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Abstract

Reed-Muller (RM) codes are classical linear codes that share a closed relation with the

capacity achieving polar codes. The RM code attracts attention recently due to its favorable

characteristics, such as the universal code construction, capacity-achieving capability on

binary memoryless symmetric channels, polarization effect, and the promising performance

brought by the minimum distance under the maximum likelihood (ML) decoding.

The recursive projection-aggregation (RPA) decoder is a recently proposed near ML

decoder for RM codes with low rates and short code lengths. However, the high computa-

tional complexity of RPA decoding is a major bottleneck for using RPA in applications that

have a limited resource and energy budget. In this work, syndrome-based early stopping

techniques as well as a scheduling scheme are proposed for the RPA decoder, which help in

reducing the computational complexity while keeping similar decoding performance. Com-

paring to the baseline RPA decoder, the proposed techniques result in a 69−98% reduction

in the average computational complexity for a target frame error rate of 10−5. Addition-

ally, this work introduces hardware-friendly approximation functions to replace the RPA’s

computationally expensive transcendental projection function.

The collapsed projection-aggregation (CPA) decoder reduces the computational com-

plexity of the RPA decoder by removing the recursive structure. From simulations, the

CPA decoder has similar error-correction performance as the RPA decoder, when decoding

RM (7, 3) and (8, 2) codes. The computational complexity can be further reduced by only

selecting a subset of sub-spaces, which is achieved by pruning CPA decoders. In this work,

optimization methods are proposed to find the pruned CPA (PCPA) decoder with small

performance loss. Furthermore, the min-sum approximation is used to replace non-linear

projection and aggregation functions, and a simplified list decoder based on the syndrome

check is proposed. Under the same complexity, the optimized PCPA decoder has less

performance loss than randomly constructed PCPA decoders in most case. The min-sum

approximation incurs less than 0.15 dB performance loss at a target frame error rate of

10−4, and the simplified list decoder does not have noticeable performance loss.



ii

Résumé

Les codes Reed-Muller (RM) sont des codes linéaires classiques qui partagent une rela-

tion étroite avec la capacité à réaliser des codes polaires. Le code RM attire l’attention

récemment en raison de ses caractéristiques favorables, telles que la construction de code

universel, la capacité d’atteindre la capacité sur les canaux symétriques binaires sans

mémoire, l’effet de polarisation et les performances prometteuses apportées par la distance

minimale sous le décodage du maximum de vraisemblance (ML).

Le décodeur récursif par projection-agrégation (RPA) est un décodeur proche ML

récemment proposé pour les codes RM avec de faibles débits et des longueurs de code cour-

tes. Cependant, la complexité de calcul élevée du décodage RPA est un goulot d’étranglement

majeur pour l’utilisation de RPA dans des applications qui ont un budget de ressources

et d’énergie limité. Dans ce travail, des techniques d’arrêt précoce basées sur le syndrome

ainsi qu’un schéma d’ordonnancement sont proposés pour le décodeur RPA, ce qui aide à

réduire la complexité de calcul tout en conservant des performances de décodage similaires.

Par rapport au décodeur RPA de base, les techniques proposées entrâınent une réduction

de 69 à 98 % de la complexité de calcul moyenne pour un taux d’erreur de trame cible

de 10−5. De plus, ce travail introduit des fonctions d’approximation compatibles avec le

matériel pour remplacer la fonction de projection transcendantale coûteuse en calcul du

RPA.

Le décodeur de projection-agrégation (CPA) réduit réduit la complexité de calcul du

décodeur RPA en supprimant la structure récursive. D’après les simulations, le décodeur

CPA a des performances de correction d’erreurs similaires à celles du décodeur RPA,

lors du décodage des codes RM (7,3) et (8,2). La complexité de calcul peut être encore

réduite en sélectionnant uniquement un sous-ensemble de sous-espaces, ce qui est obtenu en

élaguant les décodeurs CPA. Dans ce travail, des méthodes d’optimisation sont proposées

pour trouver le décodeur CPA élagué (PCPA) avec une faible perte de performance. De

plus, l’approximation min-sum est utilisée pour remplacer les fonctions de projection et

d’agrégation non linéaires, et un décodeur de liste simplifié basé sur la vérification du syn-

drome est proposé. Sous la même complexité, le décodeur PCPA optimisé a moins de perte

de performance que les décodeurs PCPA construits de manière aléatoire dans la plupart des

cas. L’approximation de la somme minimale entrâıne une perte de performances inférieure

à 0.15 dB à un taux d’erreur de trame cible de 10−4, et le décodeur de liste simplifié n’a
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pas de perte de performances notable.
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Chapter 1

Introduction

Modern communication systems are realized by the digital logic, and all messages (e.g.,

sounds, pictures) are interpreted as 0 and 1 in the communication system. To enhance the

reliability of the communication system, redundancies are imposed to the binary message.

These redundancies help to recover the message from the received noisy sequence, which

is called the error correction code (ECC). Shannon’s mathematically theory of communi-

cation builds the foundation of reliable communications over noise channels, and it shows

that there is a limit, channel capacity, of how much information can be reliably transmit-

ted through channels [2]. Many capacity achieving ECCs (e.g., low-density parity-check

(LDPC) codes [3], [4], [5] and the polar codes [6]) have been proposed and adopted into

the modern communication systems, such as the current 5G communication standard [7].

The Reed-Muller (RM) code is a classical linear block code with a close relation to

polar codes [8], the first known class of codes that can asymptotically achieve the chan-

nel capacity. RM codes have received significant attention recently due to characteristics

such as universal code construction, capacity-achieving capability on the binary erasure

channel and the binary symmetric channel [9], [10], [11], polarization effect [12], and the

promising performance brought by the minimum distance under the maximum likelihood

(ML) decoding [13]. A most recent work posted on the open review platform shows that

the RM code achieves capacity on binary memoryless symmetric channels under bitwise

maximum-a-posteriori (MAP) decoding [14].

Several decoders for RM codes are available in the literature. Reed’s majority vote

decoder [15] is the first decoder for RM codes, and it can correct error patterns with
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a Hamming weight less than d
2

[16], where d is the minimum distance. Fast Hadamard

transform (FHT) decoder [17], [18] is an efficient ML decoder for the first-order RM codes.

The Sidel’nikov-Pershakov algorithm based decoders [19], [20] and the Dumer’s recursive

list decoder [21], [22], [23] are RM code decoders designed for second or higher-order RM

codes.

For low-rate and short-length RM codes, a recently proposed recursive projection-

aggregation (RPA) decoder achieves near ML decoding performance [1]. Moreover, for

low-rate and short-length codes, RPA decoder for RM codes outperforms the successive

cancellation list (SCL) decoder [24] (with a list size of 32) for polar codes [1]. Further-

more, for RM codes, RPA decoder outperforms the Sidel’nikov-Pershakov algorithm based

decoders and the Dumer’s recursive list decoder with a list size of 128 [1].

For 5G communication networks, there are emerging applications such as Ultra-Reliable

Low-Latency Communication (URLLC), where short data packets and the low frame error

rate (FER) (≤ 10−5) are in high demand [25]. RM codes with RPA decoding can be a

viable option for these applications. Moreover, the RPA decoder can be implemented in

parallel to reduce the decoding latency.

However, due to its recursive structure, the RPA decoder has a high computational

complexity O(nr log n) [1], where r is the code order and n is the code length. The high

computational complexity is a major bottleneck for using the RPA decoder in applications

with a limited computation resource and energy budget. A simplified RPA, which reduces

the complexity by projecting a codeword to two-dimensional sub-spaces, is proposed by

Ye and Abbe [1]. A collapsed projection-aggregation (CPA) decoder is proposed in [26],

which projects the received codeword to order 1 RM sub-codes without going through

recursions. Sparse RPA (SRPA) decoder [27], a multi-decoder variant of the RPA decoder,

greatly reduces the complexity by deploying multiple sparse RPA decoders and each decoder

chooses a subset of projections randomly. Cyclic redundancy check (CRC) is used to select

the final candidate, but the effective code rate is reduced due to CRC. A pruning metric for

the CPA decoder is proposed in [28] to reduce the decoding performance loss due to lowering

the decoding complexity by pruning. In [28], pruned CPA (PCPA) decoders with minimal

performance loss (≈ 0.1 dB) are shown, but construction methods are not reported. Given

the current progress in reducing RPA’s complexity, there is still room for improvement in

reducing the complexity for RPA decoding.
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1.1 Objectives

The objective of this work is to reduce the computational complexity of the RPA decoder

and its variants while limiting the performance degradation.

1.2 Summary of Contributions

Reduction of computational complexity

Syndrome-based early stopping techniques as well as a scheduling scheme are proposed

to reduce the RPA decoder’s complexity. Simulation results show that the scheduling

scheme can reduce the worst-case complexity by more than 50%, while having negligible

performance loss. Simulation results also show that proposed techniques reduce the RPA’s

average complexity by 69 − 98% at the target FER of 10−5, while maintaining similar

decoding performance.

Functions approximation

Hardware-friendly approximation functions are used to replace the computationally ex-

pensive non-linear projection and aggregation functions used by the RPA and the CPA

decoder. From simulations, approximation functions cause at most 0.2 dB loss of decoding

performance at practical FERs (10−4 and 10−5).

Optimization for PCPA decoder

Mixed-integer quadratic programming (MIQP) is used to find the PCPA decoder with less

performance loss. According to simulation results, under the same complexity, the opti-

mized PCPA decoder has less performance loss than randomly constructed PCPA decoders

in most cases.

Simplified list decoder for RPA and CPA decoders

A simplified list decoder based on the syndrome check is proposed, which replaces the

Reed’s decoder in the regular list decoder with the syndrome check. It simplifies the design

of the list decoder, and re-use the functional part proposed in this work. The simplified

list decoder has negligible performance loss, compared to the regular list decoder.
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1.3 Thesis Organization

In this thesis, Chapter 2 introduces the background of RM codes, methods to construct the

generator matrix, decoding algorithms, and a breief introduction of the MIQP. Introduction

of the RPA decoder and its variants is in Chapter 3. Chapter 4 presents the complexity

reduction method and the approximation functions proposed in the this work to reduce

the computational complexity of the RPA decoder, which is the content in [29]. Chapter 5

shows the optimization methods for PCPA decoders, the function approximation method

for the CPA and PCPA decoder, and the simplified list decoder. The content of Chapter 5

is shown in [30].

1.4 Related Publications

This thesis results in the following list of papers.

1, J. Li, S. M. Abbas, T. Tonnellier, and W. J. Gross, ”Reduced complexity RPA

decoder for Reed-Muller codes,” in 2021 International Symposium on Topics in Coding

(ISTC), 2021. [29]

2, J. Li and W. J. Gross, ”Optimization and simplification of PCPA decoder for Reed-

Muller codes,” unpublished. [30]
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Chapter 2

Background

This chapter introduces the background of the RM code. Section 2.1 introduces notions

used by this thesis. Section 2.2 gives an overview of basic parameters related to the RM

code and the encoding process of RM codes. In Section 2.3, two methods of constructing

the generator matrix are introduced. In Section 2.4, two basic RM code decoders are

introduced, which are components of the RPA decoder and its variants. Section 2.4 also

gives a brief review of other decoding algorithms for RM codes. Section 2.5 gives a brief

introduction of the MIQP.

2.1 Notations

Bold upper-case letters (M) denote matrices, while bold lower-case letters (v) denote

vectors unless explicitly specify. > is the transpose operator. R denotes arbitrary real

values. Elements of the vector are denoted by the regular lower-case letters with a subscript

index in decimal (v3) or bold lower-case letter with a binary vector (v(011)), the binary

representation of the decimal index, in round brackets v(z), where z is the binary vector.

Notations used by this chapter (Chapter 2) might differ from notions used by other chapters,

for the ease of explanations.

2.2 Overview and Encoding of RM Codes

This work focuses on RM codes for binary-input memoryless channels, and operations are

restricted over the binary field F2. RM codes are defined by parameters r, m, and k, where
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r is the order, n = 2m is the code length, and k =
∑i=r

i=0

(
m
i

)
is the code dimension. For a

RM(m, r) code, the minimum distance is d = 2m−r, and the minimum weight is 2m−r. The

index of the length n RM codeword is denoted as the binary representation of [0, n − 1],

which is z ∈ E := F
m
2 , and Fm2 denotes the set of length m binary vectors.

The encoding process of RM codes is

c = mG, (2.1)

where c is the codeword, m is the message, and G is the generator matrix of the RM(m, r)

code. For RM codes, another naming convention for the generator matrix and the encoding

process is using an m-variate polynomial f of degree ≤ r, which is explained in [16] and

the following.

A length m binary vector z = (zm, ..., z1) ∈ F
m
2 is used to denote the index of

the codeword. Eval(f) := (Evalz(f) : z ∈ F
m
2 ) denotes the evaluation of the poly-

nomial f in all 2m possible indexes z. The RM(m, r) code is defined by the set of

vectors RM(m, r) := {Eval(f) : f ∈ F2(x1, ..., xm), deg(f) ≤ r}. Let a subset A be

A ⊆ [m] := {1, ...,m}, and let a shorthand notation for the monomials be xA =
∏

i∈A xi.

As xn = x for arbitrary n ≥ 1 in binary, so only xi with degree ≤ 1 is considered in the

polynomial f of the RM code. Thus, all polynomials f with degree ≤ r are the linear com-

bination of the following set of monomials {xA : A ⊆ [m], |A| ≤ r}. Then Eval(f) can be

written as Eval(f) =
∑

A⊂[m],|A|≤rmAxA, and the set of monomials can be used to denote

the generator matrix for the RM code. An example of the generator matrix of the RM(3,3)

code is the following:

G(3, 3) =



1

x1

x2

x3

x1x2

x1x3

x2x3

x1x2x3


=



1 1 1 1 1 1 1 1

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1

0 0 0 1 0 0 0 1

0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1


.

The parity-check matrix of the RM(m, r) code is the generator matrix of the RM(m,m−
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r − 1) code [16].

2.3 Construction of the Generator Matrix for RM Codes

In this section, two recursive construction methods, the Plotkin construction and the Kro-

necker product, are introduced.

2.3.1 Plotkin Construction

For any given polynomial f , it can be decomposed into the following form:

f(x1, x2, ..., xm) = g(x1, x2, ..., xm−1) + xmh(x1, x2, ..., xm−1), (2.2)

where g ∈ RM(m − 1, r), h ∈ RM(m − 1, r − 1). Besides decomposing the polynomial,

the evaluation vector Eval(f) can be decomposed into two parts as well. The evaluation

can be divided into two parts, Eval[zm=0](f) and Eval[zm=1](f). Using a RM(m = 3, r)

code as an example. Eval[zm=0](f) refers to the code bits in indexes 0, 1, 2, 3, and

Eval[zm=1](f) refers to code bits in indexes 4, 5, 6, 7. The sum of two parts in binary

is Eval[/zm] = Eval[zm=0](f) + Eval[zm=1](f). According to (2.2), Eval[/zm] is the evaluation

vector of h(x1, x2, ..., xm−1), and Eval[zm=0](f) is the evaluation vector of g(x1, x2, ..., xm−1).

Thus, Eval[/zm] ∈ RM(m − 1, r − 1) and Eval[zm=0](f) ∈ RM(m − 1, r). This is the

Plotkin construction c = (u,u + v) [16], where c ∈ RM(m, r), u ∈ RM(m − 1, r),

v ∈ RM(m − 1, r − 1), and (, ) denotes the concatenation in this section. It could be

check by (u,u + v) = (Eval[zm=0](f),Eval[zm=0](f) + Eval[zm=0](f) + Eval[zm=1](f)) =

(Eval[zm=0](f),Eval[zm=1](f)). The Plotkin construction infers a recursive construction

method for the generator matrix,

G(m, r) =

[
G(m− 1, r) G(m− 1, r)

0 G(m− 1, r − 1)

]
, G(1, 1) =

[
1 1

0 1

]
, (2.3)

where the first column refers to the polynomial for u, and the second column refers to the

polynomial for u+ v. Order 0 RM codes are the repetition code.
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Here is an example showing that the addition of two parts of a codeword will produce

a lower-order codeword. Considering the generator matrix for the RM(3,2) code,

G(3, 2) =



1

x1

x2

x3

x1x2

x1x3

x2x3


=



1 1 1 1 1 1 1 1

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1

0 0 0 1 0 0 0 1

0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 1


.

As the coefficients for the polynomial (message bits) are the same for all column vec-

tors, the effect of adding two parts of the codeword can be shown by adding the column

vectors inside the generator matrix. The resulting matrix is the generator matrix for the

lower-order codeword. Here, the columns vectors are divided into two parts, z3 = 0 and

z3 = 1. The partition and the addition are the following:

G
′
=



1 1 1 1

0 1 0 1

0 0 1 1

0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0


+



1 1 1 1

0 1 0 1

0 0 1 1

1 1 1 1

0 0 0 1

0 1 0 1

0 0 1 1


=



0 0 0 0

0 0 0 0

0 0 0 0

1 1 1 1

0 0 0 0

0 1 0 1

0 0 1 1


=

1 1 1 1

0 1 0 1

0 0 1 1

 = G(2, 1).

From above, the first matrix in the addition contains column vectors where z3 = 0, and it

refers to column vectors 0 to 3 in G(3, 2) counting from left to right. The second matrix

refers to column vectors 4 to 7 counting from left to right. All-zeros rows in the resulting

matrix can be removed, as they do not contribute to the encoding process. The resulting

matrix is the generator matrix for a RM(3− 1, 2− 1) = RM(2, 1) code.

2.3.2 Kronecker Product

The generator matrix can also be constructed using the Kronecker product [8],

G(m,m) = F
⊗
m, (2.4)
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where F =

[
1 0

1 1

]
, and F

⊗
m denotes the mth order Kronecker product of F . For a

RM(3, 3) code, the generator matrix constructed by the Kronecker product is

G(3, 3) =



1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 1 1 1 0 0 0 0

1 0 0 0 1 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1


,

and it is equivalent to the G(3, 3) in Section 2.2 with row permutations. The genera-

tor matrix for the RM code after row permutations is still the generator matrix for the RM

code.

The generator matrix for RM(m, r) code can be constructed by picking rows with weight

w ≥ 2m−r from the G(m,m), which is equivalent to place the message bits into positions

corresponding to rows with a weight ≥ 2m−r, and these positions are are denoted as in-

formation bit positions. 0 is set to all other bit positions, and they are denoted as frozen

bit positions. For example, consider sending an all-ones message, and it is encoded to a

RM(3, 2) code. Bit 0 is the frozen bit, and bit 1-7 are the information bits,

c =
[
0 1 1 1 1 1 1 1

]
∗



1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 1 1 1 0 0 0 0

1 0 0 0 1 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1


.

Thus, the encoded codeword is equivalent to
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c =
[
1 1 1 1 1 1 1

]
∗



1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 1 1 1 0 0 0 0

1 0 0 0 1 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1


.

The RM code and the polar code use the same generator matrix, but following different

rules for picking information bit positions. The RM code picks the information bit positions

by the hamming weight of the row vector, and polar codes use other reliability measures

[8].

2.4 Decoders for RM Codes

In this section, the Reed’s/majority vote decoder and the fast Hadamard transform (FHT)

decoder would be explained using examples from [31] and [32].

2.4.1 Reed’s/Majority Vote Decoder

For RM codes, the first decoding algorithm is the Reed’s/majority vote decoder with a

complexity of O(n logr n) [16], and it can correct error patterns with a hamming weight

less than half of the minimum distance [15], [16]. It can decode RM codes of arbitrary

orders. It firstly decodes the order r message bits, and then proceeds to the order r − 1

message bits until reaching order 0. In this section, the Reed’s decoder is explained by

decoding a RM(4, 2) code. The generator matrix of the RM(4, 2) code is
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G(4, 2) =



1

x1

x2

x3

x4

x1x2

x1x3

x1x4

x2x3

x2x4

x3x4



=



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1

0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1



.

Let the corresponding message vector bem = (m0,m1,m2,m3,m4,m12,m13,m14,m23,m24,m34).

m12, m13, m14, m23, m24, m34 are message bits corresponding to order 2 monomials x1x2, x1x3,

x1x4, x2x3, x2x4, x3x4. m1, m2, m3, m4 are message bits corresponding to order 1 mono-

mials x1, x2, x3, x4. m0 is the message bit for the order 0 monomial 1.

The decoding process is the following, which is demonstrated using the codeword c.

The same decoding process is applied on the received codeword y := {y(z), z ∈ Fm
2 }.

From the generator matrix of the RM(4, 2) code, it can be seen that

c0 = m0, c1 = m0 +m1, c2 = m0 +m2, c3 = m0 +m1 +m2 +m12, c4 = m0 +m3,

c5 = m0 +m1 +m3 +m13, c6 = m0 +m2 +m3 +m23,

c7 = m0 +m1 +m2 +m3 +m12 +m13 +m23, c8 = m0 +m4, c9 = m0 +m1 +m4 +m14,

c8 = m0 +m4, c9 = m0 +m1 +m4 +m14, c10 = m0 +m2 +m4 +m24,

c11 = m0 +m1 +m2 +m4 +m12 +m14 +m24, c12 = m0 +m3 +m4 +m34,

c13 = m0 +m1 +m3 +m4 +m13 +m14 +m34, c14 = m0 +m2 +m3 +m4 +m23 +m24 +m34,

c15 = m0 +m1 +m2 +m3 +m4 +m12 +m13 +m14 +m23 +m24 +m34.

Firstly, the order 2 coefficients/message bits are computed. From the above relation,

24−2 = 4 disjoint linear equations can be constructed to compute order 2 message bits, and

then perform the majority vote among those results to recover order 2 coefficients:
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m1
12 = c0 + c1 + c2 + c3, m

2
12 = c4 + c5 + c6 + c7,

m3
12 = c8 + c9 + c10 + c11, m

4
12 = c12 + c13 + c14 + c15, m12 = maj(m1

12, m
2
12, m

3
12, m

4
12),

m1
13 = c0 + c1 + c4 + c5, m

2
13 = c2 + c3 + c6 + c7,

m3
13 = c8 + c9 + c12 + c13, m

4
13 = c10 + c11 + c14 + c15, m13 = maj(m1

13, m
2
13, m

3
13, m

4
13),

m1
14 = c0 + c1 + c8 + c9, m

2
14 = c2 + c3 + c10 + c11,

m3
14 = c4 + c5 + c12 + c13, m

4
14 = c6 + c7 + c14 + c15, m14 = maj(m1

14, m
2
14, m

3
14, m

4
14),

m1
23 = c0 + c2 + c4 + c6, m

2
23 = c1 + c3 + c5 + c7,

m3
23 = c8 + c10 + c12 + c14, m

4
23 = c9 + c11 + c13 + c15, m23 = maj(m1

23, m
2
23, m

3
23, m

4
23),

m1
24 = c0 + c2 + c8 + c10, m

2
24 = c1 + c3 + c9 + c11,

m3
24 = c4 + c6 + c12 + c14, m

4
24 = c5 + c7 + c13 + c15, m24 = maj(m1

24, m
2
24, m

3
24, m

4
24),

m1
34 = c0 + c4 + c8 + c12, m

2
34 = c1 + c5 + c9 + c13,

m3
34 = c2 + c6 + c10 + c14, m

4
34 = c3 + c7 + c11 + c15, m34 = maj(m1

34, m
2
34, m

3
34, m

4
34),

where maj stands for the majority vote. Those computed message bits are encoded back

to the codeword using the order 2 monomials in the generator matrix, and then subtract

from the codeword,

c = c
⊕[

m12 m13 m14 m23 m24 m34

]
∗



x1x2

x1x3

x1x4

x2x3

x2x4

x3x4


,

where
⊕

is the summation over F2. Then, proceeding to compute the message bits for

order 1 monomials, which has 24−1 = 8 disjoint linear equations.

m1
1 = c0 + c1, m

2
1 = c2 + c3, m

3
1 = c4 + c5, m

4
1 = c6 + c7, m

5
1 = c8 + c9,

m6
2 = c10 + c11, m

7
1 = c12 + c13, m

8
1 = c14 + c15, m1 = maj(m1

1, m
2
1, m

3
1, m

4
1, m

5
1, m

6
1, m

7
1, m

8
1),

m1
2 = c0 + c2,m

2
2 = c1 + c3,m

3
2 = c4 + c6,m

4
2 = c5 + c7,m

5
2 = c8 + c10,

m6
2 = c9 + c11, m

7
2 = c12 + c14, m

8
2 = c13 + c15, m2 = maj(m1

2, m
2
2, m

3
2, m

4
2, m

5
2, m

6
2, m

7
2, m

8
2),
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m1
3 = c0 + c4, m

2
3 = c1 + c5, m

3
3 = c2 + c6, m

4
3 = c3 + c7, m

5
3 = c8 + c12,

m6
3 = c9 + c13, m

7
3 = c10 + c14, m

8
3 = c11 + c15, m3 = maj(m1

3, m
2
3, m

3
3, m

4
3, m

5
3, m

6
3, m

7
3, m

8
3),

m1
4 = c0 + c8, m

2
4 = c1 + c9, m

3
4 = c2 + c10, m

4
4 = c3 + c11, m

5
4 = c4 + c12,

m6
4 = c5 + c13, m

7
4 = c6 + c14, m

8
4 = c7 + c15, m4 = maj(m1

4, m
2
4, m

3
4, m

4
4, m

5
4, m

6
4, m

7
4, m

8
4).

The order 1 message bits are encoded back to a codeword, and then subtract from the

codeword c,

c = c
⊕[

m1 m2 m3 m4

]
∗


x1

x2

x3

x4

 .

The order 0 message bit is equal to m0 = 1[(
∑
z∈Fm2

c(z)) > 24−1], where 1 is the in-

dicator function.

2.4.2 FHT Decoder

The ML decoding relies on comparing the received codeword to the code book. The first-

order RM code is a Hadamard code [32], so the ML decoding process for the first-order

RM code can be implemented as a Hadamard transform [17], [18]. The Hardamard matrix

for the RM(3,1) code is the following:

H8 =



1 1 1 1 1 1 1 1

1 −1 1 −1 1 −1 1 −1

1 1 −1 −1 1 1 −1 −1

1 −1 −1 1 1 −1 −1 1

1 1 1 1 −1 −1 −1 −1

1 −1 1 −1 −1 1 −1 1

1 1 −1 −1 −1 −1 1 1

1 −1 −1 1 −1 1 1 −1


.

Columns counting from left to right are indexed as 0 to 23 − 1 = 7, and they are

corresponding to the message vectors 0000, 0001, ..., 0111, where the first bit m0 = 0. Also,

columns 1, 2, 4 correspond to the Binary Phase-shift keying (BPSK) modulation of the
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evaluation of f = x1, f = x2, and f = x3 of the generator matrix in Section 2.2, and other

columns are linear combinations of the column vectors 1, 2, and 4. Using the Hadamard

transform, the process of performing the ML decoding for first-order RM codes is the

following. The inner products between the received the sequence y and each column in

the Hadamard matrix are computed, results of these inner products are called correlations,

and they are stored in a vector r. There are 8 correlations in total. The column index ẑ

corresponding to the maximum absolute value of the correlation is selected. If r(ẑ) > 0, the

column ẑ is the decoded codeword after the demodulation. If the r(ẑ) ≤ 0, the decoded

codeword is the bit-flipped version of the column ẑ. r(ẑ) ≤ 0 because the f(1) = m0

complements all code bits if m0 = 1.

The complexity of performing the Hadamard transform between the received sequence

y and the Hadamard matrix is O(n2). FHT is an efficient implementation of the Hadamard

transform, and it has a complexity of O(n log n) [17], [18].

2.4.3 Overview of Other Decoding Algorithms

For RM codes, there are different decoding algorithms designed by different rules. For exam-

ple, there are decoding algorithms based on the large automoprsim group (the Sidel’nikov-

Pershakov algorithm based decoders [19], [20], [33], the permuted successive cancellation

decoder [34], or other permuted low complexity decoders based on the automoprsim group

[35]), the minimum weight parity check [36], the permutation of the factor graph [37], [38],

[39], the recursive structure of RM codes (Dumer’s recursive decoders [21], [22], [23] and

RPA decoder [1]), and etc.

2.5 Mixed-Integer Quadratic Programming

The convex quadratic programming has the following form

min
w

1

2
w>Pw + q>w + r, s.t. Aw ≤ a, Bw = b, (2.5)

where P ∈ Rn×n is a positive semi-definite (w>Pw ≥ 0, ∀w ∈ Rn) and symmetric matrix

, q ∈ Rn, r ∈ R, A ∈ Rm×n, and B ∈ Rp×n [40].

The mixed-integer quadratic programming (MIQP) has an extra integrity constraint,
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wi ∈ Z ∀i ∈ I, and it has the following form:

min
w

1

2
w>Pw + q>w + r, s.t. Aw ≤ a, Bw = b, wi ∈ Z ∀i ∈ I, d ≤ w ≤ h, (2.6)

where I is the set of indexes of variables that should be integer, and d and h ∈ Rn are the

lower and upper bound of the variable w ∈ Rn. The MIQP is NP-hard [41], [42], but the

relaxed MIQP, dropping the integrity constraint, is convex if P is positive semi-definite

and symmetric. The convex relaxed MIQP can be efficiently solved by existing solvers.
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Chapter 3

RPA Decoder and Its Variants

In this Chapter, the background information of the RPA decoder and its variants is pre-

sented. This chapter will be divided into three sections. Section 3.1 introduces the concept

of sub-spaces and cosets, which are used by the projection and aggregation function in the

RPA decoder. The notion for the index emulation follows the projection-punctuation sys-

tem in [43]. Section 3.2 introduces the RPA decoder, CPA decoder, and their list decoders.

Section 3.3 introduces two low complexity variants of the RPA and CPA decoder.

For binary-input memoryless channels W : {0, 1} → W , the log-likelihood ratio (LLR)

is:

LLR := ln(
W (x|0)

W (x|1)
), (3.1)

where x ∈ W is the channel output. The LLR vector is denoted by L in this thesis. Each

codeword of the RM(m, r) code can be represented by an m variate polynomial of degree

≤ r in the vector space E := F
m
2 , where Fm2 denotes the length m binary vectors. Then,

the coordinates of the RM codeword c ∈ RM(m, r) can be indexed by the binary vector

z ∈ E [1], [27].

3.1 Sub-space Emulation and Indexing

The basis vectors, {zi, i ∈ [1, d]}, of the arbitrary d-dimensional subspace are ordered in

the reduced row echelon form (RREF). Each left-most 1 in the basis vector zi indicates

a corresponding one-dimensional subspace. In [43], the definition of the d-dimensional

subspace is the following.
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Definition 1. The d-dimensional subspace is the span of the basis vectors, B = span(


z1

z2

...

zd

),

where


z1

z2

...

zd

 is organized in RREF, and the element zi is the non-zero binary vector

zi ∈ E \ 0, i ∈ [1, d].

From the definition for the 1-dimensional subspace in [1], the 1-dimensional subspace

contains a zero and the basis vector zi ∈ E \ 0, which is the span of the basis vector. In

the RPA decoder, the received codeword is projected n− 1 1-dimensional spaces, because

there are n− 1 non-zero element in E implying that there are n− 1 sub-spaces. For each

of the n− 1 cosets, the quotient space E/B contains all cosets T = z +B for some z [1].

Taking the coset and indexes of projecting a RM(4, 2) code to a 1-dimensional sub-spaces

as an example. Let the sub-space be B = [0000, 0001]. The left-most 1 is in position 1 count-

ing from the right, and the position 1 is set as the masked bit position for B = [0000, 0001].

All valid indexes z for this subspace are [0000, 0010, 0100, 0110, 1000, 1010, 1100, 1110],

where all those zs have value 0 in position 1. E/B indicates the quotient space that include

all eight cosets T = z + B of B = [0000,0001], and these eight cosets are:

[0000 + 0000, 0000 + 0001] = [0000, 0001], [0010 + 0000, 0010 + 0001] = [0010, 0011],

[0100 + 0000, 0100 + 0001] = [0100, 0101], [0110 + 0000, 0110 + 0001] = [0110, 0111],

[1000 + 0000, 1000 + 0001] = [1000, 1001], [1010 + 0000, 1010 + 0001] = [1010, 1011],

[1100 + 0000, 1100 + 0001] = [1100, 1101], [1110 + 0000, 1110 + 0001] = [1110, 1111].

For projections to d-dimensional sub-spaces, masked positions are d positions (counting

from the right) corresponding to the left-most 1 in z1, .., and zd. Indexes and cosets are

generated using the same procedure mentioned above.
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Fig. 3.1 Workflow of the RPA decoding adapted from Fig. 1 in [1].

3.2 RPA and CPA Decoder

3.2.1 RPA Decoder

Fig. 3.1 describes the iterative RPA decoding procedure. Given L, RPA is a three-step

iterative decoding process namely projection, recursive decoding, and aggregation.

1) Projection: In the projection phase, LLRs for the lower-order codewords, RM(m −
1, r−1), are computed by projectingL onto one-dimensional subspaces, Bi = [0, zi] and zi ∈
E \ 0, based on the cosets T ∈ E/Bi = z + Bi for some z [1]. Given the received LLR

vector L, the projection for each coset T is defined as [1]:

L/Bi(T ) = ln (exp (
∑
z∈T

L(z )) + 1)− ln (
∑
z∈T

exp (L(z ))). (3.2)

2) Recursive decoding: In this phase, RM(m, r) codes are recursively decoded, and the

order of RM codes is recursively reduced until first-order codes, RM(m − r + 1, 1), are

reached. The first-order RM codes can be efficiently decoded by using FHT [17], [18]. The

input to the recursive decoding phase is L/Bi , and the output is the decoded codeword

ŷ/Bi .

3) Aggregation: In this phase, L and the decoded codewords from recursive decoding

(ŷ/Bi) are aggregated to estimate the codeword for higher order RM codes, and the final

estimation L̂ can be computed as the following:

L̂(z ) =
1

n− 1
×Lcumu(z), (3.3)

where Lcumu(z) =
∑n−1

i=1 (1− 2ŷ/Bi(z +Bi))L(z + zi).

4) Early stopping criteria: During the RPA decoding, a saturation-based early stopping
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criterion is used to check if

|L̂(z)−L(z)| < θ|L(z)|, ∀z ∈ E, (3.4)

where θ is a small constant [1]. The RPA outputs the decoded codeword, if either the

maximum number of iterations Nmax = dm
2
e or the early stopping criterion (3.4) is met.

3.2.2 CPA Decoder

Similar to the RPA decoder, CPA is a three-step iterative decoder, namely projection,

decoding RM(m− r + 1, 1) sub-codes, and aggregation.

1) Projection: LLRs of RM(m−r+1, 1) sub-codes are computed by projecting the LLR

vector L into (r − 1)-dimensional sub-spaces, Bi := span(z1, ...,zr−1) and z1, ...,zr−1 ∈
E \ 0, based on the cosets T ∈ E/Bi = z + Bi for some z [1], [26], [43]. There are

nB =
(
m
r−1

)
2

=
∏r−2

i=0
2m−i−1
2r−1−i−1 distinct sub-spaces [26]. Following assumptions are made for

the projection [1]: I), code bits c(z)s transmit through channels independently; II), c(z)s

are i.i.d Bernoulli−1
2

random variables. The projection is to find the LLR of observing

x(z)s in the same coset T given the corresponding c(z)s’ parity-check [1]:

L/Bi(T ) = ln

P ({x(z),∀z ∈ T}|
⊕
z∈T
c(z) = 0)

P ({x(z),∀z ∈ T}|
⊕
z∈T
c(z) = 1)

(a)
= ln

P (
⊕
z∈T
c(z) = 0|{x(z),∀z ∈ T})

P (
⊕
z∈T
c(z) = 1|{x(z),∀z ∈ T})

(b)
= ln

1 +
∏
z∈T

(2P (c(z) = 0|x(z))− 1)

1−
∏
z∈T

(1− 2P (c(z) = 1|x(z)))

(c)
= ln

1 +
∏
z∈T

tanh(L(z)/2)

1−
∏
z∈T

tanh(L(z)/2)

= 2 tanh−1(
∏
z∈T

tanh(L(z)/2)),

(3.5)

where
⊕

is the summation over F2, (a) is the Bayes rule, (b) is according to the Lemma 1
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in [3], and (c) is due to 2P (c(z) = 0|x(z)) − 1 = 1 − 2P (c(z) = 1|x(z)) = tanh(L(z)/2)

[44]. and (3.5) is the same as the statement in [26]. It is equivalent to equations (12) and

(13) in [1] when projecting to one and two-dimensional sub-spaces, and the derivation is

shown in Appendix A.1.

2) Decoding RM(m−r+1, 1) sub-codes: LLR vectors of RM(m−r+1, 1) sub-codes are

decoded by the FHT decoder [17], [18], and the FHT decoder outputs the decoded order 1

RM codeword ŷ/Bi . The code bits ŷ/Bi(T ) is the estimation of
⊕
z∈T
c(z).

3) Aggregation: In the aggregation phase, the LLR of each variable is updated according

to all other variables in the same coset T and the estimation ŷ/Bi(T ),

Lcumu(z) =

nB∑
i=1

−1ŷ/Bi (T )(2 tanh−1(
∏

zi∈T\z

tanh(
L(zi)

2
))). (3.6)

It is equivalent to aggregation equations for the RPA and simplified RPA decoder (equation

(14) in [1]), and the derivation is shown in Appendix A.1. Then, L̂ = Lcumu/nB is used

as the L for the next iteration.

4) Early stopping criteria: The following criteria is adopted in the CPA decoder,

||L̂−L||2 < θ||L̂||2, ĉi−1 == ĉi, i ∈ [1, Nmax], (3.7)

where || · ||2 is the l− 2 norm, θ is a small constant, Nmax = dm
2
e is the maximum number

of iterations, and ĉi is the hard decision of L̂ at iteration i. The CPA outputs the decoded

codeword, if either Nmax or early stopping criteria (3.7) is met.

3.2.3 RPA and CPA’s List Decoder

To reduce the FER, the RPA/CPA decoder can be extended to a Chase list decoder

[1]. For list decoders with a list size of 8, the received LLR vector is sorted according

to their absolute values |L(z)|. Three LLRs with the smallest |L(z)| are replaced with

±max(|L(z)|) or ± 2 max(|L(z)|), z ∈ E. Thus, there are 8 possible cases that are de-

coded by the RPA or CPA decoder. As decoded codewords from RPA and CPA are not

always RM codes, Reed’s decoder is used to correct the decoded codeword to be a RM
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code. Among 8 possible cases, the one with the highest posterior probability,

argmaxĉReed, i

∑
z∈{0,1}m

(−1ĉReed, i(z)L(z )), i ∈ [1, 8], (3.8)

is selected as the decoded codeword. The list decoder can return ML decoding performance,

under various code lengths and rates.

3.3 RPA and CPA decoder’s Low-Complexity Variants

3.3.1 Sparse RPA Decoder

Fig. 3.2 Workflow of the SRPA decoder.

To reduce the complexity of the RPA decoder, a multi-decoder technique named sparse

RPA (SRPA) decoder is proposed in [27], and Fig. 3.2 shows the work flow of a SRPA

decoder [27]. The proposed approach consists of multiple sparse RPAs that are generated by

performing only a subset of projections in each decoder. The projections for each decoder

are chosen randomly. Given q sparse decoders, there are q estimates, L̂1, L̂2, ..., L̂q. At

the end of the decoding process, the estimate that passes the CRC and yields the highest

likelihood score argmaxL̂i
< L, L̂i > is selected as the decoded codeword. Numerical results

presented in [27] depict that SRPA reduces the complexity by 50− 79%, while maintaining

similar decoding performance as the RPA. However, due to CRC, the effective code rate is

reduced.
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3.3.2 Pruned CPA Decoder

Given the received error patter e and projections to arbitrary (r − 1)-dimensional sub-

spaces B1 and B2, [28] shows that the probability of projected error patterns e/B1 = e/B2

is

P =
1

2
[1 + (1− 2ε)(2

(r−1)+1−2|B1
⋂
B2|)], (3.9)

where ε is the probability that an independent error occurs in e. To reduce the chance

of having similar projected error patterns, a subset, S, of (r − 1)-dimensional sub-spaces

is constructed to include sub-spaces with the least similarity to one another, which is

measured by the set correlation rS [28]:

rS :=

|S|∑
i=1

|S|∑
j=1

rij, rij :=
dim(Bi

⋂
Bj)

r − 1
, (3.10)

where rij is the pair-wised correlation of Bi and Bj, and it is non-negative. For a set size

|S|, the optimal subset has the smallest set correlation rS, and it depends on the RM code

that is decoded by the CPA decoder. So, the subset can be found off-line, and no additional

decoding complexity is introduced.

The computation of rS can be rewritten into the matrix multiplication form

rS = u>Ru, (3.11)

where ui ∈ u, Bi ∈ S is indicated by ui = 1, and Bi /∈ S is indicated by ui = 0. R is a size

nB × nB matrix that stores all pair-wised correlations rij, and it is symmetric. (3.11) is a

quadratic form, and it can be used as the objective function in the quadratic programming

[40]. Quadratic programming is convex, if the matrix in the quadratic term is symmetric

and positive semi-definite [40].
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Chapter 4

Reduced Complexity RPA Decoder

for Reed-Muller Codes

This chapter introduces complexity reduction methods for the RPA decoder. Section 4.1

presents the proposed complexity reduction techniques. Numerical simulation results are

presented in Section 4.2. Section 4.3 presents the proposed hardware friendly approximation

functions for the RPA decoding. Finally, in Section 4.4, the chapter summary is made.

4.1 Proposed Complexity Reduction Techniques

During the RPA decoding process, the existing saturation-based early stopping criterion

(3.4) compares the results of two consecutive iterations in a sequence. In this paper, we

propose using a syndrome-based approach to check for RPA decoder’s results within the

same iteration.

For RPA decoding, each projection and aggregation has the complexity O(n) and the

decoding of first-order RM codes (FHT) has the complexity O(n log n). The number of the

FHT, involved during RPA decoding, is commonly used to measure the complexity of the

RPA algorithm [1], [26], [27], [45]. For example, SRPA approach uses the average number

of the FHT performed during the RPA’s decoding process as the measure of the complexity

[27].

For RM(m, r) codes, the worst-case complexity of RPA decoding in terms of the number

of FHT is given as (Nmax)
r−1∏r−2

i=0 (2m−i − 1), where Nmax is the maximum number of

iterations for RPA and Nmax is the same for all recursive layers of RPA decoding.
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4.1.1 Proposed Syndrome-Based Early Stopping Criteria

For any (n, k) linear block code (C), where n is the code length and k is the code dimension,

there exists a k × n matrix G called the generator matrix of the code and a (n − k) × n
matrix H called the parity-check matrix such that

∀ c ∈ C, H · c> = 0. (4.1)

Consider that c has been transmitted over a noisy channel and x is received at the

output of the channel. Due to the noisy channel, x can differ from c. Therefore, we can

establish the relationship between x and c as: x = c ⊕ e, where e is the error vector

caused by the channel noise. The syndrome is defined by s ,H · x>. According to (4.1),

s is zero if and only if x is a codeword. Thus, if s is zero, either there is no error or the

error vector itself is a codeword [46].

For a RM(m, r) code, the parity-check matrix is given as H = G(m,m − r − 1) [16],

where G(m,m − r − 1) is the generator matrix for the RM(m,m − r − 1) code. In this

work, using the parity-check matrix for the RM(m, r) code, we propose to use the syndrome

check (4.1) for early stopping of the RPA decoder. Given the received LLR vector (L), a

syndrome check is performed to check if H · l̂> == 0, where l̂ is the hard decision vector

of L. If the syndrome check is satisfied, decoding is assumed to be successful. Otherwise,

the RPA decoder proceeds with projecting the codewords to lower dimensions as explained

in Section 3.2.1.

During the RPA decoding, in each iteration, the syndrome check is performed on the

aggregated LLR Lcumu. For the RM(7, 2) code, Fig. 4.1 (a) plots the average number of

the FHT decoding for the baseline RPA as well as the proposed RPA (RPASYN), where

the syndrome check is applied after each RPA iteration. As depicted in Fig. 4.1 (a), the

proposed syndrome-based early stopping technique reduces the average number of the FHT

by 50.7%, however, it does not take the overhead of syndrome computations into account.

For a fair comparison, with the baseline RPA, the number of the FHT can be converted

to the equivalent number of operations (+/−) performed (O(n log n)). Similarly, for the

proposed syndrome-based method, the number of operations for the syndrome computation

(O(n × (n − k))) can be added to the number of operations for the FHT. Fig. 4.1 (b)

compares the complexity in terms of the number of operations, for the baseline RPA and

the proposed syndrome-based RPA (RPASYN). From Fig. 4.1 (b), it can be seen that
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Fig. 4.1 The average complexity for the RPA decoding of the RM(7, 2) code
at Eb/N0 = 4.25 dB and Nmax = 4.

RPASYN reduces the complexity by 25.1% as compared to the baseline RPA.

To reduce the complexity further, at every iteration of RPA, we propose to perform

the syndrome check after aggregating δ recursive decoding results, Lcumu,1:k×δ, where

Lcumu,1:k×δ denotes aggregated results from B1 to Bk×δ, δ ≤ n − 1 and ∀k ∈ [1, bn−1
δ
c].

Fig. 4.1 (a) plots the average number of the FHT of the proposed scheme, RPASYNδ ,

for different values of δ. For example, for δ = 32, the syndrome check is performed after

aggregating every 32 recursive decoding results (Lcumu,1:k×32) at each iteration. From Fig.

4.1 (a) with parameter δ = 32, the average number of FHT decoding is reduced by 87.6%

as compared to the baseline RPA. In terms of the number of operations, for δ = 32, the

RPASYNδ reduces the average complexity by 61.9% when compared to the baseline RPA as

shown in Fig. 4.1 (b).

4.1.2 Proposed Scheduling for Reducing RPA’s Complexity

From the numerical simulation results of RPA decoding of RM(m, r) codes, we observed

that the majority of the sign change occurs in the first iteration, implying that the majority
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Table 4.1 Worst-case complexity, measured by the number of FHT decod-
ing, of SRPA, RPA , and RPASCH with Nmax = dm2 e and d = 2.

RM(7,2) RM(8,3) RM(m,r)

RPA 508 518160 (Nmax)
r−1∏r−2

i=0 (2m−i − 1)

RPASCH 239 114481
∏r−2

i=0

∑Nmax−1
j=0 d2m−i−1

dj
e

SRPA 128 65536 ((Nmax)
r−1∏r−2

i=0
2m−i

8
qr−i)

Table 4.2 The average reduction in % of FHT used by different complexity
reduction techniques at selective Eb/N0.

RM(7,2) RM(8,3)

1.5dB 4.25dB 1.0dB 3.25dB

RPASCH 38.6% 25.5% 57.6% 39.5%
RPASYNδ 88.0% 96.5% 83.7% 99.8%

RPASYNδ+SCH 88.2% 96.5% 87.7% 99.8%
SRPA 64.6% 50.3% 77.7% 64.3%

of errors are corrected in the first iteration. The average sign change of decoding RM(7, 2)

is shown in Fig. 4.2. A similar observation is reported in [45].

Based on this observation, we propose a scheduling scheme (SCH) to reduce the number

of projections in successive iterations during the RPA decoding process. This reduction in

the number of projections depends on a user-defined decaying parameter, d ≥ 1. In the

proposed scheduling, given d, iteration j (j ∈ [1, Nmax]) uses a subset of projections (d n−1
dj−1 e

projections) chosen uniformly at random. The proposed scheduling is applied across all

RPA’s recursive layers. In general, for decoding a RM(m, r) code, the worst-case complexity

of proposed scheduling for RPA (RPASCH) is
∏r−2

i=0

∑Nmax
j=1 d

2m−i−1
dj−1 e FHT. This scheduling

technique can also be combined with the proposed syndrome-based early stopping criterion

(RPASYNδ+SCH). The worst-case complexities of RPA decoder, SRPA decoder, and the

proposed scheduling scheme with d = 2 are shown in Table 4.1. The proposed scheduling

scheme reduces the worst-case complexity by more than 50%, compared to the baseline

RPA decoder.
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Table 4.3 The average number of +/− used by FHT and syndrome check
at selected Eb/N0s of the RM(7,2) code.

1.5 2.5 3.5 4.25

RPA 1.39× 105 1.21× 105 1.04× 105 9.89× 104

RPASYNδ 9.60× 104 4.72× 104 3.29× 104 3.02× 104

Reduction 30.8% 60.9% 68.4% 69.5%

Table 4.4 The average number of +/− used by FHT and syndrome check
at selected Eb/N0s of the RM(8,3) code.

1 2 2.5 3.25

RPA 8.84× 107 6.49× 107 5.49× 107 4.44× 107

RPASYNδ 7.44× 107 1.08× 107 2.86× 106 5.80× 105

Reduction 15.9% 83.4% 94.8% 98.7%

4.2 Proposed Reduced Complexity RPA

Algorithm 1 summarizes the pseudo code of the RPA decoder with the proposed complexity

reduction techniques (RPASYNδ+SCH). The inputs of the algorithm are the channel LLR

vector L, m, r, Nmax, the decaying parameter d, the frequency of performing syndrome

checks δ, and the saturation threshold θ. The parity-check matrix is generated according

to m and r (line 4). Then, the syndrome check is performed on the received LLR vector L

(line 6). If the syndrome check is satisfied, the decoding process is skipped, and the hard

decision of L is returned as the codeword. If not, the RPA decoding is performed (lines

12-14).

However, different from the regular RPA decoding, the proposed RPA(SYNδ+SCH) per-

forms the syndrome check after aggregating every δ decoding results (line 15). If any of the

syndrome checks passes, the hard decision of Lcumu is returned as the codeword. Moreover,

the maximum number of projections Pmax is reduced according to d for the subsequent it-

eration (line 20). In each iteration, after decoding Pmax projections, if the early stopping

criterion (3.4) is satisfied, the decoding process is stopped and the hard decision of the

average of the aggregated LLR vector (L̂) is passed as the decoded result.

Fig. 4.3 (a-b) plot the FER performance for the RPA decoding of RM(7, 2) and RM(8, 3)

codes, with the BPSK modulation over an AWGN channel. Moreover, the parameters
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Fig. 4.2 Average sign changes in each iteration when decoding the RM(7,2)
code.

Nmax = dm
2
e, θ = 0.05, d = 2 and δ = 8 are used for RPA, SRPA, and proposed complexity

reduction techniques.

The proposed techniques for RPA (RPASCH, RPASYNδ , RPASYNδ+SCH) are compared

with the baseline RPA as well as previously proposed SRPA decoder. The proposed tech-

niques have similar decoding performance to the baseline RPA as well as SRPA. However,

the proposed techniques have a significant impact on reducing the complexity as shown in

Fig. 4.3 (c-d).

For decoding the RM(7, 2) code, RPASYNδ reduces the complexity, in terms of the

average number of operations required by FHT and syndrome computations for RPASYNδ ,

by 69.3% and 37.4% as compared to the baseline RPA and SRPA for a target FER of 10−5

as shown in Fig. 4.3 (c). Table 4.3 and Table 4.2 show the reduction of basic operations and

FHT decoding attempts required by the RPA decoder and proposed complexity reduction

techniques at selected Eb/N0 points.

Furthermore, for decoding the RM(8, 3) code, RPASYNδ reduces the complexity by 98.2%
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and 94.6% as compared to the baseline RPA and SRPA for a target FER of 10−5 as shown

in Fig. 4.3 (d). Table 4.4 and Table 4.2 show the reduction of basic operations and

FHT decoding attempts required by the RPA decoder and proposed complexity reduction

techniques at selected Eb/N0 points.

4.3 Hardware Friendly Approximation Functions for RPA

In this section, we propose to approximate the transcendental projection function (3.2) with

the hardware friendly approximations. When projecting to the one-dimensional subspaces,

the size of the coset is always 2 [1]. Let X and Y denote input LLRs (L(z)) to (3.2), and

then (3.2) is re-written as:

L/Bi(T ) = ln (exp (X + Y ) + 1)

− ln (exp (X) + exp (Y )).
(4.2)

According to the Jacobi logarithm [47],

ln(exp (X) + exp (Y )) = max(X, Y ) + f(X, Y ), (4.3)

where f(X, Y ) = ln(1 + exp (−|X − Y |)) is the correction function. Thus, (4.2) can be

approximated as

ln(exp(X + Y ) + exp(0))− ln(exp(X) + exp(Y ))

= max(X + Y, 0) + f(X + Y, 0)−max(X, Y )− f(X, Y ).
(4.4)

In literature, there are three popular schemes to approximate f(X, Y ) namely the max-log-

MAP (f(X, Y ) = 0), the linear-log-MAP [48] (f(X, Y ) = max(0, 0.6925 − 0.25|X − Y |)),
and the constant-log-MAP [47],

f(X, Y ) =

3
8

if |X − Y | < 2

0 otherwise
.

Additionally, (4.2) can also be re-organized and approximated using the min-sum approx-
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imation [26], [49] as,

ln (exp (X + Y ) + 1)− ln (exp (X) + exp (Y ))

= 2 tanh−1(tanh
X

2
tanh

Y

2
)

≈ sign(X) sign(Y ) min(|X|, |Y |).

(4.5)

Fig. 4.4 plots the FER performance for RPA decoding of RM codes with various ap-

proximation functions. In comparison with the baseline RPA for the RM(8, 3) code, RPA

decoders with max-log-MAP (RPAmax-log-MAP) and min-sum (RPAmin-sum) approximations

result in performance degradations of 0.2 dB at the target FER of 10−5, whereas other ap-

proximations incur negligible decoding performance losses. In summary, different approx-

imation schemes can be chosen, depending on the target FER requirement and available

hardware resources.

4.4 Chapter Summary

RPA decoder, a recently proposed near ML performing decoder for RM codes, suffers from

the high computational complexity. In this work, we have proposed syndrome-based early

stopping techniques and a scheduling scheme for reducing the computational complexity

of the RPA decoder. The comparison with the baseline RPA reveals that proposed tech-

niques result in a 69− 98% reduction in the average computational complexity for a target

FER of 10−5. Similarly, in comparison with the previously proposed SRPA complexity

reduction technique, the proposed RPA results in a 37− 94% complexity reduction. More-

over, this work introduces hardware-friendly approximation functions to replace the RPA’s

computationally expensive transcendental projection function.
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Algorithm 1: Reduced complexity RPA

Input: L, m, r, Nmax, d, δ, θ
Output: ĉ

1 if r == 1 then
2 return ĉ← FHT-Decoding(L)

3 else
4 H ← GenerateParityMatrix(G(m,m− r − 1))
5 Pmax ← 2m − 1
6 s← SyndromeCheck(L,H)
7 if s == 0 then
8 return ĉ← HardDecision(L)

9 for t = 1, ..., Nmax do
10 Lcumu(z)← 0 ∀z ∈ E
11 for i = 1, ..., Pmax do
12 L/Bi ← Projection(L,Bi)
13 ŷ/Bi ← RPA(L/Bi ,m, r,Nmax, d, δ, θ)
14 Lcumu+ = Aggregation(L, ŷ/Bi)
15 if i (mod δ) == 0 then
16 s← SyndromeCheck(Lcumu,H)
17 if s == 0 then
18 return ĉ← HardDecision(Lcumu)

19 L̂← Lcumu

Pmax

20 Pmax ← dPmaxd e
21 if |L̂(z)−L(z)| < θ|L(z)|,∀z ∈ E then

22 return ĉ← HardDecision(L̂)

23 L← L̂

24 return ĉ← HardDecision(L)
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Fig. 4.3 Comparisons of decoding performance and average complexity for
RPA decoding of RM codes.
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Fig. 4.4 Comparisons of RPA decoding performance using different approx-
imation schemes.
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Chapter 5

Optimization and Simplification of

PCPA Decoder

In Section 5.1, finding the optimized subset is transformed into a mixed-integer quadratic

programming problem, and optimization methods and results are presented. Section 5.2

discusses the CPA decoder with the min-sum approximation, the simplified list decoder,

and their simulation results. Finally, the chapter summary is drawn in Section 5.3.

5.1 Optimization for PCPA Decoder

5.1.1 Mixed-Integer Quadratic Programming

Finding subsets with a small rs can be transformed into a MIQP problem performed off-line,

and the objective function and constraints are

min
u
u>Ru, s.t. ui ∈ {0, 1} ∀ui ∈ u, 1>u = |S|, (5.1)

where 1 is an all-ones vector.

MIQP is NP-hard [41], so relaxation or heuristic approaches should be used to solve

MIQP efficiently. In this work, two applicable methods are used to efficiently solve the

MIQP. The first method uses a heuristic solver called ADMM [41] to directly solve (5.1).

It returns relatively good results, but the optimal solution is not guaranteed [41]. The

MIQP can be relaxed by allowing ui ∈ R ∀ui ∈ u. After the relaxation, as the rij ≥ 0,
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u>Ru ≥ 0 ∀u ∈ RnB implies that R is symmetric and positive semi-definite. Thus, the

relaxed MIQP is convex, and the second method, cutting-plane (CP) [50], can solve the

MIQP as the following. CP replaces the quadratic objective function in MIQP with a linear

objective function, the epigraph problem form [40], and following constraints [51],

min
w

w, s.t. v>Rv − w ≤ 0, w ≥ 0,

vi ∈ [0, fmax] ∀vi ∈ v, 1>v = 1,

ui = 1[vi > 0] ∀ui ∈ u, 1>u = |S|,

(5.2)

where w is the slack variable, v is bounded in a interval [0, fmax] [51], and 1 is the indicator

function. Then, in every iteration, a linear constraint is imposed, which approximates

v>Rv by using order 1 Taylor expansion around vi = vi−1 + δ [42], [51] and replacing δ

by vi − vi−1 [51],

v>i Rvi − w ≈ −v>i−1Rvi−1 + 2v>i−1Rvi − w ≤ 0. (5.3)

vi is the variable vector that would be solved in every iteration, and vi−1 is the result from

the previous iteration i− 1 [51]. The CP does not guarantee the optimal result neither.

For medium-length and high-order RM codes, the number of distinct sub-spaces (nB) for

CPA is huge, so ADMM and CP would require many computation and memory resources.

For example, in ADMM, the complexity of the matrix factorization is O(n3
B) for a dense

R, the complexity of computing each subsequent iteration is O(n2
B) [41], and the memory

complexity of storing R is O(n2
B). Thus, a greedy search method [52] is proposed. The

workflow of this greedy method, summarized by the pseudo code shown in Algorithm 2, is

the following. This greedy algorithm firstly constructs a set of sub-spaces that have zero

correlations with each other, and then it progressively adds a new selection into the set S.

The selected Bi is the one that would add the least set correlation to the current set S,

argmin
i

|S|∑
j=1

dim(Bi

⋂
Bj)

r − 1
, ∀ Bj ∈ S, and ∀ Bi /∈ S. (5.4)

It computes the correlation (5.4) at most
∑|S|

i=0 nB − i times, and it only requires nB

memories to store results, which is an alternative solution when the size of R is large.
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5.1.2 Results and Analysis of Optimized Subsets

The CP is implemented using the existing solver in MATLAB [51], and the ADMM is

implemented according to [41]. Parameters are tuned to generate the best result that

our AMD Ryzen 5 2600 six-core processor with 15.6 GB of RAM simulation platform can

return. Tuned parameters are shown in Appendix A.2. In this chapter, all simulations

perform over the AWGN channel and use the BPSK modulation.

Table 5.1 Minimum rS returned from different methods.
r∗S,CP r∗S,ADMM r∗S,Greedy r∗S from [28]

nB |S| 64 128 256 64 128 256 64 128 256 64

RM(7, 3) 2667 129 518 2197 130 525 2201 129 520 2197 69
RM(7, 4) 11811 404.67 1710.67 7234 421.33 1804 7476.67 398 1708.67 7217.33
RM(7, 5) 11811 1322.50 5382.50 21754.50 1346 5456.50 21865 1322 5375 21771.50
RM(8, 3) 10795 65 271 1076 67 257 1036 64 257 1035

To quantify the effect of obtaining a small set correlation, a sensitivity analysis is

performed for different set sizes |S|. The sensitivity is defined as

Sensitivity =
(FER∗ − FER)/FER∗

(r∗S − rS)/r∗S
. (5.5)

r∗S and FER∗ are the minimum rS returned from the proposed method and the corre-

sponding FER. rS and FER are the set correlation and the FER of randomly constructed

subsets.

A positive sensitivity means finding r∗S helps reduce the FER, and a negative sensitiv-

ity means it does not. Subsets generated by the greedy search are used in the sensitivity

analysis and FER simulations, in this work. To eliminate randomness effects of randomly

constructed subsets, the average sensitivity is presented, and it is calculated using 10 ran-

domly constructed subsets and the subset generated by the greedy search. For the fairness,

the optimized and randomly constructed decoders with the same |S| are compared in each

Eb/N0 point. The same |S| means the optimized and randomly constructed decoders have

the same worst-case complexity because they have the same number of FHTs per iteration

and the same Nmax.

Table 5.1 shows set correlations of optimized subsets generated by proposed methods,

for RM codes with nB / 104. Results of all proposed methods are similar. From average

sensitivities of RM(7, 3) and RM(7, 4) codes (Fig. 5.1 (a) and (c)), finding r∗S does reduce
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the FER in most cases, so the optimized decoder has less performance loss than randomly

constructed decoders in most cases. From the FER plot, Fig. 5.1 (b), of decoding the

RM(7, 3) code, the optimized PCPA decoders with |S| = 64 (PCPA64) has 0.1 dB perfor-

mance loss at a target FER of 10−3, which matches the result of rS = 69 in [28]. From

results of the RM(7, 3) code in Table 5.1, r∗S = 129 is higher than the smallest rS = 69 in

[28], but they have similar performance loss. From Fig. 5.1 (b) and (d), optimized PCPA

decoders with |S| = 128 (PCPA128) already return similar FERs as CPA decoders at a

target FER of 10−4, when decoding RM(7, 3) and RM(7, 4) codes.

5.2 Min-sum Approximation and the Simplified List Decoder

Given (3.5), the min-sum approximation can be directly applied to the projection function

of the CPA decoder [49],

L/Bi(T ) ≈ (
∏
z∈T

sign(L(z))) min({L(z), ∀ z ∈ T}). (5.6)

For the aggregation, the inverse hyperbolic tangent part in (3.6) can be replaced by the

min-sum approximation as well.

Results returned from the RPA/CPA decoder are not necessary RM codes [1]. Reed’s

decoder is used to correct the decoded codeword returned from the RPA/CPA decoder to be

a RM code [1], in the list decoder. In this work, the proposed simplified list decoder replaces

the Reed’s decoder with a syndrome check, which only computes the posterior probability

of codewords that pass the syndrome check. Its pseudo code is shown in Algorithm 3.

Fig. 5.2 shows the FER of decoding RM(7, 3) and RM(7, 4) codes with the min-sum

approximation, PCPA128 list decoders with list sizes of 16, 8, 4, 2 (L16, L8, L4, L2), and

PCPA128’s simplified list decoders with list sizes of 16, 8, 4, 2 (SL16, SL8, SL4, SL2). From

Fig. 5.2 (a) and (b), CPA and PCPA decoders with the min-sum approximation have less

than 0.15 dB performance degradation at a target FER of 10−4. From Fig. 5.2 (c) and (d),

the PCPA’s simplified list decoder returns similar decoding performance as the regular list

decoder, which implies that the syndrome check can safely replace the Reed’s decoder.
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Algorithm 2: Greedy Search

Input: m, r, |S|
Output: S

1 {Bi} = Shuffle(GenerateB(m, r))
2 S(1) = B1

3 i, t = 2
4 nB = Size({Bi})
5 while i ≤ nB & t ≤ |S| do
6 if (Bi

⋂
Bj) \ 0 == ∅, ∀Bj ∈ S then

7 S(t) = Bi

8 t = t+ 1

9 i = i+ 1

10 Delete Bj from {Bi}, ∀Bj ∈ S
11 while t ≤ |S| do
12 nB = Size({Bi})
13 r(i)← 0, ∀i ∈ [1, nB]
14 for i = 1, ..., nB do
15 for each Bj ∈ S do
16 r(i) = r(i) + dim(Bi

⋂
Bj)/(r − 1)

17 index = argminir(i)
18 S(t) = Bindex

19 t = t+ 1
20 Delete Bindex from {Bi}
21 return S

5.3 Chapter Summary

Finding a subset of sub-spaces with a small set correlation helps to achieve small perfor-

mance loss for the PCPA decoder. In this work, finding the subset of sub-spaces with a

small set correlation is viewed as a MIQP problem. Methods for solving this MIQP problem

are proposed. Supporting by the sensitivity analysis and the corresponding FER, under the

same complexity, the optimized subset does have less performance loss than randomly con-

structed subsets. Furthermore, the min-sum approximation is used to replace non-linear

projection and aggregation functions in the CPA decoder, and it has less than 0.15 dB

performance loss at a target FER of 10−4. Lastly, the proposed simplified list decoder does

not have noticeable performance degradation, compared to the regular list decoder.
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Algorithm 3: Simplified CPA list decoder

Input: L, m, r, Nmax, θ, t
Output: ĉ

1 H ← GenerateParityMatrix(G(m,m− r − 1))

2 L̃← L
3 (z1, ...,zt)← indices of the t smallest |L(z)|, z ∈ E
4 Lmax ← 2 max({|L(z)|, ∀z ∈ E})
5 i = 1
6 for l ∈ {Lmax,−Lmax}t do
7 (L(z1),L(z2), ...,L(zt))← l
8 ĉ← CPA(L,m, r,Nmax, θ)
9 if SyndromeCheck(ĉ,H) == 0 then

10 C̃(i, :)← ĉ
11 i = i+ 1

12 index = argmaxi
∑
z∈{0,1}m((−1)C̃(i,z)L̃(z))

13 return ĉ← C̃(index, :)
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Fig. 5.1 The sensitivity analysis of optimized PCAP decoders and their
decoding performance.



5 Optimization and Simplification of PCPA Decoder 41

2 2.5 3 3.5 4
10−5

10−4

10−3

10−2

10−1

Eb/N0 (dB)

F
E

R
PCPA128

PCPA128min-sum

CPA

CPAmin-sum

2 2.5 3 3.5 4
10−5

10−4

10−3

10−2

10−1

Eb/N0 (dB)

F
E

R

PCPA128

PCPA128min-sum

CPA

CPAmin-sum

(a) RM(7, 3)

3.5 4 4.5 5 5.5
10−5

10−4

10−3

10−2

10−1

Eb/N0 (dB)

F
E

R

PCPA128

PCPA128min-sum

CPA

CPAmin-sum

3.5 4 4.5 5 5.5
10−5

10−4

10−3

10−2

10−1

Eb/N0 (dB)

F
E

R

PCPA128

PCPA128min-sum

CPA

CPAmin-sum

(b) RM(7, 4)

2 2.5 3 3.5

10−4

10−3

10−2

10−1

Eb/N0 (dB)

F
E

R

L16 SL16

L8 SL8

L4 SL4

L2 SL2

2 2.5 3 3.5

10−4

10−3

10−2

10−1

Eb/N0 (dB)

F
E

R

L16 SL16

L8 SL8

L4 SL4

L2 SL2

(c) RM(7, 3)

3.5 4 4.5 5
10−5

10−4

10−3

10−2

10−1

Eb/N0 (dB)

F
E

R

L16 SL16

L8 SL8

L4 SL4

L2 SL2

3.5 4 4.5 5
10−5

10−4

10−3

10−2

10−1

Eb/N0 (dB)

F
E

R

L16 SL16

L8 SL8

L4 SL4

L2 SL2

(d) RM(7, 4)

Fig. 5.2 Decoding performance of decoders (CPA and optimized PCPA128)
using the min-sum approximation and the optimized PCPA128’s list decoder.
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Chapter 6

Conclusion

Emerging applications create the demand of low rate and short length channel codes with

good decoding performance measured by the FER. RM codes attract attention due to their

favorable characteristics and recent research progresses. A recently proposed RPA decoder

achieves near ML decoding performance, when decoding low rate and short length RM

codes. The RPA decoder can be implemented in parallel to reduce the decoding latency,

which is friendly for hardware implementations. But its high computational complexity due

to the recursive structure stops it from using in applications that have a limited computation

resource and energy budget. Several modifications have been made in the RPA decoder

and result in several low complexity variants for the RPA decoder.

This work proposed techniques to further reduce the complexity of the RPA decoder

and optimized the low complexity variant of the CPA decoder. Also, approximations

are applied to the projection and aggregation function in the RPA decoder and the CPA

decoder, which makes these decoding algorithms more hardware friendly. Also, their list

decoder is simplified by replacing the Reed’s decoder with a simple syndrome check. This

proposed simplification largely reduces the difficulties in implementations, and it reuses

the functional part proposed in this work. So, the simplification might infer a reduction

in the area for the hardware implementation while having little compromises in decoding

performance. In conclusion, techniques proposed in this work help to go one step forward

in closing the gap between the projection-aggregation decoders and their practical usage

in emerging applications.
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6.1 Suggestions for Future Work

To compete with other low complexity decoders for RM codes in emerging applications,

more works should be done for the RPA and the CPA decoder. There are some suggestions

for future works.

6.1.1 Near ML decoders with Reduced List Sizes

Due to the relatively high computational complexity of the RPA decoder and the CPA

decoder, their list decoders are still expensive to compute. The list decoder generates the

test patterns in a similar way used by the Chase list decoder, which is inefficient. Finding an

efficient strategies for generating list patterns could be a possible research direction. Given

the success of adopting CRC in the SCL decoder for polar codes, it is also interesting to

investigate that if the CRC can help the list decoder to approach ML decoding performance

with a small list size.

6.1.2 Hardware Implementations for the RPA Decoder and Its Variants

Efficient hardware implementations are needed for the soft decision RPA decoder and the

CPA decoder. Proper selections of complexity reduction techniques for the hardware im-

plementation should be investigated. Good hardware designs are also need to meet the

performance requirement demanded by emerging applications.
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Appendix A

A.1 Equivalent Forms for the Projection and the Aggregation

Function

1-dimensional sub-spaces

Projection: L(z1), L(z2) denote the 2 elements in the same coset T .

2 tanh−1(
2∏
i=1

tanh(
L(zi)

2
)) = 2 tanh−1(

2∏
i=1

(exp(L(zi))− 1)

(exp(L(zi)) + 1)
)

= ln(

∏2
i=1(exp(L(zi)) + 1) +

∏2
i=1(exp(L(zi))− 1)∏2

i=1(exp(L(zi)) + 1)−
∏2

i=1(exp(L(zi))− 1)
),

(A.1)

where

2∏
i=1

(exp(L(zi)) + 1) = exp(
2∑
i=1

L(zi)) +
2∑
i=1

exp(L(zi)) + 1, (A.2)

and

2∏
i=1

(exp(L(zi))− 1) = exp(
2∑
i=1

L(zi))−
2∑
i=1

exp(L(zi)) + 1. (A.3)

Thus,

2 tanh−1(
2∏
i=1

tanh(
L(zi)

2
)) = ln(exp(

2∑
i=1

L(zi)) + 1)− ln(
2∑
i=1

exp(L(zi))), (A.4)
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which is the equation (12) in [1].

Aggregation: For arbitrary L(z), L(z1) denote the other element ∈ T .

−1ŷ/Bi (T )(2 tanh−1(tanh(
L(z1)

2
))) = −1ŷ/Bi (T )L(z1), (A.5)

which is the aggregation function for the RPA decoder [1].

2-dimensional sub-spaces

Projection: L(z1), L(z2), L(z3), L(z4) denote the 4 elements in the same coset T .

2 tanh−1(
4∏
i=1

tanh(
L(zi)

2
)) = 2 tanh−1(

4∏
i=1

(exp(L(zi))− 1)

(exp(L(zi)) + 1)
)

= ln(

∏4
i=1(exp(L(zi)) + 1) +

∏4
i=1(exp(L(zi))− 1)∏4

i=1(exp(L(zi)) + 1)−
∏4

i=1(exp(L(zi))− 1)
),

(A.6)

where

4∏
i=1

(exp(L(zi)) + 1) = exp(
4∑
i=1

L(zi)) +
4∑
i=1

exp(
∑

j∈[4]\{i}

L(zj)) +
∑

1≤i≤j≤4

exp(L(zi) +L(zj))

+
4∑
i=1

exp(L(zi)) + 1,

(A.7)

and

4∏
i=1

(exp(L(zi))− 1) = exp(
4∑
i=1

L(zi))−
4∑
i=1

exp(
∑

j∈[4]\{i}

L(zj)) +
∑

1≤i≤j≤4

exp(L(zi) +L(zj))

−
4∑
i=1

exp(L(zi)) + 1.

(A.8)
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Thus,

2 tanh−1(
4∏
i=1

tanh(
L(zi)

2
)) = ln(exp(

4∑
i=1

L(zi)) +
∑

1≤i≤j≤4

exp(L(zi) +L(zj)) + 1)

− ln(
4∑
i=1

exp(
∑

j∈[4]\{i}

L(zj)) +
4∑
i=1

exp(L(zi))),

(A.9)

which is the equation (13) in [1].

Aggregation: For arbitrary L(z), L(z1), L(z2), L(z3) denote the other 3 elements ∈ T .

−1ŷ/Bi (T )(2 tanh−1(
3∏
i=1

tanh(
L(zi)

2
))) = −1ŷ/Bi (T )(2 tanh−1(

3∏
i=1

(exp(L(zi))− 1)

(exp(L(zi)) + 1)
))

= −1ŷ/Bi (T )(ln(
3∏
i=1

(exp(L(zi)) + 1) +
3∏
i=1

(exp(L(zi))− 1))

− ln(
3∏
i=1

(exp(L(zi)) + 1)−
3∏
i=1

(exp(L(zi))− 1))),

(A.10)

where

3∏
i=1

(exp(L(zi)) + 1) = exp(
3∑
i=1

L(zi)) +
3∑
i=1

exp(
∑

j∈[3]\{i}

L(zj)) +
3∑
i=1

exp(L(zi)) + 1,

(A.11)

and

3∏
i=1

(exp(L(zi))− 1) = exp(
3∑
i=1

L(zi))−
3∑
i=1

exp(
∑

j∈[3]\{i}

L(zj)) +
3∑
i=1

exp(L(zi))− 1.

(A.12)
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Thus,

−1ŷ/Bi (T )(2 tanh−1(
3∏
i=1

tanh(
L(zi)

2
))) = −1ŷ/Bi (T )(ln(exp(

3∑
i=1

L(zi)) +
3∑
i=1

exp(L(zi)))

− ln(
3∑
i=1

exp(
∑

j∈[3]\{i}

L(zj)) + 1)),

(A.13)

which is equivalent to the equation (14) in [1].

A.2 Parameters for Optimization Methods

Table A.1 CP parameters with rng(1).

RM(7, 3) RM(7, 4) RM(7, 5) RM(8, 3)

|S| 64 128 256 64 128 256 64 128 256 64 128 256

fmin 0.0001 0.0001 0.0001 0.0001 0.0001 0.001 0.0001 0.0001 0.0001 0.001 0.0001 0.001
fmax

1
|S|−10

1
|S|−10

1
|S|−10

1
|S|−10

1
|S|−10

1
|S|−10

1
|S|−5

1
|S|−5

1
|S|−5

1
|S|−15

1
|S|−5

1
|S|−10

diff 5e−2 1e−3 1e−4 5e−4 5e−4 1e−4 1e−4 1e−4 1e−4 5e−2 5e−2 5e−2

iteration 100 100 100 100 100 100 100 100 100 40 40 40

Table A.2 ADMM parameters with rng(1).

RM(7, 3) RM(7, 4) RM(7, 5) RM(8, 3)

|S| 64 128 256 64 128 256 64 128 256 64 128 256

maxiter 500 500 500 500 500 500 500 500 500 500 500 500
repeat 200 200 200 200 200 200 200 200 200 200 200 200

ρ 0.2 0.5 0.6 0.2 0.1 0.3 0.05 0.01 0.006 0.006 0.006 0.007
resthr 1e−4 1e−4 1e−4 1e−4 1e−4 1e−4 1e−4 1e−4 1e−4 1e−4 1e−4 1e−4




