the most pervasive genus (occurring in 52% of lakes), followed by 

Dolichospermum (48%), Microcystis (48%), Limnothrix (35%) and Aphanizomenon (32%) 

(Table S2). Cyanobacterial biomass was highest in the Prairies and Boreal Plains ecozones of 

central Canada where bloom-forming taxa predominated (e.g., Aphanizomenon, 

Dolichospermum, Microcystis and Planktothrix). Lakes in the Prairies and Boreal Plains also had 

elevated TP concentrations (medians of 204 µg/L and 76 µg/L, respectively) relative to the 

national median (20 µg/L TP). 

Modelling total microcystins across Canada 

 MCs were detected in 30% (n=130) of lakes sampled across Canada and in all 10 

ecozones considered (Fig. 1A). The highest concentration measured by ELISA was 31.6 µg/L 

but often concentrations remained low (i.e., below drinking water guidelines). Only 10% of 

samples had concentrations above the WHO drinking water guideline (1 µg/L), and 8.6% 

exceeded the Canadian drinking water guideline (1.5 µg/L) (Health Canada 2022). Similar to 

cyanobacteria biomass, MC concentrations varied by ecozone, with 67% of all detections 

occurring in the Prairies and Boreal Plains (Fig. 1B). This distribution is also associated with 

trophic state, with detectable concentrations (≥ 0.1 µg/L) often occurring in lakes characterized 

as eutrophic or hypereutrophic (i.e., ≥30 µg/L total phosphorus, in Wetzel (2001)). 
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 Based on VIF analysis, we removed 11 collinear variables from the list of potential 

predictors, leaving 45 candidate environmental and cyanobacterial predictor variables. RF 

analyses on this set of predictors identified Microcystis biomass, TP, and Daphnia biomass as the 

three top ranking predictors of total MC concentrations. Additional important predictors included 

a range of biotic and abiotic variables including TN, soluble reactive phosphorus (SRP), 

cyclopoid copepod biomass, cyanobacteria biomass, temperature, and percents agriculture and 

pasture within the watershed.  

 Using the top 20 variables identified in the RF of the full lake dataset (n=435), the first 

part of the hurdle model showed that the probability of MC presence depended on a combination 

of biotic and abiotic variables; including increasing Microcystis biomass, Daphnia and cyclopoid 

copepod biomass, SRP, pH and 30-day average wind speed. These variables collectively 

explained 34% of MC presence (Table 1). In sites where MC was detected (n=130), increasing 

MC concentrations were best explained again by increasing Microcystis biomass, but also TP, 

CBBother, cyclopoid copepod biomass, dissolved inorganic carbon (DIC), and euphotic zone 

temperature. The best-fit model also included a negative relationship with Dolichospermum 

biomass and watershed slope (within a 100 m of the lake). This second part of the hurdle model 

explained 70% of the variation in MC concentration (Table 1).   

Distributions of microcystin congeners across Canada 

 Based on our congener analyses, we found that 65% of target lakes (123 out of 190) had 

at least one MC congener, and the lake-specific sum of concentrations varied from 0 to 22.5 

µg/L (Table S3). The most widely distributed congener was MC-LR, occurring in 61% of lakes 

(Fig. 2C). This was followed by MC-LA (37%), MC-HtyR (25%), MC-YR (21%) and D-Asp-3-

MC-LR (21%) (Table S3; Fig. 2C). As many as ten congeners were present in a given lake, with 
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MC-LR and MC-LA typically representing the dominant forms. Specifically, MC-LR was the 

dominant (most abundant) in 42% of the 190-lake subset, while MC-LA was the dominant in 

15% of the subset (Fig. 2A and B). However, most of the targeted congeners were scarcely 

found, and one of the 14 congeners was not detected in any lake (i.e., MC-LW; Fig. 2C).  

 The diversity of MC congeners (calculated using the Shannon index) was highest in 

central Canadian ecozones, where total microcystin and cyanobacteria biomass values were 

greatest (Fig. 3). In lakes with at least one congener detected, 79% (97 out of 123) contained 

multiple variants, and 21% had more than five. Overall, MC congener diversity showed a 

positive with relationship with total cyanobacteria biomass, but interestingly, no relation with 

cyanobacteria genus diversity (Fig. S2A and B).  

 The MFA for the 190-lake dataset highlighted that the composition of congeners was 

correlated with specific biotic (cyanobacteria and zooplankton communities) and abiotic 

(environmental) factors (Fig. 4A and B). The first and second dimensions cumulatively 

explained 31.5% of the variance and showed that congeners were strongly correlated to one 

another (clustered together in the MFA ordination space). Their distributions were associated 

with lake trophic state. Almost all congeners showed higher relative abundances in eutrophic and 

hypereutrophic lakes and were collectively correlated with elevated nutrients (TN and TP), water 

temperature, DOC, DIC, ions, zooplankton and agricultural land-use. Only MC-YR was situated 

opposite to eutrophic conditions, but this effect was marginal. Several congeners were also 

correlated with specific cyanobacteria genera. For example, MC-RR, -LA, -WR and Leu1-MC-

LR clustered with Planktothrix and Microcystis. MC-LR and Dha7-MC-LR were associated with 

Aphanizomenon (i.e., a non-MC producer) and MC-YR was associated with Dolichospermum 

biomass. Finally, we also noted congruence between MC congeners and zooplankton variables. 
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For instance, the cluster of MC-RR and -LA was categorized by lakes with elevated cyclopoid 

copepod and small cladoceran biomass (as well as increased air and water temperature, wind 

speed and ion concentrations (chloride, sulfate and sodium)). Meanwhile, higher relative 

abundances of MC-LR were characteristic of lakes with greater Daphnia biomass (as well as 

chlorophyll-a, color and moderately with TP and SRP).  

 To identify the proportion of variation explained uniquely and jointly by our three 

predictor groups, we ran a variation partitioning analysis. Although environmental variables 

explained a slightly more unique proportion of the variation, overall explanatory power was low 

(<10%), and the highest proportion of variation was explained jointly by environmental variables 

and the cyanobacteria community (Fig. 5). 

 In the subset of lakes where at least one congener was detected (n=123), the first and 

second MFA dimensions explained a comparable proportion of variation (27.1%), and overall, 

displayed similar relationships between congeners and the predictor matrices as the 190-lake 

dataset. However, we noted a better separation of the MC congeners (Fig. S4A and B). In 

particular, the dominant congeners opposed one another in ordination space, with MC-LR being 

correlated again to Aphanizomenon, Daphnia and color, whereas MC-LA was more strongly 

related to Aphanocapsa, Microcystis and water temperature.  

 

Discussion  

 In this study, we developed a national-scale dataset of 440 lakes to examine the 

distributions and drivers of microcystins. Based on this extensive dataset, we found that a 

combination of elevated cyanobacteria biomass (i.e., Microcystis), nutrients (TP and SRP), 

zooplankton biomass (Daphnia and cyclopoid copepod biomass), temperature, DIC and pH were 
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the top predictors of total microcystins and were correlated with several congeners. We also 

detected a strong geographical signal, with the greatest concentration of most MC congeners 

detected in lakes from the Prairies and Boreal Plains; the most eutrophic ecozones. The two most 

dominant and widespread congeners were MC-LR and MC-LA. However, several less studied 

congeners were widely detected across Canadian lakes. Overall, our study highlights that the risk 

of detecting MCs varies substantially according to geography, and despite the inclusion of 

dozens of predictor variables, most of the significant drivers (i.e., nutrients, temperature and 

zooplankton) either directly or indirectly promote cyanobacteria biomass. For that reason, 

management efforts targeting nutrient controls are well suited for mitigating both cyanobacteria 

and their microcystins.  

 

Predictors of total microcystin concentrations 

 MCs are highly variable in space and time, and although extensive laboratory and field 

studies have identified biotic and abiotic environmental conditions associated with increasing 

MC occurrence (reviewed in Dai et al. 2016; Neilan et al. 2013; Rastogi et al. 2014), the factors 

that influence their production are variable from strain to strain (Dai et al. 2016; Huisman et al. 

2018). As a result, taxa that may produce MC are referred to as potentially toxic taxa. 

Furthermore, the factors that explain variation can differ between spatial and temporal scales 

(Tillmanns and Pick 2011). Overall, reliably predicting MC concentrations can be challenging, 

but we have aimed to maximize variance explained by incorporating a broader range of potential 

predictors (biotic and abiotic) and standardizing the way in which the data were collected across 

a national sampling campaign. 

Cyanobacteria biomass 
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 Foremost, we observed a positive relationship between MC concentrations and the 

biomass of several genera including Microcystis, Dolichospermum, Aphanocapsa and 

Aphanizomenon (Fig. S5; Fig. S6). Whereas the occurrence of potential MC producers (Table 

S2) does not always translate into occurrence of MCs (Hollister and Kreakie 2016; Merel et al. 

2013; Sinang et al. 2013), MC concentrations are often positively correlated to the abundance of 

potential toxin-producing taxa in large-scale datasets (Beaver et al. 2014; Pick 2016; Shan et al. 

2020). For example, Dolman et al. (2012) found that MC concentrations were positively 

associated with Planktothrix biomass in a 102-lake study of German sites. In North American 

lakes, the substantial variation in MC concentration has been explained by Microcystis and 

Dolichospermum biomass, even before the inclusion of abiotic variables (Giani et al. 2005; 

Monchamp et al. 2014; Rolland et al. 2005). Across our dataset, Microcystis biomass was the top 

predictor of total MC and was retained in both parts of the hurdle model (Table 1). As a key 

producer of MCs, this positive association was expected. Some authors have even provided 

evidence of an association between enhanced MC synthesis with increasing cell densities of 

Microcystis (Wood et al. 2012, 2021). Upregulation of MC synthesis may be related to cell-to-

cell signaling, or as a response to oxidative stress and photodamage (Omidi et al. 2018; Wood et 

al. 2021).   

 Knowledge of which taxa are capable of producing MC is continuously expanding 

(Chorus and Welker 2021; Erratt et al. 2022). Several studies have found taxa not reported to be 

producers of MCs are correlated to MC concentrations, such as Aphanizomenon (Chen et al. 

2007; Zastepa et al. 2017a). Likewise, we found Aphanizomenon biomass to be positively 

associated with MCs (Fig. S6). Based on the available data, we cannot discern whether 

Aphanizomenon strains were in fact producing MCs, and it is possible that the positive affiliation 
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is derived from known MC producers co-existing within Aphanizomenon blooms (Zastepa et al. 

2017a). Among the more recent discoveries of potential toxin-producers are several 

picocyanobacteria (Jakubowska and Szeląg-Wasielewska 2015). Most notably, the 

picocyanobacteria Aphanocapsa (present in 52% of our lakes) was also significantly, positively 

associated with MC concentrations (Fig. S6).  

Nutrients 

 Both nitrogen and phosphorus are essential for phytoplankton metabolism, and their 

concentrations have been widely identified as important predictors of both cyanobacteria 

biomass and MC production at continental scales (Dolman et al. 2012; Yuan and Pollard 2017) 

and laboratory studies (Wagner et al. 2021, 2019). After Microcystis biomass, phosphorus (TP 

and SRP) was the most important predictor of MC concentrations. Although TN was not selected 

in the final model, the highest MC concentrations occurred when both TN and TP were elevated 

(50 µg/L and 300 µg/L, respectively) and the ratio of TN:TP was low (<23:1) (Fig. S7A and B). 

The relationship with TN was low but increased linearly above ~300 µg/L, whereas the 

relationship with TP was unimodal (increasing up to 800 µg/L and decreasing thereafter: Fig. S8 

A and B). In the final model, we identified SRP as the nutrient most strongly related to the 

probability of detecting MCs, while TP was strongly correlated with increasing MC 

concentrations (Table 1). SRP has been recognized as a main driver of MCs in lakes, primarily as 

an available nutrient source for cell growth (Lee et al. 2015; Wang et al. 2022). Previous studies 

have found strong correlations between MC concentrations and TP, invoking that phosphorus 

increases the growth rate of cells and facilitates MC production (Harke and Gobler 2013; Rinta-

Kanto et al. 2009).   

Other physical-chemical predictors 
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 Both increasing pH and DIC were associated with MC presence and concentrations, 

respectively. Correlations between MC and DIC have also been reported in previous studies. 

However, as with TP, the mechanism is most likely indirect through cyanobacterial growth 

(Buley et al. 2021; Tao et al. 2012). Cyanobacteria possess complex carbon concentration 

mechanisms, allowing them to utilize different forms of inorganic carbon depending on what is 

available (Pick and Lean 1987; Talling 1976), and thus help them maintain elevated 

photosynthetic rates and possibly MC production rates across different environments. Increased 

photosynthetic rates deplete dissolved carbon dioxide from the water and increase pH. 

Furthermore, MC may be produced to allow cyanobacterial cells to adapt to different 

environmental conditions, including low and high DIC (Omidi et al. 2018), though more work is 

needed in this area. 

 Despite the modest temperature gradient (since we restricted our sampling period to the 

warmest months), average euphotic zone temperature emerged as a significant predictor in 

modeling MC concentrations (Table 1). Elevated temperatures can promote MC production in a 

number of ways (Dai et al. 2016; Omidi et al. 2018). First, temperature stimulates cyanobacteria 

growth, notably Microcystis, which have higher optimum growth temperatures relative to other 

taxa (Paerl et al. 2011; Paerl and Paul 2012), although MC production appears to have a lower 

temperature optimum than Microcystis growth (Martin et al. 2020; Peng et al. 2018). In national 

scale models, temperature (along with nutrients) has been one of the leading predictors of 

cyanobacteria biomass (Beaulieu et al. 2013; Kosten et al. 2012). Temperature may also increase 

MC cellular quota and regulate release (Mowe et al. 2015; Walls et al. 2018). Toxic to non-toxic 

biomass ratios have also been observed to rise with temperature (Davis et al. 2009; Dziallas and 

Grossart 2011). Davis et al. (2009) showed that an increase of 4°C yielded significantly higher 
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growth rates of toxic Microcystis strains over non-toxic genotypes. Peak MC production and 

release appears tightly coupled with optimum growth rates and photosynthesis, with several 

previous studies showing the highest concentrations of MCs between 20°C and 25°C; a similar 

range to what we observed (Kelly et al. 2019; Tao et al. 2012; Walls et al. 2018). One hypothesis 

as to why MC cellular quotas increase with temperature is that MC protects against oxidative 

stress that occurs at high temperatures when photosynthetic rates are elevated (Dziallas and 

Grossart 2011; Omidi et al. 2018). However, lower temperatures may also result in oxidative 

stress (Martin et al. 2020).   

Zooplankton 

 The strong, positive correlations between MCs and the biomass of multiple zooplankton 

groups, including Daphnia and cyclopoid copepods, were intriguing results from our analyses. 

Increasing Daphnia biomass was a predictor of MC presence, while increasing cyclopoid 

copepod biomass was a significant predictor of both the presence-absence (part 1 of hurdle 

model) and the continued rise (part 2 of hurdle model) in MCs (Table 1). Previously, cladoceran 

and copepod biomass were also found to be positively correlated with intracellular and 

extracellular MCs in a large Chinese lake; this pattern was attributed to zooplankton having 

increased prey selectivity, tolerance to cyanobacteria and/or experience predator release 

concurrent with blooms (Ger et al. 2016; Wang et al. 2022). Copepods exhibit selectivity when 

cyanobacteria are dominant, with some populations exhibiting increased selective avoidance 

quickly after exposure to Microcystis cells (Ger et al. 2011; Leitão et al. 2018). Copepods may 

even use microcystins as detection cues to distinguish between toxic and non-toxin Microcystis 

strains (Agasild et al. 2019; Ger et al. 2016).  
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 Daphnia have been shown to evolve tolerances to MCs across short time frames (<10 

generations) allowing them to coexist and even suppress toxic blooms (Ger et al. 2016; 

Gustafsson and Hansson 2004; Jiang et al. 2016). Tolerance to MCs is strengthened by previous 

exposure to toxic cyanobacteria (Tillmanns et al. 2011). In numerous cases, Daphnia genotypes 

isolated from high nutrient lakes were less inhibited by MCs than those from low nutrient lakes 

(Chislock et al. 2013; Wilson et al. 2006). In the present study, the majority (66%) of MCs were 

detected in the Prairies and Boreal Plains, where numerous lakes have been eutrophic for 

decades and possibly centuries. It is conceivable that zooplankton in these lakes have been 

exposed to toxic blooms for generations, allowing ample time to develop tolerances (Zastepa et 

al. 2017b). The positive relationships between MC and zooplankton groups may also stem from 

alternative mechanisms: 1) predation release due to anoxia-driven fish kills; and 2) increased 

food quality and quantity fueled by the microbial loop (Bec et al. 2006; Wang et al. 2022). 

Overall, zooplankton biomass is not likely a direct driver of MC production, but these toxins 

may not be such a deterrent and could provide an important link in food web transfer of MCs 

(Sotton et al. 2014). 

Microcystin congener distribution and drivers 

 There is a long history of MC-LR being the most targeted and widespread found MC 

congener (Pick 2016). However, several recent analyses have highlighted the frequency of 

additional, often overlooked congeners (Díez-Quijada et al. 2019; Turner et al. 2018). A broad 

survey of European lakes recently identified MC-YR as the most prevalent congener across a 

137-lake dataset (Mantzouki et al. 2018). In contrast, MC-LA is encountered more frequently in 

North American lakes (Pick 2016; Taranu et al. 2019) and is largely absent from European sites. 

Across our 190-lake Canadian dataset, we targeted 14 congeners and found MC-LR and -LA to 
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be the most common (Fig. 2A and C), with MC-LA reaching the highest concentrations. Our 

MC-LA results are interesting as it is as toxic as MC-LR (Chernoff et al. 2020), exhibits greater 

persistence in surface water (Zastepa et al. 2014) and has been linked to wildlife fatalities (Miller 

et al. 2010). The other congeners varied in concentrations and frequencies of detection from 

0.5% of lakes (D-Asp3-MC-RR) to 25% (MC-HtyR). Thus, several congeners may be more 

common than previously thought in Canadian lakes, and correlated to different environmental 

variables and cyanobacterial taxa (Díez-Quijada et al. 2019; Pick 2016).  

 We observed that congener richness and diversity was elevated in the Prairies and Boreal 

Plains, and both increased with cyanobacteria biomass and MC concentrations (Fig. 3; Fig. S3). 

Although direct comparisons to other studies are challenging because the availability of 

standards has changed over time, increased MC richness and diversity with elevated 

cyanobacteria biomass has been documented in other regions (Bouhaddada et al. 2016; 

Mantzouki et al. 2018). In our dataset, 51% of lakes had at least two congeners. Congeners can 

be produced by several cyanobacteria genera, each of which can synthesize multiple MCs 

simultaneously (Puddick et al. 2014). However, congener profiles and their diversity most likely 

reflect strain level differences within species, which have shown considerable variation in the 

number of congeners produced by each strain within a bloom. Congener diversity decreased in 

lakes outside of the Prairies and Boreal Plains; deeper, low-nutrient and strongly stratified waters 

are more characteristic of lakes outside of this region. Comparably, Mantzouki et al.’s (2018) 

broad-scale European synthesis noted reduced diversity with water column stability. Deeper, 

lower nutrient sites may represent more selective conditions for cyanobacteria communities, 

promoting a single taxon to dominate the assemblage, and correspondingly leading to a decrease 
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in potential MC producers. Lower-nutrient conditions also limit biomass growth, which we also 

found to be positively related to increasing congener diversity.  

 Among field and laboratory analyses, congener composition has been shown to vary in 

relation to several environmental conditions including nitrogen availability (Van De Waal et al. 

2009), light (Tonk et al. 2005), temperature (Mantzouki et al. 2018) and weather conditions 

(Taranu et al. 2019). MC-LR has been associated with strong winds, higher temperatures and 

elevated nutrients, whereas MC-LA has been associated with intermediate winds, wetter and low 

nutrient conditions (Taranu et al. 2019). Across our 190-lake dataset, the detection and relative 

abundance of congeners was first dependent upon nutrient status (Fig. 4). Considering the subset 

of lakes with at least one congener detected (n=123), the relative abundance of congeners was 

structured by several biotic and abiotic variables (Fig. S3). In particular, MC-LR was positively 

correlated with higher Daphnia biomass, color and phosphorus, whereas MC-LA was more 

closely correlated to increased urban land and euphotic temperature and Dolichospermum 

biomass (Fig. S3). Interestingly, the occurrence of several less routinely monitored congeners 

were not positively correlated to a particular taxon but were most associated with eutrophic lake 

conditions. For instance, MC-HilR and -HtyR correlated positively to TP, SPR, TN, DOC, DIC 

and agricultural land, all of which were elevated with congener diversity and total microcystin 

concentration (Fig. S3).  

 Although environmental factors explain some variation in MC congener composition, 

these relationships are likely mediated by the cyanobacteria community, which in turn are 

directly affected by environmental gradients (Monchamp et al. 2014; Taranu et al. 2019). In an 

analysis of congener profiles across 70 English lakes, Turner et al. (2018) found weak 

relationships between environmental variables and congeners directly, suggesting their profiles 
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are linked to cyanobacterial species successional patterns. On a relative scale, we noted MC-LR 

appears to be more closely related to Aphanizomenon biomass; an unidentified producer of MCs, 

whereas MC-LA was related to Planktothrix, Microcystis and Dolichospermum. Ultimately, due 

to strain level differences within genera, it is difficult to fully disentangle the unique and shared 

effects of environmental variables and cyanobacteria genera on MC congener composition. 

Future research in metagenomics could help resolve some of the strain level differences among 

lakes and supplement our understanding from the classical taxonomy.  

 From a management perspective, changes in land use can result in greater nutrient loads 

to lakes, which in turn influence MC production. In previous multi-lake analyses, elevated MC 

concentrations were largely reported in agriculturally dominated regions with low percentages of 

forested land cover (Beaver et al. 2014). Furthermore, agricultural practices and the subsequent 

nutrient loading contributed to the record-breaking cyanobacteria bloom in Lake Erie in 2011 

(Michalak et al. 2013). This connection also has health implications as crops from agricultural 

fields irrigated with MC-contaminated water can bioaccumulate MCs and create a new exposure 

route for consumers (Melaram et al. 2022; Miller and Russell 2017). Overall, we identified the 

positive influence of several environmental predictors including chemical, zooplankton and 

climate variables. However, mitigation of MC exposure should center on nutrient control.    

 

Conclusions 

 Across the 440 temperate-boreal lakes examined herein, total MCs were detected in 

relatively low concentrations, with only 10% of sites exhibiting MC concentrations above WHO 

drinking water guidelines. Lakes with elevated levels of MC were largely concentrated in the 

Prairies and Boreal Plains ecozones of central Canada, in which lakes are characterized by 
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eutrophic and ion-rich waters. We identified that high nutrients (mainly soluble reactive and total 

phosphorus) and Microcystis biomass were the most important predictors of MC, whereas 

alkalinity (DIC and pH), wind, temperature, and zooplankton biomass were identified as 

explanatory variables of secondary importance. Congener analyses provided further insights into 

the toxicity of MC, and the drivers associated with MC production. A variety of less commonly 

measured congeners were present across Canadian lakes, however MC-LR and -LA remained the 

most abundant and therefore should be considered in monitoring programs. Overall, congener 

relative concentrations are positively, but only moderately related to many of the same 

environmental predictors that control cyanobacteria biomass, including nutrients and ion 

concentrations. Our analysis serves as an essential resource for evaluating the current incidence 

of MCs and congeners in Canadian lakes, and for estimating MC occurrence under future 

scenarios of environmental change. 
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Tables Chapter III 

Table 1. Summary statistics for part 1 and 2 of the zero-altered hurdle model. 
Part 1: microcystin presence/absence binomial GLM (n=435)  
 

 

Intercept Micro DAPH SRP CYCL pH Wind30   Pseudo-r2 
-1.17  
(0.15) 

0.69  
(0.17) 

0.37  
(0.15) 

0.49  
(0.17) 

0.33  
(0.15) 

0.54  
(0.19) 

0.35  
(0.15) 

  0.34 

          
Part 2: detection-limit truncated gamma GLM (n=130) 
 
Intercept Micro TP CBBother CYCL DIC Temp_euph SLOPE Dolicho Pseudo-r2 

-0.53 
(0.04) 

0.40 
(0.05) 

0.17 
(0.06) 

0.10 
(0.05) 

0.12 
(0.05) 

0.14 
(0.05) 

0.11 
(0.04) 

-0.16 
(0.05) 

-0.13 
(0.04) 

0.70 

          
Regression coefficients reported with their standard error in parenthesis. Micro=log10(Microcystis biomass);  

DAPH=log10(Daphnia biomass); SRP=log10(soluble reactive phosphorus); CYCL=log10(cyclopoid copepod 

biomass); Wind30=square-root(average 30-day wind speed); TP=log10(total phosphorus); 

CBBother=log10(cyanobacteria biomass excluding Microcystis, Aphanizomenon and Dolichospermum); 

DIC=log10(dissolved inorganic carbon); Temp_euph=euphotic zone temperature; SLOPE=log10(watershed 

slope within 100m of lake); Dolicho=log10(Dolichospermum biomass). 
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Figures Chapter III 

 

Figure 1. A) Map of log-transformed total microcystin concentrations (µg/L) across the 440-lake 

dataset. Ecozones are highlighted in color. B) Boxplot of log-transformed total microcystins 

(µg/L) by ecozone. 
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Figure 2. Map of the dominant microcystin congener present in each lake sampled in the 

congener analysis (n=190). Note: ND = sites with no MC congener detected. B) Boxplot of 

congener concentrations (ng/L). MC-LW was not detected in any of the study lakes. C) 
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Frequency of occurrence of microcystin congeners based on the 190 subset considered for 

congener analyses. 

 

 

 

Figure 3. Boxplot of microcystin congener diversity (calculated using the Shannon diversity 

index) by ecozone. 
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Figure 4. Multiple factorial analysis (MFA) of microcystin congeners, cyanobacteria community 

and environmental variables on the 190-lake dataset. The MFA was divided into two plots of A) 

microcystin congeners with the cyanobacteria assemblage and B) zooplankton assemblage and 

environmental variables. 
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Figure 5. Variation partitioning analysis of microcystin congener relative abundances on the 

190-lake dataset, constrained by cyanobacterial, environmental and zooplankton variables.   
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Appendices Chapter III  

Table S1. Summary statistics of the environmental predictors used in the current study. 

Variables are grouped into five broader categories: physiography, water quality, land use, 

plankton and climate. 

Variables Units Minimum Maximum Median 
Physiography     
Lake area  km2 0.0009 94.82 0.6736 
Watershed area km2 0.208 37,460 14.34 
Watershed area:surface area - 1.545 11,632 16.19 
Lake depth m 0.25 151 8.6 
Circularity - 0.0079 0.9269 0.3156 
Altitude m 2 1555 568 
Residence time days 0.1 270,759 572.6 
Shoreline length m 155 218,835 5,044 
Slope 100m ° 0.09 25.1 3.415 
Human population People/km2 0 335,522 18 
Water quality     
Specific conductivity uS/cm 13.11 37,392 221.4 
Temperature- euphotic °C 11.80 29.73 19.67 
Temperature- water column °C 6.1 30 16.6 
Average Brunt-Väisälä s-1 0 0.0075 0.0008 
Centre buoyancy - 0.5676 20.80 4.289 
Colour mg/L Pt 0.092 396.5 20.59 
Dissolved organic carbon mg/L 0.12 220.2 10.60 
Dissolved inorganic carbon mg/L 0.105 879 19.76 
pH - 5.51 10.28 8.42 
Chlorophyll-a µg/L 0.0534 381.5 2.592 
Total phosphorus µg/L 1.39 10,053 20.41 
Total nitrogen mg/L 0.025 4.358 0.3109 
Soluble reactive phosphorus µg/L 0.5 4,066 6.842 
Total nitrogen: Total 
phosphorus ratio 

- 0.5446 92.39 11.44 

Calcium mg/L 0.005 535.5 20.63 
Potassium mg/L 0.005 279.2 1.601 
Sodium mg/L 0.01 14,805 7.867 
Chloride mg/L 0.015 12,358 7.245 
Magnesium mg/L 0.005 2,249 7.444 
Sulfate mg/L 0.02 16,971 8.448 
Land use     
Agriculture % 0 86.2 0 
Forestry % 0 50.9 0.18 
Mines % 0 17.8 0 
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Natural landscape % 2.13 98.4 71.9 
Pasture % 0 36.3 0 
Urban % 0 92.6 1.93 
Water % 0.07 66.8 9.9 
Zooplankton     
Cyclopoid µg/L 0 2,643 6.905 
Calanoid µg/L 0 13,403 19.17 
Cladoceran µg/L 0 11,665 29.76 
Daphnid µg/L 0 11,663 17.88 
Small cladocerans µg/L 0 2,367 1.319 
Climate     
7-day average air temperature °C 6.5959 26.25 17.07 
30-day average air temperature °C 10.09 23.06 16.89 
7-day total precipitation m 0.0002 1.141 0.1560 
30-day total precipitation m 0.0340 2.673 0.9031 
7-day net solar radiation J/m2 2,821,571 8,046,217 5,376,189 
30-day net solar radiation J/m2 4,260,946 7,724,438 5,774,651 
7-day average wind speed m/s 0.5323 5.30 2.052 
30-day average wind speed m/s 0.6651 5.225 2.135 
7-day total heat degree days days 0 79.19 10.39 
30-day total heat degree days days 0 239.1 57.02 
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Table S2. Biomass summary statistics (µg/L) for each cyanobacteria genus detected across study 

lakes with phytoplankton count data (n=435). 

Taxon Maximum 
(µg/L) 

Mean 
(µg/L) 

Median 
(µg/L) 

% Detected 
in (n) lakes 

Anabaena 4,253 12.71 0 3.22 
Anabaenopsis 42,400 110.9 0 0.46 

Aphanizomenon 626,764 15,084 0 32.2 
Aphanocapsa+ 
Synechocystis 

6,294 63.77 0.855 52.6 

Aphanothece 117.6 0.684 0 2.99 
Arthrospira 160.4 0.369 0 0.23 
Chroococcus 2,376 13.56 0 18.9 

Chrysosporum 1,467 3.372 0 0.23 
Coelosphaerium 72.17 0.275 0 0.69 

Cuspidothrix 1,876 4.312 0 0.23 
Dolichospermum 165,502 2,122 0 48.5 

Geitlerinema 8,115 20.61 0 3.91 
Gloeotrichia 1,069 4.404 0 0.69 

Gomphosphaeria 461.9 2.805 0 1.61 
Limnothrix 14,750 105.9 0 35.2 

Lyngbya 144,343 401.4 0 1.15 
Merismopedia 164.2 3.631 0 15.4 

Microcystis 155,776 1,546 0 48.3 
Nodularia 30,282 69.90 0 0.69 

Oscillatoria 779.5 1.792 0 0.23 
Phormidium 157.2 0.774 0 3.68 

Planktolyngbya 1,943 14.68 0 3.68 
Planktothrix 258,085 1,420 0 14.9 

Pseudanabaena 10,852 31.17 0 13.1 
Rhabdoderma 93.8 0.293 0 1.15 
Rhabdogloea 1.804 0.004 0 0.23 

Romeria 237.4 0.915 0 0.92 
Snowella 134.7 1.598 0 5.75 
Spirulina 172.0 1.018 0 0.69 

Synechococcus 8.554 0.035 0 2.99 
Woronichinia 3,586 16.38 0 13.8 

Total 
cyanobacteria 

681,497 21,060 232.0 92.9 

Total potential 
MC-producing 

258,146 5,314 86.07 87.1 

Aphanocapsa and Synechocystis were counted together. The minimum for each genus was 0 

µg/L. Potential MC producing genera are bolded, based on list in (Chorus and Welker, 2021). 
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Table S3. Microcystin congener summary statistics (ng/L) for each measured variant across the 

subset of lakes chosen for congener analysis (n=190 lakes). Total microcystin concentrations 

based on ELISA (µg/L) for the full dataset (n=440 lakes). 

Microcystin 
congener 

Minimum  
(ng/L) 

Maximum 
(ng/L) 

Mean 
(ng/L) 

%Detection 
(n=190) 

MC-LR 0 21,220 550 61 
MC-LA 0 22,150 309 37 

MC-HtyR 0 2,510 41.4 25 
MC-YR 0 2,260 66.1 21 

D-Asp3-MC-LR 0 730 22.8 21 
Dha7-MC-LR 0 426 11.5 15 

MC-LY 0 553 8.83 13 
MC-HilR 0 343 7.02 12 

Leu1-MC-LR 0 2,200 25.7 11 
MC-RR 0 254 5.06 10 
MC-WR 0 139 1.47 3.7 
MC-LF 0 130 0.842 1.6 

D-Asp3-MC-RR 0 11 0.058 0.53 
MC-LW ND ND ND ND 

 Minimum 
(µg/L) 

Maximum 
(µg/L) 

Mean 
(µg/L) 

 %Detection 
(n=440) 

MC-total 
(ELISA) 

0 31.6 0.61 30 
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Figure S1. A) Map of log-transformed total cyanobacteria biomass (CBB) across the 440-lake 

dataset and B) boxplot of CBB by ecozone. 
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Figure S2. Relationship between microcystin congener diversity (calculated using the Shannon 

index) and total cyanobacteria biomass (µg/L) (A) and cyanobacteria Shannon diversity (B). 

Trends fit using a LOESS curve. 
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Figure S3. Multiple factorial analysis (MFA) of microcystin congeners, cyanobacteria and 

zooplankton community, and environmental variables for lakes where at least one congener was 

detected (n=123). The MFA was divided into two plots of A) microcystin congeners with the 

cyanobacteria assemblage and B) zooplankton assemblage and environmental variables.  
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Figure S4. Variation partitioning analysis of microcystin congener relative abundances on the 

123-lake dataset (sites with at least congener detected), constrained by cyanobacterial, 

environmental and zooplankton variables.   

 

Figure S5. Relationship between total microcystin concentration (µg/L) and total cyanobacteria 

biomass. Trend fit using a LOESS curve. 
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Figure S6. Relationship between total microcystin concentrations (µg/L) and the biomass of 

several cyanobacteria faceted by genus. Trends fit with a LOESS curve. 
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Figure S7. Relationship between total phosphorus (µg/L) and total nitrogen (mg/L), with points 

colored by total microcystin concentration (µg/L) (A), and the relationship between microcystin 

concentration and the molar ratio of total nitrogen to total phosphorus (B). The black dashed line 

indicates the 23:1 ratio. 
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Figure S8. Relationship between total microcystin concentrations (µg/L) and total phosphorus 

(TP- µg/L) (A) and total nitrogen (TN- mg/L) (B). Trends fit with a LOESS curve. 
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COMPREHENSIVE SCHOLARLY DISCUSSION AND CONCLUSIONS 

 

 Lakes are of paramount importance to the health of humans and wildlife, providing 

enumerable ecosystem services (e.g., water for drinking, agriculture and recreation). Among the 

many recognized hazards that threaten lake biodiversity and their security as a water supply, the 

excessive growth of cyanobacteria remains one of the most consequential stressors (Reid et al. 

2018; Chorus and Welker 2021). Although cyanobacteria have been a natural component of 

aquatic ecosystems for some 2 billion years, there is mounting evidence that nutrient enrichment 

associated with agricultural and urban development are exacerbating their dominance in many 

lakes worldwide, including in Canada (Taranu et al. 2015; Pick 2016). Due to their negative 

ecological impacts and toxicity to humans and animals, there is a global effort to improve our 

understanding of cyanobacterial dynamics, particularly in the context of global change (Burford 

et al. 2020). This served as the primary source of motivation for this thesis. The main research 

goal was to provide a contemporary understanding of the distribution and predictors of 

cyanobacteria and their toxins across Canadian lakes. With the first pan-Canadian standardized 

lake sampling program, I sought to address three core objectives in three chapters. In the first 

chapter (Chapter I), I identified the best predictors of cyanobacteria biomass sampled across 

Canada, from an initial set of over 50 biotic and abiotic potential predictor variables. Second 

(Chapter II), I turned to the methods for quantifying the composition of cyanobacterial 

communities and assessed the congruency between traditional microscopy and modern DNA 

metabarcoding. In the last chapter (Chapter III), I quantified the concentration of total 

microcystins and many of the individual congeners; with these datasets I identified the most 

parsimonious set of predictors. Collectively, the empirical models and methodological 
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comparison developed in this thesis provide insights that can be used directly by lake managers 

in both the monitoring and mitigation of cyanobacteria. For example, I recently participated in an 

online symposium with lake managers from the state of California who were interested in the 

findings published in chapter 2. Together, the chapters in this thesis generated original 

contributions towards advancing our understanding of cyanobacteria growth and the current state 

of cyanobacterial patterns in Canada. However, many of the findings could inform decision 

making about temperate to subarctic lakes globally.   

 

Significance of findings and original contributions 

 In Chapter I, my data visualization and modeling provides a quantitative portrait of total 

cyanobacteria biomass and its composition from 640 lakes across Canada. This work revealed 

regional hotspots, with the highest concentrations of cyanobacteria occurring centrally, within 

the Prairies and Boreal Plains ecozones. Lakes in these regions were dominated by common 

bloom-forming and potential toxin-producing taxa including Microcystis, Aphanizomenon and 

Dolichospermum. Additional areas with elevated biomass include the Montane Cordillera in 

western Canada and the Mixedwood Plains in the southeast part of the country. Our empirical 

models corroborate earlier work and show the overwhelming significance of nutrients, 

particularly TP, as the leading predictors of cyanobacteria biomass. This finding extends on our 

current knowledge of cyanobacterial drivers, as several pervious large-scale models also 

emphasize the importance of nutrients (Downing et al. 2001; Beaulieu et al. 2013; Carvalho et al. 

2013). However, these models are often had access to only a select number of potential 

predictors and explained low amounts of variation. Despite the inclusion of a broader range of 

biotic and abiotic predictors, and developing a dataset entirely enumerated by a single and 
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highly-trained taxonomist, TP was still the most significant, exhibiting a non-linear log-log 

relationship with total biomass (back-transformed, this relationship increased until ~100 µg/L of 

TP, then tapered). The overwhelming importance of nutrients highlights that lake management 

strategies should continue to focus on nutrient reduction strategies when controlling 

cyanobacteria. Our findings also identified thresholds between biomass and significant 

predictors, which in the case of TP, demonstrated an abrupt increase cyanobacteria biomass 

above 40 µg/L of TP. By expanding the range of possible predictors of cyanobacteria, a more 

novel finding was the significance of zooplankton biomass. Contrary to the traditional viewpoint, 

we detected positive relationships between cyanobacteria and multiple zooplankton groups from 

small, specialized grazers like copepods, to large generalists like Daphnia. Although a range of 

possible mechanisms could be enabling these positive associations, zooplankton interactions 

should definitely be considered in future studies. Along with having constructed models for total 

cyanobacteria, we accounted for distinct ecological niches within the cyanobacteria community 

and identified the predictors of specific genera of interest. We observed that some of the top 

predictors vary by genus, which emphasizes the need to take into account specific variables 

depending on the dominant genera in a given lake. Interestingly, TP was the only variable 

significant in all genus-specific models, albeit at different critical thresholds. Collectively, our 

analyses presented in Chapter I identified the relative influence of physical, chemical and biotic 

predictors on cyanobacterial biomasses. Due to the standardization of variable collection and 

limited regional variation within models, these findings offer widescale applicability and may be 

used to estimate cyanobacteria biomass across temperate regions. 

 In Chapter II, I focused on how two methods for quantifying the composition of 

cyanobacterial communities compare: traditional microscopy and modern DNA metabarcoding. 



 [251] 

Our understanding of the environmental variables that promote the proliferation of cyanobacteria 

and the ability to construct models for specific genera (Chapter I) relies upon accurately 

characterizing their assemblages. However, acceptance of molecular methods requires 

benchmarking against the traditional morphological-based taxonomic approach (Pawlowski et al. 

2021). With the ongoing use of both methods, there is a necessity to assess the level of 

congruency between the communities generated by each approach. I used a subset of 379 lakes 

from Chapter I, as an opportunity to compare cyanobacteria communities from samples taken in 

parallel for both microscopy and DNA metabarcoding. This comparison represents an original 

contribution as there has yet to be a comparative analysis across a wide suite of lake types. 

Furthermore, lake managers can use these findings directly when deciding which taxonomic 

method to use. Our findings in Chapter II demonstrated a broad level of congruence between 

methods, with a clear separation of similarity among platforms among lakes of different trophic 

states. Mainly, microscopy and DNA metabarcoding generated more similar assemblages in 

eutrophic and hypereutrophic lakes. This has management implications as it provides support for 

the use of DNA to study and track blooms, of which are characteristic of eutrophic surface 

waters. I also observed the highest level of congruence between methods at coarser levels of 

levels of taxonomic, beginning at the Order level, and decreased when comparing genus level 

assignments. The biggest difference between methods was the detection of picocyanobacteria, 

which were underestimated by microscopy. It remains to be seen if the similarity could be further 

improved up on the future when picoplankton counts are performed using fluorescence 

microscopy as the form of light microscopy used is known to underestimate picoplankton (which 

themselves are numerically important in terms of individual cells, but often not in terms of 

biomass). Furthermore, future work could investigate whether amplicon length varies by taxa, 
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which could produce a consistent difference between metabarcoding and microscopic results. To 

date, comparative studies of different aquatic communities have suggested that DNA gives 

complementary as opposed to identical results (Keck et al. 2022). In this sense, light microscopy 

is able to provide quantitative measures of cyanobacteria biomass, upon which management 

guideline are based, and identify taxa that lack representation in reference sequence databases. 

Meanwhile, DNA metabarcoding is able is distinguish cryptic taxa and account for 

picocyanobacteria, which are more dominant taxa in oligotrophic and mesotrophic lakes. The 

main findings of this chapter shed light on discrepancies that remain between methods such as 

the incomplete state of reference databases, and the technical and biological limitations that 

managers should consider when deciding which method to use. Furthermore, our analysis 

utilized a key strength of the DNA metabarcoding approach which is the detection of genotype 

level variation within a particular genus. We observed a separation of Microcystis ASVs along a 

trophic gradient, highlighting distinct ecological niches within this genus. Shifts in dominant 

genotypes has been studied in previous analyses, including Microcystis, but never at this scale. 

Earlier work has associated changes in genotypes to shifts in bloom toxicity (Chun et al. 2020; 

Ninio et al. 2020). Our work provides additional support for incorporating molecular approaches 

into routine monitoring and tool for lake managers to target their analyses on toxigenic 

genotypes in the environment.     

 In Chapter III, I shifted focus onto one of the main ecological and public health concerns 

from the proliferation of cyanobacteria: their production of toxins. Using the same pan-Canadian 

standardized lake sampling program, I conducted a spatial analysis that targeted microcystins; a 

potent liver toxin and the most widely found class of cyanotoxin in lakes. I found that most 

elevated microcystin concentrations were located in the Prairies and Boreal Plains ecozones, but 
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in general total concentrations were low across Canada relative to regulatory guidelines. Given 

that Chapter I revealed that these regions contain the highest biomass of cyanobacteria, including 

of several toxin producers, the pattern in toxin concentrations was expected. I used a similar 

statistical approach as in Chapter I, but using an expanded number of potential predictors, 

including a wide range of biotic and biotic variables, including zooplankton and the biomass of 

known microcystin producers. Our findings demonstrated once again the overwhelming 

importance of nutrients, mainly TP and soluble reactive phosphorus (SRP), and Microcystis 

biomass as the best predictors. To account for the high number microcystin non-detects, we 

utilized a statistical framework to first model the presence-absence of microcystins, followed by 

modelling of concentrations only from just the lakes that had detectable microcystins (30%). In 

both cases, the best predictors were nutrients and Microcystis biomass. Like Chapter I, this 

chapter also identified positive correlations between zooplankton variables and microcystins. 

The positive influence is not likely a result of microcystin representing a defense strategy for 

cyanobacteria that produce the toxin, but rather, we suspect that co-existing zooplankton may 

have developed tolerance and avoidance traits to withstand exposure to such toxins. One of the 

key contributions to knowledge from this chapter is that the best predictors of microcystins 

identified by empirical models are all directly associated with the promotion of cyanobacteria 

biomass. This finding has important management implications as it suggests managers can focus 

their efforts on controlling cyanobacterial biomass alone, as opposed to separate efforts that 

address deal specifically with toxin concentrations. 

 This third chapter also addressed new questions regarding the distribution of microcystin 

congeners across Canadian lakes. Congeners exhibit a range of toxicities, yet to date, most 

studies focus exclusively on the distribution of MC-LR. Using a newly developed method 
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consisting of liquid chromatography and mass spectrometry, this complementary analysis 

conducted the largest spatial evaluation of microcystin congeners and evaluated their predictors. 

Despite the known occurrence of MC-LR in every Canadian province, our findings revealed the 

presence of 14 congeners across Canadian lakes, most of which were detected in relatively few 

lakes. The two most commonly found were MC-LR and -LA, considered to be the two most 

toxic. The relatively high diversity of congeners across the country suggests that targeting them 

may provide a more accurate assessment of the level of toxicity present in a given system. Our 

findings also demonstrated that the composition of congeners was only moderately related to a 

broad suite of environmental variables and cyanobacterial community data. Our current 

understanding of congener occurrence in relation to environmental conditions is incomplete and 

highlights the need of future investigators to consider alternative predictors or examine the 

conditions that promote the production of particular congeners at the strain level. 

 Collectively, one of the most pertinent contributions from this thesis is the geographic 

scale at which cyanobacteria and their toxins were analyzed, and the resulting benefits to 

management associated with this approach. There has been a growing effort to combine science 

and management needs to reduce the risks associated with the proliferation of cyanobacteria 

(Errat et al. 2022). Large-scale sampling plays an essential role in these efforts and have recently 

become more common. For example, the European Multi-Lake Survey (EMLS) sampled over 

360 lakes across 26 countries and has generated valuable information regarding the distribution 

of cyanotoxins and their drivers (Mantzouki et al. 2018b; Mantzouki and Ibelings 2018). The 

National Lakes Assessment (NLA) has sampled over 1,000 water bodies across the United States 

multiple times since 2007 and was used to build some of the earliest large-scale cyanobacteria 

and microcystin predictor models (Beaulieu et al. 2013; Taranu et al. 2017; Pollard et al. 2018). 
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Since cyanobacteria are a global phenomenon, there is a need to collect data at wide spatial 

scales and study their responses to environmental gradients across many regions and lake types 

(Mantzouki et al. 2018a; Mantzouki and Ibelings 2018). We adopted this framework and 

provided the first standardized sampling program of cyanobacteria and their toxins across 

Canadian lakes. There were numerous benefits associated with this national scale integration of 

data, including the standardization of sampling, which reduced collection biases and produced 

synchronic data in highly comparable datasets (Mantzouki et al. 2018a; Pérez-Jvostov et al. 

2019). The centralization of several analyses and the quality control of data promoted efficient 

data sharing and increased accessibility to many users. Lastly, the standardization of sample 

collection is highly significant to the development of robust models that can be applied to larger 

scales. This is particularly relevant in Canada, as although water guidelines are standardized 

nationally, cyanobacteria management strategies vary drastically by province (Rashidi et al. 

2021). The empirical model from this thesis, exhibited limited regional variation and utilized 

variables that were all collected using standardized protocols, including a single taxonomist. This 

promotes their use in management programs across the country. 

 A second key contribution is the consistency across empirical models, in emphasizing the 

role of phosphorus as the best predictor of cyanobacteria and microcystins. Across chapters, 

statistical models were constructed for total cyanobacteria, specific bloom-forming genera, their 

community composition as well as the presence and concentrations of microcystin. Despite 

considering an expanded range of biotic and abiotic variables, phosphorus was still the leading 

predictor across model types, including over nitrogen variables. Traditionally, management 

efforts to mitigate cyanobacteria blooms have centered around nutrient enrichment, with a 

particular emphasis on regulating phosphorus inputs (Paerl and Barnard 2020; Chorus and 
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Welker 2021). Support for phosphorus as the key nutrient for reverting eutrophication stems 

from field studies conducting in the Experimental Lakes Area originating in the 1970s (Schindler 

et al. 2008). Here, an experimental lake (Lake 227) was fertilized with constant annual inputs of 

phosphorus and decreasing inputs of nitrogen over the course of several decades. Despite halting 

nitrogen fertilization, cyanobacteria abundance remained elevate due to their ability to fix 

atmospheric nitrogen, thus compensate for the reduced loading. This led to conclusion that 

nitrogen management is futile and efforts should be focused on curtailing phosphorus inputs. In 

recent decades, this has challenged and debated extensively in the literature, with several 

researchers arguing for dual nutrient management. This is based on several authors noting that 

nitrogen limitation is common in many shallow water bodies, and that the fixation of nitrogen by 

some cyanobacteria is unable to meet ecosystem demands (Conley et al. 2009; Scott and 

McCarthy 2011; Paerl et al. 2016). Furthermore, there has been both heavy phosphorus and 

nitrogen pollution from a variety of human activities, including increased nitrogen loading to 

many lakes worldwide (Bogard et al. 2020; Tanvir et al. 2021). Large-scale models have 

provided important data and insights to this ongoing debate. For example, Beaulieu et al. (2013) 

found nitrogen to be a better predictor of cyanobacteria biomass in over 1,000 water bodies 

across the continental U.S. and argued that this could be due to intrinsically higher nitrogen 

demands in cyanobacteria. Others have noted the significance of phosphorus, including as the 

best predictor of microcystin concentrations (Giani et al. 2005; Wagner et al. 2019). However, 

cyanobacteria exhibit a non-linear increase with phosphorus, whereas its relationship with 

nitrogen increases linearly (Downing et al. 2001; Dolman et al. 2012). Across Canadian lakes, 

our models provide strong support for controlling phosphorus as the limiting nutrient to 

cyanobacteria. This does not exclude the importance of nitrogen, in fact, nitrogen alone still 
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explained a significant amount of variation in univariate biomass models. However, the 

consistency in response models highlights the close association between the cyanobacteria 

community, microcystins and phosphorus across Canada.  

 

Current limitations and future considerations 

 Overall, this thesis provides a broad overview of the distribution and predictors of 

cyanobacteria and their toxins in Canadian lakes. Together, the chapters provide data in regions 

where it was previously missing, and the standardization of sampling allow the results of our 

empirical models to be widely applied. The research advances our understanding of 

cyanobacteria in temperate regions and contributes relevant information towards emerging 

management issues. Nonetheless, there are still considerable gaps in knowledge and questions 

this thesis was not able to consider directly. Furthermore, we generated a plethora of different 

pieces of data that can be used in the future studies to address many of these gaps.     

 Although we identified the many benefits of snap-shot sampling, there are limitations to 

the multi-lake approach that may have restricted explanatory power in our models. For example, 

time-series analyses on individual, or few select lakes are able to capture seasonal shifts in 

cyanobacteria community composition and identify idiosyncratic trends specific to each lake. As 

a result, these analyses may explain more variation than do large-scale studies (Cremona et al. 

2018). In a future statistical analysis, it would be ecologically informative to decipher the direct 

and indirect roles of the drivers of cyanobacteria biomass using the predictors we identified as 

most significant. Others have made attempts to clarify the directionality of predictors using 

structural equation models (Beaulieu et al. 2013; Shan et al. 2019; Amorim et al. 2020). This 

approach may provide further evidence to lake managers regarding which variables to focus on 
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regulating; those being the ones that have a direct effect on cyanobacteria biomass. This may 

also help identify whether the positive correlation between zooplankton and cyanobacteria 

biomass we observed was direct or if it was moderated by other variables. For example, Shan et 

al. (2019) noted a positive relationship between zooplankton biomass and the biomass of 

multiple bloom-forming genera, but that this was partially mediated through increasing water 

temperature. Overall, there is no single monitoring strategy that is perfect, but the development 

of improved models with increased predictive power may be bolstered with yearly, repeated 

sampling of lakes (Mantzouki et al. 2018a).   

 Another limitation from our sampling approach is the spatial coverage in the water 

column. Most research on cyanobacteria blooms focus on near-surface samples, as was the case 

in the LakePulse sampling protocol. However, some cyanobacteria taxa are capable of occupying 

the metalimnion and benthic regions of the water column. The omission of subsurface taxa is an 

emerging management issue within the cyanobacteria community, as over 20 benthic species are 

known to produce an array of cyanotoxins, including but limited to microcystins, anatoxins and 

saxitoxins (Chorus and Welker 2021; Errat et al. 2022). The death of dogs and livestock has been 

associated with exposure to toxins in benthic mats, even in clear water and mesotrophic lakes 

(Fastner et al. 2018; Chorus and Welker 2021). By not accounting for these, we are potentially 

underestimating cyanobacteria risk in a given water body. Furthermore, there is evidence that 

toxic benthic taxa appear to be increasing in many lakes, largely as a result warming 

temperatures and longer drought periods (Chorus and Welker 2021). Given the ecological and 

health related issues associated with benthic cyanobacteria, there is a need to include them in 

monitoring efforts and to investigate their drivers. Across our dataset, the microscopic 

identification of cyanobacteria was typically based on the top 2m of the water column, thus 
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missing many benthic taxa. However, as noted in Chapter II, DNA metabarcoding is a much 

more sensitive method and was able to pick up on this component of the cyanobacteria 

community. In fact, many of the taxa that were only identified by DNA metabarcoding were 

benthic taxa, including Calothrix, Leptolyngbya, Limnolyngbya and Tychonema. This provides 

further support for the inclusion of molecular methods in routine monitoring and highlights its 

complementary role to traditional microscopy. In addition to benthic taxa, cyanobacteria within 

the metalimnion are often omitted. An interesting future study would be to analyze BBE 

Fluoroprobe profiles that were taken across the full water column in over 100 lakes from our 

dataset. Based on spectral fluorescence, Fluoroprobe profiles quantify the concentration of 

several algal groups, including cyanobacteria, and identify how they distribute throughout the 

water column. This would reveal how common metalimnetic blooms are across lakes and capture 

this component of cyanobacteria assemblages. This future study could also investigate the 

environmental variables that promote the formation and biomass of metalimnetic blooms. The 

combination of DNA metabarcoding and fluoroprobe profiles would provide a much more 

completed understanding of the full cyanobacteria community across Canadian lakes and 

complement the photic zone water samples that were taken across all LakePulse lakes.     

 In light of the findings from Chapter II, which showed that DNA metabarcoding could 

become more widely applied to monitor eutrophication, advances in molecular tools offer 

unprecedented opportunities to study cyanobacteria communities and their dynamics (Burford et 

al. 2020; Wells et al. 2020). The LakePulse Network collected DNA and RNA samples from 

most of its lakes, of which can be leveraged to access gene regulatory networks of key traits and  

genotype level information, including niche requirements and toxicity. Cyanobacteria exhibit 

variability in strain level responses to environmental conditions, altering the genetic composition 



 [260] 

of communities (Harke et al. 2016; Chun et al. 2020). Future studies should incorporate these 

data to account for the acclimation and adaptation of different strains and identify the 

environmental conditions that select for specific genotypes. 

  A key limitation that may be addressed using molecular data collected by the LakePulse 

Network, is to investigate further the environmental conditions that regulate the production of 

toxins. To date, several environmental factors have been shown to increase or decrease the 

transcription of genes responsible in toxin production, including light, iron and nitrogen 

concentrations (Kaebernick and Neilan 2001; Harke and Gobler 2013), although results have not 

been consistent among studies. Chapter III revealed the relatively high diversity of microcystin 

congeners across Canadian lakes, however, their occurrences were only moderately related to 

environmental variables and the full cyanobacteria community as predictors. Correlational 

analyses alone may be constrained in identifying the complex factors that lead to toxin 

production, as the presence of toxigenic taxa is a pre-requisite for production but does not 

guarantee toxicity (Buley et al. 2022). Within a bloom of a single species, there may toxigenic 

and non-toxigenic strains present, which cannot be distinguished by morphological identification 

(Pick 2016). To verify the presence of and expression by toxigenic strains, a follow-up study 

could complement the identification of potential toxin producers by amplifying gene fragments 

responsible for toxin production. Identifying the presence and distribution of toxigenic genotypes 

could lead to a better understanding of the environmental variables that regulate their 

occurrences and the respective congeners that they are producing. Nonetheless. the initial 

correlational analyses and predictive models we developed for microcystins and their congeners 

represent important knowledge that can be rolled out immediately in terms of policy actions. We 

now know that across Canadian lakes, phosphorus and the biomass of potential producers (i.e., 



 [261] 

Microcystis) were the top predictors of total microcystin concentrations. Knowledge regarding 

the regulation of microcystins by environmental factors would be essential to future management 

efforts and may elucidate the physiological function (if any) toxins possess (Boopathi and Ki 

2014). 

 Although microcystins are the most widespread group of cyanotoxins in lakes worldwide, 

cyanobacteria are known to produce hundreds of additional secondary metabolites. Several of 

which exhibit similar and even greater toxicities. Yet currently only a small fraction are 

frequently monitored (Janssen et al. 2019). Large-scale analyses in freshwater that expand their 

list of targeted cyanobacteria metabolites often reveal more than just microcystins (Loftin et al. 

2016; Mantzouki et al. 2018b). As such, their exclusion, like with missing benthic taxa, may be 

underestimating the health risk from toxins in a given lake (Merel et al. 2013; Janssen et al. 

2019; Errat et al. 2022). To account for this, I plan on collaborating with project partners from 

Environment and Climate Change Canada to provide more representative profiles of the broader 

suite of cyanotoxins present across Canada, using the same subset of LakePulse sites that were 

analyzed for microcystin congeners. Using a similar quantification method to the microcystins, 

we have sampled for 15 additional alkaloid and cyanopeptides, which will be related to 

environmental and cyanobacteria community data in a future modelling exercise. 

 A final aspect of this thesis that should be considered in a future study is central to the 

goals of the LakePulse Network in understanding the health status of Canadian lakes (Huot et al. 

2019). LakePulse defines “health status” as a lakes departure from its natural state due to 

anthropogenic stressors. These alter the lakes ability to provide ecosystem services that it 

formerly could (Huot et al. 2019). To address this, lakes could place in their historical context by 

analyzing shifts in bioindicators, geochemical trends and different communities of interest 
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throughout sediment cores. The LakePulse Network collected full sediment cores from over 100 

lakes across Canada, of which have been dated. In the context of cyanobacteria, it is often 

reported that cyanobacteria blooms are increasing, however, there is generally a paucity of long-

term monitoring records to place contemporary phytoplankton assemblages in their historical 

context. Through the rapid development of high-throughput sequencing technologies, an 

increasingly common method of reconstructing past communities in paleolimnological analyses 

are DNA-based approaches (Domaizon et al. 2017; Capo et al. 2021). Sedimentary DNA has 

been shown to record community compositional trends that match historical phytoplankton 

counts from the water column (Monchamp et al. 2016). And as observed in Chapter II, DNA can  

be applied to monitor blooms and lakes that have undergone eutrophication. The advancement of 

sedimentary DNA techniques and their successful application offers a unique opportunity to 

explore historical cyanobacteria occurrences as well as community composition, including from 

lakes or regions where there is little long-term data available. This approach is increasingly being 

used to track how anthropogenic stressors, primarily climate change and eutrophication, have 

historically influenced cyanobacteria abundance and community structure in lakes worldwide 

(e.g., Pal et al. 2015; Pilon et al. 2019; Yan et al. 2019; Picard et al. 2022). For example, Pal et 

al. (2015) used quantitative PCR and sedimentary pigments to analyze shifts in cyanobacteria 

abundance over the past 150 years in five lakes located within and outside a protected area. The 

abundance of cyanobacterial gene copies (16S rRNA gene) had significantly increased in all 

lakes, particularly in the last 30 years. The authors concluded that this was most likely in 

response to regional climate warming and landuse changes for lakes outside the protected area. I 

plan on adding to the contemporary assessment of cyanobacteria captured in this thesis by 

examining their temporal dynamics from a selection of lakes and making use of traditional 
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paleolimnological proxies with cyanobacteria communities reconstructed from sedimentary 

DNA. This approach also offers an opportunity to build off findings from Chapter I, to see how 

historical zooplankton populations respond to changes in cyanobacteria abundance and 

community composition. Using Cladoceran subfossils preserved in lake sediments, we can 

observe whether increases in cyanobacteria with Daphnia found in water column, match 

historical patterns between these two communities.   
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