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Abstract

The question of how to divide a collection of items amongst a set of agents is of central

importance to society. There are two main directions from which this question is ap-

proached: a game-theoretic direction that studies the mechanisms – primarily auctions –

that are used to divide items amongst agents, and a normative direction that studies the

existence and computability of allocations that have desirable properties like fairness and

high social welfare. In this thesis, we detail our contributions to both areas.

In Part I of this thesis, we analyze two prominent multi-item auctions, the sequential

and simultaneous item-bidding auctions. We prove that the declining price anomaly is

not guaranteed to hold in the equilibria of full-information sequential auctions with three

or more buyers. We then analyze the risk-free profitability, i.e. the threshold payoff that a

buyer can guarantee for itself, in sequential and simultaneous auctions, when the buyer’s

valuation function is in the subadditive set function class (and its subclasses).

In Part II, we discuss our contributions to the fair division problem, focusing on the

envy-free allocation of indivisible items along with payments. We prove two conjectures

of Halpern and Shah [SAGT 2019] and present additional upper bounds on the total quan-

tity of subsidy sufficient to guarantee envy-freeness in any instance. We then study the

tradeoffs between transfer payments, fairness, and welfare.
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Abrégé

Savoir comment répartir un ensemble de biens à un groupe d’agent est central à la société.

Il y a deux approches principales pour répondre à cette question : L’approche de la théorie

des jeux où on étudie des mécanismes – principalement des enchères – qui sont utilisés

pour répartir les biens, et l’approche normative qui étudie l’existence et la facilité de cal-

culer des allocations ayant des propriétés désirables tel l’équitabilité et une valeur sociale

élevée. Dans cette thèse, nous détaillons nos contributions dans les deux domaines.

Dans la première partie de cette thèse, nous analysons deux catégories majeures d’enchère

avec plusieurs biens, les enchères en série et les enchères simultanées. Nous prouvons que

les prix ne chutent pas nécessairement dans les équilibres des enchères en série avec au

moins 3 acheteurs lorsque l’information est publique. Ensuite, nous analysons le profit

sans risque, c’est-à-dire le profit de seuil qu’un acheteur peut se garantir, dans les enchères

en série et simultanées, lorsque la fonction d’évaluation de l’acheteur est dans la classe

des fonctions sous-additives (et ses sous-classes).

Dans la seconde partie, nous discutons nos contributions au problème des allocations

équitables, nous nous concentrons sur les allocations d’objets sans envie d’objets indivisi-

bles avec des paiements. Nous prouvons deux conjectures d’Halpern et Shah [SAGT 2019]

et présentons des bornes supérieures supplémentaires sur la quantité totale de subven-

tions suffisante pour garantir aucune envie dans chaque exemple. Nous étudions ensuite

le compromis entre les paiements de transferts, l’équitabilité et le bien-être.
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Chapter 1

Introduction

The question of how to divide a collection of items amongst a set of agents has remained

of central importance to society since antiquity. This is evidenced by an abundance of

real world examples, ranging from classical problems like the division of inherited es-

tates and land, border settlements, and the allocation of public resources and government

spending, to modern considerations such as the distribution of computational resources,

allocation of the electromagnetic spectrum, and the management of airport traffic. At

a high level, there are two principal directions from which this question is approached.

The first is a game-theoretic or mechanism design direction that studies the mechanisms

– primarily, auctions – that are used to divide items amongst agents. The second is a

normative direction that studies the existence and computability of allocations that have

desirable properties like fairness and high social welfare. In this thesis, we present a brief

overview of historical research efforts in these two directions, and an exposition of our

contributions to both areas.

Typically, in the first approach, research efforts are directed towards the design of new

mechanisms that achieve certain outcomes, such as high seller revenue or high social

welfare. Additionally, many simple auction mechanisms see widespread deployment

in the real world, and understanding how well these auctions perform is an important

research goal. Multi-item auctions, in which a set of items is sold to a collection of bidders
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who typically place bids on individual (single) items, are some of the most natural and

widely implemented auctions. In Part I of this thesis, we analyze two prominent multi-

item auctions, the sequential and simultaneous item-bidding auctions, and derive some

new results about their structure and equilibria.

In the second approach, the goal is to accurately define desirable properties that align

with broad economic goals, and to study the conditions (typically on the agents’ valuation

functions) under which an allocation with these properties is present for every instance,

and the conditions under which (and algorithms with which) such an allocation can be

computed quickly. Fairness is perhaps the most widely studied property, and in Part II

of this thesis, we discuss some of our recent contributions to the literature on the fair

division problem.
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Part I

Multi-Item Auctions



An auction is a process of buying, selling or exchanging goods or services through the

use of a set of trading rules. Auctions have been used for several millennia for the sale of

a variety of objects; Milgrom and Weber [60] mention many accounts that record the use

of auctions dating back to antiquity. Today, the range and value of goods and services

sold by auction has reached staggering heights, fuelled by the development of the inter-

net and the advent of new applications such as electronic securities trading, the sale of

electromagnetic spectrum licenses to telecommunications companies, online advertising,

and online commerce.

Over the course of the last few decades, auctions have been studied in great detail

by the academic community, and several books have been written about auction the-

ory [49, 51]. In its most typical form, an auction is a competitive game in which a sin-

gle seller, usually called the auctioneer, has a set of items (goods and/or services) for

sale. The other participants, called bidders (or buyers), have some information about

how much they value the items for sale. In a variety of settings, this information may

be either public or private, and it may be either static or drawn from some distribution.

The auctioneer chooses in advance some mechanism by which the items are to be sold,

consisting of an allocation rule (that decides how items are to be allocated to bidders) and

a price rule (that decides how much money the bidders are required to transfer to the

auctioneer in exchange for the items). The bidders convey some information about their

valuation to the auctioneer by placing bids on the items. The mechanism then chooses an

allocation of the items to the bidders and a set of prices as a function of the bids, using the

predetermined allocation and payment rules. In this thesis, we study auctions in the inde-

pendent private-values model, where each agent has an independent and private valuation

function over the set of items.

Single-item auctions are among the simplest types of auctions and are of central in-

terest to economists. The canonical single-item auctions are the first-price and second-price

auctions. As the name suggests, in the first-price auction each bidder independently sub-

mits a single bid, and the item is allocated to the highest bidder at a price equal to their

4



bid. In the second-price auction each bidder submits a bid and the highest bidder is allo-

cated (as before), but the price she pays is the second-highest bidder’s bid, or the “second

price”. The equilibria of these auctions, their revenue guarantees, and the empirical be-

haviour of real-world bidders in these auctions are all well-understood (see, for example,

the seminal works of Vickrey [77] and Myerson [62]).

In a multi-item auction, the buyers have (possibly non-additive) combinatorial valua-

tion functions over a set of items. Among the two most prominent item-bidding auctions

(in which the buyers make bids on individual items) are the sequential auction and the si-

multaneous auction. The sequential auction is perhaps the most natural method by which

to sell multiple items. In these auctions, the items are ordered and sold one after another.

Their simplicity arises from the fact that a standard single-item auction, such as a first-

price or second-price auction, can be used to sell each item in the collection. Sequential

auctions are therefore ubiquitous: they are not only typical of auction house and online

sale environments, but are widely used to sell commercial real estate and are regularly

deployed by governments worldwide to raise billions of dollars in the sale of spectrum

licenses, cap-and-trade credits and other public resources.

However, while single-item auctions are very well understood from both a theoretical

and practical perspective, the concatenation of these auctions, surprisingly, despite their

widespread prevalence, is not. There are two main reasons for this. The first is that while

a sequential auction itself is easy to understand and implement, the valuation functions

that the agents have over the set of auctioned items typically aren’t. For example, in an

estate division involving complementary items such as a car and a garage, an agent may

have very little value for the car without the garage, or vice-versa, but much greater value

for the pair of items together. Similarly, for a pair of items that substitute one another, an

agent’s value for the pair is typically no greater than its value for a single item from the

pair. The second reason is the sequential nature of item sales in these auctions. While this

choice of mechanism might initially appear benign, it leads to the emergence of compli-

cated strategic interactions among agents, as they now compete not only to buy a single

5



item in each round, but also to enter the corresponding subgame for all future rounds.

Similar complexities emerge in simultaneous item-bidding auctions where, as their name

suggests, bidders place a vector of bids simultaneously (one for each item).

In the following chapter, we analyze sequential auctions: first, we present an intricate

analysis of the structure of their equilibria, and give a characterization of a focal subgame-

perfect equilibrium of these auctions. We then study sequential multi-unit auctions (i.e.,

auctions with a collection of identical items) and show that the declining price anomaly, a

well-known and empirically widely-observed property of real-world sequential auctions,

does not always occur in their equilibria when there are three or more buyers.

In the subsequent chapter, we analyze risk-free strategies in multi-item auctions, with

a particular focus on subadditive valuations and on sequential auctions. Specifically, we

find the exact threshold payoff that a buyer in a sequential auction can guarantee for itself

in an adversarial setting.

6



Chapter 2

The Declining Price Anomaly

In a sequential multi-unit auction, identical copies of an item are sold one at a time, in

sequence. In a private values model with unit-demand, risk neutral buyers, Milgrom and

Weber [61, 78] showed that the sequence of prices forms a martingale. In particular, as one

might intuitively anticipate, expected prices are constant over time. In contrast to this, on

attending a wine auction, Ashenfelter [7] made the surprising observation that prices for

identical lots declined over time: “The law of the one price was repealed and no one even

seemed to notice!”. This declining price anomaly was also noted in sequential auctions for

the disparate examples of livestock (Buccola [21]), Picasso prints (Pesando and Shum [65])

and satellite transponder leases (Milgrom and Weber [61]). Interestingly, the possibility

of decreasing prices in a sequential auction was raised by Sosnick [68] nearly sixty years

ago. An assortment of reasons have been given to explain this anomaly. In the case of

wine auctions, proposed causes include absentee buyers utilizing non-optimal bidding

strategies (Ginsburgh [41]) and the buyer’s option rule where the auctioneer may allow the

buyer of the first lot to make additional purchases at the same price (Black and de Meza

[20]). Minor non-homogeneities amongst the items can also lead to falling prices. For

example, in the case of art prints the items may suffer slight imperfections or wear-and-

tear; as a consequence, the auctioneer may sell the prints in decreasing order of quality

(Pesando and Shum [65]). More generally, a decreasing price trajectory may arise due to
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risk-aversion, such as non-decreasing, absolute risk-aversion (McAfee and Vincent [58])

or aversion to price-risk (Mezzetti [59]; see also Hu and Zou [46]). Further potential

economic and behavioural explanations have been provided in [41, 9, 74].

Of course, most of these explanations are context-specific. However, the declining

price anomaly appears more universal. In fact, in practice the anomaly is ubiquitous: It

has now been observed in sequential auctions for antiques (Ginsburgh and van Ours [42]),

commercial real estate (Lusht [56]), condominiums (Ashenfelter and Genesove [8]), fish

(Gallegati et al. [38]), flowers (van den Berg et al. [75]), fur (Lambson and Thurston [53]),

lobsters (Salladarre et al. [67]), jewellery (Chanel et al. [28]), paintings (Beggs and Graddy

[14]), stamps (Thiel and Petry [73]) and wool (Burns [23]). Despite this prevalence, and

despite the fact that declining prices are common knowledge among participants at wine

auctions, Ashenfelter [7] observed that even single-unit buyers often choose to buy at the

higher price rather than save money by waiting for later rounds. To add to these empirical

results, Milgrom and Weber (in unpublished work) showed that with single-unit demand

bidders, expected prices should increase rather than decrease over time due to information

release in earlier rounds.

Prompted by these inconsistencies, Gale and Stegeman [37] set out to find a more foun-

dational explanation: is it possible that the equilibria of these auctions exhibit declining

prices? In their groundbreaking work, they studied the equilibria of second-price sequen-

tial auctions with two multiunit-demand buyers, and showed that prices always weakly

decrease over time at the focal equilibrium of this game, which is the unique subgame-

perfect equilibrium that survives the iterated elimination of weakly dominated strategies.

Moreover, this result applies regardless of the valuation functions of the buyers; the result

also extends to the corresponding equilibrium in first-price sequential auctions. It is worth

highlighting here two important aspects of the model studied by Gale and Stegeman [37].

First, Gale and Stegeman consider multiunit-demand buyers, whereas prior theoretical

work focuses on the simpler setting of unit-demand buyers. As well as being of more

practical relevance (see the many examples above), multiunit-demand buyers can imple-
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ment more sophisticated bidding strategies. Consequently, it is not unreasonable that

equilibria in the multiunit-demand setting may possess more interesting properties than

equilibria in the unit-demand setting. Second, they study an auction with full information.

The restriction to full information is extremely useful here as it separates away informa-

tional aspects, and allows us to focus on the strategic properties caused purely by the

sequential sales of items and not by a lack of information.

The result of Gale and Stegeman [37] immediately motivates the question of whether

the declining price anomaly is guaranteed to hold in general, that is, in the equilibria of

sequential auctions with more than two buyers. In this chapter, we answer this question

in the negative by exhibiting a sequential auction with three buyers and eight items where

prices initially rise and then fall. In order to run our computations that find this counter-

example (to the conjecture that prices are weakly decreasing for multi-buyer sequential

auctions), we study in detail the structure of equilibria in sequential auctions. First, it

is important to note that there is a fundamental distinction between sequential auctions

with two buyers and sequential auctions with three or more buyers. In the former se-

quential auction, each subgame reduces to a standard auction with independent valuations.

We explain this in Section 2.1.1, where we present the two-buyer full-information model

of Gale and Stegeman [37]. In contrast, in a multi-buyer sequential auction each subgame

reduces to an auction with externalities. Consequently, in order to study multi-buyer se-

quential auctions we must study the equilibria of auctions with externalities. A theory

of such equilibria was more recently developed by Paes Leme et al. [64] via a correspon-

dence with an ascending price mechanism. In particular, as we discuss in Section 2.1.3,

this ascending price mechanism outputs a unique bid value, called the dropout bid βi, for

each buyer i. For first-price auctions it is known [64] that these dropout bids form a sub-

game perfect equilibrium and, moreover, the interval [0, βi] is the exact set of bids that

survives all processes consisting of the iterated elimination of strategies that are weakly

dominated. In contrast, we show that for second-price auctions it may be the case that no

bids survive the iterated elimination of weakly dominated strategies; however, we prove
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that the interval [0, βi] is the exact set of bids for any losing buyer that survives all pro-

cesses consisting of the iterated elimination of strategies that are weakly dominated by a

lower bid.

Consequently, both first- and second-price sequential auctions have a focal subgame-

perfect equilibrium that survives a standard iterated elimination process. Our goal then is

to answer the question of whether this equilibrium exhibits declining prices. By extensive

computational search, we find a counterexample for the case of three bidders and eight

items, where the price first increases and then decreases along the equilibrium path. That

is, we show that the declining price anomaly does not always hold in the equilibria of

these auctions. In Section 2.2 we describe the counter-example, which applies to both the

first-price and second-price sequential auction settings. We emphasize that there is noth-

ing unusual about our example: the form of the buyers’ valuation functions is standard,

namely, weakly decreasing marginal valuations. Furthermore, the non-monotonic price

trajectory does not arise because of the use of an artificial tie-breaking rule in allocating

each item; the three most natural tie-breaking rules, see Section 2.1.4, all induce the same

non-monotonic price trajectory. We present an even stronger result in Section 2.3: for any

tie-breaking rule, there is a sequential auction on which it induces a non-monotonic price

trajectory.

This lack of weakly decreasing prices provides an explanation for why multi-buyer

sequential auctions have been hard to analyze quantitatively. We provide a second ex-

planation in Section 2.3.3. There we present a three-buyer sequential auction that does

satisfy weakly decreasing prices but which has subgames where some agent has a nega-

tive value from winning against one of the two other agents. Again, this contrasts with

the two-buyer case where every agent always has a non-negative value from winning

against the other agent in every subgame.

Finally in Section 2.4, we describe the results obtained via our large scale experimen-

tation. These results show that whilst the declining price anomaly is not universal, ex-

ceptions are extremely rare. From a randomly generated dataset of over six million se-
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quential auctions and a variety of tie-breaking rules only a 0.000183 proportion of the

instances produced non-monotonic price trajectories. Consequently, these computations

are consistent with the practical examples discussed in the introduction. Of course, it

is perhaps unreasonable to assume that subgame perfect equilibria arise in practice; we

remark, though, that the use of simple bidding algorithms by bidders may also lead to

weakly decreasing prices in a multi-buyer sequential auction. For example, Rodriguez

[66] presents a method called the residual monopsonist procedure inducing this property in

restricted settings.

2.1 The Sequential Auction Model

Here we present the full-information sequential auction model. There are T identical

items and n buyers. Exactly one item is sold in each time period over T time periods.

Buyer i has a value Vi(k) for winning exactly k items. Thus Vi(k) =
∑k

ℓ=1 vi(ℓ), where vi(ℓ)

is the marginal value buyer i has for obtaining an ℓth item. This induces an extensive

form game. Gale and Stegeman [37], for the two-buyer case, and Paes Leme et al. [64],

for the multiple-buyer first-price case, show that this sequential game has a focal subgame

perfect equilibrium. In this section, we will show that an exact analogue of their results

does not hold for the second-price case with multiple buyers. However, the main purpose

of this section is to show that, in effect, the equilibrium of Paes Leme et al. [64] is also

a focal equilibrium in the second-price setting, and their results can be extended to this

setting with a small technical modification.

To analyze this game it is informative to begin by considering the two-buyer case, as

studied by Gale and Stegeman [37], which we do in the following subsection.

2.1.1 The Two-Buyer Case

Since this is a multi-unit auction with identical items, during the auction, the relevant his-

tory is the number of items each buyer has currently won. We may compactly represent
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the extensive form (“tree”) of the auction using a directed graph with a node (x1, x2) for

any pair of non-negative integers that satisfies x1 + x2 ≤ T . The node (x1, x2) induces

a subgame with T − x1 − x2 items for sale and where each buyer i already possesses xi

items. Note there is a source node, (0, 0), corresponding to the whole game, and sink nodes

(x1, x2), where x1 + x2 = T . The values Buyer 1 and Buyer 2 have for a sink node (x1, x2)

are Π1(x1, x2) = V1(x1) and Π2(x1, x2) = V2(x2), respectively. We want to evaluate the

values (utilities) at the source node (0, 0). We can do this recursively working from the

sinks upwards. Take a node (x1, x2), where x1 + x2 = T − 1. This node corresponds to the

final round of the auction, where the last item is sold, given that each buyer i has already

won xi items. The node (x1, x2) will have directed arcs to the sink nodes (x1 + 1, x2) and

(x1, x2 + 1); these arcs correspond to Buyer 1 and Buyer 2 winning the final item, respec-

tively. For the case of second-price auctions, it is then a weakly dominant strategy for

Buyer 1 to bid its marginal value v1(x1+1) = V1(x1+1)−V1(x1); similarly for Buyer 2. Of

course, this marginal value is just v1(x1+1) = Π1(x1+1, x2)−Π1(x1, x2+1), the difference

in value between winning and losing the final item. If Buyer 1 is the highest bidder at

(x1, x2), that is, Π1(x1 + 1, x2) − Π1(x1, x2 + 1) ≥ Π2(x1, x2 + 1) − Π2(x1 + 1, x2), then we

have that

Π1(x1, x2) = Π1(x1 + 1, x2)−
(
Π2(x1, x2 + 1)− Π2(x1 + 1, x2)

)
Π2(x1, x2) = Π2(x1 + 1, x2)

That is, Buyer 1’s value for the node (x1, x2), which is Π1(x1, x2), is its value for the node

(x1 + 1, x2) minus Buyer 2’s bid for the next item. Symmetric formulas apply if Buyer 2

is the highest bidder at (x1, x2). Hence we may recursively define a value for each buyer

for each node. The iterative elimination of weakly dominated strategies then leads to a

subgame perfect equilibrium [37, 10].

Example: Consider a two-buyer sequential auction with two items, where the marginal

valuations are {v1(1), v1(2)} = {10, 8} and {v2(1), v2(2)} = {6, 3}. This game is illustrated
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in Figure 2.1. The base case with the values of the sink nodes is shown in Figure 2.1(a).

The first row in each node refers to Buyer 1 and shows the number of items won (in

plain text) and the corresponding value (in bold); the second row refers to Buyer 2. The

outcome of the second-price sequential auction, solved recursively, is then shown in Fig-

ure 2.1(b). Arcs are labelled by the bid value; here arcs for Buyer 1 point left and arcs for

Buyer 2 point right. Solid arcs represent winning bids and dotted arcs are losing bids.

The equilibrium path is shown in bold.

(a) 0 : -
0 : -

1 : -
0 : -

0 : -
1 : -

2 : 18
0 : 0

1 : 10
1 : 6

0 : 0
2 : 9

(b) 0 : 7
0 : 1

1 : 12
0 : 0

0 : 7
1 : 6

2 : 18
0 : 0

1 : 10
1 : 6

0 : 0
2 : 9

5 6

8 6 10 3

Figure 2.1: Second-Price Sequential Auction

Observe that the declining price anomaly is exhibited in this example: on the equilib-

rium path, Buyer 2 wins the first item for a price 5 and Buyer 1 wins the second item for a

price 3. As stated, this example is not an exception. Gale and Stegeman [37] showed that

weakly decreasing prices are a property of 2-buyer sequential auctions.

Theorem 2.1.1. [37] In a 2-buyer second-price sequential auction there is a unique equilibrium

that survives the iterated elimination of weakly dominated strategies. Moreover, at this equilibrium

prices are weakly declining.

We remark that the subgame perfect equilibrium that survives the iterated elimination

of weakly dominated strategies is unique in terms of the values at the nodes. Moreover,

given a fixed tie-breaking rule, the subgame perfect equilibrium also has a unique equi-

librium path in each subgame.

In addition, Theorem 2.1.1 also applies to first-price sequential auctions. In this case,

to ensure the existence of an equilibrium, we make the standard assumption that there is

a fixed small bidding increment. That is, for any price p there is a unique maximum price

smaller than p. Given this, for the example above, the subgame perfect equilibrium using
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a first-price sequential auction is as shown in Figure 2.2. Here we use the notation p+ to

denote a winning bid of value equal to p, and the notation p to denote a losing bid equal

to maximum value smaller than p.

0 : 7
0 : 1

1 : 12
0 : 0

0 : 7
1 : 6

2 : 18
0 : 0

1 : 10
1 : 6

0 : 0
2 : 9

5 5+

6+ 6 3+ 3

Figure 2.2: First-Price Sequential Auction

Observe that the resultant prices on the equilibrium path are more easily apparent in

Figure 2.2 than in Figure 2.1. For this reason, the figures we present in this thesis will be

for first-price auctions; equivalent figures can can be drawn for second-price auctions.

Following Gale and Stegeman [37], and prior to our work, the question of whether or

not the declining price anomaly holds in the equilibria of sequential auctions with more

than two buyers remained open. To resolve this question, we must first study equilibria

in the full-information sequential auction model when there are more than two buyers.

2.1.2 The Multiple-Buyer Case

The underlying model of [37] extends in a straightforward manner to sequential auctions

with n ≥ 3 buyers. There is a node (x1, x2, . . . , xn) for each set of non-negative integers

satisfying
∑n

i=1 xi ≤ T . There is a directed arc from (x1, x2, . . . , xn) to (x1, x2, . . . , xj−1, xj+

1, xj+1, . . . xn) for each 1 ≤ j ≤ n. Thus each non-sink node has n out-going arcs. This

is problematic: whilst in the final time period each buyer has a value for winning and a

value for losing, this is no longer the case recursively in earlier time periods. Specifically,

buyer i has value for winning, but n − 1 (different) values for losing depending upon the

identity of the buyer j ̸= i who actually wins. Thus rather than each node corresponding

to a standard auction, it now corresponds to an auction with externalities.

Formally, an auction with externalities is a single-item auction where each buyer i has

a value vi,i for winning the item and, for each buyer j ̸= i, buyer i has value vi,j if buyer j
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wins the item. These auctions were first studied by Funk [36], Jehiel and Moldovanu

[47] and Jehiel et al. [48]. Their motivations were applications where losing participants

were not indifferent to the identity of the winning buyer; examples include firms seeking

to purchase a patented innovation, take-over acquisitions of a smaller company in an

oligopolistic market, and sports teams competing to sign a star athlete.

Thus in order to understand multi-buyer sequential auctions we must first understand

equilibria in auctions with externalities. This is not a simple task: such an understanding

was only recently provided by Paes Leme et al. [64].

2.1.3 Equilibria in Auctions with Externalities

An Ascending Price Mechanism

We can explain the result of [64] via an ascending price auction. Consider a two-buyer

ascending price auction where the valuations of the buyers are v1 and v2, with v1 > v2.

The requested price p starts at zero and continues to rise until the point where the second

buyer drops out. Of course, this happens when the price reaches v2, and so Buyer 1 wins

for a payment p+ = v2. But this is exactly the outcome expected from a first-price auction:

Buyer 2 loses with bid of p and Buyer 1 wins with a bid of p+. To generalize this to multi-

buyer settings we can view this process as follows. At a price p, buyer i remains in the

auction as long as there is at least one buyer j still in the auction who buyer i is willing to pay

a price p to beat; that is, vi,i−p > vi,j . The last buyer to drop out wins at the corresponding

price. For example, in the two-buyer example above, Buyer 2 drops out at price p = v2 as

it would rather lose to Buyer 1 than win above that price. Therefore, at price p+ there is

no buyer still in the auction that Buyer 1 wishes to beat (because there are no other buyers

remaining in the auction at all!). Thus Buyer 1 drops out at p+ and, being the last buyer

to drop out, wins at that price.

Observe that, even in the multi-buyer setting, this procedure produces a unique dropout

bid βi for each buyer i. To illustrate this, two auctions with externalities are shown in Fig-
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ure 2.3. In these diagrams the label of an arc from buyer i to buyer j is wi,j = vi,i − vi,j .

That is, buyer i is willing to pay up to wi,j to win if the alternative is that buyer j wins the

item. Now consider running our ascending price procedure for these auctions. In Fig-

ure 2.3(a), Buyer 1 drops out when the price reaches 18. Since Buyer 1 is no longer active

in the auction, Buyer 4 drops out when the price reaches 23. At this point, Buyer 2 and

Buyer 3 are left to compete for the item. Buyer 3 wins when Buyer 2 drops out at price 31.

Thus the drop-out bid of Buyer 3 is 31+. Observe that Buyer 2 loses despite having very

high values for winning (against Buyer 1 and Buyer 4).

The example of Figure 2.3(b) with dropout bid vector (β1, β2, β3, β4) = (24, 24, 24, 24+)

is more subtle. Here Buyer 2 drops out at price 24. But Buyer 3 only wanted to beat

Buyer 2 at this price so it then immediately drops out at the same price. Now Buyer 1

only wanted to beat Buyer 2 and Buyer 3 at this price, so it then immediately drops out at

the same price. This leaves Buyer 4 the winner at price 24+.

(a) Buyer 1

Buyer 2 Buyer 3

Buyer 4
18

13

14

97

31

74

33

12
11

10
23

35 (b) Buyer 1

Buyer 2 Buyer 3

Buyer 4
37

22

59

17

13

24

63

19
21

10
14

35

Figure 2.3: Drop-Out Bid Examples: In these two examples the dropout bid vectors

(β1, β2, β3, β4) are (18, 31, 31+, 23) and (24, 24, 24, 24+), respectively

Dropout Bids and Iterated Elimination of Weakly Dominated Strategies

As well as being solutions to the ascending price auction, the dropout bids have a much

stronger property that makes them the natural and robust prediction for auctions with

externalities. Specifically, Paes Leme et al. [64] proved that, for each buyer i, the interval

[0, βi] is the set of strategies that survive any sequence consisting of the iterated elimination

of weakly dominated strategies. This is formalized as follows. Take an n-buyer game

with strategy sets S1, S2, . . . , Sn and utility functions ui : S1 × S2 × · · · × Sn → R. Then

{Sτ
i }i,τ is a valid sequence for the iterated elimination of weakly dominated strategies if for
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each τ there is a buyer i such that Sτ
j = Sτ−1

j for each buyer j ̸= i, and Sτ
i ⊂ Sτ−1

i where

for each strategy si ∈ Sτ−1
i \ Sτ

i there is an ŝi ∈ Sτ
i such that ui(ŝi, s−i) ≥ ui(si, s−i) for all

s−i ∈
∏

j:j ̸=i S
τ
j , and with strict inequality for at least one s−i. We say that a strategy si for

buyer i survives the iterated elimination of weakly dominated strategies if for any valid

sequence {Sτ
i }i,τ we have si ∈

⋂
τ S

τ
i .

Theorem 2.1.2. [64] Given a first-price auction with externalities, for each buyer i, the set of bids

that survive the iterated elimination of weakly dominated strategies is exactly [0, βi].

An exact analogue of Theorem 2.1.2 does not hold for second-price auctions with ex-

ternalities. Instead, it may be the case that no strategies survive the iterated elimination

of weakly dominated strategies (we omit our three-buyer counterexample here).

Theorem 2.1.3. There are second-price auctions with externalities where no strategies survive the

iterated elimination of weakly dominated strategies.

By considering examples that demonstrate this theorem, we can observe that in every

example, the problem occurs when a strategy is deleted because it is weakly dominated

by a higher bid. But this can never happen for a potentially winning bid in a first-price

auction; thus Theorem 2.1.2 holds in first-price auctions when we restrict attention to

sequences with the iterated elimination of strategies that are weakly dominated by a lower

bid. Indeed, we prove that the corresponding theorem holds for second-price auctions.

Theorem 2.1.4. Given a second-price auction with externalities, for each losing buyer i, the set of

bids that survive the iterated elimination of strategies that are weakly dominated by a lower bid is

exactly [0, βi].

Proof. First we claim that for any losing buyer i and any price p > βi there is a sequence

of iterative deletions of strategies that are weakly dominated by a lower bid that leads to

the deletion of bid p from Sτ
i . Without loss of generality, we may order the buyers such

that β1 ≤ β2 ≤ · · · ≤ βn; in the case of a tie the buyers are placed in the order they were

deleted by the tie-breaking rule. Initially S0
i = [0,∞), for each buyer i. We now define a

17



valid sequence such that Si
i = [0, βi]. We proceed by induction on the label of the buyers.

For the base case observe that for Buyer 1 we know β1 = maxj:j ̸=i (vi,i− vi,j) is the highest

price it wants to pay to beat anyone else. Suppose Buyer 1 bids p > β1. Take any set of

bids b−1 ∈ ×j:j≥2S
0
j . We have three cases:

(i) Both bids p and β1 are winning bids against b−1. Then, as this is a second-price auction,

Buyer 1 is indifferent between the two bids.

(ii) Both bids p and β1 are losing bids against b−1. Then Buyer 1 is indifferent between the

two bids.

(iii) Bid p is a winning bid but β1 is a losing bid against b−1. Then since the winning price

is at least β1, Buyer 1 strictly prefers to lose rather than win. Moreover, since S0
j = [0,∞),

there is a set of bids b−1 by the other buyers such that Buyer 1 strictly prefers to lose rather

than win.

Thus the bid p is weakly dominated by the lower bid β1. Since this applies to any

p > β1, in Step 1 we may delete every bid for Buyer 1 above β1. Therefore S1
1 = [0, β1] and

S1
j = [0,∞] for each buyer j ≥ 2.

For the induction hypothesis assume Si−1
j = [0, βj], for all j < i and Si−1

j = [0,∞), for

all j ≥ i. Now take a losing buyer i and any set of bids b−i ∈ ×j:j ̸=iS
i−1
j . Again, we have

three cases:

(i) Both bids p and βi are winning bids against b−i. Then, as this is a second-price auction,

buyer i is indifferent between the two bids.

(ii) Both bids p and β1 are losing bids against b−i. Then buyer i is indifferent between the

two bids.

(iii) Bid p is a winning bid but βi is a losing bid against b−i. Then since βi is a losing bid

under the tie-breaking rule, it must be the case that the winning bid is from a buyer j

where j > i. But, by definition of βi, there is no buyer j, with j > i, that buyer i wishes to

beat at price βi.

So buyer i prefers the bid βi to the bid p. Moreover, since any buyer j : j > i has

Si−1
j = [0,∞), this preference is strict for some feasible choice of bids for the other buyers.
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Thus, for buyer i, the bid p is weakly dominated by the lower bid βi, and this applies to

every p > βi. Thus in Step i we may delete every bid for buyer i above βi. Therefore

Si
j = [0, βi], for all j < i + 1 and Si−1

j = [0,∞), for all j ≥ i + 1. The claim then follows

by induction. So, for any losing buyer i we have that no bid greater than βi survives the

iterated elimination of strategies that are weakly dominated by a lower bid.

Observe that the above arguments also apply for the winning buyer, that is, buyer n.

Here, as there are no higher indexed buyers, it is not the case that βn strictly dominates

any bid p > βn. Indeed, buyer n is indifferent between all bids in the range [βn, γn],

where γn is the maximum value the buyer has for beating any buyer j with dropout bid

βj = βn. Observe that γn does exist and is at least βn by definition of the ascending price

mechanism. Thus for the winning bidder no bid greater than γi survives the iterated

elimination of strategies that are weakly dominated by a lower bid.

Second, we claim for any buyer i and any price q < βi there is no sequence of iterative

deletions of strategies that are weakly dominated by a lower bid that leads to the deletion

of bid q from the feasible strategy space of buyer i. If not, consider the first time τ that

some buyer i has a value q ∈ [0, βi] deleted from Sτ
i . We may assume that q is deleted

because it is was weakly dominated by a lower bid p < q. Now, by assumption, [0, βj] ⊆

Sτ−1
j , for each buyer j. Furthermore, by definition, there is some buyer k, with k > i that

buyer i wishes to beat at any price below βi. In particular, Buyer i wishes to beat Buyer k

at price p. But since k > i we have βk ≥ βi. Recall that [0, βk] ⊆ Sτ−1
k . It immediately

follows that there is a set of feasible bids bk ∈ (p, q) and bj = 0, for all j /∈ {i, k} such

that Buyer i strictly prefers to win against these bids. Specifically, the bid q is not weakly

dominated by the bid p, a contradiction.

It follows that the dropout bids form the focal subgame perfect equilibrium for both

first-price and second-price auctions with externalities.

We are now almost ready to be able to find equilibria in the sequential auction compu-

tations we will conduct. This, in turn, will allow us to present a sequential auction with

non-monotonic prices. Before doing so, one final factor remains to be discussed regard-
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ing the transition from equilibria in auctions with externalities to equilibria in sequential

auctions.

2.1.4 Tie-Breaking Rules

As stated, the dropout bid of each buyer is uniquely defined. However, our description

of the ascending auction may leave some flexibility in the choice of winner. Specifically, it

may be the case that, simultaneously, two or more buyers wish to drop out of the auction.

If this happens at the end of the ascending price procedure, any of these buyers could be

selected as the winner. An example of this is shown in Figure 2.4.

Buyer 1

Buyer 2 Buyer 3

15

34

15

13 0

126

Figure 2.4: Tie-Breaking: An example requiring tie-breaking to decide the winner; the drop-out

bid vector is (15, 15, 15) but there are two possible winners: (15, 15+, 15) or (15, 15, 15+)

This observation implies that to fully define the ascending auction procedure we must

incorporate a tie-breaking rule to order the buyers when more than one wish to drop out

simultaneously. In a one-shot auction with externalities the tie-breaking rule only affects

the choice of winner, but otherwise has no structural significance. However, in a sequen-

tial auction the choice of tie-breaking rule may have much more significant consequences.

Specifically, because each node in the game tree corresponds to an auction with externali-

ties, the choice of winner at one node may affect the valuations at nodes higher in the tree.

In particular, the equilibrium path may vary with different tie-breaking rules, leading to

different prices, winners, and utilities.

We show later in this section that there are a massive number of tie-breaking rules,

even in small sequential auctions. We emphasize, however, that our main result (Sec-

tion 2.3) holds regardless of the tie-breaking rule. That is, for any tie-breaking rule there

is a sequential auction on which it induces a non-monotonic price trajectory. Before all of
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this, we first show that non-monotonic pricing occurs on the equilibrium path for perhaps

the most natural choice of tie-breaking rule, namely preferential-ordering, where

each buyer is given a distinct rank (index), and in the case of a tie the buyer with the

highest index is eliminated. In our original paper, we analyze three of the most commonly

used tie-breaking rules, namely the preferential-ordering, first-in-first-out

and last-in-first-out rules, that correspond to the fundamental data structures of

priority queues, queues, and stacks in computer science.

In order to understand the preferential-ordering rule it is useful to see how it

applies on an example. Figure 2.5 presents a five-buyer example with the dropout vector

(β1, β2, β3, β4, β5) = (40, 40, 40, 40, 40). On running the ascending price procedure, both

Buyer 3 and Buyer 4 wish to drop out when the price reaches 40. Using our selected

tie-breaking rule, the set of agents eligible for dropping out is {3, 4} and we remove the

highest index buyer, namely Buyer 4. With the removal of Buyer 4, neither Buyer 1 nor

Buyer 5 have an incentive to continue bidding so they both decide to dropout. Thus the

set of agents eligible for dropping out is now {1, 3, 5} and preferential-ordering

removes Buyer 5. Observe that with the removal of Buyer 5, that Buyer 2 no longer has an

active participant it wishes to beat so the set of agents eligible for dropping out is updated

to {1, 2, 3}. The preferential-ordering rule now first removes Buyer 3, then Buyer 2

and lastly Buyer 1. Thus Buyer 1 wins the item under the preferential-ordering

rule. Observe that the preferential-ordering rule, first-in-first-out rule

and last-in-first-out rule produce three distinct winners in this example!

Buyer 1

Buyer 2 Buyer 3

Buyer 4

Buyer 5

25

83

34

31

38

31

74

91

40

37
1829

40

36

23

19
30

33 35

54

Figure 2.5: An Example to Illustrate the preferential-ordering Rule
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We have now developed the tools required to implement our sequential auction com-

putations. We describe these computations and their results in Section 2.4. Before doing

so, we present in Section 2.2 one sequential auction obtained via these computations and

verify that it leads to a non-monotonic price trajectory with the preferential-ordering

rule (and, in fact, with the first-in-first-out and last-in-first-out rules, but

we omit their analysis). We then explain in Section 2.3 how to generalize this conclusion

to apply to every tie-breaking rule.

2.2 An Auction with Non-Monotonic Prices

Here we prove that the decreasing price anomaly is not guaranteed for sequential auc-

tions with more than two buyers. Specifically, we exhibit a sequential auction that has

three buyers and eight items, for which the equilibrium obtained by breaking ties with

the preferential-ordering rule exhibits non-monotonic prices. We present the first-

price version where at equilibrium the buyers bid their dropout values in each time pe-

riod; as discussed previously, the same example extends to second-price auctions.

The valuations of the three buyers are defined as follows. Buyer 1 has marginal valu-

ations {55, 55, 55, 55, 30, 20, 0, 0}, Buyer 2 has marginal valuations {32, 20, 0, 0, 0, 0, 0, 0},

and Buyer 3 has marginal valuations {44, 44, 44, 44, 0, 0, 0, 0}.

Let’s now compute the extensive forms of the auction under the three tie-breaking

rules. We begin with the preferential-ordering rule. To compute its extensive

form, observe that Buyer 1 is guaranteed to win at least two items in the auction because

Buyer 2 and Buyer 3 together have positive value for six items. Therefore, the feasible set

of sink nodes in the extensive form representation are shown in Figure 2.6.

Given the valuations at the sink nodes we can work our way upwards recursively

calculating the values at the other nodes in the extensive form representation. For ex-

ample, consider the node (x1, x2, x3) = (4, 1, 2). This node has three children, namely

(5, 1, 2), (4, 2, 2) and (4, 1, 3); see Figure 2.7(a). These induce a three-buyer auction as
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Figure 2.6: Sink Nodes of the Extensive Form Game

shown in Figure 2.7(b). This can be solved using the ascending price procedure to find

the dropout bids for each buyer. Thus we obtain that the value for the node (x1, x2, x3) =

(4, 1, 2) is as shown in Figure 2.7(c). Of course this node is particularly simple as, for the

final round of the sequential auction, the corresponding auction with externalities is just

a standard auction. That is, when the final item is sold, for any buyer i the value vi,j is

independent of the buyer j ̸= i.

Nodes higher up the game tree correspond to more complex auctions with external-

ities. For example, the case of the source node (x1, x2, x3) = (0, 0, 0) is shown in Fig-

ure 2.8. In this case, on applying the ascending price procedure, Buyer 1 is the first to

dropout at price 15. At this point, both Buyer 2 and Buyer 3 no longer have a com-

petitor that they wish to beat at this price, so they both want to dropout. With the

preferential-ordering tie-breaking rule, Buyer 2 wins the item.

Using similar arguments at each node verifies the concise extensive form representa-

tion under the preferential-ordering tie-breaking rule shown in Figure 2.9. In this

figure, the white nodes represent subgames where the sequential auction still has three

active buyers; the pink nodes represent subgames with at most two active buyers; the

yellow nodes are the sink nodes. Again, the equilibrium path with non-monotonic prices

is shown in bold. Now consider this equilibrium path. Observe that Buyer 2 wins the first

two items, Buyer 3 wins the next four items and Buyer 1 wins the final two items. The

resultant price trajectory is {15, 17, 0, 0, 0, 0, 0, 0}. That is, the price rises and then falls to

zero – a non-monotonic price trajectory.
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4: 220
1: 32

3: 132

30 20 30+

Figure 2.7: Solving a Subgame Above the Sinks

Exactly the same example works with the other two tie-breaking rules (figures omit-

ted). The node values under preferential-ordering and first-in-first-out

are exactly the same, despite the fact that these two rules do produce different winners at

some nodes. By contrast, the last-in-first-out rule gives an extensive form where

some nodes have different valuations than those produced by the other two rules. How-

ever, for all three rules the equilibrium path and price trajectory for the whole game,

starting at the root, is the same. These observations will play a role when we prove that,

for any tie-breaking rule, there is a sequential auction with non-monotonic prices.
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Figure 2.8: Solving the Subgame at the Root

Again, we emphasize that there is nothing inherently perverse about this example.

The form of the valuation functions, namely decreasing marginal valuations, is standard.

As explained, the equilibrium concept studied is the appropriate one for sequential auc-

tions. Finally, the non-monotonic price trajectory is not the artifact of an aberrant tie-

breaking rule. This result is rather surprising, since the result of Gale and Stegeman [37]

implies that with two buyers, prices always decrease at equilibrium even when the valu-

ation functions do not have decreasing marginals.
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Figure 2.9: Non-Monotonic Prices with the preferential-ordering Rule
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2.3 Non-Monotonic Prices under General Tie-Breaking Rules

We will now prove that non-monotonic prices are exhibited under any tie-breaking rule.

In order to do this, we must first analyze the set of all tie-breaking rules.

2.3.1 Classifying the Set of Tie-Breaking Rules

Our definition of the set of tie-breaking rules will utilize the concept of an overbidding

graph, introduced by Paes Leme et al. [64]. For any price p and any set of bidders S,

the overbidding graph G(S, p) contains a labelled vertex for each buyer in S and an

arc (i, j) if and only if vi,i − p > vi,j . For example, recall the auction with externalities

seen in Figure 2.5. This is reproduced in Figure 2.10 along with its overbidding graph

G({1, 2, 3, 4, 5}, 40).

Buyer 1

Buyer 2 Buyer 3

Buyer 4

Buyer 5

25

83

34

31

38

31

74

91

40

37
1829

40

36

23

19
30

33 35

54

1

2 3

4
5

Figure 2.10: The Overbidding Graph G({1, 2, 3, 4, 5}, 40)

First, recall that the drop-out bid βi is unique for any buyer i, regardless of the tie-

breaking rule. Consequently, whilst the tie-breaking rule will also be used to order buy-

ers that are eliminated at prices below the final price p∗, such choices are irrelevant with

regards to the final winner. Thus, the only relevant factor is how a decision rule selects

a winner from amongst those buyers S∗ whose drop-out bids are p∗. Second, recall that

at the final price p∗ the remaining buyers are eliminated one-by-one until there is a single

winner. However, a buyer cannot be eliminated if there remains another buyer still in the

auction that it wishes to beat at price p∗. That is, buyer i must be eliminated after buyer j

if there is an arc (i, j) in the overbidding graph. Thus, the order of eliminations given by

the tie-breaking rule must be consistent with the overbidding graph. In particular, the
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winner can only be selected from amongst the source vertices1 in the overbidding graph

G(S∗, p∗). For example, in Figure 2.10 the source vertices are {1, 2, 3}. Note that this ex-

plains why the tie-breaking rules preferential-ordering, first-in-first-out

and last-in-first-out chose Buyer 1, Buyer 2 and Buyer 3 as winners but none of

them selected Buyer 4 or Buyer 5. Observe that the overbidding graph G(S∗, p∗) is acyclic;

if it contained a directed cycle then the price in the ascending auction would be forced to

rise further. Because every directed acyclic graph contains at least one source vertex, any

tie-breaking rule does have at least one choice for winner.

Thus a tie-breaking rule is simply a function τ : H → σ(H). Here the domain of the

function is the set of labelled, directed acyclic graphs and σ(H) is the set of source nodes

in H . Consequently, two tie-breaking rules are equivalent if they correspond to the same

function τ . We are now ready to present our main result.

2.3.2 Non-Monotonic Prices for Any Tie-Breaking Rule

Theorem 2.3.1. For any tie-breaking rule, there is a sequential auction with non-monotonic

prices.

Proof. We consider exactly the same example as before. That is, we have three buyers

and eight items, and Buyer 1 has marginal values {55, 55, 55, 55, 30, 20, 0, 0}, Buyer 2 has

marginals {32, 20, 0, 0, 0, 0, 0, 0}, and Buyer 3 has marginals {44, 44, 44, 44, 0, 0, 0, 0}.

First let’s calculate how many tie-breaking rules there are for this auction. To count this

we must consider all directed acyclic graphs with labels in {1, 2, 3}. Note that we must

have at least two buyers with drop-out values equal to the final price p∗ otherwise the

auction would have terminated earlier. Thus it suffices to consider directed acyclic graphs

with either two or three vertices. There are 8 such topologies that produce 34 labelled

directed acyclic graphs and 12, 288 tie-breaking rules. This is illustrated in Table 2.1.

Luckily we do not need to examine all of these tie-breaking rules separately. The set of

tie-breaking rules can be partitioned into exactly ten classes. Specifically, any tie-breaking
1A source is a vertex v with in-degree zero; that is, there no arcs pointing into v.
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Directed Acylic Graph # Labelled Graphs # Sources

x y
3 2

x y
6 1

x zy
1 3

x z

y
6 2

y zx
6 1

y z

x

3 1
y z

x
3 2

y

z

x

6 1
Total # Labelled DAGs 34

Total # Tie-Breaking Rules 121 · 212 · 31 = 12, 288

Table 2.1: Labelled Directed Acyclic Graphs

rule produces one of just ten possible (in terms of distinct node valuations) extensive

forms for this sequential auction. Two of these we obtained via the three tie-breaking

rules from before. We explain why there are only eight other feasible extensive forms. For

any tie-breaking rule, as we work up from the sink nodes there are many nodes where

tie-breaking is required. Despite this, the total number of distinct extensive forms does

not blow-up multiplicatively. As previously alluded to, when we apply a tie-breaking

rule there are two possibilities that arise. In the first possibility, the node valuations are
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the same regardless of which buyer is selected by the rule. For example, consider the

node (3, 0, 2) where Buyer 1 wins with preferential-ordering but Buyer 3 wins

with first-in-first-out; in either case the node valuations are identical, namely

(188, 0, 112) as shown in Figures 2.9. Consequently, both rules lead to the same outcome.

For our purpose, such nodes are of no importance.

In the second possibility, the node valuations do vary depending on which buyer is

selected by the tie-breaking rule. However, of the 34 labelled directed acyclic overbidding

graphs, only 4 affect the extensive form node valuations. These four critical overbidding

graphs, which we call A,B,C and D, are shown in Figure 2.11.

(A) (B)

(C) (D)

1

2 3
2 3

1 2 3
1 2

3

Figure 2.11: The Four Critical Overbidding Graphs

It is easy to verify that, working upwards from the sink nodes, the first such nodes

where the choice of tie-breaking rule matters occur at depth 4, at the three nodes (4, 0, 0), (1, 0, 3)

and (0, 1, 3). The nodes (1, 0, 3) and (0, 1, 3) both correspond to the overbidding graph

A whilst the node (4, 0, 0) corresponds to the overbidding graph B. For the overbid-

ding graph A the tie-breaking rule must select either the sink vertex 2 or the sink ver-

tex 3 to win. Moreover, by definition, it must make the same choice at both (1, 0, 3) and

(0, 1, 3). Furthermore, regardless of this choice, as we work up the extensive form the

nodes (1, 0, 2), (0, 1, 2), (0, 0, 3), (0, 1, 1), (0, 0, 2), (0, 1, 0), (0, 0, 1) and (0, 0, 0) also all have

the overbidding graph A and, thus, must also have the same winner.

The choice of winner at (4, 0, 0) for overbidding graph B is also between Buyer 2 and

Buyer 3, but in this case, the effect is more subtle. If Buyer 2 wins then the overbidding

graph D is induced at node (3, 0, 0), whereas if Buyer 3 wins then the overbidding graph
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Figure 2.12: Monotonic Prices: Yes or No? A Decision Tree Partitioning the Tie-Breaking

Rules into Ten Classes

C is induced at (3, 0, 0). In the former case, the overbidding graph D arises at node (2, 0, 0)

regardless the choice of winner at (3, 0, 0). In the latter case, there are three possible win-

ners in the overbidding graph C at (3, 0, 0). If Buyer 1 or Buyer 3 win these produce the

same node valuations and give the overbidding graph C at (2, 0, 0); if Buyer 2 wins this

gives the overbidding graph D at (2, 0, 0). A decision tree showing all the possible choices

is shown in Figure 2.12. The reader may verify that these are the only decisions that affect

the valuations at the nodes. Thus there are ten possible extensive forms, where Yes/No

details whether or not a monotonic price trajectory is produced. Where the tie-breaking
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rules preferential-ordering, first-in-first-out, and last-in-first-out

fit in this decision tree are highlighted in the figure.

Several observations are in order. First, not all of the classes of tie-breaking rule

give non-monotonic price trajectories. An example of a tie-breaking rule with mono-

tonic prices is shown in Figure 2.13. In fact, the choices made on the overbidding graphs

B,C and D only affect valuations on nodes off the equilibrium path. The equilibrium

path itself is determined uniquely by the choice made for the overbidding graph A. If the

winner there is Buyer 2 then the prices are non-monotonic; if the winner there is Buyer 3

then the prices are monotonic.

We are now ready to complete the proof of the theorem. As we have just seen, any

tie-breaking rule can be classified into one of ten classes depending upon its choices on

this sequential auction. Five of the classes lead to non-monotonic prices on this instance.

For the other five classes of tie-breaking rule we need to construct different examples on

which they induces non-monotonic prices. But this is easy to do: take the same example

but with the labels of Buyer 2 and Buyer 3 interchanged. The equilibrium paths for this

sequential auction using any rule in the other five classes will then have non-monotonic

price trajectories.

2.3.3 Negative Utilities and Overbidding

We now discuss some interesting observations that arise from this specific sequential auc-

tion. First we recall another property of two-buyer sequential auctions: in each round of

the auction each buyer has a non-negative value for winning the item over the other

agent [37]. Interestingly, even this property fails to hold when there are more than two

buyers.

Theorem 2.3.2. There are multi-buyer sequential auctions with weakly decreasing marginals that

have subgames in which one agent has a negative value for winning against another agent.
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Figure 2.13: A Tie-Breaking Rule Resulting in Monotonic Prices
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Proof. Consider again the sequential auction shown in Figure 2.13. Focus upon the auc-

tions with externalities corresponding to the subgames rooted at the nodes (0, 1, 0), (0, 1, 1)

and (0, 1, 2). In all three cases, Buyer 3 has a negative value from winning over Buyer 2.

For example, at node (0, 1, 0) Buyer 3 has a utility of 131 for winning but a utility of 176

if Buyer 2 wins. (Note that Buyer 3 does have a positive value for defeating Buyer 1,

specifically 131− 48 = 83.) Of course, this also implies there are sequential auctions with

weakly decreasing marginal valuation functions where one agent has a negative value for

winning the first item over one other agent.

Second, observe in Figure 2.9 (see also Figure 2.8) that in the first round Buyer 3 has a

value of 176−66 = 110 for winning over Buyer 1. This far exceeds its marginal value of 44

for obtaining one item. Such “overbidding” also arises in two-buyer sequential auctions.

The reader may wonder, however, whether this type of “overbidding” is responsible for

the generation of non-monotonic price trajectories in multi-buyer auctions. This is not

the case. To verify this we repeated all six million experiments described in Section 2.4

with the ascending price mechanism modified to exclude the possibility of a buyer bid-

ding higher than their marginal value for their next unit of the good. The proportion of

instances with non-monotonic price trajectories was similar (about 10% less). Moreover,

there are instances where such “overbidding” does not arise but where the prices are

non-monotonic.

2.4 Computational Results

Our computations were based on a dataset of over six million multi-buyer sequential

auctions with non-increasing valuation functions randomly generated from different nat-

ural discrete probability distributions. Our goal was to observe the proportion of non-

monotonic price trajectories in these sequential auctions and to see how this varied with

(i) the number of buyers, (ii) the number of items, (iii) the distribution of valuation func-

tions, and (iv) the tie-breaking rule. To do this, for each auction, we computed the sub-
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game perfect equilibrium corresponding to the dropout bids and evaluated the prices

along the equilibrium path to test for non-monotonicity.

We repeated this test for each of the three tie breaking rules described earlier, namely

preferential-ordering, first-in-first-out and last-in-first-out. The

results from our 6,240,000 randomly generated sequential auctions are shown in Fig-

ure 2.14. In these bar charts there is one bar for each combination of auction size and data

structure (preferential-ordering, first-in-firstout and last-in-first-out).

Each bar shows the number of auctions of that type that induced non-monotonic prices.

For example, for sequential auctions with three buyers and five items that use the preferential-

ordering tie-breaking rule, there were 7 auctions out of 240,000 that had non-monotonic

prices. For four and five buyers there were 120,000 auctions of each type. We found no

examples with less than 5 items that showed non-monotonicity, so the cases T = 2, 3, 4

are omitted. We omit the intricate details of the dataset generation and experimentation

process (these are present in the full paper).

Observe that for a fixed number of buyers, there is a slight upward drift in the propor-

tion of non-monotonic price trajectories as the number of items increases. Intuitively

that seems unsurprising, as with longer price sequences there are more time periods

at which deviations from monotonicity can arise. A very interesting question would

be to study the limit of the proportion of non-monotonic price trajectories as the num-

ber of items gets very large. Unfortunately, due to the exponential explosion in the

number of game tree nodes discussed in the previous sections, this question cannot be

studied computationally. The main conclusion to be drawn from these computations is

that non-monotonic prices are extremely rare. On the 6,240,000 auction instances, the

preferential-ordering tie-breaking rule produced just 1,100 violations of the de-

clining price anomaly. The first-in-first-out rule gave 986 violations and the

last-in-first-out rule gave 1,334 violations. The overall observed rate of non-

monotonicity across these over-18-million tests was 0.000183.
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Chapter 3

Risk-Free Bidding in Multi-Item

Auctions

What strategy should a bidder use in a multi-item auction for a collection I of items?

From a bidder’s viewpoint, sequential auctions are perplexing for a variety of reasons. We

observed in the previous chapter that the basic notion of equilibrium is a subgame perfect

equilibrium, but that these equilibria are, in general, hard to compute. Intriguing structural

properties can be derived for the equilibria of sequential auctions, but the recursive nature

of this structure makes reasoning about equilibria complex. It follows that prescriptions

(if such prescriptions can be computed) derived from the complete information setting,

as studied in the aforementioned papers, are unlikely to extend reliably to more practical

settings with incomplete information.

What strategy, then, as a participant in a sequential auction, should you use instead?

Our goal in this section is to analyze one fundamental strategy that may be employed by

a bidder in these auctions. We study this problem from the perspective of Bidder 1 in

the following very general incomplete information setting. What is the maximum risk-

free profit that Bidder 1 can guarantee for herself in a multi-item auction? Here, Bidder 1

knows her own entire valuation function but does not know the valuation function of

the other agents. Clearly, if the other agents’ bids are unrestricted then no guarantee is
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possible. Consequently, we impose a mild assumption on the other agents: Bidder i can

spend at most some fixed budget Bi over the course of the multi-item auction. We will see

that the critical case to analyze is when there are just two bidders (Bidder 1 and Bidder 2).

We also assume that the only information Bidder 1 has on the other bidder is an estimate

that his value for the entire collection of items is at most B2; beyond this trivial upper

bound, she has no specific information on the values the other bidder has for any subset

of the items.

In the worst case, to maximize her guaranteed profit, we can model this problem as

Bidder 1 competing in the auction against a single adversary who is incentivized to keep

Bidder 1’s utility low, and is willing to spend at most his budget B2. This type of ap-

proach is analogous to that of a safety strategy in bimatrix games. This worst-case setting

then corresponds to a special case of an auction with externalities, where Bidder 2 has

no value for the items themselves, but is willing to bid on the items simply to prevent

Bidder 1 from acquiring them. This situation often arises in practice, including in crucial

matters of public safety and foreign policy. Jehiel et al. [48], in motivating their work

on auctions with externalities, describe the situation in Ukraine after the breakup of the

USSR: Ukraine inherited a huge nuclear arsenal, and Russia and the United States, while

having no direct interest in acquiring Ukraine’s weapons, were forced into action by the

imminent danger of nuclear proliferation. In total, both countries paid billions of dollars

in order for Ukraine to agree to dismantle its weapons and become a non-nuclear state.

In this work, we study the above auction setting and quantify the maximum risk-free

profitability when the valuation function of Bidder 1 belongs to the class of subadditive

(complement-free) functions and its subclasses. Interestingly, given the valuation class,

tight bounds can be obtained that depend only on B1 (the value Bidder 1 has for the entire

set of items) and B2. For example, the risk-free profitability of the class of fractionally

subadditive (XOS) valuation functions is (
√
B1 −

√
B2)

2, for B2 ≤ B1, and this bound is

tight. Similarly, we present tight (but more complex) bounds for the class of subadditive

valuation functions when the items are identical. We also analyze simultaneous auctions,
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for which we show that the risk-free profitability of the XOS class is at least (B1−B2)2

2B1
and

(B1 −B2) for first-price and second-price auctions, respectively.

As seen in the previous chapter, there is an extensive literature on sequential auctions.

The study of incomplete information games was initiated by Milgrom and Weber [60,

78]. Theoretical studies on equilibria in complete information games include [37, 64, 63].

Given the abundance of sequential auctions in practice, there is also a very large empirical

literature covering an assortment of applications ranging from antiques [42] to wine [7]

and from fish [38] to jewellery [28].

Recently there has been a strong focus in the computer science community on the

design of simple mechanisms. For multi-item auctions, simultaneous auctions are a no-

table example. These auctions are simple in that, as with a sequential auction, a standard

single-item auction mechanism is used to sell each item. But in contrast with the sequen-

tial case, as the nomenclature suggests, these auctions are now held simultaneously rather

than sequentially. Important streams of research in this area are concerned with the price

of anarchy in simultaneous auctions and the hardness of computing an equilibrium (see,

for example, [29, 19, 45, 33, 24]).

There has also been a range of papers examining the welfare of equilibria in sequen-

tial auctions. Paes Leme et al. [64] study the case of multi-bidder auctions. For sequential

first-price auctions, they prove a factor 2 approximation guarantee for unit-demand bid-

ders. In contrast, they show that equilibria can have arbitrarily poor welfare guarantees

for bidders with submodular valuations. Feldman et al. [34] extend this result to the case

where each bidder has either a unit-demand or additive valuation function.

Partly because of these negative results, a common assumption is that sequential auc-

tions may not be a good mechanism by which to sell a collection of items. However, there

are reasons to believe that, in practice, sequential auctions have the potential to proffer

high welfare. For example, consider the influential paper of Lehmann et al. [54]. There,

they present a simple greedy allocation mechanism with a factor 2 welfare guarantee for

allocating items to agents with submodular valuation functions. One interesting impli-
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cation of this result is that if the items are sold via a second-price sequential auction and

every agent (assuming submodular valuations) truthfully bids their marginal value in

each round then the outcome will have at least half the optimal social welfare.

In Section 3.1 we explain the sequential auction model and related definitions. We

present our measure, the risk-free profitability of a bidder in incomplete information

multi-bidder auctions, and explain how to quantify it via a two-bidder adversarial se-

quential auction. In Section 3.2 we present a simple sequential auction example (uniform

additive auctions) to motivate the problem and to illustrate the difficulties that arise in de-

signing risk-free bidding strategies, even in very small sequential auctions with at most

three items.

Section 3.3 and Section 3.4 contain our main results. In Section 3.3 we begin by pre-

senting tight upper and lower bounds on the risk-free profitability of a fractionally sub-

additive (XOS) bidder. For the lower bound, in Section 3.3.1 we exhibit a bidding strategy

that guarantees Bidder 1 a profit of at least (
√
B1 −

√
B2)

2.

In Section 3.3.2 we describe a sequence of sequential auctions that provide an upper

bound that is asymptotically equal to the aforementioned lower bound as the number

of items increases. We prove these bounds for first-price sequential auctions, but nearly

identical proofs show the bounds also apply for second-price sequential auctions. Next we

prove that the risk-free profitability of an XOS bidder is lower in sequential auctions than

in simultaneous auctions. Equivalently, a budgeted adversary is stronger in a sequential

auction than in the corresponding simultaneous auction. Specifically, in Section 3.3.3, we

prove that an XOS bidder has a risk-free profitability of at least (B1−B2)2

2B1
in a first-price

simultaneous auction and of at least B1 − B2 in a second-price simultaneous auction.

Several other interesting observations arise from these results. First, unlike for sequen-

tial auctions, the power of the adversary differs in a simultaneous auction depending

on whether a first-price or second-price mechanism is used: the adversary is stronger

in a first-price auction. Second, the risk-free strategies we present for simultaneous auc-

tions require no information about the adversary at all. The performance of the strategy
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(its risk-free profitability) is a function of B2, but the strategy itself does not require that

Bidder 1 have knowledge of B2 (nor an estimate of it). Third, for the case of first-price

simultaneous auctions, it is necessary that Bidder 1 use randomization in her risk-free

strategy. Finally, in Section 3.4 we study the risk-free profitability of a bidder with a sub-

additive valuation function. We give a possible explanation for why simple strategies fail

to perform well in the general case. We then examine the special case where the items are

identical. We derive tight lower and upper bounds for this setting.

3.1 The Model

3.1.1 Sequential Auctions and Valuation Functions

There are n bidders and a collection I = {a1, . . . , am} of m items to be sold using a sequen-

tial auction. In the ℓth round of the auction item aℓ is sold via a first-price (or second-price)

auction. We view the auction from the perspective of Bidder 1 who has a publicly-known

valuation function v1 : 2I → R≥0 that assigns a non-negative value to every subset of

items. We denote v1 by v where no confusion arises. This valuation function is assumed

to satisfy v(∅) = 0 and to be monotone, that is, v(S) ≤ v(T ), for all S ⊆ T . When all the

items have been auctioned, the utility or profit π1 of Bidder 1 is her value for the set of

items she was allocated minus the sum of prices of these items.

The sequential auction setting is captured by extensive form games. A strategy for

player i is a function that assigns a bid bti for the item at that depends on the previous bids

{bτi }i,τ<t of all players, and on the allocation of the first t− 1 items. The profit of a strategy

profile b for Bidder 1 is the profit Bidder 1 obtains when all bidders bid according to b.

The question we then study is how much profit Bidder 1 can guarantee for herself.

We examine the case where v is in the class of subadditive or complement-free valuation

functions. Belonging to this class, of particular interest in this work are additive functions,

submodular functions, and fractionally subadditive or XOS functions. These functions are

defined as follows.
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• Subadditive (Complement-Free). A function v is subadditive if v(S ∪ T ) ≤

v(S) + v(T ) for all S, T ⊆ I .

• Additive (Linear). A function v is additive if v(S) =
∑

a∈S v(a) for each S ⊆ I .

• Submodular (Decreasing Marginal Valuations). A function v is submod-

ular if v(S ∪ T ) + v(S ∩ T ) ≤ v(S) + v(T ) for all S, T ⊆ I .

• Fractionally Subadditive (XOS). A function v is fractionally subadditive

if there exists a nonempty collection of additive functions {γ1, . . . , γℓ} on I such that

for every S ⊆ I , v(S) = maxj∈[ℓ] γj(S).1

Lehmann et al. [54] showed that these valuation classes form the following hierarchy:

ADDITIVE ⊆ SUBMODULAR ⊆ FRACTIONALLY SUBADDITIVE ⊆ SUBADDITIVE

Other important classes in this hierarchy include unit-demand and gross substitutes

valuation functions, but they will not be needed here.

3.1.2 Simultaneous Auctions

The simultaneous auction setting is similar to the sequential auction setting in that there

are n bidders and a collection I = {a1, . . . , am} of m items to be sold. Each bidder makes a

bid on each item. Unlike the sequential case, there is now a single time period. Thus each

bidder makes a vector of m bids – one for each item – simultaneously.

3.1.3 Bidding against an Adversary

To quantify the maximum profit that Bidder 1 can obtain, without loss of generality, we

may normalize the valuation function (and corresponding auction) by scaling the values so

that v(I) = v1(I) = 1. Now the maximum guaranteed profit will depend on the strength

of the other bidders. We quantify this by a parameter B: in the setting where each player

1This is the standard definition of XOS functions. Fractionally subadditive functions are defined in terms
of fractional set covers; the equivalence between fractionally subadditive and XOS functions was shown by
Feige [32].
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j ≥ 2 has valuation function vj , B is the sum of the total values of the other bidders, i.e.,

B =
∑n

j=2 vj(I). This corresponds to an incomplete information auction where the only

common knowledge are upper bounds on the value each agent has for the entire set of

items. From the perspective of Bidder 1, it is apparent that the worst case arises when

n = 2, and so B = B2 = v2(I). Thus we may assume that n = 2, and we can view

Bidder 1 as playing against an adversary with a budget B. To see this, observe that for a

fixed B =
∑n

j=2 vj(I) if there are n >= 3 bidders then the worst case for Bidder 1 arises

when the other bidders coordinate to act as a single adversary: however, if the budget

is split between two or more other bidders then their ability to buy a single item of high

value is potentially removed.

Thus, Bidder 1 seeks a strategy that works well against a rational bidder who, by

monotonicity, has a value at most B for any subset of the items. We model the game

that we will analyze as a zero-sum game with the following properties. Bidder 1’s payoff

in this game is simply her profit π1 from the auctions, that is, her value for the set that

she is allocated minus the sum of the prices of the items. Since Bidder 2 is viewed as an

adversary, and the game is zero-sum, his payoff in this game, π2, is equal to−π1. Bidder 2

can evaluate his payoff during the game, i.e., Bidder 1’s valuation function is common

knowledge. Additionally, here the adversary’s budget constraint is tight: for example,

in the sequential case, in time step t, if Bidder 2 paid pt−1
2 for the items that have already

sold, then his next bid bt2 is at most B−pt−1
2 . We call this the risk-free sequential auction game

R(v,B). The guaranteed profit for Bidder 1 is the minimum profit obtainable by playing

a safety strategy in this game (i.e. the value of this game). For any normalized valuation

v, we denote this profit by π∗
1(v,B), or simply π∗

1 where there is no ambiguity. For any

class of set functions C and any budget B ∈ (0, 1), we want to find the maximum profit

Bidder 1 can guarantee in all m-item instances R(v,B) where v ∈ C, which is precisely

minv∈C π
∗
1(v,B). We call this the risk-free profitability P(C, B) of the class C. For a budgeted

adversary in a simultaneous auction, the analogue of this budget-constrained bidding is

that the sum of the adversary’s bids on the items is at most the budget B. We define
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risk-free profitability analogously for simultaneous auctions. The focus of this work is to

quantify the risk-free profitability of the aforementioned classes of valuation functions for

both sequential and simultaneous auction mechanisms. We note that for the sequential

setting, in the course of our proofs we will show implicitly that the aforementioned zero

sum game has a subgame perfect equilibrium in pure strategies. Consequently this is the

solution concept that we will analyze for our main result.

Table 3.1 summarizes our obtained bounds by auction type, where the valuation func-

tions of the agents are normalized as described previously.

Valuation Class Lower Bound Upper Bound
Sequential Auctions (First- and Second-Price)

Additive (1−
√
B)2 (1−

√
B)2

Submodular (1−
√
B)2 (1−

√
B)2

XOS (1−
√
B)2 (1−

√
B)2

Subadditive (Identical) t∗(B)
t∗(B), B ∈ (0, 1

4
)

(1−
√
B)2, B ∈ [1

4
, 1)

Simultaneous Auctions (First-Price)

XOS
1−B2, B ∈ (0, 3− 2

√
2)

(1−B)2

2
, B ∈ [3− 2

√
2, 1)

1− 2B, B ∈ (0, 1
4
)

2
3
(1−B), B ∈ [1

4
, 1)

Simultaneous Auctions (Second-Price)
XOS (1−B) (1−B)

Table 3.1: Valuation Classes and their Risk-Free Profitability

3.2 Example: Uniform Additive Auctions

We now present a simple example of a sequential auction with an agent (Bidder 1) that

strategizes against an adversary (Bidder 2), which will be helpful for two reasons. First, it

illustrates some of the strategic issues facing the agent and, implicitly, the adversary in a

sequential auction. Second, these examples form base cases in our proof in Section 3.3.2.

The auction is defined as follows. Bidder 1 has an additive valuation function where

each item has exactly the same value. That is, for an auction with m items, we have that

v(at) =
1
m

. The adversary Bidder 2 has a budget B. We call this the uniform additive auction
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on m items and denote it by Am. For our example, we are interested in uniform additive

auctions where m ≤ 3. We denote by bji Bidder i’s bid on item j.

One Item. First, consider the case A1. We have a single item a1 with v({a1}) = 1 for

Bidder 1. Let b1 and b2 be the bids placed on the item by Bidders 1 and 2, respectively.

Clearly if b1 < B then the adversary’s best response is to bid b2 = b+1 and win the item.

Then π1 = π2 = 0. On the other hand, if b1 ≥ B, then the adversary is constrained by his

budget and cannot beat Bidder 1. Thus Bidder 1 wins and obtains a profit of π1 = 1− b1.

It follows that Bidder 1’s risk-free strategy is to bid B and win the item at price B for a

guaranteed profit of π∗
1 = 1 − B. Clearly, if B ≥ 1 then π∗

1 = 0 since the adversary can

prevent Bidder 1 from winning the item. Specifically, we have shown

π∗
1 =

 1−B if 0 ≤ B < 1

0 if 1 ≤ B
. (3.1)

Two Items. Now consider the case A2. So there are two items a1 and a2 and Bidder 1

has an additive valuation function with v({a1}) = v({a2}) = 1
2

and v({a1, a2}) = 1. We

divide our analysis into three cases.

• B < 1
4
: If B < 1

4
, then Bidder 1 can bid B on each item and win both items at price B

each, so her guaranteed profit is at least 1− 2B > 1
2
. If Bidder 1 bids less than B on

either item, then Bidder 2 can win that item, ensuring that Bidder 1’s profit is less

than her value of the other item, that is 1
2
. Bidder 1’s risk-free strategy is thus to bid

B on both items for a profit π∗
1 = 1− 2B.

• 1
4
≤ B < 1

2
: If Bidder 1 bids b11 = d on a1, with 0 ≤ d ≤ 1

2
, then Bidder 2 can either

win by bidding b12 > d or lose by bidding b12 < d (for now, we assume d < B). In the

former case, the adversary’s budget in the second auction is B−b12, and there is only

one item remaining. Then, reasoning as we did for the one item setting, it is easy to

see that Bidder 1’s profit from the second item is π1 = 1
2
− (B − b12) = 1

2
− B + b12.

This is minimized (with value 1
2
−B + d) when Bidder 2 bids an amount negligibly
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larger than d. In the latter case, the adversary loses the first item, so he has budget

B in the second auction. Bidder 1’s combined profit (on both items) is then π1 =

(1
2
− d) + (1

2
− B) = 1 − B − d. For d = 0 we have 1

2
− B + d < 1 − B − d and for

d = B we have 1
2
− B + d ≥ 1− B − d, since B ≥ 1

4
. But 1

2
− B + d is increasing in d

and 1−B−d is decreasing in d. Therefore, assuming Bidder 2 plays a best response,

we see that π1 is maximized when the minimum of these values is maximized. That

is π∗
1 = max0≤d<B min

[
1
2
−B + d, 1−B − d

]
. The optimal choice is d = 1

4
giving

π∗
1 = 3

4
− B. Note that our assumption that d < B is validated: if Bidder 1 bids an

amount d that is greater than or equal to B on the first item the she will win both

items for a total profit (1
2
− d) + (1

2
−B) = 1− d−B ≤ 1− 2B ≤ 3

4
−B.

• 1
2
≤ B < 1: Suppose Bidder 1 bids b11 = d on a1, with 0 ≤ d ≤ 1

2
, then Bidder 2

can either win by bidding b12 > d or lose by bidding b12 < d. In the former case,

the adversary’s budget in the second auction is B − b12, so Bidder 1’s profit from

the second item is π1 = 1
2
− (B − b12) =

1
2
− B + b12. This is minimized (with value

1
2
−B+ d) when Bidder 2 bids an amount negligibly larger than d. In the latter case,

the adversary loses the first item, so he still has budget B for the second auction.

Thus Bidder 1 loses the second item and makes no profit on it. Bidder 1’s total profit

is then 1
2
− d. Since 1

2
−B+ d is increasing in d and 1

2
− d is decreasing in d, her profit

π1 is maximized at d = B
2

. This gives a maximum guaranteed profit of π∗
1 = 1

2
− B

2
.

Putting this all together we have that

Budget 0 ≤ B < 1
4

1
4
≤ B < 1

2
1
2
≤ B < 1 1 ≤ B

Profit π∗
1 1− 2B 3

4
−B 1

2
− B

2
0

(3.2)

Before proceeding to the case of the uniform additive auction with three items, we em-

phasize that even the very simple case A2 illustrates many of the strategic considerations

that arise in more complex sequential auctions. To wit, in the first time period Bidder 1

faces the standard conundrum that bidding high increases her chances of winning but at
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the expense of receiving a smaller profit if she does win. More interestingly, in this ad-

versarial setting, Bidder 1 has an additional incentive for bidding high. If she bids high

and loses then she faces a weaker adversary in the subsequent time period. That is, by

winning the first item at a high price the adversary’s budget is significantly reduced in

the auction for the second item. Counterintuitively, therefore, in adversarial sequential

actions, Bidder 1 has an incentive to lose some of the items!

Interestingly, the adversary has perhaps even stronger incentives to lose than Bidder 1.

Whilst winning the first item does hurt Bidder 1, by reducing his budget, this also reduces

the strength of the adversary in the subsequent round. Thus, the optimal outcome for

adversary is that he lose the first item at a high price; this keeps the profit of Bidder 1 low

and increases the relative strength of the adversary in the second auction. This is in stark

contrast with the simultaneous case, where both Bidder 1 and the adversary always have

an incentive to win every item.

We remark that these basic motivations and incentives play a fundamental role in

sequential auctions with many items. We now proceed to the case A3 of three items.

Three Items. Now there are three items a1, a2 and a3 and Bidder 1 has an additive val-

uation function with v({a1}) = v({a2}) = v({a3}) = 1
3
. Applying a similar case analysis,

her maximum guaranteed profits are then:

Budget Profit π∗
1

0 ≤ B < 1
9 1− 3B

1
9 ≤ B < 1

6
8
9 − 2B

1
6 ≤ B < 1

3
7
9 −

4B
3

1
3 ≤ B < 5

9
7
12 −

3B
4

5
9 ≤ B < 2

3
4
9 −

B
2

2
3 ≤ B < 1 1

3 −
B
3

1 ≤ B 0

(3.3)
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We remark that this profit function is still piecewise linear and is so for Am in general.

However the complexity of the profit function grows rapidly as the number of items

increases.

3.3 Tight Bounds for XOS Valuation Functions

In this section we prove tight bounds on the risk-free profitability of Bidder 1 with a

fractionally subadditive (XOS) valuation function. In Sections 3.3.1 and 3.3.2 we study

the sequential auction setting, and in Section 3.3.3 we consider the simultaneous case.

Specifically, in Section 3.3.1, we show that the agent has a strategy in the normalized

auction that gives a guaranteed profit of (1 −
√
B)2 when the adversary has a budget of

B. This is equivalent to a profit of (
√
B1 −

√
B2)

2 in the original (unnormalized) auction.

Then, in Section 3.3.2, we prove that no strategy can guarantee a profit that is greater than

this by an (asymptotically zero) additive quantity.

3.3.1 The XOS Lower Bound

It is quite straightforward to obtain a lower bound on the profitability of Bidder 1 when

she has an XOS valuation function. She simply chooses the additive function that maxi-

mizes her valuation under the assumption that she wins every item. Then, for each item,

she bids a fixed fraction of the value of this item under this additive function. For any

XOS valuation, this strategy guarantees a profit of at least (1 −
√
B)2 against any strat-

egy utilized by an adversary with a budget of B ∈ (0, 1). Consequently, we have the

following.

Theorem 3.3.1. P(XOS,B) ≥ (1−
√
B)2.

Proof. Let I = {a1, . . . , am} be the set of auctioned items, and v be Bidder 1’s XOS val-

uation function on I . Since v is XOS, there is a set {γ1, γ2, . . . , γℓ} of (normalized) ad-

ditive set functions on I such that for any S ⊆ I we have v(S) = maxi∈[ℓ] γi(S). Let
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γ∗ = argmaxi∈[ℓ] γi(I) be an additive function that induces the value of v on the entire set

of items I . Thus v(I) = γ∗(I). Moreover, by definition of v, we have that

v(S) ≥ γ∗(S) ∀S ⊆ I. (3.4)

Now consider the following strategy for Bidder 1. In time period t let Bidder 1 place a

bid of bt1 =
√
B · γ∗(at) on item at ∈ I , for all t ∈ [m]. Let I1 ⊆ I be the set of items won

by Bidder 1 at the end of the auction (that is, by the end of time period m). Similarly let

I2 ⊆ I be the set of items won by Bidder 2 at the end of the auction. Therefore I1 ∪ I2 = I

and, by the additivity of γ∗, we have

γ∗(I1) + γ∗(I2) = 1. (3.5)

It follows that during the sequential auction the adversary spent

∑
t∈I2

bt2 ≥
∑
t∈I2

bt1 =
∑
t∈I2

√
B · γ∗(at) =

√
B ·
∑
t∈I2

γ∗(at) =
√
B · γ∗(I2). (3.6)

Here the inequality arises because Bidder 2 won the items in I2. The first equality follows

by the definition of Bidder 1’s safety strategy and the third equality follows by the addi-

tivity of γ∗. But the adversary has a total budget of B. Therefore, together this budget con-

straint on Bidder 2 and Inequality (3.6) imply that
√
B · γ∗(I2) ≤ B. Hence, γ∗(I2) ≤

√
B.

From Equation (3.5) we then derive that

γ∗(I1) ≥ (1−
√
B). (3.7)

Now define π1 to be the total profit obtained by Bidder 1 using this safety strategy. Then

π1 = v(I1)−
∑
t∈I1

bt1 = v(I1)−
∑
t∈I1

√
B · γ∗(at)

= v(I1)−
√
B · γ∗(I1) ≥ (1−

√
B) · γ∗(I1). (3.8)
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Here the inequality follows from the property (3.4) applied to the subset I1. Finally, com-

bining (3.7) and (3.8) gives π1 ≥ (1−
√
B)2, as required.

Next we will show this bound is tight by providing a construction where the adversary

has a strategy limiting the profitability of Bidder 1 to this quantity. This is surprising

because the bidding strategy described above is non-adaptive – it does not adapt to the

history of the auction. Given the extra flexibility afforded by adaptive strategies, one

would expect a priori the optimal risk-free strategy to be adaptive. In fact, the result

that follows from this construction is doubly surprising, as it holds even if the adversary

commits to his deterministic strategy in advance and Bidder 1 is allowed to randomize

her strategy. Unlike the simultaneous case (which we discuss later), in this sequential

setting the simple bidding strategy presented above is optimal for Bidder 1, and she can

obtain no improvement with an adaptive or randomized strategy.

3.3.2 The XOS Upper Bound

In this section we present a matching upper bound, showing that the highest guaran-

teed profit of a risk-free strategy in a normalized two-player sequential auction with an

XOS valuation is within a 1√
m

-additive factor of our lower bound. To do this, we present

a sequential auction with an XOS valuation function where the game value is at most

(1 −
√
B)2 + 1√

m
. In fact, rather surprisingly, this upper bound applies even for additive

valuation functions. Specifically, we prove that for the uniform additive auction Am the

adversary has a strategy that ensures that the profit of Bidder 1 is at most (1−
√
B)2+ 1√

m
.

Consequently, the upper bound applies to every class of valuation functions that contains

the additive functions. Together with the lower bound, this resolves the profitability of

several well-studied classes, including the additive, submodular and gross substitutes

valuation classes. We will see later on, in Section 3.4, that the situation is not as simple for

subadditive valuations (that are not contained in XOS). We denote by XOSm the class of
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XOS functions on m items. The following theorem, together with the lower bound, gives

our main result: P(XOS,B) is asymptotically equal to (1−
√
B)2 when B ∈ (0, 1).

Theorem 3.3.2. P(XOSm, B) ≤ (1−
√
B)2 + 1√

m
.

Proof. We prove this result by induction on m. To do this, we start with a simple ob-

servation: after the first item has been sold in the uniform additive auction Am then the

sequential auction on items {a2, . . . , am} is simply the auctionAm−1 but with the additive

values scaled by a multiplicative factor m−1
m

; that is, the agent now has a value 1
m

for each

item rather than 1
m−1

as in the unscaled Am−1. Consequently, by appropriately scaling

the values and the budget of the adversary we will be able to analyze the auction Am by

studying the first round of that auction and then applying induction on the remaining

rounds.

Formally, for any positive integer m let fm : R≥0 → [0, 1] be a function giving the high-

est guaranteed profit fm(x) of a risk-free strategy given that the adversary has a budget

B = x. Clearly, for all m, we have that fm(0) = 1 and that fm(x) = 0 for any x ≥ 1. Set

f(x) = (1−
√
x)2. Then we want to prove by induction that

fm(x) ≤ f(x) +
1√
m

∀m ≥ 1,∀x ∈ (0, 1). (3.9)

Base Cases: For the base cases, consider m ∈ {1, 2, 3}. Note that we have already

studied the auctions A1,A2 and A3 in Section 3.2. Specifically, we found thatf1(x) =

(1− x), and that f2(x) is given by (3.2) and f3(x) is given by (3.3). It can be easily verified

(see Figure 3.1) that each of the above functions fm(x), m ∈ {1, 2, 3}, is at most f(x) + 1√
m

,

for any x ∈ [0, 1]. Consequently, the base cases hold.

Induction Hypothesis: Assume that fk(x) ≤ f(x) + 1√
k

for all k < m.

Induction Step: Given the induction hypothesis we will now prove that fm(x) ≤

f(x) + 1√
m

. We will present a strategy for the adversary and prove that this strategy

guarantees that Bidder 1 cannot make a profit greater than f(x) + 1√
m

in the uniform
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3
and f3(x)

additive auction Am. Specifically, we consider the auction for the first item a1 in Am, and

we let b12 = α · 1
m

be the adversary’s bid on this item. Since Bidder 1 has an additive value

1
m

for this item, the adversary will never make a bid b12 > 1
m

. Thus we may assume that

the adversary makes a bid b12 = α · 1
m

for some 0 ≤ α ≤ 1. We then show that for some

particular choice of α, even with an optimal response Bidder 1 does not make a profit

greater than f(x) + 1√
m

. In determining her optimal response, Bidder 1 faces the dilemma

of whether or not to outbid the adversary. Thus we have two possibilities:

• Bidder 1 wins item a1.

In this case it is easy to see that Bidder 1 will bid b11 = b1+2 (which is b12+ϵ for any negligibly

small ϵ) as any higher bid will lead to a strictly smaller profit as this is a first-price auction.

Thus, Bidder 1 makes an immediate profit of 1
m
−α · 1

m
= 1−α

m
on the first item. The rest of

the sequential auction is a scaled version of Am−1. As discussed, the additive valuations

of Bidder 1 are scaled by a multiplicative factor of m−1
m

. Moreover, the budget of the

adversary is also scaled. As the adversary lost the first item his budget remains x, which

corresponds to a budget of B = m
m−1
· x in the scaled auction Am−1. Therefore, given that

the bidders play optimal strategies in the remaining rounds, the maximum profit Bidder 1

can make is:

gm(x, α) =
1− α

m
+

m− 1

m
· fm−1

(
mx

m− 1

)
. (3.10)
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• Bidder 1 loses item a1.

If Bidder 1 loses the first item, then Bidder 1 makes no profit on a1. Any bid b11 < b12

will lose the item. Since this is a first-price auction the adversary will pay b12 if he wins

regardless of the bid of Bidder 1. Thus Bidder 1 is indifferent between any bids less

than b12. Then, after the first round we again have a scaled version of Am−1 where the

valuations of Bidder 1 are scaled by a factor of m−1
m

. As the adversary won the first item

for a price b12 = α · 1
m

his budget is now x − α · 1
m

, which corresponds to a budget of

B = m
m−1
·
(
x− α

m

)
= mx−α

m−1
in the scaled auction Am−1. Therefore, given that the bidders

play optimal strategies in the remaining rounds, the maximum profit Bidder 1 can make

is:

hm(x, α) =
m− 1

m
· fm−1

(
mx− α

m− 1

)
. (3.11)

Evidently, the best response of Bidder 1 to a bid b12 = α · 1
m

is given by the maximum

of gm(x, α) and hm(x, α). Thus, the adversary should select α to minimize this maximum.

Specifically,

fm(x) = min
0≤α≤1

max
(
gm(x, α) , hm(x, α)

)
= min

0≤α≤1
max

(
1− α

m
+

m− 1

m
fm−1

(
mx

m− 1

)
,
m− 1

m
fm−1

(
mx− α

m− 1

))
.

Thus, our goal is to prove that there exists a bid b12 = α̃ · 1
m

by the adversary such that

both gm(x, α̃) and hm(x, α̃) are at most f(x) + 1√
m

. This will ensure that the maximum

guaranteed profit of Bidder 1 is fm(x) ≤ f(x) + 1√
m

as required.

Our proof of this fact requires examination of three cases depending upon the magni-

tude of the budget of the adversary. In the first two cases, where the adversary has either

a very low budget or a very high budget we can compute exactly the bids that Bidder 1

will make in her unique risk-free strategy. These two cases do not require the induction

hypothesis (nor consideration of the functions gm(x, α̃) and hm(x, α̃)) but constitute a part

of our inductive step. The third case, where the adversary has an intermediate budget, is

more difficult and represents one of the main technical contributions of this work.
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Low Budget Case: 0 ≤ x < 1
m2 .

When the adversary’s budget x is less than 1
m2 then a risk-free strategy for Bidder 1 is to

bid bt1 = x on item at, for every t ∈ [m] (that is, Bidder 1 bids the entire budget of the

adversary on each item). Bidder 1 will then win all of the items for a guaranteed profit of

1−m ·x. On the other hand if Bidder 1 bids an amount smaller than x on some item, then

the adversary can win this item. Even if Bidder 1 wins all the remaining items her profit

cannot exceed the total additive value of these remaining items which is (m−1)· 1
m

= 1− 1
m

.

Because x < 1
m2 , we have that 1− 1

m
< 1−m ·x. As this is a first-price auction, Bidder 1 can

never benefit by bidding strictly more than x on any item. If follows that the maximum

profit the Bidder 1 can obtain is fm(x) = 1−m · x.

It remains to show that 1 −mx ≤ (1 −
√
x)2 + 1√

m
in this low budget case where 0 ≤

x < 1
m2 . We prove this statement by partitioning the interval [0, 1

m2 ) at the two points 1
1.4m2

and 1
1.1m2 into a collection of three sub-intervals I = {[0, 1

1.4m2 ), [
1

1.4m2 ,
1

1.1m2 ), [
1

1.1m2 ,
1
m2 )}.

We can then verify separately in each sub-interval that when x falls inside this interval,

we have 1−mx ≤ (1−
√
x)2 + 1√

m
.

For any sub-interval in this collection, let c(m) and d(m) be the endpoints of the sub-

interval. When c(m) ≤ x < d(m), we have

(1−
√
x)2 +

1√
m

= 1 + x− 2
√
x+

1√
m

≥ 1 + c(m)− 2
√
d(m) +

1√
m

≥ 1 ≥ 1−mx.

Here the first inequality arises because x ≥ c(m) and x < d(m); the second inequality

applies when m = 3 and [c(m), d(m)) ∈ I. Now it is easy to verify that since c(m) −

2
√
d(m) + 1√

m
= 0 has no real roots greater than 3 for every [c(m), d(m)) ∈ I, we have

1 + c(m) − 2
√

d(m) + 1√
m

> 1 for all m > 3. Thus we have 1 −mx ≤ (1 −
√
x)2 + 1√

m
for

all values of x in the interval [0, 1
m2 ).
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High Budget Case: m−1
m

< x ≤ 1.

Suppose that the budget x of the adversary is between m−1
m

and 1. Then a risk-free strategy

for Bidder 1 is to bid bt1 = x
m

on item at for every t ∈ [m]. The guaranteed profit of this

strategy is 1−x
m

because Bidder 1 will win exactly one item using this strategy. To see this,

observe that if the adversary wins the first item at the price x
m

then his scaled budget in

the subsequent subgame is exactly m
m−1
· (x− x

m
) = x. If the adversary loses the first item

then his scaled budget in the subsequent subgame is m
m−1
· x > m

m−1
· m−1

m
= 1; so the

adversary will win all the remaining items and hence Bidder 1 cannot win more than one

item. But iterating this argument we see that if the adversary wins all of the first m − 1

items then his (unscaled) budget for the final item is just x
m

and so Bidder 1 will win the

final item for a profit of 1−x
m

as required. It is easy to see that no bidding strategy for

Bidder 1 guarantees a higher profit: with lower bids, Bidder 2 wins each item and ends

up with a higher budget in the subsequent subgames; with higher bids, Bidder 1 wins a

single item for smaller profit.

It remains to show that fm(x) = 1−x
m
≤ (1−

√
x)2 + 1√

m
when m−1

m
< x ≤ 1. We have

(1−
√
x)2 +

1√
m

= 1 + x− 2
√
x+

1√
m

≥ 1 +
m− 1

m
− 2 +

1√
m

=
1√
m
− 1

m

≥ 1

m2
≥ 1− x

m
.

Above, the first inequality holds because m−1
m

< x ≤ 1; the second inequality holds when

m ≥ 3; the third inequality holds since x > m−1
m

. Thus we have 1−x
m
≤ (1 −

√
x)2 + 1√

m

when m−1
m

< x ≤ 1.

Intermediate Budget Case: 1
m2 ≤ x ≤ m−1

m
.

Recall that by the induction hypothesis fm−1(x) ≤ f(x) + 1√
m−1

. Our goal now is to prove

that fm(x) = min0≤α≤1 max
(
gm(x, α) , hm(x, α)

)
≤ f(x)+ 1√

m
when 1

m2 ≤ x ≤ m−1
m

. Rather
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than calculate fm(x) exactly, our approach is to find a feasible choice α̃ for the adversary

that ensures that both gm(x, α̃) and hm(x, α̃) are at most f(x)+ 1√
m

. To do this, we begin by

investigating the properties of the functions gm(x, α) and hm(x, α). Using these properties,

we find a candidate choice α̃ which we first prove is feasible and second prove gives the

desired upper bound.

Let’s start by showing that gm(x, α) and hm(x, α) are both monotonic functions. To see

this, observe that, for any fixed m, since the valuation function is additive and the space

of available strategies for the adversary is constrained only by his budget, any strategy

that is available to adversary with budget x̄ < x is also available when his budget is x.

Hence, the function fm is non-increasing in x. Therefore gm(x, α) is non-increasing in α

and hm(x, α) is non-decreasing in α, for any fixed x.

Now the minimum choice the adversary can make for α is zero. So suppose the adver-

sary bids b12 = α 1
m

for the item a1 with α = 0. Then clearly gm(x, 0) =
1
m
+ m−1

m
fm−1

(
mx
m−1

)
and hm(x, 0) =

m−1
m

fm−1

(
mx
m−1

)
. Consequently, gm(x, 0) ≥ hm(x, 0).

On the other hand, consider the maximum choice the adversary can make for α. We

denote this value by αmax. We have two cases.

• x ≥ 1
m

Then the adversary may set α = 1 and bid 1
m

on the first item. In this case, both

gm(x, 1) and hm(x, 1) are well defined, and we have gm(x, 1) =
m−1
m

fm−1

(
mx
m−1

)
and

hm(x, 1) =
m−1
m

fm−1

(
mx−1
m−1

)
. Because fm−1 is non-increasing, we have that gm(x, 1) ≤

hm(x, 1).

• x < 1
m

Now, by the budget constraint, the maximum possible value of α is mx. We want to

show that gm(x,mx) ≤ hm(x,mx). To see this, suppose the adversary bids x on the

first item (corresponding to the choice α = mx) and loses. Bidder 1 then makes a

profit of 1
m
− x on the first item. The adversary can subsequently play the following

strategy: bid x on every item until he wins an item. Of course, Bidder 1 will then win

the remaining items for free after the adversary wins one item, because the budget
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of the adversary has then fallen to 0. Now, if Bidder 1’s risk-free strategy is to win

all of the items at price at least x, her (absolute) profit in this subgame is at most(
m−1
m
− (m− 1)x

)
. If instead the adversary wins the kth item, where 1 ≤ k ≤ m− 1,

then Bidder 1’s profit is at most m−2
m
− (k − 1)x, which is maximized at k = 1 with

value m−2
m

. In both cases, Bidder 1’s total profit on all m items is either at most 1−mx

or at most m−1
m
− x. But these are both at most the profit Bidder 1 gets (namely, m−1

m
)

if she gives up the first item at price x and wins the remaining m− 1 items for free.

Thus gm(x,mx) ≤ hm(x,mx).

Set αmax to be the highest possible value of α for which both gm(x, α) and hm(x, α)

are well-defined for all x. Therefore αmax = min(1,mx). We have shown that gm(x, 0) ≥

hm(x, 0) and gm(x, αmax) ≤ hm(x, αmax). Then, because gm(x, α) is non-increasing in α and

hm(x, α) is non-decreasing in α for fixed x, our upper bound of max(gm(x, α), hm(x, α)) is

minimized at any bid ᾱ · 1
m

such that 0 ≤ ᾱ ≤ αmax and gm(x, ᾱ) = hm(x, ᾱ). This is also

precisely equal to a risk-free bid α∗ · 1
m

placed by Bidder 1 on the first item, since from her

perspective, if the adversary plays a best response then she gets the minimum of gm(x, α∗)

and hm(x, α
∗), and this minimum is maximized when they are equal.

We now use the above observations to establish an upper bound on the highest guar-

anteed profit of a risk-free strategy. For an appropriately chosen bid α̃ 1
m

, we prove that

both gm(x, α̃) and hm(x, α̃) are well-defined for all x ∈ [ 1
m2 ,

m−1
m

]. We then prove that both

these values are at most f(x) + 1√
m

. The facts rely on the four technical claims below.

The first two claims show that α̃ = 1−2m(1−
√
x)+2

√
m(m− 1)(1−

√
x). is a feasible

choice for α̃: specifically, 0 ≤ α̃ ≤ αmax. Let α̃ = 1− 2m(1−
√
x) + 2

√
m(m− 1)(1−

√
x).

We show the following.

Claim 3.3.3. For any x ∈ [ 1
m2 ,

m−1
m

], 0 ≤ α̃.

Proof. To prove that α̃ is non-negative, for x ∈ [ 1
m2 ,

m−1
m

], we require that

1− 2m(1−
√
x) + 2

√
m(m− 1)(1−

√
x) ≥ 0
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Equivalently, we want to show that

2 · (1−
√
x) ·

(
m−

√
m(m− 1)

)
≤ 1.

Since x ≥ 1
m2 , we have

2 · (1−
√
x) ·

(
m−

√
m(m− 1)

)
≤ 2 ·

(
1−

√
1

m2

)
·
(
m−

√
m(m− 1)

)
= 2 ·

(
m− 1

m

)
·
(
m−

√
m(m− 1)

)
= 2 ·

(
(m− 1)− (m− 1)

√
m− 1

m

)

= 2 · (m− 1) ·

(
1−

√
m− 1

m

)
.

Thus we must show that 2(m− 1)
(
1−

√
m−1
m

)
≤ 1. Equivalently we require that

m− 1

m
≥
(
1− 1

2 · (m− 1)

)2

= 1− 1

m− 1
+

1

4 · (m− 1)2

=
m− 2

m− 1
+

1

4 · (m− 1)2

To prove this, observe that m−1
m
− m−2

m−1
= 1

m·(m−1)
, for all m ≥ 2. Therefore

m− 1

m
=

m− 2

m− 1
+

1

m · (m− 1)

≥ m− 2

m− 1
+

1

4 · (m− 1)2

where the inequality holds for all m ≥ 2. This proves that α̃ ≥ 0.

Claim 3.3.4. For any x ∈ [ 1
m2 ,

m−1
m

], α̃ ≤ αmax.

Proof. We partition the proof into two cases.
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(i) Assume that x ≥ 1
m

. It follows that αmax = 1 and so we must show

1− 2m(1−
√
x) + 2

√
m(m− 1)(1−

√
x) ≤ 1

Equivalently, we require

2 · (1−
√
x) ·

(
m−

√
m(m− 1)

)
≥ 0

But this inequality holds because, by assumption, we have x ∈ [ 1
m
, m−1

m
]. In particular, for

m ≥ 2, we have both (1−
√
x) > 0 and (2m− 2

√
m(m− 1)) > 0.

(ii) Assume that x < 1
m

. It now follows that αmax = m · x and so we must show

1− 2m(1−
√
x) + 2

√
m(m− 1)(1−

√
x) ≤ m · x

Equivalently, we require

2 · (1−
√
x) ·

(
m−

√
m(m− 1)

)
+m · x− 1 ≥ 0.

To see this holds, observe that

2 · (1−
√
x) ·

(
m−

√
m(m− 1)

)
+m · x− 1

= mx− 2
√
x ·
(
m−

√
m(m− 1)

)
+
(
2 · (m−

√
m(m− 1))− 1

)
= mx− 2

√
mx ·

(√
m−

√
m− 1

)
+
(
2m− 1− 2 ·

√
m(m− 1)

)
=

(√
mx−

(√
m−

√
m− 1

))2
≥ 0

The claim follows.

So we have a feasible choice for α̃. To complete the proof that fm(x) ≤ f(x) + 1√
m

, we

now show that both gm(x, α̃) and hm(x, α̃) are at most f(x) + 1√
m

.
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Claim 3.3.5. gm(x, α̃) ≤ f(x) + 1√
m

.

Proof. By our induction hypothesis,

gm(x, α̃) =
1− α̃

m
+

m− 1

m
· fm−1

(
mx

m− 1

)
≤ 1− α̃

m
+

m− 1

m
·
(
f

(
mx

m− 1

)
+

1√
m− 1

)

Thus it suffices to show

1− α̃

m
+

m− 1

m
·
(
f

(
mx

m− 1

)
+

1√
m− 1

)
≤ f(x) +

1√
m

Equivalently, we require

f(x) +
1√
m
− 1− α̃

m
− m− 1

m
·
(
f

(
mx

m− 1

)
+

1√
m− 1

)
≥ 0

To prove this, observe that

f(x) +
1√
m
− 1− α̃

m
− m− 1

m

(
f

(
mx

m− 1

)
+

1√
m− 1

)
=
(
1 + x− 2

√
x
)
− 1− α̃

m
− m− 1

m

(
1 +

mx

m− 1
− 2

√
mx

m− 1

)
+

1√
m
−
√
m− 1

m

= 1 + x− 2
√
x− 1

m
+

α̃

m
− 1 +

1

m
− x+ 2

√
(m− 1)x

m

+
1√
m
−
√
m− 1

m

= −2
√
x+

α̃

m
+ 2

√
(m− 1)x

m
+

1√
m

(
1−

√
m− 1

m

)
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By the definition of α̃ we then have that

f(x) +
1√
m
− 1− α̃

m
− m− 1

m

(
f

(
mx

m− 1

)
+

1√
m− 1

)
= −2

√
x+

(
1

m
− 2 + 2

√
x+

2
√
m− 1√
m

(
1−
√
x
))

+ 2

√
(m− 1)x

m
+

1√
m

(
1−

√
m− 1

m

)

=
1

m
− 2 + 2

√
m− 1

m
(1−

√
x) + 2

√
m− 1

m

√
x+

1√
m

(
1−

√
m− 1

m

)

=
1

m
− 2 ·

(
1−

√
m− 1

m

)
+

1√
m

(
1−

√
m− 1

m

)

=
1

m
+

(
1√
m
− 2

)
·

(
1−

√
m− 1

m

)

Now set q(m) = 1
m
+
(

1√
m
− 2
)
·
(
1−

√
m−1
m

)
. Clearly, to show that q(m) is non-negative,

it suffices to show that (
√
m+

√
m− 1) ·m · q(m) is non-negative. To do this, note that

(
√
m+

√
m− 1) ·m · q(m)

= (
√
m+

√
m− 1) ·

(
1 + (1− 2

√
m) · (

√
m−

√
m− 1)

)
= (
√
m+

√
m− 1)− (2

√
m− 1) · (

√
m−

√
m− 1) · (

√
m+

√
m− 1)

= (
√
m+

√
m− 1)− (2

√
m− 1) · 1

= 1 +
√
m− 1−

√
m

≥ 0

Here the final inequality holds for m ≥ 2. Thus gm(x, α̃) ≤ f(x) + 1√
m

.

Claim 3.3.6. hm(x, α̃) ≤ f(x) + 1√
m

.
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Proof. We now prove hm(x, α̃) ≤ f(x) + 1√
m

. By our induction hypothesis,

hm(x, α̃) =
m− 1

m
· fm−1

(
mx− α̃

m− 1

)
≤ m− 1

m
·
(
f

(
mx− α̃

m− 1

)
+

1√
m− 1

)

Hence, we want to show that

m− 1

m
·
(
f

(
mx− α̃

m− 1

)
+

1√
m− 1

)
≤ f(x) +

1√
m

Equivalently, we require

f(x)− m− 1

m
· f
(
mx− α̃

m− 1

)
+

1√
m
− m− 1

m

(
1√

m− 1

)
≥ 0

To begin, let’s show that the first two terms are equal; that is, f(x)− m−1
m
· f
(
mx−α̃
m−1

)
= 0.

f(x)− m− 1

m
· f
(
mx− α̃

m− 1

)
=
(
1 + x− 2

√
x
)
− m− 1

m
· f
(
mx− α̃

m− 1

)
=
(
1 + x− 2

√
x
)
− m− 1

m

(
1 +

mx− α̃

m− 1
− 2

√
mx− α̃

m− 1

)

=
(
1 + x− 2

√
x
)
−

(
1− 1

m
+ x− α̃

m
− 2 · m− 1

m
·
√

mx− α̃

m− 1

)

= −2
√
x+

1

m
+

α̃

m
+ 2 · m− 1

m
·
√

mx− α̃

m− 1

To prove the RHS is indeed 0 we must show that

2
√
x− 1 + α̃

m
= 2 · m− 1

m
·
√

mx− α̃

m− 1
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First observe that both sides are nonnegative, because
√
x > 1

m
and α̃ < αmax. Next

multiply each side by m and take the square. This leads to

(
2m ·

√
x− (1 + α̃)

)2 − 4 · (m− 1) · (mx− α̃)

=
(
(2m ·

√
x− 1)− α̃)

)2 − 4 · (m− 1) · (mx− α̃)

=
(
α̃2 − (4m ·

√
x− 2)α̃ + (4m2x− 4m

√
x+ 1)

)
+ (4(m− 1) · α̃− 4(m− 1)mx)

= α̃2 + (2− 4m ·
√
x+ 4(m− 1)) · α̃ + (4m2x− 4m

√
x+ 1− 4(m− 1)mx)

=
(
α̃2 − (4m ·

√
x− 2)α̃ + (4m2x− 4m

√
x+ 1)

)
+ (4(m− 1) · α̃− 4(m− 1)mx)

= α̃2 + (4(m− 1)− 4m ·
√
x+ 2) · α̃ + (4m2x− 4m

√
x+ 1− 4(m− 1)mx)

= α̃2 + (4m− 4m ·
√
x− 2) · α̃ + (4mx− 4m

√
x+ 1)

= 0

The final equality does follow as z = α̃ is indeed a solution to the quadratic equation

z2 + (4m− 4m
√
x− 2)z + (4mx− 4m

√
x+ 1) = 0. Putting this all together then gives

f(x)− m− 1

m
· f
(
mx− α̃

m− 1

)
+

1√
m
− m− 1

m

(
1√

m− 1

)
= 0 +

1√
m
− m− 1

m

(
1√

m− 1

)
=

1√
m
−
√
m− 1

m

=
1√
m

(
1−

√
m− 1

m

)
≥ 0

The claim follows.
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So we have the following upper bounds on gm and hm: gm(x, α̃) ≤ f(x) + 1√
m

and

hm(x, α̃) ≤ f(x) + 1√
m

. Since we also have fm(x) ≤ max(gm(x, α̃), hm(x, α̃)), we have

fm(x) ≤ f(x) + 1√
m

when 1
m2 ≤ x ≤ m−1

m
. With this third case (intermediate budget)

completed so is the proof of Theorem 3.3.2.

3.3.3 Risk-Free Bidding in Simultaneous Auctions

In this section we consider risk-free bidding in a simultaneous auction. For a budgeted

adversary in a simultaneous auction, the analogue of budget-constrained bidding is that

the sum of the adversary’s bids on the items is at most the budget B. Intuitively, a bud-

geted adversary is weaker in a simultaneous auction than in a sequential auction. This

is because, in a sequential auction, an adversary has the option to “overbid” on an item

but suffers no consequence if he loses the item. The issue then is whether or not the resul-

tant broader range of strategies available to an adversary in a sequential auction makes

it provably more powerful than the corresponding adversary in a simultaneous auction.

We show this in the following theorems. We begin by analyzing the second-price case.

Theorem 3.3.7. The two-player simultaneous second-price auction with a normalized XOS val-

uation function and an adversary with normalized budget B ∈ (0, 1) has a risk-free strategy for

Bidder 1 that guarantees a profit of at least (1−B).

Proof. We prove this theorem by using the following strategy for Bidder 1. Bidder 1 bids

truthfully according to the additive function γ∗ defined in Section 3.3.1 – that is, for each

item aj ∈ I , she bids γ∗
j = γ∗({aj}). We show that, if Bidder 1 plays according to this

strategy, then for any feasible strategy of the adversary, Bidder 1 makes a profit of at least

(1−B). In particular, we consider the adversary’s best response to this strategy.

Suppose the adversary’s best response is to make a sequence b1, . . . , bm of bids on

the respective items. Clearly, in a best response the adversary will not bid more than

γ∗({aj})+. Let I1 ⊆ I and I2 ⊆ I be the set of items allocated to Bidder 1 and Bidder 2
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respectively. Then Bidder 1’s profit is given by

π1 = v(I1)−
∑

j:aj∈I1

bj ≥
∑

j:aj∈I1

(γ∗
j − bj)

=
∑

j:aj∈I1

(γ∗
j − bj) +

∑
j:aj∈I2

(γ∗
j − bj)

=
∑
j:aj∈I

γ∗
j −

∑
j:aj∈I

bj

= 1−
∑
j:aj∈I

bj ≥ 1−B

Here the first inequality follows by definition of an XOS function; the second equality

arises because the adversary bids bj = γ∗
j on each item j ∈ I2 that he wins; the fourth

equality follows by definition of γ∗ and the fact the auction is normalized; the second

inequality follows from the budget constraint.

Observe that (1 −
√
B)2 < 1 − B, for all B ∈ (0, 1). Ergo, the risk-free profitability

of Bidder 1 is strictly greater in a second-price simultaneous auction than in a second-

price sequential auction. Conversely the adversary is strictly weaker in the second-price

simultaneous auction.

Next let’s consider the case of first-price simultaneous auctions. Note that the proof of

Theorem 3.3.7 was via the use of a pure strategy for Bidder 1. For first-price simultaneous

auctions it is not possible to rely on a pure strategy to beat the profit bound of (1−
√
B)2;

to do so, the bidder must use a randomized strategy. To verify this, the following claim

shows that in the uniform additive simultaneous auction, no deterministic strategy for Bid-

der 1 can guarantee a profit that is asymptotically greater than (1−
√
B)2.

Claim 3.3.8. For any pure strategy of Bidder 1, there exists a strategy for the adversary that

(asymptotically) restricts Bidder 1’s profit to (1−
√
B)2.

Proof. Let b11, . . . , bm1 be Bidder 1’s bids on the m items. We may assume without loss of

generality that bi1 ≤ bj1 whenever i < j. Bidder 2’s strategy is to win k∗ items, where
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k∗ = max{k :
∑k

i=1 b
i
1 < B}. Let p∗ be the price of the lowest-indexed item that Bidder 1

wins, i.e., p∗ = bk
∗+1

1 . Since we maximize over all possible k, we know that the adversary

cannot afford to win the entire set {a1, . . . , ak∗+1}. Let P be the total price paid by the

adversary. This implies that P is more than B − p∗, otherwise the adversary could have

won another item. So we have P > B − p∗.

On the other hand, the total price paid by the adversary is at most

P = b11 + . . .+ bk
∗

1 ≤ k∗ · bk∗+1
1 = k∗p∗.

Combining the inequalities, we have k∗ > B−p∗

p∗
. So the number of items that the adversary

wins is at least B−p∗

p∗
; thus, Bidder 1 wins at most m − B−p∗

p∗
= m − B

p∗
+ 1 items. Since

the items are ordered by Bidder 1’s bids, her price for each of these items is at least p∗.

Consequently, because her valuation function is uniform additive, her profit is at most

π1 ≤ (m− B

p∗
+ 1) · ( 1

m
− p∗)

It is easy to verify that this is maximized when p∗ =
√

B
m(m+1)

, and that the maximum

value is (1−
√
B)2 +O( 1√

m
).

In the other direction, it is also true that no deterministic strategy for the adversary

can guarantee that Bidder 1 makes a profit that is less than (1−B).

Claim 3.3.9. For any pure strategy of the adversary, there exists a strategy for Bidder 1 that

guarantees a profit of (1−B) for any XOS bidder.

Proof. By the bidding constraint, the sum of the adversary’s bids is at most B. Let b12, . . . , bm2

be the bids made by the adversary on the items. Bidder 1 simply bids bi+2 on each item ai
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as long as bi2 is less than γ∗
i and wins this set of items. Bidder 1’s profit is then

v1(I1)−
∑

i:bi2<γ∗
i

bi2 ≥
∑

i:bi2<γ∗
i

(γ∗
i − bi2)

≥
∑

i:bi2<γ∗
i

(γ∗
i − bi2) +

∑
i:bi2≥γ∗

i

(γ∗
i − bi2)

=
∑
i:ai∈I

(γ∗
i − bi2)

= 1−
∑
i:ai∈I

bi2

≥ 1−B

Here the first inequality arises as Bidder 1 has an XOS valuation; the second equality fol-

lows by definition of γ∗ and the fact the auction is normalized; the last inequality follows

from the budget constraint.

Due to this asymmetry in pure strategies, simultaneous first-price auctions against an

adversary have no equilibrium in deterministic strategies, and we must introduce ran-

domization to improve the lower bound. In fact, there is a randomized strategy for Bid-

der 1 that guarantees an expected profit of at least 1
2
(1−B)2 when her valuation function

is XOS. The function 1
2
(1 − B)2 is greater than (1 −

√
B)2 for B > 3 − 2

√
2, which is ap-

proximately 0.17, so the upper bound from the first-price sequential auction case does not

apply to first-price simultaneous auctions.

Theorem 3.3.10. The two-player simultaneous first-price auction with a normalized XOS valu-

ation function and an adversary with normalized budget B ∈ (0, 1) has a (randomized) risk-free

strategy for Bidder 1 that guarantees a profit of at least (1−B)2

2
in expectation.

Proof. Bidder 1 selects m independent random variables Xi, each drawn from the uniform

distribution U(0, 1), and bids Xi · γ∗
i on the item ai. Our goal is to show that no strategy

of the adversary can prevent Bidder 1 from making a profit of 1
2
(1 − B)2 in expectation.

For the adversary, we may limit our attention to bids that are at most γ∗
i . So we may

parameterize the bids of the adversary by a vector of ratios b = (b1, . . . , bm) ∈ (0, 1)m such
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that
∑m

i=1 bi ·γ∗(i) ≤ B. Let S = {ai ∈ I|Xi > bi} be the set of items that Bidder 1 wins and

let π(b) be the random variable representing Bidder 1’s utility when the adversary bids b.

We then have the following.

E[π(b)] = EX1...Xm

[
v(S)−

∑
i:ai∈S

γ∗
i ·Xi

]

≥ EX1...Xm

[∑
i:ai∈S

γ∗
i · (1−Xi)

]

= EX1...Xm

[∑
i:ai∈I

γ∗
i · (1−Xi) · 1[bi<Xi]

]

=
∑
i:ai∈I

γ∗
i · EXi

[
(1−Xi) · 1[bi<Xi]

]
=
∑
i:ai∈I

γ∗
i ·

1

2
· (1− bi)

2

Again, here the first inequality follows from the definition of γ∗; the second equality is due

to linearity of expectation; the final equality holds because Xi is uniformly distributed.

The adversary of course seeks to find a strategy to minimize E[π(b)] for any fixed

valuation function v. For any valuation function v, we denote this minimum value by

π∗(v). The inequalities above imply that π∗(v) ≥ π∗(γ∗) = minb
1
2

∑
i:ai∈I γ

∗
i · (1− bi)

2. For

the following analysis, we may assume without loss of generality that we only consider

items ai where γ∗
i > 0 (Bidder 1 will lose the remaining items at a bid of 0). Now, π∗(v) is

lower-bounded by the optimal value of the following quadratic program.

(Adversarial QP) min
1

2
·
∑
i:ai∈I

γ∗
i · (1− bi)

2

s. t. bi ≤ 1 ∀i ∈ [m]

−bi ≤ 0 ∀i ∈ [m]
m∑
i=1

bi · γ∗(i) ≤ B

68



The Lagrangian of this problem is

L(⃗b, λ⃗) = 1

2

∑
i∈I

γ∗
i · (1− bi)

2 + λ2m+1 ·

(
m∑
i=1

bi · γ∗
i −B

)

+
m∑
i=1

λi · (bi − 1)−
m∑
i=1

λm+i · bi

This is differentiable w.r.t. each of the bi, so we can compute these partial derivatives

to be
∂L
∂bi

= γ∗
i · (bi − 1) + λ2m+1 · γ∗

i + λi − λm+i.

The dual objective function g(λ⃗) = inf b⃗ L(⃗b, λ⃗) can be computed by setting ∂L
∂bi

= 0. So:

g(λ⃗) =
1

2

m∑
i=1

γ∗
i

(
λ2m+1 +

(
λi − λm+i

γ∗
i

))2

+ λ2m+1

(
m∑
i=1

(
1− λ2m+1 −

(
λi − λm+i

γ∗
i

))
γ∗
i −B

)

−
m∑
i=1

λi

(
λ2m+1 +

(
λi − λm+i

γ∗
i

))
−

m∑
i=1

λm+i

(
1− λ2m+1 −

(
λi − λm+i

γ∗
i

))

The constraints on the dual are simply λ⃗ ≥ 0. So setting λi = 0 ∀ i ∈ {1 . . . 2m};λ2m+1 =

(1−B) is feasible. Let λ⃗′ denote this vector. The dual objective for this feasible input is:

g(λ⃗′) =
1

2

m∑
i=1

γ∗
i (λ2m+1)

2

+ λ2m+1

(
m∑
i=1

(1− λ2m+1) γ
∗
i −B

)
(λi = 0)

=
1

2
(λ2m+1)

2 + λ2m+1 ((1− λ2m+1)−B) (as
∑
i

γ∗
i = 1)

=
1

2
(1−B)2 (substituting for λ2m+1)
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This dual solution lower bounds the primal minimization program, and we have

min
b

E[π(b)] ≥ 1

2
(1−B)2

as desired.

Finally, we show that an analogue of Theorem 3.3.7 does not hold for simultaneous

first-price auctions. Specifically, we prove that there exists a randomized strategy for the

adversary that gives an upper bound on the profitability that is strictly smaller than (1−

B), showing that for simultaneous auctions, the adversary’s power is greater in the first-

price case than the second-price case.

Theorem 3.3.11. In first-price simultaneous auctions with XOS valuations, the adversary has a

(randomized) strategy that restricts the risk-free profit of Bidder 1 to strictly less than (1− B) in

expectation.

Proof. We prove this claim by considering the uniform additive simultaneous auction on

m items, where m is even. The adversary chooses a subset S ⊆ I of the items, with

|S| = m
2

, uniformly from the subsets of this size. He then bids w1(B)
m

on each element in S,

and w2(B)
m

on each element not in S, where w1 and w2 are as follows.

w1(B) =

 2B if 0 < B < 1
4

1
3
+ 2B

3
if 1

4
≤ B < 1

w2(B) =

 0 if 0 < B < 1
4

4B
3
− 1

3
if 1

4
≤ B < 1
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It is easily shown that this strategy is feasible for Bidder 2, and that Bidder 1’s best

response is to bid w1(B)
m

on every item and win all the items. Bidder 1’s profit is then

π∗
1 =

 1− 2B if 0 < B < 1
4

2
3
(1−B) if 1

4
≤ B < 1

which is strictly smaller than (1−B) when 0 < B < 1.

We remark that the strategies used in proving Theorems 3.3.7 and 3.3.10 require no

knowledge of the adversary’s budget. Bidder 1 can implement them based solely on her

own valuation function so these profit guarantees are extremely robust.

Thus, indeed, the adversary is weaker in a simultaneous auction than in the corre-

sponding sequential auction (for example, the bound of Theorem 3.3.10 is larger than

that of Theorem 3.3.1 for B > 0.18). In addition, unlike for sequential auctions, the power

of the adversary differs in a simultaneous auction depending on whether a first-price or

second-price mechanism is used: the adversary is stronger in a first-price auction. Finally,

unlike the sequential case, it is essential to introduce randomization to obtain non-trivial

bounds in the first-price simultaneous setting.

3.4 Bounds for Subadditive Valuation Functions

In this section we make a return to sequential auctions. We study the risk-free profitability

of Bidder 1 when her valuation function is subadditive. Since there exist subadditive

functions that are not XOS, the simple strategy from Section 3.3.1 is no longer guaranteed

to work. Indeed, we present in Section 3.4.2 a class of examples of subadditive valuations

whose risk-free profitability is strictly less than f(B) = (1 −
√
B)2 for an adversary with

budget B < 1
4
. The relationship between the classes of XOS functions and subadditive

functions was explored by Bhawalkar and Roughgarden [19], via the class of β-fractionally

subadditive valuation functions.
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Proposition 3.4.1. [19] Every subadditive valuation is lnm-fractionally subadditive.

It follows from this proposition that there exists a bid vector r satisfying
∑

j:aj∈I rj =

v(I) and
∑

j:aj∈S rj ≤ lnm · v(S) for each subset S ⊆ I . In [19], the authors also pro-

vide an example showing that this is tight. Consequently, if Bidder 1 plays a strategy

analogous to the strategy from Section 3.3.1 on this example, using the bid vector r in

place of the additive function γ∗, then any strict subset S of I that Bidder 1 wins is only

guaranteed to have value O( 1
lnm

) and, potentially, this guarantees a profit of only O( 1
lnm

).

This relationship indicates an inherent difficulty in showing a non-trivial lower bound

on the profitability of subadditive valuations. However, we make progress on an impor-

tant special case, namely subadditive valuations on identical items. Here, every subset

S of I such that |S| = k where 0 ≤ k ≤ m has the same value that we denote by v(k).

The earlier assumptions still hold, so v(0) = 0, and v is monotone. In Section 3.4.1, we

present a strategy for Bidder 1 that gives a new lower bound on the profitability. Then,

in Section 3.4.2, we prove that this lower bound is tight when the budget B is in (0, 1
4
).

Moreover, the lower bound is tight at every B of the form ( k
k+1

)2 for any positive integer

k, and we conjecture that this tightness extends to all B ∈ (0, 1).

3.4.1 The Subadditive Lower Bound with Identical Items

We obtain our lower bound on the profitability of Bidder 1 with a simple strategy: Bid-

der 1 chooses a constant price p̃ and a target allocation q̃ in advance, and bids p̃ on every

item, stopping when she wins q̃ items. We will need the following claim.

Claim 3.4.2. For any set S ⊆ I , where |S| = q, v(S) ≥ v(I)
⌈m

q
⌉ .

Proof. Let S be a subset of I of size q. We want to show that v(S) = v(q) ≥ v(I)
⌈m

q
⌉ . Consider

any partition of the set I into ℓ = ⌈m
q
⌉ sets S1, . . . , Sℓ, where S1 = S, and each of the first

⌊m
q
⌋ sets S1, . . . , S⌊m

q
⌋ has size q.
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We have two cases. If m is a multiple of q, then ⌈m
q
⌉ = ⌊m

q
⌋ = ℓ. By subadditivity, we

have

v(I) = v(S1 ∪ . . . ∪ Sℓ) ≤ v(S1) + . . .+ v(Sℓ) = ℓ · v(q)

Thus we have v(q) ≥ v(I)
ℓ

= v(I)
⌈m

q
⌉ .

Now if m is not a multiple of q, then ⌈m
q
⌉ − ⌊m

q
⌋ = 1. Then |Sℓ| = m− q · ⌊m

q
⌋ < q, and

we have

v(I) = v(S1 ∪ . . . ∪ Sℓ)

≤ v(S1) + . . .+ v(Sℓ)

= (ℓ− 1) · v(q) + v(m− q · ⌊m
q
⌋)

≤ (ℓ− 1) · v(q) + v(q)

= ℓ · v(q).

Here the first in equality follows by subadditivity and the second by monotonicity. So we

have v(q) ≥ v(I)
ℓ

= v(I)
⌈m

q
⌉ as required.

Now, for an appropriate choice of p̃ and q̃, we show that Bidder 1 can guarantee a

profit of at least t∗(B)−O( 1
m
), where

t∗(B) = max
k∈Z≥1

tk(B).

Interestingly, tk(B) = 1
k+1
− B

k
is the tangent to our earlier lower bound of f(B) =

(1 −
√
B)2 at B = ( k

k+1
)2 (see Figure 3.2). Denote by SIm the subadditive valuations

on m identical items. We show the following lower bound on the profitability in the

subadditive case with identical items.

Theorem 3.4.3. P(SIm, B) ≥ t∗(B)−O( 1
m
).

Proof. Consider a normalized instance of the subadditive sequential auction on identical

items where the adversary has normalized budget B. First, for any choice of target allo-
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Figure 3.2: Plot of the Functions f(x), t1(x), t2(x), and t3(x): t∗(x) is the piecewise linear

function shown by the bold line segments

cation q, we want to find the minimum price-per-item pq so that the adversary’s budget is

insufficient to stop Bidder 1 from winning q items. In other words, we require the small-

est possible price pq so that the adversary cannot win more than m− q items. That is, we

need to let pq(m−q+1) = B+δ for some negligibly small δ. We may ignore the negligible

additive δ term and let pq(m− q + 1) = B, from which we obtain pq =
B

m−q+1
. So, for any

q such that 0 ≤ q ≤ m, in order to win exactly q items, Bidder 1 bids a price pq =
B

m−q+1
on

every item and stops when she wins q items. By Claim 3.4.2, the value of this set in the

normalized auction is at least 1
⌈m

q
⌉ .

Finally, we want to choose a target allocation q̃ that maximizes Bidder 1’s profit under

this constant-price strategy. For the purpose of our analysis, for a fixed m, any optimal

choice of q must be of the form q = ⌈m
k
⌉ for some positive integer k ≥ 2, which is the

smallest choice of q that has value at least 1
k

according to our lower bound in Claim 3.4.2.

Thus for any positive integer k, the profit obtained from winning exactly q = ⌈m
k
⌉ items
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with our constant-price strategy is at least

v(q)− q · pq ≥
1

⌈m
q
⌉
− qB

m− q + 1

=
1

⌈ m
⌈m

k
⌉⌉
−

⌈m
k
⌉B

m− ⌈m
k
⌉+ 1

≥ 1

⌈ m
(m
k
)
⌉
−

(m
k
+ 1)B

m− (m
k
+ 1) + 1

.

Therefore

v(q)− q · pq ≥
1

k
−B

(
m+ k

m(k − 1)

)
=

1

k
− B

(k − 1)
− 1

m
·
(

Bk

k − 1

)
= tk−1(B)− 1

m
·
(

Bk

k − 1

)

where tk(B) = 1
k+1
− B

k
is the tangent to f(B) = (1−

√
B)2 at B = ( k

k+1
)2. The second term

in the above expression is an additive O( 1
m
) factor that we subtract from our lower bound,

but this factor goes to 0 as the number of items increases. Bidder 1’s strategy is then to

choose q̃ to maximize this value, which is equivalent to maximizing over the sequence of

tangents. This completes the proof of the lower bound.

3.4.2 The Subadditive Upper Bound with Identical Items

In this section we present a matching upper bound for the range 0 < B < 1
4
. For any B

in this range, we have that maxk∈Z≥1
tk(B) = t1(B), so our lower bound is just t1(B) =

1
2
−B. We match this lower bound by constructing a sequence of valuation functions and

corresponding strategies for the adversary that give us the following theorem.

Theorem 3.4.4. P(SIm, B) ≤ t∗(B) + O( 1√
m
) when B ∈ (0, 1

4
) and m is larger than some

constant m0 that depends only on B.
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Proof. For every budget B = x with 0 < x < 1
4
, let σ(x) = 8x

1−4x
. It is easy to see that σ(x)

is a (well-defined) positive real number for every x in (0, 1
4
). For every x in this interval

and every positive integer m, we define the normalized identical-item auction on m items

Sx,m in the following manner. We set v(1) = 1
2+σ(x)

, and for every i ∈ {2, . . . ,m− 1}we set

v(i) = 1
2+σ(x)

+ (i−1)σ(x)
d(2+σ(x))

, where d = m−2. Finally, we set v(m) = 1. In other words, we first

construct an unnormalized valuation function by setting the marginal value of obtaining

a first item and an mth item to 1, and the marginal value of getting an ith item to σ(x)
d

for

2 ≤ i ≤ m−1. Since the total value of the m items is 2+σ(x), we divide the value of every

set by this factor to obtain the above normalized instance Sx,m.

We have an important reason for choosing σ(x) = 8x
1−4x

: with this choice of σ(x), the

expression σ(x)
2+σ(x)

, which shows up repeatedly in the following analysis, simplifies to the

expression 4x. Put differently, for any fixed x, we consider valuation functions where

the marginal value of getting a first item or an mth is 1−4x
2

, and the total marginal value

of getting an additional m − 2 items having already been allocated one item is 4x. The

reader may have observed that with this choice of σ(x), this valuation function is not

always subadditive. This is true: the function is subadditive if and only if σ(x) ≤ d.

When σ(x) ≤ d, for any integers i, j with i ≥ 1, j ≥ 1, and i + j ≤ m, it is easy to see that

v(i+ j) ≤ 2
2+σ(x)

+ (i+j−2)σ(x)
d(2+σ(x))

, whereas v(i) ≥ 1
2+σ(x)

+ (i−1)σ(x)
d(2+σ(x))

and v(j) ≥ 1
2+σ(x)

+ (j−1)σ(x)
d(2+σ(x))

,

so we have v(i+ j) ≤ v(i) + v(j) and the function is subadditive. For the other direction,

if σ(x) > d then v(2) =
1+

σ(x)
d

2+σ(x)
> 2

2+σ(x)
= 2v(1), so the function is not subadditive. Since

d = m− 2, we require m ≥ σ(x) + 2 for subadditivity.

To find our upper bound, we will consider auction instances Sx,m where the adversary

can play according to the following strategy. Initially, the adversary makes a bid of 0 on

every item until Bidder 1 wins an item. Then, after Bidder 1 wins her first item, if the

adversary has not yet won an item he makes a bid of 1+σ(x)
d(2+σ(x))

on every item until Bidder 1

loses an item. At this point, each of the two bidders has won at least one item, so any allo-

cation in the remaining subgame gives at least 1 item and at most m−1 items to Bidder 1.

Consequently, the remaining subgame is simply a scaled instance of a uniform additive
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auction Am′ for some m′ ≤ d, and from this point on Bidder 2 simply plays an optimal

strategy for the uniform additive auction. The adversary’s bid of 1+σ(x)
d(2+σ(x))

on each item

induces a lower bound on the size of the auction instances that we consider: we require

x ≥ 1+σ(x)
d(2+σ(x))

for this bid to be feasible. Substituting d = m − 2 into the above inequality,

we have m ≥ 1+σ(x)
x(2+σ(x))

+ 2. Combining this with the lower bound for subadditivity, for

any fixed x we let L(x) = max(σ(x) + 2, 1+σ(x)
x(2+σ(x))

+ 2), and we only consider auction in-

stances Sx,m on m ≥ L(x) items, since these are the only subadditive instances in which

the above strategy is feasible. Observe that for any fixed x ∈ (0, 1
4
), L(x) is a constant. For

any budget in this range, the following theorem provides an upper bound on the risk-

free profit in a subadditive, identical-item sequential auction. This upper bound applies

to the general subadditive case, showing that the profitability of subadditive functions is

strictly less than that of additive, submodular or XOS functions.

Consider the auction instance Sx,m on m identical items. Our goal is to show that if

Bidder 2 plays according to the above strategy in this auction, then for every strategy

of Bidder 1, her risk free profit matches the lower bound. In particular, Bidder 1’s best

response to this strategy has a payoff of at most t1(x) +O( 1√
m

). Suppose Bidder 1 plays a

strategy such that j1 is the index of the first item won by Bidder 1 and j2 > j1 is the index

of the first item won by Bidder 2 after Bidder 1 wins an item (where necessary, we will

consider separately the case where Bidder 2 does not win any item after Bidder 1 wins

item aj1). We will show that for any feasible choice of j1 and j2, Bidder 1’s payoff in any

strategy that results in this choice is at most t1(x) +O( 1√
m
) = 1

2
− x+O( 1√

m
). We have the

following cases for j1 and j2.

Case 1: Bidder 2 wins the first item.

If Bidder 2 wins the first item, then j1 ≥ 2. Immediately after Bidder 1 wins item aj1 (for a

price of 0), the remaining subgame is the uniform additive auctionAm′ where m′ = m−j1

and the remaining unscaled value is σ(x)
2+σ(x)

− (j1−2)σ(x)
d(2+σ(x))

. Since Bidder 2 has only made bids

equal to 0, the remaining unscaled budget is x. We first consider the case where Bidder 1

wins the second item, so j1 = 2. There are d = m − 2 items remaining, so the remaining
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value is simply σ(x)
2+σ(x)

. Consequently the remaining subgame is an instance of the uniform

additive auction Ad with scaled budget 2+σ(x)
σ(x)

· x when the value is scaled to 1. Since

Bidder 1 makes a profit of 1
2+σ(x)

on the item aj1 , the risk-free profitability of any subgame

with j1 = 2 is

1

2 + σ(x)
+

σ(x)

2 + σ(x)
fd

(
2 + σ(x)

σ(x)
· x
)

=
1

2 + σ(x)
+ 4xfd

(
1

4

)
≤ 1

2 + σ(x)
+ 4x

(
f

(
1

4

)
+

1√
d

)
by Theorem 3.3.2

=
1

2 + σ(x)
+ 4x

(
1

4
+

1√
d

)
=

(
1

2 + σ(x)
+ x

)
+

4x√
d

=

(
1

2
− x

)
+

4x√
d

= t1(x) +O

(
1√
m

)

Observe that for any strategy where j1 > 2, Bidder 1 is simply giving up items to the

adversary at a price of 0, and the remaining subgame is a uniform additive auction where

the unscaled budget of the adversary remains the same but the total number of items

(and total value) decreases. Since gm(x, 0) ≥ hm(x, 0) (see Section 3.3.2), the risk-free

profitability of any strategy where j1 > 2 is upper bounded by the risk-free profitability

of a strategy with j1 = 2, and this profitability is at most t∗(x) +O
(

1√
m

)
for an adversary

with budget x.

Case 2: Bidder 1 wins the first m− 1 items.

It remains to consider the cases where j1 = 1, where Bidder 1 wins the first item. First,

suppose Bidder 1 wins the first item (for a price of 0), and then wins the next m− 2 items.

After Bidder 1 wins the first item, since Bidder 2 has not won an item his strategy is to bid
1+σ(x)

d(2+σ(x))
on each of the remaining items, so the total price paid by Bidder 1 for the next
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d = m − 2 items is at least 1+σ(x)
2+σ(x)

. Hence Bidder 1’s profit is at most 1 − 1+σ(x)
2+σ(x)

= 1
2+σ(x)

=

1
2
− 2x, which is at most t1(x).

Case 3: j1 = 1 and j2 ≤ m− 1.

The only remaining case is where Bidder 1 wins the first item for a price of 0, and Bidder 2

wins an item in {a2, . . . , am−1}. After Bidder 1 wins the first item, Bidder 2 bids 1+σ(x)
d(2+σ(x))

on every item until he wins the item aj2 . Bidder 1 pays a total of (j2 − 2) 1+σ(x)
d(2+σ(x))

for

the first j2 − 1 items, which have total value 1
2+σ(x)

+ (j2 − 2) σ(x)
d(2+σ(x))

. Since the price of

each of these items (which is 1+σ(x)
d(2+σ(x))

) is greater than the marginal value of each of these

items (which is σ(x)
d(2+σ(x))

), by choosing to increase j2 Bidder 1 is winning items from the

adversary at a price that is higher than their marginal value in the remaining uniform

additive auction. Since gm(x, 1) ≤ hm(x, 1) (see Section 3.3.2), the risk-free profitability

of any strategy where j2 > 2 is lower than the risk-free profitability of a strategy where

j2 = 2. Consequently, we will fix j2 = 2 and show that Bidder 1 makes a profit of at most

t∗(x) +O
(

1√
m

)
with this choice.

Now, after Bidder 2 wins item a2, the remaining subgame is an instance of the uniform

additive auction on m− 2 items where the total unscaled value is σ(x)
2+σ(x)

which is equal to

4x, and the total unscaled budget is x − 1+σ(x)
d(2+σ(x))

, which simplifies to dx−2x− 1
2

d
. When the

budget is scaled by 1
4x

, it becomes dx−2x− 1
2

4dx
. Finally, we also need to add the profit made

by Bidder 1 from item a1, which is 1
2+σ(x)

. Putting all this together, Bidder 1’s profit is at
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most

1

2 + σ(x)
+ 4xfm−2

(
dx− 2x− 1

2

4dx

)

=
1− 4x

2
+ 4x

1 + dx− 2x− 1
2

4dx
− 2

√
dx− 2x− 1

2

4dx
+

1√
m− 2


by Theorem 3.3.2

=
1

2
− 2x+ 4x+

dx− 2x− 1
2

d
− 2

√
4x(dx− 2x− 1

2
)

d
+

4x√
m− 2

=
1

2
+ 3x−

(2x+ 1
2
)

d
− 2

√
4x2 −

4x(2x+ 1
2
)

d
+

4x√
m− 2

=
1

2
+ 3x−

(2x+ 1
2
)

d
− 2

√
4x2

[
1−

2x+ 1
2

dx

]
+

4x√
m− 2

=
1

2
+ 3x− 4x

√
1−

2x+ 1
2

dx
−

(2x+ 1
2
)

d
+

4x√
m− 2

Since m ≥ L(x), d ≥ 1+σ(x)
x(2+σ(x))

, so dx ≥ 1+σ(x)
2+σ(x)

= 2x + 1
2
, so we have that 0 ≤ 1 − 2x+ 1

2

dx
≤ 1.

Then

1

2
+ 3x− 4x

√
1−

2x+ 1
2

dx
−

(2x+ 1
2
)

d
+

4x√
m− 2

≤ 1

2
+ 3x− 4x

(
1−

2x+ 1
2

dx

)
−

(2x+ 1
2
)

d
+

4x√
m− 2

=
1

2
− x+

[
6x+ 3

2

d
+

4x√
m− 2

]
= t1(x) +O(

1√
m
).

This completes the proof of Theorem 3.4.4.

An important consequence of the above result is that the lower bound for XOS valua-

tions does not hold for subadditive valuations. This differentiates the class of subadditive

valuations from the additive, submodular and XOS classes in that Bidder 1 can no longer

guarantee a profit of (1−
√
B)2 when her valuation function is subadditive.
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Completing the above proof concludes Part I of this thesis, where we analyze multi-

item auctions. To summarize, in Chapter 2 we presented a refined analysis of equilibria of

sequential auctions, and showed that the declining price anomaly does not always hold in

their focal subgame-perfect equilibria. In Chapter 3, we analyzed the risk-free profitabil-

ity of sequential and simultaneous auctions for some well-studied classes of valuation

functions. Part II of this thesis focuses on a similar setting where agents have a combina-

torial valuation function over a set of items, but studies the problem of fairly dividing the

items among the agents.
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Part II

Fair Division



We now shift our attention away from mechanisms that allocate items to agents, and

towards the question of whether it is possible that every agent receives its due share. The

predominant objectives of research in this area are to study the existence of allocations

that achieve one of two broad goals: fairness or efficiency. At a high level, the fairness

goal is to ensure that each agent receives its due share of the items, and the efficiency

goal is to distribute the items in a way that satisfies some constraint on the aggregate

utility achieved by all of the agents. Typically, the variety of problems that arise out of

the question of how to define and achieve these goals – primarily, the first goal – are now

collectively called the fair division problem.

But what does it mean for an allocation to be fair? This is often the first question

that occurs to someone that come across this problem, and for good reason: we desire

a definition of fairness that we can all agree mirrors the concept of fairness in the real-

world, but one that also allows us to provide meaningful guarantees on the existence and

computability of fair allocations.

The formal origin of fair division dates back to the 1940s, to the work of Banach,

Knaster and Steinhaus [69]. Like much of the early literature on this problem, they fo-

cused on the divisible setting, where a single heterogeneous divisible item (convention-

ally, a cake) is to be fairly shared among a set of n agents with varying preferences over

its pieces. With two agents, the folkloric cut-and-choose protocol (“I cut, you choose”)

achieves many intuitive fairness guarantees, but it is not easy to see how this process

may be generalized. Banach, Knaster and Steinhaus [69] devised the last diminisher proce-

dure to obtain a fair allocation. Their fairness objective was proportionality: an allocation

is proportional if every agent is allocated a bundle (or piece of cake) of value at least 1
n

of

its total value for the grand bundle (entire cake). The subsequent pursuit of proportional

cake divisions in a variety of settings led to the creation of popular algorithmic paradigms

for cake-cutting such as the moving-knives procedures [31, 70].

The latter half of the 20th century witnessed the creation of precise mathematical defi-

nitions for various fairness notions. In the following decades, envy-freeness (Gamow and
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Stern [39], Foley [35]) emerged as the canonical fairness solution in economics. As the

name might suggest, an allocation is envy-free if no agent prefers the piece of cake (or

bundle of items) allocated to another agent to its own bundle (according to its own val-

uation function applied to both pieces). When the agents’ valuation functions are of the

forms most commonly considered in economic theory, such as additive valuations, envy-

freeness implies proportionality and is thus a stronger fairness guarantee. This is because

under these assumptions, for any agent and any partition of the cake into n pieces, some

piece is worth at least 1
n

of the value of the whole cake to that agent. Another classical

fairness measure is equitability, where all agents should receive an allocation of the same

value. When the items are divisible, Alon [4] showed for additive continuous valuation

functions that allocations exist that simultaneously satisfy proportionality, equitability

and envy-freeness.

In recent years, the research directions of the fair division community have under-

gone two major shifts. The first of these is towards the study of the indivisible items set-

ting, where m items are to be integrally allocated amongst the n agents. Unfortunately,

a simple example consisting of two agents and one indivisible item demonstrates that

envy-freeness, proportionality and equitability are unachievable in this setting. Conse-

quently, most research efforts have been directed at achieving approximate or relaxed

fairness guarantees. The most prominent of these relaxations is the EFk guarantee. An

allocation is envy-free up to k items, or EFk, if no agent envies another agent’s bundle pro-

vided some k items are removed from that bundle. The EF1 guarantee is particularly

notable, as EF1 allocations exist and can be computed in polynomial time if the valuation

functions satisfy the mild assumption of monotonicity [55]. Another fairness guarantee

that has attained recent popularity is the maximin share guarantee, introduced by Budish

[22] and inspired by the cut-and-choose protocol. Suppose an agent partitions the items

into n bundles and then receives its lowest-valued bundle. The corresponding value that

the agent obtains by selecting its optimal partition is called its maximin share. The fairness

objective then is to find an allocation where every agent receives a bundle of value at least
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some constant fraction of its maximin share. A large body of research produced over the

last decade aims to achieve these guarantees or approximations thereof (see e.g. [52, 40]).

A parallel line of research attempts to circumvent the apparent unattainability of envy-

freeness via the use of payments. In now classical work, Svensson [71], Maskin [57], and

Tadenuma and Thomson [72] studied the indivisible item setting and asked if it is always

possible to achieve an envy-free allocation simply by introducing a small quantity of a

divisible item, akin to money, alongside the indivisible items. Their positive results were

mirrored in follow-up work by Alkan et al. [3], Aragones [5], Klijn [50] and Haake et al.

[43] which showed for various settings the existence of an envy-free allocation with subsidy.

However, all of the above papers considered the restricted case where the number of

items, m, is at most the number of agents n (or where the items were grouped into n fixed

bundles). It was only recently that Halpern and Shah [44] extended these results to the

general m-item setting. Specifically, they considered the setting in which n agents desire

to partition a set of m items among themselves, and, without loss of generality, the value

of each item is at most 1. Their main result is a proof of the existence of an envy-freeable

allocation, i.e. one that can be made envy-free with payments, in every instance. They

characterized the envy-freeable allocations in terms of the structure of the envy graph,

whose nodes are the agents and whose arc weights represent the envies between pairs

of agents. They then studied the problem of minimizing the amount of subsidy that is

sufficient to guarantee envy-freeness. It is easy to see this minimum subsidy can be at least

n − 1 for all envy-freeable allocations. Indeed, consider the case of a single item which

each agent values at exactly one dollar; evidently, every agent that does not receive the

item must be compensated with a dollar. Based on computational analysis of over 100, 000

synthetic instances, Halpern and Shah [44] conjectured that with additive valuations, an

envy-freeable allocation with a subsidy of at most n−1 dollars always exists. In addition,

they conjectured that an allocation exists that is both envy-freeable and EF1 when the

valuations are additive. In Chapter 4 we prove these conjectures.
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The second major shift is an increased focus on economic efficiency. A popular notion

of efficiency is Pareto efficiency, in which no agent’s allocation can be improved without

making some other agent worse off. A classical result of Varian [76] shows that in the di-

visible setting there always exists an allocation that is both envy-free and Pareto efficient.

A large body of follow-up research aims to achieve Pareto efficiency alongside a variety

of fairness guarantees. An alternate notion of efficiency arises when we maximize a wel-

fare function that measures the aggregate utility of all agents. The most common welfare

functions studied in the associated literature are the utilitarian social welfare (or simply

the social welfare), which measures the sum of the agents’ valuations, and the Nash so-

cial welfare, which measures the geometric mean of these valuations. The price of fairness

of an instance, formally introduced by Caragiannis et al. [25], is the ratio of the welfare

of an optimal allocation (without fairness constraints) to that of the best fair allocation.

For the cake-cutting problem, Bei et al. [15] and Cohler et al. [30] study the problem of

maximizing social welfare under proportionality and envy-freeness constraints. For the

divisible setting, Bertsimas et al. [18] showed that the bounds of [25] are tight. Subsequent

work on the price of fairness in the indivisible setting by Bei et al. [16] and Barman et al.

[12] considers only the relaxed fairness guarantees (such as EF1 and 1
2
-MMS) that are al-

ways achievable in the indivisible setting. In Chapter 5, we study the problem of whether

payments can be used to achieve envy-freeness and high welfare simultaneously.

86



Chapter 4

One Dollar Each

In classical work, Maskin [57] asked if envy-freeness can be achieved in the indivisible-

items case via the addition of a single divisible good, namely money. He considered the

case of a market with n agents and m = n goods where each agent can be allocated at most

one good, and has, without loss of generality, a value of at most one dollar for any specific

good. Maskin [57] then showed that an envy-free allocation exists with the addition of

n− 1 dollars into the market. But what happens in the general setting where the number

of agents and number of items may differ and where agents may be allocated more than

one item? The purpose of this chapter is to understand this case. In this setting, Halpern

and Shah [44] showed that an envy-freeable allocation always exists by characterizing the

envy-freeable allocations in terms of the structure of the envy graph (see Section 4.2), whose

nodes are the agents and whose arc weights represent the envies between pairs of agents.

They then studied the problem of minimizing the amount of subsidy that is sufficient to

guarantee envy-freeness. They proved that m · (n − 1) dollars always suffice to support

an envy-free allocation when the agents have additive valuation functions.

Based on the experimental analysis of over 100, 000 synthetic instances and over 3, 000

real-world instances of fair division, Halpern and Shah [44] conjecture that this upper

bound can be improved to n − 1 dollars. That is, for agents with additive valuations an

envy-freeable allocation that requires a subsidy of at most n − 1 dollars always exists. In
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addition, they conjecture that an allocation exists that is both envy-freeable (with perhaps

a much larger subsidy) and EF1 for the fair division problem with additive valuations.

Conjecture 4.0.1. [44] For additive valuations, there is an envy-freeable allocation that requires

a total subsidy of at most n− 1 dollars.

Conjecture 4.0.2. [44] For additive valuations, there is an envy-freeable allocation that is EF1.

In this chapter, we positively settle both Conjecture 4.0.1 and Conjecture 4.0.2: for ad-

ditive valuation functions, precisely n− 1 dollars are sufficient to guarantee the existence

of an envy-free allocation. In fact, our result is stronger in several ways. First, we present

an algorithm that computes an allocation where the subsidy is not only at most n − 1

dollars in total, but also at most one dollar to each agent. Secondly, this allocation is also

envy-free up to one item (EF1) – thus the same allocation settles the second conjecture from

[44]. Thirdly, the allocation is balanced, that is, the cardinalities of the allocated bundles

differ by at most one item. Furthermore, this envy-free allocation can be constructed in

polynomial time. Formally, in Sections 4.3 and 4.4 we prove the following theorem.

Theorem 4.0.3. For additive valuations there is an envy-freeable allocation where the subsidy to

each agent is at most one dollar. (This allocation is also EF1, balanced, and can be computed in

polynomial time.)

It is easy to see that, when minimizing the total subsidy, at least one agent will not

receive any payment. Thus Theorem 4.0.3 implies that the total subsidy required is indeed

at most n− 1 dollars.

We also study the general case of monotone valuation functions. Requiring only the

very mild assumption of monotonicity, we prove the perhaps surprising result that envy-

free solutions still exist with a subsidy amount that is independent of the number of items

m. Specifically, we prove that there is an envy-free allocation where each agent receives

a subsidy of at most 2(n − 1) dollars, for a total subsidy of O(n2). Here the envy-free

allocation can be constructed in polynomial time given a valuation oracle.
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In Section 4.5 we consider the much more general setting where the agents have ar-

bitrary monotone valuation functions. Analogously, without loss of generality, we may

scale the valuations so that the marginal value of each item for any agent never exceeds

one dollar. We prove the surprising result that envy-free solutions still exist with a sub-

sidy of at most 2(n − 1) dollars per agent – an amount that is again independent of the

number of items m. Thus, the total subsidy required to ensure the existence of an envy-

free allocation is at most O(n2). Note that the assumption of monotonicity is extremely

mild and so the valuations the agents have for bundles of items may range from 0 to Ω(m)

in quite an arbitrary manner. Consequently, it is somewhat remarkable that the total sub-

sidy required to ensure the existence of an envy-free allocation is independent of m. In

particular, when m is large the subsidy required is negligible in terms of m and thus, typ-

ically, also negligible in terms of the values of the allocated bundles. In this case, given a

valuation oracle for each agent, the corresponding envy-free allocation and subsidies can

be computed in polynomial time. In Section 4.5 we prove:

Theorem 4.0.4. For monotonic valuations there is an envy-freeable allocation where the subsidy

to each agent is at most 2(n−1) dollars. (Given a valuation oracle, this allocation can be computed

in polynomial time.)

In effect, our work implies that there is, in fact, a much stronger connection between

the classical divisible goods (cake-cutting) setting and the indivisible goods setting than

was previously known. While the classical guarantees (envy-freeness and proportional-

ity) can be achieved with divisible goods, for the indivisible-goods setting much of the

recent literature focuses on achieving weaker fairness properties. We show that by sim-

ply introducing a small subsidy that only depends on the number of agents, the much

stronger classical guarantees can be achieved in the indivisible goods setting. Moreover,

allocations that give these classical guarantees with a small bounded subsidy can be effi-

ciently found.
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4.1 The Fair Division with Subsidy Problem

There is a set I = {1, 2, . . . , n} of agents and a set J = {1, 2, . . . ,m} of indivisible items.

Each agent i ∈ I has a valuation function vi over the set of items. That is, for each bundle

S ⊆ J of items, agent i has value vi(S). The items are goods, so vi(S) ≥ 0 for any agent i

and bundle S ⊆ J . We make the standard assumptions that the valuation functions are

monotonic, that is, vi(S) ≤ vi(T ) when S ⊆ T , and that vi(∅) = 0. An agent i and valuation

function vi are additive if, for each item j ∈ J , agent i has value vi(j) = vi({j}), and for any

collection S ⊆ J , agent i has value vi(S) =
∑

j∈S vi(j). We denote the vector of valuation

functions by v = (v1, . . . , vn), and call v a valuation profile. Additionally, without loss of

generality we scale each agent i’s valuation function so that the maximum marginal value

of any item j is at most 1 (that is, for each item j, maxS⊆J\{j} vi(S ∪ {j}) − vi(S) ≤ 1).1

Specifically, for additive valuations, this implies vi(j) ≤ 1 for every agent i and item j.

An allocation is an ordered partitionA = {A1, . . . , An} of the set of items into n bundles.

Agent i receives the (possibly empty) bundle Ai in the allocation A. The allocation A is

envy-free if

vi(Ai) ≥ vi(Ak) ∀i ∈ I,∀k ∈ I.

That is, for any pair of agents i and k, agent i prefers its own bundle Ai over the bundle

Ak. In the (envy-free) fair division problem the objective is to find an envy-free allocation of

the items.

Unfortunately, this objective is generally impossible to satisfy. A natural relaxation

of the objective arises by incorporating subsidies. Specifically, let p = (p1, . . . , pn) be a

non-negative subsidy vector, where agent i receives a payment pi ≥ 0. An allocation with

1Without scaling, our bound of one dollar to each agent becomes the maximum marginal value of an
item.
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payments (A,p) is then envy-free if

vi(Ai) + pi ≥ vi(Ak) + pk ∀i ∈ I,∀k ∈ I.

That is, each agent prefers its bundle plus payment over the bundle plus payment of

every other agent. In the fair division with subsidy problem the objective is to find an envy-

free allocation with payments whose total subsidy
∑

i∈I pi is minimized.

4.2 Envy-Freeability and the Envy Graph

For any fixed allocation A, a payment vector p such that {A,p} is envy-free does not

always exist. To see this, consider an instance with a single item and agents I = {1, 2}

with values v1 < v2 for the item. Now take the fixed allocation where the item is given to

agent 1. It follows that agent 2 must receive a payment of at least v2 to eliminate its envy.

But then, because v2 > v1, agent 1 is envious of the bundle plus payment allocated to

agent 2. Thus, no payment vector can eliminate the envy of both agents for this allocation.

We call an allocation A envy-freeable if there exists a payment vector p = (p1, . . . , pn)

such that {A,p} is envy-free. There is a nice graphical characterization for the envy-

freeability of an allocation A. The envy graph, denoted GA, for an allocation A is a com-

plete directed graph with vertex set I . For any pair of agents i, k ∈ I the weight of arc

(i, k) in GA is the envy agent i has for agent k under the allocation A, that is, wA(i, k) =

vi(Ak)− vi(Ai).

An allocation is envy-freeable if and only if its envy graph does not contain a positive-

weight directed cycle. More generally, Halpern and Shah [44] obtained the following

theorem; we include their proof in order to familiarize the reader with the structure of

envy-freeable allocations.2

Theorem 4.2.1. [44] The following statements are equivalent.

2Note that the construction used in [44] is similar to the construction from [5] for the n-item case.
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(a) The allocation A is envy-freeable.

(b) The allocation A maximizes (utilitarian) welfare across all reassignments of its bundles to

agents: for every permutation π of I = [n], we have
∑

i∈I vi(Ai) ≥
∑

i∈I vi(Aπ(i)).

(c) The envy graph GA contains no positive-weight directed cycles.

Proof.

(a) ⇒ (b): Let A = {A1, . . . , An} be envy-freeable. Then, by definition, there exists a

payment vector p such that vi(Ai) + pi ≥ vi(Ak) + pk, for any pair of agents i and k.

Rearranging, we have vi(Ak)− vi(Ai) ≤ pi − pk. Then, for any permutation π of I = [n]

∑
i∈I

(
vi(Aπ(i))− vi(Ai)

)
≤
∑
i∈I

(
pi − pπ(i)

)
=
∑
i∈I

pi −
∑
i∈I

pπ(i) = 0.

Thus the allocation Amaximizes welfare over all reassignments of its bundles.

(b) ⇒ (c): Assume A maximizes welfare over all reassignments of its bundles and take

a directed cycle C in the envy graph GA. Without loss of generality C = {1, 2, . . . , r}

for some r ≥ 2. Now define a permutation πC of I according to the following rules: (i)

πC(i) = i + 1 for each i ≤ r − 1, (ii) πC(r) = 1, and (iii) πC(i) = i otherwise. Then the

weight of the cycle C in the envy graph satisfies

wA(C) =
∑

(i,k)∈C

wA(i, k)

=
r−1∑
i=1

(vi(Ai+1)− vi(Ai)) + (vr(A1)− vr(Ar))

=
r−1∑
i=1

(vi(Ai+1)− vi(Ai)) + (vr(A1)− vr(Ar)) +
n∑

i=r+1

(vi(Ai)− vi(Ai))

=
∑
i∈I

vi(Aπ(i))− vi(Ai)

≤ 0.

The inequality holds as Amaximizes welfare over all bundle reassignments. Thus C has

non-positive weight.
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(c) ⇒ (a): Assume the envy graph GA contains no positive-weight directed cycles. Let

ℓGA(i) be the maximum weight of any path (including the empty path) that starts at vertex

i in GA. For each agent i ∈ I , set its payment pi = ℓGA(i). Observe that pi ≥ 0 as the empty

path has weight zero. The corresponding pair (A,p) is then envy-free. To see this, recall

that there are no positive-weight cycles. Therefore, for any pair of agents i and k, we have

pi = ℓGA(i) ≥ wA(i, k) + ℓGA(k) = (vi(Ak)− vi(Ai)) + pk.

Thus vi(Ai) + pi ≥ vi(Ak) + pk and the allocation A is envy-freeable.

Theorem 4.2.1 is important for two reasons. The first is that whilst an allocation A =

{A1, A2, . . . , An} need not be envy-freeable, Condition (b) tells us that there is some per-

mutation π of the bundles in A such that the resultant allocation, Aπ = {Aπ(1), . . . , Aπ(n)},

is envy-freeable. For example, consider again the simple one-item, two-agent instance

above. If the item is allocated to agent 1 then the weight on the arc (1, 2) is −v1 and the

weight on the arc (2, 1) is v2. Because v1 < v2, the envy graph has a positive-weight di-

rected cycle {1, 2} and so, by Theorem 4.2.1, this allocation is not envy-freeable. However,

suppose we fix the bundles and find a utility-maximizing reallocation of these fixed bun-

dles. This reallocation assigns the item to agent 2 and now there is no positive-weight di-

rected cycle in the resultant envy-free graph; consequently this allocation is envy-freeable

by providing a subsidy in the range [v1, v2] to agent 1.

Second, to calculate the subsidy vector p associated with an envy-freeable allocation,

such asAπ, it suffices to calculate the maximum-weight paths beginning at each vertex in

its envy graph. (In fact, it is straightforward to prove that the heaviest-path weights lower

bound the payment to each agent in any envy-free payment vector of an envy-freeable

allocation [44].) Note that given any payment vector that eliminates envy, we may in-

crease or decrease the payments to all agents equally while maintaining envy-freeness.

As a consequence, in the payment vector that minimizes the total subsidy, there is at least
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one agent that receives a payment of 0. Together these arguments give the following very

useful observation.

Observation 4.2.2. For any envy-freeable allocationA, the minimum total subsidy required is at

most (n− 1) · ℓmax
GA

, where ℓmax
GA

is the maximum weight of a directed path in the envy graph GA.

Halpern and Shah [44] then prove:

Theorem 4.2.3. [44] For any envy-freeable allocation A, the minimum total subsidy required is

at most (n− 1) ·m.

Proof. In a minimum subsidy vector, at least one agent requires no subsidy. Thus it suf-

fices to show that the subsidy to any agent i is at most m. By Observation 4.2.2, it suffices

to show that the heaviest path weight starting at any vertex is at most m. Without loss

of generality, let the heaviest path be P = {1, 2, . . . , r}. The subsidy made to agent 1 can

then be upper bounded by

ℓGA(1) =
∑

(i,k)∈P

wA(i, k) =
r−1∑
i=1

(vi(Ai+1)− vi(Ai)) ≤
r−1∑
i=1

vi(Ai+1) ≤
r−1∑
i=1

|Ai+1| ≤ |J | = m.

Here the second inequality holds because each agent has value at most one for any

item. The third inequality is due to the fact that for the allocationA the bundles {A1, A2, . . . , An}

are disjoint. Consequently pi ≤ m for each agent, as required.

For an arbitrary envy-freeable allocation A the bound in Theorem 4.2.3 is tight. To see

this, consider the example where every agent has value 1 for each item, and the grand

bundle (containing all items) is given to agent 1. This allocation is envy-freeable, and

here each of the other n − 1 agents requires a subsidy of m for envy-freeness. Ergo, to

provide an improved bound on the total subsidy, we cannot consider any generic envy-

freeable allocation. Instead, our task is to find a specific envy-freeable allocation where

the heaviest paths in the associated envy graph have much smaller weight. In particular,

for the case of additive agents, we want that these path weights are at most 1 rather than

at most m. This is our goal in the subsequent sections of the chapter.
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Before doing this, let us briefly discuss some computational aspects. Theorem 4.2.1

provides efficient methods to test if a given allocation is envy-freeable. For example, this

can be achieved via a maximum-weight bipartite matching algorithm to verify Condi-

tion (b). Alternatively, Condition (c) can be tested in polynomial time using the Floyd-

Warshall algorithm.3 Finally, given an arbitrary non-envy-freeable allocation A, one can

efficiently find a corresponding envy-freeable allocation Aπ by fixing the n bundles of

the given allocation and computing a maximum-weight bipartite matching between the

agents and the bundles.

4.3 An Allocation Algorithm for Additive Agents

In this section we present an allocation algorithm for the case of additive agents. Recall

our task is to construct an envy-freeable allocationAwith maximum path weight 1 in the

envy graph GA. We do this via an allocation algorithm defined on the valuation graph

for the instance. Given an instance with a set I of n agents and a set J of m items, the

valuation graph H is the complete bipartite graph on vertex sets I and J , where edge

(i, j) has weight vi(j). We denote by H[Î , Ĵ ] the subgraph of H induced by Î ⊆ I and

Ĵ ⊆ J . The allocation algorithm then proceeds in rounds where each agent is matched to

exactly one item in each round. For the first round, we set J1 = J . In round t, we then find

a maximum-weight matching Mt in H[I, Jt]. If agent i is matched to item j = µt
i then we

allocate item µt
i to that agent. We then recurse on the remaining items Jt+1 = Jt \∪i∈I{µt

i}.

The process ends when every item has been allocated. This procedure is formalized via

pseudocode in Algorithm 1.

Suppose the algorithm terminates in T rounds. We assume that every agent receives

an item in each round. For rounds 1 to T − 1 this is evident because agent i can be

assigned a item for which it has zero value. For round T , we assume there are exactly n

items remaining, possibly by adding dummy items of no value to any agent.

3In fact, a simple reduction converts the problem of finding minimum payments for a fixed allocation
into a shortest-paths problem and any efficient shortest-paths algorithm can be applied.
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Algorithm 1: Iterated Matching Algorithm
Ai ← ∅ for all i ∈ I ;
t← 1; J1 ← J ;
while Jt ̸= ∅ do

Compute a maximum-weight matching M t = {(i, µt
i)}i∈I in H[I, Jt];

Set Ai ← Ai ∪ {µt
i} for all i ∈ I ;

Set Jt+1 ← Jt \ ∪i∈I{µt
i};

t← t+ 1;
end

This algorithm has many interesting properties. In this section we prove that it outputs

an envy-freeable allocation A. Furthermore, the allocation A is EF1, thus settling Conjec-

ture 4.0.2. The allocation is also balanced in that (discarding any additional dummy items)

the bundles that the agents receive differ in size by at most one item; in particular, each

agent receives a bundle of size either ⌊m
n
⌋ or ⌈m

n
⌉. The allocation algorithm also clearly

runs in polynomial time.

We also show in this section that any allocation A that is both envy-freeable and EF1

has a heaviest path weight in the envy graph of weight at most n− 1. Thus, By Observa-

tion 4.2.2, the algorithm outputs an allocation that requires a subsidy of at most (n− 1)2.

As claimed though, the heaviest path weight in GA is in fact at most one and so the to-

tal subsidy needed is at most n − 1. We defer the proof of this fact, our main result, to

Section 4.4.

4.3.1 The Allocation Is Envy-freeable

Let’s first see that the allocationA output by the algorithm after the final round T is envy-

freeable.

Lemma 4.3.1. The output allocation A is envy-freeable.

Proof. Let M t be the maximum matching found in round t and µt = {µt
1, µ

t
2, . . . , µ

t
n} the

corresponding items allocated in that round. By Theorem 4.2.1 it suffices to show that

no directed cycle in the envy graph corresponding to the final allocation A has positive
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weight. Take any directed cycle C in the envy graph GA. Again, we may assume without

loss of generality that C = {1, 2, . . . , r} for some r ≥ 2. We have

wA(C) =
∑

(i,k)∈C

wA(i, k)

=
∑

(i,k)∈C

[vi(Ak)− vi(Ai)]

=
∑

(i,k)∈C

T∑
t=1

[
vi(µ

t
k)− vi(µ

t
i)
]

=
∑

(i,k)∈C

T∑
t=1

wµt(i, k)

=
T∑
t=1

∑
(i,k)∈C

wµt(i, k).

Let πC be the permutation of I under which πC(i) = i + 1 for each i ≤ r − 1, πC(r) = 1,

and πC(i) = i otherwise. In each round t, since Mt is a maximum-weight matching,∑
(i,k)∈C wµt(i, k) is non-positive: otherwise, the matching M̂ t obtained by allocating to

each agent i the item µt
πC(i) has greater weight than Mt, a contradiction. Thus wA(C) is also

non-positive. Consequently, by Theorem 4.2.1 the allocation produced by the algorithm

is envy-freeable.

4.3.2 The Allocation Is EF1

We say that an allocation A satisfies the envy bounded by a single good property, and is EF1,

if for each pair i, k of agents, either Ak = ∅ or there exists an item j ∈ Ak such that

vi(Ai) ≥ vi(Ak \ {j}).

Next, let’s prove the output allocation A is EF1.

Lemma 4.3.2. The output allocation A is EF1.
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Proof. Let A = {A1, . . . , An}. Recall, in any round t, the algorithm computes a maximum-

weight matching M t in H[I, Jt] and allocates item µt
i to agent i. Thus Ai = {µ1

i , . . . , µ
T
i } is

the set of items allocated to agent i. Observe that vi(µt
i) ≥ vi(j) for any item j ∈ Jt+1, the

collection of items unallocated at the start of round t + 1. Otherwise, we can replace the

edge (i, µt
i) with (i, j) in Mt, to obtain a matching of greater weight in H[I, Jt]. Therefore,

for any pair of agents i and k, we have

vi(Ai) = vi({µ1
i , . . . , µ

T
i })

= vi(µ
1
i ) + · · ·+ vi(µ

T−1
i ) + vi(µ

T
i )

≥ vi(µ
1
i ) + · · ·+ vi(µ

T−1
i )

≥ vi(µ
2
k) + · · ·+ vi(µ

T
k )

= vi(Ak \ {µ1
k}).

Ergo, the output allocation A is EF1.

Claim 4.3.3. [44] LetA be both envy-freeable and EF1. Then the minimum total subsidy required

is at most (n− 1)2.

Proof. Since there is an agent that requires no subsidy, it suffices to prove that the maxi-

mum path weight in the envy graph GA is at most n − 1. But A is EF1. So agent i envies

agent k by at most one, the maximum value of a single item. Thus every arc (i, k) has

weight at most one, that is, wA(i, k) ≤ 1. The result follows as any path contains at most

n− 1 arcs.

Since we have shown that the output allocation A is both envy-freeable and EF1, it

immediately follows by Claim 4.3.3 that it requires a total subsidy of at most (n− 1)2.
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4.4 The Subsidy Required Is at Most One per Agent

In this section we complete our analysis of the additive setting. By the EF1 property of

the output allocation GA we have an upper bound of 1 on the weight of any arc in the

envy graph GA. But this is insufficient to accomplish our goal of proving that the envy

graph has maximum path weight 1. How can we do this?

4.4.1 Lower Bounding Path Weights

As a thought experiment, imagine that, rather than an upper bound of 1 on each arc

weight, we have a lower bound of −1 on each arc weight. The subsequent lemma proves

this would be a sufficient condition!

Lemma 4.4.1. Let A be an envy-freeable allocation. If wA(i, k) ≥ −1 for every arc (i, k) in the

envy graph then the maximum subsidy required is at most one per agent.

Proof. By Theorem 4.2.1, asA is an envy-freeable the envy graph GA contains no positive-

weight cycles. Let P be the maximum-weight path in GA. Without loss of generality,

P = {1, 2, . . . , i} with weight p1 = ℓGA(1). Now take the directed cycle C = P ∪ (i, 1).

Because C has non-positive weight and every arc weight is at least −1, we obtain

0 ≥ wA(C) = ℓGA(1) + wA(i, 1) ≥ ℓGA(1)− 1.

Therefore ℓGA(1) ≤ 1 and the maximum subsidy is at most one.

At first glance, Lemma 4.4.1 seems of little use. We already know every arc in the

envy graph has weight at most 1. Suppose in addition that every arc weight was at least

−1. That is, 1 ≥ wA(i, k) ≥ −1 for each arc (i, k). Consequently, vi(Ai) ≤ vi(Ak) + 1 and

vi(Ak) ≤ vi(Ai) + 1. In instances with a large number of valuable items this means that

every agent is essentially indifferent over which bundle in A they receive. It is unlikely

that an allocation with this property even exists for every instance, and certainly not the

case that our algorithm outputs such an allocation.
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The trick is to apply Lemma 4.4.1 to a modified fair division instance. In particular

we construct, for each agent i, a modified valuation function v̄i from vi. We then prove

that the allocation Av output for the original valuation profile v is envy-freeable even

for the modified valuation profile v̄. Next we show that with this same allocation, every

arc weight is at least −1 in the envy graph under the modified valuation profile v̄. By

Lemma 4.4.1, this implies that the maximum subsidy required is at most one for the val-

uation profile v̄. To complete the proof we show that the maximum subsidy required by

each agent for the original valuation profile v is at most the subsidy required for v̄.

4.4.2 A Modified Valuation Function

Let Av = {Av
1 , . . . , A

v
n} be the allocation output by our algorithm under the original valu-

ation profile v. We now create the modified valuation profile v̄. For each agent i, define

v̄i according to the rule:

v̄i(µ
t
i) = vi(µ

t
i) ∀t ≤ T

v̄i(µ
t
k) = max

(
vi(µ

t
k), vi(µ

t+1
i )

)
∀k ∈ I \ {i}, ∀t ≤ T − 1

v̄i(µ
T
k ) = vi(µ

T
k ) ∀k ∈ I \ {i}.

That is, the value v̄i(j) remains the same for any item j ∈ Av
i that was allocated to agent

i by the algorithm. For any other item j, the value v̄i(j) is the maximum of the original

value vi(j) and the value of the item allocated to i by the algorithm in the round that

immediately follows the round where j was allocated to some agent.

The following two observations are trivial but will be useful.

Observation 4.4.2. For any agent i and item j ∈ Av
i , we have vi(j) = v̄i(j).

Observation 4.4.3. For any agent i and item j /∈ Av
i , we have vi(j) ≤ v̄i(j).
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We will show the bound on the subsidy by a sequence of claims based on the proof

plan outlined above. First we show that Av is envy-freeable even under the modified

valuation profile.

Claim 4.4.4. The allocation Av output under the original valuation profile v is an envy-freeable

allocation under the modified valuation profile v̄.

Proof. By Theorem 4.2.1, to show that the allocation Av is envy-freeable under the mod-

ified valuation profile v̄ we must show that there is no positive-weight cycle in the envy

graph using the modified values. So suppose cycle C has positive modified weight. To

obtain a contradiction, first observe that, in the allocation Av, agent i receives the bundle

Av
i = {µ1

i , µ
2
i , . . . , µ

T
i }. Thus with respect to v̄ the envy agent i has for agent k is

v̄i(Av
k)− v̄i(Av

i ) =
T∑
t=1

v̄i(µ
t
k)−

T∑
t=1

v̄i(µ
t
i) =

T∑
t=1

(
v̄i(µ

t
k)− v̄i(µ

t
i)
)
. (4.1)

As the envy graph contains a positive-weight cycle C we have, by (4.1), that

0 <
∑

(i,k)∈C

v̄i(Av
k)− v̄i(Av

i ) =
∑

(i,k)∈C

T∑
t=1

(
v̄i(µ

t
k)− v̄i(µ

t
i)
)
=

T∑
t=1

∑
(i,k)∈C

(
v̄i(µ

t
k)− v̄i(µ

t
i)
)
.

This implies there exists a round t such that

∑
(i,k)∈C

v̄i(µ
t
k) >

∑
(i,k)∈C

v̄i(µ
t
i). (4.2)

Now M t is a maximum-weight matching in H[I, Jt] for the original valuation profile v.

Let M̂ t be the matching formed from M t by permuting around the cycle C the bundles of

the agents in C. But then, by (4.2), the matching M̂ t has greater weight in H[I, Jt] than the

matching M t for the modified profile v̄. Consequently, we will obtain our contradiction if

we can prove that M t is a maximum-weight matching in H[I, Jt] even with respect to v̄.

This is true in the final round matching; clearly MT is a maximum-weight matching

in H[I, JT ] because, by definition, v̄ and v have the same value for items in JT . Thus, it
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remains to prove the statement for each round t ≤ T − 1. Now µt = {µt
1, µ

t
2, . . . , µ

t
n} is

the allocation of the items in round t. Again, for a contradiction, assume that matching

M t is not maximum in H[I, Jt] for the valuation profile v̄. Then, by Theorem 4.2.1, the

envy graph Gµt contains a positive-weight directed cycle C. Without loss of generality,

let C = {1, . . . , r}.

We divide our analysis into two cases, depending on whether the weights on the arcs

of C change when the valuation profile is modified from v to v̄. Specifically, we color an

arc (i, i + 1) of C blue if v̄i(µt
i+1) = vi(µ

t
i+1), that is, agent i’s value for the item allocated

to agent i + 1 does not change when the valuation profile is modified. Otherwise, we

color the arc (i, i + 1) red. Observe that if the arc (i, i + 1) of C is red, then v̄i(µ
t
i+1) =

vi(µ
t+1
i ) > vi(µ

t
i+1), so in the original valuation function agent i strictly prefers the item

that it is allocated in round t+1 to the item that agent i+1 is allocated in round t. In turn,

this implies that the weight on any red arc is necessarily negative. We have the following

two cases to consider.

(i) Every arc of C is blue. Let πC be the permutation of I under which πC(i) = i + 1 for

each i ≤ r − 1, πC(r) = 1, and πC(i) = i otherwise. The matchingMt obtained by

allocating to each agent i the item µt
πC(i) has greater weight than M t with respect

to the original valuation profile v, contradicting the assumption that the algorithm

selected a matching of maximum weight.

(ii) C contains a red arc. In this case, C can be decomposed into a sequence of d directed

paths P1, . . . , Pd such that each directed path consists of a (possibly empty) sequence

of blue arcs followed by exactly one red arc. Figure 4.1 shows an example of such

a decomposition. In the figure, blue arcs are represented by solid lines and red arcs

by dashed lines.

Now, since C has positive total weight, there is a directed path P ∈ {P1, . . . , Pd} of

positive total weight. Without loss of generality, let P = {1, 2, . . . , k + 1}. Thus in
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Figure 4.1: An example showing the decomposition of C into directed paths P1, . . . , P4.

In this example, P2 has positive weight.

the envy graph Gµt we have

wµt(P ) =
k∑

i=1

wµt(i, i+ 1) > 0. (4.3)

Construct a matching Mt = {(i, ωt
i)}i∈I in the following manner. For each agent

i ≥ k + 1, set ωt
i = µt

i; that is, the end-vertex of the path P and all agents not on P

are matched to the same item inMt as in M t. For each agent i ≤ k− 1, let ωt
i = µt

i+1,

that is in the allocationMt agent i receives the item that agent i + 1 receives in M t.

Finally, for agent k let ωt
k = M t+1

k ; that is, inMt agent k receives the item it would

have received in the next round in M t+1.

Observe that every item allocated byMt was available for allocation in round t and,

thus, it was a feasible allocation to select in round t. Next let’s compare the relative

values of Mt and M t under the original valuations v. To do this, observe that by
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definition ofMt we have

v(Mt)− v(M t) =
k∑

i=1

(
vi(ω

t
i)− vi(µ

t
i)
)

=
k−1∑
i=1

(
vi(ω

t
i)− vi(µ

t
i)
)
+
(
vk(ω

t
k)− vk(µ

t
k)
)

=
k−1∑
i=1

(
vi(µ

t
i+1)− vi(µ

t
i)
)
+
(
vk(µ

t+1
k )− vk(µ

t
k)
)
. (4.4)

But (k, k + 1) is a red arc in Gµt . Therefore, it is the case that vk(µt+1
k ) > vk(µ

t
k+1).

Plugging this into (4.4) gives

v(Mt)− v(M t) >
k−1∑
i=1

(
vi(µ

t
i+1)− vi(µ

t
i)
)
+
(
vk(µ

t
k+1)− vk(µ

t
k)
)

=
k∑

i=1

(
vi(µ

t
i+1)− vi(µ

t
i)
)
. (4.5)

But, by definition, wµt(i, i+ 1) = vi(µ
t
i+1)− vi(µ

t
i). So, together (4.3) and (4.5) imply

v(Mt)− v(M t) >
k∑

i=1

wµt(i, i+ 1) > 0. (4.6)

ThusMt has greater weight than M t under the original valuations v. This contra-

dicts the optimality of M t.

Claim 4.4.4 shows that the allocation Av produced by the algorithm on the original

instance is an envy-freeable allocation in the modified instance. We next show that for this

modified valuation profile the subsidy required is at most 1 for each agent. In particular

the total subsidy is at most n− 1.

Claim 4.4.5. For the envy-freeable allocation Av the subsidy to each agent is at most 1 for the

modified valuation profile v̄.
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Proof. Take the valuation profile v̄ and the allocation Av = {Av
1 , . . . , A

v
n}. We claim that

for any arc (i, k) its modified weight w̄Av(i, k) in the envy graph is at least −1. To prove

this take any pair of agents i and k. Then

w̄Av(i, k) = v̄i(A
v
k)− v̄i(A

v
i )

=
T∑
t=1

v̄i(µ
t
k)−

T∑
t=1

v̄i(µ
t
i)

=
T∑
t=1

v̄i(µ
t
k)−

T∑
t=1

vi(µ
t
i)

=
T−1∑
t=1

max(vi(µ
t
k), vi(µ

t+1
i )) + vi(µ

T
i )−

T∑
t=1

vi(µ
t
i)

≥
T−1∑
t=1

vi(µ
t+1
i )−

T−1∑
t=1

vi(µ
t
i). (4.7)

We can simplify (4.7) and lower bound it via a telescoping sum:

w̄Av(i, k) ≥
T−1∑
t=1

(
vi(µ

t+1
i )− vi(µ

t
i)
)

= vi(µ
T
i )− vi(µ

1
i )

≥ −vi(µ1
i )

≥ −1. (4.8)

Now by Claim 4.4.4, the allocation Av is envy-freeable with respect to the valuations v̄.

Applying Lemma 4.4.1, because the arc weights are lower bounded by −1 the subsidy

required per agent is then at most one for the modified valuation profile v̄.

Finally, since there is an agent whose payment is 0, the total subsidy required is upper

bounded by n− 1.

The following claim shows that, for any agent, the subsidy for the original valuation

profile is at most the subsidy required for the modified valuation function.
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Claim 4.4.6. For the allocation Av the minimum subsidy required by an agent given valuation

profile v is at most the minimum subsidy required given valuation profile v̄.

Proof. By Observation 4.4.2, vi(j) = v̄i(j) for any j ∈ Av
i . Therefore, by additivity,

v̄i(A
v
i ) =

∑
j∈Av

i

v̄i(j) =
∑
j∈Av

i

vi(j) = vi(A
v
i ). (4.9)

On the other hand, Observation 4.4.3 states that vi(j) ≤ v̄i(j) for any j /∈ Av
i . Thus, for

any pair i and k of agents, we have

v̄i(A
v
k) =

∑
j∈Av

k

v̄i(j) ≥
∑
j∈Av

k

vi(j) = vi(A
v
k). (4.10)

Combining (4.9) and (4.10) gives

w̄Av(i, k) = v̄i(A
v
k)− v̄i(A

v
i ) ≥ vi(A

v
k)− vi(A

v
i ) = wAv(i, k).

Consequently, the weight of any arc (i, k) in the envy graph with the modified valuation

profile is at least its weight with the original valuation profile. Therefore the weight of

any path in the envy graph is greater with the modified valuation profile than with the

original valuation profile. The claim follows.

Together Claims 4.4.5 and 4.4.6 give our main result.

Theorem 4.0.3. For additive valuations there is an envy-freeable allocation where the subsidy to

each agent is at most one dollar. (This allocation is also EF1, balanced, and can be computed in

polynomial time.)

4.5 Bounding the Subsidy for Monotone Valuations

We now consider the much more general setting where the valuations of the agents are

arbitrary monotone functions. That is, the only assumptions we impose are that vi(S) ≤
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vi(T ) when S ⊆ T and the basic assumption that vi(∅) = 0. Without loss of generality,

we may scale the valuations so that the marginal value of each item for any agent never

exceeds one dollar. Our goal in this section is to show that there is an envy-freeable

allocation in which the total subsidy required for envy-freeness is at most 2(n − 1)2. In

particular, the total subsidy required is independent of the number of items m. When

m > 2(n − 1) this bound beats the bound (n − 1) · m of [44] for additive valuations

described in Theorem 4.2.3 and, more importantly, it applies to the far more general class

of arbitrary monotone valuations.

Our method to compute the desired envy-freeable allocation begins with finding an

EF1 allocation. The well-known envy-cycles algorithm of Lipton et al. [55] finds such an

allocation in polynomial time given oracle access to the valuations, under the same mild

conditions on the valuations. For completeness, we briefly describe the envy-cycles al-

gorithm. The algorithm proceeds in a sequence of m rounds, allocating one item in each

round. At any point during the algorithm, we denote by G the envy graph corresponding

to the current allocation, and by H the subgraph of G that consists of all the agents and

only the arcs that have positive weight, that is, positive envy. We call H the auxiliary graph

of G. The algorithm relies on the following lemma.

Lemma 4.5.1. [55] For any partial allocation A with auxiliary graph H , there is another partial

allocation A′ with auxiliary graph H ′ such that

(i) H ′ is acyclic.

(ii) For each agent i, the maximum weight of an outgoing arc from i is less in A′ than in A.

The basic idea of the algorithm then is to maintain the following two invariants: (i)

at each step, the partial allocation is EF1, and (ii) at the start and end of each round,

the auxiliary graph H is acyclic. Since the auxiliary graph is a directed acyclic graph at

the start of each round, it has a source vertex. The algorithm simply chooses this vertex

and allocates the next item to the corresponding agent. Because no other agent envies this

agent before this item is allocated, the envies of the other agents are bounded by the value
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of this item (so the allocation of this item maintains the EF1 invariant). Next, the algorithm

identifies a directed cycle (if one exists) in the auxiliary graph H and redistributes bundles

by rotating them around this cycle. It is easy to see that the EF1 guarantee is maintained

after this redistribution of the bundles, and that the number of arcs in H strictly decreases.

All cycles in H are then eliminated in sequence until H is acyclic and the round ends.

When all items have been allocated, the final allocation is EF1.

This immediately raises the question of whether the resulting allocation is envy-freeable.

By Claim 4.3.3, we know that if an allocation is both envy-freeable and EF1, then the total

subsidy required for envy-freeness is (n−1)2, since the weight of any path is at most n−1.

Unfortunately, it is possible that the allocation output by the envy-cycles algorithm is not

envy-freeable. However, we show that an EF1 allocation can still be used to produce an

envy-freeable allocation that requires only a small increase in the subsidy! Specifically, the

following key lemma shows that if we begin by fixing the bundles of an EF1 allocation

and then redistribute these bundles to produce an envy-freeable allocation, the weight of

any path increases to at most 2(n− 1). By Theorem 4.2.1, an envy-freeable allocation can

be found by computing a maximum-weight matching.

Lemma 4.5.2. Let A be an EF1 allocation and B be the envy-freeable allocation corresponding

to a maximum-weight matching between the agents and the bundles of A. Then B can be made

envy-free with a subsidy of at most 2(n− 1) to each agent.

Proof. Let A = {A1, . . . , An} be an EF1 allocation. So, for any pair i and k of agents,

vi(Ak) − vi(Ai) ≤ 1. Let π be a permutation of the bundles that maximizes
∑

i vi(Aπ(i)).

Then, by Theorem 4.2.1, the allocation B = {B1, . . . , Bn} = {Aπ(1), . . . , Aπ(n)} is envy-

freeable. Next, let P be a directed path in the envy graph GB. Without loss of generality,

P = {1, 2, . . . , r} for some r ≥ 2. Our goal is to show that the weight of P in GB is at most

2(n − 1). Clearly, the weight of P in GA is at most n − 1. Consider an arc (i, i + 1) of P .

Since A is EF1, for any agent k, we have vi(Ak)− vi(Ai) ≤ 1. Now, agent i+1 receives the

bundle of agent π(i+1) in the redistributed allocation B. We have vi(Aπ(i+1))− vi(Ai) ≤ 1
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and, thus, vi(Bi+1)− vi(Ai) ≤ 1. It follows that:

wB(P ) =
∑

(i,k)∈P

wB(i, k)

=
r−1∑
i=1

(vi(Bi+1)− vi(Bi))

=
r−1∑
i=1

(vi(Bi+1)− vi(Ai) + vi(Ai)− vi(Bi))

≤
r−1∑
i=1

(1 + vi(Ai)− vi(Bi))

≤ (n− 1) +
r−1∑
i=1

(vi(Ai)− vi(Bi)) . (4.11)

To complete the proof, it remains to show that
∑r−1

i=1 (vi(Ai)− vi(Bi)) is at most n − 1.

Together with (4.11), this implies that wB(P ) ≤ 2(n− 1).

Since π maximizes
∑

i vi(Aπ(i)), we have
∑

i vi(Bi) ≥
∑

i vi(Ai). The key observation

is that, while the sum of values of the bundles received by all agents increases when we

redistribute the bundles fromA to B, the value of the bundle received by any single agent

increases by at most one because A is EF1. This then constrains the amount by which the

total value for any subset of agents can decrease. Specifically, let R ⊆ I be the set of agents

i that receive a bundle Bi of smaller value than Ai, that is, R = {i ∈ I : vi(Bi) < vi(Ai)}.

Let S = I \R, so S = {i ∈ I : vi(Bi) ≥ vi(Ai)}.

Now, we have two cases to consider.

(i) |R| = 0.

Then
∑r−1

i=1 (vi(Ai)− vi(Bi)) ≤ 0 and the result follows.

(ii) |R| ≥ 1.
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Then |S| ≤ n− 1, and we have

∑
i∈[r−1]

(vi(Ai)− vi(Bi)) =
∑

i∈[r−1]∩R

(vi(Ai)− vi(Bi)) +
∑

i∈[r−1]∩S

(vi(Ai)− vi(Bi))

≤
∑

i∈[r−1]∩R

(vi(Ai)− vi(Bi))

≤
∑
i∈R

(vi(Ai)− vi(Bi))

≤
∑
i∈S

(vi(Bi)− vi(Ai))

≤ n− 1.

The second to last inequality says that the total decrease in value for agents in R is at

most the total increase in value for agents in S (since B is an optimal redistribution

of the bundles). The final inequality follows from the fact that |S| ≤ n − 1 and for

each i ∈ S, vi(Bi)− vi(Ai) ≤ 1 since A is EF1.

Together, Lemmas 4.5.1 and 4.5.2 bound the total subsidy sufficient for envy-freeness

when the valuation functions are monotone.

Theorem 4.0.4. For monotonic valuations there is an envy-freeable allocation where the subsidy

to each agent is at most 2(n−1) dollars. (Given a valuation oracle, this allocation can be computed

in polynomial time.)
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Chapter 5

Fairness and Welfare

As we saw earlier, as a consequence of the impossibility of envy-freeness without pay-

ments, the majority of the community’s recent research efforts have been directed towards

achieving approximate or relaxed fairness guarantees, such as EF1 or approximate MMS. In

the previous chapter, we studied the use of payments in fair item allocation. We showed

that an allocation can be made envy-free via the use of a small subsidy. In this chapter, we

ask and answer a natural follow-up question: can this tool be made to do more? Can we

use it to simultaneously guarantee full envy-freeness while also achieving high welfare,

and if so, how much in total transfer payments do we need for this? These questions are

the focus of this chapter.

One contribution of our work is to extend the literature on subsidies and their applica-

tion. However, rather than subsidies, we analyze the related concept of transfer payments

between the agents for two reasons. First, a subsidy is an external source of added util-

ity which, in the context of welfare, would bias any subsequent comparisons with the

welfare-maximizing allocation without subsidies. A transfer payment is neutral in this

regard. Second, subsidies require an external agent willing to fund the mechanism – a

typically unrealistic hope. In contrast, transfer payments require the consent only of the

agents who are already willing participants in the mechanism. Provided the cost of the

payments are outweighed by the benefits of participation then giving consent for this is
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reasonable. We remark that subsidies and transfers are in a sense interchangeable. Given

an envy-free allocation with subsidies, subtracting the average subsidy from each agent’s

individual payment gives payments which sum to zero, that is, transfer payments. Con-

versely, given transfer payments, adding an appropriate fixed amount to each payment

induces non-negative subsidy payments.1

A second contribution is to extend the research on the price of fairness. Specifically,

we impose no balancing constraint on the valuation functions of the agents. To understand

this, note that a common assumption in the price of fairness literature is that the valua-

tion function of each agent is scaled so that the value of the grand bundle of items is equal

for all agents. In the context of fairness, this scaling is benign because it has no affect on

the most widely used measures of fairness. For example, it does not change the (relative)

envy between any pair of agents. However, in the context of efficiency or welfare, this

scaling can dramatically alter the welfare of any allocation by restricting attention to bal-

anced instances, where agents are of essentially equal importance in generating welfare.

This is important because it is the elimination of unbalanced instances that allows non-

trivial bounds on the price of fairness to be obtainable ([16, 12]). Indeed, as will be seen

later in the chapter, it is the unbalanced instances that are typically the most problematic

in obtaining both fairness and high welfare.

We do, for simplicity, continue to make the standard assumption in the literature on

subsidies and assume that the maximum marginal value for an item for any agent is

always at most one dollar. We emphasize that this assumption is benign with respect to

both fairness and welfare: it does not affect the relative envy between agents, and it does

not affect the welfare of an allocation (as all valuations can be scaled down uniformly).

Expressing the transfers in dollar amounts allows for a consistent comparison with earlier

work on the topic, and equivalent bounds for the original instance can be recovered by

multiplying these expressions by the maximum marginal value of an item for any agent.

1Of course, whilst the correspondence between subsidies and transfers is simple, the switch to transfer
payments does have a technical drawback: because transfer payments do not provide an (unnatural) exter-
nal boost to welfare, obtaining welfare guarantees for the case of transfers is generally harder than for the
case of subsidies.
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We now present the main results in the chapter. We study the trade-off between fair-

ness and efficiency in the presence of transfer payments for the class of ρ-mean welfare

functions, with particular focus on the two most important special cases, namely the Nash

social welfare and utilitarian social welfare functions. An allocation is envy-freeable if it can be

made envy-free with the addition of subsidies (or, equivalently, transfer payments). Our

first observation is that to achieve both fairness and high welfare, it is not sufficient to

simply find an envy-freeable allocation – making transfer payments is necessary. In fact,

no non-zero welfare guarantee is achievable for all ρ without considering transfers in the

computation of the welfare. Letting Wρ denote ρ-mean welfare, we have:

Observation 5.0.1. For any ϵ > 0, there exist instances where the welfare of every envy-freeable

allocation A satisfies Wρ(A)
Wρ(A∗)

≤ ϵ.

Here A∗ is the welfare-maximizing allocation. The observation applies even in the

case of additive valuations with Nash social welfare functions. Consequently, the focus

on allocations with transfers is justified. For ρ-mean welfare functions, we show that

positive welfare guarantees are achievable with transfers.

Corollary 5.2.3. For subadditive valuations, there exists an envy-free allocation with transfers

(A, t) such that Wρ(A,t)
Wρ(A∗)

≥ 1
n

and with a total transfer
∑

i |ti| of at most 2n2. This allocation can

be computed in polynomial time.

Here n is the number of agents. Note that the total transfer is independent of the

number m of items. This implies, as m grows, that the transfer payments are negligible in

terms of the number of items (and of total welfare). In particular, our ultimate objective

is to obtain both envy-freeness and high welfare using negligible transfers. Of course, the

welfare guarantee of 1
n

does not signify high welfare. So we investigate whether improved

bounds can be obtained for the important special cases of ρ = 0 (Nash social welfare) and

ρ = 1 (utilitarian social welfare). Strong guarantees on welfare can be obtained for the

former. Specifically, there exists an envy-free allocation with transfers with a Nash social

welfare that is at least an e−1/e ≈ 0.6922 fraction of the optimal welfare.
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Theorem 5.3.1. For general valuations, there exists an envy-free allocation with transfers (A, t)

such that NSW(A,t)
NSW(A∗)

≥ e−1/e.

Furthermore, for additive valuations, such constant factor welfare guarantees can be

obtained with negligible transfer payments.

Theorem 5.3.3. For additive valuations, given an α-approximate allocation to maximum Nash

social welfare, there exists a polynomial time computable envy-free allocation with transfers (A, t)

such that NSW(A,t)
NSW(A∗)

≥ 1
2
α · e−1/e with a total transfer

∑
i |ti| of at most 2n2.

In sharp contrast, for utilitarian social welfare, the factor 1
n

welfare threshold is tight.

To achieve any welfare guarantee greater than 1
n

requires non-negligible transfer pay-

ments. Specifically, we show

Corollary 5.4.2. For any α ∈
[
1
n
, 1
]
, there exists an instance with additive valuations such

that any envy-free allocation with transfers (A, t) satisfying SW(A,t)
SW(A∗)

≥ α requires a total transfer∑
i∈N |ti| of at least 1

4

(
α− 1

n

)2
m.

In fact, there exist instances for which any EFk allocation with k = o(m) has a welfare

guarantee of at most 1
n
+ o(1) (Lemma 5.4.1). This implies that EFk allocations cannot

provide higher welfare with moderate transfers.

On the positive side, we can design algorithms to produce envy-free allocations with

welfare guarantee α whose total transfer payment is comparable to the minimum amount

possible, quantified in terms of the maximum value max
i

vi(A
∗
i ) any agent has in the

welfare-maximizing allocation.

Theorem 5.4.4. For additive valuations, for any α ∈ (0, 1], there is a polynomial time computable

envy-free allocation with transfers (A, t) such that SW(A,t)
SW(A∗)

≥ α with total transfer
∑

i∈N |ti| ≤

n(αmax
i

vi(A
∗
i ) + 2).

Theorem 5.4.5. For general valuations, for any α ∈
(
0, 1

3

]
, there is an envy-free allocation with

transfers (A, t) such that SW(A,t)
SW(A∗)

≥ α with total transfer
∑

i∈N |ti| ≤ 2n2 (3αmaxi vi (A
∗
i ) + 2).
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In Section 5.1, we present our model of the fair division problem with transfers. Sec-

tion 5.2 contains an exposition of the prior results in the literature that will be useful,

along with our preliminary results on the ρ-mean welfare of envy-free allocations with

transfers. In Section 5.3, we present our results on Nash social welfare, and in Section 5.4

we present our results on utilitarian social welfare.

5.1 The Model and Preliminaries

Let M = {1, · · · ,m} be a set of m indivisible items and let N = {1, · · · , n} be a set of

agents. Let vi : 2M → R be agent i’s valuation function, where vi(∅) = 0. We make the

standard assumption that each valuation function is monotone, satisfying vi(S) ≤ vi(T )

whenever S ⊆ T . Additionally, following previous work on subsidies, just like in the

previous chapter we uniformly scale (w.l.o.g.) the valuation functions by the same factor

for each agent so that the maximum marginal value of any item is at most 1. Besides

general monotone valuations, we are also interested in well-known classes of valuation

function, in particular, additive valuations, and subadditive (complement-free) valuations

where v(S ∪ T ) ≤ v(S) + v(T ) for all S, T ⊆M . We use [n] to denote the set {1, · · · , n}.

5.1.1 Fairness and Welfare

An allocation A = (A1, A2, · · · , An) is a partition of the items into n disjoint subsets, where

Ai is the set of items allocated to agent i. Our aim is to obtain envy-free allocations with

high welfare. As before, we say an allocation with payments (A, p) is envy-free if for each

i, j ∈ N , vi(Ai) + pi ≥ vi(Aj) + pj , and an allocation envy-freeable if there exist payments

p such that (A, p) is envy-free. There are two natural types of payment. First, we have

subsidy payments if pi ≥ 0. Second, we have transfer payments if
∑

i∈N pi = 0, To distinguish

these, we denote a subsidy payment to agent i by si and a transfer payment by ti. We

define the total transfer of an allocation as the sum
∑

i |ti|.
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We measure the welfare of an allocation A using the general concept of ρ-mean welfare,

Wρ(A) =
(
1
n

∑
i∈N vi(Ai)

ρ
) 1

ρ . This class of welfare functions, introduced by Arunachaleswaran

et al. [6], encompasses a range of welfare functions including the two most important

cases: ρ→ 0, the Nash social welfare, is the geometric mean of the values of the agents, de-

noted by NSW(A) =
(∏

i∈N vi(Ai)
) 1

n , and ρ = 1, the utilitarian social welfare or simply social

welfare (scaling by the number of agents), denoted by SW(A) =
∑

i∈N vi(Ai). With transfer

payments, our interest lies in utilities rather than simply valuations. In particular, the ρ-

mean welfare of an allocation with transfers (A, t) is Wρ(A, t) =
(
1
n

∑
i∈N (vi(Ai) + ti)

ρ) 1
ρ .

5.1.2 Fair Division With Transfer Payments

In this chapter, we study the following question.

Is there an allocation with transfers that simultaneously satisfies

(i) envy-freeness, (ii) high welfare, and (iii) a negligible total transfer?

We have seen that envy-freeable allocations always exist. Thus, with transfer payments,

we can obtain the property of envy-freeness. The reader may ask whether transfers are

necessary. Specifically, given the guaranteed existence of envy-freeable allocation, can

such allocations provide high welfare? The answer is no. Even worse, no positive guaran-

tee on welfare can be obtained without transfers. This is true even for the case of additive

valuations. To see this, consider the following simple example for Nash social welfare.

Example 5.1.1. Take two agents and two items {a, b}. Let the valuation functions be additive

with v1,a = 1, v1,b =
1
2

for agent 1 and v2,a = 1
2
, v2,b = ϵ for agent 2. Observe there are only two

envy-freeable allocations: either agent 1 gets both items or agent 1 gets item a and agent 2 gets

item b. For both these envy-freeable allocations the corresponding Nash social welfare is at most
√
ϵ. In contrast, the optimal Nash social welfare is 1

2
when agent 1 gets b and agent 2 gets a.

It follows that to find envy-free solutions with non-zero approximation guarantees for

welfare we must have transfer payments. At the outset, if we restrict ρ to be equal to 1,

116



the result of Halpern and Shah [44] implies that the allocation that maximizes utilitarian

welfare can be made envy-free with transfer payments. However, we show that this al-

location can require arbitrarily large transfers relative to the number of agents. The main

point of concern in using transfer payments to achieve envy-freeness is that it may be dif-

ficult for the participants to include a substantial quantity of money in the system in order

to implement this solution. Consequently, this creates a third requirement, i.e. to bound

the total transfers. Thus the holy grail here is to obtain high welfare using only negligible

transfers: formally, we desire transfers whose sum (of absolute values) is independent of

the number of items m. In particular, we want an allocation with transfers (A, t) such that

the welfare of A is at least α times the welfare of the welfare-maximizing allocation A∗

(for some large α ∈ [0, 1]) and
∑

i∈N |ti| = O(f(n)) for some function f . Specifically, the

payments are negligible in the number of items (and thus in the total welfare) as m grows.

At first glance, this task seems impossible. If envy-freeable solutions cannot them-

selves ensure non-zero welfare guarantees, how could negligible transfer payments in-

duce high welfare? Surprisingly, this is possible for some important classes of valuation

functions and types of welfare. However, it is indeed not possible for other classes and

types. Investigating the boundary of this dichotomy is the purpose of this chapter.

5.2 Transfer Payments and ρ-Mean Welfare

In this section we familiarize the reader with the structure of envy-freeable allocations

and transfer payments, and introduce our preliminary results. We begin with the general

case of ρ-mean welfare.

Lemma 5.2.1. For subadditive valuations, any envy-free allocation with transfers (A, t) satisfies

Wρ(A, t) ≥ 1
n
Wρ(A∗).
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Proof. By the envy-freeness property vi(Ai) + ti ≥ vi(Aj) + tj . Thus

vi(Ai) + ti ≥
1

n

(∑
j

vi(Aj) + tj

)
≥ 1

n
vi(M) ≥ 1

n
vi(A

∗
i )

Here the second inequality follows by subadditivity. Hence

Wρ(A, t) =

(
1

n

∑
i∈N

(vi(Ai) + ti)
ρ

) 1
ρ

≥

(
1

n

∑
i∈N

(
vi(A

∗
i )

n

)ρ
) 1

ρ

=
1

n

(
1

n

∑
i∈N

(vi(A
∗
i ))

ρ

) 1
ρ

=
1

n
Wρ(A∗)

as desired.

The resultant welfare guarantee of α = 1
n

is not particularly impressive. But it is

a strictly positive guarantee, which was unachievable without transfer payments. The

bound is also tight as shown by the following simple example.

Example 5.2.2. Take m = n items and n agents. Let the valuation functions be additive with

vii = 1 and vij = 0 for j ̸= i. Consider the allocation assigning the grand bundle to agent 1. This

is envy-freeable with transfer payments t1 = −n−1
n

and ti =
1
n

, for any agent i ̸= 1. For social

welfare (ρ = 1) the corresponding welfare guarantee is α = 1
n

.

But how expensive is it to obtain this welfare guarantee? To answer this, we provide a

short review concerning the computation of transfer payments. Recall that an allocation

A is envy-freeable if there exist payments p such that (A, p) is envy-free. The character-

ization due to Halpern and Shah [44] described in the previous chapter shows us how

to find, for any envy-freeable allocation A, the minimum subsidy payments s such that

(A, s) is envy-free. Let l(i) be weight of a maximum weight path from node i to any other

node in GA. Setting si = l(i) for each agent i gives an envy-free allocation with minimum

subsidy payments. We do not wish to subsidize the mechanism, so we convert these sub-

sidies into transfer payments. To do this, let s̄ = 1
n

∑
i∈N si be the average subsidy. Then
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setting ti = si − s̄ for each agent gives a valid set of transfer payments, which we dub the

natural transfer payments. We remark that the natural transfer payments do not always

minimize the total transfer, but they will be sufficient for our purposes. We are now ready

to compute transfer payments for subadditive valuations in the ρ-mean welfare setting.

We begin by restating a theorem from the previous chapter.

Theorem 4.0.4. For monotone valuations there is a polytime algorithm to find an envy-free allo-

cation with subsidies (A, s) with si ≤ 2(n− 1) for all i.

Observe that any bound on the maximum subsidy for each agent also applies to the

maximum natural transfer for each agent. Combining this observation with the previous

result gives us the following corollary.

Corollary 5.2.3. For subadditive valuations, there exists an envy-free allocation with transfers

(A, t) such that Wρ(A,t)
Wρ(A∗)

≥ 1
n

and with a total transfer
∑

i |ti| of at most 2n2. This allocation can

be computed in polytime.

Thus, we can quickly obtain an envy-free allocation with transfers whose total transfer

is negligible, i.e., independent of m. But, as stated, we only have a low welfare guarantee

for this general ρ-mean welfare class. In the next section, we will show that high welfare

and negligible transfers are achievable for the special case of ρ = 0, that is, Nash Social

Werlfare. First, we conclude this section by presenting a generalization of our earlier

theorem that will later be useful. We say that an allocation B has b-bounded envy if vi(Bj)−

vi(Bi) ≤ b for every pair i, j ∈ N .

Lemma 5.2.4. Given an allocation B with b-bounded envy there is a polytime algorithm to find

an envy-free allocation with transfers (A, t) with
∑

i∈N |ti| ≤ 2bn2.

Proof. Let B = {B1, B2, . . . , Bn} be an allocation with b-bounded envy. Consider the envy-

freeable allocation A = (Bπ(1), · · · , Bπ(n)) obtained by computing a maximum-weight

matching between the bundles in B and the agents. Applying an approach from the
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previous chapter, let P be a path of maximum weight in the envy-graph GA. Without loss

of generality, P = (1, · · · , r). By definition of the envy-graph, we then have

wA(P ) =
r−1∑
i=1

vi(Ai+1)− vi(Ai)

=
r−1∑
i=1

vi(Ai+1)− vi(Bi) + vi(Bi)− vi(Ai)

=
r−1∑
i=1

vi(Bπ(i+1))− vi(Bi) +
r−1∑
i=1

vi(Bi)− vi(Ai)

≤ b(n− 1) +
r−1∑
i=1

vi(Bi)− vi(Ai) (5.1)

Here the inequality holds as vi(Bπ(i+1))− vi(Bi) ≤ b for each agent i, and r < n. We have

r−1∑
i=1

vi(Bi)− vi(Ai) ≤
∑

i:vi(Bi)≥vi(Ai)

vi(Bi)− vi(Ai)

≤ −
∑

i:vi(Bi)<vi(Ai)

vi(Bi)− vi(Ai)

=
∑

i:vi(Bi)<vi(Ai)

vi(Ai)− vi(Bi)

=
∑

i:vi(Bi)<vi(Ai)

vi(Bπ(i))− vi(Bi)

≤ b(n− 1). (5.2)

Above the second inequality holds as the social welfare of A is the maximum over all

allocations of the bundles in B; in particular,
∑

i vi(Ai) ≥
∑

i vi(Bi). The last inequality

again follows as B has b-bounded envy.

Together (5.1) and (5.2) give wA(P ) ≤ 2b(n−1). This implies that A can be made envy-

free with a subsidy si ≤ 2b(n− 1) to each agent i. Hence, setting ti = si − s̄, we have that

(A, t) is envy-free with a total transfer payment of at most
∑

i∈N |ti| ≤ 2bn2.
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5.3 Transfer Payments and Nash Social Welfare

In the following two sections, we present our main results concerning Nash social welfare

and utilitarian social welfare. Here we show that, with transfers, excellent welfare guar-

antees can be obtained for NSW. Conversely, in Section 5.4, we will see that only much

weaker guarantees can be obtained for utilitarian welfare.

5.3.1 NSW with General Valuation Functions

Now, recall from Example 5.1.1 that no positive welfare guarantee can be obtained in

the case of Nash social welfare for even the basic case of additive valuations. Our first

result for Nash social welfare is therefore somewhat surprising. With transfer payments,

constant factor welfare guarantees can be obtained for general valuations. That is, envy-

freeness and high welfare are simultaneously achievable.

Theorem 5.3.1. For general valuations, there exists an envy-free allocation with transfers (A, t)

such that NSW(A,t)
NSW(A∗)

≥ e−1/e.

Proof. Let A∗ be an allocation that maximizes Nash social welfare. Now, let A be an envy-

freeable allocation induced by reallocating the bundles in A∗ to maximize utilitarian social

welfare. Recall this can be found by taking a maximum weight matching between the

agents and the bundles of A∗; let π(i) be the agent who receives bundle A∗
i in the allocation

A. By Theorem 4.2.1, this allocation is envy-freeable. So let t be any valid set of transfer

payments such that (A, t) is envy-free.

By definition we have that vi(A∗
i ) = vi(Aπ(i)), for all i ∈ N . Then, by envy-freeness, we

have vi(Ai) + ti ≥ vi(Aπ(i)) + tπ(i) = vi(A
∗
i ) + tπ(i). Denote by tmax the maximum positive

transfer payment, i.e. tmax = maxi ti, and let m be an agent whose transfer tm is equal to

tmax. By envy-freeness, no agent envies agent m, so vi(Ai) + ti ≥ tmax for all i. Putting this
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all together, we have

∏n
i=1 vi(Ai) + ti∏n

i=1 vi(A
∗
i )

≥
n∏

i=1

max
[
vi(A

∗
i ) + tπ(i), tmax

]
vi(A∗

i )

Now define N+ = {i | tπ(i) ≥ 0} and N− = N \N+.

n∏
i=1

max
[
vi(A

∗
i ) + tπ(i), tmax

]
vi(A∗

i )
≥
∏
i∈N+

vi(A
∗
i ) + tπ(i)
vi(A∗

i )
·
∏
i∈N−

max
[
vi(A

∗
i ) + tπ(i), tmax

]
vi(A∗

i )

≥
∏
i∈N−

max
[
vi(A

∗
i ) + tπ(i), tmax

]
vi(A∗

i )

Next let N−
1 be the indices corresponding to negative transfers that also satisfy tmax ≤

vi(A
∗
i )+tπ(i), and let N−

2 be the indices corresponding to negative transfers that also satisfy

tmax > vi(A
∗
i ) + tπ(i). Furthermore, set vi(A∗

i ) + tπ(i) = tmax + αi. Observe that, for i ∈ N−
1 ,

we have αi ≥ 0, but for i ∈ N−
2 , we have αi < 0. Applying this gives

∏
i∈N−

max
[
vi(A

∗
i ) + tπ(i), tmax

]
vi(A∗

i )
≥

∏
i∈N−

1

tmax + αi

tmax + αi − tπ(i)

 ·
∏

i∈N−
2

tmax

tmax + αi − tπ(i)


≥

∏
i∈N−

1

tmax

tmax − tπ(i)

 ·
∏

i∈N−
2

tmax

tmax − |αi| − tπ(i)


≥

∏
i∈N−

1

tmax

tmax − tπ(i)

 ·
∏

i∈N−
2

tmax

tmax − tπ(i)


=

(∏
i∈N−

tmax

tmax − tπ(i)

)

Now for, i ∈ N−, let ki = |tπ(i)|. Since
∑

i∈N ti = 0 we have
∑

i∈N+ ti =
∑

i∈N− ti := T .

Thus

(∏n
i=1 vi(Ai) + ti∏n

i=1 vi(A
∗
i )

)1/n

≥

(∏
i∈N−

tmax

tmax − tπ(i)

)1/n

=

(∏
i∈N−

tmax

tmax + ki

)1/n
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Observe, by the arithmetic-geometric mean inequality, that
∏

i∈N−(tmax + ki) is maximized

when ki = kj = T/|N−|. In addition, tmax ≥ T/|N+|. So

(∏
i∈N−

tmax

tmax + ki

)1/n

≥

(
T

|N+|
T

|N+| +
T

|N−|

)|N−|/n

=

(
n− |N+|

n

)n−|N+|
n

≥ min
x

(
1

x

) 1
x

≥ e−1/e

This theorem is noteworthy; for general valuation functions, with transfers, it allows

us to simultaneously obtain high Nash social welfare and envy-freeness. But what of

our third objective, negligible transfer payments? The approach applied in the proof

of Theorem 5.3.1 cannot guarantee negligible transfers. Specifically, simply reallocating

the bundles of the allocation A∗ that maximizes Nash social welfare can require large

transfers. In particular, the following example shows this method may require transfers

as large as Ω(
√
m).

Example 5.3.2. Take an instance with two agents and m items. Assume the first agent has

a valuation function given by v1(S) = |S|, for each S ⊆ M ; assume the second agent has a

valuation function given by v2(S) =
√
|S|, for each S ⊆M . The reader may verify that the Nash

welfare maximizing allocation A∗ is to give the first agent 2m
3

items and the second agent m
3

items.

This allocation is also the allocation that maximizes utilitarian social welfare by reassigning the

bundles of A∗. Thus A = A∗. However, to make the allocation envy-free requires a minimum

transfer payment of Ω(
√
m), from the first agent to the second agent.

Of course, this example does not rule out the possibility that, for general valuation

functions, an envy-free allocation with transfers that has high welfare and negligible pay-

ments exists. In particular, simply allocating each agent half the items requires no transfer

payments at all, and gives high Nash social welfare. So simultaneously obtaining high

Nash social welfare and envy-freeness via negligible transfers for general valuation func-

tions remains an open question. Fortunately, we can show that these three properties are

simultaneously achievable for important special classes of valuation function.
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5.3.2 NSW Guarantees with Negligible Transfers

Here we prove that for (i) additive valuations, and (ii) matroid rank valuations, it is al-

ways possible to obtain envy-free allocations with high Nash social welfare and negligible

transfers. Furthermore, for additive valuations we can do this using polynomial time al-

gorithms.

Theorem 5.3.3. For additive valuations, given an α-approximate allocation to maximum Nash

social welfare, there exists a polynomial time computable envy-free allocation with transfers (A, t)

such that NSW(A,t)
NSW(A∗)

≥ 1
2
α · e−1/e with a total transfer

∑
i |ti| of at most 2n2.

Proof. Let B be the α-approximate allocation to the maximum Nash social welfare; that is
NSW(B)
NSW(A∗)

≥ α. Now Caragiannis et al. [26] gave a polytime algorithm which, given input

B, outputs an EF1 allocation B′ with a Nash social welfare guarantee of α
2

.

Next, recall the proof of Theorem 5.3.1. Observe that, during the proof, we did not

use the fact that A∗ maximizes Nash social welfare. Thus the e−1/e approximation ratio

holds if we start with any other allocation Â instead of A∗. That is by reallocation the

bundles of Â we obtain an envy-freeable allocation A whose Nash social welfare is that

least a factor e−1/e of that of A∗. In particular, we can do this for the allocation Â = B′

given by Caragiannis et al [26]. So, by Theorem 5.3.1, there exists an envy-free allocation

with transfers (A, t) such that NSW(A,t)
NSW(B′)

≥ e−1/e. Now

NSW(A, t)

NSW(A∗)
=

NSW(B′)

NSW(A∗)
· NSW(A, t)

NSW(B′)
≥ 1

2
α · e−1/e

Furthermore, because B′ is EF1 and A is obtained by the same procedure as in Lemma 5.2.4,

we obtain transfer payments with
∑

i |ti| ≤ 2n2.

We remark that, for additive valuations, polytime algorithms to find allocations that

α-approximate the maximum NSW do exist. Specifically, Barman et al. [11] present an

algorithm with an approximation guarantee of α = 1
1.45

. Together with Theorem 5.3.3,
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we thus obtain in polytime an envy-free allocation with negligible transfers and a Nash

social welfare guarentee of 1
2.9

e−1/e.

Better existence bounds can be obtained for the additive case if we remove the require-

ment of a polytime algorithm. A well-known result of Caragiannis et al. [27] states that for

additive valuations, the Nash welfare maximizing allocation is EF1. In fact, a recent result

of Benabbou et al. [17] provides a similar statement for the case of matroid rank valuation

functions, a sub-class of submodular functions. A valuation function is matroid rank if it

is submodular, and the marginal value of any item is binary (i.e. for any set S of items and

any item x not in S, vi(S ∪ {x})− vi(S) ∈ {0, 1}). Here, an NSW-maximizing allocation is

EF1[17]. Combining this with Lemma 5.2.4, the corresponding envy-free allocation with

transfers (A, t) has transfers satisfying
∑

i |ti| ≤ 2n2. Further, by Theorem 5.3.1, we have
NSW(A,t)
NSW(A∗)

≥ e−1/e as desired.

Theorem 5.3.4. For matroid rank valuations, there exists an envy-free allocation with transfers

(A, t) with NSW(A,t)
NSW(A∗)

≥ e−1/e and
∑

i |ti| ≤ 2n2.

5.4 Transfer Payments and Utilitarian Social Welfare

In this section we present our results on utilitarian social welfare, which differ markedly

from those in the previous section. To begin, recall that an allocation B has b-bounded envy

if vi(Bj)− vi(Bi) ≤ b for every pair of agents i, j ∈ N . Without transfers, allocations with

b-bounded envy may have very low welfare.

Lemma 5.4.1. For utilitarian social welfare, there exist instances with additive valuation func-

tions such that any allocation with b-bounded envy has a welfare guarantee of at most 2
√

b
m
+ 1

n
.

Proof. Consider the following instance with additive valuations. Let vn,j = 1 for each

j ∈ M and let vij = ϵ for all i ̸= n and all j ∈ M . Evidently, to maximize utilitarian social

welfare we simply give all the items to agent n. So SW(A∗) = m. Because the items are

interchangeable for every agent, any allocation A can be described as (y1, · · · , yn−1, yn =
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x), where yi is the fraction of items allocated to agent i. to the agent. Since every item

must be allocated, we have
∑n−1

i=1 yi = (1 − x). The corresponding welfare guarantee for

the allocation A is then SW(A)
SW(A∗)

= (1− ϵ)x+ ϵ.

Now suppose A has b-bounded envy. Therefore, vi(Aj) − vi(Ai) ≤ b, for any pair of

agents i, j ∈ N . In particular, m(yi−x) ≤ b since agent n cannot envy agent i too much and

ϵm(x− yi) ≤ b since agent i cannot envy agent n too much. Summing the later inequality

over all agents i gives ϵm((n− 1)x− (1− x)) ≤ (n− 1)b. This implies x ≤ (1− 1
n
) b
ϵm

+ 1
n

.

Thus

SW(A)

SW(A∗)
= (1− ϵ)x+ ϵ

≤ (1− ϵ)

((
1− 1

n

)
b

ϵm
+

1

n

)
+ ϵ

≤ 2

√
b

m
− b

m
+

1

n

≤ 2

√
b

m
+

1

n

Here the second inequality holds by setting ϵ =
√

b
m

.

Lemma 5.4.1 implies that any EFk allocation in the given example, with k = o(m),

cannot provide a welfare guarantee that is significantly higher than 1
n

. The natural ques-

tion to ask, now, is whether the problem inherent in Lemma 5.4.1 can be rectified with

a small quantity of transfers. On the positive side, the result from the previous chapter

shows that a small quantity of subsidy independent of the number of items is always

sufficient to eliminate envy. A similar result also extends to the corresponding natural

transfer payments. Combining this result with Lemma 5.2.1 tells us that a utilitarian

welfare guarantee of 1
n

can be achieved alongside envy-freeness with a negligible total

transfer. Unfortunately, for the above example, the Iterated Matching Algorithm returns

an allocation whose social welfare is only a 1
n

-fraction of the optimal welfare. The fol-

lowing corollary shows that this was inevitable: unlike for NSW, in order to make any

improvement above this threshold, non-negligible transfers are required.
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Corollary 5.4.2. For any α ∈
[
1
n
, 1
]
, there exists an instance with additive valuations such

that any envy-free allocation with transfers (A, t) satisfying SW(A,t)
SW(A∗)

≥ α requires a total transfer∑
i∈N |ti| ≥

1
4

(
α− 1

n

)2
m.

Proof. Take the same instance as in Lemma 5.4.1. Now for utilitarian social welfare, we

have SW(A) = SW(A, t) as
∑

i∈N (vi(Ai) + ti) =
∑

i∈N vi(Ai) +
∑

i∈N ti =
∑

i∈N vi(Ai). Let

A∗ be the allocation that maximizes the social welfare. Thus

SW(A, t)

SW(A∗)
= (1− ϵ)x+ ϵ ≥ α (5.3)

Next, observe that x = yn ≥ yi, for each i otherwise the allocation A is not envy-freeable.

Thus tn ≤ 0. Then, by envy-freeness of (A, t), we must have mx + tn ≥ myi + ti and

ϵmyi + ti ≥ ϵmx+ tn. It follows that

(n− 1) · (ϵmx+ tn) ≤ ϵm ·
n−1∑
i=1

yi +
n−1∑
i=1

ti = ϵm · (1− x)− tn

Rearranging we obtain n · (ϵmx+ tn) ≤ ϵm. In particular,

−tn ≥ ϵm ·
(
x− 1

n

)
(5.4)

Combining (5.3) and (5.4) we get

∑
i∈N

|ti| ≥ |tn| ≥ −tn ≥ ϵm ·
(
x− 1

n

)
≥ ϵm ·

(
α− ϵ

1− ϵ
− 1

n

)

Finally, choosing ϵ = 1−
√

1−α
1− 1

n

gives the desired bound.

So, for utilitarian social welfare, non-negligible transfers are required to ensure both

envy-freeness and high welfare. Recall, though, that balancing constraints on the valua-

tion functions have been used in the literature to sidestep impossibility bounds on wel-

fare. The reader may wonder if such constraints could be used to bypass the result in

Corollary 5.4.2: are negligible transfer payments sufficient to obtain high welfare when
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the valuation functions are constant-sum? The answer is NO, as we shall see in the subse-

quent theorem.

In recent work, Barman et al. [12] considered the case of subadditive valuations with

the constant-sum condition, and gave a polynomial-time algorithm that finds an EF1 al-

location with social welfare at least Ω( 1√
n
) of the optimal welfare. Applying the algorithm

of Lemma 5.2.4 to the resulting allocation gives us an envy-free allocation with negligi-

ble transfers and welfare ratio Ω( 1√
n
). Once again, we show that this threshold cannot be

crossed without non-negligible transfers.

Theorem 5.4.3. There exist instances with constant-sum additive valuations such that any envy-

free allocation with transfers (A, t) satisfying SW(A,t)
SW(A∗)

≥ α has a total transfer
∑

i∈N |ti| ≥ (α −
2√
n
) m√

n
, for any α ∈ [ 2√

n
, 1].

Proof. Consider an instance with m items and n agents. Divide the items into
√
n sets,

each of cardinality m√
n

. Let Bℓ be the set of items {(ℓ − 1) m√
n
+ 1, (ℓ − 1) m√

n
+ 2, · · · , ℓ m√

n
}.

We now define a collection of constant-sum additive valuation functions. We partition

the set of agents into two parts; agents in the set H = {1, · · · ,
√
n} have high value for a

small number of items, and agents in the set L = {
√
n + 1, · · · , n} have low value for a

large number of items. A high value agent i has valuations vij = 1 for j ∈ Bi and zero

otherwise. Thus for each agent i ∈ H there is a corresponding set Bi which it values. Each

low value agent has a uniform valuation of vij = 1√
n

for all j ∈M . Observe that the value

each agent has for the grand bundle is exactly m√
n

, that is, constant-sum. Note that any

allocation to a high value agent i can be described by the fraction of Bi which it receives.

Consider an envy-freeable allocation A that assigns an xi-fraction and a yki-fraction of

Bi to i ∈ H and k ∈ L respectively. By envy-freeability we must have xi ≥ yki for all

i ∈ H and k ∈ L. We also have that xi +
∑

k∈L yki = 1. Observe that the utilitarian social

welfare is maximized by allocating Bi to the high value agent i; this allocation satisfies
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SW(A∗) = m. We then have

SW(A)

SW(A∗)
=

1

m

(
m√
n

∑
i∈H

xi +
m√
n

∑
i∈H

∑
k∈L

yki√
n

)

=
1

m

(
m√
n

∑
i∈H

xi +
m

n

∑
i∈H

(1− xi)

)

=
1√
n

((
1− 1√

n

)∑
i∈H

xi + 1

)

≥ α

From this we can infer that
∑

i∈H xi ≥
√
nα− 1. Now, let t be valid transfer payments. By

envy-freeness, we see that for any i, k

m√
n
·
∑
j∈H

ykj√
n
+ tk ≥

m√
n
· xi√

n
+ ti

First summing over i ∈ H and then summing over k ∈ L gives

m√
n

∑
k∈L

∑
j∈H

ykj +
√
n
∑
k∈L

tk ≥ m

(
1− 1√

n

)∑
i∈H

xi + (n−
√
n)
∑
i∈H

ti

Sum
∑

i∈N ti = 0, rearranging gives

0 ≥ m
∑
i∈H

xi −
m√
n

∑
i∈H

(
xi +

∑
k∈L

yki

)
+ n

∑
i∈H

ti ≥ m

(∑
i∈H

xi − 1

)
+ n

∑
i∈H

ti

In particular,

−
∑
i∈H

ti ≥
m

n

(∑
i∈H

xi − 1

)
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Now recall that
∑

i∈H xi ≥
√
nα− 1. Thus

∑
i∈N

|ti| ≥ −
∑
i∈H

ti ≥
m√
n

(
α− 2√

n

)
≥ 0

So non-negligible transfer payments are required even under constant-sum valua-

tions. This adds to our collection of negative results for utilitarian social welfare. Are

any positive results possible? Specifically, can we at least match the lower bounds on

transfer payments inherent in the these negative results?

To conclude this chapter, we present results that upper bound the total transfer re-

quired to obtain an envy-free allocation with a utilitarian social welfare guarantee. We

give upper bounds for additive and general valuation functions. In both cases, the bound

we obtain is a function of the maximum value that an agent receives in the welfare-

optimal allocation. In particular, while the lower bounds are obtained as functions of

m, the upper bounds we get are functions of the product of n and maxi vi(A
∗
i ). In alloca-

tions that distribute utility uniformly among the agents these expressions are comparable;

even in the worst case, since vi(A
∗
i ) ≤ m for any i, they differ by some function of only

n, and this difference is independent of the number of items. We begin with the additive

case.

Theorem 5.4.4. For additive valuations, for any α ∈ (0, 1], there is an envy-free allocation with

transfers (A, t) such that SW(A,t)
SW(A∗)

≥ α with total transfer
∑

i∈N |ti| ≤ n(αmax
i

vi(A
∗
i ) + 2).

Proof. We prove this result with a simple polytime algorithm (Algorithm 2) that outputs

the desired allocation with transfers (A, t).

By additivity, the optimal allocation A∗ assigns each item in M to an agent with the

greatest valuation for that item. Consequently, X = (X1, · · · , Xn) maximizes welfare

among all reassignments of its bundles, so X is an envy-freeable allocation of the items⋃
i∈[n] Xi. By construction, we have SW(X) ≥ α SW(A∗). Now let P be any path in the
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Algorithm 2: Envy-free allocation with high welfare and small transfers for ad-
ditive valuations
Ai ← ∅ for all i ∈ N ;
A∗ = (A∗

1, · · · , A∗
n)←Welfare-Maximizing Allocation;

for i = 1 to n do
Ai ←minimal set Xi ⊆ A∗

i with vi(Xi) ≥ α · vi(A∗
i )

end
Use the Iterated Matching Algorithm to allocate M \

⋃
i∈N Ai;

Compute the natural transfers (t1, · · · , tn);
return (A, t)

envy-graph GX , without loss of generality, P = (1, 2, . . . , r). Then

wX(P ) =
r−1∑
i=1

vi(Xi+1)− vi(Xi)

≤ − (vr(X1)− vr(Xr))

≤ max
i

vi(Xi)

≤ αmax
i

vi(A
∗
i ) + 1

Here the first inequality holds by Theorem 4.2.1 as the envy-graph contains no positive

cycle. The last inequality holds by the minimality of Xi. Next, let (Y1, · · · , Yn) be the allo-

cation of the remaining items
⋃
i

(A∗
i \Xi) given by the Iterated Matching Algorithm. The

key properties we require from this algorithm are that the allocation Y is envy-freeable

and that, for any path P , weight of the path wY (P ) ≤ 1. But Algorithm 2 simply outputs

the allocation Ai = Xi ∪ Yi for each agent i. Hence

wA(P ) = wX(P ) + wY (P ) ≤ αmax
i

vi(A
∗
i ) + 2

Now if we take s to be the minimum subsidy payments required for envy-freeness then

si ≤ αmax
i

vi(A
∗
i ) + 2, for each agent i. Using the transfer payments ti = si − s̄, we have

that
∑

i |ti| ≤ n(αmax
i

vi(A
∗
i ) + 2), as claimed.
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Finally, we show how to upper bound the transfer payments in the case of general

valuation functions. Here, the welfare target is limited to the constant factor 1
3
, and the

gap between our lower and upper bounds widens by a factor of n, but once again, this

gap is independent of m.

Theorem 5.4.5. For general valuations, for any α ∈
(
0, 1

3

]
, there is an envy-free allocation with

transfers (A, t) such that SW(A,t)
SW(A∗)

≥ α with total transfer
∑

i∈N |ti| ≤ 2n2 (3αmaxi vi (A
∗
i ) + 2).

Proof. We prove this result using an algorithm (see Algorithm 3) that outputs the desired

allocation with transfers (A, t).

Algorithm 3: Envy-free allocation with high welfare and small transfers for gen-
eral valuations
Bi ← ∅ for all i ∈ N ;
A∗ = (A∗

1, · · · , A∗
n)←Welfare-Maximizing Allocation;

Let π be an ordering of the agents with A∗
π(1) ≥ A∗

π(2) ≥ · · · ≥ A∗
π(n);

for k = 1 to n do
Let S be the set of all X ⊆M such that:
• vj(X) ≥ 3αvπ(k)(A

∗
π(k)) for some j with Bj = ∅,

• X ⊆ A∗
i for some i, and

• X ∩Bℓ = ∅ for all ℓ
if |S| ≠ ∅ then

X̂k ← argminX∈S |X|;
Bj ← X̂k;

end
end
Apply the envy-cycles procedure of Lipton et al. [55] to allocate the items in
M \

⋃
i∈N Bi;

Reassign bundles B = (B1, · · · , Bn) to the agents to maximize the sum of utilities.
Call this allocation A;

Compute the natural transfers (t1, · · · , tn);
return (A, t)

We first show the bound on the transfer payments. Let X = (X1, · · · , Xn) be the partial

allocation obtained when the for loop finishes in Algorithm 3. Note that by the ordering

of the optimal allocation, and by minimality of the allocated sets, we have, for any pair

i, j of agents, vi(Xj) ≤ 3αmaxi vi(A
∗
i ) + 1. Thus vi(Xj) − vi(Xi) ≤ 3αmaxi vi (A

∗
i ) + 1.

At this stage, applying the envy-cycles procedure of [55] does not increase the envy by
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more than one. Let B = (B1, · · · , Bn) be the partial allocation obtained after this step. We

therefore have vi(Bj) − vi(Bi) ≤ 3αmaxi vi(A
∗
i ) + 2. Now, by Lemma 5.2.4, we have that

(A, t) is envy-free and
∑

i∈N |ti| ≤ 2n2 (3αmaxi vi (A
∗
i ) + 2).

In order to show that SW(A,t)
SW(A∗)

≥ α, it suffices to show SW(X)
SW(A∗)

≥ α: since we add items to

X to obtain A, we have SW(X) ≤ SW(A), and since introducing transfers does not affect

utilitarian welfare, we have SW(A, t) = SW(A). Let S ⊆ N be the set of time steps in

which a set was allocated during the for loop . The welfare SW(X) then satisfies

SW(X) ≥
∑
k∈S

3α · vπ(k)(A∗
π(k)) (5.5)

Next consider rounds k ∈ N \ S, that is, the rounds when a bundle is not allocated.

Since agent π(k) can otherwise be allocated the set A∗
π(k), if no set is allocated in round

k then either agent π(k) has already received a set Xπ(k) of value at least 3α · vπ(k)(A∗
π(k))

or some other agent who came before her received a set Xf(k) ⊆ A∗
π(k) of value at least

3α · vπ(k)(A∗
π(k)). Thus max

[
vf(k)(Xf(k)), vπ(k)(Xπ(k))

]
≥ α · vπ(k)(A∗

π(k)) and so

∑
k∈N\S

α · vπ(k)(A∗
π(k)) ≤

∑
k∈N\S

max
[
vf(k)(Xf(k)), vπ(k)(Xπ(k))

]
≤

∑
k∈N\S

vf(k)(Xf(k)) + vπ(k)(Xπ(k))

≤ 2 · SW(X) (5.6)

Summing (5.5) and (5.6) immediately gives the utilitarian welfare guarantee.

3 SW(X) ≥
∑
k∈S

3α · vπ(k)(A∗
π(k)) +

∑
k∈N\S

3α · vπ(k)(A∗
π(k))

= 3α
∑
k∈N

vπ(k)(A
∗
π(k))

= 3α · SW(A∗)
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Chapter 6

Summary and Conclusions

To summarize, Part I of this thesis studies two popular multi-item auctions: the sequential

auction and the simultaneous auction. We first show that both standard types (first-price

and second-price) of sequential auctions have a focal subgame-perfect equilibrium, and

that the price can (very rarely) be non-monotone at this equilibrium. Thus the declining

price anomaly is not guaranteed to hold in the equilibria of full-information sequential

auctions with three or more buyers.

The main motivation behind the seminal work of Paes Leme et al. [64] is to study the

quality (i.e., the welfare) of equilibrium outcomes in first-price sequential auctions. They

show that for unit-demand bidders, the price of anarchy (the welfare ratio between an op-

timal outcome and the worst-case subgame perfect equilibrium outcome) is at most 2.

They also show that this ratio is unbounded for submodular valuations when there are at

least four bidders. Recently, Ahunbay and Vetta [2] studied the two-bidder, identical-item

setting, and showed that the price of anarchy is bounded by a constant for two bidders

with decreasing marginals, and is exactly m for two bidders with general monotone valu-

ations. Since their bounds apply to the two-bidder identical-items setting, and the bounds

in the opposite direction apply only with four or more bidders and more general valu-

ation forms, some parts of this picture remain to be filled in. Some first steps towards

completing this picture appear in Ahunbay’s recent thesis [1].
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We then study the risk-free profitability of a bidder in a multi-item auction. Aside from

resolving the remaining gaps in this work, one could also study the performance of other

strategies of interest (besides the risk-free strategy) in these auctions from a theoretical

perspective, expanding on the large body of research in empirical economics on this topic.

Part II of this thesis studies the fair division problem. We show that with the stan-

dard normalizing assumption, one dollar per agent is sufficient to guarantee an envy-

free allocation with payments when the valuations are additive. We also study the same

parameter for the case of general monotone valuations. Finally, we study the tradeoffs

between fairness, welfare and the total quantity of payments in this setting. Several im-

portant problems in fair division remain open. For instance, it is not known for many

important valuation classes (additive, submodular, XOS, subadditive) exactly what con-

stant fraction of the MMS value can be guaranteed to all agents. We also do not know

the valuation classes for which an EFX allocation exists (an allocation A1, . . . , An is EFX

if, for any pair i, k of agents, either vi(Ai) ≥ vi(Ak), or vi(Ai) ≥ vi(Ak \ {g}) for every item

g in Ak). For the fair division with subsidy problem, Barman et al. [13] show a bound

of n − 1 dollars for dichotomous valuations, a class that is neither contained in nor con-

tains the additive valuations. The gap between the lower bound of n − 1 and the upper

bound of O(n2) remains open for all other non-trivial valuation classes that aren’t sub-

sumed by additive valuations. The idea of using subsidies or transfers between agents in

order to achieve fairness in indivisible item-allocation is an incredibly natural and easily

implemented one. Despite this, the problem remains relatively unsolved from both the

existential and the mechanism-design perspectives. A compelling direction for future re-

search is to comprehensively analyze the exact power and limitations of envy-free item

allocations with payments.
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