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Abstract

Through spatial diversity, multiplexing or beamforming gain, the multiple-input

multiple-output (MIMO) techniques can offer significant performance improvements in

terms of user capacity, spectral efficiency, and peak data rates. Recently, the application of

MIMO techniques along with non-orthogonal multiple access (NOMA) has aroused great

interest as an enabling technology to meet the exacting demands of fifth generation (5G)

and beyond 5G (B5G) wireless networks. In effect, by allowing multiple users to access

overlapping time and frequency resources in the same spatial layer, NOMA has the

potential to provide higher system throughput and solve the massive connectivity needed

for future wireless networks. The primary objective of this thesis is to develop new

approaches for multi-user MIMO NOMA systems from the perspectives of spectral and

energy efficiency.

First, the joint design of user clustering, downlink beamforming and power allocation is

formulated as a mixed-integer non-linear programming (MINLP) model for a MIMO

NOMA system. In this problem the aim is to minimize the total transmission power while

satisfying quality-of-service (QoS) and power constraints. To tackle this challenging

problem, we reformulate it into a more tractable form and conceive two algorithms based

on the branch-and-bound and penalty dual decomposition techniques for its solution. The

performance of the proposed joint design algorithms for MIMO NOMA is validated by

means of simulations over millimeter-wave (mmWave) channels. The results show the

advantages of the proposed algorithms in terms of total transmit power and spectral

efficiency over competing multiple access schemes.

Then, we study the application of spatial user clustering along with downlink

beamforming for MIMO sparse code multiple access (SCMA) in a cloud radio access
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network (C-RAN). A user clustering algorithm based on a constrained K-means method is

proposed to limit the number of users in each cluster. Subsequently, two iterative

algorithms for beamforming design are developed by minimizing the total transmission

power under QoS and fronthaul capacity constraints. The performance of the proposed

user clustering and downlink beamforming approaches in MIMO SCMA systems is

evaluated through simulations. The results provide useful insights into the advantages of

the proposed schemes over benchmark approaches, in terms of transmit power and spectral

efficiency.

Finally, we propose a novel SCMA decoder based on deep residual neural network

(ResNet), wherein the decoder is trained to predict the transmit codewords. In our

approach, batch normalization is utilized to enhance the stability and robustness of the

decoder, while residual blocks are employed to tackle the problems with deep learning

based decoder such as accuracy saturation and vanishing gradients. The performance of

the proposed ResNet decoder for SCMA is validated by means of simulations over AWGN

and Rayleigh fading channels. The results show that besides a much reduced complexity,

the proposed decoder leads to improvements in term of bit error rate (BER) over

competing deep neural network (DNN) based decoders.
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Sommaire

Grâce à la diversité spatiale, au multiplexage ou au gain de formation de faisceaux, les

techniques multiple-input multiple-output (MIMO) peuvent offrir des améliorations

significatives des performances en termes de capacité utilisateur, d’efficacité spectrale et de

débits de données de pointe. Récemment, l’application des techniques MIMO ainsi que

l’accès multiple non orthogonal (NOMA) ont suscité un grand intérêt en tant que

technologie habilitante pour répondre aux exigences rigoureuses des réseaux sans fil de

cinquième génération (5G) et au-delà de la 5G (B5G). En effet, en permettant à plusieurs

utilisateurs d’accéder à des ressources de temps et de fréquence qui se chevauchent dans la

même couche spatiale, NOMA a le potentiel de fournir un débit système plus élevé et de

résoudre la connectivité massive nécessaire pour les futurs réseaux sans fil. L’objectif

principal de cette thèse est de développer de nouvelles approches pour les systèmes MIMO

NOMA multi-utilisateurs du point de vue de l’efficacité spectrale et énergétique.

Tout d’abord, la conception conjointe du regroupement d’utilisateurs, de la formation de

faisceaux sur la liaison descendante et de l’allocation de puissance est formulée sous la forme

d’un modèle de programmation non linéaire à nombre entier mixte (MINLP) pour un système

MIMO NOMA. Dans ce problème, le but est de minimiser la puissance de transmission totale

tout en satisfaisant les contraintes de qualité de service (QoS) et de puissance. Pour résoudre

ce problème difficile, nous le reformulons sous une forme plus simple et concevons deux

algorithmes basés sur les techniques de décomposition par branches-limites et par pénalité.

Les performances des algorithmes de conception conjointe proposés pour MIMO NOMA sont

validées au moyen de simulations sur des canaux à ondes millimétriques (mmWave). Les

résultats montrent les avantages des algorithmes proposés en termes de puissance d’émission

totale et d’efficacité spectrale par rapport aux schémas d’accès multiples concurrents.
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Ensuite, nous étudions l’application du regroupement spatial d’utilisateurs avec la

formation de faisceaux en liaison descendante pour l’accès multiple à code creux MIMO

(SCMA) dans un réseau d’accès radio cloud (C-RAN). Un algorithme de regroupement

d’utilisateurs basé sur une méthode K-means contrainte est proposé pour limiter le nombre

d’utilisateurs dans chaque groupe. Par la suite, deux algorithmes itératifs pour la

conception de formation de faisceaux sont développés en minimisant la puissance de

transmission totale sous les contraintes de QoS et de capacité de transmission. Les

performances des approches proposées de regroupement d’utilisateurs et de formation de

faisceaux de liaison descendante dans les systèmes SCMA MIMO sont évaluées au moyen

de simulations. Les résultats fournissent des informations utiles sur les avantages des

schémas proposés en termes de puissance d’émission et d’efficacité spectrale par rapport

aux approches de référence.

Enfin, nous proposons un nouveau décodeur SCMA basé sur un réseau neuronal résiduel

profond (ResNet), dans lequel le décodeur est entraîné pour prédire les mots de code transmis.

Dans notre approche, la normalisation par lots est utilisée pour améliorer la stabilité et la

robustesse du décodeur, tandis que les blocs résiduels sont utilisés pour résoudre les problèmes

liés au décodeur basé sur l’apprentissage en profondeur, tels que la saturation de la précision

et les gradients de fuite. Les performances du décodeur ResNet proposé pour SCMA sont

validées au moyen de simulations sur les canaux d’évanouissement AWGN et Rayleigh. Les

résultats montrent qu’en plus d’une complexité très réduite, le décodeur proposé conduit à

des améliorations en termes de taux d’erreur sur les bits (BER) par rapport aux décodeurs

concurrents basés sur le réseau neuronal profond (DNN).
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Chapter 1

Introduction

In this Chapter, we first discuss potential candidate technologies for emerging and future

wireless networks. We then present the concept and challenges of different non-orthogonal

multiple access schemes. Finally, we state the objectives of the research and summarize the

main contributions of the thesis.

1.1 Future Wireless Networks

In modern wireless networks, the design of radio access technology (RAT) is of critical

importance for improving system performance in a cost-effective manner. RATs are

typically characterized by multiple access schemes which play key roles in optimizing

system performance through efficient allocation of resources. The conventional orthogonal

multiple access (OMA) schemes, such as time division multiple access (TDMA), code

division multiple access (CDMA) and orthogonal frequency division multiple access

(OFDMA), can completely remove inter-user interference under ideal conditions, which

help improve system performance. However, this comes at the cost of limiting the number
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of supported users, and consequently, overall network capacity [1].

During the last few decades, we have witnessed more than a 1,000-fold capacity increase

in wireless communications systems, with the main catalysts being the improvement in

spectrum efficiency and the acquisition of new spectrum. Such a capacity increase has

fostered the rapid growth of the mobile Internet accompanied by various new applications

and services. Looking into the next decades of wireless communications evolution, it is

expected that the continuing growth of mobile Internet applications and services will

trigger a huge growth, in the range of 10-100 times for mobile traffic [2]. Considering that

the capacity of currently deployed systems such as long-term evolution (LTE) Release 8/9

is already quite high, further capacity growth seems to be a very challenging task at first

glance. As a matter of fact, in order to handle such data traffic, improving the spectral

efficiency remains one of the key challenges. Moreover, the rapid development of the

Internet of Things (IoT) calls for the massive connectivity of users and/or devices, and

future generations of wireless networks will hence need to meet the demand for low-latency,

low-cost devices, and diverse service types. Hence, further enhancement in technologies is a

must to satisfy these requirements for future wireless networks [3].

Orthogonal multiple access is an appropriate choice for good system-level throughput

performance with a simple receiver design. However, more advanced receiver designs are

required in order to mitigate intra-cell and inter-cell interference, and boost the spectrum

efficiency in the future [4]. So far, some of potential candidates that have been proposed to

address the challenges of the fifth-generation (5G) and beyond are millimeter wave

communications (mmWave), massive multiple-input multiple-output (MIMO) systems,

ultra-dense networks, non-orthogonal multiple access (NOMA), and cloud radio access

networks (C-RAN).
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Traditionally, the microwave (sub-6 GHz) band has been the most widely-used spectrum

for the consumer wireless systems owing to its favorable propagation behavior. Over time,

the frequency spectrum under 6 GHz became densely occupied by TV and radio signals and

hence, the mmWave band (30 GHz to 300 GHz) is now attracting considerable attention for

prospective wireless networks [5, 6]. On the one hand, operating in mmWave band brings

its own challenges since the electromagnetic waves become highly sensitive to path loss

and blockage [7]. In effect, the use of shorter wavelength in mmWave band (and hence

larger transmission bandwidth) can help transfer data at a faster rate, although the distance

over which the data transfer can be accomplished is significantly reduced compared to the

microwave band. As a result, mmWave communications would be restricted to short-range,

line-of-sight applications unless further enhancements are made at the physical-layer.

On the other hand, the mmWave frequency band offers several benefits such as the

possibility of integrating a large-scale antenna array into a much smaller area compared

to its microwave counterparts. The form factor of an antenna array is proportional to

the wavelength. For instance, at a carrier frequency of 60 GHz, the form factor of an

8 × 8 planar antenna array is only 4 cm2. Consequently, the application of massive MIMO

beamforming along with mmWave can efficiently address the issues of severe path loss and

blockage cellular networks [8]. Moreover, the use of massive MIMO techniques can lead to

significant performance improvements in terms of user capacity, spectral efficiency, and peak

data rates, by taking advantage of spatial diversity, multiplexing or beamforming gains.

In order to make network capacity improvements in terms of spectral efficiency within

a given geographical area, we can admit as many users as possible over an allocated set of

time-frequency resources. we can approach this issue by densifying the deployment of base

stations (BSs) with universal frequency reuse, which reduces the competition for resources
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within a cell among a large number of users [9]. Due to reduced cell radius obtained in ultra-

dense networks, lower transmit power is required which results in increased energy efficiency.

Moreover, thanks to load sharing, the backhaul links can accommodate more data traffic

from each user in service. However, by increasing the density of BSs and user devices, the

problem of inter-cell interference may become severe in multi-cell networks.

In recent years, so-called NOMA schemes have shown great promises in meeting the

exacting demands of emerging and future generations of wireless networks. In effect,

NOMA has the potential to provide higher spectral efficiency and enable massive

connectivity by allowing multiple users and devices to access overlapping time and

frequency resource elements in the same spatial layer [10]. As such, NOMA is particularly

well-suited as a prospective multiple access technology for dense heterogeneous networks,

as envisaged for machine-to-machine (M2M) communications and IoT applications [11].

Nevertheless, NOMA requires effective interference cancellation and management

approaches. Moreover, low-complexity resource allocation algorithms is another challenge

that needs to be addressed in NOMA systems.

As an emerging network architecture for 5G and beyond, C-RAN offers several benefits,

e.g., improved energy efficiency, better ability to handle interference on a larger scale and

increased network capacity. In the C-RAN architecture, the transceivers are connected to a

central processor via fronthaul links [12]. The central processor jointly encodes the user

messages using linear precoding or beamforming techniques for interference mitigation

purposes in the downlink. This separation of the central processor and transceivers

functionalities reduces the power consumption, operating expenses and complexity of the

transceivers. However, the implementation of C-RAN architecture raises several challenges

such as high fronthaul capacities needed, central processor cooperation, resource allocation



1. Introduction 5

mechanism, cell clustering, etc.

1.2 NOMA: Concept, Challenges, and Opportunities

NOMA has the potential to be integrated into the existing and future wireless systems

because of its compatibility with other communication technologies. For example, NOMA

has been shown to be compatible with conventional OMA, such as TDMA and OFDMA.

Because of this, NOMA has also been proposed for inclusion in the 3rd generation

partnership project (3GPP) long-term evolution advanced (LTE-A) standard, where

NOMA is referred to as multiuser superposition transmission (MUST) [1]. Particularly,

without requiring any changes to the LTE resource blocks (i.e., OFDMA subcarriers), the

use of the NOMA principle ensures that multiple users can be simultaneously served on the

same OFDMA subcarriers.

Basically, NOMA techniques can be classified into three main categories, namely: code

domain, power domain, and multiple domain [13]. At the transmitter side, power domain

NOMA (PD-NOMA) allocates different power levels to the users according to their channel

condition. At the receiver side, successive interference cancellation (SIC) is employed,

whereby the stronger signals are decoded first and subtracted from the received signal

sequentially. Code domain NOMA (CD-NOMA) techniques, such as sparse code multiple

access (SCMA) and multi-user shared access (MUSA), assign and apply different codes to

the data streams of different users. In this way, the transformed data is spread over

multiple resource elements in a sparse manner that allows the control of interference [14].

In multiple domain NOMA, such as pattern division multiple access (PDMA) [15] and

lattice partition multiple access (LPMA) [16], the signals from multiple users are



1. Introduction 6

Figure 1.1: Illustration of basic PD-NOMA with a SIC receiver (adapted from [17]).

superimposed in multiple domains, such as power, code and spatial domains.

PD-NOMA attempts to fully exploit multiplexing by overlapping multiple user signals

in the time, code and frequency domains. According to the PD-NOMA principle, the users

with lower channel gain are considered as weak users, and should therefore be allocated a

larger fraction of the total available power at the transmitter, as illustrated in Fig. 1.1. PD-

NOMA is capable of enhancing signal quality, network capacity, and cell-edge throughput.

However, its implementation raises several research challenges. Firstly, the efficient allocation

of available resources to multiple users with different data rates and quality of service (QoS)

requirements poses a formidable optimization problem. Secondly, individual decoding of

the superimposed user signals in the PD-NOMA receiver calls for advanced interference

cancellation algorithms whose implementation significantly increases the complexity of the

equipment and processing delay.
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In CD-NOMA, the data streams of the users are modulated by using user-specific

spreading sequences, having sparse, low-density and low inter-correlation properties. One

of the advantages of these techniques is the grant-free access provided by the

non-orthogonality feature, although this comes at the cost of introducing users interference.

This kind of technique is inspired from the well-known CDMA technology extensively

studied in the 90s. We note that for certain CD-NOMA schemes, such as MUSA, the

receiver does not know the spreading sequences in advance. Hence, the decoder has to

detect and estimate the transmitted data streams in a blind manner.

SCMA is a popularized CD-NOMA technique. While CDMA extends each information

symbol (taken, e.g., from a quadrature amplitude modulation (QAM) constellation) into a

finite sequence of complex symbols by using orthogonal or near orthogonal spreading codes,

SCMA directly maps each group of bits into a sequence of complex symbols by merging

together the symbol mapper and the CDMA spreader [18]. The overall process can be

interpreted as a coding procedure from the binary domain to a multidimensional complex

domain, which in turn raises new problems in terms of codebook and decoder designs [14].

1.3 Thesis Objective and Contributions

The primary objective of this thesis is to develop and investigate improved transceiver design

approaches for the application of NOMA within the emerging framework of multi-user MIMO

communications. To achieve this goal, we address the aforementioned research challenges by

proposing new designs that can provide both energy and spectral efficiency under practical

constraints. In this regard, the main research contributions and findings of this thesis are

summarized as follows.
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• We first investigate the application of downlink beamforming along with PD-NOMA

in a multi-user MIMO system operating at mmWave frequencies. The joint design of

user clustering, downlink beamforming and power allocation scheme is formulated as

a novel mixed-integer non-linear program (MINLP), where the aim is to minimize the

total transmission power while satisfying QoS, user clustering and power constraints.

Owing to the non-convexity and combinatorial nature of the problem, obtaining an

optimal solution is challenging. To tackle this issue, we first develop an algorithm

based on branch-and-bound (BB), whereby the feasible space is successively

partitioned and searched by means of lower and upper bounds on the objective

function. While this algorithm is shown to return an ϵ-optimal solution within a

finite number of iterations, it entails high computational complexity. Considering

this limitation, we then reformulate the original problem into a more tractable form

and conceive a low-complexity algorithm for its solution based on the penalty

dual-decomposition technique. The proposed joint design algorithms for MIMO

NOMA are evaluated by means of simulations over mmWave channels. Results show

significant improvements in terms of total transmit power and spectral efficiency

compared to benchmark approaches.

• We then address the key problems of user clustering and downlink beamforming for

MIMO SCMA in a C-RAN. Using channel state information available at the central

processor, an efficient user clustering algorithm based on the constrained K-means

method is proposed. Subsequently, two iterative algorithms for beamforming design

are developed by minimizing the total transmission power under QoS and fronthaul

capacity constraints. In the first approach, we approximate the continuous

non-convex constraints by convex conic ones using first-order Taylor expansion and
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iteratively solve a sequence of mixed-integer second order cone programs

(MI-SOCPs) to achieve a high-quality solution, but with higher complexity. In the

second approach, a two-stage low-complexity solution is developed in which

beamforming matrices obtained from each stage are combined to form a single

beamformer for each user. In the first stage, cluster beamformers are designed by

taking advantage of block diagonalization, while in the second stage, user-specific

beamformers are determined by minimizing transmission power. The performance of

the proposed user clustering and downlink beamforming approaches for MIMO

SCMA in C-RAN is validated through simulations over mmWave channels.

Compared to benchmark approaches, the results show significant improvements in

terms of transmit power and spectral efficiency.

• Finally, we focus on the design of SCMA decoders and propose a novel solution to this

problem based on a deep residual neural network (ResNet). To tackle the problem of

accuracy saturation and vanishing gradients, we employ residual blocks, while batch

normalization is utilized to enhance the stability and performance of the decoder.

Under the assumption that the channel state information (CSI) is available at the

receiver side, the decoder is trained to predict the transmitted codewords by the users.

The received signal and CSI are fed into the ResNet decoder as input, while the output

consists of multiple branches, one for each user, wherein the transmit codewords are

predicted. Through simulations, it is demonstrated that the proposed SCMA scheme

with ResNet decoder can notably reduce bit error rate (BER) compared to DNN-based

benchmark approaches, yet with much lower complexity.
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publication)

• Conference papers:
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Pacific Rim Conf. on Communications, Computers and Signal Processing

(PACRIM), pp. 1-5, Victoria, Canada, Aug. 2019.
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downlink beamforming in MIMO-SCMA systems,” IEEE 32nd Annual International

Symposium on PIMRC, pp. 1091-1096, Oct. 2021.

[C3] S. Norouzi, Y. Cai, and B. Champagne. “Joint design of user clustering,
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[C4] S. Norouzi and B. Champagne. “Deep residual neural network decoder for sparse

code multiple access,” IEEE Wireless Communications and Networking Conf.
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In all of these publications, Ms. Sara Norouzi, as the first author, developed and/or

proposed the idea, formulated the problem, developed the algorithms, implemented

simulations, and prepared the draft of the manuscripts. Mr. Alireza Morsali, Ph.D.

student, assisted in reviewing [C1]. Prof. Yunlong Cai collaborated in [J1-J2], [C2-C3], to

review the works and to assist in editing and writing. Prof. Benoit Champagne supervised

and reviewed the works, and assisted in the editing and writing of the manuscripts at

different stages.

1.4 Organization

The rest of the thesis is organized as follows. Chapter 2 provides a comprehensive

literature survey of prior contributions on the application of NOMA in MIMO systems

from various perspectives. Chapter 3 investigates the joint design of user clustering,

downlink beamforming and power allocation scheme in a MIMO NOMA system operating

at mmWave frequencies. Chapter 4 focuses on the problems of user clustering and downlink

beamforming for MIMO SCMA in a C-RAN. Chapter 5 considers the design of SCMA

decoders by employing deep learning based methods. Chapter 6 gives a summary and

provides suggestions for future investigations. Certain mathematical proofs and derivations

are relegated to the Appendices.

Notations: The following notations are used throughout the thesis, unless otherwise

noted. Scalars, vectors and matrices are respectively denoted by lower case, boldface lower

case and boldface upper case letters. For a matrix A, ai,j and [A]i,j denote its (i, j)th entry,

while AT and AH denote its transpose and conjugate transpose, respectively. The operators

∥.∥2, ∥.∥0 and ∥.∥∞ denote the Euclidean, zero and infinity norms of a vector, respectively.
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For a set A, |A| denotes its cardinality. ℜ(z) and ℑ(z) denotes the real and imaginary parts

of complex number z, respectively. Cm×n (Rm×n) denotes the space of m×n complex (real)

matrices. Bm×n denotes binary matrices of size m × n where the set B = {0, 1}. Given

matrices A and B ∈ Rm×n, we define [A, B] = {X ∈ Rm×n|ai,j ≤ xi,j ≤ bi,j,∀i, j} and

refer to this set as a box. We use CN (µ, σ2) to denote a complex circular Gaussian random

variable with mean µ and variance σ2.
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Chapter 2

Literature Review

Before we embark on the study of NOMA for MIMO wireless systems, we give a brief review

of the related background and recent developments in this chapter, which serve as the basis

for our proposed research in the subsequent chapters. First, we focus on MIMO PD-NOMA

where the application of multiple antenna techniques and user clustering provide further

performance improvements. We then review related works on SCMA, specifically the design

of the codebook and decoder. Afterwards, a comparison between major NOMA techniques

is presented. Finally, MIMO beamforming in CRAN architecture is reviewed followed by

some concluding remarks.

2.1 PD-NOMA

The basic principles of PD-NOMA rely on the employment of superposition coding (SC)

at the transmitter side and SIC techniques at the receiver side. Although the application

of PD-NOMA in cellular networks is relatively new, related concepts have been studied in

communications and information theory for a long time. For instance, the key components
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of PD-NOMA i.e., SC and SIC, have already been invented more than two decades ago

[13,19,20]. Nevertheless, the principle of removing orthogonality for multiple access has not

been used in the previous generations of wireless cellular networks. Since the main focus of

this section is on PD-NOMA, in the sequel, we refer to the latter as NOMA for simplicity.

From the NOMA perspective, power-domain multiplexing means that different users

are allocated different power levels according to their channel conditions to obtain the

maximum gain in system performance. The weaker users with lower channel gains will be

apportioned a larger fraction of the total available transmit power. Such power allocation

can be exploited to separate different users, using SIC at the receiver to cancel the

interference. Specifically, SIC will be employed at the receiver whereby the strongest signal

is decoded first and subtracted from the received signal, after which the second strongest

signal is extracted from the residual, and so on in a sequential manner.

As illustrated in Fig. 2.1, let us consider the downlink of a multi-user MIMO NOMA

Figure 2.1: The multi-user MIMO NOMA system model.
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system with one BS. The transmitter is equipped with N antennas, serving K users indexed

by k ∈ K = {1, . . . , K}, where each user is equipped with a single-antenna receiver1. The

users are partitioned into C non-overlapping clusters, indexed by c ∈ C = {1, . . . , C}. The

users in a given cluster jointly share a common beamforming vector denoted as wc ∈ CN×1.

Hence, the BS utilizes the NOMA superposition of signals and beamforming simultaneously.

Let Uc denote the index set of users in the cth cluster2 and hi ∈ CN×1 denote the channel

vector from BS to the ith user in the cth cluster, i.e., i ∈ Uc, and c ∈ C. Without loss of

generality, we assume that the K users in the system are sorted in ascending order according

to their channel gains, i.e., ∥hi∥ > ∥hj∥ for i > j. The received signal at the ith user in the

cth cluster is given by,

ri = hH
i zc +

C∑
c′=1,c′ ̸=c

hH
i zc′ + ni (2.1)

where zc ∈ CN×1 is the transmitted signal by the BS towards the cth cluster, and ni ∼

CN (0, σ2
i ) is an additive white Gaussian noise term.

It is assumed that the BS applies power domain NOMA within each cluster. That is,

it transmits the superposition of the individual data symbols with different power levels to

all users in a cluster simultaneously with the same radio resources, such as time slot and

frequency channel. Hence, we have,

zc = wc(
∑
i∈Uc

√
αisi) (2.2)

1The system model formulation presented in this section can be extended to the case where users are
equipped with multiple antennas. We refer the interested reader to [21,22] for additional details.

2For instance, five users could be distributed into 2 non-overlapping clusters as U1 = {1, 3} and U2 =
{2, 4, 5}.



2. Literature Review 16

where si ∈ C is the data symbol intended for the ith user and αi denotes the fraction of

the total power available for the cth cluster that is allocated to the ith user, i.e., αi ∈ [0, 1]

and ∑
i∈Uc

αi = 1. We assume that the data symbols of the different users are independent

with zero mean and unit variance, i.e. E[|si|2] = 1. Upon substitution of (2.2) into (2.1),

we can express the received signal at the ith user in the cth cluster as a sum of the desired

signal, the interference from the other user in that cluster (intra-cluster interference), the

inter-cluster interference and the noise term, i.e.,

ri = hH
i wc(

∑
i′∈Uc

√
αi′si′) +

∑
c′ ̸=c

hH
i wc′(

∑
k∈Uc

√
αksk)

︸ ︷︷ ︸
Inter-cluster Interference

+ni (2.3)

According to the NOMA principle, each user in a given cluster employs SIC to mitigate

the intra-cluster interference, by decoding and removing the message of the weaker users in

that cluster. Assume that both ith and jth users belong to the cth cluster and i > j. For

the SIC operation at the ith user, the signal-to-interference-plus-noise ratio (SINR) of the

jth user signal after perfect interference cancellation of weaker user signals (i.e., those with

index i′ < j) is given by,

SINRc
j,i = |hH

i wc|2αj∑
i′>j,i′∈Uc

|hH
i wc|2αi′ + ∑

c′ ̸=c |hH
i wc′ |2 + σ2

i

(2.4)

where the first term in the denominator of (2.4) represents the residual intra-cluster

interference and the second term represents the inter-cluster interference.

The application of MIMO NOMA along with mmWave is of great interest for new

generations of wireless networks (i.e. 5G, Beyond 5G and ensuing 6G); accordingly, it has

been the focus of significant research efforts in recent years. In [23], a random beamforming
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approach is applied to a MIMO NOMA system to reduce overhead in a dense network with

a large number of users. In [24], a transmission scheme relying on user clustering, random

beamforming and power allocation is proposed for a MIMO NOMA system. In [25], a

multi-beam NOMA framework is developed for mmWave systems, such that a limited

number of radio frequency (RF) chains may be used to accommodate multiple users with

various angles of departures (AoDs). The design of beamforming and power allocation for a

MIMO NOMA system is addressed in [26], where user clustering is handled through the

K-means algorithm. The authors in [27] evaluate the effect of beam misalignment on rate

performance in a MIMO NOMA system with hybrid beamforming and propose a design

scheme for the digital and analog precoders and power allocation based on sum-rate

maximization. The performance of a MIMO NOMA system operating at mmWave

frequencies with hybrid beamforming is investigated in [28], where the clustering of users is

based on the correlation among their channel vectors.

Some recent works on NOMA investigate the joint design of beamforming and power

allocation. In [29], such a joint design is proposed for simultaneous wireless information

and power transfer (SWIPT) in a two-user NOMA system, such that the data rate of the

strong user is maximized under a quality of service (QoS) constraint for the weak user. The

joint design of power allocation and beamforming using decomposed optimization (DO) is

proposed in [30] for a two-user MIMO NOMA system at mmWave frequencies. In [31], the

joint design of robust beamforming and power splitting ratio is addressed to maximize the

data rate of the cell-center user which adopts a SWIPT technique. The authors in [32]

investigate a joint design for artificial noise aided beamforming and power allocation, such

that the transmission security and reliability are increased in the presence of untrusted near

users and external eavesdroppers.
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It is worth-mentioning that [29–32] focused on the joint design of beamforming and

power allocation in two-user scenarios. However, this joint design problem for multi-user

NOMA (with more than 2 users) is quite challenging and has been the focus of several

recent studies, as summarized below. In [33], a joint design is addressed by maximizing

the achievable rate at the destination in a multi-user NOMA-based amplify-and-forward

(AF) relay network where all users are grouped into one cluster. In [34], joint design of

beamforming and power allocation is proposed for a multi-cell multi-user MIMO NOMA

network in which the users are divided into two groups according to their QoS requirements,

rather than their channel quality. The performance of a NOMA-based satellite-terrestrial

integrated network with a joint design of beamforming and power allocation is investigated

in [35] where a novel user clustering based on the channel gain and correlation is proposed.

In [36], an alternating optimization (AO) algorithm is proposed for the joint design of a

NOMA system with intelligent reflecting surface, where the transmit power is minimized.

Specifically, it is assumed that user clustering is given and the original problem is divided into

two subproblems which are solved iteratively. In [37], users are clustered based on matching

algorithm and then an AO algorithm is developed to transform the joint design into multiple

subproblems, wherein relevant variables are optimized while keeping the remaining variables

fixed. In [38], an algorithm based on deep reinforcement learning is proposed for the joint

design in a single-cell MIMO NOMA system, where users are partitioned into two groups.

2.2 CD-NOMA

SCMA is a CD-NOMA scheme inspired from the well-known CDMA technique. In SCMA,

groups of user data bits are directly mapped to sparse N -dimensional codewords. The latter
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are selected from a codebook specified for each user and then transmitted over N radio

resources, e.g., OFDMA subcarriers [39,40]. Hence, the SCMA encoder for the ith user can

be defined as a one-to-one mapping from the set of u-bit tuples to a codebook Xi ⊂ CN , using

a function fi : Bu → Xi, where we define B = {0, 1}. The codebook contains N -dimensional

codewords, with cardinality |Xi| = 2u = U . Specifically, for bi = [bi,1, ..., bi,u] ∈ Bu, the

corresponding codeword is obtained as,

xi = fi(bi) = [xi,1, ..., xi,N ] (2.5)

where x is a sparse vector with C < N non-zero elements. Each user is assigned C subcarriers

such that no two users occupy the same subset of subcarriers. Hence, only q users can be

supported by SCMA, as given by [14],

q =

 N

C

 = N !
C!(N − C)!

. (2.6)

Fig. 2.2 illustrates the operation of an SCMA encoder for C = 2 non-zero elements and

N = 4 subcarriers (SCs), where a different color is employed for each one of the q = 6 users.

The SCMA encoder can be expressed as fi(bi) = Sigi(bi) where gi : Bu → CC is a

mapping from the set of u-bit tuples to a C-dimensional constellation point with non-zero

elements, while matrix Si maps this latter point into an N -dimensional codeword. It is worth

noting that Si contains N − C all-zero rows and an identity matrix of order C is obtained

by removing them. Hence, all the codewords in Xi contain 0 in the same N − C positions.

The codebook can be conveniently represented as a matrix, i.e., Xi ∈ CN×U for the ith

user, where the different columns, each with C non-zero elements at the same positions,

correspond to the possible codewords.
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Figure 2.2: SCMA encoder model (C = 2, N = 4).

The positions (or indices) of the non-zero elements of the binary indicator vector obtained

by fi = diag(SiST
i ) ∈ BN×1 determine the set of subcarriers occupied by user i. In effect,

the complete SCMA encoder structure for q users and N subcarriers can be represented

by a factor graph with associated matrix F = [f1, ..., fq] ∈ BN×q, as shown in Fig. 2.3.

In this interpretation, subcarrier node n and user node i are connected if and only if the

corresponding element of matrix F is equal to 1, i.e., [F]n,i = 1. For later use, we define An

and Bi as the subsets of indices corresponding to the non-zero locations in the nth row and

the ith column of matrix F, respectively.

2.2.1 SCMA Encoder Design

There have been extensive studies devoted to the design of multidimensional constellations

for downlink and uplink SCMA systems. In [41], the performance of a systematic

sub-optimal design for the mother constellation (from which the individual user codebooks
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Figure 2.3: The SCMA factor graph.

are derived) is investigated and a unified metric is proposed to obtain the optimum

codebooks using a specific mother constellation. The authors in [42] evaluate the average

BER performance of SCMA systems in which codebooks are based on star-QAM signaling

constellations. Multidimensional constellations with a low number of projections are

designed in [43] based on the extrinsic information transfer (EXIT) chart using a

multistage optimization. Subsequently, an appropriate labeling method based on the EXIT

chart is optimized for the resulting constellation. In [44], the design of SCMA codebooks

based on star-QAM constellations is addressed and an analytical approach to obtain the

theoretical BER performance over Rayleigh fading channels is proposed. The design of an

efficient suboptimal SCMA codebook is proposed in [45] for a large scale scenario with

growing number of resources and users.

The codebook design for an uplink SCMA system is formulated as an optimization

problem aiming to maximize the average mutual information (AMI) in [46], wherein a

message passing algorithm (MPA) with non-equiprobable distribution is introduced as the

multiuser detection algorithm. In [47], a multi-stage optimization approach is proposed for

the uplink SCMA codebook design such that the multi-dimensional mother constellation

obtained from the first stage is combined with the user-specific mapping matrix from the
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second stage to generate the final user codebooks. The problem of SCMA codebook design

is addressed in [48], where an extended mother codebook is divided into several mother

codebooks according to the modulation order. The authors in [49] propose a

low-complexity codebook design based on uniquely decomposable constellation group for a

SCMA system over Gaussian and Rayleigh fading channels. In [50], SCMA codebook

design is addressed by maximizing the minimum Euclidean distance (MED) of

superimposed codewords under power constraints, wherein the alternating maximization

algorithm with exact penalty is utilized to obtain the solution.

2.2.2 SCMA Decoder Design

As mentioned before, for a non-orthogonal system like SCMA, more than one user’s symbol

are superposed on each subcarrier. Thus, joint multi-user detection algorithms such as MPA

are needed. The MPA relies on the corresponding factor graph, as exemplified in Fig. 2.3,

where each subcarrier is represented by a function node (FN) and data from each user by a

variable node (VN). The FN degree, defined as the common number of connected neighboring

VNs to each FN, and the VN degree, defined as the common number of connected neighboring

FNs to each VN, are two useful parameters to design the structure of the codebook and will

greatly impact the complexity in MPA decoding. Below, we provide additional details about

the log-MPA [14] in the case of superimposed signal transmission from q users to a common

access point (AP), where the users and AP are equipped with single-antenna for simplicity.

Let hn = [hn,1, ..., hn,q] ∈ Cq denote the channel vector between the q users and the AP

for the nth subcarrier, n ∈ N = {1, ..., N}. Let us assume that user j ∈ {1, ..., q} transmit

codeword with index mj ∈ U = {1, ..., U}. The received signal at the AP over the nth
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subcarrier can then be expressed as,

yn =
∑

j∈An

hn,j[Xj]n,mj
+ zn (2.7)

where zn ∼ CN (0, σ2) is additive Gaussian noise term with variance σ2, assumed to be the

same for each subcarrier.

The inputs of the Log-MPA are the received signal yn, the channel vector hn ∈ Cq on the

nth subcarrier, and the codebook matrix of each user Xi. The output of the algorithm are

the log likelihood ratio (LLR) for the coded bits calculated from the probability estimations

of each codeword, which are then served as input to the turbo decoder. The overall Log-MPA

consists of the following steps:

Step 1: Initial calculation of the log conditional probabilities that is,

ϕ(yn|{mj}, hn) = − 1
2σ2 |yn −

∑
j∈An

hn,j [Xj ]n,mj |2 (2.8)

for all n ∈ N , mj ∈ U , and j ∈ An.

Step 2: Iterative message passing along edges, which involves the update of the mutual

information between FN and VN nodes

1. Step 2a: Update the mutual information for FN node g passing the extrinsic

information to its neighboring VN nodes vq

Ilog
g→vq

(mq) = max
{mj}
{ϕ(yn|{mj}, hn) +

∑
j∈An

Ilog
vj→g(mj)} − Ilog

vq→g(mq) (2.9)

for all mq ∈ U and q ∈ Ag.

2. Step 2b: Update the mutual information for VN node v passing the extrinsic
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information to its neighboring FN nodes gq1 and gq2

Ilog
v→gq2

(m) = Ilog
gq1 →v(m), Ilog

v→gq1
(m) = Ilog

gq2 →v(m) (2.10)

for all m ∈ U and q1, q2 ∈ Bv.

Step 3: Following Niter iteration of step 2, calculate the LLR output at each VN node

Ilog
v (m) =

∑
n∈Bv

Ilog
gn→v(m), (2.11)

LLRv(bi) = max
k∈{bi=0}

(Ilog
v (mk))− max

k∈{bi=1}
(Ilog

v (mk)) (2.12)

where mk ∈ U and i ∈ {1, ..., u}.

The main steps of the Log-MPA are illustrated in Fig 2.4.

Although MPA can achieve near optimum performance, it entails high computational

complexity. In recent years, many significant research efforts have been made to achieve a

better trade-off between the performance and complexity of the decoder. In [51], a novel

framework for MPA is proposed in which a belief threshold is applied to control the algorithm

process. Tikhonov regularization is used to propose a low-complexity optimal modified

sphere decoding (MSD) detection scheme for SCMA systems in [52], where the original

rank-deficient detection problem is formulated as an equivalent full-rank detection problem.

The design of a message-passing receiver for uplink grant-free SCMA systems is studied

in [53], where the proposed receiver performs joint channel estimation, data decoding, and

active user detection semi-blindly. In order to improve the system performance, a joint

channel estimation and decoding scheme is proposed for polar-coded SCMA in [54]. The

application of Gaussian-approximated message passing detection of SCMA along with the
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Figure 2.4: The MPA process model.
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soft list decoding (SLD) of polar codes is investigated for polar-coded SCMA in [55].

The use of multiple antennas along with MIMO techniques in SCMA systems can lead to

significant performance improvements in terms of network capacity and spectral efficiency.

In [56], a joint sparse graph is constructed for a MIMO SCMA system model, and the

corresponding virtual SCMA codebooks are designed for the detector, wherein the MPA is

employed to reconstruct the transmitted data bits. In [57], a joint decoding algorithm is

proposed for MIMO SCMA systems based on space frequency block codes (SFBC), which

exhibits lower computational complexity than MPA and yet achieves a similar block error rate

(BLER). A novel downlink MIMO mixed-SCMA scheme is proposed in [58], such that the

transmitted codewords for each user over different antennas come from different codebooks.

The authors in [59] propose near-optimal low-complexity iterative receivers based on factor

graph for a downlink MIMO SCMA system over frequency selective fading channels.

Recently, applying deep learning (DL) methods to wireless communication problems

has aroused great interest as it can bring significant performance improvements [60]. In

particular, deep neural networks (DNNs), can deal with multidimensional and nonlinear

characteristics of raw input and extract higher level features by using multiple processing

layers. Motivated by this consideration, several works have investigated the application of

DL techniques to enable autonomous derivation of an efficient algorithm for SCMA encoder

and decoder. A DL-aided SCMA scheme is proposed in [61], where the constructed adaptive

codebook and learned decoding strategy aim to minimize the BER. In [62], a DL-based

decoding approach for SCMA is proposed in which a deep neural network is utilized to unfold

the procedure of MPA. In [63], DL methods are utilized to conceive a SCMA auto-encoder

which generates and then decodes codewords under AWGN channel. A deep learning decoder

(DLD) is proposed in [64] for SCMA systems under AWGN and Rayleigh fading channel.
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In [65], a deep neural network aided MPA (DNN-MPA) is developed to speed up the decoding

procedure and reduce the computational complexity.

2.3 Comparison of NOMA Schemes

Table 2.1 highlights the main features, advantages, and disadvantages of major NOMA

techniques. By comparing different schemes, it can be seen that SCMA outperforms other

techniques in terms of spectral efficiency. However, a codebook design at the transmitter

side and MPA at the receiver side are needed in SCMA systems. Hence, the performance

improvement comes at the cost of high computational complexity. While each user is assigned

a fixed number of resource blocks in SCMA (such that no two users occupy the same set of

resource blocks), the number of resource blocks assigned to users in PDMA can be flexibly

adjusted to match desired levels of overload. The MUSA scheme can be used to support

massive connectivity with low cost and low power consumption; however, large number of

spreading codes with relatively low cross-correlation are required.

PD-NOMA can achieve a useful balance between the sum rate of all multiplexed users

and the throughput fairness among individual users through power allocation. Moreover, in

PD-NOMA, more users can be multiplexed over a given number of resources which in turn,

improves system throughput at the cost of transmit power. Due to its multiple benefits along

with low complexity, PD-NOMA is a celebrated multiple access radio technology now being

widely considered for emerging and future generations of wireless networks. As discussed

in Section 2.1, this method has indeed been studied in several papers with different aims,

such as the optimization of spectral or energy efficiency; however, many important questions

remain to be answered [66].
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PD-NOMA SCMA MUSA PDMA
Multiplexing

domain Power Code Code Power, Code, and/or Spatial

Technique

(i) Takes advantage of different
channel conditions
(ii) Allocates different power
levels to the users

(i) Utilizes pre-designed
user-specific codebooks
(ii) Directly maps user data
bits to sparse multi-dimensional
complex codewords

(i) Utilizes low-correlation
spreading sequences
(ii) Users randomly pick one
from pool of the sequences

(i) Utilizes nonorthogonal patterns
(ii) Patterns are designed to maximize
the diversity and minimize the overlaps
among users

Receiver SIC MPA SIC SIC or MPA

Advantage (i) Low complexity
(ii) High downlink throughput

(i) High spectral efficiency
(ii) Low bit-error-rate

(i) Low block error rate
(ii) Massive connectivity

(i) High spatial diversity
(ii) High uplink system capacity

Disadvantage
(i) High transmit power
(ii) Error propagation in case
of imperfect CSI

(i) High complexity of receiver
(ii) Codebook design

(i) Increased inter-user
interference
(ii) Spread symbol design

(i) Increased inter-user interference
(ii) Pattern optimization and design

Table 2.1: Comparison between different NOMA schemes.

2.4 C-RAN Architecture

C-RAN is considered as an emerging network architecture that is particularly suitable for

handling interference allocating resources in a centralized fashion. As illustrated in Fig. 2.5,

the C-RAN architecture consists of three main components, namely: the central processor,

the remote radio heads (RRH) and the fronthaul links. The central processor, which is

located in one or more data centers within the cloud, is responsible for all the baseband

processing. The RRHs connect wireless devices to the network, alike base stations in current

cellular networks. The fronthaul link provides connectivity (e.g., via dedicated optical fiber

or microwave links) between the central processor and the RRHs. The C-RAN architecture

concentrates the baseband processing in the central processor and coordinates the operation

of the RRHs. This separation of the central processor and RRHs functionalities reduces

the power consumption and complexity of the RRHs, since the latter only need to perform

basic transceiver operations. Moreover, it reduces both the network capital expenditure and

operating expenses.

Recently, the C-RAN architecture has aroused great interest for the implementation of
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Figure 2.5: The C-RAN architecture.

MIMO NOMA transmission schemes. In [67], a novel framework for C-RAN is proposed in

which two users are scheduled over the same resources according to power domain NOMA,

while the performance of cell-edge users is further enhanced by means of coordinated

beamforming. Stochastic geometry is used to analyze the outage probability of NOMA

under C-RAN in [68], where power domain multipexing along with SIC are employed to

increase downlink system capacity. The application of beamforming along with power

domain NOMA is investigated for cache-enabled C-RAN in [69]. The design of robust radio

resource allocation and beamforming approaches for MIMO SCMA systems under C-RAN

is studied in [70], where the aim is to maximize the total sum rate of users subject to a

minimum required rate for each slice.
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2.5 Concluding Remarks

In this chapter, we have presented a discussion of important design approaches for PD-

NOMA in MIMO wireless systems from the perspectives of user clustering, beamforming

and power allocation. We have also provided a literature review on SCMA encoder and

decoder design. We have then presented a comparison between various NOMA schemes.

Finally, we have surveyed recent works on the NOMA transmission schemes within C-RAN

framework. The literature review in this chapter provides motivations and serves as basis

for the research contributions presented in subsequent chapters of this thesis.

For MIMO NOMA systems, previous works have shown that the joint design of

beamforming and power allocation can lead to significant improvements in terms of

transmit power and spectral efficiency. Moreover, the application of spatial user clustering

along with beamforming and power allocation techniques in MIMO NOMA systems has the

potential to reduce the interference among users and hence improve spectral efficiency. To

the best of our knowledge, in most of the existing works, the user clustering problem for

MIMO NOMA systems is addressed separately from the beamforming and power

allocation. While this approach considerably simplifies the design, it is inherently

suboptimal and can therefore lead to performance degradation. Hence, a novel approach

for the joint design of user clustering, beamforming and power allocation that can lead to

superior performance is desired in a downlink multi-user MIMO NOMA system.

Previous works related to PD-NOMA have shown that the joint application of spatial

user clustering along with beamforming techniques can improve spectral efficiency and

reduce the total transmit power. Nonetheless, an approach to derive the user clustering

and beamforming solutions has not yet been attempted in MIMO SCMA systems.

Additionally, the C-RAN architecture has the potential to increase the number of
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supported users in the network by using a common codebook for users in different clusters,

while the effect of inter-cluster interference can be eliminated by centralized beamformer

design and coordinated RRH operation. Hence, the design of energy-efficient user

clustering and downlink beamforming approaches for MIMO SCMA in C-RAN remains of

considerable interest.

In recent years, the application of DL-based methods to SCMA encoder and decoder

design has aroused great interest as it can bring significant performance improvements.

However, using DNNs bring its own plethora of challenges. For instance, by increasing the

number of layers, the accuracy of detection will saturate at one point and may eventually

degrade, notwithstanding the additional complexity in training. Moreover, DNNs suffer from

problems such as vanishing gradients and curse of dimensionality. Even using a sufficiently

large number of layers, DNN may not be able to learn simple functions (like an identity

function, because it is trying to approximate a linear function with a nonlinear function).

Hence, novel design approaches that overcome such disadvantages while enjoying comparable

BER performance and computational complexity are required in the decoding stage.
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Chapter 3

Joint User Clustering, Beamforming,

and Power Allocation for NOMA

In this Chapter, we investigate the application of downlink beamforming along with

PD-NOMA in a MIMO system. The joint design of user clustering, power allocation, and

beamforming is formulated for a multi-user MIMO NOMA system operating at mmWave

frequencies. To find the solution of the problem, two algorithms are developed whose

advantages in terms of total transmit power and spectral efficiency are shown through

simulation results.

3.1 Introduction

Since the main focus of this chapter is on PD-NOMA, in the sequel, we refer to the latter

as NOMA for simplicity. As seen in [35–37], the application of user clustering along with

Parts of the material in this chapter have been presented at the 2022 Asilomar Conference on Signals,
Systems, and Computers in Pacific Grove, CA, USA [71], and accepted for publication in the IEEE
Transactions on Communications [72].
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beamforming and power allocation techniques in MIMO NOMA systems has the potential

to improve sum-rate and reduce the total transmit power. However, in the existing

literature on MIMO NOMA, the user clustering problem is either neglected or addressed

separately from the beamforming and power allocation design. While this approach brings

important simplification in the design phase, it is inherently suboptimal and can lead to a

degradation of system performance. As discussed before, high transmit power is a limiting

factor in practical implementation of NOMA-based systems. Nevertheless, minimizing the

total transmit power of NOMA under quality-of-service constraints for the user has only

received limited attention. In [36], the authors explore this avenue by enforcing

signal-to-interference-plus noise constraints on the users, but assuming that the user

clustering is already available. In this paper, motivated by such considerations, we present

and investigate a novel joint optimization framework for user clustering, beamforming, and

power allocation, in a downlink MIMO NOMA system operating at mmWave frequencies.

Our main contributions in addressing the above challenges are summarized as follows:

• Under the assumption that CSI is available at the BS, we formulate the joint design as

a MINLP optimization problem where the objective is to minimize the total transmit

power under practical constraints on the SINR, power allocation, and clustering, so

as to ensure adequate SIC performance at the user terminals. In effect, this MINLP

problem is non-convex and NP-hard.

• Different from [30, 33, 36], and [37] which propose suboptimal algorithms based on

decomposed optimization (DO) or alternating optimization (AO), we develop a first

algorithm based on branch-and-bound (BB) to obtain the optimal solution of the

problem. BB is a systematic algorithm which lower bounds the objective function by

relaxing the problem and partitions the feasible space successively to find the global
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optimum solution, with guaranteed convergence to an ϵ-optimal solution within a

finite number of steps. Although the BB-based algorithm exhibits high

computational complexity, it can serve as a benchmark for evaluating the

performance of suboptimal algorithms for the same problem.

• To address the complexity issue, we then reformulate the original problem as an

equivalent difference of convex functions (DC) program. To solve the resulting

optimization problem, we develop a second algorithm based on the penalty

dual-decomposition (PDD), which is guaranteed to converge to a local stationary

solution of the transformed problem. The obtained solution is feasible for the original

MINLP problem and meets the necessary conditions of optimal solutions.

• We evaluate the performance of the proposed algorithms for the joint design of user

clustering, beamforming and power allocation, using in-depth simulations in a

multi-user MIMO NOMA system with mmWave downlink transmissions and different

parameter configurations. The results provide valuable insights into the advantages

of user clustering and superiority of the proposed approaches over competing ones

from the literature. Specifically, the results show that PDD-based algorithm

outperforms DO and AO algorithms and exhibits a comparable performance to the

optimal solution obtained by the BB-based algorithm in a small-scale network, yet

with much lower complexity. The results also illustrate the benefits of user clustering

and significant performance gains obtained in terms of transmit power when a joint

design is considered compared to benchmark approaches such as K-means and

random clustering. The convergence behavior of the new algorithms and the effect of

various parameters on the system performance are also presented in the simulation

results.
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The rest of the chapter is organized as follows: Section 3.2 introduces the system model

under consideration. The joint design of user clustering, beamforming and power allocation

is formulated as an optimization problem in Section 3.3. In Section 3.4, the proposed BB-

based algorithm for obtaining its solution is developed. The problem reformulation as a DC

program along with the proposed PDD-based algorithm are presented in Section 3.5. The

simulation results are presented in Section 3.6, followed by concluding remarks in Section

3.7.

3.2 System Model

As illustrated in Fig. 3.1, we consider downlink transmission in a multi-user MIMO NOMA

system operating at mmWave frequencies. The system consists of a BS transmitter equipped

with N antennas, serving K users indexed by k ∈ K = {1, . . . , K}, where each user is

equipped with a single-antenna receiver. The users are partitioned into C non-overlapping

clusters indexed by c ∈ C = {1, . . . , C}. The cth cluster comprises qc users, which jointly

share a common beamforming vector denoted as wc ∈ CN but can be allocated different

power levels depending on their respective channel conditions.

3.2.1 Channel Model

The application of MIMO NOMA communications in the mmWave band is more

challenging than in conventional low frequency scenarios, due to strenuous radio

propagation characteristics. Herein, we focus on narrowband flat-fading transmissions, and

assume without loss in generality that the BS transmitter employs a uniform linear array

(ULA) with half-wavelength antenna spacing. Hence, the mmWave-based channel vector
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Figure 3.1: The multi-user MIMO NOMA system model.

hk ∈ CN×1 from the BS to the kth user can be expressed as [87],

hk =
√

N
ak,0a(ϕ0

k)√
1 + dαLOS

k

+
√

N
L∑

l=1

ak,la(ϕl
k)√

1 + dαNLOS
k

(3.1)

where dk denotes the distance between the BS and the kth user; αLOS and αNLOS are the

path loss exponents of the line-of-sight (LOS) and non-LOS (NLOS) paths, respectively, and

ak,l denotes the complex gain for the lth path which follows a complex circular Gaussian

distribution, i.e., ak,l ∼ CN (0, 1). In the case of an ULA, the antenna array steering vector

a(ϕl
k) ∈ CN×1 is given by,

a(ϕl
k) = 1√

N
[1, e−jπ sin(ϕl

k), ..., e−jπ(N−1) sin(ϕl
k)]T (3.2)

where ϕl
k ∈ [0, 2π] is the angle of departure of the lth path. In this work, we assume that

near perfect CSI is available at the BS for joint processing, i.e. the channel vectors hk are
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known with sufficient accuracy.

3.2.2 Signal Model

As previously explained, within each cluster of users, the BS utilizes NOMA superposition

and beamforming simultaneously. That is, a common beamforming vector is shared by

the users who are allocated different power levels on the basis of their respective channel

conditions. Let αc,k ∈ [0, 1] denote the fraction of the total power available for the cth cluster

that is allocated to the kth user. Specifically, αc,k = 0 if the kth user does not belong to the

cth cluster, and for each cluster ∑
k αc,k = 1. Hence, assuming that the mth user belongs to

the cth cluster, its received signal can be expressed as,

rm = hH
mwc(

K∑
k=1

√
αc,ksk) +

∑
c′ ̸=c

hH
mwc′(

K∑
k=1

√
αc′,ksk)

︸ ︷︷ ︸
Inter-cluster Interference

+nm (3.3)

where sk ∈ C denotes the data symbol intended for the kth user and nm ∼ CN (0, σm) is an

additive noise term. The data symbols of different users are statistically independent with

zero mean and unit variance, i.e. E[|sk|2] = 1.

3.2.3 SIC Procedure

At the receiver side, each user in a given cluster employs SIC to mitigate the intra-cluster

interference, by decoding and removing the message of the weaker users in that cluster.

Hence, user decoding order plays a key role in MIMO NOMA systems. For SIC procedure,

let πc(k) denote the order of decoding for the kth user in the cth cluster. Assume that both

kth and mth users belong to the cth cluster and that πc(k) < πc(m). For the SIC operation
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at the mth user, the SINR of the kth user signal after perfect interference cancellation of

the ith users, πc(i) < πc(k), is given by,

SINRc
k,m = |hH

mwc|2αc,k∑
πc(k′)>πc(k) |hH

mwc|2αc,k′ + ∑
c′ ̸=c |hH

mwc′ |2 + σ2
m

(3.4)

where the first and second terms in the denominator of (3.4) represent the residual intra-

cluster and inter-cluster interference, respectively. In the case k = m, (3.4) simply represents

the available SINR of the mth user signal after perfect cancellation of signals from weaker

users. To ensure successful SIC, the SINR of the kth user signal decoded at the mth user

should be no smaller than the SINR of the kth user signal at the kth user, i.e., SINRc
k,m ≥

SINRc
k,k.

The optimal decoding order is determined by the effective channel gains which depend

on the user clustering, beamforming, and channel gains [37]. For a given cluster partition

and corresponding beamforming, the decoding order of the kth and mth users in the cth

cluster is πc(k) < πc(m), if the effective channel gain satisfies heff
c,k < heff

c,m [87], where,

heff
c,m = |hH

mwc|2∑
c′ ̸=c |hH

mwc′|2 + σ2
m

. (3.5)

Under the assumption of the optimal decoding order, it is sufficient to ensure that the SINR

of the kth user signal after removal of the other user signals is no smaller than a suitable

SINR threshold, i.e., SINRc
k,k ≥ γmin [87, Proposition 2].

In our work, the clustering and beamforming are not given and hence finding the optimal

decoding order is not trivial. In this regard, without loss of generality, we assume that

∥h1∥ ≤ · · · ≤ ∥hK∥. According to the NOMA principle, the weaker users (here, users

with lower channel gains, i.e., smaller ||hk||) should be allocated a larger fraction of the
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total available power at the transmitter and are decoded first at the receiver. To guarantee

successful performance of SIC, for any kth and mth users in the cth cluster such that ∀k ≤ m,

the condition SINRc
k,m ≥ γmin should be satisfied.

3.3 Problem Formulation

In this work, our goal is to jointly design the beamforming vectors, user clustering strategy

and power allocation in the above MIMO NOMA system, so as to minimize the total transmit

power at the BS, subject to relevant SINR, power and clustering constraints. Let the binary

variable ιc,k = 1 indicate that the kth user belongs to the cth cluster and ιc,k = 0 otherwise.

Then, it should be noted that ιc,k = 0 must coerce into αc,k = 0. Moreover, to guarantee

successful performance of SIC, the condition SINRc
k,m ≥ γmin should be satisfied only if the

kth and mth users are both in the cth cluster, i.e., ιc,k = ιc,m = 1, which can be reformulated

as,

SINRc
k,m ≥ γminιc,kιc,m, ∀k ≤ m ∈ K, c ∈ C (3.6)

where γmin represents a suitable SINR threshold1. If either of the kth or mth users are not

in the cth cluster, the condition would be SINRc
k,m ≥ 0 which is always true. Hence, the

joint design problem for the MIMO NOMA system can be formulated as,

P0 : min
Z0

∑
c∈C
∥wc∥2

2 (3.7a)

s.t. SINRc
k,m ≥ γminιc,kιc,m, ∀k ≤ m ∈ K, c ∈ C (3.7b)

1Different values of the SNR threshold γmin will be considered during simulations to explore the effects
of this parameter on the performance of the system.
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∑
c

∥wc∥2
2 ≤ Pmax (3.7c)

0 ≤ αc,k ≤ ιc,k, ∀c ∈ C, k ∈ K (3.7d)∑
k∈K

αc,k = 1, ∀c ∈ C (3.7e)

∑
k∈K

ιc,k = qc, ∀c ∈ C (3.7f)

∑
c∈C

ιc,k = 1, ∀k ∈ K (3.7g)

ιc,k ∈ {0, 1}, ∀c ∈ C, k ∈ K (3.7h)

where to ease notation, we let Z0 ≜ {W, α, ι} with W ≜ {wc|c ∈ C}, α ≜ {αc,k|c ∈ C, k ∈

K}, and ι ≜ {ιc,k|c ∈ C, k ∈ K}. The objective function in (3.7a) represents the total

transmit power at the BS under the assumptions made in Section 3.2.2 for the data symbol

sk. Constraint (3.7b) corresponds to (3.6). The quantity Pmax in constraint (3.7c) denotes

the maximum available transmit power2. Constraint (3.7d) compels the power allocation to

be zero if the kth user is not in the cth cluster. Constraints (3.7f) and (3.7g) reflect the

facts that the cth cluster must contain qc users, and each user must be scheduled in only one

cluster, respectively.

The SINR constraint (3.7b) is difficult to handle due to the binary variables on the right-

hand side of the inequality and the fractional form (3.4) of the SINR on the left-hand side.

By introducing auxiliary variables, xc
k,m, the SINR constraint can be rewritten as follows,

SINRc
k,m ≥ xc

k,m
(3.8)

2Pmax can be any large number so as to impose no constraint on the beamformer during transmission.
However, it should be noted that for the proposed BB-base algorithm, all variables must be bounded below
and/or above to guarantee global optimality, as explained later.
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γminιc,kιc,m ≤ xc
k,m

(3.9)

which are assumed to apply ∀k ≤ m ∈ K, c ∈ C. To tackle the difficulty posed by the

fractional SINR form, we introduce the auxiliary variable yc
k,m as the upper bound of the

denominator, and then equivalently express (3.8) as the following pair of constraints,

|hH
mwc|2αc,k ≥ xc

k,myc
k,m

(3.10)

K∑
k′=k+1

|hH
mwc|2αc,k′ +

∑
c′ ̸=c

|hH
mwc′ |2 + σ2

m ≤ yc
k,m (3.11)

Without loss of optimality, using the factorable programming technique [74], a tight

relaxation for the binary bilinear terms in (3.9) can be derived as,

xc
k,m ≥ γmin(ιu

c,kιc,k + ιu
c,mιc,m − ιu

c,kιu
c,m) (3.12)

where ιu
c,k denotes the upper bound of ιc,k which is equal to one in this case, i.e., ιu

c,k = 1.

In case that either of ιc,k or ιc,m are equal to 1, both (3.9) and (3.12) would be the same. If

ιc,k and ιc,m are equal to 0, (3.9) gives xc
k,m ≥ 0, while (3.12) gives xc

k,m ≥ −γmin. In this

case, these inequalities exert no influence on the final solution of the problem, since xc
k,m is

the lower bound of SINRc
k,m and always greater than zero.

From the above discussion, we can reformulate problem P0 into an equivalent problem

as given below

P1 : min
Z1

∑
c

∥wc∥2
2 (3.13a)

s.t. (3.7c)-(3.7h), (3.10), (3.11), (3.12) (3.13b)
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where we introduce Z1 ≜ {W, X, Y, α, ι} with X ≜ {xc
k,m|k ≤ m ∈ K, c ∈ C}, and Y ≜

{yc
k,m|k ≤ m ∈ K, c ∈ C}. We emphasize that the presence of non-convex constraints in a

MINLP can make the problem significantly more difficult to solve. In fact, MINLP problems

are already known to be NP-hard and the addition of non-convex constraints only adds to

the difficulty of the problem [73]. Hence, problem P1 which is a non-convex MINLP, is NP-

hard. Accordingly, obtaining the optimal solution is challenging due to the non-convexity

of the constraints and the combinatorial nature of the user clustering variables, ιc,k. In the

following sections, we develop two algorithms to find the near-optimal solutions of P1.

3.4 Proposed BB-Based Algorithm

MINLP represents one of the most challenging classes of mathematical programming,

typically requiring either simulation-based approaches or special decomposition methods

for the solution of very large scale problems. In particular, the application of the BB

algorithms to the MINLPs has shown promising results [74]. BB is a systematic method for

solving non-convex optimization problems. In the present context, BB can be applied to

P1 by constructing and solving its relaxation and branching the feasible space successfully,

where relaxation herein refers to transformation into a convex form. A lower bound on the

optimal objective function value of P1 is obtained by solving the relaxation problem, while

an upper bound is derived by employing upper bounding heuristics. The procedure quits if

the upper and lower bounds are sufficiently close, as they delimit the global minimum

value of the objective. Otherwise, the feasible space is partitioned into convex sets and

explored further to locate an optimal solution and verify its globality. As illustrated in Fig.

3.2, the BB process is typically depicted as a tree where the nodes and branches correspond
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to bounding and partitioning respectively.

Figure 3.2: An illustration of the BB process (adapted from [74]).
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3.4.1 Convex Relaxation

The relaxation problem is constructed by enlarging the feasible region and/or

underestimating the objective function of P1. Hence, the solution of the relaxation problem

provides a lower bound on the optimal objective function value of P1. In this subsection,

we introduce some effective convex relaxations for the non-convex constraints of P1.

We introduce new variables βc,m, uc,m, and lc,m,∀m ∈ K and c ∈ C, such that,

βc,m = hH
mwc ∈ C, (3.14)

|βc,m|2 ≤ uc,m (3.15)

|βc,m| ≥ lc,m (3.16)

Without loss of optimality, we can then reformulate problem P1 into a more tractable form

as given below,

P2 : min
Z2

∑
c

∥wc∥2
2 (3.17a)

s.t. (3.7c)-(3.7h), (5.12)-(3.16) (3.17b)
K∑

k′=k+1
uc,mαc,k′ +

∑
c′ ̸=c

uc′,m + σ2 ≤ yc
k,m (3.17c)

l2
c,mαc,k ≥ xc

k,myc
k,m (3.17d)

xc
k,m ≥ γmin(ιc,k + ιc,m − 1) (3.17e)

where we let Z2 ≜ {U, L, W, X, Y, α, ι, β} with U ≜ {uc,m|c ∈ C, m ∈ K}, L ≜ {lc,m|c ∈

C, m ∈ K}, and β ≜ {βc,m|c ∈ C, m ∈ K}. The feasible region of P2 is non-convex due
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to constraints (3.7h), (3.16), (3.17c), and (3.17d), while the objective function is convex.

We construct a convex relaxation of P2 by outer-approximating its feasible space with a

convex set. To the end, we can simply drop the binary constraints and treat the variables as

continuous ones in the range [0, 1]. Next, we construct convex relaxations for the non-convex

constraint (3.16) by applying the following proposition.

Proposition 3.1: Let D[φ
c,m

,φc,m](lc,m) denote the subset of complex numbers βc,m =

ρc,mejφc,m , with amplitude and phase respectively satisfying the inequalities ρc,m ≥ lc,m and

φ
c,m
≤ φc,m ≤ φc,m, where lc,m ≥ 0 and 0 ≤ φ

c,m
≤ φc,m ≤ 2π. Suppose that φc,m−φ

c,m
≤ π,

then the convex envelop of D[φ
c,m

,φc,m](lc,m) is given by [75]

Conv(D[φ
c,m

,φc,m](lc,m)) = {βc,m ∈ C| sin(φ
c,m

)ℜ(βc,m)− cos(φ
c,m

)ℑ(βc,m) ≤ 0,

sin(φc,m)ℜ(βc,m)− cos(φc,m)ℑ(βc,m) ≥ 0,

fc,mℜ(βc,m) + gc,mℑ(βc,m) ≥ (f 2
c,m + g2

c,m)lc,m}

(3.18)

where fc,m = (cos(φ
c,m

) + cos(φc,m))/2 and gc,m = (sin(φ
c,m

) + sin(φc,m))/2.

Proof. Fig. 3.3 illustrates the relationship between sets D[φ
c,m

,φc,m](lc,m) and

Conv(D[φ
c,m

,φc,m](lc,m)). In Fig. 3.3, the area outside the blue circle corresponds to

|βc,m| ≥ lc,m, the set D[φ
c,m

,φc,m](lc,m) corresponds to the light blue polka dot region outside

the arc AB which is obviously nonconvex, and its convex envelope, Conv(D[φ
c,m

,φc,m](lc,m)),

corresponds to the light blue region determined by three lines, OA, OB, and AB. It is

simple to see that the two extreme points of set Conv(D[φ
c,m

,φc,m](lc,m)) are

A= (cos(φ
c,m

), sin(φ
c,m

)) and B= (cos(φc,m), sin(φc,m)). To prove the proposition, it is

sufficient to determine the three lines OA, OB, and AB which can be determined by

equations sin(φ
c,m

)x − cos(φ
c,m

)y = 0, sin(φc,m)x − cos(φc,m)y = 0, and
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Figure 3.3: An illustration for Proposition 3.1.

fc,mx + gc,my = (f 2
c,m + g2

c,m)lc,m, respectively.

It can be verified that as φc,m − φ
c,m

goes to zero, the convex envelope becomes tight,

i.e., Conv(D[φ
c,m

,φc,m](lc,m)) is equal to D[φ
c,m

,φc,m](lc,m). Note that the convex envelope does

not take effect when φc,m − φ
c,m

> π. According to Proposition 3.1, we can now replace

constraint (3.16) by βc,m ∈ Conv(D[φ
c,m

,φc,m](lc,m)).

By defining µc
k,m = uc,mαc,k, νc

k,m = lc,mαc,k, ζc
k,m = lc,mνc

k,m and ηc
k,m = yc

k,mxc
k,m, we can

reformulate (3.17c) and (3.17d) as below,

K∑
k′=k+1

µc
k′,m +

∑
c′ ̸=c

uc′,m + σ2 − yc
k,m ≤ 0 (3.19)

ζc
k,m ≥ ηc

k,m. (3.20)

We address the relaxation of the bilinear terms, i.e., µc
k,m, νc

k,m, ζc
k,m, and ηc

k,m, using their

convex and concave envelopes. For two variables yi and yj, the bilinear term defined as
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yi,j = yiyj is relaxed using the convex and concave envelopes as [74],

yi,j ≥ yu
i yj + yu

j yi + yu
i yu

j
(3.21)

yi,j ≥ yl
iyj + yl

jyi − yl
iy

l
j (3.22)

yi,j ≤ yu
i yj + yl

jyi − yu
i yl

j (3.23)

yi,j ≤ yl
iyj + yu

j yi − yl
iy

u
j (3.24)

where the superscripts u and l stand for upper bound and lower bound of the corresponding

variable, respectively. Since the bilinear terms are convex or concave in both variables, the

convex and concave envelopes then provide tight approximations.

3.4.2 Proposed Algorithm

For ease of notation, let Γ = [ι, α, φ] ∈ RC×3K be the variable matrix of interest. Initially,

this matrix belongs to the box Qinit = [Γ, Γ] where,

Γ ≜ 0C×3K , Γ ≜ [1C×2K , 2π1C×K ]. (3.25)

The proposed BB-based algorithm involves a sequence of iterations indexed by integer t ∈ N.

Within each iteration, Rt, Φt
U , and Φt

L denote the box list, the upper bound, and the lower

bound of the optimal objective function value of problem P2, respectively. Let ΦU(Q) and

ΦL(Q) represent the upper bound and the lower bound of the objective function value over

a given box Q. Each iteration consists of two main parts, i.e. Branch and Bound, as further

explained below.
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1) Branch: At the tth iteration, we select a box in Rt and split it into two smaller ones.

An effective method for selecting the candidate box is to choose the one with the least lower

bound, i.e., Q∗ = arg minQ∈Rt ΦL(Q). The selected box Q∗ = [A, B] is then split along the

longest edge, i.e., (i∗, j∗) = arg maxi,j{bi,j − ai,j}, to create two boxes with equal size, that

is,

Q∗
1 =


[A, B− Ji∗,j∗ ], if j∗ ≤ K

[A, B− 1
2(bi∗,j∗ − ai∗,j∗)Ji∗,j∗ ], if j∗ > K

(3.26)

Q∗
2 =


[A + Ji∗,j∗ , B], if j∗ ≤ K

[A + 1
2(bi∗,j∗ − ai∗,j∗)Ji∗,j∗ , B], if j∗ > K

(3.27)

where Ji∗,j∗ is a C × 3K matrix with (i∗, j∗)th entry equal to 1 and all other entries equal

to 0.

2) Bound: The bounding operation consists in computing the upper and lower bounds

over the newly added box Q ∈ {Q∗
1,Q∗

2}, and update the lower bound Φt
L and the upper

bound Φt
U .

Lower bound: The lower bound ΦL(Q) is obtained by solving the convex relaxation of

problem P2 developed in Section 3.4.1, where the variables ι, α and ϕ are searched over the

box Q. Since the relaxation problem is convex, it can be solved via any general-purpose

solver using interior-point methods [76]. Note that if the relaxation problem is infeasible,

the box Q does not contain the optimal solution. In this case, we simply set ΦL(Q) and

ΦU(Q) as +∞.

After obtaining the lower bounds ΦL(Q), for Q ∈ {Q∗
1,Q∗

2}, we can obtain the updated

box list Rt+1 by removing Q∗ from Rt and adding Q∗
1 and Q∗

2 if their lower bounds are less
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than or equal to the current best upper bound Φt
U , i.e., Rt+1 = (Rt − {Q∗})∪{Q∗

i |ΦL(Q∗
i ) ≤

Φt
U , i = 1, 2}. The lower bound of the optimal objective value of the original problem is

updated as Φt+1
L = minQ∈Rt+1 ΦL(Q).

Upper bound: To obtain an upper bound, we need to find a feasible solution of problem

P1, which can be done by utilizing the solution of the relaxation problem. Let

{W∗, α∗, ι∗, β∗} denote the optimal solution of the latter problem. If ι∗ /∈ BC×K , we set

ΦU(Q) as +∞. If ι∗ ∈ BC×K and constraint (3.7b) is satisfied, then the solution of the

relaxation problem is a feasible solution of the original problem. If constraint (3.7b) is not

satisfied, we can scale W∗ to be feasible. Therefore, a feasible solution of problem P2 is

given by {W̃, α̃, ι̃} where ι̃ = ι∗, α̃ = α∗, and,

W̃c = max{1, max
{k≤m|ι∗

c,k
=ι∗

c,m=1}
{

√
ac

k,m

|β∗
c,m|
}} W∗

c , (3.28)

ac
k,m = (C − 1)∥hm∥2Pmaxγmin + σ2γmin

αc,k −
∑K

k′=k+1 αc,k′γmin

, (3.29)

ΦU(Q) =
∑

c

∥w̃c∥2
2. (3.30)

To derive these equations, we make the assumption that the optimal beamforming solution,

i.e., W∗
c , is multiplied by a scaling factor to meet the requirements of constraint (3.7b).

Next, a lower bound for this factor is calculated for each user in the cluster. Then, the

maximum lower bound among all users in a cluster is chosen to obtain the feasible solution

W̃c. Finally, a better upper bound of the optimal objective value of P2 is obtained by

applying the update Φt+1
U = minQ∈Rt+1 ΦU(Q). The overall BB-based algorithm for solving

problem P1 is summarized in Algorithm 3.1.
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Algorithm 3.1: The BB-based algorithm.
Initialization: Initialize Rt ← Qinit, Find the lower bound ΦL(Qinit) by solving the
relaxation of problem (3.17), and the upper bound ΦU(Qinit) according to (3.30).
Set t = 0, Φ0

L = ΦL(Qinit), Φ0
U = ΦU(Qinit), and the tolerance ϵ > 0.

While: (Φt
U − Φt

L)/Φt
L > ϵ

1) Branch: Select the box Q∗ in Rt with the least lower bound and split it into
two boxes Q∗

1 and Q∗
2 according to the splitting rules (3.26)-(3.27).

2) Bound: For each box Q∗
i (i = 1, 2), find its lower bound ΦL(Q∗

i ) by solving the
relaxation of problem (3.17) and its upper bound ΦU(Q∗

i ) according to (3.30).
3) Update Rt+1 = (Rt − {Q∗}) ∪ {Q∗

i |ΦL(Q∗
i ) ≤ Φt

U , i = 1, 2}.
4) Update Φt+1

L = minQ∈Rt+1 ΦL(Q).
5) Update Φt+1

U = minQ∈Rt+1 ΦU(Q).
6) Set t← t + 1.

End

3.4.3 Convergence and Complexity Analysis

Let size(Q) denote the maximum half-length of the sides of box Q. The following Theorem

1 shows that the upper and lower bounds over a box region become tight as the box shrinks

to a point. That is, as size(Q) goes to zero, the difference between upper and lower bounds

converges to zero.

Theorem 3.1: For any ϵ > 0, let δ ∈ (0, π
2 ) be defined as,

δ = arccos( 1√
1 + ϵ

). (3.31)

For any given Q ⊂ Qinit, if size(Q) ≤ 2δ, we can obtain an ϵ-optimal solution of problem P1

by applying Algorithm 3.1, i.e., Φt
U −Φt

L

Φt
L
≤ ϵ for some integer t.

Proof. See Appendix A.1.

By adopting the splitting rule in Section 3.4.2, at least one box in the partition has
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size not exceeding δ if t is sufficiently large. It follows from Theorem 3.1 that when the

corresponding box is added to the list at the tth iteration, the algorithm should terminate

and return ϵ-optimal solution. We refer the interested reader to [77] for additional details

on the convergence properties of the branch and bound method.

The following Theorem proves that the number of iterations of the BB-based algorithm

for obtaining the solution is finite.

Theorem 3.2: For any given ϵ > 0, the proposed BB-based algorithm returns an ϵ-

optimal solution of the given problem within at most,

TB =
⌈(4π

δ2

)CK
⌉

+ 1 (3.32)

iterations, where δ is given in (3.31).

Proof. See Appendix A.2.

At each iteration, the complexity of the proposed BB-based algorithm is dominated by

calculating the lower bounds in Step 2. Obtaining the lower bound requires solving a convex

quadratic problem via a general-purpose solver, e.g., SeDuMi in CVX [78] with a complexity

of O((KCN)3.5). Assuming that the BB-based algorithm converges after TB iterations, the

worst-case computational complexity can be expressed as O(TB(KCN)3.5). Theorem 3.2

shows that TB can be very large if the tolerance ϵ is small. Nevertheless, the proposed

BB-based algorithm can be used as the system performance benchmark.
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3.5 Proposed PDD-Based Algorithm

To circumvent the complexity issue of the BB-based algorithm, we herein conceive an

alternative algorithm based on the penalty dual-decomposition (PDD) that can obtain a

suboptimal solution of problem P1 with reduced computational cost. Specifically, the

proposed PDD-based algorithm consists of two embedded loops, where the inner loop seeks

to approximately solve an augmented Lagrangian (AL) problem (see e.g., [79–81]) via the

concave-convex procedure (CCCP) [82], while the outer loop updates either the dual

variables or the penalty parameter, depending on a constraint violation status. Below, we

first transform the problem P1 into a more tractable form, which is then used as a basis to

develop our proposed PDD-based algorithm. Finally, the convergence and computational

complexity of the new algorithm are discussed.

3.5.1 Problem Reformulation

The binary constraints in (3.7h) are generally difficult to handle. To address this issue, we

introduce the auxiliary variables ι̃c,k such that,

ι̃c,k = ιc,k, ∀k ∈ K, c ∈ C. (3.33)

Hence, we can equivalently replace the binary constraints in (3.7h) by,

ιc,k(1− ι̃c,k) = 0, ∀k ∈ K, c ∈ C. (3.34)

It can be seen that the equality constraints hold only when ι̃c,k = ιc,k ∈ {0, 1}. Moreover,

the introduction of equality constraints (3.33)-(3.34) does not change the actual feasible set
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of the solution.

Let uc,m and lc,m denote the upper and lower bounds of |hH
mwc|2 respectively. Then, we

can rewrite (3.10) and (3.11) as follows,

lc,mαc,k ≥ xc
k,myc

k,m
(3.35)

K∑
k′=k+1

uc,mαc,k′ +
∑
c′ ̸=c

uc′,m + σ2
m ≤ yc

k,m. (3.36)

Moreover, for any two variables x and y, we have 2xy = (x + y)2 − x2 − y2. Hence, (3.35)

and (3.36) can be equivalently rewritten as,

[ (xc
k,m + yc

k,m)2 + l2
c,m + α2

c,k ]−
[
(lc,m + αc,k)2 + (xc

k,m)2 + (yc
k,m)2

]
≤ 0 (3.37)

[ 1
2

K∑
k′=k+1

(uc,m + αc,k′)2 +
∑
c′ ̸=c

uc′,m + σ2
m ]− [ 1

2

K∑
k′=k+1

(u2
c,m + α2

c,k′) + yc
k,m ] ≤ 0 (3.38)

which are expressed as differences of convex functions (DC).

From the above discussion, we can reformulate P1 into an equivalent problem as follows,

P3 : min
Z3

∑
c

∥wc∥2
2 (3.39a)

s.t. (3.7c)-(3.7g), (3.12), (3.33), (3.34), (3.37), (3.38) (3.39b)

|hH
mwc|2 ≤ yc,m (3.39c)

lc,m ≤ |hH
mwc|2 (3.39d)

0 ≤ ιc,k ≤ 1. (3.39e)
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To ease the notation, we let Z3 ≜ {U, L, W, X, Y, α, ι, ι̃} with ι̃ ≜ {ι̃c,m|c ∈ C, m ∈ K}. We

can observe that: the objective function is a scalar continuously differentiable function, the

functions appearing in the inequality constraints are all continuously differentiable, and the

functions in the equality constraints are continuously differentiable. Hence, we can apply

the PDD method to solve problem (3.39).

3.5.2 Proposed Algorithm

In this subsection, we conceive an efficient PDD-based algorithm to solve problem (3.39).

To tackle the equality constraints, we first formulate the AL of problem (3.39) as follows,

AL : min
Z3

∑
c

∥wc∥2
2 + Pρ (3.40a)

s.t. (3.7c), (3.7d), (3.12), (3.37), (3.38), (3.39c)-(3.39e) (3.40b)

where the penalty term Pρ is given by (3.41), and {λk}, {λ(1)
c }, {λ(2)

c }, {λ
(1)
c,k}, and {λ(2)

c,k}

denote the dual variables corresponding to equality constraints (3.7g), (3.7e), (3.7f), (3.33),

and (3.34) respectively. The coefficient ρ is used to control the size of the penalty such that

decreasing ρ increases the penalty.

Pρ ≜ 1
2ρ

[∑
k

|
∑

c

ιc,k − 1 + ρλk|2+
∑

c

(|
∑

k

αc,k − 1 + ρλ(1)
c |2 + |

∑
k

ιc,k − qc + ρλ(2)
c |2)

+
∑

c

∑
k

(|ι̃c,k − ιc,k + ρλ
(1)
c,k|2 + |ιc,k(1− ι̃c,k) + ρλ

(2)
c,k|2)

]

(3.41)

Our proposed algorithm has a double-loop structure. In the inner loop, we employ the

CCCP method to iteratively optimize the variables Z while keeping the dual variables and
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penalty parameter fixed. In the outer loop, we update either the dual variables or the

penalty parameter. In the following, we first develop the CCCP method in details, then

present the update of the dual variables and penalty parameter, and finally summarize the

overall PDD-based algorithm.

Inner loop: In the AL problem, there exist non-convex constraints in DC forms. Hence,

the former can be efficiently solved using the iterative CCCP. Specifically, by linearizing

the non-convex part of the constraints using first-order Taylor expansion, we obtain convex

sub-problems. A sub-optimal solution to the AL problem for the current outer loop can be

efficiently found by iteratively solving a sequence of convex sub-problems. For example, by

applying first-order Taylor expansion, (3.37), (3.38) and (3.39d) can be respectively

transformed to the convex constraint expressed in (3.42), (3.43), and (3.44), where a

variable with circumflex denotes the current value of the variable at the current iteration of

the inner loop.

(xc
k,m + yc

k,m)2 + l2
c,m + α2

c,k+(l̂c,m + α̂c,k)2 − 2(l̂c,m + α̂c,k)(lc,m + αc,k)

+ (x̂c
k,m)2 − 2x̂c

k,mxc
k,m + (ŷc

k,m)2 − 2ŷc
k,myc

k,m ≤ 0
(3.42)

1
2

K∑
k′=k+1

[
(uc,m + αc,k′)2 + û2

c,m − 2ûc,muc,m + α̂2
c,k′ − 2α̂c,k′αc,k′

]
+

∑
c′ ̸=c

uc′,m + σ2
m − yc

k,m ≤ 0

(3.43)

lc,m + |hH
mŵc|2 − 2ℜ{ŵH

c hmhH
mwc} ≤ 0 (3.44)

From the discussion above, the AL problem in (3.40) can be approximated as,

min
Z3

∑
c

∥wc∥2
2 + Pρ (3.45a)
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s.t. (3.7c), (3.7d), (3.12), (3.39c), (3.39e), (3.42)-(3.44) (3.45b)

We can solve subproblem (3.45) at each iteration of the inner loop by employing the CCCP.

To this end, we divide the variables Z into two blocks and update each block successively.

The first block contains variables ι̃, which only exist in the objective function. Therefore,

by fixing the variables in the second block, we can easily obtain the optimal value of ι̃ in

closed-form as follows,

ι̃c,k =
ιc,k + ι2

c,k + ρλ
(1)
c,k + ριc,kλ

(2)
c,k

1 + ι2
c,k

. (3.46)

In order to update the variables in the second block Z̄ ≜ Z − ι̃, we fix ι̃ and solve problem

(3.45). Since the latter is now convex, this can be achieved by employing any general-purpose

solver using interior-point methods [76].

Outer loop: At each iteration of the outer loop, the dual variables {λk}, {λ(1)
c }, {λ(2)

c },

{λ(1)
c,k}, {λ

(2)
c,k}, or the penalty parameter ρ are updated as follows,

λk ← λk + 1
ρ

(
∑

c

ιc,k − 1) (3.47)

λ(1)
c ← λ(1)

c + 1
ρ

(
∑

k

αc,k − 1) (3.48)

λ(2)
c ← λ(2)

c + 1
ρ

(
∑

k

ιc,k − qc) (3.49)

λ
(1)
c,k ← λ

(1)
c,k + 1

ρ
(ι̃c,k − ιc,k) (3.50)

λ
(2)
c,k ← λ

(2)
c,k + 1

ρ
(ιc,k(1− ι̃c,k)) (3.51)
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ρ← τρ (3.52)

where the symbol← denotes an overwrite operation. A control parameter 0 < τ < 1 is used

to increase the value of the penalty term Pρ during each outer iteration.

The overall PDD-based algorithm for the joint design is summarized in Algorithm 3.2,

where e(Z) is a vector that combines all functions in the equality constraints of problem

(3.39) and ∥e(Z)∥∞ denotes the maximum constraint violation. Moreover, ϖt(Z) denotes

the value of the objective function of problem (3.45) at the tth iteration of the inner loop

and κt′ denotes the constraint violation parameter at the t′th iteration of the outer loop.

Initialization: Choosing a feasible point for initialization of Algorithm 2 is essential.

For this purpose, we randomly initialize W, α, ι, and ι̃ such that (3.7d)-(3.7h), (3.33) are

satisfied. Subsequently, we initialize U and L by setting uc,m = lc,m = |hH
mwc|2,∀m ∈

K, c ∈ C. We then set xc
k,m = γminιc,kιc,m and yc

k,m = ∑K
k′=k+1 uc,mαc,k′ + ∑

c′ ̸=c uc′,m + σ2
m,

∀k, m ∈ K, c ∈ C.

3.5.3 Convergence and Complexity Analysis

With a feasible initial point, the sequence generated by the PDD method is guaranteed to

converge to a stationary solution of the problem. We omit the proof here for brevity and

refer the interested reader to [83] and [84] for a rigorous proof of the convergence of the

PDD methods. It is worth noting that there is no approximation or relaxation during the

transformation from the original problem P1 to problem (3.39), hence they share the same

solutions. Moreover, since the obtained stationary solution meets the necessary conditions

for the optimal solution of problem (3.39), it also meets the necessary conditions for the

optimal solution of problem P1.
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Algorithm 3.2: The PDD-based algorithm.
Initialization: Define the tolerance of accuracy ϵI and ϵO. Initialize the algorithm
with a feasible point Z. Set the iteration numbers t = 0 and t′ = 0.

Repeat:
Repeat:
• Update ι̃ based on (3.46).
• Update Z̃ by solving problem (3.45).
• Set t← t + 1.

Until: |ϖt+1(Z)−ϖt(Z)|
|ϖt(Z)| ≤ ϵI ot t ≤ Nmax

if ∥e(Z)∥∞ ≤ κt′

• Update the dual variables based on (3.47)-(3.51).
else
• Update the penalty parameter based on (3.52).

end
Set t′ ← t′ + 1.

Until: ∥e(Z)∥∞ ≤ ϵO

For the PDD-based algorithm, the overall complexity is dominated by solving the

convex problem (3.45) which can be approximated by a sequence of SOCPs via the

successive approximation method. Each SOCP can then be solved via a general-purpose

software, e.g., SeDuMi in CVX [78] with a complexity of O((KCN)3.5). The worst-case

computational complexity is therefore given by,

CP = O(TITO(KCN)3.5) (3.53)

where TI and TO denote the numbers of the inner and outer iterations, respectively. Owing to

the replacement of the binary constraints and decomposition of the problem, the proposed

PDD-based algorithm can converge much faster with lower complexity compared to the
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proposed BB-based algorithm in Section 3.4.

3.6 Simulation Results

In this section, numerical experiments are carried out to illustrate the performance of the

proposed algorithms for joint design of user clustering, downlink beamforming, and power

allocation in a MIMO NOMA system.

3.6.1 Methodology

We consider downlink transmission in a MIMO NOMA system, wherein a BS equipped

with N antennas serves K = 6 users, each equipped with a single antenna. The BS is

located at the center of a circular cell with radius 200m, over which the users are randomly

distributed. The users are grouped into C non-overlapping clusters, each allocated a different

beamforming vector. For simplicity, unless otherwise stated, we assume that all clusters

comprise equal number of users, i.e., qc = q, ∀c ∈ C. We consider the channel model

(3.1) described in Section 3.2.1 with bandwidth of W = 2 GHz and carrier frequency of

fc = 28 GHz. The AoDs of the different channel paths follow a uniform distribution in

[0, 2π]. Throughout the experiments, it is assumed that the noise variance is the same for

all users, i.e., σ2
k = σ2, ∀k ∈ K. The pathloss exponents of the LOS and NLOS paths are

αLOS = 2 and αNLOS = 3, respectively.

For the PDD-based algorithm, we set the initial penalty parameter and control parameter

as ρ = 4 and τ = 0.8, respectively and the equality constraint violation tolerance parameter

as κj = 0.3j at the jth outer iteration. Table 3.1 summarizes the key simulation parameters.
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Description Varibales Value
Number of users K 6
Number of BS antennas N 2 or 8
Noise power (mW) σ2 10
Bandwidth (GHz) W 2
Carrier frequency (GHz) fc 28
Path loss exponent of LOS αLOS 2
Path loss exponent of NLOS αNLOS 3
Number of the NLOS paths L 0 or 3
Tolerance for the algorithms ϵ, ϵI , ϵO 10−6

Control parameter τ 0.8
Initial penalty parameter ρ 4
Maximum number of inner iterations Nmax 10
Maximum available transmit power (W) Pmax 50

Table 3.1: Summary of parameters.

We use Monte Carlo experiments to evaluate the performance of the proposed BB and

PDD-based algorithms for joint user clustering, downlink beamforming, and power

allocation. The total transmit power and sum rate are measured for different parameter

configurations and the results are compared with benchmark approaches from the

literature, as will be specified below.

3.6.2 Results and Discussion

Fig. 3.4 illustrates the convergence behavior of the proposed BB-based algorithm for a

particular scenario where K = 6 users are grouped into C = 3 clusters with q = 2 users

in each. The target SINR and number of NLOS paths are set to γmin = 0.1 and L = 0,

respectively. We consider N = 2 transmit antennas for the BS to limit the computational
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Figure 3.4: Convergence behavior of the BB-based algorithm.

complexity of the algorithm3. It can be seen that the upper bound and the lower bound

are non-increasing and non-decreasing, respectively, while the gap between them becomes

smaller as the iteration index increases and infeasible subregions are removed. The algorithm

performs a branching process for each dimension to approach the ϵ-optimal solution. Hence,

the number of iterations can be very large if the tolerance ϵ is small, which is not practical

due to the high complexity. However, the achieved results can still be used as the network

performance benchmark.

Figs. 3.5a and 3.5b present the convergence behavior of the proposed PDD-based

algorithm with three different initial points. For comparison purposes, the same parameter

configuration as in Fig. 3.4 is considered. Fig. 3.5a shows the maximum constraint
3With N = 2 antennas and C = 3 clusters, the beamfoming gain will be limited since there is not enough

degrees of freedom to design directional beams in the clusters’ direction; that is, the design problem is
overdetermined. We refer the interested reader to [85,86] for discussion on classical beamformer design.
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violation, i.e., ∥e(Z)∥∞, versus the number of iterations. We observe that the constraint

violation decrease below 10−6 within 20 iterations. Fig. 3.5b shows the objective value of

(3.45), i.e., ϖt(Z), achieved by the PDD-based algorithm at the end of each outer

iteration. It can be seen that the objective value converges in less than 15 iterations to the

same optimum value obtained by the BB-based algorithm for all initial points.

Fig. 3.6 compares the achievable sum rate versus total transmit power among the

proposed BB and PDD-based algorithms, the AO [37], the DO [30] and the orthogonal

multiple access (OMA) method. In this scenario, all K = 6 users are grouped into C = 1

cluster and the BS is equipped with N = 2 antennas. As shown in the figure, the average

achievable rate increases as the total transmit power increases. We can also see that the

proposed BB and PDD-based algorithms outperform the AO, DO and OMA methods. For

the BB algorithm, this performance improvement is not surprising since it finds the global

optimum solution for the power allocation and beamforming, while for the PDD

algorithms, the results suggest that it achieves near optimal performance. We note that the

sum rate for BB slightly exceeds that for PDD when the transmit power is small; however,

the performance gap between PDD and BB goes to zero as the transmit power increases.

While it is not taken into account in this figure, user clustering can further improve system

performance, will be illustrated shortly.

Fig. 3.7 shows the total transmit power versus target SINR, γmin, for the case with

C = 3 clusters and q = 2 users per cluster. The BS is equipped with N = 2 antennas

and L = 0 NLOS paths are considered for the mmWave-based channel vectors. Different

clustering, beamforming, and power allocation schemes are considered for comparison as

described below:

• RCL: Random clustering scheme.
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Figure 3.5: Convergence behavior of the PDD-based algorithm.
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Figure 3.6: Achievable sum rate versus total transmit power.

• RBF: Random beamforming scheme [87].

• PA-1: Fixed power allocation with equal power for the users in one cluster, i.e., αc,k =

αc,m = 0.5 when the kth and mth users are both in the cth cluster.

• PA-2: Fixed power allocation with unequal power, i.e., αc,k = 0.8 and αc,m = 0.2 when

the kth and mth users are both in the cth cluster and k < m.

• K-means: Machine-learning based user clustering algorithm constrained to limit the

number of users in each cluster [92].

We observe that the proposed BB-based and PDD-based algorithms outperform other

schemes and and that once again, the latter nearly achieve the optimal performance of the

former. For RBF and PA-1, the total transmit power for small γmin is less than PA-2.
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Figure 3.7: Total transmit power versus target SINR.

However, as γmin increases, a noticeable increase in total transmit power is observed for

RBF and PA-1, while the unbalanced power allocation, i.e., PA-2 obtains lower transmit

power.

To better appreciate the benefits of user clustering, we examine the total transmit power

versus target SINR, γmin, for different clustering schemes in Fig. 3.8. In this scenario, K = 6

users are grouped into C = 1, 2, and 3 clusters with 6, 3, 2 users in each, respectively. We

also consider grouping into C = 2 and 3 clusters, but with no limit on the number of users

per cluster, as indicated by, e.g. “C = 2, q ≥ 1”. The BS is equipped with N = 8 antennas

and L = 3 NLOS paths are considered for the channel vectors. We observe that when

all users are grouped into one cluster, the total transmit power is greater than for other

cases. It can also be seen that the results for the unconstrained cases outperform other cases

with fixed q and the performance gap increasing with γmin. This means that the algorithm
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Figure 3.8: Total transmit power versus target SINR.

can find better user clustering with lower total transmit power when there is no constraint

on the number users per cluster. Finally, by increasing the number of antennas, the total

transmission power can be reduced, which is a consequence of narrower beamforming.

Fig. 3.9 shows the total transmit power versus number of users K with target SINR

γmin = 0.1. Here„ users are grouped into C = 1, 2, and 3 clusters while no limit on the

number of users per cluster is enforced. Moreover, the BS is equipped with N = 8 antennas

and L = 3 NLOS paths are considered for the channel vectors. Obviously, the total transmit

power increases with the number of users. When all users are grouped into one cluster, a

rapid increase in the total transmit power as a function of K is observed. It can also be

seen that by increasing the number of clusters transmit power can be significantly reduced.

Hence, user clustering has a great impact on the performance of the system.

To investigate the impact of imperfect CSI on the proposed joint design of user
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Figure 3.9: Total transmit power versus number of users.

clustering, power allocation and downlink beamforming, we implement the proposed

PDD-based algorithm with an estimated channel vector model as follows

ĥk = hk + ∆k (3.54)

where hk is the actual channel vector and ∆k is the CSI error, which follows a complex

Gaussian distribution with i.i.d. entries, i.e., ∆k ∼ CN (0, σ2
eI). Fig. 3.10 shows sum rate

versus total transmit power, where the perfect and imperfect CSI with different value of

σe are considered. Here, two scenarios for user clustering is considered, i.e., C = 2, q = 3

shown by solid lines and C = 3, q = 2 shown by dashed lines. We observe that the system

performance is sensitive to the CSI accuracy. This is due to the fact that the proposed

PDD-based algorithm largely depends on the obtained CSI at the transmitter. Moreover,
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Figure 3.10: Sum rate versus total transmit power for perfect and imperfect CSI.

SIC does not work well in the presence of imperfect CSI and can not remove intra-cluster

interference totally. It can also be seen that the performance degradation is worse when the

number of users in a cluster increases. Once an error occurs in SIC (due to e.g., imperfect

CSI), signal of the corresponding user will not be completely removed, leaving some residual

signals as interference. Consequently, the message of all remaining users in the corresponding

cluster will likely be decoded erroneously. Although robust beamforming can potentially

compensate the impact of imperfect CSI and error propagation [88–90], this approach can

add more complexity to the existing problem. This aspect falls beyond the scope of this

contribution, and nevertheless remains an interesting avenue for future work.



3. Joint User Clustering, Beamforming, and Power Allocation for NOMA 69

3.7 Concluding Remarks

In this work, the joint optimization framework for user clustering, power allocation and

beamforming was investigated in a multi-user MIMO NOMA system operating at mmWave

frequencies. In the proposed scheme, users are partitioned into non-overlapping clusters. In

any given clusters, users share a common beamforming vector but are distinguished with

different power allocation. The joint design of user clustering, power allocation, and

beamforming was formulated as an optimization problem, with the aim to minimize the

total transmit power under the SINR, power and clustering constraints. We first developed

a BB-based algorithm to find the global optimum of the problem. We then proposed a

low-complexity algorithm using PDD method to obtain the suboptimal solution. Through

simulations, it was shown that applying the proposed design to the multi-user MIMO

NOMA system can effectively decrease total transmit power and improve spectral

efficiency compared to the benchmark approaches.
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Chapter 4

User Clustering and Beamforming for

MIMO SCMA in C-RAN

In this chapter, we investigate the key problems of user clustering and downlink

beamforming for MIMO SCMA in a C-RAN. The proposed approaches are evaluated by

means of simulations over mmWave channels. Results show significant improvements in

terms of total transmit power and spectral efficiency compared to benchmark approaches.

4.1 Introduction

MIMO SCMA combines MIMO techniques, which increase capacity by transmitting different

signals over multiple antennas, and SCMA which improves spectral efficiency and device

connectivity by transmitting multiple user signals over the same radio resources. As seen in

works related to power domain NOMA [93,94], the joint application of spatial user clustering

Parts of the material in this chapter have been presented at the 2021 IEEE 32nd Annual International
Symposium on PIMRC [91], and published in the IEEE Access [92].
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along with beamforming techniques in MIMO SCMA systems has the potential to improve

spectral efficiency and reduce the total transmit power. Additionally, when considered within

a C-RAN architecture, this approach makes it possible to increase the number of supported

users in the network by using a common codebook for users in different clusters, while the

effect of inter-cluster interference can be eliminated by centralized beamformer design and

coordinated RRH operation. In spite of its importance, the joint problem of user clustering

and beamforming has not received considerable attention in the literature on MIMO SCMA,

let alone C-RAN.

Motivated by the above considerations, we propose energy-efficient user clustering and

downlink beamforming approaches for MIMO SCMA in C-RAN. Our main contributions in

addressing the above challenges are summarized as follows:

• We approach the user clustering problem by modifying the widely-used K-means

method from the field of machine learning, in order to limit the number of users in

each cluster. Specifically, the proposed constrained K-means algorithm uses the

Euclidian metric to characterize the similarities between the user channel vectors and

the cluster centers, and seeks to group users with channel vectors exhibiting large

correlation. The elbow method is utilized to find the optimum number of clusters for

the network.

• We formulate the beamforming design and RRH selection as a non-convex

mixed-integer nonlinear programing (MINLP) optimization problem, aiming to

minimize the total transmit power while satisfying the

signal-to-interference-plus-noise ratio (SINR) and fronthaul capacity constraints. We

then propose transformations to reformulate the problem as a difference of convex

functions (DC) program and derive two algorithms for solving the problem. In the
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first algorithm, we iteratively approximate the continuous non-convex constraints by

convex ones using first-order Taylor expansion and solve a sequence of mixed-integer

second-order cone programing (MI-SOCP) using dedicated solvers. This algorithm

entails high computational complexity, yet it can achieve high quality solution.

• The second algorithm is based on a two-stage low-complexity beamforming approach

wherein the beamforming matrices obtained from each stage are multiplied to form the

final beamformer. In the first stage, specifically, a block diagonalization (BD) technique

is adopted to design the cluster beamformers (one for each cluster), which remove the

inter-cluster interference and thus enhance the QoS for intra-cluster users. In the

second stage, the user-specific beamformers are designed along with RRH selection by

employing a smoothed ℓ0-norm approximation. The resulting optimization problem is

solved via the convex-concave procedure (CCCP) with guaranteed convergence [95].

• We evaluate the performance of the proposed algorithms for user clustering and

downlink beamforming using in-depth simulations of MIMO SCMA in C-RAN with

mmWave channel models and different parameter configurations. The results

illustrate the convergence behavior of the new algorithms and the effect of various

parameters on the system performance, while providing useful insights into the

advantages of the proposed approaches over competing ones from the literature.

The rest of the chapter is organized as follows: Section 4.2 introduces the MIMO SCMA

system model under C-RAN and describes the problem under consideration. The proposed

constrained K-means algorithm for user clustering is introduced in Section 4.3. The two-

stage energy-efficient beamforming approach for eliminating inter-cluster interference and

minimizing total transmit power is developed In Section 4.4. The results of our simulation
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Figure 4.1: The MIMO SCMA system model under C-RAN.

experiments are presented in Section 4.5, followed by the concluding remarks in Section 4.6.

4.2 System Model and Problem Description

We consider downlink transmission in a MIMO SCMA system under C-RAN, as illustrated

in Fig. 4.1. The system consists of L RRHs, each equipped with M antennas, and J single-

antenna users. The RRHs indexed by l ∈ L ≜ {1, . . . , L}, are connected to the central

processor via limited-capacity fronthaul links. Due to the fronthaul constraint, each user is

cooperatively served by a specific subset of RRHs through joint beamforming. Moreover, the

users are partitioned into K non-overlapping clusters, indexed by k ∈ K ≜ {1, . . . , K} with

the kth cluster comprising Jk users such that J = ∑K
k=1 Jk. Below, we provide further details

on the SCMA encoder, mmWave channel, received signal model, and problem description.
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4.2.1 SCMA Encoder

In SCMA, contiguous groups of data bits from each user are directly mapped to sparse N -

dimensional codewords selected from a predefined codebook and then transmitted over N

radio resources, e.g., orthogonal frequency division multiple access (OFDMA) subcarriers.

The SCMA encoder for the ith user can be defined as fi : BU → Xi which is a one-to-one

mapping from the set of U -bit tuples to a codebook Xi ⊂ CN of N -dimensional codewords,

with cardinality |Xi| = 2U . Specifically, for b = [b1, ..., bU ] ∈ BU , the corresponding codeword

is obtained as,

x = fi(b) = [x(1), ..., x(N)] (4.1)

where x is a sparse vector with C < N non-zero elements.

Each user is assigned C subcarriers such that no two users occupy the same set of

subcarriers. Hence, only q users can be supported by SCMA, as given by [14],

q =

 N

C

 = N !
C!(N − C)!

. (4.2)

In this work, we group users into K clusters of size Jk ≤ q and remove inter-cluster

interference so that the users in different clusters can use common codebooks.

Referring to (4.1), we can associate to each codeword x a vector y containing its C non-

zero elements in the same order, i.e., y is obtained from x by removing its zero elements. For

convenience, we represent this operation by the function ϕ : CN → CC , so that y = ϕ(x) =

[y(1), , y(C)]. Through this operation, the original codebook Xi ⊂ CN is transformed into a

constellation of C-dimensional codewords, i.e., Yi ⊂ CC , where Yi = {ϕ(x) : x ∈ Xi}. We

also let gi = ϕ ◦ fi : BU → Yi denote the composite mapping of fi and ϕ, so that for any
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b ∈ BU , and x = fi(b), we have,

y = ϕ(x) = gi(b). (4.3)

From this perspective, the SCMA encoder can be redefined as fi(b) = Sigi(b), where matrix

Si ∈ BN×C maps a C-dimensional constellation point to an N -dimensional codeword. Note

that Si contains N − C all-zero rows and hence, all the codewords in codebook Xi contain

0 in the same N − C positions. Moreover, an identity matrix of order C is obtained by

removing the all-zero rows from Si.

The set of resources occupied by user i is determined by the positions (or indices) of

the non-zero elements of the binary indicator vector fi = diag(SiST
i ) ∈ BN×1. In effect, the

complete SCMA encoder structure for q users and N subcarriers can be represented by a

factor graph, with associated matrix F = [f1, ..., fq] ∈ BN×q. In this interpretation, subcarrier

node n and user node i are connected if and only if the corresponding element of matrix F

is equal to 1, i.e., [F]n,i = 1.

4.2.2 Channel Model

Due to the propagation characteristics at such high frequencies, the application of MIMO

SCMA communication in the mmWave band is more challenging than in a conventional low-

frequency scenario. The mmWave-based channel vector h(l)
jk (n) ∈ C1×M from the lth RRH

to the jth user in the kth cluster over the nth subcarrier can be expressed as the discrete

sum of a line-of-sight (LOS) and P non line-of-sight (NLOS) components [87, 96], i.e.,

h(l)
jk (n) =

P∑
p=0

√
Ma

(lp)
jk (n)a(θ(lp)

jk )
√

P + 1(1 + (d(l)
jk )α(p))

(4.4)
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where: p is the path index, with p = 0 corresponding to LOS and p ≥ 1 to NLOS paths; d
(l)
jk

is the distance between the RRH and the user; α(p) is the path loss exponent; a
(lp)
jk (n) denotes

the complex gain for the pth path which follows a complex circular Gaussian distribution,

i.e., a
(lp)
jk (n) ∼ CN (0, 1); and a(θ(lp)

jk ) ∈ C1×M is the antenna array steering vector. In the

case of a uniform linear antenna array, the steering vector is given by,

a(θ(lp)
jk ) = 1√

M
[1, e−jπθ

(lp)
jk , ..., e−jπ(M−1)θ(lp)

jk ] (4.5)

where θ
(lp)
jk is the normalized direction of the pth path. The latter can be expressed as,

θ
(lp)
jk = 2d

λ
sin(ϕ(lp)

jk ) (4.6)

where ϕ
(lp)
jk ∈ [0, 2π] is the angle of departure (AoD) of the pth path, d is the inter-antenna

element spacing, and λ is the wavelength at the operating frequency.

In MIMO systems operating at mmWave frequencies, a single-path model is often adopted

for the channel vectors by retaining only one dominant path in (4.4) [97]. In most cases, the

latter will be the LOS path, whose gain can be as much as 20dB stronger than that of NLOS

paths [98]. However, when there is no LOS path due to blockage, the dominant NLOS path

can be considered instead. Hence, the mmWave channel model can be simplified to,

h(l)
jk (n) =

√
Ma

(l)
jk (n)

(1 + (d(l)
jk )α)

a(θ(l)
jk ) (4.7)

where, for simplicity of notation, the superscript p for the path index has been removed.
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4.2.3 Signal Model

Let xjk(n) ∈ C denote the codeword element intended for the jth user in the kth cluster over

the nth subcarrier. Due to the sparsity of the SCMA encoder, xjk(n) can be either 0, or a

non-zero element with normalized power, i.e., E{|xjk(n)|2} = 1. Codeword element xjk(n)

is transmitted from the M antennas of the lth RRH by employing the beamforming vector

w(l)
jk (n) ∈ CM×1. Hence, the transmit signal of the lth RRH over the nth subcarrier can be

expressed as,

z(l)(n) =
K∑

k=1

∑
j∈Un,k

w(l)
jk (n)xjk(n) (4.8)

where Un,k denotes the set of users in the kth cluster occupying the nth subcarrier. Owing

to the limited-capacity fronthaul link, only a selected group of RRHs serve a specific user

cooperatively. The process of RRH selection for transmission can be performed through

beamforming. That is, ∥w(l)
jk (n)∥2 = 0 implies that the lth RRH does not participate in the

transmission for that user over its assigned subcarrier. Hence, the corresponding network-

wide beamforming vector, wjk(n) = [w(1)
jk (n)T , ..., w(L)

jk (n)T ]T ∈ CLM×1 may be sparse.

Let hjk(n) = [h(1)
jk (n), ..., h(L)

jk (n)] ∈ C1×LM denote the network-wide channel vector for

the jth user in the kth cluster and z(n) = [z(1)(n)T , ..., z(L)(n)T ]T ∈ CLM×1 denote the

network-wide transmit signal over the nth subcarrier. The received signal at the jth user in

the kth cluster over the nth subcarrier is given by,

rjk(n) =hjk(n)z(n) + njk (4.9)

where njk ∼ CN (0, σ2
jk) is an additive noise term. We can express the received signal of
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this user as a sum of the desired signal, the interference from the other users in that cluster

(intra-cluster interference), the inter-cluster interference and the noise, i.e.,

rjk(n) =hjk(n)wjk(n)xjk(n) +
∑

j′ ̸=j,j′∈Un,k

hjk(n)wj′k(n)xj′k(n)
︸ ︷︷ ︸

Intra-cluster Interference

+
∑
k′ ̸=k

∑
j∈Un,k′

hjk(n)wjk′(n)xjk′(n)

︸ ︷︷ ︸
Inter-cluster Interference

+njk.

(4.10)

The SINR of the jth user in the kth cluster over the nth subcarrier with non-zero codeword

element is given by,

γjk(n) = |hjk(n)wjk(n)|2

I
(1)
jk (n) + I

(2)
jk (n) + σ2

jk

(4.11)

where the first term in the denominator represents the intra-cluster interference and the

second term represents the inter-cluster interference, i.e.,

I
(1)
jk (n) =

∑
j′ ̸=j,j′∈Un,k

|hjk(n)wj′k(n)|2 (4.12)

I
(2)
jk (n) =

∑
k′ ̸=k

∑
j′∈Un,k′

|hjk(n)wj′k′(n)|2. (4.13)

The total transmit power for the whole network over N subcarriers is given by,

PT =
N∑

n=1
E{z(n)Hz(n)} =

N∑
n=1

L∑
l=1

E{z(L)(n)Hz(L)(n)}. (4.14)

Upon substitution of (4.8) into (4.14) and assuming that the transmitted codewords xjk(n)

from different sources are uncorrelated and have zero mean and unit variance, we can write
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the total transmit power as,

PT =
∑

n

∑
l

∑
k

∑
j

∥w(l)
jk∥2 =

∑
n

∑
k

∑
j

∥wjk∥2, (4.15)

where the last equality follows from the definition of the network-wide beamforming vector.

4.2.4 Problem Description

In this work, our objective is to group users into non-overlapping clusters and design

beamformers such that the total transmit power is minimized while constraining the

inter-cluster interference, the user SINRs and the fronthaul capacity. Indeed, removing

inter-cluster interference not only enhances the SINR at the user terminal, but also allows

the transmitter to use a common SCMA codebook to serve users in different clusters,

which in turn boosts network capacity. To further satisfy the requirements imposed by the

limited-capacity fronthaul links of C-RAN, dynamic RRH selection is taken into

consideration in our formulation.

In order to address the above challenges and obtain the desire solution, we conceive

efficient algorithms for user clustering and beamforming design with low complexity.

Specifically, we propose an efficient user clustering algorithm based on the constrained

K-means method in Section 4.3. Then, the beamformer design is addressed in Section 4.4

by means of a two-stage energy-efficient approach wherein the inter-cluster interference is

removed using a BD technique in the first stage and the total transmit power is optimized

under SINR and fronthaul capacity constraints in the second stage.
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4.3 User Clustering

In this section, we first introduce the proposed constrained K-means algorithm for user

clustering. We then apply the elbow method to determine the number of clusters. Finally,

we evaluate the computational complexity of the proposed algorithm.

4.3.1 Constrained K-means Clustering

K-means is a celebrated method for grouping inharmonious multi-dimensional data points

into K clusters such that a similarity criterion within clusters is maximized [99, 100]. In

effect, K-means attempts to group J data points (or vectors) {d1, d2, ..., dJ} into K clusters

by finding cluster centers {c1, c2, ..., cK} such that similarities between the points in the

same group are high while similarities between the points in different groups are low. Two

key factors in the K-means method are the number of clusters K, which is pre-determined,

and the similarity metric [101].

In the current MIMO SCMA application, high correlation between the channel vectors

of the users in a cluster can provide a better beamforming performance. Indeed, if users

in a cluster have highly correlated channels, more degrees of freedom will be left for the

inter-cluster interference cancellation (as explained in Section IV). In this work, we utilize

the Euclidian distance as a similarity metric to measure the correlation between a user’s

channel vector and the cluster centers. Moreover, to account for variations of channel gains

due to fading and other propagation effects, the channel vectors are normalized, averaged

over subcarriers, and treated as the data points in the application of the K-means method,
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i.e.,

dj = 1
N

N∑
n=1

hj(n)
∥hj(n)∥2

(4.16)

where hj(n) ∈ C1×LM for j ∈ J ≜ {1, ..., J} are the known network-wide channel vectors of

all users prior to clustering.

The K-means method can be presented as an optimization problem for finding the K

best centers such that the sum of squared Euclidean (SSE) distance between the data points

and their nearest cluster centers is minimized. Specifically, this optimization problem can

be expressed as follows,

min
C

J∑
j=1

min
k∈K
∥dj − ck∥2

2 (4.17)

where C ≜ {ck|k ∈ K}.

Proposition 4.1 Given dj and ck ∈ C1×LM , we have,

min
k∈K
∥dj − ck∥2

2 = min
{ιj,k|k∈K}

K∑
k=1

ιj,k∥dj − ck∥2
2 (4.18a)

s.t.
K∑

k=1
ιj,k = 1 (4.18b)

ιj,k ≥ 0, ∀k ∈ K. (4.18c)

Proof. The result follows directly from the linear programming duality theory [102].

By introducing selection variables ι ≜ {ιj,k|j ∈ J , k ∈ K} and using Proposition 4.1, we
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can reformulate problem (4.15) as the following problem,

min
ι,C

J∑
j=1

K∑
k=1

ιj,k∥dj − ck∥2
2 (4.19a)

s.t.
∑

k

ιj,k = 1, ∀j ∈ J (4.19b)

ιj,k ≥ 0, ∀j ∈ J , k ∈ K (4.19c)

where ιj,k = 1 if the jth data point is closest to the kth cluster center, i.e., belongs to the

kth cluster, and ιj,k = 0 otherwise.

While the K-means method does not involve a priori constraint on the number of users

in each cluster [103], the SCMA encoder in the current application can support at most q

users over N subcarriers. To avoid solutions with more than q data points in a cluster, we

propose adding explicit constraints to problem (4.19) so that each cluster contains at most

q data points, i.e.,

min
ι,C

∑
j

∑
k

ιj,k∥dj − ck∥2
2 (4.20a)

s.t. (4.19b), (4.19c) (4.20b)∑
i

ιj,k ≤ q, ∀k ∈ K. (4.20c)

The constrained K-means algorithm solves problem (4.20) iteratively by uncoupling cluster

center and selection variables. Specifically, in each iteration, this algorithm alternates

between solving a linear program for variable ι with fixed c and solving a problem for c

with fixed ι. The overall constrained K-means algorithm for solving problem (4.20) is

summarized in Algorithm 4.1, where the superscript t denotes the iteration index.
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Algorithm 4.1: The proposed constrained K-means algorithm for user clustering.
Initialization: Initialize cluster centers c(0) = {c(0)

1 , c(0)
2 , . . . , c(0)

K } by selecting K
data points from the dataset randomly. Set t = 0.

Repeat:
1) Cluster assignment: Solve the following linear program with fixed c(t).

ι(t) = arg min
ι

∑
j

∑
k

ιj,k∥dj − c(t)
k ∥2

2

s.t. (4.19b), (4.19c), (4.20c).

2) Cluster update: Update the cluster centers as,

c(t+1)
k =

∑
j ι

(t)
j,kdj∑

j ι
(t)
j,k

, ∀k ∈ K.

3) Set t← t + 1.
Until: c(t)

k = c(t−1)
k ,∀k ∈ K.

Proposition 4.2 There exists an optimal solution for the cluster assignment subproblem

in Algorithm 4.1 such that ιj,k ∈ {0, 1}.

Proof. See Appendix B.1.

According to Proposition 4.2 and Appendix B.1, we can use the network simplex

algorithm which is faster than mixed integer solvers for tackling the cluster assignment

subproblem.

Proposition 4.3 The constrained K-means algorithm terminates in a finite number of

iterations at a cluster assignment that is locally optimal. That is, the limit point of the

iterates generated by the constrained K-means algorithm is a stationary point that satisfies

the Karush-Kuhn-Tucker (KKT) conditions for problem (4.20).
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Proof. At each iteration, the cluster assignment step cannot increase the objective function

of (4.20). The cluster update step will either strictly decrease the value of the objective

function of (4.20) or the algorithm will terminate since,

c(t+1) = arg min
c

∑
j

∑
k

ι
(t)
j,k∥dj − ck∥2

2 (4.21)

is a strictly convex optimization problem with a unique global solution (as shown in the

cluster update step in Algorithm 1). Thus, the objective of (4.20) is strictly non-increasing

and bounded below by zero. Moreover, there are a finite number of ways to assign J points

to K clusters such that each cluster has at most q points and Algorithm 4.1 does not

permit repeated assignments. Consequently, the algorithm must terminate at some cluster

assignment that is locally optimal.

4.3.2 Number of Clusters

The choice of the number of clusters K plays a key role in the performance of K-means

clustering [104]. An appropriate number of clusters can accurately reflect specific distribution

characteristics of users in the network. While the number of clusters cannot exceed the

number of users, it should also satisfy the constraint on the maximum number of users in

each cluster. However, finding the optimal K is a major challenge in clustering analysis, and

there is no definitive solution. To address this problem, a number of approaches have been

proposed such as the elbow [105], silhouette [106], and gap statistic [107] methods. Among

these, the elbow method is possibly the most well-known and utilized, as it entails the lowest

computational complexity while providing very good performance.

Herein, we employ the elbow method to determine the number of clusters. The elbow
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method is a heuristic method which involves running the clustering algorithm on the dataset

and evaluating a clustering criterion for different values of K. The plot of the clustering

criterion versus the number of clusters resembles an arm in which the elbow point (the point

of discontinuity in the slope of the curve) determines the appropriate number of clusters for

the dataset. The sum of the normalized within-cluster SSE distance is a common clustering

criterion for applying the elbow method along with K-means.

In a given cluster Ck, the within-cluster SSE distance between the data points is given

by,

Dk = 1
2

∑
di∈Ck

∑
di′ ∈Ck

∥di − di′∥2
2. (4.22)

Hence, the sum of the normalized within-cluster SSE distances can be expressed as,

WK =
K∑

k=1

1
|Ck|

Dk (4.23)

where |Ck| shows the cardinality of the cluster Ck. It should be noted that although the sum

of the normalized within-cluster SSE distance can give a proper measure of the compactness

of the clustering, we may encounter cases with more than one elbow point or no elbow point.

In such cases, other reliable methods mentioned before can be used to find the best K.

4.3.3 Complexity Analysis

In this subsection, we analyze the computational complexity of the proposed constrained K-

means algorithm by considering the number of required operations (e.g. complex addition

and multiplication) in each step and in each iteration of the algorithm. Specifically, we divide
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the operations for each iteration into three steps:

• Calculation of Euclidean distances: The complexity of calculating the Euclidean

distance between the data points and the cluster centers is O(JKLM).

• Cluster assignment: The complexity of solving cluster assignment subproblem via

network simplex algorithm is O(J3K2(log(J))2) (See Appendix A).

• Cluster update: The complexity of updating the cluster centers is O(JKLM).

Assuming that the algorithm converges after TK iterations. The overall complexity of

Algorithm 4.1 can be expressed as,

CC ≜ O(TKJ3K2(log(J))2 + TKJKLM). (4.24)

4.4 Downlink Beamforming

In this section, we first formulate the beamforming design as a non-convex mixed-integer

nonlinear programing (MINLP) optimization problem, aiming to minimize the total

transmit power while satisfying the QoS and fronthaul capacity constraints. We then

propose transformations and convex approximation techniques to derive two iterative

algorithms for solving the problem. In the first algorithm, we approximate the continuous

non-convex constraints by convex ones using first-order Taylor expansion. Hence, we are

able to arrive at a sequence of mixed-integer second-order cone programing (MI-SOCP), for

which dedicated solvers are available. Although the MI-SOCP algorithm entails high

computational complexity, it is shown that it can achieve high quality solution [108].

Hence, in this work, we use MI-SOCP algorithm as a benchmark. A simplified suboptimal
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approach is also proposed which designs the beamformers in two stages to achieve lower

complexity. In the first stage, the cluster beamformers are determined by taking advantage

of BD to remove intercluster interference. In the second stage, we obtain the user-specific

beamformers with the aid of CCCP method to minimize the total transmit power. Finally,

the convergence and computational complexity of the proposed algorithms are discussed.

4.4.1 Beamforming Problem

Our objective is to optimize the total transmit power through joint design of the dynamic

RRH selection scheme and the beamforming vectors subject to the QoS and fronthaul

capacity constraints on each individual RRH. Let the binary variable s
(l)
j,k(n) = 1 indicate

that the lth RRH participates in transmission for the jth user in the kth cluster over the

nth subcarrier and s
(l)
j,k(n) = 0 otherwise. Hence, our optimization problem can be

mathematically formulated as,

min
wjk(n),s(l)

j,k
(n)

∑
n

∑
k

∑
j

∥wjk(n)∥2 (4.25a)

s.t. hj′k′(n)wjk(n) = 0, ∀ k′ ̸= k (4.25b)

γjk(n) ≥ γmin, ∀n ∈ Njk (4.25c)
∑

k

∑
j

s
(l)
j,k(n)Rjk(n) ≤ Cmax, ∀l, n (4.25d)

∥wl
jk(n)∥2 ≤ s

(l)
j,k(n)Pmax, ∀l, n (4.25e)

∑
l

s
(l)
j,k(n) ≥ 1, ∀n ∈ Njk (4.25f)

s
(l)
j,k(n) ∈ {0, 1} (4.25g)
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where Rjk(n) = log2(1 + γjk(n)) denotes the transmission rate, Njk shows the set of

subcarriers occupied by the jth user in the kth cluster, γmin, Cmax, and Pmax are the

minimum required SINR for the user over the subcarrier, the maximum capacity constraint

for each RRH over the subcarrier, the maximum available total transmit power,

respectively. Constraints (4.25b) and (4.25c) guarantee QoS by removing the inter-cluster

interference and satisfying SINR requirements, respectively. The constraint (4.25d) shows

that the sum-rate of the users served by the lth RRH over the nth subcarrier should be

smaller than the maximum fronthaul capacity Cmax. Constraint (4.25e) utilizes the

so-called Big M method which indicates that the beamformer ∥wl
jk(n)∥2 = 0 if the lth

RRH does not participate in transmission for the jth user in the kth cluster over the nth

subcarrier, i.e., s
(l)
j,k(n) = 0, but leaves the beamformer ”open” otherwise. Therefore, Pmax

can be any large number. Constraint (4.25f) guarantees that each user is served by at least

one RRH. Although constraint (4.25f) appears to be redundant, it is added to reduce the

size of the feasible set of the associated problem which in turn improves the convergence

time of the solver. We refer the interested reader to [109] for additional details.

Problem (4.25) is a non-convex MINLP problem, which can be considered as an NP-hard

problem in general and is one of the most challenging class of mathematical optimization

problems [110]. Obtaining its optimal solution is challenging due to the non-convexity of the

SINR constraints, the combinatorial nature of the RRH selection variable s
(l)
j,k(n), and the

coupling between the variables s
(l)
j,k(n) and Rjk(n) in the fronthaul constraint. Even when the

RRH selection scheme s
(l)
j,k(n) is given, problem (4.25) is still non-convex and computationally

difficult. In the following subsections, we develop two beamforming approaches to find a

suboptimal solution.
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4.4.2 MI-SOCP Beamforming Approach

In this section, we first reformulate the problem (4.25) into a more tractable form. We

then solve the resulting optimization problem via a CCCP-based algorithm with guaranteed

convergence to a local stationary solution of the transformed problem.

Without loss of optimality, SINR constraint (4.25c) can be rewritten as the following

second-order cone (SOC) constraint,

√
I

(1)
jk (n) + I

(2)
jk (n) + σ2

jk ≤
hjk(n)wjk(n)
√

γmin
(4.26)

where I
(1)
jk (n) and I

(2)
jk (n) are the intra- and inter-cluster interference as expressed in (4.12)

and (4.13) respectively. We have restricted hjk(n)wjk(n) to be positive real, which incurs no

loss of optimality since we can always phase-rotate the vector wjk(n) such that hjk(n)wjk(n)

is positive real without affecting the cost function or the constraints.

Let us introduce the auxiliary variables uj,k(n) and vj,k(n) as the upper bounds on the

SINR and transmission rate for the jth user in the kth cluster over the nth subcarrier. Hence,

constraint (4.25d) can be rewritten as follows,

γjk(n) ≤ ujk(n) (4.27)

log2(1 + ujk(n)) ≤ vjk(n) (4.28)

∑
k

∑
j

s
(l)
j,k(n)vjk(n) ≤ Cmax. (4.29)

Since the expression of γjk(n) is in fractional form, the constraint in (4.27) is difficult to

handle. Therefore, we introduce the auxiliary variables lj,k(n) as the lower bound of the
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denominator, and then equivalently transform (4.27) as the following two constraints,

|hjk(n)wjk(n)|2 ≤ ljk(n)ujk(n), (4.30)

ljk(n) ≤ I
(1)
jk (n) + I

(2)
jk (n) + σ2

jk. (4.31)

From the above discussion, we can finally reformulate the problem (4.25) into an

equivalent problem as given below,

min
∑

n

∑
k

∑
j

∥wjk(n)∥2 (4.32a)

s.t. (4.25b),(4.25e)-(4.25g),(4.26) (4.32b)√
4|hjk(n)wjk(n)|2 + (ljk(n)− ujk(n))2 ≤ ljk(n) + ujk(n) (4.32c)

ljk(n) ≤ I
(1)
jk (n) + I

(2)
jk (n) + σ2

jk (4.32d)

1 + ujk(n) ≤ 2vjk(n) (4.32e)
∑

k

∑
j

(s(l)
j,k(n) + vjk(n))2 − 4Cmax ≤

∑
k

∑
j

(s(l)
j,k(n)− vjk(n))2. (4.32f)

where the identity 4xy = (x + y)2 − (x − y)2 is used to obtain (4.32f). We note that even

by continuous relaxation of binary variables s
(l)
j,k(n), optimization problem (4.32) is still non-

convex due to constraints (4.32d)-(4.32f). However, the latter can be expressed as differences

of two convex functions. Thus, the obtained optimization problem can be efficiently solved

using the iterative CCCP.

Basically, CCCP iteratively solves a sequence of convex subproblems, each of which is

constructed by linearizing the concave part of the DC constraints using their first-order

Taylor expansions [95]. Specifically, the first-order Taylor expansion of the right side of
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constraint (4.32d) around the current point ŵjk(n) is expressed as,

𝟋(wj′k(n); ŵj′k(n)) =
∑

j′ ̸=j,j′∈Un,k

[−|hjk(n)ŵj′k(n)|2 + 2ℜ{ŵH
j′k(n)hH

jk(n)hjk(n)wj′k(n)}]

+
∑
k′ ̸=k

∑
j′∈Un,k′

[−|hjk(n)ŵj′k′(n)|2 + 2ℜ{ŵH
j′k′(n)hH

jk(n)hjk(n)wj′k′(n)}]

(4.33)

where ℜ{.} denotes the real part of its argument. In the same way, we convexify the right

side of constraints (4.32d) and (4.32e) by using the first-order Taylor expansions around the

current points v̂jk(n), ŝ
(l)
j,k(n), and v̂jk(n) as,

Γ(vjk(n); v̂jk(n)) = 2v̂jk(n) + (ln 2)2v̂jk(n)(vjk(n)− v̂jk(n)), (4.34)

Ω(s(l)
j,k(n), vjk(n); ŝ

(l)
j,k(n), v̂jk(n)) = −(ŝ(l)

j,k(n)− v̂jk(n))2 + 2(ŝ(l)
j,k(n)− v̂jk(n))(s(l)

j,k(n)− vjk(n)).

(4.35)

By applying the above approximations to the non-convex constraints (4.32d)-(4.32f), we

can formulate the convex approximation of problem (4.32) as shown below,

min
∑

n

∑
k

∑
j

∥wjk(n)∥2 (4.36a)

s.t. (4.25b),(4.25e)-(4.25g),(4.26),(4.32c) (4.36b)

ljk(n) ≤ 𝟋(wj′k(n); ŵj′k(n)) + σ2
jk (4.36c)

1 + ujk(n) ≤ Γ(vjk(n); v̂jk(n)) (4.36d)
∑

k

∑
j

(s(l)
j,k(n) + vjk(n))2 − 4Cmax ≤ Ω(s(l)

j,k(n), vjk(n); ŝ
(l)
j,k(n), v̂jk(n)). (4.36e)
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Algorithm 4.2: MI-SOCP beamforming algorithm.
Initialize the algorithm with feasible points ŵjk(n), ŝ

(l)
j,k(n), and v̂jk(n). Set iteration

index t = 0 and termination threshold ϵ > 0.
Repeat

1) Update ŵjk(n), ŝ
(l)
j,k(n), and v̂jk(n) by solving problem (4.36).

2) Set t = t + 1.
Until: Termination criterion is met: ∆PT < ϵ.

Hence, based on CCCP, we solve subproblem (4.36) at each iteration. Problem (4.36) is a

MI-SOCP which can be solved via modern solvers such as MOSEK [111] or GUROBI [112].

The proposed iterative algorithm is summarized in Algorithm 4.2. The algorithm terminates

if the variation of the total transit power, i.e., ∆PT , is less than a preset threshold ϵ.

Initialization: Choosing a feasible point for initialization of Algorithm 4.2 is essential.

For this purpose, we simply set v̂jk(n) = log2(1+γmin) and then solve the following feasibility

problem P = find{s(l)
j,k(n)|(25f),(25g), ∑

k

∑
j s

(l)
j,k(n)v̂jk(n) ≤ Cmax} which is a mixed-integer

linear program which can be solved optimally by off-the-shelf solvers such as MOSEK or

GUROBI. Subsequently, we solve the following quadratic program with fixed ŝ
(l)
j,k(n) via any

general-purpose solver using interior-point method,

ŵjk(n) = arg min
wjk(n)

∑
n

∑
k

∑
j

∥wjk(n)∥2

s.t. (4.25b), (4.26),

∥wl
jk(n)∥2 ≤ ŝ

(l)
j,k(n)Pmax.

(4.37)
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4.4.3 Two-Stage Beamforming Approach

In order to reduce the computational complexity, we propose a two-stage energy-efficient

beamforming approach such that,

wjk(n) = Bk(n)vjk(n) (4.38)

where Bk(n) ∈ CLM×a is the kth cluster beamformer obtained in the first stage which should

eliminate the inter-cluster interference and vjk(n) ∈ Ca×1 is the user-specific beamformer for

the jth user in the kth cluster optimized in the second stage.

Using channel state information (CSI) available at the central processor, BD beamforming

can be adopted in a MIMO SCMA system to remove the inter-cluster interference and

enhance the QoS for intra-cluster users [113]. Hence, the users in different clusters can share

codebooks. Although BD algorithm does not work well in the presence of imperfect CSI, we

considered a second stage for beamforming in which the QoS can be guaranteed. Specifically,

the BD beamforming projects the transmitted signal onto the null-space of the interfering

channels and hence eliminates the inter-cluster interference.

To find the corresponding null-space, let us define,

Hk(n) = [h1k(n)T . . . hJk(n)T ] ∈ CLM×Jk (4.39)

H−k(n) = [H1(n) . . . Hk−1(n) Hk+1(n) . . . HK(n)] (4.40)

where k ∈ K and H−k(n) ∈ CLM×(J−Jk) is the matrix containing all interfering channels for

the kth cluster. We seek Bk(n) orthogonal to the column span of H−k(n), i.e.,

H−k(n)T Bk(n) = 0. Here, it is assumed that the total number of antennas LM is larger
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than the total number of users J .

The singular value decomposition (SVD) can be employed to calculate the cluster

beamformers. Applying the SVD to H−k(n) yields,

H−k(n) = Uk(n)Σk(n)Vk(n)H (4.41)

where Uk(n) ∈ CLM×LM and Vk(n) ∈ C(J−Jk)×(J−Jk) are unitary matrices and Σk(n) ∈

RLM×(J−Jk) is the rectangular diagonal matrix of singular values. Let r denote the rank of

matrix H−k(n), which corresponds to the number of non-zero diagonal entries in Σk(n). The

null-space of the interfering channel matrix H−k(n) is spanned by the left singular vectors

(i.e. columns of matrix Uk(n)) associated to the zero singular values of H−k(n). We can

express the kth cluster beamformer as,

Bk(n) = [ur+1,k(n) ur+2,k(n) . . . uLM,k(n)] (4.42)

where ui,k(n) denotes the ith column of Uk(n).

As mentioned before, constraint (4.25e) implies that ∥w(l)
jk (n)∥2 = 0 if s

(l)
j,k(n) = 0.

Without loss of optimality, the binary RRH selection variable s
(l)
j,k(n) can be replaced by

∥ ∥w(l)
jk (n)∥2

2 ∥0, as in [114], [115]. Therefore, upon substitution of (4.38) and ℓ0-norm,

problem (4.25) can be rewritten as,

min
vj,k(n)

∑
n

∑
k

∑
j

∥wjk(n)∥2 (4.43a)

s.t. wjk(n) = Bk(n)vjk(n), ∀ j, k, n (4.43b)

γjk(n) ≥ γmin, ∀n ∈ Njk (4.43c)
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∑
k

∑
j

∥ ∥w(l)
jk (n)∥2

2 ∥0Rjk(n) ≤ Cmax, ∀l, n (4.43d)

It should be noted that the fronthaul capacity constraint (4.43d) which is expressed in

the form of ℓ0-norm, indicates the inherently dynamic RRH selection. That is, owing to

this fronthaul constraint, the network-wide beamforming vectors wjk(n) may have a sparse

structure. Although the number of constraints is reduced and the binary RRH selection

variable is removed, problem (4.43) is still non-convex due to constraints (4.43c) and (4.43d).

As mentioned before, using cluster beamformer Bk(n) obtained from BD can remove

inter-cluster interference. Hence, the SINR of the jth user in the kth cluster over the nth

subcarrier can be expressed as,

γjk(n) = |hjk(n)wjk(n)|2∑Jk
j′ ̸=j |hjk(n)wj′k(n)|2 + σ2

jk

(4.44)

where the inter-cluster interference term in the denominator is removed. Consequently, SINR

constraint (4.43c) can be rewritten as follows,

√√√√√ Jk∑
j′ ̸=j

|hjk(n)wj′k(n)|2 + σ2
jk ≤

hjk(n)wjk(n)
√

γmin
(4.45)

which is a SOC constraint.

To address the non-convexity of constraint (4.43d), we first introduce the auxiliary

variables uj,k(n), vj,k(n), and t
(l)
j,k(n) as the upper bounds of the SINR, transmission rate,

and ℓ0-norm for the jth user in the kth cluster over the nth subcarrier. Hence, constraint
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(4.43d) can be rewritten as follows,

γjk(n) ≤ ujk(n), (4.46)

log2(1 + ujk(n)) ≤ vjk(n), (4.47)

∥ ∥w(l)
jk (n)∥2

2 ∥0 ≤ t
(l)
j,k(n), (4.48)

∑
k

∑
j

t
(l)
j,k(n)vjk(n) ≤ Cmax. (4.49)

We then propose to approximate the non-convex ℓ0-norm by a reweighted ℓ1-norm as follows

[116],

∥ ∥w(l)
jk (n)∥2

2 ∥0 ≈ β
(l)
jk (n)∥w(l)

jk (n)∥2
2. (4.50)

β
(l)
jk (n) is a constant weight which is updated in each iteration according to,

β
(l)
jk (n) = 1

∥ŵ(l)
jk (n)∥2

2 + τ
(4.51)

where ŵ(l)
jk (n) is obtained from previous iteration and τ is a small constant regularization

factor controlling the smoothness of the approximation. Based on the updating rule (4.51),

β
(l)
jk (n) is inversely proportional to the transmit power level ∥ŵ(l)

jk (n)∥2
2. Hence, the RRHs

with lower transmit power for the jth user in the kth cluster would have higher weights and

hence would be forced to further reduce its transmit power and eventually be dropped out

of the group of participating RRHs for that user.

We can employ the approach mentioned in IV.B to deal with the non-convexity of the
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Algorithm 4.3: Proposed CCCP-based iterative algorithm for beamforming.
Initialization: Initialize v̂jk(n) randomly. Calculate ŵjk(n), t̂

(l)
j,k(n) and β

(l)
jk (n).

Set iteration index t = 0 and termination threshold ϵ > 0.
Repeat

1) Update ŵjk(n), t̂
(l)
j,k(n), and v̂jk(n) via solving problem (4.52).

2) Calculate β
(l)
jk (n).

3) Set t = t + 1.
Until Termination criterion is met: ∆PT < ϵ.

constraints and use CCCP to solve the optimization problem. Hence, based on CCCP, we

solve the following subproblem at each iteration,

min
vjk(n)

∑
n

∑
k

∑
j

∥wjk(n)∥2 (4.52a)

s.t. (4.32c),(4.36c),(4.36d),(4.38),(4.43b),(4.45) (4.52b)

β
(l)
jk (n)∥w(l)

jk (n)∥2
2 ≤ t

(l)
j,k(n) (4.52c)

∑
k

∑
j

(t(l)
j,k(n) + vjk(n))2 − 4Cmax ≤ Ω(t(l)

j,k(n), vjk(n); t̂
(l)
j,k(n), v̂jk(n)). (4.52d)

Problem (4.52) is convex and can be solved via any general-purpose solver using interior-point

methods [76]. The proposed CCCP-based iterative algorithm is summarized in Algorithm

4.3.

Initialization: In this case, an initial point for Algorithm 4.3 is obtained by generating

v̂jk(n) randomly. Then, ŵjk(n) and β
(l)
jk (n) are calculated as in (4.38) and (4.51) respectively.

t̂
(l)
j,k(n) is set to ∥ ∥ŵ(l)

jk (n)∥2
2 ∥0, and v̂jk(n) is set to the transmission rate calculated using

ŵjk(n).
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4.4.4 Convergence and Complexity Analysis

With a feasible initial point, repeated application of the CCCP iteration is guaranteed to

converge to a stationary solution of the problem with DC constraints. It can be seen that the

optimal solution obtained from the previous iteration, i.e., ŵjk(n), is feasible for the convex

subproblem at the next iteration for both algorithms. The achieved objective at the current

iteration cannot be greater than the one at the previous iteration. Since, the objective

function is non-increasing and bounded below by zero, it follows that both algorithms will

converge to a point that according to [82] is locally optimal. We refer the interested reader

to [82] for a rigorous proof of the convergence.

For Algorithm 4.2, the overall complexity is dominated by solving the MI-SOCP

problem in (4.36). In particular, there are JLN binary variables s
(l)
j,k(n), resulting in 2JLN

combinations for all the binary variables. Thus, assuming that MI-SOCP algorithm

terminates after TM iterations, the worst-case complexity can be written as

CM ≜ O(TM 2JLN(JCLM)3). (4.53)

At each iteration, the CCCP-based algorithm solves the convex subproblem (4.52) which

can be approximated by a sequence of SOCPs via the successive approximation method.

Each SOCP can then be solved via a general-purpose solver, e.g., SDPT3 in CVX [78] with

a complexity of O((JCLM)3). Assuming that the CCCP terminates after TC iterations, the

worst-case computational complexity is therefore given by,

CB ≜ O(TC(JCLM)3). (4.54)
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4.5 Simulation Results

In this section, numerical experiments are carried out to illustrate the performance of the

proposed energy-efficient user clustering and downlink beamforming for MIMO SCMA in

C-RAN.

4.5.1 Methodology

In our simulations, unless otherwise specified, we consider a network with L = 3 RRHs, each

equipped with M = 5 antennas and serving J = 12 single-antenna users. The RRHs and the

users are independently distributed in a square area [−50, 50]× [−50, 50] meters. The RRHs

are connected to the central processor via a limited-capacity fronthaul link with maximum

capacity Cmax = 50 bps/Hz. The maximum available total transmit power is Pmax = 50

dBm.

We consider the channel model as described in Section 4.2.1 with bandwidth of W = 2

GHz and carrier frequency of 28 GHz. The AoDs are assumed to follow a uniform distribution

in [0, 2π]. The inter-antenna spacing is d = λ/2 to reduce the effect of mutual coupling and

correlation among neighbouring antenna elements. The noise figure is Nf = 40 dBm, hence,

the noise power is σ2
jk = −174 + 10 log10(W ) + Nf dBm [87]. The pathloss exponent of the

LOS and NLOS paths in (4.4) are α(0) = 2 and α(p) = 3, respectively. For SCMA encoder,

the number of subcarriers is N = 4, and the number of non-zero elements for each codeword
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Notation Description Value
L Number of RRHs 3
M Number of antennas per RRH 5
J Total number of users 12
N Number of SCs 5
C Number of non-zero elements for a codeword 2
α(0) path loss exponent of the LOS path 2
α(p) path loss exponent of the NLOS path 3
Cmax Maximum capacity constraint for each RRH 50 bps/Hz
Pmax Maximum available total transmit power 50 dBm
ϵ Termination threshold 10−6

Table 4.1: Simulation setting parameters

is C = 2. The corresponding factor graph matrix is,

F =



1 1 1 0 0 0

1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1


. (4.55)

It should be noted that the structure of the factor graph matrix with fixed N and C does

not affect system performance significantly. Table 4.1 summarizes the simulation setting

parameters.

We use Monte Carlo experiments with 100 runs to evaluate the performance of the

proposed algorithms for user clustering and downlink beamforming. The total transmit

power and sum rate are measured for different parameter configurations and the results are

compared with benchmark approaches in the literature.
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(a) Elbow method.

(b) Transmit power versus target SINR γmin.

Figure 4.2: The impact of the number of clusters.
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(a) The constrained K-means algorithm.

(b) The CCCP-based iterative algorithm.

Figure 4.3: The convergence of the proposed algorithms.
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4.5.2 Results and Discussion

Figs. 4.2a and 4.2b find the optimal number of clusters K and evaluate its impact on the

performance of the proposed scheme. In Fig. 4.2a, we plot the sum of the normalized within-

cluster SSE distance which serves as clustering criterion in the elbow method described in

Section III.B. It can be seen WK decreases when K increases and the elbow point can be found

at K = 41. To gain further insight into the impact of the number of clusters, we investigate

the transmit power performance versus target SINR, γmin in Fig. 4.2b, where the number

of clusters increases from 2 to 6. It is observed that the total transmit power increases

monotonically as γmin increases. Moreover, the best performance is achieved when the

number of clusters is K = 4. On one hand, for K < 4, an increase in the number of users in

a cluster results in larger intra-cluster interference which results in higher transmit power. On

the other hand, increasing the number of clusters intensifies inter-cluster interference which

increases power consumption in the first stage beamforming for interference cancellation.

We thereby observe that better user clustering with lower total transmit power can be found

at K = 4 and the elbow method can efficiently find the optimal number of clusters in this

case.

Figs. 4.3a and 4.3b present the convergence behaviour of the proposed constrained K-

means and CCCP-based algorithms. Fig. 4.3a shows the objective value achieved by the

constrained K-means algorithm with three different initial points. In this regards, J = 12

users are grouped into K = 4 non-overlapping clusters of size less than 6, i.e., q = 6. We

observe that the algorithm converges rapidly in a few steps and the gap between final results

of different initial points is small. In Fig. 4.3b, the convergence performance of the CCCP-
1We omit the results on the Silhouette and gap statistic methods here for brevity. However, it should be

noted that using each of these methods for determining the optimal number clusters gives the same result
while elbow method entails lower computational complexity.
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γmin

0 2 4 6
Two-Stage approach 3.6108 4.3852 5.7032 7.0414
MI-SOCP approach 182.3750 238.3348 323.9511 397.0151

Table 4.2: Run-time of different beamforming approaches

based algorithms is investigated for the case of γmin = 3 dB. It can be seen that the algorithm

converges in less than 15 iterations monotonically to a same value for different initial points.

In Table 4.2, we present the run-time comparison between the proposed two-stage

approach and the MI-SOCP beamforming for different values of γmin. The results2, show

that the complexity of the proposed two-stage beamforming algorithm is much less than

that of the MI-SOCP approaches, owing to the use of the smoothed ℓ0-norm

approximation.

In Fig. 4.4, we compare the transmit power versus sum rate among different clustering

and beamforming algorithms. The cluster-head approach proposed in [117] is used as a

benchmark for user clustering which selects the K users with the highest channel gains as

the cluster centers. The cluster assignment is then used to group users into clusters. We

also consider the performance of the MIMO SCMA system with exhaustive and random

clustering. The combination of exhaustive search for user clustering and MI-SOCP for

beamforming is shown to attain the best performance among all the algorithms. However,

this comes at the cost of high computational complexity. As it can be seen from Fig. 4.4, the

proposed constrained K-means clustering algorithm exhibits better performance compared to

random search and cluster-head approach and can partition users more efficiently. Regarding

the beamforming algorithms, it is shown in Fig. 4.4 that the suboptimal solution achieved
2Based on the use of a desktop computer equipped with 8th Generation Intel i7-8700 6-core processor

(12M Cache, 4.6 GHz) and 32GB RAM.
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Figure 4.4: Transmit power versus sum rate for different clustering and beamforming
approaches.

by the proposed two-stage beamforming is very close to the high-quality solution obtained

by MI-SOCP.

To better appreciate the benefits of the proposed MIMO SCMA scheme in terms of

spectral efficiency, we examine the achievable sum rate of the users within the network.

We consider orthogonal multiple access (OMA) and power domain NOMA as benchmarks

with similar parameters except the number of multiplexed signals over each subcarrier.

Specifically, in OMA, each user is assigned only one subcarrier such that no interference

occurs with other user signals. Hence, the maximum number of users in each cluster is

equal to the number of subcarriers, i.e., q = N . In power domain NOMA, all users have

access to all the subcarriers and no constraint is applied to the maximum number of users

in a cluster. In this section, we refer to power domain NOMA simply by NOMA.
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Figure 4.5: Transmit power versus sum rate for different transmission schemes.

Fig. 4.5 compares the total transmit power versus achievable sum rate among the

proposed SCMA, power domain NOMA and OMA schemes. Two different channel models

are considered for this purpose, one with no NLOS path, i.e., P = 0, and the other with

P = 3 NLOS components. It is observed that in both cases, the results of the proposed

SCMA scheme outperforms other schemes in terms of sum rate and the performance gap

gets larger as the transmit power increases. Moreover, we observe that the transmit power

for NOMA is more than that of OMA. However, as the sum rate increases, the results for

OMA exhibits a noticeable increase in transmit power compared to NOMA.

To investigate the impact of imperfect CSI on the proposed user clustering and downlink

beamforming, we model the estimated channel vector as follows,

ĥjk(n) = hjk(n) + ∆jk(n) (4.56)



4. User Clustering and Beamforming for MIMO SCMA in C-RAN 107

where hjk(n) is the actual channel vector and ∆jk(n) is CSI error with i.i.d. entries following

a complex Gaussian distribution, i.e., ∆jk(n) ∼ CN (0, σ2
eI).

Fig. 4.6 shows the transmit power comparison for the channel model with P = 3 NLOS

paths, where the perfect and imperfect CSI with different σe scenarios are considered. It can

be seen that the system performance is sensitive to the CSI accuracy. This is due to the fact

that the channel correlation is used as the similarity metric for the proposed constrained

K-means algorithm, which largely depends on the obtained CSI at the central processor.

Moreover, the BD algorithm does not work well in the presence of imperfect CSI and can not

remove inter-cluster interference totally. In order to enhance the performance of the proposed

user clustering and downlink beamforming in the presence of imperfect CSI, one can use a

more sophisticated similarity metric in the clustering algorithm or robust beamforming in

the second stage of the proposed approach [118–120]. However, these considerations are

beyond of the scope of this work.

Fig. 4.7 presents the average number of associated RRHs per user versus the fronthaul

link capacity for different target SINRs, γmin. It can be seen that due to the limitation on

the capacity of the fronthaul links, each user can be only served by a small group of RRHs.

For fixed γmin, the number of RRHs associated with each user will increase as the fronthaul

link capacity grows. Moreover, for a fixed fronthaul link capacity, the group of associated

RRHs will increase as γmin gets smaller. In fact, the data rate of each user will become

smaller for a lower γmin. Thus, each RRH can serve more users with lower data rate.

Fig. 4.8 shows the total transmit power versus number of antennas M for different target

SINRs, γmin. In this regard, the channel model with P = 3 NLOS paths is considered and

J = 18 users are grouped into K = 4 clusters. It is worth noting that the number of clusters

are determined through the elbow method for this case. For larger M , better beamforming
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Figure 4.6: Transmit power versus sum rate for perfect and imperfect CSI.

results are expected as more degrees of freedom will be left for inter-cluster interference

cancellation. We can observe that the total transmission power decreases as the number of

antennas increases which is a consequence of narrower beamforming.

Fig. 4.9 shows the total transmit power versus total number of users J for different target

SINRs, γmin. In this regard, the channel model with P = 3 NLOS paths is considered and

the users are grouped into K = 4 clusters. As the results indicate, the total transmission

power depends on the number of users and γmin. As the number of users or the target SINR

increases, larger total transmission power is needed to satisfy QoS and fronthaul capacity

requirements.
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Figure 4.7: Average number of associated RRHs versus fronthaul link capacity for M = 20.

4.6 Concluding Remarks

In this work, the design of user clustering and beamforming approach was investigated for

MIMO SCMA in C-RAN. We proposed a constrained K-means algorithm for user clustering.

By taking advantage of CSI available at the central processor, this algorithm was applied

to partition users into non-overlapping clusters based on the correlation between channel

vectors. The beamforming design was formulated as an optimization problem, with the aim

to minimize the total transmit power under the SINR and fronthaul capacity constraints, and

two iterative algorithms were proposed for its solution. In the first approach, the high-quality

solution was achieved by solving a MI-SOCP in each iteration via dedicated solvers. In the

second approach, a two-stage low-complexity beamforming design was proposed where in the

first stage, the BD was employed to obtain the cluster beamformers, while in the second stage,
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Figure 4.8: Transmit power versus number of antennas.

Figure 4.9: Transmit power versus total number of users.
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the design of user-specific beamformers was formulated as an optimization problem. Through

simulations, it was shown that the proposed user clustering and beamforming approaches for

MIMO SCMA systems can effectively decrease total transmit power, eliminate inter-cluster

interference, and improve spectral efficiency compared to the benchmark approaches.
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Chapter 5

Deep Residual Neural Network

Decoder for SCMA

In this chapter, we focus on the design of SCMA decoders and develop a novel decoding

algorithm based on deep residual neural network (ResNet). The proposed decoder is

validated by means of simulations over AWGN and Rayleigh fading channels.

5.1 Introduction

Applying deep learning (DL) methods to wireless communications problems is of great

interest as it can bring significant performance improvements. DL methods can solve

challenging problems by using multiple processing layers to progressively extract higher

level features from the raw input. On the one hand, deep neural networks (DNNs), as a

class of DL methods, can deal with multidimensional and nonlinear characteristics of raw

Parts of the materials in this chapter have been submitted to the IEEE Wireless Communications and
Networking Conference 2023 (WCNC’23) in Scotland, UK [122]
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input. On the other hand, MPA entails high computational complexity, although it can

achieve near optimum performance as an SCMA decoder. Hence, in recent years, DNNs

have been applied to enable autonomous derivation of efficient algorithms for SCMA

decoder. In [61], the DNN-based decoder reconstructs the input data symbol, given the

received signal. In this reference only AWGN channel is considered and a fully connected

network is utilized for the DNN-based decoder. In [63], considering AWGN channels, a

fully connected DNN is used to reconstruct the transmitted bits of all users given the

channel and received signal. A DNN-based multi-output classification is proposed in [64],

where the transmitted codewords are predicted given received signal in the presence of

noise and Rayleigh fading channels. In spite of their good performance and low complexity,

these DNN-based decoders suffer from several drawbacks such as accuracy saturation,

vanishing gradients and instability.

In our proposed DNN structure, residual blocks are utilized to tackle the above

mentioned problems with existing DNN approaches, while batch normalization is employed

to improve the robustness of the decoder to different initialization and learning rates.

Under the assumption that the channel state information (CSI) is available at the receiver

side, the decoder is trained to predict the transmitted codewords by users. In order to

predict the transmitted user bits, a non-mutually exclusive classification problem should be

considered in which the activation function in the output layer of the decoder would be the

sigmoid function. However, the sigmoid function suffers from the problem of vanishing

gradients. Hence, our aim in this work is to predict the user codewords using the softmax

function in the output layer. Specifically, the received signal and CSI are fed into the

ResNet decoder as input, while the output consists of multiple branches, one for each user,

wherein the transmit codewords are predicted. Through simulations, it is demonstrated
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that the proposed SCMA scheme with ResNet decoder can notably reduce bit error rate

(BER) compared to DL-based benchmark approaches with lower complexity.

The rest of the chapter is organized as follows: Section 5.2 introduces the system model

under consideration. In Section 5.3, the proposed ResNet decoder for SCMA is developed.

The simulation results are presented in Section 5.4, followed by conclusion in Section 5.

5.2 System Model

We consider the uplink of a SCMA system with J independent users, indexed by j ∈ J =

{1, . . . , J}, transmitting data over K shared resources, e.g., orthogonal frequency division

multiple access (OFDMA) subcarriers or multiple-input multiple-output (MIMO) spatial

layers. It is assumed that the number of resources is less than the number of users, i.e.,

K < J . Below, we provide further details on the SCMA encoder and then introduce relevant

DNN framework and notations as needed for further development of the proposed decoder.

5.2.1 SCMA Encoder

SCMA directly maps groups of user data bits to K-dimensional complex codewords selected

from a user-specified codebook. Hence, the SCMA encoder for the jth user can be defined

as an injective function, i.e., fj : Bm → Sj where Bm denotes the set of m-bit tuples and

Sj ⊂ CK denotes the user-specified codebook. It can be inferred that each user codebook

contains M = 2m multi-dimensional complex codewords, i.e., |Sj| = M . Specifically, the

corresponding codeword for input bits b ∈ Bm is obtained as,

sj = fj(b) = [sj,1, ..., sj,K ]T . (5.1)



5. Deep Residual Neural Network Decoder for SCMA 115

Figure 5.1: DNN structure.

The complex codeword sj is sparse with N < K non-zero elements. Each user is assigned N

subcarriers such that no two users occupy the same set of subcarriers.

Let hj = [hj1, ..., hjK ] ∈ C1×K denote the channel vector for the jth user. The received

signal for the uplink scenario can be expressed as,

r =
J∑

j=1
diag(hj)sj + n =

J∑
j=1

diag(hj)fj(b) + n (5.2)

where n ∼ CN (0, σ2I) is an additive noise term. In this work, we assume that the channel

vectors hj,∀j ∈ J , are known at the receiver side.

5.2.2 Deep Neural Networks (DNNs)

As shown in Fig. 5.1, a fully connected DNN is composed of three main components,

namely: input layer, multiple hidden layers, and output layer. The input layer passes on
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the features to the hidden layer without performing any computation. Each hidden layer

consists of multiple nodes that progressively extract higher-level features from the raw input.

Let xl ∈ RNl×1 denote the input of the lth layer. In each layer, the following computation is

accomplished,

xl+1 = φl(WT
l xl + bl) (5.3)

where Wl ∈ RNl×Nl+1 is the weight matrix, and bl ∈ RNl+1×1 is the bias vector, and φl(·) is

a non-linear activation function operating element-wise on its vector input. The activation

function adds non-linearity to the DNN and determines whether a node should be activated

or not. The output layer delivers the resulting information learned through the hidden layers

as the final layer. The activation function utilized in the output layer is different from that

in the hidden layers and depends on the prediction type and DNN model.

A loss function L(·) is required to evaluate the difference between the network output

and its expected output. Examples of loss functions include the mean squared error (MSE)

for regression tasks, and the cross entropy for binary classification tasks. The network has

to be trained such that the loss function is minimized. Accordingly, the weights and biases

are updated using back propagation and gradient descent as follows,

[W′
l]i,j = [Wl]i,j − α

∂L(W, B)
∂[Wl]i,j

[b′
l]i = [bl]i − α

∂L(W, B)
∂[bl]i

(5.4)

where W and B denote the concatenation of weight matrices and bias vectors of all layers in

the network, respectively, and α is the learning rate. Several techniques such as stochastic

gradient descent [123], momentum [124], and adaptive moment estimation (Adam) [125]
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have been proposed to improve the training performance and decrease the computational

complexity of the gradient descent method.

5.3 Proposed ResNet Decoder

DNNs are universal function approximators which can model complex non-linear

relationships. However, using deep networks creates problems [126]. For instance, by

increasing the number of layers, the accuracy will saturate at one point and eventually

degrade. Moreover, DNNs suffer from problems such as vanishing gradients and instability.

Herein, we conceive a novel DNN-base decoder to tackle the aforementioned problems.

Batch normalization is used to improve the speed, performance and stability of the

DNN-base decoder. Moreover, residual blocks are employed to avoid the problem of

vanishing gradients, and to mitigate the accuracy saturation problem. Below, we provide

further details on the batch normalization and residual blocks. Then, we introduce the

structure of the proposed DNN-based SCMA decoder.

5.3.1 Batch Normalization

Batch normalization is a technique that can stabilize the learning process and significantly

reduce the number of training epochs in deep networks by standardizing the inputs to a

layer [127]. In effect, the aim is to keep the input of each layer in the active region of the

activation function using linear transformations. In this regard, the whole training data set

is divided into training min-batches. Let us define zl ∈ RNl+1×1 such that zl = WT
l xl + bl

and denote the min-batch of size Nb by B = {z(1)
l , . . . , z(Nb)

l }. The batch normalization is

implemented through the following steps:
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• Mean calculation:

µl,k = 1
Nb

Nb∑
i=1

[z(i)
l ]k. (5.5)

• Variance calculation:

σ2
l,k = 1

Nb

Nb∑
i=1

([z(i)
l ]k − µl,k)2. (5.6)

• Normalization:

[ẑ(i)
l ]k = [z(i)

l ]k − µl,k√
σ2

l,k + ϵ
. (5.7)

where ϵ > 0 is a constant added to the batch variance for numerical stability.

• Scaling and shifting:

[α(i)
l ]k = γl,k [ẑ(i)

l ]k + βl,k (5.8)

where γl,k and βl,k denote trainable parameters that are subsequently learned as part

of the optimization process.

It should be noted that adjusting trainable parameters allows the model to choose the

optimum distribution for each hidden layers. Specifically, γl,k allows to adjust the standard

deviation of the α
(i)
l , while βl,k allows to adjust their mean. As illustrated in Fig. 5.2a,

batch normalization layer is positioned before the activation layer, i.e., α
(i)
l ,∀i ∈ {1, ..., Nb},

are fed into the activation functions to produce the output of the layer. By utilizing a batch
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(a) (b)

Figure 5.2: (a) Batch normalization. (b) Residual block.

normalization layer, the network becomes more robust to different initialization and learning

rates.

5.3.2 Residual Blocks

A network with residual blocks is called residual network (ResNet). In the residual blocks,

each layer feeds into the next layer and directly into the one of the layers about 2–3 hops

away, as illustrated in Fig. 5.2b. The skip connections (or identity shortcuts) may jump over

activation, weight, and batch normalization layers in between. Consequently, the network

can skip the training of a few layers using skip connections.

Utilizing residual blocks in a DNN offers several benefits. For instance, ResNet is

capable of learning simple functions such as an identity function, which is not possible

using a fully connected deep networks. Moreover, skip connections propagate larger

gradients to initial layers and avoid the problem of vanishing gradients. In a DNN with

residual blocks, stacking layers would not degrade the network performance and hence, the

accuracy saturation problem is mitigated.
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5.3.3 Structure of Proposed SCMA Decoder

In this work, our goal is to predict the transmitted codewords, sj∀j ∈ J , from the received

signal, r ∈ CK , in the presence of noise and fading channels, as represented by model equation

(5.2). Hence, we approach this multi-output classification problem by implementing a ResNet

decoder which predicts multiple outputs simultaneously. Specifically, we utilize the batch

normalization and residual blocks to enhance the performance and stability of the decoder.

Fig. 5.3 illustrates the complete structure of the proposed ResNet SCMA decoder, which

consists of a shared pre-processor and J classifiers for each user. The pre-processor can

separate the superimposed signals while the classifiers can predict the transmitted codewords.

Increasing the number of hidden layers in the classifiers can improve the prediction of the

decoder, but this will significantly raise the complexity of the decoder. By increasing the

number of hidden layer in the pre-processor, we can reach a good trade-off between the

complexity of the network and its performance.

In this structure, the combination of weight, batchnorm, and activation layers are called

neural network (NN) blocks. In the input layer, the decoder accepts the concatenation of

the real and imaginary parts of the received signal, r, and channel vectors, hj,∀j ∈ J . The

rectified linear unit (ReLU) is used for the activation function of the hidden layers which

can be expressed as,

φ(z) = max{0, z}. (5.9)

while in the output layer, softmax is used for the activation function. Hence, the decoder

returns J vectors pj = [pj,1, . . . , pj,M ],∀j ∈ J , such that the element pj,m ∈ [0, 1] denotes

the softmax probability of transmission of the mth codeword in the jth user codebook. For
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Figure 5.3: Internal structure of ResNet decoder.
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an input z ∈ RM , the softmax function returns a vector of the same dimension whose ith

entry is calculated as below,

[φ(z)]i = ezi∑K
j=1 ezj

. (5.10)

During the training phase, the aim is to find the optimum solution for the set of network

weights and biases, represented by Wl and bl such that the loss function between the original

transmitted bits from all users and the decoder outputs is minimized. In this work, the cross

entropy is used as the loss function which can be written as

L ≡ L({tj, pj}; W, B) = −
J∑

j=1

M∑
m=1

tj,m log(pj,m) (5.11)

where tj,m and pj,m denote the mth entry of the truth label of the transmitted codeword and

the output probability of the mth codeword for the jth user, respectively. Specifically, the

truth label of the jth user, i.e., tj, is a binary vector with only one non-zero element whose

index is determined by the index of the transmitted codeword in the jth user codebook.

5.4 Simulation Results

This section presents simulation results to evaluate the performance of the proposed ResNet

decoder for SCMA systems over AWGN and Rayleigh fading channels. For this purpose,

we consider J = 6 independent users, which are transmitting data over K = 4 shared

resources through the SCMA encoder described in Section 5.2.1. The codebook design given

in [128] is utilized in the SCMA encoder. Throughout the experiments, it is assumed that

the channels are the same for all users, i.e., hj = h,∀j ∈ J . For Rayleigh fading, we consider
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block fading where the channel coefficients are modeled as complex Rayleigh fading random

variables, with zero-mean and unit variance. For AWGN, we model the channels as constant

all-one vectors.

During the simulations, the user data bits are generated randomly and passed through

the encoder and channel to produce the received signal1. The training dataset consists

of five groups, each containing 4 × 106 samples with a different value of SNR per bit, i.e.,

Eb/N0 ∈ {8, 10, 12, 14, 16} in dB. The learning rate in (5.4) is set to α = 0.0001. The weights

and biases of the network are updated using Adam. The batch sizes for the training and test

phase are set to 500 and 1000, respectively. All simulations are run on a DELL OptiPlex

7040 desktop computer with an Intel Core i7-6700 CPU @3.4GHz (4 cores and 8 threads),

32GB RAM and an 4GB Nvidia GM107 (GeForce GTX 745) GPU. Software environment

includes Ubuntu 18.04.6 LTS operating system, PyTorch 1.9.0 and Python 3.8.

Fig. 5.4 compares the BER performance versus Eb/N0 among conventional Log-MPA,

D-SCMA [61], DL-SCMA [63], DLD [64], and the proposed ResNet decoder under AWGN

channels. In this regard, the numbers of hidden nodes in each NN block are set to

{32, 32, 32, 16, 16, 16, 8}. We observe that the the proposed ResNet SCMA decoder has

notably lower BER than D-SCMA and DL-SCMA, while it shows slight performance

improvements compared to DLD decoder. The outstanding performance of Log-MPA is not

surprising since it achieves the near optimum solution. However, this improvement comes

at the cost of high computational complexity. Meanwhile, the BER performance of the

proposed ResNet decoder is very close to that of Log-MPA, but is obtained with much

lower complexity (as illustrated later).

Fig. 5.5 shows the BER performance of SCMA decoders under Rayleigh fading
1During the training phase, it is assumed that all users are transmitting signals. However, if one or more

users are not transmitting data, the corresponding classifier can be deactivated during the test phase.



5. Deep Residual Neural Network Decoder for SCMA 124

6 7 8 9 10 11 12 13 14 15 16

E
b
/N

0
 (dB)

10-6

10-5

10-4

10-3

10-2

10-1

B
E

R
Log-MPA

ResNet

DLD

D-SCMA

DL-SCMA

Figure 5.4: BER performance of SCMA decoders under AWGN.

channels. Since decoding in presence of Rayleigh fading is harder than AWGN, we use the

same overall DNN structure but with larger numbers of hidden nodes, which are set to

{256, 256, 256, 128, 128, 128, 64}. It can be seen that the BER performance of all decoders

degrades compared to previous results as Rayleigh fading channels impose more challenges

on the decoders. It can also be noted D-SCMA and DL-SCMA exhibit inferior performance

compared to the other decoders and cannot cope with Rayleigh fading channels. It is

shown in Fig. 5.5 that the sub-optimal solution achieved by the proposed ResNet decoder

is very close to the near-optimal solution obtained by Log-MPA.

Let Np,i and Nc,i denote the number of nodes in the ith NN block of the pre-processor and

classifier, respectively. The computational complexity of the proposed network is measured
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Figure 5.5: BER performance of SCMA decoders under Rayleigh fading channel.

ResNet DLD DL-SCMA D-SCMA Log-MPA

Add. 568 424 252 1,560 20,520

Mul. 10,880 12,224 14,784 54,672 9,456

Log/exp 0 0 0 0 5,713

Table 5.1: Complexity comparison.
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Figure 5.6: Computation time comparison among SCMA decoders.

by the number of multiply-accumulate (MAC) operations which can be expressed as,

Np,1(Nin + 2Np,2 + 3) + JNc,1(Np,1 + 2Nc,2 + Nout + 3)

+ Np,2 + JNc,2 + JNout

(5.12)

where Nin = Np,0 = 4K and Nout = Nc,3 = M . Regarding simulation configurations for

AWGN channels, Table 5.1 compares the complexity of the proposed and benchmark

decoders for passing the data through the network by calculating the number of

multiplication, addition, log/exp operations. It should be noted that log/exp will cost

much more time, as shown in the next results. It can be observed that the proposed

ResNet decoder reduces the complexity compared to DLD, DL-SCMA, D-SCMA, and

Log-MPA, respectively.
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Finally, Fig. 5.6 shows the computation time of different approaches for passing the data

through the network considering AWGN channels. It should be noted that all DNN-based

decoders are simulated in PyTorch which provides Tensor computing with strong acceleration

via GPU. It can be seen that the computation time of the proposed ResNet decoder is 1.5,

1.8, 2.93, and 200.2 times lower than that of DLD, DL-SCMA, D-SCMA, and Log-MPA,

respectively.

5.5 Concluding Remarks

Recently, DNN has been used to address the problems of codebook design and decoding

strategy for emerging SCMA systems. In this work, We have investigated the application of

ResNets for SCMA decoder under AWGN and Rayleigh fading channels. Assuming that CSI

is known at the receiver side, we developed a multi-output classifier to predict the transmitted

user codewords. In the proposed structure, batch normalization and residual blocks are

utilized to improve the performance and stability the decoder. Through simulations, it was

shown that the proposed ResNet decoder outperforms competing DNN-based benchmarks

in terms of BER while exhibiting notably lower complexity.
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Chapter 6

Conclusion

In this Chapter, we review our main research contributions and discuss possible avenues for

future work.

6.1 Summary

Through spatial diversity, multiplexing or beamforming gain, the MIMO techniques can offer

significant performance improvements in terms of user capacity, spectral efficiency, and peak

data rates. In addition, multiple access radio technologies play a crucial role in improving

system performance in cellular mobile networks. Recently, NOMA has shown great promises

in meeting higher system throughput and solving the massive connectivity issue in future

radio access technologies. This thesis focused on the application of MIMO techniques along

with NOMA to meet the exacting demands of 5G and beyond 5G (B5G) wireless networks.

Specifically, the main contributions of the thesis are summarized as follows.

In Chapter 3, we addressed the joint design of user clustering, downlink beamforming

and power allocation in a MIMO NOMA system operating at mmWave frequencies. In the
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proposed scheme, users were partitioned into non-overlapping clusters to improve resource

utilization: within each cluster, a common beamforming vector was shared by the users

who were distinguished on the basis of allocated power. The joint optimization framework

was formulated as a MINLP model, aiming to minimize the total transmission power while

satisfying QoS, user clustering and power constraints. To tackle the challenges imposed by

the non-convexity and combinatorial nature of the problem, we first developed an algorithm

based on BB to find the global optimum within a finite number of iterations.In the BB-based

algorithm, the feasible space is successively partitioned and searched by means of lower and

upper bounds on the objective function to return an ϵ-optimal solution. Considering the

computational complexity of BB, we then reformulated the original problem into a more

tractable form and conceived a low-complexity algorithm for its solution based on the PDD

technique. Through simulations, it was shown that applying the proposed design algorithms

to the multi-user MIMO NOMA system can effectively decrease total transmit power and

improve spectral efficiency compared to the benchmark approaches.

In Chapter 4, we considered the problem of user clustering and downlink beamforming

for MIMO SCMA in a C-RAN, assuming that CSI is available at the BS. The constrained

K-means algorithm was proposed and applied to spatially partition users into

non-overlapping clusters based on the correlation between channel vectors. Subsequently,

two iterative algorithms for beamforming design were developed, aiming to minimize the

total transmission power under QoS and fronthaul capacity constraints. In the first

approach, the continuous non-convex constraints were approximated using first-order

Taylor expansion and the high-quality solution was achieved by solving a MI-SOCP in each

iteration via dedicated solvers. In the second two-stage beamforming approach, the cluster

and user-specific beamformers were designed to remove the inter-cluster interference and



6. Conclusion 130

reduce total transmit power, respectively. In the first stage, the BD beamforming approach

was employed to design the cluster beamformers. In the second stage, the design of

user-specific beamformers was determined by minimizing the total transmit power under

the SINR constraints. Simulation results showed that applying the proposed design to

MIMO SCMA systems under C-RAN environment can effectively decrease total transmit

power and improve spectral efficiency compared to the benchmark approaches.

In Chapter 5, we designed a ResNet decoder for SCMA to address the computational

complexity limitation of current MPA decoders. In our approach, residual blocks are

employed to tackle the problems of accuracy saturation and vanishing gradients with deep

learning based decoder, while batch normalization is utilized to enhance the stability and

performance of the decoder. The performance of the proposed ResNet decoder for SCMA

is validated by means of simulations over AWGN and Rayleigh fading channels. The

results show that besides a much reduced complexity compared to the MPA detector, the

proposed decoder leads to improvements in terms of BER over competing DL based

decoders in literature.

6.2 Potential Future Works

In this section, we discuss some potential future works, which are closely related to the

contributions presented in this thesis.

In Chapter 3, the proposed joint design of user clustering, downlink beamforming, and

power allocation for MIMO NOMA systems assumes that near perfect CSI is available at

the BS for joint processing and perfect interference cancellation is performed during SIC

procedure. However, once an error occurs in SIC (due to e.g., noise or imperfect CSI), signal
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of the corresponding user will not be completely removed, leaving some residual signals as

interference. Consequently, the message of all remaining users in the corresponding cluster

will likely be decoded erroneously. Indeed, the performance degradation is worse when

the number of users in a cluster increases. Robust beamforming and nonlinear detection

techniques can be considered to enhance the system performance and suppress the error

propagation. Using robust beamforming, we can extend the formulation of the problem to the

case of imperfect CSI which leads to more general results. The solution of the robust design

problem with probabilistic constraints is far from trivial and may require a totally different

solution approach. While this aspect falls beyond the scope of this thesis, it nevertheless

remains an interesting avenue for future work.

In Chapter 4, the proposed constrained K-means user clustering and beamforming

approach for MIMO SCMA in C-RAN was developed under the assumption of perfect CSI.

The CSI collected at the central processor in a C-RAN is subject to various sources of

imperfections such as the estimation errors at the receiver side, the quantization errors due

to the finite-rate feedback and the delay of feedback. Therefore, it is desirable to take into

the consideration the effects of CSI error in the design of user clustering and beamforming.

As shown in the simulation results, the proposed design is sensitive to the CSI accuracy

owing to the similarity metric for the proposed constrained K-means algorithm and the BD

algorithm for beamforming. In order to enhance the performance of the proposed user

clustering and downlink beamforming in the presence of imperfect CSI, one can use a more

sophisticated similarity metric in the clustering algorithm. Another possible extension of

the works in Chapter 4 may be the consideration of robust beamforming with different CSI

error models, e.g., statistical (Gaussian), norm-bounded, and random vector quantization.

In Chapter 5, we focused on the design of SCMA decoders and developed a novel decoding
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algorithm based on ResNet. It may be desirable to also consider the design of an encoder,

which may bring additional challenges. Appropriate codebooks, e.g., sparse codes with only a

small number of non-zero elements or low-correlation spreading codes, need to be designed to

efficiently reduce the inter-user interference when all the codewords are multiplexed over the

same wideband. It may be useful to exploit the possibility of applying deep learning based

approaches for encoder design to reduce decoding complexity while improving robustness of

user’s signal against various types of interference.
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Appendix A

Below, we provide the proofs of key theorems stated in Chapter 3.

A.1 Proof of Theorem 3.1

We first provide the following lemma which is a basic extension of [77, Proposition 2].

Lemma A.1: Given any interval [φ
c,m

, φc,m], with φc,m − φ
c,m
≤ π. For all βc,m ∈

Conv(D[φ
c,m

,φc,m]), we have,

|βc,m|2

ac
k,m

≥ cos2(
φc,m − φ

c,m

2
) (A.1)

We omit its proof here for brevity. For any Q ⊆ Qinit, assume that Q = [A, B]. Since

size(Q) ≤ 2δ, we have max∀i,j bi,j − ai,j ≤ 2δ, where ai,j and bi,j denote (i, j)th entries of A

and B respectively. Hence, we can use (3.31) to obtain,

|βc,m|2

ac
k,m

≥ 1
1 + ϵ

. (A.2)
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Then, it follows from (3.28) and (3.36) that the scaled feasible solution W̃c satisfies,

∥W̃c∥2
2 ≤ ∥W∗∥2

2(1 + ϵ). (A.3)

Moreover, since Φt
U is the objective value at the best known feasible solution at the tth

iteration, we get,

Φt
U ≤

∑
c

∥W∗∥2
2(1 + ϵ). (A.4)

Using the fact that Φt
L = ∑

c ∥W∗∥2
2, we have,

Φt
U − Φt

L

Φt
L

≤
∑

c ∥W∗∥2
2(1 + ϵ)−∑

c ∥W∗∥2
2∑

c ∥W∗∥2
2

≤ ϵ. (A.5)

The proof is completed.

A.2 Proof of Theorem 3.2

We prove Theorem 3.2 based on the contradiction principle. Suppose that Algorithm 3.1 does

not terminate within TB iterations. Then, according to Theorem 3.1, we conclude that the

selected box at the tth iteration satisfies size(Q∗) ≥ 2δ for all t = 1, 2, ..., TB. If the longest

edge chosen to be split satisfies j∗ > K, then, after the splitting, the width of the longest

edge of the two boxes Q∗
2 and Q∗

2 is greater than δ. Similarly, for each box Q partitioned from

the original box Qinit, there holds bi,j−ai,j ≥ δ for all j > K. Hence, the volume of each box

Q is not less than δ2CK . Note that due to the binary nature of the variable ι, the volume of

a box Q is calculated without taking the variable ι into account. If the longest edge satisfies
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j∗ ≤ K, we get two boxes with the same volume after the splitting. At the TB iteration, we

have TB boxes such that the total volume of all boxes is not less than TBδ2CK . Obviously,

the volume of Qinit is (4π)CK . By the choice of TB, we get TBδ2CK > (4π)CK , which implies

that the total volume of all TB boxes is greater than that of the original box Qinit. This is

in contradiction of splitting rules (3.26)-(3.27). Hence, the algorithm will terminate within

at most TB iterations.
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Appendix B

Below, we provide the proof of the proposition stated in Chapter 4.

B.1 Proof of Proposition 4.2

In order to prove proposition 4.2, we first transform the cluster assignment subproblem

in Algorithm 4.1 into its equivalent form as a minimum cost flow (MCF) linear network

optimization problem. We then show that the optimal selection variable ιj,k is binary, which

can be found using fast network simplex algorithms instead of complex mixed integer linear

programming [121].

In general, a MCF problem has an underlying directed graph structure G = (V , E) defined

by a set of vertices (nodes), V , and a set of edges (arcs), E . For each node ν ∈ V , we associate

a value b(ν) indicating whether it is a supply node (b(ν) > 0), a demand node (b(ν) < 0), or

a transshipment node (b(ν) = 0). For each edge (ν, ω) ∈ E , we associate a flow of f(ν, ω) on

the edge with cost of c(ν, ω) per unit flow. The optimization model for the MCF problem

can be formulated as,

min
∑

(ν,ω)∈E
f(ν, ω)c(ν, ω) (B.1a)
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s.t.
∑
ω

f(ν, ω)−
∑

ν

f(ω, ν) = b(ν), ∀ν ∈ V (B.1b)

0 ≤ f(ν, ω) ≤ u(ν, ω), ∀(ν, ω) ∈ E (B.1c)

where u(ν, ω) is the maximum capacity of flow on the edge (ν, ω) ∈ E . The problem is

feasible if the sum of the supplies equals the sum of the demands, i.e.,

∑
ν∈V

b(ν) = 0. (B.2)

Let each data point dj correspond to a supply node with b(dj) = 1 and each cluster

center ck correspond to a demand node with b(ck) = −q. The cost of the edge (dj, ck) can

be expressed as,

c(dj, ck) = ∥dj − ck∥2
2. (B.3)

To satisfy the feasibility constraint of the problem, we consider an articial supply node, a,

such that,

b(a) = −J + Kq. (B.4)

This artificial node has no edge to or from data points, while the cost of edge form node

a to cluster center ck is zero, i.e. c(a, ck) = 0 ∀k ∈ K. These identifications establish the

equivalence between the MCF and the cluster assignment subproblem in Algorithm 4.1 in

which the selection variable ιj,k corresponds to flow f(dj, ck). The MCF equivalent directed

graph structure is shown in Fig. B.1.
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Figure B.1: The MCF equivalent directed graph structure.

According to [121, Proposition 5.4], since b(dj), b(ck), and b(a) are all integers, the

optimal flow solution is integer-valued. Since the selection variable ιj,k corresponds to flow

f(dj, ck), and since ∑
k f(dj, ck) = 1, the optimal ιj,k is integer with maximum value equal

to 1, i.e. ιj,k ∈ {0, 1}.

The MCF formulation allows one to solve the cluster assignment subproblem via network

simplex algorithm which is faster than general linear programming codes. Specifically, the

complexity of solving cluster assignment subproblem via network simplex algorithm is given

by [121],

O(|V||E|2(log(|V|))2) (B.5)
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where the number of vertices |V|, and number of edges |E| in our case are,

|V| = J + K + 1, (B.6)

|E| = JK + K. (B.7)

It is of interest to investigate the asymptotic complexity of the algorithms when J and K

are large, i.e., when we let J > K →∞. Under this condition, we can obtain the asymptotic

complexity as,

C ≜ O(J3K2(log(J))2). (B.8)
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