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Abstract

Using the tail index of returns on US equities as a summary measure of extreme
behaviour, we examine changes in the equity markets surrounding the development
of program trading for portfolio insurance, the crash of 1987, and the subsequent
introduction of circuit breakers and other changes in market architecture. Recently-
developed tests for the null of constancy of the tail index, versus the alternative of a
change at an unknown date, permit inference on changes in extreme behaviour over
a long time period while allowing for second-moment dependence in the return data.
We find strong evidence of a decrease in the tail index (increase in the probability of
extreme events) around the beginning of large scale program trading, and weaker,
but still substantial, evidence of further significant change in the tail index following
the introduction of circuit breakers. Point estimates of the tail index suggest that
the tail index may have roughly regained pre-program-trading levels.
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1. INTRODUCTION

After the equity market crash of October 1987, a number of changes were
made to markets’ operating procedures in order to limit the program trading which
was widely blamed for the crash. In particular, ‘circuit breakers’ were introduced
whereby, following drops of specified size, trading is temporarily halted or restricted.
One interpretation of the intent behind these restrictions is that they were designed
to return the equity markets’ behaviour in extreme circumstances to roughly the
state prevailing before the introduction of program trading. That is, equity markets
have always exhibited occasional extreme events, but program trading was perceived
to have altered the extreme behaviour of markets from the state prevailing when
investors’ judgments alone governed trades. Circuit breakers and other regulatory
changes might be viewed as an attempt to return to this pre-existing state.!

In this paper we investigate the empirical facts lying behind this interpretation
of events, using formal statistical tests to detect changes in the behaviour of ex-
tremes of equity market returns. In particular, we address these two questions: (i)
did the period following the introduction of program trading show a genuine change
in the character of extreme return events? If so, (ii) did the introduction of market
reforms lead to a further discernible break in tail behaviour, returning the markets
to a state similar to that prevailing before the introduction of program trading?

To address these questions we use the tail index of the density of equity returns,
on both the Dow Jones Industrial and the S&P 500 indices. With the tail index
as our measure of extreme behaviour in returns, our questions can be formulated
somewhat more precisely as follows: did the period of program trading represent
a structural break in the tail index of equity market returns? If so, did market
reforms lead to a further significant break, returning the tail index approximately
to its pre-existing value?

There have been several previous empirical studies of the effects of circuit
breakers, including those of Ma, Rao and Sears (1989a,b), Santoni and Liu (1993),
and Booth and Broussard (1998), using data from US bond and commodity markets
and the NYSE respectively. The Ma et al. and Santoni and Liu studies examine the
impact of circuit breakers on market volatility, using in the former cases measures of
volatility based on daily closing prices or cumulative average returns in one-minute
interval data, and in the latter ARCH models of the daily conditional volatility.
These results are mixed, with the Ma et al. studies of bond and commodity markets
suggesting lower volatility after the introduction of trading restrictions, whereas
Santoni and Liu find little evidence for a reduction in conditional volatility in S&P
500 index data. Booth and Broussard, in common with the present paper, study

LAn alternative interpretation, of course, is that the changes were introduced with
the aim of enforcing some optimal degree of extreme behaviour.
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tail properties of NYSE index data, and present detailed evidence on the evolving
size of the circuit breaker triggers as a proportion of the index value. We will refer
further to these results below.

Studies on equity markets outside the U.S. include those of Roll (1989), Bertero
and Mayer (1990) and Lauterbach and Ben-Zion (1993). Lauterbach and Ben-Zion
examine the period of the 1987 crash on the Tel Aviv market, for which circuit
breaker mechanisms were in place in 1987, and for which order imbalance data
are also available. These authors suggest that trading restrictions did not affect the
overall degree of decline, but did smooth returns around the crash date. Roll (1989)
and Bertero and Mayer (1990) each compare 23 stock markets around the time of
the crash, in monthly and daily data respectively; the latter study finds a substantial
impact of circuit breakers on price declines, while the former does not. Nonetheless,
as Lauterbach and Ben-Zion point out, trading restrictions differ substantially across
international markets, making the results of such exercises difficult to interpret.

The present study is able to provide substantial further evidence on the effects
of circuit breakers, for several reasons. First, by concentrating on overall charac-
terization of the tail of the return distribution rather than on volatility measures,
our results are focused on extreme events; we are able to examine the evolution of
this measure of extreme behaviour over time. Recent work on tests for a structural
break in the tail index at an unknown date (Quintos et al. 2001) and on tail in-
dex estimation with dependent sequences (Hsing 1991) allows us to test for such
changes in data such as equity returns which display (second moment) dependence.
The Quintos et al. tests, because they do not require a priori specification of a
break point, permit examination of the period of gradual emergence of program
trading as an important feature of US equity markets, as well as the period after
which circuit breakers were introduced. These tests use Hsing’s results to allow for
the dependence present in such data.

A second element in our additional evidence is the time series of post-circuit-
breaker daily returns in US stock markets. Because tail index estimation is usually
based only on data from the tails of the empirical density, very large samples are
typically required in order to obtain reliable estimates. Nonetheless, with over a
dozen years of post-reform data, it is now possible to obtain reasonable tail index
estimates for this period. With a time series of daily index returns extending back to
1928 (Dow Jones Industrial Average), and 1950 (S&P 500), we are able to estimate
and test for changes in the tail index both in long samples and in shorter samples
dating from the introduction of large-scale program trading.

The next section of the paper describes the regulatory changes in US equity
markets over the period of interest, and the data used in testing. Section 3 explains
the statistical methods used for tail index estimation and testing for changes in this
index; Section 4 presents the results of the estimation and inferential procedures,
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and interprets the evidence.

2. DATA AND MARKET STRUCTURE

This study examines the two longest-standing indices of U.S. equity prices, the
Dow Jones Industrial Average and the broader S&P 500 Index. Because the struc-
ture of circuit breakers is based on daily stock price changes—that is, the measure
of price change which these devices use is implicitly set to zero at the beginning of
each trading day—we examine daily changes in these index levels. Daily information
is available for a long historical period for the Dow Jones index; we use data from
October 1 1928, the date at which the index took its current 30-stock form. Our
daily sample of the S&P 500 begins on January 3 1950; both series end in March of
2002, for total sample sizes of 18443 days (DJIA) and 13129 days (S&P). Each of

these data series is transformed to daily logarithmic returns, r; = In(;%-), where

p¢ is the index value at time ¢, reducing sample sizes by 1.

Post-1987 changes in the structure and regulation of these markets have been
thoroughly described in the literature; see in particular Lindsey and Pecora (1998).
We will confine ourselves here to a brief review of some elements that are especially
important for our present purposes.

The first ‘circuit breakers’; introduced in October 1998, required a trading halt
of one hour following a fall in the DJIA of 250 points from the previous day’s close,
and of two additional hours if in subsequent trading the total decline reached 400
points. In July of 1996, the durations of these required trading halts were reduced
to 30 minutes and one hour respectively, and in January 1997 the trigger points
were changed (reflecting in part the increase in value of the DJIA which had made
the previous triggers smaller percentages of the index value), to 350 and 550 points.
Additional restrictions govern entering of index arbitrage trades when the DJIA
either advances or declines 50 points from the previous close, and govern market
orders involving program trading when the S&P 500 futures contract falls 12 points
below the previous day’s close (Lindsey and Pecora 1998).

Booth and Broussard (1998) document the decline in the initial 250-point trig-
ger as a percentage of the DJIA from approximately 12 percent at its introduction
to less than half of this percentage near the end of 1995. It is clear, then, that the
degree to which these triggers have constrained trading changed substantially over
time; Booth and Brousard estimate the probabilities of declines exceeding the trig-
ger values, and note substantial corresponding changes over time in these estimated
probabilities.

The period in which program trading, particularly for purposes of portfolio
insurance, became important in U.S. equity markets cannot be dated as precisely
as can regulatory changes.? Nonetheless, this period is of interest insofar as we are

2Program trading for portfolio insurance, as opposed to arbitrage, is particularly
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interested in the question of whether circuit breakers and other regulatory changes
can be viewed as having returned the markets to some state prevailing before the
era of program trading. An indication of the point at which program trading for
portfolio insurance became an important element in markets will govern our selec-
tion below of a sub-sample for post-program-trading tests; based on the value of
securities protected by such portfolio insurance, we have chosen 2 January 1985 as
the beginning of this sample from the period of significant program trading.

In the next section, we turn to the tail index with which we will characterize the
extremes of the return distribution through these historical periods, and describe
the methods by which we will estimate the value of the tail index and test for
changes over time.

3. STATISTICAL METHODS

The tail index characterizes the rate at which probability mass falls away in
the tail of a distribution; a relatively high tail index corresponds with relatively low
probability of extreme events. Let {X;} be a sequence of random variables with
common distribution function F'(x), so that 1 — F(x) is the probability of observing
a value exceeding x. Then (see, for example, Hsing 1991) 1 — F(x) is said to be
regularly varying at oo if there exists a > 0 such that

(1—=F(hz))/(1—F(z)) = h™* asx — oo, Vh > 0. (3.1)
We refer to a as the tail index parameter, and note that (1) implies
(1—=F(x)) — kzx™® as ¢ — oo, for some k > 0. (3.2)

While a number of estimators of « are available, we will use that of Hill (1975),
for several reasons: the estimation procedure does not depend on existence of the
fourth moment of the data; the estimator has been found to perform relatively
well on sample sizes available in financial data (Kearns and Pagan 1997); and,
particularly importantly for our present purpose, it is the basis of the structural
break tests of Quintos et al. (2001). Other methods have been proposed to reduce
bias in such estimates, such as the ML method of Feuerverger and Hall (1999)
and the weighted LS regression method of Huisman et al. (2001). However, our
interest in this section is not in the absolute level of the tail index but in possible
changes over time, and we concentrate on the raw Hill estimate for which general
procedures for inference on structural change are available. Below we will consider

important here because of the potential for large scale sales of securities triggered
by an initial market decline.



bias correction to produce estimates of the level of the tail index on particular
sub-samples.

Hill’s estimator is based on the m largest order statistics of the sample. Follow-
ing the notation of Quintos et al., define the order statistics from the original sample

{X1,Xo,... X7} as {X(Tl),X(TQ),...X(TT)}, X(Tl) < X(TQ) <...< X(TT). Choose the

largest mr of these, X(TT—mt+1) to X(TT), for estimation on the right tail of the distri-

bution (for the left tail, multiply the smallest mp values by -1). The Hill estimator
of a is then

mr -1
ar=|mp' Y WX iy -WXG | (3.3)

i=1

Estimation of the tail index parameter generally requires a relatively large
sample, because only a small proportion of the sample occurs, by definition, in the
tails; it is common in estimation to use a proportion such as 10% of the sample size,
following DuMouchel (1983) who suggest my be a fixed proportion not exceeding
0.17. All sequences of tail index estimates in the present paper are based on the
Hill estimator, and vary only in the definition of the sample used for estimation.
In recursive estimation, a sequence of estimators is presented in which the sample
size is augmented at each date by the latest data point; in rolling estimation, a
fixed sample size is maintained by dropping the earliest data point each time a new
data point is added. Our estimates are updated daily and are presented graphically
below.

The structural change tests of Quintos et al. (2001) are based on these se-
quences of tail index estimates. The null hypothesis is that the tail index has the
constant value a over the real interval t € [tg, T — to], with alternative of departure
from « at some point in the interval, and is tested with sequences of estimates
defined over different sets of samples. Recursive estimates produce a sequence of
estimates &; using samples 1,...t, for t = tg,to+1,...T — tg; rolling estimates use
samples 1+ (¢t —tp),...t, with ¢ indexed over the same values, for a constant sample
size tg. The sequential tests use both a recursive set of estimates and a reverse re-

cursive set,? labelled dg_), defined over samples 1,...t and t +1,...T respectively,
where once again t indexes the values tg,tg + 1,...7T — tg. The sequences of test

3Recall that the reverse recursive estimator begins with an estimate on the maxi-
mum sample, here o+ 1,...7T, and drops a point from the beginning of the sample

to produce each new estimate in the sequence.
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statistics are (in a slightly modified notation):

o= () (&)

Zy(t) = <750$> (aZ—OTt) - 1>2 (3.4)

Zs(#) = <t%> (@?j) - 1>2,

where &y, 1) is the tail index estimate on the rolling sample of size ¢y and myg is the

corresponding number of order statistics.

The test statistics are sup, Z;(t), i = 1,2, 3, and in the IID case have asymptotic
distributions obtained and tabulated by Quintos et al.

For the present problem, there are several additional points to be considered.
First, the recursive test is consistent only against increases in tail thickness (decrease
in a) beyond the breakpoint, a consequence of the fact that a part of the sample
with thick tails dominates in estimation of a. For this reason, although the recur-
sive method is the standard approach to structural change tests in many contexts,
the recursive tests will not allow us to examine potentially significant decreases in
tail thickness following market reforms. We will therefore not rely on these tests,
although we will mention their results below for the part of our problem to which
they are applicable.

Second, the financial returns data that we examine here are not 11D, but display
second-moment dependence often modelled, for example, with GARCH processes.
Quintos et al. provide modified versions of the test statistics using the results of
Hsing (1991) for dependent processes, applying these to the squares of the logarith-
mic returns. The modifications are based on a re-scaling of each of the equations of
(3.4) to account for the different variance of the Hill estimates when the raw data
are serially dependent; with the appropriate re-scaling the same asymptotic distri-
bution holds. These are the versions of the (rolling and sequential) tests that we
employ below. If {X;} has tail index «, then {X?} has tail index «/2; in the figures
below we rescale the estimated tail index parameters by 2 to report the estimated
tail index for the original series of logarithmic returns.

4. EMPIRICAL RESULTS
4.1 Evolution of the tail index on the full samples

The first set of empirical results concerns the hypothesis of constancy of the
tail index on the full historical samples. The results, for rolling tests using various
sample proportions and for the sequential tests, are presented in Table 1.



Table 1

Full-sample rolling and sequential tests
DJIA and S&P 500 index log returns

DJIA S&P 500

Test 1% c.v. sup(Z;(t)) sup(Z;(t))
Rolling, v = 0.15 1.90 13.9 3.12
Rolling, v = 0.20 2.30 22.5 4.30
Rolling, v = 0.25 2.55 27.6 5.29
Rolling, v = 0.30 2.86 39.3 6.71
Sequential, tg = 500 28.82 332.6 151.6

These results are easily summarized. On all tests and on both equity price
indices, the null of constancy of the tail index is rejected at a test level of 0.01
(the smallest tabulated); that is, each of the test statistics exceeds (by a substantial
margin) the 99th percentile of the null distribution.* The dates at which the maxima
of the statistics occur are in general in the year preceding the 1987 crash; the
pointwise statistics are in most cases above the 1% critical values for many dates in
the neighbourhood of that time. For the Dow Jones Industrials data, the months
in which the maximum statistics in the rolling tests occur vary from April 1986
(7 =0.15) to October 1987 (v = 0.20); in the sequential test, the maximum occurs
in September 1998. In the S&P data, the maxima occur between August 1982
(v = 0.15) and October/December 1987 (v = 0.25,0.30); note however from Figure
le that the early peak is isolated and only slightly exceeds the statistics from 1987.
The sequential test again shows a late maximum in October 1998.% All of these dates
should be interpreted very cautiously, in part because the alternative hypothesis of
a break at a particular date is not something that we wish to interpret literally

4As we noted above, we will not use the recursive test because of the lack of con-
sistency against an increase in the tail index (decrease in tail thickness) over the
sample. However, we note that the recursive statistics corresponding to those in
Table 1 also show strong rejections of the null of constant a on the full samples,
and that these tests are consistent against a substantial decrease in the tail index,
as appears to have occurred in the neighbourhood of 1987.

®Recall that the sequential tests compare samples before and after a hypothesized
break date, whereas rolling and recursive tests use data up to the particular date.
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for the present problem. Moreover we note from Quintos et al. (1991, esp. Table
3) that estimates of breakpoints may be quite poor, and even in favourable cases
show substantial variability around the true date. Nonetheless, we do note that the
strongest evidence of statistically significant change in the tail index does tend to
occur in the period of interest.

The sequences of rolling statistics for a variety of sample proportions are pre-
sented in Figure 1 (a—d: DJIA; e-h: S&P). Figure 2, which we will discuss in more
detail below, clearly indicates that the change in the tail index around 1987 which
is identified by the tests is in the direction of a fall in «, that is, an increase in tail
thickness and therefore in the relative frequency of extreme events.

4.2 The tail index in the era of program trading and circuit breakers

The next set of results concerns inference on the post-program-trading era
for which, as described above, we use data from 2 January 1985. We are now
interested in particular in the possibility that the tail index may have increased
(tail thickness decreased) later in the sample, as circuit breakers were introduced.
Since the first circuit breakers took effect in October of 1988, we have an initial
sample of almost one thousand trading days (January 1985-October 1988) on which
to base pre-circuit-breaker estimates. Recall, however, that the severity with which
these regulations bind has changed over time as the trigger points as a percentage
of index value changed; there is therefore no fixed degree of severity of these circuit
breakers, and no fixed date at which the process may be deemed to have changed
from one fixed regime to another fixed regime. Nonetheless, we are able to test the
null of constancy of the tail index.

We examine the possibility of a significant change in « in this later sample of
data using the rolling and sequential tests which are consistent for a change in « in
the direction described by this alternative hypothesis, i.e. to the extent that circuit
breakers are successful in limiting extreme fluctuations, the implied change in « is
positive (a decrease in tail thickness/frequency of extreme events). The results of
the tests on the post-program-trading sub-sample, for which sample sizes are now
identical in the DJIA and S&P 500 index data, are presented in Table 2.



Table 2

Sub-sample rolling and sequential tests
DJIA and S&P 500 index log returns

DJIA S&P 500

Test 1% c.v. sup(Z;(t)) sup(Zi(t))
Rolling, v = 0.15 1.90 2.13 2.18
Rolling, y = 0.20  2.30 9.48 3.56
Rolling, v = 0.25 2.55 2.16 1.79
Rolling, v = 0.30 2.86 4.61 1.90
Sequential, tg = 500 28.82 32.4 35.1

While evidence is weaker on this pair of smaller samples, there is still substantial
evidence against the null of constancy of the tail index; both sequential statistics and
five of the eight rolling statistics have p-values below 0.01, and the remaining three
rolling tests are in the upper 10% of the null distribution. As an aid to interpreting
these results, consider again Figure 2a-d; note that we have recorded the recursive
estimates only for the smaller rolling sample proportions (v = 0.15,0.20), since as
this proportion increases results from the latter part of the sample are blurred by
the inclusion of more data from earlier periods. All four test statistics from these
shorter spans reject the null of constancy at 1%.

In each of the four individual figures, a clear jump in the estimated tail index
is visible in the latter part of the sample (as 7 is larger, this jump is later, reflecting
the fact that a given data point remains in the rolling sample for more periods).
After this increase, the estimates of a tend to remain lower (frequency of extreme
events higher) than the values attained in, for example, the 1960-1980 period. That
is, these estimates suggest that the effect of the post-1987 reforms has been to raise
the tail index, and the statistics in Table 2 are compatible with the significance
of this effect. The point estimates from the Hill estimator suggest (Figure 2) that
the tail index remains below the values prevailing immediately before the era of
program trading. We will now investigate these absolute levels further.

4.3 Bias-corrected estimates of the tail index

It is well known that Hill estimates may be substantially biased in finite sam-
ples. Although this effect may be of small importance for inference on changes in
the tail index, we are also interested in the absolute level of the index. We therefore
consider bias-corrected estimates of o on several relevant sub-samples of the data.
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The bias-correction method of Feuerverger and Hall (1999) treats the tails as
approximated by a mixture of Pareto densities such that (adapting to the present
case of a tail at infinity rather than at the origin),

1 — F(x) = kiz™ (1 + kox ™" + o(2™")) (4.1)

is explicitly used as a model, leading to estimates of both a and (. Note that this
model is compatible with (3.1) as # — co. The method of Huisman et al. is based
on the observation that, for distributions satisfying (4.1) with the restriction o = 3,
the asymptotic bias function is approximately linear in m for values of m below some
threshold. The method therefore obtains a bias-corrected estimate by weighted LS
regression of a set of estimates of the Hill index v = o~ ! for m = 1,...k, on a
constant and the set of values {m;}. The results below are based on this method,
which appears to perform particularly well in simulation examples.

Table 3 presents these bias-corrected estimates for £ = min(7'/3,500), on three
sbu-samples chosen to approximate the pre-program-trading period, the time of pro-
gram trading unmodified by circuit breakers, and the period after the introduction
of circuit breakers.

Table 3

Bias-corrected tail index estimates
DJIA and S&P 500 index log returns
& (s.e.)

Left tail

Sample DJIA S&P 500
03/01/1950-31/12,/1984 491 (0.22)  4.60 (0.21)
02/01/1985-31/10,/1988 2.65 (0.27)  3.53 (0.36)
01/11/1988-14/03,/2002 3.78 (0.26)  4.69 (0.32)

These results pertain to raw logarithmic returns, as in Huisman et al. (2001),
rather than to the squares appropriate to the inferential procedures above. This
allows examination of the left tail of the distribution alone.

The estimates suggest several observations. First, in common with Huisman
et al., we find that the estimated tail index values following bias correction tend to
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be substantially higher (lower relative frequency of extreme events) than in the raw
Hill estimates. Second, estimates on the post-circuit breaker sample show tail index
estimates similar to those prevailing in the 1950-1984 sample, although whether the
point estimate of the index actually attains its pre-1985 value depends upon the
equity index data used.

5. CONCLUDING REMARKS

A sequence of changes, both technological and regulatory, took place in US
equity markets from the mid-1980’s. A first goal of this paper is to consider whether
corresponding changes can be observed in the pattern of extreme events in the equity
markets, as summarized here by the tail index of the distribution of logarithmic
returns, or whether by contrast the nature of the tail of the return distribution was
approximately stable over this time period. The statistical evidence is very clear
on this question, indicating very strong rejections of the hypothesis of constant tail
behaviour. The datings of significant statistics in the sequence are compatible with
the importance of the historical changes in market operation related to program
trading. We conclude then that the markets began to display significantly more
extreme behaviour at approximately this time.

The second question of interest is that of whether we can detect attentuating
influences on extreme behaviour during the period of regulatory reform which fol-
lowed the 1987 crash. On this point the evidence is less strong; nonetheless there
is substantial evidence of further change in the pattern of extreme events, in the
direction of a reduction in the frequency of extreme changes following regulatory
changes. On S&P 500 index data, bias-corrected point estimates of the tail in-
dex roughly attain pre-1985 values, whereas in the Dow Jones Industrial Average
data the estimated tail index remains somewhat below earlier values, implying a
somewhat higher frequency of extreme events.
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Figure 2a:

Rolling tail index estimate, window = 0.10, DJIA log returns
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Figure 2c:
Rolling tail index estimate, window = 0.15, DJIA log returns
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Figure 2b:

Rolling tail index estimate, window = 0.10, SP500 log retu
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Figure 2d:

Rolling tail index estimate, windaow = 0.15, SP500 log retu
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