
McGill University

Learning and evaluating neural
network models for human-machine

communication

by

Ryan Lowe

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Faculty of Science

School of Computer Science, McGill University, Montreal

October 2, 2020

c© Ryan Lowe, 2020

Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

McGill University, Montreal

Abstract
Faculty of Science

School of Computer Science, McGill University, Montreal

Doctor of Philosophy

by Ryan Lowe

In this thesis, I investigate several approaches to training and evaluating ma-

chine learning algorithms, where the ultimate goal is to have the algorithm

interact and communicate with humans (i.e. a dialogue system). I consider two

separate paradigms for producing such agents: supervised learning of dialogue

agents from large text corpora, and multi-agent reinforcement learning for

grounded communication tasks. In this first paradigm, I propose a dataset,

the Ubuntu Dialogue Corpus, which represented one of the first large-scale,

publicly-available datasets in this area. I then train various neural network

models on this dataset to benchmark performance. Next, I conduct an extensive

examination of evaluation metrics for dialogue systems, critiquing existing

metrics based on word-overlap scores and proposing a new method, ADEM,

that learns to evaluate dialogue responses from an evaluation dataset. In the

second paradigm, I develop a new set of environments for multi-agent research

called particle world, and propose a new algorithm called MADDPG that uses

a centralized critic to improve agent performance across a variety of tasks,

including a cooperative emergent communication task. I then examine some

common pitfalls of measuring emergent communication, and propose two cate-

gories of metrics that must both be measured. Finally, I attempt to bridge the

gap between these two paradigms: I investigate how self-play and supervised

learning can be combined to produce effective language learning agents using

an image-based referential game with English captions.

http://www.mcgill.ca
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

Université McGill

Abrégé
Faculté des Sciences

School of Computer Science, Université McGill, Montréal

Doctor of Philosophy

par Ryan Lowe

Dans cette thèse, j’étudie plusieurs approches pour la formation et l’évalua-

tion des algorithmes d’apprentissage, où le but ultime est de faire interagir

l’algorithme avec les humains. Je considère deux paradigmes distincts pour

produire de tels agents : l’apprentissage supervisé d’agents de dialogue à partir

de grands corpus de texte, et l’apprentissage par renforcement multi-agents

pour des tâches de communication ancrées dans une environment. Dans ce

premier paradigme, je propose un ensemble de données, l’Ubuntu Dialogue

qui représentait l’un des premiers ensembles de données à grande échelle ac-

cessibles au public dans ce domaine. Ensuite, je critique plusieus métriques

d’évaluation pour les systèmes de dialogue, et propose une nouvelle méthode,

ADEM, qui apprend à évaluer les réponses du dialogue à partir d’un ensemble

de données d’évaluation. Dans le deuxième paradigme, je développe un nouvel

ensemble d’environnements pour la recherche multi-agents appelé ‘Particle

World’, et je propose un nouvel algorithme appelé MADDPG qui utilise une

critique centralisée pour améliorer les performances des agents à travers une

variété de tâches, y compris une tâche de communication émergente coopérative.

J’examine ensuite certains pièges courants de la mesure de la communication

émergente et propose deux catégories de paramètres qui doivent tous deux

être mesurés. Enfin, j’essaye d’unifier ces deux paradigmes : j’étudie comment

l’apprentissage par renforcement multi-agents et l’apprentissage supervisé

peuvent être combinés pour produire des agents qui apprennent les langues

efficacement.

Contribution to Original Knowledge

This thesis contributes to the understanding of how we might use, and how we

should evaluate, neural network models for human-machine communication.

Specifically, we make the following set of contributions:

1. A dataset for training large-scale dialogue systems, the Ubuntu Dialogue

Corpus, along with benchmarked results from several generative and

retrieval neural network models trained on this dataset.

2. Several analyses of methods for evaluating responses from non-task-

oriented dialogue systems, including:

• an analysis of the correlation of word-overlap and vector-based met-

rics with human judgements;

• a study evaluating human performance on the task of Next Utterance

Classification across two datasets;

• a model that learns to evaluate dialogue responses based on a dataset

of collected human judgements on Twitter.

3. A configurable environment for training and evaluating reinforcement

learning agents in a multi-agent setting, and an algorithm for training

them more efficiently.

4. An analysis of methods for evaluating emergent communication, and a

proposal for how to categorize these metrics.

5. An investigation into how supervised learning can be combined with

self-play to train agents to play an image-based referential game with

natural language.

iii

Contribution of Authors

• Chapters 1 and 2 providing the introduction and background material

for this thesis were written by me, with inspiration from various sources

including the theses of Pierre-Luc Bacon, Phil Bachman, Jiwei Li, and

Jakob Foerster.

• Chapter 3 is based on (Lowe et al., 2017b), which is a journal paper

in Dialogue & Discourse based in turn on earlier results in (Lowe et al.,

2015), a conference paper at SIGDIAL. In the original work, my equal

co-author Nissan Pow and I led the project. Nissan and I wrote the code

for extracting and formatting the Ubuntu Dialogue Corpus, and Nissan

devised and ran the experiments for testing the Dual Encoder model.

Nissan and I analyzed the results, and I wrote the first iterations of the

paper. Iulian Serban and Joelle Pineau provided technical direction and

leadership, and contributed to the writing. In the updated journal version,

I performed additional experiments along with Iulian Serban and Chia-

Wei Liu for the generative models. Rudolf Kadlec and Martin Schmid led

the development of the Ubuntu Dialogue Corpusv2, along with Nissan

and me. I conducted the additional quantitative and qualitative analysis

and wrote the paper, with contributions from Iulian, Joelle, and Laurent

Charlin.

• Chapter 4 incorporates work from several papers, described below.

– Chapter 4.1 is based on the work in (Liu et al., 2016), a conference

paper at EMNLP. My equal co-authors Chia-Wei Liu, Iulian Serban,

Michael Noseworthy and I led the work. Chia-Wei started the in-

vestigation of word-overlap metrics for dialogue evaluation. Iulian,

Michael, and I continued this work with him and we each contributed

significantly to the analysis. Iulian and I wrote the first version of the

paper, with subsequent iterations by all authors including Laurent

Charlin and Joelle Pineau. Laurent and Joelle provided technical

guidance.

iv

v

– Chapter 4.2 is based on (Lowe et al., 2016), a conference paper at

SIGDIAL. I led this work, including designing and performing the

human experiments and writing the paper. Iulian Serban, Michael

Noseworthy, Laurent Charlin, and Joelle Pineau all provided guid-

ance throughout the project and helped with writing.

– Chapter 4.3 is based on the work in (Lowe et al., 2017a), a conference

paper at ACL. I led the initial work, including designing the ADEM

model and performing the core experiments using representations

from a pre-trained VHRED model provided by Iulian Serban. I wrote

the first version of the paper, with help from all co-authors. My

equal co-author Michael Noseworthy helped with the experiment

design, ran many more experiments on the ADEM model to analyze

its performance, and produced the final version of the paper. Nicolas

Angelard-Gontier also ran some experiments and helped with the

analysis. Iulian, Michael, Nicolas, Laurent Charlin, and Joelle Pineau

helped with the technical direction and writing of the paper. Yoshua

Bengio provided ideas and inspiration for some of the project, in-

cluding the idea of learning a discriminator which was ultimately

not included in the final version.

• Chapter 5 originates from a conference paper at NeurIPS (Lowe et al.,

2017c). The project was primarily led by myself, Igor Mordatch, and Yi

Wu. Igor wrote most of the base code for the Particle World environments.

I worked on various algorithms to solve the cooperative communication

task over the course of several months, with Igor and Pieter Abbeel

providing technical direction. Igor came up with the idea of using a

centralized critic in MADDPG and implemented the first version. I ran

most of the experiments and devised most of the tasks in Particle World,

along with Igor. In parallel, my equal co-author Yi Wu implemented and

ran experiments for both the policy ensembles and learning policies of

other agents, and wrote this section of the paper. Yi also came up with

the keep-away environment. Igor and I wrote the rest of the paper with

help from Yi, Pieter, and Aviv Tamar. Aviv also provided some technical

guidance and derived the proof of Proposition 1. Jean Harb helped run

some of the experiments.

vi

• Chapter 6 is based on a conference paper at AAMAS (Lowe et al., 2019).

I led the project, with technical guidance from Yann Dauphin, Y-Lan

Boureau, Jakob Foerster, and Joelle Pineau. I ran the experiments and

wrote the paper, with input from my co-authors along the way.

• Chapter 7 is based on a paper to be presented at ICLR (Lowe et al., 2020).

Jakob Foerster and I had the original idea for how to bridge the gap

from emergent communication to natural language in 2017. My equal

co-author Abhinav Gupta started working on this idea in January 2020,

and I joined him shortly thereafter. Abhinav and I co-led the project,

including devising and running the experiments and writing the paper,

with technical guidance from Jakob, Douwe Kiela, and Joelle Pineau. I

wrote the first version of the paper, with help from Abhinav and the other

co-authors. Abhinav made significant later revisions to the paper. The

paper’s direction was influenced by a meeting with Angeliki Lazaridou at

ICML 2019.

Acknowledgements

First off, I’d like to thank my supervisor, Joelle Pineau, for continually putting

me in positions to succeed, for being a role model for how to conduct scientific

research, and for being extremely kind and patient with me.

I’d also like to thank my collaborators and co-authors for their help in conduct-

ing the research that makes up this thesis: Pieter Abbeel, Nicolas Angelard-

Gontier, Yoshua Bengio, Y-Lan Boureau, Laurent Charlin, Yann Dauphin, Jakob

Foerster, Abhinav Gupta, Jean Harb, Douwe Kiela, Chia-Wei Liu, Igor Mordatch,

Michael Noseworthy, Nissan Pow, Iulian Serban, Aviv Tamar, and Yi Wu, along

with many others at McGill, OpenAI and Facebook AI.

My PhD life slowly split into two separate and yet partially overlapping worlds.

I’m grateful for all my friends from my base in Montreal who made it feel like

home for almost 5 years, including: Phil Bachman, Pierre-Luc Bacon, Emmanuel

Bengio, Genevieve Fried, Neil Ghirdar, Jean Harb, Jad Kabbara, Leo Long, Josh

Romoff, Harsh Satija, and the entire RL Lab, the Allez Up climbing crew,

the McGill Mafia club, Liam Fedus, David Krueger, Tegan Maharaj, Michael

Noukhovitch, Evan Racah, and my other friends at Mila, Mido Assran and the

rest of Facebook AI Montreal, along with Jeff Cai, Sophie Davis, Mathieu Harb,

Evgeny Naumov, and Victor Thibert.

No less important are the people who’ve welcomed me to my new home in

San Francisco and expanded my horizons in exciting and unpredictable ways,

starting with Diogo Almeida, Michael Azorin, Brian and Alexi Basham, Natasha

Jensen, Michael Nagle, Janine Parziale, Sasha Sheng, Morgan Sutherland, Leo

Urbina, Clayton Ward, Alex Warren, and the rest of the beautiful people that

make up the BePo universe, Topos, Starcats, the members of all the board game

crews and improv troupes, Matthias Plappert and my new and old friends at

OpenAI, and of course the entire gold group and ESF family who each have a

special place in my heart.

There are many friends and machine learning colleagues who don’t fit neatly

into these categories who have added joy to my life over the past few years.

A special shout-out goes to the entire CBN crew, as well as David Krueger,

Jan Leike, Jelena Luketina, CFAR, and others who slowly nudged me towards

working on AI safety.

vii

viii

Finally, I’m grateful for my entire family, especially my parents, Tom and Lynn,

and my brother Rourke. They’ve been my staunchest cheerleaders for a long

time. Love you guys.

Contents

Abstract i

Abrégé ii

Contribution to Original Knowledge iii

Contribution of Authors iv

Acknowledgements vii

1 Introduction 1
1.1 Motivation . 1
1.2 Setting the stage . 2
1.3 Focus of this thesis . 4

1.3.1 Dialogue systems and emergent communication 4
1.3.2 Learning and evaluation . 5
1.3.3 Research questions . 7

1.4 Preview of results . 8

2 Technical background 11
2.1 Supervised learning . 11
2.2 Artificial neural networks . 12

2.2.1 Feed-forward neural networks 12
2.2.2 Recurrent neural networks 13
2.2.3 Training via backpropagation 14
2.2.4 Long short-term memory units 15

2.3 Language modeling with neural networks 16
2.3.1 Language modeling . 16
2.3.2 Neural language models . 17
2.3.3 Encoder-decoders . 19

ix

Contents x

2.4 Dialogue systems . 19
2.4.1 Task-oriented vs. non-task-oriented dialogue systems . . 20
2.4.2 Retrieval vs. generative dialogue systems 21
2.4.3 Modular vs. end-to-end dialogue systems 22

2.5 Reinforcement learning . 24
2.5.1 Markov Decision Processes (MDP) 24
2.5.2 Partially Observed Markov Decision Processes (POMDPs) 25
2.5.3 Q-Learning and Deep Q-Networks (DQN). 25
2.5.4 Policy Gradient (PG) Algorithms. 26
2.5.5 Deterministic Policy Gradient (DPG) Algorithms. 26

2.6 Multi-agent RL . 27
2.6.1 Markov games . 27
2.6.2 Extension to communication games 28
2.6.3 Centralized vs. decentralized learning and execution . . . 28

I Learning and evaluating dialogue systems 30

3 Training end-to-end dialogue models with the Ubuntu Dialogue Cor-
pus 31
3.1 Motivation . 31
3.2 Related work: Learning architectures for end-to-end dialogue

systems . 33
3.3 The Ubuntu Dialogue Corpus . 35

3.3.1 Motivation . 35
3.3.2 Ubuntu Chat Logs . 36
3.3.3 Dataset Creation . 37

3.3.3.1 Recipient Identification 38
3.3.3.2 Utterance Creation 38
3.3.3.3 Special Cases and Limitations 39

3.3.4 Dataset Statistics . 40
3.3.5 Test Set Generation . 40

3.4 Response Classification Architectures 42
3.4.1 TF-IDF . 43
3.4.2 Dual Encoder . 44
3.4.3 Evaluation Metrics . 46

Greedy Matching . 47
Embedding Average 47
Vector Extrema . 48

3.4.4 Experimental Results . 48
3.4.5 Qualitative Error Analysis 50

3.5 Generative Response Architectures 56
3.5.1 Generative Recurrent Neural Language Model 57
3.5.2 Hierarchical Recurrent Encoder-Decoder 57
3.5.3 Experimental Results . 59

Contents xi

3.5.4 Examples of Generated Responses 60
3.6 Discussion . 62

3.6.1 Conversation disentanglement 62
3.6.2 Drawbacks of end-to-end dialogue systems 63
3.6.3 Dialogue evaluation . 63

Existing evaluation metrics 64
Next utterance classification 65

3.6.4 Future Research Directions for End-to-End Systems 66
3.6.5 Reflecting on the Ubuntu Dialogue Corpus 68

4 Analyzing evaluation methods for dialogue systems 70
4.1 A critique of word overlap-based evaluation metrics 71

4.1.1 Motivation . 71
4.1.2 Evaluation Metrics . 72

4.1.2.1 Word Overlap-based Metrics 72
BLEU . 73
METEOR . 74
ROUGE . 74

4.1.2.2 Embedding-based Metrics 74
4.1.3 Dialogue Response Generation Models 75

4.1.3.1 Conclusions from an Incomplete Analysis 76
4.1.4 Human Correlation Analysis 77

Data Collection . 77
Survey Results . 79
Qualitative Analysis 80

4.1.5 Discussion . 81
Constrained tasks . 81
Incorporating multiple responses 82
Searching for suitable metrics 82

4.2 A human study of next utterance classification 83
4.2.1 Motivation . 83
4.2.2 Related Work . 84
4.2.3 Technical Background on NUC 85
4.2.4 Survey Methodology . 86

4.2.4.1 Corpora . 86
4.2.4.2 Task description 88
4.2.4.3 ANN model . 88

4.2.5 Results . 89
4.2.6 Discussion . 91

4.3 Learning to evaluate dialogue responses 91
4.3.1 Motivation . 91
4.3.2 Data Collection . 92
4.3.3 An Automatic Dialogue Evaluation Model (adem) 93

Pre-training with VHRED 95

Contents xii

4.3.4 Experiments . 96
4.3.4.1 Experimental Procedure 96
4.3.4.2 Results . 97

Utterance-level correlations 97
System-level correlations 98
Generalization to previously unseen models 99
Qualitative Analysis 99

4.3.5 Related Work . 100
4.3.6 Discussion . 102

4.3.6.1 The problem of human appropriateness ratings . 102
4.3.6.2 Evaluating full conversations 103
4.3.6.3 Reflecting on ADEM 103

II Learning and evaluating emergent communication 105

5 Centralized critics improve emergent communication and multi-agent
learning 106
5.1 Motivation . 106
5.2 Related Work . 108
5.3 Background: High variance of policy gradient algorithms 110
5.4 Methods . 112

5.4.1 Multi-Agent Actor Critic 113
5.4.2 Inferring Policies of Other Agents 114
5.4.3 Agents with Policy Ensembles 115

5.5 Experiments . 115
5.5.1 Environments . 115
5.5.2 Comparison to Decentralized Reinforcement Learning

Methods . 118
5.5.3 Effect of Learning Polices of Other Agents 121
5.5.4 Effect of Training with Policy Ensembles 121

5.6 Discussion . 122

6 The pitfalls of measuring emergent communication 123
6.1 Motivation . 123
6.2 Emergent communication metrics 125

6.2.1 A categorization of metrics 125
6.2.2 What metrics are being used now? 126

Reward and task completion 126
Qualitative analysis of messages given states 127
Speaker consistency 127
Context independence 128
Entropy of message distribution 128
Instantaneous coordination 129

6.2.3 Causal influence of communication 130

Contents xiii

6.3 Experimental setup . 130
6.3.1 Matrix Communication Games 130
6.3.2 Model and learning algorithm 131

6.4 Results . 132
6.4.1 Positive signaling with random payoffs 132

Fixed R setting . 132
Randomized R setting 133

6.4.2 Positive signaling 6=⇒ positive listening 135
Why is the SC positive? 136
Why aren’t the agents using the messages? 137

6.4.3 Results in the iterated MCG setting 137
6.5 Discussion . 138

6.5.1 How general is this analysis? 138
Positive signaling without positive listening 138
Scaling causal influence 139

6.5.2 Recommendations . 139
Detecting emergent communication 139
Measuring improvement in communication 141

7 Bridging the gap from emergent communication to natural language 142
7.1 Motivation . 142
7.2 Related work . 144
7.3 Methods . 145

7.3.1 Problem definition . 145
7.3.2 Supervised Self-Play (S2P) 146
7.3.3 Algorithms for S2P . 147
7.3.4 Population-based S2P (Pop-S2P) 148

7.4 Environments & implementation details 149
Environment 1: Object Reconstruction (OR) 149
Environment 2: Image-Based Referential game

with natural language (IBR) 150
7.5 Experiment 1: Do supervised learning before self-play 152

(1) Emerging a language is hard. 152
(2) Emergent languages are different than natural

language. 153
(3) Starting with self-play violates constraints. . . . 154

7.6 Experiment 2: Population-based approaches improve S2P 155
7.7 Experiment 3: Examining S2P schedules 155

Parameter freezing improves S2P 156
Self-play acts as a regularizer 156

7.8 Discussion . 157

8 Conclusion 158
8.1 Summary of contributions . 158

Contents xiv

8.2 Limitations . 159
8.3 Directions for future work . 161

Bibliography 164

Chapter 1

Introduction

1.1 Motivation

Communication between humans and machines has long been a fascination of

both artificial intelligence (AI) researchers and the general public. Indeed, build-

ing systems that can naturally and meaningfully communicate with humans

has been a central goal of AI since the formulation of the Turing test (Turing,

1950). The creation of the first chatbot, ELIZA, by Joseph Weizenbaum in

1966 spurred further excitement in computers that can have conversations with

humans (Weizenbaum, 1966). Despite only consisting of a few rules that mostly

parroted back the users’ input (in the form of a Rogerian psychotherapist),

ELIZA was nonetheless able to deceive some interlocutors at the time into

thinking it was human (Colby et al., 1972).

In the last decade, conversational systems (also known as dialogue systems) have

moved from idle curiosity to become increasingly prevalent in commercial

applications. Major software companies are now developing chatbots that

interact with millions of people. For example, Microsoft has developed a bot,

called Xiaoice, which holds regular conversations with tens of millions of users

in China and around the world (Markoff and Mozur, 2015). More recently,

Google has created a product called Duplex that makes voice calls to businesses

ranging from restaurants to hair stylists in order to make reservations, book

movie tickets, and perform other tasks for human users (Chen and Metz, 2019).

Chatbots are even showing promise in mental therapy applications (Brodwin,

2018).

1

Contents 2

Moving forward, language promises to be an important component to develop-

ing increasingly capable AI systems. Language allows humans to communicate

their intentions, disseminate knowledge, and ask questions to learn about the

world. Similarly, we would like AI systems to be able to receive instructions,

request clarification, and share information with humans. This will become

increasingly true as AI systems become more powerful and present in our

everyday lives. Thus, it seems imperative that we teach these machines to

communicate via human language so that they can be integrated productively

and safely into our society.

1.2 Setting the stage

To further motivate the research questions tackled in this thesis, we briefly

describe the state of research on dialogue systems and deep neural networks

applied to natural language processing (NLP) in 2015, the year in which the

research that makes up this thesis commenced.

Prior to 2015, the landscape of dialogue systems contained few deep neural

networks. Most dialogue systems were modular, in that they were composed of

a set of modules each trained roughly independently using a separate objective

function. This contrasts with the end-to-end approach to training dialogue

systems, where all of the parameters of the model are trained with a single

objective function. This is often accomplished by using a single neural network

to replace all of the modules in a modular system (see a more detailed discussion

of modular dialogue systems in Chapter 2).

While there has been significant work on implementing and testing modular

systems in a variety of domains (Wen et al., 2016), research on modular dialogue

systems can also focus on optimizing the performance of individual modules.

For example, dialogue state tracking is the task of predicting a user’s goal as

the dialogue progresses (Nagata and Morimoto, 1994; Young, 2000; Williams

et al., 2013). This is usually done by collecting a dataset of goal annotations

for a certain domain (say, movie ticket booking), and training models via

supervised learning to predict these annotations. In 2015, dialogue state tracking

was a major component of dialogue research, as exemplified by the Dialogue

State Tracking Challenges (DSTC), a sequence of research competitions to

Contents 3

determine the state-of-the-art state trackers (Williams et al., 2013; Kim et al.,

2017; Henderson et al., 2013). The DSTC was held 5 times between 2013 and

2016, before being re-branded as the Dialogue System Technology Challenge

to encapsulate a broader range of dialogue-related tasks. Around this time,

dialogue systems research was most successful on small, well-defined datasets,

such as restaurant and movie booking, and public transportation information

(Williams et al., 2014; Wen et al., 2016).

Concurrently, neural network models were starting to gain traction on a variety

of hard supervised learning problems. For example, neural networks were

becoming useful on tasks such as speech recognition (Hinton et al., 2012), object

recognition (Krizhevsky et al., 2012), and machine translation (Bahdanau et al.,

2014; Cho et al., 2014), as well as in game-playing tasks (Mnih et al., 2015)

with reinforcement learning. In many of these domains, neural networks were

approaching or exceeding the previous state-of-the-art.

In most of these cases, neural networks were being applied differently than via

a set of distinct modules described above for dialogue. Rather than deciding

beforehand which components their system needed, researchers would instead

simply define the desired input and output of their system and model it in

its entirety with a single neural network. This simple end-to-end approach

has proven to be surprisingly powerful performance-wise, and has the added

benefit of not requiring labeled data for each sub-component of the system. The

success of these large neural network-based approaches gave rise to a new term

to describe them, called deep learning (LeCun et al., 2015). Although most of the

tools of deep learning were invented several decades earlier (Rumelhart et al.,

1988; Elman, 1990; LeCun et al., 1998; Hochreiter and Schmidhuber, 1997), the

era of deep learning was distinguished by a dramatic increase in the available

data and compute (Amodei and Hernandez, 2018), and some new techniques to

train neural networks efficiently (Glorot and Bengio, 2010; Glorot et al., 2011).

In the beginning of 2015, when the research that makes up this thesis was

started, modern deep learning techniques had not yet been applied to learning

dialogue models. However, the idea was ‘in the air’: many papers would come

out later that year on the subject from a variety of research labs (Sordoni et al.,

2015b; Shang et al., 2015; Vinyals and Le, 2015; Serban et al., 2016; Li et al.,

2015). The work in this thesis, starting from (Lowe et al., 2015), tracks some

of the evolving thought in our understanding of models for human-machine

Contents 4

communication: from supervised learning on dialogue datasets, to grounded

language learning via emergent communication, and finally to a modern take

on bridging the gap between these perspectives.

1.3 Focus of this thesis

In this thesis, we investigate neural network models for producing agents that

can communicate with humans, and study how to evaluate them. We tackle

this problem from two different perspectives: supervised learning of dialogue

agents from large English text corpora, and training agents to communicate

from scratch in simulated environments via emergent communication. In this

thesis, for pragmatic reasons we will refer to the communication protocol used

by either humans or artificial agents as a ‘language’, while remaining agnos-

tic to the philosophical and linguistic question of whether emerged artificial

communication protocols can be considered a true ‘language’.

In this section, we discuss the motivation for studying both dialogue systems

and emergent communication, and our focus on both learning and evaluation.

We conclude with a list of research questions investigated in the following

chapters.

1.3.1 Dialogue systems and emergent communication

A natural way for humans to communicate with machines is through language.

After all, this is how most humans communicate with each other. The study

of how to build artificial systems that interact with humans through natural

language has long been the purview of the field of dialogue systems. Much of

this thesis is focused on building dialogue systems by training neural networks

on large-scale dialogue corpora.

However, the reason that language is useful for humans is that we can use it

to accomplish tasks in our environment. That is, words in a language aren’t

just abstract entities but refer to things in the real world. This is the notion

of grounding, which has been much discussed in the literature on linguistics,

natural language processing (NLP), and other fields (Siskind, 1994; Mikolov

Contents 5

et al., 2016; Gauthier and Mordatch, 2016; Steels, 2012; Glenberg and Kaschak,

2002). While training neural networks to imitate human dialogue on large

text corpora can result in models that generate plausible English, they are not

grounded in the sense that they do not refer to any external world other than

the language itself.

An alternate approach to training agents to learn language is to place them in an

environment with other agents, where the objective is to solve a particular task

requiring communication between agents. In this scenario, language (usually

through the form of a dedicated, discrete communication channel) is one of

many tools that agents can use to solve problems in their environment. Since

in this setting agents must often develop a language to solve a task from

scratch, we refer to this set of approaches as emergent communication. Work

on simulated language emergence has a long history (Murray, 1999; Steels,

2012; Wagner et al., 2003). More recent work on emergent communication uses

reinforcement learning (RL) to maximize the environment reward, with agents’

policies represented by neural networks (Sukhbaatar et al., 2016; Foerster et al.,

2016; Jaques et al., 2018a; Lazaridou et al., 2018). The motivation for using

emergent communication as a testbed for developing language learning agents

was recently articulated in (Gauthier and Mordatch, 2016).

In this thesis, we make contributions to both the ‘supervised learning from

large-scale dialogue datasets’ and ‘emergent communication in grounded envi-

ronments’ approaches to teaching machines language. In Chapter 7, we show

how these two approaches can be complementary, and potentially combined.

We also discuss our current perspective on the strengths and weaknesses of

these two paradigms in Chapter 8.

1.3.2 Learning and evaluation

The goal of this thesis is to make contributions to the field’s understanding

of human-machine communication, through the lens of large-scale dialogue

modeling and emergent communication. Part of these contributions come from

developing and designing models and learning algorithms to solve various

tasks. This style of contribution makes up the bulk of Chapters 3, 5, and 7.

Focusing on developing better learning algorithms is important, as it’s the main

Contents 6

way the field makes progress to solving increasingly interesting and relevant

problems.

But in this thesis we also place significant focus on proposing new datasets and

environments and understanding and improving evaluation methods. Specifically,

the focus of Chapters 4 and 6 is on the evaluation of dialogue systems and

emergent communication, respectively, and we also propose a new dialogue

dataset (the Ubuntu Dialogue Corpus) in Chapter 3 and a new multi-agent

environment (Particle World) in Chapter 5.

In the era of deep learning (LeCun et al., 2015), data (along with compute)

are among the most crucial factors driving progress. For example, the historic

ImageNet dataset (Deng et al., 2009) became a focal point for computer vision

researchers, and led to the development of large-scale convolutional neural

networks (Krizhevsky et al., 2012) which sparked the recent wave in neural

network applications. Thus, work on large-scale datasets often ends up being

more useful than work on improving models, as without a suitably large task-

relevant dataset it is often difficult for large-scale neural networks to make

much progress. More generally, the set of datasets available in a given sub-field

shapes how researchers think about the problem they are tackling, and the

types of approaches they consider.

The state of dialogue systems research in early 2015 was marked by a dearth

of large-scale datasets that were publicly available; the first efforts to apply

neural networks to train a dialogue model end-to-end used mostly proprietary

datasets (Vinyals and Le, 2015). The Ubuntu Dialogue Corpus, which we

proposed in (Lowe et al., 2015) and detail in Chapter 3, was among the first

large-scale publicly available datasets for training dialogue models, and in

retrospect helped kick-start the surge in dialogue research with end-to-end

neural network models of the past few years. Our Particle World environment

(Lowe et al., 2017c) has also seen significant use in multi-agent RL research.

Thus, we consider new datasets and environments to be an important part of

this thesis’ contributions.

However, large datasets are useless without an appropriate way to measure

performance that correlates with the behaviour we actually care about. We

therefore dedicate a significant portion of this thesis to the study of evaluation

metrics for benchmarking performance. Evaluation is particularly difficult in

Contents 7

chitchat-style dialogue systems, where the question of what makes a ‘good’

dialogue is very open ended. In cases where evaluation metrics diverge from

the actual desired characteristics of a model (for example, usefulness on a

downstream task), improving a model according to these metrics is not helpful

and simply adds noise to the field.

It is often the case that evaluation metrics used to measure progress in a field

turn out to correlate poorly with the desired model behaviour. For example,

there have been challenges in evaluating generative models of images, and it has

been shown that Parzen window estimates (once used to evaluate generative

model quality) exhibit undesirable properties, such as giving higher scores to

model samples than actual images from the dataset (Theis et al., 2015). Detecting

these irregularities is important for the overall health of a field, especially since

evaluation metrics determine which models are considered state-of-the-art,

which in turn informs many researchers’ decisions on what ideas to pursue.

One of our most important contributions in this thesis is from (Liu et al., 2016)

(detailed in Chapter 4.1), where we provide evidence that the BLEU score (and

other word overlap-based metrics) correlate poorly to human judgements of

dialogue response quality. This is important because BLEU was previously the

most commonly used evaluation metric for chit-chat dialogue systems using

neural networks — our work helped seed more recent work on methods to

evaluate dialogue systems (Tao et al., 2018), although the problem remains

unsolved.

1.3.3 Research questions

In this section, we list the main research questions that are tackled in this thesis.

In Part I, we address the following questions:

• How can we build end-to-end dialogue systems using neural networks?

(Chapter 3)

• What kinds of errors do these models make? (Chapter 3)

• How well do existing automatic evaluation metrics in dialogue correlate

with human judgements? (Chapter 4.1)

Contents 8

• Can we create better automatic evaluation metrics for dialogue? (Chapters

4.2-4.3)

In Part II, we ask the following questions:

• How can we improve multi-agent RL algorithms to get them to solve some

simple emergent communication tasks? (Chapter 5)

• How should we be evaluating emergent languages? (Chapter 6)

• How can we bridge the gap between work on language learning from

supervised datasets and emergent communication? (Chapter 7)

We provide a preview of some of our results in the next section, give more

detailed answers throughout the thesis, and end with a summary and extended

discussion in Chapter 8.

1.4 Preview of results

This thesis is divided into two parts. In Part I (Chapters 3-4), we investigate

methods for training and evaluating dialogue systems trained on large datasets.

In Part II (Chapters 5-7) we detail work on emergent communication and multi-

agent reinforcement learning. At the end of Part II, we describe how these two

frameworks could fit together.

We first present necessary background information referenced throughout the

thesis in Chapter 2. In Chapter 3, we introduce the Ubuntu Dialogue Corpus,

which at the time of its release was among the first large-scale dialogue datasets

that was publicly available. We use this dataset to train a variety of end-to-end

dialogue models using neural networks, along with some baseline models.

We consider both retrieval models, which are trained to select the correct next

response of a conversation from a list of candidates, and generative models that

are trained to generate a response conditioned on the context. When evaluating

these models on the task of next utterance classification (NUC), a retrieval-based

metric, we find that the (at the time) state-of-the-art models, the LSTM dual

encoder (DE) and hierarchical recurrent encoder-decoder (HRED), outperform

Contents 9

the baselines on all metrics. We also conduct a qualitative analysis to determine

the main sources of errors for the DE model, and find that the most common

errors are a lack of understanding of the semantics of the responses, indicating

that these models are not close to solving a domain as complex as Ubuntu.

In Chapter 4, we analyze various approaches to evaluating dialogue systems.

First, in Section 4.1, we critique commonly used word overlap-based metrics,

such as BLEU and ROUGE, as well as vector-based metrics. Specifically, we

find that these metrics do not correlate well with human judgements on the

Twitter and Ubuntu datasets. In Section 4.2, we conduct a human study of

a retrieval-based task that we call next utterance classification (NUC), and

find that humans outperform state-of-the-art (at publication time) machine

learning models on Twitter and Ubuntu, suggesting that the task is useful for

benchmarking progress of dialogue systems. Finally, in Section 4.3 we propose

to learn a dialogue evaluation model to predict human judgements of Twitter

dialogues. We find that our model, which we call ADEM, performs well on our

test set (in terms of correlating with human judgements) and even generalizes to

models that it hasn’t been trained on. However, more recent evidence suggests

that ADEM does not generalize to other subsets of Twitter data, perhaps due to

the bias in the data collection procedure. Finding automatic evaluation metrics

that correlate well with human judgements remains an important area of future

work.

We begin Part II by describing a new multi-agent reinforcement learning (RL)

algorithm for improved emergent communication in Chapter 5. Specifically, we

propose an actor-critic method where the critic, which is trained to evaluate the

expected value of an agent’s action, is given information from all agents during

training time. To test our algorithm, we also propose a new benchmark for multi-

agent learning called Particle World, which consists of small environments with

simulated physics where agents (represented as circles) can carry out simple

tasks. We find that our algorithm leads to significant performance gains on

several environments in our Particle World, including a simple cooperative

communication task where an agent needs to signal the color of a landmark to

another agent, which we found challenging to solve with other methods.

We turn our focus in Chapter 6 to the evaluation of emergent communication.

Specifically, we aim to provide a set of evaluation tools for detecting and mea-

suring emergent communication. To aid our analysis, we categorize emergent

Contents 10

communication metrics into those that measure positive signaling (whether the

agent is sending messages that are related to its observation or action), and

those that measure positive listening (whether the agent’s messages are affect-

ing the behaviour of other agents). Both of these properties are desirable for

communicative agents, since we want them to speak about their environment

and react to what others are saying. In the chapter, we first find that positive

signaling can emerge without positive listening. Then, we describe a family of

metrics (some existing, some novel) according to whether they measure positive

signaling or positive listening. In particular, we note that many existing metrics

and analyses did not detect the presence of positive listening.

Finally, in Chapter 7 we address how we might bridge the gap between the

work on emergent communication in Part II, and the work on natural language

dialogue in Part I. Specifically, we investigate how to combine two categories of

training signals: imitating human data via supervised learning, and self-play

to maximize reward in a multi-agent environment (the training signal used in

most work on emergent communication). We find evidence that, contrary to

our initial assumption, it is not beneficial to emerge a language from scratch

and subsequently fine-tune on human data. Rather, it is best to start with

learning from human data, and schedule intermittent self-play updates. We

provide three reasons for why this could be the case, and study various learning

schedules in an image-based referential game with natural language. We also

propose a population-based method in this setting that leads to improved

performance.

We conclude in Chapter 8 with a summary of our contributions, and a candid

discussion of the strengths and limitations of this line of work. Specifically,

we highlight that this thesis only begins to address the questions surrounding

how to incorporate methods from large-scale dialogue modeling and emergent

communication. We reflect on this and other interesting future directions, most

notably the use of very large-scale language modeling and how it interacts with

having agents use language to accomplish tasks in situated environments that

may contain objects and even other agents.

Chapter 2

Technical background

In this section, we review the fundamentals required for understanding the

contributions of this thesis, including artificial neural networks, sequence-

to-sequence generation, dialogue systems, reinforcement learning (RL), and

multi-agent RL.

2.1 Supervised learning

We first briefly review the paradigm of supervised learning. In supervised

learning, the goal is to learn a target function f ∗ : X → Y , using experience

sampled from a dataset DXY . DXY usually consists of (input, output) pairs of

the form (x, y), x ∈ X , y ∈ Y . To do this, the learning algorithm is tasked with

minimizing a scalar loss function L(Dxy, f), where f is the function learned by

the learning algorithm to approximate f ∗.

Two prominent forms of supervised learning that we will be using throughout

this thesis are classification and regression. In classification, the target function f ∗

has the form f ∗ : Rn → {1, ..., k}. In other words, f ∗ maps from a real-valued

vector x ∈ X to a set of k discrete categories y. An example classification task is

object recognition, where the input x is an image and the output y is a numeric

code identifying the object in the image. Language modeling, described in

Section 2.3 and used frequently throughout this thesis, is also a classification

task.

11

Contents 12

In regression problems, on the other hand, the target function f ∗ : Rn → R

maps from a vector x ∈ X to a scalar numerical value. An example regression

task is predicting tomorrow’s temperature, given the temperature and other

weather conditions from the previous week.

2.2 Artificial neural networks

2.2.1 Feed-forward neural networks

Deep feed-forward neural networks, often called multi-layer perceptrons (MLPs),

are a fundamental building block of deep learning research, and they are

useful for a wide variety of supervised learning problems (Ivakhnenko and

Lapa, 1966; Schmidhuber, 2015; Goodfellow et al., 2015). The goal of an MLP

is to approximate a function f ∗(x) = y with a learned non-linear function

f (x; θ), where x ∈ Rk are the inputs and y ∈ Rl are the labels for some

dataset, and θ are the parameters of the MLP. An MLP has multiple layers

in the sense that it is formed from the composition of multiple functions, i.e.

f (x) = f (n)(f (n−1)(· · · f (1)(x)) · · ·)) for a network with n layers. The final layer

f (n) is often called the output layer, while layers f (1), . . . , f (n−1) are called hidden

layers as there is no target for the output of these layers.

When using MLPs in practice, a very standard formulation is used for each

layer f (i) in the network: f (i)(x) = g(W[i] · x + b[i]) where W[i] is a matrix of

real-valued parameters, b[i] is a vector-valued bias (W[i] and b[i] are learned

separately for each layer), and g(·) is a non-linear activation function. Usually,

a single fixed activation function g(·) is chosen and used throughout the

network. Popular choices for g(·) include the hyperbolic tangent function

tanh = e2x−1
e2x+1 , the sigmoid function σ(x) = 1

1+e−x , and the rectified linear

unit (ReLU) ReLU(x) = max(0, x) (Glorot et al., 2011; Goodfellow et al., 2015;

Schmidhuber, 2015).

The output layer of a neural network depends on the task. For regression

tasks, where the goal is to predict a real-valued outcome, the final layer is often

linear, omitting g(·): f (n)(x) = W · x + b. For classification tasks where each

output neuron represents a class, a softmax distribution is often used for the

Contents 13

Figure 2.1: A computation graph of an RNN; the unrolled RNN is shown on
the right. Figure modified from (Goodfellow et al., 2015).

non-linearity: so f tmax(x) = exj

∑j exj where the sum in the denominator is taken

over all of the neurons in the output layer (i.e. over all classes).

2.2.2 Recurrent neural networks

Recurrent neural networks (RNNs) augment feed-forward neural networks

with feedback loops. Most often, these are self loops from hidden neurons to

themselves and to other neurons in the same layer (Elman, 1990; Jordan, 1990).

The idea is that we want to be able to model data that is correlated in time, and

does not follow the independent and identically distributed (i.i.d.) assumption.

This can take the form of sequences of input data x1, . . . , xm.

The addition of feedback loops to the hidden units of an MLP can be thought

of as forming a hidden state of the network h(x), corresponding to the vector of

activations (value after the non-linearity) of the hidden neurons, that evolves

over time as we present inputs to the network. The hidden state is updated at

each time step according to some function fh: ht = fh(ht−1, xt). A crucial point

is that the parameters of f (·) are the same for all time steps. More specifically,

an RNN is governed by the following update equations at time t:

ht = g(Wht−1 + Uxt + b) (2.1)

ot = so f tmax(Vht + c) (2.2)

where W is the hidden-to-hidden matrix of parameters, U is the input matrix,

V is the output matrix, b is the hidden state bias and c is the output bias. The

most common non-linearity g(·) used in RNNs is the tanh function.

Contents 14

The configuration of RNNs can be modified to fit a wide variety of tasks. For

example, an RNN with a single output layer at the last time step can be used to

make a categorical prediction when taking sequential data as input, such as in

sentiment analysis (Tang et al., 2015). An RNN can also be used as a language

model, as described in the next section.

2.2.3 Training via backpropagation

We have described the basic architecture of MLPs and RNNs, and how they

produce outputs given some input. Neural networks are almost always trained

to minimize some (usually differentiable) loss function with gradient descent

on the parameters. This is applied to neural networks using the backpropagation

algorithm.

Backpropagation (Rumelhart et al., 1988), often called backprop, is an algorithm

that describes how to update the parameters θ of a neural network to minimize

a loss function L with gradient descent. It is essentially an application of the

chain rule: for each computation layer f (i)(x) = g(Wix + bi) that composes a

neural network, the gradients are calculated by taking first taking the gradient

of the output of layer f (i) in the network with respect to the loss, and then

taking the gradient of the output of this layer with respect to the parameters

θi = {Wi, bi}:

∇θiL =
∂L

∂ f (i)
∇θi f (i) =

∂L
∂ f (n) ∏

j=i:n−1

∂ f (j+1)

f (j)
∇θi f (i). (2.3)

The parameters θi are then updated a small distance in the direction of the

negative of the gradient, as determined by a learning rate α:

θi ← θi − α∇θiL. (2.4)

Recurrent neural networks are most often trained using the backpropagation

through time (BPTT) algorithm (Werbos, 1990). This is the same as the usual

backpropagation algorithm, but the gradient of the hidden state at each time

step additionally considers the gradient of the hidden state at the next time

step. BPTT can also be seen as normal backpropagation on the unrolled RNN

computation graph in Figure 2.1.

Contents 15

2.2.4 Long short-term memory units

One problem that arises when applying BPTT to RNNs is that the gradients

to earlier parts of the network can become arbitrarily small or large. This is

because the hidden-to-hidden weight matrix W is the same at every time step,

and this matrix gets multiplied iteratively (via the chain rule) to calculate the

gradient at earlier time steps (Hochreiter, 1991; Bengio et al., 1994; Hochreiter

et al., 2001). By analogy with scalar numbers, if you take a number and multiply

it by another number k ∈ R>0 a large number of times, the resulting number

will either become exponentially large (if k > 1) or exponentially small (if

0 < k < 1). In the case of BPTT, W plays the role of k, and the gradient will

become very large or small depending on the spectral radius of W (Pascanu

et al., 2013).

One way to alleviate this problem in RNNs is by introducing long short-term

memory units (Hochreiter and Schmidhuber, 1997). LSTMs augment RNNs

with a cell state, which stores information from previous time steps, and a set

of multiplicative gates that determine how much information is written and

forgotten from the cell state at each time step. The cell state allows the LSTM to

propagate gradient information further back in time (so long as information

from earlier time steps was kept on the cell state), as backpropagation through

the cell state requires a number of matrix multiplications that’s constant in the

number of time steps.

More formally, given a sequence of input data x1, ..., xm (with each x ∈ R), an

LSTM contains at each step an input gate it, a forget gate ft, and an output gate

ot. The cell state at time t is denoted ct. Then the hidden state (used to calculate

the output of the network) ht is calculated as follows:

it = σ(W i · [ht−1, xt]) (2.5)

ft = σ(W f · [ht−1, xt]) (2.6)

ot = σ(Wo · [ht−1, xt]) (2.7)

lt = tanh(W l · [ht−1, xt]) (2.8)

ct = ft · ct−1 + it · lt (2.9)

ht = ot · tanh(ct) (2.10)

Contents 16

where σ is the sigmoid function, W i, W f , Wo, W l ∈ Rn×2n, · represents the

element-wise dot product between two vectors, [a, b] represents the concatena-

tion of vectors a and b, and lt can be interpreted as the information from the

input and hidden state that is to be ‘written’ to the cell state ct.

Although LSTMs were originally proposed in (Hochreiter and Schmidhuber,

1997), they have stood the test of time and have seen significant use in a variety

of deep learning applications, such as phoneme classification, (Graves and

Schmidhuber, 2005), handwriting synthesis (Graves, 2013), machine translation

(Sutskever et al., 2014; Cho et al., 2014), image captioning (Xu et al., 2015),

polyphonic music modeling (Chung et al., 2014), and others. In fact, although

there have been several LSTM variants that have been proposed with different

gating arrangements (Cho et al., 2014), these modifications do not consistently

outperform the original LSTM architecture across all tasks (Greff et al., 2015).

2.3 Language modeling with neural networks

After having described the basic architecture of neural networks, we now briefly

describe how they can be applied to the task of language modeling, as this forms

the basis of work on generative neural dialogue models.

2.3.1 Language modeling

Language modeling is the task of predicting the next word in a sequence,

given the previous words. Variants of language modeling have been used in a

wide variety of NLP tasks, from speech recognition (Jelinek, 1990) to machine

translation (Jozefowicz et al., 2016).

More concretely, given a sequence x = {x1, ..., xm}, in language modeling

we decompose the joint probability over all sequences p(x) into a product of

conditional probabilities:

p(x) =
m

∏
t=1

p(xt|x1, ..., xt−1). (2.11)

Contents 17

Different language modeling methods vary in how they model the conditional

probabilities p(xt|x<t). One of the simplest and most common approaches

is called n-gram modeling, which uses a simple statistical count to predict

the probability of the next token given the n− 1 preceding tokens. N-gram

language models, and more complex variants that incorporate smoothing, have

historically seen frequent use (Kneser and Ney, 1995; Rosenfeld, 2000; Federico,

1996). However, n-gram models are limited as they require significant memory

(the number of n-grams grows exponentially in the number of words in the

vocabulary), consider only a very limited context window, and suffer from data

sparsity issues.

2.3.2 Neural language models

Another way to approximate the conditional probability p(xt|x<t) is using a

neural network. To do this, one usually represents each word xt as a vector

xt ∈ Rk. A commonly used vector representation for words is one-hot vectors,

where each xt has dimension equal to the size of the vocabulary |V|, and consists

of all 0 entries except for a single 1 corresponding to the numerical index of

word xt. Using a feed-forward network, one can then take the previous n tokens

as input, and output a softmax distribution over all words in the vocabulary.

This was first attempted in (Bengio et al., 2003), and it helps overcome the

problems of memory (since only the parameters of the neural network need to

be stored) and data sparsity (as the model can learn to associate similar words).

However, the length of context that can be considered is limited by the width of

the input of the network.

The data sparsity issue can be further alleviated by using dense pre-trained word

vectors as inputs, as opposed to one-hot vectors the size of the vocabulary.

These word vectors, also called word embeddings, are commonly trained in an

unsupervised way by leveraging distributional semantics, the idea that “you

can know a word by the company it keeps” (Firth, 1957). There have been a

wide variety of approaches to learning pre-trained word embeddings, the most

popular being word2vec (Mikolov et al., 2013a), Glove (Pennington et al., 2014),

and, more recently, innovations in contextual word embeddings (Peters et al.,

2018).

Contents 18

Figure 2.2: Diagram of an RNN language model in the dialogue domain. If the
RNN used to produce the context representation (left) and the RNN used to
decode the next sentence (right) have different parameters, then this becomes

an encoder-decoder architecture (described in Section 2.3.3).

To allow for longer contexts, language models can be implemented using a

recurrent neural network, which we call an RNN language model (RNN-LM)

(Mikolov et al., 2010). The model observes the sentence word-by-word and

updates its hidden state ht at time step (word index) t. Given a hidden state

ht the model then outputs a probability distribution over all words in the

vocabulary. This allows the prediction of the next word to implicitly depend

on all previous words seen by the model (as moderated by the hidden state ht).

We depict an RNN language model in the dialogue domain in Figure 2.2.

We will take ŷn = {w1, ..., wT} as the target output sequence for the nth training

example, given the input sequence x̂n = {x1, ..., xT}. The conditional distribu-

tion over each output symbol is computed in a similar manner, and depends on

the current hidden state ht:

p(wt|wt−1, ..., w1) =
exp(Wo

wt
· ht)

∑w exp(Wo
w · ht)

, (2.12)

where Wo is the output matrix, and Wo
w indicates the row of the Wo matrix

corresponding to the output index for word w. The model is trained with

teacher forcing, meaning the input xt to the network is the previous ground-truth

output word wt−1.

The model is trained in an end-to-end fashion using the BPTT algorithm to

maximize the conditional log-likelihood of input-output pairs from the training

set, {x̂n, ŷn}:

max
θ

1
N

N

∑
n=1

log pθ(ŷn|x̂n), (2.13)

Contents 19

where θ are the parameters of the model, including Wx, Wh, Wo, and the cor-

responding biases. Thus, the model learns a probability distribution over all

output sequences, p(ŷ1, ..., ŷT).

2.3.3 Encoder-decoders

The basic idea of the encoder-decoder is simple: we first use an RNN (called

the encoder) to map the input sequence to a fixed-length vector, the final hidden

state of the RNN. We then use this fixed-length vector to condition a separate

RNN with different parameters (called the decoder) to map this vector back to

another sequence. This conditioning can be done by using the output of the

encoder as the initial hidden state of the decoder, or by feeding it as input to

the decoder at each time step. We consider the case where the output sequence

consists of tokens from some vocabulary V, as is the case for dialogue. Thus,

the output of the decoder RNN at each time step is a categorical distribution

defined by a softmax, where the output dimension is the size of the vocabulary

|V|. Each component of the output vector thus represents the probability that

a certain token y ∈ V should be the next token output by the decoder RNN.

Together, this sequence-to-sequence model is called an encoder-decoder (Cho

et al., 2014; Sutskever et al., 2014).

A key innovation of the encoder-decoder framework is to augment the vocabu-

lary V with a special end-of-sequence symbol, EOS. When this token is output by

the decoder, the sequence is terminated. The parameters of the encoder and

decoder are trained jointly to minimize the loss function, which for dialogue is

most often the negative log-likelihood. Encoder-decoder methods have become

prevalent for a variety of NLP tasks, including machine translation (Cho et al.,

2014; Bahdanau et al., 2014) and automatic summarization (Rush et al., 2015).

2.4 Dialogue systems

In this section, we introduce some of the terminology that we use to refer to

dialogue systems, which is used throughout the remainder of this thesis.

Contents 20

2.4.1 Task-oriented vs. non-task-oriented dialogue systems

We first make an important distinction between what we call task-oriented and

non-task-oriented dialogue systems. It is important to distinguish between these

kinds of dialogue systems as they have different goals, and are often evaluated

differently.

The focus of our dialogue work in this thesis is on non-task-oriented dialogue

systems, often called chit-chat dialogue systems (Weizenbaum, 1966; Parkinson

et al., 1977; Ritter et al., 2011; Li, 2020). In non-task-oriented systems, the goal

is to entertain the user in some way, either by engaging them, comforting them,

or simply talking about what the user wants to talk about. In chit-chat systems,

there is no specific task that the user wants to accomplish (such as book a

hotel); instead, they are simply engaging with the system for the fun of it. As

such, evaluation of these systems is not straightforward; ideally, users can be

asked at the end of the dialogue to give a score relevant to the goal at hand

(e.g. engagingness). In general, non-task-oriented systems are usually better

the longer they are able to converse with a user (which means the user is more

engaged). In practice, chit-chat systems are often evaluated at the response-

level, based on how reasonable a response it produced given the context of the

conversation (Li et al., 2015, 2016a; Sordoni et al., 2015b).

Task-oriented systems, on the other hand, are designed to accomplish a specific

task of the user, such as booking a hotel, finding a restaurant, or looking up

transportation information (Walker and Whittaker, 1990; Seneff, 1992; Young,

2000; Williams and Young, 2007; Young et al., 2010, 2013; Wen et al., 2016).

As such, these systems can be concretely evaluated by whether or not they

accomplished the user’s task. Contrary to chit-chat systems, task-oriented

systems are generally doing a better job the less they interact with the user, given

that they are able to solve the user’s task (since, when a human interlocutor

has a specific task in mind, they don’t want their conversation to drag out).

Further, simply measuring the ‘reasonableness’ of a task-oriented system at the

response level is not an appropriate metric for evaluation, as there are usually

reasonable responses that do not solve the user’s task (such as ‘I don’t know’).

Contents 21

2.4.2 Retrieval vs. generative dialogue systems

Whereas the task-oriented vs. non-task-oriented distinction separates dialogue

systems based on their goal when interacting with a user, retrieval and generative

systems are ways to describe how dialogue systems are trained and how they

perform inference. Both retrieval and generative systems can be used for

either task-oriented or non-task-oriented systems. We study both retrieval and

generative models in Chapter 3.

A retrieval-based dialogue system is one that produces a conversational re-

sponse by searching through the set of responses available in the dialogue

dataset (Isbell et al., 2000; Jafarpour et al., 2010; Al-Rfou et al., 2016). Thus, a

retrieval system cannot generate new responses that have not been seen in the

dataset. On the other hand, responses from retrieval systems are generally co-

herent (as they were generated by humans), and are easier to curate to eliminate

potentially offensive or harmful responses. Retrieval models can be trained in a

variety of ways, e.g. by learning to classify, given a context, whether a response

is the actual next response to the conversation or whether it is drawn randomly

from elsewhere in the dataset (Bordes et al., 2014; Yu et al., 2014). In the rest

of this thesis, we refer to the task of distinguishing between the actual next

response and a set of random responses as next utterance classification (NUC).

A generative dialogue system, on the other hand, generates a response from

scratch to each conversational context (Ritter et al., 2011; Sordoni et al., 2015b;

Serban et al., 2016; Ghazvininejad et al., 2018). This provides significantly more

flexibility compared to retrieval systems, in terms of ability to customize a

response to a given input. However, generative systems are at risk of generating

less coherent or more generic responses (Li et al., 2015). Generative systems can

be trained in many ways, but when using neural networks they are generally

trained via teacher forcing to predict the next token in the response conditioned

on the previous tokens (Sordoni et al., 2015b; Serban et al., 2016).

Note that this retrieval vs. generative distinction does not describe the full

space of possible dialogue systems. For example, historically many dialogue

systems were rule-based, as they used a sequence of rules to determine how to

construct a response (which usually combines some sentence stems pre-defined

by the dialogue system creator). For example, this is how ELIZA was built

(Weizenbaum, 1966), along with many extensions (Parkinson et al., 1977). There

Contents 22

Figure 2.3: An end-to-end dialogue system replaces the components of a
dialogue system with a single model.

has also been recent work on combining generative and retrieval based methods,

for example by first retrieving a relevant response from the dataset and then

making some local edits to customize the response to the given context (Chen

et al., 2017; Song et al., 2016).

2.4.3 Modular vs. end-to-end dialogue systems

Much of the work presented in Chapter 3 is a benchmarking of end-to-end

approaches to training dialogue systems with neural networks, which was

a fairly novel area at the time of first publication. Thus, it is important to

define specifically what is meant by an ‘end-to-end’ dialogue system. We begin

with the standard architecture for a dialogue system, shown in Figure 2.3,

which incorporates a Speech Recognizer, Language Interpreter, State Tracker,

Response Generator, Natural Language Generator, and Speech Synthesizer. In

the case of text-based (written) dialogues, the Speech Recognizer and Speech

Synthesizer can be left out. Although some previous literature on dialogue

systems identifies only the State Tracker and Response Selection components as

belonging inside the dialogue manager (Young, 2000), we adopt a broader view

where the Language Interpreter and Natural Language Generator are also part

of the dialogue manager, consistent with more recent literature (Serban et al.,

2015).

When we speak of an ‘end-to-end’ dialogue system, we mean a single system

that can be used to solve each of these four aspects simultaneously. Typically

this is a system that takes as input the history of the conversation and is trained

Contents 23

to optimize a single objective, which is a function of the textual output produced

by the system and the correct (ground truth) response. This is in contrast to

the ‘modular’ system approach to dialogue systems, where each component of

Figure 2.3 is trained separately, and either takes a more structured input, such

as a set of dialogue acts, or is trained to maximize an intermediary objective,

such as slot-filling. More formally, we define a modular dialogue system as a

system where two or more elements (sub-components or system parameters) are

optimized with respect to two or more different objective functions (e.g. where

the State Tracker is trained to minimize the cross-entropy error of predicting

the slot-value pairs, and where the Response Generator is trained to maximize

the conditional log-likelihood of the correct response given the slot-value pairs).

Note that, according to this definition, whether a system is end-to-end is

independent of how it is evaluated. Both retrieval and generative models can

be end-to-end so long as they are trained using a single objective function.

Similarly, end-to-end models can be evaluated using intermediary tasks such

as NUC, which do not evaluate the ability of the models to generate new

utterances unseen in the training set. Of course, in order to evaluate the full

capability of the models it is best to evaluate their outputs in a setting as realistic

as possible; however, this is difficult to do automatically when there is no notion

of task completion (Liu et al., 2016).

Examples of end-to-end dialogue systems in the recent literature involve neural

network-based approaches that are fully differentiable, and are usually trained

to maximize the log-likelihood of the generated utterance conditioned on

some conversational context (Serban et al., 2016; Vinyals and Le, 2015). These

systems learn off-line through examples of human-human dialogues, and thus

learn to emulate the behaviour of agents in the training corpus. However,

differentiability and off-line learning are not strict prerequisites for end-to-end

dialogue systems, and other methods could be devised.

Modular dialogue systems have been historically preferred over end-to-end

systems (Raux et al., 2005; Young et al., 2013). This is because such modular

systems are easier to train, require less data, and so far have been shown to

achieve better results in practice, albeit typically for highly structured tasks. It

is also easier to manually program each component specifically to obey certain

task constraints or to solve one or more isolated tasks. However, there are

significant advantages to end-to-end dialogue systems that make investigating

Contents 24

them worthwhile. In particular, modular dialogue systems are restricted to

task-specific domains, and often require significant human feature engineering,

including pre-defining the state and action spaces of the model. Although

this can work well for narrow domains, it does not necessarily generalize to

general-purpose dialogue.

On the other hand, end-to-end models do not require a pre-defined state or

action space representation; instead, these representations are learned directly

from conversational data. Once an end-to-end model architecture is specified, all

that is needed to have the system learn to converse about another domain is to

provide new training data for that domain. As the amount of available dialogue

data grows and more general-purpose conversational systems are desired, we

believe that training end-to-end models without hand-crafted features will yield

better performance.

2.5 Reinforcement learning

In this section we describe reinforcement learning (RL), a framework which we

use for our work on multi-agent communication, including MDPs and popular

RL algorithms.

2.5.1 Markov Decision Processes (MDP)

An MDP (Bellman, 1957) is a tuple < S ,A, P, r > consisting of a set of states

S , a set of actions A, a state transition probability distribution P : A× S →
(S → [0, 1]), and a reward function r : A× S → R. Agents acting in an MDP

will use either a stochastic policy πππ : A× S → [0, 1] or a deterministic policy

πππ : S → A in order to maximize their future discounted reward (the return),

Ri = ∑T
t=0 γtrt

i where γ ∈ (0, 1) is a discount factor and T is the time horizon.

Reinforcement learning methods (Sutton and Barto, 1998) are an approach to

solving MDPs when the environment dynamics P are unknown, and we only

have sample-based access to the environment.

Contents 25

2.5.2 Partially Observed Markov Decision Processes (POMDPs)

A POMDP (Åström, 1965; Kaelbling et al., 1998) is a generalization of MDPs

to include the case where an agent only observes a subset of the state at each

time step. More specifically, a POMDP is a tuple < S ,A, P, Ω, O, r >, where

Ω is the set of observations, and O is the conditional observation probability

O : A× S → (Ω→ [0, 1]) that provides the probability of an agent observing

observation ot ∈ Ω at time step t given the current state st ∈ S and previous

action at−1 ∈ A. An agent’s policy then maps from the set of observations to

actions.

2.5.3 Q-Learning and Deep Q-Networks (DQN).

Q-Learning and DQN are popular methods in reinforcement learning, as they

have lead to a variety of impressive results in game-playing (Mnih et al., 2015)

and other domains. Q-learning makes use of an action-value function Qπππ(s, a)

for policy πππ, defined as the expected future reward if the agent takes action a in

state s at time t, and follows policy πππ thereafter: Qπππ(s, a) = E[R|st = s, at = a].

In Q-learning, we learn an approximation to this Q function Qφ using a function

approximator with parameters φ (in DQN, this is a deep neural network). The Q

function can be recursively rewritten using the Bellman equation (Bellman, 1957):

Qπππ(s, a) = Es′ [r(s, a) + γEa′∼πππ[Qπππ(s′, a′)]]. In DQN, we use this formulation

to learn our approximate Q function Qπππ
φ (the approximate Q function Qφ for

policy πππ) by minimizing the loss:

L(φ) = Es,a,r,s′ [(Qπππ
φ (s, a)− y)2], where y = r + γ max

a′
Qπππ

φ̄ (s
′, a′), (2.14)

where Qπππ
φ̄

is a target Q function that uses old parameters φ̄ from earlier in

training, which helps stabilize learning; these parameters are periodically

updated with the most recent φ.

Another crucial component of stabilizing DQN is the use of an experience

replay buffer D containing tuples (s, a, r, s′). To encourage exploration, an

ε-greedy approach is usually used, where the agent choose a random action

with probability ε, and the action with the highest Q value with probability

1− ε. Because of this, Q-learning is an off-policy learning algorithm, meaning

Contents 26

that the policy used during learning is not the same as the policy executed at

runtime (which does not use ε-greedy exploration).

2.5.4 Policy Gradient (PG) Algorithms.

Policy gradient methods are another popular choice for a variety of RL tasks,

from continuous control (Lillicrap et al., 2015) to Atari game-playing (Mnih

et al., 2016). In policy gradient methods, rather than learning an action-value

function Qφ, we directly adjust the parameters θ of the policy πππ in order to

maximize the cumulative reward J(θ) = Es∼pπππ ,a∼πππθ
[R] by taking steps in the

direction of ∇θ J(θ). Using the Q function defined previously, the gradient of

the policy can be written as (Sutton and Barto, 1998):

∇θ J(θ) = Es∼pπππ ,a∼πππθ
[∇θ log πππθ(a|s)Qπππ(s, a)], (2.15)

where pπππ is the state distribution. The policy gradient theorem has given rise

to several practical algorithms, which often differ in how they estimate Qπππ.

For example, one can use a sample return Rt = ∑T
i=t γi−tri, which leads to

the REINFORCE algorithm (Williams, 1992). Alternatively, one could learn

an approximation of Qπππ(s, a) by e.g. temporal-difference learning (Sutton and

Barto, 1998); this Qπππ(s, a) is called the critic and leads to a variety of actor-critic

algorithms (Sutton and Barto, 1998).

2.5.5 Deterministic Policy Gradient (DPG) Algorithms.

It is also possible to extend the policy gradient framework to deterministic

policies µµµθ : S 7→ A. We can write the gradient of the objective J(θ) =

Es∼pµµµ [R(s, a)] as:

∇θ J(θ) = Es∼D[∇θµµµθ(a|s)∇aQµµµ(s, a)|a=µµµθ(s)] (2.16)

Since this theorem relies on ∇aQµµµ(s, a), it requires that the action space A (and

thus the policy µµµ) be continuous.

Contents 27

Deep deterministic policy gradient (DDPG) is a variant of DPG where the policy µµµ

and critic Qµµµ are approximated with deep neural networks. DDPG is an off-

policy algorithm, and samples trajectories from a replay buffer of experiences

that are stored throughout training. DDPG also makes use of a target network,

as in DQN (Mnih et al., 2015).

2.6 Multi-agent RL

In most work on emergent communication, agents are placed in environments

where at least one other agent is present — otherwise, there is no need to

communicate at all! When these agents are trained with reinforcement learning,

this leads to a special set of considerations and methods that are the domain

of multi-agent reinforcement learning (MARL). In this section, we give some

background on multi-agent RL, including a formalization of the setting and a

distinction between different kinds of multi-agent training.

2.6.1 Markov games

The multi-agent environments that we develop in Chapters 5 and 6 can be

considered multi-agent extensions of partially observable Markov decision

processes (POMDPs), called partially observable Markov games (Littman, 1994).

A Markov game for N agents is defined by a set of states S , N sets of actions

A1, ...,AN and N sets of observations O1, ...,ON , one each per agent. To choose

actions, each agent i uses a stochastic policy πππθi : Oi × Ai 7→ [0, 1], which

produces the next state according to the state transition function T : S ×A1 ×
· · · × AN 7→ S .

Each agent i obtains rewards as a function of the state and agent’s action

ri : S × A1 × · · · × AN 7→ R, and receives a private observation correlated

with the state oi : S 7→ Oi. The initial states are determined by a distribution

ρ : S 7→ [0, 1]. Each agent i aims to maximize its own total expected return

Ri = ∑T
t=0 γtrt

i where γ is a discount factor and T is the time horizon.

Contents 28

2.6.2 Extension to communication games

In the games we consider that involve communication, the action space Ai for

each agent i can be subdivided into disjoint environment actions Ae
i , and commu-

nication actions Am
i , such that Ae

i ∪Am
i = Ai and Ae

i ∩Am
i = ∅. Environment

actions are those that have a direct effect on the environment dynamics and the

rewards obtained by the agent. We model each agent’s communication action

as a sequence of discrete symbols sent over a dedicated communication channel,

which are observed by the other agents at the next time step. Communication

actions do not affect the environment dynamics (other than being observed by

the other agent), and incur a fixed cost rc ∈ R<0. Throughout this thesis, we

consider the cheap talk setting (Farrell and Rabin, 1996) where rc = 0, and we do

not examine the domain of costly signaling (Zahavi, 1975; Gintis et al., 2001).

2.6.3 Centralized vs. decentralized learning and execution

Traditional RL approaches can be naïvely applied to the multi-agent case,

by having each agent use a separate policy to compute their actions, and

run a separate RL algorithm during training. The former paradigm is called

decentralized execution (or sometimes decentralized control), while the latter is

called decentralized learning. The canonical example of decentralized learning

and decentralized execution is independent Q-learning, where each agent i

learns an independently optimal function Qi (Tan, 1993) and independently

performs Q-learning. However, because agents are independently updating

their policies as learning progresses, the environment appears non-stationary

from the view of any one agent, violating Markov assumptions required for

convergence of Q-learning. This is a general problem for decentralized learning

in multi-agent environments, as there is no way to take into account the fact

that the other agents in the environment are also learning. Another difficulty

observed in (Foerster et al., 2017b) is that an experience replay buffer, which is

commonly used in many deep RL algorithms, cannot be used in such a setting

since in general, P(s′|s, a, πππ1, ..., πππN) 6= P(s′|s, a, πππ′1, ..., πππ′N) when any πππi 6= πππ′i.

One way to circumvent these problems is to perform centralized learning with

centralized execution. Centralized learning refers to training agents using addi-

tional information other than simply their observations and reward, such as

Contents 29

the observations or actions of other agents in the environment. Centralized

execution (or centralized control) refers to having a single policy that maps from

states to the join actions of all agents in the environment. While centralized

execution allows agents to overcome the non-stationarity issues mentioned pre-

viously, it is infeasible in many practical applications of interest where agents

only have access to their own local observations at execution time. Further, with

centralized execution there is no need to communicate via sending discrete

messages (i.e. language) as all agents have access to the observations of all

other agents.

Thus, a common approach in modern deep multi-agent RL is centralized learn-

ing with decentralized execution. In this setting, agents have separate policies

(and thus, only use their own observations to produce actions at execution

time), but are trained using extra information about the environment or other

agents’ policies. This is feasible in many real-world scenarios, such as when we

train an agent using a simulator and deploy it in the real world, and permits

agents to learn to communicate with each other through language. This setting

has become quite popular in recent work on multi-agent RL (Foerster et al.,

2017a). In this thesis, we consider the centralized learning and decentralized ex-

ecution paradigm when proposing a new multi-agent RL algorithm in Chapter

5; however, we stick to the simpler decentralized learning and execution setting

when studying evaluation metrics in Chapter 6.

Finally note that, for practical purposes, centralized execution necessarily im-

plies centralized learning, and thus we do not consider the case of decentralized

learning and centralized execution.

Part I

Learning and evaluating dialogue

systems

30

Chapter 3

Training end-to-end dialogue

models with the Ubuntu Dialogue

Corpus

3.1 Motivation

Historically, dialogue models required significant hand-engineering of features,

and thus could only generate a limited number of responses and be deployed

in constrained situations (Walker and Whittaker, 1990; Seneff, 1992; Nagata and

Morimoto, 1994). In 2015, advances in neural network-based language models

had begun to make feasible the idea of learning an entire dialogue model

directly from conversational data, with humans only specifying the model

hyper-parameters. The promise of these end-to-end systems is that they are

more general, can be easily re-trained on new domains, and their performance

scales directly with the amount of training data given to them. However, at the

time these kind of models were relatively untested for dialogue, and significant

work needed to be done before they could be implemented in practice with

high confidence.

In this chapter we consider the problem of building dialogue agents in an

end-to-end manner. We define end-to-end systems, contrary to modular systems,

as those that are trained directly from conversational data to optimize a single

objective function (see Section 2.4.3). To do this, we introduce a dataset called

31

Contents 32

the Ubuntu Dialogue Corpus. This dataset consists of almost one million

two-person (dyadic) conversations extracted from the Ubuntu chat logs, which

provide technical support for various Ubuntu-related problems. Dialogues

in the corpus are multi-turn and unstructured, as there is no a priori logical

representation for the information exchanged during the conversation. This is

in contrast to recent systems which focus on structured dialogue tasks, using

slot-filling representations (Williams et al., 2013; Henderson et al., 2014a; Singh

et al., 2002).

The creation of such a large, unstructured dialogue dataset was motivated by

observations of progress in various sub-fields of AI. In particular, it has been

argued that this progress can be attributed to three major factors: 1) the public

distribution of very large rich datasets (Deng et al., 2009), 2) the availability of

substantial computing power, and 3) the development of new training methods

for neural architectures, in particular leveraging unlabeled data. In 2015, the

Ubuntu Dialogue Corpus was among the first large-scale dialogue datasets that

was publicly available, and thus it can be argued that this dataset spurred some

of the subsequent work on large-scale end-to-end dialogue systems Serban et al.

(2017); Bordes and Weston (2016); Chen et al. (2017); Wu et al. (2016).

In this chapter, we conduct an analysis of several dialogue models that can be

used in conjunction with the Ubuntu Dialogue Corpus. We first consider retrieval

or classification models, which are trained to select the correct next response

of a conversation from a list of candidate responses. We use a baseline model

that calculates term frequency-inverse document frequency (TF-IDF) between

the context and each response, and compare it to a Dual Encoder (DE) model

using both recurrent neural networks (RNNs) and long short-term memory

(LSTMs). Next, we present encoder-decoder models that are trained to generate

an utterance given the context. We consider both the traditional LSTM language

model, which corresponds to the encoder and decoder having tied weights, and

the recently proposed Hierarchical Recurrent Encoder-Decoder (HRED) (Serban

et al., 2016), which has a second recurrent network that encodes utterance-

specific information, and is thus able to model longer-term dependencies in the

context.

We evaluate these models on the task of next utterance classification (NUC),

where the model ranks a list of candidate responses by how likely they are

to have followed the context. We also evaluate using vector-based metrics to

Contents 33

determine the quality of generated responses, in terms of semantic similarity to

the ground-truth next utterance. We observe that the (at the time) state-of-the-

art models, the LSTM dual encoder and HRED, outperform the baselines on all

metrics.

Finally, we conduct a qualitative analysis to determine the main sources of

error for the DE model. We find that the most common errors are a lack of

understanding of the semantics of the responses, which includes missing key

words that are copied between the context and target response, and a lack of

higher-level inference. There are also a number of cases where the model would

benefit from explicitly incorporating the turn-taking structure of dialogue,

and using some source of external knowledge for Ubuntu terminology. An

examination of the responses produced by the generative models reveals similar

shortcomings; while the models are able to generate reasonable responses, they

are often generic or lack a semantic understanding of the context. It is clear that

end-to-end systems are not close to solving a domain as complex as Ubuntu. We

hope that this analysis can help guide future research on the Ubuntu Dialogue

Corpus, and the development of end-to-end dialogue systems.

3.2 Related work: Learning architectures for end-to-

end dialogue systems

Most dialogue research has historically focused on structured slot-filling tasks (Schatz-

mann et al., 2005). Various approaches were proposed, yet few attempts leverage

more recent developments in neural learning architectures. A notable exception

is the work of Henderson et al. (2014b), which proposes an RNN structure,

initialized with a denoising autoencoder, to tackle the DSTC 3 domain.

Work on end-to-end dialogue systems was recently pioneered by Ritter et al.

(2011), who proposed a response generation model for Twitter data based on

ideas from Statistical Machine Translation. In particular, they consider a model

that ‘translates’ from the context of a conversation to the associated response.

This is shown to give superior performance to previous information retrieval

(e.g. nearest neighbour) approaches (Jafarpour et al., 2010). This idea was further

developed by Sordoni et al. (2015a) to exploit information from a longer context,

Contents 34

using a structure similar to the Recurrent Neural Network Encoder-Decoder

model (Cho et al., 2014). This achieves rather poor performance on A-B-A

Twitter triples when measured by the BLEU score (a standard for machine

translation), yet performs comparatively better than the model of Ritter et al.

(2011). Their results were also verified with a human-subject study.

A similar Encoder-Decoder framework for dialogue is presented by Shang et al.

(2015) and Vinyals and Le (2015). This model also uses one RNN to transform

the input to some vector representation, and another RNN to ‘decode’ this

representation to a response by generating one word at a time. The model from

Shang et al. (2015) was also evaluated in a human-subject study, although on a

smaller scale compared to Sordoni et al. (2015a).

A hierarchical version of the encoder-decoder framework has also recently

been proposed (Serban et al., 2016). This model consists of two RNNs stacked

on top of each other: one ‘sentence-level’ RNN encodes each utterance into

a fixed length vector, while a ‘conversation-level’ RNN takes as input each

utterance vector and outputs a vector that summarizes the conversation so far.

This is mapped back to text using a recurrent decoder. This improves over the

traditional Encoder-Decoder frameworks in both word perplexity and word

error rate, particularly when bootstrapped with word embeddings derived from

distributional semantics. However, the model has not been evaluated in any

human-subject studies.

Another approach, taken in Traum et al. (2015), uses information retrieval

techniques to map user questions to systems responses in the domain of time-

offset interaction. Since the natural language interpreter, dialogue response

selection, and natural language generator model are all combined, this can also

be seen as a form of end-to-end dialogue system. Inaba and Takahashi (2016)

also propose an end-to-end retrieval model, however they use neural networks

to select a response from a fixed dataset. This is similar to the model used by

Lowe et al. (2015). Our work is also inspired by Nio et al. (2014a) whose model,

although rule-based, is not composed of modules, as it retrieves a response to

the context based on cosine similarity. This is in turn related to the work on

example-based dialogue modeling (Lee et al., 2009).

There has been some work on combining end-to-end dialogue models with

auxiliary information regarding the persona or participant role of each person

Contents 35

in the dialogue. Luan et al. (2016) investigate several models that incorporate

participant roles, using topic-modelling based approaches with LDA. Li et al.

(2016a) use an embedding for each separate speaker in the conversation, which

is used to condition the decoder in an LSTM model. They achieve improvements

in both perplexity and BLEU on a Twitter dataset.

There has also been interesting work using deep reinforcement learning for end-

to-end dialogue generation. Li et al. (2016b) propose using a deep Q-network

(DQN) for dialogue generation, using a set of reward functions designed

to increase the diversity of generated responses. Zhao and Eskenazi (2016)

similarly use a deep recurrent Q-network (DRQN) to replace the conventional

NLU, state tracking, and dialogue policy modules for task-oriented dialogue.

One of the most effective task-oriented end-to-end systems is presented by Wen

et al. (2016), who train an end-to-end system on a small dataset of restaurant

recommendations. They show that they are able to achieve a higher task

completion rate than a modular baseline, and have significantly higher scores

in naturalness, comprehension, preference, and performance.

Overall, these models highlight the potential of end-to-end learning architec-

tures for interactive systems. However, much work remains before these can be

implemented with confidence in a variety of settings.

3.3 The Ubuntu Dialogue Corpus

3.3.1 Motivation

There are several factors that motivated the creation of the Ubuntu Dialogue

Corpus. In particular, there was a lack of large, multi-turn, publicly available dia-

logue datasets. In addition to providing a dataset that satisfied these constraints,

we wanted the dataset to be two-way (dyadic), as opposed to multi-participant

chat, and we desired a task-specific domain. All of these characteristics are

satisfied by the Ubuntu Dialogue Corpus.

Note that there are two versions of the Ubuntu Dialogue Corpus: v1, first

proposed in Lowe et al. (2015), and the updated v2 proposed in Lowe et al.

(2017b). v2 of the corpus contains an updated procedure for generating the

Contents 36

test set and fixes some other inconsistencies. In this chapter, we describe the

Ubuntu Dialogue Corpus v2.

3.3.2 Ubuntu Chat Logs

The Ubuntu Chat Logs refer to a collection of logs from Ubuntu-related chat

rooms on the Freenode Internet Relay Chat (IRC) network. This protocol allows

for real-time chat between a large number of participants. Each chat room,

or channel, has a particular topic, and every channel participant can see all

the messages posted in a given channel. Many of these channels are used for

obtaining technical support with various Ubuntu issues.

As the contents of each channel are moderated, most interactions follow a

similar pattern. A new user joins the channel, and asks a general question

about a problem they are having with Ubuntu. Then, another more experienced

user replies with a potential solution, after first addressing the ‘username’ of

the first user. This is called a name mention (Uthus and Aha, 2013), and is

done to avoid confusion in the channel — at any given time during the day,

there can be between 1 and 20 simultaneous conversations happening in some

channels. In the most popular channels, there is almost never a time when

only one conversation is occurring; this renders it particularly problematic to

extract dyadic dialogues. A conversation between a pair of users generally stops

when the problem has been solved, though some users occasionally continue to

discuss a topic not related to Ubuntu.

Despite the nature of the chat room being a constant stream of messages from

multiple users, it is through the fairly rigid structure in the messages that we can

extract the dialogues between users. Figures 3.1 and 3.2 show an example chat

room conversation from the #ubuntu channel as well as the extracted dialogues,

which illustrates how users usually state the username of the intended message

recipient before writing their reply (we refer to all initial questions and replies

as ‘utterances’). For example, it is clear that users ‘Taru’ and ‘kuja’ are engaged

in a dialogue, as are users ‘Old’ and ‘bur[n]er’, while user ‘_pm’ is asking an

initial question, and ‘LiveCD’ is perhaps elaborating on a previous comment.

Contents 37

Time User Utterance
03:44 Old I dont run graphical ubuntu,

I run ubuntu server.
03:45 kuja Taru: Haha sucker.
03:45 Taru Kuja: ?
03:45 bur[n]er Old: you can use “ps ax"

and “kill (PID#)"
03:45 kuja Taru: Anyways, you made

the changes right?
03:45 Taru Kuja: Yes.
03:45 LiveCD or killall speedlink
03:45 kuja Taru: Then from the terminal

type: sudo apt-get update
03:46 _pm if i install the beta version,

how can i update it when
the final version comes out?

03:46 Taru Kuja: I did.

Sender Recipient Utterance

Old I dont run graphical ubuntu,
I run ubuntu server.

bur[n]er Old you can use “ps ax" and
“kill (PID#)"

kuja Taru Haha sucker.
Taru Kuja ?
kuja Taru Anyways, you made the

changes right?
Taru Kuja Yes.
kuja Taru Then from the terminal type:

sudo apt-get update
Taru Kuja I did.

Figure 3.1: Example chat room conversation from the #ubuntu channel of the
Ubuntu Chat Logs (left), with the disentangled conversations for the Ubuntu

Dialogue Corpus (right).

Time User Utterance

[12:21] dell well, can I move the drives?
[12:21] cucho dell: ah not like that
[12:21] RC dell: you can’t move the

drives
[12:21] RC dell: definitely not
[12:21] dell ok
[12:21] dell lol
[12:21] RC this is the problem with

RAID:)
[12:21] dell RC haha yeah
[12:22] dell cucho, I guess I could

just get an enclosure
and copy via USB...

[12:22] cucho dell: i would advise you to
get the disk

Sender Recipient Utterance

dell well, can I move the drives?
cucho dell ah not like that
dell cucho I guess I could just get an

enclosure and copy via USB
cucho dell i would advise you to get the

disk

dell well, can I move the drives?
RC dell you can’t move the drives.

definitely not. this is
the problem with RAID :)

dell RC haha yeah

Figure 3.2: Example of before (left) and after (right) the algorithm adds and
concatenates utterances in dialogue extraction. Since RC only addresses dell, all
of his utterances are added, however this is not done for dell as he addresses

both RC and cucho.

3.3.3 Dataset Creation

In order to create the Ubuntu Dialogue Corpus, first a method had to be devised

to extract dyadic dialogues from the chat room multi-party conversations. The

first step was to separate every message into 4-tuples of (time, sender, recipient,

utterance). Given these 4-tuples, it is straightforward to group all tuples where

there is a matching sender and recipient. Although it is easy to separate the

time and the sender from the rest, finding the intended recipient of the message

is not always trivial.

Contents 38

Figure 3.3: Plot of number of conversations with a given number of turns.
Both axes use a log scale.

3.3.3.1 Recipient Identification

While in most cases the recipient is the first word of the utterance, it is sometimes

located at the end, or not at all in the case of initial questions. Furthermore,

some users choose names corresponding to common English words, such as

‘the’ or ‘stop’, which could lead to many false positives. In order to solve

this issue, we create a dictionary of usernames from the current and previous

days, and compare the first word of each utterance to its entries. If a match is

found, and the word does not correspond to a very common English word1,

it is assumed that this user was the intended recipient of the message. If no

matches are found, it is assumed that the message was an initial question, and

the recipient value is left empty.

3.3.3.2 Utterance Creation

The dialogue extraction algorithm works backwards from the first response to

find the initial question that was replied to, within a time frame of 3 minutes. A

first response is identified by the presence of a recipient name (someone from

the recent conversation history). The initial question is identified to be the most

recent utterance by the recipient identified in the first response.

1We use the GNU Aspell spell checking dictionary.

Contents 39

All utterances that do not qualify as a first response or an initial question

are discarded; initial questions that do not generate any response are also

discarded. We additionally discard conversations longer than five utterances

where one user says more than 80% of the utterances, as these are typically

not representative of real chat dialogues. Finally, we consider only extracted

dialogues that consist of 3 turns or more to encourage the modeling of longer-

term dependencies.

To alleviate the problem of ‘holes’ in the dialogue, where one user does not

address the other explicitly, as in Figure 3.2, we check whether each user talks

to someone else for the duration of their conversation. If not, all non-addressed

utterances are added to the dialogue. An example conversation along with the

extracted dialogues is shown in Figure 3.2. Note that we also concatenate all

consecutive utterances from a given user.

We do not apply any further pre-processing (e.g. tokenization, stemming) to

the data as released in the Ubuntu Dialogue Corpus. However the use of

pre-processing is standard for most NLP systems, and was also used in our

analysis (see Section 3.4).

3.3.3.3 Special Cases and Limitations

It is often the case that a user will post an initial question, and multiple people

will respond to it with different answers. In this instance, each conversation

between the first user and the user who replied is treated as a separate dialogue.

This has the unfortunate side-effect of having the initial question appear multi-

ple times in several dialogues. However the number of such cases is sufficiently

small compared to the size of the dataset.

Another issue to note is that the utterance posting time is not considered

for segmenting conversations between two users. Even if two users have a

conversation that spans multiple hours, or even days, this is treated as a single

dialogue. However, such dialogues are rare. We include the posting time in the

corpus so that other researchers may filter as desired.

Contents 40

dialogues (human-human) 936,000
utterances (in total) 7,100,000

words (in total) 100,000,000
Min. # turns per dialogue 3
Avg. # turns per dialogue 7.71

Avg. # words per utterance 10.34
Median conversation length (min) 6

Training set dialogues 898,000
Validation/test set dialogues 19,000

Training set examples unspecified

Table 3.1: Properties of Ubuntu Dialogue Corpus. Note that any number of
training examples can be specified during creation of the training set. Depend-
ing on the desired number of examples, multiple passes are made through
the dataset, where each pass samples a new context stochastically from each
dialogue. Very large training sets are possible, yet they will have overlapping

examples.

3.3.4 Dataset Statistics

Table 3.1 summarizes properties of the Ubuntu Dialogue Corpus. One of the

most important features of the Ubuntu chat logs is its size. This is crucial

for research into building dialogue managers based on neural architectures.

Another important characteristic is the number of turns in these dialogues. The

distribution of the number of turns is shown in Figure 3.3. It can be seen that

the number of dialogues and turns per dialogue follow an approximate power

law relationship.

3.3.5 Test Set Generation

We set aside 2% of the Ubuntu Dialogue Corpus conversations to form a test

set that can be used for evaluation2. Compared to the rest of the corpus, for

evaluating retrieval models this test set has been further processed to extract a

pair of (context, response, flag) triples from each dialogue. The flag is a Boolean

variable indicating whether or not the response was the actual next utterance

2Note that, contrary to the original Ubuntu Dialogue Corpus, the updated version separates
the training, validation, and test sets by time. That is, the training set consists of conversations
that started from 2004 to approximately April 27, 2012; the validation set consists of dialogues
starting from April 27 to August 7, 2012; and the test set has dialogues from August 7 to
December 1, 2012. This mimics the training of dialogue systems in practice, where we only
have access to data in the past, and want to answer user queries in the future.

Contents 41

after the given context. The response is a target (output) utterance which we

aim to correctly identify. The context consists of the sequence of utterances

appearing in the conversation prior to the response.

We create a pair of triples, where one triple contains the correct response (i.e.

the actual next utterance in the dialogue), and the other triple contains a false

response, sampled randomly from elsewhere within the test set. The flag is set

to 1 in the first case and to 0 in the second case. An example pair is shown in

Table 3.2. To make the task harder, we can move from pairs of responses (one

correct, one incorrect) to a larger set of wrong responses (all with flag=0). In

our experiments below, we consider both the case of 1 wrong response and 10

wrong responses. For evaluating generative models, rather than constructing

(context, response, flag) triples, we take (context, reference response) pairs (i.e. where

flag=1), and compare the model-generated response to the reference response.

Context Response Flag
well, can I move the drives? I guess I could just 1
__eot__ ah not like that get an enclosure and

copy via USB
well, can I move the drives? you can use “ps ax" 0
__eot__ ah not like that and “kill (PID #)"

Table 3.2: Test set example with (context, reply, flag) format. The ‘__eot__’ tag
is used to denote the end of a user’s turn within the context, and the ‘__eou__’

tag is used to denote the end of a user utterance without a change of turn.

Since we want to learn to predict all parts of a conversation, as opposed to

only the closing statement, we consider various portions of context for the

conversations in the test set. The context size is determined stochastically by

uniform sampling3:

c =∼ Uni f (2, t− 1).

Here, parameter t is the actual length of that dialogue (thus the constraint that

c ≤ t− 1). In practice, this leads to short test dialogues having short contexts,

while longer dialogues are often broken into a combination of short, medium,

and long contexts.

3Note that this is a different formula than the original Ubuntu Dialogue Corpus, which
sampled from a decreasing distribution. The new formula is simpler and leads to longer
sampled contexts, which we consider desirable.

Contents 42

Note that, except for the plot in Figure 3.6, all experiments, results, and analysis

in this paper will refer to the updated Ubuntu Dialogue Corpus v2.

3.4 Response Classification Architectures

To provide further evidence of the value of our dataset for research into neural

architectures for dialogue managers, we provide performance benchmarks

using two different training and evaluation criteria: response classification, and

response generation.

We first consider response classification architectures, which attempt to distinguish

between valid and invalid next responses to the context of a conversation. These

are trained on the task of best response selection, which we call next utterance

classification (NUC). This can be achieved by processing the data as described

in Section 3.3.5, without requiring any human labels. This classification task is

an adaptation of the recall and precision metrics previously applied to dialogue

datasets (Schatzmann et al., 2005).

Note that retrieval models trained on the task of NUC are still end-to-end, as the

natural language understanding, dialogue planning, and generation modules

are combined, and the system is learned with a single supervision signal.

These models can be used to ‘generate’ the next utterance in a conversation by

retrieving the most probable next utterance from the entire training set, given

the context. Thus, we can also evaluate these models using several generative

metrics, that compare the selected response to the ground-truth response. We

carry this out in Section 3.4.4.

We consider one naive model and two neural network-based retrieval models.

The approaches considered are: TF-IDF, and models using Recurrent Neural

Networks (RNN) and Long Short-Term Memory (LSTM). Prior to applying

each method, we perform standard pre-processing of the data using the NLTK4

library and Twitter tokenizer5 to parse each utterance. We use generic tags for

various word categories, such as names, locations, organizations, URLs, and

system paths.

4www.nltk.org/
5http://www.ark.cs.cmu.edu/TweetNLP/

www.nltk.org/
http://www.ark.cs.cmu.edu/TweetNLP/

Contents 43

To train the RNN and LSTM architectures, we process the full training Ubuntu

Dialogue Corpus into the same format as the test set described in Section 3.3.5,

extracting (context, response, flag) triples from dialogues. For the training set,

we sample the responses in the same way described in Section 3.3.5. One can

generate any number of training examples by iterating several times through

the training data. Negative responses are selected at random from the rest of

the training data. We note that for all models presented in this paper, the entire

context of the dialogue that is available (i.e. after the context length sampling

procedure in Section 3.3.5 used to create the dataset) is taken into account, and

not just the most recent utterance. For the response classification architectures,

this is done by concatenating all context utterances together.

We note that the models proposed below do not explicitly take into account

ordinal information. The reasons for doing this are two-fold. First, training

neural networks using classification for ranking tasks is well-established in the

literature (Bordes et al., 2014), and is both simple to implement and effective in

practice. Second, in the Ubuntu Dialogue Corpus we do not have supervised

ordinal data for the relative quality of next responses given a context. More

advanced methods could consider some way to approximate this ordinal in-

formation, such that a neural network model could be explicitly trained as a

ranking system; however, this is beyond the scope of this paper.

3.4.1 TF-IDF

Term frequency-inverse document frequency is a statistic that intends to capture

how important a given word is to some document, which in our case is the

context (Ramos, 2003). It is a technique often used in document classification

and information retrieval. The ‘term-frequency’ term is simply a count of the

number of times a word appears in a given context, while the ‘inverse document

frequency’ term puts a penalty on how often the word appears elsewhere in

the corpus. The final score is calculated as the product of these two terms, and

has the form:

tfidf(w, d, D) = f (w, d)× log
|D|

|{d ∈ D : w ∈ d}| , (3.1)

Contents 44

Figure 3.4: Diagram of the Dual Encoder (DE) model. The RNNs have tied
weights. c, r are the last hidden states from the RNNs. ci, ri are word vectors
for the context and response, i < t. We consider contexts up to a maximum of

t = 160.

where f (w, d) indicates the number of times word w appeared in context d

and the denominator represents the number of dialogues in which the word w

appears. The TF-IDF vectors are constructed by calculating the TF-IDF score for

each word w in the vocabulary.

For classification, the TF-IDF vectors are first calculated for the context and

each of the candidate responses. Given a set of candidate response vectors, the

one with the highest cosine similarity to the context vector is selected as the

output. For Recall@k, the top k responses are returned.

3.4.2 Dual Encoder

RNNs have been the primary building block of many current neural models

for language-related tasks (Sutskever et al., 2014; Sordoni et al., 2015b), which

use RNNs as encoders and decoders. We detail such models in Section 2.3.3.

However, in this section, we are concerned with classification of responses, and

thus using a decoder RNN for generation is not strictly necessary (and is not

used in the model shown in Figure 3.4). In this section we build upon the

approach in (Bordes et al., 2014), which has also been recently applied to the

problem of question answering (Yu et al., 2014), and use RNNs for classification

rather than generation.

We use a siamese network consisting of two RNNs with tied weights to produce

the embeddings for the context and response, that we call the Dual-Encoder (DE)

model. Given some input context and response, we compute their embeddings

— c, r ∈ Rd, respectively — by feeding the word embeddings one at a time

into its respective RNN. Word embeddings are initialized using the pre-trained

Contents 45

vectors (Common Crawl, 840B tokens from (Pennington et al., 2014)), and fine-

tuned during training. The hidden state of the RNN is updated at each step,

and the final hidden state represents a summary of the input utterance. Using

the final hidden states from both RNNs, we then calculate the probability that

this is a valid pair:

p(flag = 1|c, r, M) = σ(cT Mr + b), (3.2)

where the bias b and the matrix M ∈ Rd×d are learned model parameters. This

can be thought of as a generative approach; given some input response, we

generate a context with the product c′ = Mr, and measure the similarity to the

actual context using the dot product. This is converted to a probability with the

sigmoid function. The model is trained by minimizing the cross entropy of all

labeled (context, response) pairs (Yu et al., 2014):

L = −∑
n

log p(flagn|cn, rn, M) (3.3)

A diagram of the DE model can be seen in Figure 3.4.

For training, we used a 1:1 ratio between true responses (flag = 1), and

negative responses (flag=0) drawn randomly from elsewhere in the training

set. The RNN architecture is set to 1 hidden layer with 100 neurons (opti-

mized over {10, 50, 100, 200, 300}), and a learning rate of 0.0001 (optimized

over {0.1, 0.01, 0.001, 0.0001}). The Wh matrix is initialized using orthogonal

weights (Saxe et al., 2013), while Wx is initialized using a uniform distribution

with values between -0.01 and 0.01. We use the first-order stochastic gradient

optimization procedure Adam (Kingma and Ba, 2014) with the default param-

eters, using gradients clipped to 10 and a batch size of 512 (optimized over

{128, 256, 512}). We found that weight initialization as well as the choice of

optimizer were critical for training the RNNs.

In addition to the RNN model, we consider the same architecture but change

the hidden units to long-short term memory (LSTM) units (Hochreiter and

Schmidhuber, 1997), as described in Section 2.2.4. For this model, we used 1

hidden layer with 200 neurons, a learning rate of 0.001, and a batch size of

256 (optimized over the same values as the RNN). We again use the default

Adam settings, and initialize the forget gate bias of the LSTM to 2.0. The

hyper-parameter configuration (including number of neurons) was optimized

Contents 46

independently for RNNs and LSTMs using a separate validation set extracted

from the training data.

3.4.3 Evaluation Metrics

We consider two types of evaluation metrics: retrieval metrics, and generative

metrics. These metrics are applicable to both models trained on the task of

NUC, detailed in this section, and the generative models introduced in Section

3.5. In particular, they offer two ways of automatically evaluating dialogue

systems trained in an end-to-end manner.

For retrieval, we evaluate using Recall@k (denoted R@1 R@2, R@5 below), which

has often been used in language tasks. Here the agent is asked to select the k

most likely responses, and it is correct if the true response is among these k

candidates. Only the R@1 metric is relevant in the case of binary classification

(as in the Table 3.2 example). Although a language model that performs well

on these retrieval metrics is not guaranteed to achieve good performance on

utterance generation, we hypothesize that improvements on a model with

regards to the classification task will eventually lead to improvements for the

generation task. See Section 3.6 for further discussion of this point.

We also consider generative metrics that compare the generated or retrieved ut-

terance to the ground-truth next utterance. In general, this is a hard open

problem (Liu et al., 2016). We use methods based on word embeddings

that have recently been proposed for use in evaluating non-task-oriented dia-

logue systems, when no task completion signal is available. Methods such as

Word2Vec (Mikolov et al., 2013b) calculate these embeddings using distribu-

tional semantics; that is, they approximate the meaning of a word by considering

how often it co-occurs with other words in the corpus.6 These embedding-based

metrics usually approximate sentence-level embeddings using some heuristic to

combine the vectors of the individual words in the sentence. The sentence-level

embeddings between the candidate and target response are compared using a

measure such as cosine distance.
6To maintain statistical independence between the task and each performance metric, it is

important that the word embeddings used are trained on corpora which do not overlap with
the task corpus.

Contents 47

We note that these metrics do not necessarily correlate strongly with human

judgement (Liu et al., 2016); here, we consider them to be measures of the

topicality of the retrieved responses. If the generated response and ground-

truth response are semantically similar, then the vector-based metrics should be

higher, as word embeddings themselves contain semantic information (Mikolov

et al., 2013b). It is because of this interpretation that we prefer the vector-based

metrics over word-overlap metrics such as BLEU.

Greedy Matching Greedy matching is the one embedding-based metric that

does not compute sentence-level embeddings. Instead, given two sequences

r and r̂, each token w ∈ r is greedily matched with a token ŵ ∈ r̂ based on

the cosine similarity of their word embeddings (ew), and the total score is then

averaged across all words:

G(r, r̂) =
∑w∈r; maxŵ∈r̂ cos_sim(ew, eŵ)

|r|

GM(r, r̂) =
G(r, r̂) + G(r̂, r)

2

This formula is asymmetric, thus we must average the greedy matching scores

G in each direction. This was originally introduced for intelligent tutoring

systems (Rus and Lintean, 2012). The greedy approach favours responses with

key words that are semantically similar to those in the ground truth response.

Embedding Average The embedding average metric calculates sentence-level

embeddings using additive composition, a method for computing the meanings

of phrases by averaging the vector representations of their constituent words

(Foltz et al., 1998; Landauer and Dumais, 1997; Mitchell and Lapata, 2008).

This method has been widely used in other domains, for example in textual

similarity tasks (Wieting et al., 2015). The embedding average, ē, is defined as

the mean of the word embeddings of each token in a sentence r:

ēr =
∑w∈r ew

|∑w′∈r ew′ |
.

To compare a ground truth response r and retrieved response r̂, we compute

the cosine similarity between their respective sentence level embeddings: EA :=

cos(ēr, ēr̂).

Contents 48

Vector Extrema Another way to calculate sentence-level embeddings is using

vector extrema (Forgues et al., 2014). For each dimension of the word vectors,

take the most extreme value amongst all word vectors in the sentence, and use

that value in the sentence-level embedding:

erd =

{
maxw∈r ewd if ewd > |minw′∈r ew′d|
minw∈r ewd otherwise

where d indexes the dimensions of a vector; ewd is the d’th dimensions of ew

(w’s embedding). The min in this equation refers to the selection of the largest

negative value, if it has a greater magnitude than the largest positive value.

Similarity between response vectors is again computed using cosine distance.

Intuitively, this approach prioritizes informative words over common ones;

words that appear in similar contexts will be close together in the vector space.

Thus, common words are pulled towards the origin because they occur in

various contexts, while words carrying important semantic information will lie

further away. By taking the extrema along each dimension, we are thus more

likely to ignore common words.

3.4.4 Experimental Results

We examine the performance of the models using both retrieval and vector

based metrics, as shown in Tables 3.3 and 3.4. For NUC, the models were

evaluated using both 1 (1 in 2) and 9 (1 in 10) false examples.7

Retrieval Metrics
Method 1 in 2 R@1 1 in 10 R@1 1 in 10 R@2 1 in 10 R@5
TF-IDF 74.9% 48.8% 58.7% 76.3%
Dual Encoder (RNN) 77.7% 37.9% 56.1% 83.6%
Dual Encoder (LSTM) 86.9% 55.2% 72.1% 92.4%

Table 3.3: Results for the three algorithms using various recall measures for
binary (1 in 2) and 1 in 10 (1 in 10) next utterance classification %.

We observe that the Dual Encoder with LSTM units outperforms both the Dual

Encoder with RNN units and TF-IDF on all evaluation metrics. It is interesting

to note that TF-IDF actually outperforms the RNN on the Recall@1 case for the

1 in 10 classification. This is most likely due to the limited ability of the RNN

7The performance metrics Recall@2 and Recall@5 are not relevant in the binary classification
case.

Contents 49

Generative Metrics
Method Embedding Average Greedy Matching Vector Extrema
TF-IDF 0.536 0.370 0.342
Dual Encoder (LSTM) 0.650 0.413 0.376

Table 3.4: Results for TF-IDF and the DE model with LSTM units on the
embedding average, greedy matching, and vector extrema scores. These scores

provide an estimate of the topic consistency of the generated responses.

Context
“any apache hax around ? i just deleted all of
__path__ - which package provides it ?",
“reconfiguring apache do n’t solve it ?"

Ranked Responses Flag
1. “does n’t seem to, no" 1
2. “you can log in but not transfer files ?" 0

Figure 3.5: Example showing the ranked responses from the LSTM. Each
utterance is shown after pre-processing steps.

Figure 3.6: The LSTM (with 200 hidden units), showing Recall@1 for the 1 in
10 classification, with increasing dataset sizes up to 120k dialogues. Note that
this was calculated using the old version of the Ubuntu Dialogue Corpus, and

thus the Recall@1 values are higher than those in Table 3.3.

to take into account long contexts, which can be overcome by using the LSTM.

An example output of the LSTM where the response is correctly classified is

shown in Figure 3.5.

We also show, in Figure 3.6, the increase in performance of the LSTM as the

amount of data used for training increases. This confirms the importance of

Contents 50

having a large training set.

3.4.5 Qualitative Error Analysis

There are a large number of technical challenges that must be solved in order

to construct a system that can provide adequate responses in a dialogue. In

fact, almost all common challenges in natural language processing are present

in some form or another in the dialogue problem. These include, but are

not limited to: coreference resolution, lexical semantics, discourse coherence

and cohesion, natural language understanding, natural language generation,

compositional semantics, the turn taking structure of dialogue, and more.

Further, it is often necessary to have some technical knowledge about the

subject matter being discussed. It is clear that current end-to-end dialogue

systems are not able to adequately address all these problems, yet precisely

which aspects of conversation are the most prevalent sources of errors remains

relatively unknown. This is particularly true for neural network models for

dialogue, which have only recently come into prominence.

We undertake the task of evaluating an end-to-end dialogue system, the DE

model with LSTM units, on the Ubuntu Dialogue Corpus for the NUC task. We

hope that an understanding of the most common errors made by this model

can help inform future work on neural dialogue systems, particularly on the

Ubuntu Dialogue Corpus.

We conduct an error analysis with three participants8 evaluating a total of 100

randomly chosen errors made by the Dual Encoder. For each error made by the

model9, we consider what abilities the model would need to have in order to

answer the question correctly. We classify these into several categories: using

knowledge, understanding tone and style of the responses, a better under-

standing of the semantic similarity of phrases, and explicitly considering the

turn-taking nature of dialogue. Since we are evaluating a classification model,

we do not consider problems associated with natural language generation. Note

that an error can be classified into multiple categories, if they are each necessary

to answer the question correctly.
8Participants were graduate students in computer science, who had familiarity with both

dialogue systems and the Ubuntu domain.
9We consider an error to be any example where the correct response is not the top 1 response

ranked by the model.

Contents 51

In addition to classifying the errors made by the model, we qualitatively evaluate

the difficulty of the questions on a scale from 1-5. A rating of 1 on the difficulty

scale means that the question is easily answerable by all humans. A 2 indicates

moderate difficulty, which should still be answerable by all humans but only

if they are paying attention. A 3 means that the question is fairly challenging,

and may either require some familiarity with Ubuntu or the human respondent

paying very close attention to answer correctly. A 4 is very hard, usually

meaning that there are other responses that are nearly as good as the true

response; many humans would be unable to answer questions of difficulty 4

correctly. A 5 means that the question is effectively impossible: either the true

response is completely unrelated to the context, or it is very short and generic.

Finally, we evaluate the appropriateness of the response chosen by the model

for each question on a scale from 1-3. A score of 1 indicates that the chosen

response is completely unreasonable given the context. A 2 means that the

response chosen was somewhat reasonable, and that it’s possible for a human

to make a similar mistake. A 3 means that the model’s response was more

suited to the context than the actual response.

We note that such an analysis is partially dependent on the model and the

domain. The end-to-end system from Wen et al. (2016) achieves very strong

performance, and thus would not face exactly the same problems as the models

we present here. However, this is because the model was trained on a very

narrow dataset of restaurant recommendations, and thus the space of generated

responses is comparatively small. We believe that other conversational models

trained on large, complex datasets are likely to encounter the same problems

that we present here.

In the Ubuntu domain, questions where using external knowledge would be

helpful for the model involve technical terminology. In most cases, the correct

response contains the name of a command or process that is related to one

stated in the context; however, the model is unable to link the two together. An

example of such a question is shown in Figure 3.7. In this case, the context of

the conversation is about file searching in Ubuntu, and the correct response

(in italics) mentions the locate command. This response would have been

assigned a higher probability if it was able to determine the meaning of the

locate command.

Contents 52

Context: Speaker A: is there anything I can do to make ubuntus filesearching faster ? I
am running from an ssd and it ’s still painfully slow __eou__

Speaker B: searching how ? __eou__
Speaker A: hitting the search button from nautilus __eou__ searching systemwide __eou__

Binary
Probability Candidate Responses

0.10 i tend to use the locate command . __eou__
0.38 I‘m not that into it , but it has to be session in one , or track in one or something to have the

rw funtion __eou__
0.06 Np __eou__
0.56 probably just junky firefox __eou__ I bet you have a tonne of addons __eou__ that all takes

resources __eou__ what other apps are you running ? __eou__ how much ram frees after you
close skype (if its convenient)

0.48 except I get an invite __eou__
0.44 installing from source on ubuntu isn’t a great idea IMO . but look for a make uninstall option __eou__
0.16 oh i get it , thanks a lot __eou__
0.21 the python one __eou__ i think cron may be able to do that .. to restart a task if it dies out

prematurely __eou__ well you can show your #python script and people may suggest the best way to
*overcome and premature *unknown** .. __eou__ if it ’s a buggy script then you’d expect it to
be very problematic with anything starting it __eou__

0.22 or killall ftl* __eou__
0.54 any help with custom msg __eou__

Figure 3.7: Example where the model would benefit from using an external
knowledge source. Correct answer is in italics, and the model’s selected answer
is in bold. Note that the probabilities do not sum up to 1, as they are binary
probabilities – the model considers each candidate response independently.

There are other examples where the model may be incapable of taking into

account the specific tone or style of the users in the conversation. For instance,

a speaker may use many emoticons, have poor English grammar skills and be

prone to misspelling words, use frequent abbreviations, or use a particularly

formal tone. Being able to spot these distinct language features could lead the

model to improve its performance in terms of selecting the actual next response.

An example of this is shown in Figure 3.8. In the context, Speaker A appends

his question with an (unnecessary) smiley face. Thus, it is more likely that the

candidate response with multiple smiley faces is the correct response.

One of the most important challenges in natural language is understanding the

semantics of phrases. Classification dialogue models can make errors due to

an inability to detect semantic similarities between sentences, or due to the

detection of spurious similarities. This category covers the general case where

the topic of the model’s response is clearly different than the topic of the context

and true response. In this category, we also define two special cases: one where

there is a direct word copying between the context and true response that the

model failed to detect, and one where some high-level inference is required to

answer correctly. An example of the latter case is shown in Figure 3.9; Speaker

A asks how to install some programs automatically, and the correct response

states that they had previously been ‘doing it manually’. Thus, if the model was

Contents 53

Context: Speaker A: Whats the best RDP software for Ubuntu ? I want to be able to RDP into my
ubuntu desktop from my ubuntu laptop :) __eou__

Speaker B: Then just use VNC . __eou__
Binary

Probability Candidate Responses
0.15 what software , do you have any links to show how to to it ? :) __eou__ ur a beast ! TY again :) __eou__
0.04 wrong place stop it __eou__
0.33 could use puppet :) __eou__
0.29 lol __eou__
0.17 I’ve installed mine from “ Additional drivers " __eou__
0.36 xP yeah that its been a long time since i last used my vpn server __eou__
0.00 yes , and where does it say it ’s released , or you can buy it , in actually anything about it

__eou__ **unknown** ’s not released __eou__ it ’s a concept canonical are working on / trying
to create __eou__

0.75 it ’s that “ persistence " stuff ? what do you mean ? __eou__
0.00 sudo chown root : root /tmp && sudo chmod 1777 /tmp __eou__
0.00 python __eou__ python __eou__

Figure 3.8: Example where the model would benefit from understanding the
tone and style of the speakers. Correct answer is in italics, and the model’s

selected answer is in bold.

Context: Speaker A: how do I move programs and all their dependencies automatically ? __eou__
Speaker B: you mean between two Ubuntu installations ? __eou__

Binary
Probability Candidate Responses

0.04 I have a chroot partition I’ve been using ldd and doing it manually but it is quite slow __eou__
0.00 if your not a geek then you won’t understand __eou__ would you advise your grandmother to try and

install linux ? __eou__
0.02 that ’s where im stumped ... an older kernel made no difference , whilst an older release of Ubuntu did

__eou__
0.71 well , everything with indicators is basically dbus __eou__
0.01 it ’s cool that you help people who run free software ;) bye __eou__
0.00 not by default , but it can . /var holds a lot of temp stuff like logs and debs , you don’t need those

cluttering your SSD and using write cycles __eou__ also , move your web cache to ramdisk to make it
fast as well as not use your HDD at all :) __eou__ its a disk space ... in ram __eou__

0.59 yes , but they speak http so I could use the Browser as a low-level access tool for browing repos and I
would like to do that , but that doesn’t seem to work . __eou__

0.61 sure __eou__
0.97 I believe it uses gdm but I’m not sure . The login manager thing looks the same as the stock ubuntu

12.10 one __eou__
0.14 ok , ty __eou__

Figure 3.9: Example where the model would benefit from the ability to conduct
high-level inference to better understand the semantic similarity between
context and correct response. Correct answer is in italics, and the model’s

selected answer is in bold.

able to infer that a person who has asked to perform an operation automatically

could previously have been doing it manually, it would have assigned a higher

probability to the correct response.

Finally, we consider errors where the model is unable to account for the turn-

taking structure of dialogue. For the Ubuntu Dialogue Corpus, interactions

between users usually take a certain form, where one user is asking for help

and the other user is providing answers. Thus, it is important to consider the

role of the current user when selecting the correct response; indeed, there has

been preliminary work in this direction (Luan et al., 2016; Li et al., 2016a). We

Contents 54

Context: Speaker A: i can’t seem to get audio working as a non-root user . has anyone ever had this problem ?
__eou__

Speaker B: alsamixer to the rescue __eou__
Speaker A: alsamixer shows everything turned on , and looks exactly the same for my normal user
as it does for root __eou__
Speaker B: no MM’s? __eou__

Binary
Probability Candidate Responses

0.62 correct __eou__
0.92 true but how will he find my new ip so easily if i get it changed ? All i do is programming c and check

my mail usually __eou__
0.68 yes strange . then omit the dash altogether , try giving set default sink :/ __eou__
0.93 thanks __eou__ where is the db app - i cannot locate it (sorry to be such a noob !) __eou__
0.03 I’m switching the location to my on board SSD drive that ’s embedded to the laptops board . I just haven’t

been using the storage so I figure I could try and utilize the space while the ram being 8 gig ’s itself I
see no problem with the switch . Do you understand what I’m doing . I’m only asking here so I don’t go
screwing up and save myself hours of headaches __eou__

0.03 you’ll love it __eou__ I am joking , but you will probably enjoy learning about it __eou__ well it ’s a
step up from opening your hard drive up and using a magnet __eou__

0.44 yeah , 512 is plenty __eou__
0.20 i use it on a number of machines with no problems . just this one . __eou__ modprobe pulls up a variety

of mouse drivers __eou__
0.62 so the issue is **unknown** **unknown** . gz ’ is different from the same file on the system " but i don’t

have any idea why/what that means , sorry . best of luck . __eou__
0.89 http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-680m comes with optimus technology .

so i think it has an onboard intel card __eou__

Figure 3.10: Example where the model selects an inappropriate response to
a question. Correct answer is in italics, and the model’s selected answer is in

bold.

also consider a special case of this error, when the last utterance in the context

asks a question and the response chosen by the model is not answering any

question at all. For example, in Figure 3.10, the final utterance asks the question

‘no MM’s?’. The response selected by the model begins with ‘thanks’, which is

clearly not a reasonable response to a question.

An example of the general turn-taking error is shown in Figure 3.11. This

depicts a typical dialogue between two users in the Ubuntu Dialogue Corpus:

Speaker A is having trouble with their brightness keys, and Speaker B is trying

to help them. The model must predict the next response of Speaker A. In the

first response, the user states that they are appreciative of the help being given,

which fits with Speaker A’s behaviour in the context; thus, it is more likely to

be the correct response.

We examined 100 randomly selected errors of the DE model on the Ubuntu

Corpus to compute the number of errors in each category; the results are shown

in Table 3.12. We can first note that there is significant progress to be made

for classification models on the Ubuntu Dialogue Corpus; over half (60%) of

the errors made by the model can be considered feasible for the majority of

humans (1-3 on the difficulty rating). However, the number of questions that

Contents 55

Context: Speaker A: hi __eou__ I have a problem with fn keys for brightness with my laptop and nvidia
propertiary driver __eou__

Speaker B: what make and model laptop ? > __eou__
Speaker A: sony vaio vgn fz31z __eou__ and im using nvidia propertiary driver version current

(recommended one) __eou__
Speaker B: try the boot option : acpi_backlight=vendor __eou__
Speaker A: i have added acpi backlight for vendor i have updated grub but the keys are not

working __eou__ my grub
cmd line linxu default : quiet splash acpi_backlight=vendor __eou__

Speaker B: try the boot option : acpi_osi=LINUX __eou__
Speaker A: ok i must remove the acpi_backlihgt/ __eou__
Speaker B: I’d also report a bug __eou__ could try Quantal liveCD to see if the newer

kernel plays nicer __eou__
Speaker A: I think that is a nvidia problem with the propertiary __eou__
Speaker B: possibly , or it could be acpi based __eou__
Speaker A: ok thank you i must remove the previous about the vendor ok ? __eou__
Speaker B: could try both and then just one __eou__

Binary
Probability Candidate Responses

0.38 thanks for the help . Trying now . Is there any other same bug report for vaio/ __eou__
0.20 it ’s actually ubuntu support , since i’m using ubuntu , isn’t it ? __eou__
0.49 yes __eou__ the usb disk will just be seen as a hard disk , install to it __eou__
0.50 if you do unattended-upgrades -d , that might tell you a few things ? __eou__
0.58 does this have ’ open terminal here ’ and ’ 2pane mode ’ options ? __eou__ found terminal

option , just looking for 2pane __eou__
0.71 it ’s cool __eou__
0.02 it ’s like hotel internet __eou__ http://www.fdlinux.com/networksetuphowto.html __eou__
0.01 I’ll check what it means in google . Thank you . __eou__
0.36 i never liked it ... for thin versions , i use fluxbox or some other window manager __eou__
0.49 so do I just paste that code in to the beginning of the script ... ? __eou__ sorry experienced

linux user , very very novice coder ;-P __eou__

Figure 3.11: Example where the model does not take into account the roles of
the participants in the dialogue. Correct answer is in italics, and the model’s

selected answer is in bold.

Difficulty Rating (1-5) Number of Errors % of Errors
Impossible (5) 19 19%
Very difficult (4) 21 21%
Difficult (3) 22 22%
Moderate (2) 25 25%
Easy (1) 13 13%
Model Response Rating (1-3)
Very reasonable (3) 14 14%
Somewhat reasonable (2) 37 37%
Unreasonable (1) 49 49%
Error Category
Tone and style 8 9%
Knowledge 18 20%
Semantic similarity 45 49%

Word copying 11 12%
High-level inference 16 18%

Turn-taking structure 20 22%
Answering questions 6 7%

Figure 3.12: Qualitative evaluation of the errors from the DE model. Note
that counts for parent categories (semantic similarity and turn-taking structure)
include the counts for the child categories. Error categories are not classified
for impossible questions and are not mutually exclusive, thus totals may not

add up to 100.

Contents 56

every human could answer unconditionally is small, as technical language can

often be confusing for people who are unaccustomed to it. The other questions

are roughly uniformly distributed over the remaining levels of difficulty, from

moderate to impossible. We also note that there are a large number of cases

(49%) where the response retrieved by the model was completely unreasonable

given the context, which further indicates that there is room for improvement

in these models.

It is also interesting to examine the distribution of errors across the examples.

As can perhaps be expected, the most common form of error was a lack of

understanding of the semantics of the responses. What is more surprising is that

there is a significant number of examples where the model failed to observe that

there was a key word shared between the context and the correct response; this

could be because there are often common words between the context and false

responses in the training set, and the model is unable to distinguish between

words that are relatively unimportant and those that carry significant semantic

meaning. Thus, there is much progress to be made in dialogue systems by

working on the general problem of natural language understanding.

There are many examples where the model could be improved by explicitly

accounting for the turn-taking structure of dialogue, as there were often in-

stances where the model selected a response that was not suited to the current

speaker. In several cases, the model also needed some form of external knowl-

edge base in order to answer the question correctly. Note that the number

of such examples in Table 3.12 refers to instances where the correct response

mentions a Ubuntu term that is related but not identical to the terminology

in the context; if this were to be extended to all questions where technical

vocabulary is mentioned, the number would be significantly higher. Finally,

there is a small number of cases where a better understanding of the tone of

the dialogue would help the model, however this does not seem to be the best

direction for future research.

3.5 Generative Response Architectures

In order to aid progress towards the goal of building fully generative conversa-

tional models, we present baseline models for generating responses conditioned

Contents 57

Figure 3.13: Diagram of the HRED model. Note that each utterance in the
context is encoded with a separate ‘utterance-level’ encoder, which is then fed

into a ‘context-level’ encoder.

on the context of the conversation for the Ubuntu Dialogue Corpus. It should

be noted that the format of the dataset can easily be altered to support training

in this manner: one can simply remove all (context, response, flag) triples with

f lag = 0, and be left with only the valid (context,response) pairs.

3.5.1 Generative Recurrent Neural Language Model

Our first model is a recurrent neural language model (RNN-LM), described

in Section 2.3.2, which observes the dialogue word-by-word and updates its

hidden state ht at time step (word index) t. Given a hidden state ht the model

then outputs a probability distribution over all words in the vocabulary.

For dialogue response generation, the model is conditioned on the previous

dialogue context and used to generate a response, i.e. the next utterance in the

dialogue. Such a model could be used as a full dialogue system, as defined in

Section 2.4.3, to carry out a conversation with a user.

3.5.2 Hierarchical Recurrent Encoder-Decoder

One problem with directly applying a standard RNN language model to mod-

eling dialogues is that it does not take into account the turn-taking nature of

Contents 58

conversations. It is well known that recurrent neural networks have trouble

learning long-term dependencies (Bengio et al., 1994), a problem only partially

alleviated with LSTMs. Thus, if a long context is fed into the encoder, it is pos-

sible for the model to put a large weight on only the most recent utterance. In

order to investigate models that are able to retain state over long conversations,

we implement the recently proposed hierarchical recurrent encoder-decoder

(HRED) Sordoni et al. (2015a). While this model was initially proposed for

context-sensitive query suggestion, it has been adapted for dialogue response

generation on a dataset of movie subtitles (Serban et al., 2016).

The HRED model builds on the traditional encoder-decoder model (Cho et al.,

2014), described in Section 2.3.3. The main addition is a second encoder, the

utterance-level encoder, that takes as input the fixed-length vectors produced by

the lower-level encoder, which we refer to as the word-level encoder. Instead

of letting the decoder take as input the fixed-length vectors from the word-

level encoder, the decoder takes as input the output of the utterance-level

encoder. Intuitively, the utterance-level encoder summarizes the history of the

conversations into a single vector, which is more sensitive to previous utterances

in the conversation. This provides a more powerful architecture as it is now

possible for the model to encode order-dependent patterns inherent in the

turn-taking nature of dialogue. As before, the model is trained end-to-end

to maximize the log-likelihood of the generated utterance. A diagram of the

HRED model can be seen in Figure 3.13.

To summarize: the RNN-LM (Figure 2.2) uses a single RNN (or LSTM) to

encode the entire history of the dialogue, which consists of all utterances in the

context concatenated together. It then uses the same RNN (i.e. an RNN with

the same parameters) to decode the prediction utterance. The Encoder-Decoder

model (not shown here) augments this with a second RNN with different

parameters for the decoder. All context utterances are still concatenated in the

encoder, and thus it is difficult to model long-term dependencies for utterances

that occur earlier in the dialogue. This problem is alleviated with the HRED

model (Figure 3.13), which does not concatenate the context utterances: each

is encoded with a separate utterance-level encoder, whose output is fed into

an additional context-level encoder. The output of the context-level encoder

depends on all the utterances in the context, and is fed into the decoder. Each

RNN has separate parameters.

Contents 59

Generative Metrics
Embedding Average Greedy Matching Vector Extrema

LSTM-LM 0.561 0.425 0.380
HRED 0.617 0.452 0.408
TF-IDF 0.536 0.370 0.342
Dual Encoder (LSTM) 0.650 0.413 0.376

Table 3.5: Results for both the generative and retrieval models on the em-
bedding average, greedy matching, and vector extrema scores. These scores

provide an estimate of the topic consistency of the generated responses.

Retrieval Metrics
1 in 2 R@1 1 in 10 R@1 1 in 10 R@2 1 in 10 R@5

LSTM-LM 58.9% 19.6% 33.1% 61.4%
HRED 61.8% 21.5% 35.8% 64.5%
TF-IDF 74.9% 48.8% 58.7% 76.3%
Dual Encoder (RNN) 77.7% 37.9% 56.1% 83.6%
Dual Encoder (LSTM) 86.9% 55.2% 72.1% 92.4%
MEMN2N (Dodge et al., 2015) — 63.72% — —
RNN-CNN (Baudiš and Šedivỳ, 2016) 91.1% 67.2% 80.9% 95.6%
Ensemble (Kadlec et al., 2015) 91.5% 68.3% 81.8% 95.7%
r-LSTM (Xu et al., 2016) 88.9% 64.9% 78.5% 93.2%

Table 3.6: Results for both the generative and retrieval models using vari-
ous recall measures for binary (1 in 2) and 1 in 10 (1 in 10) next utterance
classification %. We include state-of-the-art results from more recent papers.

3.5.3 Experimental Results

We now examine the performance of the generative models using the vector-

based metrics defined in Section 3.4.3. The results for the RNN language model

with LSTM units (LSTM-LM) and the HRED model can be seen in Figure 3.5.

As expected, the HRED model outperforms the baseline LSTM model across

all of the metrics. However, it is interesting to note that in a direct comparison

with the Dual Encoder model, the HRED model has a higher score in 2 out of

the 3 metrics considered. Thus, it is likely that the HRED model is generating

responses that are more semantically similar to the ground-truth response, and

is better at staying on topic.

We also present the results for these models on the NUC task. It is possible to

apply the generative models to the NUC task, as all that is required is the ability

to assign probabilities to sequences of utterances. Again, the HRED model

predictably outperforms the LSTM-LM model on all metrics. This coincides

with the results of (Serban et al., 2016) on a different dataset, using different

metrics. We can also see that the generative models perform much worse

Contents 60

than the models explicitly trained to retrieve utterances from a list. This is to

be expected, as the retrieval models were trained explicitly on the NUC task,

while the generative models were not. Because of the discrepancy in training

objectives, we do not recommend the use of NUC for comparing generative

models with retrieval models. However, we believe that NUC is very useful

for comparing generative models with other generative models, and retrieval

models with retrieval models; we justify this further in Section 3.6.3.

3.5.4 Examples of Generated Responses

In order to obtain a better understanding of the quality of responses from

the generative model, we provide a table of examples from the LSTM-LM and

HRED models in Table 3.7. We chose several representative samples that provide

insight into the behaviour, and the limitations, of the generative models.10

First, we note that there are several situations where the generative models,

particularly the HRED model, produce reasonable responses. For instance, in

example 8), the models are able to generate a coherent and useful response

concerning the installation of grub. The models achieve this despite having no

knowledge of Ubuntu other than what it has observed in the training corpus.

The HRED model is also able to generate reasonable responses when it is

playing the role of the non-expert who is seeking help. This is the case in

examples 1), 3), and 6). However, the responses from the model are fairly

homogeneous; it is simply stating that it does not know how to solve the

problem. This is a commonly observed behaviour in the generated samples

of the model. Given a context, it is often reasonable to simply state ‘I don’t

know’, or ‘I’m not sure’, and indeed these are likely responses in the training set

given many different contexts. This is the problem of generic responses, and has

previously been observed in end-to-end generative dialogue models (Vinyals

and Le, 2015).

There are other instances where the lack of semantic understanding is clear. In

example 2), the HRED makes a relevant statement about the command ‘sudo

apt-get’, stating that the user should try to run this command. However, it

fails to understand that the last user utterance (‘I tried that, it comes the same

10The full set of model samples are available at: www.iulianserban.com/Files/UbuntuDialogueCorpus.zip

Contents 61

Context Response
1) i set up my hd such that i have to type a passphrase to access it at boot.
how can i remove that passwrd, and just boot up normal. i did this at
install, it works fine, just tired of having reboots where i need to be at
terminal to type passwd in. help? → backup your data, and re-install
without encryption “ might " be the easiest method

HRED: how would
i do that?
LSTM: how do i do
that?

2) hi, everyone. I download the googleearth. deb, and want to install
it with : sudo dpkg -i something. deb, It tells me : google-earth-stable
depends on lsb-core (>= 3.2) ; however : Package lsb-core is not installed.
So i just install the lsb-core, But it comes error : <url> what should i do?
→ the error suggests running “ sudo apt-get -f install " → i tried that, it
comes the same error

HRED: try “ sudo
apt-get -f install "
LSTM: <unk>

3) I’ve a 2.0 TB hard drive. It no longer boots from the hard drive, but I can
see it from Gpart and it has a “ boot " flag. How do I recover it? → the boot
flag doesn’t mean anything in Linux why do you not have a backup? you
can mount the partition in liveCD and access the data easily (assuming
the partition is healthy)→ I have one hard drive for the moment (well, I
don’t count the 250GB drive) besides, I don’t have two SATA cables I will
make a backup as soon as I get another nice sized hard drive and a SATA
cable And how do I find out if the partition is healthy? → boot to ubuntu
livecd and try and mount the partition

HRED: How do I
do that?
LSTM: on the live
cd?

4) bottom line is usually if you got 64bit why not use it? (unless there
is something that doesn’t work on 64bit, which is amitedly not much)
→ well, now Clip2net is not working... just seems Ubuntu runs more
seamlessly on 32-bit and after reading this article, Im wondering if 64 is a
bit hyped? <url>

HRED: I have no
experience with
64bit, so I don’t
know what you
mean.
LSTM: <unk>,
<unk>, <unk>,
<unk>, <unk>

5) How would I enable vim syntax highlighting on a default install of
ubuntu 12.04? → have you insalled vim instead of the default vim-tiny?
→ I installed vim-runtime but still no highlighting

HRED: yes
LSTM: yes

6) Its comming from my computer 15 people using same router and they
have no issues, also it happened recently, before it was ok→ yes but your
router may have optional settings for dns which if not set to the same dns
will override your network interface... it ’s an option to consider

HRED: how do I
do that?
LSTM: that is what
I was looking for,
thanks

7) it looks as if the network ’s DHCP server is dead : “ < warn > (eth0) :
DHCPv4 request timed out "→ but it isn’t. windows works

HRED: that ’s what
I thought, but I
don’t know how to
fix it
LSTM:?

8) I’ve been having trouble with a new 3TB harddrive and a fresh Ubuntu
install. I install (as GPT) and the install looks ok. But then get GRUB “
error : out of disk " after reboot. I have an October 2011 PC with updated
BIOS and I _do_ see the 3TB. google searches haven’t been to helpful so
far. has anyone seen GRUB trouble when installing on 3TB harddrives? →
have you tried installing grub again and updating it? sudo grub-install
sudo update-grub? → I guess I could try that. So I would have to install
GRUB from an older Ubuntu install?

HRED: yes, you
can install grub to
the MBR of your
hard drive
LSTM: grub is in-
stalled on the mbr
of the hard drive

Table 3.7: Ubuntu model examples. The→ token indicates a change of turn,
and <unk> is the unknown token.

Contents 62

error’), refers to the user having already tried this exact command. It is difficult

for these models to integrate information from multiple utterances (Li et al.,

2016b), and to understand the concept of coreference.

Finally, we also observed that the LSTM language model in general produced

many poor responses, consisting either of a single punctuation mark or a series

of unknown tokens. This is seen in examples 2), 4), and 7). On the contrary, the

HRED model rarely produced such responses; thus, there is some indication

that by improving the model architecture, we will produce models that generate

longer and more interesting responses.

3.6 Discussion

In this chapter we introduce the Ubuntu Dialogue Corpus v2, a large dataset

for research in unstructured multi-turn dialogue systems. We describe the

construction of the dataset and its properties. The availability of a dataset of this

size opens up several interesting possibilities for research into dialogue systems

based on rich neural-network architectures. We present results demonstrating

use of this dataset to train end-to-end RNN-based models, and critically evaluate

the errors they make. We find that, while these models hold promise for

building non-task-oriented dialogue systems, they still make many obvious

errors, and there is significant room for improvement.

3.6.1 Conversation disentanglement

Our approach to conversation disentanglement consists of a small set of

rules. More sophisticated techniques have been proposed, such as training a

maximum-entropy classifier to cluster utterances into separate dialogues (Elsner

and Charniak, 2008). However, since we are not trying to replicate the exact

conversation between two users, but only to retrieve plausible natural dialogues,

the heuristic method presented in this paper may be sufficient. This seems sup-

ported through qualitative examination of the data, but could be investigated

with a more formal evaluation.

Contents 63

3.6.2 Drawbacks of end-to-end dialogue systems

In this chapter, we place significant focus on end-to-end dialogue systems, and

take time to analyze the errors made by retrieval models. However, encoder-

decoder methods have become the primary method for end-to-end dialogue

generation with neural networks (e.g. (Serban et al., 2016, 2017; Li et al.,

2016a,b)), and they too have several drawbacks. Most notable is the problem of

generic responses (Serban et al., 2016; Li et al., 2015). Essentially, when training

a generative model for dialogue, the model tends to frequently produces

responses such as ‘I’m don’t know’ and ‘I’m so sorry’. This is partly a byproduct

of the mode-seeking nature of the maximum likelihood training objective —

these utterances are likely given any context, and thus a model will obtain a

high likelihood for producing them. However, a dialogue system producing

solely such responses is largely useless. While some effort has been made to

overcome this problem (Li et al., 2015), it remains largely unsolved.

Similarly, generative dialogue models often have trouble producing grammati-

cally correct responses; they often repeat a word multiple times in a sentence,

or misuse pronouns or adjectives (Li et al., 2016b). They can also lack topic

consistency, jumping from one subject to the next with no discernible moti-

vation. In short, the space of grammatical and sensible English sentences is

small compared to the number of possible sentences using English words, and

discovering this space is difficult.

3.6.3 Dialogue evaluation

Non-task-oriented evaluation in Ubuntu It may seem unconventional that,

given the technical nature of the Ubuntu Dialogue Corpus and the fact that it

involves interactions where the end goal is solving a user’s problem, we are

treating our models as non-task-oriented, meaning that we do not incorporate

a supervised task completion or user satisfaction signal during training or

evaluation.

The reasons for this are purely practical; in general, training large, end-to-

end goal-driven models is very difficult as it requires the collection of a large

amount of task completion data. Annotating data in this way on a large scale is

extremely expensive, and is usually only feasible for technical support channels

Contents 64

at large corporations, which are rarely released publicly. Indeed, the Ubuntu

Dialogue Corpus has no such labelled task completion data, and thus cannot be

analyzed in the task-oriented setting for the time being. Obtaining such signals

automatically remains an open problem. On the other hand, training non-task-

oriented dialogue systems such as chatbots only requires conversational data,

which can be obtained and shared publicly on a large scale. We believe that

significant progress in dialogue systems can be made in this manner, as there

remains many unsolved problems as illustrated in Section 3.4.5.

However, in the non-task-oriented setting we consider here, evaluation is more

difficult. This is particularly true for end-to-end systems, as there is no way

to measure the accuracy of the state tracking module using tasks such as slot

filling, since they are not modular systems. Indeed, there are several reasons for

wanting to move away from the slot filling metrics that have become common

for modular systems. In slot filling, the set of candidate outputs (states) is

identified a priori through knowledge engineering, and is typically rather small

in comparison to the set of responses considered by NUC. Further, it has been

speculated that state-of-the-art state-tracking models (Henderson et al., 2014b;

Williams, 2014) are achieving close to human-level performance. Thus it is

desirable to move beyond this domain into more difficult problems. To do this,

it is crucial to investigate ways to evaluate models in the non-task-oriented

setting that do not require supervised test data for the internal modules of a

system.

Existing evaluation metrics Researchers have previously proposed measur-

ing word perplexity and word classification error rate, as these are widely

applied in the language modeling and automatic speech recognition commu-

nity (Serban et al., 2016; Vinyals and Le, 2015; Pietquin and Hastie, 2013).

However, these metrics cannot be computed for retrieval models. Researchers

have also proposed to use word overlap metrics from machine translation (Gal-

ley et al., 2015; Sordoni et al., 2015b). However, such metrics based on word

overlaps suffer from severe sparsity issues, since it is unlikely that any sequence

of words will be identical in both the generated and reference responses. We

show in Section 4.1 that these metrics correlate poorly with human judgements

when only a single ground-truth response is available. Furthermore, it has

been argued that such metrics mainly focus on pronouns and punctuation

Contents 65

marks when applied to non-task-oriented dialogue datasets (Serban et al., 2016).

The word embedding metrics used here do not have a strong correlation with

human judgement (as we show later in Section 4.1). However, they do have

an additional interpretation of measuring the semantic similarity between the

generated and reference responses (as argued in Section 3.4.3), which is why

we favour them over word-overlap scores such as BLEU here. However, we

reiterate that none of these metrics measures the coherence of the generated

responses, and this remains an important direction for future work. We perform

a more detailed analysis of existing dialogue evaluation metrics in Section 4.1.

Next utterance classification Another option for evaluating dialogue systems

trained in an end-to-end manner is using an alternative task such as next

utterance classification, as we do for retrieval models in this section. Here we

provide some more justification for why NUC is a reasonable task; we conduct

a human study with even more analysis in Section 4.2.

While this does not directly compare the generated response of the system to

the ground-truth response, there are several reasons for preferring the recall

metric:

1. It is a more difficult task than slot filling, and thus will require further

development of more sophisticated dialogue systems in order to solve the

task.

2. It does not suffer from the same problems as the word overlap metrics, as

it does not have to directly compare the quality of a generated response

to the ground-truth response, an inherently noisy process. Instead, it

measures the model’s capacity to pick out the correct response from a list

of responses.

3. Performance using the recall metrics is easily interpretable, and can easily

be compared to human performance. Indeed, we conduct this analysis

in Section 4.2, and show that human performance on this task is above

the performance for the Dual Encoder model on the Ubuntu Dialogue

Corpus, as well as on movie and Twitter corpora. Thus, there is room for

improvement for models on this task.

Contents 66

4. The task is consistent with the end goal of building dialogue systems that

can converse naturally with humans. More precisely, models that are able

to generate good responses should also be able to pick good responses

from a list of candidates, as in NUC.

5. It is easy to alter the task difficulty in a controlled manner. We demon-

strated this by moving from 1 to 9 false responses, and by varying the

Recall@k parameter. In the future, instead of choosing false responses

randomly, one could consider selecting false responses that are similar

to the actual response (e.g. as measured by TF-IDF cosine similarity). A

dialogue model that performs well on this more difficult task should also

manage to capture a more fine-grained semantic meaning of sentences,

as compared to a model that naively picks replies with the most words

in common with the context such as TF-IDF. In fact, when the set of

candidate responses for the model to choose from is close to the size of

the dataset (e.g. all utterances ever recorded), then NUC becomes close to

the response generation case.

Given the above points, we believe that evaluating models with the NUC task

is very useful for the time being. However, we believe that caution should be

used when comparing retrieval models to generative models using NUC, as the

retrieval models are directly trained on the task of NUC, rendering it an unfair

comparison.

3.6.4 Future Research Directions for End-to-End Systems

Given the analysis performed in Section 3.4.5, we postulate several interesting

directions for future research on end-to-end dialogue systems, particularly on

the Ubuntu Dialogue Corpus.

An important challenge in dialogue systems is the ability to understand the turn-

taking structure of dialogue. This is a significant source of errors for the Dual

Encoder model. Some progress in this direction has been made for end-to-end

dialogue systems (Luan et al., 2016; Li et al., 2016a), using approaches derived

from topic modelling or by explicitly modelling each user with a continuous-

valued vector. However, this is still an open problem. This is related to the

issue of end-to-end dialogue personalization, which involves building end-to-end

Contents 67

dialogue systems that are tailored to a particular user and that evolve over time

as the user’s preferences change.

The largest source of errors from the analysis in Section 3.4.5 was in the failure

to understand the semantic similarity between the context and response. This

falls under the more general problem of natural language understanding, which

arises in many NLP tasks. This may require adjustments in the architecture

of end-to-end models to render them more suited to processing language. It

is possible that insights can be derived from architectures developed on more

targeted language understanding tasks, such as the CNN/ Daily Mail reading

comprehension dataset (Hermann et al., 2015), where attention-based models

have achieved strong performance. The recent success of very large neural

models such as BERT (Devlin et al., 2018) and GPT-2 (Radford et al., 2019)

using Transformer-based architectures (Vaswani et al., 2017) on multi-task NLP

benchmarks such as Glue (Wang et al., 2018) indicate that simply scaling neural

models could lead to further gains in natural language understanding.

In order to be able to correctly answer questions regarding Ubuntu and solve

the user’s problem, dialogue models will inevitably require some knowledge of

the Ubuntu domain. This will most likely be achieved by using some source of

external knowledge, in addition to the knowledge that is present in the dialogue

of the Ubuntu Dialogue Corpus. Thus, an important direction for research

is the investigation of methods that incorporate external knowledge sources

with end-to-end dialogue systems. This applies more generally to any end-to-

end system that is developed for the goal-oriented setting, and may require

imposing additional structure on the output space of the model. There is

promising work in this direction from Wen et al. (2016), however methods must

be derived that are effective in a larger and more general setting than restaurant

recommendation. More recent work (Ghazvininejad et al., 2018; Zhu et al.,

2017) successfully augments neural sequence-to-sequence models with external

knowledge in domains such as Foursquare and Twitter.

A common problem that has been observed when training generative end-to-

end models that maximize the log-likelihood of the conversational response is

that these models tend to produce generic responses at test time. This has been

observed empirically (Vinyals and Le, 2015; Serban et al., 2016), and was also

seen in some of the LSTM and HRED examples presented in Section 3.5.4. This

has been investigated in (Li et al., 2015), where the authors construct an objective

Contents 68

function based on mutual information that promotes diversity, however they

achieve only modest improvements. This is a large impediment for building

end-to-end systems that can have interesting and engaging interactions with

users.

Finally, an important direction for future research is building large-scale datasets

that allow the training of goal-oriented systems. The Ubuntu domain is particu-

larly suited for training goal-oriented systems, however this is not yet possible

on the Ubuntu Dialogue Corpus as there are no supervised task completion

signals, as mentioned in Section 3.6.3. Building models that can approximate

such signals is challenging, yet it may be necessary in order to develop systems

that can solve users’ problems in a meaningful way in a domain as complex as

Ubuntu.

3.6.5 Reflecting on the Ubuntu Dialogue Corpus

Five years after its original publication (Lowe et al., 2015), the Ubuntu Dialogue

Corpus has been used fairly extensively for research on dialogue systems (see

e.g. (Wu et al., 2016; Dodge et al., 2015)). However, the dataset has been used

less recently in favour of datasets such as PersonaChat (Zhang et al., 2018) and

MultiWoz (Budzianowski et al., 2018). There are several reasons this could be

the case. For one, while dialogues in the PersonaChat and MultiWoz datasets

use external knowledge (such as the interlocutor’s personality, or the desired

restaurant to book), this information is made available at the beginning of each

dialogue. Conversely, Ubuntu dialogues require external knowledge of Ubuntu

(such as how to install a driver) which is not present in easily readable form.

This makes the task of generating a response significantly harder in the Ubuntu

domain. Due to the technical nature of conversations, it can also be difficult for

humans without Ubuntu expertise to evaluate the quality of responses.

On top of this, as alluded to in Section 3.6.1, the disentanglement procedure

used to generate the Ubuntu Dialogue Corpus is quite noisy, and leads to many

conversations that are either incomplete, or contain extraneous information, or

both. A recent study by Kummerfeld et al. (2018) found that 58% of dialogues

in the Ubuntu Dialogue Corpus were missing a relevant utterance from the

original chat logs. While many of these omissions occurred at the beginning

or end of the dialogue (and thus, the resulting dialogue is still coherent, albeit

Contents 69

lacking in context), this still indicates that the Ubuntu corpus isn’t exactly

reflective of real human-human conversations.

Chapter 4

Analyzing evaluation methods for

dialogue systems

An important aspect of dialogue response generation systems, which are trained

to produce a reasonable utterance given a conversational context, is how to

evaluate the quality of the generated response. Typically, evaluation is done

using human-generated supervised signals, such as a task completion test or

a user satisfaction score (Walker et al., 1997; Möller et al., 2006), which are

relevant when the dialogue is task-focused. As discussed in Section 2.4.1, we

call models optimized for such objectives task-oriented dialogue systems, while

those that do not are non-task-oriented dialogue systems.

This chapter consists of three separate works focused on assessing and im-

proving automatic evaluation metrics for non-task-oriented systems, such as

chatbots. These models are receiving increased attention, particularly using

end-to-end training with neural networks (Serban et al., 2016; Sordoni et al.,

2015b; Vinyals and Le, 2015). Automatic metrics are desirable as they avoid the

need to collect supervised labels on a large scale, which can be prohibitively

expensive. However, finding useful metrics to automatically evaluate the quality

of non-task-oriented models is an open question. In Section 4.1, we examine

various automatic metrics for non-task-oriented dialogue systems, including

commonly-used ones such as BLEU, and find that they correlate poorly with

human judgements. In Section 4.2, we conduct a human study of a retrieval-

based metric we call next utterance classification (NUC), and find that human

performance is significantly better than machine performance (as of 2016) on

70

Contents 71

two different datasets, suggesting that NUC may be a useful metric to target

for improving dialogue systems. Finally, in Section 4.3 we propose a method

for learning a dialogue evaluation model based on a collected dataset of human

judgements, and find that the model can achieve significant correlation with

human judgements on the test set, although some evidence indicates it transfers

poorly to other datasets.

4.1 A critique of word overlap-based evaluation met-

rics

4.1.1 Motivation

As previously mentioned, we want to usefully and automatically evaluate

various dialogue systems without having to collect a dataset of human judge-

ments for each model. Faced with similar challenges, other natural language

tasks have successfully developed automatic evaluation metrics. For example,

BLEU (Papineni et al., 2002) and METEOR (Banerjee and Lavie, 2005) are now

standard for evaluating machine translation models, and ROUGE (Lin, 2004)

is often used for automatic summarization. These metrics have recently been

adopted by dialogue researchers (Ritter et al., 2011; Sordoni et al., 2015b; Li

et al., 2015; Galley et al., 2015; Wen et al., 2015; Li et al., 2016a). However these

metrics assume that valid responses have significant word overlap with the

ground truth responses. This is a strong assumption for dialogue systems,

where there is significant diversity in the space of valid responses to a given

context. This is illustrated in Table 4.1, where two reasonable responses are

proposed to the context, but these responses do not share any words in common

and do not have the same semantic meaning.

In this chapter, we investigate the correlation between the scores from several

automatic evaluation metrics and human judgements of dialogue response

quality, for a variety of response generation models. We consider both sta-

tistical word-overlap similarity metrics such as BLEU, METEOR, and ROUGE,

and word embedding metrics derived from word embedding models such as

Word2Vec (Mikolov et al., 2013b). We find that all metrics show either weak

or no correlation with human judgements, despite the fact that word overlap

Contents 72

Context of Conversation
Speaker A: Hey John, what do you want to do tonight?
Speaker B: Why don’t we go see a movie?
Ground-Truth Response
Nah, I hate that stuff, let’s do something active.
Model Response
Oh sure! Heard the film about Turing is out!

Table 4.1: Example showing the intrinsic diversity of valid responses in a
dialogue. The (reasonable) model response would receive a BLEU score of 0.

metrics have been used extensively in the literature for evaluating dialogue

response models (see above, and (Nio et al., 2014b)). In particular, we show that

these metrics have only a small positive correlation on the chitchat oriented

Twitter dataset, and no correlation at all on the technical Ubuntu Dialogue Cor-

pus. For the word embedding metrics, we show that this is true even though all

metrics are able to significantly distinguish between baseline and state-of-the-art

models across multiple datasets. We further highlight the shortcomings of these

metrics using: a) a statistical analysis of our survey’s results; b) a qualitative

analysis of examples from our data; and c) an exploration of the sensitivity of

the metrics.

Our results indicate that a shift must be made in the research community away

from these metrics, and highlight the need for a new metric that correlates more

strongly with human judgement.

4.1.2 Evaluation Metrics

Given a dialogue context and a proposed response, our goal is to automatically

evaluate how appropriate the proposed response is to the conversation. We fo-

cus on metrics that compare it to the ground truth response of the conversation.

In particular, we investigate two approaches: word based similarity metrics and

word-embedding based similarity metrics.

4.1.2.1 Word Overlap-based Metrics

We first consider metrics that evaluate the amount of word-overlap between

the proposed response and the ground-truth response. We examine the BLEU

Contents 73

and METEOR scores that have been used for machine translation, and the

ROUGE score that has been used for automatic summarization. While these

metrics have been shown to correlate with human judgements in their target

domains (Papineni et al., 2002; Lin, 2004), they have not been thoroughly

investigated for dialogue systems.1

We denote the ground truth response as r (thus we assume that there is a single

candidate ground truth response), and the proposed response as r̂. The j’th

token in the ground truth response r is denoted by wj, with ŵj denoting the

j’th token in the proposed response r̂.

BLEU BLEU (Papineni et al., 2002) analyzes the co-occurrences of n-grams

in the ground truth and the proposed responses. It first computes an n-gram

precision for the whole dataset (we assume that there is a single candidate

ground truth response per context):

Pn(r, r̂) = ∑k min(h(k, r), h(k, r̂i))

∑k h(k, ri)

where k indexes all possible n-grams of length n and h(k, r) is the number of

n-grams k in r.2 To avoid the drawbacks of using a precision score, namely that

it favours shorter (candidate) sentences, the authors introduce a brevity penalty.

BLEU-N, where N is the maximum length of n-grams considered, is defined as:

BLEU-N := b(r, r̂) exp(
N

∑
n=1

βn log Pn(r, r̂))

βn is a weighting that is usually uniform, and b(·) is the brevity penalty. The

most commonly used version of BLEU uses N = 4. Modern versions of BLEU

also use sentence-level smoothing, as the geometric mean often results in scores

of 0 if there is no 4-gram overlap (Chen and Cherry, 2014). Note that BLEU is

usually calculated at the corpus-level, and was originally designed for use with

multiple reference sentences.

1To the best of our knowledge, only BLEU has been evaluated in the dialogue system setting
quantitatively by Galley et al. (2015) on the Twitter domain. However, they carried out their
experiments in a very different setting with multiple ground truth responses, which are rarely
available in practice, and without providing any qualitative analysis of their results.

2Note that the min in this equation is calculating the number of co-occurrences of n-gram k
between the ground truth response r and the proposed response r̂, as it computes the fewest
appearances of k in either response.

Contents 74

METEOR The METEOR metric (Banerjee and Lavie, 2005) was introduced to

address several weaknesses in BLEU. It creates an explicit alignment between the

candidate and target responses. The alignment is based on exact token matching,

followed by WordNet synonyms, stemmed tokens, and then paraphrases. Given

a set of alignments m, the METEOR score is the harmonic mean of precision Pm

and recall Rm between the candidate and target sentence.

Pen = γ(
ch
m
)θ (4.1)

Fmean =
PmRm

αPm + (1− α)Rm
(4.2)

Pm =
|m|

∑k hk(ci)
(4.3)

Rm =
|m|

∑k hk(sij)
(4.4)

METEOR = (1− Pen)Fmean (4.5)

The penalty term Pen is based on the ‘chunkiness’ of the resolved matches.

ROUGE ROUGE (Lin, 2004) is a set of evaluation metrics used for automatic

summarization. We consider ROUGE-L, which is a F-measure based on the

Longest Common Subsequence (LCS) between a candidate and target sentence.

The LCS is a set of words which occur in two sentences in the same order;

however, unlike n-grams the words do not have to be contiguous, i.e. there can

be other words in between the words of the LCS.

4.1.2.2 Embedding-based Metrics

An alternative to using word-overlap based metrics is to consider the meaning

of each word as defined by a word embedding, which assigns a vector to each

word. We use the greedy matching, embedding average, and vector extrema

metrics that are defined in Section 3.4.3.

Contents 75

4.1.3 Dialogue Response Generation Models

In order to determine the correlation between automatic metrics and human

judgements of response quality, we obtain responses from a diverse range of

response generation models in the recent literature, including both retrieval and

generative models. We’ve already described the distinction between generative

and retrieval models in Section 2.4.2, and detailed the models that we use here

in Chapter 3. Thus, in this section we simply give a high-level overview of the

models we use.

Ubuntu Dialogue Corpus Twitter Corpus
Embedding Greedy Vector Embedding Greedy Vector
Averaging Matching Extrema Averaging Matching Extrema

R-TFIDF 0.536 ± 0.003 0.370 ± 0.002 0.342 ± 0.002 0.483 ± 0.002 0.356 ± 0.001 0.340 ± 0.001
C-TFIDF 0.571 ± 0.003 0.373 ± 0.002 0.353 ± 0.002 0.531 ± 0.002 0.362 ± 0.001 0.353 ± 0.001
DE 0.650 ± 0.003 0.413 ± 0.002 0.376 ± 0.001 0.597 ± 0.002 0.384 ± 0.001 0.365 ± 0.001
LSTM 0.130 ± 0.003 0.097 ± 0.003 0.089 ± 0.002 0.593 ± 0.002 0.439 ± 0.002 0.420 ± 0.002
HRED 0.580 ± 0.003 0.418 ± 0.003 0.384 ± 0.002 0.599 ± 0.002 0.439 ± 0.002 0.422 ± 0.002

Table 4.2: Models evaluated using the vector-based evaluation metrics, with
95% confidence intervals.

We evaluate two different retrieval models here: TF-IDF, a simple statistic

that captures how important a given word is to some document (described in

Section 3.4.1), and the Dual Encoder, which uses two RNNs to give a score

to each candidate response (described in Section 3.4.2). Specifically, we use

two different TF-IDF models: R-TFIDF which calculates the TF-IDF score

between the input context and the responses in the dataset, and C-TFIDF, which

computes the most similar context in the dataset to the input context, and

returns the corresponding response.

Retrieval models for dialogue systems are typically evaluated based on whether

they can retrieve the correct response from a corpus of pre-defined responses,

which includes the ground truth response to the conversation (Schatzmann

et al., 2005). Such systems can be evaluated using recall or precision metrics.

However, when deployed in a real setting these models will not have access

to the correct response given an unseen conversation. Thus, in the results

presented below we remove one occurrence of the ground-truth response from

the corpus and ask the model to retrieve the most appropriate response from

the remaining utterances. Note that this does not mean the correct response

will not appear in the corpus at all; in particular, if there exists another context

in the dataset with an identical ground-truth response, this will be available

Contents 76

for selection by the model. We then evaluate each model by comparing the

retrieved response to the ground truth response of the conversation. This closely

imitates real-life deployment of these models, as it tests the ability of the model

to generalize to unseen contexts.

We also consider two kinds of generative models: a simple RNN language model

with LSTM units (described in Section 3.5.1) and the hierarchical recurrent

encoder-decoder (HRED) model, which uses two separate LSTMs to model

the context at the word and response level, and a third LSTM as the decoder

(described in Section 3.5.2).

Twitter Ubuntu
Metric Spearman p-value Pearson p-value Spearman p-value Pearson p-value
Greedy 0.2119 0.034 0.1994 0.047 0.05276 0.6 0.02049 0.84
Average 0.2259 0.024 0.1971 0.049 -0.1387 0.17 -0.1631 0.10
Extrema 0.2103 0.036 0.1842 0.067 0.09243 0.36 -0.002903 0.98
METEOR 0.1887 0.06 0.1927 0.055 0.06314 0.53 0.1419 0.16
BLEU-1 0.1665 0.098 0.1288 0.2 -0.02552 0.8 0.01929 0.85
BLEU-2 0.3576 < 0.01 0.3874 < 0.01 0.03819 0.71 0.0586 0.56
BLEU-3 0.3423 < 0.01 0.1443 0.15 0.0878 0.38 0.1116 0.27
BLEU-4 0.3417 < 0.01 0.1392 0.17 0.1218 0.23 0.1132 0.26
ROUGE 0.1235 0.22 0.09714 0.34 0.05405 0.5933 0.06401 0.53
Human 0.9476 < 0.01 1.0 0.0 0.9550 < 0.01 1.0 0.0

Table 4.3: Correlation between each metric and human judgements for each
response. Correlations shown in the human row result from randomly dividing

human judges into two groups.

Spearman p-value Pearson p-value
BLEU-1 0.1580 0.12 0.2074 0.038
BLEU-2 0.2030 0.043 0.1300 0.20
BLEU-3 0.2315 0.020 0.2435 0.015
BLEU-4 0.2253 0.024 0.2640 < 0.01

Table 4.4: Correlation between BLEU metric and human judgements after
removing stopwords and punctuation for the Twitter dataset.

4.1.3.1 Conclusions from an Incomplete Analysis

When evaluation metrics are not explicitly correlated to human judgement,

it is possible to draw misleading conclusions by examining how the metrics

rate different models. To illustrate this point, we compare the performance of

selected models according to the embedding metrics on two different domains:

the Ubuntu Dialogue Corpus (Lowe et al., 2015), which contains technical

Contents 77

Mean score
∆w <= 6 ∆w >= 6 p-value

(n=47) (n=53)
BLEU-1 0.1724 0.1009 < 0.01
BLEU-2 0.0744 0.04176 < 0.01
Average 0.6587 0.6246 0.25
METEOR 0.2386 0.2073 < 0.01
Human 2.66 2.57 0.73

Table 4.5: Effect of differences in response length for the Twitter dataset, ∆w =
absolute difference in #words between a ground truth response and proposed

response

vocabulary and where conversations are often oriented towards solving a

particular problem, and a non-technical Twitter corpus collected following the

procedure of Ritter et al. (2010). We consider these two datasets since they

cover contrasting dialogue domains, i.e. technical help vs casual chit-chat, and

because they are amongst the largest publicly available corpora, making them

good candidates for building data-driven dialogue systems.

Results on the proposed embedding metrics are shown in Table 4.2. For the

retrieval models, we observe that the DE model significantly outperforms both

TFIDF baselines on all metrics across both datasets. Further, the HRED model

significantly outperforms the basic LSTM generative model in both domains,

and appears to be of similar strength as the DE model. Based on these results,

one might be tempted to conclude that there is some information being captured

by these metrics, that significantly differentiates models of different quality.

However, as we show in the next subsection, the embedding-based metrics

correlate only weakly with human judgements on the Twitter corpus, and not

at all on the Ubuntu Dialogue Corpus. This demonstrates that metrics that have

not been specifically correlated with human judgements on a new task should

not be used to evaluate that task.

4.1.4 Human Correlation Analysis

Data Collection We conducted a human survey to determine the correla-

tion between human judgements on the quality of responses, and the score

assigned by each metric. We aimed to follow the procedure for the evaluation

of BLEU (Papineni et al., 2002). 25 volunteers from the Computer Science

department at the author’s institution were given a context and one proposed

Contents 78

(a) Twitter

(b) Ubuntu

Figure 4.1: Scatter plots showing the correlation between metrics and human
judgements on the Twitter corpus (a) and Ubuntu Dialogue Corpus (b). The
plots represent BLEU-2 (left), embedding average (center), and correlation

between two randomly selected halves of human respondents (right).

response, and were asked to judge the response quality on a scale of 1 to 5.3; a 1

indicates that the response is not appropriate or sensible given the context, and

a 5 indicates that the response is very reasonable. Out of the 25 respondents, 23

had Cohen’s kappa scores κ > 0.2 w.r.t. the other respondents, which is a stan-

dard measure for inter-rater agreement (Cohen, 1968). The 2 respondents with

κ < 0.2, indicating slight agreement, were excluded from the analysis below.

The median κ score was approximately 0.55, roughly indicating moderate to

strong annotator agreement.

Each volunteer was given 100 questions per dataset. These questions correspond

to 20 unique contexts, with 5 different responses: one utterance randomly drawn

from elsewhere in the test set, the response selected from each of the TF-IDF,

DE, and HRED models, and a response written by a human annotator. These

were chosen as they cover the range of qualities almost uniformly (see Figure

4.1).

3Studies asking humans to evaluate text often rate different aspects separately, such as
‘adequacy’, ‘fluency’ and ‘informativeness’ of the text (Hovy, 1999; Papineni et al., 2002) Our
evaluation focuses on adequacy. We did not consider fluency because 4 out of the 5 proposed
responses to each context were generated by a human. We did not consider informativeness
because in the domains considered, it is not necessarily important (in Twitter), or else it seems
to correlate highly with adequacy (in Ubuntu).

Contents 79

Context of Conversation
A: dearest! question. how many thousands of people
can panaad occupy?
B: @user panaad has <number> k seat capacity while rizal
has <number> k thats why they choose rizal i think .
Ground Truth Response
A: now i know about the siting capacity . thanks for the
info @user great evening.
Proposed Response
A: @user makes sense. thanks!

Context of Conversation
A: never felt more sad than i am now
B: @user aww why ?
A: @user @user its a long story ! sure you wanna know
it ? bahaha and thanks for caring btw <heart>
Ground Truth Response
A: @user i don ’t mind to hear it i ’ve got all day and
youre welcome <number>
Proposed Response
A: @user i know , i ’m just so happy for you ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

Figure 4.2: Examples where the metrics rated the response poorly and humans
rated it highly (left), and the converse (right). Both responses are given near-
zero score by BLEU-N for N> 1. While no metric will perform perfectly on
all examples, we present these examples to provide intuition on how example-
level errors become aggregated into poor correlation to human judgements at

the corpus-level.

Survey Results We present correlation results between the human judge-

ments and each metric in Table 4.3. We compute the Pearson correlation, which

estimates linear correlation, and Spearman correlation, which estimates any

monotonic correlation.

The first observation is that in both domains the BLEU-4 score, which has

previously been used to evaluate unsupervised dialogue systems, shows very

weak if any correlation with human judgement. In fact we found that the

BLEU-3 and BLEU-4 scores were near-zero for a majority of response pairs;

for BLEU-4, only four examples had a score > 10−9. Despite this, they still

correlate with human judgements on the Twitter Corpus at a rate similar to

BLEU-2. This is because of the smoothing constant, which gives a tiny weight

to unigrams and bigrams despite the absence of higher-order n-grams. BLEU-3

and BLEU-4 behave as a scaled, noisy version of BLEU-2; thus, if one is to

evaluate dialogue responses with BLEU, we recommend the choice of N = 2

over N = 3 or 4. Note that using a test corpus larger than the size reported in

Contents 80

this chapter may lead to stronger correlations for BLEU-3 and BLEU-4, due to a

higher number of non-zero scores.

It is interesting to note that, while some of the embedding metrics and BLEU

show small positive correlation in the non-technical Twitter domain, there is

no metric that significantly correlates with humans on the Ubuntu Dialogue

Corpus. This is likely because the correct Ubuntu responses contain specific

technical words that are less likely to be produced by our models. Further, it

is possible that responses in the Ubuntu Dialogue Corpus have intrinsically

higher variability (or entropy) than Twitter when conditioned on the context,

making the evaluation problem significantly more difficult.

Figure 4.1 illustrates the relationship between metrics and human judgements.

We include only the best performing metric using word-overlaps, i.e. the BLEU-

2 score (left), and the best performing metric using word embeddings, i.e. the

vector average (center). These plots show how weak the correlation is: in both

cases, they appear to be random noise. It seems as though the BLEU score

obtains a positive correlation because of the large number of responses that are

given a score of 0 (bottom left corner of the first plot). This is in stark contrast

to the inter-rater agreement, which is plotted between two randomly sampled

halves of the raters (right-most plots). We also calculated the BLEU scores after

removing stopwords and punctuation from the responses. As shown in Table

4.4, this weakens the correlation with human judgements for BLEU-2 compared

to the values in Table 4.3, and suggests that BLEU is sensitive to factors that do

not change the semantics of the response.

Finally, we examined the effect of response length on the metrics, by considering

changes in scores when the ground truth and proposed response had a large

difference in word counts. Table 4.4 shows that BLEU and METEOR are

particularly sensitive to this aspect, compared to the Embedding Average metric

and human judgement.

Qualitative Analysis In order to determine specifically why the metrics fail,

we examine qualitative samples where there is a disagreement between the

metrics and human rating. Although these only show inconsistencies at the

example-level, they provide some intuition as to why the metrics don’t correlate

with human judgements at the corpus-level. We present in Figure 4.2 two

Contents 81

examples where all of the embedding-based metrics and BLEU-1 score the

proposed response significantly differently than the humans.

The left of Figure 4.2 shows an example where the embedding-based metrics

score the proposed response lowly, while humans rate it highly. It is clear from

the context that the proposed response is reasonable – indeed both responses

intend to express gratitude. However, the proposed response has a different

wording than the ground truth response, and therefore the metrics are unable

to separate the salient words from the rest. This suggests that the embedding-

based metrics would benefit from a weighting of word saliency.

The right of the figure shows the reverse scenario: the embedding-based metrics

score the proposed response highly, while humans do not. This is most likely

due to the frequently occurring ‘i’ token, and the fact that ‘happy’ and ‘welcome’

may be close together in the embedding space. However, from a human

perspective there is a significant semantic difference between the responses as

they pertain to the context. Metrics that take into account the context may be

required in order to differentiate these responses. Note that in both responses

in Figure 4.2, there are no overlapping n-grams greater than unigrams between

the ground truth and proposed responses; thus, all of BLEU-2,3,4 would assign

a score near 0 to the response.

4.1.5 Discussion

We have shown that many metrics commonly used in the literature for eval-

uating unsupervised dialogue systems do not correlate strongly with human

judgement. Here we elaborate on important issues arising from our analysis.

Constrained tasks Our analysis focuses on relatively unconstrained domains.

Other work, which separates the dialogue system into a dialogue planner

and a natural language generation component for applications in constrained

domains, may find stronger correlations with the BLEU metric. For example,

Wen et al. (2015) propose a model to map from dialogue acts to natural language

sentences and use BLEU to evaluate the quality of the generated sentences.

Since the mapping from dialogue acts to natural language sentences has lower

diversity and is more similar to the machine translation task, it seems likely

Contents 82

that BLEU will correlate better with human judgements. However, an empirical

investigation is still necessary to justify this.

Incorporating multiple responses Our correlation results assume that only

one ground truth response is available given each context. Indeed, this is

the common setting in most of the recent literature on training end-to-end

conversation models. There has been some work on using a larger set of

automatically retrieved plausible responses when evaluating with BLEU (Galley

et al., 2015). However, there is no standard method for doing this in the

literature. Future work should examine how retrieving additional responses

affects the correlation with word-overlap metrics.

Searching for suitable metrics While we provide evidence against existing

metrics, we do not yet provide good alternatives for unsupervised evaluation.

Despite the poor performance of the word embedding-based metrics in this

survey, we believe that metrics based on distributed sentence representations

hold the most promise for the future. This is because word-overlap metrics will

simply require too many ground-truth responses to find a significant match

for a reasonable response, due to the high diversity of dialogue responses.

As a simple example, the skip-thought vectors of Kiros et al. (2015) could be

considered. Since the embedding-based metrics in this chapter only consist

of basic averages of vectors obtained through distributional semantics, they

are insufficiently complex for modeling sentence-level compositionality in

dialogue. Instead, these metrics can be interpreted as calculating the topicality

of a proposed response (i.e. how on-topic the proposed response is, compared

to the ground-truth).

All of the metrics considered in this chapter directly compare a proposed re-

sponse to the ground-truth, without considering the context of the conversation.

However, metrics that take into account the context could also be considered.

Such metrics could come in the form of an evaluation model that is learned from

data. This model could be either a discriminative model that attempts to distin-

guish between model and human responses, or a model that uses data collected

from the human survey in order to provide human-like scores to proposed

responses. Finally, we must consider the hypothesis that learning such models

from data is no easier than solving the problem of dialogue response generation.

Contents 83

If this hypothesis is true, we must concede and always use human evaluations

together with metrics that only roughly approximate human judgements.

4.2 A human study of next utterance classification

4.2.1 Motivation

In this chapter, we consider tasks and evaluation measures for ‘non-task-

oriented’ dialogue systems. While there has been significant work on building

end-to-end response generation systems (Vinyals and Le, 2015; Shang et al.,

2015), we’ve shown above in Section 4.1 that many of the automatic evalua-

tion metrics used for such systems correlate poorly or not at all with human

judgement of the generated responses.

Retrieval-based systems are of interest because they admit a natural evaluation

metric, namely the recall and precision measures. First introduced for evaluating

user simulations by Schatzmann et al. (2005), such a framework has gained

recent prominence for the evaluation of end-to-end dialogue systems (Lowe

et al., 2015; Kadlec et al., 2015; Dodge et al., 2015). These models are trained on

the task of selecting the correct response from a candidate list, which we call

next utterance classification (NUC, detailed in Section 4.2.3), and are evaluated

using the metric of recall. NUC is useful for several reasons: 1) the performance

(i.e. loss or error) is easy to compute automatically, 2) it is simple to adjust the

difficulty of the task, 3) the task is interpretable and amenable to comparison

with human performance, 4) it is an easier task compared to generative dialogue

modeling, which is difficult for end-to-end systems (Sordoni et al., 2015b; Serban

et al., 2016), and 5) models trained with NUC can be converted to dialogue

systems by retrieving from the full corpus (Liu et al., 2016). In this case, NUC

additionally allows for making hard constraints on the allowable outputs of the

system (to prevent offensive responses), and guarantees that the responses are

fluent (because they were generated by humans). Thus, NUC can be thought of

both as an intermediate task that can be used to evaluate the ability of systems

to understand natural language conversations, similar to the bAbI tasks for

language understanding (Weston et al., 2015), and as a useful framework for

building chatbots. With the huge size of current dialogue datasets that contain

Contents 84

millions of utterances (Lowe et al., 2015; Banchs, 2012; Ritter et al., 2010) and the

increasing amount of natural language data, it is conceivable that retrieval-based

systems will be able to have engaging conversations with humans.

However, despite the current work with NUC, there has been no verification

of whether machine and human performance differ on this task. This cannot

be assumed; it is possible that no significant gap exists between the two, as is

the case with many current automatic response generation metrics (Liu et al.,

2016). Further, it is important to benchmark human performance on new tasks

such as NUC to determine when research has outgrown their use. In this

chapter, we consider to what extent NUC is achievable by humans, whether

human performance varies according to expertise, and whether there is room

for machine performance to improve (or has reached human performance

already) and we should move to more complex conversational tasks. We

performed a user study on three different datasets: the SubTle Corpus of

movie dialogues (Banchs, 2012), the Twitter Corpus (Ritter et al., 2010), and the

Ubuntu Dialogue Corpus (Lowe et al., 2015). Since conversations in the Ubuntu

Dialogue Corpus are highly technical, we recruit ‘expert’ humans who are

adept with the Ubuntu terminology, whom we compare with a state-of-the-art

machine learning agent on all datasets. We find that there is indeed a significant

separation between machine and expert human performance, suggesting that

NUC is a useful intermediate task for measuring progress.

4.2.2 Related Work

Evaluation methods for supervised systems have been well studied. They

include the PARADISE framework (Walker et al., 1997), and MeMo (Möller

et al., 2006), which include a measure of task completion. A more extensive

overview of these metrics can be found in (Jokinen and McTear, 2009). We focus

in this chapter on unsupervised dialogue systems, for which proper evaluation

is an open problem.

Recent evaluation metrics for unsupervised dialogue systems include BLEU

(Papineni et al., 2002) and METEOR (Banerjee and Lavie, 2005), which com-

pare the similarity between response generated by the model, and the actual

response of the participant, conditioned on some context of the conversation.

Word perplexity, which computes a function of the probability of re-generating

Contents 85

Figure 4.3: An example NUC question from the SubTle Corpus (Banchs, 2012).

examples from the training corpus, is also used. However, such metrics have

been shown to correlate very weakly with human judgement of the produced

responses (see Section 4.1). They also suffer from several other drawbacks,

including low scores, lack of interpretability, and inability to account for the

vast space of acceptable outputs in natural conversation.

4.2.3 Technical Background on NUC

Our long-term goal is the development and deployment of artificial conversa-

tional agents. Recent deep neural architectures offer perhaps the most promising

framework for tackling this problem. However training such architectures typi-

cally requires large amounts of conversation data from the target domain, and

a way to automatically assess prediction errors. Next utterance classification

(NUC, see Figure 4.3) is a task, which is straightforward to evaluate, designed

for training and validation of dialogue systems. They are evaluated using the

metric of Recall@k, which we define in this section.

In NUC, a model or user, when presented with the context of a conversation and

a (usually small) pre-defined list of responses, must select the most appropriate

response from this list. This list includes the actual next response of the conver-

sation, which is the desired prediction of the model. The other entries, which

act as false positives, are sampled from elsewhere in the corpus. Note that

Contents 86

no assumptions are made regarding the number of utterances in the context:

these can be fixed or sampled from arbitrary distributions. Performance on

this task is easy to assess by measuring the success rate of picking the correct

next response; more specifically, we measure Recall@k (R@k), which is the

percentage of correct responses (i.e. the actual response of the conversation)

that are found in the top k responses with the highest rankings according to the

model. This task has gained some popularity recently for evaluating dialogue

systems (Lowe et al., 2015; Kadlec et al., 2015).

There are several attractive properties of this approach, as detailed in the

introduction: the performance is easy to compute automatically, the task is

interpretable and amenable to comparison with human performance, and it

is easier than generative dialogue modeling. A particularly nice property is

that one can adjust the difficulty of NUC by simply changing the number

of false responses (from one response to the full corpus), or by altering the

selection criteria of false responses (from randomly sampled to intentionally

confusing). Indeed, as the number of false responses grows to encompass all

natural language responses, the task becomes identical to response generation.

One potential limitation of the NUC approach is that, since the other candidate

answers are sampled from elsewhere in the corpus, these may also represent

reasonable responses given the context. Part of the contribution of this work is

determining the significance of this limitation.

4.2.4 Survey Methodology

4.2.4.1 Corpora

We conducted our analysis on three corpora that have gained recent popularity

for training dialogue systems. The SubTle Corpus (Banchs, 2012) consists of

movie dialogues as extracted from subtitles, and includes turn-taking infor-

mation indicating when each user has finished their turn. Unlike the larger

OpenSubtitles4 dataset, the SubTle Corpus includes turn-taking information

indicating when each user has finished their turn. The Twitter Corpus (Ritter

et al., 2010) contains a large number of conversations between users on the

4http://www.opensubtitles.org

http://www.opensubtitles.org

Contents 87

What is your gender?
Male 56.5%

Female 44.5%
What is your age?

18-20 3.4%
21-30 38.1%
31-40 33.3%
41-55 14.3%
55+ 10.2%

How would you rate your fluency in English?
Beginner 0%

Intermediate 8.2%
Advanced 6.8%

Fluent 84.4%
What is your current level of education?

High school or less 21.1%
Bachelor’s 60.5%
Master’s 13.6%

Doctorate or higher 3.4%
How would you rate your knowledge of Ubuntu?

I’ve never used it 70.7%
Basic 21.8%

Intermediate 5.4%
Expert 2.7%

Table 4.6: Data on the 145 AMT participants.

microblogging platform Twitter. Finally, the Ubuntu Dialogue Corpus contains

conversations extracted from IRC chat logs (Lowe et al., 2015). 5 For more

information on these datasets, we refer the reader to a recent survey on dia-

logue corpora (Serban et al., 2015). We focus our attention on these as they

cover a range of popular domains, and are among the largest available dia-

logue datasets, making them good candidates for building data-driven dialogue

systems. Note that while the Ubuntu Corpus is most relevant to supervised

systems, the NUC task still applies in this domain. Models that take semantic

information into account (i.e., to solve the user’s problem) can still be validated

with NUC.

A group of 145 paid participants were recruited through Amazon Mechanical

Turk (AMT), a crowdsourcing platform for obtaining human participants for

various studies. Demographic data including age, level of education, and

fluency of English were collected from the AMT participants, and is shown in

Table 4.6. An additional 8 volunteers were recruited from the student population

in the computer science department at the author’s institution.6 This second

5http://irclogs.ubuntu.com
6None of these participants were directly involved with this research project.

http://irclogs.ubuntu.com

Contents 88

group, referred to as “Lab experts”, had significant exposure to technical terms

prominent in the Ubuntu dataset; we hypothesized that this was an advantage

in selecting responses for that corpus.

4.2.4.2 Task description

Each participant was asked to answer either 30 or 40 questions (mean=31.9).

To ensure a sufficient diversity of questions from each dataset, four versions

of the survey with different questions were given to participants. For AMT

respondents, the questions were approximately evenly distributed across the

three datasets, while for the lab experts, half of the questions were related

to Ubuntu and the remainder evenly split across Twitter and movies. Each

question had 1 correct response, and 4 false responses drawn uniformly at

random from elsewhere in the (same) corpus. An example question can be seen

in Figure 4.3. Participants had a time limit of 40 minutes.

Conversations were extracted to form NUC conversation-response pairs as

described in Sec. 4.2.3. The number of utterances in the context were sampled

according to the procedure in (Lowe et al., 2015), with a maximum context

length of 6 turns — this was done for both the human trials and artificial

neural network (ANN) model. All conversations were pre-processed in order to

anonymize the utterances. For the Twitter conversations, this was extended to

replacing all user mentions (words beginning with @) throughout the utterance

with a placeholder ‘@user’ symbol, as these are often repeated in a conversation.

Hashtags were not removed, as these are often used in the main body of tweets,

and many tweets are illegible without them. Conversations were edited or

pruned to remove offensive language according to ethical guidelines.

4.2.4.3 ANN model

In order to compare human results with a strong artificial neural network

(ANN) model, we use the dual encoder (DE) model from Lowe et al. (2015). This

model uses recurrent neural networks (RNNs) with long-short term memory

(LSTM) units (Hochreiter and Schmidhuber, 1997) to encode the context c of

the conversation, and a candidate response r. More precisely, at each time step,

a word xt is input into the LSTM, and its hidden state is updated. After all T

Contents 89

Number Movie Corpus Twitter Corpus Ubuntu Corpus
of Users R@1 R@2 R@1 R@2 R@1 R@2

AMT non- 135 65.9 ± 2.4% 79.8 ± 2.1% 74.1 ± 2.3% 82.3 ± 2.0% 52.9 ± 2.7% 69.4 ± 2.5%experts
AMT experts 10 — — — — 52.0 ± 9.8% 63.0 ± 9.5%
Lab experts 8 69.7 ± 10% 94.0 ± 5.2%∗ 88.4 ± 7.0% 98.4 ± 2.7%∗ 83.8 ± 8.1% 87.8 ± 7.2%
ANN model

machine 50.6% 74.9% 66.9% 89.6% 66.2% 83.7%(Lowe et al.,
2015a)

Table 4.7: Average results on each corpus. ‘Number of Users’ indicates the
number of respondents for each category. ‘AMT experts’ and ‘AMT non-
experts’ are combined for the Movie and Twitter corpora. 95% confidence
intervals are calculated using the normal approximation, which assumes sub-
jects answer each question independently of other examples and subjects.
Starred (*) results indicate a poor approximation of the confidence interval
due to high scores with small sample size, according to the rule of thumb by

Brown et al. (2001).

words have been processed, the final hidden state hT can be considered a vector

representation of the input sequence.

To determine the probability that a response r is the actual next response to

some context c, the model computes a weighted dot product between the vector

representations c, r ∈ Rd of the context and response, respectively:

P(r is correct response) = σ(c>Mr)

where M is a matrix of learned parameters, and σ is the sigmoid function. The

model is trained to minimize the cross-entropy error of context-response pairs.

For training negative examples are sampled randomly from elsewhere in the

dataset.

The DE model is close to state-of-the-art for neural network dialogue models

on the Ubuntu Dialogue Corpus; we obtained further results on the Movie

and Twitter corpora in order to facilitate comparison with humans. For further

model implementation details, see (Lowe et al., 2015).

4.2.5 Results

As we can see from Table 4.6, the AMT participants are mostly young adults,

fluent in English with some undergraduate education. The split across genders

is approximately equal, and the majority of respondents had never used Ubuntu

before.

Contents 90

Table 4.7 shows the NUC results on each corpus. The human results are

separated into AMT non-experts, consisting of paid respondents who have

‘Beginner’ or no knowledge of Ubuntu terminology; AMT experts, who claimed

to have ‘Intermediate’ or ‘Advanced’ knowledge of Ubuntu; and Lab experts,

who are the non-paid respondents with Ubuntu experience and university-level

computer science training. We also presents results on the same task for a

state-of-the-art artificial neural network (ANN) dialogue model (see (Lowe

et al., 2015) for implementation details).

We first observe that subjects perform above chance level (20% for R@1) on all

domains, thus the task is doable for humans. Second we observe difference

in performances between the three domains. The Twitter dataset appears to

have the best predictability, with a Recall@1 approximately 8% points higher

than for the movie dialogues for AMT workers, and 18% higher for lab experts.

Rather than attributing this to greater familiarity with Twitter than movies, it

seems more likely that it is because movie utterances are often short, generic

(e.g. contain few topic-related words), and lack proper context (e.g., video cues

and the movie’s story). Conversely, tweets are typically more specific, and

successive tweets may have common hashtags.

As expected, untrained respondents scored lowest on the Ubuntu dataset, as it

contains the most difficult language with often unfamiliar terminology. Further,

since the domain is narrow, randomly drawn false responses could be more

likely to resemble the actual next response, especially to someone unfamiliar

with Ubuntu terminology. We also observe that the ANN model achieves

similar performance to the paid human respondents from AMT. However, the

model is still significantly behind the lab experts for Recall@1.

An interesting note is that there is very little difference between the paid AMT

non-experts and AMT experts on Ubuntu. This suggests that the participants

do not provide accurate self-rating of expertise, either intentionally or not. We

also found that lab experts took on average approximately 50% more time to

complete the survey than paid testers; this is reflected in the results, where the

lab experts score 30% higher on the Ubuntu Corpus, and even 5-10% higher

on the non-technical Movie and Twitter corpora. While we included attention

check questions to ensure the quality of responses,7 this reflects poorly on the

7Only the respondents who passed all attention checks were counted in the survey.

Contents 91

ability of crowdsourced workers to answer technical questions, even if they

self-identify as being adept with the technology.

4.2.6 Discussion

Our results demonstrate that humans outperform current dialogue models

on the task of next utterance classification, indicating that there is plenty of

room for improvement for these models to better understand the nature of

human dialogue. While our results suggest that NUC is a useful task, it is by

no means sufficient; we strongly advocate for automatically evaluating dialogue

systems with as many relevant metrics as possible. Further research should

be conducted into finding metrics or tasks which accurately reflect human

judgement for the evaluation of dialogue systems.

4.3 Learning to evaluate dialogue responses

4.3.1 Motivation

We’ve shown above that BLEU and other word-overlap metrics are biased and

correlate poorly with human judgements of response quality (Liu et al., 2016).

Despite this, there are few automatic alternatives available that correlate with

human judgements.

To make progress towards the goal of developing useful automatic dialogue

evaluation metrics, we make the simplifying assumption that a ‘good’ chatbot is

one whose responses are scored highly on appropriateness by human evaluators.

We believe this is sufficient for making progress as current dialogue systems

often generate inappropriate responses. We also find empirically that asking

evaluators for other metrics results in either low inter-annotator agreement, or

the scores are highly correlated with appropriateness. Thus, we collect a dataset

of appropriateness scores to various dialogue responses, and we use this dataset

to train an automatic dialogue evaluation model (adem). The model is trained in a

semi-supervised manner using a hierarchical recurrent neural network (RNN)

to predict human scores. We show that adem scores correlate significantly with

human judgement at both the utterance-level and system-level. We also show

Contents 92

that adem can often generalize to evaluating new models, whose responses

were unseen during training, making adem a strong first step towards effective

automatic dialogue response evaluation.8

4.3.2 Data Collection

Examples 4104
Contexts 1026
Training examples 2,872
Validation examples 616
Test examples 616
κ score (inter-annotator 0.63
correlation)

Table 4.8: Statistics of the dialogue response evaluation dataset. Each example
is in the form (context, model response, reference response, human score).

To train a model to predict human scores to dialogue responses, we first

collect a dataset of human judgements (scores) of Twitter responses using the

crowdsourcing platform Amazon Mechanical Turk (AMT).9 The aim is to have

accurate human scores for a variety of conversational responses — conditioned

on dialogue contexts — which span the full range of response qualities. For

example, the responses should include both relevant and irrelevant responses,

both coherent and non-coherent responses and so on. To achieve this variety,

we use candidate responses from several different models. Following Liu et al.

(2016), we use the following 4 sources of candidate responses: (1) a response

selected by a TF-IDF retrieval-based model, (2) a response selected by the

Dual Encoder (DE) (Lowe et al., 2015), (3) a response generated using the

hierarchical recurrent encoder-decoder (HRED) model (Serban et al., 2016), and

(4) human-generated responses. It should be noted that the human-generated

candidate responses are not the reference responses from a fixed corpus, but

novel human responses that are different from the reference. In addition to

increasing response variety, this is necessary because we want our evaluation

model to learn to compare the reference responses to the candidate responses.

Note that, in order to maximize the number of responses obtained with a

8Code and trained model parameters are available online:
https://github.com/mike-n-7/ADEM.

9All data collection was conducted in accordance with the policies of the host institutions’
ethics board.

Contents 93

Figure 4.4: The adem model, which uses a hierarchical encoder to produce
the context embedding c.

fixed budget, we only obtain one evaluation score per dialogue response in the

dataset.

To train evaluation models on human judgements, it is crucial that we obtain

scores of responses that lie near the distribution produced by advanced models.

This is why we use the Twitter Corpus (Ritter et al., 2011), as such models

are pre-trained and readily available. Further, the set of topics discussed is

quite broad — as opposed to the very specific Ubuntu Dialogue Corpus (Lowe

et al., 2015) — and therefore the model may also be suited to other chit-chat

domains. Finally, since it does not require domain specific knowledge (e.g.

technical knowledge), it should be easy for AMT workers to annotate.

4.3.3 An Automatic Dialogue Evaluation Model (adem)

To overcome the problems of evaluation with word-overlap metrics, we aim to

construct a dialogue evaluation model that: (1) captures semantic similarity be-

yond word overlap statistics, and (2) exploits both the context and the reference

response to calculate its score for the model response. We call this evaluation

model adem.

adem learns distributed representations of the context, model response, and

reference response using a hierarchical RNN encoder. Given the dialogue

context c, reference response r, and model response r̂, adem first encodes each of

them into vectors (c, r̂, and r, respectively) using the RNN encoder. Then, adem

computes the score using a dot-product between the vector representations of c,

r, and r̂ in a linearly transformed space:

score(c, r, r̂) = (cT Mr̂ + rT Nr̂− α)/β (4.6)

Contents 94

where M, N ∈ Rn are learned matrices initialized to the identity, and α, β are

scalar constants used to initialize the model’s predictions in the range [1, 5].

The model is shown in Figure 4.4.

The matrices M and N can be interpreted as linear projections that map the

model response r̂ into the space of contexts and reference responses, respectively.

The model gives high scores to responses that have similar vector representa-

tions to the context and reference response after this projection. The model is

end-to-end differentiable; all the parameters can be learned by backpropagation.

In our implementation, the parameters θ = {M, N} of the model are trained

to minimize the squared error between the model predictions and the human

score, with L2-regularization:

L = ∑
i=1:K

[score(ci, ri, r̂i)− humani]
2 + γ||θ||2 (4.7)

where γ is a scalar constant. The simplicity of our model leads to both accurate

predictions and fast evaluation (see supp. material), which is important to allow

rapid prototyping of dialogue systems.

The hierarchical RNN encoder in our model consists of two layers of RNNs (El Hihi

and Bengio, 1995; Sordoni et al., 2015a). The lower-level RNN, the utterance-level

encoder, takes as input words from the dialogue, and produces a vector output

at the end of each utterance. The context-level encoder takes the representation

of each utterance as input and outputs a vector representation of the context.

This hierarchical structure is useful for incorporating information from early

utterances in the context (Serban et al., 2016). Following previous work, we take

the last hidden state of the context-level encoder as the vector representation

of the input utterance or context. The parameters of the RNN encoder are

pretrained and are not learned from the human scores.

An important point is that the adem procedure above is not a dialogue retrieval

model: the fundamental difference is that adem has access to the reference

response. Thus, adem can compare a model’s response to a known good

response, which is significantly easier than inferring response quality from

solely the context.

Contents 95

Pre-training with VHRED We would like an evaluation model that can

make accurate predictions from few labeled examples, since these examples are

expensive to obtain. We therefore employ semi-supervised learning, and use a

pre-training procedure to learn the parameters of the encoder. In particular, we

train the encoder as part of a neural dialogue model; we attach a third decoder

RNN that takes the output of the encoder as input, and train it to predict the

next utterance of a dialogue conditioned on the context.

Figure 4.5: The VHRED model used for pre-training. The hierarchical structure
of the RNN encoder is shown in the red box around the bottom half of the
figure. After training using the VHRED procedure, the last hidden state of the

context-level encoder is used as a vector representation of the input text.

The dialogue model we employ for pre-training is the latent variable hierarchical

recurrent encoder-decoder (VHRED) model (Serban et al., 2017), shown in

Figure 4.5. The VHRED model is an extension of the original hierarchical

recurrent encoder-decoder (HRED) model (Serban et al., 2016) with a turn-level

stochastic latent variable. The dialogue context is encoded into a vector using

our hierarchical encoder, and the VHRED then samples a Gaussian variable

that is used to condition the decoder. After training VHRED, we use the last

hidden state of the context-level encoder, when c, r, and r̂ are fed as input, as

the vector representations for c, r, and r̂, respectively. We use representations

from the VHRED model as it produces more diverse and coherent responses

compared to HRED.

Contents 96

(a) BLEU-2 (b) ROUGE (c) adem

Figure 4.6: Scatter plot showing model against human scores, for BLEU-2
and ROUGE on the full dataset, and adem on the test set. We add Gaussian
noise drawn from N (0, 0.3) to the integer human scores to better visualize the

density of points, at the expense of appearing less correlated.

Full dataset Test set
Metric Spearman Pearson Spearman Pearson
BLEU-2 0.039 (0.013) 0.081 (<0.001) 0.051 (0.254) 0.120 (<0.001)
BLEU-4 0.051 (0.001) 0.025 (0.113) 0.063 (0.156) 0.073 (0.103)
ROUGE 0.062 (<0.001) 0.114 (<0.001) 0.096 (0.031) 0.147 (<0.001)
METEOR 0.021 (0.189) 0.022 (0.165) 0.013 (0.745) 0.021 (0.601)
T2V 0.140 (<0.001) 0.141 (<0.001) 0.140 (<0.001) 0.141 (<0.001)
VHRED -0.035 (0.062) -0.030 (0.106) -0.091 (0.023) -0.010 (0.805)

Validation set Test set
C-adem 0.338 (<0.001) 0.355 (<0.001) 0.366 (<0.001) 0.363 (<0.001)
R-adem 0.404 (<0.001) 0.404 (<0.001) 0.352 (<0.001) 0.360 (<0.001)
adem (T2V) 0.252 (<0.001) 0.265 (<0.001) 0.280 (<0.001) 0.287 (<0.001)
adem 0.410 (<0.001) 0.418 (<0.001) 0.428 (<0.001) 0.436 (<0.001)

Table 4.9: Correlation between metrics and human judgements, with p-values
shown in brackets. ‘adem (T2V)’ indicates adem with tweet2vec embed-
dings (Dhingra et al., 2016), and ‘VHRED’ indicates the dot product of VHRED
embeddings (i.e. adem at initialization). C- and R-adem represent the adem

model trained to only compare the model response to the context or reference
response, respectively. We compute the baseline metric scores (top) on the full
dataset to provide a more accurate estimate of their scores (as they are not

trained on a training set).

4.3.4 Experiments

4.3.4.1 Experimental Procedure

In order to reduce the effective vocabulary size, we use byte pair encoding (BPE)

(Gage, 1994; Sennrich et al., 2015), which splits each word into sub-words or

characters. We also use layer normalization (Ba et al., 2016) for the hierarchical

encoder, which we found worked better at the task of dialogue generation than

the related recurrent batch normalization (Ioffe and Szegedy, 2015; Cooijmans

Contents 97

et al., 2016). To train the VHRED model, we employed several of the same

techniques found in (Serban et al., 2017) and (Bowman et al., 2016): we drop

words in the decoder with a fixed rate of 25%, and we anneal the KL-divergence

term linearly from 0 to 1 over the first 60,000 batches. We use Adam as our

optimizer (Kingma and Ba, 2014).

When training adem, we also employ a sub-sampling procedure based on the

model response length. In particular, we divide the training examples into bins

based on the number of words in a response and the score of that response. We

then over-sample from bins across the same score to ensure that adem does

not use response length to predict the score. This is because humans have a

tendency to give a higher rating to shorter responses than to longer responses

(Serban et al., 2017), as shorter responses are often more generic and thus are

more likely to be suitable to the context. Indeed, the test set Pearson correlation

between response length and human score is 0.27.

For training VHRED, we use a context embedding size of 2000. However, we

found the adem model learned more effectively when this embedding size was

reduced. Thus, after training VHRED, we use principal component analysis

(PCA) (Pearson, 1901) to reduce the dimensionality of the context, model

response, and reference response embeddings to n. We found experimentally

that n = 50 provided the best performance.

When training our models, we conduct early stopping on a separate validation

set. For the evaluation dataset, we split the train/ validation/ test sets such that

there is no context overlap (i.e. the contexts in the test set are unseen during

training).

4.3.4.2 Results

Utterance-level correlations We first present new utterance-level correlation

results10 for existing word-overlap metrics, in addition to results with embed-

ding baselines and adem, in Table 4.9. The baseline metrics are evaluated on

the entire dataset of 4,104 responses to provide the most accurate estimate of

10We present both the Spearman correlation (computed on ranks, depicts monotonic re-
lationships) and Pearson correlation (computed on true values, depicts linear relationships)
scores.

Contents 98

Figure 4.7: Scatterplots depicting the system-level correlation results for adem,
BLEU-2, BLEU-4,and ROUGE on the test set. Each point represents the average
scores for the responses from a dialogue model (TFIDF, DE, HRED, human).
Human scores are shown on the horizontal axis, with normalized metric scores

on the vertical axis. The ideal metric has a perfectly linear relationship.

the score. 11 We measure the correlation for adem on the validation and test

sets, which constitute 616 responses each.

We can observe from the data in Table 4.9, that the correlations for the word-

overlap metrics are even lower than estimated in previous studies (Liu et al.,

2016; Galley et al., 2015). In particular, this is the case for BLEU-4, which

has frequently been used for dialogue response evaluation (Ritter et al., 2011;

Sordoni et al., 2015b; Li et al., 2015; Galley et al., 2015; Li et al., 2016a).

We can see from Table 4.9 that adem correlates far better with human judgement

than the word-overlap baselines. This is further illustrated by the scatterplots in

Figure 4.6. We also compare with adem using tweet2vec embeddings (Dhingra

et al., 2016). In this case, instead of using the VHRED pre-training method

described previously, we use off-the-shelf embeddings for c, r, and r̂, and fine-

tune M and N on our dataset. These tweet2vec embeddings are computed at

the character-level with a bidirectional GRU on a Twitter dataset for hashtag

prediction (Dhingra et al., 2016). We find that they obtain reasonable but inferior

performance compared to using VHRED embeddings.

System-level correlations We show the system-level correlations for various

metrics in Table 4.10, and present it visually in Figure 4.7. Each point in the

scatterplots represents a dialogue model; humans give low scores to TFIDF

and DE responses, higher scores to HRED and the highest scores to other

human responses. It is clear that existing word-overlap metrics are incapable of

11Note that our word-overlap correlation results in Table 4.9 are also lower than those
presented in (Galley et al., 2015). This is because Galley et al. measure corpus-level correlation,
i.e. correlation averaged across different subsets (of size 100) of the data, and pre-filter for
high-quality reference responses.

Contents 99

capturing this relationship for even 4 models. This renders them completely

deficient for dialogue evaluation. However, adem produces almost the same

model ranking as humans, achieving a significant Pearson correlation of 0.954.12

Thus, adem correlates well with humans both at the response and system level.

Generalization to previously unseen models When adem is used in practice,

it will take as input responses from a new model that it has not seen during

training. Thus, it is crucial that adem correlates with human judgements for

new models. We test adem’s generalization ability by performing a leave-one-

out evaluation. For each dialogue model that was the source of response data

for training adem (TF-IDF, Dual Encoder, HRED, humans), we conduct an

experiment where we train on all model responses except those from the chosen

model, and test only on the model that was unseen during training.

The results are given in Table 4.11. We observe that the adem model is able to

generalize for all models except the Dual Encoder. This is particularly surprising

for the HRED model; in this case, adem was trained only on responses that

were written by humans (from retrieval models or human-generated), but is

able to generalize to responses produced by a generative neural network model.

When testing on the entire test set, the model achieves comparable correlations

to the adem model that was trained on 25% less data selected at random.

Qualitative Analysis To illustrate some strengths and weaknesses of adem,

we show human and adem scores for each of the responses to various contexts

in Table 4.12. There are several instances where adem predicts accurately: in

particular, adem is often very good at assigning low scores to poor responses.

This seen in the first two contexts, where most of the responses given a score of

1 from humans are given scores less than 2 by adem. The single exception in

response (4) for the second context seems somewhat appropriate and should

perhaps have been scored higher by the human evaluator. There are also several

instances where the model assigns high scores to suitable responses, as in the

first two contexts.

One drawback we observed is that adem tends to be too conservative when

predicting response scores. This is the case in the third context, where the
12For comparison, BLEU achieves a system-level correlation of 0.99 on 5 models in the

translation domain (Papineni et al., 2002).

Contents 100

Metric Pearson
BLEU-1 -0.079 (0.921)
BLEU-2 0.308 (0.692)
BLEU-3 -0.537 (0.463)
BLEU-4 -0.536 (0.464)
ROUGE 0.268 (0.732)
adem 0.954 (0.046)

Table 4.10: System-level correlation, with the p-value in brackets.

Test on full dataset Test on removed model responses
Data Removed Spearman Pearson Spearman Pearson
TF-IDF 0.406 (<0.001) 0.409 (<0.001) 0.186 (0.021) 0.196 (0.015)
Dual Encoder 0.364 (<0.001) 0.373 (<0.001) 0.026 (0.749) 0.027 (0.736)
HRED 0.393 (<0.001) 0.396 (<0.001) 0.151 (0.060) 0.148 (<0.070)
Human 0.292 (<0.001) 0.298 (<0.001) 0.216 (<0.010) 0.148 (<0.070)
Average 0.364 0.369 0.145 0.130
25% at random 0.378 (<0.001) 0.384 (<0.001) — —

Table 4.11: Correlation for adem when various model responses are removed
from the training set. The left two columns show performance on the entire
test set, and the right two columns show performance on responses only from
the dialogue model not seen during training. The last row (25% at random)
corresponds to the adem model trained on all model responses, but with the
same amount of training data as the model above (i.e. 25% less data than the

full training set).

model assigns low scores to most of the responses that a human rated highly.

This behaviour is likely due to the squared error loss used to train adem; since

the model receives a large penalty for incorrectly predicting an extreme value,

it learns to predict scores closer to the average human score.

4.3.5 Related Work

Related to our approach is the literature on novel methods for the evalua-

tion of machine translation systems, especially through the WMT evaluation

task (Callison-Burch et al., 2011; Machácek and Bojar, 2014; Stanojevic et al.,

2015). In particular, Albrecht and Hwa (2007); Gupta et al. (2015) have proposed

to evaluate machine translation systems using Regression and Tree-LSTMs

respectively. Their approach differs from ours as, in the dialogue domain, we

must additionally condition our score on the context of the conversation, which

is not necessary in translation.

Contents 101

Context Reference re-
sponse

Model responses Human
score

adem

score
photo to see my television
debut go to - some. some
on <url> - hehe <url> → it
really was you? i thought
ppl were recognizing some-
one who looked like you!
were the oysters worth the
wait?

yeah it was me .
haha i ’d kinda
forgotten about it
it was filmed a
while ago

1) i’m not sure. i just don’t know what to do
with it.
2) you heard the horsepower productions
remix of lee scratch perry’s ‘exercising’ off
his ‘mighty upsetter’ album?
3) you wont chug a fuzzy peach navel
4) they were!

3
1

1
5

3.413
1.644

1.944
3.085

just beat call of duty!! →
want a cookie? → yes!! →
come get it

im in kenmore at
the moment

1) i’m gonna get a new phone some moro
2) no way man.
3) wow i just got a free pizza coupon! get
yours

before theres no more! <url>
4) i’m going to go to the mall.

1
5
1

1

2.947
3.405
2.877

2.851

am i out of twitter jail yet?
testing → yeah. i posted
bail → thanks. i am a
right chatter tweetbox on
sundays. same happened
last sunday lol

any news on meet-
ing our user ? i
go to the us on fri-
day and i don ’t
want to miss any-
thing arranged

1) i’m not sure if i’m going to be able to get
it.
2) good to see another mac user in the lead-
ership ranks
3) awww poor baby hope u get to feeling
better soon. maybe some many work days
at piedmont
4) did you tweet too much?

3
4

2
5

2.651
2.775

2.173
3.185

Table 4.12: Examples of scores given by the adem model.

There has also been related work on estimating the quality of responses in chat-

oriented dialogue systems. DeVault et al. (2011) train an automatic dialogue

policy evaluation metric from 19 structured role-playing sessions, enriched

with paraphrases and external referee annotations. Gandhe and Traum (2016)

propose a semi-automatic evaluation metric for dialogue coherence, similar

to BLEU and ROUGE, based on ‘wizard of Oz’ type data.13 Xiang et al.

(2014) propose a framework to predict utterance-level problematic situations

in a dataset of Chinese dialogues using intent and sentiment factors. Finally,

Higashinaka et al. (2014) train a classifier to distinguish user utterances from

system-generated utterances using various dialogue features, such as dialogue

acts, question types, and predicate-argument structures.

Several recent approaches use hand-crafted reward features to train dialogue

models using reinforcement learning (RL). For example, Li et al. (2016b) use

features related to ease of answering and information flow, and Yu et al. (2016)

use metrics related to turn-level appropriateness and conversational depth.

These metrics are based on hand-crafted features, which only capture a small

set of relevant aspects; this inevitably leads to sub-optimal performance, and

it is unclear whether such objectives are preferable over retrieval-based cross-

entropy or word-level maximum log-likelihood objectives. Furthermore, many

13In ‘wizard of Oz’ scenarios, humans play the role of the dialogue system, usually unbe-
known to the interlocutors.

Contents 102

of these metrics are computed at the conversation-level, and are not available

for evaluating single dialogue responses. The metrics that can be computed

at the response-level could be incorporated into our framework, for example

by adding a term to equation 4.6 consisting of a dot product between these

features and a vector of learned parameters.

There has been significant work on evaluation methods for task-oriented dia-

logue systems, which attempt to solve a user’s task such as finding a restaurant.

These methods include the PARADISE framework (Walker et al., 1997) and

MeMo (Möller et al., 2006), which consider a task completion signal. PARADISE

in particular is perhaps the first work on learning an automatic evaluation func-

tion for dialogue, accomplished through linear regression. However, PARADISE

requires that one can measure task completion and task complexity, which are

not available in our setting.

4.3.6 Discussion

4.3.6.1 The problem of human appropriateness ratings

The evaluation model proposed in this chapter favours dialogue models that

generate responses that are rated as highly appropriate by humans. It is likely

that this property does not fully capture the desired end-goal of chatbot systems.

For example, one issue with building models to approximate human judgements

of response quality is the problem of generic responses. Since humans often

provide high scores to generic responses due to their appropriateness for many

given contexts (Shang et al., 2016), a model trained to predict these scores

will exhibit the same behaviour. An important direction for future work is

modifying adem such that it is not subject to this bias. This could be done,

for example, by censoring adem’s representations (Edwards and Storkey, 2016)

such that they do not contain any information about length. Alternatively, one

can combine this with an adversarial evaluation model (Kannan and Vinyals, 2017;

Li et al., 2017) that assigns a score based on how easy it is to distinguish the

dialogue model responses from human responses. In this case, a model that

generates generic responses will easily be distinguishable and obtain a low

score.

Contents 103

Another way to overcome this might be to give humans binary choice ratings

(i.e. ask which of two responses is better), rather than asking them to give

scalar scores on a Likert scale. Human evaluators could be explicitly instructed

to prefer more specific responses to vaguer ones that could be used for any

context. There is also evidence that binary choices elicit higher inter-annotator

agreement in other domains (e.g. (Awad et al., 2014)), and this has also been

adopted in dialogue evaluation (See et al., 2019).

4.3.6.2 Evaluating full conversations

An important direction of future research is building models that can evaluate

the capability of a dialogue system to have an engaging and meaningful interac-

tion with a human. Compared to evaluating a single response, this evaluation

is arguably closer to the end-goal of chatbots. However, such an evaluation

is extremely challenging to do in a completely automatic way. We view the

evaluation procedure presented in this chapter as a step towards this goal;

current dialogue systems are incapable of generating responses that are rated

as highly appropriate by humans, and we believe our evaluation model will be

useful for measuring and facilitating progress in this direction.

4.3.6.3 Reflecting on ADEM

Several years after the publishing of ADEM, the model hasn’t seen much use in

evaluating dialogue systems, even on Twitter. There are several reasons for this,

which we detail in a written retrospective on the ADEM paper in (Lowe, 2019),

which we summarize here. Essentially, despite the fact that ADEM generalizes

on our Twitter test set and generalizes well to other models, it performs poorly

on other datasets, such as a sanity check performed by an external researcher

(Lowe, 2019). This anecdotal evidence is also supported by Sai et al. (2019), who

find that ADEM is susceptible to adversarial examples, and other seemingly

innocuous perturbations to the responses.

One thing that is not mentioned in the paper is that we performed a preliminary

experiment testing our ADEM model on the Twitter and Ubuntu evaluation

data from (Liu et al., 2016), and found that, on this data, ADEM didn’t correlate

with human judgements at all. While this was expected for Ubuntu, it was

Contents 104

unexpected for Twitter —– we hypothesized that this was due to our data

collection procedure being different, along with the fact that we used Turkers to

evaluate responses in our ADEM paper and CS students to do the evaluations in

(Liu et al., 2016). But this result should have been a red flag for us to probe more

deeply into the model, and for full transparency, should have been mentioned

in the paper.

The reason for the lack of generalization is likely two-fold: (1) the dataset really

isn’t that big, at only 1000 contexts and 4000 labeled responses; (2) there is a

bias in the human responses towards being shorter. This is because we got

the human responses from Mechanical Turkers, who satisfied the minimum

criteria by generating reasonable responses that were as short as possible, as

we did not incentivize longer responses with a bonus. In retrospect, it would

have been beneficial to be more careful with data collection, including explicitly

incentivizing the behaviour we wanted to occur.

We remain optimistic about the potential of learned models for evaluation.

However, we believe that this will likely need to be done with much larger

datasets than presented here, on the order of (at least) tens of thousands of

responses. Further, this metric will likely need to be re-trained regularly, as

dialogue systems practitioners build models that are more finely tuned to the

evaluation model (and thus, will likely overfit). For this reason we also advocate

for these learned models to be used in conjunction with learned ‘discriminators’,

as described above.

Part II

Learning and evaluating emergent

communication

105

Chapter 5

Centralized critics improve

emergent communication and

multi-agent learning

5.1 Motivation

In previous chapters, we’ve discussed methods of training and evaluating dia-

logue systems that are trained on large, static datasets. However, as discussed

in Chapter 1, an important component of how humans use language is via

grounding (Harnad, 1990). Humans use language to refer to things and ac-

complish tasks in the real world. In this part of the thesis, we investigate

methods for training multiple agents to learn to communicate with each other

in simulated environments. Since the emergent communication protocols learned

by these agents are grounded in their environment, these settings are a useful

stepping stone for understanding and building agents that speak grounded

human language. Specifically in this chapter, we leverage the tools of multi-agent

reinforcement learning to train agents to collaborate and compete in multiple

tasks, including emerging a language from scratch (Sukhbaatar et al., 2016;

Foerster et al., 2016; Mordatch and Abbeel, 2017). Successfully scaling RL to the

multi-agent case is an important goal towards building artificially intelligent

systems that can productively interact with humans and each other.

106

Contents 107

Unfortunately, traditional reinforcement learning approaches such as Q-Learning

or policy gradient are poorly suited to multi-agent environments. One issue is

that each agent’s policy is changing as training progresses, and the environment

becomes non-stationary from the perspective of any individual agent (in a way

that is not explainable by changes in the agent’s own policy). This presents

learning stability challenges and prevents the straightforward use of past expe-

rience replay, which is crucial for stabilizing deep Q-learning. Policy gradient

methods, on the other hand, usually exhibit very high variance when coordi-

nation of multiple agents is required. Alternatively, one can use model-based

policy optimization which can learn optimal policies via back-propagation, but

this requires a (differentiable) model of the world dynamics and assumptions

about the interactions between agents. Applying these methods to competitive

environments is also challenging from an optimization perspective, as evi-

denced by the notorious instability of adversarial training methods (Goodfellow

et al., 2014).

In this chapter, we propose a general-purpose multi-agent learning algorithm

that: (1) leads to learned policies that only use local information (i.e. their own

observations) at execution time, (2) does not assume a differentiable model of

the environment dynamics or any particular structure on the communication

method between agents, and (3) is applicable not only to cooperative inter-

action but to competitive or mixed interaction involving both physical and

communicative behavior. The ability to act in mixed cooperative-competitive

environments may be critical for intelligent agents; while competitive training

provides a natural curriculum for learning (Sukhbaatar et al., 2017), agents must

also exhibit cooperative behavior (e.g. with humans) at execution time.

We adopt the framework of centralized training with decentralized execution,

allowing the policies to use extra information to ease training, so long as this

information is not used at test time. It is unnatural to do this with Q-learning

without making additional assumptions about the structure of the environment,

as the Q function generally cannot contain different information at training

and test time. Thus, we propose a simple extension of actor-critic policy

gradient methods where the critic is augmented with extra information about

the policies of other agents, while the actor only has access to local information.

After training is completed, only the local actors are used at execution phase,

Contents 108

acting in a decentralized manner and equally applicable in cooperative and

competitive settings.

Since the centralized critic function explicitly uses the decision-making policies

of other agents, we additionally show that agents can learn approximate models

of other agents online and effectively use them in their own policy learning

procedure. We also introduce a method to improve the stability of multi-

agent policies by training agents with an ensemble of policies, thus requiring

robust interaction with a variety of collaborator and competitor policies. We

empirically show the success of our approach compared to existing methods

in cooperative as well as competitive scenarios, where agent populations are

able to discover complex physical and communicative coordination strategies.

Specifically, we find that our method improves learning speed dramatically in

emerging a language to solve a simple multi-agent communication game.

5.2 Related Work

The simplest approach to learning in multi-agent settings is to use indepen-

dently learning agents. This was attempted with Q-learning in (Tan, 1993), but

does not perform well in practice (Matignon et al., 2012). As we will show,

independently-learning policy gradient methods also perform poorly. One

issue with independent Q-learning is that each agent’s policy changes during

training, resulting in a non-stationary environment and preventing the naïve

application of experience replay. Previous work has attempted to address this

by inputting other agent’s policy parameters to the Q function (Tesauro, 2004),

explicitly adding the iteration index to the replay buffer, or using importance

sampling (Foerster et al., 2017b). Deep Q-learning approaches have previously

been investigated in (Tampuu et al., 2017) to train competing Pong agents.

The nature of interaction between agents can either be cooperative, competitive,

or both, and many algorithms are designed only for a particular nature of

interaction. Most studied are cooperative settings, with strategies such as

optimistic and hysteretic Q function updates (Lauer and Riedmiller, 2000;

Matignon et al., 2007; Omidshafiei et al., 2017), which assume that the actions

of other agents are made to improve collective reward. Another approach is to

indirectly arrive at cooperation via sharing of policy parameters (Gupta et al.,

Contents 109

2017), but this requires homogeneous agent capabilities. These algorithms are

generally not applicable in competitive or mixed settings. See (Panait and Luke,

2005; Busoniu et al., 2008) for surveys of multi-agent learning approaches and

applications.

Concurrently to our work, Foerster et al. (2017a) proposed a similar idea of

using policy gradient methods with a centralized critic, and test their approach

on a StarCraft micromanagement task. Their approach differs from ours in

the following ways: (1) they learn a single centralized critic for all agents,

whereas we learn a centralized critic for each agent, allowing for agents with

differing reward functions including competitive scenarios, (2) we consider

environments with explicit communication between agents, (3) they combine

recurrent policies with feed-forward critics, whereas our experiments use feed-

forward policies (although our methods are applicable to recurrent policies), (4)

we learn continuous policies whereas they learn discrete policies.

Recent work has focused on learning grounded cooperative communication

protocols between agents to solve various tasks (Sukhbaatar et al., 2016; Foerster

et al., 2016; Mordatch and Abbeel, 2017). However, these methods are usually

only applicable when the communication between agents is carried out over a

dedicated, differentiable communication channel.

Our method requires explicitly modeling decision-making process of other

agents. The importance of such modeling has been recognized by both re-

inforcement learning (Boutilier, 1996; Chalkiadakis and Boutilier, 2003) and

cognitive science communities (Frank and Goodman, 2012). Hu and Wellman

(1998) stressed the importance of being robust to the decision making process

of other agents, as do others by building Bayesian models of decision mak-

ing. We incorporate such robustness considerations by requiring that agents

interact successfully with an ensemble of any possible policies of other agents,

improving training stability and robustness of agents after training.

Contents 110

5.3 Background: High variance of policy gradient

algorithms

Policy gradient methods are known to exhibit high variance gradient estimates

(Ghavamzadeh and Engel, 2007; Gu et al., 2016). This is exacerbated in multi-

agent settings; since an agent’s reward usually depends on the actions of many

agents, the reward conditioned only on the agent’s own actions (when the

actions of other agents are not considered in the agent’s optimization process)

exhibits much more variability, thereby increasing the variance of its gradients.

Below, we show a simple setting where the probability of taking a gradient

step in the correct direction decreases exponentially with the number of agents,

meaning that the gradients become progressively more useless as we add

agents.

Proposition 1. Consider N agents with binary actions: P(ai = 1) = θi, where

R(a1, . . . , aN) = 1a1=···=aN . We assume an uninformed scenario, in which agents are

initialized to θi = 0.5 ∀i. Then, if we are estimating the gradient of the cost J with

policy gradient, we have:

P(〈∇̂J,∇J〉 > 0) ∝ (0.5)N

where ∇̂J is the policy gradient estimator from a single sample, and ∇J is the true

gradient.

Proof. We can write P(ai) = θi
ai(1 − θi)

1−ai , and log P(ai) = ai log θi + (1 −
ai) log(1− θi).

The policy gradient estimator (from a single sample) is:

∂̂

∂θi
J = R(a1, . . . , aN)

∂

∂θi
log P(a1, . . . , aN)

= R(a1, . . . , aN)
∂

∂θi
∑

i
ai log θi + (1− ai) log(1− θi)

= R(a1, . . . , aN)
∂

∂θi
(ai log θi + (1− ai) log(1− θi))

= R(a1, . . . , aN)

(
ai

θi
− 1− ai

1− θi

)
(5.1)

Contents 111

For θi = 0.5 we have:

∂̂

∂θi
J = R(a1, . . . , aN) (2ai − 1)

And the expected reward can be calculated as:

E(R) = ∑
a1,...,aN

R(a1, . . . , aN)(0.5)N

Consider the case where R(a1, . . . , aN) = 1a1=···=aN=1. Then

E(R) = (0.5)N

and

E(
∂̂

∂θi
J) =

∂

∂θi
J = (0.5)N

The variance of a single sample of the gradient is then:

V(
∂̂

∂θi
J) = E(

∂̂

∂θi
J2)−E(

∂̂

∂θi
J)2 = (0.5)N − (0.5)2N

What is the probability of taking a step in the right direction? We can look at

P(〈∇̂J,∇J〉 > 0). We have:

〈∇̂J,∇J〉 = ∑
i

∂̂

∂θi
J × (0.5)N = (0.5)N ∑

i

∂̂

∂θi
J,

so P(〈∇̂J,∇J〉 > 0) = (0.5)N. Thus, as the number of agents increases, the

probability of taking a gradient step in the right direction decreases exponen-

tially.

While this is a somewhat artificial example, it serves to illustrate that there are

simple environments that become progressively more difficult (in terms of the

probability of taking a gradient step in a direction that increases reward) for

policy gradient methods as the number of agents grows. This is particularly true

in environments with sparse rewards, such as the one described above. Note

that in this example, the policy gradient variance V(∂̂
∂θi

J) actually decreases as

N grows. However, the expectation of the policy gradient decreases as well, and

Contents 112

 ..
 ..

 ..
 ..

 m
1

 m
N

 c
1

 c
N

 l
1

 l
M

 Ḥ
c

 Ḥ
l

 a

 C

 a

 b

pool

pool

FC

FC

FC

FC

FC

π

o a

agent 1

. . .

Q

π

o a

agent N

Q

execution

training

. . .

. . .
1

N

N

1

1 N

Figure 5.1: Overview of our multi-agent decentralized actor, centralized critic
approach.

the signal to noise ratio E(∂̂
∂θi

J)/(V(∂̂
∂θi

J))1/2 decreases with N, corresponding

to the decreasing probability of a correct gradient direction.

5.4 Methods

We have argued in the previous section that naïve policy gradient methods

perform poorly in simple multi-agent settings, and this is supported in our

experiments in Section 5.5. Our goal in this section is to derive an algorithm

that works well in such settings. However, we would like to operate under the

following constraints: (1) the learned policies can only use local information (i.e.

their own observations) at execution time, (2) we do not assume a differentiable

model of the environment dynamics, unlike in Mordatch and Abbeel (2017), and

(3) we do not assume any particular structure on the communication method be-

tween agents (that is, we don’t assume a differentiable communication channel).

Fulfilling the above desiderata would provide a general-purpose multi-agent

learning algorithm that could be applied not just to cooperative games with

explicit communication channels, but competitive games and games involving

only physical interactions between agents.

Contents 113

5.4.1 Multi-Agent Actor Critic

Similarly to Foerster et al. (2016), we accomplish our goal by adopting the

framework of centralized training with decentralized execution. Thus, we allow

the policies to use extra information to ease training, so long as this information

is not used at test time. It is unnatural to do this with Q-learning, as the Q

function generally cannot contain different information at training and test time.

Thus, we propose a simple extension of actor-critic policy gradient methods

where the critic is augmented with extra information about the policies of other

agents.

More concretely, consider a game with N agents with policies parameterized by

θθθ = {θ1, ..., θN}, and let πππ = {πππ1, ..., πππN} be the set of all agent policies. Then

we can write the gradient of the expected return for agent i, J(θi) = E[Ri] as:

∇θi J(θi) = Es∼pµµµ,ai∼πππi [∇θi log πππi(ai|oi)Qπππ
i (x, a1, ..., aN)]. (5.2)

Here Qπππ
i (x, a1, ..., aN) is a centralized action-value function that takes as input

the actions of all agents, a1, . . . , aN, in addition to some state information x,

and outputs the Q-value for agent i. In the simplest case, x could consist of

the observations of all agents, x = (o1, ..., oN), however we could also include

additional state information if available. Since each Qπππ
i is learned separately,

agents can have arbitrary reward structures, including conflicting rewards in a

competitive setting.

We can extend the above idea to work with deterministic policies. If we now

consider N continuous policies µµµθi w.r.t. parameters θi (abbreviated as µµµi), the

gradient can be written as:

∇θi J(µµµi) = Ex,a∼D[∇θiµµµi(ai|oi)∇ai Q
µµµ
i (x, a1, ..., aN)|ai=µµµi(oi)

], (5.3)

Here the experience replay bufferD contains the tuples (x, x′, a1, . . . , aN , r1, . . . , rN),

recording experiences of all agents. The centralized action-value function Qµµµ
i is

updated as:

L(θi) = Ex,a,r,x′ [(Q
µµµ
i (x, a1, . . . , aN)− y)2], y = ri +γ Qµµµ′

i (x′, a′1, . . . , a′N)
∣∣
a′j=µµµ′j(oj)

,

(5.4)

Contents 114

where µµµ′ = {µµµθ′1
, ..., µµµθ′N

} is the set of target policies with delayed parameters θ′i .

As shown in Section 5.5, we find the centralized critic with deterministic policies

works very well in practice, and refer to it as multi-agent deep deterministic policy

gradient (MADDPG). We provide the description of the full algorithm in the

Appendix.

A primary motivation behind MADDPG is that, if we know the actions taken

by all agents, the environment is stationary even as the policies change, since

P(s′|s, a1, ..., aN, πππ1, ..., πππN) = P(s′|s, a1, ..., aN) = P(s′|s, a1, ..., aN, πππ′1, ..., πππ′N) for

any πππi 6= πππ′i. This is not the case if we do not explicitly condition on the actions

of other agents, as done for most decentralized RL methods.

Note that we require the policies of other agents to apply an update in Eq. 5.4.

Knowing the observations and policies of other agents is not a particularly

restrictive assumption; if our goal is to train agents to exhibit complex com-

municative behaviour in simulation, this information is often available to all

agents. However, we can relax this assumption if necessary by learning the

policies of other agents from observations — we describe a method of doing

this in Section 5.4.2.

5.4.2 Inferring Policies of Other Agents

To remove the assumption of knowing other agents’ policies, as required in

Eq. 5.4, each agent i can additionally maintain an approximation µ̂µµ
φ

j
i

(where

φ are the parameters of the approximation; henceforth µ̂µµ
j
i) to the true policy

of agent j, µµµj. This approximate policy is learned by maximizing the log

probability of agent j’s actions, with an entropy regularizer:

L(φj
i) = −Eoj,aj

[
log µ̂µµ

j
i(aj|oj) + λH(µ̂µµ

j
i)
]

, (5.5)

where H is the entropy of the policy distribution. With the approximate policies,

y in Eq. 5.4 can be replaced by an approximate value ŷ calculated as follows:

ŷ = ri + γQµµµ′

i (x′, µ̂µµ′1i (o1), . . . , µµµ′i(oi), . . . , µ̂µµ′Ni (oN)), (5.6)

where µ̂µµ
′j
i denotes the target network for the approximate policy µ̂µµ

j
i . Note that

Eq. 5.5 can be optimized in a completely online fashion: before updating Qµµµ
i ,

Contents 115

the centralized Q function, we take the latest samples of each agent j from the

replay buffer to perform a single gradient step to update φ
j
i . Note also that, in

the above equation, we input the action log probabilities of each agent directly

into Q, rather than sampling.

5.4.3 Agents with Policy Ensembles

As previously mentioned, a recurring problem in multi-agent reinforcement

learning is the environment non-stationarity due to the agents’ changing policies.

This is particularly true in competitive settings, where agents can derive a strong

policy by overfitting to the behavior of their competitors. Such policies are

undesirable as they are brittle and may fail when the competitors alter strategies.

To obtain multi-agent policies that are more robust to changes in the policy of

competing agents, we propose to train a collection of K different sub-policies.

At each episode, we randomly select one particular sub-policy for each agent

to execute. Suppose that policy µµµi is an ensemble of K different sub-policies

with sub-policy k denoted by µµµ
θ
(k)
i

(denoted as µµµ
(k)
i). For agent i, we are then

maximizing the ensemble objective: Je(µµµi) = E
k∼unif(1,K),s∼pµµµ,a∼µµµ

(k)
i
[Ri(s, a)] .

Since different sub-policies will be executed in different episodes, we maintain

a replay buffer D(k)
i for each sub-policy µµµ

(k)
i of agent i. Accordingly, we can

derive the gradient of the ensemble objective with respect to θ
(k)
i as follows:

∇
θ
(k)
i

Je(µµµi) =
1
K

E
x,a∼D(k)

i

[
∇

θ
(k)
i

µµµ
(k)
i (ai|oi)∇ai Q

µµµi (x, a1, . . . , aN)
∣∣∣
ai=µµµ

(k)
i (oi)

]
.

(5.7)

5.5 Experiments

5.5.1 Environments

To perform our experiments, we adopt the grounded communication environ-

ment proposed in (Mordatch and Abbeel, 2017)1, which consists of N agents
1Code for our Particle World environments can be found at:

https://github.com/openai/multiagent-particle-envs. Code for implementing MADDPG can
be found at: https://github.com/openai/maddpg

Contents 116

and L landmarks inhabiting a two-dimensional world with continuous space

and discrete time. Agents may take physical actions in the environment and

communication actions that get broadcasted to other agents. Unlike Mordatch

and Abbeel (2017), we do not assume that all agents have identical action and

observation spaces, or act according to the same policy πππ. We also consider

games that are both cooperative (all agents must maximize a shared return)

and competitive (agents have conflicting goals). Some environments require

explicit communication between agents in order to achieve the best reward,

while in other environments agents can only perform physical actions. We

provide details for each environment below.

speaker

listener“green”

agent 1

agent 3

landmark

landmark

landmark

 p

v

c

agent 2

predator 1

prey

predator 2

predator 3

agent 1
agent 2

agent 3

agent 1 agent 2

adversary

?

Figure 5.2: Illustrations of the experimental environment and some tasks we
consider, including a) Cooperative Communication b) Predator-Prey c) Cooperative
Navigation d) Physical Deception. See webpage for videos of all experimental

results.

Cooperative communication. This task consists of two cooperative agents, a

speaker and a listener, who are placed in an environment with three landmarks

of differing colors. At each episode, the listener must navigate to a landmark

of a particular color, and obtains reward based on its distance to the correct

landmark. However, while the listener can observe the relative position and

color of the landmarks, it does not know which landmark it must navigate to.

Conversely, the speaker’s observation consists of the correct landmark color,

and it can produce a communication output at each time step which is observed

by the listener. Thus, the speaker must learn to output the landmark colour

based on the motions of the listener. Although this problem is relatively simple,

as we show in Section 5.5.2 it poses a significant challenge to decentralized RL

algorithms.

Cooperative navigation. In this environment, agents must cooperate through

physical actions to reach a set of L landmarks. Agents observe the relative

positions of other agents and landmarks, and are collectively rewarded based

on the proximity of any agent to each landmark. In other words, the agents

Contents 117

have to ‘cover’ all of the landmarks. Further, the agents occupy significant

physical space and are penalized when colliding with each other. Our agents

learn to infer the landmark they must cover, and move there while avoiding

other agents.

Keep-away. This scenario consists of L landmarks including a target landmark,

N cooperating agents who know the target landmark and are rewarded based

on their distance to the target, and M adversarial agents who must prevent the

cooperating agents from reaching the target. Adversaries accomplish this by

physically pushing the agents away from the landmark, temporarily occupying

it. While the adversaries are also rewarded based on their distance to the target

landmark, they do not know the correct target; this must be inferred from the

movements of the agents.

Physical deception. Here, N agents cooperate to reach a single target landmark

from a total of N landmarks. They are rewarded based on the minimum

distance of any agent to the target (so only one agent needs to reach the target

landmark). However, a lone adversary also desires to reach the target landmark;

the catch is that the adversary does not know which of the landmarks is the

correct one. Thus the cooperating agents, who are penalized based on the

adversary distance to the target, learn to spread out and cover all landmarks so

as to deceive the adversary.

Predator-prey. In this variant of the classic predator-prey game, N slower

cooperating agents must chase the faster adversary around a randomly gen-

erated environment with L large landmarks impeding the way. Each time the

cooperative agents collide with an adversary, the agents are rewarded while the

adversary is penalized. Agents observe the relative positions and velocities of

the agents, and the positions of the landmarks.

Covert communication. This is an adversarial communication environment,

where a speaker agent (‘Alice’) must communicate a message to a listener

agent (‘Bob’), who must reconstruct the message at the other end. However, an

adversarial agent (‘Eve’) is also observing the channel, and wants to reconstruct

the message — Alice and Bob are penalized based on Eve’s reconstruction,

and thus Alice must encode her message using a randomly generated key,

known only to Alice and Bob. This is similar to the cryptography environment

considered in Abadi and Andersen (2016).

Contents 118

Figure 5.3: Comparison between MADDPG and DDPG (left), and between
single policy MADDPG and ensemble MADDPG (right) on the competitive
environments. Each bar cluster shows the 0-1 normalized score for a set of
competing policies (agent v adversary), where a higher score is better for the
agent. In all cases, MADDPG outperforms DDPG when directly pitted against
it, and similarly for the ensemble against the single MADDPG policies. Full

results are given in the Appendix.

5.5.2 Comparison to Decentralized Reinforcement Learning Meth-

ods

Figure 5.4: Agent reward on cooperative
communication after 25000 episodes.

We implement our MADDPG algo-

rithm and evaluate it on the envi-

ronments presented in Section 5.5.1.2

Unless otherwise specified, our poli-

cies are parameterized by a two-layer

ReLU MLP with 64 units per layer. To

support discrete communication mes-

sages, we use the Gumbel-Softmax es-

timator (Jang et al., 2016). To evaluate

the quality of policies learned in com-

petitive settings, we pitch MADDPG

agents against DDPG agents, and compare the resulting success of the agents

and adversaries in the environment. We train our models until convergence,

and then evaluate them by averaging various metrics for 1000 further iterations.

We summarize our results here.

We first examine the cooperative communication scenario. Despite the sim-

plicity of the task (the speaker only needs to learn to output its observation),

2Videos of our experimental results can be viewed at
https://sites.google.com/site/multiagentac/

https://sites.google.com/site/multiagentac/

Contents 119

C
oo

pe
ra

ti
ve

C
om

m
.

Ph
ys

ic
al

D
ec

ep
t.

(a) MADDPG (b) DDPG

Figure 5.5: Comparison between MADDPG (left) and DDPG (right) on the
cooperative communication (CC) and physical deception (PD) environments at
t = 0, 5, and 25. Small dark circles indicate landmarks. In CC, the grey agent
is the speaker, and the color of the listener indicates the target landmark. In
PD, the blue agents are trying to deceive the red adversary, while covering
the target landmark (in green). MADDPG learns the correct behavior in both
cases: in CC the speaker learns to output the target landmark color to direct
the listener, while in PD the agents learn to cover both landmarks to confuse
the adversary. DDPG (and other RL algorithms) struggles in these settings: in
CC the speaker always repeats the same utterance and the listener moves to
the middle of the landmarks, and in PP one agent greedily pursues the green
landmark (and is followed by the adversary) while the othe agent scatters. See

video for full trajectories.

decentralized RL methods such as DQN, Actor-Critic, a first-order implementa-

tion of TRPO, and DDPG all fail to learn the correct behaviour (measured by

whether the listener is within a short distance from the target landmark). In

practice we observed that the listener learns to ignore the speaker and simply

moves to the middle of all observed landmarks. We plot the learning curves

over 25000 episodes for various approaches in Figure 5.4.

We hypothesize that a primary reason for the failure of decentralized RL

methods in this (and other) multi-agent settings is the lack of a consistent

gradient signal. For example, if the speaker utters the correct symbol while the

listener moves in the wrong direction, the speaker is penalized. This problem is

exacerbated as the number of time steps grows: we observed that decentralized

policy gradient methods can learn when the objective of the listener is simply

to reconstruct the observation of the speaker in a single time step, or if the

initial positions of agents and landmarks are fixed and evenly distributed.

This indicates that many of the multi-agent methods previously proposed

for scenarios with short time horizons (e.g. (Lazaridou et al., 2016)) may not

generalize to more complex tasks.

Contents 120

Figure 5.6: Policy learning success rate
on cooperative communication after 25000

episodes.

Conversely, MADDPG agents can

learn coordinated behaviour more

easily via the centralized critic. In

the cooperative communication en-

vironment, MADDPG is able to re-

liably learn the correct listener and

speaker policies, and the listener is

often (84.0% of the time) able to nav-

igate to the target.

A similar situation arises for the phys-

ical deception task: when the cooper-

ating agents are trained with MADDPG, they are able to successfully deceive

the adversary by covering all of the landmarks around 94% of the time when

L = 2 (Figure 5). Furthermore, the adversary success is quite low, especially

when the adversary is trained with DDPG (16.4% when L = 2). This contrasts

sharply with the behaviour learned by the cooperating DDPG agents, who

are unable to deceive MADDPG adversaries in any scenario, and do not even

deceive other DDPG agents when L = 4.

While the cooperative navigation and predator-prey tasks have a less stark

divide between success and failure, in both cases the MADDPG agents outper-

form the DDPG agents. In cooperative navigation, MADDPG agents have a

slightly smaller average distance to each landmark, but have almost half the

average number of collisions per episode (when N = 2) compared to DDPG

agents due to the ease of coordination. Similarly, MADDPG predators are

far more successful at chasing DDPG prey (16.1 collisions/episode) than the

converse (10.3 collisions/episode).

In the covert communication environment, we found that Bob trained with

both MADDPG and DDPG out-performs Eve in terms of reconstructing Alice’s

message. However, Bob trained with MADDPG achieves a larger relative

success rate compared with DDPG (52.4% to 25.1%). Further, only Alice

trained with MADDPG can encode her message such that Eve achieves near-

random reconstruction accuracy. The learning curve (a sample plot is shown

in Appendix) shows that the oscillation due to the competitive nature of the

environment often cannot be overcome with common decentralized RL methods.

We emphasize that we do not use any of the tricks required for the cryptography

Contents 121

0 1000 2000 3000 4000 5000 6000 7000
iteration

80

70

60

50

40

30

20

10

av
er

ag
e

re
wa

rd

use approximate policies
use true policies of other agents

0 1000 2000 3000 4000 5000 6000 7000
iteration

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

KL
(

||
)

listener
speaker

Figure 5.7: Effectiveness of learning by approximating policies of other agents
in the cooperative communication scenario. Left: plot of the reward over
number of iterations; MADDPG agents quickly learn to solve the task when
approximating the policies of others. Right: KL divergence between the ap-

proximate policies and the true policies.

environment from Abadi and Andersen (2016), including modifying Eve’s loss

function, alternating agent and adversary training, and using a hybrid ‘mix &

transform’ feed-forward and convolutional architecture.

5.5.3 Effect of Learning Polices of Other Agents

We evaluate the effectiveness of learning the policies of other agents in the

cooperative communication environment, following the same hyperparameters

as the previous experiments and setting λ = 0.001 in Eq. 5.5. The results are

shown in Figure 5.7. We observe that despite not fitting the policies of other

agents perfectly (in particular, the approximate listener policy learned by the

speaker has a fairly large KL divergence to the true policy), learning with

approximated policies is able to achieve the same success rate as using the true

policy, without a significant slowdown in convergence.

5.5.4 Effect of Training with Policy Ensembles

We focus on the effectiveness of policy ensembles in competitive environments,

including keep-away, cooperative navigation, and predator-prey. We choose

K = 3 sub-policies for the keep-away and cooperative navigation environments,

and K = 2 for predator-prey. To improve convergence speed, we enforce that the

cooperative agents should have the same policies at each episode, and similarly

for the adversaries. To evaluate the approach, we measure the performance of

Contents 122

ensemble policies and single policies in the roles of both agent and adversary.

The results are shown on the right side of Figure 5.3. We observe that agents

with policy ensembles are stronger than those with a single policy. In particular,

when pitting ensemble agents against single policy adversaries (second to left

bar cluster), the ensemble agents outperform the adversaries by a large margin

compared to when the roles are reversed (third to left bar cluster).

5.6 Discussion

We have proposed a multi-agent policy gradient algorithm where agents learn

a centralized critic based on the observations and actions of all agents. Empir-

ically, our method outperforms decentralized RL algorithms on a variety of

cooperative and competitive multi-agent environments. We can further improve

the performance of our method by training agents with an ensemble of policies,

an approach we believe to be generally applicable to any multi-agent algorithm.

One downside to our approach is that the input space of Q grows linearly

(depending on what information is contained in x) with the number of agents

N. This could be remedied in practice by, for example, having a modular Q

function that only considers agents in a certain neighborhood of a given agent.

This downside has been addressed in subsequent work, e.g. (Chu and Ye, 2017).

Chapter 6

The pitfalls of measuring emergent

communication

6.1 Motivation

In the previous chapter, we advance methods for multi-agent RL applied to

emergent communication settings. Concurrently and subsequently to the pub-

lishing of this work (Lowe et al., 2017c), there has been a large number of papers

written about emergent communication in various settings, from cooperative

referential games (Das et al., 2017; Lazaridou et al., 2018; Kottur et al., 2017; Choi

et al., 2018; Havrylov and Titov, 2017; Evtimova et al., 2017), to navigating a

simulated world (Sukhbaatar et al., 2016; Jaques et al., 2018a; Foerster et al.,

2018; Bogin et al., 2018), to games with pixel-based inputs (Lazaridou et al., 2018;

Choi et al., 2018; Bogin et al., 2018), to settings incorporating human language

(Lazaridou et al., 2016; Lee et al., 2017), and to even more complex games that

require inferring the belief state of the opponent, like Hanabi (Foerster et al.,

2018).

Despite these advances, there has been no formal study evaluating how we

measure emergent communication. Most papers in this area show that adding a

communication channel helps the agents achieve a higher reward, and attempt

to understand the communication protocols qualitatively by, for example, plot-

ting the distribution over messages in various states of the environment. This

is a reasonable approach: if adding a communication channel increases the

123

Contents 124

reward in an environment, then the agents are making some use of that channel.

But it is useful to quantify more finely the degree of communication as it can

provide more insights into agent behaviour. This may be essential for human

monitoring; we want to understand why agents are making certain decisions,

and understanding their language would make this significantly easier. Our

aim is to develop a set of evaluation tools for detecting and measuring emer-

gent communication that increases the robustness of emergent communication

research on the way to developing agents that communicate with humans.

In this chapter, we take a step in this direction by analyzing some intuitive

metrics and tests that have been used in the recent literature for measuring

emergent communication. In particular, we show that some of these metrics,

including speaker consistency (Jaques et al., 2018a) and simply examining the

agents’ policies qualitatively, can be misleading if not properly understood. We

use a simple class of matrix games augmented with a bidirectional communica-

tion channel, which we call Matrix Communication Games (MCGs), to study

the emergence of communication among deep RL agents. MCGs are simple

and efficient for learning, and have the appealing property that the resulting

communication policies are interpretable relative to more complex gridworld

environments.

To aid in our analysis, we categorize emergent communication metrics into

two broad classes: those that measure positive signaling, which indicates that an

agent is sending messages that are related in some way with its observation or

action; and those that measure positive listening, indicating that the messages

are influencing the agents’ behaviour in some way. Both positive signaling

and positive listening are desirable; we want to develop communicative agents

that can both speak about their world and intentions, and can interpret the

messages of others and respond accordingly. While intuitively it might seem

that positive listening is a prerequisite for positive signaling (otherwise, why

would the agent signal in the first place?), we show that, surprisingly, this is not

always true for deep RL agents; it is possible for positive signaling to emerge as

a byproduct of the task and policy architecture.

Contents 125

6.2 Emergent communication metrics

6.2.1 A categorization of metrics

When analyzing metrics to measure a certain quantity, it is important to ask

what that quantity actually represents. What does it mean for agents to be

communicating with each other in a reinforcement learning setting? We take a

pragmatic perspective, and identify two broad prerequisites for communication

to occur: (1) one agent needs to produce a signal that is in some way correlated

with its observation or intended action, and (2) another agent needs to update

its belief or alter its behaviour after observing the signal.

We define positive signaling as behaviour that satisfies criterion (1), and positive

listening as behaviour that satisfies criterion (2). To formalize these intuitions,

we provide very broad definitions of these terms below.

Definition 6.1 (Positive Signaling). Let m̄ = (m0, m1, ..., mT) be the sequence

of messages sent by an agent over the course of a trajectory of length T, and

similarly for ō = (o0, o1, ..., ot) and ā = (a0, a1, ..., aT). An RL agent exhibits

positive signaling if either m̄ 6⊥⊥ ō or if ∃t > t′s.t.mt′ 6⊥⊥ at, i.e. if m̄ is statistically

dependent (indicated by 6⊥⊥) in some way on ō, or if m is statistically dependent

on a future action a.

Definition 6.2 (Positive Listening). An RL agent exhibits positive listening if

there exists a message generated by another agent m ∈ Am
i , for some i ∈

{1, ..., N} such that ||πππ(o, 0)−πππ(o, m)||τ > 0, where 0 is the 0 vector, and || · ||τ
is a distance in the space of expected trajectories followed by πππ.

Evidently, these definitions are very loose, and most agents in an multi-agent

environment with the capacity to communicate will satisfy them to some

degree. However, we can speak of the degree or extent to which an agent

exhibits positive signaling or positive listening behaviour, and measure this

using metrics or tests. Thus, these terms are useful for categorizing different

metrics of emergent communication.

Contents 126

6.2.2 What metrics are being used now?

We now conduct a brief review of the existing metrics being used in papers

applying deep reinforcement learning to the problem of emergent communica-

tion, and categorize them as being indicative of positive signaling or positive

listening. We focus on metrics that are the most prevalent in the recent deep

RL literature to give an overview of how current research in this area is being

conducted. From our review, we find that only one metric (instantaneous

coordination) is explicitly designed to measure positive listening, and that it

has several shortcomings. This motivates our definition of a new metric, the

causal influence of communication, in Section 6.2.3.

Reward and task completion As previously mentioned, in all papers we

surveyed, the authors either measure the task completion % of their proposed

algorithm (for referential games (Lazaridou et al., 2016, 2018; Evtimova et al.,

2017)), or show that adding a communication channel increases the agents’

reward (for games where the agents interact with the world (Bogin et al., 2018;

Choi et al., 2018; Sukhbaatar et al., 2016)). For referential games (Das et al.,

2017; Lazaridou et al., 2018), this is an adequate measure of communicative

performance because these games are non-situated. In the terminology of Wagner

et al. (2003), a non-situated environment (or simulation) is one where agents’

actions consist solely of sending and receiving signals. Non-embodied agents

in these environments do not have non-communicative actions that affect other

objects or each other. Thus, if task success increases in this setting, it is likely

because the sender agent has developed a better communication protocol, or

the listener agent has become better at understanding it.

In situated environments (Wagner et al., 2003), where agents have non-

communicative actions that affect the environment and/or modify their internal

state, an increase in reward is still a loose measure of both positive listening

and positive signaling. If adding a communication channel leads to an increase

in reward, then agents must be using that channel to transmit some kind

of information that is affecting their behaviour. However, when comparing

multiple algorithms on the same environment, an increase in reward may not

necessarily indicate improved communication of one algorithm over another, as

this increase could be simply due to the improved action policies. Thus, in this

Contents 127

chapter we advocate for more fine-grained metrics for measuring the quality

of emergent communication protocols. One of the reasons for our adoption of

MCGs is that they are in some ways the simplest situated environment (agents

have non-communicative interactions that affect each other’s reward).

Qualitative analysis of messages given states An equally common practice

is to analyze the communication policies qualitatively, to interpret what the

agents are saying. This is done most commonly by visualizing which messages

were sent with which inputs or observations (Sukhbaatar et al., 2016; Lazaridou

et al., 2016; Havrylov and Titov, 2017; Jaques et al., 2018a; Bogin et al., 2018).

For very simple environments, such as the riddle game (Foerster et al., 2016),

the authors are able to make a full tree describing the agents’ policies for all

states in the game. However, for other games with larger state spaces, papers

simply show some messages and inputs that the authors observed to have

high co-occurrence. While this is a useful practice to understand the agents’

behaviour, it is usually only testing positive signaling, as it does not analyze

how the message changes the other agent’s behaviour.

Speaker consistency Some papers quantify the degree of alignment between

an agent’s messages and its actions (Bogin et al., 2018; Jaques et al., 2018a).

One such example is the speaker consistency (SC), proposed in Jaques et al.

(2018a). The easiest way to understand the speaker consistency is as the mutual

information between an agent’s message and its future action:

SC = ∑
a∈Ae

∑
m∈Am

p(a, m) log
p(a, m)

p(a)p(m)
(6.1)

where the probabilities p(a, m) = 1
N ∑N

i=1 1{act=a,comm=m} are calculated empir-

ically by averaging (message, action) co-occurrences over the N episodes in

each epoch.1 The speaker consistency is a measure of positive signaling, as it

indicates a statistical relationship between the messages and actions of an agent,

and does not tell us anything about how these messages are interpreted.

On the surface, SC is a useful measure of communication because it tells us

how much an agent’s message reduces the uncertainty about its subsequent

1The SC metric in Jaques et al. (2018a) is a normalized version of the metric shown here.

Contents 128

action. Importantly, when an agent learns a deterministic policy independent

of observations, the SC will be 0. Because of these appealing properties, we

primarily focus on SC as our metric of comparison in our experiments.

Context independence Context independence (CI), introduced by Bogin et al.

(2018), is designed to measure the degree of alignment between an agent’s

messages and task concepts (corresponding to a particular part of the input

space). It is calculated as follows:

∀c : mc = arg max
m

pcm(c|m)

CI(pcm, pmc) =
1
|C|∑c

pmc(mc|c) · pcm(c|mc)

where C is the space of all concepts, pcm(c|m) is the conditional probability of

a concept given a message, and similarly for pmc(m|c). This quantity relies on

having a well-defined notion of ‘concept’ (in Bogin et al. (2018), this corresponds

e.g. to the number and colour of objects), and a way of estimating pcm and pmc

(Bogin et al. (2018) use an IBM model 1 (Brown et al., 1993)).

Context independence captures the same intuition as speaker consistency: if a

speaker is consistently using a specific word to refer to a specific concept, then

communication has most likely emerged. Thus, it is also a measure of positive

signaling. The difference is that CI emphasizes that a single symbol should

represent a certain concept or input, whereas a high speaker consistency can be

obtained using a set of symbols for each input, so long as this set of symbols is

(roughly) disjoint for different inputs.

Entropy of message distribution Another common practice is to measure

the perplexity or entropy (H(πππc)) of the distribution over messages for different

inputs (Havrylov and Titov, 2017; Choi et al., 2018; Evtimova et al., 2017).

Different papers interpret the meaning of this quantity differently, but generally

if the message distribution has low entropy for a given input, then the speaker

is consistently using the same message to describe that input. This differs

from the speaker consistency metric, as it does not measure whether or not

the speaker is using a different message for each input. The entropy actually

measures neither positive signaling (an agent that always outputs the same

Contents 129

message, independent of observation and action, will have low entropy), nor

positive listening (it does not take into account the other agent’s response to

the messages), which gives it questionable utility as a metric.

Instantaneous coordination Another metric considered in Jaques et al. (2018a)

is instantaneous coordination (IC). IC uses the same formula as for SC (Eq. 6.1),

except it calculates the mutual information between one agent’s message and

the other agent’s action, again by averaging (message, action) co-occurrences

over episodes. IC is a measure of positive listening; however, because of the

way p(a, m) is calculated, it only detects cases where a message from one agent

changes the other agent’s action regardless of context.

To illustrate why this is undesirable, we describe a simple matrix communication

game (MCG) example (see Section 6.3.1) where IC would fail to detect positive

listening. Let us draw the entries of the payoff matrix R from a Gaussian at each

timestep, and fix agent 1 to always truthfully signal the action it will take. In

this case, the optimal policy for agent 2 is to select the best response to agent 1’s

action, which it knows exactly. Clearly this policy exhibits significant positive

listening (it changes its action depending on the message from agent 1 and the

input). However, if R is drawn randomly, when averaged across inputs agent 2

will take action 1 and 2 equally. The IC will then be 0 in expectation, since it

calculates p(a, m) by averaging over episodes and does not condition on R.

Algorithm 1: One-step causal influence of communication.
Data: Agent policy πππ1, other agent policy πππ2, possible messages

m̄ = (m0, ..., mM−1), number of test games T.
CIC = 0
for i ∈ {0, ..., T − 1} do

Generate new state S, observations O.
// Intervene by changing message mj (replace p(mj) with

1/|m̄| = 1/M)
for j ∈ {0, ..., M− 1} do

p(mj)← πππ2(mj|o2), p(a|mj)← πππ1(a|o1, mj)
p(a, mj) = p(a|mj)/M

p(a) = ∑m∈Am p(a, m) CIC += 1/T ·∑a∈Ae p(a, mj) log
p(a,mj)

p(a)p(mj)

end
end

Contents 130

6.2.3 Causal influence of communication

We now propose a metric that more directly measures positive listening, which

we call the causal influence of communication (CIC), following concurrent work

in Jaques et al. (2018a). CIC measures the causal effect that one agent’s message

has on another agent’s behaviour. In the simplest case, we can measure the

effect that an agent’s message has on the next action of the opponent. We call

this one-step causal influence. The one-step CIC is calculated using the mutual

information between an agent’s message and the other agent’s action, simi-

larly as for IC (cf. Eq 6.1), however the probabilities p(a, m) = πππ1(a|m)πππ2(m)

represent the change in the agent’s (πππ1) action probability distribution when

intervening to change the message m spoken by the other agent (πππ2). In other

words, the probabilities are normalized over each game, rather than across

games. We describe in detail how to calculate the one-step CIC in Algorithm 1,

and we discuss how CIC might be generalized to the multi-step case in Section

6.5.1. When calculating the CIC, care must be taken that we condition on all

the variables that can affect the other agent’s action, to avoid back-door paths

(Pearl et al., 2016). In our setting this is easy, as our MCGs are not iterated (the

state and reward are independent of actions and states at previous timesteps).

6.3 Experimental setup

6.3.1 Matrix Communication Games

Our work is based on a simple class of games called matrix games, where each

agent i’s reward rt
i at time step t is determined via lookup into a fixed payoff

matrix Rt
i ∈ R|A

e
1|×···×|Ae

N | for each agent, indexed by the agents’ actions (i.e.

rt
i = Rt

i(at
1, ...at

N)). We study emergent communication in an augmented version

of matrix games which we call matrix communication games (MCGs), where

agents can send discrete, costless messages over a communication channel

before acting. In other words, MCGs are matrix games where |Am
i | > 0

for some i ∈ {0, ..., N}. MCGs are interesting to study because they are the

simplest form of game where agents can both communicate with each other,

and act in the environment. MCGs can be easily adapted to various settings

(cooperative vs. non-cooperative, fully vs. partially observable), are simple and

Contents 131

efficient for learning, and the resulting communication policies are generally

interpretable. Variants of matrix games with communication have been used

to model emergent signaling in the fields of economics, game theory, and

evolutionary biology (Farrell and Rabin, 1996; Wagner et al., 2003; Smith, 1991;

Huttegger et al., 2010).

In our variant of the game, two agents play an MCG in rounds. A round

begins with one agent communicating, and ends when both agents have acted

and received a reward, at which point another payoff Rt+1 = (Rt+1
1 , Rt+1

2)

is selected. The agents observe both payoff matrices and all messages sent

that round. Communication occurs in turns;2 at each round, one agent is

randomly chosen to speak first, and sends a message (a one-hot vector of length

M = |Am|) to the other agent. That agent observes the message from the first

agent, and can in turn send its own message. After this exchange, both agents

act simultaneously, and receive a reward. We consider the non-iterated case,

where the actions and messages from previous rounds are not observed.3 To

simplify learning, we use this reward to update both the agent’s action and

communication policies for that round.

For the experiments in this chapter,4 we consider the general-sum case, where

agents are not strictly cooperative and may have competing objectives (i.e.

R1 6= R2). Note that this does not mean the agents are strictly competitive

either; the agents have some partial common interest in the game which permits

a degree of coordination. We vary the size of the payoff matrix from 2x2, to

4x4, to 8x8, and we provide a communication channel slightly larger than the

number of actions (M = 4, 6, and 10, respectively), so that the agents can in

theory learn flexible communication policies.

6.3.2 Model and learning algorithm

We train our agents using an adaptation of the REINFORCE algorithm (Williams,

1992). We represent the agents’ policies using a two-layer feed-forward network

(with parameters θn), with separate linear output layers for the action a (θa),

2The exact form of communication is not important for our results; we have observed similar
behaviour when agents speak simultaneously, or if only one agent speaks.

3In Section 6.4.3 we show that the iterated case where agents (trained using the A2C algo-
rithm (Mnih et al., 2016)) have a memory of previous interactions produces similar behaviour.

4Code available at github.com/facebookresearch/measuring-emergent-comm.

Contents 132

communication c (θc), and learned baseline V (θv). Let θa = {θa, θn} be all

the parameters of the action network giving rise to an action policy πππθa , and

similarly for θc and θv (with outputs πππθc and V). The objective for each agent

can be written as:

J(θ) =Jpol(θ
a) + λc Jpol(θ

c) + λent(Jent(θ
a) + Jent(θ

c)) + λv Jv(θ
v), (6.2)

where θ = {θn, θa, θc, θv}. This can be broken down as follows: Jpol(θ
a) =

Eπθa [− log πθa(a|o) · (r−V(o))] is the normal REINFORCE update for the ac-

tion probabilities, where o ∈ O is the observation and V(o) is a learned value

function used as a baseline to reduce the variance. Jpol(θ
c) takes the same form,

except V only uses information available to the agent at the time it sends its

message, which may not include the message of the other agent (there is no

separate value function for the communication output). This value function

is updated using the squared loss Jv(θv) = (r − V(o))2. The entropy bonus

Jent(θ) gives a small reward based on the entropy of the agent’s policies, as

is common in the RL literature to encourage exploration (Williams and Peng,

1991; Schulman et al., 2015; Christiano et al., 2017). Each λi is a real-valued

coefficient that we tune separately.

6.4 Results

We now train deep RL agents to play MCGs. We find that even though our

agents show strong indicators of communicating according to speaker consis-

tency and qualitative analysis, this does not mean that the communication is

useful. In fact, we show that this ‘communication’ occurs even if the messages

are scrambled (replaced by a random message) before being observed.

6.4.1 Positive signaling with random payoffs

Fixed R setting It is known that humans are able to use communication to

obtain a higher reward in general-sum matrix games, such as the Prisoner’s

Dilemma (Sally, 1995). To our knowledge, whether RL agents can learn to

communicate for various MCGs remains an open question. So, we first conduct

an experiment where we train two REINFORCE agents to play MCGs where the

Contents 133

Figure 6.1: Visualization of example learned policies for two agents playing
2x2 MCGs (M = 4), averaged over 1000 test games. Agent 2 learns to clearly

signal its next action.

Figure 6.2: When comparing the speaker consistency (SC), context indepen-
dence (CI), and entropy of the message policy (divided by 5) between agents
who learned to signal (real c) and agents who message randomly (rand c),
it appears as though the agents are communicating (note we expect a lower

entropy for a communicating policy).

payoff Rt is fixed for every timestep t. We vary the size of the payoff matrix and

communication channel as described in Section 6.3.1. We find experimentally

that, for every payoff matrix we tried, the agents don’t learn to communicate.

Instead, when there is partial common interest, agents collapse to executing a

single action (even with a well-tuned λent), and in zero-sum games they cycle

between actions without communicating. Intuitively, this makes sense; the main

utility in an agent learning to communicate in this setting is in reducing the

other agent’s uncertainty about their action. Evidently, when always playing

the same payoff it is easier for these naïve agents to adapt to the actions of the

opponent directly, rather than learning a communication protocol.

Randomized R setting One way we can increase the uncertainty each agent

has about the other’s action (with the hope of producing emergent communi-

cation) is by randomizing the payoffs at each round. In our next experiment, we

train two agents on an MCG where, at every round, each entry of the payoff

matrix Rt
i is drawn from a Gaussian distribution N (µ, σ2), with µ = 0 and

σ2 = 3.

Contents 134

Payoff min(CIC) Average % games with
Size CIC CIC < 1.02 ·min(CIC)
2x2 1.386 1.408 ± 0.002 89.3 ± 0.6%
4x4 1.792 1.797 ± 0.001 97.9 ± 0.4%
8x8 2.303 2.303 ± 0.001 99.9 ± 0.1%

Table 6.1: Causal influence values for various matrix sizes, calculated over
1000 test games. In all cases, the average CIC is very close to the minimum

CIC (when changing the message has no effect on the action distribution).

Experiments 2x2 payoff 4x4 payoff 8x8 payoff
Scrambled c 0.198 ± 0.038 0.487 ± 0.051 0.597 ± 0.091

Separate c net 0.028 ± 0.002 0.124 ± 0.011 0.020 ± 0.019
No c training 0.171 ± 0.033 0.428 ± 0.025 0.686 ± 0.049

Default 0.202 ± 0.040 0.510 ± 0.094 0.541 ± 0.090

Table 6.2: SC values for the randomized R setting. ‘Scrambled c’ is when the
messages are replaced by a random message before being observed, ‘Separate
c net’ is when the action and message networks have no shared parameters,

and ‘No c training’ is when λc = 0.

As shown in Figure 6.2, in this randomized setting speaker consistency emerges.

The SC for the generated messages is significantly greater than for random

messages, which rules out the possibility that the agents’ messages are simply

acting as a random public signal that the agents are using to condition their

actions (as would be the case in a correlated equilibrium (Aumann, 1974)). The

CI is also higher for the generated messages, and the entropy of the message

distribution is lower, both indicating that communication has emerged. We

also examine the policies qualitatively in Figure 6.1, and find that one agent

clearly learns to signal its intended action. One plausible explanation for this

phenomenon is that the agents have uncertainty about the intended action of

the other agent, and receiving a high reward in these games requires agents

to predict the intended action of the opponent. An agent can do this in two

ways: first by using the opponent’s payoff matrix (and its own) to determine

what action they are likely to take to achieve a high reward, and second using

the opponent’s message to predict their most likely action. When the payoff

matrix is changing at each time step, predicting the action of the opponent

conditioned solely on the payoff matrix becomes significantly harder. Thus,

the agents seem to learn to leverage the communication channel to provide

additional information to the other agent, which is beneficial for both agents

when the game has partial common interest.

Contents 135

Figure 6.3: Activations of the last layer of the policy network for both the stan-
dard architecture (left), and when using a separate network for communication
(right). Calculated on 100 random 2x2 games, and reduced to 3D using PCA.

6.4.2 Positive signaling 6=⇒ positive listening

It turns out that, in the randomized R setting, the communication has very little

effect on the agents’ behaviour. We show this in two ways. First, we examine

the trained policies directly to see how altering the message in various games

changes the resulting action selection, using the CIC metric. We calculate the

CIC over 1000 test games, and show the results in Table 6.1. We find that, for

the vast majority of games, the message sent by an agent has no effect on the

action of the opponent. Thus, communication is not having a significant effect

on the training process.

Second, we conduct an experiment where we train the agents in the randomized

R setting described above, except we scramble the messages received by both

agents. That is, each agent outputs some message ci, but we have both agents

observe a different communication c′i, which has no relation to ci and is drawn

uniformly at random from the set of messages. Thus, there is no possibility for

the agents’ messages to impact the learning whatsoever. However, as shown in

Table 6.2, the SC between the agents’ action and sent message (not the random

replacement message) is still positive and indistinguishable from the SC in the

regular MCG set-up. This is convincing evidence that the correlation between

actions and communications does not emerge because the message are useful,

but rather as a byproduct of optimization.

Contents 136

Figure 6.4: Accuracy in predicting the opponent’s action using action classifier
probes, for 2x2 payoffs (left), 4x4 payoffs (center), and 8x8 payoffs (right). ‘no
c’ indicates that the other agent’s communication was not used to predict
their action, and ‘from input’ indicates that a separate network was trained to
predict the action (rather than using a linear model on top of the last hidden

layer of the policy network).

Why is the SC positive? If the emergent communication is not useful at all,

why is the SC positive? To help us understand what the policies are learning,

we train agents according to the randomized R setting in Section 6.4.1, and we

plot the activations of the last hidden layer (values in the policy network after

the last activation function) for 100 inputs using principal component analysis

(PCA) (Pearson, 1901) in Figure 6.3. This shows us our policy network’s learned

representations of the data (LeCun et al., 2015). When using shared features

(left), the network learns to separate the inputs based on which action the

agent takes. This makes sense: in order to take the appropriate action for a

given input, the representations need to be linearly separable at the last layer

of the network, since the action output layer has a linear decision boundary

(Goodfellow et al., 2014). This separation of representations does not occur in

the last layer of a separate communication network, which provides further

evidence for this explanation.

This separation of representations makes it easy for a relationship to emerge

between an agent’s actions and messages, even if the parameters of the commu-

nication head are completely random; since the communication output layer

also has a linear decision boundary, it is likely to separate based on intended

actions to some degree. Indeed, we find that SC emerges using our architecture

when the communication parameters are not trained (Table 6.2). Further, when

we re-train the agents using completely separate networks for the actions and

messages, we find that the SC completely disappears (see Table 6.2), showing

that it was indeed our choice of architecture that resulted in the emergent

signaling behaviour.

Contents 137

Experiments 2x2 payoff 4x4 payoff 8x8 payoff
Scrambled c 0.195 ± 0.059 0.127 ± 0.065 0.208 ± 0.067

Separate c net 0.016± 0.019 0.019 ± 0.011 0.000 ± 0.000
Default 0.169 ± 0.015 0.130 ± 0.055 0.269 ± 0.076

Table 6.3: Speaker consistency values for different experiments in the iterated
MCG case with A2C agents (Mnih et al., 2016).

Why aren’t the agents using the messages? We would imagine that, even if

the correlation between actions and messages emerged accidentally, that this

might still be useful for the agents in selecting their action. After all, isn’t

more information about the opponent strictly better? To answer this question,

we use a set of action classifier probes, related to the linear classifier probes for

understanding hidden layers of neural networks proposed in (Alain and Bengio,

2016). Specifically, in the randomized R setting, we train a neural network

‘probe’ to predict the action of the opponent in the current round, based on

either part of the input (using 2-layer MLP probes) or part of the last hidden

layer of the policy network (using linear probes).

The results are shown in Figure 6.4. We observe that removing the opponent’s

message from the input does not significantly reduce the accuracy in predicting

the opponent’s action, both when using a probe directly from the input and a

probe from the last layer of the network. This suggests that the information be-

ing provided by the messages is redundant when compared to the information

provided by the payoff matrix itself.

6.4.3 Results in the iterated MCG setting

The results in this chapter are not limited to the non-iterated case. To show

this, we run experiments on an iterated version of our environment, using the

A2C algorithm (Mnih et al., 2016). We keep the policy architectures the same,

except we give each agent a memory of the previous 5 rounds (the actions and

the messages of both agents), which is concatenated to the input at each round.

We increase the discount factor γ to 0.9. Changing our REINFORCE algorithm

(Eq. 6.2) to A2C requires changing the way Qπππ is estimated; instead of using

the next reward, we use the n-step return (sum of n next rewards), with n = 5

(Mnih et al., 2016). The results are shown in Table 6.3. We can see that the same

general trend is present: there is positive SC in the randomized R setting, even

Contents 138

Positive signaling Positive listening
Metric Sufficient? Necessary? Sufficient? Necessary? Remarks

SC 3 7 7∗ 7 Not necessary for positive signaling, as there may be
no relationship between the message and subsequent
action (can communicate previous observations or
actions).

CI 3 7 7∗ 7 More restrictive than SC, punishes formation of
synonyms.

H(πππc) 7 7 7∗ 7 Useful for diagnosing policy behaviour, but not
as a metric.

IC 7 7 3 7∗ Since it is not state-dependent, IC can miss many
positive listening relationships.

MIN 7 7 7∗ 3 If ||W1
m|| = 0, then no positive listening is present.

∆r 3 7 3 7 Should always be measured, strong indicator that
communication is present. But less applicable when
comparing the communicative behaviour of two policies

Qual. 3 3 7∗ 7 Very useful for understanding agent behaviour.
Can come in many forms.

CIC 7 7∗ 3 3 Should always be used to determine effect
communication has on agent behaviour.

Table 6.4: Summary of the metrics analyzed in this chapter (∆r = increase in
reward when adding a communication channel, Qual. = qualitative analysis of
messages, and MIN = message input norm, detailed in Section 6.5.2). Asterisks
(∗) mark relationships we have shown experimentally (Sections 6.4 and 6.5.2)
or via counterexample (Section 6.2). See text for a more detailed explanation.

when scrambling the messages c; however, the SC disappears when a different

network is used to produce the messages.

6.5 Discussion

6.5.1 How general is this analysis?

Positive signaling without positive listening An important question is

whether the behaviours observed in this chapter are specific to training our

policy architecture on MCGs, and whether any of these insights can be applied

in other emergent communication settings. We conjecture that this could indeed

happen whenever the agent’s architecture uses shared feature learning layers

between the action and communication outputs; policies will always learn

representations that separate the inputs based on the desired action, and this

may lead to spurious correlations between an agent’s messages and actions.

Since sharing features is quite common in RL (e.g. (Jaderberg et al., 2016)), it is

possible that this becomes an occasional occurrence in emergent communication

work.

Contents 139

However, our claim is not that this specific failure case will be frequently

observed; rather, our goal is to highlight the importance of understanding

what our metrics are measuring, and encourage emergent communication

researchers to explore quantitative metrics for measuring the impact that the

agents’ communication is having on their behaviour (i.e. positive listening).

Scaling causal influence In this chapter, we focused on the one-step approxi-

mation to CIC, which only calculates the effect of an agent’s message (which

consists of one symbol) on the other agent’s next action. While this is sufficient

for the non-iterated MCG setting, as we move to more complex environments

we will need to measure the effect of compositional messages on the long-term

behaviour of all other agents in the environment. In this case, calculating CIC

naïvely using Algorithm 1 will be computationally expensive. However, we can

make this efficient via sampling; rather than iterating over all possible messages

and all agents, the CIC could be calculated by iterating over a small set of

messages sampled from the agent’s communication policy, and evaluating the

change in behaviour over finite time horizon for agents in some neighbourhood

of the speaking agent. We leave a detailed exploration of this direction to future

work.

6.5.2 Recommendations

Here we provide recommendations as to when the metrics presented in Section

6.2 might be used to either detect whether communication is emerging, or

measure the difference in communication quality between algorithms. We also

propose some other tests that could be used for this purpose. We summarize

our insights in Table 6.4. In general, no single metric or test will tell the whole

story, and we advise using several of them to illuminate the agents’ behaviour.

Detecting emergent communication If our goal is to detect whether commu-

nication is emerging at all, showing that adding a communication channel to a

given algorithm leads to improved reward is a sufficient indicator. However,

it may not be necessary; agents may obtain a similar reward by coordinating

via learned convention (Lerer and Peysakhovich, 2018), rather than communi-

cation. In other words, communication may act as an alternate pathway for

Contents 140

optimization. Detecting useful communication is not as simple as testing if

removing the communication channel at test time leads to a decrease in reward;

neural networks are notoriously sensitive to their input distribution (Szegedy

et al., 2013), and a change in this distribution (e.g. setting the messages to 0)

may cause them to fail, even if the messages contain no useful information. We

recommend instead using CIC and other causal metrics, discussed below.

The variant of SC explored here only measures the one-step relationship be-

tween an agent’s message and subsequent action. In general, communication

could influence the actions of agents further in the future than a single time

step, and the language used by the agents may be compositional and temporally

extended. This should be taken into account as we move towards more complex

environments. In general, we acknowledge that speaker consistency is useful

from the perspective of detecting positive signaling, but we reiterate that the

observed relationships may be spurious.

There are other aspects of the environment that an agent could learn to signal

about: an agent might send a message to get another agent to perform an

action, to share an observation it has made, or to reveal the sequence of actions

it has taken in the past. New metrics need to be developed to evaluate these

possibilities. We recommend researchers evaluate the quantities that are relevant

for their environment or task. The crucial point is that, if these quantities are

measured by observing the agent’s behaviour without causal intervention,

detecting positive listening is difficult, as evidenced by our experiments in

Section 6.4. If a relationship is observed between an agent’s messages and

some quantity in the environment, we recommend researchers investigate the

causal relationship between these variables, by intervening to change in turn the

environmental quantity and the agent’s message, and observing the impact on

the other quantity over a number of episodes. This has also been proposed

in (Everitt et al., 2019), where the authors propose to use ‘causal influence

diagrams’ to determine which aspects of the environment the agents have

incentive to observe and control.

One way to tell conclusively that there is no positive listening is to look at the

weight matrix of the first layer of the policy network (W1), specifically the part

that comes from the message inputs of the other agents (W1
m). If the norm of

this part of the weight matrix (the message input norm, MIN) is 0, then clearly

no positive listening is present, as the messages from the other agents cannot

Contents 141

affect a given agent’s behaviour. However, just because ||W1
m|| > 0, does not

mean positive listening is present; in our experiments on MCGs, we found that

this norm was of similar magnitude to the norm of the weights from the payoff

matrix.

Measuring improvement in communication How should we judge the qual-

ity of a learned communication protocol in a multi-agent environment? Of

course, this depends on the environment and the objectives of the researcher.

Often, researchers may want to show that their algorithm exhibits a new kind of

communication (e.g. verbal agreements, compositional language, or deception).

In these cases, it makes sense to use metrics targeted at measuring the phe-

nomenon in question. If the goal is to develop compositional communication, as

has been the case for several recent emergent communication papers (Mordatch

and Abbeel, 2017; Havrylov and Titov, 2017; Bogin et al., 2018), then it is per-

haps sufficient to evaluate using metrics designed to measure compositionality,

such as context independence (Bogin et al., 2018). These metrics will have to be

developed on a case-by-case basis, depending on the type of communication

under investigation.

There may also be cases where we simply want to show that the learned

communication protocol for a proposed algorithm has a larger effect on agent

behaviour than for previous algorithms. Here, a variant of CIC should be used

that measures the impact of communication on the long-term behaviour of the

other agents. Another test one could run is measuring the difference in reward

for each algorithm with and without communication. This should be done by

training each algorithm from scratch with and without communication, rather

than removing the communication channel at test time, to avoid the problems

of distributional shift mentioned earlier in this section. Of course, since these

metrics may be exploitable, it is important to benchmark against a range of

metrics and tests to avoid overfitting.

Chapter 7

Bridging the gap from emergent

communication to natural language

7.1 Motivation

A promising approach for training agents to interact with humans using natural

language is to have a “human in the loop”, meaning we collect problem-

specific data from humans interacting directly with our agents for learning.

However, human-in-the-loop data is expensive and time-consuming to obtain as

it requires continuously collecting human data as the agent’s policy improves,

and recent work suggests that current machine learning methods (e.g. from

deep reinforcement learning) are too data-inefficient to be trained in this way

from scratch (Chevalier-Boisvert et al., 2018). Thus, an important open problem

is: how can we make human-in-the-loop training as data efficient as possible?

To maximize data efficiency, it is important to fully leverage all available

training signals. In this chapter, we study two categories of such training

methods: imitating human data via supervised learning, and self-play to

maximize reward in a multi-agent environment, both of which provide rich

signals for endowing agents with language-using capabilities. However, these

are potentially competing objectives, as maximizing environmental reward can

lead to the resulting communication protocol drifting from natural language

(Lewis et al., 2017; Lee et al., 2019). The crucial question, then, is how do we

best combine self-play and supervised updates?

142

Contents 143

One could equally frame the motivation for this chapter through the lens of

emergent communication. As discussed previously, one of the main goals of

emergent communication research — and indeed, the goal of studying emer-

gent communication in this thesis — is as a stepping stone to developing

agents that can communicate with humans in natural language. However, since

learned emergent protocols rarely bear much resemblance to natural language

(Lewis et al., 2017; Lee et al., 2019), one of the biggest obstacles in emergent

communication research is: how can we bridge the gap between emergent

communication and natural language? Before the NeurIPS 2019 Emergent Com-

munication Workshop,1 this question had received surprisingly little attention

from the emergent communication literature, where the question is generally

left for future work (Mordatch and Abbeel, 2017; Cao et al., 2018). There was

an unwritten consensus among many in the community that researchers would

train agents in more and more complex environments to obtain increasingly

complex languages, and eventually fine-tune agents on natural language data

to get them to communicate with humans (Mordatch and Abbeel, 2017) (or

instead, to learn a translation model between artificial and human languages

as in Andreas et al. (2017)). Indeed, this was the opinion of the author of this

thesis when writing the papers that constituted Chapters 5 and 6, and when

starting to write the paper upon which this chapter is based on.

Our goal in this chapter is to investigate algorithms for combining supervised

learning with self-play — which we call supervised self-play (S2P) algorithms

— using two classic emergent communication tasks: a Lewis signaling game

with symbolic inputs, and a more complicated image-based referential game

with natural language descriptions. Our first finding is that supervised learning

followed by self-play outperforms emergent communication with supervised

fine-tuning in these environments, and we provide three reasons for why this is

the case. We then empirically investigate several supervised-first S2P methods

in our environments. Existing approaches in this area have used various ad-

hoc schedules for alternating between the two kinds of updates (Lazaridou

et al., 2016), but to our knowledge there has been no systematic study that has

compared these approaches. Lastly, we propose the use of population-based

methods for S2P, and find that it leads to improved performance in the more

challenging image-based referential game. Our findings highlight the need for

1https://sites.google.com/view/emecom2019

Contents 144

further work in combining supervised learning and self-play to develop more

sample-efficient language learners.

7.2 Related work

In the past few years, there has been a renewed interest in the field of emergent

communication (Sukhbaatar et al., 2016; Foerster et al., 2016; Lazaridou et al.,

2016; Havrylov and Titov, 2017) culminating in 3 NeurIPS workshops. Empirical

studies have showed that agents can autonomously evolve a communication

protocol using discrete symbols when deployed in a multi-agent environment

which helps them to play a cooperative or competitive game (Singh et al., 2018;

Cao et al., 2018; Choi et al., 2018; Evtimova et al., 2017).

While the idea of promoting coordination among agents through communi-

cation sounds promising, recent experiments (Lowe et al., 2019; Chaabouni

et al., 2019; Lazaridou et al., 2018; Kottur et al., 2017; Jaques et al., 2018b) have

emphasized the difficulty in learning meaningful emergent communication

protocols even with centralized training.

Apart from the above advances in emergent communication, there has been a

long outstanding goal of learning intelligent conversational agents to be able

to interact with humans. This involves training the artificial agents in a way

so that they achieve high scores while solving the task and their language is

interpretable by humans or close to natural language. Recent works also add

another axis orthogonal to communication where the agent also takes a discrete

action in an interactive environment (de Vries et al., 2018; Mul et al., 2019). Lewis

et al. (2017) introduced a negotiation task which involves learning linguistic

and reasoning skills. They train models imitating human utterances using

supervised learning and found that the model generated human-like captions

but were poor negotiators. So they perform self-play with these pretrained

agents in an interleaved manner and found that the performance improved

drastically while avoiding language drift. Lee et al. (2019) also propose using

an auxiliary task for grounding the communication to counter language drift.

They use visual grounding to learn the semantics of the language while still

generating messages that are close to English.

Contents 145

It’s a blue
triangle

P1: It’s a blue
triangle
P2: <blue
triangle>

Phase 1:
Collect seed dataset

Phase 2:
Supervised
learning

Phase 3:
Self-play

It’s a blue
triangle

Phase 4:
Test agent

It’s a red
square

Supervised updatesSelf-play updates A Utterance Prediction

Triangle
green it is

Listener

Speaker

(a)

Properties

…

…Ty
pe

s
pe

r
pr

op
er

ty

A lion standing
behind a fence

Three men
throwing a
frisbee in a park.

An airplane
flying in the air.

A E H

A brown lion walks

… …
Object reconstruction (OR) game

Image-based referential (IBR) game

A D G

B E H

C F I

Message PredictionObservation

Speaker Listener

(b)

Figure 7.1: (a) Diagram of the supervised self-play (S2P) procedure (phases
1-3) and the testing procedure considered in this work (phase 4). (b) The

environments considered in this chapter (Sec. 7.4).

A recent trend on using population based training for multi-agent communi-

cation is a promising avenue for research using inspirations from language

evolution literature (Smith et al., 2003; Kirby, 2014; Raviv and Arnon, 2018).

Cultural transmission is one such technique which focuses on the structure

and compression of languages, since a language must be used and learned

by all individuals of the culture in which it resides and at the same time be

suitable for a variety of tasks. Graesser et al. (2019) shows the emergence of

linguistic phenomena when a pool of agents contact each other giving rise to

novel creole languages. (Li and Bowling, 2019; Cogswell et al., 2019; Tieleman

et al., 2019) have also tried different ways of imposing cultural pressures on

agents, by simulating a large population of them and pairing agents to solve a

cooperative game with communication. They train the agent against a sampled

generation of agents where the generation correspond to the different languages

of the same agent at different times in the history.

Our work is inspired from these works where we aim to formalize the recent ad-

vancements in using self-play in dialog modeling, through the lens of emergent

communication.

7.3 Methods

7.3.1 Problem definition

Our setting is similar to the set-up described in Section 2.6.2: our agents are

embedded in a multi-agent environment with N agents where they receive

Contents 146

observations o ∈ O (which are functions of a hidden state S) and perform

actions a ∈ A . Some actions AL ⊂ A involve sending a message m ∈ AL

over a discrete, costless communication channel (i.e. a cheap talk channel (Farrell

and Rabin, 1996)). The agents are rewarded with a reward r ∈ R for their

performance in the environment. We assume throughout that the environment

is cooperative and thus the agents are trained to maximize the sum of rewards

R = ∑t=1:T ∑i=1:N ri,t across both agents. This can be thought of as a cooperative

partially-observable Markov game (Littman, 1994).

We define a target language L∗ ∈ L, usually corresponding to natural language,

that we want our agents to learn (we further assume L∗ can be used to achieve

high task reward). In this chapter, we consider a language L ∈ L to be simply a

set of valid messages AL and a mapping between observations and messages in

the environment, L : O× AL 7→ [0, 1]. For example, in an English image-based

referential game (Section 7.4) this corresponds to the mapping between images

and image descriptions in English. We are given a dataset D consisting of

|D| (observation, action) pairs, corresponding to Ne ‘experts’ (for us, Ne = 2

playing the game using the target language L∗. Our goal is to train agents to

achieve a high reward in the game while speaking language L∗ with an ‘expert’.

Specifically, we want our agents to generalize and to perform well on examples

that are not contained in D.

To summarize, we want agents that can perform well on a collaborative task

with English-speaking humans, and we can train them using a supervised

dataset D and via self-play.

7.3.2 Supervised Self-Play (S2P)

In recent years, there have been several approaches to language learning that

have combined supervised or imitation learning with self-play. In this chapter,

we propose an umbrella term for these algorithms called supervised self-play

(S2P). S2P requires two things: (1) a multi-agent environment where at least

one agent can send messages over a dedicated communication channel, along

with a reward function that measures how well the agents are doing at some

task; and (2) a supervised dataset D of experts acting and speaking language

L∗ in the environment (such that they perform well on the task). Given these

ingredients, we define S2P below (see Figure 7.2).

Contents 147

Definition 7.1. Supervised self-play (S2P). Supervised self-play is a class of lan-

guage learning algorithms that combines: (1) self-play updates in a multi-agent lan-

guage environment, and (2) supervised updates on an expert dataset D.

S2P algorithms can differ in how they combine self-play and supervised learning

updates on D. When supervised learning is performed before self-play, we

refer to the dataset D as the seed data.

Why might we want to train our agents via self-play? Won’t their language

diverge from L∗? One way to intuitively understand why S2P is beneficial is to

think in terms of constraints. In our set-up, there are two known constraints on

the target language L∗: (1) it is consistent with the samples from the supervised

dataset D, and (2) L∗ can be used to obtain a high reward in the environment.

Thus, finding L∗ can be loosely viewed as a constrained optimization problem,

and enforcing both constraints should clearly lead to better performance.

7.3.3 Algorithms for S2P

Here we describe several methods for S2P training. Our goal is not to ex-

haustively enumerate all possible optimization strategies, but rather provide a

categorization of some well-known ways to combine self-play and supervised

learning. To help describe these methods, we further split the seed dataset D
into Dtrain, which is used for training, and Dval which is used for early-stopping.

We also visualize the schedules in Figure 7.2.

Training progress

sp2sup

sup2sp

rand

sched

sched_frz

Self-play

Supervised
learning

Speaker
parameter
freezing

sched_rand_frz

Figure 7.2: A visual repre-
sentation of the different

S2P methods.

Emergent communication with supervised fine-

tuning (sp2sup): We first perform self-play updates

until the learning converges on the task performance.

It is then followed by supervised updates on Dtrain un-

til the listener performance converges on the dataset

Dval.

Supervised learning with self-play (sup2sp): This is

the complement of the above method which involves

doing supervised updates until convergence on Dval

followed by self-play updates until convergence on

the task performance.

Contents 148

Random updates (rand): This is the method used in (Lazaridou et al., 2016). At

each time step, we sample a bernoulli random variable z ∼ Bernoulli(q) where

q is fixed. If z = 1, we perform one supervised update, else we do one self-play

update, and repeat until convergence on Dval.

Scheduled updates (sched): We first pretrain the listener and the speaker until

convergence on Dval. Then we create a schedule, where we perform l self-play

updates followed by m supervised updates, and repeat until convergence on

the dataset.

Scheduled updates with speaker freezing (sched_frz): This method is based

on the findings of Lewis et al. (2017), who do sched S2P while freezing the

parameters of the speaker during self-play to reduce the amount of language

drift. In our case, we freeze the parameters of the speaker after the initial

supervised learning.

Scheduled updates with random speaker freezing (sched_rand_frz): Experi-

mentally, we noticed that sched_frz didn’t perform well in self-play. Thus, we

introduce a variation, we sample a bernoulli random variable z ∼ Bernoulli(r)

where r is fixed. If z = 1, we freeze the parameters of the speaker during both

self-play and supervised learning, else we allow updates to the speaker as well.

7.3.4 Population-based S2P (Pop-S2P)

(a) (b)

Figure 7.3: Results from training
50 S2P agents on the IBR game
with |D| = 10000. (a) The agents
have a range of predictions on
many images. (b) When playing
with each other, the agents ex-
hibit uneven performance, indicat-

ing policy variability.

As explained above, the goal of S2P is to pro-

duce agents that follow dataset D while max-

imizing reward in the environment. How-

ever, there are many such policies satisfying

these criteria. This results in a large space of

possible solutions, that increases as the envi-

ronment grows more complex (but decreases

with increasing |D|). Experimentally, we find

that this can result in diverse agent policies.

We show this in Figure 7.3 by training 50

randomly initialized agents on the image-

based referential game (defined in Sec. 7.4)

the agents can often make diverse predictions

Contents 149

for a given image (7.3a) and achieve variable performance when playing with

other populations with a slight preference towards their own partner (the

diagonal in 7.3b).

Inspired by these findings, we propose to augment S2P by training a population

of N agents, and subsequently aggregating them back into a single agent (the

‘student’). We call this population-based S2P (Pop-S2P). While there are many

feasible ways of doing this, in this chapter we train the populations by simply

randomizing the initial seed, and we aggregate the populations using a simple

form of policy distillation (Rusu et al., 2015). Another simple technique to boost

performance is via ensembling where we simply take the majority prediction at

each time step.

7.4 Environments & implementation details

We consider environments based on classical problems in emergent communi-

cation. These environments are cooperative and involve the interaction between

a speaker, who makes an observation and sends a message, and a listener, who

observes the message and makes a prediction (see Figure 7.1b). Our goal is to

train a listener such that it achieves high reward when playing with an expert

speaking the target language L∗ on inputs unseen during training.2

Environment 1: Object Reconstruction (OR) Our first game is a Lewis

signaling game (Lewis, 1969) and a simpler version of the Task & Talk game

from Kottur et al. (2017), with a single turn and a much larger input space.

The speaker agent observes an object with a certain set of properties, and must

describe the object to the listener using a sequence of words. The listener then

attempts to reconstruct the object. More specifically, the input space consists of

p properties (e.g. shape, color) of t types each (e.g. triangle, square). The speaker

observes a symbolic representation of the input, consisting of the concatenation

of p = 6 one-hot vectors, each of length t = 10. The number of possible inputs

scales as tp. We define the vocabulary size (length of each one-hot vector sent

2Our approach could equally be used to train a speaker of language L∗; we leave this to
future work.

Contents 150

from the speaker) as |V| = 60, and the number of words (fixed length message)

sent to be T.

For our target language L∗ for this task, we programatically generate a perfectly

compositional language, by assigning each object a unique word. In other

words, to describe a blue shaded triangle, we create a language where the

output description would be “blue, triangle, shaded”, in some arbitrary order

and without prepositions. By ‘unique symbol’, we mean that no two concepts

are assigned the same word. The speaker and listener policies are parameterized

using a 2-layer linear network (results were similar with added non-linearity and

significantly worse with 1-layer linear networks) with 200 hidden units. During

both supervised learning and self-play, the listener is trained to minimize the

cross-entropy loss over property predictions.

Environment 2: Image-Based Referential game with natural language (IBR)

Our second game is the communication task introduced in the Lee et al. (2017).

The speaker observes a target image d∗, and must describe the image using a

set of words. The listener observes the target image along with D distractor

images (for us, D = 9), and the message yd∗ from the speaker, and is rewarded

for correctly selecting the target image. For this game, the target language L∗ is

English — we obtain English image descriptions using caption data from MS

COCO and Flickr30k. We set the vocabulary size |V| = 100, and filter out any

descriptions that contain more than 30% unknown tokens while keeping the

maximum message length T to 15.

Similarly to (Mordatch and Abbeel, 2017; Sukhbaatar et al., 2016), we train

our agents end-to-end with backpropagation. Since the speaker sends discrete

messages, we use the Straight-Through version of Gumbel-Softmax (Jang et al.,

2016; Maddison et al., 2016) to allow gradient flow to the speaker during self-

play. The speaker’s predictions are trained on the ground truth English captions

m∗ using the cross entropy loss. The listener is trained using the cross-entropy

loss where the logits are the reciprocal of the mean squared error which was

found to perform better in Lee et al. (2017). The mean squared error is taken

over the listener’s image representation blsn of the distractor (or target) image

Contents 151

Pop-sup2sp

0

10

20
sa

m
pl

es
 in

 s
ee

d

d
is

ti
ll

0
10
20

supervised2sp fine-tune

sched

0

5k

10k

sa
m

pl
es

 in
 s

ee
d

0
5k
10k

s2p fine-tune
Self-play Supervised learning

(a) (b) (c)

Figure 7.4: (a) Left: In the OR game, best performance (number of total samples
required to achieve 95% generalization accuracy, lower is better) for S2P is
achieved when all of the samples are in the seed. 0 on the x-axis corresponds to
the emergent communication + fine-tuning baseline (here Optimal performance
is the actual (minimum) number of samples required to solve this optimization
problem). Right: This is also the case in the IBR game, where performance
is measured by the generalization accuracy using 10k total training samples
(higher is better). (c) Adding more samples to initial supervised learning in
the IBR game improves agents’ generalization to L∗. (d) Even when we learn
the perfect distribution with emergent communication in the OR game, it still

performs worse than S2P.

and the message representation given as input.

Jspk-supervised(d∗) = −
T

∑
t=1

log pspk(mt|m<t, d∗)

Jlsn-supervised(m∗, d∗, D) = −
D+1

∑
d=1

log(softmax(1/plsn(m∗)− blsn(d))2)

Jself-play(d∗, D) = −
D+1

∑
d=1

log(softmax(1/plsn(yd∗)− blsn(d))2)

where yd∗ is the concatenation of T one-hot vectors yt
d∗ = ST-GumbelSoftmax(pt

spk).

We use the same architecture as described in (Lee et al., 2017). The speaker and

listener are parameterized by recurrent policies, both using an embedding layer

of size 256 followed by an GRU (Cho et al., 2014) of size 512.

Contents 152

7.5 Experiment 1: Do supervised learning before

self-play

A central question in our work is how to combine supervised and self-play

updates for effective pre-training of conversational agents. In this section, we

study this question by conducting experiments with two schedules: training

with emergent communication followed by supervised learning (sp2sup), and

training with supervised learning followed by self-play (sched). We also inter-

polate between these two regimes by performing the sched on 0 < n < |D|
samples, followed by supervised fine-tuning on the remaining |D| − n samples.

Our first finding is that it is best to use all of your samples for supervised

learning before doing self-play. This can be seen in Figure 7.4: when all of the

samples are used first for supervised learning, the number of total samples

required to solve the OR game drastically, and in the IBR game the accuracy for

a fixed number of samples is maximized (Figure 7.4a). While this may seem

to be common sense, it in fact runs counter to the prevailing wisdom in much

of the emergent communication literature, where languages are emerged from

scratch with the ultimate goal of translating them to natural language.

To better understand why it is best to do supervised learning first, we now

conduct a set of targeted experiments using the environments from Section 7.4.

Results of our experiments suggest three main explanations:

(1) Emerging a language is hard. For many environments, with emergent com-

munication it’s often hard to find an equilibrium where the agents meaningfully com-

municate. The difficulty of ‘emergent language discovery’ has been well-known

in emergent communication (Lowe et al., 2017c), so we will only briefly discuss

it here. In short, to discover a useful communication protocol agents have to

coordinate repeatedly over time, which is difficult when agents are randomly

initialized, particularly in environments with sparse reward. Compounding the

difficulty is that, if neither agent communicates and both agents act optimally

given their lack of knowledge, they converge to a Nash equilibrium called

the babbling equilibrium. This equilibrium must be overcome to learn a useful

communication protocol. In S2P, the initial language supervision can help

Contents 153

Train Val

Seed data Supervised then self-play Self-play then supervised

Word id

Ty
pe

 id

Ground-truth language sup2sp sp2sup
Self-play Supervised learning

Figure 7.5: Results from the OR game with 1 property and 10 types. When the
supervised updates are performed first (supervised data available for words
0-3), then the self-play updates make sensible predictions for the unknown
words (words 4-7). When the self-play updates are done first, the subsequent
supervised updates merely correct the predictions for words 1-4, without
enforcing the constraint that each word should result in a separate type to

solve the task.

overcome the discovery problem, as it provides an initial policy for how agents

could usefully communicate (Lewis et al., 2017).

(2) Emergent languages are different than natural language. Even if one

does find an equilibrium where agents communicate and perform well on the task, the

distribution of languages they find will usually be very different from natural language.

This is a problem because, if the languages obtained through self-play are

sufficiently different from L∗, they will not be helpful for learning. This is seen

for the OR game in Figure 7.4a, where 17 samples are required in the seed

before S2P outperforms the supervised learning baseline. We speculate that

this is due to the different pressures exerted during the emergence of artificial

languages and human languages.

Thankfully, we can learn languages closer to L∗ by simply adding more samples

to our initial supervised learning phase. We show this in Figure 7.4b, where we

train populations of 50 agents on the IBR game and use Pop-S2P to produce

a single distilled agent. With both 1K and 10K initial supervised samples,

the distill agent generalizes to agents in the validation set of their population.

However, the distilled agent trained with 10000 samples performs significantly

better when playing with an expert agent speaking L∗, indicating that the

training agents from that population speak languages closer to L∗.

Contents 154

(3) Starting with self-play violates constraints. Even if you have ‘perfect

emergent communication’ that learns a distribution over languages under which L∗

has high probability, current methods of supervised fine-tuning do not properly learn

from this distribution. What if we had all the correct learning pressures, such

that we emerged a distribution over languages L with structure identical to

L∗? Surprisingly, we find that S2P with all of the samples in the seed performs

better than even this optimistic case. We conduct an experiment in the OR game

where we programmatically define a distribution over compositional languages

Lc, of which our target language L∗ is a sample. Each language L ∈ Lc has

the same structure, the only difference being the mapping between the word

IDs and the corresponding type IDs, along with the order of properties in an

utterance. As seen in Figure 7.4c, when we train a Pop-S2P agent on 50 of these

compositional populations, we still need 3x more samples than S2P.

To understand why this happens, we conduct a case study in an even simpler

setting: single-agent S2P in the OR game with p = 1, t = 10, |V| = 10. We

find that agents trained via emergent communication consistently learn to

solve this task. However, as shown in Figure 7.5, when subsequently trained

via supervised learning on D to learn L∗, the learned language is no longer

coherent (it maps different words to the same type) and doesn’t solve the task.

On the other hand, agents trained first with supervised learning are able to

learn a language that both solves the task and is consistent with D.

Intuitively, what’s happening is that the samples in D are also valid for solving

the task, since we assume agents speaking L∗ can solve the task. Thus, self-

play after supervised learning simply ‘fills in the gaps’ for examples not in

D.3 Emergent languages that start with self-play, on the other hand, contain

input-output mappings that are inconsistent with L∗, which must be un-learned

during subsequent supervised learning.

In theory, the above issue could be resolved using Pop-S2P; if the distilled agent

could use the population of emergent languages to discover structural rules (e.g.

discovering that the languages in the OR game in Figure 7.4c are compositional),

it could use the samples from D to refine a posterior distribution over target

languages that is consistent with these rules (e.g. learning the distribution of

compositional languages consistent with D). Current approaches to supervised

3In practice, we find that self-play updates can undo some of the learning of D, which is
why we apply an alternating schedule.

Contents 155

fine-tuning in language, though, do not do this (Lazaridou et al., 2016; Lewis

et al., 2017). An interesting direction for future work is examining how to apply

Bayesian techniques to S2P.

7.6 Experiment 2: Population-based approaches im-

prove S2P

Figure 7.6: S2P (sched)
outperforms the super-
vised baseline in the IBR
game, and is in turn out-

performed by Pop-S2P.

In this section, we aim to show that (1) S2P outper-

forms the supervised learning baseline, and (2) Pop-

S2P outperforms S2P. We conduct our experiments in

the more complex IBR game, since the agents must

communicate in English, and measure performance

by calculating the accuracy at different (fixed) num-

bers of samples. Our baseline is then the performance

of a supervised learner on a fixed number of samples.

We show the results in Figure 7.6. We first note that,

when both 1k and 10k samples are used for super-

vised learning, S2P (sched) outperforms the super-

vised learning baseline. We can also see that the

population-based approach outperforms single agent

S2P (sched) by a significant margin. We also compare our distillation method

to an ensembling method that keeps all 50 populations at test time, and find

that ensembling performs significantly better, although it is much less effi-

cient. This suggests that there is room to push distilled Pop-S2P to even better

performance.

7.7 Experiment 3: Examining S2P schedules

In this section, we aim to: (1) evaluate several S2P schedules empirically on the

IBR game; and (2) attain a better understanding of S2P through quantitative

experiments.

Contents 156

(a)

High
reward in
self-play

Consistent
with

Random init

Final S2P

Intermediate pts

Supervised
learning

Self-play

S2P (no freeze schedule)

(b)

Figure 7.7: (a) Comparing test performances of different S2P methods on
the IBR game. For each method, we picked the model that gave the best
performance on Dval . (b) Left: 2D visualization of S2P (sched) performance
over the course of training, in terms of performance on L∗ (vertical axis) and
performance in self-play (horizontal axis). The zig-zag patterns indicates
that most self-play updates result in a short-term decrease in target language
performance. Right: visualization of the role of the supervised and self-play

updates.

Parameter freezing improves S2P We show the results comparing different

S2P schedules in Figure 7.7a. Interestingly, we find that in this more complex

game, the supervised2sp method of S2P performs much worse than the other

options. We also see that adding freezing slightly improves the performance

on the target language (in the Appendix, we also show that it converges more

quickly). We hypothesize that this is because it reduces the language drift that

is experienced at each round of self-play updates (Lee et al., 2019).

Self-play acts as a regularizer What is the role of self-play in S2P? We can

start to decipher this by taking a closer look at the sched S2P method. We plot

the training performance of this method in Figure 7.7b. Interestingly, we notice

from the zig-zag pattern that the validation performance usually goes down

after every set of self-play updates. However, the overall validation performance

goes up after the next round of supervised updates. This is also reflected in the

poor performance of the sup2sp method in Figure 7.6.

This phenomenon can be explained by framing self-play as a form of regulariza-

tion: alternating between supervised and self-play updates is a way to satisfy

the parallel constraints of ‘is consistent with the dataset D’ and ‘performs well

on the task’. We visualize this pictorially in Figure 7.7b: while a set of self-play

Contents 157

updates results in poor performance on D, eventually the learned language

moves closer to satisfying both constraints.

7.8 Discussion

In this work, we investigated the research question of how to combine super-

vised and self-play updates, with a focus on training agents to learn language.

However, this research question is not only important for language learning;

it is also a important in equilibrium selection and learning social conventions

(Lerer and Peysakhovich, 2019) in general games. For example, in robotics

there may be a trade-off between performing a task well (moving an object to

a certain place) and having your policy be interpretable by humans (so that

they will not stumble over you). Examining how to combine supervised and

self-play updates in these settings is an exciting direction for future work.

There are several axes of complexity not addressed in our environments and

problem set-up. First, we consider only single-state environments, and agents

don’t have to make temporally extended decisions. Second, we do not consider

pre-training on large text corpora that are separate from the desired task

(Radford et al., 2019; Devlin et al., 2018). Third, we limit our exploration of

self-play to the multi-agent setting, which is not the case in works such as

instruction following (Andreas and Klein, 2015). Finally, we only consider the

case where we learn a listener that can adapt to human language, whereas in

general it is important to learn an agent that can also speak in human language.

Introducing these elements may result in additional practical considerations for

S2P learning, which we leave for future work. Our goal in this chapter is not to

determine the best method of S2P in all of these settings, but rather to inspire

others to use the framing of ‘supervised self-play algorithms’ to make progress

on sample efficient human-in-the-loop language learning.

Chapter 8

Conclusion

8.1 Summary of contributions

This thesis makes several contributions to the area of human-machine com-

munication. In Part I, we study how to learn and evaluate end-to-end, non-

task-oriented dialogue systems. We introduce the Ubuntu Dialogue Corpus

in Chapter 3, and use it to train several end-to-end dialogue systems. We also

evaluate the quality of the responses generated by these systems qualitatively.

In Chapter 4, we take several approaches to the problem of automatic dialogue

evaluation. We first show in Section 4.1 that many existing evaluation methods

based on word-overlap metrics such as BLEU correlate poorly with human

judgements of response quality. In Section 4.2, we perform a human study of

the next utterance classification (NUC) task and recall metrics, which indicates

that they are useful for evaulating dialogue systems in the near term. In Section

4.3 we propose to learn a dialogue evaluation model (ADEM) from a dataset of

human judgements on the Twitter dataset. While ADEM generalizes well to

our test set, we also find that it seems to generalize poorly to other datasets,

and thus has not been widely adopted for evaluating dialogue responses.

In Part II, we make contributions to the field of multi-agent RL and emergent

communication. In Chapter 5, we propose a new multi-agent RL algorithm

that outperforms decentralized RL alternatives on a range of tasks in our Par-

ticle World environments, including a cooperative communication game. In

Chapter 6 we perform a detailed analysis of evaluation methods for emergent

158

Contents 159

communication, and find that many existing metrics don’t account for whether

an agent’s messages change the behaviour of other agents. Finally in Chapter 7

we make some first steps towards bridging the gap between work on emergent

communication and natural language, by testing a variety of schedules combin-

ing self-play and supervised learning. Interestingly, we find that it is often not

beneficial to emerge a language from scratch, and instead self-play should be

incorporated later in training.

Upon reflection, the work that had the most impact was probably the datasets

and environments: specifically the Ubuntu Dialogue Corpus and the Particle

World environments, which have both been used many times in follow-up

work. What helped these datasets become popular was timing, as they were

introduced just before the respective fields started becoming more mainstream.

For example, research on deep learning for dialogue systems was nascent in

2015, but increased greatly in popularity throughout 2016 thanks in part to work

by (Vinyals and Le, 2015) which showed some promising samples generated by

a model trained on a movie script dataset. Having a large, publicly available

dataset (Ubuntu) with standardized metrics (recall) helped make working on

this problem more tractable for researchers that were interested in the area.

Similarly, research in multi-agent RL accelerated in 2018, and having a simple

suite of environments to test ideas was helfpul. Of course, it is also likely

that the introduction of these datasets had some degree of causal effect on the

popularity of these fields.

8.2 Limitations

In this section, we discuss what we view as broad limitations of this thesis as a

whole. In general, while this thesis opens many questions about evaluation, and

the relationship between supervised learning of dialogue models and emergent

communication, many of these questions do not have satisfactory answers and

could benefit from extensive further study.

First, in Part I the question of how to properly evaluate dialogue systems

automatically remains unsolved. In Section 4.1 we point out several flaws in

existing word-overlap evaluation metrics. While we propose a new method

for learning an automatic evaluation metric in Section 4.3, we find that ADEM

Contents 160

doesn’t transfer well to other datasets, as discussed in Section 4.3.6.3. While the

recall metric is interesting for evaluating whether a model can correctly pick

out the correct response from a list, it is inherently biased towards retrieval

models that are trained via NUC. In the end, human evaluation of entire

conversations with the model remains the gold standard. We discuss some

promising directions for automatic dialogue evaluation in the next section.

One might also argue that the space of dialogue models considered in Chapter

3 is fairly limited, and doesn’t consider many later advancements in dialogue

system architectures. This is partly a reflection of the our shifting research

interest over time; when this paper was first written in 2016, the number of

established dialogue models was quite small. One limitation of our work

on dialogue models in Chapter 3 is that the metrics we use to compare the

generative to retrieval models either intrinsically favour retrieval models (recall),

or are only a proxy metric for topicality rather than dialogue quality (embedding

metrics). It would be interesting to perform a human study comparing retrieval

and generative models.

Finally, in Part I our focus is solely on the non-task-oriented (or chit-chat)

setting, which only comprises part of the overall interest in dialogue systems.

Coming up with models and automatic metrics for task-oriented systems is an

entirely separate challenge, which we do not address here.

Perhaps the greatest limitation of this thesis is the number of unexplored direc-

tions for combining and comparing work on supervised learning of dialogue

systems with work on emergent communication and self-play in Part II. We

perform a first exploration of this connection in Chapter 7, where we combine

supervised learning and self-play in an image-based referential (IBR) game.

However, there are many things we do not consider in this chapter. For instance,

we frame the problem as minimizing the number of human-in-the-loop samples

to achieve a certain performance threshold. But this does not address the more

realistic scenario where we can pre-train language models on large amounts

of text from the Internet (e.g. (Radford et al., 2019)). It is unclear, if we started

from such a model, how much self-play would help for solving language tasks.

Our work in Part II was also significantly motivated by the idea that grounding

is an important concept for building machines that can communicate with

humans and act in the world, however this is mostly an empirical question that

our work in Part II sheds little light on. Further the IBR game we consider is

Contents 161

somewhat removed from the goal of communicating with humans interactively,

as in the dialogue systems in Part I. As such, the models we develop in Chapter

5 are not comparable to the models from Chapter 3.

8.3 Directions for future work

In the quest to build machines that can interact and do useful things for humans,

there are many promising directions. The most compelling recent trend is the

use of very large language models based on the Transformer architecture

(Vaswani et al., 2017), which have achieved surprisingly strong performance on

a variety of NLP tasks (Devlin et al., 2018; Radford et al., 2019; Yang et al., 2019;

Dai et al., 2019; Raffel et al., 2019). Recent work has shown that model size,

data size, and amount of compute matter significantly more than architectural

details (such as width and depth) when training language models, in terms of

test loss, and that the performance of these models follows a power law curve

(Kaplan et al., 2020). Language modeling is useful for building language-using

agents for at least two reasons: (1) it allows us to leverage the huge amount of

text data that’s available on the Internet; and (2) if a model performs well on the

language modeling objective on the test set of such a large dataset, this means

it has encoded a significant amount of world knowledge into its weights (for

example, given the context “the Prime Minister of Canada is", the model needs

to learn to give high probability to “Justin Trudeau"), and this can be used as

a starting point for fine-tuning more specific models. Thus, it is possible that

scaling language models further and fine-tuning them may have a huge impact

on the quality of language-using systems.

Given the strength of large-scale language modeling, a crucial ingredient to

investigate is the training data that it is fed. There are many large text datasets

that are publicly available (e.g. (Chelba et al., 2013)), however it is unclear what

is the best kind of data to train large language models. Is it best to simply have

as much data as possible? Or, given a fixed compute budget, is important to

emphasize diversity of the data sources? This is an empirical question that will

depend on the intended downstream use-cases of the model.

Despite the strength of large-scale language models, they are certainly not

the whole picture for developing agents that can use language to accomplish

Contents 162

tasks for humans. Most importantly, we will likely want such agents to take

actions in the real world. One of the most important open questions in building

agents that communicate usefully with humans is: how can we bridge the gap from

large-scale language models to agents that use language to take actions in the world?

Certainly, it seems like there are significant obstacles. Most starkly, a language

model learns only what tokens correlate with other tokens in a dataset, and

doesn’t explicitly learn a causal model of the real world (Pearl, 2009). Having

such a model would allow agents to reason about why certain decisions should

be made instead of others, and might make the decision process more inter-

pretable, which is currently not the case for large language models (Lipton,

2018). It is possible that language models can implicitly learn a model of the

world that allows it to reason about relations between objects, however the exact

properties of such a model has not been thoroughly investigated. Certainly,

such a model would look very different from a human’s model of the world,

as it does not include perceptual data. Thus, it seems like what is necessary is

a large model trained to take decisions via reinforcement learning, trained on

multiple modalities (text, video, etc.). How one might train such a model is an

important direction for future study.

Agents will also need to learn how to interact and deal with other learning

agents like itself (and humans) in order to navigate the real world, something

that is not captured in the pure language modeling objective. This is where

multi-agent RL can come into play; agents could learn to solve tasks with other

agents in simulated environments (perhaps via self-play), and transfer this

knowledge to taking actions and cooperating with humans. As discussed in

the previous section, it’s still unclear how to combine self-play and supervised

learning when using large-scale language models (both algorithmically, and

from an environment point of view).

Finally, and perhaps most importantly, there are significant ethical and safety

issues that come with the development of machines that can communicate with

humans. The use of machine learning systems in real world applications can

have averse effects on many groups. This is primarily because ML systems learn

the biases that are inherent in the data they are trained on. When these systems

are deployed without consideration for these biases, as has been the case for

models predicting recidivism or face recognition, people can suffer (Metz,

2020). There are specific ethical issues surrounding the use of machines that

Contents 163

communicate with humans (Henderson et al., 2018): how is the training data

biased? To what extent are the models susceptible to adversarial examples? Can

privacy be guaranteed? Tackling these problems will require cross-disciplinary

efforts from researchers in computer science, sociology, policy, and other areas.

Ultimately, we want to build systems that improve human lives and well-being.

Machines that can communicate with humans have great potential to change

how we interact with the world; however there are also significant risks if the

systems are not doing what we want them to do. An important component

of this problem is AI safety, specifically the problem of AI alignment, which

stated simply is “how do we align what AI systems do with what humans want

to do?”. This problem will become increasingly important as we build more

competent systems that can perform more and more complex tasks. While

there have been some interesting advances in recent years (Abbeel and Ng,

2004; Hadfield-Menell et al., 2016; Christiano et al., 2017), and some specifically

in the domain of language (Ziegler et al., 2019), this remains one of the most

important open problems in the field of AI.

Bibliography

M. Abadi and D. G. Andersen. Learning to protect communications with

adversarial neural cryptography. arXiv preprint arXiv:1610.06918, 2016.

P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse reinforcement

learning. In Proceedings of the twenty-first international conference on Machine

learning, page 1, 2004.

R. Al-Rfou, M. Pickett, J. Snaider, Y.-h. Sung, B. Strope, and R. Kurzweil.

Conversational contextual cues: The case of personalization and history for

response ranking. arXiv preprint arXiv:1606.00372, 2016.

G. Alain and Y. Bengio. Understanding intermediate layers using linear classifier

probes. arXiv preprint arXiv:1610.01644, 2016.

J. Albrecht and R. Hwa. Regression for sentence-level MT evaluation with

pseudo references. In Proceedings of the Association for Computational Linguistics,

2007.

D. Amodei and D. Hernandez. AI and compute. https://blog. openai. com/aiand-

compute, 2018.

J. Andreas and D. Klein. Alignment-based compositional semantics for instruc-

tion following. arXiv preprint arXiv:1508.06491, 2015.

J. Andreas, A. Dragan, and D. Klein. Translating neuralese. arXiv preprint

arXiv:1704.06960, 2017.

K. J. Åström. Optimal control of markov processes with incomplete state

information. Journal of Mathematical Analysis and Applications, 10(1):174–205,

1965.

R. J. Aumann. Subjectivity and correlation in randomized strategies. Journal of

mathematical Economics, 1(1):67–96, 1974.

164

Bibliography 165

Z. Awad, A. S. Taghi, P. Sethukumar, P. Ziprin, A. Darzi, and N. S. Tolley. Binary

versus 5-point likert scale in assessing otolaryngology trainees in endoscopic

sinus surgery. Otolaryngology—Head and Neck Surgery, 151(1_suppl):P113–

P113, 2014.

J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. arXiv preprint

arXiv:1607.06450, 2016.

D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly

learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

R. E. Banchs. Movie-dic: A movie dialogue corpus for research and development.

In Proceedings of the 50th Annual Meeting of the Association for Computational

Linguistics: Short Papers - Volume 2, 2012.

S. Banerjee and A. Lavie. Meteor: An automatic metric for mt evaluation

with improved correlation with human judgments. In Proceedings of the ACL

workshop on intrinsic and extrinsic evaluation measures for machine translation

and/or summarization, volume 29, pages 65–72, 2005.

P. Baudiš and J. Šedivỳ. Sentence pair scoring: Towards unified framework for

text comprehension. arXiv preprint arXiv:1603.06127, 2016.

R. Bellman. A markovian decision process. Journal of Mathematics and Mechanics,

pages 679–684, 1957.

Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with

gradient descent is difficult. Neural Networks, IEEE Transactions on, 5(2):

157–166, 1994.

Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin. A neural probabilistic

language model. Journal of Machine Learning Research, 3:1137–1155, 2003.

B. Bogin, M. Geva, and J. Berant. Emergence of communication in an interactive

world with consistent speakers. arXiv preprint arXiv:1809.00549, 2018.

A. Bordes and J. Weston. Learning end-to-end goal-oriented dialog. arXiv

preprint arXiv:1511.06931, 2016.

A. Bordes, J. Weston, and N. Usunier. Open question answering with weakly

supervised embedding models. In Proceedings of the Meeting on Machine

Learning and Knowledge Discovery in Databases, 2014.

Bibliography 166

C. Boutilier. Learning conventions in multiagent stochastic domains using

likelihood estimates. In Proceedings of the Twelfth international conference on

Uncertainty in artificial intelligence, 1996.

S. R. Bowman, L. Vilnis, O. Vinyals, A. M. Dai, R. Jozefowicz, and S. Bengio.

Generating sentences from a continuous space. COLING, 2016.

E. Brodwin. A stanford researcher is pioneering a dramatic shift in how we

treat depression–and you can try her new tool right now. Business Insider,

2018.

L. D. Brown, T. T. Cai, and A. DasGupta. Interval estimation for a binomial

proportion. Statistical science, pages 101–117, 2001.

P. F. Brown, V. J. D. Pietra, S. A. D. Pietra, and R. L. Mercer. The mathematics of

statistical machine translation: Parameter estimation. Computational linguistics,

19(2):263–311, 1993.

P. Budzianowski, T.-H. Wen, B.-H. Tseng, I. Casanueva, S. Ultes, O. Ramadan,

and M. Gašić. Multiwoz-a large-scale multi-domain wizard-of-oz dataset for

task-oriented dialogue modelling. arXiv preprint arXiv:1810.00278, 2018.

L. Busoniu, R. Babuska, and B. De Schutter. A comprehensive survey of

multiagent reinforcement learning. IEEE Transactions on Systems Man and

Cybernetics Part C Applications and Reviews, 38(2):156, 2008.

C. Callison-Burch, P. Koehn, C. Monz, and O. F. Zaidan. Findings of the

2011 workshop on statistical machine translation. In Proceedings of the Sixth

Workshop on Statistical Machine Translation. Association for Computational

Linguistics, 2011.

K. Cao, A. Lazaridou, M. Lanctot, J. Z. Leibo, K. Tuyls, and S. Clark. Emergent

communication through negotiation. arXiv preprint arXiv:1804.03980, 2018.

R. Chaabouni, E. Kharitonov, E. Dupoux, and M. Baroni. Anti-efficient encoding

in emergent communication. arXiv preprint arXiv:1905.12561, 2019.

G. Chalkiadakis and C. Boutilier. Coordination in multiagent reinforcement

learning: a bayesian approach. In Proceedings of the second international joint

conference on Autonomous agents and multiagent systems. ACM, 2003.

Bibliography 167

C. Chelba, T. Mikolov, M. Schuster, Q. Ge, T. Brants, P. Koehn, and T. Robinson.

One billion word benchmark for measuring progress in statistical language

modeling. arXiv preprint arXiv:1312.3005, 2013.

B. Chen and C. Cherry. A systematic comparison of smoothing techniques for

sentence-level bleu. In Proceedings of the Ninth Workshop on Statistical Machine

Translation, pages 362–367, 2014.

B. Chen and C. Metz. Google’s duplex uses ai to mimic humans (sometimes).

The New York Times, 2019.

H. Chen, X. Liu, D. Yin, and J. Tang. A survey on dialogue systems: Recent

advances and new frontiers. Acm Sigkdd Explorations Newsletter, 19(2):25–35,

2017.

M. Chevalier-Boisvert, D. Bahdanau, S. Lahlou, L. Willems, C. Saharia, T. H.

Nguyen, and Y. Bengio. Babyai: First steps towards grounded language

learning with a human in the loop. arXiv preprint arXiv:1810.08272, 2018.

K. Cho, B. van Merrienboer, C. Gulcehre, F. Bougares, H. Schwenk, and Y. Ben-

gio. Learning phrase representations using RNN encoder-decoder for statisti-

cal machine translation. In Proceedings of the Conference on Empirical Methods

in Natural Language Processing, 2014.

E. Choi, A. Lazaridou, and N. de Freitas. Compositional obverter commu-

nication learning from raw visual input. arXiv preprint arXiv:1804.02341,

2018.

P. F. Christiano, J. Leike, T. Brown, M. Martic, S. Legg, and D. Amodei. Deep

reinforcement learning from human preferences. In Advances in Neural Infor-

mation Processing Systems, pages 4299–4307, 2017.

X. Chu and H. Ye. Parameter sharing deep deterministic policy gradient for co-

operative multi-agent reinforcement learning. arXiv preprint arXiv:1710.00336,

2017.

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated re-

current neural networks on sequence modeling. arXiv preprint arXiv:1412.3555,

2014.

Bibliography 168

M. Cogswell, J. Lu, S. Lee, D. Parikh, and D. Batra. Emergence of compositional

language with deep generational transmission. arXiv preprint arXiv:1904.09067,

2019.

J. Cohen. Weighted kappa: Nominal scale agreement provision for scaled

disagreement or partial credit. Psychological bulletin, 70(4):213, 1968.

K. M. Colby, F. D. Hilf, S. Weber, and H. C. Kraemer. Turing-like indistinguisha-

bility tests for the validation of a computer simulation of paranoid processes.

Artificial Intelligence, 3:199–221, 1972.

T. Cooijmans, N. Ballas, C. Laurent, and A. Courville. Recurrent batch normal-

ization. arXiv preprint arXiv:1603.09025, 2016.

Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. V. Le, and R. Salakhutdinov.

Transformer-xl: Attentive language models beyond a fixed-length context.

arXiv preprint arXiv:1901.02860, 2019.

A. Das, S. Kottur, J. M. Moura, S. Lee, and D. Batra. Learning coopera-

tive visual dialog agents with deep reinforcement learning. arXiv preprint

arXiv:1703.06585, 2017.

H. de Vries, K. Shuster, D. Batra, D. Parikh, J. Weston, and D. Kiela. Talk the

walk: Navigating new york city through grounded dialogue. arXiv preprint

arXiv:1807.03367, 2018.

J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale

hierarchical image database. In Proceedings of the Conference on Computer Vision

and Pattern Recognition, 2009.

D. DeVault, A. Leuski, and K. Sagae. Toward learning and evaluation of dialogue

policies with text examples. In Proceedings of the SIGDIAL 2011 Conference,

pages 39–48. Association for Computational Linguistics, 2011.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of

deep bidirectional transformers for language understanding. arXiv preprint

arXiv:1810.04805, 2018.

B. Dhingra, Z. Zhou, D. Fitzpatrick, M. Muehl, and W. W. Cohen. Tweet2vec:

Character-based distributed representations for social media. arXiv preprint

arXiv:1605.03481, 2016.

Bibliography 169

J. Dodge, A. Gane, X. Zhang, A. Bordes, S. Chopra, A. Miller, A. Szlam, and

J. Weston. Evaluating prerequisite qualities for learning end-to-end dialog

systems. In Proceedings of the International Conference on Learning Representations,

2015.

H. Edwards and A. Storkey. Censoring representations with an adversary.

Proceedings of the International Conference on Learning Representations, 2016.

S. El Hihi and Y. Bengio. Hierarchical recurrent neural networks for long-term

dependencies. In Advances in Neural Information Processing Systems, volume

400, page 409. Citeseer, 1995.

J. L. Elman. Finding structure in time. Cognitive Science, 14(2):179–211, 1990.

M. Elsner and E. Charniak. You talking to me? a corpus and algorithm for

conversation disentanglement. In Proceedings of the Annual Meeting of the

Association for Computational Linguistics, 2008.

T. Everitt, P. A. Ortega, E. Barnes, and S. Legg. Understanding agent incentives

using causal influence diagrams, part i: Single action settings. arXiv preprint

arXiv:1902.09980, 2019.

K. Evtimova, A. Drozdov, D. Kiela, and K. Cho. Emergent communication in

a multi-modal, multi-step referential game. arXiv preprint arXiv:1705.10369,

2017.

J. Farrell and M. Rabin. Cheap talk. Journal of Economic perspectives, 10(3):

103–118, 1996.

M. Federico. Bayesian estimation methods for n-gram language model adap-

tation. In Proceeding of Fourth International Conference on Spoken Language

Processing. ICSLP’96, volume 1. IEEE, 1996.

J. R. Firth. A synopsis of linguistic theory, 1930-1955. Studies in linguistic analysis,

1957.

J. Foerster, I. A. Assael, N. de Freitas, and S. Whiteson. Learning to Communi-

cate with Deep Multi-Agent Reinforcement Learning. In Advances in Neural

Information Processing Systems 29. 2016.

J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson. Counterfactual

multi-agent policy gradients. arXiv preprint arXiv:1705.08926, 2017a.

Bibliography 170

J. Foerster, N. Nardelli, G. Farquhar, T. Afouras, P. H. Torr, P. Kohli, and

S. Whiteson. Stabilising experience replay for deep multi-agent reinforcement

learning. In Proceedings of the 34th International Conference on Machine Learning-

Volume 70. JMLR, 2017b.

J. Foerster, F. Song, E. Hughes, N. Burch, I. Dunning, S. Whiteson, M. Botvinick,

and M. Bowling. Bayesian action decoding for deep multi-agent reinforcement

learning. arXiv preprint arXiv:1811.01458, 2018.

P. W. Foltz, W. Kintsch, and T. K. Landauer. The measurement of textual

coherence with latent semantic analysis. Discourse processes, 25(2-3):285–307,

1998.

G. Forgues, J. Pineau, J. Larchevêque, and R. Tremblay. Bootstrapping dialog

systems with word embeddings. In Proceedings of the Workshop on Modern

Machine Learning and NLP, NIPS, 2014.

M. C. Frank and N. D. Goodman. Predicting pragmatic reasoning in language

games. Science, 336(6084):998–998, 2012.

P. Gage. A new algorithm for data compression. The C Users Journal, 12(2):

23–38, 1994.

M. Galley, C. Brockett, A. Sordoni, Y. Ji, M. Auli, C. Quirk, M. Mitchell, J. Gao,

and B. Dolan. deltaBLEU: A discriminative metric for generation tasks with

intrinsically diverse targets. arXiv preprint arXiv:1506.06863, 2015.

S. Gandhe and D. Traum. A semi-automated evaluation metric for dialogue

model coherence. In Situated Dialog in Speech-Based Human-Computer Interac-

tion, pages 217–225. Springer, 2016.

J. Gauthier and I. Mordatch. A paradigm for situated and goal-driven language

learning. arXiv preprint arXiv:1610.03585, 2016.

M. Ghavamzadeh and Y. Engel. Bayesian policy gradient algorithms. In Advances

in neural information processing systems, 2007.

M. Ghazvininejad, C. Brockett, M.-W. Chang, B. Dolan, J. Gao, W.-t. Yih, and

M. Galley. A knowledge-grounded neural conversation model. In Thirty-

Second AAAI Conference on Artificial Intelligence, 2018.

Bibliography 171

H. Gintis, E. A. Smith, and S. Bowles. Costly signaling and cooperation. Journal

of theoretical biology, 213(1):103–119, 2001.

A. M. Glenberg and M. P. Kaschak. Grounding language in action. Psychonomic

bulletin & review, 9(3):558–565, 2002.

X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedfor-

ward neural networks. In Proceedings of the International Conference on Artificial

Intelligence and Statistics, 2010.

X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural networks. In

Proceedings of the International Conference on Artificial Intelligence and Statistics,

2011.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio. Generative adversarial nets. In Advances in neural

information processing systems, 2014.

I. J. Goodfellow, Y. Bengio, and A. Courville. Deep learning. An MIT Press book

in preparation, 2015.

L. Graesser, K. Cho, and D. Kiela. Emergent Linguistic Phenomena in Multi-

Agent Communication Games. arXiv:1901.08706 [cs], Jan. 2019. arXiv:

1901.08706.

A. Graves. Generating sequences with recurrent neural networks. arXiv preprint

arXiv:1308.0850, 2013.

A. Graves and J. Schmidhuber. Framewise phoneme classification with bidirec-

tional lstm and other neural network architectures. Neural networks, 18(5-6):

602–610, 2005.

K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink, and J. Schmidhuber.

Lstm: A search space odyssey. arXiv preprint arXiv:1503.04069, 2015.

S. Gu, T. Lillicrap, Z. Ghahramani, R. E. Turner, and S. Levine. Q-prop:

Sample-efficient policy gradient with an off-policy critic. arXiv preprint

arXiv:1611.02247, 2016.

J. K. Gupta, M. Egorov, and M. Kochenderfer. Cooperative multi-agent control

using deep reinforcement learning. In International Conference on Autonomous

Agents and Multiagent Systems, pages 66–83. Springer, 2017.

Bibliography 172

R. Gupta, C. Orasan, and J. van Genabith. Reval: A simple and effective

machine translation evaluation metric based on recurrent neural networks.

In Proceedings of the 2015 Conference on Empirical Methods in Natural Language

Processing (EMNLP), 2015.

D. Hadfield-Menell, S. J. Russell, P. Abbeel, and A. Dragan. Cooperative inverse

reinforcement learning. In Advances in neural information processing systems,

2016.

S. Harnad. The symbol grounding problem. Physica D: Nonlinear Phenomena, 42

(1-3):335–346, 1990.

S. Havrylov and I. Titov. Emergence of language with multi-agent games:

learning to communicate with sequences of symbols. In Advances in Neural

Information Processing Systems, pages 2149–2159, 2017.

M. Henderson, B. Thomson, and S. Young. Deep neural network approach for

the dialog state tracking challenge. In Proceedigns of the Meeting of the Special

Interest Group on Discourse and Dialogue (SIGDIAL), 2013.

M. Henderson, B. Thomson, and J. Williams. The second dialog state tracking

challenge. In Proceedings of the Meeting of the Special Interest Group on Dialogue

and Discourse (SIGDIAL), 2014a.

M. Henderson, B. Thomson, and S. Young. Word-based dialog state tracking

with recurrent neural networks. In Proceedings of the Meeting of the Special

Interest Group on Dialogue and Discourse (SIGDIAL), 2014b.

P. Henderson, K. Sinha, N. Angelard-Gontier, N. R. Ke, G. Fried, R. Lowe, and

J. Pineau. Ethical challenges in data-driven dialogue systems. In Proceedings

of the 2018 AAAI/ACM Conference on AI, Ethics, and Society, 2018.

K. Hermann, T. Kocisky, E. Grefenstette, L. Espeholt, W. Kay, M. Suleyman,

and P. Blunsom. Teaching machines to read and comprehend. In Advances in

Neural Information Processing Systems, 2015.

R. Higashinaka, T. Meguro, K. Imamura, H. Sugiyama, T. Makino, and Y. Mat-

suo. Evaluating coherence in open domain conversational systems. In

Proceedings of INTERSPEECH, pages 130–134, 2014.

Bibliography 173

G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior,

V. Vanhoucke, P. Nguyen, T. N. Sainath, et al. Deep neural networks for

acoustic modeling in speech recognition: The shared views of four research

groups. IEEE Signal Processing Magazine, 29(6):82–97, 2012.

S. Hochreiter. Untersuchungen zu dynamischen neuronalen netzen. Diploma,

Technische Universität München, page 91, 1991.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation,

9(8):1735–1780, 1997.

S. Hochreiter, Y. Bengio, P. Frasconi, J. Schmidhuber, et al. Gradient flow in

recurrent nets: the difficulty of learning long-term dependencies. A field guide

to dynamical recurrent neural networks. IEEE Press, 2001.

E. H. Hovy. Toward finely differentiated evaluation metrics for machine trans-

lation. In Proceedings of the EAGLES Workshop on Standards and Evaluation,

1999.

J. Hu and M. P. Wellman. Online learning about other agents in a dynamic

multiagent system. In Proceedings of the Second International Conference on

Autonomous Agents. ACM, 1998.

S. M. Huttegger, B. Skyrms, R. Smead, and K. J. Zollman. Evolutionary dynamics

of lewis signaling games: signaling systems vs. partial pooling. Synthese, 172

(1):177, 2010.

M. Inaba and K. Takahashi. Neural utterance ranking model for conversational

dialogue systems. In Proceedings of the Meeting of the Special Interest Group on

Discourse and Dialogue (SIGDIAL), 2016.

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network

training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167,

2015.

C. L. Isbell, M. Kearns, D. Kormann, S. Singh, and P. Stone. Cobot in lambdamoo:

A social statistics agent. In Proceedings of the Association for the Advancement of

Artificial Intelligence, 2000.

A. G. Ivakhnenko and V. G. Lapa. Cybernetic predicting devices. Technical

report, Purdue School of Electrical Engineering, 1966.

Bibliography 174

M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Silver, and

K. Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks.

arXiv preprint arXiv:1611.05397, 2016.

S. Jafarpour, C. Burges, and A. Ritter. Filter, rank, and transfer the knowledge:

Learning to chat. Advances in Ranking, 10, 2010.

E. Jang, S. Gu, and B. Poole. Categorical reparameterization with gumbel-

softmax. arXiv preprint arXiv:1611.01144, 2016.

N. Jaques, A. Lazaridou, E. Hughes, C. Gulcehre, P. A. Ortega, D. Strouse, J. Z.

Leibo, and N. de Freitas. Intrinsic social motivation via causal influence in

multi-agent rl. arXiv preprint arXiv:1810.08647, 2018a.

N. Jaques, A. Lazaridou, E. Hughes, C. Gulcehre, P. A. Ortega, D. Strouse,

J. Z. Leibo, and N. De Freitas. Social influence as intrinsic motivation for

multi-agent deep reinforcement learning. arXiv preprint arXiv:1810.08647,

2018b.

F. Jelinek. Self-organized language modeling for speech recognition. Readings

in speech recognition, pages 450–506, 1990.

K. Jokinen and M. McTear. Spoken Dialogue Systems. Morgan Claypool, 2009.

M. I. Jordan. Attractor dynamics and parallelism in a connectionist sequential

machine. In Artificial neural networks: concept learning, pages 112–127. 1990.

R. Jozefowicz, O. Vinyals, M. Schuster, N. Shazeer, and Y. Wu. Exploring the

limits of language modeling. arXiv preprint arXiv:1602.02410, 2016.

R. Kadlec, M. Schmid, and J. Kleindienst. Improved deep learning baselines

for Ubuntu corpus dialogs. In Proceedings of the Workshop on Spoken Language

Understanding, NIPS, 2015.

L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in

partially observable stochastic domains. Artificial intelligence, 101(1-2):99–134,

1998.

A. Kannan and O. Vinyals. Adversarial evaluation of dialogue models. arXiv

preprint arXiv:1701.08198, 2017.

Bibliography 175

J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray,

A. Radford, J. Wu, and D. Amodei. Scaling laws for neural language models.

arXiv preprint arXiv:2001.08361, 2020.

S. Kim, L. F. D’Haro, R. E. Banchs, J. D. Williams, and M. Henderson. The

fourth dialog state tracking challenge. In Dialogues with Social Robots. Springer,

2017.

D. Kingma and J. Ba. Adam: A method for stochastic optimization. Proceedings

of the International Conference on Learning Representations, 2014.

S. Kirby. Iterated learning and the evolution of language. Current Opinion in

Neurobiology, 2014.

R. Kiros, Y. Zhu, R. R. Salakhutdinov, R. Zemel, R. Urtasun, A. Torralba, and

S. Fidler. Skip-thought vectors. In Advances in Neural Information Processing

Systems, 2015.

R. Kneser and H. Ney. Improved backing-off for m-gram language modeling.

In International Conference on Acoustics, Speech, and Signal Processing, volume 1.

IEEE, 1995.

S. Kottur, J. M. Moura, S. Lee, and D. Batra. Natural language does not

emerge’naturally’in multi-agent dialog. arXiv preprint arXiv:1706.08502, 2017.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep

convolutional neural networks. In Advances in neural information processing

systems, 2012.

J. K. Kummerfeld, S. R. Gouravajhala, J. Peper, V. Athreya, C. Gunasekara,

J. Ganhotra, S. S. Patel, L. Polymenakos, and W. S. Lasecki. A large-scale

corpus for conversation disentanglement. arXiv preprint arXiv:1810.11118,

2018.

T. K. Landauer and S. T. Dumais. A solution to plato’s problem: The latent

semantic analysis theory of acquisition, induction, and representation of

knowledge. Psychological review, 104(2):211, 1997.

M. Lauer and M. Riedmiller. An algorithm for distributed reinforcement

learning in cooperative multi-agent systems. In In Proceedings of the Seventeenth

International Conference on Machine Learning, 2000.

Bibliography 176

A. Lazaridou, A. Peysakhovich, and M. Baroni. Multi-agent cooperation and

the emergence of (natural) language. arXiv preprint arXiv:1612.07182, 2016.

A. Lazaridou, K. M. Hermann, K. Tuyls, and S. Clark. Emergence of linguistic

communication from referential games with symbolic and pixel input. arXiv

preprint arXiv:1804.03984, 2018.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied

to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436, 2015.

C. Lee, S. Jung, S. Kim, and G. G. Lee. Example-based dialog modeling for

practical multi-domain dialog system. Speech Communication, 51(5):466–484,

2009.

J. Lee, K. Cho, J. Weston, and D. Kiela. Emergent translation in multi-agent

communication. arXiv preprint arXiv:1710.06922, 2017.

J. Lee, K. Cho, and D. Kiela. Countering language drift via visual grounding.

arXiv preprint arXiv:1909.04499, 2019.

A. Lerer and A. Peysakhovich. Learning social conventions in markov games.

arXiv preprint arXiv:1806.10071, 2018.

A. Lerer and A. Peysakhovich. Learning existing social conventions via observa-

tionally augmented self-play. In Proceedings of the 2019 AAAI/ACM Conference

on AI, Ethics, and Society. ACM, 2019.

D. Lewis. Convention: A philosophical study. Harvard University Press, 1969.

M. Lewis, D. Yarats, Y. Dauphin, D. Parikh, and D. Batra. Deal or No Deal?

End-to-End Learning of Negotiation Dialogues. In Proceedings of the 2017

Conference on Empirical Methods in Natural Language Processing, 2017.

F. Li and M. Bowling. Ease-of-Teaching and Language Structure from Emergent

Communication. arXiv:1906.02403 [cs], June 2019. arXiv: 1906.02403.

J. Li. Teaching machines to converse. arXiv preprint arXiv:2001.11701, 2020.

J. Li, M. Galley, C. Brockett, J. Gao, and B. Dolan. A diversity-promoting

objective function for neural conversation models. In Proceedings of the Meeting

Bibliography 177

of the North American Chapter of the Association for Computational Linguistics,

2015.

J. Li, M. Galley, C. Brockett, J. Gao, and B. Dolan. A persona-based neural con-

versation model. In Proceedings of the Association for Computational Linguistics,

2016a.

J. Li, W. Monroe, A. Ritter, and D. Jurafsky. Deep reinforcement learning for

dialogue generation. In Proceedings of the Conference on Empirical Methods in

Natural Language Processing, 2016b.

J. Li, W. Monroe, and D. Jurafsky. Learning to decode for future success. arXiv

preprint arXiv:1701.06549, 2017.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and

D. Wierstra. Continuous control with deep reinforcement learning. arXiv

preprint arXiv:1509.02971, 2015.

C.-Y. Lin. Rouge: A package for automatic evaluation of summaries. In Text

summarization branches out: Proceedings of the ACL-04 workshop, volume 8, 2004.

Z. C. Lipton. The mythos of model interpretability. Queue, 16(3):31–57, 2018.

M. L. Littman. Markov games as a framework for multi-agent reinforcement

learning. In Proceedings of the eleventh international conference on machine

learning, volume 157, 1994.

C.-W. Liu, R. Lowe, I. Serban, M. Noseworthy, L. Charlin, and J. Pineau. How

not to evaluate your dialogue system: An empirical study of unsupervised

evaluation metrics for dialogue response generation. In Proceedings of the

Conference on Empirical Methods in Natural Language Processing, 2016.

R. Lowe. A retrospective for “towards an automatic turing test - learning to

evaluate dialogue responses". ML Retrospectives, 2019.

R. Lowe, N. Pow, I. Serban, and J. Pineau. The Ubuntu dialogue corpus: A

large dataset for research in unstructured multi-turn dialogue systems. In

Proceedings of the Meeting of the Special Interest Group on Dialogue and Discourse

(SIGDIAL), 2015.

Bibliography 178

R. Lowe, I. Serban, M. Noseworthy, L. Charlin, and J. Pineau. On the evaluation

of dialogue systems with next utterance classification. In Proceedings of the

Meeting of the Special Interest Group on Dialogue and Discourse (SIGDIAL), 2016.

R. Lowe, M. Noseworthy, I. V. Serban, N. Angelard-Gontier, Y. Bengio, and

J. Pineau. Towards an automatic turing test: Learning to evaluate dialogue

responses. Proceedings of the Association for Computational Linguistics, 2017a.

R. Lowe, N. Pow, I. V. Serban, L. Charlin, C.-W. Liu, and J. Pineau. Training

end-to-end dialogue systems with the ubuntu dialogue corpus. Dialogue &

Discourse, 8(1):31–65, 2017b.

R. Lowe, Y. Wu, A. Tamar, J. Harb, O. P. Abbeel, and I. Mordatch. Multi-agent

actor-critic for mixed cooperative-competitive environments. In Advances in

Neural Information Processing Systems, 2017c.

R. Lowe, J. Foerster, Y.-L. Boureau, J. Pineau, and Y. Dauphin. On the Pitfalls of

Measuring Emergent Communication. arXiv:1903.05168 [cs, stat], Mar. 2019.

arXiv: 1903.05168.

R. Lowe, A. Gupta, J. Foerster, D. Kiela, and J. Pineau. On the interaction

between supervision and self-play in emergent communication. International

Conference on Learning Representations, 2020.

Y. Luan, Y. Ji, and M. Ostendorf. LSTM based conversation models. arXiv

preprint arXiv:1603.09457, 2016.

M. Machácek and O. Bojar. Results of the wmt14 metrics shared task. In

Proceedings of the Ninth Workshop on Statistical Machine Translation. Citeseer,

2014.

C. J. Maddison, A. Mnih, and Y. W. Teh. The concrete distribution: A continuous

relaxation of discrete random variables. arXiv preprint arXiv:1611.00712, 2016.

J. Markoff and P. Mozur. For sympathetic ear, more chinese turn to smartphone

program. New York Times, 2015.

L. Matignon, G. J. Laurent, and N. Le Fort-Piat. Hysteretic q-learning: an

algorithm for decentralized reinforcement learning in cooperative multi-

agent teams. In Proceedings of the International Conference on Intelligent Robots

and Systems. IEEE, 2007.

Bibliography 179

L. Matignon, G. J. Laurent, and N. Le Fort-Piat. Independent reinforcement

learners in cooperative markov games: a survey regarding coordination

problems. The Knowledge Engineering Review, 27(01), 2012.

C. Metz. An algorithm that grants freedom, or takes it away. New York Times,

2020.

T. Mikolov, M. Karafiát, L. Burget, J. Cernockỳ, and S. Khudanpur. Recurrent

neural network based language model. In Proceedings of INTERSPEECH, 2010.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word

representations in vector space. arXiv preprint arXiv:1301.3781, 2013a.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed

representations of words and phrases and their compositionality. In Advances

in Neural Information Processing Systems, 2013b.

T. Mikolov, A. Joulin, and M. Baroni. A roadmap towards machine intelligence.

In International Conference on Intelligent Text Processing and Computational Lin-

guistics, pages 29–61. Springer, 2016.

J. Mitchell and M. Lapata. Vector-based models of semantic composition. In

Proceedings of the Association for Computational Linguistics, pages 236–244, 2008.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,

A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level

control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and

K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In

International Conference on Machine Learning, 2016.

S. Möller, R. Englert, K. Engelbrecht, V. Hafner, A. Jameson, A. Oulasvirta,

A. Raake, and N. Reithinger. Memo: towards automatic usability evaluation

of spoken dialogue services by user error simulations. In Proceedings of

INTERSPEECH, 2006.

I. Mordatch and P. Abbeel. Emergence of grounded compositional language in

multi-agent populations. arXiv preprint arXiv:1703.04908, 2017.

M. Mul, D. Bouchacourt, and E. Bruni. Mastering emergent language: learning

to guide in simulated navigation. arXiv preprint arXiv:1908.05135, 2019.

Bibliography 180

G. L. Murray. Autonomy and language learning in a simulated environment.

System, 27(3):295–308, 1999.

M. Nagata and T. Morimoto. First steps towards statistical modeling of dialogue

to predict the speech act type of the next utterance. Speech communication, 15

(3-4):193–203, 1994.

L. Nio, S. Sakti, G. Neubig, T. Toda, M. Adriani, and S. Nakamura. Developing

non-goal dialog system based on examples of drama television. In Natural

Interaction with Robots, Knowbots and Smartphones. Springer, 2014a.

L. Nio, S. Sakti, G. Neubig, T. Toda, and S. Nakamura. Utilizing human-

to-human conversation examples for a multi domain chat-oriented dialog

system. IEICE Transactions on Information and Systems, 97(6):1497–1505, 2014b.

S. Omidshafiei, J. Pazis, C. Amato, J. P. How, and J. Vian. Deep decentralized

multi-task multi-agent reinforcement learning under partial observability. In

Proceedings of the International Conference on Machine Learning. JMLR. org, 2017.

L. Panait and S. Luke. Cooperative multi-agent learning: The state of the art.

Autonomous Agents and Multi-Agent Systems, 11, 2005.

K. Papineni, S. Roukos, T. Ward, and W. Zhu. BLEU: a method for automatic

evaluation of machine translation. In Proceedings of the Annual Meeting of the

Association for Computational Linguistics, 2002.

R. C. Parkinson, K. M. Colby, and W. S. Faught. Conversational language

comprehension using integrated pattern-matching and parsing. Artificial

Intelligence, 9(2):111–134, 1977.

R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent

neural networks. Proceedings of the International Conference on Machine Learning,

28:1310–1318, 2013.

J. Pearl. Causality. Cambridge university press, 2009.

J. Pearl, M. Glymour, and N. P. Jewell. Causal inference in statistics: a primer. John

Wiley & Sons, 2016.

K. Pearson. Principal components analysis. The London, Edinburgh, and Dublin

Philosophical Magazine and Journal of Science, 6(2):559, 1901.

Bibliography 181

J. Pennington, R. Socher, and C. Manning. GloVe: Global Vectors for Word

Representation. In Proceedings of the Conference on Empirical Methods in Natural

Language Processing, 2014.

M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and

L. Zettlemoyer. Deep contextualized word representations. arXiv preprint

arXiv:1802.05365, 2018.

O. Pietquin and H. Hastie. A survey on metrics for the evaluation of user

simulations. The Knowledge Engineering Review, 28(01):59–73, 2013.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. Language

models are unsupervised multitask learners. OpenAI Blog, 1(8), 2019.

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou,

W. Li, and P. J. Liu. Exploring the limits of transfer learning with a unified

text-to-text transformer. arXiv preprint arXiv:1910.10683, 2019.

J. Ramos. Using TF-IDF to determine word relevance in document queries. In

Proceedings of the International Conference on Machine Learning, 2003.

A. Raux, B. Langner, D. Bohus, A. W. Black, and M. Eskenazi. Let’s go public!

taking a spoken dialog system to the real world. In Proceedings of INTER-

SPEECH. Citeseer, 2005.

L. Raviv and I. Arnon. Systematicity, but not compositionality: Examining

the emergence of linguistic structure in children and adults using iterated

learning. Cognition, 181, 2018.

A. Ritter, C. Cherry, and W. Dolan. Unsupervised modeling of twitter con-

versations. In Proceedings of the Meeting of the North American Chapter of the

Association for Computational Linguistics, 2010.

A. Ritter, C. Cherry, and W. Dolan. Data-driven response generation in social

media. In Proceedings of the Conference on Empirical Methods in Natural Language

Processing, 2011.

R. Rosenfeld. Two decades of statistical language modeling: Where do we go

from here? Proceedings of the IEEE, 88(8):1270–1278, 2000.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by

back-propagating errors. Cognitive modeling, 5(3):1, 1988.

Bibliography 182

V. Rus and M. Lintean. A comparison of greedy and optimal assessment of

natural language student input using word-to-word similarity metrics. In

Proceedings of the Seventh Workshop on Building Educational Applications Using

NLP, 2012.

A. M. Rush, S. Chopra, and J. Weston. A neural attention model for abstractive

sentence summarization. arXiv preprint arXiv:1509.00685, 2015.

A. A. Rusu, S. G. Colmenarejo, C. Gulcehre, G. Desjardins, J. Kirkpatrick,

R. Pascanu, V. Mnih, K. Kavukcuoglu, and R. Hadsell. Policy distillation.

arXiv preprint arXiv:1511.06295, 2015.

A. B. Sai, M. D. Gupta, M. M. Khapra, and M. Srinivasan. Re-evaluating ADEM:

A deeper look at scoring dialogue responses. In Proceedings of the AAAI

Conference on Artificial Intelligence, volume 33, 2019.

D. Sally. Conversation and cooperation in social dilemmas: A meta-analysis of

experiments from 1958 to 1992. Rationality and society, 7(1):58–92, 1995.

A. Saxe, J. McClelland, and S. Ganguli. Exact solutions to the nonlinear dynam-

ics of learning in deep linear neural networks. arXiv preprint arXiv:1312.6120,

2013.

J. Schatzmann, K. Georgila, and S. Young. Quantitative evaluation of user

simulation techniques for spoken dialogue systems. In Proceedings of the

Meeting of the Special Interest Group on Dialogue and Discourse (SIGDIAL), 2005.

J. Schmidhuber. Deep learning in neural networks: An overview. Neural

networks, 61:85–117, 2015.

J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy

optimization. In International Conference on Machine Learning, 2015.

A. See, S. Roller, D. Kiela, and J. Weston. What makes a good conversa-

tion? how controllable attributes affect human judgments. arXiv preprint

arXiv:1902.08654, 2019.

S. Seneff. Tina: A natural language system for spoken language applications.

Computational linguistics, 18(1):61–86, 1992.

R. Sennrich, B. Haddow, and A. Birch. Neural machine translation of rare words

with subword units. arXiv preprint arXiv:1508.07909, 2015.

Bibliography 183

I. V. Serban, R. Lowe, L. Charlin, and J. Pineau. A survey of available corpora

for building data-driven dialogue systems. arXiv preprint arXiv:1512.05742,

2015.

I. V. Serban, A. Sordoni, Y. Bengio, A. Courville, and J. Pineau. Building end-to-

end dialogue systems using generative hierarchical neural network models.

In Proceedings of the AAAI Conference on Artificial Intelligence, 2016.

I. V. Serban, A. Sordoni, R. Lowe, L. Charlin, J. Pineau, A. C. Courville, and

Y. Bengio. A hierarchical latent variable encoder-decoder model for generating

dialogues. In Proceedings of the AAAI Conference on Artificial Intelligence, pages

3295–3301, 2017.

L. Shang, Z. Lu, and H. Li. Neural responding machine for short-text conversa-

tion. arXiv preprint arXiv:1503.02364, 2015.

L. Shang, T. Sakai, Z. Lu, H. Li, R. Higashinaka, and Y. Miyao. Overview of the

ntcir-12 short text conversation task. Proceedings of NTCIR-12, 2016.

A. Singh, T. Jain, and S. Sukhbaatar. Learning when to communicate at scale in

multiagent cooperative and competitive tasks. arXiv preprint arXiv:1812.09755,

2018.

S. Singh, D. Litman, M. Kearns, and M. Walker. Optimizing dialogue man-

agement with reinforcement learning: Experiments with the NJFun system.

Journal of Artificial Intelligence Research, 16:105–133, 2002.

J. M. Siskind. Grounding language in perception. Artificial Intelligence Review, 8

(5-6):371–391, 1994.

J. M. Smith. Honest signalling: The philip sidney game. Animal Behaviour, 1991.

K. Smith, H. Brighton, and S. Kirby. Complex systems in language evolution: the

cultural emergence of compositional structure. Advances in Complex Systems,

6(04), 2003.

Y. Song, R. Yan, X. Li, D. Zhao, and M. Zhang. Two are better than one: An

ensemble of retrieval-and generation-based dialog systems. arXiv preprint

arXiv:1610.07149, 2016.

A. Sordoni, Y. Bengio, H. Vahabi, C. Lioma, J. Grue S., and J. Y. Nie. A

hierarchical recurrent encoder-decoder for generative context-aware query

Bibliography 184

suggestion. In Proceedings of the ACM International on Conference on Information

and Knowledge Management, 2015a.

A. Sordoni, M. Galley, M. Auli, C. Brockett, Y. Ji, M. Mitchell, J. Nie, J. Gao,

and W. Dolan. A neural network approach to context-sensitive generation of

conversational responses. In Proceedings of the Meeting of the North American

Chapter of the Association for Computational Linguistics, 2015b.

M. Stanojevic, A. Kamran, P. Koehn, and O. Bojar. Results of the wmt15

metrics shared task. In Proceedings of the Tenth Workshop on Statistical Machine

Translation, 2015.

L. Steels. Grounding language through evolutionary language games. Language

Grounding in Robots, pages 1–22, 2012.

S. Sukhbaatar, A. Szlam, and R. Fergus. Learning multiagent communication

with backpropagation. In Advances in Neural Information Processing Systems 29.

2016.

S. Sukhbaatar, I. Kostrikov, A. Szlam, and R. Fergus. Intrinsic motivation and

automatic curricula via asymmetric self-play. arXiv preprint arXiv:1703.05407,

2017.

I. Sutskever, O. Vinyals, and Q. Le. Sequence to sequence learning with neu-

ral networks. In Proceedings of the Annual Conference on Neural Information

Processing Systems, 2014.

R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press

Cambridge, 1998.

C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,

and R. Fergus. Intriguing properties of neural networks. arXiv preprint

arXiv:1312.6199, 2013.

A. Tampuu, T. Matiisen, D. Kodelja, I. Kuzovkin, K. Korjus, J. Aru, J. Aru, and

R. Vicente. Multiagent cooperation and competition with deep reinforcement

learning. PloS one, 12(4):e0172395, 2017.

M. Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents.

In Proceedings of the tenth international conference on machine learning, 1993.

Bibliography 185

D. Tang, B. Qin, and T. Liu. Document modeling with gated recurrent neural

network for sentiment classification. In EMNLP, pages 1422–1432, 2015.

C. Tao, L. Mou, D. Zhao, and R. Yan. Ruber: An unsupervised method for

automatic evaluation of open-domain dialog systems. In Thirty-Second AAAI

Conference on Artificial Intelligence, 2018.

G. Tesauro. Extending q-learning to general adaptive multi-agent systems. In

Advances in neural information processing systems, pages 871–878, 2004.

L. Theis, A. v. d. Oord, and M. Bethge. A note on the evaluation of generative

models. arXiv preprint arXiv:1511.01844, 2015.

P. S. Thomas and A. G. Barto. Conjugate markov decision processes. In

Proceedings of the 28th International Conference on Machine Learning, pages

137–144, 2011.

O. Tieleman, A. Lazaridou, S. Mourad, C. Blundell, and D. Precup. Shaping

representations through communication: community size effect in artificial

learning systems. arXiv preprint arXiv:1912.06208, 2019.

D. Traum, K. Georgila, R. Artstein, and A. Leuski. Evaluating spoken dialogue

processing for time-offset interaction. In Proceedings of the Meeting of the Special

Interest Group on Dialogue and Discourse (SIGDIAL), 2015.

A. M. Turing. Computing machinery and intelligence. Mind, 59(236):433–460,

1950.

D. Uthus and D. Aha. Extending word highlighting in multiparticipant chat. In

Proceedings of the Florida Artificial Intelligence Research Society Conference, 2013.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,

and I. Polosukhin. Attention is all you need. In Advances in neural information

processing systems, pages 5998–6008, 2017.

O. Vinyals and Q. Le. A neural conversational model. arXiv preprint

arXiv:1506.05869, 2015.

K. Wagner, J. A. Reggia, J. Uriagereka, and G. S. Wilkinson. Progress in the

simulation of emergent communication and language. Adaptive Behavior, 11

(1):37–69, 2003.

Bibliography 186

M. Walker and S. Whittaker. Mixed initiative in dialogue: An investigation

into discourse segmentation. In Proceedings of the Association for Computational

Linguistics, 1990.

M. Walker, D. Litman, C. Kamm, and A. Abella. PARADISE: A framework

for evaluating spoken dialogue agents. In Proceedings of the Meeting of the

European Chapter of the Association for Computational Linguistics, 1997.

A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman. Glue: A multi-

task benchmark and analysis platform for natural language understanding.

arXiv preprint arXiv:1804.07461, 2018.

J. Weizenbaum. ELIZA—a computer program for the study of natural language

communication between man and machine. Communications of the ACM, 9(1):

36–45, 1966.

M. Wen, T.and Gasic, N. Mrksic, L. Rojas-Barahona, P. Su, S. Ultes, D. Vandyke,

and S. Young. A network-based end-to-end trainable task-oriented dialogue

system. arXiv preprint arXiv:1604.04562, 2016.

T.-H. Wen, M. Gasic, N. Mrksic, P.-H. Su, D. Vandyke, and S. Young. Semanti-

cally conditioned lstm-based natural language generation for spoken dialogue

systems. arXiv preprint arXiv:1508.01745, 2015.

P. J. Werbos. Backpropagation through time: what it does and how to do it.

Proceedings of the IEEE, 78(10):1550–1560, 1990.

J. Weston, A. Bordes, S. Chopra, and T. Mikolov. Towards ai-complete question

answering: A set of prerequisite toy tasks. arXiv preprint arXiv:1502.05698,

2015.

J. Wieting, M. Bansal, K. Gimpel, and K. Livescu. Towards universal paraphrastic

sentence embeddings. arXiv preprint arXiv:1511.08198, 2015.

J. Williams, A. Raux, D. Ramachandran, and A. Black. The dialog state tracking

challenge. In Proceedings of the Meeting of the Special Interest Group on Dialogue

and Discourse (SIGDIAL), 2013.

J. D. Williams. Web-style ranking and SLU combination for dialog state tracking.

In Proceedings of the Meeting of the Special Interest Group on Discourse and

Dialogue (SIGDIAL), 2014.

Bibliography 187

J. D. Williams and S. Young. Partially observable markov decision processes for

spoken dialog systems. Computer Speech & Language, 21(2):393–422, 2007.

J. D. Williams, M. Henderson, A. Raux, B. Thomson, A. Black, and D. Ramachan-

dran. The dialog state tracking challenge series. AI Magazine, 35(4):121–124,

2014.

R. J. Williams. Simple statistical gradient-following algorithms for connectionist

reinforcement learning. Machine learning, 8(3-4):229–256, 1992.

R. J. Williams and J. Peng. Function optimization using connectionist reinforce-

ment learning algorithms. Connection Science, 3(3):241–268, 1991.

Y. Wu, W. Wu, C. Xing, M. Zhou, and Z. Li. Sequential matching network: A

new architecture for multi-turn response selection in retrieval-based chatbots.

arXiv preprint arXiv:1612.01627, 2016.

Y. Xiang, Y. Zhang, X. Zhou, X. Wang, and Y. Qin. Problematic situation

analysis and automatic recognition for chinese online conversational system.

In Proceedings of the Third CIPS-SIGHAN Joint Conference on Chinese Language

Processing, 2014.

K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov, R. S. Zemel, and

Y. Bengio. Show, attend and tell: Neural image caption generation with visual

attention. arXiv preprint arXiv:1502.03044, 2015.

Z. Xu, B. Liu, B. Wang, C. Sun, and X. Wang. Incorporating loose-structured

knowledge into LSTM with recall gate for conversation modeling. arXiv

preprint arXiv:1605.05110, 2016.

Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and Q. V. Le.

Xlnet: Generalized autoregressive pretraining for language understanding.

In Advances in neural information processing systems, 2019.

S. Young, M. Gašić, S. Keizer, F. Mairesse, J. Schatzmann, B. Thomson, and K. Yu.

The hidden information state model: A practical framework for pomdp-based

spoken dialogue management. Computer Speech & Language, 24(2):150–174,

2010.

S. Young, M. Gašić, B. Thomson, and J. D. Williams. Pomdp-based statistical

spoken dialog systems: A review. Proceedings of the IEEE, 101(5):1160–1179,

2013.

Bibliography 188

S. J. Young. Probabilistic methods in spoken–dialogue systems. Philosophi-

cal Transactions of the Royal Society of London A: Mathematical, Physical and

Engineering Sciences, 358(1769):1389–1402, 2000.

L. Yu, K. M. Hermann, P. Blunsom, and S. Pulman. Deep learning for answer

sentence selection. arXiv preprint arXiv:1412.1632, 2014.

Z. Yu, Z. Xu, A. W. Black, and A. I. Rudnicky. Strategy and policy learning

for non-task-oriented conversational systems. In 17th Annual Meeting of the

Special Interest Group on Discourse and Dialogue, page 404, 2016.

A. Zahavi. Mate selection—a selection for a handicap. Journal of Theoretical

Biology, 53(1):205–214, 1975.

S. Zhang, E. Dinan, J. Urbanek, A. Szlam, D. Kiela, and J. Weston. Personal-

izing dialogue agents: I have a dog, do you have pets too? arXiv preprint

arXiv:1801.07243, 2018.

T. Zhao and M. Eskenazi. Towards end-to-end learning for dialog state tracking

and management using deep reinforcement learning. In Proceedings of the

Meeting of the Special Interest Group on Discourse and Dialogue (SIGDIAL), 2016.

W. Zhu, K. Mo, Y. Zhang, Z. Zhu, X. Peng, and Q. Yang. Flexible end-to-

end dialogue system for knowledge grounded conversation. arXiv preprint

arXiv:1709.04264, 2017.

D. M. Ziegler, N. Stiennon, J. Wu, T. B. Brown, A. Radford, D. Amodei, P. Chris-

tiano, and G. Irving. Fine-tuning language models from human preferences.

arXiv preprint arXiv:1909.08593, 2019.

	Abstract
	Abrégé
	Contribution to Original Knowledge
	Contribution of Authors
	Acknowledgements
	1 Introduction
	1.1 Motivation
	1.2 Setting the stage
	1.3 Focus of this thesis
	1.3.1 Dialogue systems and emergent communication
	1.3.2 Learning and evaluation
	1.3.3 Research questions

	1.4 Preview of results

	2 Technical background
	2.1 Supervised learning
	2.2 Artificial neural networks
	2.2.1 Feed-forward neural networks
	2.2.2 Recurrent neural networks
	2.2.3 Training via backpropagation
	2.2.4 Long short-term memory units

	2.3 Language modeling with neural networks
	2.3.1 Language modeling
	2.3.2 Neural language models
	2.3.3 Encoder-decoders

	2.4 Dialogue systems
	2.4.1 Task-oriented vs. non-task-oriented dialogue systems
	2.4.2 Retrieval vs. generative dialogue systems
	2.4.3 Modular vs. end-to-end dialogue systems

	2.5 Reinforcement learning
	2.5.1 Markov Decision Processes (MDP)
	2.5.2 Partially Observed Markov Decision Processes (POMDPs)
	2.5.3 Q-Learning and Deep Q-Networks (DQN).
	2.5.4 Policy Gradient (PG) Algorithms.
	2.5.5 Deterministic Policy Gradient (DPG) Algorithms.

	2.6 Multi-agent RL
	2.6.1 Markov games
	2.6.2 Extension to communication games
	2.6.3 Centralized vs. decentralized learning and execution

	I Learning and evaluating dialogue systems
	3 Training end-to-end dialogue models with the Ubuntu Dialogue Corpus
	3.1 Motivation
	3.2 Related work: Learning architectures for end-to-end dialogue systems
	3.3 The Ubuntu Dialogue Corpus
	3.3.1 Motivation
	3.3.2 Ubuntu Chat Logs
	3.3.3 Dataset Creation
	3.3.3.1 Recipient Identification
	3.3.3.2 Utterance Creation
	3.3.3.3 Special Cases and Limitations

	3.3.4 Dataset Statistics
	3.3.5 Test Set Generation

	3.4 Response Classification Architectures
	3.4.1 TF-IDF
	3.4.2 Dual Encoder
	3.4.3 Evaluation Metrics
	Greedy Matching
	Embedding Average
	Vector Extrema

	3.4.4 Experimental Results
	3.4.5 Qualitative Error Analysis

	3.5 Generative Response Architectures
	3.5.1 Generative Recurrent Neural Language Model
	3.5.2 Hierarchical Recurrent Encoder-Decoder
	3.5.3 Experimental Results
	3.5.4 Examples of Generated Responses

	3.6 Discussion
	3.6.1 Conversation disentanglement
	3.6.2 Drawbacks of end-to-end dialogue systems
	3.6.3 Dialogue evaluation
	Existing evaluation metrics
	Next utterance classification

	3.6.4 Future Research Directions for End-to-End Systems
	3.6.5 Reflecting on the Ubuntu Dialogue Corpus

	4 Analyzing evaluation methods for dialogue systems
	4.1 A critique of word overlap-based evaluation metrics
	4.1.1 Motivation
	4.1.2 Evaluation Metrics
	4.1.2.1 Word Overlap-based Metrics
	BLEU
	METEOR
	ROUGE

	4.1.2.2 Embedding-based Metrics

	4.1.3 Dialogue Response Generation Models
	4.1.3.1 Conclusions from an Incomplete Analysis

	4.1.4 Human Correlation Analysis
	Data Collection
	Survey Results
	Qualitative Analysis

	4.1.5 Discussion
	Constrained tasks
	Incorporating multiple responses
	Searching for suitable metrics

	4.2 A human study of next utterance classification
	4.2.1 Motivation
	4.2.2 Related Work
	4.2.3 Technical Background on NUC
	4.2.4 Survey Methodology
	4.2.4.1 Corpora
	4.2.4.2 Task description
	4.2.4.3 ANN model

	4.2.5 Results
	4.2.6 Discussion

	4.3 Learning to evaluate dialogue responses
	4.3.1 Motivation
	4.3.2 Data Collection
	4.3.3 An Automatic Dialogue Evaluation Model (adem)
	Pre-training with VHRED

	4.3.4 Experiments
	4.3.4.1 Experimental Procedure
	4.3.4.2 Results
	Utterance-level correlations
	System-level correlations
	Generalization to previously unseen models
	Qualitative Analysis

	4.3.5 Related Work
	4.3.6 Discussion
	4.3.6.1 The problem of human appropriateness ratings
	4.3.6.2 Evaluating full conversations
	4.3.6.3 Reflecting on ADEM

	II Learning and evaluating emergent communication
	5 Centralized critics improve emergent communication and multi-agent learning
	5.1 Motivation
	5.2 Related Work
	5.3 Background: High variance of policy gradient algorithms
	5.4 Methods
	5.4.1 Multi-Agent Actor Critic
	5.4.2 Inferring Policies of Other Agents
	5.4.3 Agents with Policy Ensembles

	5.5 Experiments
	5.5.1 Environments
	5.5.2 Comparison to Decentralized Reinforcement Learning Methods
	5.5.3 Effect of Learning Polices of Other Agents
	5.5.4 Effect of Training with Policy Ensembles

	5.6 Discussion

	6 The pitfalls of measuring emergent communication
	6.1 Motivation
	6.2 Emergent communication metrics
	6.2.1 A categorization of metrics
	6.2.2 What metrics are being used now?
	Reward and task completion
	Qualitative analysis of messages given states
	Speaker consistency
	Context independence
	Entropy of message distribution
	Instantaneous coordination

	6.2.3 Causal influence of communication

	6.3 Experimental setup
	6.3.1 Matrix Communication Games
	6.3.2 Model and learning algorithm

	6.4 Results
	6.4.1 Positive signaling with random payoffs
	Fixed R setting
	Randomized R setting

	6.4.2 Positive signaling to-3.45mu=-3.45muto-3.45mu=-3.45muto-3.45mu=-3.45muto-3.45mu=-3.45mu positive listening
	Why is the SC positive?
	Why aren't the agents using the messages?

	6.4.3 Results in the iterated MCG setting

	6.5 Discussion
	6.5.1 How general is this analysis?
	Positive signaling without positive listening
	Scaling causal influence

	6.5.2 Recommendations
	Detecting emergent communication
	Measuring improvement in communication

	7 Bridging the gap from emergent communication to natural language
	7.1 Motivation
	7.2 Related work
	7.3 Methods
	7.3.1 Problem definition
	7.3.2 Supervised Self-Play (S2P)
	7.3.3 Algorithms for S2P
	7.3.4 Population-based S2P (Pop-S2P)

	7.4 Environments & implementation details
	Environment 1: Object Reconstruction (OR)
	Environment 2: Image-Based Referential game with natural language (IBR)

	7.5 Experiment 1: Do supervised learning before self-play
	(1) Emerging a language is hard.
	(2) Emergent languages are different than natural language.
	(3) Starting with self-play violates constraints.

	7.6 Experiment 2: Population-based approaches improve S2P
	7.7 Experiment 3: Examining S2P schedules
	Parameter freezing improves S2P
	Self-play acts as a regularizer

	7.8 Discussion

	8 Conclusion
	8.1 Summary of contributions
	8.2 Limitations
	8.3 Directions for future work

	Bibliography

