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Abstract

Through spatial diversity, multiplexing or beamforming gain, the multiple-input
multiple-output (MIMO) techniques can offer significant performance improvements in
terms of user capacity, spectral efficiency, and peak data rates. Recently, the application of
MIMO techniques along with non-orthogonal multiple access (NOMA) has aroused great
interest as an enabling technology to meet the exacting demands of fifth generation (5G)
and beyond 5G (B5G) wireless networks. In effect, by allowing multiple users to access
overlapping time and frequency resources in the same spatial layer, NOMA has the
potential to provide higher system throughput and solve the massive connectivity needed
for future wireless networks. The primary objective of this thesis is to develop new
approaches for multi-user MIMO NOMA systems from the perspectives of spectral and
energy efficiency.

First, the joint design of user clustering, downlink beamforming and power allocation is
formulated as a mixed-integer non-linear programming (MINLP) model for a MIMO
NOMA system. In this problem the aim is to minimize the total transmission power while
satisfying quality-of-service (QoS) and power constraints. To tackle this challenging
problem, we reformulate it into a more tractable form and conceive two algorithms based
on the branch-and-bound and penalty dual decomposition techniques for its solution. The
performance of the proposed joint design algorithms for MIMO NOMA is validated by
means of simulations over millimeter-wave (mmWave) channels. The results show the
advantages of the proposed algorithms in terms of total transmit power and spectral
efficiency over competing multiple access schemes.

Then, we study the application of spatial user clustering along with downlink

beamforming for MIMO sparse code multiple access (SCMA) in a cloud radio access
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network (C-RAN). A user clustering algorithm based on a constrained K-means method is
proposed to limit the number of users in each cluster. Subsequently, two iterative
algorithms for beamforming design are developed by minimizing the total transmission
power under QoS and fronthaul capacity constraints. The performance of the proposed
user clustering and downlink beamforming approaches in MIMO SCMA systems is
evaluated through simulations. The results provide useful insights into the advantages of
the proposed schemes over benchmark approaches, in terms of transmit power and spectral
efficiency.

Finally, we propose a novel SCMA decoder based on deep residual neural network
(ResNet), wherein the decoder is trained to predict the transmit codewords. In our
approach, batch normalization is utilized to enhance the stability and robustness of the
decoder, while residual blocks are employed to tackle the problems with deep learning
based decoder such as accuracy saturation and vanishing gradients. The performance of
the proposed ResNet decoder for SCMA is validated by means of simulations over AWGN
and Rayleigh fading channels. The results show that besides a much reduced complexity,
the proposed decoder leads to improvements in term of bit error rate (BER) over

competing deep neural network (DNN) based decoders.
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Sommaire

Grace a la diversité spatiale, au multiplexage ou au gain de formation de faisceaux, les
techniques multiple-input multiple-output (MIMO) peuvent offrir des améliorations
significatives des performances en termes de capacité utilisateur, d’efficacité spectrale et de
débits de données de pointe. Récemment, I'application des techniques MIMO ainsi que
l'acces multiple non orthogonal (NOMA) ont suscité un grand intérét en tant que
technologie habilitante pour répondre aux exigences rigoureuses des réseaux sans fil de
cinquieme génération (5G) et au-dela de la 5G (B5G). En effet, en permettant a plusieurs
utilisateurs d’accéder a des ressources de temps et de fréquence qui se chevauchent dans la
méme couche spatiale, NOMA a le potentiel de fournir un débit systeme plus élevé et de
résoudre la connectivité massive nécessaire pour les futurs réseaux sans fil. L’objectif
principal de cette these est de développer de nouvelles approches pour les systemes MIMO
NOMA multi-utilisateurs du point de vue de l'efficacité spectrale et énergétique.

Tout d’abord, la conception conjointe du regroupement d’utilisateurs, de la formation de
faisceaux sur la liaison descendante et de I’allocation de puissance est formulée sous la forme
d’un modele de programmation non linéaire & nombre entier mixte (MINLP) pour un systeme
MIMO NOMA. Dans ce probleme, le but est de minimiser la puissance de transmission totale
tout en satisfaisant les contraintes de qualité de service (QoS) et de puissance. Pour résoudre
ce probleme difficile, nous le reformulons sous une forme plus simple et concevons deux
algorithmes basés sur les techniques de décomposition par branches-limites et par pénalité.
Les performances des algorithmes de conception conjointe proposés pour MIMO NOMA sont
validées au moyen de simulations sur des canaux a ondes millimétriques (mmWave). Les
résultats montrent les avantages des algorithmes proposés en termes de puissance d’émission

totale et d’efficacité spectrale par rapport aux schémas d’acces multiples concurrents.
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Ensuite, nous étudions l'application du regroupement spatial d’utilisateurs avec la
formation de faisceaux en liaison descendante pour l'acceés multiple a code creux MIMO
(SCMA) dans un réseau d’acces radio cloud (C-RAN). Un algorithme de regroupement
d’utilisateurs basé sur une méthode K-means contrainte est proposé pour limiter le nombre
d’utilisateurs dans chaque groupe. Par la suite, deux algorithmes itératifs pour la
conception de formation de faisceaux sont développés en minimisant la puissance de
transmission totale sous les contraintes de QoS et de capacité de transmission. Les
performances des approches proposées de regroupement d’utilisateurs et de formation de
faisceaux de liaison descendante dans les systemes SCMA MIMO sont évaluées au moyen
de simulations. Les résultats fournissent des informations utiles sur les avantages des
schémas proposés en termes de puissance d’émission et d’efficacité spectrale par rapport
aux approches de référence.

Enfin, nous proposons un nouveau décodeur SCMA basé sur un réseau neuronal résiduel
profond (ResNet), dans lequel le décodeur est entrainé pour prédire les mots de code transmis.
Dans notre approche, la normalisation par lots est utilisée pour améliorer la stabilité et la
robustesse du décodeur, tandis que les blocs résiduels sont utilisés pour résoudre les probléemes
liés au décodeur basé sur 'apprentissage en profondeur, tels que la saturation de la précision
et les gradients de fuite. Les performances du décodeur ResNet proposé pour SCMA sont
validées au moyen de simulations sur les canaux d’évanouissement AWGN et Rayleigh. Les
résultats montrent qu’en plus d’une complexité tres réduite, le décodeur proposé conduit a
des améliorations en termes de taux d’erreur sur les bits (BER) par rapport aux décodeurs

concurrents basés sur le réseau neuronal profond (DNN).



Acknowledgements vi

Acknowledgements

Working towards a Ph.D. degree is a long journey which takes commitment, dedication, and
perseverance. However, one might never make it to the destination without the help and
advice from others along the way. For this, I feel fortunate and privileged to have Professor
Benoit Champagne as my supervisor. None of what I have accomplished would have been
possible without his excellent guidance and encouragement throughout my doctoral study.
In addition, I would like to express my gratitude towards my Ph.D. committee members,
Professor loannis Psaromiligkos and Professor Tim Hoheisel for their time and efforts to
evaluate my work and provide valuable feedback. I would also like to thank all the jury
members who have spent time reviewing and critiquing this dissertation, the presentation of
which has significantly benefited from their insightful comments.

I am deeply grateful for the generous funding support from the McGill Engineering
Doctoral Awards (MEDA), the Natural Sciences and Engineering Research Council (NSERC)
of Canada and InterDigital Canada through the NSERC CRD grant program. I would like to
thank the technical staff of InterDigital, especially Dr. Afshin Haghighat, for the constructive
suggestions and inputs at our progress meetings. I will always cherish the fond memories of
being surrounded by a group of talented and affable colleagues: Ali, Alireza, Seyed Saleh,
Toluwaleke, Hanwook, Lu, Ryan, Farnood.

I am forever grateful to my family for their unconditional love, understanding, and
support. A debt of gratitude is owed to Azadeh, Mahbod, Siavash, and Arash, whose love
and support helped me overcome various difficulties despite the distance form my
hometown. Last but not least, my heartfelt love is devoted to my husband, Abolfazl, for
his patience, continuous support and encouragement over the course of my Ph.D. studies. I

hope that this accomplishment makes all of you proud.



vii

Contents

Contents vii
List of Figures xi
List of Tables xiii
Acronyms Xiv
1 Introduction 1
1.1  Future Wireless Networks . . . . . . . . . .. . . .. ... ... ... .... 1

1.2 NOMA: Concept, Challenges, and Opportunities. . . . . . . .. .. ... .. 5
1.3  Thesis Objective and Contributions . . . . . . . . ... ... .. ... .... 7
1.4 Organization . . . . . . .. .. 11

2 Literature Review 13
2.1 PD-NOMA . . . . . e 13
2.2 CD-NOMA . . . . . 18
2.2.1  SCMA Encoder Design . . . . . . .. .. ... ... 20

2.2.2  SCMA Decoder Design . . . . . .. . .. ... ... ... 22



Contents viii

2.3 Comparison of NOMA Schemes . . . . ... .. .. ... ... ........ 27
2.4 C-RAN Architecture . . . . . . . . . . . ... 28
2.5 Concluding Remarks . . . . . .. .. ... . o 30

3 Joint User Clustering, Beamforming, and Power Allocation for NOMA 32

3.1 Introduction . . . . . . . ... 32
3.2 System Model . . . . . . . .. 35
3.2.1 Channel Model . . . . . . . . ..o 35
3.2.2 Signal Model . . . . . . ... 37
3.2.3 SIC Procedure . . . . . . . . . . 37
3.3 Problem Formulation . . . . . .. .. ... . oo 39
3.4 Proposed BB-Based Algorithm . . . . ... ... ... ... ... ... ... 42
3.4.1 Convex Relaxation . . . . . . . ... ... 0oL 44
3.4.2 Proposed Algorithm . . . . ... .. ... ... 47
3.4.3 Convergence and Complexity Analysis . . . . . . .. ... ... ... 50
3.5 Proposed PDD-Based Algorithm . . . . .. ... ... ... ... ...... 52
3.5.1 Problem Reformulation . . . .. .. ... ... ... ......... 52
3.5.2  Proposed Algorithm . . . . . .. .. ... .. ... .. ... .. ... 54
3.5.3 Convergence and Complexity Analysis . . . . . ... ... ... ... 57
3.6 Simulation Results . . . . . . .. ... 59
3.6.1 Methodology . . . . . . . . ... 59
3.6.2 Results and Discussion . . . . .. .. ..o 60
3.7 Concluding Remarks . . . . . . . ... ... .. ... ... 69

4 User Clustering and Beamforming for MIMO SCMA in C-RAN 70



Contents ix

4.1 Introduction . . . . . . .. . 70
4.2 System Model and Problem Description . . . . . . ... ... ... .. ... 73
4.2.1 SCMA Encoder . . . . . . . .. . 74
4.2.2  Channel Model . . . . . . . ... 75
4.2.3 Signal Model . . . . . ..o 7
4.2.4 Problem Description . . . . . . . . . ... ... .. ... 79

4.3 User Clustering . . . . . . . . . . 80
4.3.1 Constrained K-means Clustering . . . . . . ... ... ... ..... 80
4.3.2 Number of Clusters . . . . . . . . . ... ... ... ... ... 84
4.3.3 Complexity Analysis . . . . . ... . ... .. 85

4.4 Downlink Beamforming . . . . . ... ... ... L 86
4.4.1 Beamforming Problem . . . . . ... .. ... 00000 87
4.4.2 MI-SOCP Beamforming Approach . . . . . ... ... ... ..... 89
4.4.3 Two-Stage Beamforming Approach . . . . . ... ... ... ... .. 93
4.4.4 Convergence and Complexity Analysis . . . . . ... ... ... ... 98

4.5 Simulation Results . . . . . . . . ..o 99
4.5.1 Methodology . . . . . . ... 99
4.5.2 Results and Discussion . . . . . . .. ... 103

4.6 Concluding Remarks . . . . . . . ... ... 109
5 Deep Residual Neural Network Decoder for SCMA 112
5.1 Introduction . . . . . . ... 112
5.2 System Model . . . . . . . .. 114
5.2.1 SCMA Encoder . . . . . . . . . . . 114

5.2.2  Deep Neural Networks (DNNs) . . .. ... ... ... ... ... 115



5.3 Proposed ResNet Decoder . . . . . . . . . .. ... .. ... ... ......
5.3.1 Batch Normalization . . . . . . . . . . . . . . ...
5.3.2 Residual Blocks . . . . . . . . ...
5.3.3  Structure of Proposed SCMA Decoder . . ... ... .........
5.4 Simulation Results . . . . . . . . . .
5.5 Concluding Remarks . . . . . . . .. . ... ...
6 Conclusion
6.1 Summary . . . . ...
6.2 Potential Future Works . . . . . . . . . .
Appendices
A
A.1 Proof of Theorem 3.1 . . . . . . . . . . . . . . . . ..
A.2 Proof of Theorem 3.2 . . . . . . . . .
B
B.1 Proof of Proposition 4.2 . . . . . . . ...

Bibliography

128
128
130

133

133
133
134

136
136

140



xi

List of Figures

1.1

2.1
2.2
2.3
24
2.5

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

[lustration of basic PD-NOMA with a SIC receiver (adapted from [17]). . . 6
The multi-user MIMO NOMA system model. . . . . ... ... ... ... .. 14
SCMA encoder model (C'=2, N=4). .. ... ... ... ... ....... 20
The SCMA factor graph. . . . . . . . . . .. ... ... 21
The MPA process model. . . . . . . . .. . ... L 25
The C-RAN architecture. . . . . . . . . .. ... .. ... ... 29
The multi-user MIMO NOMA system model. . . . . ... ... ... .... 36
An illustration of the BB process (adapted from [74]).. . . . .. .. .. ... 43
An illustration for Proposition 3.1. . . . . . . . .. .. ... 46
Convergence behavior of the BB-based algorithm. . . . . . .. ... .. ... 61
Convergence behavior of the PDD-based algorithm. . . . . . ... ... ... 63
Achievable sum rate versus total transmit power. . . . . . . ... ... ... 64
Total transmit power versus target SINR. . . . .. ... ... ... ... .. 65
Total transmit power versus target SINR. . . . . ... ... ... ... ... 66
Total transmit power versus number of users. . . . . . . . ... ... .. .. 67

3.10 Sum rate versus total transmit power for perfect and imperfect CSI. . . . . . 68



xii

4.1
4.2
4.3
4.4

4.5
4.6
4.7
4.8
4.9

5.1
5.2
2.3
0.4
2.5
2.6

B.1

The MIMO SCMA system model under C-RAN. . . . . . . .. ... ... .. 73
The impact of the number of clusters. . . . . . . . .. ... ... ... .... 101
The convergence of the proposed algorithms. . . . . . . . . ... .. .. ... 102

Transmit power versus sum rate for different clustering and beamforming

approaches. . . . . . .. L L 105
Transmit power versus sum rate for different transmission schemes. . . . . . 106
Transmit power versus sum rate for perfect and imperfect CSI. . . . . . . .. 108

Average number of associated RRHs versus fronthaul link capacity for M = 20.109

Transmit power versus number of antennas. . . . . . ... ... ... .... 110
Transmit power versus total number of users. . . . . . ... ... ... ... 110
DNN structure. . . . . . . . .. 115
(a) Batch normalization. (b) Residual block. . . . . .. ... ... ... ... 119
Internal structure of ResNet decoder. . . . . . . . . .. ... ... ... ... 121
BER performance of SCMA decoders under AWGN. . . . . ... ... ... 124
BER performance of SCMA decoders under Rayleigh fading channel. . . . . 125
Computation time comparison among SCMA decoders. . . . . . .. ... .. 126

The MCF equivalent directed graph structure. . . . . . . . .. ... ... .. 138



xiii

List of Tables

2.1

3.1

4.1
4.2

5.1

Comparison between different NOMA schemes. . . . .. ... ... ..... 28
Summary of parameters. . . . . . . . ... 60
Simulation setting parameters . . . . . . . . .. .. L 100
Run-time of different beamforming approaches . . . . . . . .. ... ... .. 104

Complexity comparison. . . . . . . . . . ... 125



xiv

Acronyms

3GPP
5G

AL
AO

BB
BD
BER
BS

CCCP
C-RAN
CDMA
CSI

DC

Third-Generation Partnership Project.

Fifth Generation.

Augmented Lagrangian.

Alternating Algorithm.

Branch-and-Bound.
Block Diagonalization.
Bit Error Rate.

Base Station.

Concave-Convex Procedure.
Cloud Radio Access Network.
Code Division Multiple Access.

Channel State Information.

Differences of Convex Functions.



Acronyms

XV

DL
DNN

IoT

LTE

MI-SOCP
MIMO
MINLP
mmWave
MPA
MSE

NOMA

OFDMA
OMA

PDD
PDMA

Deep Learning.

Deep Neural Network.

Internet of Things.

Long-Term Evolution.

Mixed-Integer Second Order Cone Program.
Multiple-Input Multiple-Output.
Mixed-Integer Non-Linear Program.
Millimeter Wave.

Message Passing Algorithm.

Mean Squared Error.

Non-Orthogonal Multiple Access.

Orthogonal Frequency Division Multiple Access.

Orthogonal Multiple Access.

Penalty Dual-Decomposition.

Pattern Division Multiple Access.

Quality of Service.



Acronyms

xvi

RAT
ResNet
RRH

SCMA
SIC
SINR
SSE

TDMA

Radio Access Technology.
Residual Neural Network.

Remote Radio Heads.

Sparse Code Multiple Access.

Successive Interference Cancellation.

Signal-to-Interference-plus-Noise Ratio.

Sum of Squared Euclidean.

Time Division Multiple Access.



Chapter 1

Introduction

In this Chapter, we first discuss potential candidate technologies for emerging and future
wireless networks. We then present the concept and challenges of different non-orthogonal
multiple access schemes. Finally, we state the objectives of the research and summarize the

main contributions of the thesis.

1.1 Future Wireless Networks

In modern wireless networks, the design of radio access technology (RAT) is of critical
importance for improving system performance in a cost-effective manner. RATs are
typically characterized by multiple access schemes which play key roles in optimizing
system performance through efficient allocation of resources. The conventional orthogonal
multiple access (OMA) schemes, such as time division multiple access (TDMA), code
division multiple access (CDMA) and orthogonal frequency division multiple access
(OFDMA), can completely remove inter-user interference under ideal conditions, which

help improve system performance. However, this comes at the cost of limiting the number
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of supported users, and consequently, overall network capacity [1].

During the last few decades, we have witnessed more than a 1,000-fold capacity increase
in wireless communications systems, with the main catalysts being the improvement in
spectrum efficiency and the acquisition of new spectrum. Such a capacity increase has
fostered the rapid growth of the mobile Internet accompanied by various new applications
and services. Looking into the next decades of wireless communications evolution, it is
expected that the continuing growth of mobile Internet applications and services will
trigger a huge growth, in the range of 10-100 times for mobile traffic [2]. Considering that
the capacity of currently deployed systems such as long-term evolution (LTE) Release 8/9
is already quite high, further capacity growth seems to be a very challenging task at first
glance. As a matter of fact, in order to handle such data traffic, improving the spectral
efficiency remains one of the key challenges. Moreover, the rapid development of the
Internet of Things (IoT) calls for the massive connectivity of users and/or devices, and
future generations of wireless networks will hence need to meet the demand for low-latency,
low-cost devices, and diverse service types. Hence, further enhancement in technologies is a
must to satisfy these requirements for future wireless networks [3].

Orthogonal multiple access is an appropriate choice for good system-level throughput
performance with a simple receiver design. However, more advanced receiver designs are
required in order to mitigate intra-cell and inter-cell interference, and boost the spectrum
efficiency in the future [4]. So far, some of potential candidates that have been proposed to
address the challenges of the fifth-generation (5G) and beyond are millimeter wave
communications (mmWave), massive multiple-input multiple-output (MIMO) systems,
ultra-dense networks, non-orthogonal multiple access (NOMA), and cloud radio access

networks (C-RAN).



1. Introduction 3

Traditionally, the microwave (sub-6 GHz) band has been the most widely-used spectrum
for the consumer wireless systems owing to its favorable propagation behavior. Over time,
the frequency spectrum under 6 GHz became densely occupied by TV and radio signals and
hence, the mmWave band (30 GHz to 300 GHz) is now attracting considerable attention for
prospective wireless networks [5,6]. On the one hand, operating in mmWave band brings
its own challenges since the electromagnetic waves become highly sensitive to path loss
and blockage [7]. In effect, the use of shorter wavelength in mmWave band (and hence
larger transmission bandwidth) can help transfer data at a faster rate, although the distance
over which the data transfer can be accomplished is significantly reduced compared to the
microwave band. As a result, mmWave communications would be restricted to short-range,
line-of-sight applications unless further enhancements are made at the physical-layer.

On the other hand, the mmWave frequency band offers several benefits such as the
possibility of integrating a large-scale antenna array into a much smaller area compared
to its microwave counterparts. The form factor of an antenna array is proportional to
the wavelength. For instance, at a carrier frequency of 60 GHz, the form factor of an
8 x 8 planar antenna array is only 4 cm?. Consequently, the application of massive MIMO
beamforming along with mmWave can efficiently address the issues of severe path loss and
blockage cellular networks [8]. Moreover, the use of massive MIMO techniques can lead to
significant performance improvements in terms of user capacity, spectral efficiency, and peak
data rates, by taking advantage of spatial diversity, multiplexing or beamforming gains.

In order to make network capacity improvements in terms of spectral efficiency within
a given geographical area, we can admit as many users as possible over an allocated set of
time-frequency resources. we can approach this issue by densifying the deployment of base

stations (BSs) with universal frequency reuse, which reduces the competition for resources
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within a cell among a large number of users [9]. Due to reduced cell radius obtained in ultra-
dense networks, lower transmit power is required which results in increased energy efficiency.
Moreover, thanks to load sharing, the backhaul links can accommodate more data traffic
from each user in service. However, by increasing the density of BSs and user devices, the
problem of inter-cell interference may become severe in multi-cell networks.

In recent years, so-called NOMA schemes have shown great promises in meeting the
exacting demands of emerging and future generations of wireless networks. In effect,
NOMA has the potential to provide higher spectral efficiency and enable massive
connectivity by allowing multiple users and devices to access overlapping time and
frequency resource elements in the same spatial layer [10]. As such, NOMA is particularly
well-suited as a prospective multiple access technology for dense heterogeneous networks,
as envisaged for machine-to-machine (M2M) communications and IoT applications [11].
Nevertheless, NOMA requires effective interference cancellation and management
approaches. Moreover, low-complexity resource allocation algorithms is another challenge
that needs to be addressed in NOMA systems.

As an emerging network architecture for 5G and beyond, C-RAN offers several benefits,
e.g., improved energy efficiency, better ability to handle interference on a larger scale and
increased network capacity. In the C-RAN architecture, the transceivers are connected to a
central processor via fronthaul links [12]. The central processor jointly encodes the user
messages using linear precoding or beamforming techniques for interference mitigation
purposes in the downlink. This separation of the central processor and transceivers
functionalities reduces the power consumption, operating expenses and complexity of the
transceivers. However, the implementation of C-RAN architecture raises several challenges

such as high fronthaul capacities needed, central processor cooperation, resource allocation
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mechanism, cell clustering, etc.

1.2 NOMA: Concept, Challenges, and Opportunities

NOMA has the potential to be integrated into the existing and future wireless systems
because of its compatibility with other communication technologies. For example, NOMA
has been shown to be compatible with conventional OMA, such as TDMA and OFDMA.
Because of this, NOMA has also been proposed for inclusion in the 3rd generation
partnership project (3GPP) long-term evolution advanced (LTE-A) standard, where
NOMA is referred to as multiuser superposition transmission (MUST) [1]. Particularly,
without requiring any changes to the LTE resource blocks (i.e., OFDMA subcarriers), the
use of the NOMA principle ensures that multiple users can be simultaneously served on the
same OFDMA subcarriers.

Basically, NOMA techniques can be classified into three main categories, namely: code
domain, power domain, and multiple domain [13]. At the transmitter side, power domain
NOMA (PD-NOMA) allocates different power levels to the users according to their channel
condition. At the receiver side, successive interference cancellation (SIC) is employed,
whereby the stronger signals are decoded first and subtracted from the received signal
sequentially. Code domain NOMA (CD-NOMA) techniques, such as sparse code multiple
access (SCMA) and multi-user shared access (MUSA), assign and apply different codes to
the data streams of different users. In this way, the transformed data is spread over
multiple resource elements in a sparse manner that allows the control of interference [14].
In multiple domain NOMA, such as pattern division multiple access (PDMA) [15] and

lattice partition multiple access (LPMA) [16], the signals from multiple users are
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User 1

Time/Frequency

| ' .
Transmitter - Subtract User 2's User 1's signal
(Base Station) D > | signal :—» decodi ng

Figure 1.1: Illustration of basic PD-NOMA with a SIC receiver (adapted from [17]).

superimposed in multiple domains, such as power, code and spatial domains.

PD-NOMA attempts to fully exploit multiplexing by overlapping multiple user signals
in the time, code and frequency domains. According to the PD-NOMA principle, the users
with lower channel gain are considered as weak users, and should therefore be allocated a
larger fraction of the total available power at the transmitter, as illustrated in Fig. 1.1. PD-
NOMA is capable of enhancing signal quality, network capacity, and cell-edge throughput.
However, its implementation raises several research challenges. Firstly, the efficient allocation
of available resources to multiple users with different data rates and quality of service (QoS)
requirements poses a formidable optimization problem. Secondly, individual decoding of
the superimposed user signals in the PD-NOMA receiver calls for advanced interference
cancellation algorithms whose implementation significantly increases the complexity of the

equipment and processing delay.
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In CD-NOMA, the data streams of the users are modulated by using user-specific
spreading sequences, having sparse, low-density and low inter-correlation properties. One
of the advantages of these techniques is the grant-free access provided by the
non-orthogonality feature, although this comes at the cost of introducing users interference.
This kind of technique is inspired from the well-known CDMA technology extensively
studied in the 90s. We note that for certain CD-NOMA schemes, such as MUSA, the
receiver does not know the spreading sequences in advance. Hence, the decoder has to
detect and estimate the transmitted data streams in a blind manner.

SCMA is a popularized CD-NOMA technique. While CDMA extends each information
symbol (taken, e.g., from a quadrature amplitude modulation (QAM) constellation) into a
finite sequence of complex symbols by using orthogonal or near orthogonal spreading codes,
SCMA directly maps each group of bits into a sequence of complex symbols by merging
together the symbol mapper and the CDMA spreader [18]. The overall process can be
interpreted as a coding procedure from the binary domain to a multidimensional complex

domain, which in turn raises new problems in terms of codebook and decoder designs [14].

1.3 Thesis Objective and Contributions

The primary objective of this thesis is to develop and investigate improved transceiver design
approaches for the application of NOMA within the emerging framework of multi-user MIMO
communications. To achieve this goal, we address the aforementioned research challenges by
proposing new designs that can provide both energy and spectral efficiency under practical
constraints. In this regard, the main research contributions and findings of this thesis are

summarized as follows.



1. Introduction 8

o We first investigate the application of downlink beamforming along with PD-NOMA
in a multi-user MIMO system operating at mmWave frequencies. The joint design of
user clustering, downlink beamforming and power allocation scheme is formulated as
a novel mixed-integer non-linear program (MINLP), where the aim is to minimize the
total transmission power while satisfying QoS, user clustering and power constraints.
Owing to the non-convexity and combinatorial nature of the problem, obtaining an
optimal solution is challenging. To tackle this issue, we first develop an algorithm
based on branch-and-bound (BB), whereby the feasible space is successively
partitioned and searched by means of lower and upper bounds on the objective
function. While this algorithm is shown to return an e-optimal solution within a
finite number of iterations, it entails high computational complexity. Considering
this limitation, we then reformulate the original problem into a more tractable form
and conceive a low-complexity algorithm for its solution based on the penalty
dual-decomposition technique. The proposed joint design algorithms for MIMO
NOMA are evaluated by means of simulations over mmWave channels. Results show
significant improvements in terms of total transmit power and spectral efficiency

compared to benchmark approaches.

o We then address the key problems of user clustering and downlink beamforming for
MIMO SCMA in a C-RAN. Using channel state information available at the central
processor, an efficient user clustering algorithm based on the constrained K-means
method is proposed. Subsequently, two iterative algorithms for beamforming design
are developed by minimizing the total transmission power under QoS and fronthaul
capacity constraints. In the first approach, we approximate the continuous

non-convex constraints by convex conic ones using first-order Taylor expansion and
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iteratively solve a sequence of mixed-integer second order cone programs
(MI-SOCPs) to achieve a high-quality solution, but with higher complexity. In the
second approach, a two-stage low-complexity solution is developed in which
beamforming matrices obtained from each stage are combined to form a single
beamformer for each user. In the first stage, cluster beamformers are designed by
taking advantage of block diagonalization, while in the second stage, user-specific
beamformers are determined by minimizing transmission power. The performance of
the proposed user clustering and downlink beamforming approaches for MIMO
SCMA in C-RAN is validated through simulations over mmWave channels.
Compared to benchmark approaches, the results show significant improvements in

terms of transmit power and spectral efficiency.

o Finally, we focus on the design of SCMA decoders and propose a novel solution to this
problem based on a deep residual neural network (ResNet). To tackle the problem of
accuracy saturation and vanishing gradients, we employ residual blocks, while batch
normalization is utilized to enhance the stability and performance of the decoder.
Under the assumption that the channel state information (CSI) is available at the
receiver side, the decoder is trained to predict the transmitted codewords by the users.
The received signal and CSI are fed into the ResNet decoder as input, while the output
consists of multiple branches, one for each user, wherein the transmit codewords are
predicted. Through simulations, it is demonstrated that the proposed SCMA scheme
with ResNet decoder can notably reduce bit error rate (BER) compared to DNN-based

benchmark approaches, yet with much lower complexity.
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This thesis has resulted into the following published contributions:
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downlink beamforming for MIMO-SCMA in C-RAN,” IEEFE Access, vol. 9, pp.
115175-115191, Aug. 2021.

S. Norouzi, B. Champagne, and Y. Cai. “Joint Optimization Framework for
User Clustering, Downlink Beamforming, and Power Allocation in MIMO NOMA
Systems,” IEEE Transactions on Communications, Nov. 2022. (accepted for

publication)

« Conference papers:

[C1]

[C2]

S. Norouzi, A. Morsali, and B. Champagne. “Optimizing Transmission Rate in
NOMA via Block Diagonalization Beamforming and Power Allocation,” I[FEFE
Pacific Rim Conf.  on Communications, Computers and Signal Processing
(PACRIM), pp. 1-5, Victoria, Canada, Aug. 2019.

S. Norouzi, Y. Cai, and B. Champagne. “Constrained K-means user clustering and
downlink beamforming in MIMO-SCMA systems,” IEEFE 32nd Annual International
Symposium on PIMRC, pp. 1091-1096, Oct. 2021.

S. Norouzi, Y. Cai, and B. Champagne. “Joint design of user clustering,
beamforming, and power allocation for NOMA,” [IEEFE Asilomar Conf. on Signals,
Systems, and Computers, Pacific Grove, CA, USA, Oct. 2022.

S. Norouzi and B. Champagne. “Deep residual neural network decoder for sparse
code multiple access,” IEEE Wireless Communications and Networking Conf.

(WCNC), Scotland, UK, Mar. 2023.
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In all of these publications, Ms. Sara Norouzi, as the first author, developed and/or
proposed the idea, formulated the problem, developed the algorithms, implemented
simulations, and prepared the draft of the manuscripts. Mr. Alireza Morsali, Ph.D.
student, assisted in reviewing [C1]. Prof. Yunlong Cai collaborated in [J1-J2], [C2-C3], to
review the works and to assist in editing and writing. Prof. Benoit Champagne supervised
and reviewed the works, and assisted in the editing and writing of the manuscripts at

different stages.

1.4 Organization

The rest of the thesis is organized as follows. Chapter 2 provides a comprehensive
literature survey of prior contributions on the application of NOMA in MIMO systems
from various perspectives. Chapter 3 investigates the joint design of user clustering,
downlink beamforming and power allocation scheme in a MIMO NOMA system operating
at mmWave frequencies. Chapter 4 focuses on the problems of user clustering and downlink
beamforming for MIMO SCMA in a C-RAN. Chapter 5 considers the design of SCMA
decoders by employing deep learning based methods. Chapter 6 gives a summary and
provides suggestions for future investigations. Certain mathematical proofs and derivations
are relegated to the Appendices.

Notations: The following notations are used throughout the thesis, unless otherwise
noted. Scalars, vectors and matrices are respectively denoted by lower case, boldface lower
case and boldface upper case letters. For a matrix A, a;; and [A]; ; denote its (¢, j)th entry,
while AT and A denote its transpose and conjugate transpose, respectively. The operators

I-1l2, [|-]lo and ||.||cc denote the Euclidean, zero and infinity norms of a vector, respectively.
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For a set A, |A| denotes its cardinality. $(z) and 3(z) denotes the real and imaginary parts
of complex number z, respectively. C™*" (R™*") denotes the space of m x n complex (real)
matrices. B"™*" denotes binary matrices of size m x n where the set B = {0,1}. Given
matrices A and B € R™", we define [A,B] = {X € R™"|a;; < x;; < b;;,Vi,j} and
refer to this set as a box. We use CN (i, %) to denote a complex circular Gaussian random

variable with mean p and variance o2.
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Chapter 2

Literature Review

Before we embark on the study of NOMA for MIMO wireless systems, we give a brief review
of the related background and recent developments in this chapter, which serve as the basis
for our proposed research in the subsequent chapters. First, we focus on MIMO PD-NOMA
where the application of multiple antenna techniques and user clustering provide further
performance improvements. We then review related works on SCMA specifically the design
of the codebook and decoder. Afterwards, a comparison between major NOMA techniques
is presented. Finally, MIMO beamforming in CRAN architecture is reviewed followed by

some concluding remarks.

2.1 PD-NOMA

The basic principles of PD-NOMA rely on the employment of superposition coding (SC)
at the transmitter side and SIC techniques at the receiver side. Although the application
of PD-NOMA in cellular networks is relatively new, related concepts have been studied in

communications and information theory for a long time. For instance, the key components
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of PD-NOMA i.e., SC and SIC, have already been invented more than two decades ago
[13,19,20]. Nevertheless, the principle of removing orthogonality for multiple access has not
been used in the previous generations of wireless cellular networks. Since the main focus of
this section is on PD-NOMA, in the sequel, we refer to the latter as NOMA for simplicity.

From the NOMA perspective, power-domain multiplexing means that different users
are allocated different power levels according to their channel conditions to obtain the
maximum gain in system performance. The weaker users with lower channel gains will be
apportioned a larger fraction of the total available transmit power. Such power allocation
can be exploited to separate different users, using SIC at the receiver to cancel the
interference. Specifically, SIC will be employed at the receiver whereby the strongest signal
is decoded first and subtracted from the received signal, after which the second strongest
signal is extracted from the residual, and so on in a sequential manner.

As illustrated in Fig. 2.1, let us consider the downlink of a multi-user MIMO NOMA

Transmitter .,

(Base Station) .

Figure 2.1: The multi-user MIMO NOMA system model.
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system with one BS. The transmitter is equipped with N antennas, serving K users indexed
by k € K = {1,..., K}, where each user is equipped with a single-antenna receiver!. The
users are partitioned into C' non-overlapping clusters, indexed by ¢ € C = {1,...,C}. The
users in a given cluster jointly share a common beamforming vector denoted as w, € CV*1.
Hence, the BS utilizes the NOMA superposition of signals and beamforming simultaneously.

Let U. denote the index set of users in the cth cluster? and h; € CV*! denote the channel
vector from BS to the ith user in the cth cluster, i.e., © € U,, and ¢ € C. Without loss of
generality, we assume that the K users in the system are sorted in ascending order according
to their channel gains, i.e., ||h;|| > ||h;|| for ¢ > j. The received signal at the ith user in the

cth cluster is given by,

r; =hfz, + zC: hfz, +n, (2.1)
/=1,c'#c
where z, € CV*! is the transmitted signal by the BS towards the cth cluster, and n; ~
CN(0,0?) is an additive white Gaussian noise term.
It is assumed that the BS applies power domain NOMA within each cluster. That is,
it transmits the superposition of the individual data symbols with different power levels to
all users in a cluster simultaneously with the same radio resources, such as time slot and

frequency channel. Hence, we have,

Z, = WC(Z aisi) (22)

1€U:

!The system model formulation presented in this section can be extended to the case where users are
equipped with multiple antennas. We refer the interested reader to [21,22] for additional details.

2For instance, five users could be distributed into 2 non-overlapping clusters as U; = {1,3} and Uy =
{2,4,5}.
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where s; € C is the data symbol intended for the ith user and «; denotes the fraction of
the total power available for the cth cluster that is allocated to the ith user, i.e., a; € [0, 1]
and >, a; = 1. We assume that the data symbols of the different users are independent
with zero mean and unit variance, i.e. E[|s;]?] = 1. Upon substitution of (2.2) into (2.1),
we can express the received signal at the ith user in the cth cluster as a sum of the desired
signal, the interference from the other user in that cluster (intra-cluster interference), the

inter-cluster interference and the noise term, i.e.,

r= B (Y Vars) + X hwe(Y Vars:) o

i eU, c#e keU. (23)

Inter-cluster Interference

According to the NOMA principle, each user in a given cluster employs SIC to mitigate
the intra-cluster interference, by decoding and removing the message of the weaker users in
that cluster. Assume that both ith and jth users belong to the cth cluster and ¢ > j. For
the SIC operation at the ith user, the signal-to-interference-plus-noise ratio (SINR) of the
jth user signal after perfect interference cancellation of weaker user signals (i.e., those with

index i’ < j) is given by,

h/w.|*a;

Ei’>j,i’€l/lc ’hz'HWcPOéi/ + Ec’;ﬁc ’thWc’P =+ 0'2.2

SINRS, = (2.4)
where the first term in the denominator of (2.4) represents the residual intra-cluster
interference and the second term represents the inter-cluster interference.

The application of MIMO NOMA along with mmWave is of great interest for new
generations of wireless networks (i.e. 5G, Beyond 5G and ensuing 6G); accordingly, it has

been the focus of significant research efforts in recent years. In [23], a random beamforming
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approach is applied to a MIMO NOMA system to reduce overhead in a dense network with
a large number of users. In [24], a transmission scheme relying on user clustering, random
beamforming and power allocation is proposed for a MIMO NOMA system. In [25], a
multi-beam NOMA framework is developed for mmWave systems, such that a limited
number of radio frequency (RF) chains may be used to accommodate multiple users with
various angles of departures (AoDs). The design of beamforming and power allocation for a
MIMO NOMA system is addressed in [26], where user clustering is handled through the
K-means algorithm. The authors in [27] evaluate the effect of beam misalignment on rate
performance in a MIMO NOMA system with hybrid beamforming and propose a design
scheme for the digital and analog precoders and power allocation based on sum-rate
maximization. The performance of a MIMO NOMA system operating at mmWave
frequencies with hybrid beamforming is investigated in 28], where the clustering of users is
based on the correlation among their channel vectors.

Some recent works on NOMA investigate the joint design of beamforming and power
allocation. In [29], such a joint design is proposed for simultaneous wireless information
and power transfer (SWIPT) in a two-user NOMA system, such that the data rate of the
strong user is maximized under a quality of service (QoS) constraint for the weak user. The
joint design of power allocation and beamforming using decomposed optimization (DO) is
proposed in [30] for a two-user MIMO NOMA system at mmWave frequencies. In [31], the
joint design of robust beamforming and power splitting ratio is addressed to maximize the
data rate of the cell-center user which adopts a SWIPT technique. The authors in [32]
investigate a joint design for artificial noise aided beamforming and power allocation, such
that the transmission security and reliability are increased in the presence of untrusted near

users and external eavesdroppers.
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It is worth-mentioning that [29-32] focused on the joint design of beamforming and
power allocation in two-user scenarios. However, this joint design problem for multi-user
NOMA (with more than 2 users) is quite challenging and has been the focus of several
recent studies, as summarized below. In [33], a joint design is addressed by maximizing
the achievable rate at the destination in a multi-user NOMA-based amplify-and-forward
(AF) relay network where all users are grouped into one cluster. In [34], joint design of
beamforming and power allocation is proposed for a multi-cell multi-user MIMO NOMA
network in which the users are divided into two groups according to their QoS requirements,
rather than their channel quality. The performance of a NOMA-based satellite-terrestrial
integrated network with a joint design of beamforming and power allocation is investigated
in [35] where a novel user clustering based on the channel gain and correlation is proposed.
In [36], an alternating optimization (AQO) algorithm is proposed for the joint design of a
NOMA system with intelligent reflecting surface, where the transmit power is minimized.
Specifically, it is assumed that user clustering is given and the original problem is divided into
two subproblems which are solved iteratively. In [37], users are clustered based on matching
algorithm and then an AO algorithm is developed to transform the joint design into multiple
subproblems, wherein relevant variables are optimized while keeping the remaining variables
fixed. In [38], an algorithm based on deep reinforcement learning is proposed for the joint

design in a single-cell MIMO NOMA system, where users are partitioned into two groups.

2.2 CD-NOMA

SCMA is a CD-NOMA scheme inspired from the well-known CDMA technique. In SCMA,

groups of user data bits are directly mapped to sparse N-dimensional codewords. The latter
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are selected from a codebook specified for each user and then transmitted over N radio
resources, e.g., OFDMA subcarriers [39,40]. Hence, the SCMA encoder for the ith user can
be defined as a one-to-one mapping from the set of u-bit tuples to a codebook X; C CV, using
a function f; : B* — X, where we define B = {0, 1}. The codebook contains N-dimensional
codewords, with cardinality |X;| = 2* = U. Specifically, for b, = [b;1,....b;.] € B, the

corresponding codeword is obtained as,

X; = fz(bz) = ['Ti,la ceey xi,N] (25)

where x is a sparse vector with C' < N non-zero elements. Each user is assigned C' subcarriers
such that no two users occupy the same subset of subcarriers. Hence, only ¢ users can be

supported by SCMA, as given by [14],

N N

- S S (2.6)
R CI(N — C)!

Fig. 2.2 illustrates the operation of an SCMA encoder for C' = 2 non-zero elements and

N = 4 subcarriers (SCs), where a different color is employed for each one of the ¢ = 6 users.

The SCMA encoder can be expressed as fi(b;) = S;g;(b;) where g; : B* — C¢ is a
mapping from the set of u-bit tuples to a C-dimensional constellation point with non-zero
elements, while matrix S; maps this latter point into an N-dimensional codeword. It is worth
noting that S; contains N — C all-zero rows and an identity matrix of order C' is obtained
by removing them. Hence, all the codewords in &; contain 0 in the same N — C' positions.
The codebook can be conveniently represented as a matrix, i.e., X; € CV*V for the ith
user, where the different columns, each with C' non-zero elements at the same positions,

correspond to the possible codewords.
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Figure 2.2: SCMA encoder model (C'=2, N =4).

The positions (or indices) of the non-zero elements of the binary indicator vector obtained
by f; = diag(S,;ST) € BV*! determine the set of subcarriers occupied by user i. In effect,
the complete SCMA encoder structure for ¢ users and N subcarriers can be represented
by a factor graph with associated matrix F = [f},...,f,] € BY*? as shown in Fig. 2.3.
In this interpretation, subcarrier node n and user node ¢ are connected if and only if the
corresponding element of matrix F is equal to 1, i.e., [F],,; = 1. For later use, we define A,
and B; as the subsets of indices corresponding to the non-zero locations in the nth row and

the ith column of matrix F, respectively.

2.2.1 SCMA Encoder Design

There have been extensive studies devoted to the design of multidimensional constellations
for downlink and uplink SCMA systems. In [41], the performance of a systematic

sub-optimal design for the mother constellation (from which the individual user codebooks
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Figure 2.3: The SCMA factor graph.

are derived) is investigated and a unified metric is proposed to obtain the optimum
codebooks using a specific mother constellation. The authors in [42] evaluate the average
BER performance of SCMA systems in which codebooks are based on star-QAM signaling
constellations.  Multidimensional constellations with a low number of projections are
designed in [43] based on the extrinsic information transfer (EXIT) chart using a
multistage optimization. Subsequently, an appropriate labeling method based on the EXIT
chart is optimized for the resulting constellation. In [44], the design of SCMA codebooks
based on star-QAM constellations is addressed and an analytical approach to obtain the
theoretical BER performance over Rayleigh fading channels is proposed. The design of an
efficient suboptimal SCMA codebook is proposed in [45] for a large scale scenario with
growing number of resources and users.

The codebook design for an uplink SCMA system is formulated as an optimization
problem aiming to maximize the average mutual information (AMI) in [46], wherein a
message passing algorithm (MPA) with non-equiprobable distribution is introduced as the
multiuser detection algorithm. In [47], a multi-stage optimization approach is proposed for
the uplink SCMA codebook design such that the multi-dimensional mother constellation

obtained from the first stage is combined with the user-specific mapping matrix from the
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second stage to generate the final user codebooks. The problem of SCMA codebook design
is addressed in [48], where an extended mother codebook is divided into several mother
codebooks according to the modulation order. The authors in [49] propose a
low-complexity codebook design based on uniquely decomposable constellation group for a
SCMA system over Gaussian and Rayleigh fading channels. In [50], SCMA codebook
design is addressed by maximizing the minimum Euclidean distance (MED) of
superimposed codewords under power constraints, wherein the alternating maximization

algorithm with exact penalty is utilized to obtain the solution.

2.2.2 SCMA Decoder Design

As mentioned before, for a non-orthogonal system like SCMA, more than one user’s symbol
are superposed on each subcarrier. Thus, joint multi-user detection algorithms such as MPA
are needed. The MPA relies on the corresponding factor graph, as exemplified in Fig. 2.3,
where each subcarrier is represented by a function node (FN) and data from each user by a
variable node (VN). The FN degree, defined as the common number of connected neighboring
VNs to each FN, and the VN degree, defined as the common number of connected neighboring
FNs to each VN, are two useful parameters to design the structure of the codebook and will
greatly impact the complexity in MPA decoding. Below, we provide additional details about
the log-MPA [14] in the case of superimposed signal transmission from ¢ users to a common
access point (AP), where the users and AP are equipped with single-antenna for simplicity.

Let h,, = [hp1, ..., hng) € C? denote the channel vector between the ¢ users and the AP
for the nth subcarrier, n € N'= {1,..., N}. Let us assume that user j € {1,...,q} transmit

codeword with index m; € U = {1,...,U}. The received signal at the AP over the nth
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subcarrier can then be expressed as,

= D i[Xjlom, + 2 (2.7)

]EAn

where 2, ~ CN(0,0?) is additive Gaussian noise term with variance o2, assumed to be the
same for each subcarrier.

The inputs of the Log-MPA are the received signal y,,, the channel vector h,, € C? on the
nth subcarrier, and the codebook matrix of each user X;. The output of the algorithm are
the log likelihood ratio (LLR) for the coded bits calculated from the probability estimations
of each codeword, which are then served as input to the turbo decoder. The overall Log-MPA
consists of the following steps:

Step 1: Initial calculation of the log conditional probabilities that is,

1
JEAR

for alln € N, m; €U, and j € A,,.
Step 2: Iterative message passing along edges, which involves the update of the mutual

information between FN and VN nodes

1. Step 2a: Update the mutual information for FN node g passing the extrinsic

information to its neighboring VN nodes v,

172, (mg) = max{g(yn|{m;}, hn) + > I g(my)} — I, (my) (2.9)

]GAn

for all m, € U and q € A,.

2. Step 2b: Update the mutual information for VN node v passing the extrinsic
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information to its neighboring FN nodes g, and g,,

199 (m)=1°9_ (m), 19 _(m)=1%_ (m) (2.10)

V—ggq 9q; =V v—9qy 9qp =V

for all m € U and ¢, ¢ € B,.

Step 3: Following N, iteration of step 2, calculate the LLR output at each VN node

I9(m) = Y 1l (2.11)

gn—>’U
TZGBU

) — log o log
LLR,(b;) Er?baxo}(l (my)) Er?bazcl}(l (my)) (2.12)

where my, € U and i € {1,...,u}.
The main steps of the Log-MPA are illustrated in Fig 2.4.

Although MPA can achieve near optimum performance, it entails high computational
complexity. In recent years, many significant research efforts have been made to achieve a
better trade-off between the performance and complexity of the decoder. In [51], a novel
framework for MPA is proposed in which a belief threshold is applied to control the algorithm
process. Tikhonov regularization is used to propose a low-complexity optimal modified
sphere decoding (MSD) detection scheme for SCMA systems in [52], where the original
rank-deficient detection problem is formulated as an equivalent full-rank detection problem.
The design of a message-passing receiver for uplink grant-free SCMA systems is studied
n [53], where the proposed receiver performs joint channel estimation, data decoding, and
active user detection semi-blindly. In order to improve the system performance, a joint
channel estimation and decoding scheme is proposed for polar-coded SCMA in [54]. The

application of Gaussian-approximated message passing detection of SCMA along with the
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Figure 2.4: The MPA process model.
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soft list decoding (SLD) of polar codes is investigated for polar-coded SCMA in [55].

The use of multiple antennas along with MIMO techniques in SCMA systems can lead to
significant performance improvements in terms of network capacity and spectral efficiency.
In [56], a joint sparse graph is constructed for a MIMO SCMA system model, and the
corresponding virtual SCMA codebooks are designed for the detector, wherein the MPA is
employed to reconstruct the transmitted data bits. In [57], a joint decoding algorithm is
proposed for MIMO SCMA systems based on space frequency block codes (SFBC), which
exhibits lower computational complexity than MPA and yet achieves a similar block error rate
(BLER). A novel downlink MIMO mixed-SCMA scheme is proposed in [58], such that the
transmitted codewords for each user over different antennas come from different codebooks.
The authors in [59] propose near-optimal low-complexity iterative receivers based on factor
graph for a downlink MIMO SCMA system over frequency selective fading channels.

Recently, applying deep learning (DL) methods to wireless communication problems
has aroused great interest as it can bring significant performance improvements [60]. In
particular, deep neural networks (DNNs), can deal with multidimensional and nonlinear
characteristics of raw input and extract higher level features by using multiple processing
layers. Motivated by this consideration, several works have investigated the application of
DL techniques to enable autonomous derivation of an efficient algorithm for SCMA encoder
and decoder. A DL-aided SCMA scheme is proposed in [61], where the constructed adaptive
codebook and learned decoding strategy aim to minimize the BER. In [62], a DL-based
decoding approach for SCMA is proposed in which a deep neural network is utilized to unfold
the procedure of MPA. In [63], DL methods are utilized to conceive a SCMA auto-encoder
which generates and then decodes codewords under AWGN channel. A deep learning decoder

(DLD) is proposed in [64] for SCMA systems under AWGN and Rayleigh fading channel.
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In [65], a deep neural network aided MPA (DNN-MPA) is developed to speed up the decoding

procedure and reduce the computational complexity.

2.3 Comparison of NOMA Schemes

Table 2.1 highlights the main features, advantages, and disadvantages of major NOMA
techniques. By comparing different schemes, it can be seen that SCMA outperforms other
techniques in terms of spectral efficiency. However, a codebook design at the transmitter
side and MPA at the receiver side are needed in SCMA systems. Hence, the performance
improvement comes at the cost of high computational complexity. While each user is assigned
a fixed number of resource blocks in SCMA (such that no two users occupy the same set of
resource blocks), the number of resource blocks assigned to users in PDMA can be flexibly
adjusted to match desired levels of overload. The MUSA scheme can be used to support
massive connectivity with low cost and low power consumption; however, large number of
spreading codes with relatively low cross-correlation are required.

PD-NOMA can achieve a useful balance between the sum rate of all multiplexed users
and the throughput fairness among individual users through power allocation. Moreover, in
PD-NOMA, more users can be multiplexed over a given number of resources which in turn,
improves system throughput at the cost of transmit power. Due to its multiple benefits along
with low complexity, PD-NOMA is a celebrated multiple access radio technology now being
widely considered for emerging and future generations of wireless networks. As discussed
in Section 2.1, this method has indeed been studied in several papers with different aims,
such as the optimization of spectral or energy efficiency; however, many important questions

remain to be answered [66].
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PD-NOMA

SCMA

MUSA

PDMA

Multiplexing
domain

Power

(i) Takes advantage of different
channel conditions

Code

(i) Utilizes pre-designed
user-specific codebooks

Code

(i) Utilizes low-correlation
spreading sequences

Power, Code, and/or Spatial

(i) Utilizes nonorthogonal patterns
(ii) Patterns are designed to maximize

Technique (ii) Allocates different power (11 ) Directly maps user d““t“‘? (ii) Users randomly pick one the diversity and minimize the overlaps
bits to sparse multi-dimensional . . “
levels to the users from pool of the sequences among users
complex codewords
Receiver SIC MPA SIC SIC or MPA
(i) Low complexity (i) High spectral efficiency (i) Low block error rate (i) High spatial diversity
Advantage N 1y R .. X . . L. N Ty . . .
(ii) High downlink throughput  (ii) Low bit-error-rate (ii) Massive connectivity (ii) High uplink system capacity
. (1) H}P’h fransmit power (i) High complexity of receiver (1) nereased inter-user (i) Increased inter-user interference
Disadvantage (ii) Error propagation in case interference

(ii) Codebook design

(ii) Pattern optimization and design

of imperfect CSI (i) Spread symbol design

Table 2.1: Comparison between different NOMA schemes.

2.4 C-RAN Architecture

C-RAN is considered as an emerging network architecture that is particularly suitable for
handling interference allocating resources in a centralized fashion. As illustrated in Fig. 2.5,
the C-RAN architecture consists of three main components, namely: the central processor,
the remote radio heads (RRH) and the fronthaul links. The central processor, which is
located in one or more data centers within the cloud, is responsible for all the baseband
processing. The RRHs connect wireless devices to the network, alike base stations in current
cellular networks. The fronthaul link provides connectivity (e.g., via dedicated optical fiber
or microwave links) between the central processor and the RRHs. The C-RAN architecture
concentrates the baseband processing in the central processor and coordinates the operation
of the RRHs. This separation of the central processor and RRHs functionalities reduces
the power consumption and complexity of the RRHs, since the latter only need to perform
basic transceiver operations. Moreover, it reduces both the network capital expenditure and
operating expenses.

Recently, the C-RAN architecture has aroused great interest for the implementation of
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Figure 2.5: The C-RAN architecture.

MIMO NOMA transmission schemes. In [67], a novel framework for C-RAN is proposed in
which two users are scheduled over the same resources according to power domain NOMA,
while the performance of cell-edge users is further enhanced by means of coordinated
beamforming. Stochastic geometry is used to analyze the outage probability of NOMA
under C-RAN in [68], where power domain multipexing along with SIC are employed to
increase downlink system capacity. The application of beamforming along with power
domain NOMA is investigated for cache-enabled C-RAN in [69]. The design of robust radio
resource allocation and beamforming approaches for MIMO SCMA systems under C-RAN
is studied in [70], where the aim is to maximize the total sum rate of users subject to a

minimum required rate for each slice.
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2.5 Concluding Remarks

In this chapter, we have presented a discussion of important design approaches for PD-
NOMA in MIMO wireless systems from the perspectives of user clustering, beamforming
and power allocation. We have also provided a literature review on SCMA encoder and
decoder design. We have then presented a comparison between various NOMA schemes.
Finally, we have surveyed recent works on the NOMA transmission schemes within C-RAN
framework. The literature review in this chapter provides motivations and serves as basis
for the research contributions presented in subsequent chapters of this thesis.

For MIMO NOMA systems, previous works have shown that the joint design of
beamforming and power allocation can lead to significant improvements in terms of
transmit power and spectral efficiency. Moreover, the application of spatial user clustering
along with beamforming and power allocation techniques in MIMO NOMA systems has the
potential to reduce the interference among users and hence improve spectral efficiency. To
the best of our knowledge, in most of the existing works, the user clustering problem for
MIMO NOMA systems is addressed separately from the beamforming and power
allocation. =~ While this approach considerably simplifies the design, it is inherently
suboptimal and can therefore lead to performance degradation. Hence, a novel approach
for the joint design of user clustering, beamforming and power allocation that can lead to
superior performance is desired in a downlink multi-user MIMO NOMA system.

Previous works related to PD-NOMA have shown that the joint application of spatial
user clustering along with beamforming techniques can improve spectral efficiency and
reduce the total transmit power. Nonetheless, an approach to derive the user clustering
and beamforming solutions has not yet been attempted in MIMO SCMA systems.

Additionally, the C-RAN architecture has the potential to increase the number of
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supported users in the network by using a common codebook for users in different clusters,
while the effect of inter-cluster interference can be eliminated by centralized beamformer
design and coordinated RRH operation. Hence, the design of energy-efficient user
clustering and downlink beamforming approaches for MIMO SCMA in C-RAN remains of
considerable interest.

In recent years, the application of DL-based methods to SCMA encoder and decoder
design has aroused great interest as it can bring significant performance improvements.
However, using DNNs bring its own plethora of challenges. For instance, by increasing the
number of layers, the accuracy of detection will saturate at one point and may eventually
degrade, notwithstanding the additional complexity in training. Moreover, DNNs suffer from
problems such as vanishing gradients and curse of dimensionality. Even using a sufficiently
large number of layers, DNN may not be able to learn simple functions (like an identity
function, because it is trying to approximate a linear function with a nonlinear function).
Hence, novel design approaches that overcome such disadvantages while enjoying comparable

BER performance and computational complexity are required in the decoding stage.
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Chapter 3

Joint User Clustering, Beamforming,

and Power Allocation for NOMA

In this Chapter, we investigate the application of downlink beamforming along with
PD-NOMA in a MIMO system. The joint design of user clustering, power allocation, and
beamforming is formulated for a multi-user MIMO NOMA system operating at mmWave
frequencies. To find the solution of the problem, two algorithms are developed whose
advantages in terms of total transmit power and spectral efficiency are shown through

simulation results.

3.1 Introduction

Since the main focus of this chapter is on PD-NOMA, in the sequel, we refer to the latter

as NOMA for simplicity. As seen in [35-37], the application of user clustering along with

Parts of the material in this chapter have been presented at the 2022 Asilomar Conference on Signals,
Systems, and Computers in Pacific Grove, CA, USA [71], and accepted for publication in the IEEE
Transactions on Communications [72].
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beamforming and power allocation techniques in MIMO NOMA systems has the potential
to improve sum-rate and reduce the total transmit power. However, in the existing
literature on MIMO NOMA, the user clustering problem is either neglected or addressed
separately from the beamforming and power allocation design. While this approach brings
important simplification in the design phase, it is inherently suboptimal and can lead to a
degradation of system performance. As discussed before, high transmit power is a limiting
factor in practical implementation of NOMA-based systems. Nevertheless, minimizing the
total transmit power of NOMA under quality-of-service constraints for the user has only
received limited attention. In [36], the authors explore this avenue by enforcing
signal-to-interference-plus noise constraints on the users, but assuming that the user
clustering is already available. In this paper, motivated by such considerations, we present
and investigate a novel joint optimization framework for user clustering, beamforming, and
power allocation, in a downlink MIMO NOMA system operating at mmWave frequencies.

Our main contributions in addressing the above challenges are summarized as follows:

o Under the assumption that CSI is available at the BS, we formulate the joint design as
a MINLP optimization problem where the objective is to minimize the total transmit
power under practical constraints on the SINR, power allocation, and clustering, so
as to ensure adequate SIC performance at the user terminals. In effect, this MINLP

problem is non-convex and NP-hard.

« Different from [30, 33, 36|, and [37] which propose suboptimal algorithms based on
decomposed optimization (DO) or alternating optimization (AO), we develop a first
algorithm based on branch-and-bound (BB) to obtain the optimal solution of the
problem. BB is a systematic algorithm which lower bounds the objective function by

relaxing the problem and partitions the feasible space successively to find the global
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optimum solution, with guaranteed convergence to an e-optimal solution within a
finite number of steps. Although the BB-based algorithm exhibits high
computational complexity, it can serve as a benchmark for evaluating the

performance of suboptimal algorithms for the same problem.

o To address the complexity issue, we then reformulate the original problem as an
equivalent difference of convex functions (DC) program. To solve the resulting
optimization problem, we develop a second algorithm based on the penalty
dual-decomposition (PDD), which is guaranteed to converge to a local stationary
solution of the transformed problem. The obtained solution is feasible for the original

MINLP problem and meets the necessary conditions of optimal solutions.

o We evaluate the performance of the proposed algorithms for the joint design of user
clustering, beamforming and power allocation, using in-depth simulations in a
multi-user MIMO NOMA system with mmWave downlink transmissions and different
parameter configurations. The results provide valuable insights into the advantages
of user clustering and superiority of the proposed approaches over competing ones
from the literature.  Specifically, the results show that PDD-based algorithm
outperforms DO and AO algorithms and exhibits a comparable performance to the
optimal solution obtained by the BB-based algorithm in a small-scale network, yet
with much lower complexity. The results also illustrate the benefits of user clustering
and significant performance gains obtained in terms of transmit power when a joint
design is considered compared to benchmark approaches such as K-means and
random clustering. The convergence behavior of the new algorithms and the effect of
various parameters on the system performance are also presented in the simulation

results.
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The rest of the chapter is organized as follows: Section 3.2 introduces the system model
under consideration. The joint design of user clustering, beamforming and power allocation
is formulated as an optimization problem in Section 3.3. In Section 3.4, the proposed BB-
based algorithm for obtaining its solution is developed. The problem reformulation as a DC
program along with the proposed PDD-based algorithm are presented in Section 3.5. The
simulation results are presented in Section 3.6, followed by concluding remarks in Section

3.7.

3.2 System Model

As illustrated in Fig. 3.1, we consider downlink transmission in a multi-user MIMO NOMA
system operating at mmWave frequencies. The system consists of a BS transmitter equipped
with N antennas, serving K users indexed by & € K = {1,..., K}, where each user is
equipped with a single-antenna receiver. The users are partitioned into C' non-overlapping
clusters indexed by ¢ € C = {1,...,C}. The cth cluster comprises g. users, which jointly
share a common beamforming vector denoted as w. € CV but can be allocated different

power levels depending on their respective channel conditions.

3.2.1 Channel Model

The application of MIMO NOMA communications in the mmWave band is more
challenging than in conventional low frequency scenarios, due to strenuous radio
propagation characteristics. Herein, we focus on narrowband flat-fading transmissions, and
assume without loss in generality that the BS transmitter employs a uniform linear array

(ULA) with half-wavelength antenna spacing. Hence, the mmWave-based channel vector
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Figure 3.1: The multi-user MIMO NOMA system model.

h;, € CV*! from the BS to the kth user can be expressed as [87],

hy, = VN ak,oa(cbi) i \/Ni Gk,za(cbgc) (3.1)
where d;, denotes the distance between the BS and the kth user; aros and anpos are the
path loss exponents of the line-of-sight (LOS) and non-LOS (NLOS) paths, respectively, and
ar,; denotes the complex gain for the /th path which follows a complex circular Gaussian
distribution, i.e., ax; ~ CN(0,1). In the case of an ULA, the antenna array steering vector

a(¢l) € CN*! is given by,

[1, e*jﬂ'Sin@)L)’ - efjﬂ'(Nfl)sin(qﬁi)]T (32)

o L
a<¢k)_\/N

where ¢, € [0,2n] is the angle of departure of the /th path. In this work, we assume that

near perfect CSI is available at the BS for joint processing, i.e. the channel vectors h; are
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known with sufficient accuracy.

3.2.2 Signal Model

As previously explained, within each cluster of users, the BS utilizes NOMA superposition
and beamforming simultaneously. That is, a common beamforming vector is shared by
the users who are allocated different power levels on the basis of their respective channel
conditions. Let a.y € [0, 1] denote the fraction of the total power available for the cth cluster
that is allocated to the kth user. Specifically, a., = 0 if the kth user does not belong to the
cth cluster, and for each cluster >, o, = 1. Hence, assuming that the mth user belongs to

the cth cluster, its received signal can be expressed as,

K K

— hch Z Vackgsk) + Z hfiwc Z VO k5k) F T, (3.3)

c#e k=1

Inter-cluster Interference

where s, € C denotes the data symbol intended for the kth user and n,, ~ CN(0,0,,) is an
additive noise term. The data symbols of different users are statistically independent with

zero mean and unit variance, i.e. E[|s]?] = 1.

3.2.3 SIC Procedure

At the receiver side, each user in a given cluster employs SIC to mitigate the intra-cluster
interference, by decoding and removing the message of the weaker users in that cluster.
Hence, user decoding order plays a key role in MIMO NOMA systems. For SIC procedure,
let m.(k) denote the order of decoding for the kth user in the cth cluster. Assume that both

kth and mth users belong to the cth cluster and that 7.(k) < m.(m). For the SIC operation
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at the mth user, the SINR of the kth user signal after perfect interference cancellation of

the ith users, 7.(i) < 7.(k), is given by,

|hgwc|2ac,k

Do (K> me(k) hliw.|?ac. + Dt lhfiw.|? + o2,

SINRj, ,,, = (3.4)
where the first and second terms in the denominator of (3.4) represent the residual intra-
cluster and inter-cluster interference, respectively. In the case k = m, (3.4) simply represents
the available SINR of the mth user signal after perfect cancellation of signals from weaker
users. To ensure successful SIC, the SINR of the kth user signal decoded at the mth user
should be no smaller than the SINR of the kth user signal at the kth user, i.e., SINR},, >
SINRy, ;.-

The optimal decoding order is determined by the effective channel gains which depend
on the user clustering, beamforming, and channel gains [37]. For a given cluster partition
and corresponding beamforming, the decoding order of the kth and mth users in the cth

cluster is mc(k) < mc(m), if the effective channel gain satisfies ¢y < hgh [87], where,

|thC|2

Yerpe WwWal? + 07,

him = (3.5)
Under the assumption of the optimal decoding order, it is sufficient to ensure that the SINR
of the kth user signal after removal of the other user signals is no smaller than a suitable
SINR threshold, i.e., SINR} ; > Vimin (87, Proposition 2].

In our work, the clustering and beamforming are not given and hence finding the optimal
decoding order is not trivial. In this regard, without loss of generality, we assume that
|hy|| < -+ < |lhg||. According to the NOMA principle, the weaker users (here, users

with lower channel gains, i.e., smaller ||hg||) should be allocated a larger fraction of the
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total available power at the transmitter and are decoded first at the receiver. To guarantee
successful performance of SIC, for any kth and mth users in the cth cluster such that Vk < m,

the condition SINRy, ,,, > Vimin should be satisfied.

3.3 Problem Formulation

In this work, our goal is to jointly design the beamforming vectors, user clustering strategy
and power allocation in the above MIMO NOMA system, so as to minimize the total transmit
power at the BS, subject to relevant SINR, power and clustering constraints. Let the binary
variable ¢, = 1 indicate that the kth user belongs to the cth cluster and ¢.; = 0 otherwise.
Then, it should be noted that ¢, = 0 must coerce into o, = 0. Moreover, to guarantee
successful performance of SIC, the condition SINRj, ,,, > Ymin should be satisfied only if the
kth and mth users are both in the cth cluster, i.e., t.; = tc,» = 1, which can be reformulated

as,

SINRZ,m > Tmintekle,m, vk <m¢ ,C, ceC (36)

where v,,:n represents a suitable SINR threshold!. If either of the kth or mth users are not
in the cth cluster, the condition would be SINRj ,, > 0 which is always true. Hence, the

joint design problem for the MIMO NOMA system can be formulated as,

PO: min > [|we|3 (3.7a)
2o ceC
s.t. SINRL . = Yminteptem, Vb <m e, ceC (3.7b)

! Different values of the SNR threshold 7,,;, will be considered during simulations to explore the effects
of this parameter on the performance of the system.
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Z ch”g S Pmax (370)
0< Ae k < Leks Ve € C, kel (37(1)
Y agp=1 Veel (3.7¢)
kek
Z e = e, YVCEC (3.71)
kek
Zaqk =1, Vke K (3.7g)
ceC
tep €4{0,1}, Vee C,k e K (3.7h)

where to ease notation, we let 2y £ {W, ¢} with W £ {w,|c € C}, a £ {a.,|lc € C,k €
K}, and ¢ = {icx|c € C,k € K}. The objective function in (3.7a) represents the total
transmit power at the BS under the assumptions made in Section 3.2.2 for the data symbol
sk. Constraint (3.7b) corresponds to (3.6). The quantity Py in constraint (3.7c¢) denotes
the maximum available transmit power?. Constraint (3.7d) compels the power allocation to
be zero if the kth user is not in the cth cluster. Constraints (3.7f) and (3.7g) reflect the
facts that the cth cluster must contain g. users, and each user must be scheduled in only one
cluster, respectively.

The SINR constraint (3.7b) is difficult to handle due to the binary variables on the right-
hand side of the inequality and the fractional form (3.4) of the SINR on the left-hand side.

By introducing auxiliary variables, zf ,,, the SINR constraint can be rewritten as follows,

SINR{,,, > a5, (3.8)

2Pax can be any large number so as to impose no constraint on the beamformer during transmission.
However, it should be noted that for the proposed BB-base algorithm, all variables must be bounded below
and/or above to guarantee global optimality, as explained later.
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c (3.9)

Tminlekle,m S mk,m

which are assumed to apply Vk < m € K,c € C. To tackle the difficulty posed by the
fractional SINR form, we introduce the auxiliary variable yg . as the upper bound of the

denominator, and then equivalently express (3.8) as the following pair of constraints,

|hZWC‘2O‘c,k > in,myi,m (3.10)
K
Z ]hgwc|2aqk/ + Z hZw,|? + 02 < Yim (3.11)
k' =k+1 d#c

Without loss of optimality, using the factorable programming technique [74], a tight

relaxation for the binary bilinear terms in (3.9) can be derived as,

l’Z,m > mez‘n(Lg,kLC,k + Lg,mLC,m - Lg,kbg,m) (3.12)

where ¢ denotes the upper bound of ¢.; which is equal to one in this case, i.e., ¢} =
In case that either of ¢, or i.., are equal to 1, both (3.9) and (3.12) would be the same. If
Leg and ie,, are equal to 0, (3.9) gives xf ,, > 0, while (3.12) gives xf ,, > —Ymin. In this
case, these inequalities exert no influence on the final solution of the problem, since zf ,, is
the lower bound of SINRj ,, and always greater than zero.

From the above discussion, we can reformulate problem PO into an equivalent problem

as given below

i 2
P1: min XC:HWCHQ (3.13a)

s.t. (3.7¢)-(3.7h), (3.10), (3.11), (3.12) (3.13b)
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where we introduce 2, = {W,X,Y, o, ¢} with X £ {2 |k <m € K,c € C}, and Y =
Wik <m € K,c € C}. We emphasize that the presence of non-convex constraints in a
MINLP can make the problem significantly more difficult to solve. In fact, MINLP problems
are already known to be NP-hard and the addition of non-convex constraints only adds to
the difficulty of the problem [73]. Hence, problem P1 which is a non-convex MINLP, is NP-
hard. Accordingly, obtaining the optimal solution is challenging due to the non-convexity
of the constraints and the combinatorial nature of the user clustering variables, ¢, ;. In the

following sections, we develop two algorithms to find the near-optimal solutions of P1.

3.4 Proposed BB-Based Algorithm

MINLP represents one of the most challenging classes of mathematical programming,
typically requiring either simulation-based approaches or special decomposition methods
for the solution of very large scale problems. In particular, the application of the BB
algorithms to the MINLPs has shown promising results [74]. BB is a systematic method for
solving non-convex optimization problems. In the present context, BB can be applied to
P1 by constructing and solving its relaxation and branching the feasible space successfully,
where relaxation herein refers to transformation into a convex form. A lower bound on the
optimal objective function value of P1 is obtained by solving the relaxation problem, while
an upper bound is derived by employing upper bounding heuristics. The procedure quits if
the upper and lower bounds are sufficiently close, as they delimit the global minimum
value of the objective. Otherwise, the feasible space is partitioned into convex sets and
explored further to locate an optimal solution and verify its globality. As illustrated in Fig.

3.2, the BB process is typically depicted as a tree where the nodes and branches correspond
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to bounding and partitioning respectively.
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Figure 3.2: An illustration of the BB process (adapted from [74])
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3.4.1 Convex Relaxation

The relaxation problem is constructed by enlarging the feasible region and/or
underestimating the objective function of P1. Hence, the solution of the relaxation problem
provides a lower bound on the optimal objective function value of P1. In this subsection,
we introduce some effective convex relaxations for the non-convex constraints of P1.

We introduce new variables ., Ucm, and l.,,, Ym € K and ¢ € C, such that,

Bc,m = hgwc € (C, (314)
1Ben|* < tem (3.15)
|Bem| 2 lem (3.16)

Without loss of optimality, we can then reformulate problem P1 into a more tractable form

as given below,

. ; 2
P2 : min XC: lwell5 (3.17a)
s.t. (3.7¢)-(3.7h), (5.12)-(3.16) (3.17b)
K

Z Ue,mOe k! + Z Ue! m + 02 < y](;m (317C)

k'=k+1 c'#c
lz,macyk 2 xz,myz,m (317d)
x;m Z ’Ymin([/c,k + beym — 1) (3176)

where we let Z, = {U,L,W, XY, a,¢, 8} with U £ {u.p|c € C,;m € K}, L £ {lomlc €

C,m € K}, and B = {Bem|c € C,m € K}. The feasible region of P2 is non-convex due
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to constraints (3.7h), (3.16), (3.17¢), and (3.17d), while the objective function is convex.
We construct a convex relaxation of P2 by outer-approximating its feasible space with a
convex set. To the end, we can simply drop the binary constraints and treat the variables as
continuous ones in the range [0, 1]. Next, we construct convex relaxations for the non-convex
constraint (3.16) by applying the following proposition.

Proposition 3.1: Let D[fcm,%m](lc,m) denote the subset of complex numbers 3. ,, =
Pem€’?em, with amplitude and phase respectively satisfying the inequalities p., > . and

¥

em

< e < Pems where [, > 0and 0 < P < P < 27 Suppose that ac,m_fc,m <m,

then the convex envelop of Dy, 5 1(l.m) is given by [75]

COHV(D[fcym@c,m]uC,m)) - {5c7m € (C| Sin(fc’m)%(/ﬁc,m) — COS(fc,m)%(ﬂcvm) < O’
Sin(@c,m)%(ﬂc,m) - COS(@c,m)%(ﬁc,m) >0, (318)

fc,mé)%(ﬁc,m) + gc,m%(ﬁc,m) Z ( c2,m _'_ gz,m)lﬁm}

where f..n, = (cos(p, )+ cos(P.,,))/2 and g, = (sin(p, )+ sin(@,,,))/2.

Proof. Fig. 3.3 illustrates the relationship between sets Dy, 5 i(lem) and
CODV(D[fcm@c,m}(lc,m))' In Fig. 3.3, the area outside the blue circle corresponds to
|Be.m| > lem, the set D[fcm@wn](lqm) corresponds to the light blue polka dot region outside
the arc AB which is obviously nonconvex, and its convex envelope, ConV(D[fc m@c,m}(lc,m))v
corresponds to the light blue region determined by three lines, OA, OB, and AB. It is
simple to see that the two extreme points of set COHV(D[fcm@c,m](lcam)) are
A= (cos(ggm),sin(gc’m)) and B= (cos(®.,,),sin(®,,,)). To prove the proposition, it is
sufficient to determine the three lines OA, OB, and AB which can be determined by

equations sin(p )z — cos(p, )y = 0, sin(@.,)r — cos(@.,)y = 0, and



3. Joint User Clustering, Beamforming, and Power Allocation for NOMA 46

ol
s
v

Figure 3.3: An illustration for Proposition 3.1.

femT + gemy = ( fm + gim)lc,m, respectively. ]

It can be verified that as @, — ¢ goes to zero, the convex envelope becomes tight,

i.e., Conv(Dy,

Py Peyml

(lem)) s equal to D[fc’m,%m](lc,m). Note that the convex envelope does
not take effect when @, ,, — o > T According to Proposition 3.1, we can now replace
constraint (3.16) by B, € Conv(D[fc‘m@C’m] (lem))-

By defining f1f, ,,, = temQer, Vi = lemQeps Com = lemVim and nf,, = Yi T4, We can

reformulate (3.17¢) and (3.17d) as below,

K
D it D Uem 0% =Y, 0 (3.19)
k' =k+1 c#c
Cram = Mheym- (3.20)

We address the relaxation of the bilinear terms, i.e., uf ., Vi . Cim, and 7, using their

convex and concave envelopes. For two variables y; and y;, the bilinear term defined as
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Yi; = Yiy; is relaxed using the convex and concave envelopes as [74],

Yig 2 VY + Y5yt Yy (3.21)
Yig = Y5+ Y5Y — Ui (3.22)
Yig < YRy Y — Y (3.23)
Yig S Yi T Y5V — YY) (3.24)

where the superscripts u and [ stand for upper bound and lower bound of the corresponding
variable, respectively. Since the bilinear terms are convex or concave in both variables, the

convex and concave envelopes then provide tight approximations.

3.4.2 Proposed Algorithm

For ease of notation, let I' = [¢, a, o] € RY3K be the variable matrix of interest. Initially,

this matrix belongs to the box Qi = [[, T'] where,

L £ 0cxsk, = [Lowor, 2mloxk]. (3.25)

The proposed BB-based algorithm involves a sequence of iterations indexed by integer t € N.
Within each iteration, R, ®¢; and ® denote the box list, the upper bound, and the lower
bound of the optimal objective function value of problem P2, respectively. Let ®(Q) and
¢, (Q) represent the upper bound and the lower bound of the objective function value over
a given box Q. Each iteration consists of two main parts, i.e. Branch and Bound, as further

explained below.
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1) Branch: At the tth iteration, we select a box in R and split it into two smaller ones.
An effective method for selecting the candidate box is to choose the one with the least lower
bound, i.e., Q* = argminger: @ (Q). The selected box Q* = [A, B] is then split along the
longest edge, i.e., (i*,j*) = argmax; j{b;; — a;;}, to create two boxes with equal size, that

is,

[A,B—J; ], if * < K
Qr = (3.26)

A+ J;. -, B, if * < K
Q= (3.27)
[A + %(b’b*,]* — ai*,j*)Ji*,j*aB]a 1f ]* > K

where J;« j« is a C' x 3K matrix with (%, j*)th entry equal to 1 and all other entries equal
to 0.

2) Bound: The bounding operation consists in computing the upper and lower bounds
over the newly added box Q € {Q3, Q3}, and update the lower bound ®! and the upper
bound ®f,.

Lower bound: The lower bound ®(Q) is obtained by solving the convex relaxation of
problem P2 developed in Section 3.4.1, where the variables ¢, and ¢ are searched over the
box Q. Since the relaxation problem is convex, it can be solved via any general-purpose
solver using interior-point methods [76]. Note that if the relaxation problem is infeasible,
the box Q does not contain the optimal solution. In this case, we simply set ®;(Q) and
O (Q) as +oo.

After obtaining the lower bounds ®,(Q), for Q € {Q7, Q%}, we can obtain the updated

box list R™™ by removing Q* from R! and adding Q} and Qj if their lower bounds are less
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than or equal to the current best upper bound @, i.e., R = (R! — {Q*})U{Q;|®(QF) <
®},,i = 1,2}. The lower bound of the optimal objective value of the original problem is
updated as 4" = mingegit ®L(Q).

Upper bound: To obtain an upper bound, we need to find a feasible solution of problem
P1, which can be done by utilizing the solution of the relaxation problem. Let
{W* a*,1*, 3"} denote the optimal solution of the latter problem. If ¢* ¢ B*K we set
Py (Q) as +oo. If v* € BY*K and constraint (3.7b) is satisfied, then the solution of the
relaxation problem is a feasible solution of the original problem. If constraint (3.7b) is not
satisfied, we can scale W* to be feasible. Therefore, a feasible solution of problem P2 is

given by {W, &, 1} where i = +*, & = a*, and,

W, = max{1, (Y a%””}} W, (3.28)

max
{kgm\bzyk:LZ,mzl} |6:,m|

aé _ (C - 1)||hm||2pmax’7min + 0-2/7min (3 29>
km — 9 .
’ Qe — Zf/:kﬂ Qe k' Ymin

Py(Q) =D Wl (3.30)

To derive these equations, we make the assumption that the optimal beamforming solution,

ie, W*

c?

is multiplied by a scaling factor to meet the requirements of constraint (3.7b).
Next, a lower bound for this factor is calculated for each user in the cluster. Then, the
maximum lower bound among all users in a cluster is chosen to obtain the feasible solution
W.. Finally, a better upper bound of the optimal objective value of P2 is obtained by
applying the update ®5/' = mingegitr ®(Q). The overall BB-based algorithm for solving

problem P1 is summarized in Algorithm 3.1.
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Algorithm 3.1: The BB-based algorithm.

Initialization: Initialize R' < Qi,, Find the lower bound ®(Qjyi) by solving the
relaxation of problem (3.17), and the upper bound @y ( Qi) according to (3.30).
Set t =0, ®Y = & (Quuit), PY = Py(Qinit), and the tolerance € > 0.

While: (@}, — ®%)/®% > ¢

1) Branch: Select the box Q* in R' with the least lower bound and split it into
two boxes Qf and Q3 according to the splitting rules (3.26)-(3.27).

2) Bound: For each box Qf (i = 1,2), find its lower bound ®(QF) by solving the
relaxation of problem (3.17) and its upper bound ®y(Q}) according to (3.30).

3) Update R = (R — {Q*}) U{Q;|®.(QF) < ®f,,i =1,2}.
4) Update ®5 = mingegit ®1(Q).
5) Update @' = mingegrir @p(Q).

6) Set t <+t + 1.
End

3.4.3 Convergence and Complexity Analysis

Let size(Q) denote the maximum half-length of the sides of box Q. The following Theorem
1 shows that the upper and lower bounds over a box region become tight as the box shrinks
to a point. That is, as size(Q) goes to zero, the difference between upper and lower bounds
converges to zero.

Theorem 3.1: For any € > 0, let § € (0, %) be defined as,

1

—). (3.31)

d = arccos(

M

For any given Q C Qjnit, if size(Q) < 26, we can obtain an e-optimal solution of problem P1

oy 2]

by applying Algorithm 3.1, i.e., =% < ¢ for some integer ¢.
L

Proof. See Appendix A.1. O

By adopting the splitting rule in Section 3.4.2, at least one box in the partition has
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size not exceeding 0 if ¢ is sufficiently large. It follows from Theorem 3.1 that when the
corresponding box is added to the list at the tth iteration, the algorithm should terminate
and return e-optimal solution. We refer the interested reader to [77] for additional details
on the convergence properties of the branch and bound method.

The following Theorem proves that the number of iterations of the BB-based algorithm
for obtaining the solution is finite.

Theorem 3.2: For any given ¢ > 0, the proposed BB-based algorithm returns an e-

optimal solution of the given problem within at most,

Tp = R?;)CT +1 (3.32)

iterations, where ¢ is given in (3.31).

Proof. See Appendix A.2. ]

At each iteration, the complexity of the proposed BB-based algorithm is dominated by
calculating the lower bounds in Step 2. Obtaining the lower bound requires solving a convex
quadratic problem via a general-purpose solver, e.g., SeDuMi in CVX [78] with a complexity
of O((KCN)3?). Assuming that the BB-based algorithm converges after T iterations, the
worst-case computational complexity can be expressed as O(Tg(KCN)?*®). Theorem 3.2
shows that T can be very large if the tolerance € is small. Nevertheless, the proposed

BB-based algorithm can be used as the system performance benchmark.
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3.5 Proposed PDD-Based Algorithm

To circumvent the complexity issue of the BB-based algorithm, we herein conceive an
alternative algorithm based on the penalty dual-decomposition (PDD) that can obtain a
suboptimal solution of problem P1 with reduced computational cost. Specifically, the
proposed PDD-based algorithm consists of two embedded loops, where the inner loop seeks
to approximately solve an augmented Lagrangian (AL) problem (see e.g., [79-81]) via the
concave-convex procedure (CCCP) [82], while the outer loop updates either the dual
variables or the penalty parameter, depending on a constraint violation status. Below, we
first transform the problem P1 into a more tractable form, which is then used as a basis to
develop our proposed PDD-based algorithm. Finally, the convergence and computational

complexity of the new algorithm are discussed.

3.5.1 Problem Reformulation

The binary constraints in (3.7h) are generally difficult to handle. To address this issue, we

introduce the auxiliary variables 7. such that,

le = Le, VkEK,ceC. (3.33)
Hence, we can equivalently replace the binary constraints in (3.7h) by,
tex(1—1cx) =0, VkelK,ceCl. (3.34)

It can be seen that the equality constraints hold only when i.x = t.x € {0,1}. Moreover,

the introduction of equality constraints (3.33)-(3.34) does not change the actual feasible set
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of the solution.

Let Ue, and I, denote the upper and lower bounds of |hw,|? respectively. Then, we

can rewrite (3.10) and (3.11) as follows,

lc,mac,k 2 xémy]f;,m (335)
K
N U + Y U + 0% < Y (3.36)
k' =k+1 e

Moreover, for any two variables z and y, we have 2zy = (z + y)* — 2? — y*. Hence, (3.35)

and (3.36) can be equivalently rewritten as,

[+ Yom)” + B+ 024 ] = [(em + ck)” + (25,,)° + (¥5,,)°] <0 (3.37)
1 & 1 &
[5 2 (Wemtac)® + 2 uemton] =[5 2 (n+ale) +4im] <0 (3.38)
E'=k+1 e E'=k+1

which are expressed as differences of convex functions (DC).

From the above discussion, we can reformulate P1 into an equivalent problem as follows,

P3: I%lgn zc: w3 (3.39a)
s.t. (3.7¢)-(3.7g), (3.12), (3.33), (3.34), (3.37), (3.38) (3.39D)
Ihiwel? < yem (3.39¢)

lemn < D w, |? (3.39d)

0<iep <1 (3.39)
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To ease the notation, we let Z3 = {U,L, W, X, Y, o, ¢,i} with i £ {i,,,Jc € C,m € K}. We
can observe that: the objective function is a scalar continuously differentiable function, the
functions appearing in the inequality constraints are all continuously differentiable, and the

functions in the equality constraints are continuously differentiable. Hence, we can apply

the PDD method to solve problem (3.39).

3.5.2 Proposed Algorithm

In this subsection, we conceive an efficient PDD-based algorithm to solve problem (3.39).

To tackle the equality constraints, we first formulate the AL of problem (3.39) as follows,

i 2
AL : min z(;HWCHQ—i—P,J (3.40a)

s.t. (3.7¢), (3.7d), (3.12), (3.37), (3.38), (3.39¢)-(3.39) (3.40D)

where the penalty term P, is given by (3.41), and {\}, {\(V}, {A\®}, {)\21,2,}, and {)\22,2,}
denote the dual variables corresponding to equality constraints (3.7g), (3.7e), (3.7f), (3.33),
and (3.34) respectively. The coefficient p is used to control the size of the penalty such that

decreasing p increases the penalty.

1
P2 5 SIS ter =14+ NP D03 e — 14+ pADP 413 ek — go + pAP )
k c c k k

S ik = ter + PALP 4 Jten (1 = Tox) + pAZ)?)
c k
(3.41)

Our proposed algorithm has a double-loop structure. In the inner loop, we employ the

CCCP method to iteratively optimize the variables Z while keeping the dual variables and



3. Joint User Clustering, Beamforming, and Power Allocation for NOMA 55

penalty parameter fixed. In the outer loop, we update either the dual variables or the
penalty parameter. In the following, we first develop the CCCP method in details, then
present the update of the dual variables and penalty parameter, and finally summarize the
overall PDD-based algorithm.

Inner loop: In the AL problem, there exist non-convex constraints in DC forms. Hence,
the former can be efficiently solved using the iterative CCCP. Specifically, by linearizing
the non-convex part of the constraints using first-order Taylor expansion, we obtain convex
sub-problems. A sub-optimal solution to the AL problem for the current outer loop can be
efficiently found by iteratively solving a sequence of convex sub-problems. For example, by
applying first-order Taylor expansion, (3.37), (3.38) and (3.39d) can be respectively
transformed to the convex constraint expressed in (3.42), (3.43), and (3.44), where a
variable with circumflex denotes the current value of the variable at the current iteration of

the inner loop.

~

("Ez,m + yg,m)z + lg,m + aik"’(ic,m + dC,k)2 - 2(l67m + CAyc,/’e)(lcm + ac,k) (3.42)

+ (j”(li:,m)2 - Qj:z,mmz,m + (@i,m)Z - 2gz,myli,m <0

1 K
N Z {(uc,m + ac,k’>2 + ﬁim - 2ﬁc,muc,m + 6537]@/ - Qdc,k’ac,k’} + Z uc’,m + an - y]im S 0
2 k'=k+1 c’;&c
(3.43)
lem + W% |? — 2R{% h,,hfw.} <0 (3.44)

From the discussion above, the AL problem in (3.40) can be approximated as,

rr;:in Sliwells + P, (3.45a)
3 C
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s.t. (3.7¢), (3.7d), (3.12), (3.39¢), (3.39%), (3.42)-(3.44) (3.45D)

We can solve subproblem (3.45) at each iteration of the inner loop by employing the CCCP.
To this end, we divide the variables Z into two blocks and update each block successively.
The first block contains variables ¢, which only exist in the objective function. Therefore,
by fixing the variables in the second block, we can easily obtain the optimal value of ¢ in

closed-form as follows,

Lo + Lik + p)xg,z + pLC,k)\((f]z

1442,

lek =

(3.46)

In order to update the variables in the second block Z £ Z — i, we fix & and solve problem
(3.45). Since the latter is now convex, this can be achieved by employing any general-purpose
solver using interior-point methods [76].

Outer loop: At each iteration of the outer loop, the dual variables {\;}, {A\(V}, {\@},

{/\S,z}, {)\9,2}, or the penalty parameter p are updated as follows,

1
)\k — )\k + ;(Z le — 1) (347)
1
A = AD + =3 aen — 1) (3.48)
P
1
AP A2y ;(Z Lok — Ge) (3.49)
k
(1) m , 1.
Ak & Ak + ;(Lc,k — lek) (3.50)

1
A8 28+ (a1 = 7)) (3.51)

C



3. Joint User Clustering, Beamforming, and Power Allocation for NOMA 57

oo (352)

where the symbol < denotes an overwrite operation. A control parameter 0 < 7 < 1 is used
to increase the value of the penalty term P, during each outer iteration.

The overall PDD-based algorithm for the joint design is summarized in Algorithm 3.2,
where e(Z) is a vector that combines all functions in the equality constraints of problem
(3.39) and ||e(Z)||s denotes the maximum constraint violation. Moreover, w;(Z) denotes
the value of the objective function of problem (3.45) at the tth iteration of the inner loop
and ky denotes the constraint violation parameter at the ¢'th iteration of the outer loop.

Initialization: Choosing a feasible point for initialization of Algorithm 2 is essential.
For this purpose, we randomly initialize W, e, ¢, and & such that (3.7d)-(3.7h), (3.33) are
satisfied. Subsequently, we initialize U and L by setting e, = lem = |hZw.|?, Vm €
K,c € C. We then set zf,, = Ymintektlem and yg,, = z§:k+1 UemQe k! + Derze U m + o2

Vk,m e K,ceC.

3.5.3 Convergence and Complexity Analysis

With a feasible initial point, the sequence generated by the PDD method is guaranteed to
converge to a stationary solution of the problem. We omit the proof here for brevity and
refer the interested reader to [83] and [84] for a rigorous proof of the convergence of the
PDD methods. It is worth noting that there is no approximation or relaxation during the
transformation from the original problem P1 to problem (3.39), hence they share the same
solutions. Moreover, since the obtained stationary solution meets the necessary conditions
for the optimal solution of problem (3.39), it also meets the necessary conditions for the

optimal solution of problem P1.
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Algorithm 3.2: The PDD-based algorithm.

Initialization: Define the tolerance of accuracy €; and €p. Initialize the algorithm
with a feasible point Z. Set the iteration numbers t = 0 and ¢’ = 0.

Repeat:
Repeat:
e Update Z based on (3.46).
e Update Z by solving problem (3.45).
e Set t + t+ 1.

Until: w <erott< Ny

[t (2)]
if [[e(Z)]|c0 < ke

e Update the dual variables based on (3.47)-(3.51).
else

e Update the penalty parameter based on (3.52).
end
Set t' ' + 1.

Until: [[e(2)|l < €0

For the PDD-based algorithm, the overall complexity is dominated by solving the
convex problem (3.45) which can be approximated by a sequence of SOCPs via the
successive approximation method. Each SOCP can then be solved via a general-purpose
software, e.g., SeDuMi in CVX [78] with a complexity of O((KCN)3®). The worst-case

computational complexity is therefore given by,

Cp = O(TiTo(KCN)*?) (3.53)

where T7 and Ty denote the numbers of the inner and outer iterations, respectively. Owing to
the replacement of the binary constraints and decomposition of the problem, the proposed

PDD-based algorithm can converge much faster with lower complexity compared to the



3. Joint User Clustering, Beamforming, and Power Allocation for NOMA 59

proposed BB-based algorithm in Section 3.4.

3.6 Simulation Results

In this section, numerical experiments are carried out to illustrate the performance of the
proposed algorithms for joint design of user clustering, downlink beamforming, and power

allocation in a MIMO NOMA system.

3.6.1 Methodology

We consider downlink transmission in a MIMO NOMA system, wherein a BS equipped
with N antennas serves K = 6 users, each equipped with a single antenna. The BS is
located at the center of a circular cell with radius 200m, over which the users are randomly
distributed. The users are grouped into C' non-overlapping clusters, each allocated a different
beamforming vector. For simplicity, unless otherwise stated, we assume that all clusters
comprise equal number of users, i.e., ¢. = ¢, YVc € C. We consider the channel model
(3.1) described in Section 3.2.1 with bandwidth of W = 2 GHz and carrier frequency of
fe = 28 GHz. The AoDs of the different channel paths follow a uniform distribution in
[0, 27]. Throughout the experiments, it is assumed that the noise variance is the same for
all users, i.e., o7 = 0%, Vk € K. The pathloss exponents of the LOS and NLOS paths are
aros = 2 and anpos = 3, respectively.

For the PDD-based algorithm, we set the initial penalty parameter and control parameter
as p =4 and 7 = 0.8, respectively and the equality constraint violation tolerance parameter

as k; = 0.3’ at the jth outer iteration. Table 3.1 summarizes the key simulation parameters.
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Description Varibales | Value
Number of users K 6
Number of BS antennas N 2o0r8
Noise power (mW) o’ 10
Bandwidth (GHz) W 2
Carrier frequency (GHz) fe 28
Path loss exponent of LOS QaLos 2
Path loss exponent of NLOS ONLOS 3
Number of the NLOS paths L 0or3
Tolerance for the algorithms €,€1,€0 106
Control parameter T 0.8
Initial penalty parameter p 4
Maximum number of inner iterations Noaz 10
Maximum available transmit power (W) Prax 50

Table 3.1: Summary of parameters.

We use Monte Carlo experiments to evaluate the performance of the proposed BB and
PDD-based algorithms for joint user clustering, downlink beamforming, and power
allocation. The total transmit power and sum rate are measured for different parameter
configurations and the results are compared with benchmark approaches from the

literature, as will be specified below.

3.6.2 Results and Discussion

Fig. 3.4 illustrates the convergence behavior of the proposed BB-based algorithm for a
particular scenario where K = 6 users are grouped into C' = 3 clusters with ¢ = 2 users
in each. The target SINR and number of NLOS paths are set to v, = 0.1 and L = 0,

respectively. We consider N = 2 transmit antennas for the BS to limit the computational
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Figure 3.4: Convergence behavior of the BB-based algorithm.

complexity of the algorithm?®. It can be seen that the upper bound and the lower bound
are non-increasing and non-decreasing, respectively, while the gap between them becomes
smaller as the iteration index increases and infeasible subregions are removed. The algorithm
performs a branching process for each dimension to approach the e-optimal solution. Hence,
the number of iterations can be very large if the tolerance € is small, which is not practical
due to the high complexity. However, the achieved results can still be used as the network
performance benchmark.

Figs. 3.5a and 3.5b present the convergence behavior of the proposed PDD-based
algorithm with three different initial points. For comparison purposes, the same parameter

configuration as in Fig. 3.4 is considered. Fig. 3.5a shows the maximum constraint

3With N = 2 antennas and C' = 3 clusters, the beamfoming gain will be limited since there is not enough
degrees of freedom to design directional beams in the clusters’ direction; that is, the design problem is
overdetermined. We refer the interested reader to [85,86] for discussion on classical beamformer design.
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violation, i.e., ||€(Z)||«, versus the number of iterations. We observe that the constraint
violation decrease below 107¢ within 20 iterations. Fig. 3.5b shows the objective value of
(3.45), i.e., wi(Z), achieved by the PDD-based algorithm at the end of each outer
iteration. It can be seen that the objective value converges in less than 15 iterations to the
same optimum value obtained by the BB-based algorithm for all initial points.

Fig. 3.6 compares the achievable sum rate versus total transmit power among the
proposed BB and PDD-based algorithms, the AO [37], the DO [30] and the orthogonal
multiple access (OMA) method. In this scenario, all K = 6 users are grouped into C' = 1
cluster and the BS is equipped with N = 2 antennas. As shown in the figure, the average
achievable rate increases as the total transmit power increases. We can also see that the
proposed BB and PDD-based algorithms outperform the AO, DO and OMA methods. For
the BB algorithm, this performance improvement is not surprising since it finds the global
optimum solution for the power allocation and beamforming, while for the PDD
algorithms, the results suggest that it achieves near optimal performance. We note that the
sum rate for BB slightly exceeds that for PDD when the transmit power is small; however,
the performance gap between PDD and BB goes to zero as the transmit power increases.
While it is not taken into account in this figure, user clustering can further improve system
performance, will be illustrated shortly.

Fig. 3.7 shows the total transmit power versus target SINR, 4,in, for the case with
C = 3 clusters and ¢ = 2 users per cluster. The BS is equipped with N = 2 antennas
and L = 0 NLOS paths are considered for the mmWave-based channel vectors. Different
clustering, beamforming, and power allocation schemes are considered for comparison as

described below:

o RCL: Random clustering scheme.
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Figure 3.5: Convergence behavior of the PDD-based algorithm.
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Figure 3.6: Achievable sum rate versus total transmit power.

« RBF: Random beamforming scheme [87].

« PA-1: Fixed power allocation with equal power for the users in one cluster, i.e., o =

Oem = 0.5 when the kth and mth users are both in the cth cluster.

« PA-2: Fixed power allocation with unequal power, i.e., o, = 0.8 and o, = 0.2 when

the kth and mth users are both in the cth cluster and & < m.

o K-means: Machine-learning based user clustering algorithm constrained to limit the

number of users in each cluster [92].

We observe that the proposed BB-based and PDD-based algorithms outperform other
schemes and and that once again, the latter nearly achieve the optimal performance of the

former. For RBF and PA-1, the total transmit power for small ~,,, is less than PA-2.
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Figure 3.7: Total transmit power versus target SINR.

However, as 7,, increases, a noticeable increase in total transmit power is observed for
RBF and PA-1, while the unbalanced power allocation, i.e., PA-2 obtains lower transmit
power.

To better appreciate the benefits of user clustering, we examine the total transmit power
versus target SINR, ¥,.n, for different clustering schemes in Fig. 3.8. In this scenario, K = 6
users are grouped into C' = 1, 2, and 3 clusters with 6, 3, 2 users in each, respectively. We
also consider grouping into C' = 2 and 3 clusters, but with no limit on the number of users
per cluster, as indicated by, e.g. “C' =2, ¢ > 1”. The BS is equipped with N = 8 antennas
and L = 3 NLOS paths are considered for the channel vectors. We observe that when
all users are grouped into one cluster, the total transmit power is greater than for other
cases. It can also be seen that the results for the unconstrained cases outperform other cases

with fixed ¢ and the performance gap increasing with 7,,;,. This means that the algorithm
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Figure 3.8: Total transmit power versus target SINR.

can find better user clustering with lower total transmit power when there is no constraint
on the number users per cluster. Finally, by increasing the number of antennas, the total
transmission power can be reduced, which is a consequence of narrower beamforming.

Fig. 3.9 shows the total transmit power versus number of users K with target SINR
Ymin = 0.1. Here,, users are grouped into C' = 1, 2, and 3 clusters while no limit on the
number of users per cluster is enforced. Moreover, the BS is equipped with N = 8 antennas
and L = 3 NLOS paths are considered for the channel vectors. Obviously, the total transmit
power increases with the number of users. When all users are grouped into one cluster, a
rapid increase in the total transmit power as a function of K is observed. It can also be
seen that by increasing the number of clusters transmit power can be significantly reduced.
Hence, user clustering has a great impact on the performance of the system.

To investigate the impact of imperfect CSI on the proposed joint design of user
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Figure 3.9: Total transmit power versus number of users.

clustering, power allocation and downlink beamforming, we implement the proposed

PDD-based algorithm with an estimated channel vector model as follows

hy, = hy, + A, (3.54)

where h;, is the actual channel vector and Ay is the CSI error, which follows a complex
Gaussian distribution with i.i.d. entries, i.e., Ay ~ CN(0,02I). Fig. 3.10 shows sum rate
versus total transmit power, where the perfect and imperfect CSI with different value of
o. are considered. Here, two scenarios for user clustering is considered, i.e., C' = 2,q = 3
shown by solid lines and C' = 3, ¢ = 2 shown by dashed lines. We observe that the system
performance is sensitive to the CSI accuracy. This is due to the fact that the proposed

PDD-based algorithm largely depends on the obtained CSI at the transmitter. Moreover,



3. Joint User Clustering, Beamforming, and Power Allocation for NOMA 68

1.6+ b
—6— Perfect CSI Ve

—»— |mperfect CSI, 02:0.005 o
—o— Imperfect CSI, 62=0.01 -

~
T
\
I

Sum rate (bps/Hz)
o o o -
i o © — S}

o
[N}

o
T
1

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
Transmit power (W)

Figure 3.10: Sum rate versus total transmit power for perfect and imperfect CSI.

SIC does not work well in the presence of imperfect CSI and can not remove intra-cluster
interference totally. It can also be seen that the performance degradation is worse when the
number of users in a cluster increases. Once an error occurs in SIC (due to e.g., imperfect
CSI), signal of the corresponding user will not be completely removed, leaving some residual
signals as interference. Consequently, the message of all remaining users in the corresponding
cluster will likely be decoded erroneously. Although robust beamforming can potentially
compensate the impact of imperfect CSI and error propagation [88-90], this approach can
add more complexity to the existing problem. This aspect falls beyond the scope of this

contribution, and nevertheless remains an interesting avenue for future work.
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3.7 Concluding Remarks

In this work, the joint optimization framework for user clustering, power allocation and
beamforming was investigated in a multi-user MIMO NOMA system operating at mmWave
frequencies. In the proposed scheme, users are partitioned into non-overlapping clusters. In
any given clusters, users share a common beamforming vector but are distinguished with
different power allocation. The joint design of user clustering, power allocation, and
beamforming was formulated as an optimization problem, with the aim to minimize the
total transmit power under the SINR, power and clustering constraints. We first developed
a BB-based algorithm to find the global optimum of the problem. We then proposed a
low-complexity algorithm using PDD method to obtain the suboptimal solution. Through
simulations, it was shown that applying the proposed design to the multi-user MIMO
NOMA system can effectively decrease total transmit power and improve spectral

efficiency compared to the benchmark approaches.
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Chapter 4

User Clustering and Beamforming for

MIMO SCMA in C-RAN

In this chapter, we investigate the key problems of user clustering and downlink
beamforming for MIMO SCMA in a C-RAN. The proposed approaches are evaluated by
means of simulations over mmWave channels. Results show significant improvements in

terms of total transmit power and spectral efficiency compared to benchmark approaches.

4.1 Introduction

MIMO SCMA combines MIMO techniques, which increase capacity by transmitting different
signals over multiple antennas, and SCMA which improves spectral efficiency and device
connectivity by transmitting multiple user signals over the same radio resources. As seen in

works related to power domain NOMA [93,94], the joint application of spatial user clustering

Parts of the material in this chapter have been presented at the 2021 IEEE 32nd Annual International
Symposium on PIMRC [91], and published in the IEEE Access [92].
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along with beamforming techniques in MIMO SCMA systems has the potential to improve
spectral efficiency and reduce the total transmit power. Additionally, when considered within
a C-RAN architecture, this approach makes it possible to increase the number of supported
users in the network by using a common codebook for users in different clusters, while the
effect of inter-cluster interference can be eliminated by centralized beamformer design and
coordinated RRH operation. In spite of its importance, the joint problem of user clustering
and beamforming has not received considerable attention in the literature on MIMO SCMA,
let alone C-RAN.

Motivated by the above considerations, we propose energy-efficient user clustering and
downlink beamforming approaches for MIMO SCMA in C-RAN. Our main contributions in

addressing the above challenges are summarized as follows:

o We approach the user clustering problem by modifying the widely-used K-means
method from the field of machine learning, in order to limit the number of users in
each cluster. Specifically, the proposed constrained K-means algorithm uses the
Euclidian metric to characterize the similarities between the user channel vectors and
the cluster centers, and seeks to group users with channel vectors exhibiting large
correlation. The elbow method is utilized to find the optimum number of clusters for

the network.

e We formulate the beamforming design and RRH selection as a non-convex
mixed-integer nonlinear programing (MINLP) optimization problem, aiming to
minimize the total transmit power while satisfying the
signal-to-interference-plus-noise ratio (SINR) and fronthaul capacity constraints. We
then propose transformations to reformulate the problem as a difference of convex

functions (DC) program and derive two algorithms for solving the problem. In the
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first algorithm, we iteratively approximate the continuous non-convex constraints by
convex ones using first-order Taylor expansion and solve a sequence of mixed-integer
second-order cone programing (MI-SOCP) using dedicated solvers. This algorithm

entails high computational complexity, yet it can achieve high quality solution.

o The second algorithm is based on a two-stage low-complexity beamforming approach
wherein the beamforming matrices obtained from each stage are multiplied to form the
final beamformer. In the first stage, specifically, a block diagonalization (BD) technique
is adopted to design the cluster beamformers (one for each cluster), which remove the
inter-cluster interference and thus enhance the QoS for intra-cluster users. In the
second stage, the user-specific beamformers are designed along with RRH selection by
employing a smoothed fy-norm approximation. The resulting optimization problem is

solved via the convex-concave procedure (CCCP) with guaranteed convergence [95].

o We evaluate the performance of the proposed algorithms for user clustering and
downlink beamforming using in-depth simulations of MIMO SCMA in C-RAN with
mmWave channel models and different parameter configurations. The results
illustrate the convergence behavior of the new algorithms and the effect of various
parameters on the system performance, while providing useful insights into the

advantages of the proposed approaches over competing ones from the literature.

The rest of the chapter is organized as follows: Section 4.2 introduces the MIMO SCMA
system model under C-RAN and describes the problem under consideration. The proposed
constrained K-means algorithm for user clustering is introduced in Section 4.3. The two-
stage energy-efficient beamforming approach for eliminating inter-cluster interference and

minimizing total transmit power is developed In Section 4.4. The results of our simulation
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Figure 4.1: The MIMO SCMA system model under C-RAN.

experiments are presented in Section 4.5, followed by the concluding remarks in Section 4.6.

4.2 System Model and Problem Description

We consider downlink transmission in a MIMO SCMA system under C-RAN;, as illustrated
in Fig. 4.1. The system consists of . RRHs, each equipped with M antennas, and J single-
antenna users. The RRHs indexed by [ € £ = {1,...,L}, are connected to the central
processor via limited-capacity fronthaul links. Due to the fronthaul constraint, each user is
cooperatively served by a specific subset of RRHs through joint beamforming. Moreover, the
users are partitioned into K non-overlapping clusters, indexed by k € K = {1,..., K} with
the kth cluster comprising .J; users such that J = Zszl Ji.. Below, we provide further details

on the SCMA encoder, mmWave channel, received signal model, and problem description.
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4.2.1 SCMA Encoder

In SCMA, contiguous groups of data bits from each user are directly mapped to sparse N-
dimensional codewords selected from a predefined codebook and then transmitted over N
radio resources, e.g., orthogonal frequency division multiple access (OFDMA) subcarriers.
The SCMA encoder for the ith user can be defined as f; : BY — X; which is a one-to-one
mapping from the set of U-bit tuples to a codebook X; C CV of N-dimensional codewords,
with cardinality |X;| = 2Y. Specifically, for b = [by, ..., by| € BY, the corresponding codeword

is obtained as,

x = fi(b) = [z(1), .., x(N)] (4.1)

where x is a sparse vector with C' < N non-zero elements.
Each user is assigned C' subcarriers such that no two users occupy the same set of

subcarriers. Hence, only ¢ users can be supported by SCMA, as given by [14],

N NI
0= = (12)

C CI(N —-QO)
In this work, we group users into K clusters of size J, < ¢ and remove inter-cluster
interference so that the users in different clusters can use common codebooks.

Referring to (4.1), we can associate to each codeword x a vector y containing its C' non-
zero elements in the same order, i.e., y is obtained from x by removing its zero elements. For
convenience, we represent this operation by the function ¢ : CV — C, so that y = ¢(x) =
[y(1),,y(C)]. Through this operation, the original codebook X; C CV is transformed into a
constellation of C-dimensional codewords, i.e., V; C C%, where V; = {#(x) : x € &;}. We

also let g; = ¢ o f; : BY — )); denote the composite mapping of f; and ¢, so that for any
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b € BY, and x = f;(b), we have,

y = ¢(x) = gi(b). (4.3)

From this perspective, the SCMA encoder can be redefined as f;(b) = S;g;(b), where matrix
S; € BYXY maps a C-dimensional constellation point to an N-dimensional codeword. Note
that S; contains N — C all-zero rows and hence, all the codewords in codebook X; contain
0 in the same N — C' positions. Moreover, an identity matrix of order C is obtained by
removing the all-zero rows from S;.

The set of resources occupied by user ¢ is determined by the positions (or indices) of
the non-zero elements of the binary indicator vector f; = diag(S;S?) € BV*!. In effect, the
complete SCMA encoder structure for ¢ users and N subcarriers can be represented by a
factor graph, with associated matrix F = [f}, ..., f,] € BY*%. In this interpretation, subcarrier
node n and user node ¢ are connected if and only if the corresponding element of matrix F

is equal to 1, i.e., [F],; = 1.

4.2.2 Channel Model

Due to the propagation characteristics at such high frequencies, the application of MIMO
SCMA communication in the mmWave band is more challenging than in a conventional low-
frequency scenario. The mmWave-based channel vector hglk) (n) € C*M from the Ith RRH

to the jth user in the kth cluster over the nth subcarrier can be expressed as the discrete

sum of a line-of-sight (LOS) and P non line-of-sight (NLOS) components [87,96], i.e.,

(4.4)
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where: p is the path index, with p = 0 corresponding to LOS and p > 1 to NLOS paths; dglk)
(

is the distance between the RRH and the user; a® is the path loss exponent; ajl,f) (n) denotes
the complex gain for the pth path which follows a complex circular Gaussian distribution,
ie., a%f) (n) ~ CN(0,1); and a(QJ(-l,f)) € C™M is the antenna array steering vector. In the

case of a uniform linear antenna array, the steering vector is given by,

1 ) : (p)
a0) = L [1,e om0 (15

=

where 9](-%’) is the normalized direction of the pth path. The latter can be expressed as,

o5 = < sin(0) (4.6)

where gzﬁg-l,f) € [0, 2] is the angle of departure (AoD) of the pth path, d is the inter-antenna
element spacing, and A is the wavelength at the operating frequency.

In MIMO systems operating at mmWave frequencies, a single-path model is often adopted
for the channel vectors by retaining only one dominant path in (4.4) [97]. In most cases, the
latter will be the LOS path, whose gain can be as much as 20dB stronger than that of NLOS
paths [98]. However, when there is no LOS path due to blockage, the dominant NLOS path

can be considered instead. Hence, the mmWave channel model can be simplified to,
!
a(0%) (4.7)

where, for simplicity of notation, the superscript p for the path index has been removed.
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4.2.3 Signal Model

Let zj(n) € C denote the codeword element intended for the jth user in the kth cluster over
the nth subcarrier. Due to the sparsity of the SCMA encoder, z,;(n) can be either 0, or a
non-zero element with normalized power, i.e., E{|z;x(n)|?} = 1. Codeword element z;x(n)
is transmitted from the M antennas of the {th RRH by employing the beamforming vector
wgl,g(n) € CM*1 Hence, the transmit signal of the {th RRH over the nth subcarrier can be

expressed as,
20(n) =Y Y wil(n)zu(n) (4.8)

where U, ;, denotes the set of users in the kth cluster occupying the nth subcarrier. Owing
to the limited-capacity fronthaul link, only a selected group of RRHs serve a specific user
cooperatively. The process of RRH selection for transmission can be performed through
beamforming. That is, |]W§l,2(n)|]2 = 0 implies that the {th RRH does not participate in the
transmission for that user over its assigned subcarrier. Hence, the corresponding network-
wide beamforming vector, wj;(n) = [Wg-lk,)(n)T, o Wﬁ)(n)T]T € CIM*1 may be sparse.

Let hj,(n) = [hﬁ)(n), ...,hg.j,i) (n)] € C**EM denote the network-wide channel vector for
the jth user in the kth cluster and z(n) = [zM(n)7, ..., 25 (n)T]T € CLM*! denote the
network-wide transmit signal over the nth subcarrier. The received signal at the jth user in

the kth cluster over the nth subcarrier is given by,

rir(n) =hje(n)z(n) + nj (4.9)

where nj, ~ CN (O,a?k) is an additive noise term. We can express the received signal of
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this user as a sum of the desired signal, the interference from the other users in that cluster

(intra-cluster interference), the inter-cluster interference and the noise, i.e.,

rie(n) =hjp(m)wic(n)z(n) + Y hy(n)wik(n)zp(n)
J 5T U i

Intra-cluster Interference
(4.10)

+ Y > hp)wip )z (n) +ng.

k' £k GEU,, 4

Inter-cluster Interference

The SINR of the jth user in the kth cluster over the nth subcarrier with non-zero codeword

element is given by,

[k (n) wii(n)

I (n) + 1D (n) + 02,

Yik(n) = (4.11)

where the first term in the denominator represents the intra-cluster interference and the

second term represents the inter-cluster interference, i.e.,

Im)y= Y |hpm)wi(n)’ (4.12)

J'#5,5' €U,k

2
LR =3 3 Mhulnww(n) (1.13)
k'K §1EU,, 1
The total transmit power for the whole network over N subcarriers is given by,

Pr = Z;E{z(n)Hz(n)} = Z ZE{Z(L)(n)Hz(L)(n)}. (4.14)

n=11=1

Upon substitution of (4.8) into (4.14) and assuming that the transmitted codewords z;x(n)

from different sources are uncorrelated and have zero mean and unit variance, we can write
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the total transmit power as,
1
Pr=33" 33 Wil =330 3wyl (4.15)
n 1 k j n ok j
where the last equality follows from the definition of the network-wide beamforming vector.

4.2.4 Problem Description

In this work, our objective is to group users into non-overlapping clusters and design
beamformers such that the total transmit power is minimized while constraining the
inter-cluster interference, the user SINRs and the fronthaul capacity. Indeed, removing
inter-cluster interference not only enhances the SINR at the user terminal, but also allows
the transmitter to use a common SCMA codebook to serve users in different clusters,
which in turn boosts network capacity. To further satisfy the requirements imposed by the
limited-capacity fronthaul links of C-RAN, dynamic RRH selection is taken into
consideration in our formulation.

In order to address the above challenges and obtain the desire solution, we conceive
efficient algorithms for user clustering and beamforming design with low complexity.
Specifically, we propose an efficient user clustering algorithm based on the constrained
K-means method in Section 4.3. Then, the beamformer design is addressed in Section 4.4
by means of a two-stage energy-efficient approach wherein the inter-cluster interference is
removed using a BD technique in the first stage and the total transmit power is optimized

under SINR and fronthaul capacity constraints in the second stage.
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4.3 User Clustering

In this section, we first introduce the proposed constrained K-means algorithm for user
clustering. We then apply the elbow method to determine the number of clusters. Finally,

we evaluate the computational complexity of the proposed algorithm.

4.3.1 Constrained K-means Clustering

K-means is a celebrated method for grouping inharmonious multi-dimensional data points
into K clusters such that a similarity criterion within clusters is maximized [99, 100]. In
effect, K-means attempts to group J data points (or vectors) {d;,ds,...,d;} into K clusters
by finding cluster centers {cy,cs,...,cx} such that similarities between the points in the
same group are high while similarities between the points in different groups are low. Two
key factors in the K-means method are the number of clusters K, which is pre-determined,
and the similarity metric [101].

In the current MIMO SCMA application, high correlation between the channel vectors
of the users in a cluster can provide a better beamforming performance. Indeed, if users
in a cluster have highly correlated channels, more degrees of freedom will be left for the
inter-cluster interference cancellation (as explained in Section IV). In this work, we utilize
the Euclidian distance as a similarity metric to measure the correlation between a user’s
channel vector and the cluster centers. Moreover, to account for variations of channel gains
due to fading and other propagation effects, the channel vectors are normalized, averaged

over subcarriers, and treated as the data points in the application of the K-means method,



4. User Clustering and Beamforming for MIMO SCMA in C-RAN 81

ie.,

1 & hy(n)
R Py AT .

where h;(n) € C*M for j € J £ {1,..., J} are the known network-wide channel vectors of
all users prior to clustering.

The K-means method can be presented as an optimization problem for finding the K
best centers such that the sum of squared Euclidean (SSE) distance between the data points
and their nearest cluster centers is minimized. Specifically, this optimization problem can

be expressed as follows,

J
o . L 2
min ; min [|d; — cx 5 (4.17)

where C = {c,|k € K}.

Proposition 4.1 Given d; and ¢; € C**XM | we have,

K
min ||d; — ckl; = Wi 1; tiwllds — exll3 (4.18a)
K
st > k=1 (4.18Db)
k=1
Lix >0, Vkelk. (4.18¢)
Proof. The result follows directly from the linear programming duality theory [102]. 0

By introducing selection variables ¢ £ {tjklj € T,k € K} and using Proposition 4.1, we
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can reformulate problem (4.15) as the following problem,

J K
min S iklldy — el (4.19a)
b j=1k=1
st. > ye=1 VjeJ (4.19Db)
&
Lr=>0, VieJ, kek (4.19¢)

where ¢;;, = 1 if the jth data point is closest to the kth cluster center, i.e., belongs to the
kth cluster, and ¢;; = 0 otherwise.

While the K-means method does not involve a priori constraint on the number of users
in each cluster [103], the SCMA encoder in the current application can support at most ¢
users over N subcarriers. To avoid solutions with more than ¢ data points in a cluster, we
propose adding explicit constraints to problem (4.19) so that each cluster contains at most

q data points, i.e.,

min 35l - ol (4.200)

: %
s.t. (4.19b), (4.19¢) (4.20b)
> uk<gq, VkeKk. (4.20¢)

The constrained K-means algorithm solves problem (4.20) iteratively by uncoupling cluster
center and selection variables. Specifically, in each iteration, this algorithm alternates
between solving a linear program for variable ¢ with fixed ¢ and solving a problem for c
with fixed ¢. The overall constrained K-means algorithm for solving problem (4.20) is

summarized in Algorithm 4.1, where the superscript ¢ denotes the iteration index.
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Algorithm 4.1: The proposed constrained K-means algorithm for user clustering.

Initialization: Initialize cluster centers c(®) = {cgo), ™, c§8’} by selecting K
data points from the dataset randomly. Set ¢ = 0.

Repeat:
1) Cluster assignment: Solve the following linear program with fixed c(®),

o = arg min > xlld; — |2
ik
s.t. (4.19b), (4.19¢), (4.20c).

2) Cluster update: Update the cluster centers as,

(®)
W
Cg+1) _ %7 Vi € K.
itk
3) Set t <t + 1.
Until: ¢ = ¢\ vk € K.

Proposition 4.2 There exists an optimal solution for the cluster assignment subproblem

in Algorithm 4.1 such that ¢;; € {0,1}.

Proof. See Appendix B.1.

]

According to Proposition 4.2 and Appendix B.1, we can use the network simplex

algorithm which is faster than mixed integer solvers for tackling the cluster assignment

subproblem.

Proposition 4.3 The constrained K-means algorithm terminates in a finite number of

iterations at a cluster assignment that is locally optimal. That is, the limit point of the

iterates generated by the constrained K-means algorithm is a stationary point that satisfies

the Karush-Kuhn-Tucker (KKT) conditions for problem (4.20).
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Proof. At each iteration, the cluster assignment step cannot increase the objective function
of (4.20). The cluster update step will either strictly decrease the value of the objective

function of (4.20) or the algorithm will terminate since,

) = arg min ZZLS?CHdJ — cill3 (4.21)
ik

is a strictly convex optimization problem with a unique global solution (as shown in the
cluster update step in Algorithm 1). Thus, the objective of (4.20) is strictly non-increasing
and bounded below by zero. Moreover, there are a finite number of ways to assign J points
to K clusters such that each cluster has at most ¢ points and Algorithm 4.1 does not
permit repeated assignments. Consequently, the algorithm must terminate at some cluster

assignment that is locally optimal. O

4.3.2 Number of Clusters

The choice of the number of clusters K plays a key role in the performance of K-means
clustering [104]. An appropriate number of clusters can accurately reflect specific distribu