
DeepSoil:

A Deep-Learning Framework for Rapid Low-Cost Estimation of

Soil Particle Size Distributions from Digital Microscope Images

A thesis submitted to McGill University in partial fulfillment

of the requirements of the degree of

Master of Science

Jeffrey Spiers

Department of Bioresource Engineering

McGill University, Montreal, Quebec, Canada

December 2020

c© Jeffrey Spiers, 2020

Abstract

Because soil particle size distribution, also known as soil texture, exerts a strong

influence over soil properties of interest to scientists and agricultural producers alike,

accurate methods for its measurement are desirable. Existing methods for assessing soil

texture rely on either labour-intensive laboratory analysis or costly instruments. Images of

soil samples captured by comparatively inexpensive digital microscopes may be analyzed

using deterministic or adaptive computer vision algorithms. Deep learning models such

as convolutional neural networks (CNNs) can be used to extract features from images and

learn intricate data representations from which to make accurate predictions.

This research investigated the application of CNNs to the prediction of soil texture.

A deep learning system was developed to train and test multiple CNN models in order to

infer soil texture from images of soil samples captured using a digital microscope. Training

samples were labeled with reference soil texture values measured using the hydrometer

method. The best-performing model predicted sand, silt, and clay content with mean

absolute errors of 9.2%, 6.2%, and 5.3%, respectively, and mean absolute error of the

`2 norm of 13.2%. Median absolute prediction errors were 7.1%, 4.8%, and 3.8% for sand,

silt, and clay, and 10.8% for the `2 norm. The coefficient of determination (R2) statistic for

the soil texture predictions was 0.66 for the `2 norm, with R2 values for the individual sand,

silt, and clay components of 0.68, 0.68, and 0.55, respectively.

Keywords: deep learning; convolutional neural networks; computer vision; image texture

analysis; machine learning; precision agriculture; soil particle size analysis; soil texture;

digital microscopy; cloud computing.

i

Résumé

La distribution granulométrique du sol, aussi appelée texture du sol, a une influence

importante sur des propriétés du sol qui intéressent autant les scientifiques que les

producteurs agricoles. Des méthodes précises de granulométrie du sol sont donc

souhaitables. Les méthodes actuelles dépendent soit d’une analyse de laboratoire

exigeante ou d’instruments coûteux. Des images d’échantillons du sol capturées

par un microscope numérique relativement abordable peuvent être analysées par des

algorithmes de vision par ordinateur soit déterministes ou adaptifs. Les modèles

d’apprentissage profond et plus particulièrement les réseaux de neurones convolutifs

(RNC) peuvent extraire des éléments des images, apprendre des représentations

complexes et formuler des prédictions précises.

Ce projet de recherche a étudié l’application des RNC afin de prédire la texture des sols.

Un système d’apprentissage profond a été développé pour entraîner et tester plusieurs

modèles RNC afin de prédire la texture des sols à partir d’images d’échantillons de sols

capturés avec un microscope numérique. Les données de formation ont été annotées

avec des valeurs références mesurées par hydromètre. Le modèle le plus performant a

prédit le contenu de sable, limon, et argile avec erreur absolue moyenne de 9,2%, 6,2%,

et 5,3%, respectivement, et une erreur absolue moyenne `2 de 13,2%. L’erreur absolue

médiane était de 7,1%, 4,8%, et 3,8% pour le sable, le limon, et l’argile, et de 10,8% pour

la norme `2. Le coefficient de détermination (R2) des prédictions de texture du sol étaient

0,66 pour la norme `2 et 0,68; 0,68; 0,55 pour le sable, le limon, et l’argile.

Mots-clés: apprentissage profond; réseaux de neurones convolutifs; vision par

ordinateur; analyse de texture; apprentissage automatique; agriculture de précision;

analyse de distribution granulométrique; texture du sol; microscopie numérique;

informatique en nuage.

ii

Dedication

The United Nations’ Food and Agriculture Organization (FAO) has estimated that

over 25% of the world’s population marginally survives by producing their own food on

small land plots, with many suffering poverty and food insecurity [1]. This dissertation is

dedicated to these subsistence farmers, whose daily toil is beyond anything I know.

Precision agriculture technologies often cater to the needs of wealthier producers. May

those of us fortunate enough to have acquired knowledge and skills in this field also devote

ourselves to helping those who have the most left to gain.

iii

Acknowledgements

Thank you first of all to A&L Canada Laboratories Inc. for partnering with the McGill

Precision Agriculture and Sensor Systems (PASS) research team and providing most of

the valuable data on which this research was based. Special thanks to Dave Stallard for

coordinating and performing the time-consuming work of capturing images of hundreds

of soil samples and regularly uploading them and their associated metadata to the PASS

Lab FTP server.

Thank you also to the National Science and Engineering Research Council (NSERC)

for their financial support.

Thank you to Dr. James J. Clark and Dr. Tal Arbel of McGill’s Centre for Intelligent

Machines and Department of Electrical and Computer Engineering for their truly excellent

teaching. Dr. Clark’s Computational Photography course in the fall semester of 2018

provided me with a strong foundation in camera optics, digital imaging, and computer

vision algorithms, and Dr. Arbel’s advanced course in Statistical Computer Vision in

the winter of 2019 further strengthened my theoretical knowledge of Bayesian statistics,

regularization, information theory, Markov random fields (MRFs), and a wide range of

related topics. Perhaps most importantly, the rigorous assignments and term projects

for these graduate courses challenged me to sharpen my Python programming skills and

introduced me to the OpenCV computer vision and NumPy numerical computing libraries,

laying the foundation for the thesis work in applied deep learning presented herein.

Thank you also to my fellow students in the PASS research team for their great

help, support and inspiration. Thank you Maxime Leclerc, Roberto Mario Buelvas, and

Mohammed Debbagh for introducing me to the PASS Lab’s computer-aided design (CAD)

and 3D-printing tools and for assisting in the design and machining of various hardware

accessories for the microscope holder. Thanks also to Marie-Christine Marmette and

iv

Amanda Boatswain Jacques for their helpful counsel and cheerful guidance as fellow

Master’s students.

Thank you tomy parents, siblings, nephews and niece for supportingme not only during

this degree, but throughout all the preceding years of my life. I am incredibly privileged to

have their constant wind in my sails.

Thank you to my dear friends in Montreal, across Canada, and elsewhere for checking

in on me and occasionally drawing me out of the reclusive world of engineering research

to engage in real live human interactions with real live humans. Special thanks to friend

and former colleague Dr. Julien Lamoureux for his infectious positive attitude, exemplary

self-discipline, and creative advice, and for helping to resurrect my engineering career.

Thank you to Dr. Asim Biswas for his pioneering contributions in applying computer

vision techniques to soil particle size analysis and for his guidance inmatters of soil science

while serving on my supervisory committee.

Finally, thank you to Dr. Viacheslav Adamchuk for his literally ground-breaking research

in proximal soil sensor technology, and especially for his confidence and patience as my

thesis supervisor. His exemplary work ethic and consistent commitment to his students

foster a collegial, positive, and hard-working atmosphere in the PASS research team. I

am sincerely grateful for his unfaltering support, both academic and financial, which made

this thesis research possible.

v

Contributions of the Author

The DeepSoil framework brings together a variety of technologies. Many were created

by the author, while others were provided by collaborators and third parties. The following

are original contributions of the author:

• development of the jFocus custom microscope control software with autofocus

routine for the Dino-Lite Edge 3.0 digital microscope in C++;

• drafting of the image acquisition protocol for the capture of high-quality soil-sample

images (SSIs) using the microscope;

• manual review of SSI quality and annotation of suspected deficiencies;

• compilation of the AL2019 dataset comprising the SSIs and associated metadata

including reference particle size distribution (PSD) measurements;

• development of Python code to systematically preprocess and transform SSIs and

metadata from the AL2019 dataset for use with the PyTorch numerical computing

library, including on-the-fly multiprocessing and disk caching via the Dask library;

• development of PyTorch-based code to define, train, and test CNN models for

classification and regression tasks using parameter values configurable via file-

based presets and/or command-line options;

• testing of known and custom CNN model architectures and identification of those

most capable of being trained to predict soil PSD values from SSIs; and

• statistical analysis of soil PSD prediction performance of CNN models relative to

baseline mean PSD-value predictions.

vi

Table of Contents

Abstract i

Résumé ii

Dedication iii

Acknowledgements iv

Contributions of the Author vi

Table of Contents vii

List of Figures xii

List of Tables xiii

List of Acronyms xiv

Glossary xvii

Outline xix

1 Introduction 1

1.1 Precision Agriculture . 1

1.2 Soil Texture . 2

1.3 Particle Size Analysis . 4

1.3.1 Sieving . 4

1.3.2 Sedimentation Methods . 5

1.3.3 Electronic Methods . 6

1.4 Computer Vision . 7

vii

1.4.1 Digital Images . 7

1.4.2 Deterministic vs. Adaptive Algorithms 8

1.5 Research Objective . 9

2 Literature Review 10

2.1 Image-Based Soil Particle Size Analysis . 10

2.2 Image Texture of Soil Images . 11

2.3 Deep Learning . 11

2.3.1 Convolution Filters . 12

2.3.2 Convolutional Neural Networks . 13

2.3.3 Parameter Optimization . 14

2.3.4 Explainability . 15

2.3.5 Survey of CNN Architectures . 16

2.4 Summary . 19

3 Materials and Methods 20

3.1 Overview . 20

3.2 Logical Architecture . 20

3.3 Image Acquisition System . 22

3.3.1 Requirements . 22

3.3.2 Digital Microscope . 25

3.3.3 Microscope Holder . 25

3.3.4 Microscope Control Software . 26

3.3.5 Image Acquisition Protocol . 30

3.3.6 Verification of Images . 31

3.3.7 Organic Matter Content and Four-way Texture 31

3.4 Reference Laboratory Measurements . 32

3.5 AL2019 Dataset Compilation . 34

3.5.1 AL2019Mirror . 35

3.5.2 AL2019Packager . 35

3.6 Dataset Preprocessing . 36

viii

3.6.1 Image Dataset Augmentation . 36

3.6.2 Deterministic vs. Stochastic Image Transformations 38

3.6.3 Transformation Pipelines . 38

3.6.4 Augmentation of AL2019 Images . 39

3.6.5 Random Splitting into Training and Test Sets 39

3.7 Model Training . 40

3.7.1 GPU Computing . 40

3.7.2 PyTorch . 41

3.7.3 Regression Loss Functions . 41

3.7.4 Types of Models Trained and Tested 44

3.7.5 Training Algorithm . 46

3.8 Model Testing . 48

3.8.1 20-Sample Average . 48

3.9 Statistical Evaluation . 49

3.9.1 Implementation . 49

3.9.2 Metrics . 49

4 Results and Discussion 51

4.1 Model Performance Comparison . 51

4.2 Training Statistics . 52

4.3 Test Statistics . 53

4.3.1 Absolute Prediction Error . 53

4.3.2 Generalization . 55

4.3.3 Relative Prediction Performance . 56

4.4 Limitations and Assumptions . 58

5 Future Research 60

5.1 Specialized CNN Architectures . 60

5.1.1 FV-CNN . 60

5.1.2 EfficientNet . 60

5.2 Higher Resolutions . 61

ix

5.3 Multiple Magnification Levels . 61

5.4 Hyper-parameter Refinements . 62

5.4.1 One-Cycle Learning Rate Scheduling 62

5.4.2 Exploring the Hyper-parameter Space 63

5.5 Parallel Training of Models . 63

5.5.1 Self-Hosted Servers . 64

5.5.2 Cloud Servers . 64

5.6 Systematic Comparison of Models and Parameters 64

5.7 Web Interface . 65

6 Conclusion 66

References 67

Appendices 78

A Particle Size Taxonomies 78

B Image Acquisition Protocol 79

B.1 Initial Hardware Setup . 79

B.2 Calibration . 80

B.3 Capturing Images of Soil Samples . 82

C Soil Sample Images 83

D AL2019 Index Format 84

E Computing Resources 85

E.1 Self-Hosted Computers . 85

E.1.1 Image Acquisition Computer . 85

E.1.2 Model Training and Testing Computer 85

E.1.3 Development Computers . 85

E.2 Servers and Cloud Computing Resources 86

x

E.2.1 FTP Server . 86

E.2.2 S3 Cloud Storage . 86

E.2.3 GitLab . 86

F Virtual Environment 87

G Source Code 89

G.1 jFocus . 89

G.2 AL2019Mirror . 89

G.3 AL2019Packager . 89

G.4 DeepSoil . 89

H Excerpt from Presets YAML File 90

xi

List of Figures

1.1 USDA Soil Texture Classes . 3

1.2 Sieving Method . 4

1.3 Hydrometer Method . 5

2.1 Convolution Filter . 12

2.2 LeNet-5 CNN Model . 13

2.3 VGG-16 CNN Model . 17

3.1 Logical Architecture . 21

3.2 Dino-Lite Edge 3.0 AM73915MZT Microscope 25

3.3 Image Acquisition System . 26

3.4 HDR Compositing Example . 29

3.5 AL2019 Dataset Soil Texture Distribution . 34

3.6 Soil Texture Space in Three Dimensions . 42

4.1 Training Loss vs. Time . 52

4.2 Predicted vs. Measured Values (Seed = 0) 54

4.3 Baseline vs. Model Predictions for 10 Random Samples 57

A.1 Particle Size Classification Systems . 78

C.1 Soil Sample Image 1 . 83

C.2 Soil Sample Image 2 . 83

xii

List of Tables

3.1 AL2019 Three-way Texture Distribution . 32

3.2 AL2019 Four-way Texture Distribution . 33

3.3 AL2019 USDA Texture Class Distribution 33

4.1 Model Performance Ranking . 51

4.2 Absolute Prediction Error . 53

4.3 AL2019 Baseline Error . 56

D.1 AL2019 Index Format . 84

E.1 Linux Computer Specifications . 85

E.2 Development Computer Specifications . 86

xiii

List of Acronyms

API Application Programming Interface 28, 65

ASTM American Society For Testing And Materials 2

CAD Computer-aided Design iv

CCD Charge-coupled Device 7, 10

CMOS Complementary Metal-oxide Semiconductor 7

CNN Convolutional Neural Network i, vi, xix, 8–14, 16–22, 24, 31, 36, 37, 40, 41, 44–

49, 60, 63, 65, 66

CPU Central Processing Unit xviii, 40, 41, 63, 85, 86

CRF Conditional Random Field 8

CSSC Canada Soil Survey Committee 2

CUDA Compute Unified Device Architecture 64

DL Deep Learning i, iv, xviii, 8, 11, 12, 14–16, 19, 64

EC Electrical Conductivity 1

EV Exposure Value 29, 30

FAO Food And Agriculture Organization iii

FFT Fast Fourier Transform 8, 10, 44, 46

FTP File Transfer Protocol iv, 31, 35, 84–86

FV Fisher Vector 18, 60

GMM Gaussian Mixture Model 18

GMT Greenwich Mean Time 30

GPU Graphics Processing Unit xviii, 40, 41, 45, 46, 52, 63, 64, 85

HDR High Dynamic Range 25, 27, 29

xiv

HMP Hexametaphosphate 5

HWC Height-width-channel 38

IR Infrared 6, 12, 19

ISO International Organization For Standardization 29

ISPA International Society Of Precision Agriculture 1

ISSS International Soil Science Society 2

JSON JavaScript Object Notation 65

LED Light-emitting Diode 25, 29

MAE Mean Absolute Error 43, 54

MIR Mid-infrared 6

ML Machine Learning 8, 20, 36, 37, 47, 58, 64

MNIST Modified National Institute Of Standards And Technology 14

MRF Markov Random Field iv, 8

MSE Mean-squared Error 43, 44, 54

MSG Mean Squared Gradient 28, 29

NAS Network-attached Storage 86

NSERC National Science And Engineering Research Council iv

OM Organic Matter 1, 5, 31–33

OS Operating System xviii, 26, 27, 85, 86

PA Precision Agriculture iii

PASS Precision Agriculture And Sensor Systems iv, v, 25, 31, 35, 85, 86

PNG Portable Network Graphics 30, 31, 36, 82

PSA Particle Size Analysis xix, 1, 4, 6, 19, 31, 66

PSD Particle Size Distribution vi, xvii, xix, 1, 2, 4, 7, 10, 19, 21, 45, 61

ReLU Rectified Linear Unit 44

REST Representational State Transfer 65

xv

RGB Red-Green-Blue 7

RMSE Root-mean-squared Error 44

RNN Recurrent Neural Network 11

S3 Simple Storage Service 35, 85, 86

SDK Software Development Kit 27–29, 81

SGD Stochastic Gradient Descent 15, 46, 47

SSI Soil-sample Image vi, xvii, 20, 21, 30, 31, 34, 36, 49, 56, 65

USB Universal Serial Bus 25, 26, 79, 80, 85

USDA United States Department Of Agriculture 2, 3, 33, 84

VGG Visual Geometry Group 16

Vis-NIR Visible Near-infrared 6

YAML YAML Ain’t Markup Language 36, 49, 90

xvi

Glossary

A&L Canada Partner commercial soil analysis laboratory located in London,

Ontario, which carried out both capture of SSIs using the digital

microscope and measurement of reference soil PSD values using

the conventional hydrometer method.

(https://alcanada.com) iv, 20, 31–33, 58, 85, 86

Albumentations Python image augmentation/transformation library.

(https://albumentations.ai) 38

Dask Python library for efficiently loading and operating on objects, such

as NumPy arrays, too large to fit in memory.

(https://dask.org) vi

DinoCapture Proprietary Dino-Lite microscope control software.

(https://www.dinolite.us/dinocapture/) 26, 27, 81

Docker Container virtualization technology enabling rapid spin-up of

customized virtual environments.

(https://www.docker.com) xvii, 87

effective diameter The minimum diameter of a particle, i.e. the smallest opening

through which it may pass. 2, 4

Git Distributed version control system.

(https://git-scm.com) xvii

GitLab Cloud service for hosting Git software repositories and automating

testing and deployment of software projects via Docker containers.

(https://about.gitlab.com) 35, 85, 86, 89

xvii

https://alcanada.com
https://albumentations.ai
https://dask.org
https://www.dinolite.us/dinocapture/
https://www.docker.com
https://git-scm.com
https://about.gitlab.com

jFocus Custom-developed microscope control software. vi, 27, 29, 30, 32,

35, 81, 85, 86, 89

Jupyter Web-based interactive Python shell.

(https://jupyter.org) 49, 51

NumPy Numerical Python computing library.

(https://numpy.org) iv, xvii, 41

OpenCV Computer vision and machine learning library.

(https://opencv.org) iv

Pandas Python data science library.

(https://pandas.pydata.org) 35

python-ternary Python library for generating ternary plots.

(https://github.com/marcharper/python-ternary) 34

PyTorch Python numerical computing framework which runs interchangeably

on CPU or GPU, popular for implementing deep learning models.

(https://pytorch.org) vi, 16, 41, 46, 61

virtual environment Software-based platform that gives, to applications running within it,

the appearance of a hardware, operating system (OS), and software

context, independent of the actual underlying implementation. xvii,

87

Wasabi S3-compatible cloud storage service.

(https://wasabi.com) 35, 85, 86

xviii

https://jupyter.org
https://numpy.org
https://opencv.org
https://pandas.pydata.org
https://github.com/marcharper/python-ternary
https://pytorch.org
https://wasabi.com

Outline

The thesis presented herein is organized as follows: Chapter 1 provides a general

introduction to the topics of soil particle size analysis (PSA) and computer vision. Chapter

2 presents a review of the literature in computer vision and deep learning as they relate to

soil texture analysis. Chapter 3 describes, in detail, the materials and methods employed

to carry out the research, including development of a digital microscope-based image

acquisition system, compilation of a novel dataset of magnified images of soil samples

labeled with reference particle size distribution (PSD) values, and training and testing of

CNN regression models to predict those values based on the images. Chapter 4 presents

the results of this research along with a statistical analysis and discussion thereof. In

Chapter 5, avenues for future research are proposed. Conclusions are provided in Chapter

6, followed by references and appendices to complete the thesis.

xix

Chapter 1. Introduction

At its heart, this is a thesis about dirty pictures – not the racy kind, of course, but

literal pictures of dirt (i.e. soil samples) and the power they have to relay information

about the contents of the soil from which they were drawn. Taking advantage of the

decreasing cost of digital imaging and recent advances in the fields of computer vision

and deep learning, the DeepSoil framework presented herein is a precision agriculture

technology which aspires to harness this information to enable rapid, inexpensive, and

therefore widely-available soil particle size analysis (PSA).

1.1 Precision Agriculture

The International Society of Precision Agriculture (ISPA) defines precision agriculture

as "a management strategy that gathers, processes and analyzes temporal, spatial and

individual data and combines it with other information to support management decisions

according to estimated variability for improved resource use efficiency, productivity, quality,

profitability and sustainability of agricultural production." Its goals include improved crop

yields, reduced input usage (e.g. fertilizers and water), increased supply-chain efficiency,

lessened environmental impact, and greater food security [2].

Proximal sensors for soil analysis are an active area of research within precision

agriculture. Many types of sensors have been developed to measure a large variety of

soil properties, such as chemical composition, acidity (pH), electrical conductivity (EC),

organic matter (OM) content, gamma radiation [3], and particle size distribution (PSD). Soil

analysis may be carried out either in situ [4], [5] or by collecting samples and transporting

them to a specialized laboratory. Sensor fusion allows multiple soil properties to be

measured simultaneously [6].

1

Accurate measurement of soil properties facilitates land-use planning by agricultural

producers and regulatory bodies. For example, soil texture and organic matter content

are important factors in the determination of appropriate crop selection, field management,

and environmental practices [7].

1.2 Soil Texture

The particle size distribution (PSD) or texture of soil refers to its composition in

terms of the relative mass of its particles with respect to effective diameter. Soil texture

exerts a strong influence over physical, chemical, and biological soil properties, such as

soil structure, aggregation, compaction, erosion, permeability, aeration, water retention,

nutrient flow, root penetration, and microbial activity [8]. For example, whereas a soil

predominantly composed of small (clay) particles will tend to be dense and relatively

impermeable to air and water, a soil mostly composed of large (sand) particles will compact

less and offer better aeration and drainage. Loamy soils contain a balance of particles at

different scales and are generally favoured in the agricultural context because they foster

structural, aerobic and hydrological conditions strongly supportive of root growth and soil

ecology [8].

Soil texture classification systems assign names to specific ranges of soil particle

dimensions, or soil separates. Several such taxonomies exist, including the USDA,

CSSC, ISSS, and ASTM systems (Appendix A). For this thesis research, the United

States Department of Agriculture (USDA) classification system was adopted. It divides

soil particles into four broad soil separates according to their effective diameter: those

smaller than 2µm are called clay, those ranging from 2µm to 50µm are called silt, those

ranging from 50µm to 2mm are called sand, and all larger particles are called gravel. In the

agricultural context, gravel particles are of limited interest, and USDA soil texture refers to

the relative proportion (by mass) of particles in a soil belonging to each of the sand, silt,

and clay separates.

Based on these proportions of soil separates, the USDA defines twelve soil texture

classes: sand, silt, clay, loam, sandy clay, silty clay, sandy loam, clay loam, silty clay loam,

2

sandy loam, silt loam, or loamy sand. A loam refers to a soil with balanced proportions of

sand, silt, and clay particles.

Figure 1.1: USDA Soil Texture Classes

It can be useful to visually display soil texture values with the help of a ternary plot

such as that shown in Figure 1.1, which depicts the USDA soil texture classes as regions

of different colors. A ternary plot is a representation of 3-tuples of values which invariably

sum to a fixed value. In the case of USDA soil texture, the sum of the sand, silt, and clay

portions is necessarily 100%:

Sand (%) + Silt (%) + Clay (%) = 100% (1.1)

Each location within the texture triangle represents a potential soil texture value, and

the sand, silt, and clay content of that value may be read off the graph by following the

3

overlayed isolines to each one of the three axes. Notably, the isolines are not perpendicular

to the axes, because a ternary plot is actually a projection of three-dimensional values

onto the two-dimensional plane defined by the ternary constraint defined by Equation 1.1.

Equivalently, it may be said that soil textures have only two degrees of freedom: as soon

as two of the three sand, silt, and clay percentage values are fixed, the third is also fully

determined.

1.3 Particle Size Analysis

Given the significant influence of particle size distribution over soil properties, its

accurate measurement is of considerable importance both in soil science and in

agriculture. Several methods of particle size analysis (PSA) have consequently been

developed, from mechanical and sedimentation methods to newer methods employing

electronic sensors.

1.3.1 Sieving

Figure 1.2: Sieving Method [9]

Next to getting a feel for a soil’s texture by

manipulating it between one’s fingers, sieving

is probably the most straight-forward method of

particle size analysis. It proceeds in two steps:

first, the soil sample is passed through a series of

sieves with progressively smaller openings, such

that particles of a given effective diameter are

captured by the first sieve whose openings are too

small to let them pass; then, the net weight of

each sieving tray with and without its collected soil

particles is measured to obtain the mass of particles

within each diameter range [10]. Because the elongated dimensions of non-spherical

particles may be larger than sieve openings, a shaker may be employed to help the

particles reorient and find their way through (Figure 1.2).

4

1.3.2 Sedimentation Methods

Sedimentation methods are predicated on the relationship between particle size and

settlement rate in a liquid [10]. After pre-treatment to remove non-soil particles (i.e. organic

matter, iron oxide, carbonate, and soluble salts) and dispersion of the soil particles,

each soil sample is uniformly mixed with distilled water or a sodium hexametaphosphate

(HMP) solution. Subject to certain assumptions [10] and the gravitational constant g, the

sedimentation velocity v with which a particle of diameter d and density ρs will settle in a

liquid of density ρ` and dynamic viscosity η is given by Stokes’ Law:

v =
g(ρs − ρ`)d2

18η
(1.2)

Figure 1.3: Particle-Size Analysis by the Hydrometer Method [9]

The problem of measuring the particle size distribution of a soil sample then becomes

one of measuring the variation of the density of the liquid soil suspension over time. This

is typically performed using one of two standard approaches: the pipette method or the

hydrometer method. In the pipette method, a set volume of the liquid suspension is directly

5

sampled at a given depth, then dried and weighed. By Stokes’ Law, the size of the particles

in the sample reliably relates to the time at which the sample was taken, allowing the

distribution of particle sizes to be calculated from the relative weights of the samples drawn

at each time [11]. Alternatively, a hydrometer may be used to measure the relative density

of the liquid soil suspension at regular intervals [12], [13]. As particles drop out of the

suspension, the density of the fluid declines over time, with larger particles falling more

rapidly than smaller ones (Figure 1.3). Again, according to Stokes’ Law, the variations

in the density of the liquid over time are quantitatively attributable to particles of given

diameters. Charting the variation of relative density of the liquid soil suspension thereby

yields the particle size distribution.

Sedimentation methods are quite accurate and therefore serve as the reference by

which other methods are assessed [10]. However, they also require careful preparation

of the liquid soil suspension and the ongoing attention of a soil laboratory technician to

take regular measurements over the course of hours. The instruments themselves are not

expensive, but the time and effort required to use them are a disadvantage when compared

to modern electronic methods.

1.3.3 Electronic Methods

Electronic alternatives to sedimentation methods seek to do away with their meticulous

wet chemistry, specialized laboratories, and labour. Instead, they promise rapid soil

particle size analysis using electronic sensors of different kinds.

Laser diffraction particle size analyzers observe the spatial variations in scattered laser

light interacting with a soil sample to measure texture [14]. While very accurate, these

instruments are also very expensive [9], [15].

Infrared (IR) spectroscopy methods also have been applied to soil texture analysis [16].

Some rely on instruments that sense in the visible near-infrared (Vis-NIR) frequency

band [5], [17]–[19] while others target the lower-frequency mid-infrared (MIR) band [20].

Soil texture values are calculated from the soil’s IR response based on correlations

identified using statistical and machine-learning techniques [21]. Infrared spectroscopy

6

methods provide accurate measurements of soil PSD, but the instruments on which they

rely are expensive, and they must be calibrated and regularly maintained [22].

Gamma radiation sensors assess soil texture indirectly by first measuring the intensity

of high-frequency Gamma rays emitted from soil in the field, then correlating patterns in

the radiation to soil composition [3]. While rapid and convenient, these estimates are not

as accurate as measurements taken by dedicated instruments, and gamma ray sensors

remain expensive relative to digital cameras and microscopes.

1.4 Computer Vision

Computer vision refers to a broad range of technologies for processing and analyzing

digital images captured by cameras to extract and interpret the information they represent.

1.4.1 Digital Images

Conceptually, a digital image may be understood as a matrix of pixel intensity values

I(x, y) in at least two dimensions x and y, the magnitudes of which are defined as the

image’s width and height, respectively. In a typical grayscale image, eight bits are used to

encode the intensity of each pixel, resulting in 28 = 256 potential values ranging from 0 to

255. An intensity value of 0 represents a fully black pixel, a value of 255 represents a fully

white pixel, and all intermediate values lie on the gray spectrum in between. A color image

may be represented via the addition of a third dimension, the color channel, which results

in a three-dimensional representation I(x, y, c). Typically, there are three such channels,

one for each of the RGB colors: red, green, and blue. The color intensity at each pixel

location (x, y) is therefore represented as a 3-tuple of 8-bit RGB values, and combinations

of these values represent a nearly universal range of colors.

A color digital camera couples optical components (i.e. lenses and mirrors) and an

analog-to-digital sensor (e.g. CCD or CMOS) to produce digital images. The optical

components direct and focus light collected via the aperture of the camera lens onto the

sensor, which detects and translates the light intensity recorded in each of the frequency

7

ranges corresponding to the red, green, and blue colors at each of its (x, y) pixel locations.

The resolution of the camera denotes the total number (W ×H) of such pixels.

1.4.2 Deterministic vs. Adaptive Algorithms

Computer vision algorithms carry out a series of operations on digital images in order to

transform and/or interpret their contents. These algorithms may be divided into two broad

categories according to the type of strategy they employ. Deterministic algorithms process

input images according to a fixed set of steps to systematically produce consistent output

values without regard to past stimulus. Examples include edge-detection algorithms,

various types of interpolation, blurring, affine transforms, and spectral transforms such as

the Fast Fourier Transform (FFT) and wavelet transforms. These algorithms are typically

fast, predictable, and do not require training to be effective, but they also depend entirely

on the foresight and ingenuity of their authors to solve the problems with which they are

presented. In contrast, adaptive algorithms include parameters which are adjusted in

response to the inputs to which they are exposed, allowing them to internalize the effect of

past stimulus and thereby learn from experience. These algorithms include probabilistic

algorithms such as Markov random fields (MRFs) and conditional random fields (CRFs),

as well as deep learning models.

Deep learning (DL), a specialization within machine learning, refers to a class of

adaptive models characterized by a greater number of learnable parameters than those

of simpler adaptive algorithms. In recent years, many DL models have been shown

to outperform even the most rigorous traditional computer vision approaches at many

tasks. One type of deep neural network in particular, the convolutional neural network

(CNN), has proven especially effective at performing vision tasks such as classifying

images according to their content [23]. For example, the very competitive ImageNet

Challenge has been dominated byCNN techniques every year since 2012, when the image

classification accuracy of the ground-breaking AlexNet CNN model leapt past that of all

other approaches [24].

8

1.5 Research Objective

Given the success of convolutional neural networks (CNNs) models with respect to

other vision tasks, the objective of this thesis was to investigate their suitability for particle

size analysis, with the broader goal of facilitating rapid, inexpensive, and widely available

soil texture assessment. More specifically, the aim was to develop, as a proof of concept,

a deep-learning system capable of providing useful estimates of soil texture based on

images of soil samples captured with an inexpensive digital microscope, using one or more

CNN models trained to correlate learned features of those images to reference texture

values measured using the hydrometer method.

9

Chapter 2. Literature Review

2.1 Image-Based Soil Particle Size Analysis

Image-based methods of soil texture analysis in the literature include spectral methods,

a bag of visual words (BoVW)model based onGabor filter banks, and a smartphone-based

approach using random forest and CNN models.

Spectral methods convert the spatial information of pixel variations in images into the

frequency domain. These approaches are motivated by the prospect that soil particles of

given dimensions will demonstrate repeating spatial patterns of intensity in space, such

that peaks and troughs in the frequency response of soil images will correspond to the

soil’s particle size distribution. Hryciw [25] applied the Fast Fourier Transform (FFT) to

images captured with a CCD video camera suspended above soil samples. Few soil

samples were analyzed and many images (video frames) were needed to analyze each

sample. Breul [26] applied spectral methods to image texture and remarked on correlations

with particle size distribution as between finer or coarser textures, but did not produce

soil texture predictions from the images. Sudarsan et al. [22] measured the power

spectrum of a continuous wavelet transform across frequencies to predict soil particle

sizes belonging to two categories: coarse or fine. Prediction accuracy suffered when soil

samples contained aggregates – clumps of small particles masquerading as larger ones.

Qi [27] used a bag of visual words (BoVW) model and multivariate partial least squares

regression (PLSR) to quantify soil texture from digital microscope images. Visual features

extracted from images included color and image texture. Coefficient of determination (R2)

of predicted sand, silt, and clay portions were 0.77, 0.68, and 0.71 and root mean squared

error (RMSE) were 5.92%, 6.01%, and 2.98%.

Swetha [28] describes a method for predicting soil texture from images captured using

a smartphone camera and analyzed using random forest and CNN models. The reported

10

coefficient of prediction was very high for sand (0.97-0.98) and clay (0.96-0.98) and lower

for silt (0.62-0.75). Only 90 soil samples were included in the study. Surprisingly, color

features reportedly outperformed all other image-extracted features.

2.2 Image Texture of Soil Images

Other studies have analyzed microscope images of soil images with respect to image

texture. Moran [29] describes a broad range of textural image features that appear in

images of soil. Sofou [30] applied image segmentation algorithms to identify and segment

regions of microscope images of soil particles according to their textural image features,

with the aim of enabling the study of soil micromorphology. Marcelino [31] studied texture

in microscope images to characterize soil sample microporosity.

However, it is important to distinguish image texture from soil texture: the latter refers

to particle size distribution, while the former refers to the spatial arrangement of pixel

intensities in an image, irrespective of the physical subject matter depicted. The above-

cited studies were focused not on soil texture, but on image texture (albeit of soil images).

As such, they did not propose methods to assess soil particle size distribution.

2.3 Deep Learning

Deep learning (DL) refers broadly to a class of computational models consisting of

multiple processing layers which may be adapted to learn abstract and often complex

representations of data [32]. Different classes of deep learning (DL) models have been

developed to tackle different types of problems, and many have proven disruptive in

their ability to outperform even the most rigorous traditional approaches. For analysis

of sequential signals such as speech or text, recurrent neural networks (RNNs) are

favoured thanks to their ability to represent and accumulate contextual information over

time [33]. For computer vision tasks, convolutional neural networks (CNNs) have become

the de facto models of choice because they have proven very effective at representing,

transforming, and analyzing the spatial information contained in images [23].

11

Deep learning models have been applied in a wide range of fields, including

natural language processing [34], medical imaging [35], computational chemistry [36],

computational biology [37], audio signal processing [38], image classification [23],

semantic segmentation [39], and analysis of digital microscope images [40], just to name

a few. In agriculture [41], CNN models have been trained to perform tasks such as plant

recognition [42], fruit counting [43], crop classification [44], weed detection [45], and soil-

type mapping from both remote-sensed images [46] and IR spectroscopy data [47].

2.3.1 Convolution Filters

(a) Sobel filter applied to a first region.

(b) And again to a second region.

(c) And so forth to all valid regions.

Figure 2.1: Convolution Example [48]

The basic building block of all CNNs is the

convolution operation, which takes the weighted

sum of adjacent values from each region of

an input tensor to produce output values as a

new tensor. The response of the filter is given

by the magnitude and arrangement of those

output values. For example, a simple horizontal

edge detection operation may be performed by

convoluting a two-dimensional tensor (i.e. image)

with a Sobel filter kernel [49] as shown in

Figure 2.1. In the first frame (a), the values of

a first region of a two-dimensional 5 × 5 tensor

of pixel values (left) are multiplied by those of the

Sobel filter kernel (centre) before being summed

to generate a first output value in an output tensor

(right). The filter kernel is then shifted to the right

by one pixel, and the operation is repeated with

respect to the pixel values of the resulting second

input region (b). By repeating this operation for all

valid regions, the complete response of the filter

over the entire input tensor is computed (c). In this

12

example, the regions deemed valid were only those which allowed for complete overlap

of the filter kernel with the input image, but partially-overlapping regions may also be of

interest at times. To accommodate these cases, input values beyond the original input

boundaries may be padded according to a variety of potential strategies, for example zero-

padding or mirroring. The amount by which the kernel is shifted, known as the stride, may

also be adjusted [50].

2.3.2 Convolutional Neural Networks

Convolutional neural networks (CNNs) are typically composed of hundreds, if not

thousands, of convolution filters, and early CNNs architectures such as the LeNet-5 model

shown in Figure 2.2 are small by the standards of today [51]. Its architecture nonetheless

illustrates the basic structure of CNNs as a series of stages each comprised of one or

more layers of different types.

Figure 2.2: LeNet-5 CNN model for classifying handwritten digits. [51], [52]

An input image or other data is fed to the input layers of the network, and each

layer generates a new representation of the data based on the representation of the

previous layer. Long chains of layers encode meta-representations (i.e. representations

of representations of representations of . . . of representations of data), which come to

describe progressively more complex relationships in the input data as the depth of

13

the network increases. Over time, multi-layered CNNs can be trained to discover and

represent intricate structure in large datasets [32].

The initial feature extraction stage, composed of convolution layers and subsampling

layers, aims to identify features of input images which are indicative of the target output

value. Convolution layers are made up of banks of filter kernels similar to the Sobel filter

kernel in the example presented above, with the important distinction that instead of having

fixed weights at each pixel position, their weights are parameters which can be tuned over

time, enabling the CNN model to learn from training data [50]. Subsampling or pooling

layers may follow convolution layers to reduce the dimensions of the data flowing through

the network and concentrate the learning process on image regions demonstrating the

greatest filter response.

Because the goal of the LeNet-5 network of Figure 2.2 is to correctly classify MNIST

handwritten digits from 0 to 9 [53], its feature extraction layers would likely identify shapes

that visually distinguish the digits from one another. For example, the response of the

convolution filters in the layers of the feature extraction stage would differ significantly

when presented with a curvy ’3’ as compared to a very straight ’1’.

The second stage of the network, identified as the classification stage in Figure 2.2,

takes the output values of the feature extraction stage and combines them using a network

of neurons to generate output values. Both the convolution layers of the feature extraction

stage and the neurons of the fully-connected classification stage are governed by the

values of their parameters. It is the optimization of these parameter values over time that

constitutes the learning part of deep learning.

2.3.3 Parameter Optimization

Training a CNN model refers to the process of tuning the parameter weights of both its

feature extraction layers and its output network layers through repeated exposure of the

model to inputs and their corresponding labeled output values. Discrepancies between the

values predicted by the model and the reference output values are measured according to

a loss function and backpropagated through the network to tune its parameter values [54].

As a result, intricate structures in large data sets may be discovered [32].

14

Stochastic gradient descent (SGD) is the most popular optimization strategy for tuning

model parameters [51]. The approach is heuristic rather than analytical because training

optimal parameter values of complex neural networks is an intractable optimization

problem. A model training strategy based on Stochastic gradient descent (SGD) operates

by computing the gradient of a loss function L(zt, θ) over the training data zt based on the

model parameters θ at the output of the network, then backpropagating the loss by the

chain rule through the network to attribute responsibility for the loss to each of the model’s

nodes. The parameter values θ of the nodes are then iteratively updated by a small amount

which can be tuned via a hyper-parameter εt known as the learning rate [55]:

θ(t) = θ(t−1) − εt
∂L(zt, θ)

∂θ
(2.1)

The process is repeated over the entirety of the training data zt for several epochs t

until the loss function converges to a local minimum. A further hyper-parameter called

momentum may be used to smooth the stochastic gradient and encourage faster training

by averaging out noise in the gradient [56].

Alternatives to the SGD optimization strategy are also an active area of research. Two

such alternatives are an adaptive gradient approach called Adam [57] and a modification

thereof called AdamW [58]. A study critical of these approaches presented evidence that

while their training performance was good, the generalization of the models they produced

was poor – in other words, models were quickly trained to adopt parameter values that

ultimately led to poor inference performance [59]. These concerns have been disputed in

a recent study [60].

2.3.4 Explainability

One advantage of deep learning models over deterministic computer vision algorithms

is that they learn from the data itself: no clever a priori design of filters is required. However,

the seemingly magical ability of deep learning models to discover hidden patterns in data

is also sometimes lamented as a weakness, because it can be difficult or impossible to

understand how or why these models succeed at computer vision tasks when they do [61].

15

The lack of explainability of DL models is of particular concern when contemplating their

use in contexts where health and safety are at risk [62]. In the realm of soil texture

prediction, however, it is reasonable to sacrifice explainability for the sake of accuracy.

2.3.5 Survey of CNN Architectures

Deep learning is now a very active area of research, and new classes of CNNs are

frequently emerging. New architectures typically center around novel network components

designed to offer performance gains in terms of prediction accuracy, memory usage,

and/or processing efficiency. A complete survey of this rapidly evolving field could be

the subject of a thesis in its own right. Presented here is a selection of CNN architectures,

chosen primarily out of convenience, these being available in the PyTorch library which

was used to implement the present research.

LeNet

One of the oldest known CNN architectures, LeNet, was first proposed by Yann LeCun,

widely regarded as one of the fathers of CNNs [54]. Despite being a very simple CNN

by today’s standards, it drew attention for its impressive ability to accurately classify

handwritten digits [51].

Visual Geometry Group (VGG)

After the success of AlexNet at ImageNet 2012 [63], the emphasis of deep learning

research turned to the investigation of ever larger and deeper network architectures.

The VGG-16 (Figure 2.3) and VGG-19 CNN architectures developed by the University

of Oxford’s Visual Geometry Group (VGG) took the brute force approach of adding

more layers, with each model being named for the number of parameterized layers it

included [64]. The VGG-19 model was composed of 16 convolution layers and 3 fully-

connected layers, along with the 5 deterministic MaxPool layers and 1 SoftMax layer.

These large networks offered performance gains over smaller networks at the expense

of longer training times and higher resource requirements.

16

Figure 2.3: VGG-16 CNN model for classifying cloud particles as water or ice. [64], [65]

ResNet

Prior to the introduction of ResNets, the depth of CNNs was limited because of a

problem known as the vanishing gradient: the tendency for gradients back-propagated to

earlier layers of the network during optimization to become smaller and smaller until they

effectively disappeared, thereby making it difficult to train deep networks [66]. ResNets

overcame this problem through the use of residual blocks which included identity shortcut

connections that have the effect of lessening the attenuation of the gradient during back-

propagation [67]. As a result, ResNet architectures enable training of much deeper

networks. Popular variants include the ResNet50 and ResNet101 networks with 50 layers

and 101 layers, respectively.

MobileNetV2

Breakthroughs in CNN design, such as residual blocks, enabled training of deeper and

more expressive networks. But as networks grew deeper, the number of parameters they

used also tended to expand, placing higher demands on computing power and especially

the amount of memory required to train them and apply them to inference tasks. In

response, some researchers have focused on CNN architectures better suited to resource-

17

constrained contexts. The MobileNet and MobileNetV2 architectures introduced inverted

residual structures with shortcut connections between bottleneck layers. The bottleneck

layers reduce the dimensionality of representations at various stages in the network,

thereby substantially reducing the number of model parameters and their associated

memory requirements [68].

EfficientNet

Another class of CNN models that has been attracting attention recently are so-

called EfficientNets [69]. Like the MobileNetV2 architecture that ultimately proved most

successful for this thesis research, EfficientNet CNN designs specifically target resource-

constrained contexts, aiming to balance training and inference performance based on a

processor and memory budget.

Fisher Vector CNNs

Fisher vectors are representations that store the mean and covariance of Gaussian

mixture models (GMMs) of input values. Using these descriptive statistics of input

representations rather than the representations themselves divorces their outputs from

the spatial information contained in their inputs. In other words, whereas the input to a

Fisher vector (FV) is spatially ordered, its output is an orderless representation of the input.

Cimpoi [70] proposed and Andrearczyk [71] refined the use of FV layers in a specialized

FV-CNN model architecture targeted to image texture analysis. Because image texture

refers only to local features containedwithin regions of images, it may be counterproductive

to propagate spatial information through all of the layers of the network. By introducing one

or more Fisher vector layers, the responses of the preceding convolutional layers could be

pooled without regard to their spatial information, such that textures represented anywhere

in an input image would result in the same response. Moreover, these FV pooling layers,

like bottleneck layers, reduced the dimensionality and therefore the memory footprint

of representations, resulting in improved training and test performance while preserving

image texture classification accuracy [70].

18

2.4 Summary

Several techniques for soil particle size analysis are known: sedimentation methods

exploit the reliable relationship between particle size and fluid settlement rate given by

Stokes’ Law; electronic methods infer soil texture from observed patterns in the interaction

of soil particles with electromagnetic radiation recorded at one or more wavelengths;

and image-based methods correlate spatial patterns in light intensity to particle size

distribution. While instances of each one of these techniques have been shown to

effectively measure soil texture under the right conditions, none has proven ideal in all

cases.

In general, a balance must be struck between speed, accuracy, and cost.

Sedimentation methods are accurate but slow, because they require soil samples to be

transported to a suitable laboratory, and costly, because they demand meticulous analysis

by a specialized technician over the course of hours. Electronic methods are much faster,

but they rely on instruments that are either expensive (e.g. laser and IR instruments) or

of limited accuracy (e.g. cameras). Image-based approaches promise to augment the

accuracy of inexpensive cameras using clever computer vision algorithms. A handful of

studies have taken this approach, but none has applied CNNs to a large and varied dataset

of microscope images.

While not a silver bullet, the proposed approach presents several potential advantages

over known methods: digital microscopes cost less than laser diffraction or infrared

spectroscopy instruments, image analysis is much faster than conventional wet chemistry

methods, and CNNs are more adaptive than deterministic computer vision techniques,

allowing their accuracy to improve over time as they learn from labeled soil-sample images.

Moreover, given the rapid pace of ongoing research in deep learning, a CNN-based

framework for prediction of soil texture, however modest, would be well-positioned to

benefit from emerging breakthroughs.

19

Chapter 3. Materials and Methods

3.1 Overview

The overall approach of the DeepSoil project may be summarized in four steps:

1. In partnership with a commercial soil analysis laboratory, A&L Canada Laboratories,

collect a large set of digital microscope images of soil samples and associated

reference soil texture values measured using one or more of the standard methods

(e.g. the hydrometer method).

2. Augment the set of digital images by applying non-destructive image transformations.

3. Train several convolutional neural networks (CNNs) to correlate features of the

augmented soil-sample images (SSIs) to soil texture reference values according to

well-known machine learning practices – segment the dataset into training and test

sets, then iteratively adapt parameters to minimize a chosen loss function.

4. Evaluate the relative performance of the trained CNNs to identify the combinations

of network structure and training hyper-parameters which yield the model with the

greatest ability to predict soil texture from digital microscope images.

3.2 Logical Architecture

The DeepSoil framework may be understood as a logical architecture sitting on top

of a number of networked physical devices, the logical architecture comprising a set of

interrelated components defined by the role each plays in carrying out the overall goal of

assessing soil texture from digital microscope images, and the physical devices being

the particular hardware, software, and virtual (i.e. cloud) components which serve to

20

implement the logical components. Specifications of the latter are provided in Appendix E

whereas this chapter focuses on the former.

Image Acquisition Reference Measurement

Dataset Compilation

Dataset Preprocessing

Model Training Model Testing

Statistical Evaluation

Soil-sample images Particle size distributions

AL2019 Dataset

Augmented Training
Images and PSDs

Augmented Test
Images and PSDs

Trained
CNN

Training Statistics Test Statistics

Figure 3.1: DeepSoil Logical Architecture

The overall logical architecture of the DeepSoil framework, shown in Figure 3.1,

includes seven major components. First, an image acquisition component comprising

a high-resolution digital microscope connected to a computer equipped with microscope

control software. Second, a reference measurement component being a soil laboratory

21

with experience measuring particle size distributions of soil samples using a conventional

method known to be reliable (e.g. hydrometer or pipette), the measurements serving

as target values to be hypothetically replicated on the basis of the images. Third, a

dataset compilation component responsible for combining the acquired images with their

respective reference texture measurements and reliably storing the combination as a

comprehensive dataset in a computer-readable format well-suited to algorithmic analysis.

Fourth, a dataset preprocessing pipeline to load, transform, split, and efficiently feed

the images and metadata of the dataset to the fifth and sixth components, namely the

model training component andmodel testing components, the former being responsible for

heuristically adapting the parameters of a CNNmodel to minimize a loss function evaluated

over a training set, and the latter being used to evaluate the predictive performance of the

trained model over a test set, the training and test sets being mutually exclusive subsets of

the complete dataset. Finally, a statistical evaluation component to collate and compare

performance metrics of multiple training and test runs across a variety of CNN model

architectures in order to identify those best suited to predicting target soil texture values

from digital microscope images. Detailed descriptions of each of these components are

provided in the following sections.

3.3 Image Acquisition System

3.3.1 Requirements

While it is sometimes possible for computer algorithms to recognize features in images

that human observers cannot [72], it is generally imprudent to expect them to do so. For

example, an object which is completely occluded in a scene is no more detectable by an

algorithmic observer than a human one. Conversely, images with obvious features such

as objects with regular geometric shapes of uniform color set against a background of a

visually-distinct color make identification of those objects trivial for humans and computers

alike. Most interesting computer vision tasks – such as identifying crosswalks or vehicles

22

in a street scene, as netizens have become accustomed to doing in the era of Captcha1 –

lie somewhere in between.

The success of such non-trivial computer vision tasks often hinges on the quality of the

images which serve as inputs to their algorithms. In this regard, image quality ought to be

defined instrumentally with respect to a particular task – that is, images should be deemed

to be of high quality to the extent that they render visible or highlight the features of a scene

which provide information essential to that task’s performance [73]. The requirements of

an image acquisition system therefore follow from an inquiry as to which image features

are contextually relevant.

What features of an image of a soil sample ought we reasonably expect to enable

accurate assessment of the distribution of particle sizes present therein? The presumptive

answer is any and all features that enable or enhance the visibility of the particles, such

that their relative frequencymay be assessed. More specifically, the components, software

and procedures of the image acquisition were selected and/or developed with the following

requirements in mind: focus, magnification, resolution, consistency, and reliable labeling.

Focus

Seeing individual particles as individual particles necessarily entails being able to

distinguish among them – or more precisely, to detect the boundaries between them.

Humans identify these boundaries by observing spatial variations in light intensity and

color. More specifically, when looking closely at grains of sand with the naked eye,

we distinguish the grains from one another by observing the nature and degree of

these variations: where light intensity and/or color vary sharply, we see an inter-particle

variation (i.e. a grain-grain boundary) and thereby identify the presence of two separate

particles; however, where these properties vary slowly, we see an intra-particle variation:

a continuous pattern belonging to a single, unbroken grain of sand. The ability to correctly

assess spatial variability of light intensity and color is thus critical to human observation

of soil sample particles. Barring contradictory evidence, we should likewise expect sharp

focus to be of paramount importance in the context of soil particle size distribution analysis
1http://www.captcha.net

23

http://www.captcha.net

by computer vision algorithms. Therefore, a first requirement of the image acquisition

system is that it ought to produce images of the best possible focal quality.

Magnification and Resolution

Concomitantly, to the greatest extent possible, the translation of the optical image into

digital pixel valuesmust be carried out at resolution great enough to render visible the sharp

boundaries of particles at the scale of clay (diameter < 2µm). This requirement suggests

that magnification levels should be set as high as possible and that images should be

captured at the highest possible resolution. However, a countervailing consideration

suggests that magnification levels must not be set too high, lest individual sand particles

– whose diameters may be up to 2mm, some 1000× larger than those of clay particles –

be rendered invisible by virtue of filling the entire image. Just as proverbial forests may

fade into the background when we observe them at the scale of trees, so too might the

boundaries between sand particles fail to be observed when the microscope is zoomed in

too close. This consideration will be revisited in section 5.3.

Consistency of Image Capture Settings

Consistency is also important. Image capture settings and conditions should change

as little as possible across all images, such that only the soil sample under analysis varies

between captures, otherwise the CNN models may learn patterns in the visual artifacts

resulting from varied settings instead of features of the soil samples themselves.

Reliable Cross-Referencing with Soil Samples

Finally, images must be uniquely identified and easily associated with their respective

soil samples and reference measurements.

24

3.3.2 Digital Microscope

Acting as the sensor bridging the physical and digital worlds, the microscope selected

for this project was the Dino-Lite Edge 3.0 AM73915MZT (Figure 3.2), manufactured by AnMo

Electronics Corporation of Hsinchu, Taiwan [74]. Its most important features include its

5.0 megapixel resolution (2560 × 1920), 24-bit colour depth, 220× optical magnification,

built-in LED lighting to illuminate the sample under analysis, adjustable polarization filter,

motorized lens, support for high dynamic range (HDR) imaging, and Universal Serial Bus

(USB) 3.0 connectivity.

Figure 3.2: Dino-Lite Edge 3.0 AM73915MZT Microscope [74]

3.3.3 Microscope Holder

A custom 3D-printed solid plastic holder previously designed, manufactured, and

patented by past and current members of the PASS research team was used to house

the microscope [75]. Its primary functions were to protect and stabilize the microscope

at an adjustable distance from the sample under observation while preserving access

to the microscope’s physical controls. As depicted in Figure 3.3, the microscope holder

secured the microscope within its inner cavity by means of a manually-tightened plastic

screw (not shown) and oriented the microscope upwards toward a flat, abrasion-resistant

glass window on which a soil sample could be placed. The window itself was housed in

a cap at the top of the holder, the cap being attached to the lower portion of the holder

via threaded ridges, such that the focal distance from the lens of the microscope and

the soil sample could be coarsely adjusted by manually rotating the cap. A first opening

25

located along the column of the microscope holder allowed access to the microscope’s

magnification dial, and a second opening at the bottom of the holder (not shown) allowed

access to its USB port for connection, via a USB cable, to a computer running microscope

control software.

Figure 3.3: Image Acquisition System (adapted from [75])

3.3.4 Microscope Control Software

DinoCapture

Initial experiments with the Dino-Lite microscope were performed using the DinoCap-

ture (version 2.0) microscope control software application for the Microsoft Windows OS,

downloaded from the Dino-Lite website. The DinoCapture software provided several

features essential for capturing images, such as the ability to control the camera’s lights

26

and capturing images in various file formats; however, some features were lacking. Most

notably, the DinoCapture software was unable to automatically adjust the focal length of

the microscope’s lens using the built-in motor in order to achieve a consistently crisp focus.

This meant that the focus on the microscope needed to be manually adjusted by its human

operator, requiring both dexterity to rotate the microscope holder cap by minute angles and

discriminating subjective visual analysis of the preview image. In practice, the technician

at the partner laboratory reported repeated difficulties adjusting the focal length to obtain

images of a satisfactory focus.

A second limitation of the DinoCapture software was its inability to automatically

associatemetadata with images as they were captured, increasing the risk of operator error

in mislabeling or failing to label images of soil samples with the correct sample number.

jFocus

Given the paramount importance of obtaining sharp, correctly labeled images for this

project, it was decided that specialized microscope control software should be developed.

On its website, Dino-Lite offers a software development kit (SDK) to facilitate the

development of custom software for its microscopes.2 The SDK includes example source

code in various programming languages for a simple program to control the microscope via

an ActiveX control called DNVideoX. For this project, a custom microscope control software

application, dubbed jFocus, was developed for the Windows 10 OS using the C++ version

of the SDK by modifying the source code of this sample program. First, unnecessary

bells and whistles were trimmed out, thereby reducing the risk of critical settings being

deliberately or inadvertently altered between image captures. The result was a simple

graphical interface with an uncluttered presentation and little opportunity for operator

error. A number of new features were then added on the basis of the aforementioned

requirements, the most important of which were a custom autofocus routine, activation

of the microscope’s HDR imaging capability, and hard-coding of essential settings for

consistency across image captures.
2https://www.dinolite.us/en/sdk

27

https://www.dinolite.us/en/sdk

Autofocus Routine

As discussed in section 3.3.1, one of the critical requirements of the image acquisition

system was to maximize the visibility of the soil sample’s particles by rendering spatial

variations in the image as sharply as possible. In computer vision, the spatial variability of

pixel intensity in an image is known as the image gradient. Mathematically, the gradient

g(x, y) of pixel intensity I(x, y) at each location (x, y) of an image may be calculated by

applying a horizontal Sobel filter to obtain the horizontal gradient ∂I
∂x

and a vertical Sobel

filter to obtain the vertical gradient ∂I
∂y
, then taking the root of the squares of the two filter

responses according to Equation 3.1 [76]:

g(x, y) =

√(
∂I

∂x

)2

+

(
∂I

∂y

)2

(3.1)

When an image is in focus, objects in the image are sharp and the gradient at the

boundaries between them is high. When the image is out of focus, however, light which

ought to be concentrated within a single pixel is also diffused to adjacent pixels, such that

pixel values bleed together and the boundaries between objects soften – i.e. gradients

are reduced – while regions which ought to be of uniform intensity may see their gradient

increase as adjacent colors bleed into them. Taken over the entire image, the average

gradient may not be radically altered by poor focal quality. However, taking the square

of the gradients at each pixel location further emphasizes large gradient values, such

that the mean squared gradient (MSG) of an image of height H and width W , given by

Equation 3.2, may serve as a metric of image focus [77]:

MSG =
1

HW

∑
x,y

g(x, y)2 (3.2)

The sharpest focus is obtained at a precise focal distance between the microscope lens

and the soil sample – the image will appear out of focus if that distance is either too great

or too small. The Dino-Lite SDK’s C++ application programming interface (API) included

functions to control a small motor in the microscope to adjust the focal distance as well as

a SobelCenter function to compute the gradient in a central region of the captured image.

28

With these functions as building blocks, an autofocus routine was added to the jFocus

software, which first set the focal distance to one extreme and computed the MSG, then

varied the focal distance in small increments until the maximal MSG value was reached.

High Dynamic Range (HDR) Photography

Figure 3.4: HDR compositing of
multiple exposures. [78]

A conventional digital image is taken using a

single exposure of the camera’s light sensor array.

In low light conditions, the camera’s aperture size,

exposure time, and/or ISO value (i.e. digital gain [79])

are increased, the cumulative effect of which is to

increase the camera’s exposure value (EV), meaning

simply that the camera becomes more sensitive to

variations in luminosity. However, if light levels

are increased, the sensor of a camera set to a

high EV will quickly become saturated, resulting in

unvariegated white regions within the image. In

such cases, the aperture size, shutter speed, and/or

ISO value must be adjusted to reduce the EV,

restoring the camera’s light sensitivity to a lower level

appropriate for capture of sub-maximum (saturated)

pixel values.

In HDR photography, multiple exposures captured

at different EVs are superimposed, enabling obser-

vation of a wider range of light levels within a

single frame (Figure 3.4) [80]. The Dino-Lite SDK’s

DNVideoX ActiveX control allows such images to be

captured via an Extended Dynamic Range mode

which automatically varies both the quantity of light emitted by the microscope’s light-

emitting diodes (LEDs) and the microscope’s EV. The jFocus software operated exclu-

29

sively in this mode, thereby eliminating any bias that may be introduced by relying on

operator judgment with respect to EV settings.

Other Hard-Coded Settings

Several further design choices were hard-coded into the jFocus software to ensure that

consistent settings would be applied across all soil-sample image captures. The resolution

and colour depth were set to the maximum values supported by the Dino-Lite microscope,

namely 2560 × 1920 pixels in 24-bit colour. Images were saved in the Portable Network

Graphics (PNG) file format and compressed using lossless compression to reduce their

size on disk while preserving all original pixel values as recorded by the microscope.

Essential metadata about the captured images were preserved in the filenames of image

files, including the jFocus software version number, a GMT timestamp indicating the date

and time of capture, and a mandatory user-entered sample identification number uniquely

identifying the soil sample for cross-referencing with a table of reference values measured

using the hydrometer method (see section 3.4).

3.3.5 Image Acquisition Protocol

Together with the microscope, holder, and jFocus software, the image acquisition

system also included a detailed set of instructions explaining the required steps to be taken

during initial setup and when capturing microscope images of soil samples. Important

elements of the protocol included setting the magnification level to the microscope’s

maximum value (~220×), activating the polarization filter to reduce glare from reflective soil

particles which may otherwise cause saturation of the camera sensor [81, ch. 8], securing

the microscope firmly within the holder to avoid motion blur, even spreading of 20 grams

of soil from each sample on the microscope window, and cleaning of the window with a

microfiber cloth between samples. The complete protocol as distributed to the partner

laboratory which carried out the image acquisition process is included as Appendix B for

reference.

30

3.3.6 Verification of Images

The work of capturing digital microscope SSIs and taking hydrometer measurements

(section 3.4) was carried out in several batches by collaborators at the partner laboratory,

A&L Canada, as new soil samples were received and processed fromMay to December of

2019. The batches of PNG images were regularly uploaded to an FTP server located in the

PASS Lab at McGill University’s Macdonald Campus. In total, 829 images and associated

metadata were provided.

A manual review of the received SSIs was performed by visually appreciating the

images and noting any deficiencies with respect to image quality. In particular, it was

observed that, in some cases, the soil sample had not been adequately pressed up against

the microscope holder window prior to image acquisition, such that regions of the affected

images contained air gaps characterized by visible loss of focus. Of the 829 images

received from the partner laboratory, 34 exhibited such deficiencies and were labeled as

suspicious and systematically excluded from consideration, leaving a total of 795 verified

images for testing and training of the DeepSoil CNN models.

Along with images of soil samples, the partner laboratory also sent digital microscope

images of a calibration target with markings in increments of 0.1mm. By measuring

the distance in pixels between photographed markings, it was determined that the pixel

density of the images was 1500pixels/mm, or equivalently, that the horizontal and vertical

dimension of each pixel was 6.67µm. At that resolution, the 2µm clay-silt boundary

corresponded to 3 pixels in diameter, and the 50µm silt-clay boundary was 75 pixels in

diameter. The total area represented in each 2560 × 1920 image was 1.71mm × 1.28mm.

Theoretically, larger sand particles up to the 2mm sand-gravel boundary were therefore

clipped. A proposal to address this issue in future work is addressed in section 5.3.

3.3.7 Organic Matter Content and Four-way Texture

As described in section 1.3.2, organic matter (OM) is normally eliminated from

soil samples when they are pretreated for particle size analysis using sedimentation

methods such as the hydrometer method. However, perhaps for reasons of procedural

31

convenience, pre-treatment of soil samples for OM removal was not performed on

soil samples by the partner laboratory before capturing their images with the digital

microscope, and sometimes substantial amounts of organic matter were present in the

soil samples when the images were captured.

Consequently, it may be useful to consider the textural composition of the soil samples

as a 4-tuple (sand4 silt4 clay4 OM) in addition to the usual (sand3 silt3 clay3) 3-tuple of

values. As a shorthand, the former will be termed four-way texture and the latter three-way

texture in this dissertation. The subscript accompanying the textural component provides

an indication to the number of texture dimensions. The four-way texture values may be

obtained by normalizing the three-way values by the non-OM soil proportion as follows:

sand4 = (1−OM) · sand3 (3.3)

silt4 = (1−OM) · silt3 (3.4)

clay4 = (1−OM) · clay3 (3.5)

3.4 Reference Laboratory Measurements

The partner laboratory, A&L Canada, is a commercial soil laboratory with expertise in

measuring properties of soil samples for its clients across North America. In many cases,

these properties include soil texture values measured using the conventional hydrometer

method as described in section 1.3.2. Along with the images of soil samples taken using

the image acquisition system described above, they provided soil texture values for those

soil samples in a collection of Microsoft Excel spreadsheets, with entries identified using

the same unique soil sample identification numbers that were entered into the jFocus

software when capturing the images.

Component Min Max Median Mean StdDev
sand3 3.6% 98.3% 53.3% 54.9% 21.7%
silt3 0.0% 71.9% 29.1% 28.1% 14.5%
clay3 0.4% 73.4% 14.0% 17.0% 11.2%

Table 3.1: AL2019 Three-way Texture Distribution (795 Samples)

32

The statistical distribution of three-way soil texture values for the 795 soil samples is

shown in Table 3.1. The measured OM proportion was provided by the partner laboratory

for only 624 of the 795 soil samples; measurements were not available for the other 171

samples. Based on the OM data, the four-way texture values for the sand, silt, and clay

components were calculated for those 624 samples using Equations 3.3 to 3.5. The

distribution statistics for the resulting four-way textures are provided in Table 3.2.

Component Min Max Median Mean StdDev
sand4 5.2% 97.5% 55.9% 54.9% 22.1%
silt4 0.0% 57.3% 24.8% 25.5% 14.3%
clay4 0.4% 70.8% 12.8% 15.6% 10.7%
OM 0.1% 56.8% 3.0% 4.0% 4.9%

Table 3.2: AL2019 Four-way Texture Distribution (624 Samples)

Along with reference soil texture measurements, A&L Canada also provided the USDA

soil texture class for each sample in a field named STCLASS (Table 3.3). Loam and sandy

loam soils were most prevalent, while no silt samples and just one sandy clay sample

were included. This distribution of soil textures reflects the range of soil samples received

from the partner laboratory’s clients for analysis in the course of its regular commercial

operations. A visual representation of the distribution across USDA soil texture classes is

shown in the ternary chart of Figure 3.5.

STCLASS Class Name Samples Prevalence
1 Clay 30 3.8%
2 Silt 0 nil
3 Silt Loam 28 3.5%
4 Silty Clay Loam 18 2.3%
5 Clay Loam 66 8.3%
6 Sandy Clay 1 0.1%
7 Sandy Clay Loam 37 4.7%
8 Loam 207 26.0%
9 Sandy Loam 249 31.3%
10 Loamy Sand 113 14.2%
11 Sand 36 4.5%
12 Silty Clay 10 1.3%

Table 3.3: AL2019 Soil Sample Prevalence by USDA Texture Class

33

Figure 3.5: AL2019 Dataset Soil Texture Distribution
(Generated using python-ternary library)

3.5 AL2019 Dataset Compilation

In order to serve as a proper dataset well-suited for algorithmic analysis, the disparate

images and metadata spread across multiple spreadsheets first needed to be assembled

into a comprehensive whole, known as the AL2019 dataset: a verified set of soil-sample

image (SSI) images along with a single index containing soil texture information and all

other available metadata about each one of the images.

34

The dataset compilation component consisted of two Python programs, AL2019Mirror

and AL2019Packager, which together backed up, updated and integrated images and

reference soil texture measurements into the AL2019 dataset on a daily basis as batches

were uploaded from the partner laboratory to the PASS Lab FTP server.

3.5.1 AL2019Mirror

The AL2019Mirror program was designed to perform a nightly backup of any new files

detected on the FTP server to a Simple Storage Service (S3) server hosted by Wasabi in

the cloud. This procedure served not only to safeguard the original images and metadata

from loss but also to increase subsequent processing performance owing to the increased

bandwidth of the S3 server as compared to the FTP server.

The AL2019Mirror program was scheduled for execution late every night on a GitLab

cloud server. While performing the backup, it also annotated the image files stored on the

S3 server with metadata about file modification times and image dimensions for inclusion

in the AL2019 dataset by the AL2019Packager program.

3.5.2 AL2019Packager

The AL2019Packager program also ran nightly, shortly after AL2019Mirror. Taking the

files mirrored to the S3 server as inputs, it would first detect whether any new image file or

Excel spreadsheet uploads had been provided. If new information was detected, the script

then downloaded all of the Excel spreadsheets containing reference measurements for the

soil samples from the S3 server, loaded them into memory, and merged them into a single

Pandas table of soil metadata, using the unique soil sample identification numbers (IDs)

as keys for the entries. Next, the soil sample entries in the table were cross-referenced

with their associated image files. This was facilitated by the jFocus microscope control

software, designed to include the unique IDs of soil samples in their respective image

filenames upon capture (see section 3.3.4).

Having identified the metadata (reference measurements) for each image file,

AL2019Packager then re-indexed the Pandas table by image filename, converted it to a

35

Python dictionary, serialized it in YAML format, and saved the result as the AL2019 index

file: a singular repository of all of the metadata in respect of the soil-sample images (SSIs),

including the soil texture reference values measured at the partner laboratory using the

hydrometer method. A sample entry from the index is included in Appendix D for reference.

Together, the AL2019 index YAML file and the lossless, full-resolution (2560 × 1920)

PNG soil-sample images constituted the complete AL2019 dataset.

3.6 Dataset Preprocessing

3.6.1 Image Dataset Augmentation

Image transformations may be used to augment an image dataset by introducing,

alongside its original images, variations of those images which, while differing visually

from the originals, remain true to their purported content. In so doing, irrelevant features

of images to which machine learning (ML) models such as CNNs might otherwise attach

undue importance may be effectively averaged out and thus correctly ignored.

The range of image transformations suitable to be applied as augmentations depends

on the computer vision problem being tackled. Consider, for example, a CNN being trained

to distinguish images of cats from those of dogs. Human observers of such images would

begin by focusing their attention on (1) the actual cats and dogs shown in the captured

scenes of those images, and (2) the particular visual features of those cat and dog regions

attributable to the morphology of the animals. A CNN model, however, has neither an

innate ability to distinguish animal from non-animal regions of images, nor the capacity to

recognize which features of those regions are morphological in nature: it sees only pixels.

As such, absent an augmentation strategy designed to direct the attention of the CNN to

relevant regions and features, the CNN model may latch on to irrelevant features of the

cat and dog images when classifying them, resulting in poor inference performance. For

example, if, for whatever reason, all (or a significant majority) of the cat images were set

against a blue background whilst the dog images were set against a red background, a

quite effective strategy for classification of the images would be to entirely ignore the cat

36

or dog depicted therein and to focus instead on the color of the background – the result

being, of course, that a CNN trained on such an unaugmented dataset may struggle to

accurately classify images of cats unexpectedly set against red backgrounds or dogs set

against blue backgrounds.

To combat such pitfalls, a number of different strategies could be considered. Ideally,

care would have been taken when first capturing the images, such that factors irrelevant to

the task would be steady in all cases (e.g. setting all cats and dogs against a same-colored

background). Alternatively, however, any irrelevant features could instead be varied with a

sufficient degree of randomness so as to be ignored or at least heavily discounted by the

trained CNN (e.g. by randomly varying the background color).

It is the latter approach that an augmentation strategy via image transformations

attempts to mimic ex post facto. Where care either was not or could not be taken to

capture images devoid of irrelevant correlations between features and target output values,

applying image transformations to randomly alter those features prior to feeding them to

a ML model-in-training has the effect of systematically attenuating those correlations and

diminishing their attendant predictive value. Image features contain information only to the

extent that they consistently correlate with target output values; insofar as those features

are uncorrelated to target output values, they will come to be ignored by ML models.

Augmentation may thus be understood as a manner of guiding the learning process by

suppressing the salience of irrelevant features present in a dataset by artificially varying

those features at random during training.

In general, any and all irrelevant correlations between images and their associated

target values which are present in the training set and which can not or should not be

expected to be present in the test set are ripe for neutralization via augmentation. However,

one must also not go too far when devising an augmentation strategy: care must be taken

to avoid altering the images in such a way that their contents are no longer consistent with

their associated target output values. For example, an image transformation consisting

of artificially overlaying cat eyes on dog images is not neutral with respect to the correct

target class, because such a transformation diminishes the dogness and increases the

catness of the pictured animal.

37

3.6.2 Deterministic vs. Stochastic Image Transformations

Dataset augmentation for the DeepSoil framework was performed using the

Albumentations image transformation library. Some of the transformations included in

the library generate output images from input images in a deterministic fashion, such

that any two executions of the transformation on the same input image would necessarily

result in the same output image. For example, the SmallestMaxSize(size) transformation

is deterministic: it takes an input image with height-width-channel (HWC) dimensions

h1×w1× c1 and generates an output image with the same proportions as the input image,

but resized such that the greater of its height h2 and width w2 is equal to size. As long as

the input image does not change, the same output image will be generated every time. For

such transformations, given an invariant input image, the output image can be computed

just once and the result saved in a cache, such that any subsequent request to transform

the same input image using the same transformation can be satisfied simply by returning

the cached image, saving the processing time that would have been required to perform

the transformation anew.

Other transformations, however, generate output images stochastically, i.e. the output

image depends not only on the input image but also on the state of the program’s pseudo-

random number generator [82, ch. 4]. For example, the RandomCrop(h,w) transformation

generates an output image by cropping a randomly-selected region of dimensions h × w

from an input image. Subsequent requests to transform the same input image may result

in different output images, such that caching the output image of the first request and

returning it in response to subsequent requests would yield different results than actually

performing renewed executions of the transformation.

3.6.3 Transformation Pipelines

A series of transformations T1, T2, . . . , Tn to be performed on an input image may be

defined as a transformation pipeline. The first transformation T1 takes the original image

as its input, and each subsequent T2 takes the output of the previous transformation (or

pipeline stage) until the final transformation Tn generates the pipeline’s final output image.

38

If all of the transformations T1 . . . Tn are deterministic, then the entire transformation

pipeline is also deterministic; that is, the pipeline’s final output image will be the same

for any given pipeline input image, irrespective of the random number generator state. In

such case, the output image of the complete transformation pipeline can be computed in

advance and cached. On the other hand, if any transformation is non-deterministic, then

only the transformation steps preceding the first of the non-deterministic transformations

could be cached.

3.6.4 Augmentation of AL2019 Images

The AL2019 image transformation pipeline consisted of transforming the input images

by resizing them, then augmenting them via random cropping, rotation, and flipping.

Random cropping refers to an image transformation which outputs an image of smaller

dimensions than its input image by randomly selecting a region of the input image. This

augmentation increases the variability of the data presented to themodel in training relative

to using a fixed region of the image.

After cropping, images were further augmented by randomly rotating the images by

either 90, 180, or 270 degrees, or not at all, at random, with equal probability, and then

flipping them horizontally with a probability of 50%. The result was that for every cropped

region of every image, 32 possible representations could be generated and presented to

models during training and testing.

3.6.5 Random Splitting into Training and Test Sets

The final responsibility of the dataset preprocessing component was to divide the

augmented images and their associated reference soil texture values into (1) a training

set to be passed to the model training component and (2) a test set to be passed to

the model testing component to evaluate the performance of the trained model. Splits

were performed by random sampling after seeding the random number with a seed value.

By explicitly setting the seed value, the random splits could be reproduced when testing

different models, such that all of the models could use the same training and test sets,

39

enabling fair comparison of their performance. A splits parameter defined in the presets

file (Appendix H) determined the number of sequential train-test runs to execute for a given

model, allowing the same model to be trained and tested using multiple combinations of

training and test data. The traintestratio parameter, also configurable via the presets

file or the command-line, was set to 0.8 for all of the tests described in this thesis, meaning

that 80% (636) of the 795 images of the AL2019 dataset were used to train the CNN

model, and 20% (159) were used for testing, the particular allocation of images to either

the training set or the test set being dependent on the random seed set for that split.

3.7 Model Training

3.7.1 GPU Computing

Because convolutions are so common in computer graphics algorithms, dedicated

hardware specialized in accelerating these operations has been developed in the form

of graphics processing units (GPUs). GPUs are typically not clocked as fast as their

central processing unit (CPU) counterparts, so they underperform when processing serial

logic with a high degree of branching. However, GPUs often have hundreds of cores as

compared with CPUs, which typically have no more than eight. The result is that GPUs

excel at performing large numbers of simple operations, such as convolutions, in parallel.

In many cases, the parallel execution of operations can yield dramatic improvements in

algorithmic performance. For example, whereas the edge-detection algorithm presented in

section 2.3.1 computed the Sobel filter response for each region in series, a more efficient

algorithm would compute the filter response for multiple or even all of the regions at the

same time. A typical CPU could perform a handful of such operations in parallel, but a

GPU could perform hundreds, thanks to its greater number of cores.

Given the heavy reliance of CNNs on parallel execution of convolution operations, it is

often an order of magnitude faster to train CNNs using GPUs than using CPUs. For this

reason, model training and testing for the DeepSoil project was primarily carried out on a

Linux-based computer with a dedicated GPU (Appendix E.1.2), while simpler tests were

40

sometimes run on the CPU of the development computer (Appendix E.1.3) for the sake of

convenience.

3.7.2 PyTorch

The ability to selectively run tests on CPU or GPUwas greatly facilitated by the selection

of the PyTorch framework as the backbone of the dataset augmentation, model training,

and model testing components of this project. PyTorch is a powerful numerical computing

library for Python designed for working with multidimensional tensor data such as batches

of images, and it enables virtually identical Python code to be executed interchangeably

on CPU or GPU. Prototyping of simple CNNs may therefore take place on a CPU-only

machine, reserving GPU resources for the training and testing of more complex CNN

models with a larger number of parameters. Compared with CPU-only libraries like

NumPy, performance gains can be significant [83].

The PyTorch library includes implementations of many CNN models in its

torch.models submodule. These are typically configured to tackle classification prob-

lems, where data are assigned to one of several classes and the output values are

probabilities corresponding to each class. However, soil texture prediction is not a clas-

sification problem with discrete-valued prediction outputs, but a regression problem with

continuous-valued outputs, namely the predicted sand, silt, and clay proportions. Never-

theless, the same networks designed to perform classification of samples can be used for

regression, the key difference lying not in how the values of the outputs are computed,

but in how they are interpreted: rather than treating the models’ output values as class

probability predictions, the output values may be interpreted as direct estimates of the soil

separate proportions.

3.7.3 Regression Loss Functions

When training a CNN, the interpretation given to its outputs is reflected in the loss

function selected to calculate the prediction error over a set of training samples –

i.e. images and reference soil texture measurements.

41

Figure 3.6: Soil Texture Space in Three Dimensions

Distance Equations

Because soil texture values have multiple dimensions, the error of a predicted soil

texture (sandp siltp clayp) with respect to a target soil texture (sandt siltt clayt) is a measure

of the distance between those values in a three-dimensional space (Figure 3.6). Standard

distance measures amount to using a different value of p to calculate the p-norm of the

distances xi in each of n dimensions according to Equation 3.6 [84]:

||x||p =

(
n∑

i=1

|xi|p
) 1

p

(3.6)

Manhattan Distance When p = 1, the distance is called the `1 norm, and it is computed

by summing the absolute differences between the pairs of values in each dimension [84].

Owing to its grid-like appearance in space, the `1 norm is also known as Manhattan

distance. The three-way soil texture `1 error between a predicted value (sandp siltp clayp)

and a target value (sandt siltt clayt) is thus given by Equation 3.7:

||error ||1 = |sandp − sandt|+ |siltp − siltt|+ |clayp − clayt| (3.7)

42

Euclidean Distance When p = 2, the distance is known as the `2 norm or Euclidean

distance, and it is computed using Pythagoras’ familiar theorem in n dimensions [84]. For

three-way soil texture, the `2 norm is given by Equation 3.8:

||error ||2 =
√

(sandp − sandt)2 + (siltp − siltt)2 + (clayp − clayt)2 (3.8)

Loss Functions

A loss function measures the aggregate error of a set of predictions by combining

the errors ei calculated as the pairwise `1 or `2 distances between predictions and target

values. The loss functions most commonly used to train regression models are mean

absolute error (MAE) and mean-squared error (MSE).

Mean Absolute Error The MAE is obtained by taking the mean of the absolute values

of the error quantities according to Equation 3.9 [85]:

MAE =
1

n

n∑
i

|ei| (3.9)

Mean Squared Error The MSE is the mean of the sum of squares of the error quantities

according to Equation 3.10 [85]:

MSE =
1

n

n∑
i

e2i (3.10)

Selected Loss Function

The DeepSoil models were trained using a loss function which consisted of taking

the MAE of the `2 norm of the predicted soil texture tuples with respect to their target

values. The `2 norm equates to the straight-line distance between predicted and target soil

textures in the ternary soil texture plane (Figure 3.6). Selection of theMAE to aggregate the

prediction errors was motivated by the desire to emphasize mean prediction accuracy. A

MSE aggregation approach would have penalized large errors more strongly, encouraging

43

more conservative predictions. Experimentation with MSE or root-mean-squared error

(RMSE) may be pursued in future work.

3.7.4 Types of Models Trained and Tested

LeNet

The first type of model that was trained and tested on the AL2019 dataset was the LeNet

convolutional neural network (CNN). Its small number of parameters and consequently

negligible memory footprint enabled rapid training, making it ideal for early testing of the

infrastructure of the DeepSoil framework. Ultimately, however, its limited expressive power

led to prediction performance lagging that of deeper and more modern CNN architectures.

FFT-Based Spectral Models

Along with CNN models, several attempts were made to develop simpler custom

models that might be trained more efficiently. The most successful among these

was predicated on a simple approach inspired by the wavelet-based technique of

Sudarsan [22]: a first stage would perform a one-dimensional Fast Fourier Transform (FFT)

on each of the rows of the image to extract their frequency content; a second stage would

average the frequency response across all the rows, yielding a single intermediate value

for each frequency; and finally, a conventional linear regression output stage would learn

to map those frequency responses to target soil texture values. Unlike the other models

tested for this research, these FFT-based models were not technically CNNs, because

they extracted image features using conventional, deterministic FFTs layers rather than

adaptive convolutional layers. Only the output stages contained parameters which could

be trained to correlate frequency responses with soil texture values.

Several variations of this approach were tried, including (1) converting the image to

grayscale prior to the FFT stage, (2) performing the FFT on the rows of each color channel

separately and averaging the frequency responses across channels as well as rows, and

(3) employing intermediate non-linear activation elements (i.e. ReLUs [24]) in the final

regression stage. Owing to their relative simplicity, these FFT-based networks could

44

be trained quickly, and many did generalize sufficiently to predict soil PSDs with some

accuracy, though none could achieve inference performance on par with the ResNet or

MobileNetV2 models.

ResNet

The most famous ResNet CNN models are the deepest ones with a large number of

layers, such as the ResNet50 and ResNet101 networks with 50 layers and 101 layers,

respectively. But large networks such as these take a very long time to train and optimize

unless you have access to significant computing resources. As a result, for the DeepSoil

project, only the ResNet18 andResNet50 variants were tested, and the latter only sparingly

because even it was resource intensive, requiring large amounts of memory in particular.

The computer used for this thesis research was limited to 4GB of GPU memory, so image

batch sizes needed to be reduced when training ResNet50models, leading to substantially

slower training. Training times were probably insufficient in the ResNet50 experiments

that were run, because the few ResNet50 models that were trained actually displayed

inferior soil texture prediction performance relative to their smaller and more rapidly trained

ResNet18 counterparts.

The long training time of ResNet50 and larger networks was exacerbated by the need

to experiment with hyper-parameter values to obtain the best results. If ideal hyper-

parameter values were known at the outset, the opportunity cost of delaying experiments

in respect of other networks while waiting for the training of large-but-promising models to

complete could have been justified. However, this was not the case – experience indicated

that setting the learning rate either too high or too low, for example, could result in very

slow convergence and ultimately poor prediction performance. In order to experimentally

determine effective hyper-parameter values and other variables such as cropped input

image dimensions, a quicker training turnover was demanded. ResNet-related research

efforts for the DeepSoil project were therefore directed primarily at the smaller ResNet18

models.

45

MobileNetV2

The need to take resource constraints into account prompted a search for CNN

architectures well-suited to less-than-state-of-the-art GPUs like that available for this

project (Appendix E.1.2). Because the MobileNetV2 was developed specifically for

resource constrained environments (as discussed previously in section 2.3.5), it was

possible to train, test, and tune hyper-parameters for several MobileNetV2 models. These

tweaks ultimately yielded the DeepSoil models with the highest soil texture prediction

accuracy. A statistical analysis of their performance is presented in Chapter 4.

3.7.5 Training Algorithm

Initialization

All of the parameters governing each training run were set in a global configuration file

from which sets of parameters could be selected as presets (Appendix H). Initialization

began by loading the set of parameters from the presets file. The netclass parameter

defined the type of PyTorch model to be instantiated, e.g. LeNet, ResNet18, MobileNetV2,

or one of many custom architectures such as those based on FFTs. The parameters of

the CNN model were initialized at random, and then training proceeded in a loop of steps:

1. Load a batch of size batchsize of augmented images and reference soil texture

values from the training set.

2. Compute the output values (predicted texture) using the model.

3. Compute the loss from the output values and reference values.

4. Backpropagate the loss from the outputs to the inputs of the model.

5. Update the parameter values using the SGD optimizer.

Parameter Optimization

The loss backpropagation (4) and parameter update (5) steps were performed with the

help of one of the most powerful features of PyTorch, autograd, which enables automatic

computation of the gradients through a network [86].

46

The SGD optimizer’s learning rate and momentum hyper-parameters were configured

via the learningrate and momentum parameters of the presets file (Appendix H). Trials

using two alternatives to the SGD optimizer, Adam [57] and AdamW [58], were abandoned

after early experiments showed no improvement over SGD.

Termination

In some machine learning contexts, inputs to the model-in-training are the same in

every epoch of training, such that the only variables are the parameters of the model itself.

In such cases, after several iterations of optimization at a low learning rate, the outputs and

loss will tend to stabilize. Convergence is established when the loss ceases to decline,

and training can be programmatically terminated.

However, this often was not so in the DeepSoil framework. To avoid overfitting, image

inputs to the CNN models were nondeterministically augmented via random cropping and

rotation, and therefore the outputs computed by the model were also subject to a degree

of non-determinism. This meant that while it tended to decline over time, the regression

loss would never fully settle into a local minimum. Even when the learning rate had been

scheduled to decline to a very low value, the output values continued to bounce around,

sometimes dipping to new lows, other times jumping a little higher. This complicated the

task of determining when to terminate training.

Three termination strategies were employed: first, setting a maximum number

of training epochs; second, setting a maximum training time; and third, detecting

convergence by measuring the amount of variability in the loss. The last strategy ultimately

proved unfruitful, as variations in the loss often exceeded the very gradual loss reduction

that trended almost imperceptibly downward over the course of several epochs. Like a

surfer riding the waves as the tide goes out, the peaks and troughs rendered the general

decline imperceptible. It may have been possible to overcome this difficulty by computing

moving averages of the loss, but the potential benefit of implementing this was outweighed

by the required investment in time and energy. Instead, it was decided to fall back on the

47

simpler strategies of terminating training either after a fixed number of epochs or a fixed

amount of time.3

3.8 Model Testing

The model testing component loaded the CNN model trained by the model training

component and used it to predict soil texture values for each of the images of the test

set generated by the dataset preprocessing component. In order to provide the model

with input tensors consistent with those of the training data, the same types of image

transformations that were performed on the training set images were again performed

on the test set images. For example, where a model had been trained on images which

had been resized by a certain factor, then cropped and rotated at random, those same

operations were performed on the images of the test set before feeding them to the model

as inputs.

3.8.1 20-Sample Average

However, one important difference existed between the training and test phases.

Whereas, in training, the CNN model would predict output values on the basis of a single

sampled (cropped) region from each input image, in testing the model was allowed to see

20 sampled regions from the image and make its final prediction using the mean of the

output predictions over the 20 inputs. It was hoped and expected that this strategy would

increase prediction accuracy by averaging out random noise in the outputs generated, on

the assumption that at least some of the error in any one prediction would be independent

from that in one or more of the others, such that the mean prediction might tend to average

out the noise, thus highlighting the prediction ’signal’. As will be discussed in section 4.3.2,

there are indications that this expectation was not without merit.
3For convenience, an additional user-initiated termination feature was also added, whereby training could

be prematurely terminated by pressing the Ctrl-C keys to send the model training program a SIGINT signal
which would be received as a KeyboardInterrupt exception in Python.

48

3.9 Statistical Evaluation

Beyond the development of the image acquisition, dataset compilation, preprocessing,

and model training and testing components described above, a final aspiration of the

DeepSoil project was to identify which CNNs model architectures demonstrated the most

promise at effective prediction of soil texture from digital microscope SSIs. This motivated

the development of one last component: a statistical evaluation system which could be

used to compare the training and testing performance of hundreds of combinations of

models and hyper-parameter values.

3.9.1 Implementation

The statistical evaluation component was designed as a combination of a stats

Python module and a Jupyter notebook – a graphical interactive Python shell allowing

for visualization of the information gathered. The model training and testing components

were adapted to write statistically-relevant information to disk in YAML files for each train-

test run. A simple Python script was then written to merge the data generated by all of

the separate train-test runs into a single database and save it as a YAML file. The Jupyter

notebook then loaded the file containing all of the gathered information regarding the train-

test runs and evaluated their relative performance on the basis of statistical metrics.

3.9.2 Metrics

Three statistical metrics were computed to assess the prediction performance of

the tested models: mean prediction error, median prediction error, and coefficient of

determination.

Mean Prediction Error The mean distance between predicted and reference soil texture

values for each of the sand, silt, and clay components, as well as the `2 norm of the three

distance components.

49

Median Prediction Error The median distance between predicted and reference soil

texture values for each of the sand, silt, and clay components, as well as the `2 norm of

the three distance components.

Coefficient of Determination The coefficient of determination (R2) of a model quantifies

the degree to which it is able to account for the variance in a set of target values yi for

i ∈ [1, n]. The variance of the values y is a measure of how dispersed they are about their

mean ȳ according to Equation 3.11 [87]:

σ2 =
1

n

n∑
i

(yi − ȳ)2 (3.11)

The residuals of the model are the pairwise distances between the model’s predictions

ŷ and the reference values y. The coefficient of determination measures the proportional

decrease in the sum of square residuals versus the sum of square differences between

the reference values and their mean according to Equation 3.12 [87]:

R2 = 1− Σi(yi − ŷi)2

Σi(yi − ȳ)
(3.12)

TheR2 value therefore measures the proportional decrease in the sum of square errors

which result from using the model instead of the mean to predict output values. Put simply,

the R2 of a model represents its explanatory power.

50

Chapter 4. Results and Discussion

4.1 Model Performance Comparison

To compare model performance and identify which one was most effective, the

collected statistics about the train-test runs were grouped according to the texture type

(three-way or four-way) and sorted in descending order by mean `2 prediction error

computed over 10 splits of the AL2019 dataset. Results were then printed out and

visualized using the statistical evaluation component’s interactive Jupyter notebook. A

summary of the results is presented in Table 4.1.

Model
Test Error (`2) Training Error (`2)
Mean Median µ (last 5 epochs)

al2019_threeway_mobilenetv2_300_300 0.132 0.108 0.095
al2019_threeway_mobilenetv2_300_280 0.135 0.108 0.103
al2019_threeway_mobilenetv2remainder_300_300 0.139 0.111 0.107
al2019_threeway_mobilenetv2_600_300 0.140 0.115 0.142
al2019_threeway_mobilenetv2_400_400 0.145 0.117 0.117
al2019_threeway_resnet18_600_300 0.156 0.130 0.166
al2019_threeway_resnet18_600_400 0.157 0.127 0.161

Table 4.1: Top 7 three-way AL2019 soil texture models

The al2019_threeway_mobilenetv2_300_300 model was the best-performing model

for three-way texture prediction, exhibiting the lowest mean prediction error. Details of the

training error, mean test error, and median test error for this model will be further discussed

below.

51

4.2 Training Statistics

Figure 4.1: Training Loss vs. Time

Figure 4.1 summarizes the learning process undergone by each of the top 7 three-way

texture models. The value of the loss function, averaged over each epoch, is plotted versus

time trained using the GPU of the model training and testing computer (Appendix E.1.2).

The five MobileNetV2 models were trained for 7200 seconds (2 hours) for each of 10

random splits of the AL2019 dataset, while the two ResNet18 models were trained for

only 3600 seconds (1 hour) and 5 splits each. The reason for the discrepancy in training

time was that efforts were concentrated on the MobileNetV2 models, which – as can be

seen in the graph – exhibited better learning performance within the first 3600 seconds

of training. Training time appropriate for each model was assessed based on empirical

observation of the flattening of the training curve in plots such as that shown. Notably, the

curve of the al2019_threeway_mobilenetv2_400_400 had not completely flattened at the

7200-second mark, suggesting that additional training may have further reduced training

52

loss and potential test prediction error. Because this model lagged others at the 7200-

second mark, resources were not dedicated to this inquiry for this thesis, though it may be

worth pursuing in future work.

4.3 Test Statistics

4.3.1 Absolute Prediction Error

Table 4.2 shows absolute prediction error statistics for the best-performing of the

DeepSoil models, al2019_threeway_mobilenetv2_300_300, over 10 splits of the AL2019

dataset, where each split was performed at random after seeding the random number

generator with the seed value indicated in the first column. The mean (µ) and standard

deviation (σ) of these errors over the 10 splits is also shown, giving a better view of the

robustness of the model with respect to different training and test sets. The indicated

quantities are unitless, since they represent the deviation of the predicted sand, silt, and

clay proportions from those measured using the hydrometer method in absolute terms

(i.e. in kilograms per kilogram).

Seed Mean Absolute Error Median Absolute Error R2

`2 sand3 silt3 clay3 `2 sand3 silt3 clay3 `2 sand3 silt3 clay3

0 0.124 0.089 0.057 0.048 0.095 0.066 0.040 0.036 0.653 0.652 0.730 0.448
1 0.139 0.098 0.065 0.055 0.110 0.067 0.049 0.037 0.597 0.610 0.655 0.441
2 0.130 0.087 0.057 0.059 0.105 0.067 0.039 0.046 0.681 0.725 0.686 0.542
3 0.133 0.093 0.068 0.046 0.118 0.081 0.059 0.038 0.672 0.689 0.647 0.652
4 0.130 0.092 0.063 0.049 0.097 0.064 0.048 0.033 0.672 0.685 0.677 0.616
5 0.133 0.092 0.062 0.054 0.105 0.070 0.047 0.034 0.649 0.687 0.620 0.567
6 0.137 0.096 0.069 0.050 0.124 0.083 0.056 0.034 0.653 0.672 0.635 0.609
7 0.132 0.091 0.058 0.058 0.107 0.069 0.046 0.041 0.666 0.685 0.723 0.517
8 0.127 0.089 0.060 0.050 0.107 0.068 0.045 0.039 0.682 0.704 0.691 0.589
9 0.139 0.094 0.065 0.058 0.116 0.074 0.050 0.038 0.676 0.712 0.687 0.548

µ 0.132 0.092 0.062 0.053 0.108 0.071 0.048 0.038 0.660 0.682 0.675 0.553
σ 0.005 0.003 0.004 0.004 0.009 0.006 0.006 0.004 0.024 0.031 0.034 0.066

Table 4.2: Absolute error of al2019_threeway_mobilenetv2_300_300
predictions for 10 splits of the AL2019 dataset

53

Mean Prediction Error As shown in Table 4.2, the mean `2 norm of prediction error for

the best DeepSoil model was 0.132. The mean of the prediction errors for individual texture

components were 0.092 for sand, 0.062 for silt, and 0.053 for clay.

Median Prediction Error In the median case, prediction errors were lower, with a mean

`2 norm error of 0.108 and individual errors of 0.071 for sand, 0.048 for silt, and 0.038 for clay.

The low median error relative to median error may be explained in part by the selection of

the MAE loss function, which, relative to the MSE loss function, de-emphasizes outliers.

Training the model using MSE instead of MAE loss may have resulted in reduced mean

prediction error at the expense of greater median prediction error.

Coefficient of Determination The final columns of Table 4.2 indicate the coefficient

of determination (R2) statistics for the al2019_threeway_mobilenetv2_300_300 model for

each one of the 10 splits of the AL2019 dataset. On average, R2 was 0.660 for the `2 norm,

0.682 for sand, 0.675 for silt, and 0.553 for clay.

Figure 4.2: Predicted vs. Measured Values (Seed = 0)

The significance of the coefficient of determination (R2) metric may be visually perceived

in Figure 4.2, which shows the predicted soil separate proportions plotted with respect

to their corresponding reference values for the first split of the AL2019 dataset (i.e. with

Seed = 0). Recall that, according to Equation 3.12, the coefficient of determination is equal

to one minus the ratio between the sum of squared residuals (model prediction errors) and

54

the sum of squared deviations of the measured values from their mean. In the subplots

of Figure 4.2, the diagonal green lines represent hypothetical perfect predictions, and the

residuals are equal to the vertical distances separating each one of the blue sample points

from those diagonals. The mean of the measured values is indicated as a vertical line in

each subplot, and the deviations are the horizontal distances separating the sample points

from that line. In other words, the coefficient of determination expresses the degree to

which sample points are nearer (in the vertical direction) to the green diagonal than they

are (in the horizontal direction) to their mean (red line).

More precisely, the coefficient of determination quantitatively summarizes the degree

to which model predictions explain the variance of the measured values. Where sample

points are generally nearer to the diagonal of perfect prediction than they are to the mean

measured value, the effective variance which remains in light of the model’s predictions is

reduced, and the coefficient of determination is accordingly high (e.g the silt subplot with

R2 = 0.73). Conversely, where model predictions offer a lesser decline in variance, the

coefficient of determination is lower (e.g. the clay subplot with R2 = 0.45).

4.3.2 Generalization

The correspondence between the training loss achieved by fitting the model to the

training data and the subsequent test loss when making predictions using the test data

indicates howwell the training strategy was able to generalize. The last column of Table 4.1

shows the mean training loss, taken over the last 5 epochs of training to reduce noise.

As one would expect, the training error for most of themodels is lower than the test error

because the model had the benefit of knowing the training reference values and adapting

its parameters to make accurate predictions, whereas it could not make any adjustments

on the basis of the test data.

However, for some of the models – notably, both ResNet18 models – the mean test

error was actually lower than the training error. This might be explained by the use of multi-

sample averages whenmaking predictions during testing versus single-sample predictions

in training. That is, whereas predictions were based on a single cropped region sampled

from each image during training, each final prediction in testing was formed by taking

55

the mean of the model outputs over 20 cropped regions of the input image. One possible

explanation for the decrease in test error relative to training error may be that the 20-region

mean prediction strategy succeeded in detecting a greater number of relevant features

than the individual single-region predictions used to train the model. In future research,

a statistical evaluation could be performed to evaluate the degree to which the accuracy

of the 20-sample mean prediction surpassed that of each one of the 20 single-sample

predictions on which it was based.

4.3.3 Relative Prediction Performance

The prediction error metrics above describe the accuracy of the DeepSoil models in

absolute terms, but the real value of these models ought to be contemplated on a relative

basis. Consider that, absent any soil-sample image data whatsoever, a much simpler

baseline model could make soil texture predictions for the samples of the test set using

only the soil texture values of the training set as training data. For example, this baseline

model could simply compute themean texture value over the training set and use that mean

value as its prediction for all of the soil samples of the test set. How would the absolute

prediction performance of such a model compare to that of the DeepSoil models?

Seed Prediction Mean Absolute Error Median Absolute Error
sand3 silt3 clay3 `2 sand3 silt3 clay3 `2 sand3 silt3 clay3

0 0.538 0.286 0.175 0.242 0.176 0.131 0.074 0.242 0.171 0.134 0.068
1 0.546 0.281 0.173 0.255 0.188 0.129 0.086 0.264 0.190 0.128 0.067
2 0.557 0.277 0.166 0.256 0.190 0.115 0.099 0.245 0.190 0.115 0.089
3 0.549 0.280 0.172 0.235 0.170 0.121 0.081 0.217 0.153 0.116 0.068
4 0.548 0.283 0.170 0.259 0.194 0.125 0.090 0.250 0.185 0.123 0.079
5 0.552 0.280 0.168 0.244 0.179 0.114 0.091 0.236 0.175 0.106 0.068
6 0.548 0.280 0.172 0.247 0.183 0.122 0.084 0.231 0.162 0.116 0.078
7 0.552 0.280 0.168 0.251 0.185 0.120 0.089 0.265 0.189 0.120 0.075
8 0.543 0.286 0.171 0.252 0.188 0.123 0.088 0.252 0.186 0.125 0.076
9 0.556 0.277 0.166 0.273 0.201 0.132 0.094 0.271 0.198 0.134 0.072

µ 0.549 0.281 0.170 0.252 0.185 0.123 0.088 0.247 0.180 0.122 0.074
σ 0.005 0.003 0.003 0.010 0.009 0.006 0.007 0.016 0.013 0.008 0.007

Table 4.3: Baseline error for 10 splits of AL2019 dataset

56

In Table 4.3, the prediction value which results from taking the mean of the training set

is given in a first set of columns, followed by the mean and median absolute prediction

errors that result from using this prediction over the test set. The experiment was repeated

over the same 10 splits of the AL2019 dataset as for the results of the best known DeepSoil

model, al2019_threeway_mobilenetv2_300_300. The mean `2 error was 0.252 versus the

0.132 mean `2 error of the DeepSoil model – in other words, the DeepSoil model’s soil

texture predictions were nearly twice as accurate. The outperformance of the DeepSoil

al2019_threeway_mobilenetv2_300_300model was even greater in themedian case, with

median prediction error of only 0.108 versus the baseline model’s 0.247.

The relative performance of the model and baseline predictions is represented visually

in Figure 4.3, with predicted values indicated by circular markers connected by lines to

their respective reference values, denoted by star-shaped markers. As can be seen in

subfigure 4.3a, the baselinemodel uses the training set mean texture value as its prediction

for all of the test set samples. In subfigure 4.3b, the model has learned to make better

predictions, resulting in shorter lines from predicted to reference values.

(a) Baseline predictions (b) Model predictions

Figure 4.3: al2019_threeway_mobilenetv2_300_300 model predictions
versus baseline predictions for 10 randomly selected samples

57

4.4 Limitations and Assumptions

The inference performance of a machine learning model trained on a particular set of

data points will degrade if the distribution of test data points departs from that on which

it was trained. The DeepSoil implementation was predicated on the assumption that the

soil samples of the AL2019 dataset are representative of the population of soil samples

for which soil texture predictions would be made. As indicated above in Figure 3.5 and

Table 3.3, the AL2019 dataset’s distribution is somewhat biased towards loamy and sandy

soils, given that those are the types of soils for which soil texture analysis were most often

requested by customers of A&L Canada. Insofar as future soil samples under analysis

are similarly distributed, it is expected that the inference performance of the DeepSoil

models presented herein would continue to hold. However, if, for whatever reason, soil

samples following a different distribution were analyzed, such as a distribution skewed

toward higher clay or silt content, then the inference performance of DeepSoil models

trained on the AL2019 dataset would likely suffer.

At least two strategies might be employed to overcome this limitation, should it be of

concern. First, new soil images could be added to the dataset for samples whose reference

(e.g. hydrometer) measurements are distributed more evenly across the full range of soil

textures which the prediction model is expected to encounter. Second, when training the

model, the contribution of soil texture data points to the loss function could be weighted

according to their relative distance from the mean texture value, such that the influence

over the model parameters of the points nearer to the mean value would be discounted

whilst points more distant from the mean would carry more weight, thereby artificially

replicating the behaviour of a more even training distribution. This strategy would be

analogous to that of employing a weighted cross-entropy loss function for a classification

problem [88].

However, absent a basis for expecting a departure of the distribution of soil textures in

a test set from those of the training set (i.e. the AL2019 dataset), efforts to compensate

for the idiosyncrasies of the training data should be avoided, as they would likely result

in reduced prediction accuracy. The distribution of soil textures present in the training set

58

is valuable information in itself, which, under normal circumstances, should be taken into

account by the model. Indeed, using this information alone, baseline predictions of soil

texture were made with a mean `2 error of just 0.252 over ten splits (see Table 4.3).

59

Chapter 5. Future Research

While the results obtained using the methods discussed above were good, further

performance improvements may be achievable. In this chapter, several potential avenues

for future research are presented.

5.1 Specialized CNN Architectures

Because of time and computing resource constraints, it was impossible to try all of

the known CNN architectures and evaluate their relative training and testing performance.

There are many more model architectures that could be used to predict soil texture from

microscope images. Two stand out as particularly strong candidates: Fisher vector-based

CNNs and EfficentNets.

5.1.1 FV-CNN

Conceptually, a correct model for evaluating soil texture from images should not care

where the particles present in the image are located, but only that they appear somewhere

in the image. As described in section 2.3.5, a Fisher vector CNN uses FV pooling layers

to abstract out the spatial locations where features are detected, making it better suited

than fully-connected CNNs for tasks such as image texture analysis, where the location of

features within the image are not relevant [70]. These conditions also characterize digital

microscope images of soil samples, and there is therefore reason to believe that FV-CNNs

would excel at soil texture prediction.

5.1.2 EfficientNet

Like the MobileNetV2 architecture that ultimately proved most successful for this thesis

research, EfficientNet CNN designs specifically target resource-constrained contexts.

60

Unless significantly more resources are available for future DeepSoil research, it may

be worth exploring whether an EfficientNet could outperform the MobileNetV2 model at

AL2019 PSD prediction. The authors of the EfficientNet paper propose a range of models

with different trade-offs [69]. The standard PyTorch library does not include an EfficientNet

implementation, but a third-party Python package is in active development.

5.2 Higher Resolutions

In Table 4.2, the R2 performance in respect of clay of the best DeepSoil model,

al2019_threeway_mobilenetv2_300_300, lagged with respect to prediction of the sand

and silt components. This is unsurprising given that the images on which this model

was based were resized from the original (2560 × 1920) resolution down to (400 × 300),

and clay particles were theoretically no more than 3 pixels in diameter in the original

image. Limited experimentation with higher resolution models was performed during this

research because larger images put more pressure on memory resources. But given that

clay particles are theoretically invisible in small images, there is reason to believe that

further experimentation with higher resolution models and image transformations would

improve clay prediction performance. Moreover, given that texture values are ternary,

better prediction of the clay component necessarily implies better prediction of the non-clay

component, therefore sand and silt proportions also ought to be predicted more accurately.

5.3 Multiple Magnification Levels

At the other end of the size spectrum, it may be advisable to use multiple images

of soil samples, each taken at a different magnification level, in order to better capture

sand particles. In this thesis research, the magnification level was set to the maximum

possible value so as to render clay particles as visible as possible. In so doing, the physical

dimensions of the region displayed in any one image were 1.71mm × 1.28mm. Because

sand particles may be up to 2mm in diameter, some particles could theoretically exceed

the dimensions of the image, rendering them altogether invisible in the worst case. In

61

order to capture both clay particles at one end of the size spectrum and sand particles

at the other, the AL2019 dataset could be augmented with further images of soil samples

taken at a lesser magnification level, perhaps even using a regular digital camera rather

than a microscope. The use of multiple images taken at greater and lesser magnification

levels for each soil sample theoretically ought to enable greater visibility of soil particles

across the spectrum from clay to sand, and perhaps even gravel.

5.4 Hyper-parameter Refinements

For this research, hyper-parameters were manually adjusted in an ad hoc fashion

based on observed increases in the convergence rate of the training loss and the

inference performance of trained networks. A more systematic approach to setting and

experimenting with hyper-parameter values may yield better results.

5.4.1 One-Cycle Learning Rate Scheduling

Gugger [89], echoing Smith [90], suggests using a "one-cycle" learning rate scheduling

strategy in which the learning rate is first set to a low value, then gradually incremented

in each epoch until it reaches the largest (estimated) value that avoids divergence, before

finally being decreased again to a low value. The logic of this approach is consistent with

patterns in the training loss which were observed while training the DeepSoil models. The

magnitude of the gradient tends to be high in the first few epochs of training, and the

model parameters adjust quickly from the random values with which they were initialized.

Applying a high learning rate in the first few epochs of training therefore risks causing

parameter value updates that are too large, driving the loss function towards divergence.

Conversely, a smaller initial learning rate allows the model’s natural tendency to learn in

the first few epochs to play out naturally. After this initial phase, the gradient of the loss

function tends to decline, and a higher learning rate would encourage faster training –

Bengio [55] has observed that the optimal learning rate is usually within a factor of 2 of

the largest learning rate that does not cause divergence of the training loss. Finally, when

62

training is winding down, a lower learning rate will allow the model to converge nearer to

the local optimum in which it is settling.

5.4.2 Exploring the Hyper-parameter Space

There are already a vast number of variables involved when training CNNs, such as

the model architecture and image augmentations, before even considering all of the hyper-

parameters used in training such as learning rate, momentum, batch size and learning

rate schedule. Each combination takes time to test, especially if computing resources are

limited, and not all combinations can be tested because there are too many. A strategy

is therefore required to efficiently explore the hyper-parameter space. One possibility is

a grid search, where a set of potential values for each hyper-parameter is determined,

and all of the combinations are tested, but it has been shown that setting hyper-parameter

values at random is more efficient [91].

5.5 Parallel Training of Models

For reasons of simplicity and cost efficiency, this thesis project was executed on a

single self-hosted desktop computer equipped with an inexpensive GPU (Appendix E.1.2).

A significant limitation of this approach was that each set of hyper-parameters had to

be evaluated in series, rendering the type of hyper-parameter search described above

impractically time-consuming.

Fortunately, the problem of identifying effective hyper-parameter candidates is

eminently parallelizable – there are no dependencies between executions of the training

algorithmwith respect to hyper-parameter values. This means that various combinations of

hyper-parameter values could be tested in parallel on different machines, if thosemachines

were available. The time required to execute the hyper-parameter search would then be

inversely proportional to the number N of processing units (CPUs or preferably GPUs)

used.

63

5.5.1 Self-Hosted Servers

Obvious performance gains could therefore be obtained simply by adding more

processing units to a self-hosted architecture – i.e. by adding CUDA-compatible GPU

cards to an existing computer and/or adding additional computers. These could include

conventional Intel or AMD-based desktop computers with GPU cards, or low-cost

computers targeted specifically to the machine learning market, such as NVIDIA’s Jetson1

or Google’s Coral2 product lines.

5.5.2 Cloud Servers

Cloud-based virtual servers offer a more flexible solution. Of particular interest are

the GPU-enabled server instances now offered by many companies, such as Google

Cloud,3 Amazon EC2,4 and newer entrants like Paperspace.5 An important advantage

of cloud solutions is their relative reliability and ease of maintenance: professionally-

managed cloud servers are – or at least ought to be – less failure-prone than self-hosted

computers, and save users from the hassles of installing or updating drivers, debugging

network connectivity, or rebooting to recover from failure. Of course, service levels and

pricing models vary, and a cost-benefit analysis would need to be carried out to compare

cloud service providers as well as self-hosted options.

5.6 Systematic Comparison of Models and Parameters

Because the objective of the research presented herein was to assess the viability

of employing deep learning to predict soil texture from digital microscope images, its

scope was limited to identifying a handful of models with satisfactory performance, in

terms of both predictive ability and training efficiency (given resource limitations), as

opposed to the best possible model. As previously explained, investigation of different
1https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
2https://coral.ai/products/
3https://cloud.google.com/gpu/
4https://aws.amazon.com/ec2/instance-types/
5https://www.paperspace.com

64

https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
https://coral.ai/products/
https://cloud.google.com/gpu/
https://aws.amazon.com/ec2/instance-types/
https://www.paperspace.com

models and fine-tuning of hyper-parameter values demand a significant investment in

hardware resources and time, as each model needs to be trained, tested, and statistically

evaluated for each tweak of each hyper-parameter value. The task of systematically and

quantitatively comparing the performance of multiple models and hyper-parameter values

would constitute a serious research effort worthy of a future thesis project unto itself. Were

such research to be undertaken, it would be strongly advised to parallelize the model and

hyper-parameter search, as described in the previous section, to save time.

5.7 Web Interface

With relatively little effort, a web-based interface could be added to the DeepSoil

framework to facilitate remote submission of additional soil sample images. For example,

the interface could be set up as a REST API running on a server in the cloud that would

accept structured JavaScript Object Notation (JSON) requests each containing a soil-

sample image captured with a digital microscope and any other relevant metadata such

as the model and magnification level of the microscope.

In a first use case, the provided image would be fed as input to a trained DeepSoil CNN

model(s), which would then compute a predicted soil texture value to be included in the

structured JSON reply to the client request.

In another use case, the request metadata could further include a reference texture

value associated with the provided image, such that the request would provide a new

labelled training data point which could be used to further train and refine the predictive

accuracy of the DeepSoil CNN model(s).

In concert with remote collection of soil samples and capture of digital microscope

images, such a web interface would convert the DeepSoil research framework into a

practical and possibly commercially-viable tool for remote assessment of soil texture.

65

Chapter 6. Conclusion

The objective of this thesis was to investigate the suitability of convolutional neural

networks for soil particle size analysis. A deep-learning system comprising many

components was developed to perform all of the tasks required, from controlling a

digital microscope via custom software to capture high-quality images, to assembling

and transforming the images and associated metadata into a comprehensive dataset, to

training and testing a wide range of CNN models tuned according to a variety of hyper-

parameter values, before finally performing a statistical evaluation of the results of these

experiments.

The best performing of these models was able to predict sand, silt, and clay content

with mean absolute errors of 9.2%, 6.2%, and 5.3%, respectively, and mean absolute error

of the `2 norm of 13.2%. Median absolute prediction errors were even smaller: 7.1%, 4.8%,

and 3.8% for sand, silt, and clay, and 10.8% for the `2 norm. In the agricultural context,

these soil texture estimates are sufficiently accurate to usefully inform farm practices and

policies.

Future research promises to further improve model accuracy and availability via the

web. With these models having already been trained, the marginal cost of making new

predictions is low: only a low-cost digital microscope, a 3D-printable microscope holder,

a personal computer, and an Internet connection are required. As such, over the longer

term, deep learning approaches such as those investigated in the DeepSoil framework

promise to reduce the cost and increase the availability of soil particle size analysis, which,

together with smart resource management, may ultimately lead to improved outcomes for

producers and society more broadly.

66

References

[1] G. Rapsomanikis, “The economic lives of smallholder farmers: An analysis based

on household data from nine countries,” Food and Agriculture Organization of the

United Nations, Rome, 2015 (cit. on p. iii).

[2] R. Gebbers and V. I. Adamchuk, “Precision agriculture and food security,” Science,

vol. 327, no. 5967, pp. 828–831, Feb. 12, 2010, issn: 0036-8075, 1095-9203. doi:

10.1126/science.1183899 (cit. on p. 1).

[3] F. M. Van Egmond, E. H. Loonstra, and J. Limburg, “Gamma ray sensor for topsoil

mapping: The mole,” in Proximal Soil Sensing, Springer, 2010, pp. 323–332 (cit. on

pp. 1, 7).

[4] V. I. Adamchuk, J. W. Hummel, M. T. Morgan, and S. K. Upadhyaya, “On-the-go soil

sensors for precision agriculture,” Computers and electronics in agriculture, vol. 44,

no. 1, pp. 71–91, 2004 (cit. on p. 1).

[5] R. A. Viscarra Rossel, S. R. Cattle, A. Ortega, and Y. Fouad, “In situ measurements

of soil colour, mineral composition and clay content by vis–NIR spectroscopy,”

Geoderma, vol. 150, no. 3, pp. 253–266, May 15, 2009, issn: 0016-7061. doi: 10.

1016/j.geoderma.2009.01.025 (cit. on pp. 1, 6).

[6] W. Ji, V. I. Adamchuk, S. Chen, A. S. M. Su, A. Ismail, Q. Gan, Z. Shi, and A. Biswas,

“Simultaneousmeasurement of multiple soil properties through proximal sensor data

fusion: A case study,” Geoderma, vol. 341, pp. 111–128, 2019, Publisher: Elsevier

(cit. on p. 1).

[7] P. A. Sanchez, S. Ahamed, F. Carré, A. E. Hartemink, J. Hempel, J. Huising, P.

Lagacherie, A. B. McBratney, N. J. McKenzie, andM. de LourdesMendonça-Santos,

“Digital soil map of the world,” Science, vol. 325, no. 5941, pp. 680–681, 2009 (cit.

on p. 2).

67

https://doi.org/10.1126/science.1183899
https://doi.org/10.1016/j.geoderma.2009.01.025
https://doi.org/10.1016/j.geoderma.2009.01.025

[8] D. Hillel and J. L. Hatfield, Encyclopedia of Soils in the Environment. Elsevier

Amsterdam, 2005, vol. 3 (cit. on p. 2).

[9] J. Selker and D. Or, Soil Hydrology and Biophysics. Oregon State University (cit. on

pp. 4–6, 78).

[10] G. W. Gee and D. Or, “Particle-size analysis,” in Methods of soil analysis: Part 4

physical methods, vol. 5, Publisher: Wiley Online Library, 2002, pp. 255–293 (cit. on

pp. 4–6).

[11] W. P. Miller and D. M. Miller, “A micro-pipette method for soil mechanical analysis,”

Communications in Soil Science and Plant Analysis, vol. 18, no. 1, pp. 1–15, 1987

(cit. on p. 6).

[12] G. J. Bouyoucos, “A recalibration of the hydrometer method for making mechanical

analysis of soils 1,” Agronomy journal, vol. 43, no. 9, pp. 434–438, 1951 (cit. on p. 6).

[13] ——, “Hydrometer method improved for making particle size analyses of soils 1,”

Agronomy journal, vol. 54, no. 5, pp. 464–465, 1962 (cit. on p. 6).

[14] H. Shimaoka, “Particle size analyzer based on laser diffraction method,” pat.

6 473 178, Publisher: Google Patents, Oct. 29, 2002 (cit. on p. 6).

[15] M. Panalytical. (2020). Mastersizer laser diffraction particle size analyzer, [Online].

Available: https://www.malvernpanalytical.com/en/products/product-range/

mastersizer-range (visited on 06/23/2020) (cit. on p. 6).

[16] M. Nocita, A. Stevens, B. van Wesemael, M. Aitkenhead, M. Bachmann, B. Barthès,

E. Ben Dor, D. J. Brown, M. Clairotte, A. Csorba, P. Dardenne, J. A. M. Demattê,

V. Genot, C. Guerrero, M. Knadel, L. Montanarella, C. Noon, L. Ramirez-Lopez, J.

Robertson, H. Sakai, J. M. Soriano-Disla, K. D. Shepherd, B. Stenberg, E. K. Towett,

R. Vargas, and J. Wetterlind, “Chapter four - soil spectroscopy: An alternative to wet

chemistry for soil monitoring,” in Advances in Agronomy, D. L. Sparks, Ed., vol. 132,

Academic Press, Jan. 1, 2015, pp. 139–159. doi: 10.1016/bs.agron.2015.02.002

(cit. on p. 6).

68

https://www.malvernpanalytical.com/en/products/product-range/mastersizer-range
https://www.malvernpanalytical.com/en/products/product-range/mastersizer-range
https://doi.org/10.1016/bs.agron.2015.02.002

[17] C. Gomez, R. A. Viscarra Rossel, and A. B. McBratney, “Soil organic carbon

prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: An

australian case study,” Geoderma, vol. 146, no. 3, pp. 403–411, Aug. 31, 2008,

issn: 0016-7061. doi: 10.1016/j.geoderma.2008.06.011 (cit. on p. 6).

[18] A. M. Mouazen, M. R. Maleki, J. De Baerdemaeker, and H. Ramon, “On-line

measurement of some selected soil properties using a VIS–NIR sensor,” Soil and

Tillage Research, vol. 93, no. 1, pp. 13–27, Mar. 1, 2007, issn: 0167-1987. doi:

10.1016/j.still.2006.03.009 (cit. on p. 6).

[19] X. Zhang, N. H. Younan, and C. G. O’Hara, “Wavelet domain statistical hyperspectral

soil texture classification,” IEEE Transactions on Geoscience and Remote Sensing,

vol. 43, no. 3, pp. 615–618, Mar. 2005, issn: 0196-2892. doi: 10.1109/TGRS.2004.

841476 (cit. on p. 6).

[20] N. M. Dhawale, V. I. Adamchuk, S. O. Prasher, R. A. V. Rossel, A. A. Ismail, and

J. Kaur, “Proximal soil sensing of soil texture and organic matter with a prototype

portablemid-infrared spectrometer,”European Journal of Soil Science, vol. 66, no. 4,

pp. 661–669, Jul. 1, 2015, issn: 1365-2389. doi: 10.1111/ejss.12265 (cit. on p. 6).

[21] E. U. Hobley and I. Prater, “Estimating soil texture from vis–NIR spectra,” European

journal of soil science, vol. 70, no. 1, pp. 83–95, 2019, Publisher: Wiley Online

Library (cit. on p. 6).

[22] B. Sudarsan, W. Ji, V. Adamchuk, and A. Biswas, “Characterizing soil particle

sizes using wavelet analysis of microscope images,” Computers and Electronics in

Agriculture, vol. 148, pp. 217–225, May 2018, issn: 01681699. doi: 10.1016/j.

compag.2018.03.019 (cit. on pp. 7, 10, 44).

[23] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A.

Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet large scale

visual recognition challenge,” International Journal of Computer Vision, vol. 115,

no. 3, pp. 211–252, Dec. 2015, issn: 0920-5691, 1573-1405. doi: 10.1007/s11263-

015-0816-y (cit. on pp. 8, 11, 12).

69

https://doi.org/10.1016/j.geoderma.2008.06.011
https://doi.org/10.1016/j.still.2006.03.009
https://doi.org/10.1109/TGRS.2004.841476
https://doi.org/10.1109/TGRS.2004.841476
https://doi.org/10.1111/ejss.12265
https://doi.org/10.1016/j.compag.2018.03.019
https://doi.org/10.1016/j.compag.2018.03.019
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y

[24] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep

convolutional neural networks,” in Advances in neural information processing

systems, 2012, pp. 1097–1105 (cit. on pp. 8, 44).

[25] R. Hryciw and S. Raschke, “Development of computer vision technique for in situ

soil characterization,” Transportation Research Record: Journal of the Transportation

Research Board, vol. 1526, pp. 86–97, Jan. 1, 1996, issn: 0361-1981. doi: 10.3141/

1526-11 (cit. on p. 10).

[26] P. Breul and R. Gourves, “In field soil characterization: Approach based on

texture image analysis,” Journal of geotechnical and geoenvironmental engineering,

vol. 132, no. 1, pp. 102–107, 2006, Publisher: American Society of Civil Engineers

(cit. on p. 10).

[27] L. Qi, V. Adamchuk, H.-H. Huang, M. Leclerc, Y. Jiang, and A. Biswas, “Proximal

sensing of soil particle sizes using a microscope-based sensor and bag of visual

words model,” Geoderma, vol. 351, pp. 144–152, 2019 (cit. on p. 10).

[28] R. K. Swetha, P. Bende, K. Singh, S. Gorthi, A. Biswas, B. Li, D. C. Weindorf, and S.

Chakraborty, “Predicting soil texture from smartphone-captured digital images and

an application,” Geoderma, vol. 376, p. 114 562, 2020, Publisher: Elsevier (cit. on

p. 10).

[29] C. J. Moran, “Image processing and soil micromorphology,” in Developments in Soil

Science, vol. 22, Elsevier, 1993, pp. 459–482 (cit. on p. 11).

[30] A. Sofou, G. Evangelopoulos, and P. Maragos, “Soil image segmentation and texture

analysis: A computer vision approach,” IEEE Geoscience and Remote Sensing

Letters, vol. 2, no. 4, pp. 394–398, Oct. 2005, issn: 1545-598X. doi: 10.1109/LGRS.

2005.851752 (cit. on p. 11).

[31] V. Marcelino, V. Cnudde, S. Vansteelandt, and F. Caro, “An evaluation of 2d-image

analysis techniques for measuring soil microporosity,” European Journal of Soil

Science, vol. 58, no. 1, pp. 133–140, 2007, Publisher: Wiley Online Library (cit. on

p. 11).

70

https://doi.org/10.3141/1526-11
https://doi.org/10.3141/1526-11
https://doi.org/10.1109/LGRS.2005.851752
https://doi.org/10.1109/LGRS.2005.851752

[32] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553,

pp. 436–444, 2015, Publisher: Nature Publishing Group (cit. on pp. 11, 14).

[33] S. Fernández, A. Graves, and J. Schmidhuber, “An application of recurrent

neural networks to discriminative keyword spotting,” in Proceedings of the 17th

international conference on Artificial neural networks, ser. ICANN’07, Berlin,

Heidelberg: Springer-Verlag, Sep. 9, 2007, pp. 220–229, isbn: 978-3-540-74693-5

(cit. on p. 11).

[34] T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent trends in deep learning

based natural language processing,” IEEE Computational Intelligence Magazine,

vol. 13, no. 3, pp. 55–75, 2018, Publisher: IEEE (cit. on p. 12).

[35] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A.

Van Der Laak, B. Van Ginneken, and C. I. Sánchez, “A survey on deep learning

in medical image analysis,” Medical image analysis, vol. 42, pp. 60–88, 2017,

Publisher: Elsevier (cit. on p. 12).

[36] G. B. Goh, N. O. Hodas, and A. Vishnu, “Deep learning for computational chemistry,”

Journal of computational chemistry, vol. 38, no. 16, pp. 1291–1307, 2017, Publisher:

Wiley Online Library (cit. on p. 12).

[37] C. Angermueller, T. Pärnamaa, L. Parts, and O. Stegle, “Deep learning for

computational biology,” Molecular systems biology, vol. 12, no. 7, p. 878, 2016 (cit.

on p. 12).

[38] H. Purwins, B. Li, T. Virtanen, J. Schlüter, S.-Y. Chang, and T. Sainath, “Deep

learning for audio signal processing,” IEEE Journal of Selected Topics in Signal

Processing, vol. 13, no. 2, pp. 206–219, 2019, Publisher: IEEE (cit. on p. 12).

[39] A. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-Martinez, and J.

Garcia-Rodriguez, “A review on deep learning techniques applied to semantic

segmentation,” arXiv preprint arXiv:1704.06857, 2017 (cit. on p. 12).

71

[40] Y. Rivenson, Z. Göröcs, H. Günaydin, Y. Zhang, H. Wang, and A. Ozcan, “Deep

learning microscopy,”Optica, vol. 4, no. 11, pp. 1437–1443, 2017, Publisher: Optical

Society of America (cit. on p. 12).

[41] A. Kamilaris and F. X. Prenafeta-Boldú, “Deep learning in agriculture: A survey,”

Computers and electronics in agriculture, vol. 147, pp. 70–90, 2018, Publisher:

Elsevier (cit. on p. 12).

[42] M. M. Ghazi, B. Yanikoglu, and E. Aptoula, “Plant identification using deep

neural networks via optimization of transfer learning parameters,” Neurocomputing,

vol. 235, pp. 228–235, 2017, Publisher: Elsevier (cit. on p. 12).

[43] M. Rahnemoonfar and C. Sheppard, “Deep count: Fruit counting based on deep

simulated learning,” Sensors, vol. 17, no. 4, p. 905, 2017, Publisher: Multidisciplinary

Digital Publishing Institute (cit. on p. 12).

[44] A. K. Mortensen, M. Dyrmann, H. Karstoft, R. N. Jørgensen, and R. Gislum,

“Semantic segmentation of mixed crops using deep convolutional neural network,”

in Proc. of the International Conf. of Agricultural Engineering (CIGR), 2016 (cit. on

p. 12).

[45] A. Milioto, P. Lottes, and C. Stachniss, “Real-time blob-wise sugar beets vs weeds

classification for monitoring fields using convolutional neural networks,” ISPRS

Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences,

vol. 4, p. 41, 2017, Publisher: Copernicus GmbH (cit. on p. 12).

[46] T. Behrens, K. Schmidt, R. A. MacMillan, and R. A. V. Rossel, “Multi-scale digital

soil mapping with deep learning,” Scientific reports, vol. 8, no. 1, pp. 1–9, 2018,

Publisher: Nature Publishing Group (cit. on p. 12).

[47] J. Padarian, B. Minasny, and A. B. McBratney, “Using deep learning for digital soil

mapping,” Soil, vol. 5, no. 1, pp. 79–89, 2019, Publisher: Copernicus GmbH (cit. on

p. 12).

72

[48] K. Maladkar. (Jan. 25, 2018). Overview of convolutional neural network in

image classification, Analytics India Magazine, [Online]. Available: https :

/ / analyticsindiamag . com / convolutional - neural - network - image -

classification-overview/ (visited on 08/28/2020) (cit. on p. 12).

[49] N. Kanopoulos, N. Vasanthavada, and R. L. Baker, “Design of an image edge

detection filter using the sobel operator,” IEEE Journal of solid-state circuits, vol. 23,

no. 2, pp. 358–367, 1988, Publisher: IEEE (cit. on p. 12).

[50] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016 (cit. on

pp. 13, 14).

[51] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to

document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,

1998 (cit. on pp. 13, 15, 16).

[52] R. Theart. (Nov. 29, 2017). Getting started with PyTorch for deep learning (part 3:

Neural network basics), Code to Light, [Online]. Available: https://codetolight.

wordpress . com / 2017 / 11 / 29 / getting - started - with - pytorch - for - deep -

learning-part-3-neural-network-basics/ (visited on 08/24/2020) (cit. on p. 13).

[53] Y. LeCun, C. Cortes, and C. Burges. (). MNIST handwritten digit database. dataset,

[Online]. Available: http://yann.lecun.com/exdb/mnist/ (visited on 03/19/2019)

(cit. on p. 14).

[54] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and

L. D. Jackel, “Backpropagation applied to handwritten zip code recognition,” Neural

computation, vol. 1, no. 4, pp. 541–551, 1989, Publisher: MIT Press (cit. on pp. 14,

16).

[55] Y. Bengio, “Practical recommendations for gradient-based training of deep

architectures,” in Neural networks: Tricks of the trade, Springer, 2012, pp. 437–478

(cit. on pp. 15, 62).

[56] G. E. Hinton, “A practical guide to training restricted boltzmann machines,” in Neural

networks: Tricks of the trade, Springer, 2012, pp. 599–619 (cit. on p. 15).

73

https://analyticsindiamag.com/convolutional-neural-network-image-classification-overview/
https://analyticsindiamag.com/convolutional-neural-network-image-classification-overview/
https://analyticsindiamag.com/convolutional-neural-network-image-classification-overview/
https://codetolight.wordpress.com/2017/11/29/getting-started-with-pytorch-for-deep-learning-part-3-neural-network-basics/
https://codetolight.wordpress.com/2017/11/29/getting-started-with-pytorch-for-deep-learning-part-3-neural-network-basics/
https://codetolight.wordpress.com/2017/11/29/getting-started-with-pytorch-for-deep-learning-part-3-neural-network-basics/
http://yann.lecun.com/exdb/mnist/

[57] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint

arXiv:1412.6980, 2014 (cit. on pp. 15, 47).

[58] I. Loshchilov and F. Hutter, Decoupled Weight Decay Regularization. 2017, _eprint:

1711.05101 (cit. on pp. 15, 47).

[59] A. C. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht, “The marginal value of

adaptive gradient methods in machine learning,” in Advances in neural information

processing systems, 2017, pp. 4148–4158 (cit. on p. 15).

[60] S. Gugger. (Jul. 2, 2018). AdamW and super-convergence is now the fastest way

to train neural nets, [Online]. Available: https://www.fast.ai/2018/07/02/adam-

weight-decay/ (cit. on p. 15).

[61] W. Samek, T. Wiegand, and K.-R. Müller, “Explainable artificial intelligence:

Understanding, visualizing and interpreting deep learning models,” arXiv preprint

arXiv:1708.08296, 2017 (cit. on p. 15).

[62] A. Singh, S. Sengupta, and V. Lakshminarayanan, “Explainable deep learning

models in medical image analysis,” arXiv preprint arXiv:2005.13799, 2020 (cit. on

p. 16).

[63] D. Krishnan, T. Tay, and R. Fergus, “Blind deconvolution using a normalized sparsity

measure,” in CVPR 2011, Jun. 2011, pp. 233–240. doi: 10 . 1109 / CVPR . 2011 .

5995521 (cit. on p. 16).

[64] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition,” arXiv preprint arXiv:1409.1556, 2014 (cit. on pp. 16, 17).

[65] G. Touloupas, A. Lauber, J. Henneberger, A. Beck, and A. Lucchi, “A convolutional

neural network for classifying cloud particles recorded by imaging probes,”

Atmospheric Measurement Techniques, vol. 13, no. 5, pp. 2219–2239, 2020. doi:

10.5194/amt-13-2219-2020 (cit. on p. 17).

[66] S. Hochreiter, “The vanishing gradient problem during learning recurrent neural

nets and problem solutions,” International Journal of Uncertainty, Fuzziness and

74

https://www.fast.ai/2018/07/02/adam-weight-decay/
https://www.fast.ai/2018/07/02/adam-weight-decay/
https://doi.org/10.1109/CVPR.2011.5995521
https://doi.org/10.1109/CVPR.2011.5995521
https://doi.org/10.5194/amt-13-2219-2020

Knowledge-Based Systems, vol. 6, no. 2, pp. 107–116, 1998, Publisher: World

Scientific (cit. on p. 17).

[67] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”

in Proceedings of the IEEE conference on computer vision and pattern recognition,

2016, pp. 770–778 (cit. on p. 17).

[68] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “MobileNetV2:

Inverted residuals and linear bottlenecks,” 2018 IEEE/CVFConference on Computer

Vision and Pattern Recognition, Jun. 2018, ISBN: 9781538664209 Publisher: IEEE.

doi: 10.1109/cvpr.2018.00474 (cit. on p. 18).

[69] M. Tan and Q. V. Le, “EfficientNet: Rethinking model scaling for convolutional neural

networks,” arXiv preprint arXiv:1905.11946, 2019 (cit. on pp. 18, 61).

[70] M. Cimpoi, S. Maji, I. Kokkinos, and A. Vedaldi, “Deep filter banks for texture

recognition, description, and segmentation,” International Journal of Computer

Vision, vol. 118, no. 1, pp. 65–94, May 1, 2016, issn: 1573-1405. doi: 10.1007/

s11263-015-0872-3 (cit. on pp. 18, 60).

[71] V. Andrearczyk and P. F.Whelan, “Using filter banks in convolutional neural networks

for texture classification,” Pattern Recognition Letters, vol. 84, pp. 63–69, Dec. 1,

2016, issn: 0167-8655. doi: 10.1016/j.patrec.2016.08.016 (cit. on p. 18).

[72] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing

human-level performance on ImageNet classification,” in Proceedings of the IEEE

international conference on computer vision, 2015, pp. 1026–1034 (cit. on p. 22).

[73] S. Dodge and L. Karam, “Understanding how image quality affects deep neural

networks,” in 2016 eighth international conference on quality of multimedia

experience (QoMEX), IEEE, 2016, pp. 1–6 (cit. on p. 23).

[74] AnMo Electronics Corporation. (2018). Dino-lite microscope, [Online]. Available:

https://www.dino-lite.com/products_detail.php?index_m1_id=9&index_

m2_id=42&index_id=139 (visited on 08/28/2020) (cit. on p. 25).

75

https://doi.org/10.1109/cvpr.2018.00474
https://doi.org/10.1007/s11263-015-0872-3
https://doi.org/10.1007/s11263-015-0872-3
https://doi.org/10.1016/j.patrec.2016.08.016
https://www.dino-lite.com/products_detail.php?index_m1_id=9&index_m2_id=42&index_id=139
https://www.dino-lite.com/products_detail.php?index_m1_id=9&index_m2_id=42&index_id=139

[75] V. Adamchuk, A. Biswas, L. Qi, M. Leclerc, B. Sudarsan, and W. Ji, “Apparatus

for analyzing a sample of granular material,” pat. 10 495 568, Dec. 3, 2019 (cit. on

pp. 25, 26).

[76] R. Agarwal, “Edge detection in images using modified bit-planes sobel operator,” in

Proceedings of the Third International Conference on Soft Computing for Problem

Solving, M. Pant, K. Deep, A. Nagar, and J. C. Bansal, Eds., ser. Advances in

Intelligent Systems and Computing, New Delhi: Springer India, 2014, pp. 203–210,

isbn: 978-81-322-1771-8. doi: 10.1007/978-81-322-1771-8_18 (cit. on p. 28).

[77] H. Mir, P. Xu, and P. v. Beek, “An extensive empirical evaluation of focus measures

for digital photography,” in Digital Photography X, vol. 9023, International Society for

Optics and Photonics, Mar. 7, 2014, p. 90230I. doi: 10.1117/12.2042350 (cit. on

p. 28).

[78] A. Wise. (Jan. 12, 2013). Automatic exposure bracketing (AEB) explained, Alex

Wise Photography, [Online]. Available: https://www.alexwisephotography.net/

blog/2013/01/12/automatic-exposure-bracketing-aeb-explained/ (visited on

08/27/2020) (cit. on p. 29).

[79] J. Dickman, Perfect digital photography. New York: McGraw-Hill, 2009, isbn: 978-0-

07-160166-5 (cit. on p. 29).

[80] E. Reinhard, W. Heidrich, P. Debevec, S. Pattanaik, G. Ward, and K. Myszkowski,

High dynamic range imaging: acquisition, display, and image-based lighting. Morgan

Kaufmann, 2010 (cit. on p. 29).

[81] E. Hecht, Optics, Fifth edition. Boston: Pearson Education, Inc., 2017, isbn: 978-1-

292-09693-3 (cit. on p. 30).

[82] D. Johnston, Random number generators - principles and practices : a guide for

engineers and programmers. Berlin Boston: Walter de Gruyter GmbH, 2018, isbn:

978-1-5015-1513-2 (cit. on p. 38).

76

https://doi.org/10.1007/978-81-322-1771-8_18
https://doi.org/10.1117/12.2042350
https://www.alexwisephotography.net/blog/2013/01/12/automatic-exposure-bracketing-aeb-explained/
https://www.alexwisephotography.net/blog/2013/01/12/automatic-exposure-bracketing-aeb-explained/

[83] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z.

Lin, N. Gimelshein, and L. Antiga, “PyTorch: An imperative style, high-performance

deep learning library,” in Advances in neural information processing systems, 2019,

pp. 8026–8037 (cit. on p. 41).

[84] R. A. Adams and J. J. Fournier, Sobolev spaces. Academic Press, 2003, isbn: 978-

0-12-044143-3 (cit. on pp. 42, 43).

[85] C. Sammut and G. I. Webb, Encyclopedia of machine learning. Springer Science &

Business Media, 2011 (cit. on p. 43).

[86] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A.

Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in PyTorch,” 2017

(cit. on p. 46).

[87] N. R. Draper and H. Smith, Applied regression analysis, 3rd ed., 1 online resource

(xvii, 706 pages) : illustrations vols., Wiley series in probability and statistics. Texts

and references section. New York: Wiley, 1998, isbn: 978-0-471-17082-2 (cit. on

p. 50).

[88] Y. S. Aurelio, G. M. de Almeida, C. L. de Castro, and A. P. Braga, “Learning from

imbalanced data sets with weighted cross-entropy function,” Neural Processing

Letters, vol. 50, no. 2, pp. 1937–1949, 2019, Publisher: Springer (cit. on p. 58).

[89] S. Gugger. (Apr. 7, 2018). The 1cycle policy, [Online]. Available: https://sgugger.

github.io/the-1cycle-policy.html (cit. on p. 62).

[90] L. N. Smith, “A disciplined approach to neural network hyper-parameters: Part

1–learning rate, batch size, momentum, and weight decay,” arXiv preprint

arXiv:1803.09820, 2018 (cit. on p. 62).

[91] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization,” The

Journal of Machine Learning Research, vol. 13, no. 1, pp. 281–305, 2012, Publisher:

JMLR. org (cit. on p. 63).

[92] O. Tange, “GNU parallel 20200922 (’ginsburg’),” Sep. 22, 2020. doi: 10 . 5281 /

zenodo.4045386.

77

https://sgugger.github.io/the-1cycle-policy.html
https://sgugger.github.io/the-1cycle-policy.html
https://doi.org/10.5281/zenodo.4045386
https://doi.org/10.5281/zenodo.4045386

Appendix A. Particle Size Taxonomies

Figure A.1: Particle Size Classification Systems [9]

78

Appendix B. Image Acquisition Protocol

B.1 Initial Hardware Setup

Removing the digital microscope from the microscope holder

1. Remove the microscope holder cap by unscrewing it.

2. Disconnect the microscope from its USB cable.

3. Loosen the plastic screw on the side of the microscope holder sufficiently to allow

the microscope to slide out of the holder.

Setting the digital microscope magnification and polarization

4. Roll the black dial on the side of the microscope as far as it will go to achieve

maximum magnification (approximately 220×).

5. Secure the magnification lock (small notched switch next to the magnification dial)

in place and make sure the magnification dial can no longer be turned.

6. Rotate the polarization filter (toothed black dial near microscope lens) as far as it will

go towards the ‘+’ setting.

Securing the digital microscope in place

7. Loosen the plastic screw on the side of the microscope holder sufficiently to allow

the microscope to slide into the holder.

8. While holding the microscope holder on an angle with the opening for the

magnification dial facing down, allow the microscope to slide down along the inner

79

wall of the holder until the microscope’s toothed black dial comes to a rest on the

small inner lip inside the holder (above the opening for the magnification dial), as in

Figure 1 [not shown].

9. While keeping the microscope snug to the inner lip, rotate it as necessary to align

the USB port with the rectangular window underneath the holder, as in Figure 2 [not

shown].

10. Once themicroscope is both resting on the inner lip and alignedwith the USBwindow,

tighten the plastic crew on the side of the holder to secure the microscope in place,

taking care not to overtighten and risk damage to the microscope.

11. Connect the USB cable to the microscope via the USB window.

Attaching the microscope holder cap

12. Ensure the glass window in the cap of the microscope holder is clean on both sides.

It can be cleaned using dish soap or lens cleaning solution and wiped dry with a

microfiber cloth.

13. Place a single metal shim (O-Ring) on the upper lip of the base of the microscope

holder.

14. Screw the cap into place, such that reasonably tight contact is made between the

base, the shim, and the cap.

B.2 Calibration

Instrument Setup

15. Ensure that the microscope is secured and the cap is attached according to the

instructions of the previous section.

16. Clean the calibration target using dish soap, lens cleaner, or the like.

80

17. Place the calibration target in the calibration target harness, ensuring that the side of

the calibration target on which the crosshair pattern is engraved faces towards you,

such that it will be placed in direct contact with the window of the microscope holder.

Apply pressure along the edges of the calibration target to attach it securely to the

harness.

18. Place the calibration target harness on themicroscope holder, applying light pressure

around its perimeter to ensure contact between the calibration target and the window

of the microscope holder.

jFocus Software Setup

19. Install the DNVideoX SDK by unzipping “DNVideoX_V3.0.43_Installer.zip” to a

directory, then right-clicking on the installer and selecting “Run as Administrator”.

20. Save the jFocus executable, “jFocus.exe”, to the directory of your choice.

Rough Adjustment of the Focal Length

21. Open the jFocus application by executing jFocus.exe.

22. The Dino-Lite microscope should be selected by default, and the preview window

should display a video stream as captured by the microscope. If the preview window

is black, make sure to close any DinoCapture sessions or other jFocus sessions that

may be running, and hit the “Refresh” button.

23. Starting with the microscope holder cap screwed fully to the base, slowly unscrew

the cap to increase the focal length until the image in the preview window becomes

relatively sharp. The origin (central crosshairs) of the calibration target should appear

in the centre of the preview window, along with at least 5 measurement ticks on each

side.

81

Saving the Calibration Image

24. Enter “C” in the Sample ID text box, then select the “Save PNG Image” button. A

message box should appear indicating the name of a PNG image that was saved to

the Desktop. If the image file could not be saved, an error message may appear.

B.3 Capturing Images of Soil Samples

Cleaning

25. Make sure the window of the microscope holder is clean on both sides. For best

results, use dish soap or a lens cleaning solution, rinse and wipe dry using a

microfiber cloth.

Calibration

26. A new calibration image should be taken at the beginning of each day in accordance

with the instructions provided above.

Images of Soil Samples

27. Evenly spread a 20g sample of the soil under analysis over the window of the

microscope holder.

28. Enter a unique identifier for the soil sample in the Sample ID text box.

29. Select the “Save PNG Image” button. A message box will indicate the filename of

the PNG image on the Desktop.

Between Soil Samples

30. Be sure to clean the microscope window again before proceeding to capturing

images of a new soil sample.

82

Appendix C. Soil Sample Images

Figure C.1: (sand4 silt4 clay4 OM) = (0.819 0.112 0.059 0.010)

Figure C.2: (sand4 silt4 clay4 OM) = (0.945 0.013 0.040 0.002)

83

Appendix D. AL2019 Index Format

key image filename jFocus12_11660_20190527145338_edr.png

STSAND sand content (three-way) 0.687

STSILT silt content (three-way) 0.206

STCLAY sand content (three-way) 0.107

SAND sand content (four-way) 0.663642

SILT silt content (four-way) 0.198996

CLAY clay content (four-way) 0.103362

OM organic matter content (four-way) 0.034

STCLASS USDA soil texture class (1 to 12) 9

image-height image height in pixels 1920

image-width image width in pixels 2560

qrank quality percentile 0.97826

sample unique sample ID 11421

suspicions list of suspicions about the image [poor quality]

utc-timestamp image capture date and time 20190527145338

ftp-modtime FTP modification time 20190527122154

Table D.1: Partial listing of AL2019 index fields with descriptions and sample values

84

Appendix E. Computing Resources

E.1 Self-Hosted Computers

E.1.1 Image Acquisition Computer

Images were captured via the jFocus software on a notebook computer at A&L Canada

Laboratories running the Windows 10 OS and connected to the microscope via a USB 3.0

cable.

E.1.2 Model Training and Testing Computer

CPU Intel i5-4590T 3.0GHz, 16GB RAM

GPU NVIDIA GeForce GTX 1050Ti, 4GB

OS Ubuntu 18.04.4 LTS (GNU/Linux 4.15.0-112-generic x86_64)

Table E.1: Model Training and Testing Computer (euclid)

E.1.3 Development Computers

All software, apart from jFocus, was developed on a MacBook computer with the

specs shown in Table E.2. The jFocus software was developed in Microsoft Visual Studio

on a Windows 10 PC in the PASS Lab. Remote connections were initiated from the

development computers as necessary to interact with the Linux server (euclid), GitLab

servers, PASS FTP server, and Wasabi S3 servers.

85

Model MacBook Pro (Retina, 13-inch, Mid 2014)

CPU 2.6GHz Dual-Core Intel Core i5

Memory 8GB 1600MHz DDR3

Graphics Intel Iris 1536MB

OS MacOS versions 10.14 to 10.15.6

Table E.2: MacOS Development Computer

E.2 Servers and Cloud Computing Resources

E.2.1 FTP Server

The PASS Lab FTP server was a basic single-drive Western Digital Live NAS device.

E.2.2 S3 Cloud Storage

The original files uploaded from A&LCanada to the FTP server and the AL2019 dataset

were stored in the cloud using S3 object storage provided by Wasabi.

E.2.3 GitLab

The jFocus, AL2019Mirror, AL2019Packager, and DeepSoil software repositories were

all hosted on GitLab. See Appendix G for hyperlinks.

86

Appendix F. Virtual Environment

The virtual environment in which the dataset preprocessing, model training, and model

testing were performed was defined as a Docker container using a Dockerfile which is

available for download from the DeepSoil software repository.

Within the virtual environment of the Docker container, the conda package manager

was installed and used to configure the Python environment in which the dataset

preprocessing, model training, model testing, and statistical evaluation components were

executed. Executing the command conda env export within this environment lists all of

the package and library versions installed. The output of that command is listed here for

reference.

name: base
channels:

- pytorch
- conda-forge
- defaults

dependencies:
- _libgcc_mutex=0.1=main
- albumentations=0.4.5=py_0
- argcomplete=1.11.1=py_1
- asciitree=0.3.3=py_2
- asn1crypto=1.3.0=py37_0
- blas=1.0=mkl
- bokeh=2.1.1=py37_0
- boto3=1.9.66=py37_0
- botocore=1.12.189=py_0
- bzip2=1.0.8=h7b6447c_0
- ca-certificates=2020.6.24=0
- cairo=1.14.12=h8948797_3
- certifi=2020.6.20=py37_0
- cffi=1.14.0=py37h2e261b9_0
- chardet=3.0.4=py37_1003
- click=7.1.2=py_0
- cloudpickle=1.4.1=py_0
- conda=4.8.3=py37_0
- conda-package-handling=1.6.0=py37h7b6447c_0
- cryptography=2.8=py37h1ba5d50_0
- cudatoolkit=10.1.243=h6bb024c_0
- cycler=0.10.0=py37_0
- cytoolz=0.10.1=py37h7b6447c_0

- dask=2.19.0=py_0
- dask-core=2.19.0=py_0
- dbus=1.13.16=hb2f20db_0
- decorator=4.4.2=py_0
- distributed=2.19.0=py37_0
- docutils=0.16=py37_1
- et_xmlfile=1.0.1=py37_0
- expat=2.2.9=he6710b0_2
- fasteners=0.15=py_0
- ffmpeg=4.0=hcdf2ecd_0
- fontconfig=2.13.0=h9420a91_0
- freeglut=3.0.0=hf484d3e_5
- freetype=2.10.2=h5ab3b9f_0
- fsspec=0.7.4=py_0
- geos=3.8.0=he6710b0_0
- git=2.23.0=pl526hacde149_0
- gitdb=4.0.5=py_0
- gitpython=3.1.3=py_1
- glib=2.63.1=h5a9c865_0
- graphite2=1.3.14=h23475e2_0
- gst-plugins-base=1.14.0=hbbd80ab_1
- gstreamer=1.14.0=hb453b48_1
- harfbuzz=1.8.8=hffaf4a1_0
- hdf5=1.10.2=hba1933b_1
- heapdict=1.0.1=py_0
- icu=58.2=he6710b0_3
- idna=2.8=py37_0
- imageio=2.8.0=py_0
- imgaug=0.4.0=py_1

87

- importlib-metadata=1.7.0=py37_0
- importlib_metadata=1.7.0=0
- intel-openmp=2020.1=217
- jasper=2.0.14=h07fcdf6_1
- jdcal=1.4.1=py_0
- jinja2=2.11.2=py_0
- jmespath=0.9.4=py_0
- jpeg=9b=h024ee3a_2
- kiwisolver=1.2.0=py37hfd86e86_0
- kornia=0.3.0=pyh9f0ad1d_0
- krb5=1.17.1=h173b8e3_0
- libcurl=7.68.0=h20c2e04_0
- libedit=3.1.20181209=hc058e9b_0
- libffi=3.2.1=hd88cf55_4
- libgcc-ng=9.1.0=hdf63c60_0
- libgfortran-ng=7.3.0=hdf63c60_0
- libglu=9.0.0=hf484d3e_1
- libmagic=5.39=hed695b0_0
- libopencv=3.4.2=hb342d67_1
- libopus=1.3.1=h7b6447c_0
- libpng=1.6.37=hbc83047_0
- libssh2=1.9.0=h1ba5d50_1
- libstdcxx-ng=9.1.0=hdf63c60_0
- libtiff=4.1.0=h2733197_0
- libuuid=1.0.3=h1bed415_2
- libvpx=1.7.0=h439df22_0
- libxcb=1.14=h7b6447c_0
- libxml2=2.9.9=hea5a465_1
- locket=0.2.0=py37_1
- markupsafe=1.1.1=py37h7b6447c_0
- matplotlib=3.1.3=py37_0
- matplotlib-base=3.1.3=py37hef1b27d_0
- mkl=2020.1=217
- mkl-service=2.3.0=py37he904b0f_0
- mkl_fft=1.1.0=py37h23d657b_0
- mkl_random=1.1.1=py37h0573a6f_0
- monotonic=1.5=py_0
- msgpack-python=1.0.0=py37hfd86e86_1
- ncurses=6.1=he6710b0_1
- networkx=2.4=py_0
- ninja=1.9.0=py37hfd86e86_0
- numcodecs=0.6.4=py37he6710b0_0
- numpy=1.18.5=py37ha1c710e_0
- numpy-base=1.18.5=py37hde5b4d6_0
- olefile=0.46=py37_0
- opencv=3.4.2=py37h6fd60c2_1
- openpyxl=3.0.3=py_0
- openssl=1.1.1g=h7b6447c_0
- packaging=20.4=py_0
- pandas=1.0.5=py37h0573a6f_0
- partd=1.1.0=py_0
- pcre=8.44=he6710b0_0
- perl=5.26.2=h14c3975_0

- pillow=7.1.2=py37hb39fc2d_0
- pip=20.1.1=py37_1
- pixman=0.40.0=h7b6447c_0
- psutil=5.7.0=py37h7b6447c_0
- py-opencv=3.4.2=py37hb342d67_1
- pycosat=0.6.3=py37h7b6447c_0
- pycparser=2.19=py37_0
- pyopenssl=19.1.0=py37_0
- pyparsing=2.4.7=py_0
- pyqt=5.9.2=py37h05f1152_2
- pysocks=1.7.1=py37_0
- python=3.7.4=h265db76_1
- python-dateutil=2.8.1=py_0
- python-magic=0.4.15=py37hc8dfbb8_1002
- python-ternary=1.0.7=pyh9f0ad1d_0
- python_abi=3.7=1_cp37m
- pytorch=1.5.1=py3.7_cuda10.1.243_cudnn7.6.3_0
- pytz=2020.1=py_0
- pywavelets=1.1.1=py37h7b6447c_0
- pyyaml=5.3.1=py37h7b6447c_0
- qt=5.9.7=h5867ecd_1
- readline=7.0=h7b6447c_5
- requests=2.22.0=py37_1
- ruamel_yaml=0.15.87=py37h7b6447c_0
- s3transfer=0.1.13=py37_0
- scikit-image=0.16.2=py37h0573a6f_0
- scipy=1.5.0=py37h0b6359f_0
- setuptools=45.2.0=py37_0
- shapely=1.7.0=py37h98ec03d_0
- sip=4.19.8=py37hf484d3e_0
- six=1.14.0=py37_0
- smmap=3.0.2=py_0
- sortedcontainers=2.2.2=py_0
- sqlite=3.31.1=h7b6447c_0
- tblib=1.6.0=py_0
- tini=0.18.0=h7b6447c_0
- tk=8.6.8=hbc83047_0
- toolz=0.10.0=py_0
- torchvision=0.6.1=py37_cu101
- tornado=6.0.4=py37h7b6447c_1
- tqdm=4.47.0=py_0
- typing_extensions=3.7.4.2=py_0
- unzip=6.0=h611a1e1_0
- urllib3=1.25.8=py37_0
- wheel=0.34.2=py37_0
- xz=5.2.4=h14c3975_4
- yaml=0.1.7=had09818_2
- zarr=2.3.2=py_0
- zict=2.0.0=py_0
- zipp=3.1.0=py_0
- zlib=1.2.11=h7b6447c_3
- zstd=1.3.7=h0b5b093_0
- pip:

- master-sake==1.2

88

Appendix G. Source Code

G.1 jFocus

The source code of the jFocus microscope control software is available on GitLab at

the following URL:

https://gitlab.com/k8spiers/jFocus

G.2 AL2019Mirror

The source code of the Al2019Mirror microscope control software is available onGitLab

at the following URL:

https://gitlab.com/k8spiers/al2019mirror

G.3 AL2019Packager

The source code of the Al2019Packager microscope control software is available on

GitLab at the following URL:

https://gitlab.com/k8spiers/al2019packager

G.4 DeepSoil

The source code for the dataset preprocessing, model training, model testing, and

statistical evaluation components is available on GitLab at the following URL:

https://gitlab.com/k8spiers/deepsoil

89

https://gitlab.com/k8spiers/jFocus
https://gitlab.com/k8spiers/al2019mirror
https://gitlab.com/k8spiers/al2019packager
https://gitlab.com/k8spiers/deepsoil

Appendix H. Excerpt from Presets YAML File

Presets for settings governing the dataset preprocessing, model training, and model

testing components were stored in a YAML file. Below is a very small excerpt. The preset

definitions are recursive, inheriting from parent definitions via the extends keyword.

default:
batchsize: null
device: null
forbidden: [suspicions]
indexpath: data/al2019/index.yml
splits: 10
keys: [STCLASS]
learningrate: 0.001
maxepochs: null
maxtime: 300
momentum: 0.9
netclass: LeNetMod
normalize: true
numpytransforms: []
optimization: SGD
qrankpercent: null
schedule: plateau
style: classify
tensortransforms: []
traintestratio: 0.8
verbosity: 0

al2019_1600_fft1remainder_threeway:
batchsize: 23
extends: al2019_fft1remainder_threeway
learningrate: 0.001
maxtime: 4800
netclass: FFT1Remainder1600
numpytransforms:

- "RandomCrop:1600,1600"
- HorizontalFlip
- RandomRotate90

al2019_2500_fft1remainder_threeway:
batchsize: 15
extends: al2019_fft1remainder_threeway
learningrate: 0.001
maxtime: 4800
netclass: FFT1Remainder2500
numpytransforms:

- "RandomCrop:1600,2500"
- HorizontalFlip

al2019_400_fft1remainder_threeway:
batchsize: "/2"
extends: al2019_fft1remainder_threeway
maxtime: 1000
netclass: FFT1Remainder400
numpytransforms:

- "SmallestMaxSize:480"
- "RandomCrop:400,400"

- HorizontalFlip
- RandomRotate90

al2019_STCLASS_resnet18:
batchsize: 50
extends: al2019_STCLASS_lenetmod
learningrate: 0.01
momentum: 0.8
netclass: ResNet18
numpytransforms:

- "RandomCrop:300,300"
- HorizontalFlip
- RandomRotate90

al2019_threeway_resnet18_600_300:
extends: al2019_STSAND/(STSAND+STSILT)_resnet18_600
keys: [STSAND, STSILT, STCLAY]
maxtime: 3600

al2019_threeway_resnet50_600_300:
extends: al2019_threeway_resnet18_600_300
netclass: ResNet50
batchsize: 20
learningrate: 0.01
maxtime: 7200

al2019_threeway_mobilenetv2_600_300:
extends: al2019_threeway_resnet18_600_300
netclass: MobileNetV2
batchsize: 25
learningrate: 0.01
maxtime: 7200

al2019_fourway_mobilenetv2_600_300:
extends: al2019_threeway_mobilenetv2_600_300
keys: [CLAY, SAND, SILT, OM]

al2019_threeway_mobilenetv2_400_200:
extends: al2019_threeway_mobilenetv2_600_300
numpytransforms:

- "SmallestMaxSize:400"
- "RandomCrop:200,200"
- HorizontalFlip
- RandomRotate90

batchsize: 65
splits: 3

al2019_fourway_mobilenetv2_400_200:
extends: al2019_threeway_mobilenetv2_400_200
keys: [CLAY, SAND, SILT, OM]

90

al2019_threeway_mobilenetv2_300_300:
extends: al2019_threeway_mobilenetv2_600_300
numpytransforms:

- "SmallestMaxSize:300"
- "RandomCrop:300,300"
- HorizontalFlip
- RandomRotate90

al2019_threeway_mobilenetv2remainder_300_300:
extends: al2019_threeway_mobilenetv2_300_300
netclass: MobileNetV2Remainder

al2019_fourway_mobilenetv2_300_300:
extends: al2019_threeway_mobilenetv2_300_300
keys: [CLAY, SAND, SILT, OM]

al2019_fourway_mobilenetv2remainder_300_300:
extends: al2019_fourway_mobilenetv2_300_300
netclass: MobileNetV2Remainder

al2019_STCLASS_mobilenetv2_300_300:
extends: al2019_threeway_mobilenetv2_300_300
keys: [STCLASS]
style: classify
splits: 3

al2019_threeway_mobilenetv2_300_280:
extends: al2019_threeway_mobilenetv2_600_300
numpytransforms:

- "SmallestMaxSize:300"
- "RandomCrop:280,280"
- HorizontalFlip
- RandomRotate90

al2019_fourway_mobilenetv2_300_280:
extends: al2019_threeway_mobilenetv2_300_280
keys: [CLAY, SAND, SILT, OM]

al2019_threeway_mobilenetv2_400_400:
extends: al2019_threeway_mobilenetv2_600_300
numpytransforms:

- "SmallestMaxSize:400"
- "RandomCrop:400,400"
- HorizontalFlip
- RandomRotate90

batchsize: 14

al2019_fourway_mobilenetv2_400_400:
extends: al2019_threeway_mobilenetv2_400_400
keys: [CLAY, SAND, SILT, OM]

al2019_threeway_resnet18_600_400:
extends: al2019_threeway_resnet18_600_300
batchsize: 28
numpytransforms:

- "SmallestMaxSize:600"
- "RandomCrop:400,400"
- HorizontalFlip
- RandomRotate90

al2019_threeway_resnet50_600_400:
extends: al2019_threeway_resnet18_600_400
netclass: ResNet50
batchsize: 11
learningrate: 0.01
maxtime: 7200

al2019_threeway_mobilenetv2_600_400:
extends: al2019_threeway_resnet18_600_400
netclass: MobileNetV2
batchsize: 14
learningrate: 0.01
maxtime: 7200

al2019_fourway_mobilenetv2_600_400:
extends: al2019_threeway_mobilenetv2_600_400
keys: [CLAY, SAND, SILT, OM]

al2019_threeway_squeezenet_600_400:
extends: al2019_threeway_resnet18_600_400
netclass: SqueezeNet1_1
learningrate: 0.01

al2019_fourway_resnet18_600_300:
extends: al2019_STSAND/(STSAND+STSILT)_resnet18_600
keys: [SAND, SILT, CLAY, OM]
maxtime: 3600

al2019_threeway_1920_800_resnet18:
extends: al2019_threeway_resnet18_600_300
numpytransforms:

- "RandomCrop:800,800"
- HorizontalFlip
- RandomRotate90

batchsize: 10
maxtime: 10800

al2019_threeway_1920_800_resnet18_long:
extends: al2019_threeway_1920_800_resnet18
splits: 2
maxtime: 36000

al2019_fourway_1920_800_resnet18:
extends: al2019_threeway_1920_800_resnet18
keys: [SAND, SILT, CLAY, OM]

al2019_fourway_1920_800_resnet18_long:
extends: al2019_threeway_1920_800_resnet18_long
keys: [SAND, SILT, CLAY, OM]

al2019_fft1_threeway:
batchsize: "/8"
extends: default
keys: [STSAND, STSILT, STCLAY]
learningrate: 0.01
maxtime: 1200
netclass: FFT1
normalize: false
numpytransforms:

- "SmallestMaxSize:960"
- "RandomCrop:800,800"
- HorizontalFlip
- RandomRotate90

style: regress

al2019_960_800_fft1_mean_linear1_long:
extends: al2019_960_800_fft1_mean_linear1
maxepochs: null
maxtime: 4800

al2019_threeway_fft_300_200_resnet:
extends: field26_fft_300_200_resnet
indexpath: data/al2019/index.yml
keys: [STSAND, STSILT, STCLAY]
maxtime: 1800

91

	Abstract
	Résumé
	Dedication
	Acknowledgements
	Contributions of the Author
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	Glossary
	Outline
	Introduction
	Precision Agriculture
	Soil Texture
	Particle Size Analysis
	Sieving
	Sedimentation Methods
	Electronic Methods

	Computer Vision
	Digital Images
	Deterministic vs. Adaptive Algorithms

	Research Objective

	Literature Review
	Image-Based Soil Particle Size Analysis
	Image Texture of Soil Images
	Deep Learning
	Convolution Filters
	Convolutional Neural Networks
	Parameter Optimization
	Explainability
	Survey of CNN Architectures

	Summary

	Materials and Methods
	Overview
	Logical Architecture
	Image Acquisition System
	Requirements
	Digital Microscope
	Microscope Holder
	Microscope Control Software
	Image Acquisition Protocol
	Verification of Images
	Organic Matter Content and Four-way Texture

	Reference Laboratory Measurements
	AL2019 Dataset Compilation
	AL2019Mirror
	AL2019Packager

	Dataset Preprocessing
	Image Dataset Augmentation
	Deterministic vs. Stochastic Image Transformations
	Transformation Pipelines
	Augmentation of AL2019 Images
	Random Splitting into Training and Test Sets

	Model Training
	GPU Computing
	PyTorch
	Regression Loss Functions
	Types of Models Trained and Tested
	Training Algorithm

	Model Testing
	20-Sample Average

	Statistical Evaluation
	Implementation
	Metrics

	Results and Discussion
	Model Performance Comparison
	Training Statistics
	Test Statistics
	Absolute Prediction Error
	Generalization
	Relative Prediction Performance

	Limitations and Assumptions

	Future Research
	Specialized CNN Architectures
	FV-CNN
	EfficientNet

	Higher Resolutions
	Multiple Magnification Levels
	Hyper-parameter Refinements
	One-Cycle Learning Rate Scheduling
	Exploring the Hyper-parameter Space

	Parallel Training of Models
	Self-Hosted Servers
	Cloud Servers

	Systematic Comparison of Models and Parameters
	Web Interface

	Conclusion
	References
	Appendices
	Particle Size Taxonomies
	Image Acquisition Protocol
	Initial Hardware Setup
	Calibration
	Capturing Images of Soil Samples

	Soil Sample Images
	AL2019 Index Format
	Computing Resources
	Self-Hosted Computers
	Image Acquisition Computer
	Model Training and Testing Computer
	Development Computers

	Servers and Cloud Computing Resources
	FTP Server
	S3 Cloud Storage
	GitLab

	Virtual Environment
	Source Code
	jFocus
	AL2019Mirror
	AL2019Packager
	DeepSoil

	Excerpt from Presets YAML File

