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Abstract

This thesis addresses the problem of computing 2-D disparity fields from stereo image

pairs and applying them to intermediate view reconstruction (IVR) via disparity­

compensated interpolation. Intermediate views are calculated using a linear filter

\Vith angle-dependent coefficients. Two existing disparity estimation algorithms are

adapted to perform IVR, and results are used for parallax adjustment of still stereo im­

ages. In one case, the well-known block matching (Bl'JI) technique is used, and severa!

novel algorithm enhancements are propose(L The final BM scheme employs three­

component estimation, a spatial smoothness constraint, and a quadtree structure. A.

procedure for targeting problematic blocks that requires splitting based on robust

estimation is proposed, and an efficient approach for the reestimation of sub-blocks is

developed. A technique for eliminating component-mismatches in stereo pairs is also

examined. The accuracy of estimations based on these "balanced" images is seen to

increase.

In the other case, the ill-posed problem of obtaining dense disparity maps is ad­

dressed, and the method of regularization is used to compute pixel-based vector fields

for intermediate views. The conclusion is that although single image reconstruction

results are comparable in both cases, the approach based on regularization is supe­

rior to the block-based scheme for a dynamic sequence of such reconstructions. Both

approaches are applied to stereo parallax adjustment for still images, and numerous

experimental results are included.
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Sommaire

Ce mémoire étudie le problème de calcul de champ de disparité à partir de paires

d'images stéréo et de leur application pour la reconstruction de vues intermédiaires

via une interpolation compensée par la disparité. Les vues intermédiaires sont cal­

culées en utilisant un filtre linéaire dont les coefficients dépendent de la position de la

vue. Deu..x algorithmes d'estimation de disparité de type prédictif sont utilisés pour

rajustement de paralla.xe d'images stéréo fixes. Dans le premier cas, la méthode bien

connue d'appariement de blocs est utilisée et de nombreuses améliorations originales

à cet algorithme sont proposées. La méthode d'appariement de blocs finale utilise une

estimation sur trois composantes, une contrainte de lissage spatiale et une structure

""quadtreen
• Une procédure pour cibler les blocs causant des problèmes et impliquant

une décomposition des blocs basée sur une estimation robuste est proposée. De plus,

une approche efficace pour la réestimation des sous-blocs est développée. Une tech­

nique pour éliminer les inconsistences entre les composantes dans les paires d'images

stéréo est aussi développée et les estimés obtenus avec cette technique contribuent à

améliorer la qualité.

Dans le second cas, le problème mal conditionné d'obtention des champs de dis­

parité denses est étudié et la méthode de régularisation est utilisée pour calculer des

champ de vecteurs basés pLxels pour les vues intermédiaires. La conclusion est que

même si les images fixes reconstruites sont comparables pour les deux: cas, rapproche

basée sur la régularisation est supérieure à celle basée bloc pour les images en mouve­

ment. Les deux approches sont appliquées au problème de l'ajustement de parallaxe

pour les images fixes et de nombreux résultats expérimentau..x sont présentés.
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Chapter 1

Introduction

Recently, there has been a lot of talk in the television broadcast industry about high

definition TV. Interest in HDTV stems from the fact that its technology permits much

more realistic and natural-looking representations of scenes as compared to existing

television standards such as NTSC in North A.merica. At a screen resolution of

1920xlü36 pi.xels, the crispness of the image is impressive indeed. However, although

there is no doubt HDTV has succeeded in largely increasing the realism of television,

as is, it still lacks one very important feature; the representation of natural depth

sensation. Today, it is safe to say that the next evolutionary step towards the ongoing

search of increasing realism in video applications (multimedia, video conferencing,

etc... ) is to incorporate 3-D depth perception into the viewing experience [1, 2}.

3-D video, as it is referred to, provides the viewer with the "e}...-tra" information

needed for realistic depth perception to occur. Stereoscopie and multiview video fonn

a particular sub-class of 3-D video, where the extra information provided is another,

slightly displaced view of the same scene. Consider that our eyes view the world

from two slightly different angles. Our brain uses differences in the two acquired

projections to perceive the depth of a scene. In the same way, a stereoscopie video

system acquîres two views from cameras which are slightly displaced horizontally,

much like the relative location of our eyes. Each acquired view is then projected to

the corresponding eye, and it is through the combination of data from both views

that our brain perceives depth. In multiview video, stereo scenes are captured from

several vie\\'P0ints, offering a larger viewing angle to the viewer. Only two images
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are presented at any time since the user selects the stereo image pair which offers the

desired perspective.

The other sub-class of 3-D video is formed by techniques that "fool" the human

visual system (HVS) inta perceiving depth. These types of systems do not provide

any additional information such as separate views for each eye, but rather use te..x­

ture, shading and perspective geometry to enhance a single image and give the 3-D

sensation. Such systems typieally deal with the synthetic representation of abjects

rather than real world scenes, and are popular in the field of computer vision.

Applications for 3-D video are numerous. Virtual environment systems certainly

henefit from 3-D video since the goal is to give the user the impression of being

somewhere else. Here, depth perception is important since the environment must

seem real. Telepresence systems also employ 3-D video by projecting the human

sensory apparatus into a remote location. For this, a stereoscopie camera is placed in

the remote location, and a stereoscopie display system at the local site. An example

of telepresence is teleoperation, where the user can remotely operate a robot based

on viewed stereoscopie data. Applications for 3-D video are also found in the domain

of medical imaging, where depth perception is often essential; in particular, in 3-D

laparoscopyl and 3-D microscopy.

Since more than one view of a scene must he captured, the stereoscopie camera

consists of two lenses slightly displaced from one another. This makes stereoscopie

cameras rather hulky, and impractical to move around. Stereoscopic film makers

are sensitive to this, and need to be more selective of the scenes they capture. In
addition, the amount of data is doubled as compared to a regular video camera \Vith

only one lens. In the case of a TV broadcast system, this doubling of transmitted

information places heavy demands on the bandwidth of the information medium.

Stereoscopie video compression techniques which exploit the correlation between the

two perspective views are used to reduce the burden. Methods based on disparity­

compensated prediction are often used for this. Disparity is defined as the difference

in positions of homologous points in the left and right images of a stereo pair7 Le.,

points resulting from the projection of the same 3-D point onto the two image planes.

l Laparoscopy is direct visualization of the peritoneal cavity, ovaries, outside of the tubes and
uterus by using a laparoscope. The laparoscope is an instrument somewhat like a miniature telescope
with a fiber optic system which brings light into the abdomen.
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Disparity estimation is the process of estimating the disparity for each token (e.g.,

pi..xel) in one image with respect to the other; thus, disparity is a vector. A disparity

field is a set of vectors which, together, provide a mapping between images.

\Vhen acquiring a stereoscopie image, left and right cameras are fixed in space.

Therefore together, the left and right views depiet a 3-D scene from a particular view­

ing angle. If the stereoscopie pair is not viewed from the intended angle, an unnatural

representation of the scene results. The distance between the two stereoscopie lenses

is also fixed, and hence it is not guaranteed. to suit the viewing characteristics of every

viewer. Discomfort in viewing often results because of this. The practical problems

with CUITent stereoscopie video systems which are due to the fixed relative positions

of cameras need to be tackled before acceptance of the technology is realized for TV

broadcasting.

In the entertainment industry, stereoscopie video is used for providing 3-D movies

to the public. The IMAX® Corporation of Ontario, for example, produces high­

quality stereoscopie movies on 8-story-high screens. The screens are large enough

to cover the viewer's entire field of view. In this case, viewer head movements are

negligible as compared to the size of the screen, so the distortions resulting from

incorrect viewing angle discussed above are avoided. However, in the case of broadcast

T\T or computer monitors where much smaller screen sizes are used, viewer head

movements pose an important problem.

Today, this problem is solved digitally through the reconstruction of intermediate,

or virtual views. Intermediate views permit the display of the same scene, but from

a different viewing angle. Hence, as the viewing angle changes, appropriate interme­

diate views are computed and displayed, and the distortions that normally result are

avoided. The so..called problem of intermediate view reconstruction (IVR) therefore

offers continuous look-around to the viewer as the viewing angle is changed. Parallax

adjustment can be made possible since intermediate views permit adjustment of the

distance between cameras to suit a particular viewer's preference. The reconstruction

of these virtual views cao also be used for the application of missing frame replace­

ment. Here1 known data in a sequence of images is used to interpolate a missing

frame.

Based on the above, we believe 3-D video to be a next-generation medium that
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will revolutionize information systems. The creation of the 3-D image communica­

t ion and broadcasting systems will require the development of varions technologies.

Among them will no doubt be the technology of intermediate view reconstruction for

stereoscopie video. This thesis offers novel solutions to the IVR problem.

As mentioned r disparity estimation is used to remove redundancies in stereoscopie

video compression systems. The approaches towards IVR presented in this paper

are also based on the process of disparity estimationy but performed as a function of

the desired intermediate view position. The resultant disparity field is then used. to

reconstruct the intermediate view at that position. To date, various approaches to

disparity estimation have been proposed. In this thesis y two existing approaches have

been adapted to the problem of IVR. In the interest of high quality view reconstruc­

tion, various improvements have been proposed to cure existing problems.

1.1 Problem statelDent

This thesis address the problem of reconstructing virtual intermediate views by first

solving the correspondence problem using disparity estimation. Using the estimated

vector field r reconstruction is performed using simple two-coeflicient linear interpola­

tion. The main focus of the thesis is in obtaining accurate disparity vector fields in

order to produce high quality image reconstructions. Envisaged applications are in

the area of entertainment, where small baseline distances are used between (almost)

parallelleft and right video cameras, and where arbitrary Datura! scenes are typically

acquired.

1.2 Organization of the thesis

The layout of this thesis is as follows. The following chapter will provide the reader

with the necessary background and fundamental concepts relating to the field of

stereoscopie video. The geometric principles involved are considered, and the different

aspects of a stereoscopie video system, from acquisition to display, are presented.

Chapter 3 gÏves an overview of past work done in the field of intermediate view

reconstruction. Existing techniques found in the literature are presented. Past work

dODe in the field of disparity estimation is also presented, and a few algorithms are
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discussed in the context of disparity-compensated prediction. The tasks of IVR and

disparity estimation are defined in detail.

Chapter 4 discusses the adoption of a model on which the proposed algorithms for

IVR are based. The model places a simple constraint on the process of disparity esti­

mation so that the resultant vector field can he used to reconstruct a virtual view. Two

existing techniques for disparity estimation are adapted to perform IVR, and various

improvements are proposed. One technique is a block-hased estimation, and the other,

pLxel-based. Both techniques are adapted to the modeL The presented algorithms

are implemented in software, and resulting disparity fields are shown throughout the

thesis. The goal is to obtain accurate disparity fields since this has a direct impact

on the quality of reconstructed views. A technique for reducing the execution time of

the disparity estimation algorithms is proposed, and a well-known rohust interpolator

function presented.

Chapter 5 focuses on the intermediate view reconstruction results obtained based

on the disparity fields estimated in Chapter 4. The quality of the reconstructed views

is assessed, and a comparison between the block- and pixel-based approaches is offered.

Finally, Chapter 6 presents a summary of the contributions of this thesis, and

provides suggestions for future work.

1.3 Contributions

This thesis proposes several novel improvements to the simple template- or block­

matching estimation algorithm seen in motion estimation. First, a pre-processing

stage which eliminates global component-mismatches between homologous tokens in

the left and right images is implemented. The approach was proposed by the MPEG­

2 NIulti-View Profile group to eliminate luminance mismatches, and we enend it to

remove chrominance mismatches as weIl. Experimental results included herein show

that this preprocessing stage significantly improves the quality of reconstructions.

The simple block-based scheme is then adapted to perform estimation over all

three image components in order to eliminate ambiguous matches in the image where

luminance detail is low. Although this increases the complexity of the algorithm, it

aIso improves the accuracy of the estimated disparity field.
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The block-matching scheme is then adapted to perform. smoothness via regular­

ization. This algorithm enhancement offers the greatest gain in terms of quality of

reconstruction as it results in a very smooth (regular) disparity field.

Finally. the approach is modified to improve reconstructions near object bound­

aries in the images. Local depth constancy is rela.xed in these areas by using a

quadtree-based splitting structure; smaller block sizes are used for estimation. A ro­

bust technique for identifying problematic blocks which cover object-overiap regions

is proposed, and experimental results are shown.
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Chapter 2

Stereoscopy, the FundaIllentals

This chapter is devoted to presenting the basic concepts of stereoscopie video in the

context of binocular viewing. First, how the human visual system (RVS) provides

depth perception to the brain is examined. Next, how this information of depth is

reproduced on a 2-D display for viewing is looked at. Finally, the stereoscopie display

system itself, and potential image distortions it may cause, are examined.

2.1 Geometrie considerations

2.1.1 Geometry of the human visual system

Understanding the geometry behind how our eyes perceive depth in a real world scene

\vill lead to a better understanding of how to build stereoscopie display systems. The

geometry of the HVS's binocuIar vision is examined here.

Consider the sketch in Figure 2.1 where the eyes' reaction to different points in a

scene is illustrated. Both left and right eyes are fixated on a point pl in spaee, forming

the angles 51 and 52 as shown. This focnses an image in the center of the fovea of

each eye. A point p2 elsewhere in space (at a different depth than pl) produces

another image in each eye, but each may be at a different distance from the fovea.

That is, c51 #= 52, and the SUIn of these angles is referred to as the retinal disparity.

As illustrated, the angle measured from the fovea towards the inside of the eye is

positive. It is the retinal disparity which provides the brain with information towards

the depth and shape of an object when the two images get fused together.
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LeCtEye

p2

Right Eye

•

Fig. 2.1 Visual system geometry showing retinal disparity, ()l +~, based
on the fixation point pl.

To further demonstrate, consider the sketch in Figure 2.2. As the two eyes focus on

the fix:ation point pl, they fonu the convergence angle, o. Similarly, the convergence

angle of point p2 is ,8.

pl fi..
~ lXahon POlOt

a

Fig. 2.2 Visual system geometry showing convergence angles, based on
the fixation point pl.

Clearly, 0 + eSt + c + eS2 + d = 180, and j3 + c + d = 180, 50 that

(2.1)

•
This means that the difference in the angles of convergence defined by two points

in the real world scene is given by the retinal disparity. The depth perceived depends

on whether the point p2 is doser or farther than the fixation point. If it is doser, then

f3 > a, and the retinal disparity will he negative. This corresponds to what is called
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crossed disparity since the eyes must cross to focus on the point p2. Otherwise, the

retinal disparity is positive, referred to as uncrossed disparity[3].

The important conclusion ta he drawn here is that the depth our brain perceives

is related to retinal disparity. In faet, according to Hodges & Davis, they are related

in a monotonie, non-linear manner [3]. In general, for a fbced distance for pl, a larger

depth between pl and p2 corresponds to a larger differenee in convergence angles,

hence a larger magnitude for the retinal disparity.

2.1.2 Epipolar geometry

The fact that a stereoscopie video system is made up of two cameras observing the

same real world scene imposes sorne constraints on the two resulting images. In order

to reconstruct 3D coordinates from a pair of given 2D images, one must first deal with

the correspondence problem: given a token in the left image, what is the corresponding

token in the right image? Since there are too many potential pairs of tokens which

correspond, sorne properties must be exploited in order to come up with one solution.

The fundamental constraint typically used is the the epipolar geometry constraint.

1 like the figure from Naernura, Kaneko, and Harashima [4] depicting the idea

behind epipolar geometry. It is repeated here as Figure 2.3.

The epipolar plane is defined by a point P in space and the line joining the two Lens

centers with focallength, f. Homologous epipolar lines are defined as the intersection

of the epipolar plane and the image planes, as shown in Figure 2.3. AU points from

a particular epipolar plane are projected onto a corresponding pair of homologous

epipolar lines of the image planes.

Due to this geometrieal constraint, any point lring on an epipolar line in one image

corresponds, necessarily, to a point lyjng on the homologous epipolar Hne in the other

image. This fact is the basis of all stereo matching methods.

One typical assumption that is made to help deal ,vith the very complex cor­

respondence problem is that parallel cameras are used to acquire the stereoscopie

image, and that the cameras are aligned (calibrated) sa that there is no vertical shift

between them1
• Section 2.2.2 talks about this in more detail, but it is important here

1Camera calibration implies that aIl extrinsic camera parameters are known, sncb as position,
angle, etc...
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p

epipolar line

~

. ,
"

z

. ,.,
L..------L------------~~x

y

• Fig. 2.3 Camera imaging geometry modeled as a perspective projection
showing the epipolar constraint. 0 1 & 0 2 are the camera optical centers
which form their respective image planes a distance f away.

•

ta mention that the parallel camera setup benefits from parallel epipolar lines. This is

important because it implies that in this case, the stereo images do not have any ver­

tical parallax between them, and hence the task of finding correspondences between

thenl becomes a 1-D problem (i.e., only horizontal disparity vectors are assumed to

exist).

There are two major elements of our work. The first is solving the correspondence

problem (disparity estimation), and the second is intermediate view reconstruction.

In the context of disparity estimation, the parallel camera assumption was not made

since small vertical screen parallax was permitted. However, as will be discussed in

greater detail in Chapter 5, this assumption was made in the conte..xt of intermediate

view reconstruction.
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2.1.3 Viewing geometry

The geometry behind what each eye sees in a 3-D scene has been stlldied. The

geometry of modeling stereoscopie displays to achieve the same effect of depth when

viewed on a two-dimensional plane is now examined. In particulart the concepts of

crossed and uncrossed disparity can he discllssed in the context of a geometric model

by introducing the notion of screen parallax.

By tracing the projection vector of a point P in 3-D space to its location on a

two-dimensional display! it is clear that the projection on the left eye of this point is

quite different from that on the right eye. The distance between the points Pte!t and

Pright , shown in Figure 2.4, is defined as the screen paralla.x, p [3I.

Display plane

..•
D

d

Object with
negative
paraIlax

•

r-------~~--_lpri~hJ

Left eye

•

Fig. 2.4 Top view of a stereoscopie geometric model showing screen
parallax induced. by left- and right-eye projections from the point P in
3-D space.

•
Negative parallax results when Pr1ght is to the left of Pie!t on the display. In

this case, the model reproduces the effect of crossed retinal disparity defined in Sec­

tion 2.1.1. To associate negative parallax with crossed disparity, consider the display

plane as being the fixation point. Then, as in the case of crossed disparity, the eyes
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would have ta cross to foeus on point P, which gives the impression of being doser

to the viewer than the fixation point.

Positive parallax occurs when Pright is to the right of Pteft on the display, and this

effect can be compared to uncrossed retinal disparity. Naturally, the sereen parallax

is equal to zero for any abject perceived to be at a distance d from the viewer.

Screen parallax and retinal disparity are not directly related, however. On the

one hand, retinal disparity is measured on the two retinae and its value is dependent

on the convergence angle and the viewer's focus point. Screen paraIlax, on the other

hand, is measured directly from the display, and its value depends on how points in

the real world scene are mapped to the display, as weIl as on the ~iewing distance.

Conceptually however, screen parallax induces retinal disparity which in tum provides

the stereoscopie eue needed for depth perception.

The model shawn in Figure 2.4 demonstrates how stereoscopie display systems

"trick" the brain into using its binocular vision. The idea is that the model produces

two sets of points, each set making up an independent representation of the real world

• scene (i.e., an image). Given these two images now, there is a need to separate them

so that the viewer's left eye sees only the "left" image, while the right eye sees onIy

the ~'righf' image. How this is done using special glasses and high-frequency display

monitors in the context of a stereoscopie video system is diseussed in more detail in

Section 2.2.3.

Looking at abject 2 of Figure 2.4, it is easy to show that the amount of parallax

on the display required to achieve a given depth perception, CD - d), is given by:

i(D - d)
p=----

D
(2.2)

•

where D is the distance from the point ta the viewing plane, d is the distance from

the display ta the viewing plane, i is the human inter-ocwar (pupillary) distance, and

p is the screen paralla.x.

In general, as the abject moves farther away from the display plane in either

direction, the magnitude of the sereen parallax increases, and hence the distance

between left and right eye image projections on the display also ïncreases. Similarly,

it \Vas seen that the farther two points were from eaeh other in a real world scene (in
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the z-direction), the greater the magnitude of the retinaI disparity. This confirms the

tight relationship between retinal disparity and screen paralla.x:.

2.2 Stereoscopie video system

The display process of a stereoscopie video system is made up of three separate coor­

dinate transformations. From the real world object space, the cameras' CCD imaging

sensors transform this real-world data into two separate sets of two-dimensional co­

ordinates. These are then transformed to the coordinates of the physical display

monitor. Lastly, our eyes transform the displayed image to the final image space, our

brain. The procedure is summarized by the following three-stage process:

Object space => eCD coordinates => Screen coordinates => Image space
(3-D) (2-D times 2) (2-D times 2) (3-D)

2.2.1 Image acquisition

The first stage of coordinate transformations shown above is accomplished with two

cameras placed side by side acquiring the real world data. The interaxial separation

of the cameras, or the distance between lenses used to take a stereoscopie photograph,

has a large impact on the strength of the stereoscopie eue. Typically, a separation

distance equal to the average adult pupillary distance, or 64 millimeters, is used.

Since aetual pupillary distances vary from individual to individual, the strength of

the stereoscopie eue, or degree of "3D-ness", that the viewer experienees, will vary.

The doser the lenses are together, the more the screen paralla.x: of objects in the scene

is redueed and thus the more the stereoscopie depth effect is reduced.

It is interesting that sorne people have trouble fusing certain stereoscopie images.

One reason for this could be that the partieular interaxial separation used to take the

photograph is not weil matched to the particular viewer's inter-oeular distance. The

diagram in Figure 2.5 demonstrates what happens when the screen parallax is greater

than the pupillary distance (i.e., when the intera.x:ial separation is too large, resulting

in a very strong stereoscopie depth eue).
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Fig. 2.5 Visual system geometric model showing exaggerated stereo­
scopic depth cue and diverging eyes ("hyper stereo").

•

In this case, the eyes must diverge in order to fuse together the stereoscopie image,

something that does not occur when looking at objects in the visual world. This

situation, referred to as divergent parallax, oCten results in discomfort to the viewer

due to the unusual strain it places on the muscles of the eye. It would be beneficial

if the viewer could avoid this discomfort by adjusting the interaxial separation of the

cameras, hence the screen paralla.x:, to fit his/her particular pupillary distance. Of

course, the stereoscopie image can only be acquired using a fixed interaxiaI separation,

50 how to adjust this parameter? In fact, this idea is one of the major motivations of

the project behind this thesis work, and will be discussed in much greater detail in

the upcoming chapters.

The amount of ;'permissible" screen parallax2 is a function of the viewing distance.

The further a viewer is from the display screen, the larger is the permissible amount

of 5creen parallax. From the usuaI workstation viewing distance of about 45 cm, the

general rule is not to exceed positive or negative screen parallax values of about 12

millimeters [5].

Screen parallax cao also be expressed in terms of the viewing angle [5]. Consider

Figure 2.6; gjven an amount of screen paralla.x p and a viewing distance d, the viewing

angle {3 can be described by:

p
fJ = 2 arctan 2d' (2.3)

•
2The term "permissible screen paralIax" is meant as the largest amount of screen parallax which

does oot cause viewer discomfort for a typical adult viewer.
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Fig. 2.6 Relationship between screen parallax Pr and the viewing angle
{3, given by (2.3).

2.2.2 Pick up equipment

A stereoscopie video acquisition system consists of two (or more) cameras positioned

side by side to obtain left and right images. Both cameras should have the same focal

length values, f. In faet r the cameras should be calibrated so that there is little or

no imbalance between them in any way. Even small imbalances in the cameras' focal

lengths, for example, could seriously bias solutions of the correspondence problern.

This in turn will have a negative impact on the quality of reconstructed images.

There are three cornmon configurations of the video camera pair. The simplest

of three uses two cameras with parallel lens optieal axes and parallel camera optical

a.xes. In this scenario r the common field of view between the left and right acquired

images becornes very small (depending on the interaxial separation r of course), and

the correspondence problem becomes impossible for tokens at the outer extremes of

the images.

The second configuration, the toed-in approach, has cameras which are rotated

towards each other 50 that both their camera and lens optical axes coincide, and

converge at a so-called convergence point. This increases dramatically the common

field of view between the cameras, but suffers from complexity of setup.

The third configuration places cameras so that their lens optical axes are parallel

to each otherr but their camera optical axes converge at the convergence point. This is

achieved by horizontally shifting the CCD sensors in the cameras to obtain the shifted

images on the display [6]. This configuration is called the paTaUel configuration, or
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convergence by Lateral shifting, and is simpler to set up than the toed-in configuration.

l t aIso benefits from a large common field ofview. The two are illustrated in Figure 2.7.

•
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1

(b)

r

Fig.2.1 Ca) Parallel and (h) toed-in stereoscopie eamera configurations.

The paralleI camera setup is advantageous since there is no vertical disparity

introduced, and since the governing disparity equation (Le., the difference of the

abscissas land r of the images of point P on the sensors) is straightfonvard [7]. From

simple trigonometric principles applied to Figure 2.7 (a), the following relation is

found to hoId:

•
Solving for l, we get

x-! x-!-h+l2 _ 2

-z-- I+z

lx lb
l = - - -+h.

z 2z

(2.4)

(2.5)
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Similarly~ solving for r l

fx fb
r=-+--h.

z 2z

Ta calculate the disparity, we get

fb
do = (l - r) = 2h - -,

z
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(2.6)

(2.7)

•

•

\vhich is a simple relationship describing the disparity in terms of the focallength l,
the baseline distance b, the object distance z, and the CCD sensor shift h. Hence we

see that for parallel cameras, the disparity is ïnversely proportional to depth. Also,

this expression is independent of point p's lateral position. x.

The toed-in configuration is simpler to set up and often used in practice because

it ma'cimizes the common field of view between the cameras. However, it is more

complicated to analyze mathematically. The governing horizontal and vertical dis­

parity equations are not simple, and depend on the lateral position, x. The reader

is referred to [7] for more details on the mathematical relationships describing the

toed-in camera configuration.

In summary, the parallel setup benefits from simpler mathematical expressions

and also simplifies the correspondence problem, yet it is more impractical to set

up. On the other hand, the vergent (toed-in) setup suffers from vertical parallaxe

As we have seen, vertical parallax is undesirable since it complicates the already

complex correspondence problem3 • To exploit the favourable characteristics of the

parallel setup while still allowing a vergent camera setup, rectification can be used

to rernove, to a large extent, the vertical parallax from images acquired using the

toed-in setup. This technique is a preprocessing stage, and the reader is referred to

(8) for Implementation details. AlI correspondence experiments conducted within the

framework of this project were done on images acquired frOID cameras which were

slightly toed-in. However, the parallel camera assumption is not made, and hence

image rectification not needed.

3It has also been verified in [6] that only a small degree of vertical parallax is tolerated before
discomfort is felt by viewers.
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Probably the very first attempt at stereoscopie viewing was the stereoscope, invented

by Charles \tVheatstone in the 1830's. The concept behind this display system was

very simple. The idea was that two images (camera snap-shots) were taken of a scene,

with the cameras slightly displaced from each other horizontally. The easiest way to

describe how this mechanism. works is by looking at the somewhat crude drawing

shawn in Figure 2.8.

Fig. 2.8 First generation stereoscope.

The stereoscope physically separates the left and right perspective views using a ver­

tical separator. This completely eliminates the possibility of crosstalk between the

views. At the time, the stereoscopie pictures were black and white and of a poor

quality. However, the interesting thing is even then, human binocular vision was well

understood since the stereoscope had an adjustable pupillary distance between the

viewer lenses, as well as an adjustable viewing distance. Together, these two adjust­

ments allowed the viewer to achieve his/her optimal stereoscopie eue settings. The

stereoscopes of today are much more advanced and employ mirrors with high quality

pictures to achieve the stereoscopie eue.

Due to complaxity ofsetup (precise viewing angle, precise alignment of left & right

images, etc . .. ), stereoscopes are typically only used in psycho visual experlments.
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Anaglyphs
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This type of stereo display system employs spectacles to separate left- and right-eye

images. Left- and right-eye lenses are red and bIne colour-coded, respectively: and act

as visual filters. The red-blue anaglyphie process is based on the patents of Ducos du

Hauron who described the system in 1858. The system requires that the left image

be dyed red and the right image be dyed blue (or vice versa). The two images are

then printed superimposed on the page (giving the out-of-focus look). The red and

blue lenses then alloweach eye to view the page separately and give the stereoscopic

cue.

Autostereoscopic

In the autostereoscopic display system, left and right views are spatially multiplexed as

in the anaglyphic display, but the "iewer is not required to wear any special spectacles.

The separate images of a stereo pair reside exclusively on either the odd or even

columns of the display. The interleaved pictures are then directed to the viewer's eyes

by means, for example, of a lenticular sheet at the display surface.

Polarization

This system uses passive spectacles, and has a large liquid crystal polarizing device

attached to the display screen. Altemate left and right frames are encoded with either

a clockwise or anti-clockwise polarization. The polarizing spectacles then decode the

correct perspective view for each eye.

Time-sequential displays

The stereoscopic display system used within the context of this work consists of a

"stereo-ready", multi-sync monitor capable of operating at twice the typical refresh

rate of 60 fields per second. To achieve the stereoscopie cue, left and right images are

spatially superimposed and temporally interleaved on the monitor. The left and right

images are alternately displayed at the rate of 120 fields/sec, sequenced as follows:

left, right, left, right, etc ...



• 20 Stereoscopy, the Fundamentals

•

•

The viewer wears CrystalEyes active Liquid-Crystal (Le) shuttering glasses whieh

alternately block and unblock the images in synchronization with the monitor's field

rate. In this way, while the Left image is being displayed on the monitor, the right

shutter of the active glasses blocks the view of the right eye so that it sees nothing,

and vice versa. The net effect is that the each eye sees its intended perspective view

only. Furthermore, the refresh rate of 120 fields per second is sufficiently high to

prevent flicker4 •

2.2.4 Display distortions

It has been seen that in order to properly model and implement a stereoscopie display

system, a solid understanding of the geometry involved is required. Furthermore, one

must he sensitive to potential distortions produced by the display system itself. This

section takes a brief look at some of the various stereoscopie display distortions; those

that are independent of the display technology, as weIl as those that are particular to

the time-sequential displays used at INRS-Telecommunications.

Depth plane curvature

The toed-in camera configuration causes a curvature of the perceived depth planes.

Hence, fLxed depth planes are not perceived as fiat in image space. The parallel

camera configuration, however, results in fiat depth planes which are parallel to the

display monitor. Given a line of objects along any one depth plane, this form of

distortion results in objects at the corners of the image perceived as being farther

from the viewer than objects at the center of the image. It could also lead to wrongly

perceived relative object distances on the display, and to disturbing image motions

during panning of the camera system. This display distortion is independent of the

display system.

4This is oot always true since many of the sequences used throughout this project have a refresh
rate of 50Hz, or 100Hz in stereo mode. For these sequences, the flickering is noticeable.
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Depth non-linearity

It has been stated in [61 that the distance from the cameras to the object does not

correspond linearly to the distance perceived by the viewer to the stereoscopie im­

age. Figure 2.9 demonstrates that the depth is stretched between the viewer and

the monitor, and compressed between the monitor and infinity. This naturally leads

to incorrect depth perceptions. In the figure ~ convergence and viewing distances are

equal to lm. Both camera configurations suffer from depth non-linearity. This display

distortion is independent of the display system.

Image distance (m)

AetU3I eurve

• Object Distance (m)

Fig. 2.9 Image distance vs. object distance showing depth nOD­

linearity.

•

It has also been stated in [6] that a linear relationship between image and abject

depths can be achieved if and ooly if the depth of an abject at infinity is displayed at

image infinity. However, this may not be altogether possible. Consider the following

reasoning.

An experiment has been carried out ta help determine what raIe the human visual

system has to play in such effects. As we already discussed, it has been suggested that

there are limits as ta the amount of screen paralla.x humans can tolerate for stereo­

scopie fusion to remain possible. By increasing and decreasing the screen parallax

between two images on a stereoscopie display until fusion was no longer possible, it

\Vas found that indeed some people had a greater ability ta fuse the images together

than others [6]. Ten subjects were studied, and it was found that sorne eould only

tolerate a small degree of parallax, while others had a much larger range of tolerable

sereen parallax.
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The results of this experiment suggest that if the goal is to satisfy the greatest

number of viewers, then the depth range should be kept to a minimum. However, this

constraint directly opposes the requirements for a linear depth relationship mentioned

above. Depending upon the depth range of the real world scene heing captured, this

condition may not he possible and depth non-linearity often becomes unavoidahle.

Shear distortion

Another image distorting phenomenon occurs with stereoscopie displays whenever the

vie\ver changes viewing positions. In the case of a display which is inherently two­

dimensional, the stereoscopie image appears to "follow" the viewer as he displaces

himself from side to side. This leads to what is called shear distortion as the image is

sheared about the surface of the monitor. In essence, objects perceived to he in front

of the monitor shear in the direction of motion, while objects behind the monitor

shear in the opposite direction. This display distortion is a direct result of the fact

that only two perspectives of the scene are shown, which are taken from a fbced set

of stereoscopic cameras.

As a solution to this problem, one could imagine a display system that could track

the viewer1s viewing position, and display the scene from the appropriate angle. This

form of continuous look-around stereoscopic imager)" is quite expensive, however, as

multiple cameras must he used to acquire enough information from the real world

scene. Typically five cameras are used to acquire a discrete set of viewing angles, and

then intermediate view reconstruction techniques are used to provide missing viewing

angles within a reasonable viewing range. This approach solves the shear distortion

problem, but it requires a tracking device to know the viewer's viewing angle at all

times from which to calculate the correct spatial image. Both camera configurations

suffer from shear distortion.

Keystone effect

This form of distortion is particular to the toed-in camera configuration, and results

in a vertical paralla-x: hetween the left and right images at certain areas of the display

as shown in Figure 2.10.
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Fig. 2.10 Induced vertical parallax due to Keystone distortion froID
toed-in camera configuration.

This distortion is a result of the fact that the imaging sensors of the two cameras

are nat in the same plane. The effect increases as the distance between the two

cameras increases, and it is greatest in the corners of the display. The keystone effect

also induces additional horizontal para1lax in the display, and is in fact the source

of depth plane curvature discussed above [6}. The parallel camera configuration does

not suffer from either the keystone effect, or depth plane curvature. This display

distortion is independent of the display system.

Image imbalances

Since left and right cameras have their own set of electronic circuitry (Le., ceos,

amplifiers, etc _.. ), colour imbalances are bound to exist since it is rather diflicult

and costly to calibrate cameras exactly. A.Iso, luminance imbalances are often present,

primarily due to the different angles from which the camera "sees" the scene. This is

more important for the convergent camera setup.

Apart from the fact that this distortion can affect the stereoscopie viewing experi­

ence, it can also seriously bias the correspondence problem. Some preprocessing in the

form of balancing is often beneficial ta the disparity estimation problem discussed in

Chapter 4. A. similar type of situation exists when there is an imbalance in the focus
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of the left and right cameras. These types of imbalances which may cause display

distortions are independent of the display system.

Inaage crosstaEk

It is inevitable for a stereoscopie display which interleaves two images at once, either

spatially or temporally, to suffer of some degree of image crosstalk, or ghosting_ It is

impossible to completely remove the left image from the view of the right eye, and

vice versa. The net effect is that certain parts of the perspective views are seen around

fused abjects, in an attenuated form of course.

It is interesting that crosstalk was shawn to be a function of the phosphor persis­

tence [9]. That is, the phosphors on a regular display monitor are excited by electron

beams to achieve a certain luminance or colour, and it takes a finite length of time

ta change this luminance value. In an ideal field-sequential stereoscopie display, the

image of each field, made up of glowing phosphors, would vanish completely before the

next field was written. In practice, however, this is not the case. After the left image

is \vTitten, it will persist while the right image is being written. The effect of ghosting

is dependent on image brightness/contrast and on the amount of screen paralla.x. As

presented, this form of display distortion is particular ta the time-sequential display

system.

Motion parallax distortion

In a stereoscopie video system, left and right cameras synchronously acquire a scene.

However, in the case of a time-sequential display system, left and right images are

sequentially displayed on the viewing monitor. That is, images acquired at the same

time are displayed 1/120s apart on the display monitor. This lapse of time is given

by the reciprocal of the vertical refresh rate, which is typically 120Hz. Although

once should be aware of this problem, it does not cause any perceptible problems for

stereoscopie viewing.
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Negative paralla..x, presented in Section 2.1.3, is not a display distortion in itself. On

the eontrary, it is responsible for probably the most interesting aspect of stereoscopic

video: objects that are perceived to be coming out of the display monitor. However,

stereoscopie film makers must be careful with negative paralla."<. It is important to

avoid situations where objects with negative screen paralla.x fall at image boundaries.

This results in slight discomfort to the viewer since the viewing of the physical edge of

the display monitor right next to snch an object takes away from the 3-D experience.

In essence, it creates an inconsistency between a perceived occlusion and reality.

On the other hand, abjects with positive parallax whieh faU next to the edge of

the monitor do not cause any viewer discomfort. With this scenario, it is as if the

viewer is looking through a window where the monitor7s edge becomes the window

pane which causes the perceived occlusion. This is perfectly natural for the viewer.
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Chapter 3

Disparity estimation and

interlllediate view- reconstruction
•a reVlevv

This chapter examines the processes of disparity estimation and intermediate view

reconstruction (IVR). First, a complete definition of IVR is presented, including a

motivational discussion on the need for IVR. Sorne existing techniques are examined

and classified according to their approach as either 3-D model-based techniques (typ­

ically used in computer vision), or 2-D signal processing techniques. This is followed

by a high-Ievel overview of the process of disparity estimation, the main ingredient

needed for IVR. Finally, the chapter concIudes with a look at a few existing disparity

estimation techniques.

The project focuses on 3-D viewing for entertainment purposes. There will be

references made throughout this chapter to the IMA..tX large-screen stereoscopie films,

which employ a pair of cameras, "left" and "right", for image capture. The left and

right images are displayed either through spatial superposition, or temporal interleav­

ing; viewers are required ta wear passive polarized spectacles with the former, and

active Le shutter glasses with the latter (see Section 2.2.3 for more information on

stereoscopie display technologies) .
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3.1 Intermediate view reconstruction

One major problem with traditional stereoscopie video display systems, which l have

already alluded, to is the so-called continuous look-around problem. Best described

by shear distortion (Section 2.2.4), the 2-D stereoscopie display suffers from being

incapable of displaying anything but one particuIar view of a scene as captured by

the original left and right cameras. This results in an unnatural representation of the

scene whenever the viewer displaces himself laterally away from the center viewing

position. Naturally, when dealing with eight-story high IM.A_X-size screens, the rela­

tive movement of viewers' heads is negligible. Even a large lateral shift of the viewing

angle would not necessitate any perspective change. However, when viewing an orcli­

nary computer monitor or television screen, even small viewer head movements could

result in an unrealistic representation of the real-world scene.

In an ideal scenario, the displayed stereoscopie image would he a funetion of the

viewing angle. AlI signmcant lateraI viewer head movements would prompt a switch of

the displayed image, in real-time l . This type of system would require a head-tracker,

for example, to determine the viewing angle, and depending on how strict the system

is to vie\ver movements, could offer continuous motion parallax to the viewer (i.e., no

~ilipping" -artifacts as the viewer displaces himself, only a continuous representation

of the scene).

One other problem with stereoscopie displays, which l have again tried to moti­

vate in earlier discussions, is the problem of fixed interaxial separation. Stereoscopie

cameras are displaced by a distance equal to the average adult inter-pupillary dis­

tance, or about 64mm [5}. This means that the acquired stereoscopie images will be

well-suited for someone with a similar inter-pupillary distance. However, what about

viewers with a much smaller distance that would not be able to tolerate such a strong

depth eue? Or, what about people with larger separations that could tolerate, and

perhaps prefer, a stronger depth eue? By no means can the film maker shoot the

stereoscopie scene from a multitude of camera-pair positions! Instead, in the ideal

case, only one stereoscopie image is filmed, but each particular viewer would be able

ta adjust the camera interaxial separation, thereby affecting the amount of screen par-

L 'Vith systems that offer such perspective changes based on viewing angle, the amount of tolerated
lateral head sbift before a perspective change is required, varies.



• 3.1 Intermediate view reconstruction 29

•

•

allax and hence adjusting the stereoscopie eue. Much like the original stereoscopes

of the 1830's, each viewer would he able to achieve bis optimal stereoscopie viewing

experience by adjusting the virtual baseline distance.

These two problems just discussed are directIy related. Both are due to the fact

that the original camera positions are not well-suited under certain conditions (Le.,

viewing angle), and for certain people (Le., those \Vith inter-ocular distances signifi­

cantly different than those assumed by the film maker). Both require the display of

stereoscopie images acquired from positions different than the original camera posi­

tions. In essence, the solution is intermediate view reconstruction.

The task of intermediate view reconstruction consists of synthetically producing

images that would be acquired from a "virtual" camera located anywhere in the

vicinity of the original left and right cameras. Consider the dra\ving in Figure 3.1.

The original leh and right cameras are denoted by "Ln and "R". Someone with a

.. -.g ..?- ..g -----.-.. -g.. ?-..g ----~E:J:-: ~D~
3 L 1 2 R 4

Fig. 3.1 Stereoscopie cameras showing original (~L" and ~R") and vir­
tuai (1, 2, 3 and 4) camera positions.

smaller inter-ocular distance might prefer viewing stereoscopie images acquired from

cameras ;'1" and "2". This camera pair would offer the same view of the scene, but

with a reduced depth eue and with potentially greater comfort to the viewer. On

the other hand, someone who would prefer a stronger depth eue would select cameras

"3" and "4", which again maintain the viewing angle. These scenarios correspond to

the parallax adjustment application, where the existence of intermediate views allows

the viewer to adjust the degree of "3-D ness" in the image by adjusting the screen

paralla.x induced by the camera separation.

Similarly, any viewer who is comfortable \Vith the fixed camera positions, but who

shifts his head laterally parallel to the display a.xis would expect to see a slightly

different view of the scene. This viewer would opt for the "3"- "2" camera pair. This

corresponds to the continuous look around problem, where the viewer may shift his



• 30 Disparity estimation and intermediate view reconstruction - a review

head with respect to the display, and still visualize a realistic representation of the

scene.

In summary, ta allow for parallax adjustment and continuous look around appli­

cations~ there is a need to reconstruct images as acquired from a virtual camera. This

virtuaI camera could be located at positions "1", "2", "3", ""4", or anywhere in the

vicinity of cameras "L" and "Rn. The images acquired from the original positions are

the data used to synthesize images as seen from sorne other arbitrary position. In the

conte:\.-t of a '\i'ideo transmission system, the transmitter accepts the two original left

and right images as input, and computes a disparity map. This map is then transmit­

ted to the receiver along with the reference perspective view. Using this information,

the receiver may then "synthesize" the appropriate intermediate view according to

the demands of the viewer.

Before going any further, let us examine how the intermediate view reconstruction

problem has been approached in the pasto

• 3.2 Methods of intermediate view reconstruction

3.2.1 3-D model-based vs. 2-D signal processing techniques

•

l wish to underline at this point that a clear distinction needs to be made between

IVR using 3-D modeIs (typically used in the domain of computer vision), and IVR

using 2-D signal processing. In computer vision applications, cameras typically have

a very large intera.xial separation, and utilize the toed-in configuration with a large

convergence angle. The cameras take snapshots of abjects from very different angles in

arder to completely describe every point of the object (except perhaps the underside

which is Dot seen). The goal is to develop a 3-D model of the object which will then be

used to perform coordinate transformations and to display the object from arbitrary

viewing angles. This is more generally called the i\rbitrary View Generation (AVG)

problem, and applications are in the area of robot vision, virtual environments, and

3-D object modeling.

The approach to solving the correspondence problem, in this case, is quite dif­

ferent. The various snapshots are registered to form one complete description of the

object. The registration process is a complicated task since there may not be high
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correlation between the images, and since occlusions pose a serious problem. To fur­

ther complicate the task, additionalluminance imbalances often exist in the images

since cameras are located in completely different coordinate systems (due to different

illumination, shadowing, etc ... ). The process ofview registration is an area of active

research today. Here, it becomes important to be able to manipulate objects in a 3-D

scene so as ta depict realistic views from any arbitrary viewing angle.

The significant advantage with the 3-D model-based approach is that once a model

for an object is computed~ there is great flexibility in manipulating and transforming

the abject. The generation of arbitrary views is easier ta accomplish, and not only to

accommodate iateral viewer head movements, but for any head movement whatsoever.

Furthermore, arbitrary views can be computed and displayed in real-time with today1s

high performance workstations2 . However, sophisticated graphies software and 3­

D graphies hardware accelerators are required for visualization. In addition, the

execution times of snch algorithms are dependent on the complexity of the scene

(abject).

In contrast, there is the arbitrary view generation problem in the context of 3­

D for entertainment purposes (e.g., IlVIAX 3-D films). Here, realistic perspectives

of a scene are required only within a limited range (in the vicinity of the original

cameras), and hence the task is typica1ly labeled "intermediate view reconstructionl1

rather than ··arbitrary view generation". 2-D signal processing techniques are used to

generate intermediate pictures since computing a model for any arbitrary real-worId

scene is not possible todar. No assumption is made about the physical scene that

has been captured, and no attempt at computing 2~-D surfaces is made. For image

reconstruction, interpolative techniques based on the 2-D image data given by the

original perspectives are used.

In 3-D for entertainment purposes, stereoscopic cameras are typically arranged

in the parallel (or near-parallel) configuration, and have a relatively small intera.xial

2The ~Virtual Environment" room at the National Research Council of Canada (NRCC), for
example, has two high-speed persona! computers which compute arbitrary views of an object in
real-time according ta the viewer position returned by a head-tracker.

3In fact, even with computer vision techniques that mode! abjects, often certain assumptions
as ta the size and shape of the abject are made in order to simplify the problem. The major
disadvantage with the 3-D model-based approaches is that they are not capable, today, of modeling
(hence reconstructing) complex rea! world scenes.
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separation. Hence, there is a high correlation between the left and right images. In a

typical application, only a few perspective views need to be computed. However, these

techniques do address the problem of IVR for comple..x real-world scenes, and hence are

very useful for applications where computer vision techniques are unsuitable, snch as

parallax adjustment. Furthermore, such techniques have the property that execution

times are independent of scene complexity, and do not require graphies accelerators.

On the other hand, they require high processing power and large amounts of memory.

3.2.2 3-D model-based techniques

There are many publications on AVG for 3-D abjects in the literature [4, 10J. This

section offers a brief article summary on the topic.

In [11J, Chang and Zakhor discuss the task of arbitrary view generation from

images acquired from an uncalibrated video camera4 • To acquire images, a camcorder

is translated across the abject follo\ving a straight line; the generation is repeated at

different elevations C'View 1" and "View 2") as shawn in Figure 3.2.

.0' ••••• --;N-_. 0 --- 0 -. _. 0_'" -"~.'::•

.' U
~ View 1

~ View2

Fig. 3.2 Experimental setup used for image acquisition in the context
of arbitrary view generation in [Il].

Certain reference locations (particular views of the object) are chosen for which

depth information is sought. To do this, disparity is estimated between these reference

frames and their closest neighbours. For every point (i, j) in the reference image,

depth is estimated as the inverse of disparity d(i, j) found from exhaustive search

block-matching (Section 3.4.1) along the epipolar line. Searching for scalar disparity

vectors is consistent \Vith the parallel-optics camera assumption, and estimating depth

as the inverse of disparity is consistent \Vith relationship (2.7) for parallel cameras. In

4 An uncalibrated video camera is one whose position relative to real world coorclinates is unknown.
Camera calibration is helpful at detennining the real world coordinates of a point, given its relative
coordinates in the acquired images.
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fact, the parallel camera assumption here is reasonable since the camcorder motion is

translational only, not rotational.

After the initial disparity estimation, confidence levels are assigned to different

regions in the reference image. Properties considered in this process are aperture

ambiguity (matching of a block which contains insufficient variation or texture), con­

stant intensity regions, occlusions, and inconsistencies in matching resulting from

comparisons of depth maps from the various neighbours. To deal with sorne of these

problems~ an adaptive approach is utilized whereby constant intensity regions are han­

dled with larger block sizes, and boundary regions with smaller block sizes. Depth

maps between the reference frame and its closest neighbours are then normalized and

combined to fonn a single depth map (points are combined in a weighted average

based on confidence levels). The remaining low confidence regions are interpolated

from neighbouring high confidence regions.

The end result of this process is a set ofestimated depth maps, one for each chosen

location around the object. The final step is ta estimate the relative camera motion

between aIl reference frames so as to be able ta select the appropriate one(s) needed

for reconstruction. This results in a geometric relationship which ties together the

different reference frames.

Ta reconstruct an arbitrary view given a viewpoint in real world coordinates, the

appropriate reference frame(s) are chosen. Initial estimates are obtained byapplying

the computed geometric motion parameters to each of the chosen reference frames.

The estimates are then combined into a single image, interpolating where necessary.

The details of implementation of each of these stages are left for the reader to explore

in [11].

Once the costly task of computing a model for the 3-D object is executed, it

becomes relatively simple to compute any arbitrary view. The results presented in

[11] are good-quality reconstructions of a stationary 3-D object at different "virtual"

positions. However, this technique is not well-suited for complex scenes where many

depth planes exist and where only two (or a few) slightly displaced perspective views of

the scene are available. For this, 2-D signal processing techniques offer an interesting

alternative.



• 34 Disparity estimation and intermediate view reconstruction - a review

3.2.3 2-D model-based techniques

AIl publications on intermediate view reconstruction using 2-D signal processing con­

sicler the correspondence problem, i.e., disparity estimation, to be the most important

task. The accuracy of the disparity estimation has a direct impact on the quality of

the reconstructed view. For example, in both papers from Skerjanc and Liu relating

to IVR, [12, 13], the vast majority of the content is used to describe the disparity

estimation algorithme There is only a small paragraph describing how the view re­

construction is done. Nevertheless, in this section 1 would Iike to briefly look at the

sorne existing technologies for reconstructing intermediate images.

In [12], Skerjanc and Liu use the familiar parallel camera model, where a point

in the real world coordinate system projects onto two different image planes at the

points (Xl, YI) and (xr , Yr). This model was examined in sorne detail in Section 2.2.2,

where a simple equation describing disparity was derived. The relation between the

horizontal coordinates in the left and right images, Xl and X r is given by

•
where

f ­
b

h

z

lb
XL - X r = 2h - -,

z

camera focal length,

baseline distance,

CCD sensor shift, assuming horizontally-shifted cameras

with parallel optics,

depth of point P in the real world coordinate system.

(3.1)

Equation (3.1) forms the basis for the intermediate view reconstruction. For a

virtual camera located at a baseline distance of b' < b from the left camera, equa­

tion (3.1) gives an equation for calculating the x-coordinate of the homologous point,

Assuming a negligible CCD camera shift distance (Le., h ~ 0), but still maintain-•
lb'

Xi = X r + 2h - -.
z

(3.2)
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ing the parallel camera assumption, (3.1) and (3.2) give:

35

(3.3)

•

•

where Q is the normalized distance of the virtual camera position with respect to the

left camera (i.e., Q = f E [0,1]). With the parallel camera configuration, there is no

vertical paraIlax, and Yl = Yi = Yr. Thus, having solved the correspondence problem,

one can easily synthesize an intermediate view at the position Q using equation (3.3),

by shifting the picture point (xr , Yr) by the scaled known disparity value, Q(Xl - xr).

In [14], Siegel et al. also stress the importance of a good disparity estimator for

intermediate view reconstruction. They highlight that the task of disparity estima­

tion is inherently Doisy due to occlusions and cOfTespondence ambiguity caused by

periodic structures in the image. These phenomena complicate the correspondence

problem since either no cOfTesponding points, and too many cOfTesponding points, re­

spectively, can be found. Occlusions occur when foreground objects block the visibility

of background objects at greater depths, and the aperture problem poses problems in

textureless or periodic structures, where ambiguous matches are found.

Ta reconstruct high quality intermediate views, Siegel et al. concentrate on the

computation of a reHable disparity map. The authors try to deal with occlusions and

aperture ambiguity by identifying, and then correcting, such problem areas in the

image. To do this, three important observations are made:

1. Given a stereoscopie pair of images, a disparity vector describing a token in the
left view is equal to the negative disparity vector of the homologous token in
the right view. They use this fact to flag and discard contradictory disparity
vectors as unreliable.

2. A discontinuity in a disparity map along an epipolar line indicates an occlusion.
This observation is used for the detection of occluded regions.

3. The reliability of a disparity estimate for a contiguous region of pixels can be
approximated by the inverse of the PSNR of the image region, where the noise
is defined as the error between the original regÏon and the corresponding region
in the reference image.

An initial disparity map is obtained via block matching (Section 3.4.1). Observa­

tions 1 and 3 above are then applied, and erroneous estimates are eliminated. Next,
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based on observation 2, occluded. pixels are tagged, and their disparity values adjusted

based on neighbouring, unoccluded pixels.

The result is a more accurate disparity map than that obtained initially from

simple block matching. To generate an intermediate \iew, the intersection of each

pixel 's disparity vector with the intermediate image is computed. The corresponding

pi..xel's intensity value, from either the left or the right view, is then mapped to the

intermediate image at that point. It is interesting to note that \vith this approach,

the pixel's intensity value is taken from only one perspective view, which assumes a

perfect match given by the disparity vector. Alternatively, one could take a weighted

average of the left and right image points. The issue of how to reconstruct a token

once a match is found (Le., from one or both images), is discussed in more detail in

Section 5.1.

This method for intermediate view reconstruction gives no guarantee that the

intersections of disparity vectors with the intermediate image plane will faH on grid

points of the original sampling lattice. Therefore, advanced techniques are required

• ta interpolate sample points from a non-uniform grid. This is a complex procedure,

and the authors do not indicate the approach taken. The authors do, however, show

very interesting image reconstructions obtained for the monoscopic test sequence,

~·flowergarden". The disparity to predict frame 3 from frame 0 was computed and

used to interpolate frame 1 of the test sequence. Comparing the reconstruction with

the original frame 1, a PSNR of 28.14dB was reported.

In [15], a technical report from the Cambridge Research Lab, severa! other so-called

image-based (2-D model-based) rendering techniques are presented. These techniques

are snch that they rely primarilyon the original set of images to produce virtual views.

One such class of techniques is the non-physically based image mapping technique often

used in the advertising and entertainment industries. This technique, an example of

which is feature-based morphing, performs image correspondence between a pair of

possibly unrelated images. A set of oriented lines is manually selected by the user in

both the source and target images. The morphing process then performs warping of

the two images so that the source shape slowly takes the form of the target shape.

To do this, pixels from each manually designated line in the target image are mapped

to their corresponding lines in the source image. Although this technique offers great•
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flexibility ta the animator with respect to the choice of feature correspondences, it is

computationally intense.

Another class of image-rendering techniques discussed in this technical report is

the mosaicking approach. Rere, two or more images taken from different viewpoints of

a scene are combined to fonn one larger image with a wide field of view. Intermediate

views are contained within this larger image, and from it, an arbitrary view can be

quickly generated. In order to combine constituent images, image registration must be

performed, and there are a multitude of techniques for doing this. The main concern

in created the mosaic is ta mjnimize distortions at the seams where constituent images

connecte

Finally, there is the class of techniques called interpolation [rom dense samples.

The idea here is that many image samples of an objeet or scene are acquired, and,

based on these, sorne fonn of a lookup table is generated. The stored lookup table

is then used to interpolate data for an arbitrary view_ The significant advantage of

this method is that it does away with the need to solve the correspondence problem,

which is a very complicated, time-consuming task. This technique offers rapid image

synthesis of intermediate views since data is acquired from a lookup table, which

translates ta fast visualization speeds. However, it suffers from high storage and

memory requirements, as weIl as the knowledge of the camera viewpoints at every

sample.

3.3 Correspondence problem and disparity estimation

Stereoscopie disparity is defined as the physical distance in position between homolo..

gous points of a stereo pair, Le., points resulting from the projection of sorne 3-D point

onto two image planes. Renee, disparity is a vector describing how a token (region,

black or pixel) translates from one image to the other. Given a stereo pair of images,

one the reference, the other the current image, disparity estimation is the process

of grouping every token (pixel, block, region, etc . .. ) in the current image with its

corresponding token in the reference image. The output of a disparity estimator is

therefore a vector field which shows the two-dimensional displacement of each token

in the current image is displaced with respect to the reference image.
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The stereo matching problem can be represented mathematicallyas a rninimiza­

tion. Given two images, [rel and leur, for each token i in the reference image, we find

the disparity vector, ~, which minimizes some cost function, U(·)5, Le.,

(3.4)

•

•

Assume that U i, Vi = leur (i.e., the union of tokens gÏves the CUITent image). Then,

once di is determined for eaeh i E leur, we are left with a vector field which completely

describes the CUITent image in terms of the reference image.

The applications where disparity estimation is essential are numerous. First and

foremost, it allows for redundaney elimination and hence efficient stereoscopie video

compression. Rather than transmitting two independently-compressed images, one

can transmit the reference image plus the vector field only, which results in substan­

tially less information to send since cross-image correlation is exploited. The reeeiver

can then reconstruct the CUITent image from the decompressed reference image and

vector field. The ~IPEG standard for video compression accommodates what is called

an ·'au..xiliary stream" which carries a disparity map as well as disparity-eompensated

prediction error for the view to be reconstrueted. The "main stream" is used to

transmit the reference image.

For efficient stereoscopie video compression, the properties of the vector field itself

must be exploited sinee they direetly affect the rate allocated to disparity information.

In this work, since we are mainly using the disparity field as a means for image recon­

struction, we are not considering the properties of the vector field since compression

is not our main goal.

Intermediate view reconstruction is another application which disparity estima­

tion makes possible. In order to reconstruct an image at sorne arbitrary position,

first the correspondence problem must be solved. The idea is to use the mapping

between the left and right images to interpolate some intermediate view. The task

of disparity estimation is the essential problem which we must first solve before per­

forming intermediate view reconstruction. Therefore, the next section is devoted to

existing disparity estimation algorithms, with the intention of adapting them to the

5The selection of an appropriate cost function will he discussed in Section 4.3.6.
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intermediate view reconstruction problem. The methods examined in the following

section deal primarily with estimation for disparity-compensated prediction of one

perspective view in terms of the other.

3.4 Methods of disparity estimation

The problem of disparity estimation resembles, ta a large ~xtent~ that of motion

estimation, of which there are many well-known algorithms and publications. The

problem of motion estimation is mainly used for redundancy elimination in sequences

of images~ where motion-compensated prediction leads to efficient video compression.

~Iotion estimation methods can in fact he applied to disparity estimation, since the

only fundamental difference is that motion estimation considers images taken at dif­

ferent times, and disparity estimation deals with images taken at the same time, but

from different perspectives. However, a disparity field has distinguishing features

which must be taken into account.

Firstly, a disparity vector, under the assumption of parallel cameras, or after

suitable image rectification, is a scalar (Le., no vertical component), whereas motion

is typically a 2-D vector. Secondly, the dynamic range of a disparity vector is typically

larger than that of a motion vector; horizontal screen parallax values of 25-30 pL"{els

are not uncommon for a stereoscopie pair. Thirdly, for motion sequences, there is

temporal continuity of motion, which does not extend to disparities in practice. That

is, motion sequences, which have dense temporal sampling (e.g., every 1/60-1/50s),

will have similar motion vector fields between frames. For disparities, one can think of

a multi-view system where several cameras are displaced by a distance of <So: laterally

from one another, capturing the same scene. As <Sa ~ 0, then neighbouring images

will have similar disparities. In practice however, cameras may not he placed infinitely­

close to each other due to physicallimitations, and 50 the disparity continuity analog

to temporal continuity is quite weak. Finally, while motion-induced parallax is due

to the combination of both object and camera motion, disparity-induced parallax is

conceptually simpler since it is due purely to a simple shift (and perhaps a small

rotation) of the camera.
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3.4.1 Block-based approaches

Block-based disparity estimation algorithms select as the matching token a block

of arbitrary size. In this case, the correspondence problem is reduced to grouping

together blocks of ph:els between the reference and current images; this is called the

block-matching (HNI) algorithme The resulting vector field assigns the same disparity

vector to all pb::els of a block, resulting in a sparse vector field.

In the conte.xt of 8NI, a popuIar choice for the cost function of in (3.4) is the ab­

solute value function. This approach is called the minimum mean absolute difference

UvIAD) approach, and its popularity stems from the fact that it lends itself nicely

to VLSI implementations. This is one reason why it is preferred over the mjnjmum

mean square error (MSE) function since the square operation is more complex ta

realize in hardware. A. more thorough discussion on the selection of an appropriate

cost function is left for Section 4.3.6.

Fig. 3.3 Coordinate system used for block matching. The current (pre­
dicted) image is broken up into blocks of size N:z: x Ny.

First, we establish a coordinate system as shown in Figure 3.3. The current image

is broken up into blocks of size lV:z: x Ny. We start with the parallel-camera assumption

and only allow a horizontal disparity component (Le., epipolar lines are parallel to

the scan Hnes of the images). Then, for each block i of the CUITent image, and given

a set of candidate disparity vectors, the optimal vector t4 is the one which minimizes

the following equation:

(3.5)

•
where {3i denotes the i'th Nx x Ny block of the CUITent image, and I rel and leur denote

the reference and current images, respectively. .~ typical way of establishing the set
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of candidate disparity vectors is to simply define astate space around block i, and

select every vector in that state space as a candidate. The selection can be done at

full- or sub-pixel precision. This is called the exhaustive search approach, and is very

weIl known. In (3.5), the term N:INJ/ can be left out in computation since is does affect

the minimization.

The major problem with the block-based approaches is that they result in sparse

vector fields which do not accurately describe ail pixels in the image. However, block­

based approaches are desirable due to their simplicityT and due to the fact that they

lend themselves naturally to parallel processing and hardware implementation. There

is another block-based disparity estimation technique, however, which does result in

dense vector fields. The method is based on "sliding blocks" and has been described

in in [16J.

Ben Slima, Konrad and Barwicz improve the sliding-block approach by making a

simple observation in [17]. In the standard approach with sub-pixel precision, implicit

low-pass filtering is applied to one image of the stereo pair via interpolation. This

results in an imbalance between the images and could bias the disparity estimation.

Instead, the authors apply the same filtering to both images, i.e., balanced filtering,

and hence the same noise suppression is applied to both perspective views. A better

disparity estimate over the whole image is therefore expected. For right-image predic­

tion of test sequences "train" and "manege", the authors show a rise of up to about

2dB in peak prediction gain (PPG)6 as compared to the traditional sliding blocks

technique.

3.4.2 Pixel-based approaches

The computation of motion or disparity is an ill-posed problem since the existence,

uniqueness, and stability of solutions cannot be guaranteed in the absence of addi­

tionaI constraints. Although this is true for block-based approaches as weIl, it is a

more serious threat in the pixel-based approaches. Typically, regularization theory

is used whereby an additional smoothness constraint is used to restrict the space of

6The P PG is defined as 10 loglo 2~2 , where E is the mean-squared prediction error of the right
image IR, k L(%'I1) [IR (x, y) - Î r (X,y)]2. The PPG measure is used in Chapter 5 to gauge the
performance of algorithm modifications.
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acceptable solutions to smooth vector fields.

Nlarch has adapted this technique to the disparity estimation problem [18]. He

imposed a smoothness constraint on the disparity vector field under the basic phys­

ical assumption that the coherence of matter tends to give rise to smoothly varying

characteristics in a real-world scene. The ill-posed disparity estimation problem then

becomes well-posed, and the additional smoothness constraint measures the degree of

regularization (or smoothness) of the solution.

The computation of disparity consists of the minimization of a penalty functional,

peu), which measures the discrepancy between the solution and the input data, plus

a regularization or smoothness tenn, 'R.(u), where u(x, y) is the disparity function. A

multiplier, À, is introduced to control the compromise between the closeness of the

solution to the data and the degree of smoothness.

The minimization in question is carried out over all tokens (pixels, in this case) in

the current image (left - IL), and results in a dense disparity map, i.e., one vector per

pixel. It is given by the following formulas.

~n&(u) = L peu) + XR.(u),
(i.,j)Eh

where

peu) = [IL(i,j) - IR(i + u(i,j),j)]2 ,

1?(u) = [(u(i,j) - u(i,j - 1»2 + (u(i,j) - u(i - l,j)?] .

To find a solution, we need:

â~(u\ = 0, V (i,j).au i,j

(3.6)

(3.7)

(3.8)

,

•
The left and right images, denoted by IL and IR, are luminance components only, and

the parallel camera assumption is made sucb that the disparity vector is a scalar with

a horizontal component only. In this example, the right image is the reference image,

and the left is the CUITent image.
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Expanding (3.8)r we get
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- [IL(irj) - IR(i + u(irj),j)] Irtz(i + u(irj),j) + A(4u(i,j) - u*(irj» = 0,

(3.9)

where IR~ denotes the partial derivative of IR with respect to x, and

(3.10)

•

•

is the local average orthe disparity vector at the point (i,j). Solving for the disparity,

we get

(3.11)

where a factor of 4 has been incorporated into À.

:\tIarch uses Gauss-Seidel rela.xation to solve (3.11), but modifies it slightly to im­

prove the numerical stability of the algorithm. As a result, with n as the iteration

number, the final solution, that can be implemented in a computer simulation pro­

gram, is given by:

(3.12)

For the CUITent iteration (n + 1)r un+l(i,j) is based on u·n(i,j), a local average of

u(i, j) frOID the previous iteration.

NIarch argues that the local averager u·n as defined in (3.10), destroys dispar­

ity discontinuities at object boundaries since vector smoothing is done across these

boundaries. A better way of reconstructing boundaries is to smooth only within ob­

jects. Of course then the problem is to find where the boundaries are in the image.

This is a non-trivial problem, and one which is Dot explored in the paper. March as­

sumes a priori knowledge of the boundaries, and uses a controlled-continuity stabilizer

which deactivates smoothing across boundaries.

Note that since there is no guarantee that u*11 will be an integer, picture points
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which do not fail on the original sampling lattice are required. Section 4.6 discusses

the interpolation function used to acquire these points.

3.4.3 Other approaches

There are many other publications on methods of disparity estimation. To refer­

ence just a few of them, there is joint motionfdisparity estimation in [19, 20, 21],

segmentation-based coding in [22, 23], and ~IaximumA Posteriori (~IAP) estimation

in [24J. Next-generation region-based stereoscopie video corling is round in [25]. NIost

of these schemes are advanced algorithms which, in the conte-xt of this project, have

not been explored vis-à-vis intermediate view reconstruction.



•

•

•

45

Chapter 4

Disparity estiDlation for

interrnediate vievv reconstruction

Existing techniques for disparity estimation have been looked at in the conte.."Ct of

disparity-compensated predictive corling, where one perspective view is coded with

respect to the other. The problem of intermediate view reconstruction (IVR) has

also been looked at. This chapter discusses disparity estimation in the context of the

reconstruction of intermediate views, and presents novel 2-D model-based approaches

to solving this problem.

T\vo of the existing disparity estimation techniques, examined in Chapter 3, are

adapted to the IVR problem. For each of these methods, the focus is on obtaining the

most accurate disparity field possible between perspective views in order to obtain

high-quality reconstructions.

The chapter begins with a presentation of the underlying model used for re­

constructing intermediate views. The B~I algorithm, which was presented in Sec­

tion 3.4.1, is adapted to IVR. ~Iajor improvements to simple block-matching are pro­

posed. The impact of each incremental improvement on the quality of the estimated

correspondence, in the forro of disparity vector fields, is presented. The pi"Cel-based

regularization approach to disparity estimation is also adapted to NR, and a small

but important improvement is proposed; once again, results of disparity estimation

are presented. Finally, a technique which improves both the a1gorithm execution time

and the quality of output, and which is common to both the block- and pixel-based
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approaches, is presented.

4.1 Stereoscopie test sequences

Estimation algorithms are applied to various stereoscopie test sequences (left- and

right-eye views) originally captured by CCETT, Rennes, France for the RACE 2045 ­

DISTINIA European project, and by the NrIK, Japan. The R-"\CE - DISTThIA project

is involved with the development of a system for capture, coding, transmission and

presentation of digital stereoscopie image sequences l .

Test sequences "ftower" from NHK, and "piano" from CCETT were used for

testing \vithin this project. Bath are interlaced sequences in the YUV colour-space,

and have chrominance components subsampled horizontally by a factor of 2 with

respect to luminance (format "ITU-R 601", "YUV" colour-space, 4:2:2). In terms of

image content, test sequence "piano" is simpler, with few depth planes and occlusions.

Four major objects define the depth planes: the piano player, the piano, the ftowers

and the background. Test sequence flower is more complicated, with many more

occlusions. Figure 4.1 shows field 0 of the original test sequences used, for bath left

and right perspective views. Note that images are presented with correct aspect ratio

using vertical interpolation to fill in the odd field.

Sequences have been converted and stored in "ViDS" format developed at INRS2.

Test sequence piano is 72Ox576 in dimension, and flower is 72Ox480. Processing is

done on the first field of each test sequence, which means that only half of the number

of lines of one full frame are processed.

4.2 Underlying model for IVR

The approaches at estimating disparity presented in this chapter are fundamentally

different. However, the underlying 2-D model which describes how the intermediate

view reconstruction is carried out, is the same. In both cases, the estimation process

lSee <http://ilWW.tnt.uni-hannover.de/project/eu/> for more information on the RACE
European projects.

2 See Il\TRS VisCom internai document [26) for more information on the ViDS format used within
the INRS Visual Communications group.
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(a) flower - [eh

(c) piano - left

(b) flower - right

(d) piano - right

47

•

Fig. 4.1 Original stereoscopie test sequences used, field O. Images are
vertically interpolated to fill the odd fields and maintain the correct aspect
ratio.
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constrains candidate disparity vectors to those that intersect the desired coordinate

position in the intermediate image. Figure 4.2 depicts this idea, where each token

at position (i, j), in the intennediate image"[", is intersected by a disparity vector

d:. = 4ij o Position (i,j) in the intermediate image is a pivot point for candidate token­

pairs in the left and right images. A token is defined to be a region or block of pixels

(or even a single pixel), sucb that their union defines an entire image. Only scalar

vectors are considered for now; 0 vertical disparity is assumed.

+x

t
"L" "[" "R"

•
d=d··ld--·I···
- -1)

::L

a. 1(l-a) 1

•

Fig. 4.2 Top view, from left to right, of the left ("Lit), intermediate
("[If), and right ("R!') image planes. Disparity vector 4ïj originates frOID

"L", intersects 11l'' at position (i,j), and terminates at "R".

The disparity vector is defined in the intermediate image plane, i.e., it intersects a

pbcel position in "[", but not necessarily in "LIT and"R". As indicated in the figure,

which shows a top view of the three image planes, vectors going from left to right, are

defined as positive in the plane of"[". A. frontal view of the model in the plane of

the reconstructed image "[" is shown in Figure 4.3. Here, the intermediate image is

broken up into blocks, and fLj points ta estimated homologous blacks in the left and

right images. Each pL"X:el in the block at position (i,j) is described by 4 j , and dL and

QR are shown at the bottom of the figure.

The position of the intermediate image plane is defined as being at a normalized

distance Q from the left, reference image. The distance from the left to the right
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~ +x "["

(i,j)

from"R"

.J~- ............. V
""":::" " ~ ... l:=" -"L" . 5iE. .From

Fig_ 4.3 Underlying IVR model shown in the plane of the intermediate
image "T". Token (i,j) in"I" is described. by disparity vector dij' which
points to the corresponding matching token-pair from "L" and "R!'.

•
image plane is l, such that cr E [0, 1]3. Given a disparity vector 4, frOID Figure 4.2,

(4.1)

4R = (1 - 0)4.-

After having solved the correspondence problem between images"L" and "R!' , one

obtains a vector for each token in the virtual image pointing to the corresponding

homologous tokens positioned at bath ends of the disparity vector. This constitutes

the basis of our reconstruction model, and if the considered token is image intensity

l, as is usually the case, then the model can be mathematically e."q)ressed as follows:

(4.2)

•

The token at position (i, j) of the intermediate view can therefore be reconstructed

using the data of the corresponding token from either view, as is done in [13] (see

Chapter 3), according to (4.2)_ Altematively, it can be reconstructed using a weighted

average of the data from the tokens of both views, under the assumption that a perfect

3In Chapter 5, the possibility of extencling this to reconstruct views beyond this range is
considered.
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match was not found. The advantages and disadvantages of either approach are left

for discussion in Chapter 5.

vVhen performing IVR within the framework of this model, it is inherently assumed

that aIl cameras (including virtual cameras) have paralleloptics. With b as the base­

line distance, the familiar equation describing disparity first derived in Section 2.2.2,

fi = kb (k is a constant, aU other things being equal), tells us that any change in

the baseline distance induces the same exact change in the length of the disparity

vector. It is this that allows us to scale disparity as a function of the intermediate

view position, a.

The parallel camera assumption is very useful here in that it simplifies the geome­

try significantly. However, this assumption is only made for view reconstruction, not

for disparity estimation as we will see in Section 4.3.2. Here, no assumption is made

on the camera configuration.

4.3 Block-based disparity estimation

The exhaustive search block matching (BM) algorithm often used in video compression

is adapted to perform intermediate view reconstruction. The algorithm is a typical

BNI, fitted to the model of the previous section. The fundamental difference is how

candidate disparity vectors are chosen, based on the intermediate position given by

0:'.

4.3.1 Adaptation to intermediate view reconstruction

According to the model of Section 4.2, the intermediate image is broken up into an

integer number of blocks of a fixed, arbitrary size, N z x Ny. Then, for each block in

the intermediate image, exhaustive search is performed over ail candidate disparity

vectors. To select the set of candidate vectors for a particular block, a maximum

horizontal screen parallax value is chosen, thus defining the search range for the

block-matching algorithm4 •

In general, for block (i,j), the set of candidate disparity vectors {Di;}, is made

.. For almost parallel camera optics, a maximum total horizontal disparity of32 pixels is reasonable
for the RACE - DISTIMA 1 NHK test sequences.
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up of all vectors within the search range given by (-elmax, dmax), at pixel precision

q (E 1,~,:h ... ). The token at position (i,j) is a pivot point for aIl vectors in {Dij },

i.e., aIl vectors in {Dij } intersect block (i, j) in the intermediate image. For example,

at full-pixel precision (q = 1), '\\ith dmax = 32, there are 33 candidate disparity vectors

in {DU}. However, with cr a real number and dL and dR as defined in (4.1), there is

no guarantee that vectors will fall on points of the original sampling lattice in either

the left or right image planes. The algorithm therefore requires that image intensities

which are not directly available as input data be computable from the original picture

points.

For each block in the intermediate image, this algorithm searches for the best

matching pair of blocks among aIl candidate pairs defined by the vectors in {Dij }. To

do this, the usual method is employed, i.e., the cost associated with the "difference"

between the block-pair defined by each candidate vector is computed, and the one

which results in the lowest energy is chosen. A cost function is selected to calculate

the difference between a block-pair. Cost function selection is discussed in detail in

Section 4.3.6. For now, we represent the minimization in question mathematically for

the case of absolute value used as the cost function. Then, for each block (i, j) in

the intermediate image (at position ct), we find the optimal disparity vector ~i by

performing the following minimization:

where J.Vx x J.Vy is the size of the block, l4ù is the x-component of the disparity vector,

i.e., dii = [c4ù OlT, and ,Bij is the set of pixels in the ijth block. Ir and Ik represent

the luminance components of the left and right images, respectively. The term N
z

1
N

lI

in (4.3) can be left out for implementation purposes.

The proposed algorithm has been tested on various sequences using the parameters

listed in Table 4.1. Resulting disparity maps for test sequences ./lawer and piano are

shown in Figure 4.4. Disparity maps are based on single fields rather than frames;

either the even or odd lines are used only. To maintain the correct aspect ratio,

however, disparity maps are vertically interpolated. The maps show full disparity

vectors originating from the left viewpoint and terminating at the right viewpoint.
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For a = 0.5, the midpoint of each vector intersects the intennediate sampling lattice

at a grid point. Only sparse disparity fields are shown, Le., one vector per block.

Parameter Description
intermediate view position

pixel precision
maximum paralla..~

block size

Value
0.5

0.25
(32,0)
16,16

•

•

Table 4.1 Parameters of exhaustive-search black matching, used in sim­
ulations.

The disparity fields in Figure 4.4 are of a good overall accuracy. For example, in

4.-1(bL one can make out the silhouette of the piano player of sequence piano (refer to

the original image on page 47). The disparity vectors for the object made up of the

piano player's body are small compared to those of the background objects. Although

this is correct, it seems counter intuitive; we would expect objects at greater depths

to have smaller paralla.."'C values. However, keep in mind that the images were acquired

from slightly toed-in cameras. In this case, the inverse proportionality between depth

and disparity, which has been shown to exist only for parallel cameras, only applies ta

objects which faH before the convergence point of the optical axes. For other objects,

the inverse is true; Le., objects at greater depths will have larger parallax values,

which is the case here.

The small flower-pot which sits on top of the piano in the top-right corner is

also weIl estimated. Its disparity vectors are slightly larger than those of the piano

player's body, since the pot sits in a more distant depth plane. The vector field shows

horizontal vector magnitudes of about 9.0 for the flowers, and 3.5 for the piano player's

back. These are consistent with "actual" values manually measured from the original

data images. Similarly, the disparity field for ftower in (h) is overall weil estimated.

The flowers in the large foreground flowerpot on the left have disparity values of 7.0,

which is consistent with manually-measured values.

The estimated field for ./lower in 4.4(a) is also quite accurate overall. Here, the

zero-depth plane is the brick wall in the background. Hence all objects are located in

front of the convergence point of the optical axes, meaning the closer the object, the
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(a) flower

-----------------------
1--- --- - -- ----

---------------------- -
(--._----- - -

(h) piano

Fig. 4.4 Estimated disparity fields using exhaustive-search block match­
ing applied ta the luminance components of test sequences flower and
piano, field O. Parameter values used. are listed in Table 4.1.

53
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larger its screen parallax (consistent with the inverse proportionality of distance vs.

disparity for parallel cameras). This is what one finds when comparing the disparity

vectors belonging to the large foreground flowerpot to those belonging to the center

of the image, which are much smaller. The flowerpot is mostly described by vectors

of length 8, and vectors in the center of the image have horizontal components which

are doser to o.

Nevertheless, the disparity fields in Figure 4.4 have serious inaccuracies. Although

the structure of the player's body in 4.4(b), for example, is c1ear, his head is slightly

drowned in the background. This is due to the fact that there is no great luminance

detail in the head vs. the background, and ambiguous matches are found. As well,

the section of the piano above the keyboard is a low-texture region, and there are

great variations in the vectors of this region, while one would expect them ta he quite

similar. Finally, within the piano player's back, there is one large disparity vector near

the bottom which is dearly incorrect; it completely contradicts surrounding vectors

which are themselves known ta be accurate. This anomaly is perhaps due to the fact

that the region has large-scale detail, and the block size used does not capture enough

detail so as to find a good match. Rather than using a larger block size which could

introduce more serious problems, one way ta solve this problem could be to force a

likeness of vectors within an abject. Similarly in (a), notice the large vectors in the

top right corner of the disparity field where one would expect small vectors (indeed

0) since this these vectors are within the zero-depth plane.

The effect that the previous disparity field inaccuracies will have on the recon­

structed image will become more c1ear in Chapter 5. For now, the focus is on obtain­

ing the most accurate disparity fields possible. The approach taken at improving the

disparity estimates from Figure 4.4 is ta identify problem areas, understand the root

of the problems in these areas, and attempt to solve them. The following sections

propose incremental improvements to the standard exhaustive-search BM scheme.

The end result remains an inherently BM approach at disparity estimation, but offers

significant performance gains.
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4.3.2 Vertical disparity
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Test sequences used were originally acquired from cameras which were not a"'CactLy

paralleL. A slightly toed-in camera configuration was used, meaning that vertical

paralLax due to keystone distortion does exist in the sequences. As already mentioned,

vertical parallax further compLicates the correspondence probLem. One way to deal

with vertical paraUax is to adopt an image rectification pre-processing stage which

eHminates, to a large extent, vertical paralla"C caused by keystone distortion [8].

Alternatively, one couId allow for vertical parallax by extending the exhaustive

search to two directions, horizontal and vertical. Of course, this increases the compu­

tational complexity of the algorithm significantly, but it preempts the need to make

any special assumptions on the camera configuration as weil as the need for any

pre-processing stage related to elimination of vertical paral1a"C.

To this end, the minimization is axtended to a 2-D search. The chosen disparity

vector d.ii ' for every block (i, j) in the intermediate image (defined by the set of points

/3ij), is given as

(4.4)

•

Notice the inclusion of a vertical disparity component in the minimization.

For the exhaustive-search approach, it is important to set a reasonable 2-D ma"CÎ­

mum disparity value, 4max; this defines the search range. 1 have round !Amax = (32,2)

to be appropriate for the chosen test sequences. Other parameter values used are

listed in Table 4.1, and the resulting estimated vector field for test sequence flower is

shown in Figure 4.5.

The addition of a vertical search in the minimization is successfuL in correctly

matching areas which contain vertical parallax in the images. For e..xample, for test

sequence /lower, there is about a one-line vertical parallax value for the thick pipe

on the brick wall in the top right corner of the image (see Figure 4.1(a),(b». The

estimated disparity vectors in this region of the image, shown in Figure 4.5, do in

fact have the correct vertical magnitudes. In the case of the estimated field for piano,
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(a) flower

Fig. 4.5 Estimated disparity field using 2-D exhaustive-search black
matching apptied ta the luminance camponent of test sequence flower,
field o. Parameter values used are listed in Table 4.1, with a maximum
allowable vertical para1lax of 2 tines.
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changes induced by the inclusion of a vertical search are mainly in areas of low texture.

This is to be expected since the increased search range will result in lower local

minimums in certain regions.

4 ..3 ..3 Luminance and chrominance imbalances

Stereoscopie film makers are very careful to use cameras with almost identical pa­

rameters. As a general rule, the two perspective views should he as weIl matched as

possible. Imbalances in focus, luminance and colour between the views could cause

viewer discornfort, and this is a situation which film makers understandably try to

avoid.

In the context of disparity estimation, there is a more important reason why per­

spective view imbalances need to be avoided. The fundamental assumption behind

the correspondence problem is that homologous points have the same characteristics,

i.e.~ luminance and chrominance vaIues, since they are projections of the same point

in 3-D space. However, this is often not the case for precisely the reason of camera pa­

rameter mîsmatches. If this fundamental assumption underlying the correspondence

problem, on whieh disparity estimation is also based, does not hold, then disparity

estimation results may be unreliable.

A balance compensation scheme has been proposed in [2ï, 28] which attempts to

eliminate luminance imbalances between stereoscopic pairs of digital images. Appro­

priately, the basic assumption of the approach is that imbalances are due to unequal

camera parameters only, i.e., lighting conditions are considered to be the same for the

two viewpoints.

The idea is to perform a simple linear transformation on the luminance component

of the right perspective view [k, in arder to equate its mean and variance to that of

the left view, Ir. It is a pre-processing stage which yields a transformed right view

l'k- That is (omitting superscript "Y" for now),

• V (i,j) E IR. (4.5)
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The mean J.lR', and the variance O"~, of the transformed right view are thus given by

J.l~ = ap.R + b,

Solving for the parameters a and b,

aR'
a=-.

aR·

b = f..LR' - ap.R·

(4.6)

(4.7)

As mentioned, the two constraints we need to satisfy are O"R' = aL and J.f.R! = ILL,

Therefore,

Substituting (4.8) into (4.5), the final form of the linear transformation applied to the

right perspective view 1R, and yielding the transformed view IR!, is given by
•

(jL
a=-.

aR"

O"L
b = P.L - -P.R·

UR

fœ(i,j) = ;~ (fR(i,j) -IlR) + ILL, V(i,j) E IR'

(4.8)

(4.9)

•

The authors balance only the luminance components of the two viewpoints using

this technique, since it is the component with the greatest influence on the disparity

estimation [27]. However, our test sequences have noticeable colour imbalances as well,

particularly test sequence flower. The proposed balancing technique has therefore

been applied to the colour components as weIl, yielding a set of a/b parameters for

each component. Table 4.2 lists the experimentally computed parameters for various

RA.CE - DISTINIA / NHK test sequences. Listed parameters are averages of the

parameters found from the first twenty fields of each test sequence, where scene­

cuts \Vere known not to exist. Original sequences manege and piano had the largest

component differences between views.

Although local variations persist, the balance compensation algorithm is very suc-
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y U V
Sequence a b a b a b

!lawer +1.076 -8.345 +1.049 +0.139 +0.981 -0.388
manege +1.174 -2.771 +1.169 -0.769 +1.327 -0.574
piano +1.109 +1.065 +1.237 +0.161 +1.081 -1.204
train +1.041 -5.970 +1.068 +2.132 +0.939 +0.638

tunnel +1.029 -5.437 +1.118 +1.851 +0.998 +0.709

Table 4.2 Luminance and chrominance balance compensation algorithm;
computed parameters of linear transformation ax + b on right perspective
view ofvarious RACE - DISTIMA / NHK test sequences. Parameter afb
pairs shown for each image component.

•

•

cessfuI at balancing the global luma and chroma signaIs of the perspective views. The

balanced image pairs are not shown here, since as a result of the printing process,

differences between the original and balanced pair are not too visible. "Vhen viewed

on a monitor, however, the differences are clear, and for the balanced pair, homolo­

gous points are seen ta have doser matching characteristics. The reader is referred to

a web page for the results of the balance algorithm, where the first field of both the

original and balanced images are shown for both test sequences:

<http://wvv.inrs-telecom.uquebec.ca!users/viscom/publications/>.

Disparity field estimations based on the balanced stereo pair are significantly im­

proved. Figure 4.6 compares disparity fields estimated for piano using 2-D exhaustive

search BN! from Ca) the original images and Cb) the balanced images.

The estimated vector fields for both /lawer and piano have many fewer ambiguous

matches than those found in Figure 4.5. For example, the piano player's head has

become much more defined and the section of the piano itself which before had so

many spurious matches, is now IDore accurately estimated. Problems in other regions

remain, but will be tackled in due course. The gains in estimation are greater for

test sequence piano which suffers from greater mismatches between the left and right

images.

The incremental improvements that follow are all estimated frOID luminance- and

chrominance-balanced stereo pairs.
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(h) Estimation from balanced images

Fig. 4.6 Comparison of estimated disparity fields using 2-D exhaustive­
search BM based on (a) original and (h) balanced images.
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4.3.4 Luminance- " chrominance-based disparity estimation

61

Until now, disparity estimation has been carried out based on the luminance com­

ponents of the Ieft and right images only. \Vhen trying to obtain correspondence

basing the match on luminance only, problems arise in areas where luminance detail

is low. One may be able to obtain a more robust estimate in these areas by forcing a

luminance match as weIl as a colour match.

To implement a three-component (Y-U-V) match, the minimjzation in (4.4) is

modified to accommodate the additional colour terms. For simplicity of notation, we

use Cm, n, ê 4 j ) to mean (m + ê ~iz' n + ê cl.ïjtl) , where ê = a or -(1 - a). Then, the

minimization is:

•
d,j = arg ~('Y. L II[(m, n, a4ijl - I};(m,n, -(1 - aH,jll

=1.1 (m,n}E.Bij

8 . L 1If(m, n, a 4j) - Ig (m, n, - (1 - a) 4 j )1

(m,n}E.Bij

€. L IIrem , n, a4;jl - Ik(m, n, -(1 - al 4;jll).
(m,n)E.Bij

(4.10)

•

The individual image components are denoted by superscripts "Y" ,fI U", and "vnl. The

relative contribution ofeach image component to the disparity estimation is controIled

by the weights 7,8 and f. With the constraint 7 + 8 + f = 1, one option is to give

equal weight to each component, Le., 'Y = 8 = € = t-
In regions of low luminance detail, the chrominance components could oirer distin­

guishing features which will permit a more accurate match. In regions of low colour

detail, it is the luminance information which potentially supplies distinguishing object

characteristics. In this way, the three image components complement each other and

work to obtain a more accurate estimation. It is also beneficial that the aIgorithm

forces a colour match on input test sequences which have now been colour-balanced

as weIl (Section 4.3.3).

Figure 4.7 shows disparity estimation results using the proposed luminance- /

chrominance-based approach to BM for both test sequences. The estimated vector

fields are more accurate using this technique than those round in Figure 4.6. The piano
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Fig. 4.7 Estimated disparity fields using 2-D exhaustive search
luminance-jchrominance-based black matching.
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player's head in (h), for example, bas become even more identifiable from the disparity

field. Since there is low luminance detail in this area, the chrominance components

supply additional information used to distinguish the head from the background.

Admittedly, visible differences in vector fields are subtle. In Chapter 5, when actual

reconstructions are examined, the henefits of this method will be more obvious.

4.3.5 Spatial smoothness constraint

Previous sections tackled the problem of ambiguous matches in low-textured areas by

trying to identify the cause of these incorrect matches. Although they are successful,

a small but important percentage of vectors in Figure 4.7 remain ÏDaccurate.

This section attempts to further correct ambiguous vectors by allowing correct

matches to influence incorrect matches. For example, in the top right corner of the

estimated vector field for sequence flower (see Figure 4.7(a)), one notices a number of

large disparity vectors among a majority of small ones. The actual horizontal parallax

associated with this region of the image (the brick wall in the background) is about

2 pLxels. This is consistent with most vectors in the region.

Since the overall vector fields obtained thus far are mostly accurate, reliable vec­

tors can be propagated into low-textured areas where vectors are typically unreliable.

~Iathematically, this is done through regularization, e.g., a smoothness constraint.

Regularization, as discussed in detail in the context of pixel-based approaches in Sec­

tion 3.4.2, penalizes disparity vectors which are very different from their neighbours.

This forces a locallikeness between adjacent vectors, and could eliminate problems

like the ones in flower discussed above.

However, one must be careful Dot to impose too much regularization, since adjacent

pLxels belonging to objects from different depth planes should Dot he forced to have

similar disparity vectors. In our case, only a small degree of smoothing is required,

since estimated vector fields are accurate for the most part. However, smoothing

across boundaries is inherent in the regularization approach presented here, and sorne

degree of distortion is expected near object boundaries.

The minimization is modified to accommodate the regularization (smoothness)
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term to give

Disparity estimation for intermediate view reconstruction

!Lj = arg ~(Um(4j)+ À· Us(4j»),
=&J

(4.11)

where Um (Qij) is the matching error between blocks in the left and right images defined

in (4.10), and Us(fL j ) is a SUIn of absolute-value differences between fbj and its second­

order neighbours. The parameter À controls the compromise between the closeness

of the solution to the original data and the degree of smoothness. Given a candidate

disparity vector rbj' Us(rbj) is defined as

i+l j+l

Us(!Lj) = E E (lt4ù - dmnrl + lc4jy - dmn"I)·
m=i-l. n=j-l,

m# n#i

(4.12)

•

•

Computationally, the introduction of regularization into the minimization trans­

forms the problem ioto an iterative algorithm; vectors influence each other because

of the Us term, and a few iterations are required in order to reach convergence. This

increases computational complexity of the algorithme The stopping criterion for the al­

gorithm is typically a fixed number of iterations, or maximum allowed energy (difficult

to establish), or convergence rate (energy decrease over a fixed number of iterations).

Here we use a fLxed number of iterations.

Figure 4.8 shows the estimated vector fields for both test sequences using a smooth­

ness constant of À = 15. Both fields have become much more regular, and a significant

number of ambiguous matches have been eliminated. Notably, the ambiguous matches

in the top right corner of ftower have been corrected. In addition, one cao more easily

trace out image objects or structures, such as the large 8owerpot in the foreground of

the image.

However, note that the disparity field for test sequence piano has perhaps been

over-smoothed. Although estimated vectors for the piano player's body and head are

now very accurate (there are no ambiguous matches in either), vectors surrounding

the player's head have been influenced. One can see the effect of smoothing in this

region, where vectors have become small. As a result, it is now more difficult to

distinguish the boundary of the player's head from the vector field since this region
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Fig. 4.8 Estimated disparity fields from 2-D exhaustive search
luminance-/ chrominance-based block matching with regularization (À ­
15).
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has now been diffused. Nevertheless, the application of a smoothness constraint on

the data offers a definite improvement, as we will see in Chapter 5, since distortions

in low-textured regions Ce.g., the blue background) are much more tolerable to the

viewer.

4.3.6 Robust estimation

Cnti! DOW, the matching term, Um , in the minimization (4.11) has been arbitrarilyset

to the absolute value function. This section looks at the characteristics of two other

estimator functions in order to determine whether the solution to the correspondence

problern could be further improved by using a more robust cost function than the

absolute value function.

Estimator functions may be characterized by their robustness to outliers. Consider

the scenario where a block is partially covering the boundary between the piano

player's head and the background. If a disparity vector is estimated for this block

which favours the head, the background pLxels are considered "outliers". In this case,

the region within the block made up of pixels from the head dominates the search

for an optimal disparity vector, and we will calI it the ~main-area" of the block. On

the other hand, if a vector is chosen such that the background is well-matched and

not the head, then pixels within the block which are part of the head are considered

outliers, and the background is considered to be the main-area. The situation we want

to avoid is the case where neither region of the block is well-matched, which makes

it difficult to say which pixels are the outliers, and which are part of the maÏn-area.

This results in a poor match for the majority of pixels in the block. This situation

can be avoided, to a large extent, by employing a robust estimator.

.-\ robust cost function is one which can tolerate a high percentage of outliers, while

still obtaining a good estimate for the main-area of the block; it is more immune to

the bias of '"bad" samples. The main-area of a block is typically comprised of pixels

belonging to that object which covers the largest portion of the block. This is not

always the case, however, since it depends on the robustness of the estimator and on

the texture of the contained objects.

A means of quantifying the robustness of an estimator is by examining its break­

down point. The breakdown point is defined as the percentage of outliers tolerated
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before the estimator "breaks down" and obtains an arbitrarily bad estimate for the

main-area of the block. The maximum attainable breakdown point is 50% (see Theo­

rem 4 in Chapter 3 of [29] for a proof) . Intuitively, this makes sense since above 50%,

it becomes impossible to distinguish between the ;'good" and "bad" pixels of a black.

For the purpose of high-quality disparity estimation, an estimator with a high

breakdown point is required. The higher the breakdown point, the higher the degree

of certainty that the majority of pixels in any given block will be well-matched. Fur­

thermore, since a robust cast function helps avoid the situation where all regions in a

block are poorly-matched, such a problematic block, as it has been defined, will have

significant differences in the number of outliers in each of its four sub-blocks. As we

will see later in Section 4.3.Î, this fact can be used to ftag problematic blocks that

faIl on object boundaries and require careful attention.

The following discussion examines the robustness of three candidate cost functions

for the difference term, Um, and explains the motivation behind the selection of the

most suited of these to the task of robust block matching.

Quadratic function

One function often used for the matching term, Um, and already discussed in the

context of least-squares estimation, is the well-known quadratic function, shown in

Figure 4.9.

As is eloquently discussed in [29], it only takes a single outlier to cause the least­

squares (LS) estimator ta break down and give an arbitrarily bad estimate for the

majority of pb:els in the block. Consider a block with very low te.~ure which con­

tains one single outlier pixeL It is possible that the cost associated with incorrectly

matching this single pixel is greater than that associated with incorrectly matching

the entire low-texture region. The optimal disparity vector for this block is that which

favours matching of the single outlier-pLxeL In this case, the declaration of the main­

area of the block has been seriously biased by one single pixe11 and the majority of

the pixels in the block will suifer a poor match. Rence, since the quadratic function

cannot tolerate any arbitrarily bad samples, it has a breakdown point of 0%.
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Fig. 4.9 LI and L 2 estimators.

Absolute value function

The next obvious step is to replace the quadratic (or L2 norm) with the absolute

value (or LI norm). From Figure 4.9, it is clear that outlying points are weighted less

heavily by the Li nOrIn, resulting in a reduced sensitivity to outliers. However, the

estimator is not robust in that it still has a breakdown point of 0%. It only takes one

very bad sample to skew the estimate to an arbitrarily bad solution5 •

Geman-McLure function

To analyze the behaviour of an estimator, we define what is called an influence func­

tion. Denoting the estimator function by p(.), the inB.uence function 7j;(.) is defined

as the derivative of p(.), i.e., 1/;(.) = p(.). ?/J(.) characterizes the weight a particular

measurement has on the solution [30]. In [31], the solution to the gradient-based

minimization process is seen to produce a weight for each measurement given by 1/1~x) ,

which tends to zero for increasing x. In general, for the quadratic function, p(x) = Xl ,
and 1P(x) = 2x: hence the influence of outliers increases linearlyand without bound.

For the absolute value function, 7j;(x) = sign(x), hence the influence of outliers is still

felt.

5See page Il of [29] for experimental proof of the 0% breakdown point of the least absolute value
estimator (the LI norm) .
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To increase robustness, redescending estimators are considered, where the influence

of outliers tends to zero. One such function is the Geman-McLure (G~I) estimator,

p(x; a), used in the context of robust estimation in [31]. It is given by

x2
::2

PGM(X; a) = u ~,
1+ =:.u 2

(4.13)

where (j is a scale factor. In our case, x is the displaced pi.xel difference (DPD) between

pixels fonning a candidate pair in the left and right images, i.e.,

(4.14)

where for simplicity, we again use the notation (m,n,c!Lj) to mean (m +cdtj;r,n +
ëc4j,J.

Plots for both PGAJ(X; cr) and 1/JGM(X; cr) are given in Figure 4.10 for a = L

GM Ù10u0Da: fc:n -
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(a) Gl\iI estimator, PGM(·) (b) Gl\iI influence function, t/lOM(·)

Fig. 4.10 The Geman-McLure (GM) redescending estimator of (4.13)
for (j = 1.

•
From Figure 4.10(a), one can see that outliers are not nearlyas heavily weighted

as with the Li or L2 norDlS. A DPD of 6 has a cost of 36 with the ~ norm, 6 with

the Li Donn, and 0.97 with the GM estimator. In addition, from Figure 4.10(b), the

influence of outliers is seen to tend to zero.
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The breakdown point of the G M estimator (4.13) is largely determined by the

selection of an appropriate scale factor, (j. A. robust method for automatic selection

of the scale factor based on the pbc:el-samples is developed. Adopting the approach

outlined in [31] and originating from (29}, an estimate for (j is derived from the median

value of the absolute residuals using

(jïj = 1.4826 . median ITïjl· (4.15)

•

•

The constant in (4.15) is based on the fact that the median value of the absolute values

of a ""large enough" sample of unit-variance normal distributed one-dimensional values

is L.4~26 [31}. The residuals are given by Tïj, which is the set of DPD values between

the corresponding blocks in the left and right images defined by!lj. The number of

samples over which the median is found is given by LVx x lVy • The assumption is that,

in the case of a typical block-size of 16 x 16, 256 samples is a "large-enough" sample.

This median-based estimate for (J offers excellent resistance to outliers, and in the

lirnit, it can tolerate almost 50% of them [31] .

Ta evaluate outlier-resistance of the automatic scale estimator in (4.15), it is tested

for estimation on a single black of size 64x64. The block is cut out from test image

fiower at position (357,164) and shown in Figure 4.11. The Geman-1-IcLure cost

functian with automatic scale estimation is used to estimate a single disparity vector

for aIl pi.xels in this block, and for position a = 0.5. The initial value for the scale

constant (Jo, is calculated from (4.15) based on a zero-value disparity vector. Iteration

o of the BNI minimization is performed using the GM function with scale (Jo, and a

disparity vector 40, is obtained. For the next iteration (4.15) is once again used to

obtain al based on the residuals from do, and in tum, CTl is used to compute dl. The

resulting DPD distributions for each pixel in the 64x64 block and for both iterations

are sho\vn in Figure 4.12 in the form of 3-D surface plots. The x- and y-axes define

the pi.xel position within the block, and the z-axis is the corresponding DPD value.

Notice the drastic decrease in DPD after one iteration due to the estimation of dl
which is a more accurate disparity vector than do for the majority of pi.xels in the

block.

In order to compute the median value of the distributions in Figure 4.12, theyare

first numerically sorted to form an ordered sequence of numbers. To gÏve an idea of
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(a) left (b) right
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Fig. 4.11 Enlarged sub-window eut out from flower at position
(357,164). The 64x64 black in the center of the sub-window is surrounded
by 16 additional pixels on the left and right, and 2 above and below. This
defines the state space for exhaustive-search BM.

the change in the DPD over the whole block after one iteration, the sorted sequences

of numbers for both iterations are subtracted and the resulting curve is shown in

Figure 4.13. The x-a.'CÏS defines the position in the ordered sequence, and the y-axis

specifies the corresponding DPD value. The curve is very 8at up to a sorted DPD pixel

position of about 3000, meaning that the two distributions are very similar up to this

point. After this, they begin to differ substantially. The median value is computed as

the average of the values at positions 2047 and 2048 since there are 4096 measurements

for this particular block size. Clearly the heavy activity at positions 3000 and higher

do not affect the median value, and hence the scale estimation equation (4.15) is seen

to be resistant te outliers.

In this particular case, the median value has decreased6 , resulting in a smaller scale

constant for iteration 1 (Ul < uo). The smaller the scale constant, the narrower the

Geman-J\tIcLure curve in Figure 4.10(a), and the doser the estimated vector gets to the

correct disparity for the main-area of the block. A hierarchical approach is used in a

coarse-to-fine fashion for this estimation (see Section 4.5), and the resulting disparity

6The curve in Figure 4.13 is obtained by subtracting the sorted DPD distribution at iteration 1
frOID the sorted DPD distribution at iteration o.
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Fig. 4.13 DPD vs. sorted pixel position. The diff'erence in the sorted
DPD distributions of Figure 4.12.

vector obtained after four iterations for the block in Figure 4.11 is d. = (6, -~), which

is exactly true for the main-area of this black.

From this analysis, it is clear that one could obtain good resistance ta outliers

by using the GM function with automatic scale estimation. Incorporating this cost

function as the difference term, Um1 in the minimization is straightforward. The

calculation for (J given in (4.15) is done for each block (i, j) in the intermediate

image, and for each iteration7 • Note that since the maximum penalty assigned to

any one sampie is much lower with the Geman-~IcLure function than that of the

previously used LI norm, the smoothness constant, À, is lowered so that the relative

contributions from the difference and smoothness tenns remain about the same. For

experimentation, it is set to .À = 2.5.

Due of the increased robustness towards outliers offered by the Geman-McLure

function, the estimated disparity fields are more accurate than before. A comparison

between disparity fields, one obtained using the LI norm, and the other using the G M

estimator, is shown for both test sequences in Figures 4.14 and 4.15.

7Remember that the algorithm became iterative ever since the introduction of regularization
(smoothness).
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(a) absolute value estimator

(h) Geman-1'.'IcLure estimator

Fig. 4.14 Comparison of estimated disparity fields between MAD and
robust estimation using the Geman-McLure estimator for test sequence
flawer .
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Fig. 4.15 Comparison of estimated disparity fields between MAD and
robust estimation using the Geman-McLure estimator for test sequence
piano.
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Although differences are subtIe between the disparity fields, there is one e."<cellent

exampLe which confirms the increased robustness of the GM function. In the original

flower image, there are three Letters, "NHK", in the bottom right corner of the image

(refer to the original image on page 47). Although these letters are evidently not

part of the original, natura! scene, the pL"<els that fonn them do nevertheless have

an impact on the estimation in this area. For the disparity field found from MAD

estimation shawn in Figure 4.14(a), notice that the region corresponding to these

three letters is estimated as having zero disparity (null-vectors). Since the letters are

placed at exactly the same location in the left and right images, and hence have zero

parallax, this is correct. Therefore, according to the absolute value estimator, the

Letters were declared as the main-area of blocks falling in this region and have hence

dominated the search.

In contrast, notice how vectors in this same region in the disparity field found

using the Geman-NlcLure estimator, shown in Figure 4.14(b), are not zero. In fact,

they are more like their neighbouring vectors. In this case, for blocks falling in this

region, the G NI estimator has dedared the background pixels as the main-area, and

pLxels beLonging ta the "NHK" letters as outliers. This scenario is doser ta what we

would expect since the background pixels occupy a greater portion of the blacks in

this region. The GNI estimator has not allowed the bright pixels from the "NHK"

to dominate the search and incorrectly bias the estimate. This is exactly the kind of

advantages a robust estimator can offer.

Ta get a better idea of exactly where the robust estimator has made a difference

in the estimation, consider the difference fields shown in Figure 4.16 for both test

sequences. Difference fields are simply a point-by-point subtraction of each disparity

vectar from two input fields.

4.3.1 Quadtree structure

Severa! improvements to block matching have been proposed thus far: and the current

estimated disparity fields shown in Figure 4.14 are by now very accurate. As will be

shown in Chapter 5, one obtains high quality intermediate view reconstructions based

on these vector fields.

Problems that remain, however, are imprecise estimations near object boundaries.
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(a) ftower
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(h) piano

Fig. 4.16 Difference disparity fields between MAD and robust estima­
tion using the Geman-McLure estimator. Reference fields are shawn in
Figure 4.14.

77
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The CUITent model is incapable of supporting depth and disparity discontinuities since

aIl pixels in a black are described by a single disparity vector. To explain, consider

two objects, object 1 and object 2 in Figure 4.17, which have different parallax values;

object 1, 1 pixel, object 2, 10 pb:els. Object 2 covers object 1, as shown. Block (i,j) is

such that it partially covers the boundary between these two objects. Since the model

will assign only one vector ta each pixel in this black, there is a problem. The support

of the modeI needs to be adjusted if this object boundary is ta be well reconstructed.

object 1

(i,j)

Fig. 4.17 Scenario demonstrating weakness of current model at recon­
structing boundaries. Block (i, j), which is described by a single disparity
vector, is shawn ta caver the boundary between objects 1 and 2, which
have require different disparity vectors.

In arder ta more accurately represent a greater number of pbœls in such a block, it

is split into four, equal-size sub-blocks. The sub-blocks will have a greater probability

of not covering any depth discontinuities, and are reestimated. A more accurate

description of member pixels is expected since four disparity vectors are now used ta

describe the pLxels of the original black. Sub-blocks that still faU on object boundaries

can be further split into four. In so doing, one ends up \Vith a situation similar ta

that in Figure 4.18, which shows three levels of splitting. The smallest blocks are the

ones closest to the boundary. This scenario is called the quadtree structure.

Automatic detection of problematic blocks

The quadtree structure could theoretically be applied to every block in the intermedi­

ate image. However, this would put all previous efforts at obtaining reliable disparity
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object3

Fig. 4.18 Block-splitting based on the quadtree structure. Problem­
atic blocks are recursively split until all blocks no longer overlap object
boundaries.

estimates to waste. \Vhy split a block if one vector is sufficient at describing its mem­

ber pixels? On the contrary, for reasons of simplicity and of reduced bandwidth in a

video telecommunications system, transmitting one vector per block is beneficial and

one should try to do this wherever possibles. That said, the issue now is to find a

robust way of targeting blocks that cover depth discontinuities in the image, and only

split and reestimate those problematic blocks.

One way of selecting problematic blocks is to apply thresholding to the difference,

or matching-error term in the minimization, Um (·) (first introduced in (4.11». In

this case, for any pair of blocks that gives a difference energy greater than a specified

threshold, the corresponding block in the (intermediate) image is split and reesti­

mated. Although simple, this method has proven to be not very robust, since results

are highly image- and threshold-dependent.

Alternatively, given a disparity vector which represents a black in the intermediate

image, differences in certain characteristics of the independent sub-blocks could be

exploited. Consider once again block (i, j) in Figure 4.17, which is known to be

problematic. Since there are a greater number of pixels in the block that belong

to object 2, there is a good chance this region will dominate the search and hence

SIn reality, in the context of a transmission system, the quadtree structure does complicate things
slightly since the support of each vector needs to he knO\\'U at the receiver. Although inexpensive
since it is regular. the map representing the quadtree structure needs to he transmitted..
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would he declared the maïn-area of the block9 • Object 1 is defined to be associated

with a horizontal parallax of 1 pixel, and object 2, 10 pixels. Ha disparity vector of

magnitude 10 is round to be optimal, then black (i, j) will have a large number of

outliers in two of its sub-blocks (the two on the left, which are mostly made up of

pLxels from object 1), and few, if not none, in the other two sub-blocks (the two on

the right), as shawn in Figure 4.19.

object 1

(i,j)

•

•

Fig.4.19 Estimated disparity vector for problematic block (i,j) favours
abject 2. Sub-blocks on the left, which for the most part contain pixels
from object 1, have many outliers. Sub-blocks on the right have very few
outliers.

In this example, an alarm sounds for block (i, j) due to the fact that its four

sub-blocks have such a discrepant number of outliers. Depending on the criteria used

to declare that the relative number of outliers in the four sub..blocks is discrepant, a

block such as this one wouId be selected for splitting. These sub..blocks would then be

independently reestimated, and a better representation of member-pbcels obtained.

It is a side-effect of using a robust estimator that one can be relatively certain that

a problematic block will have a significantly different number of outliers in its four

sub-blocks. It is this side-effect that is e..xploited in the proposed approach towards

automatic detection of problematic blocks.

Before describing the approach in detail, we need to mathematically define an

"outlier" 50 that we may appropriately tag pixels in a black. One notices from the

plot in Figure 4.10 that the GM curve begins to taper off at a DPD, or difference

9Depending on the te:\.1;ure of the different objects defining the boundary7 it is not necessarily the
object which occupies the largest portion of the black that will daminate the searcb, but rather the
area which, if well-matched, results in the lowest overall cast.
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•

•

value, of about 2 cr (or 2 in the figure, for cr = 1). This corresponds ta an error of 0.8.

Roughly, this means that at a difference value greater than 20", the higher the DPD,

the more the sampie is treated as an outlier since the error it contributes begins to

saturate to 1.0. At DPD values of less than 2 u, all samples are equally penalized

since the curve is roughly linear there. Therefore, it seems appropriate that an outlier

is declared for any DPD v-alue of 2 cr or above.

The algorithm for automatic detection of problematic blacks starts with a dis­

parity field estimated using the current approach. Then, for each block (i, j) in the

intermediate image, the following steps are carried out:

1. compute the number of outliers for each of the four sub-blocks,

2. compute the average DPD over all pLxels in the block,

3. execute the decision-making process outlined in Figure 4.20.

The flow chart in Figure 4.20 represents a three-step decision-making process to

determine whether a block requires splitting. The three steps are denoted by the

questions, QI, Q2 and Q3. Together, they permit a reasonable compromise between

the number of blocks declared as problematic (or unreliable), and the number of blocks

declared as reliable.

QI Blocks with a very good estimate will have a low average DPD for ail pLxels in

the block. Such blacks will not pass QI, and hence will not be split. The prablematic

blocks that we are after would not have a low average DPD.

Q2 If the total number of autliers in a block is small, it means that most pixels in

the block \Vere declared as the main-area, and hence there is a very good chance such

a block daes not caver a depth plane discontinuity. Such blocks would not pass Q2,

and hence are not split.

Q3 Finally, for all four sub-blocks, if the ratio of the ma.ximum ta the minimum

number of outliers in the four sub-blocks is high, there is a good chance that such

a block does cover an object boundary, hence requires splitting. If not, then we are

dealing with a block which has been poorly estimated throughout, has many outliers,
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IB'OCk (iJ)
of inrcnnediatc
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DO NOT
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NO
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BLOCK

(iJ)

Fig. 4.20 Decision flow chart for automatic detection of problematic
blocks. Performed for each block (i, j) of the intermediate image.

•

and thus reestimation will not help. This scenario typically occurs only in areas of

very high texture, and is rare.

Decision-making steps 1, 2 and 3 are all associated with certain threshold val­

ues. Table 4.3 lists the significance of these, as weIl as their default values used in

experimentation.

The algorithm for automatic detection of problematic blocks is applied to test

sequences flower and piano. The results of which blocks are declared as unreliable

are shawn in Figure 4.21. Chapter 5 will give a more detailed discussion of the results,

where the significance of the CUITent image reconstructions shown in Figure 4.21 will
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Step Symbol name Significance Default value
Average value of DPD, below

QI AVGJJPD_TH which a block is declared 5.0
reliable.

Percentage of block size
representing tolerable

Q2 PERCENT.JJL-SIZE number of outliers below 10%
which a block is declared

reliable.
Ratio of maximum to

minimum number of outliers
Q3 RATIO_TH in the four sub-blocks of a 2.0

block, above which a block is
dec1ared unreliable.

•

•

Table 4.3 Threshold values of the decision-making process for automatic
detection of problematic blocks.

be more clear. There will aIso be a discussion on the relative (in)sensitivity of the

algorithm to the chosen threshold values of Table 4.3.

Recursive estimation of problematic blocks

Now armed with a robust estimator and dependable problematic block detector, the

task is to reestimate sub-blocks of targeted blocks. Since sorne selected blocks in Fig­

ure 4.21 do not actually cover a depth discontinuity, the hope is that the reestimation

process is robust enough not to worsen the estimates in these areas.

The reestimation of sub-blocks is done as before, using 2-D, exhaustive search

block matching based on components Y-U-V and using regularization and robust

estimation. Of course, N r and Ny are reduced by half for each level of splitting.

Smoothing, however, is done only with neighbouring full-sïze blocks (Le., blocks that

have not been chosen for splitting) _ Mathematically, for the sub-block at position
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(a) /lomer

(h) piano

Fig. 4.21 Results of the proposed algorithm for automatic detection of
problematic blocks. Threshold values used ta declare a problematic block
are listed in Table 4.3.
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(i,j), the smoothness tenn becomes

i+l j+l

Us (4j) = L L 5mn · (lc4ù - dmn:1 + I~ir, - c1mn,,1) ,
m=i-l, n=j-l,

m#i n#i

85

(4.16)

•

where <5mn is 1 if and only if the sub-block at (m, n) belongs to a full-size block which

was not chosen for splitting. This modification to the smoothness tenn is motivated by

the fact that blocks which have been tagged as problematic are considered unreliable,

and therefore their disparity vectors should not influence those of neighbouring blocks.

Estimation is done based on luminance- and chrominance-balanced images, as usual.

Since neighbouring disparity vectors influence each other as a result of the smooth­

ness constraint, it is important to first correct those problematic blocks that have the

fewest number of unreliable neighbours. In this way, one recursively increases the

number of reliable neighbours surrounding problematic blocks. The first step is hence

to classify selected problematic blocks in terms of the number of unreliable sub-blocks

surrounding them in a second-order neighbourhood. This results in classes of blocks;

classO has 0 neighbouring suh-blocks which are unreliable, classl has 1, etc... , as

shown in the example of Figure 4.22.

o

[ili]3
~ ~

•

Fig. 4.22 Example of a set of blocks declared as unreliable by the pro­
posed algorithm for automatie detection of problematic blocks. A prob­
lematic block is classified according to the number of unreliable neigh­
bouring sub-blocks it hase Full-size blocks are shown.

The procedure for reestimating the established classes can he written algorithmi­
callyas:
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for i=O ta KAX_LEVEL
for j=i dovnto 0

while (!class_empty(j»

reestimate_class(j);

update_class (j) ;

end

update_all_classes()j

end

end

•

•

where MAX-LEVEL is the maximum number of unreliable sub-block neighbours a prob­

lematic block cao have; MAX.LEVEL=12.

Once the four sub-blocks of a block are reestimated, a reclassification of neighbour­

ing problematic blocks is required. For this, the update_all_classes () procedure is

used. The structure of the pseudo-code is such that classes are tackled in the fol1owing

order: classO, classl, classO, class2, classl, classO, class3, class2, classl,

classO, etc... The "hile loop is used to ensure that all members of a class are dealt

with before moving to the next one.

Resultant difference disparity fields for no splitting vs. one-Ievel of splitting are

shown in Figure 4.23 in the fonn of one vector per 8x8 black.

The interesting thing to note in the shown fields is th::..t any substantial differences

that exist between the disparity fields exist around object boundaries. Comparing

the difference field for /lower in Figure 4.23(a) vs. the blocks selected for splitting

in Figure 4.21(a), notice that the estimations for all selected blocks which did not

in fact cover any depth discontinuities did not change very much, if at all. This is

excellent since it means the algorithm does not worsen estimates for blocks that do

not really need splitting. However, notice that significant differences exist around the

top boundary of the large flowerpot in the left half of the image, as weIl as near the

boundary of the foreground flowers and the background counter around the lower half

of the image, near the middle. Vectors in the difference fields are large in these areas.

For piano, the situation is sunilar. Looking at the difference field in Figure 4.23(b),

again notice that the most significant changes in estimated vectors occur around the

boundary of the left side of the player's back and the background. Estimates for all
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(a) flower

(h) piano

Fig. 4.23 Difference disparity fields between no splitting vs. one level
of splitting.

87
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•

selected blocks which fall within the shirt did not change much, if at all. This is

exactly what we would hope since such blocks do not in fact require splitting. In

Chapter 5, image reconstructions will show that the changes around these abject

boundaries are, for the most part, for the better. The qlladtree approach, with its

corresponding reestimation algorithm, offers considerable improvements in the quality

of bOllndary reconstructions for intermediate pictures. In Chapter 5, we will look at

the effect of further levels of quadtree splitting down ta a 4x4 block size, and even

2x2.

4.4 Pixel-based disparity estimation

Alternatives to the block-based approaches to disparity estimation for intermediate

vie,'! reconstruction are the pbcel-based approaches. ..\n approach based on regulariza­

tion was presented in Section 3.4.2 in the context of disparity-compensated predictive

coding. In this section, it is adapted to the problem of IVR.

4.4.1 Adaptation to intermediate view reconstruction

The mathematical equations in Section 3.4.2 describing the regularization approach

must be modified in order for the estimated disparity fields to be used in the recon­

struction of intermediate views. Recall the minimization in question,

muinE(u) = E peu) + XR.(u).
(i,j)Eh

(4.17)

The difference term peu) is modified as follows to fit the model described in Sec­

tion 4.2:

(4.18)

•
and 'R.(u) remains unchanged as in (3.7).

As before, minimization is carried out by equating the derivative of the cost func­

tion in (4.17) to zero and solving for u(i, j), the disparity vector at the intermediate
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picture point (i,j). This gives

89

(4.19)

•

where (i,j) is the understood argument for all references made to u, and where u· is

defined as the local average of the disparity vector at the point (i, j). The main novelty

in this equation is the weighted contributions from right and left image gradients as

opposed to (3.11), where the gradient at the right picture point only appears.

For Q = 0.5 and .À = 500, the estimated disparity fields for flower and piano

are shown in Figure 4.24. Estimations are done on the luma- and chroma-balanced

images, as always. For optimal printout clarity, they are presented in the form of one

vector per 8x8 block of pixels, as opposed to one vector per 16x16 block of pLxels for

the block-based results.

The regularity of the disparity fields is immediately noticeable, and no ambiguous

matches are seen within objects sucb as the player's back in piano, or the large

flowerpot in ftower. The image reconstructions based on these will be examined in

Chapter 5.

4.4.2 Vertical disparity

In practice, test sequences do not perfectly satisfy the assumption of parallel acqui­

sition cameras. This section will show how the method could therefore he modified

to allow for a two-dimensional disparity field, (u, v). As a result, one obtains two

iterative equations of the form (3.12). However, since we do not want to introduce

large vertical components to the disparity vectors, a third constraint is applied in

(4.1 i) to make sure the vertical disparity component is separately constrained. This

results in the following minimization:

•
minê(u, v) = E peu, v) + AR.(u, v) + "l'(v),
u.v

(i,j)eh

(4.20)
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Fig. 4.24 Estimated disparity fields using the pixel-based regulariza­
tion approach for intermediate picture position ct = O.S. Regularization
constant is À = 500.
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where

peu, v) = [IL(i + lYU,j + av) - fR(i - (1- o)u,j - (1 - a)v)]2,

'R.(u,v) =[(u(i,j) -u(i,j-l»2+(u(i,j) -u(i,j+l»2+

(u(i,j) - u(i - 1,j»2 + (u(i,j) - u(i + 1,j»2 +

(v(i~j) - v(i,j - 1»2 + (v(i,j) - v(i,j + 1)? +

(v(i,j) - v(i - 1,j»2 + (v(i,j) - v(i + l,j)?],

V(v) =v2(i,j),

91

(4.21)

(4.22)

•

•

'R(u, v) is modified to implement smoothing over a second order neighbourhood. It

also permits regularization to be imposed on the vertical components of vectors as

weIl.

As before, the minimization procedure yields an iterative equation for the y­

component of disparity, u, in the form of

vn + 1 = ...\v·n + _1_ [/L(i + au,j + av) - IR(i - (1 - a)u,j - (1 - o:)u)] x
À+'Y

[a/Lv (i + ou,j + av) +

(1 - a)/R" (i - (1 - a)u, j - (1 - a)v)].

The inclusion of a vertical disparity component offers sorne improvements to the

estimated disparity fields. With 'Y = 1000, vertical components are kept small, yet

estimates are more accurate. vVe will see in Chapter 5 how image reconstructions are

slightly improved as a result of this small modification.

4.5 Hierarchical approach or pyramidal

The hierarchical approach is not a disparity estimation technique, as such, but rather

a means of applying a known estimation algorithm to a set of images fonning a

pyramid. The approach is typically known to offer improved estimation quality by

avoiding local minima, and increased computational efficiency [20].

The pyramid is created through successive applications of filtering and subsam-
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pling operations. Hence, starting from an original image size of 72Ox480 (level 0 ­

the highest resolution level), we create images of sizes 360x240, 18Ox120, and 9Ox60

(level 3 - the lowest resolution level), as depicted in Figure 4.25. Then, the chosen

disparity estimation technique is applied to each Level of the pyramid, starting with

the Lowest resolution level.

leve13 .;:::/ ~ ;'..

•

."

level(

LcvelO

Fig. 4.25 Hierarchical, multiresolution image representation.

•

The idea of the approach is that estimates at Lower resolution Levels serve to

determine a rough estimate of the disparity. The estimate of the disparity vector at

a Lower Level is passed ooto the oe..xt higher level as an initial estimate. The higher

resoLution levels therefore serve to fine-tune the estimate.

In practice, the subsampling step may be skipped. Then the pyramid is made

up of images that are all the same size, but successively more hlurred as you move

up the pyramid. In the context of hierarchical BivI, this form for the pyramidal

structure is beneficial. The low-pass filtering eliminates high frequency components

in the image, allowing the e..xhaustive search approach to obtain gross estimates of

the correct disparity at the filtered levels. The search window may he reduced as you

move down the pyramid since we start from increasingly better initial estimates.

In the case of the pixel-based regularization approach, the subsampling operation

is Qot skipped, forming a multiresolution pyramide Since the initial estimate for

disparity is the oull field, the hierarchical approach permits the disparity estimator
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to lock-on to large disparity vectors.

The hierarchical approach was implemented for both block- and pixel-based ap­

proaches examined herein. Its application was seen to reduce execution time by more

than 50%, without worsening the quality of the results.

4.6 Luminance and chrominance interpolation for sub-pixel

positions

As l have pointed out in previous sections, both techniques for disparity estimation

require an interpolation tool. In the case of the pb{el-based regularization approach,

for example, a local average of neighbouring disparity vectors is used. This offers no

guarantee that estimates will be integers and fall on points of the original sampling

lattice. For example, in (4.18), the argument of [L(i + au,j) can arbitrarily fall

anywhere in the left image. In the case of exhaustive search BM, sub-pi..xel precision

of estimates (e.g., q = ~) coupled with an arbitrary intermediate view position, a E

[0, 1], means that picture points not coinciding with the sampling lattice need to be

deterrnined. For example, in (4.4), the picture point given by [[(m+o: c4iz:' n+o:dij,,)

does not have to belong to the sampling grid of the left image. Therefore, a means of

interpolating image values at these arbitrary points from the existing picture points

is required.

One well-known interpolator function is the cubic convolution interpolator dis­

cussed in [32]. The kemel associated with this interpolator is composed of piecewise­

cubic polynomials defined on the subintervals (-2,-1), (-1,0), (0,1) and (1,2), and is zero

outside this interval. In order to detennine the coefficients defining the three cubic

polynomials, certain conditions are applied. The kemel is required to be symmetric

and continuons, and with a continuons first derivative. 10 Finally, the interpolation

function which the kemel represents is to agree with the Taylor series e.xpansion of the

function being interpolated for as many terms as possible. From the above conditions

emerges a unique kemel offering a third-order approximation.

The cubic interpolator function is used for both disparity estimation techniques

LO A direct consequence of this is that the interpolation coefficients become simply the sampled
data points since the only non-zero contribution to the convolution is at argument O.
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described in this chapter. For more details on its implementation, the reader is referred

ta [32] .
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Chapter 5

Interlllediate vie'W reconstruction

The previous chapter focnsed on developing two robust disparity estimation algo­

rithms which provide very accurate soLutions to the stereoscopie correspondence prob­

lem. As per the presented method for intermediate view reconstruction, the estimated

fields are DOW used to reconstruct the final virtual image at position ct (see Figure 4.2).

The chapter begins with a description of how image reconstruction is done, fol­

lowed by view reconstruction results for both the block- and pbcel-based techniques of

Chapter 4. The quality of reconstructed views is quantified through the peak predic­

tion gain (PPG) measure, which is defined in Section 5.3. Image reconstructions are

included throughout the chapter, but since the printing process removes detail from

images and hence poody represents the quality of the reconstructions, all the results

can be found in full colour at the foUowing web page:

<http://vwv.inrs-telecom.uquebec.ca/users/viscom!publicationst>.

NIost image processing techniques require special attention at the boundaries of

images, and the IVR problem is no exception. A method for eliminating visible

distortions near image boundaries is proposed. Finally, a comparison between the

block- and pixel-based approaches is offered, pointing out advantages, disadvantages

and trade-offs of each technique.
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Intermediate view reconstruction

•

•

To reconstruct a virtual, intermediate image, vectors from the estimated disparity field

for a particular intermediate position are scaled as a function of 0' (see Section 4.2).

Pb:el (i, j) in the virtual image Il, may be computed using disparity-compensated

linear filtering with a tWD-coefficient kemel. Here, we use a weighted average of the

corresponding picture points in the left and right images, according to (4i' as follows:

l [ (i, j) = (1 - Cl: ) IL (i + O'tLir , j + adji,,) + Cl: IR (i - (1 - 0')~ir' j - (1 - 0')~jJ

(5.1)

Non-linear filtering may also be used for image reconstruction. For example, pic­

ture point Ir(i,j) may he reconstructed by taking either one of the corresponding

picture points in the left or right image, based on sorne criteria. This is the '"winner­

take-all" approach, and it is motivated by the fact that since a perfect match is hard

to find, the weighted average approach in (5.1) results in a blurred image reconstruc­

tion. The advantage of the "winner-take-all" approach is that without averaging, the

detail of the original data is maintained in the intermediate image (no bIue). The

disadvantage is that neighbouring blocks, in a block-based approach say, could he

reconstructed from different images. Renee, any luminance and/or chrominance dif­

ferences in the stereoscopie pair could result in a "patchy" image reconstruction. In

[28], a non-linear interpolation is implemented whereby only the left image is used for

reconstruction if the position of the intermediate images is doser to that of the left

image, and only the right image is used when it is doser to that of the right image.

Occlusions are also handled in this approach.

The weighted-average approach results in a reconstructed image which is slightly

blurred throughout, but in a block-based scheme, avoids patchiness resulting from

image-pair mismatches. In addition, this approach preempts the need for developing

a decision criterion to decide from which image, left or right, to reconstruct a given

pixel in the intermediate image. For these reasons, the weighted-average approach is

chosen here for the purpose of intermediate view reconstruction.
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5.2 Image boundary handIing

The model employed in intermediate view reconstruction proposed in Section 4.2

results in a negative side-effect for estimation of pixels falling on horizontal or vertical

boundaries of the intermediate image. Consider the diagram in Figure 5.1 which shows

a top view of the estimation of block (i, j), located at the left edge of intermediate

image "1".

"R"

1 (l-a) f
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r
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1
1
1
1. -(i,\:

"L"

d'

+x

t

•
Fig.5.1 Top view showing the left, intermediate and right image planes.
For vertical-boundary blacks, disparities with a non-zero x-component
point outside either the left or right image planes, such as vector d' which
points outside the right image plane.

•

The side-effect is that all candidate disparity vectors for such a block should have a

zero x-component since any other vector would result in one ofits ends falling outside

the boundaries ofeither the left or right image. This is a direct consequence of the fact

that block (i, j) must be a pivot point for aIl candidate disparity vectors. The same is

true for blocks falling on the upper and lower bonndaries of the intermediate image.

Conseqnently, the correct disparity cannot he estimated for snch blocks, resulting in

visible image distortions in these areas.

To remedy this situation, estimation is carried out only within a sub-window of

the full intermediate image. The first and last M columns and rows of the disparity

field are Dot estimated. After estimation, missing boundary vectors are replaced with

the closest neighbouring vectors considered to be unconstrained. This is described
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IM

•

•

pictorially in Figure 5.2. For example, the top M rows of vectors are replaced with the

vectors from the (M + 1) th row. This technique assumes that there are no significant

depth discontinuities near image boundaries (smoothness constraint). Although this

is perhaps not always a valid assumption - since depth discontinuities may occur

anywhere - we have found that the technique works fairly well for the most part.

M
~+x "[" H

~ t t+-+·ttt t titt+ t.;.-- ~
-- +-- ~-- ---.... ---
~ ----- ~-- +-- ~-- ---~ ---... ---~ ~

~++t~+++'+~+++~

Fig. 5.2 Vectors near image boundaries are replaced by neighbouring
veetors to rednee image distortions in these areas.

The vectors which now replace those on the image boundaries are unconstrained,

and sorne will inevitably faIl outside the support of either the left or right image

planes. Intermediate picture point (i, j) is therefore reconstructed from only one

of the correspooding picture points in a "winner takes all" fashion; the one which

falls within the left or right image plane. For e.xample, vector d' in Figure 5.1 faUs

outside the right image plane, 50 pixel I[(i, j) is reconstructed using the corresponding

point in the left image only, Le., Ir(i,j) = IL(i + Q€4ù ,j + adiiJl ). This could oot

have been done earlier due to the nature of the estimation algorithms. Figure 5.3

compares the reconstruction of the left edge of the reconstructed intermediate image

for test sequence piano; (a) shows the regular reconstruction suffering from boundary

distortions, and (h) shows the result using the method described in this section. Notice

the boundary distortions in the left column of pixels in Ca) which are corrected in (h).

AIl reconstructions appearing in this chapter will use the image boundary-handling

technique described here.
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(a) without boundary­
handIing technique

Cb) with boundary­
handling technique

99
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Fig. 5.3 Intermediate view reconstructions for a = 0.5 of test sequence
piano, showing effect of boundary-handling technique on the left edge of
the reconstructed image.
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5.3 Quality assessment of image reconstructions

In this section, the impact of the enhancement schemes applied to the disparity es­

timation algorithms of Chapter 4 will he shown. Sînce original data is unavailable

in the range of Q" E (0,1), the quality of image reconstructions will he quantified

through the peak-prediction gain (PPG). The PPG is a measure of the difference be­

tween original and predicted images. By reconstructing "virtual" views for a = 1.0,

we can consider the intermediate view as the predicted right image, and compare it

to the original right image. This will give an idea on the quality of the reconstructed

views. Note that the image boundary-handling technique of the previous section is a

post-processing technique to reduce visible distortions, and should he excluded from

the computation of the PPG. Therefore, the PPG is computed from the reconstructed

images which have the the problematic houndaries.

The PPG is defined as follows:

•
2552

PPG = 10 logio e [dB],

with the mean-squared prediction error E given by

1 ~ -]2E = K L-, [Ir (m, n) - Ir(m, n) ,
(m.n)

(5.2)

(5.3)

•

where Îr(x, y) is the reconstructed image at a = 1.0, and K is the numher of pixels

in the image. PPG results will be given for each image component, i.e., for Y, U, and

V.

1t is important to underline that the PPG measure is normally used to assess

the performance of a prediction estimator. For example, it is often used to gauge

the quality of match hetween two images related by disparity compensation. As has

already been pointed out, the goal here is not prediction, hence we are not concemed

\Vith the absolute PPG numbers, but rather with the relative change of PPG due to

each applied BM algorithm enhancement. Sînce for °< a < 1 there is no original

data to compare the reconstructions with, the only way to assess the quality of the

intermediate view reconstructions is by subjective evaluation. For sïmplicity, the fol­

lowing abbreviations are used to denote the various algorithm modifications
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BMl -
BM2 -
BM2B -

BM2B3 -

BM2B3S -

•

•

I-D (horizontal only) e..waustive search luminance-only BNI,
2-D exhaustive search luminance-only BM,
2-D exhaustive search luminance-only SrvI on luminance­
baLanced images,
2-D exhaustive search three-component Y-U-V SM on
luminance-/ chrominance-balanced images,
2-D exhaustive search three-component SM on luminance­
/ chrominance-balanced images, using a smoothness
constraint.

flower piano
Algorithm Y U V y U V
8M2 +0.60 +0.58 +1.07 +0.37 -0.15 -0.37
BM2B +0.51 +0.46 +1.34 +1.62 +0.98 +1.32
BM2B3 +0.45 +1.00 +1.83 +1.57 +1.21 +1.66
BM2B3S +0.39 +1.02 +1.85 +1.55 +1.20 +1.62

Table 5.1 Impact of proposed. BM algorithm enhancements on the peak
prediction gain (PPG) for image reconstructions at cr = 1.0. Results
are relative to the base algorithm (exhaustive search 1-D BM), and are
expressed in units of [dB].

Table 5.1 shows the change in PPG offered byeach aLgorithm enhancement pro­

posed in Chapter 4, and for each image component. The changes are relative to the

base algorithm, simple 1-0 exhaustive search block matching (BM).

From the numbers in Table 5.1, one notices in particular that using a 2-D ex­

haustive search offers significant gains in PPG for the luminance components of both

test sequences. Changes in PPG for U and V in this case are really just side effects

since the estimation is based on luminance only for BM2. The gain is greater for

./lower than it is for piano since it has a greater amount of vertical screen paralia."<.

For BM2B, one notices a significant gain in PPG for the Y component of piano

(1.62dB), but a smaller change for flower as compared to BM2. This is because

piano suffers from a much greater global luminance mismatch than flower. Again, for

BM2B, estimation is still based on luminance only- In BM2B3, a three component

match is performed, and the gains in PPG for U and V for both test sequences are

high. Finally, for BM2B3S, aLthough increases in PPG are high as compared to the
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base algorithm, one obtains negligible changes in PPG as compared to BM2B3. As

we will see in a later section, regularization via smoothness nevertheless has a great

impact on the subjective quality of reconstructed views, especially in areas of low tex­

ture. Distortions in sucb areas will have a weak impact on the PPG, but a potentially

strong negative impact on the quality of reconstruction.

As a general note, the quality of reconstructed views has been subjectively eval­

uated for each proposed algorithm enhancement, and their positive contributions to

the quality of reconstructed views outweigh the increased comple.'"<i.ty they induce.

However! as the [aw of diminishing returns dictates, improvements are easiest to oh­

tain in the beginning; as the quality of the reconstructed image improves, attainable

gains diminish with each additional algorithm enhancement.

5.3.1 Block-based methods

In Chapter 4, the block matching algorithm was adapted to the problem of estimating

a disparity field for an arbitrary intermediate view position. Several improvements

were proposed ta the basic BlVI algorithm, each with the aim of providing a more

accurate vector field. This section looks at actual view reconstructions, pointing out

the effects of the proposed enhancements on the reconstructed image quality.

The ordinary, exhaustive search black matching scheme was seen ta produce dis­

parity fields which were gIobally accurate. The image reconstructions for intermediate

view position cr = 0.5 based on these vector fields (Figure 4.4) are shown for bath

test sequences in Figure 5.4 at full aspect ratio.

In general, the position of abjects in the reconstructed views is correct, and the

reconstruction offers the appropriate perspective view for 0 = 0.5. For example,

the position of the piano player's body in the intermediate view is exactly halfway

between the corresponding positions in the left and right views. This is what one

would expect for an intermediate position of a = 0.5. However, although this initial

reconstruction serves as an excellent starting point, there are obvions distortions in

the reconstructed images. A few e."{amples of problem-areas in the images are pointed

out with highlighted rectangles in Figure 5.4. To name a few, notice the discontinuous

pipes in the background wall of Figure 5.4(a) (refer to the original in Figure 4.1). Look

at the distortions in the window Iocated in the top left corner of this same image.
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(a) ftower

(h) piano

Fig. 5.4 Intermediate view reconstructions, a = 0.5, using the base
algorithm, I-D exhaustive-search black matching. State space defined by
a 32-pixel search range. Example problem-areas are highlighted.

103
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In (b), notice the obvious inconsistencies around the piano player's head and near

the bottom of ms shirt, in the middIe. Also, the large area in the right hal! of the

image made up mostly of the low-texture piano region contains blocking artifacts. The

distortions are not very visible because of loss of detail from printing, but the full­

colour images are available from the I1'lRS VisCom web page mentioned previously.

The ambiguous matches which have been seen to exist in the estimated disparity

fields in Chapter 4 are the causes of these distortions in the reconstructed images.

As we will see, the proposed enhancements to the base block matching algorithm

increase the overall accuracy of estimation, and reduce distortion in the reconstructed

views. Rather than showing full image reconstructions for each proposed algorithm

enhancement, l will show relevant portions of the recoDstructed views which point

out experirnental improvements offered by the approach. Where appropriate, sorne

of the image portions in the following sections will have modified grey-scale level

distributions in order ta increase the dynamic range of regions of interest and better

highlight certain parts of the image.

• The first algorithm enhancement was the inclusion of a vertical disparity compo-

nent, which gave rise to a 2-D exhaustive search algorithm. This was seen to increase

the complexity of the disparity estimation, but resulted in a more accurate vector

field. Consider the missing pipe in the middle of the background wall, near the top

boundary of the image reconstruction for flower in Figure 5A(a). This portion of the

image is enlarged in Figure 5.5. The pipe is discontinuous and Dot well reconstructed

in Ca), as the horizontal search resulted in an incorrect scalar disparity vector for the

block of ph:els forming the top part of the pipe. The problem is corrected with the

inclusion of a 2-D search, as shown in Ch). A similar situation exists for the image

reconstruction of piano, shown in Figure 5.5(c) and (d). In (d), the portion of the

piano player's shirt is weIl reconstructed.

There are a number of instances where a situation similar to that in Figure 5.5

occurs in image reconstructions for both test sequences, and as numbers in Table 5.1

confirm, overall, the inclusion of a vertical disparity component is heneficial to the

reconstruction quality.

The second proposed algorithm enhancement is the estimation based on luminance­

balanced images. To demonstrate the effect of this modification, consider the cut-outs
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(a) I-D

(c) I-D

•
(h) 2-D

(d) 2-D

•

Fig. 5.5 Enlarged portions of image reconstructions of ftower and pi­
ano using algorithm BM2 for ct = 0.5. Portions are eut out at po­
sition (270,20) for ftower, containing the pipe in the background wall,
and (164,428) for piano, containing the part cf the piano player's shirt.
The reconstructions in (b) and (d) are improved due ta a 2-D exhaustive
search.
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in Figure 5.6 for the reconstruction of test sequence piano. Notice the rather signif­

icant improvements around the outline of the head in (h). A1though small prohlems

persist in (h), these are easily corrected with inclusion of spatial smoothness con­

straint. Test sequences that stand to gain from this technique are those that have

noticeable globalluminance-mismatches, such as piano.

•
(a) estimation using BM2 (h) estimation using BM2B

•

Fig. 5.6 Enlarged portions of image reconstructions using a1gorithm
(a) BM2 and (b) BM2B of piano for ct = 0.5. Portions are eut out at
position (180,20), containing the piano player's head. The reconstruction
in (h) is drastically improved due to the estimation now based on balanced
images.

The next algorithm enhancement is designed ta tackle areas of the image where

either luminance or colour information is Iow. By forcing a three-component match,

a better overall image reconstruction is eX'"Pected. Estimation is done on luminance­

and chrominance-balanced images. Figure 5.7 shows portions of the reconstructed

intermediate image for flower at Q = 0.5. In Ca), the current luminance-based recon­

struction is shawn, and in (h), the full three-component match is shawn. A better
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match is obtained in (b). In sorne areas of the image however, by forcing a Y-U-V

match, one actually obtains slightly worse results. Nevertheless, the enhancement has

been tested and informally evaluated on severa! test sequences, and the conclusion is

that overall, it is beneficial to the quality of the reconstructed images. The gains in

PPG offered by this approach seem ta agree with this.

Fig. 5.7 Enlarged portions of image reconstructions of ftower using
aIgorithm (a) BM2B and (h) BM2B3 for Ct = 0.5. Portions are eut
out at position (45, 240), consisting of the rim of the large foreground
flowerpot. In (b), forcing a three-component match has eliminated small
ambiguities in the obtained match.

•
Ca) Y-only match (h) Y-U-V match

•

The final algorithm enhancement which is proposed before any adjustment to the

support of the model is made is the addition of a smoothness term in the minimiza­

tion. Regularization generally has a great effect on the realism of reconstructed views

since it is based on a very reasonable physical assumption, that the coherence of mat­

ter tends to give rise ta smoothly varying characteristics in real-world scenes. The

quality of image reconstructions for both test sequences using algorithm BM2B3S

shown in Figure 5.8 is high. They may be compared to the original reconstructions

obtained with simple BM at the beginning of this section. In particular, notice the

improvements in the highlighted problem-areas of Figure 5.4. Few serious image dis­

tortions remain in Figure 5.8, and the intermediate view for position Ct = 0.5 is quite

acceptable.

Sorne of the problems that remain in the current image reconstructions are due to

the too large support of the block-based model. Poorly reconstructed abject bound-
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(a) jlower

(h) piano

Fig. 5.8 Intermediate view reconstructions using the BM2B3S alg~

rithm for cr = 0.5. The smoothness constant used is À = 15.
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aries are obtained in areas where blocks of the intermediate image cover depth dis­

continuities. To better reconstruct object boundaries, the quadtree structure was

adopted in Section 4.3.7. A procedure by which problematic blocks are detected,

split! and then the sub..blocks reestimated was employed. An. algorithm for the auto­

matic detection of problematic blocks was developed by exploiting the characteristics

of the robust estimator. Robust estimation was carried out by replacing the MAD

criterion, characterized by a 0% breakdown point, with the Geman-McLure (G~I)

function, boasting a 50% breakdown point.

An. approach for the recursive reestimation of the sub..blocks of targeted problem­

atic blocks was presented. To show the effect of this algorithm, consider the example

in Figure 5.9 which compares robust estimation with no splitting and robust estima~

tion with one level of splitting. Two different scenarios are shown. To give an idea of

the locations of blocks in each intermediate image, the pixels at each of the four cor­

ners of blocks are highlighted1. In the reconstruction for flower in (a), certain blocks

are seen to falI on the overlap region of the foreground flowers and the black vertical

bars in the background. The disparity vectors obtained for these blocks favour the

fiowers, since the reconstruction of the black bars is poor. The distortions formed by

the vertical gray bars are due to the averaging of the black with the white counter, as

a result of the incorrect disparity vector for the pixels in the upper regions of these

blocks. In (b), one can see that quadtree splitting has allowed the different regions

contained within the blocks to be weIl matched; objects are properly lined up, and one

obtains a good reconstruction for both the foreground fiowers, and the background

clark vertical bars.

Similarly, in the reconstruction for piano in (c), one cao see a faint doubling of the

flower petai due to the fact that the block contains both the player's shoulder and the

flower, the shirt being favoured for matching. In (d), splitting has alIowed the flower

petai to cletach itself from the piano player's shoulder and obtain a good match.

Ta assess the performance of the quadtree structure for one and two levels of

splitting, we first define the following abbreviations:

l Remember that images are interlaced and shown at full aspect ratio, even though only one set
of lines - even or odd - is processed. This is why blocks are twice as high as they are wide.
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•

Fig. 5.9 Enlarged portions of image reconstructions of flower and piano
for Q = 0.5 using algorithm (a)/(c) GM and (b)/(d)GMl. Portions are
eut out at position (360,280) for flower, and (148,168) for piano. In (h)
and (d), one level of quadtree splitting improves the reconstruction of
abject boundaries.
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GM
GMl
GM2

robust estimation via Geman-~IcLurecast function, no splitting,
_ robust estimation via Geman-l\tlcLure, one level of splitting,
_ robust estimation via Geman-l\tlcLure, two levels of splitting.

•

Aigorithms GM, GMl and GM2 use the previously mentioned enhancements

employed by algorithm BM2B3S. However, algorithm GM results in a slight decrease

in PPG as compared to the BM2B3S algorithm. Although we would like the PPG
measure to be proportional to how subjectively pleasing an image reconstruction might

he, this is not always the case. While the image reconstruction obtained from the GM

algorithm was judged to he of a higher quality than that obtained from BM2B3S,

the decrease in PPG suggests otherwise. This is why subjective evaluation plays

an important role in analyzing image data, since one cannot depend on a numerical

measure to gauge the quality obtained.

For bath image reconstructions for flower and piano at cr = 1.0, one obtains an

increase in PPG for each image component when using the GMl/GM2 a1gorithms

vs. the GM algorithm with no splitting. The increases in PPG are gÏven in Table 5.2.

One would expect the increases to he relatively small, since only a fraction of blacks

in the intermediate image are selected for reestimation. The main observation is that

there is no decrease in PPG.

Algorithm.
GMl
GM2

y
+0.19
+0.21

./lower
U

+0.15
+0.18

v y
+0.05 +0.26
+0.07 +0.28

piano
U

+0.04
+0.04

v
+0.09
+0.09

•

Table 5.2 Increases in PPG (dB) for image reconstructions done at ct =
1.0, for one and two levels of quadtree splitting (algorithms GMl/2) vs.
no splitting (algorithm GM).

To improve the reconstruction of boundaries even more, further levels of quadtree

splitting may be performed. Figure 5.10 shows the evolution of a certain block of

the image reconstruction for flower for two levels of quadtree splitting. Although

the results are subtle, one can nevertheless make out the effect of one and two levels

of splitting. In (a), no splitting results in a poor match for the foreground flowers

(forming the lower quarter of the block defined by the four pixel-corners - the flowers
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are blurred), and a good match for the white vertical bar which is the right edge of a

window frame. Remember that the original block-size used is 16x16. In (h), splitting

has resulted in the top two 8x8 sub-blocks, which faIl entirely within the background

wall, to be well-reconstructed. However, the lower two 8x8 sub-blocks still overlap the

fiowers, and require further splitting according to the quadtree procedure. Clearly the

flowers dominated the search for these sub..blocks since the vertical bar is now quite

distorted near this object boundary. The algorithm for automatic detection of prob..

lematic blocks is successful at selecting these lower sub..blocks for further splitting:

and the reestimation of their 4x4 sub..blocks results in the reconstruction in (c). Al­

though it is not obvious from the figure, (the reconstruction might look more accurate

in (a)), the blurred flowers in (a) have become sharp and weIl reconstructed in Cc).

The algorithm has performed as desired.

•
(a) (h) (c)

•

Fig. 5.10 Enlarged portions of image reconstructions of flower for cr =
0.5. Portions are eut out at position (135,120), and show the evolution
of this image region for (a) zero, (h) one and (c) two levels ofsplitting.

\Ve have experimented with splitting clown to blocks of size 4x4 and even 2x2,

and have noticed that the algorithm for automatic detection of problematic blacks

remains robust down to blocks of size 8x8 only. "Vith blocks of smaller sizes, the

algorithm begins to be less reliable since there are very few samples on which to

base the splitting decision. Furthermore, the black matching recursive reestimation

algorithm, even with strong regularization, is not very robust for such small block

sizes. vVe have found that two levels of splitting (Le., down to reestimation of blocks

of size 4..x4) is the best compromise for intermediate view reconstruction.

The aIgorithm for automatic detection of problematic blacks required a number
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of threshold values (Table 4.3). Although the use of such thresholds is necessary, the

approach was designed to be as insensitive as possible to the actual values assigned.

The default values used, shown in the same table, were largely varied in an attempt to

understand the (in)sensitivity of the algorithm to threshold value fluctuations. Exper­

iments proved that the selection of threshold values is not crucial to the performance

of the algorithm (values listed in Table 4.3 were used for all experiments). In essence,

these threshold values affect only the number of blocks chosen for reestimation. Tag­

ging an excessive number of blocks as problematic is not a serious problem, since

the reestimation algorithm is robust enough not to worsen estimates for blocks that

really did not require splitting. In addition, threshold values have to he set to highly

inappropriate values for the algorithm to begin to perform poody.

The final reconstructed images for Ct = 0.5 for the block based approach, which

encompasses aIl proposed algorithm enhancements, and which employs two levels of

quadtree splitting, are considered to he suhjectively very pleasing and accurate. l

will not include the reconstructions here since, due to 1055 of detail from printing,

they would not look any diH'erent from previous reconstructions obtained using the

BM2B3S algorithm. However, the full-colour versions are available from the INRS

VisCom web site cited previously.

5.3.2 Pixel-based methods

Previous sections e..xamined the results ohtained frOID the block-based approach to

intermediate view reconstruction. In this section, image reconstructions ohtained

using the regularization approach descrihed in Section 4.4 are examined. The disparity

fields from this approach are pixel-based, meaning one vector-per-pixel is described.

The approach was originally based on the paper by March in [18], and adapted to IVR.

The only algorithm enhancement was the inclusion of a vertical disparity component

in the minimization. The resulting disparity fields from Chapter 4 are highly regular,

and accurate. Image reconstructions for both test sequences are shown in Figure 5.11.

Certain regions of the reconstructions in Figure 5.11 are highlighted with rectan­

gles. In (a), the highlighted regions of the reconstruction for ftower show how the

pLxel-based approach perfonns with respect to the same boundaries that the block-
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(a) ftower

(h) piano

Fig. S.11 Intermediate view reconstructions, cr = 0.5, using the pixel­
based regularization approach. Smoothness constraint is applied with
,\ = 500, and a vertical disparity constraint with "Y = 1000.
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based approach had difliculty reconstrncting (see Figure 5.4). Overall, objects are weIl

reconstructed, even though smoothing across their boundaries was performed and is

inherent to the algorithm. In (b), also notice how the large region made up mostly

of the piano on the right part of the image is highly regular. Through comparison

of the full-colour reconstruction with the original piano stereo pair, one can see that

abject-texture has been weIl maintained.

To evaluate the performance of the inclusion of a vertical disparity component,

image reconstructions are done for ct = 1.0, and are compared with the original right

images via the PPG measure. Changes in PPG are shown in Table 5.3. Notice how

the enhancement has a greater effect on the image reconstruction for flower since this

stereo pair has greater vertical parallax values than piano.

Aigorithm flower piano
description Y U V y U V

regularization with 2-D
+0.54 +0.29 +0.38 +0.26 -0.20 -0.12disparity vector

Table 5.3 Changes in PPG (dB) for image reconstructions done at cr =
LO, for scalar vs. tw~dimensionaldisparity vectors usiog the pixel-based
regularization approach.

As an overall comparison of the block- vs. pixel-based approaches, consider the

PPG gains in the luminance components of the reconstructions obtained using the

pi..xel-based approach over those obtained frOID the GM2 algorithm shown in Ta­

ble 5.4.

flower piano
y (dB) Y (dB)

+1.05 +0.43

Table 5.4 Gains in PPG (dB) for the luminance components of image
reconstructions done at cr = 1.0 using the pixel-based. approach (2-D
vectors), as compared to the GM2 black-base<! approach.
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Two algorithms for disparity estimation have been examined. Both have proven to

give accurate solutions to the stereoscopie correspondence problem in the context

of intermediate view reconstruction. This section offers a discussion on the perfor­

mance of these algorithms, pointing out their relative complexity, quality of image

reconstructions and their feasibility in terms of practical video applications.

The block-based approach is conceptually simple, which is what makes it so attrac­

tive. The 1-D exhaustive search block matching scheme (the so-called base algorithm)

has already been implemented in hardware for real-time applications today [33]. How­

ever, this simple template-matching scheme resulted in a set of initial reconstructions

which had numerous distortions, as the first image reconstructions shown in this chap­

ter confirm. In order to improve the quality of reconstructions, the problems were

identified and corrected through various algorithm enhancements. By the end, with

the adoption of the iterative quadtree structure to improve boundary reconstructions,

the once simple black matching scheme had become very complexe The algorithm is

computationally intensive, and demands complex data structures and housekeeping

to implement in software.

In contrast, the pixel-based regularization approach is conceptually IDore complexe

It is based purely on mathematical relationships, and no special attention was given to

improve the quality of object boundary reconstructions. The simple image boundary

handIing technique of Section 5.2 was, however, applied. At first, this approach was

computationally more taxing that the initial simple block matching scheme. However,

with ail the improvements made to the BM algorithm and the increased complexity

that went with them, the software program implementing the regularization approach

now takes less time to execute.

In terms of the quality of image reconstructions, the block-based approach, with all

algorithm enhancements, offers excellent results. The image reconstructions maintain

object structure in the original stereo pair very weIl. This is a direct consequence of

the fact that the algorithm is block-based. Furthermore, the results offer excellent

representations of different perspective views. The main problems with the approach,

however, are in dealing with disparity discontinuities within blocks.

The image reconstructions from the regularization approach applied to various
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test sequences are also of a high quality. This pixel-based algorithm, however, suffers

from other artifacts known as object-warping which are due to over-smoothing. Since

the pi"{el-based approach does not match templates or blocks, only single pixels, it

does not maintain abject structure quite as efficiently as the block-based scheme. In
summary, the overall subjective quality of image reconstructions is comparable for

bath approaches.

It is interesting that the only modification made to the regularization approach

was the inclusion of a vertical disparity component. Otherwise, it is really just the

approach of March [18] adapted to IVR. Nevertheless, it offers a significantly higher

PPG for the luminance components of both test sequences as compared to the best

obtainable BNI results. This is because the pixel-based approach is more flexible

in that, unlike the block-based approach, it allows small variations to exist between

neighbouring vectors. The lack of 100% smoothing within a block of pi"{els results in

a more accurate reconstruction, hence a higher PPG. Furthermore, since this pi"{el­

based approach is less intensive computationally, it remains for now the obvious choice

for any real application in intermediate view reconstruction.

5.4 Practical applications for IVR

Throughout this thesis, we have spoken exclusively about reconstructing a single field

from a stereo pair at a particular lateral position, Q. In a practical application,

however, a continuum of reconstructed views is needed, e.g., as a function of the

viewer's head position with respect to the screen. Clearly, a continuous sequence of

images must be reconstructed. A simple approach is to reconstruct every image of

this sequence independently of others. This is what l have implemented here, but as

discussed below, certain dynamic distortions become visible.

In the context of a block-based scheme, one can imagine a scenario where due to

the geometry of the scene, a particular block is problematic in the image reconstruc­

tion at position QiJ but the same block is weIl reconstructed in the virtual image at

position Q2- Consequently, the viewer may see distortions from one viewing angle, but

Dot the other, and the perspectives are inconsistent. In the context of a pixel-based

scheme, a sunHar situation may exist where disparity estimation at two different 0-
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positions results in conflicting estimates and hence different-Iooking representations

of the same scene. In order to avoid snch a situation, a more advanced and com­

plex approach would be to perform the reconstructions with a disparity constraint

between neighbouring reconstructed fields. The next section explores various ways of

reconstructing a continuum of a's.

5.4.1 Reconstruction for a continuum of a's.

The intermediate view reconstruction must be carried out on a 3-D sampling lattice2 •

The first two coordinates are given by the spatial position of the sampling point within

the intermediate image, depicted in Figure 5.12. The third coordinate is given by the

position of the intermediate view, i.e., a.

•
x

x

x

x
x
x

x

x

x

x

x

x

•

Fig. 5.12 Crosses show points of the sampling lattice defined on the
plane of the intermediate image. This is an example of a digital image
with four pixels horizontally, and three vertically.

Method 1 - reestimation

In principle, a separate disparity estimation procedure must be carried out for each

desired intermediate view position (each a). In the event that a set of disparity fields

for a range of intermediate view positions is desired, this method is a very costly

procedure, although theoretically optimal. Consequently, a more efficient solution is
1

sought.

2 A lattice is a regular array of points in space and time, defining the discrete positions at which
the colour and intensity of a digital image are specified.
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Furthermore, since in such applications as 3-D video-conferencing or 3-D TV,

images are coded to exploit cross-view redundancy, disparity information for a = 0 or

Cl: = 1 is typically transmitted along with the coded reference image. Thus, it would

be beneficial to perform an a-continuons IVR based on a single disparity field. Below,

we define nvo other ways of obtaining disparity fields for any arbitrary position given

only one field, estimated at some other position.

Method 2 - non-coDlpensated propagation of disparities

The method based on non-compensated propagation of disparity vectors consists of

estimating a disparity field for some intermediate view position al, and propagat­

ing this vector field onto the sampling lattice of 12 , defined at position Q2, without

disparity compensation. This is shawn pictorially in Figure 5.13.

• +x
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d·.·. -d·--1) --1)
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1
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Fig. 5.13 The method of non-compensated propagation of vectors for
obtaining a disparity field for a particuIar intermediate view position, 02,

from the estimated field of some other position, al. The disparity vector
for token (i,j) in Il is propagated to the token in 12 at the corresponding
position, (i',j') = (i,j), giving 4.ï'j' = !kj.

The disparity vectors specified in the estimated vector field for al are used to

reconstruct the desired intermediate view position at Q2. Consistent with our model,
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/2 is obtained by using the following well-known relationship:

I[(i, j) = (1 - Ck2) IL(i + a2c4ù ,j + a2c4j,,) + a2 IR(i - (1 - (2)c4ù ,j - (1 - cx2)c4jll)'

(5.4)

where d( -, -) is defined on the sampling lattice of the intermediate image plane at CX2­

This method is based on the approximation that within a small range, neighbour­

ing pLxels at the same image-position but at different intermediate view positions

should have slinilar disparity vectors.

Method 3 - disparity-compensated propagation of disparities

Given a disparity field for intermediate view position al, and defined on the inter­

mediate image Il, the disparity vectors for each token (i, j) E Il are extended, and

their intersections \Vith the desired viewpoint's image plane, 12 , computed. The in­

tersecting token at (i', j') in 12 inherits the disparity vector given by 4 j , as shown in

Figure 5.14.• +x
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d ..
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1
1

1
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Fig. 5.14 The method based on disparity-compensated propagation of
vectors for obtaining a disparity field for a particular intermediate view
position, a2, from the estimated field ofsome other position, al. Disparity
vectors defined in Il are extended, and their intersections with 12, (i'j'),
computed. The set of intersections should completely define 12-

Given the nature of the model, this particular method offers no guarantee that
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resulting intersecting tokens in [2 will coincide \Vith points of the desired sampling

lattice. On the contrary, an arbitrary, highly non-uniform sampling grid is obtained,

much like that in the example of Figure 5.15.

x
o

XoX
o

oX

•

•

Fig. 5.15 Crosses show points of the original sampling lattice defined
on the plane of the intermediate image. Cirdes are intersecting points
(disparity-compensated) forming a non-uniform sampling structure.

That said, a means of performing uniform-grid interpolation (the crosses) from

non-uniformly spaced data (the circles) is required. One option could he that each

sampling point of the originallattice inherits the disparity vector belonging to the

closest intersecting point of the non-uniform sampling structure. This would require

a robust set of rules for determining the closest intersecting point. :\lthough it might

seem simple in the example of Figure 5.15 as to which crosses to match with which

circ1es, a more complex scenario is easily envisioned where the choice is not so obvious.

This is no trivial task to implement algorithmically.

Alternatively, one could compute an average of the vectors belonging to two or

three of the c10sest intersecting points. Either way, the operation is much too com­

plicated, and is still inexact.

Reconstruction of a continuum of a's - Discussion

Of the three methods described herein, one would expect reestimation at each desired

intermediate view position (~Iethod 1) to give the most accurate results. Therefore,

we will compare the view reconstmction results obtained using the method of non­

compensated propagation, to those obtained from reestimation, which is very costly.

A disparity field at al = 0.5 is computed for both test images using the pixel-based



• 122 Intermediate view reconstruction

regularization technique. Using the method of non-compensated propagation (method

2), this same disparity field is then used to reconstruct a view at 0:2 = 0.25, which we

will caU [prop. In comparison, a separate disparity field is estimated for 0:2 = 0.25, and

the corresponding view is reconstructed, [J'eUt (subscript "reest" is an abbreviation for

'~reestimated", since this image is based on a disparity field which was reestimated for

this particular intermediate view position). A diiJerence image is computed for each

test sequence, which is simply a component-wise difference between two images, here

1TUst and [prop. The luminance component of a difference image is typically shifted

by 128 for visibility. The result for both test images is shown in Figure 5.16.

Since the difference images have high grey content (luminance of 128), Le., very

small errors, the method of non-compensated propagation of vectors for obtaining

image reconstructions is seen to perform very weIl. Due to its extreme simpIicity, it

is positively surprising to see how small distortions it causes. Using this method, one

estimated disparity field (typically at 0: = 0.5) is enough to perform image reconstruc­

tions at any other arbitrary intermediate view position; and this, with small error as

• compared to reconstructions based on the recomputation of disparity for each desired

viewpoint.

•

By estimating a single disparity field at 0: = 0.5, the method of propagation has

been used to reconstruct images in the range of a E [-0.25, 1.25]. Beyond this range,

the reconstructions suffer from serious distortions. The performance of this method is

also highly dependent on the magnitude of the disparities. The propagation of large

vectors runs a higher risk of encountering occlusions. Furthermore, test sequences

used in this work were acquired from closely positioned cameras, and capture faraway

views. For close-ups, this method may cause problems.

As mentioned, in a conventional stereoscopie video transmission system, disparity

information for 0: = 0 or Ck = 1.0 is available at the receiver. Therefore, it would

be beneficial if one could reconstruct intermediate views based on this disparity in­

formation already available. To judge the feasibility of whether the method based

on non-compensated propagation of disparity vectors (method 2) can be used in this

case, we estimate disparity for intermediate view position 0: = 1.0, and use the re­

sulting vector field to reconstruct views at 0: = 0.25, 0: = 0.5 and a = 0.75. \Ve then

compare the reconstructions to those obtained by estimating disparity directly at the
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(a) ftower

(h) piano

Fig. 5.16 Difference images between two different intermediate view
reconstructions at Q = 0.25. One reconstruction is done by propagating
the vectors from the disparity field estimated for a = 0.5 to a = 0.25
(method 2)1 and the other is based on the actual estimated disparity field
for a = 0.25.

123
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three positions. The difference images are shown in Figures 5.17 and 5.18.

In Figure 5.18, one can clearly see that the error in the difference images decreases

as the position of the reconstructed view approaches that from which the estimation

is based (here, Q = 1.0). Although this is also true for flower in Figure 5.17, the effect

is less obvious. The reconstructions at Q = 0.25, which are based on the disparity field

estimated for position Q = 1.0, are relatively less accurate than the reconstructions

at Q = 0.75, obtained using the same method of non-compensated propagation of

vectors. Intuitively, this makes sense since the further one tries ta reconstruct from

the starting point, the more occlusions pose a problem. The difference images in (c)

for both test sequences have the lowest overall error.

Nevertheless, in all cases there is high grey-content in the images (lowerror). The

method therefore works reasonably weIl in reconstructing intermediate views based

on disparity information available for the extreme positions of Q = 0 or Q = 1.0.
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(a) flower, Cl =0.25

(h) ftower, Cl =0.50

Fig. 5.17

125
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Cc) jlower, ct = 0.75

Fig. 5.17 Difference images between two different intermed.iate view
reconstructions for positions (a) a = 0.25, (b) a = 0.5 and (c) a = 0.75.
One reconstruction is done by propagating the vectors from the disparity
field estimated for cr = 1.0 (using method 2), and the other is base<! on
the actual estimated disparity fields for Ct = (a) 0.25, (b) 0.5 and (c) 0.75.



•

•

•

5.4 Practical applications for IVR

(a) piano, a = 0.25

(h) piano, Ct = 0.50

Fig. 5.18

127



•

•

•

128 Intermediate view reconstruction

Cc) piano, Cl = 0.75

Fig. 5.18 Difference images between two different intermediate view
reconstructions for positions (a) Ct = 0.25, (h) ct = 0.5 and (c) Ct = 0.75.
One reconstruction is done by propagating the vectors from the disparity
field estimated for Ct = 1.0 (using method 2), and the other is ba.sed on
the actual estimated disparity fields for Ct = (a) 0.25, (h) 0.5 and (c) 0.75.
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Chapter 6

SUlllIllary and conclusions

NIost of the work presented in this thesis focuses on 3-D video for entertainment pur­

poses. Today, IMAX® Corporation of ~[ississauga,Ontario, for example, is enjoying

international recognition for their high-quality, large-screen stereoscopie films. As the

technology for stereoscopie video becomes even more popular and widely accepted, a

demand for porting it to private television screens will develop. The reality of 3-D

broadcast TV in the future is largely contingent on the development of solutions to ex­

isting problems with stereoscopie video today. The focus of this thesis is hence on the

development of high-quality stereo image reconstructions, with intended application

in the entertainment industry.

Sorne problems identified in this work are parallax adjustment and continuous

look-around. The neecl for adjusting the screen paralla..x of a stereoscopie display

stems from the fact that stereoscopie acuity among individuals varies a great deal.

Indeed, 1 myself often have trouble fusing the stereo image of certain INfAX scenes and

experience considerable discomfort. Similarly, continuous look-around is required in

order to give viewers at any lateral position a realistic representation of the 3-D scene.

In both cases, an intermediate view is required offering a different perspective of the

scene. The desired perspective is a synthetie representation of an image captured

by a virtual camera whose position is different than that of the original Left and

right cameras. In other words, the problems of parallax adjustment and continuous

look-around are mostly made possible by intermediate view reconstruction.
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Summary and conclusions

•

•

This thesis began with a background introduction to the field of stereoscopie imagery.

A basic understanding of how the human visual system provides depth information

to the brain through retinal disparity was developed. A single point in a three­

dimensional scene projects itself onto two different locations on the retinae of the

eyes. The difference in relative position between these two points is defined as the

retinal disparity. The geometry of crossed and uncrossed disparity was presented, and

then translated to the viewing screen. Screen paralla..x, or the difference in position of

homologous points on the display, was seen to induce retinal disparity, which in turn

provides depth sensation when ,,;ewed on a stereoscopie display.

Image acquisition, in the conte.xt of stereoscopie viewing for entertainment pur­

poses, is carried out by two cameras placed side by side. The left and right cameras

are aligned vertically, and separated by a horizontal distance about equal to the av­

erage adult interpupillary distance (64m.m). This is called the inter-axial separation.

The setup of the two cameras was discussed in the context of the parallel and toed­

in configurations. The geometry of the parallel configuration is govemed by simpler

nlathematical expressions, and does not induce any vertical disparity between the two

acquired images. The inverse proportionality of object-depth vs. screen parallax was

derived for the parallel cameras. In this configuration, typically the CCD sensors of

the two cameras are horizontally shifted in order to increase the common field of view.

On the other hand, the toed-in configuration is simpler to set up and often used in

practice since it maximizes the common field of view between the cameras.

The acquired left and right images are then displayed on a viewing screen. Varions

methods exist for separating the left and right images and showing only the correct

perspective to each eye. One popular technology used by both IMAX and INRS is the

spatial superposition and temporal interleaving of the left/right images. Active liquid­

crystal (Le) shutter glasses are then used which operate in sync with the display, and

only allow the correct perspective view to be seen byeach eye.

The distortions suffered by the various display technologies were presented. One

of the most serious of these is shoor distortion. Shear distortion is caused by the

fact that typical stereoscopie displays which do not track viewer head movements can

offer only one perspective view of a scene at a time. Lateral viewer head movements
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result in a distorted representation of the scene when viewed from an angle which

is different from the intended viewing angle. The ability to reconstruct intermediate

views alleviates this problem by displaying the correct perspective viewas a function

of the viewing angle. In so doing, the viewer enjoys continuous look-around of the

stereoscopie display.

Intermediate view reconstruction (IVR) also permits the adjustment of screen

parallax . The inter-a.xial separation of the cameras has a large impact on the strength

of the stereoscopic cue experienced by the viewer. A fixed camera separation results in

a stereoscopic cue which is usually not suited to all viewers. Henee, by reconstructing

intermediate views, the camera separation can be adjusted (increased or reduced),

which in turn affects the amount of induced screen parallax on the display. Such

a scenario will allow viewers to adjust the "3-D lever' of the stereo image, mnch

like typical computer monitors today allow viewers to adjust other parameters like

contrast and brightness.

IVR also plays an interesting role when porting large-screen stereo images to a

small screen. Here, the large disparities between perspective views that a large-screen

display can afford (acquired from cameras with a large inter-axial separation), are

no longer tolerable for small screens with smaller viewing distances. This is another

example of the neecl for parallax adjustment. As weil, IVR can be used for missing­

frame(view) replacement in a multiview system.

The approach ta IVR taken in this thesis is based on signal processing techniques.

Unlike 3-D model-based techniques which typically perform arbitrary view generation

for abjects only, the approach here makes no assumption on image-content. In arder

ta reconstruct an intermediate view, a mapping betweeo the left and right images

is first obtained. The mapping cornes in the fonn of a vector field which describes

the displacement of each pixel in the right image with respect to its corresponding

position in the left image. The process of disparity estimation is used to solve this

correspondence problem and obtain a disparity field. Then, disparity-compensated

interpolation is used to reconstruct the intermediate views. While the interpolation

is carried out in the usual manner, Le., using a linear filter with angle-dependent

coefficients, the disparity estimation algorithms are novel in severa! ways.

Two classes of disparity estimation techniques were explored; block-based and
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pi..xel-based approaehes. First, the typical e..xhaustive-seareh block matching (BM)

scheme was adapted to estimate a disparity field for a specifie intermediate view

position. To do this, a model was adopted such that the resulting estimated vector

field is defined on the plane of the intermediate image. Block matching schemes are

known to be associated with a number of problems. In the context of IVR, these

are identified and eured using various techniques. Among them are colour-based.

estimation, spatial smoothness constraint and adoption of a robust eost function. A

technique for eliminating global luminance and chrominance mismatches between the

left and right images is also presented.

Since block-based schemes assign the same disparity vector to all pLxels in a block,

problems arise, for example, in blocks that cover regions of object-overlap. In such

cases, if the overlapping objects belong to different depth planes, one vector is insuf­

ficient to describe the correspondence of all member-pixels. To tackle this problem, a

technique for the automatic detection of snch problematic blocks, which is based on

robust estimation, is proposed. A quadtree structure approach is taken whereby the

• block is split into four equal-size blocks, and the sub-blocks are reestimated.

AIl techniques are shown to offer interesting gains in the accuracy of the estimated

disparity fields. The BNI scheme which encompasses all algorithm enhancements is

tested on several stereoscopie test sequences, and results for two of these are presented.

The reconstructed images properly portray the scene from a different viewing angle,

and the overall quality of the still images is acceptable.

The pi..xel-based technique is based on the prediction-based disparity estimation

algorithm introduced in [18], and adapted to perform IVR. The regularization term is

modified to implement second-order smoothing, and since no assumption is made on

the geometry of the cameras (parallel or othenvise), a two-component (u, v) disparity

vector is computed. Pixel-based schemes suffer from certain problems as weIl. For

example, the regularization (smoothness) tenu typically results in a poor reconstruc­

tion of object boundaries due to over-smoothing. This is because the method usually

enforces a strong likeness between neighbouring vectors. The block-based schemes

tend to be superior in maintaining object structure. Nevertheless, the quality of ob­

tained image reconstructions using the regularization approach is considered to be

high, especially if a sequence of images is considered (no temporal discontinuities in
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the reconstructions).

The image reconstructions resulting from the two approaches discussed in this

thesis have been used to perform parallax adjustment of still stereo images. The

virtual camera separation was adjusted from a normalized distance of 0 to 1, and

beyond, in increments of 0.1. Indeed, the stereoscopie cue in the image was seen to

vary as a function of the virtuaI camera separation, and no visible distortions were

reported.

Furthermore, the range over which the method for computing intermediate views

could be applied was explored. By estimating a disparity field for an intermediate

view position located exactly mid-distance between the originalleft and right cameras,

intermediate views were reconstructed for a wide range of positions. The approach

was seen to offer acceptable to excellent results up to a range of 25% beyond the

position of the original cameras, in either direction. Beyond this, occlusions result in

unacceptable artifacts.

6.2 Future work

As discussed in the previous section, results from the pLxel-based approach suggest

that it is more suited to reaI applications in stereoscopic video where sequences of

images are typically used. Although the block-based results are good for still images,

playback of a sequence of reconstructed "iews reveals highly visible artifacts. The root

of the problem is due to a lack of disparity vectors to properly represent ail pixels

in the image. The pixel-base<! approach, however, which represents each pixel by a

separate vector, does not suffer from sucb distortions when a sequence of reconstructed

views is created.

That said, results of this thesis suggest that the focus of future work in the field

of IVR using 2-D signal processing techniques should be on further improving the

pixel-based approach presented herein. The main problem with the current approach

is that it does not perfonn selective smoothing. It would be beneficial to enforce

smoothing only within objects of a 3-D scene. Otherwise, vectors belonging to pixels

which are near object boundaries are forced to have simiIar vectors as those belonging

to ph:els from another objecte H these two objects are located at different depths,
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the result is a poor reconstruction of the boundary between them. In [18] 7 March

discusses the idea of "selective smoothing" by enabling regularization only between

pixels belonging to the same objecte This is a good idea, but the problem remains

of establishing an image analysis tool which detennines where objects are located

in an arbitrary scene. This is no trivial task, and methods based on gradients and

colour-segmentation are being actively researched today.

Another aspect worth exploring is robust estimation in the context of the pbœI­

based approach. The difference term P(u), used in the regularization approach, was

set to the quadratic function. The principles of robust estimation applied to the

block-based approach are general, and apply to the pixel-based approach as weIl.

vVhy not replace the quadratic function \Vith something offering a higher breakdown

point as we did in the BNI scheme? Of course, changing the difference term results

in a different set of equations describing the optimal disparity function (u , v) 1 but it

is worth trying.

This thesis has focused on disparity estimation and intermediate view reconstruc­

tion, for use in novel applications of stereoscopie video. The image reconstructions we

have obtained, although not perfect, demonstrate that it is indeed possible to achieve

high quality virtual views for stereoscopie video systems. Results we have presented

recently stimulated interest and are very encouraging.

The technology presented herein is far froID being realizable today in hardware,

but with the ever-advancing nature of bath hardware efficiency and consumer demand,

the spectrum of applications for stereoscopie video is widening. Three-dimensional

television, for example, is being considered as a next-generation medium, and it is

fueling rapid developments of varions relevant technologies. Although much of the

attention today is on the compression of stereoscopie video, an equally active issue

is stereoscopic systems with look-around capabilities. In this thesis, the role that

intermediate "iew reconstruction has to play in this evolution has been defined, and

interesting suggestions for its implementation have been presented.
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