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Abstract

In this thesis, we developed techniques which are capable of identifying single and

multiple-input, linear and nonlinear systemS. They were derived within an analytical

framework which imposes few restrictions on the nature of the input signais, and

includes the possibility of measurement noise. &'..tensive simulations demonstra~ed

that these methods are robust in the presence of measurement noisE>, and that they

can be used ",-ith highly coloured test inputs. A series of ell..perïments were performed

on a known, physical, nonlinear system to validate the simulation results. Finally,

an investigation of the stretch refle.'I." electromyogram "'"aS used to demonstrate the

applicability of these methods to a physiological S)"Stem.

<.::::.....
'::::::::.:
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Résumé

Dans cette thèse, nous avons développé des techniques nous permettant d'identifier

des systèmes linéaires et non-linéaires à entrées simples et multiples. Ces techniques

sont dérivées d'une structure analytique qui n'impose que peu de restrictions sur la

nature des signalL'C d'entrée. De plus, les signaux mesurés peuvent contenir un certain

degré de bruit. Les résultats des simulations appronfondies ont servi à démontrer que

les techniques présentées ici sont robustes en presence de bruit et peuvent être utilisées

avec des signalL'C colorés. Des simulations ont été fait.'!5 sur un système physique,

non-linéaire et connu afin de démontrer la validité des résultats obtenus. Finalement,

ces techniques ont été appliquées à un électromyogramme représentant une réponse

réflexe de déplacement afin de démontrer la possibilité d'application de ces méthodes

à des systèmes physiologiques.
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Chapter 1

Introduction

In the introduction to treatises on the subject ofsystem identification, it is not uncom

mon to find the authors drawing comparisons between the construction of mathemat

ical models and the pursuit of knowledge itself [11, 65]. Further musings invariably

e.'\.1;end the analogy, casting system identification in the role of the scientific method.

To further extend this allegory, the development of new algorithms for system iden

tification can be seen as the creation of new tools for the scientist. In making this

observation, an important point i~ raised. The development of new algorithms should

not be an end in itself; they are tools, and nothing more. Foremost in. the mind of

any tooi builder should be the applications, for without these, of what use is a tool?

In this thesis, we have attempted to further the discipline of nonlinear system

identification by developing tools which may be applied under fairly liberal conditions.

Traditionally, the application of nonlinear system identification has been limited by

the need for rather strlngent assumptions about the properties of the data. We have

eased some of these restrictions, allowing wider use of these techniques.

We have designed our tools considèring the requirementsimposed by the study

of joint dynamics, where the systems being e.vamined cao be highly nonlinear and

invoive the interaction of several inputs. Furthermore, the nature of the experimental

apparatus imposes severe constraints on the "richness" of the input stimulus. Finally,

measurements of the system inputs and outputs areoften corrupted by measurement

noise. Although we have developed these tools for this particular application, we

1
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believe they will be usable in a large number of disciplines.

1.1 Overview

Chapter 2 presents a general introduction to the topie of system identification together

with a disr.ussion of the requirements and constraints inherent in the study of human

joint dynamics. This is followed ~ith a detailed re\iew of the recent system identifi

cation literature, pa)ing particular attention to methods that may be applicable to

the study of biomedical systems, and in particular, human joint dynamics.

Chapter 3 presents a theoretical examination of an established algorithm which is

used widely for the identification of linear systems. Based on this analysis, we develop

a new algorithm that yields estimates ~ith dramatically lower variances than existing

methods. This procedure will be used in the algorithms developed in later chapters.

Chapter 4 introduces an important block structured nonlinear system: the multi

input V\tïener structure. ..:\rter a theoretical investigation of this nonlinear system,

we develop algorithms for its identification. In later chapters, v.."e \\ill construct more

general nonlinear systems using both single- and multiple-input V\tïcner structures as

"building blocks" .

Chapter 5 presents algorithms for the identification of general nonlinear systems.

We start with the parallel cascade method, recently proposed by Korenberg [56],

which models an unknown system as a sum of V\tïener models. Our contribution is

a new procedure that finds the "best" possible V\tïener cascade at each stage. This

results in faster convergence, simpler models, and better noise performance than the

original method. Furthermore, we will show that this expansion depends only on the

statistics of the input and is therefore unique. We will present algorithms for both

single- and multiple-input systems.

In Chapter 6, we present two applications of the teclmiques developed in this

thesis. First, we constrùct a known, physical, nonlinear system, using severallinear

filters, and a four quadrant analogue multiplier. Using this system, we validate the

identification methods under experimental conditions. Secondly, we investigate the

2
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dynamics of the stretch reRe., electromyogram (E~lG). using the methods de\"t~loped

in Chapters 3 and 5. The analysis of this system is used as an example. illustrating

how and when the various algorithms developed in this document can be applied.

Finally, in Chapter ï, we summarize the contributions made in this thesis. and

offer suggestions for further developments and impro\·ements. We finish the chapter

by discussing further applications for these techniques.

:

3
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Chapter 2

Literature Review

2.1 Overview

In this review, our primary objective v.ill be to describe techniques that are suitable

for building models of the human peripheral neuromuscular system. Our description

of this system v.ill reveal multiple inputs and outputs, nested feedback loops, and the

presence of several nonlinearities. A survey of the techniques used to mode! systems

of this complexity reveals two broad classes: a priori or morphological modelling, and

a posteriori or black-box modelling, which is also known as system identification. We

begin our discussion by describing these two familles of techniques in general terms.

To place this discussion in context, we will consider the problems associated with

the modelling of human joint dynamics. V\-ïth reference to the recent literature, we

will describe the system and discuss the types of experiments that can be performed,

each of which will limit our choice of modelling techniques in diff~t ways. Thus,

a minimum level of mode! complexi~will be mandated by the nature of the system

itself, whereas limitations in the data that can be obtained experimenta1ly.will dictate

an upper bound on the mode! complexity that can he justified. Given this perspective,

we will discuss the merits and pitfalls of both a priori and "black-box" modelling as

applied ta the study of the peripheral neuromuscular control system.

4



• 2.1.1 Morphological vs. Black-Box Models

•

.4. priori modelling uses analysis based on iirst principles. knowledge of the system

structure. and the function of its subsystems. to create models of an entirc system.. .. . .
These models are frequently referred to as morphological models since the indit'idual

elements and their interconnections art:' often related direct!)' to the structurt:' of the

system being modelled.

Typically, such models incorporate a large number of parameters that must bt:'

determined experimentally. For e.,amples of a priori models of the peripheral neuro

muscular system see the series of review articles by Agarwal and Gottlieb [1, 2, 3].

In contrast, the a posteriori approach attempts to model the system without

making assumptions about its structure. This approach is sometimes referred to

as black-box modelling, since the resulting mode! is simply a "black box~ whose

behaviour mimics that of the system. This class of models describes the re!ationship

between the system inputs and outputs, but may provide little structural or functional

i:clormation about the system or its components.

In general, there are two uses for the models produced by system identification:

control and understanding. In the design of control systems, particularly predictive

control systems, models are needed to prediet the plant's response to its input in

order to design an effective controller. It is usualiy desirable to have the simplest

possible mode! that describes the dynamics of the plant to be controlled.

The other broad application of system identification, pursued here, is to gain

insight into the operation of a system. In this case, we want to extraet the maximum

amount of information from the input/output data. If one is willing to believe that

a more complicated Diode! willlead to better understanding of the system, it can be

argued that our objective should be to create the most complex mode! that can be

justüied by the data. In any case, models identified for insight are often much more

complex than those used for control.

Let us consider the general identification problem, as posed in Verhaegen and

Dewilde [99], and illustrated in Figure 2.1. We will use this figure to establish the

5
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Figure 2.1: Block diagram representation of a generaIized identification problem.
Redrawn from (99]

•

notation used in the rest of this discussion.

We will define the "system" to consist of everything within the dotted box in

Figure 2.1. It coDsists of two parts: one stochastic, and one deterministic. The

stochastic part of the system is driven by a white-noise proeess, U/l(t), which is Ilot

available to the experimenter. The deterministic part is driven by the SUIn of a

controlled input, 'lI.(t), and a fiItered version of an inaccessible white noise process,

U/2(t). In addition to having control over 'lI.(t), we will assume that the experimenter

has access to a noise corrupted vexsion of the complete input signal, ii(t).

The noise-free output, y(t), is the SUIn of the outputs of the deteIIninistic and

stochastic parts of the system. The experimenter, however, usually only has access

to a corrupted version of the output signal, z(t).
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•

Giyen thi~ structure, seyeral problems can be addressed.

• Identification of the deterministic mode!. P. This consists of finding a rela

tionship between u(t) and y(t). assuming that the process noise. Wt (t). is zero.

Note that both the input and output may still be corrupted by obsel'\'ation

noise, vu(t) and v:(t), respectively. The identification of deterministic systems

is genera1ly pursued when the objectÏ\'e is to gain insight into the functioning

of a system. This is the problem that is pursued in the balance of this thesis.

• Identification of the noise mode!, Fn. We are interested here in the relatk.nship

between Wl(t) and y(t), given observations of only the system output, y(t).

Usua1ly, the input signal, u(t), is assumed to be zero or constant. This type

of identification problem is used in applications sucb as the study of econornic

systems, where the inputs are not available to the e.'l:perimenter, or where it is

unclear which signals are inputs, and whicb are outputs.

• Identification of the complete mode!. Given both the input and the output,

estimate both P and Fn, the deterministic and noise models. This problem

formulation is used when accurate predictions are desired, sucb as in the design

of mode! based control systems.

2.1.2 Modelling of Joint Dynamics

In this section, we v.-ill consider how the problems of modelling joint dynamics relate

to the a priori modelling and system identification approaches outlined above. We

will start by defining the problem, and then examine the strengths and weaknesses

of each approach.

Figure 2.2, redrawn from [38] and modified to include the myoe!ectric signal output

(EMG), shows asimplified block diagram ofinformatioD f!.owin the perlpheral nervous

system. Several important simplifications have been made in this diagram:

• The actions of agonist and antagonist muscle groups have been lumped into a

single block (the dashed box).

7
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Figure 2.2: Information Flow Diagram for the Peripheral Neuromuscular System

• The myriad descending commands have been lumped into two inputs: one to

the alpha motoneuron pool, which drives the muscle th."'Ough the "activation

dynamics", and one to the "reflex dynamics" .

• The gain associated with the descending "alpha" command channel, as well

as that of the reflex dynamics, cau be modulated via interneurons [33]. This

command channel is not represented in the diagram, in any form.

• Inputs from the receptors associated with other muscles, as well as those from

receptors other than the muscle spindles, are entirely absent from this diagram.

- -
Despite these simplifications, Figure 2.2 still represents a complex system, which will

:: - - - -

be diflicult to model accurately, w~tever approach is employed. Analyses based on

either morphologica! modelling or system identification each. have distinct disadvan

-tages, which will be dealt with in turn.
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Constructing an a priori model of the dynamics of a single joint is an cxtremely

difficult undertaking. Even the simplified schematic shown in Figure 2.2 romains

several subsystems and man)" interconnections. Treated in isolation. eacb block shown

in Figure 2.2 has been the subject of e.,tensive modelling efforts [1. 2. 3]. An overall

model must include eacb of these subsystems and account for interactions between

them.

Validation of sucb a comple., model poses its own problems. Assuming a model of

the whole system could be pos~ulated, how does one prove that it mimics the original

system at ail levels oÎ detail included in the model? Without sucb a validation. of

what significance is the model? 'W"hile the detailed structure of the model may suggcst

explanations of how the system functions, ",ithout adequate model validation sucb

explanations remain speculative.

On the other hand, the chief disadvantage of black box models is that they provide

no direct functional or structural. information. They can, however, act as a reference

against which morphological models can be validated. Thus, black box modelling may

provide the means to validate morphological models, and so provide the functional

insight which is our final objective.

We will now focus on the system identification approach. Our fin;t step will be to

relate the system shown in Figure 2.2 to the genera1 identification problem outlined

by Figure 2.1. As we can see, the system has one input, the external torque, that can

be directly manipulated by the experimenter, as well as two inputs from the central

nervous system, which are inaccessible. The outputs from the system are the joint

position and the myoelectrlc signal.

Consider first the problems associated with applying the inputs. A mechanical .

aetuator [39], using appropriate feedback, cau be configured as either a torque or p0

sition servo. Figure 2.3 shows how an actuator can be used to generate a controllable

torque input. In such an experiment, the position could he measured and fed back to

the subject, who would be instrueted to maintain a constant position. An alternative

experiment .is illustrated in Figure 2.4. In this case, the actuator is used to~

the joint track a given position command input. The subject would he instrueted to
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•

generate a prescribed muscle force, given the measured reaetion torque as feedback.

Kearney and Hunter discussed the merits and pitfalls of both experimental ap

proaches in a review of the joint d)"llamics literature [38]. They determined that

generating a position input is more technically demanding, as a faster, more powerful

aetuator is required than for the torque input case. Their analysis concluded that,

all things being equal, a position control experiment should yield better estimates at

relatively high frequencies, whereas torque control experiments should produce better

estimates of the low frequeney response.

However the aetuator is configured, the signal applied to the physiological system

will be a torque whose spectrum is dependent both on the spectrum of the input signal

and the dynamics of the actuator. In general, the aetuator will aet as a low-pass filter.

For example, the eleetro-hydraulic aetuator described by Kearney et. al. [39] had a

gain which was fiat to 25 Hz, followed by a third-order (60 dB per decade) IOll-off.

A more recent design [117] provides a fiat gain to 100 Hz, which then IOUs off at 60

dB per decade. Thus, the spectrum of the test input will depend on the dynamics

of the aetuator. .4JJ.y system identification method must take this non-white input

speetrum into account.

10
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We must a1s0 concern ourse!yes with measurement noise. Sources include nonlin

earities in the position and torque transd"cers. electrical noise in the sibIlal condition

ing apparatus, enyironmental noise, and quantization noise produced by the analogue

to digital conVerters.

If the system is like!y to remain constant over e.'l:tended periods of time. noise

efrects can be reduced by collecting long data records. This option is not ayailable

in studying joint dynamics, as long e.'l:periments are like!y to induce fatigue in the

subject. ,\illhile the e.\:tent of the changes induced by fatigue is not dear. for e.'l:ample

compare [29] v;ith [46], it is clear that we must minimize the effects of noise by using

robust techniques rather than by re!ying on the averaging properties of long data

records.

Finally, we must acknowledge that the system contains nonlinearities. For e.'I:

ample, there is evidence [3ï] to suggest that the "Refle.'I: Dynamics" block in Figure

2.2 responds primarily to the ve10city of muscle stretching, implying the presence of

something like a half-wave rectifier.

Further evidence supporting the existence of nonlinearities is provided by the

quasi-linear analysis performed by Weiss et. al. [104, 105, 106, .10ï, 108]. A second

order, linear mode! described the relationship between torque and position weil, pro

vided that the position input was limited to small perturbations arounda fixed mean

position. The parameters of the second-order mode! varied strongly with the mean

position, the leve1 of background contraction, and the size of the perturbations. The

changes in the linearized mode! strongly suggest the presence of underlying nonlinear

beha...iour.

Therefore, we need system identification methods that are capable of identifying

nonlinear systems using non-white test inputs, anâ that are robust in the presence

of measurement noise in the input, the output, or preferably both. Although we
- .~~

can only manipulate one of the inputs directly, we can modulate the d~ding .
o;;-?

inputs either e!ectrically, [92], or by asking the subject to traek a mo,:iÎlg target

signal [45, 6ïJ. Because these limited two-input experiments are possible,. we will also

examine methods for identifying multiple-input systems.
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• The balance of this review is organized as follows:

• Section 2.2 will explore the various representations used to describe linear sys

tems and the methods used to identify them from measurements of input-output

data.

• Section 2.3 will consider several descriptions of nonlinear systems and the tech

niques used in their identification. This treatment will be limited to single-input

systems.

• Section 2.4 'Ivill describe how some of the methods reviewed in Sections 2.2 and

2.3 have been extended to deal with multiple-input systems.

• Section 2.5 summarizes the methods discussed in this review, concentrating on

their potential application to the study of joint dynamics.

2.2 Linear System Identification

A linear system obeys two properties: su: :erposition and scaling. Hence, if F is a

linear operator:

Yl(t) =F(Ul(t))

yz(t) = F(uz(t))

•

2.2.1 Parametric Representations

A parametric mode! consists of a set of difÏerential or difÏerence equations which

describe the system dynamics. Such equations usually contain a small number of

parameters, which can be varied to alter the behaviour of the equations. The iden

tification of an unknown system comprises two stages. First the structure of ~e

parametric mode! is chOsen, then the parameters themselves are estimated. What

foUows is a brief description ofsome important parametric linear system structures.

For a comprehensive review of the techniques used to identify them, see Caines [11],

or Ljung [65].

12



• 2.2.1.1 Linear Difference Equations

\Ve can write the relationship bet,,"een the input. output. and noise as a liuear differ

ence equation. Following Ljung [65]. we write:

y(t) + aly(t -1)+ '" + an.y(t - na) =
bluet - 1) + b2u(t - 2) + ... + bn.u(t - nb)+ (2.1)

e(t) + Cle(t - 1) + ... + e".,e(t - ne)

u'hich can be u"ritten more compactly:

A(q)y(t) = B(q)u(t) + C(q)e(t) (2.2)

•

where A(q) = 1 + alq-l + .,. + a."..q-... and q-l is the bacl..ward shift operator.

This is the auto-regressive, moving average e.xogenous (ARMAX) mode!. The cur

rent output, y(t), depends on an e.xogenous input, u(t), an innovations process, e(t),

and the past values of the output. With respect to Figure 2.1, the polynomials

(A(q) , B(q)) correspond to the deterministic mode!, P, whereas (.:\.(q) ,C(q)) repre

sent the stochastic system, Fn. This mode! has severa! special cases, the first of

which is the autoregressive (AR) mode!:

A(q)y(t) = e(t)

in which the output depends on the current disturbance, as well as the na previous

values of the output.

Another special case is the moving average (MA) mode!:

y(t) = C(q)e(t)

in which the output depends on the previous values of the disturbance, e(t).

Combining these two, we get the autoregressive moving average (ARMA) model:

A(q)y(t) = C(q)e(t)

If we add an accessible input, u(t), to ~e AR. mode!, the result is an auto-regressive

exogenous input (ARX) mode!:

A(q)y(t) = B(q)u(t) + e(t)

13



• A special case of the ARX structure, in which there is no disturbance input, is the

finite impulse response (FIR) model:

y(t) =B(q)u(t)

In this case, the output depends solely on the previous values of the exogenous in

put. This structure forms the basis of many so-called non-parametric identification

schemes.

Once a candidate mode! structure and order have been chosen, the mode! represen

tation can be reduced to a parameter vector, e = [A.(q)B(q)C(q)]. The identification

problem, then, is to find the optimal vector in parameter space, given a particular

cost function.

2.2.1.2 State Space Models

Another parametric system representation is the state space model. In this case, we

consider a set of equations of the form:

Xk+l - .4.xk + BUk

Yk - CXk + Duk
(2.3)

•

where the sequences Uk, Yk, and Xk represent the system's input, output, and state

respectivel.y. The classical method for identifying these mode1s is the Ho-Kalman [28,

118] realization scheme. The impulse response (Markov parameters) of the system is

first identified from input-output data, and then used to compute the system matrices,

.4,B,C, and D .

Recently, Verhaegen and co-workers [96, 97, 98, 99] proposed a class of subspaœ

identification methods which estimate the system matrices directly, to within a simi

larity transform, from the input/output data. In this approach, the input and output

data sequences are entered into a Hankel matriJc, which is then compressed by' an

RQ factorization [20]. By partitioning R, it is possible ta recover a matnx with the

same column space as that of the extend~observability matrDc. Applying a singula.r

value decomposition [20] to this partition, and retaining only the singular vectors that

14



• correspond to significant singular \-aIues, recovers the observability matrix, to within

a similarity transformation. The number of singular \-aIues retained determines the

rank of the observability matrbi:. and hence the order of the system. As a result. the

task of model order selection is performed e.,plicitly, in contrast with other paramet

ric identification methods that generally rely on a separate model order test. such as

one of the many variants of the Akaike information criterion (AIC) [4. llJ.

Similar methods have been proposed by Van Overschee and de Moor [94.95]. and

Moonen and Ramos [i4J. Recently, subspace fitting techniques, originally de\'eloped

for array signal processing [91, 93, 102J, have been used to increase the accuracy of

the estimates of the system matrices [i6].

2.2.2 Nonparametric Representations

A linear system can be represented by its impulse response. In continuous time, we

can compute the output via the convolution integral:

y(t) = f h(T)U(t - T)dT (2.4)

where T is the memory length of the system, and h(T) is the impulse response. In

this case, as the lower bound of the integration is 0, the system is causal.

Given that the analy5is will be performed using sampled data on a digital com

puter, we will require a discrete time formulation. One benefit gained by restricting

ourselves to discrete time is that it avoids the mathematical difficulties associated

(2.5)

"..

with a continuous-time white-noise signal. In continuous time, a white noise signal

has infinite bandwidth and hence in1inite power. In discrete time, however, it is sïm

ply a sequence of independently distributed random variables. In discrete time,_the

convolution integral becomes the summation:
T-l

y(t) = li.t· E h(T)U(t - T)
=0

Here the memory length, T, and the lag, T, are integers. If the system is non-

causal, then the lower limit of the summation will he negative. The sampling incre

ment is li.tj for notational sïmplicity, we will assume that the sampling increment is

1,50 that it can be dropped.•
15



• If the input process is white, it can be shown [68] that the impulse response can

be recovered from the input/output cross-correlation function. Given N data points,

a biased estimate of the cross-correlation [5] can be obtained as:

l'o'. l
tPuy(r) = 1V L u(t - r)y(t)

1 t=r+l

Substituting (2.5) into (2.6)

• N T-l

~uy(T) - ~ L u(t - r) L: h(j)u(t - j)
=+1 j=O

- ~ h(j) {.~ilu(t - T)U(t - j) }

T-l

- L: h(j)~=(T - j)
;'=0

(2.6)

(2.i)

•

Hence, the input-output cross-correlation is equal to the convolution of the impulse

response with the input auto-correlation function. If the input is white, the auto

correlation function is an impulse, and the cross-correlation and impulse response

are equal. If the input is non-white, the input auto-correlation function must be

deconvolved, somehow, from the cross-correlation estimate.

Ljung [65] approached this problem by modelling the observed input as a white

noise process liltered by an autoregressive lilter. This lilter cau be estimated, and its

inverse (a moving average lilter) applied to both the input and output signals. The

cross-correlation between the liltered input and liltered output is then estimated.

Since the liltered input signal is effectively white, the cross-correlation estimate pro

vides an estimate of the impulse response.

Hunter and Kearney [30] nsed a different approach. The input auto-correlation was

estimated, and the convolution between the input auto-correlation and the impulse

response written in matrix form:
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• Ouv(O) Ouu(O) Ouu(l)

Ouv(l) Ouu(l) Ouu(O)
-

Ouv(T -1) ouuCT - 1) OuuCT - 2)

Ouu(T - 1) h(O)

OuuCT - 2) h(l)
(" ~)_..

Ouu(O) h(T - 1)

which may be written compactly as:

(2.9)

•

This equation can be solved eflicient1y, using Levinson's algorithm [20], since <Î>uu,

the matrix derived from the input auto-correlation function, has a symmetric Toeplitz

structure. As we shall see in Chapter 3, this procedure has substantial numerical

advantages over the scheme proposed by Ljung [65].

2.3 Nonlinear System Identification

2.3.1 Functional Expansion Methods

As was shown in Equation (2.5), a linear system can be represented by its impulse

responsej superposition guarantees that this fully characterizes the system. Volterra

[103] developed a generaJization of this representation for nonlinear systems in which

the single impulse response is replaced with a series of integration kernels. This

generaJization of the impulse response, usually called the Volterra series, can be used

to approximate a wide variety of systems. Indeed, Boyd and Chua [9] showed that a

finite Volterra series can be used to approximate any time invariant operator which

has fading memory. In the general case, the system output is generated by a series

of generalized convolutions:

lI(t) =f: fT .•.f h,,(Tl"'" T,,)U.(t - Tl).'. u.(t - T,,)dTl'.' dT" (2.10)
1&=0 10

The zero-order term, ho, is a constant, and is independent of any input to the

system. Clearly, for linear systems this term will be zero.

The first order kernel is similar to the linear impulse response. Indeed, for linear

systems the Volterra series collapses into its first order term, which is then precisely
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• equal to the impulse response. In any case, the first-order term represents that part

of the system response to an impulsive input that scales linearly 'with the weight of

the impulse. Its output is computed using a convolution integral:

(2.11)

•

The second-order Volterra kemel is used to compute the system response due to

the interaction of pairs of impulsive inputs. The second-order response is computed

via a generalized convolution integral:

faT faT h2(Tt, T2)U(t - Tl)U(t - T2)dT1dT2 (2.12)

For this purpose, a single impulse can be thought of as a pair of coincident impulses.

Thus, the diagonal elements of the second-order kemel give rise to that part of the

impulse response which scales with the square of the v,,"eight of the impulsive input.

Similarly, the n'th order Volterra kemel can be used to compute the system response

to n impulsive inputs, and its diagonal values will correspond to that component of

the impulse response which scales with the n'th power of the weight of the impulsive

input.

While this representation is useful in computing the system response to a given

input, the terms in the series are not orthogonal, and therefore must be identified

aU at once. A least squares solution to this problem, demonstrated by Doukoglou

and Hunter [17, 32], is computationaUy intensive, even for low-order systems with

comparatively short memory lengths.

Wiener [113] proposed a solution to this problem in which the Volterra series

is orthogonalized using a Gramm-Schmidt orthogonalization [20], assuming that the

input is a one-dimensional Brownian motion, x(t, ct). Wiener [113] defined Brownian

motion as the motion of a particle, in one dimension, such that given a reference

time, t 1, the departure at any time, t2' from the original reference position has a

Gaussian distribution. In addition, the distributions taken over two non-overlapping

time increments must be independent.

The parameter ct, in the Brownian motion x(t, ct), ranges continuously from 0

to l, and determines its path. Each path that the Brownian motion could fo11ow is
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• associated with a unique value of Q. Thus, integrating O\'er Q from 0 to 1 is equi\-alent

to integrating over the distribution of all possible Brownian motions.

Other investigators [62] recast \~ïener's continuous time formulation in discrete

time, replacing the Brownian motion input with a "white" Gaussian signal with

'\rariance u;. Each sample of this discrete time white noise sequence is the time integral

of a one-dimensional Brownian motion over the corresponding sample period. Thus,

this signal becomes a sequence of independent Gaussian random variables.

In both cases, the terms in the Wiener series are orthogonal, and cao be estimated

individual!y. Following the deve10pments given by Wiener [113), the system output

cao be written:

00

y(t) = L Gn[Kn,x(t, cr))
n=O

(2.13)

•

Kn is referred to as the n'th order Wiener kerne1, and the functionals, Gn[Kn,x(t, cr)),

will be chosen to be orthogonal, given a Brownian motion input, x(t, cr). Wiener's

approach involves constructing each successive functional, Gn , such that it is orthog

onal to any homogeneous funetional of lower order. The first such functional, K o, is

of zero order, and is a constant. A general form for the first order functional is:

To make this orthogonal to any zercKlrder functional, we must solve:

E [G1[Khx(t, cr))Fo[x(t, cr))) = 0

for any zero order functional, Fo[x(t, cr)). As x(t, cr) is a Brownian motion, setting

k1,o equal to zero solves this and orthogonalizes the first two functionals.

Similarly, starting with a general, second-order functional:

G2[K2,x(t, cr)) = JJK2(Tl,T2) dx(Th cr) dx(T2,cr) +

f k2,l(T)dx(T, cr) + ~.o

and orthogonalizing it with respect to al! zero and first-order functionals yie1ds:
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•

•

i\ote that in the preceding equations, the functionals have been defined in terms

of "Stieltjes" integrals, where the integration takes place along the trajectory of the

Brownian motion. Wiener [113J demonstrated that this could be transformed into a

time integra! by integrating by parts:

l J(t)dx(t, 0:) = J(l)x(l, 0:) -l j'(t)x(t, a:)dt

provided that the derivative of J(t) exists, and is bounded. The boundedness of the

derivative of the kernels is one of the conditions that restriets the class of functions

that cao be represented by the Wiener series.

Lee and Schetzen [62] reformulatÈ!d the Wiener series in discrete time using a

Gaussian "white noise" input signa!. In this formulation, the Stieltjes integrals of

V\lïener's [113] Brownian motion formulation are replaced 'II<"ith generalized convo

lutions. Palm and Poggio [iS] investigated the mathem.atical implications of this

change in the Wiener series formulation. In particular, they distinguished between

the "Stieltjes kernels" em.ployed by V\lïener [113] and the "symbolic kernels" used by

Lee and Schetzen [62]. They concluded that the validity of the Lee-Schetzen method

is restricted to the class of systems whose derivatives belong to the original V\lïener

class of systems, and that this new class of systems is smaller than the Wiener class.

In the discrete-time framework, the first three symbolic V\lïener functionals be-

come:

Go[Ko•'Il.(t)] - K o

R-l

G1[K1,'Il.(t)] - LK1(i)'Il.(t-i)
ï=0

R-l R-l

~[K2, 'Il.(t)] - L K2(i,j)'Il.(t - i)'Il.(t - j) - 0; :E K 2(i, i)
i,i=O i=O
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Similarly, the n'th order discrete Wiener functional can be written:• l~J R-l R-l

Gn[Kn , u(t)] = L L'" L
i=O 31=0 i,,-:i=O

R-l R-l (_l)i 1 ~i

"''' n·(Tu
L- ... L ?i( ?')1 "

k1=O k.=O - n. - _t . 2.

where LÏ J refers to the largest integer less than or equal to Ï.

Marmarelis and Marmarelis [68] and Rugh [84] give equations relating the Wiener

and Volterra kernels of nonlinear systems. Given the Volterra kemels, hn, the Wiener

kernels are found to be:

00

Kn('b'" ,1"n) = L
j=O

(n+2j)!~j

n!j!2j

100 h(n+2j) (Tb ••• , 'n, (Tb (Tb"" (Tj, (Tj)dUb"" dUj
-00

Similarly, given the ~ïener kernels, the Volterra kernels can be computed as:

00

hnh,···,T,,) = L
j=O

As each functional, Gn[Kn , u(t)], is orthogonal to ail functionals not of the same

order, Wiener [113] observecl that "instrumental" kernels could be used to isolate

an individual kernel. If y(t) is given by Equation (2.13), and Qm is an m'th order

functional, Qm[qm, u(t)], then:

00

E[y(t)Qm(t)) = L E[G,,(t)Qm(t))
=0

However, due to the orthogonality of the Wiener functionals:

(2.14)

E[G,,(t)Qm(t)] =0 form=jén

•
Hence, the only non-zero termln (2.14) is:

E[Gm(t)Qm(t)] = m!~J...f h".(Th':" Tm)qm(~h"" Tm)d'l"" dTm -

Furthermore, if the m'th order system kernel is to be expanded in terms of an

orthogonal basis, then m'th order instrumental kernels can be constructed from those
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• basis functions. Applying these to the input, multiplying the result by the observed

output, and taking the time average results in the coefficients of the basis functions

and, eventually, an estimate of the m'th order kernel.

Wiener [113] suggested the use of Laguerre functions as a basis for the kernels. He

showed how these could be generated using simple Re ladder networks, and detailed

apparatus for performing both the multiplication and time averaging operations.

Lee and Scbetzen [62J used products of delta functions as the instrumental kernels.

As sucb, the coefficient computation was implemented as a series of cross-correlation

calculations. The zero order Wiener kernel is equal to the output mean. Once this

has been computed, it is subtracted from the output.

1 N
ho - NLy(t)

t=1

yo(t) - y(t) - ho

(2.15)

(2.16)

The fust-order Wiener kernel is then estimated by computing the cross-correlation

between the input and the output residuals.

1 N
k1(T) = ~Ul/O(T) = N L u(t - T)YO(t) (2.17)

t=T+l

The output due to the first-order kernel can then be evaluated using a discrete

convolution,'and subtracted from the remaining system output:

T-l

Yl(t) =yo(t) - L k1(T)U(t - 1')
=0

(2.18)

(2.19)

•

The second-order kernel is then estimated from the second-order cross-correlation

between the input and the residuals.

• • 1 ~
~(Tl' 1'2) = tP""Y1 (Tb 1'2) = N L- u(t - Tl)U(t - T2)Yl(t)

t=l+max(n;':,)

Marmarelis and Marmare1iS [68] considered the computation of Wiener kernels

via the Lee and Schetzen [62] approach using Ganssian white noise inputs, as weil as

several familles of pseudo-random sequences.
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• The Lee and Schetzen implementation of the Wiener series has two distinct disad

vantages. First, it requires a white noise input which is often impossibll' to gt'nt'rall'.

Secondly, the shape of the kernels is a function of the input power le\"C1. (T~. Freu('h

[19] and Korenberg and Hunter [61] considered how to estimate Wiener kerue1s us

ing non-white inputs. French calculated the Wiener kernels in the frequency dOlmùn

using the following relations for the zero throngh second-order Wiener keruels:

Ho - Y(O)

Hl(w) _ < Y(w)U"(w) >
< U(w)U"(w) >

(2.20)

(2.21)

< Y(w +n)U" (w)U"(n) >
2 < U(w)U"(w) >< U(n)U"(n) > w+n;o!:O (2.22)

where U(w) is the Fourier transform of u(t), U"(w) is its complex conjugate, and <>

represents an ensemble avP.rage.

Korenberg and HUIlter [61] computed keme1s in the time domain and compensated

for non-white input spectra by deconvolving the input auto-correlation from the high

order input-output cross-correlations. Specifically, the fust order kernel was estimated

using Equation (2.9). To estimate the second-order kemel, ~(ih i2 ), observe that:

1

rPUUIIU1,i2) = 2 L h2(ill i2)r!>uu(il - il)r!>uu(i2 - i2)
il,i2=O

Define:

(2.23)

which can be used to solve for each of the columns of g. Equation (2.24) can theu he

solved, row br row, to yield an estimate of ~(illi2). Similar procedures can he used•

1

gUl' i2) = L h2(il , i2)r!>uu(il - il)
il=O

We can theu rewrite Equation (2.23) as:

1

4Juuv(il,h) = 2 L g(il,i2)rPuu(j2 - i2)
;'=0

(2.24)

(2.25)
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to correct higher-order Wiener kernels for imperfections in the input spectrum. Notice

that the estimation of an n'th order kernel requires each one-dimensional slice of the

n'th order cross-correlation, taken parallel to each of its n axes, to be multiplied by

the inverse of the Toeplitz structured auto-correlation matnx. This is equivalent to

dividing the n'th order cross-spectrum by the n'th power of the input auto-spectrum

in the frequency domain.

The time and frequency domain techniques are equi....alent [109J, and cao compen

sate for minor imperfections in the input spectrum. Howe....er, in estimating second

and higher-order kernels, both techniques v..ill break down if the input spectrum has

any significaot "holes". For the first-order kernel, 'Ive cao see from Equation (2.21),

that for any frequencies, w, where U(w) is near zero any noise present in the es

timate of Y(w) will be amplified by 1U~"'lI" For the second-order kernel, Equation

(2.22), shows that estimation noise will be amplified by IU(~)I" Thus, the sensitivity

to defects in the input spectrum increases dramatically with the kernel order.

These ~.rnel estimation methods are based on cross-correlations or cross-spectra,

of various orders, between the system input and output. Korenberg et al. [54, 55, 59)

deve10ped a technique in which a series of signals are derived from the measured

input and then orthogonalized with respect to each other. A least squares fit with

the system output is then used to assign optimal weights to cach of these orthogonal

basis functions. In its original form [59), the basis functions Were created and orthog

onalized explicitly, before performing the regression. A subsequent "fast-orthogonal"

algorlthm [54, 55) functions similarly, but the orthogonal functionals are nevet com

puted explicitly, resulting in a large saving of computation time.

Goussard et al. .[21) proposed a kernel estimation technique based on stochas-

tic appro.'Cimation. As in Korenberg's orthogonal methods, Goussard's technique

attempts to solve the mjnjmum mean SCJ.uare error problem. However, jt uses an .~~'
.~

iterative stochastic approximation technique to obtain the solution, rather than the

exact mjnjmjzation used by Korenberg.

Marmarelis [71) recently proposed a method, closely related to Wiener's [113) orig

inal proposa!, in which the kernels are expanded using a basis of Laguerre polynomial
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filters and synthesized using a multiple-input Hermite polynomial nonlinearity. l7nlike

Wiener's proposal, all of these operations are accomplished digitally. Furthermore.

the projections onto the instrumental kemels are accomplished using a least squares

error regression, rather than a weighted time average. This approach is implemented

by filtering the system input \Vith a bank of Laguerre filters, and using a least squares

regression to fit a multiple-input Hermite polynomial between the outputs of the fil

ter bank and the observed output. In addition, because the polynomial coefficients

are evalaated in a single regression, rather than with indi.idual time-averages as in

'Wïener's [113] original method, the white-noise requirement can be rela.,ed some

what. This method )ields very accurate estimates, from relatively short data records,

and requires relatively little computational effort.

The ocly potential shortcoming of this method lies in the size of the least squares

regression. If m basis functions are required and k is the ma.'i:imum kemel order, 'che

regression matrix will have (~;)! columns [71] and N rows, where N is the number of

data points. While th:is approach works excellently with relatively few basis funCtiOllS,

the size and complexity of the regression increase rapicily with both the number of

basis functions and the kemel order. This leads to a relatively large number of model

parameters, and hence to relatively poor noise performance.

One approach used to overcome this düliculty involves the identification of prin

cipal dynamic modes [72, 73). This technique identifies so-called principal dynamic

modes of a system by performing an eigen-decomposition on a matrix consisting of.

the fiIst and second-order coefficients of the static nonlinearity. The principal eigen

vectors of th:is matrix correspond toethe impulse responses of the principal dynamic

modes. The new nonlinearity is then fitted between the outputs of thé principal dy

namic modes and the observed output. If the system has a small,number of. these

mOdes, th:is intérmedlate step can result in a dramatic reduction in the number of

parameters required, and hence an increase in robustness. Note however, that the use

of an eigen-decomposition limits this method to extra.eting the dynamic modes from

the fiIst and second-order Wiener kemels.
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2.3.2 Block Structured Methods

In the block-structured approach systems are represented by an interconnection of

linear dynamic and static nonlinear e!ements. A common block structure is the LNL

or sandwich mode! illustrated in Figure 2.5. This mode! consists of a linear dynamic

element, h(.), whose output, x(t), is transformed by a static nonlinearity, m(·). The

output of the nonlinearity, w(t) =m(x(t», is processed by a second linear system,

g(T). Methods for the identification of these systems were first proposed by Korenberg

[48, 49, 50]. Suhsequently, several other methods have been proposed [6, 60, 85, 90].

Dynamic Linear Static Nonlinear Dynamic Linear

u(t) 1 H H 1 y(t)h(.) m(·) g(.)

Figure 2.5: Block diagram of an L!'I"L sandwich system

The LNL cascade bas two special cases, the Hammerstein system (!'I"L) and the

Wiener system (LN), shown in Figures 2.6 and 2.7, respectively. Hunter and Koren

berg [31] developed methods for the identification of the LNL cascade, and these two

special cases, based on an application of the following theorem, whicb. is originally

due to Bussgang [10].

Let u(t) and y(t) be two zero-mean Gaussian signaIs, and let m(·) be a

continuous, zero-memory,nonlinear tmnsformation. If z(t) = m(y(t)),

then:

where K is a constant which depends on the variance of y(t) and on the

shape of the nonlinearity.

Hence, the linear element in a Wiener or Hammerstein system cao be estimated

from the first-order cross-coIIelation between the system input and output. By Buss

gang's theorem, this will be proportional to the cross-cô!'Ielation measured across the
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• linear element. The impulse response can then be estimated by decon\'oh'ing the

inpUt auto-correlation function using Equation(2.9).

If the Taylor series for the nonlinearity contains no significant odd terms. then

the constant of proportionality in Bussgang's theorem will be zero. and identifi·

cation based on the fust-order input-output cross-correlation will not be possible.

However, Korenberg and Hunter [31, 60] demonstrated that any non-zero slice of

the second-order input-output cross-correlation \\ill be proportional to the cross

correlation across the linear element. For the second-order cross-correlation to be

non-zero, the Taylor series for the nonlinearity must contain at least one significant

even term. Thus, if identification based on the first-order correlat.ion fails, a single

slice of the second-order correlation can be used înstead.

The identification of an Li\j'L cascade model depends on the fact that its Wiener

and Volterra kernp.ls are proportional to each other [48, 49, 50, 60], a corollary of

Bussgang's theorem [10]. Hence, for a white Gaussian input signal:

tP"1I(T) - k1f g(U)h(T - u)du

tPu"1l(Th TZ) - kzloT g(U)h(Tl - U)h(Tz - u)du

(2.26)

(2.2i)

•

where k1 and kz are constants of proportionality which depend on the shape of the

nonlinearity m(·). If the time integral of h(T) is non-zero, i.e. the first linear element is

not high-pass, Equation (2.2i) alone will be suflicient to identify both linear elements .

[60],provided that lez is non~zero.

2.3.2.1 Hammerstein: Systems

Iterative methods have been proposed for the ideJitification of Wiener and Ham

merstein systems [31]. The first step in the identification of a Hammerstein system

(NL, see Figure 2.6), is to fit a linear system between the output, y(t), and the input,

u(t). This results in h-1(T), an estimate of the inverse of the linear element. Con

volving this with y(t) p.roduces an initial estimate, x(t), of the intermediate signal,
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Static Nonlinear Dynamic Linear

U(t)! m(.) H h(...) 1 y(t)

Figure 2.6: Block diagram of a Hammerstein system

x(t). We can then approximate the static nonlinearity, m(·), by fitting a high-order

polynomial between the input, and x(t). Applying this polynomial to the input, u(t),

produces an updated estimate of the intermediate signal, x(t). The inverse of the

linear e1ement, h-1( ...), can then be updated by fitting a linear system between the

output and the updated estimate of the intermediate signal. This process is repeated

until it converges. Note that the inverse filter may be non-causal, and the static

nonlinearity never needs to be inverted.

2.3.2.2 Wiener Systems

A similar method was proposed [31] for VVïener systems (LN, seeFigure 2.ï). A

linear filter, h(...), is estimated between the input, u(t), and the output, y(t), and

its output, x(t), is generated by convolution with u(t). A static nonlinearity is then

fitted between y(t) and x(t); this provides an estimate of the inverse of the static

nonlinearity in the original system. The output, y(t), is then transformed by this

inverse estimate, producing an updated estimate, x(t), of the intermediate signal,

x(t). The linear e1ement is then re-estimateci, this time between the input and x(t).

The iteration continues until it converges.

Dynamic Linear Static Nonlinear

u(t) 1 L:(~ 1 y(t)
--, h(.) Il m(-) .. ,

Figure 2.7: Block diagram of a Wiener system

The major difliculty with this approach lies in the estimation of the inverse of

the static nonlinearity. If the static nonlinearity is not a one-teH>ne funetion over the
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range probed by the identification e.'i:periment. its inverse will not cxist sincc there

will be information present in the nonlinearity's input, x(t). that cannot be recovered

from its output, y(t).

Wigren [114] considered the estimation of Wiener systems under the assumption

that the static nonlinearity "'as a one-to-one function and exactly known. The output

was assumed to contain additive noise. Recursive output-error methods were devcl

oped which identified the linear system from the input-output data, and compared

with "conventional linearizing inversion", in which the inverse of the static nonlin

earity is applied to the output signal, yielding an estimate of the output of the linear

element. The signal to noise ratio (SNR) of the measured output was shown to be

higher than that of the "linearized" signal. It was suggested that if the noise entered

the system before the static nonlinearity, then the linearizing inversion would yield

better results than methods which use the input and output measurements directly.

2.3.2.3 ~~ SJf,St~

Korenberg and Hunter [60] described an iterative procedure for LNL identification.

Using Equation (2.26), the convolution of the two linear elements is estimated from the

first-order input-output cross-correlation. A fust-order unity-gain filter is constructed

with a time constant that best fits this correlation, and is used as an initial estimate

for the first linear element, h(-r). Its output, i(t), is then generated by convolving h(t)

with u(t). A Hammerstein system is then estimated between i(t) and the output,

y(t), using the iterative technique described above. A relaxation technique is then

used to modify the estimate of the initiallinear system, and the process rep.eated.

As in the Hammerstein case, the nonlinearity is never inverted, thus avoiding the

difliculties posed by non-invertible non-linearities.

Correlation-based methods for' the identification of Wiener, Hammerstein, and

LNL black cascades an assume that the system actually has the appropriate struc~ .

ture. Korenberg [57] developed a least squares method which estimates the best

Hammerstein system between a given input and output without assuming any partic

ular structure for the system. It calculates the Hammerstein system that min;mizes
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• the mean square error between the system and model outputs. Although this a1go

rithm is Iimited to white input signais, it requires no assumptions about the amplitude

distribution.

2.3.2.4 Estimation of the Nonlinearity

The methods discussed above concentrate on the identification of the dynamic linear

elements of block-structured models. Re!ative!y Iittle attention has been given to the

static nonlinearity, which is usually modelled as a polynomial funetion.

However, Greblicki and Pawlak [22, 23, 24, 25, 26, 2ï, 80, 81] deve!oped methods

in which the static nonlinear e!ements of both \X;ïener and Hammerstein systems are

represented by nonparametric functions. The identification of the linear subsystems

was not diseussed, but they were assumed to he represented by a set of linear state

equations (2.3) that had to be at least asymptotically stable.

Their technique for VVïener systems [23] requires the estimation of the inverse

of the statie nonlinearity. As a resu1t, the nonlinearity is restrieted to the class of

strietly monotonie Bore! functions having bounded derivati\.-es. The restriction to

strict1y monotonie nonlinearities is shared by the algorithm described by Hunter and

Korenberg [31].

For a Hammerstein system, sucb as in Figure 2.6, where the linear subsystem is

represented by astate space mode! such as in Equations (2.3), the method proeeeds

as follows. The output sequence is:

where m(·) is the statie nonlinearity. If the samples of '11.1: are independent, then the

statie nonlinearity output, m('II.), will aIso be white. Furthermore, the current value

of the state, XI:, will be independent of the current input, '11.1:. Hence:·

E[YI:\'II.I: = '11.] - CE[xl:l'II.l: = '11.] +DE[m('II.I:) l'II.I: = '11.]

- CE[xl:] + Dm('II.)

- .B+am('II.)
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Therefore, ,B depends on the expected \-alue of the state. Xko as weil as any con

stant offset present in the static nonlinearity. If the nonlinear characteristic. ml').

is assumed to be odd and the input distribution is assumed to be symmetric about

zero, (3 = O. The \-alue of Cl< can be assumed to be 1, as any change in the scaling of

the nonlinearity output \\ill be absorbed in the estimate of the linear element.

Greblicki and Pawlak also considered the case where m(·) was not odd. or the

input distribution \vas not symmetric. They concluded that under those conditions.

it was possible to recover only am(·) + {J, with both Cl< and {J unknown. However. if

m(O) \\'3S known to be zero, they observed that they could take m(u) - m(O) as an

estimate of am(·). 'l'hus, although a parametric representation of the nonlinearity is

never required, it is still severely restricted in form. It must either be odd and have

a symmetric input, or m(O) must be O. Given these restrictions, it is unclear how

applicable these techniques, at least in their present form, would be to the study of

physical systems.

2.3.3 Parallel Cascades

Palm [77] showed that any finite dimension, finite order, finite memory Volterra sys

tem can be represented exactly by a finite sum of Ll'l'1 models, as illustrated in Figure

2.8. More recently, Korenberg [56] showed that this was true for Wiener cascade ele

ments as well. This was a significant advancement, since the identification algorithms

for VVïener models are much simpler than those for LNL cascades (See Section 2.3.2).

Thus, practical methods for the identification of parallel cascade models were made

possible.

In general, the parallel cascade method [51, 52, 56, 58, 77] consists of fiIst fitting

a block-structured, nonlinear system between the input and the output. The output

of this fiIst system is computed, and subtraeted from the measured output. A second

blockstructured mode! is then fitted between the input and the I)utput residuals. This

process is repeated until the variance of the output residuals is reduced to the point

where no additional signilicant paths can be added te the mode!. The estimation of

the fiIst two paths is illustrated in F'1gU!e 2.9.
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Linear Dynamic Static Nonlinear Linear Dvnamic. .
hl (T) ml(') 91 (T)

\h2(T) m2(-) 92(T)
u(t) -- ~ y(t)

· · : 'P· ·· • •

• · •• · •• · •

h,,(T) m,,(.) 9n(T)

•

Figure 2.8: A para1le1 cascade mode1 made up of LNL paths

(2.28)•

\Vith reference to Figure 2.9, consider the identification of the j'th path. In

this case, a Wiener cascade v.ill be fitted between the input, u(t), and the residuals

remaining after the outputs of the fiIst j -1 paths have been removed, Vi-l(t). The

output of this new cascade will be labelled Yi(t).

The key to the paralle1 cascade method's success is the estimation of the linear

parts of the cascade paths. Palm (77) v."aS not aware of any method for the identi

fication of L..1IU. cascades. Korenberg [56) made a number of suggestions as to how

Wiener or LNL paths might be constructed. The only method developed in detail

. involved using slices of input/output cross-corre1ation functions, of various orders,

as estimates of the linear subsystems of Wiener cascades. The impulse response of

the linear part of the fiIst Wiener cascade was estimated from the fust-order input

output cross-corre1ation. Subsequent paths used single slices, selected at randoIn, of

the second-order cross-corre1ation function between the input and the output residu

ais. r'urthermore, randomly weighted impulses were added to the diagonal e1ements of

the slices. For example, if the j'th path was based on the i'th slic<".-;)f the second-order- .
corre1ation, the hear subsystem would have:

1 T-l
h;(T) = '" L u(t - T)U(t - i)vi-l(t) + Cj6iT

•• =m=(i,l:)
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Unknown yo(t)

Nonlinear System
u(t)

Dynamic Linear Static Nonlinear

hl (.) mlO
yo(t)

Step l'

Step 2:

Unknov;n y(t)
Nonlinear System

~?",(tl

u(t)
hl (.) mlO

Yo(t)

Dynamic Linear Static Nonlinear

~(.) 7n2(')
Yl(t)

Figure 2.9: The parallel cascade method for nonlinear system identification.

1. Fit a Wiener cascade between the input and output of the nonlinear system.

2. Subtraet the output of the first~ cascade from that of the unknown system,
generating the output residuals. Fit a Wiener cascade betweèn the input, and
the output residuals.

•
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as its impulse response, where Cj is a random weight, chosen such that the sequence of

weights, Cj, vanishes as j goes to infinity, and 6i • is the Kroneker delta. The vanishing

sequence of randomly weighted impulses were required to prove convergence.

Given the random selection of paths, it is likely that many insignificant paths

would be selected. Korenberg proposed a correlation based test to determine whether

or not a given cascade path models a significant portion of the remaining dynamics.

Specifically, he observed that if a cascade path were fitted between two independent,

zero-mean Gaussian sequences, then:

",Y"f~+l~(t,;..) 4
- < T ~2~v"f(t) N - + 1

with a probability of about 0.95. In keeping '11IÏth our notation, Yi+l(n) is the output

of the i + l'th path, vien) is the i'th residual, N is the length of the data records and

T is the memory length of the cascade path. The overbar indicates a time average.

Thus, when a new cascade path is identified, the ratio given on the left hand side

of (2.29) is formed. If this ratio exceeds the threshold given on the right, then the

new pathway is likely to contain useful information about the sYStem dynamics, and

is added to the model. If the ratio is less than the threshold, the pathway is probably

modelling noise, and is rejected.

2.3.4 Parametric Methods

Billings and Leontarities [63, 64] proposed a general parametric structure for the

analysis of nonlinear systems. This so-called NARMAX structure can be used for the

idènti1i.cation of both the stochastic and deterministic components of a system. Ifwe

let F be a nonlinear mapping, and e(n) be the disturbance, or innovations, process,

then the mode! output can be wrltten:

yen) = F[y(n -1)," .. ,yen - k), ",(n)," •• ,",(n - p), e(n -1), .. ", e(n - p)] + e(n)

In general. extended least squares methods [7, 8] are used to identify the parameters

of this class of models. Korenberg's [54] fast orthogonal algorithm is well suited to

this class of nonlinear clliference equations. Recently, neural networks have been used

to select the optimal parameters for these models [14].
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2.4 Multiple Input Systems

In this section, we will consider the identification of multiple-input single-output

(MISO) systems. In one sense, the e.'i:tension to multiple-input multiple-output (l\mlO)

systems is trivial, as one 1'.1150 system can be identified for each of the outputs. This

approach, which was used by Korenberg and Hunter [31, 53] in their treatment of

MIMO LNL systems, has the disadvantage that any dynamics that are common to all

outputs must be modelled separately in each subsystem.

One of the convenient features of state space models (See Equation 2.3) is that

they are readily generalizable to the ML\olO case. Ali that changes are the dimensions

of the system matrices .4, B, C and D.

2.4.1 Linear Systems

Given mat one of the defining properties of a linear system is superposition [5], there

is little difference between single-input and multiple-input linear system identification.

Furthermore, a multiple-input system is fully characterized by the impulse responses

associated with each of its inputs. Provided that the test signaIs are uncorrelated

with each other, performing single input identifications between each input and the

output will yield the impulse responses, and give a complete description of the system.

Figure 2.10: Using superposition, a two-input linear system (a) can be decomposed
into two single-input linear systems (b)

Consider a. two-input system, shawn in Figure 2.10, driven by two independent

inputs, 'Ul(t) and 'U2(t). Let the output due to 'Ul(t) acting alone be Yl(t), and the
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output due to U2(t) be Y2(t). Then the output observed when the the first input is

driven by UI and the second input is driven by U2 is:

y(t) =YI (t) + Y2(t)

Given that the inputs are uncorre!ated, YI and Y2 ",ill also be uncorre!ated. Hence,

if one were to attempt to fit a linear system between UI and y, the signal Y2 would

appear to be output noise. Similarly, YI would act like output noise in an attempted

identification between U2 and y. As a result, it is often better tO attempt to identify

the whole system in one operation. This is the approach used by ML\10 state-space

methods such as the MOESP schemes [96, 98, 99).

2.4.2 Quasi-Linear and Time-Varying Systems

A classical method for analyzing nonlinear systems is to linearize them over a narrow

range around an operating point. For a single-input system, the operating point is

defined in terms of the statistics of the input signal, usually its mean. For a multiple

input system, the operating point may depend on the values of the other inputs. In

identif:ying such a system, all of the Parameters that define the operating point are

fixed. A linear identification is then performed between the remaining input and the

output. The operating point is changed, and the experiment repeated. Once a family

of linear descriptions has been identified, a regression may be performed between the

parameters of the operating point and seme features of the linear responses.

This approach was used by Weiss et. al. [104, 105, 106, 107, 108), in the study

of the dynamics of the human ankle. A second-order linear mode! was shown to be

adequate to e.'tPlain the dynamics of the human ankle, but the parameters of the

mode! depended on the operating point. In analyzing the resu1ts, Weiss et. al. used

the mK form of the second-order linear mode!, hence:

T(t) = lë(t) + Bè(t) + Ke(t)

where T is the torque, e is the angular position, and 1,B and K are the elastic, viscous

and inertial parameters of the mode!. The inertial parameter, I,was shown to be
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• constant over the full range of motion. and at alllewis of background contraction. Th.,

spring constant, K. ",as sho\Vn to \o.ry linearly ",ith the mean background cont!al"tion.

although the slope \Vas higher for increasing contraction in the plantarflcxing 1llIlSd.,s

than in the dorsifle."cing mnscles. The viscous parameter. B. \'aried in sucll a \Vay '1$

to keep the damping of the system relatively constant. despite large \'ariations in th.,

background contraction level.

"Vhile this quasi-linear approach can be used to produce models of the system

under a wide variet)· of conditions, it is limited to describing the system at a particular

operating point. It provides no information about how the system behaves while the

operating point changes.

If the operating point follows a particular time trajectory, the system can be

!inearized about that trajectory, and represented as a time-vaI)i.ng system [65]. Snch

a S)"Stem cau be described using a time-varying convolution [67].

T-l
y(t) = L: h(t,j)x(t - j)

j=O
(2.30)

where h(t,j) describes the time-varying !inear system. In this formulation, the func

tion h(t,j), evaluated at time t, computes the current output, y(t), from previous

T - 1 samples of the input. Heuce this description corresponds to a time-varying

weighting function.

There is an equal1y valid formulation where the system is described using a time- ..

varying impulse response:

t

y(t) = L: h(t,j)x(j)
j=t-T

(2.31)

•

In this case, h(t,j) indicates the value of the impulse response that is associated

with the input that occurred at time j. The two descriptions are equivalent. MacNeil

et. al. [67] describe the transformation between the two formulations.

Note that this description depends on the particular time course, or trajectory,

followed by the operating point. No information is provided about the system during

trajectories other than that used to create the mode!. In order to achieve that goal,

a more generai multiple-input nonlinear S)'5tem description is needed.
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• Recentiy, this time-varying technique was used to study changes in the linearized

dynamics of the human ankle during step changes in the background contraction

level [67], as weil as during an electrically evoked muscle twitch [92]. They have

a1stl been used to examine changes in the dynamics of the stretch ref!e., E)':IG during

rapid isometric contractions [45] and rapid imposed movements [44]. In ail of these

experiments, the quasi-linear second-order mode1s proposed by Weiss et. al. [104, 105,

106, 107, 1U8] were sho\\"D. to apply before and weil after the change in operating point.

Had there been no dynamics associated \\"Îth the operating point, the time-VaI1ing

model would have shifted through a series of second-order mode1s whose parameters

varied as they did in the quasi-static e>..-periments. However, in ail cases, the second

order mode1s broke dov,"D. during the rapid shift in the operating point. This suggests

that there is adynamie, nonlinear relationship between the parameters that define

the operating point in each of these experiments, and the position perturbation.

Hence, these experiments have taken a d)"D.amic, multiple-input, nonlinear system,

and ailowed it to be lineari2:ed about a particular trajectory. The time-varying, quasi

linear analysis yields a description of the system, but only for points on the trajectory

imposed by the experiment. To fully explore the multiple-input nonlinear relationship,

a moregeneral model, and tools for its identification, are needed.

2.4.3 Functional Expansions

The Volterra series representation of a nonlinear system has been extended to caver

multiple-input systems [69]. Tv,"O t)"pes of kerne1s are required: self-kerne1s, each

driven by a single input, and cross-kernels, which have multiple inputs. Thus, for a

two-input system terms of the form:

are added ta the Volterra series output given in Equation (2.10). Here, ~"U. (1'1,1'2)

is a second-order cross-kernel which is first-order in each of two inputs, '11.1 and '11.2.•

T

f f ~U1 .... (T1> T2)'II.1(t - T1)'II.2(t ~ T2)dTldT2

T1.T1=O

(2.32)
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•

Similar e.'I.-pressions can be written for higher-order cross-kernels. and for cross-kernels

that involve more than two inputs. The lowest "'rder cross-kernel that can be associ

ated with k inputs is fust-order in all k inputs, or k'th order overall.

As in the single-input case, the terms in the multiple-input Volterra series are not

orthogonal. As a result, methods for the identification of multiple-input functional

e>..-pansions must be based on the Wiener series, and to date have required either

'I\'hite, or nearly white, Gaussian inputs. These methods have been used primarily in

"'Iision research [69, 115, 116], where the generation of such inputs does not pose any

special prob1ems.

A particu1ar focus in this review has been towards methods suited for the study of

human joint dynamics. As stated previously, one of the key requirements is the use of

significantly non-white test signais. Hence, the functional-expansion based methods,

which require white inputs, are likely to be of little use.

2.4.4 Block Structures

Multiple input b10ck structures seem to ho1d more promise. Korenberg [53] briefly

considered the extension of single input LNL cascades to a MIMO case, and showed

that single-input identification methods could be used to identify a multip1e-input

LNL cascade. The only extension required 'l'I"8S the estimation of a multi-dimensional

nonlinearity.

Chen et. al. [12, 13] studied severa! multip1e-input b10ck structures, and derived

charaeteristic relationships between their low order self- and cross-kernels. These

relationships provide necessary, but not suflicient, conditions. If a system has a par

. ticWar structure, the kernels must obey these relationships. However, kernels which

obey thcse relationships do not necessarily arise from systems with tha.t structure.

Thus, if anatomical considerations were to rule' out ail but a small number of

possible structures, kernel tests could be used to detéip"ine the most appropriate

structure, and the method specialized to that structure used to identify it. Chen

[12] developed severa! techniques, each specialized to a particular struCture, which

could be used to compute the IRFs of the linear elements, given estimates of the fiIst-
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Figure 2.11: Multiple-input Wiener cascade path proposed by Korenberg

through third-order Volterra kernels. The accuracy of these techniques, however,

is limited by the accuracy of the initial kernel estimates. Unfortunately, there are,

as yet, few methods specialized to particular multiple-input block structures, which

estimate their dynamics directly from the input-output data.

2.4.5 Parallel Cascades

Korenberg [56J considered the extension of the parallel cascade method to the multiple

input case. The dynamics of the self-kernels could be modelled using single-input

cascade paths, as in the single-input version of the algorithm, described in Section

2.3.3. To capture the dynamics of the cross-kerne1s, Korenberg proposed incorporat

ing paths where:

(2.33)

•

and where the output is computed as:

T-l

wn(t) =L h(T)Ul(t -.) +CnU2(t - i)
=0

where Cn is a randomly chosen weight. A block diagram of a single path is shown in

Figure 2.11. In principle, _a parallel cascade assembled from elements such as these is

capable of representing any system which has a multiple-input, :6.nite Volterra series

e.'\."p,ansion. However, CO'lvergence is likely to be slow, as the slices used in Equation

(2.33) are selected randomly. Filrthermore, the only nonlinear interaction between
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inputs is provided by the single-input nonlinearity acting on the sum of the output

of the linear filter (the tOP pathway in Figure 2.11) and the delayed and (randomly)

scaled version of the other input (the lower pathway).

2.5 Summary

In this review, we considered methods that might be used to construct mathematical

models of the human peripheral neuromuscular S)'Stem. We considered the strengths

and 'Iveaknesses of both morphological modelling and s)'Stem identification. We con·

cluded that system identification techniques should be used to create a black-box

model, which could then be used to validate any morphological models that may be

postulated.

Given the structure and comple.'l(Ïty of the peripheral neuromuscular system, meth·

ods must be capable of identifying multiple-input nonlinear systems. Due to the con·

straints imposed by the experimental apparatus, these methods must be resistant to

the effects of noise, and should place minimal restrictions on the test input. The bal

ance of the review considered various system identification techniques, with reference

to these requiremen'tS. Our findings may be summarized:

• The parallel cascade [56) and the Laguerre e.-q>a.nsion [71) methods both hold

promise for the jdentification of single-input nonlinear systems, especially when

there is no a priori structural information available. If the system is known

to have a simple block structure, such as a Wiener, Hammerstein or LNL, a

method specialized to that structure should be used.

• When a block-structured method is used, the only dynamic elements that must

be estimated are !inear systems. Hence, correction for the input spectrum in

volves only a single division in the frequency domain (Equation 2.21), or solu

tion of Toeplitz matrix equation in the time domain (Equation 2.9). As a re

suit, block-structured methods, and by extension, the parallel cascade method,

should be relatively insensitive to defects in the input spectrum.
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• :"0 suitable method for the identification of multiple-input nonlinear systems is

evident. Given the relative insensitivity of block-structured methods to defects

in the input spectrum, the extension of either specific block-structured methods

or the parallel cascade method to the multiple-input case would seem to hold

promise. Given its modest computational requirements and relative insensitivity

to the input spectrum, an e.,..tension of the Lagu.m:e ~-pansion method to the

muitiple-input case may also be applicable.

In the subsequent three chapters, we will e.'\-plore some of these possibilities.
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Chapter 3

Nonparametric Identification of

Linear Systems

In this chapter, we ",il! analyze the performance of the nonparametric Fm filter

estimate provided by the inversion of the Toeplitz matrbc in Equation (2.9). Aside

from its use in the identification of linear systems, this algorithm forms the basis for

the ensemble method used to identify time-varying systems [44, 45, 6ï, 92), as well as

the block-structured [31, 60] and parallel cascade [56] methods. Furthermore, it will

play an important role in severa! new algorithms developed in this thesis.

3.1 Prelimjnaries

Throughout this and the subsequent two chapters we will make e>.,"tensive use of the

following result, which tan be found, for example, in Bendat and Piersol [5]. Given

n zero-mean, jointly Gaussian random variables Xl through:!:n. the product:

is zero for odd values of n, and for even n, the expected value is equal to the sum,

over aU possible permutations of the product of the expected values of produets of

pairs of random variables. For example, when n is 4:
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• and, in the special case where ail the Xn are identically distributed:

E[xi . X2 • " ••• xnJ - (1·3·5· ... · n - l)E[xix;J~

(n - 1)! E[ J" i -J. J"
- 2n/ 2(n/2)l XiX;' r (3.1)

The other result which we will need concerns the estimation of correlation func

tions, and can also be found in Bendat and Piersol [5]. If we use Equation (2.6) to

estimate the cross-correlation between two signais, u(t) and y(t), the variance ofthat

estimate is:

Var[~uV(T)] - ~ !~(1- ~~~)(tPuu(~)tPvv(~)+
tPuv(~ + T)tPVU(~ - T)) dÇ

(3.2)

In general, the length of the data records, N, will be much greater than the support

of the correlacion functions, hence:

-
Similarly, the variance of the auto-correlation estimate may be approximated by:

(3.4)

Throughout the rest of this thesis, we will need to evaluate the accuracy of a

model, or perhaps that of its output~ Let y be an estimate of y, and define the

"percent variance accounted for" (%VAF) by this estimate as:

%VAF = 100 x var(y - y) (3.5)
'\-ar(y)

where var(x) is the variance of the random variable x. In practice these quantities

: will be estimated ·from time avera.ges.
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3.2 Linear System Identification

Assume that u(t) and y(t) are the input and output of a linear system. which will be

represented by its impulse response, h(.). Thus:

T-l
y(t) = L h(.)u(t -.)

1'=0

Given the input-output cross-correlation,

ifi"y(') = E[u(t - ,)y(t)J

and a Toeplitz struetured matrbi: generated by the input auto-correlation,

~uu(i,j) = E[u(t - i)u(t - j)J

Equation (2.9) can be used to compute the impulse response of the linear system.

However, since we do not have access to the aetual correlation functions, we must

use estimates obtained from finite segments of data. Furthermore, instead of the

output signal, y(t), we have access to a noise corrupted measurement,

z(t) = y(t) + vz(t)

where vz(t) is assumed to be a zero-mean sequence which is independent of the input,

u(t). We will write our correlation estimates as the SUIn of the aetual correlation

functions and the associated estimation erraIS. Thus:

~",,(T) - tP",,(T) +~(T)

~uy(T) _ t!>uy(T) + ~uy(T)

~(T) - t!>uy(T) +~(T) +~. (T)

where ~ is an estimate of tP, and ~ is the estimation error.
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• We use a first-order perturbation expansion [88] for the matrb: inversion in Equa

tion (2.9), to estimate the effects of these estimation errors on the impulse response

estimate. Hence:

Expanding:

h :::: h + ~;;~6uy - ~;;~c)uuh + ~;;~~w,

.To-1.i. .To-11 .To-1.i. .To-1 ~
- 'j.'U'U 'Jfuu'*"uuo/uy - 'Jfuu '*'uu'*"uu Q'uv::

(3.6)

(3.i)

In keeping "..ith the matrb: perturbation e.',<pansïon used to write Equation (3.6),

we will restriet ourselves to a first-order analysis. Hence, we can discard the last two

terms in (3. i). Note the following:

T-1

c)..uh - 2: c)....(T, i)h(i)
i=O
T-1

- 2: ~uu(T - i)h(i)
i=0

- I: (cfi....(T-i)- ~f:.tL(t-T)tL(t-i))h(i)
i=0 1=1

1 N T-1

- cfiuy - N 2: tL(t - T) 2: h(i)tL(t - i)
1=1 i=O

As the record length is assumed to be much greater than the system memory, we
T-1

may ignore initial conditions, 2: h(i)tL(t - i) =y(t). Hence:
ï=0

1 N
- cfiuy - - 2: tL(t - T)y(t)

N 1=1

- cfiuy - ~uy

- !Puy
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• the second and third terms on the right of (3. i) cancel. and it reduces to:

(3.8)

Therefore, when Equation (2.9) is used to estimate the impulse response of a

linear system, the only terms of first-order magnitude in the estimation error are due

to the output noise. To a first-order approximation. under noise-free conditions this

algorithm completely corrects for any statistical fluctuations in the cross-correlation

estimates.

Ne:ct., let us calculate the statistics of this one remaining first-order term. First

consider its expected value:

The error variance is:

Var(h(T)) - E [(~~;;~(T'i)~ur,(i))l
T

- E ~;;~(T, i)~~(T,j)E [~tnI,(i)~u.,(j)]
i;=l

(3.10)

(3.11)

•

To proceed further, we must evaluate the expectation operation on on the right

hand side of (3.11). Hence:

- ~ f. E [U(t1 - ijU=(t1)u(t2- j)V=(t2)]
t,1.=1 .

- ~ t {4>..... (i)q>..... (j) +
1,1.=1

4>uu(t1- t2 - i + j)4>.••• (tl - t2) +

t/>...,,(t1 - ~ - i)4>u.,(t2 - t1 - j)}
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• ~akinb a change of variables. such that t = tl - t2 , this becomes:

E [~,",(i)Juv,(j)] = J~2 t (N- 1 t IJ t/>v, v, (t)ouu(j - i - t)
,=-T

(3.12)

In al! applications, the number of data points, N, will be much greater than the

number of lags in the estimated filter, T. Thus, N -Itl ::::: N, and (3.12) becomes:

E [~uv,(i)~uv,(j)] ::::: 3w,(i,j) == ~ t Ov,v, (t)ou,,0 - i - t) (3.13)
• t=-T

The covariance matri.'I: of the input-noise cross-correlation estimate, :Uv, (i,j), is

a Toeplitz matri.'I:. Its entries can be computed by filter:ing the input auto-correlation

function with the auto-correlation of the measurement noise, provided both functions

are represented as two-sided filters.

Substituting (3.13) into (3.11), \\"e see that the variance of the estimation erro::" is:

T

Var(h(T» = :E ~;;~(T, i):Uv,(i,j)~~(j, T)
;;=1

(3.14)

Writing this more compactly, we see that the errar variance is equal to the diagonal

of the matrix:

Whether or not the noise is white, we can see that the the estimation variance

depends only on the statistics of the input and measurement noise, and not on the

value of the impulse response. If the measurement noise is white, then :,." will be

proPOrtiOLoÙ to ~U1" and the errar variance becomes:

- ~ 1Var(h(T» = jt~;;,,(T, T) (3.15)

•
where 0;, is the variance of the noise sequence v=. Finally, if the input is also white,

this reduces to:

•- (J:
Var(h(T» =NU;
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• 3.2.1 Use of a Pseudoinverse

Rewriting Equation (3.8), we can see that, to a first-order approximation. the impulse

response estimate is:

The first term is the contribution from the system, and will be e.'\:actly h, provided

the auto-correlation matrix, CÎ?uu, is nonsingular.

Consider the singular value decomposition (SVD) [20J of the input auto-correlation

matrix, CÎ?uu:

• • T
eJ?uu = USV (3.16)

where U and V are unitary matrices, and S is diagonal with positive real entries

Sl ~ S2 ~ '" ~ s" > O. To proceed further, we must show that CÎ?uu is a positive

definite matrix, in which case U will be equal to V. Thus, we need the following

lemma:

Lemma 1 Let h be the impulse response of a linear FIR filter, and u be a finite seg·

ment, of length N, of a zero-mean stochastic process. Let ~uu(T) be a biased estimate

of the autocorrelation ofu, generated using Equation (2.6), and CÎ?uu(i,j) be a Toeplitz

matriz, generatedfrom ~uu(T). If Y is the output of the filter h, when driven by u and

starting from zero initial conditions, then the mean square value of y is given by:

Proof

•

E[y2) _ ~~~ h(i)U(n_i))2

1 N T-1 .~

- NE L h(i)h(j)u(n - i)u(n - i)
n=li,j=O

- ïoh(i)h(j) (~~U(n-i)U(n-j))
_ hTiiluuh
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• As a direct result of Lemma l, 4>uu must be positive definite, U == V, and the

auto-correlation inverse becomes:

4>-1 = VS-IVT
uu (3. li)

(3.18)

where S-I = diag(l/sJ, ... , l/sn). Now, let (= ~;Th be the projection of h onto the

.columns of the unitary matrix V. Furthermore, let us define the projection of the

noise correlation as: v = V T ~uv,. Substitute these projections, along with Eq\1ation

(3.li) into (2.9):

h - v'S-IFT(VS( + Fv)

- F( + VS-Iv
T v.

- ~)(i + .2. )Vi
i=l Si

where F = [VIi V2; ••• ur], and (i and Vi are the i'th entries of ( and v respectively.

Clearly, terms for which ~ >1(i 1will add more "noise" than "signal" to the impulse

response estimate h. Eliminating terms which are dominated by noise should lead to

an improvement in the estimate of the impulse response. In this 'II<'ay, we make use of

a pseudoinverse of ~uu [20]. Let us partition the SVD of ~uu as follows:

~uu = [VI ~] [:1 ;J [~]
where the subscript "1" refers to the terms which will be retained, and ''2'' denotes

terms which will be dropped. The corresponding pseudoinverse is then:

.i..t - V· <-IV'T
"'uu - 1"'1 1

In constructing the pseudoinverse, we must decide which terms to retain, and

which to drop. To aid in this decision, let us e.Yllmine the first two moments of the

noise coefficients, Vi. From Equations (3.12) through (3.14), replacing ~uu with its

SVD, given in (3.16), we see that Vi is zero in apeetation, and its variance is:• 0;; =E[V;] =V[=-=Vi
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• where ;v is defined in (3.13). Let us define a threshold. which depends on i:

Th; = 20"v,
Si

(3.20)

If 1 (i 1 e.,ceeds This threshold, we can be 90% certain that il is not noise. becaUSl'

the coefficients are normally distributed, with 0 mean and \<u:iance gi\"en by Equation

(3.19). Of course, constants other than 2 can be used. resulting in different confidence

levels. vi in Equation (3.18) will include ail terms for which the coefficients, (i +11,/s,

exceed the threshold Th;. Using this pseudoinverse, the IRF estimate becomes:

. .~,

h = ~....ep..=

and the \<U:Ïance of the estimation error will be the diagonal of:

.T.~ - .T.i
~uu-uv"j:"uu

(3.21)

(3.22)

Using the pseudoinverse should result in better conditioned estimates of the im

pulse response (3.21) and the estimation variance (3.22). In many cases, it may be

possible to derive a meaningful estimate of the estimation \<U:Ïance due to the out

put noise by simply applying Equations (3.22) and (3.13) to the input signal and

the residuals. This improvement will be at the cost of introducing a bias into the

estimate. The expected value of the IRF estimate becomes:

(3.23)

•

Furthermore, estimation of the induced bias is not straightforward. An obvious

procedure would be to compare hand ~~..~....h. This will not work, however, because

~u~uu is a projection operation. Thus:

As a result, h and ~uu~uuh will he identical, to within macbjne a.ccuracy.

While we cannot estimate the point by point magnitude of the bias, we can es

timate its norm over the length of the IRF. From Equation (2.21), we see that the

deconvolution operation is equivalent to dividing the input-output cross-spectrum by
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• the input auto-spectrum. If it is assumed that the noise in the correlation estimate

is approximately white. then the noise in the IRF estimate "ill be concentrated at

frequencies where there is little input power. Thus. there "ill be little overlap be

tween the spectra of the input signal and that of the noise in the IRF estimate, and

this estimation noise should have little effect on the output prediction. _~ny change

in the predicted outPUt can therefore be attributed to bias introduced into the !RF

estimate.

Let ho and kk be the IRFs estimated using the full inverse, and the k'th order

pseudoinverse, respectively, and let the variances of their outputs be~ and q~•. Ifwe

assume that any change in the output variance is the result of bias errors introduced

into the !RF estimate, ,ve cao approximate the 2-norm of the bias as:

Il boh II~=II k II~ ~.
0;,

(3.24)

where boh is the bias error. The 2-norm is an upper bound on the infinity norm [20],

which is the absolute value of the largest element. Hence, (3.24) is an estimate of an

upper bound on the largest bias error in the !RF estimate.

3.2.1.1 Algorithmic Sl1mmary

The following steps are required to estimate a linear impulse response between an

blput u and a possibly noise corrupted output, z. The variance of the first order

noise term and the norm of the bias introduced by the use of the pseudoinverse are

also estimated.

1. Use Equation (2.6) to estimate the input auto-correlation, ~w, and the input
. ::::--

output cross-correlation 41"". -.

3. Form an initial estimate of the impulse response, ho using Equation (2.9)

2. Create a Toeplitz matrix from the estimated auto-correlation:

~w(i,j) =~w(1 i - j 1).

• 4. Compute the following SVD:
• • rT

41.... = USV
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• 5. Project ho onto the columns of the unitary ma'!rix \ ' .

6. Use Equations (3.13). (3.19) and (3.20) to compute decision It'\'els Th •. using

the output residuals from ho as an estimate of the noise process t':.

i. Sum the terms ",hose coefficients e:'i:ceed the threshold function. to create an

enhanced estimate of the !RF. he'

8. Generate a Ile'" set of output residua1;. and use these. together with the pseu

doinverse to compute the estimation variance. using Equations (3.13 and 3.22).

9. Use Equation (3.24) to compute the 2-norm of the bias error.

3.2.2 Validity of the First-Order Approximation

The magnitude of the second-order terms will depend on the sq1:.are of the record

length, N, in general. For the rest of this discussion, we will restrict our:elves to the

two s'!Cond-order terms dropped from Equation (3.i). The first of these is:

-lx.. "'-l' ",-lx.. ",-lx.. h
~uu '*"uu'*"uu <Put! = "J:"uu "J:"uu'*'uu ":l'uv (3.25)

•

which depends on the square of the error in the estimate of the input auto-correlation.

Thus, its variance will depend on the square of the record length (see Equation 3.4).

Since this term also depends on the square of ~;;,}, it may become significant if

this matrix is particularly ill-conditioned, which will be the case if the input is highly

coloured. Use of the pseudoinverse deconvolution, however, effectively improves the

condition of the auto-correlation matrix. Therefore, this term should remain insignif

icant if the pseudoinverse is used in the deconvolution.

The second term which was dropped from (3.i) is:

",-lx.. ",-l'
'*"uu '*"uu'.*."uu ~UV.l

This term is not likely to be significant, as it depends on the magnitude of the

output noise. The firsWrder noise term will dominate in aU cases.

In cases where the record lengths are short, and the signal to noise ratio is high,

the term in (3.25) could become significant, with respect to the first-order noise term.
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3.2.3 Simulations Involving Linear Systems

We performed several ~.1onte Carlo simulations, to \"3.lidate the theoretical results

obtained in the previous section. In these simulations we wished to address three

points.

1. In the noise free case, do the fust-order terms in the estimation error cancel, as

suggested by Equation (3.S)?

2. Can a pseudo inverse of the auto-correlation matrb: be 'lSed to increase the

robustness of the !RF estimate?

3. How reliable are ~he estimates of the error variance and bias?

3.2.3.1 ~irst-()rcie~ 1r~

The system simulated was a fourth-order Butterworth low-pass filter, with a nor

malized cut-off frequency of 004. Its impulse response is shown in Figure 3.1. VVe

performed a Monte Carlo simulation involving 10,000 repetitions. During each trial,

the filter was driven by a different 1000 point sequence of white Gaussian noise. VVe

then calculated the crosS-correlation between the input and output, using Equation

(2.6), as well as the impulse response, using Equation (2.9). As the input was zero

mean white Gaussian noise with unit variance, both the cross-correlation and the

!RF estimate should have been equal to the !RF of the simula.ted filter. Thus, the

estimation error in the cross-correlation "'-as taken to be the difference between the

cross-correla.tion estimate, and the simula.ted !RF. ()nce all the trials had been per

formed, we calculated the mean and variance of the cross-correlation and impulse

response errors as functions of lag over the ensemble.

Figure 3.2 shows the variances of the impulse response and cross-correlation estï

mates, plotted as a function of the lag, T. The \'&riance of the !RF estimate is two

to three orders of magnitude smaller than that of the cross-correla.tion. Nevertheless,

comparing these variances \\ith the impulse response in Figure 3.1, makes it clear that
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Figure 3.1: Impulse response of the fourth-order Butterworth low-pass filter used in
the Monte Carlo simulations.

-3 Estimate Variances using 1000 point White Noise Inputs
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Figure 3.2: Variance in the estimates of the cross-correlation and the impulse response
of a linear system. The inputs were 1000 point sequences of white Gaussian noise.
Estimates were computed from noiseless records.
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Figure 3.3: Estimation ....ariance, a\'eraged over the impulse response length, as a
function of the length of the data records. Note that the impulse response variance
decreases with the square of the record length, whereas the cross-correlation variance
depends linearly on the record length.

•

both the correlation and mF estimates are excellent, as would be expected given the

length of the data records and the absence of noise.

Ne.'Ct, we examined the efrect of varying the record length. The Monte Carlo

simulation was repeated, \....ith record lengths from 200 to 10,000 points. Figure 3.3

shows the estimation variance, averaged over the length of the mF, as a function of the

record length. On this log-log plot, we cao see that the variance of the mF estimate

decreases with the square of the record length, while that of the cross-correlation

estimate decreases linearly with the record length. This, together with the previons

figure, supports our claim, based on Equation (3.8), that the Toeplitz matrix inversion

procedure corrects for aU first..order error terms in the cross-correlation estimate.

Finally, we added noise to the filter output, at a signal to noise ratio of 10 dB,

and compared the variance of the impulse response estimate with that of the cross-

56



• 4.5

-4
xl0 Effect of Noise on Estimation Variance

4

3.5
al
g 3
CIl-.:
~2.5

al
âi 2
E
~1.5

1

'-'

Cross-Correlation
- NoiseFree
- - - SNR 10dB

Impulse Response
Noise Free
SNR 10dB

.... -- ...- "

0.5
-._._._.-._.-._.-._._._._._._._,_._._._.- _._._._._.-'_._.- -

•

a .
a Lag (samples) 30

Figure 3.4: Efi'ect of output noise on the variance of cross-corre1ation and impulse
response estimates. The variance of the !RF estimated when the SNR was 10 dB is
approximate1y equal to the difference betv.'eeIl the variances of the cross-corrclation
estimated under 10 dB noise, and under noise free conditions.

correlation estimate. This time, both estimates were dominated by terms whose

variance scaled linearly with the record. length. As can be be seen in Figure 3.4, the

variance of the !RF errer was approximate1y equal to the difi'erence between that

of the cross-correlation fonction estimated with and without the noise. Hence, we

concluded that when the input signal is a finite segment of a realization of a white

process, the impulse response and cross-correlation estimates both contain the same

noise term. The impulse response estimate, however, is not infiuenced by statistical

fiuctuations in the sognal components of the correlation estimates caused by the finite

record length.
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Figure 3.5: Results from a single trial of the Monte Carlo simulation. Impulse re
sponse estimates are plotted with that of the simulated system.

3.2.3.2 Eyarnjnation of the Pseudoinverse

•

We used another Monte Carlo simulation to compare the performance of the pseu

doinverse based !RF estimate with that provided by Equation (2.9). We examined

the affects of using the pseudoinverse on the the estimation variance, and the bias

error. These changes were compared to those resulting from the application of a

simple three point smoothing :lilter to the initial !RF estimate. We chose to use the

3 point smoother for comparison purposes, as it is commonly used to suppress high

frequency noise in !RF estimates [66, 92).

•f.,}; in the previous simulations, the system was a fourth-order Butterworth low

pass filter, with a normalized cut-oli of 0.4. In this case, the input was a coloured

Gaussian sequence, generated by filtering a white Gaussian sequence with a second

order Butterworth filter with a normalized cut-oli of 0.4. Ten thousand trials were

performed using 1000 point data records, with the SNR set to 10 dB.
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During each trial. we computed three filter estimates: the exact deconvolution. the

smoothed decom·olution. and the pseudoinwrse. We compared the impulse response

estimates directly with the true impulse response, and compared the outputs predicted

by the estimated filters with both the clean and noise corrupted outputs of the original

filter. In al! cases, we assessed the accuracy as the percentage of the signal variance

accounted for by the model (3.5).

Figure 3.5 shows typical !RF estimates from a single trial of the simulation. The

first panel shov,,.s the !RF identified using the exact inverse of the Toeplitz auto

correlation matrL,. This !RF estiIr.ate contains noise concentrated near the Nyquist

frequency, whose amplitude is comparable to that of the actual IRF.

The !RF shown in the second panel was computed by applying a 3-point smoother

to the e.'i:aet inverse solution. While the smoothing filter eliminated almost all of the

high frequency noise, (visible in the second half of the estimate, where the simulated

!RF is zero), it attenuated the peaks in the !RF.

The third panel shows the !RF estimated using the pseudoinverse based input

deconvolution. Like the smoothed !RF estimate, there is virtually no h:.gh frequency

ringing in the tail of the impulse response. In contrst with the smoothed !RF, the

pseudoinvserse did not attenuate the the peaks in the !RF.

Figure 3.6 shows the distributions of the !RF and prediction a.ccuracies for the

three methods. The first panel, in the upper left corner, shows the estimated proba

bility density fonctions of the impulse response a.ccuracy. Note that the results from

from the inverse solution (Equation 2.9) are absen~ from this panel, as that distri

bution fell weil below the other two (mean 50.5% standard deviation 24.3%). From

this panel, we see that the pseudoinverse produces significantly better estimates of

the !RF shape than does smoothing of the inverse solution.

The second panel shows the prediction accuracy, with respect to the uncorrupted

output, y(t). Both the exact inverse and pseudoinverse solutions yielded significantly

better predictions than did the smoothed solution. The pseudoinverse solution yielded

a slightly better output prediction than the exact inverse solution. On average, the

prediction errer due to the pseudoinverse method was 38.6% less than that due to the
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Figure 3.6: Probability density functions estimated from the Monte Carlo simula
tion. The fiIst panel shows the estimated PDF of the accuracy of the !RF estimates.
In the second panel and thirdpanels, the PDFs of the prediction accuracy for the
uncorrupted output and no~orrupted output are shawn.

exact inverse solution. Due to the excellent predictions produced by both methods,

this only corresponded to an average 0.077% increase in the VAF, with a standard

de"iation of 0.049%.

The third panel in Figure 3.6 shows the distributions of the prediction accuracies,

with respect to the ~oise corrupted signal, z(t). Agam, both the exact inverse and

the pseudoinverse produce significantly bette! predictions than the smoothed solu

tion. Here, however, the exact inverse predicts slïghtly more variance (mean 0.15%,

standard deviation 0.06%) than does the pseudoinverse techniques. This observa-
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Figure 3.ï: Estimates of the impulse response of a high-pass system. The first panel
sho\\"S the result of using the full inverse of the autocorrelation matrL'\': in the decon
volution. The second panel was produced by smoothing the inverse solution using
a three-point, zero-phase smoother. The third panel shows the result of using the
pseudoinverse based deconvolution technique developed in this chapter.

tion, taken together with the results from the previous panel, suggests that the exact

solution models s1ightly more of the noise than does the pseudoinverse solution.

In this simulation, the pseudoinverse technique produced better estimates of the

both the IRF shape and output than either the exact inverse solution, or the smoothed

IRF.

•

Finally, we repeated the experiment, using a fourth-order Butterworth high-pass

filter as the system, to demonstrate that the pseudoinverse method is not limited to

low-pass systems. The input signal was whitp. Gaussian noise, filtered by a fourth

order band-pass filter. White noise was added to the output.

Figure 3.7 shows the results of a typical single identification using the three meth

ods. The first panel shows the estimate produced using the exact inverse (Equation
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• 2.9) solution; it is contaminated ·....ith substantial noise at both low and high fre

quency. The second panel shows the result of smoothing this estimate using one pass

of a three point smoothing filter. The high frequency ripple has been eliminated, but

the peaks in the IRF have be',n greatly attenuated. Furthermore, the slow drift is

still present. The final panel sho'l\"S the IRF retumed by the pseudoinverse method.

Most of the high frequency noise, as well as al! of the low frequency drift has been

eliminated. As a result, this estimate is dramatically better than the other two.

3.2.3.3 Study of the Estimation Variance Estimate

Given the Toeplitz structured input auto-correlation ma',ri'C, the pseudoinverse used

in the IRF estimation, and the IRF of tl:e simulated systEIll, we computed the bias

error as follows:

Ebias = h - ~~..~....h

We could also calculate the random error:

~ .
Erand =~....~....h - h

(3.26)

(3.27)

•

Thus, for each trial in the Monte Carlo simulation, we calculated the random and

bias components of the error in the impulse response estimate.

During each trial, we calculated the residuals, and used Equations (3.13) and

(3.22) to prediet the standard deviation of the IRF estimate, as a funetion of the

lag. We then computed the ratio of this theoretical standard deviation to the random
-~

component of the measured error. The distribution funetions.-fQr these ratios (one

per point in the IRF) are plotted in Figure 3.8. We found that the distribution of

the ratio of the random error ta the theoretical standard deviation was well described

(VAF > 97% in al! cases) by a zero-mean Gaussian distribution, with unit variance.

Thus, we conclude that Equations (3.13) and (3.22) produce accurate estimates of

the variance of the random component of the estimation error.

Unfortunately, we do not have a point by point estimate of the bias error, and must

limit ourselves to predieting its 2-norm. For each run in the Monte Carlo simulation,
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Figure 3.9: Estimated probability density function of the ratio of the m~um ab
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we computed the 2-norm of the bias component of the estimation error (3.26), and

compared it to the estimate provided by Equation (3.24). The measured bias norm

was always between half and double that of the estimate. In establishing a confidence

interval for the !RF estimate, the 2-norm of the bias is of little use, as it provides no

information about the bias at any one point.

However, given the an estimate its 2-norm, it is possible to construct confidence

bounds on the bias component of the error, since the 2-norm of a vector is an upper

bound on its infinity norm, [20]. We compared the estimate of the 2-norm of bias, to

the maximum absolute value, the infinity norm in other words, of the measured bias.

The probability density of this ratio is shov.'1l in Figure 3.9. Numerically integrating

this PDF, we see that the 95% confidence bound on the maximum bias errer is

appro.'àmately 0.94 times the 2-norm estimate provided by Equation (3.24).

Similarly, we can construet confidence intervals due to the random component in

the error. Because its distribution is Gaussian, twice the square-root of the variance
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Figure 3.10: The upper panel shows an estimated IRF, between 95% confidence
estimates. The lower panel shows the estimated probability, point by point, of the
!RF lying outside of the 67% and 95% confidence bounds

•

predicted by Equation (3.14) is a 95% bound on the random component of the error.

If we assume that the two error components are independent, the total error variance

will be the sum of the variances of the two components. The confidence limits may

be estimated as the square-root of the sum of the squared confidence bounds.

This confidence bound v,-as tested on the results of the Monte Carlo simulation.

The first panel of Figure 3.10 shows the results from a typical single trial, with the

!RF estimate plotted between the estimated 95% confidence bounds. In the lower

panel, we Sllmmarize the results from the whole simulation. The traces show the

probability that each point in the true will !RF lie outside either the 67% or the

95% confidence bounds. We can see that the n'O bounds are only appropriate for

one point, the first point in the !RF. AU other points are well~~side the confidence

bounds. This is because the bias component could only be estimated globally. Thus,

the maximum bias error must be assumed for every point in the !RF, which leads to

65



•

•

a very consen"ative error bound in most pla<.:es.

3.3 Multiple-Input Linear Systems

Consider a multiple-input linear system, sueb as that shown in Figure 2.10. \\Te will

assume tnat the two inputs. 'lLt(t) and 'lL2(t) are independent, and therefore, so are

Yt (t) and Y2(t). Then:

If we follow the development surrounding Equations (3.6) through (3.8), we can

see that the only first-order error terms in the impulse response estimate v:ill be:

Therefore, in the estimation of ht(r), Y2(t) acts exactly lilœ a second source of ob

servationnoise. Thus, Equation (3.14) may be used to prediet the variance of ht(r),

provided the measurement noise, v=(t) in (3.14) is replaced v:ith an "equivalent noise

signal", Vne(t), whieb is the sum:

Vne(t) =v=(t) + Y2(t)

Similarly, Yt (t) acts as a second source of observation noise in the estimate of

h2(r). Thus, to estimate the variance in-t1.e estimate of h2(r), let:

vne(t) = v=(t) + Yt(t)

and a!piy Equation (3.14), replacing v=(t) with vne(t).

It is also evident that the pseudoinverse may be exploited exaetly as with single

input systems. It is likely that the spectra of the linear systems will overlap sigüifi

cantly, so the pseudoinverse alone will-not reL"IOve aIl of the-noise terms. In the next

chapter, ~-e ~ill consider how to do 50 in a more general case: the multiple-input

Wiener structure. The multiple-input linear system is a special case of this, and the

techniques developed in Chapter 4 \\':ill apply.
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3.4 Linear Elements of Wiener Systems

Here, we 'will consider the estimation of a \\ïener (LN) system. as illustrated in

Figure 2.7, when the nonlinearity has at least one significant odd term in its Taylor

series. \Ve ",i1l show how the e.."pressions developed above can be used to estimate

the variance of the impulse response estimate.

In keeping with the notation established by Figure 2.;. let u(t). x(t) and y(t)

be the input signal, the output of the linear eiement, and the output of the Wiener

system, respectively. We ",i1l represent the static nonlinearity with a power series:

00

g(t) = L: e;xi(t)
i=O

As in our general identification framework, v,(t) is an additive noise sequence,

Ti:lus, the observed output is:

z(t) = g(t) + v,(t)

Consider the cross-cortelation between lI.(t) and z(t):

t/l",,(r) - E [lI.(t - r). {~e;xi(t) + V,(t)}]

00

- L: e;E[lI.(t - r)xi(t)]
i=O

00 (2i + l)!o;i
- ~C2i+l 2i+l(i + 1)! t/lur(r)

This last step is obtained using Equation (3.1), which allows us to discard the

terms which contain the product of an odd number of zero-mean Gaus.crian random

variables (i.e. even powers of x). This result is simply an illustration of Bussgang's

theorem [10]; If a linear !RF is fitted between lI.(t) and z(t) using cross-correlation

and Toeplitz matrix inversion (Equation 2.9), its expectedvaiue will he:
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• where the constant km is:

Let us subdivide the outpUt signal y(t) into wo components, yo(t) and Ye(t) ,

which we shali cali the "odd" and "€'ven" components of y(t). As the names suggest,

the odd component, will contain ali terms that include an odd power of x(t), and

the even component will contain ali even powers of x(t). Then, the input-output

cross-correlation estimate can be ,,,"l'Ïtten:

Applying the fust-order perturbation estimate for the matri., inversion, and discarding

higher-order terms results in:

Furthermore, since:

(3.28)

Ji.. ...-1'
~uu~uutpuy - km~uuh

T-1

- km L ~uu(T, i)h(i)
i=O

- km~ (4)uU(T - i) - ~~ u(t - T)U(t - i)) h(i)

km N T-l
- km4>= - '"j\f L u(t - T) L h(i)u(t - i)

• 1=1 i=0

- d>uyo

•
the second and third terms on the right hand side of Equation (3.28) cancel, and *e

only first order terms remaining in the estimation error are due t(;''the observation

noise and the even terms in the statie nonlinearity.

The error term due to the even powers in the statie nonlinearity enters Equation

(3.28) e.'i:actly ll.-e the output noise term. Therefore, wc can treat the even-pO"'-eI
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error terms as if they were simply other sources of obsen-ation noise. Define the

following "equh-a!ent noise" signal:

Equations (3.12) and (3.13) may now be used to predict the estimation variance, if \\'e

use vne(t) in place of the measurement noise term. v.(t). Similarly, the pseudoinvcrse

algorithm, described in Section 3.2.1.1, may be applied to Wiener systems \\'hose

nonlinearities indude at least one significant odd term.

3.5 Summary

In this chapter, we have developed e.\.llressions for the variance of the impulse response

estimate provided by the Toeplitz matri"< inversion procedure [30) detailed in Equation

(2.9).•.<\nalysis of the variance in the impulse response estimate suggested that it could

be reduced, often dramatically, by replacing the inverse of the Toeplitz structured

auto-correlation matrix with a suitably chosen pseudoinverse. This improvement in

the estimation variance "'-as realized at the cost of introducing a bias into the impulse

response estimate. We developed procedures for choosing the pseudoiLverse which

sought a compromise between the redur.tion in the variance of the random error and
.~.

the magnitude of the resulting bias.

We demonstrated that this procedure can be used for both low-pass and high-pass

systems. It can remove both low frequency drift and high frequency noise from the

impulse response estimate, and introduces comparatively little bias. This is in marked

contrast to the use of a three point smoother, which cannot remove low frequency

noise, and introduces considerablt~ bias, especially to high-passo:'ystems.

Use of the pseudoinverse also inlproved the condition of the estimate of the estima

tion variance. Simulations demonstrated that the estimation variance at each point

in the m.F estimate could be estimated accurately using only measured quantities.

Estimation of the bias error proved to be more difficult. We were unable to develop

any sort of point by point estimate or bound for the bias error. Renee, we attempted
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to estimate the mean square value of the bias. Simulations demonstrated how this

estimate of the mean square bias could be used to bound the bias error over the whole

IRF estimate.

Fina.l1y. we illustrated how this analysis ean be applied to both multiple-input

linear systems and single-input Wiener systems. The estimation of multiple-input

Wiener systems is the topie of the ne:ct chapter.
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Chapter 4

Multiple-Input Wiener Systems

4.1 Preliminaries and Notation

In this chapter, we will develop algorithms for the identification of a particularly

important block-structure: the multiple-input Wiener system. We will deal first with

two-input systems and then illustrate how our algorithms may be e.'Ctended to deal

with n-input systems.

A single-input Wiener system, as illustrated in Figure 2.7, consists of adynamie

linear element followed by a zero-memory nonlinearity [31]. Two possible multiple

input VVïener system structures, termed the b- and le-structures by Chen [13]. a.~

shown, for two-inputs, in Figure 4.1. In both cases, the inputs, ('ILl> 'lL2), are processed

by separate linear dynamic systems, (h..1' h..2). In the le-structure (Fig. 4.1a) the lin

ear element outputs, (Xl, X2) are transformed by a multiple-input static nonlinearity,

(m(·, .)). In the ll-structure (Fig. 4.1b) the linear system outputs are summed, and

then transformed by a single-input static nonlinearity. Clearly, the b-structure is a

special case of the 1-c structure.

Given either structure, let 'lL1(t) through 'Un(t) represent the n system inputs, and

lei y(t) represent its output. As stated previously, we will concentrate our discussion

on thE! two-input case, where the inputs are 'ILl (t) and 'lL2(t). We will assume that

the system is time-invariant and that the inputs, 'lL1(t) and 'lL2(t), are independent,

statiollary, zero-mean Gaussian signals, which need DOt be white. Let N represent

TI



•
Dynamic Linear

Xl (t)

Dynamic Linear

Multiple-Input
Static Nonlinear

m(·,·)
y(i)

•

Dynamic Linear

_ Xl(t) Single-Input
huI(/ ) j Static Nonlinear

Dynamic Linear ~ m(·) 1

'U2(t) lit
-- ~(r) rx;m

Figure 4.1: Two two-input VVïener system structures. The inputs 'UI(t) and 'U2(t) are
processed by the dynamic linear systems hul(r) and h..2(r). In the first case (a), the
outputs of the linear system are transformed by a multiple input nonlinearity, me-. .).
A special case of this is (b), where the linear system outputs are summed to from
x(t), which is then transformed by a. single-input static nonlinearity m(·).
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• the number of input/output points ayailable in the data records. and let T represl'nt

the memory length of the linear elements.

We will also assume that the non-linearity can be represented by a power series:

tbis forces the statie nonlinearity to be continuously differentiable with respect te

its input, and is required for the following mathematieal de\·elopment. Thus for the

more general le-structure:
oc

m(xj, x2) = L C[i,jJxf~
i,j=l

and the output ean be written:
oc

y(t) = L c[i,Jlxl(t)~(t)
i,j=l

For the simpler b-structure, shown in Fig. 4.lb:
oc

m(x) = LCiXi

i=1

the output becomes:

00

y(t) - L Ci(Xl(t) + X2(t))i
i=l

- t Cit ( i. ) x~i-j)(t)~(t)
i=1 ;=0 J

where (Ji. ) is the binomial coefficient: .-:-_i-::!=(i - j)!;!'

4.2 Identification of the b-Structure

(-1.1)

(4.2)

(4.3)

(4.4)

•

Due to its simpler structure, "le will consider the b-structure first, and then show how

the methods developed for il. can be applied to the more general le-structure. For

this simpler system, there are two cases which must be eonsidered separately: the

first case occurs when the polynomial representation of the nonlinearity eontains al.

least one significant odd term, in the second case, the nonlinearity eontains al. least

one significant even term. Clearly, these two are not mutually exclusive.
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• 4.2.1 Case 1 - Nonlinearities Containing Odd Terms

If the polynomial representation of m(·) contains significant odd terms, the linear

subsystems can be estimated from fust-order cross-covariances, as shown in Korenberg

[53]. To see how this is achieved, examine the cross-covariance between one input (Ul)

and the output, (y).

(4.5)

where E[x] refers to the expected value of x. Substituting (4.4), we get:

(4.6)

This is a weighted sum of terms of the form:

(4.7)

The terms in (4.7) are e.'Cpected values of products of jointly Gaussian random

variables. From the discussion proceeding Equation (3.1), we know that this ",'ill

be zero, for odd numbers of terms. Hence, if j is odd, the second term in (4.7) ",'ill

vanish. If j is even, the second term will be non-zero, 'but an even value of i will cause

the fust term to contain an odd number of terms, and therefore vanish. Therefore,

unless j is even and i is odd, (4.7)yields zero. For even j and odd i, both e:<pected

values are non-zero, and using (3.1), Vie can see that (4.7) becomes:

(1·3 .... (i - j))(l· 3.... Ci -l))O'~-j-l)~.tf>ul:" (T) (4.8)

•

where 0':,. is the standard deviation of the linear subsystem. output Xl (t). Therefore,

each term in (4.6) is either equal to zero, or is proportional to the cross-covariance

between 'lI.l(t) and Xl(t). Hence, as can be seen in (21) of Korenberg [53], the weighted

sum is also proportional to the cross-covariance taken across the linear sub-system.

(4.9)
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• where K is gh'en by:

co i (2i+1)K=L~:::C2i+l . (1·3· ... ·(2i-2j+1))
i=O;=O 2J (·1.10)

(1·3· ... · (2j - 1))O'1;i-2j)O';~

It is e\ident that K depends on the shape of the nonlinearity, through the de

pendence on the polynomial coefficients c;, and the variances of the outputs of the

two linear subsystems. It might appear that the constant of proportionality would

depend on which linear subsystem v.-as being identified. However, by rewriting the

e>..-pressïon for K in terms of the factorial operation, we get:

K ~ ~ (i )(2i+ 1)! 2(.-;) 2;
- L:... C2i+l L:.... 2;" 0':, 0':::

;=0 ;=0 J t.

00 (2i + 1)! ;= L C2i+l :zi ., (0;, + 0;,,)
;=0 t.

(4.11)

•

Hence K is a function of the shape of the nonlinearity and the total power at its input,

but does not depend on the input being used. Therefore, using input-output cross

covariances to estimate the cross-covariances across the linear elements introduces no

relative scaling; each subsystem has its cross-covariance scaled by the same amount.

Hence, by deconvolving the input autocorrelation, as in Equation (2.9), we can recover

the impulse responses of the linear systems to within a single scaling factor.

4.2.1.1 Improved Covariance Estimates

Covanances estimated using finite duration time averages wi.i.l contaln noise, whose

amplitude will decrease as the length of the time average is increasecl, (see Equations

3.2 through 3.4) . Terms in (4.6) which vanish in expectation, will nonetheless con

tribute noise to finite-length covariance estimates. Elimjnating those terms should

improve the covariance estimate by reducing the number of terms in the sum which

contributc only noise. This may be seen by considering the cross-covariance between
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(4.12)

• a zero-mean Gaussian signal, w(t), (possibly correlated 'Ivith either Ul (t), U2(t), or

both), and the output, y(t).

rPwy(ll) =~ Ci~ ( ; ) E[w(t - Il)X\i-iJ(t)x;(t)]

Because Ul (t) and U2(t) are independent, it is possible to decompose w(t) into two

orthogonal components Wl (t), a::ld W2(t) such that :

and

E[Ul(t - Il)W2(t)] == 0 "Vil

E[U2(t - /l)'Wl(t)] == 0

Now, using this orthogonal construction, we can rewrite (4.12):

tPwy(/l) = ~ Ci~ ( ;) {E[Wl(t - /l)x\i-iJ(t)]E[~(t)]

+ E[X\i-iJ(t)]E[W2(t - /l)~(t)J}

Using the arguments surrounding (4.6) through (4.10), we can rewrite (4.14):

(4.13)

(4.14)

(4.15)

Assume that we have formed an initial estimate of the linear subsystem, h,a(7").

Let us see how we can use this to improve our estimate of the other linear system.

The initial subsystem estimate is:

(4.16)

where n2(7") is an additive, zero mean noise process. Estimate the output due to

h.a(.) by convolution:

• X2(t) - h.a(7") * tl2(t)

- Kh,a(.) * tI2(t) + ~(7") * tl2(t)
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• The cross-co\'ariance between the input signal 'Ill (t). and Ïz(t) is:

(.\.lS1

In the expected \-alue sense, or equivalently if time averages are performed using

infinitely long records, al! the tenns on both sicles of (4.18) will go to zero. Howe\'(~r.

estimates of these terms produced from finite duration time averages may be non

zero.

Now, consider the cross-covariance between the input UI(t). and the system out

put. Using (4.15), replacing w(t) with the input Signal'UI(t), we get:

(4.19)

As '/Ll(t) and '/Lz(t) are independent, ti>u,,,,(p.) is identical!y equal to zero. However,

~u,:z:.(p.) is an estimate obtained from finite data records, which may be non-zero and

so contribute noise to the cross-covariance estimate. To form an improved estimate

for the cross-covariance across the first subsystem, subtract (4.18) iTom (4.19).

(4.20)

Comparing equations (4.19) and (4.20), it is clear that an improvement in the

cross-covariance estimate will result if:

(4.21)

To interpret this condition, we must !mow the statistical properties of ~U1U'(P.)'

Its expected values is zero, as '/Ll(t) and '/Lz(t) are independent. Its autocorrclation

can be computed:

(4.22)

•
Making a change of \-ariables, and assuming that the correlation lengths are much

Jess than the data length, this becomes:

1 N
N L cP,.,u, (t + r)ti>u.u.(t)

t=-N
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•

•

hence, the auto-correlation of d>ul u, is equal to the convolution of the autocorrelations

of the twO input signals, and its spectrum is equal to the product of the spectra of the

two inputs. Thereforp, given (4.21), improvement in the estimate of h'U! will result if

the power of the noise component in (4.16) is less than power in the signal component

over the bandwidth of ~U1U' (which is less than the bandwidth of either of the two

input signais).

Subtracting its output from the sy' tem output and computing the cross-covariance

between u! and this new signal willlead to an improved estimate of the first subsys

tem. This process can be applied iteratively, first updating one half of the system,

and then the other. Note that while this iterative process can theoretically eliminate

the noise arising from the vanishing te.'1IlS in (4.6) it will have no effect on the noise

in the non-vanishing terms.

4.2.1.2 Aigorithm for Non-Even Systems

The overall algorithm for identifying a two-input Wiener system (b-structure) with a

non-even nonlinearity is:

1. Estimate a!inear IRF between Ul and y, h..l(r)

2. Generate Xl(t), the convolution of hul(r) and 'Ul'

4. Estimate a !inear IRF between 'U2 and Mt) (~('"

5. Generate X2(t), the convolution of ~(r) and U2.

6. Generate Y2(t) = y(t) - X2(t)

S. If a signifiCll.D.t change in the IRFs has occurred, go to step 2. Otherwise,

continue.
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• 10. Fit a polynomial bet,,"een Ï(t) and y(t)

For systems having more than t""O inputs. the algorithm must be u.odifi,'d as

follows.

• Repeat steps 4, 5 and 6 for e\'ery input.

• In step 6, if h,,(.) is to be estimated in step 7. then the estimated outputs of

ail of the other linear subsystems must be subtracted from y(t).

4.2.2 Case 2 - Even Nonlinearities

If the static nonlinearity contains no significant odd terms the first order input-output

cross-covariances will vanish,. and the method outlined above will fail. In this case,

an approach emplo:l'ing either the second-order input-output cross-covariances, as

suggested b:l' Korenberg [53] or the second-order, cross-cross-covariance function. as

suggested b:l' Chen et al., [13], may be used. Consider the second-order cross-cross

covariance funetion:

(4.23)

00 2i(2i)~C2i~ j E[Ul(t-Tl)X~2i-j)(t)].

E[U2(t - T2)~(t)]

Proceeding as before, we may eliminate all terms for which the expeeted value is

zero. In this case, terms for which j is even will have expeeted values of zero since

they contain produets of an odd number of zero-mean Gaussiali. random variables.

50,

• (4.24)
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• l'sing (3.1) to e\-aluate the e.'i:pected \'alues and then simplifying. \\"t' CaIl \\Titl':

where:

oc: '?')'K - ~ C2i'_!' (2 , 2 )'-1
2 - .L..." ?i-l(' -1)' 17"" -"11""

i=l - 'l •

(-1.25)

(-1.26)

Equation (4.25) provid~ the means to estimate the cross-cO\a.riances for the two

!inear subsystems, as every column of <Pu,u,y is proportional to <PUI"'" Similarly. C\'cry

row of <Pu,u,y is proportional to <Pu,,,,,. However, instead of the e.'i:act cross-covariance.

\\,e must use an estimate derived from finite length records. This will surely contain

some estimation noise. Given estimates of the !inear subsystem cross-covariances, we

can use (4.25) to estimate the second-order cross-cross-co"a.riance function. Estimates

of tf>u'%l and tf>u,,,,, should be cbosen sucb that the mean square error (MSE) between

the measured and computed values of ~U,u,y is minimized. Thus:

(4.2i)

should be minimized. Minimizing the MSE over the entire cross-covariance function

will use all of the information available in that function to estimate the fust-order

cross-covariances. These optimal estimates of the fust order-covariance functions can

be obtained using the singular value decomposition (SVD) [20) as follows. Let the

SVD of ~UIU'lIbe:

• T
<PUIU'lI = USV

where U and V are orthogonal matrices, and S is a diagonal matrix:

(4.28)

•
\\i"Ïth positive real entnes, ordered sucb that Sl ~ S2 ~ ••• ~ ST. We will use an

overbar to denote vectors, and to avoid a notational collision with the input signais

U1(t) and 'U2(t). Thus, v;e write the columns of U and V as:
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•
u = [ U, Ü2 uT ]

F = [ v, V2 VT ]

Then, we rewrite the SVD of ,pu,u.y as [20]:

T

~UIU.:Y = LÜiSlüi
T

i=l

In e.'i:pectation, the cross-cross-correlation is:

Since the U and V axe orthogonal matrices, the optimal choices for <Pu"", and

<Pu.z:: axe the left and right singulax vectors, iLl and 'ih, which are associated with the

largest singulax value, S,.

4.2.2.1 Improved Estimates

•

The resulting cross-covariance estimates "..ill be scaled by an unknown constant and

contain noise axising from the estimation of both vanishing and non-vanisbing terms.

In the odd case, described above, we proposed an iterative process to reduce the noise

due to the estimation of terms which va.nish in expectation. This process was derived

by evaluating the cross-covarlance between a generic signal, w(t) and the system

output. Separating w(t) into components Wl(t) and W2(t) allo"..ed us to analyze

all the terms in the cross-covariance and 50 find alternate ways of estimating the

vanisbing terms. We will use a similax procedure for the even case; this time, an

additional generic signal will be required since it is the second-order, cross-cross

covariance function that must be estimated. Denote this new signal by z(t) and

define Zl(t) and Z:!(t) as in (4.13). The second-order cross-cross-covarlance between

w, z, and y can be written:

(4.29)
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• l'\ote that the expected \-a.lue of the output is subtracted prior to thl' l'y,ùuatioll "f

the co\-ariance function. Just as in (4.23). Lsing procedures similar to thosl' outliul'd

in (4.23) through (4.'26). it can be shown that:

(..1.30)

Now, replace the signais w and z with the inputs Ul and U2 respectiyely. Thus Wh

the component of w which is parallel to Ub is simply Wl' Similarly. Z2 = Uz. Thus.

the second term on the right side of Equation (4.30) corresponds to the ideal result

in Equation (4..25).

Clearly, W2, which is the component (If w which is orthogonal to Ulo and ;:1>

both will be zero, in e.\.-pectation.. Therefore, the first, third and fourth terms in

Equation (4.30) will have zero expected value. However, for finite record lengths,

these estimates are unlil-ely to be p.xactly zero, 50 removing them from (4.30) should

improve the estimates of the cross-cross-covarlance function. The problem then is to

obtain independent estimates of these terms; this is possible for the first and fourth

terms as follows.

The first term in (4.30) may be estimated by computing the second-order, cross

cross-covarlance bew.-een the two inputs, Ul(t) and uz(t), and xi(t), multiplied by

an appropriate scale factor. This scale factor may be determined by forming a least

squares estimate for the gain between the squared linear system output, xi(t), and

the actual system output, y(t).

•
(3? ) _ E[:J:iyJ - E[xiJE[yJ

/Ç l' Y - E[x1J _ (E[xi])2

Expandïng the above, noting that Xl is zero mean and Gaussian, yields:
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•
2 E" 2(i-i)1}

- (j • lXI
Zl "

Expanding the expected values and gathering similar terms:

(4.32)

But, the cross-cross-covariance between Wb =1 and It(xi, y) (xi - E[xiJ) is:

(4.33)

•

Hence, we can estimate the term It(xi, y)xi(t) and subtract it from the output,

y(t). Substituting this signal for y(t) in(4.29) v.ill eliminate the first term in (4.30).

The fourth term in (4.30) can be eliminated by repeating the above process, using

the output of the second subs)'Stem. Elirninating both the first and fourth terms in

(4.30) should improve the estimate of the cross-cross-covariance, and lead to better

> estimates of the linear subsystem dynamics. This iterative process can be repeated

until it converges. As before, it will be limited by the noise inherent in the estimates

of non-vanisbing terms in (4.23).

4.2.2.2 Scaiing Issues:

.f!I;s the matrices returned by the SVD, U and V, are unitary, the cross-covariance

estimates will be scaled to have unit norms. This will result in linear subsystem

estimates that are scaled by difÏerent amounts. To proceed further, we must estimate

the degree of relative scaling, and correct for it. (Note that in the non-even case,

scaling 'lIras not an issue since thescale factor introduced by the estimation procedure

\\"aS the same for both linear elements.)

The previous section provides a mechanism to estimate the degree of relative
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• scaling. Assume that Ï,(t) = k,x,(t) and Ïz(t) = kzIz(t). Then:

(-1.3.1)

•

Hence, we can estimate the relath·e gain applied to the linear subsystems. Oncl'

the linear subsystem outputS have been rescaled. they can be summed. and a staric

funetion fitted between this and the system output.

4.2.2.3 Aigorithm for Even Wiener Systems

The complete algorithm for even systems is similar to that for non-even systems

except that it is based on the second-order cross-cross-covariance. It proceeds as

follo\\"S:

1. Estimate ~",...y(Tb 7"2) from the input/output data.

2. Apply the singular ,,-aIue decomposition to ~"'''2Y(Tb7"2) . Use the columns of

U and v' associated v,;ith the largest singular value as ~",,,,(T,) and ~...".(T2)'

5. Calculate the outputs due to the line'lI subsystems by convoh:tion, and square

them.

6. Use (4.31) to scale the squared linear subsystem outputs.

7. Estimate the variance accounted for by the squared linear subsystem outputs.

If this has not improved since the last iteration, go to step 10.

8. Subtraet the scaled squared outputs (step 6) from y(t), producing y(t).

10. Use (4.34) to estimate the relative gain. Correct for this and generate x(t), a

scaled estimate of x(t).
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•

•

Il. Fit a static. nonlinearity between x(t) and y(t) .

If the system being identified has more than two inputs, the following modifications

to the algorithm are necessary:

• In steps 1 and 9, a second-order cross-cross-covariance function must be esti

mated for every pair of inputs (i.e. a 3 or 4 input system will require two such

functioIlS).

• Steps 2 and 3 must be repeated for every estimated linear subsystem.

4.2.3 Simulations

The performance of tlP. method was assessed using data obtained from simulations of

the two-input Wienp.r system shown in Figure 4.2. The linear subsystems \vere rep

rese>lted as low-pass filters, similar to those encountered in neuromuscular research.

A half-wave rectifier was used for the static no'llinearity because it is neither an

even nor an odd function. Furthermore, it is not continuously differentiable, hence

its polynomial representation requires many high-order terms. The simulation and

the identification procedures were carried out using MATLAB1, a commercial software

pa,:œ.ge for scientific and engineering numeric computation. In all cases, the identi

fication accuracy was assessed in terms of prediction accuracy evaluated using white

Gaussian inputs.

4.2.3.1 Odd Method

The first set of simulatiolls was carried out using white Gaussian inputs, with no mea

surement noise. For input signals containing 10,000 points, the algorithm converged

quicldy producing the estimates shawn in Figure 4.3 which accounted for 98.93% of

the output variance-of the data set used in the identification procedure. More impor

tantly, the estimates accounted for 98.59% of the output variance when tested with a
independent set of white Gaussian inputs. Notice that although the amplitude scale

lThe MathWorks lne., Natick, Mass
~----/~.
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Figure 4.2: Block diagram of the simulated multiple-input Wiener :;ystem.

Los (Ioc.) 0.7

0.018 1dcIllIlied~
.0.4 '- o.•

y(Q

•
Figure 4.3: Estimated e1ements for the multiple-input Wiener system in Figure 4.2
For this simulation, the system was driven by two independent 10,000 point white .
Gaussian signals. The identified mode1 accounted for 98.9% of the output variance.
Note the different divisions of the overall system gain between this and Figure 4.2.
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• Spectra of the Non-White Test Inputs

0.01 +--..-----,,.----r--....----{
o Frequency (Hz) so

•

Figure 4.4: Power spectra of the low-pass filtered PRBS inputs which were used in
the noise performance e.,..periments.

of the IRFs in Figure 4.3 'l'las about twice that of those in Figure 4.2 there was au

equal reduction in the input scale for the static nonlinearity. so the overaIl system

gain was unchanged.

The algorithm was then evaluated under more realistic conditions:

• Shorter record lengths, 5,000 and 2,500 points, were used to assess the effect of

record length on the identification accuracy.

• Measurement noise was simulated by adding white Gaussian noise, having a

variance of 10 to 100% of the mode! output variance, to the output signal.

• Low-pass filtered pseudo-random-binary-sequences (PRBS) were used as inputs.

The spectra of these non-Gaussian inputs, shown in Figure 4.4, were signifi

cantly non-white.

In aIl cases the iteration procedure converged. rapidly; the most significant im

provements were achieved in the first few iterations while subsequent iterations had

little effect. This is illustrated in Table 4.1 which shows prediction accuracy of the

linear subsystem estimates for the first live iterations in the noise free case. The iter-
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•

ation procedure contributed relatiwly Httle (1-2%) \yhen long record~ \\"l'n' u~,'d ~illn'

the estimates obtained with the first iteration were yery gond. HO\\"l'wr. wh"lI ~lh1rll'r

records \Vere used, the initial estimate "as not as good and the iteratiw procedun'

brought about more substantial impro\'ement~ ("-i%). The las!. line of Tabl,' .1.1

presents these results in terms of the reduction in residual \-ariancc. instead of thc

gain in variance accounted for. Here the yalue of the iterative cnhanceMent becomcs

clear, as it produced between a 3 and 9 fold reduction in the variance of the residuals.

Iteration 10,000 point records 5,000 point records 2,OC 0 pC'int records
hu, (.) hu, (.) hu,(.) hu.(.) hu, (.) hu, (.)

1 99.5ï 99.32 98.35 9ï.20 96.66 96.86
2 99.89 99.84 99.61 99.64 99.32 99.12
3 99.90 99.85 99.6ï 99.ïl 99.49 99.10
4 99.90 99.85 99.6ï 99.69 99A5 99.13
5 99.90 99.85 99.ïO 99.F9 99.45 99.12
Ratio of
Residual 4.30 4.53 5.5 9.03 6.0ï 3.5i
Variances

Table 4.1: The accuracy of the linear subsystem estimates is shown at each iteration of
the non-even system. (Fig. 4.3) Accuracy is measured as percent variance accounted
for (%VAF) The last line in the table shows the reduction in the the residual variances.
It is the ratio of the initial and final residual variances.

Figure 4.5 summarizes the results of the evaluation procedure in terms of the

mode! accuracy as a function of output noise level for each condition. It is evident

that the algorithm is robust in the presence of output noise. Excellent estimates

of the linear and nonlinear subsystems were obtained even with large amounts of

output noise. Thus, even when the variance of the noise was equal to that of the

system output, the models identified with 10,000 point records predicted aImost 95%

of the noise-free output variance. Ils ;vould be exp~,cted, performance of the me1;hod .

in the presence of noise improved with inèreasing record length. Thus, the prediction

accuracy decreased v.ith increasing noise levels for all record lengths; but the rate of

decrease became larger as the record length was decreased.

Figure 4.5 also demon5trates that there was no significant change in the predi-
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Identification Accuracy in the Presence of Nois!'
Half-Wave Rectifier, ûdd Method
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Figure 4.5: Noise performance of the odd algorithm applied to the system shown
in Figure 4.2. Four different inputs were used' Gaussian 'W"hite Noise records v."Îth
lengths of 10,000, 5,000 and 2,500 points, and 10,000 point, low-pass filtered pseudo
random binary sequences.

•

cation accuracy when the low-pass filtered PRBS inputs were used rather than the

Gaussian white noise. This indicates that the method is likely to work with the

types of input signais that can be applied under realistic e.'\.-perimental conditions.

However, the results obtained with the non-white inputs must be interpreted with

caution. Initial estimates of the linear IRFs obtained with Lon-white inputs were

contaminated with high irequency noise. We were able to reduêe this contamination

by using the pseudoinverse based techniques developed in the previous chapter. Pro

'I."Îded that the inputs had significant power over the bandwidths of the linear systems

that they excited, the pseudoinverse technique was able to separate the estimates of

the impulse responses from much of the random estimation error. We must stress,

however, mat using the pseudoinverse technique introduced bias into the impulse

response estimates, and that the magnitude of this bias was not easily estimated.
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• Identification Accuracv in the Presence of Noise
Harf-\Vave Recüfier. Even Method
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Figure 4.6: Noise performance of the even algorithm applied to the system shown in
Figure 4.2.

4.2.3.2 Even Method

We repeated the simulations discussed above, using the even method to identify the

system. Once more, the algorithm converged rapidly in al! cases and gave good esti

mates of the system. The results of these simulations are summarized in Figure 4.6.

The behaviour in the presence of noise, the sensitivity to record Iength, and per

formance with non-white, non-Gaussian inputs were generally similar to that of the

non-even algorithm. The major difference between the two algorithms is that the .

accuracy of the even algorithm was generally somewhat lcwer than for the "odd"

algorithm under equivalent conditions.

•
4.2.3.3 Alternate Methods for Even Systems

Korenberg [53] and Korenberg and Hunter [60] suggested using a single slice of the

second-order cross-covariance fonction to estimate the linear dynamics of a single-

90



•

•

1 Estimates using the cross-cross- Estimates using the the second-
covariance. order cross-co\·ariance.

1
SVD Average Slice 1 SVD Averag~ Slice

Initial Estimate
1hu ,(7) 96.91 95.24 lAAï 94.44 ï9.36 83.0ï

ÎLu,(7) 9U8 82.0ï 69.35 91.92 8ï.21 2ï.ï9

Final Estimate
Îl.u , (7) 98.45 98.44 93.00 98.08 96.9ï 9ï.01
h..,(7) 96.91 96.94 93.2ï 99.02 98.44 80.81

Table 4.2: Acc;:tracy of the linear system estimates based on the second-order cross
covariance functions. Accuracy is expressed in terms of the percent of the variance
accounted for by the estimated system

input even Wien;>r system. This is aIso possible in the multiple input case, and

would greatly reduce the computational burden associated with estimating the linear

subsystem dynamics. Korenberg and Hunter [60] also suggest using the average of

the second-order cross-colrelation. We e:'Camined these possibilities using the half

wave rectifier simulation under noiseless conditions. Table 4.2 shows the prediction

accuracy of initiallinear system estimates obtained from the SVD, the best single rows

and columns, and the average over the rows and columns of the second-order cross

cross-covariance function. The second row in this table shows the accuracy of the

!RF estimates resulting from the iteration process. The !RF estimates obtained from

the best single slices were always inferior to the those produced using the principal

singular vectors. Averaging of the co~~ancefunction produced estimates comparable
~

to the SVD, but only after convergence of the iteration had dramatically reduced

the estimation noise in the cross-covariance function. In producing linear system

estimates from the noisy initial estimate of the cross-covariance function, the SVD

Was vastly superior to averaging.

4.3 Identification of the l-c Structure

Thus far, we have restricted ourselves te the b-structure illustrated in Fig. 4.lb. We

'will now consider the identification of systems havïng the more general lc-structure
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shown in Fig. -l.la. The outpu~ of a general two-input \\ït'Ul'r Systt'lll was gi""ll by

Equation (-l.2):

0::

y(t) = L C[i.jjX\(t)~(t)
i,j==l

4.3.1 Estimation of the Linear Dynamic Elements

The symmetries present in (.1.4) are not present in (.1.2). For the b-structurc. Wl'

developed methods for systems which were members of two (not mutmùly exc\usi\'l')

classes: those v."Ïth odd terms in their nonlinearities. and those with even terms. An

algorithm was developed for each class; systems which fell into both classes could be

identified using either algorithm. For the more general lc-structure threc classes of

systems cau be described. .~y system whose nonlinearity includes terms in which

both Xl(t) and X2(t) are raised to odd powers will be called an odd/odd system.

Similarly, 'Ille can define even/even and even/odd systems.

4.3.1.1 Odd/Odd Systems

If the output of a generalized multipl~input Wiener system contains significaut

odd/odd terms, the dynamics of both linear subsystems may be estL'1l.ated from the

second-order cross-cross-correlation function. In fact, the first 9 steps of our algorithm

for even b-structures may be applied exactly as presented. Once the linear elements

have been estimated, a two-input nonlinearity is fitted between the linear subsystem

outputs and the measured system output.

4.3.1.2 EvenfEven Systems

If the output contains significaut even/even terms, initial estimates of the linear

subsystem dynamics may be inferred from the second-order cross-covarianees between

each of the inputs and the output, as suggested by Korenberg [53]. While in principle

a single slice of this function may be used, we suggest usiIlg the SVD over the whole

second-order cross-covariance function.
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• The deve!opment of section 4.2.2 may be modified to produce better estimates of

the second-order, sing!e-input cross-covariance. Replacing z(t) with u:(t) in (·4029) and

(4.30) makes these equations apply to the single input co\-ariance function. instead of

the dual input function. Following the rest of the development, we can compute:

(4.35)

•

where ,,(x. y) is defined in (4.31). Calculating the second order cross-covariance be

tween the input 11.1 (t), and this new signal, will result in an improved estimate of

hui (..), provided reasonably good estimates of the dynamics of both linear systems

are available (see 4.21).

4.3.1.3 Odd/Even Systems

The presence of odd/even terms in (4.2) allO\\"S us to estimate the dynamics of hul(")

from the first order cross-covariance between Ul(t) and y(t). Similarly, even/odd

terms allow the estimation of h,a(r) from a first order covariance function. If both

odd/even and even/cdd terms are present, our odd-system algorithm may be used

as presented to produce estimates of the linear subsystem dynamics. If, however, the

sYStem contains ouly odd/e\'eI1 terms, a third-order cross-covariance function (first

order in Ul(t) and second order in U2(t)) will be required to gain an estimate of h,a(r).

In Section 5.2.3 we will develop a gradient search procedure to extract an impulse

response function from a third-order cross-correlation.

4.3.2 Estimation of the Nonlinearity

In all cases where the l-c structure is used, a multiple-input polynomial surface must

be estimated, which leads to a more demanc1ing least squares problem than in the

single-input case. For example, consider a tvlO input sYStem, where Xl(t) and X2(t)

are the outputs of the linear elements. Ifwe let R be the maximum polynomial order

fitted, then we must choose the coefficients C;,; to mjnjmjze:
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where T(x(t). i) is the i'tlè order Tchebyshe\' polynomial applied ro x(t) . .-\lthough

this is a somewhat more diflicult least squares problem than that for the simplifit'd

system, it does eliminate the need for the relatiw gain calculation (-1.3-1). since any

relative scaling introduced by the IRF estimation will be ~ompensated for by tht'

scales of the domains of the polynomial surface.

The difliculties associated \Vith estimating this nonlinear surface have received

little, if any, attention in the literature on multiple-input block-structures. Korenberg

and Hunter [31, 53] .:onsider a !vIlM0 e..\.1;ension of the L1'IL cascade which includes

this type of nonlinearity, and provide references for techniqles to estimate them.

However, these papers [83, 112] deal primarily \vith single input funetions, treating the

multiple-input case as a simple generalization. They do, however, deal with the very

interesting problems associated with performïng least-squares fitting when both the

input and the output eontaÎll measurement errors. This is the "Total Least Squares"

problcIll, and is particularly rele~~to cascade identification, as the input(s) to the

statie nonlinearity 'will certainly contain noise due to errors in the estimates of the

linear systemes).

. Apart from the added eomplexity of the coefficient estimation, using a multiple

_input nonlinearity involves some additional difliculties in dealing with the domain of
~.-:- -

the polynomial. To illustrate, fiIst consider the estimation of a single-input polyno-

mial, m(·), given records of its input and output, x(t) and y(t) respectively. Clearly,

the 1argest domain over which we may reliably characterize the polynomial is the

interva1 from the minimum to the maximum of the input record. Renee:

'Dom(m(·» = {z: min(x(t» :S z:S max(x(t))}

If the distribution of the input is heavily weighted towards its mean value, as in a

Gaussian distribution, OUI estimate of the polynom:al will be much less reliable near
~~ -

the edges of its domain, where there àre comparatively few data points to influence

the cost function, than in the middle.

Ifwe use m(·) to predict the output due to an arbitrary input, z(t). we must treat

any points outside of the domain with carc. At the very least, any points in z(t) that
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• lie outside of the domai!: of definition for mshould be tagged as unreliable estimates.

Alternatively, the input signal could be limited to the domain of definition of the

pol~"Ilomial. ln that case, v;e compute m(z(t)), where:

7.(t) - min(x(t))

z(t) - z(t)

z(t) - ma.x(x(t))

z(t) :s: min(x(t))

min(x(t)) < z(t) < ma.,(x(t))

z(t) ~ ma.x(x(t))

•

Let us consider how this procedure may he applied tO an estimate of a two-input

nonlinearity. Given m(·, .), an estimate ofthe polynomial obtained from inputs, Xl(t)

and X2(t), and output y(t), we might be tempted to define its domain as follov."S:

z>om(m(.,.)) = {[Z"z.]: min(Xl(t)):S: Z,:S: ma.-,,:(xl(t)) } (4.36)
min(X2(t)) :s: z. :s: ma.-,,:(x2(t))

This definition of the domain, however, is not restrictive enough. Consider the

following simulation. Two independent, Gaussian signais, Xl (t) and X2(t), vIere gen

erated, and plotted as ordered pairs in an x-y plot (Figure 4.7). The dashed line

is the boundary of the domain defined in (4.36). It is evident from this figure that

there are large regions in the [Xl. X2] plane that are within the simple rectangular

domain, that are not near any of the data-points. Clearly, if a polynomial is fitted

between the input sequences, Xl(t) and X2(t), and the output sequence y(t), there are

no data-points in $e corners of this domain to influence the cast function. Hence,

the polynomial value in these regions will not necessarily refl.ect the behaviour of the

actual·system.

A somewhat better description of the domain ofsupport is given by the convex hull

[15,34] of the points (Xl(t),X2(t)). This is defined as the smallest convex polygon that

ineludes all of the points in (Xl(t),X2(t)), and is marked by the solid line in Figure 4.7.

Although it giVes a much better characterization of the support of the two sequences

than is provided by the simple rectangular domain, there are sti1l poorly defi.ned

regions within the convex hull. This is sirnilar ta the one dimensional case, where

there cao be relatively few points influencing the polynomial fit near the edges of the

domain.
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X-Y plot of two Gaussian sequences
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Figure 4.Î: X-Y plot of two Gaussian sequences. The dashed line is the rectangular
domain defined by the two sequences. The saUd line is their conve:( hull.

When performing output prediction in the single-input case, the input signal WltS

limited to the domain of support of the input signal that WltS used to estimate the

polynomial. In the two-input case, we must limit the input pairs to the domain

defined either by the simple rèctanguIar domain, or to the convex hull. Restriction to

the rectangular domain is easily acl:iieVèà, as the inputs tan be limited independently.

With the convex hull, we must project any exterior points onto the closest edge:

For more than two inputs, the problem of describingthe support of the polynomial

becomes very complex. In three dimensions, one could construet a convex hull, from

triangles whose·-vertices are all data-points. In construeting the hull, the triangular
/~ :

elements :vlÔuld share each of their sides with a neighbourlng element.o.A four inpùt

system would require construeting a boundary in four-dimensicual spaœ, where the

hull would be made up of tetrahedrons, each joined to four others by a common

surface.
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Construction of a conve., hull is relatively straight forward. We will summarize it

belo\\', using the three dimensional case, with co-ordinates x, y and z as an e.,ample.

1. Select the points with the ma.ximum and minimum values for each co-ordinate.

These points are surely on the boundary

2. Construct a surface of triangular elements, whose vertices are currently selected

boundary points

3. For each triangular surface e1ement, calculate the perpendicular distance from

each point to the plane defined by that surface, defining the direction of the

outer surface normal as being positive. Find the point (if any) ,vith the largest

positive distance from the plane, and add it to the list of vertices. H, after all of

the triangular surface e1ements have been checked, no new vertices have been

added to the list, exit. Otherwise, go to step 2

This algorithm generalizes to higher dimensional spaces in a straightfor'l';ard man

ner.. For the w.-o-dimensional case, there are more e1egant solutions, such as those

presented in [15].

4.3.3 Simulations

A third set of simulations was performed, this time using a general, second-order,

two-input nonlinearity:

This nonlinearity was chosen because its output includes all tbree types of terms:

odd/odd, odd/even and even/even, allowing each of the methods for identifying a

general multiple-input Wiener system. to he tested. The coefIicients, Cn through

C:!:!, were adjusted such that each of the :live terms on thé right of (4.37) had equal

variance. Thus, we compared the three algorithms under similar conditions.

The linear e1ements were the same as in the previous simulations. They were

both driven by 10,000 point sequences of white Gaussian noise. Noise was added to
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Figure 4.8: Performance of the three algorithms for generalized systems. The inputs
were 10,000 point records of Gaussian White Noise.

the output at levels between 0 and 100% of the output variance, producing signal

to noise ratios between infinity, and OdB. Figure 4.8 shows the noise performance of

each method. As in the previous simulation, the model accuracy is reported as the

percentage of the output variance accounted for by the model, using an independent

set of input-output data for the validation.

In this experiment, the performance of the three algorithms was similar, although

the odd/even method, which is based on fiIst-order input-output cross-correlations,

performed slightly better than the other two methods, which are based on second

order correlations, at all noise levels. Furthermore, from Figure 4.8, it ~ppears that

the odd/even method is slightly more noise resistant than either the even/even or the

odd/odd method.

Clearly, the performance of the various methods depends on the relative contribu

tions made by the dffi'erent terms in the nonlinearity. Hence, for an unknown system,
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one of the methods could yield substantially better results than the other two, simply

because of the type of nonlinearity in the system.

4.4 Summary

In this chapter, we have developed a set of algorithms which, taken together, are ca

pable of identifying any multiple-input 'Wïener structured system. Given its superior

noise performance, and more modest computational requirements, we suggest using

the "odd" algorithm first. Should this fail, or should the nonlinearity be dominated

by even terms, one of the "even" algorithms should he used to identify the system.

Using simulations, we have demonstrated that the these methods are robust in

the presence of output noise, and that they do not require a white input, although

the input must contain significant power over the bandwidth of the linear elements.

Furthermore, we have sholl."Il that these techniques can be applied when the input is

a low-pass filtered PRES signal, which is neither Gaussian nor white.

The algorithms developed in this chapter are all included in the MATLAB toolbox

for nonlinear identification, descrlbed in Appendi.x A.
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Chapter 5

Optimized Identification of

Parallel Cascade Models

5.1 Overview

In this chapter, we develop an algorithm that produces a parallel Wiener cascade

model of a nonlinear system. We start with single-input systems, and show how the

algorithm proposed by Korenberg [56] tan be optimized, resulting in a system de

scription which is unique, given the statistics of the input sequence. We demonstrate

that this optimization results in simpler mode1s, faster convergence, and better noise

performance than the original single-slice version of the algorithm. Furthermore, we

demonstrate a practical method for modelling the dynamics present in the third (and

potentially higher) order Volterra kernels.

In the multiple-input case, we show how multiple-input Wiener cascades tan be

used to form a parallel cascade expansion. We also show that.using the techniques de

veloped. in the previous chapter results in an optimization analogous to that developed

for single input systems.

Digital simulations are used. ta demonstrate the capabilities of these new algo

rithms. Applications to physical systems will be shown in Chapter 6.
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• 5.2 Single Input Systems

In this section, we will consider the estimation of a single-input parallel cascade

mode!, as proposed by Korenberg [56] and reviewed in Section 2.3.3. Figure 5.1, a

repeat of Figure 2.9, ilIustrates the central idea behind the parallel cascade method.

A Wiener system is fit between the input and output of a nonlinear system, and

the prediction error, also called the output residuals, is calculated. The input and

residuals are then considered to be the input and output of a new nonlinear system,

which is then approximated by a second 'viener cascade. In this way, a sum of wiener

cascades, whose input/output behavioUI converges to that of the unknown system, is

assembled.

Clearly, the rate of convergence of this e.\.-pansion, as weil as whether or not it

converges at all, depends entirely on the metbods used to fit the Wiener cascades.

Korenberg [56) proved convergence for the parallel \Viener cascade and used the proof,

which is constructive in nature, as the basis for the single-slice implementation of the

parallel cascade method.

The first \Viener cascade had linear dynamics which were estimated !rom the first

order cross-correlation between the input and output. Korenberg [51, 56) proved that

this pathway reduced the first.order correlation between the input and the residuals

to zero.

Korenberg [56] then showed that the second-order input-residual cross-correlation

could be drlven to zero usi.ng a finite number ofWiener cascades. The linear element of

each of these cascades had an !RF which was equal to a randomIy chosen single slice of

the second-order input-residual cross-correlation, with a randomIy weighted impulse

added at the position corresponding to the diagonal in the whole cross-correlation

function (see Equation 2.28). To prove 'convergence, the randomly chosen weights

were required to tend to zero with the variance of the residuals.

This procedure was then generalized for higher-order correlations. Paths based on

single-slices of the third-order correlation required two randomly weighted impulses:

one on each diagonal (i.e. each point in the correlation function for which at least 2
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Figure 5.1: The parallel cascade method for nonlinear system identification.

1. Fit a Wiener cascade between the input and output of the nonlinear system.

2. Subtract the output of the first cascade from that of the unknown system,
generating the output residuals. Fit a Wiener cascade between the input, and
the output residuals.

•
102



•

.-

•

of the 3 indices are equal). A finite number cf these paths could then be used to drive

the third-order cross-correlation to zero. Similarly, paths based on the n'th order

correlation required n - 1 such impulses.

In this chapter, we will derive an optimized variant ofthe parallel cascade method.

As in the original single slice method [56], correlations between the input and the

residuals will be reduced to zero. starting with the fust-order cross-correlation. Once

it has been reduced to zero, the second-order cross-correlation, followed in turn by

any higher-order correlation functions, will be driven to zero.

Our objective v.ill be to find the path that is optimal, in some sense, at each stage

in the iteration. FiIst, we must define optimality in the conte>..""t of a parallel ca:::cade

identification. At each stage in the analysis, the procedure will attempt to reduce the

magnitude of the lowest-order non-zero input-residual cross-correlation. Therefore,

at least in a local sense, the optimal path v.ill be that which contributes the most to

this correlation function, while introducing no lower order correlations between the

input and residuals.

We will start by showing how a single ~ïener cascade path can be used to reduce

both the residual mean and the first-order cross-correlation between the input and

the output residuals to zero. We shall then show that a maximum of T paths, where

T is the memory length of the system, are necessary to reduce the second-order cross

correlation between the input and the output residuals to zero. Finally, we shall

develop new methods for estimating additional paths based on the third- and, in

principle, higher-order input-residual cross-correlation functïons.

5.2.1 First Order Correlation Fonction

The linear element of the first Wiener cascade, h, may be calculated from thefirst

order cross-correlation between. the input, u(t), and the output, y(t). If the inpu~ is

non-white, the exact deconvolution presented in Equation (2.9), or the pseudo-inverse

based deconvolution in Equation (3.21), may be used to compute the mF from the

cross-correlation. Then, the output ofthis linear e1ement, x(t), may be computed by

con,,'Olvïng the mF with the input. The nonlinearity may then be characterized by
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• fitting a polynomial between x(t) and 11(t). using a l\I).lSE fitting procedure.

Consider the following lemma:

Lemma 2 Let u(t) and y(t) be the sampled input and output of a finite dimen..<ional.

finite mem:Jry nonlinear system. Then, the variance of the residuals:

T-l

v(t) = y(t) - 2: h(j)u(t - j)
j=O

(5.1)

•

where h(j) is computed by solving (2.9), will always be less than or equal to the

variance ofy(t), with equality only occumng when <Puy(k) == O.

Proof

Evaluate the variance of v(t):

T-l T-l
= U; - 2 2: h(j)E[u(t - j)y(t)] + 2: h(i)h(j)E[u(t - i)u(t - j)]

j=O ij=O

T-l T-l
- U; - 2 'E h(j)<puy(j) + 'E h(i)h(j)<Puu(i - j)

;=0 #=0

rewrite this as a matrix equation:

E[v2(t)] = U; - 2hT <Puy + hT~uuh

= U; - 2hT <Puy + hT~uu~;;;;<puy

= U;-hT~uuh

Therefore the residual variance is reduced by an amount equal to hT~uuh,which,

by Lemma l, is equal to the variance of the output of the linear filter h(j), a1id is
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therefore nonnegative. Furtherrnore, it can only be zero if the impulse response h(j),

and therefore the cross-correlation IDuyU), is identically equal to 0 for alllags j. 0

Corollary 1 Thus, using Bq. (2.9) to determine the linear part of a Wiener cascade,

and then estimating the static nonlinearity using orthogonal polynomials and a mini

mum mean squared error fitting technique, results in a cascade that reduces both the

residual mean and the first-07der cross-correlation between the input and the output

residuals to zero.

Proof

The polynomial representation of the nonlinearity includes a constant term which is

orthogonal to the rest of the nonlinearity. Thus, using a MMSE fitting technique will

result in a zero-mean residual.

Since the cross-corre!ation across a compound system, made up of the difference

of the original system and the \Viener cascade, must be proportional to the cross

correlation evaluated across the original system, any further path added to the model,

which is based on the first-order input-residual correlation, will have a linear element

that is proportional to that of the first path. Because the first nonlinearity was fitted

using a Ml\1SE technique and the outputs of the two linear systems are proportional

to'each other, no further reduction in the residual variance is possible. From Lemma

2, we can see that the only remaining solution is that the residual cross-correlation

itself is zero. Clearly, if another path is added to the model, the resulting residuals

must remain uilcorrelated with the input. [J

, This result is originally due to Korenberg [51]. It has been included here for

continuity, and to establish the form of the argument, which will be used in later

proofs.

5.2.2 Second-Order Correlations

The residual mean and the first-ordei- correlation between the input and the residuals

will be zero after fitting thefirst pathm,y. Thus, any dynamics remain;ng in the
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system must be inferred from higher order correlation functions. In This sl'ctioll. \\"l'

will consider how the second-order cross-correlation can be uscd for This. W" will

assume that u(t) and y(t) are the input and output of a nonlinear system, when' th,'

output, y(t), is zero-mean and the first-order input-output cross-correlation, ouy(')'

is zero.

Theorem 1 Let ci>uuy(Tb 1'2) be the second-ortier cross-correlation between the input.

u(t), and the output, y(t), of a nonlinear system. Assume that u(t) is a Gaussian not..<c

sequence of arbitrory colour, y(t) is zero mean, and the first-ortier cross-correlation

between u(t) and y(t) is zero. Let v(t) be the residuals:
•

v(t) = y(t) - k C~ h(T)U(t -1'))" + khTi11uuh (5.2)

forsomefilter, h, and gain, k. Then, the variance of the residuals, v(t), i.: minimized

when h is the principal generolized eigenvector of the pencil (ti>uuy, i11uu).

proof

Let x(t) be the output of h(1'). By Lemma l, the variance of x(t) is:

Thus, the residual, v(t), is zero mean. Its variance cau be written:

u; - E[v2(t)]

- E [(y(t) - ~(t) + ko;)2]

- E[y2j - 2kE[ry) + 2ker,.E[y) +~E[x4
] - 2~E[r]o; +~q:

Recall that y is zero mean, by assumption. Usïng Equation (3.1), E[x4) = ~.. '

Therefore:

u; = cr; - 2kE[y(t)r(t)) + 2~q:

However, we may expand E[y(t)x2(t)) as follows:
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Thus:

E[y(t)x~(t)] - E [y(t) '"J~Oh('j)h('T2)U(t - 'Tj)u(t - '2)]
T-j

L h('j)hh)E[y(t)u(t - 'j)U(t - '2)]
'Tl.-r::=O

- hT 9uuyh

(5.3)

•

Let (Ài ,9i) be the generalized eigenvalues and eigenvectors of the matIi'\: pencil

(4)uuy, ~uu). Since rPuuy is a real symmetric matrix [68], and ~uu is positive definite

(Lemma 1), the pencil is symmetric definite. Thus, for any two generalized eigenvec

tors, 9; and 9i:

where 8;i is the Kronecker delta.

Express h as a sum of the eigenvectors:

T

h= LCLi9i
i=l

and, due to the presence of the gain k in (5.2), let:

T

~::al = 1
i=l

Differen:tiate (5.3) with respect to one of the weights, a;:

~o; = -4k(hT4>_9;) +8k2(hT~uuh)(hT~uu9;)
va;

But 4>_9; = À;~uu9;, and hT~uu9i = a;. Thus:

80; = -4ka;(À;- 2k)
8a;

Optimizing, we see that either k =0, a; =0, or k = ~. Thus, h must be one of the

9i> in which case the residual variance becomes:
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Thus, the va.riance is reduced by f. The ma..'\Ïmum reductic.n iD. the residua.l variance

is a.chieved by choosing h to be the eigenvector associated with the largest genera.lized

eigenvalue. o

•

Theorem 2 Let u(t) and !jet) be the input and output of a nonlinear sysi..~, where

u(t) is an arbitrarily coloured, zero-mean Ga'USSian sequence, y(t) is zero-mean, and

the first-order C7oss-correlation between u(t) and y(t) is zero. Let (Ài,Yi) be the yen

eralized eiyenvalues and ei,qenvectors of (I/>"Ul/' 4'",,). Let x(t) be the convolution:

T-l
x(t) = L 9k(r)u(t - T)

=0

for some generalized eigenvector gk, and let m(·) be a polynomial fitted between x(t)

and y(t), using a MMSE technique. Let v(t) = y(t) - m(x(t)).

Then, for i =F k, (>.;, gi) are generalized eigenvalues and eigenvectors of(I/>""u. 4'",,),

and gk is in the null-space of I/>"uu·

Proof

FiIst, use the MMSE second-order polynomial nonliriearity, m(z) =~z2 -~, which

was derived in Theorem 1. In that case, the second-order cross-correla.tion between

the input and the residuals, v(t), is:

Multiplying by one of the generalized eigenvectors of 1/>_:

tP"uugi - I/>uuyg; - Àk4'""gk!i[4'....g;

- >';4'....g; - Àk4'uu9kSki
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where Ok. is a Kronecker delta. Thus, the generalized eigenvectors of (ouuv, 4>uu) are

equal to those of (c!>uuy, 4>uu), except that ),k: the eigenvalue associated with the IRF

of the linear part of the Wiener system, has been reduced to zero.

If we replace the second-order polynomial nonlinearity with a higher order polyno

mial, the second-order cross-correlation across the Wiener path \\ill be scaled. Thus,

if we recompute the residuals, v(t), using a different nonlinearity, the 9. \\ill continue

to be the generalized eigenvectors of (tPuuy, 4>uu), and the only eigenvalue affected by

the change will be ),k.

If, however, the new nonlinearity is fitted using a MMSE technique, then the

principal eigenvalue of (tPuuy, 4>....) will be reduced to zero, just as it was by the

second-order polynomial nonlinearity. If this were not the case, tPuuv9k = ),4>....9k, and

Theorem 1 would guarantee a reduction in the residual variance of at least >;', which

is clearly not possible, since the nonlinearity was fitted using a MMSE technique.

Therefore 9k must be in the null-space of tPuuv. 0

Note that if the input, '/L(t), is white, then 4>.... = 0;1. Thus, the generalized

eigenvalue problem is replaced with an ordinary eigenvalue problem. Using the prin

cipal eigenvalue of tP_ results in the greatest reduction possible in residual variance,

when the nonlinearity is restricted to second-order polynomials, as in the non-white

case. Furthermore, such a path results in the maximum reduction in the Frobenius

norm [20] of the second-order cross-corre1ation between the input and the residuals.

5.2.2.1 Proposed Algorithm

We propose the following algorithm to bulld a parallel cascade model between '/L(t)

and y(t). We assume that y(t) is zero-mean, and that tP"lI == O. This will be the

case for any system once the output of a Wiener path based on the first-order cross

correlation between '/L(t) and y(t) has been removed from the output.

1. Compute 4>...., a symmetric -Toeplitz matrix whose first row is an estimate of

the input autocorrelation.

2. Initialize the residuals, vo(t) = y(t), and set k = 1.
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3. Compute ci>uu,'._,. an estimate of the second-order cross-correlation bet\\"~n 1L(t)

and "'k-l(t).

4. Solve the generalized eigenvalue problem: ouuv._,9 = >,4.>uu9, and let hk = 91.

the generalized eigenvector associated with the largest eigem-aIue (in absolute

value).

5. Compute x(t), the convolution of hk with lL(t).

6. Fit a high-order polynomial, mk('), between the IRF output, x(t), and the

current residuals, Vk_l(t).

ï. Calculate the ne.'Ct set of residuals: Vk(t) =Vk_l(t) - mk(x(t))

8. Either exit, or set k = k + 1 and return to step 3

Each iteration adds one vector to the null-space of the second-order correlation

between the input and the residuals. Thus, after T iterations the second-order cross

correlation will be reduced to zero. Furthermore, the impulse responses returned by

this procedure will be equal to the generalized eigenvectors of tPUUl/' and they will be

returned in decreasing order of significance. Thus, for a given system, this algorithm

willlead to a mode! which depends only on the input auto-correlation function.

5.2.2.2 Benefit of Iterative Computation

Given the discussion surrounding the aIgorithm given in Section 5.2.2.1, one must

ask why we compute the paths from the second-order cross-correlation between the

input and the current set of output residuals, rather than simply computing the

cross-eorrelation once, and then basing the cascade paths on the eigenvectors of that

cross-correlation matrix. To answer this question, we must consider the efrects of

estimationerrors on the cross-correlation matrix and, in particular, on its eigenvalues

and eigenvectors. To that end, we present the following lemma
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• Lemma 3 Let u(t) and y(t) be zero-mean signais, and let h be a generalized eigen

vector of (ouuY' <I>uu), with eigenvalue À. If

T-I

w(t) = y(t) L h(r)u(t - r)
T=O

Then:

Proof

Because h is a generalized eigenvalue of (qiuuy, <I>uu):

& ..panding the product qiuuyh:

1"

L qiuuy(rl,rz)h(Tz)
~=l

T
- L h(Tz)Elu(t - Tl)u(t - rz)y(t))

~=l

- E [U(t -Tl)Él h(TZ)u(t -TZ)y(t)]

- Elu(t - Tl)W(t))

- qi_(Tl) o

•

Thus, instead of e.vamining the effects of measurement noise on the estimate~,

we need only consider the estimation errar in the first-order cross-correlation ~uw.

From Equation (3.3), we see that:

Var [~(T)] :::: ~ f~ (qiuu(~)q;..(~) + qi,.w(~ + T)qi.,.(~ -T)) dÇ

The second term depends only on the value of the cross-correlation, qi""" and is

not alIected by the iterative computation. Consider qi_, which appears in the first

term.

qi_CT) =Elx(t)x(t -T)y(t)y(t -T))

""here x(t) is the convolution of h and u(t). We C"'...n see that the estimation errar in

the impulse response depends in part on the variance of the output, y(t). Thus, by
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performing the calculation iteratiwly. we rl'duce thl' output \a.rianct' as far as possibll'

prior to the calculation of each path, and therefore gl't the best possible estimate of

each path in the mode\.

5.2.1..3 Choosing the Final Path

At some point, the relative noise and signal powers present in the residuals will be

such that subsequent paths will be dominated by estimation error, and will there

fore corrupt the mode!. As the optimal path is selected at each stage, once this

point is reached, no further paths can be based on the second-order cross-correlation.

Consequently, we v."Ïll develop a test to determine when tbis point has been reached.

To determine whether or not the current path is primarily due to signal or noise,

we v.il! e.__amine its associated eigenvalue in the second-order cross-correlation matrL__.

If the magnitude of its eigenvalue is consistent v.'Ïth the hypothesis that the residuals

contain only noise, v."e will reject the path, and conclude that no further paths can

be based on the second-order cross-correlation.

First, consider the perturbation of the eigenvalues of a Hermetian matrix, wbich

is perturbed by a Hermetian perturbation. From [89], we see that the maximum

perturbation in the principal eigenvalue of~ = ~""r+~""n is less than the 2-norm

of ~~. Our task, then, is to estimate the 2-norm of the perturbation, ~,.,.." using

known quantities.

We will need to know the second-order statistics of the entries of the perturbation

matrlx, ~~. The expected value of the perturbation is zero, since u and n are

independent. If n is white, the perturbation variance can be written:

E[~~(i,j)] - E [~ f:. u(t - i)u(t - j)n(t)u(s - i)s(s - j)n(s)]
.,=1

- ~ f:. E[u(t - i)u(t - j)u(s - i)u(s - j)]E[n(s)n(t)]
.,=1

- ~ [2t,f1;"(i - j) + 1/1;"(0)]
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• Thus, aside from points near the diagonal, the variance of the perturbation ele

ments is a:V:.
From [47], we have the following matrix inequality:

(5.4)

(5.5)

•

where A[al a2 ... a,.] is an m by n matrL'i:. Due to length of the data records

and the central limit theorem, the elements of the perturbation matrix must have

nearly Gaussian elements. Therefore, the squared 2-norms of its columns will have

chi-squared distributions, with T degrees of freedom.

Thus, to continue adding paths based on the second-order cross-correlation to

the model, we will require the principal eigenvalue of the cross-correlation matrL'i: to

exceed the following threshold:

).2 > xVTÔ'~u;
1- N

where Xis the "chi-squared" level for T degrees offreedom at a 50me chosen confidence

level. Given that Equation (5.5) was derived using a fairly loose upper bound, it will

be quite conservative, and may reject paths that are still dominated by the system

dynamics. Simulations, presenteà in Section 5.2.4.5, will be used to demonstrate

the efficacy of this technique, as well as to establish an appropriate value for the

confidence level, which in turn will determine X and the threshold.

Two comments are in order. Firstly, we do not have access to the noise signal,

v, 50 the variance of the current residuals must be usedin this test, makjng it even

more conservative. Secondly, this threshold is not based on the residuals that result

from the addition of the current path to the mode!, and therefore is not infiuenced '

by any errors in the nonlinearity estimation.

5.2.2.4 Use of a Pseudo-inverse

In Chapter 3, we used a pseudo-inverse based deconvolution opera.tion to remove noise

from IRFs estimated using coloured input signa1s In this section, we will examine

how this technique can be applied to IRF estimates obtained by 50lving a generalized
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eigenvalue problem involving the second-order input-output cross-correlation. <?uuY'

and the Toeplitz structured input auto-correlation matri." ~UU.

To apply the pseudo-im'erse based deconvolution, we replace h with ~~u~uuh.

where ~~u is a pseudo-inverse of ~uu. Tbis is the projection of h onto the subspace

spanned by vi, the singular vectors of ~uu whieb correspond to significant singular

,..alues. To achieve tbis, we must eboose the order of the pseudo-inverse, and hence

the dimension of the space spanned by vi, appropriately.

Let x(t) be the convolution:

T-l
x(t) =L h(..)u(t - ..)

=0

and w(t) is theproduet x(t)z(t). From Lemma3, we see that if (h, À) are ageneralized

eigenvector and eigenvalue of (~uuy, ~_), then they are also solutions to:

which we shall call the "equivalent linear problem". In effect, in forming w(t), we

have increased the order of all of the nonlinearities in the system by one, transforming

an even system into an odd system.

Once we have estimated h from the generalized eigenvalue problem, we compute

x(t) and w(t). A polynomial, m,.,(.) is ntted between them and the residuals:

'lI..(t) = w(t) - m,.,(x(t))

are computed. We now apply the algorithm described in Section 3.2.1.1, using <P....

and 'lI..(t) as the cross-correlation and noise, to determine the correct order for the

pseudo-inverse, ~"". We then use ~""~""h as the !RF of the Wiener cascade.

5.2.3 Third-Order Correlations

Consider a nonlinear sYstem, with input 'lI.(t) and output y(t). Assume that we have

used the parallel cascade method to drive the :lirst and second-order cross-correlations

between the input and the output residuals to zero. Let 'lI(t) represent the current

output residuals.
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• As there is no information left in the !irst and second-order correlaticns, we must

estimate the linear element of the ne>..-t cascade from the third-order correlation be

tween the input and the output residuals. Given]li data points, a biased estimate of

the third-order cross-correlation between x(t) and v(t) is:

~uuu.(i, j, k) = f\I~ ~ u(n - i)u(n - j)u(n - k)v(n) (5.6)

Let h(i) be the impulse response of the ne>..'t Wiener cascade. The static nonlin

earity in this cascade will be chosen such that the first and second-order correlations

between the cascade input and output are zero. In this case, the third-order cross

correlation function across this system can be v.ritten:

tPuuu.(i,j, k) = ch(i)h(j)h(k) (5.7)

•

where c is the third-order term in the polynomial representation of the static nonlin

earity.

We will choose h(i) snch that the mean squared error (M5E) between the third

order cross-correlations measured across the cascade (5.7) and estimated from the

data (5.6) is rnjnjrnjzed. The M5E is:

~ .t (~uuuv(i,j,k) -ch(i)h(j)h(k»)2 (5.8)
:""k=1

We will attempt to find h(i) using a gradient search procedure. Assuming that

we have an initial guess for h(i), the gradient can be written:

aMBE
g(i) - ah(i)

- ;:: ttl~(i,j, k)h(i)h(;)h(k) - h(i) Cth2(j))}
We can also compute the best distance to go in the direction of the gradient. If

we replace our guess h(~1 with h(~1 +ag(il, and optimize with respect to a, we get a

fifth degree polynomial equation:

(5.9)
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• with ~oeflicie!lts:

.4 - -3[g, g]3

B - -15[g, g]2[g, h]

C - -24[g, g][g, h]2 - 6[h, h][g, g]2

T • (5.10)
D - 3 L cPuuu.(i,j,k)(g(i)g(j)g(k) -18[h,h][h,g][g,g]-12[h,g]3

i';,k=l
T

E - 6 L ~uuu.(i,j,k)g(i)g(j)h(k) -12[h,h][g,h]2 -3[h,h]2[g,g]
i';,k=l

T
F - 3 L ~uuu.(i,j, k)h(i)h(j)g(k) - 3[h, h]2[h, g]

i,;,k=l

where rh, g] is taken to be the inner produet between the vectors h(i) and g(i). Equa

tion (5.9) will either have 1,3 or 5 real solutions, which correspond to the local e.'\"trema

of the MSE along the gradient vector. lu cr = ±oo correspond to maxima in the MSE,

only the odd numbered roots need be considered. The best of these is used as the

starting point for the next iteration.

This gradient iteration can be applied repeatedly, until no further reduetion in

the MSE is obtained. Furthermore, it can be shown that when the gradient vanishes,

the veetor h(i) will have the following property, which is in some sense analogous to

it being an eigenveetor.

T •
L rPuuw(i,j,k)h(i)h(j) = Àh(k)

i';"'l

(5.11)

•

This result can be used to test the convergence of the iteration, and determine

when a (potentially local) minimum has been reached.

Clearly, a similar derivation could be used to develop a gradient search algorithm

forfourth (or higher) order systems.

5.2.4 Single Input Simulations

We examined the behaviour ofthese algorithms by simulating a single-input, homoge

neons second-order system. This system was completely described by the second-order
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• Simulated Second-Order Kemel

8

6

<Il 4
"tl
;;j=2a.
E
~o

·2

-4
o

lag (samples)

60 0
lag (samples)

•

Figure 5.2: Second-order Volterra kemel of the system used in the single-input sim
ulations.

Volterra kemel shown in Figure 5.2. This kemel was produced by placing 3 weighted

impulses on a 64 by 64 point grid. "Minor im2.0cres" of the impulses were p1aced across

the diagonal, and the resulting kemel smoothed.

This kemel was designed to have several difFerent features ofdiHerent sizes, so that

the quality of the kemel estimates 'I\"Ould be readily evident from a visual inspection.

The 1argest feature was the peak at (0,0) lag: This, and the two negative peaks,

one along each a."às, were well modelled by all methods. The next smallest feature
~ ~

was the negative peak on the diagonal. Finally, thesmall rieige separating the two

negative peaks near the origin provides a feature that is quite diflicult to mode!.

In the first set of simulations, the input was· a 10,000 point sequence of whitè

Gaussian noise. The kemel output was generated using a second-order convolution

(Equation 2.12).
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• Second-Order Ker:le\ Estimate
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Figure 5.3: Second-order Wiener kemel estimated using the Lee-Schetzen cro.<~

correlation method, before (upper) and after (lower) smoothing•
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• 5.2.4.1 Lee-Schetzen Cross-Correlation

First, for comparison purposes, we estimated the second-order Wiener kernel, shown

in the upper panel of Figure 5.3, using the Lee and Schetzen cross-correlation method

[62]. Even though the input 'l',as white Gaussian noise, the cross-correlation estimate

was dominated by high frequency noise. This noise could be suppressed, somewhat,

using a 9-point smoothing filter. The smoothed kernel estimate is sho'l'.'Il in the lower

panel of Figure 5.3. Although the noise is much reduced, only the largest of the kernel

features are visible.

5.2.4.2 Parallel Cascade Methods

We examined two versions of the parallel cascade method. In the first case, the linear

elements of the Wiener paths were based on randomly selected single slices of the

second-order cross-correlation function. In the second case, the pri..ncipal eigenvector

of the whole second-orèer cross-correlation function was used to identify the linear

elements.

We first examined convergence speed under noiseless conditions. JUter each path

had been added to the model, the residual variance ",-as computed. This was used to

compute :he percentage of the output variance that had been accounted for by the

mode! (%VAF, see Equation 3.5). The number of :ll.oating point operations (:ll.ops)

required in the computation of each path was also determined. Convergence speed

'l'.-as evaluated in terms of the number of :ll.ops required to reach a given level of mode!

accuracy.

Figure 5.4 plots the mode! accuracy (%VAF) against the number of :ll.ops for the

two methods. Initial convergence was faster when the linear d;jo'Ilamics were estimated

from single slices of the second-order correlation function, as suggested by Korenberg

[56]. This was due to thehigh cast associated with the compùtation of each path using

. the eigenveetor method.. Bath methods required approximately the same number of

. computations to reach an accuracy of 90%VAF. For higher accuracies, the eigenvector

method proved to be faster than the single slice implementation since many fewer
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• Model Accuracy as aFunction of Computation Time
, 001-----.,...--=----::~~:=;;:::::5=::;::=:if==;

'. • .• 1

+

•

+ eigenvector method
- single slice melhod

°0~----'-------'-----'-----~20

Number of Qeerations
(tens of millions)

Figure 5.4: Convergence speed for the single slice and eigenvector versions of the
parallel cascade method under noiseless conditions. The model accuracy, e."""Pressed
as the percentage of the output variance accounted for by the mode!, is plotted as a
function of the number of floating point operations (flops) required in the computa
tions. Each + sign represents one pathway added by the ejgenvector method. Each
cross indicates the addition of 10 pathways by the single-slice algorithm

paths needed to he computed.

Figure 5.5 shows the kerne! estimated by the original single slice variant of the

parallel cascade method. This kernel aceounted for 9ï.8% of the variance of the

output, but contained high frequency estimation noise. Note that at this stage, the

single-slice model comprised 90 Wiener cascade paths,-:md had more parameters than

the original second order kernel.

Applying the eigenvector method and fitting 5 Wiener paths resulted in a model

which accounted for 99.7% of the output variance. AIl the features present in the

simulated kemel were clearly visible in the model's second-order keme!, shown in

Fig. 5.6. UDlilœ that produced by the single slice implementation, this model had far

fewer parameters than the simulated system.

Using the eigenvector method ta add an additional5 paths to the mode!, resulted
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• Second-Order Kemel Estimate
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Figure 5.5: Second-order Volterra kernel computed from the first 90 paths identified
by the single slice_ method. It accounts for 9ï.8% of the output variance.
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Figure 5.6: Second-order Volterra kernel computed from the first 5 paths identified
by the eigenvector method. It accounts for 99.7% of the output variance.•
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• Estimaled Second-OrcIer Kemel
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Figure 5.7: Second-order Volterra kernel computed from the first 10 paths identified
by the eigenvector method under noiseless conditions. This kernel accounts for 99.97%
of the output variance.

in a model that accounted for 99.97% of the output variance. At this stage, the kernel

estimate, shown in Figure f'.7, is virtually inclistinguishable from t!le true kernel.

5.2.4.3 Performance Under Noisy Conditions

We then examined the performance of these methods in the presence of output noise.

White Gaussian noise was added to the system,output, with variances ranging from

10 '" 100% of the output signal variance. Both methods were used to identify the

system at each noise leve1. Model accuracy-was assessed by:measuring the ability

of the identified systems to predict the uncorrupted system output. In all cases, as

paths were_added to the mode!, the prediction accuracy increased initially, reaèhed.a.
-

ma'lÔmum, and then decreased, as subsequent paths began to model the noise present

.: in the residuals rather than the underlying dynamics. Fig. 5.8 showS the maximum

model accuracyobtained by each method as a function of the output noise level.

.• It is evident that the eigenvector method produced better estimates of the system
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Figure s.a: The maximum model accuracy obtained as a function of the output noise
!evel. In ail cases, model accuracy ",-as assessed in terms of output errer with respect
to the uncorrupted output signal.

dynamics, at ail-noise levels. Furtherm.ore, the eigenvector method performed much

better at higher noise levels than did the single slice method.

5.2.4.4 Performance UsiDg Band-Limited Inputs

In tbis section, we present a simulation which shows that when the test input is

band-limited kernel estimates obtained from noisy datacan be obscured by decon

volution noise, as suggested in Section 5.2.2.4. Furthermore, we will demoI!Stra.te

the improvements in both the kernel estimates and the prediction accuracy that are

.realized when the pseudo-inverse deconvolution algorithm is used to suppress the

deconvolution noise.

In this simulation, a band-limited limited input signal was generated by filtering

a 10,000 point sequence of white Gaussian noise with a fourth order Butterworth

low-pass filter v."Ïth a normalized cut-of[ of 0.1. This band-limited Gaussian signal
,
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• Relevant Spectra
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Figure 5.9: Spectra relevant to the band-limited input simulation. The soUd line
shows the power spectrum ofthe band-limited test input used during the identification
experiment. The dashed and dash-dotted lines show the power spectra of the system
output, when the system was driven with a white input and the band-limited test
input, respectively. The measurement noise spectrum. is plotted as a dotted line.

was then processed by the kemel shown in Figure 5.2. White Gaussian noise was

added to the kemel output at a SNR of 10 dB.

Figure 5.9 shows four spectra which are relevant to the simulation. The input

spectrum is plotted as a solid line. It is evident that at normalized frequencies of less

than 0.15, the output spectrum evoked by a white input (dashed line) and that evoked

by the band-limited test input (dash-dotted line) are identical. At higher frequencies

the white input evokes more power than the band-limited input, however both saon

drop below the noise spectrum (dotted line). Thœ the band-limited input appears

ta excite those dynamic modes present in the system which are visible through the

_-noise. Henee, this input should he adequate for system identification purposes under

• - these conditioDS.
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• Exact Deconvolution
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Figure 5.10: Second-order Volterra kernel estimated by applying the optimized par
allel cascade method with exact decon"'Jlution to noisy, band-limited data.
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As in previous simulations, a parallel Wiener cascade model was identifil'd using

the generalized eigenvector algorithm described in Section 5.2.2.1. Tht' resultin~

keme!, shown in Figure 5.10. was dominated by large amplitude. high frequcncy

noise. which is assumed to be due to the exact deco!l\'olution perfurmed irnplicîtly

by the generalized eigenvector algorithm. Despite the presence of this noise. which

complete!y obscures the kemel, this model predicted 98.6% of the \-ariance of the

noise-free output.

The keme! shov:n in Figure 5.11 was generated using the generalized eigenvec

tor algorithm in conjunction with the pseudo-inverse based deconvolution method.

described in Section 5.2.2.4. Here, the deconvolution noise has been effective!y sup

pressed. This mode! predicts 99.8% of the noise-free output and 98.3% of the ker

ne! variance, both substantial improvements over the mode! gencrated without the

pseudo-inverse based deconvolution.

5.2.4.5 Choosing the Final Path

A series of Monte Carlo simulations was performed to determine how well the thresh

old proposed in Equation (5.5) discriminated paths that contributed information

about the system from those that modelled mostly noise. During each run of the

Monte Carlo simulation, new system inpnt and output and noise signaIs were gen

erated. A 20 path Wiener cascade mode! was then fitted between the input and

the noise corrupted output. .4.s each path was estimated, the ratio of the principal

eigenvalue to the threshold given in (5.5) was computed, as well as the prediction

accuracy of the mode!. Once all 20 paths had been fitted, the prediction accuraey

was nornialized with respect to the maYimum obtained during that run. For each

mu, the normalized prediction accuracy was evaluated as a function of the threshold

leveL

This test was performed on thIee different systems, chosen snch that the paralle!

cascade expansion would converge at different rates for each system. The first system

was the homogeneous, second-order system, shawn in Figure 5.2, used in the previous

simulations. The second system had a kemel, shown in the upper pane! of Figure
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• Second-Order Kemel for Second System
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Figure 5.12: The top panel shows the second-order Volterra. kernel of the second
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• Convergence under Noiseless Conditions
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Figure 5.13: Convergence, under noise-free conditions, of the optimized parallel cas
cade method applied to the three systems used in the threshold simulations.

•

5.12, which was constructed in a similar manner to the first. However, the peaks in

the kernel were concentrated near the diagonal to slow the convergence of the parallel

cascade. The third system was an LNL cascade consisting of a fourth-order Butter

worth high-pass filter, followed by a squarer, followed by a fourth-order Butterworth

low-pass filter. Given the nearly diagonal shape of this kernel, shown in the lower

.panel of Figure 5.12, we would expect convergence to be slow indeed..

The three systems were first identified under noiseless conditions, to establish the

speed at which the parallel cascade expansion converged for each system. Figure 5.13

shoWs the prediction aceuracy as a function of the number of paths for models of the

three systems. From this figure, it is evident that parallel cascade models of the three

systems converge at very difFerent rates. Taken together, simulations performed on

these three systems should be representative of the behaviour expected with a wide

varlety of unknown systems.
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Ten runs were performed on each system, at each of four S!'I'"Rs: 0, 3, 6 and 10

dB. In each case, the confidence level, which determines the value of X in Equation

(5.5), was set to 50%.

The upper trace in Figure 5.14 plots the mean normalized accuracy, evaluated

over an systems and SNRs, as a function of the decision threshold. This plot bas a

peak at a threshold of 0.7, which yie!ds a normalized accuracy of 0.9992. Thus, on

average, if a decision threshold of 0.7 is used, the resulting mode! would account for

99.92% of the variance accounted for by the best possible mode! estimated from the

data.

The lower two traces in Figure 5.14 show the mean less one standard deviation and

the minimum normalized prediction accuracies. These curves also reach a maximum

for a threshold of 0.7. The minimum normalized accuracy was 0.9901. Thus, even

in the worst case observed, using a decision threshold of 0.7 resulted in a mode!
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which accounted for 99.01%of the \-ariance accounted for by the best parallel \\ïeuer

cascade model which could be obtained from the giwn data.

5.3 Multiple-Input Systems

As we discussed in Section 2.4, multiple-input systems can be represented by \Vien",r/

Volterra series that contain two types of kemels: self-kernels and cross-kernels.

The self-kemels are driven by single inputs; in general, a multiple-input system

will have a series of self-kemels for each of its inputs. In principle. these may be

identified in the same ways as the kemels of a single-input system. However. as

'was the case with the m:l1tiple-input Wiener structures considered in Chaptcr 4, the

presence of multiple inputs can cause special interference problems.

The cross-kemels, on the other hand, receive excitation from several inputs. lu

principal, they may be estimated from multiple-input cross-correlation functions. In

this case, the presence of any self-kemels, or of cross-kemels involving different sets

of inputs, can lead to interference, and estimation error.

The lowest order cross-kemel is second-order (fust-order in two inputs). This may

be estimated much like the second-order self-kemel. We will now develop a method to

find the two-input V\tïener system, as illustrated in Fig. 5.15, that best approximates

the cross-kemel.

Initially, assume that the inputs, 'lLl(t) and 'lL2(t), are white, 50 that the cross

correlations, tPu''"l ('i) and tPuo:t:t('i), are equal to the impulse responses, h.., ('i) and

h...('i), respectively. If the inputs are not white, the analysis presented in this sec

tion will estimate the correlations rather than the IRFs. The input auto-correlation

functions will then have te be deconvolved, assuggested by Hunter and Keamey [30J,

and presented in Equation (2.9).

- CalcuIate the second-order cross-cross-correlation across the candidate path:

(5.12)

and determine the mean-squared errer between the cross-correlation observed in the
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Nonlinear System
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m,,(., .)

x,dt)
Static Nonlinear

Yl(t)

Linear Dynamic
Ul (t)

h,d·)

Figure 5.15: A multiple-input nonlinear system (top), and the multiple-input Wiener
system (bottom) that is used to appro.-:imate it.

data, and that calculated for our candidate path. We \\ill seek impulse responses,

hu, ('1) and hu,('2), that rnjnjrnjze this MSE, which can be \\-ntten:

(5.13)

Calculate the optimal value for the constant, k, given the two!RFs hu'('l) and

h,., ('2) by differentiating the MSE with respect to 10, and setting the resu1t to zero.

Due to the scaling introduced by 10, let hu, ('1) and hu2 ('2) have unit norms.

T

10 = L ~U1U211(i,j)hu, (i)hu.(j)
i,j=1

Given this value for 10, expand Eq (5.13)

MSE =..:. {.f: ~;'U2ll(i,j) - [.f: ~:ptIhul(i)hu,(j)]2}
... - .,,=1 ..,=1

(5.14)

(5.15)

We must therefore maxirnjze the second term in (5.15), subject to the constraint

of unit norms for the !RFs. To achieve this, wnte the cross-cross-correlation, matrlx

in terms of its singular value decomposition (SVD) [20):

• • T
ljSulU2l1 = VSV (5.16)
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• where U and F are orthonormal matrices with ro\\"s equal to the left and right singular

vectors of the cross-correlation matri:Ii:. S is a diagonal matrb, of the singular values.

Sk· Now, write the IRFs hu, (,) and hu,(,) as weighted sums of the singular wctors

'iik and Vk:

T

hu, = L Cl<k'iik,
k=l

T

hu, = L.BkVk
k=l

(5.1 i)

We must now choose the Cl<k and {3k to minimize the l\'1SE. ElI:panding (5.15) it

can be shown that this is equivalent to ma.'(ÏmÏzing:

(5.18)

subject to the constraints:

(5.19)

•

Solving this constrained optimization, we see that ail of the Cl<k and Pk must

be equal to zero, except thase that are associated 'with the largest singular value,

which must both be unity. Therefore choosing the vectors associated v.ith the largest

'singular value gives us the optimal choice of the mFs. As stated previously, if the

inputs are non-white, the singular vectors will have to have the input auto- correlation

functions deconvolved from them, as suggested in Hunter and Kearney [3D].

5.3.1 Simulations Involving Multiple-Inptit Systems

For these simulations, we created a two-input, second-order system that had first

and second-order self-kernels associated with each input, as weil as a cross-kerilel

that processed both inputs. For the first-order kernels, shown in the upper panel of

Figure 5.16, we used the mFs of the two-input Wiener system simulated in Chapter

4. The second-order kernels were generated using techniques simüar tothat used in

the single-input simulation, presented in Section 5.2.4, by placing impulses on a grid,

and then smoothing the resulting kernel. These kerne1s, shawn in Figures 5.16 and·

5.17, had memory lengths of 64 points each, tota)Jjng 8256 independent kernel values.
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• Simulated First-Order Kemels
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Figure 5.16: Keme1s of the simulated two-input system. The upper panel shows two
first-order self-kerne1s, one for each input. The second-order cross-kernel is shown in
the lower panel
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• Simulated Second-Order Self Kernel (input u 1(t))
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• Two 25,000 point records of white Gaussian noise were used as inputs. Kernels were

estimated using the methods presented in tbis paper, and by using single slices of the

correlation functions, as suggested by Korenberg [56].

As in the previous simulations, we evaluated model accuracy as a function of the

number of computations required, both under noiseless conditions, and with various

levels of output noise. Figure 5.18 shows the rate of convergence under noiseless

conditions for both methods. Even under noiseless conditions, the S'VD method

converged significantly faster than the single slice formulation.

Model Accuracy as a I:unction of Computation Time
two-mput system

100r-----....,...---~..---.:.----,----__,

+
+ + + + +

>.~Ou.
!!!«::1>
8«lji
-0CD ..
"CCDoa.
:::~

+ eigenvector method
)E---i( single slice method

•

00"-----'------'------'--------'200
Numbar of Operations

(tans of millions)

Figure 5.18: Convergence speed for the multiple-input implementation of the single
slice and eigenvector methods. Model accuracy is plotted as a function of the number
of flops required in the computations. The + signs each represe.nt one pathwa.y being
added by the eigenvector method. The crosses each represent 25 pathwa.ys being
added by the single slice method

In Fig. 5.19, the maximum model acèuracy obtained is plotted as a function of

the output noise level. From this figure, it is evident that the SVD based method

produced much better mode1s than the single-slice method, at ail noise levels.

Even under noiseless conditions the single slice method wa.s only able to account
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Figure 5.19: Noise performance of the multiple-input algorithms.

•

for 85% of the output variance. This poor performance is probably due to interference

in the correlation estimates caused by nonlinear interactions among the input signals,

as described in the previous chapter, which dealt with multiple-input Wiener systems.

This interference will be present, regardless of which method15 used, and result in

the degradation of correlation estimates. Provided an adequate initial estimate of the

mFs is available, the iterations proposed in Chapter 4 may be used to estimate and

remove much of this interference. At some point, due to it's poor noise performance,

the single slice method becomes unable to provide such an initial estimate, and the

iteration fails.

However, due to its superior noise performance, the SVD method is less sènsitive to

this degradation, andtherefore produces better estimates ofthe system. Furthermore,

these estimates can then be used to initiate the interference Suppression. Thus, the

superior noise performance of the SVD based method provides two advantages: first,

it yields better initial estimates than the single slice method, and second, it allows
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the iterative noise suppression techniques, developed in Chapter 4 to be used at lower

5NRs, further increasing its advantage in model accuracy.

5.4 Summary

In this chapter, we considered how to model nonlinear systems using a parallel sum of

Wiener systems. We developed procedures that estimate the optimal \\rlener system

to add to the array at each stage in the modelling. Furthermore, we demonstrated

that our expansion is unique, given the input auto-correlation.

The development of these methods represents an important advance in the tech

nology of nonlinear system identification. Because our eJI.-pansion is unique, and each

pathway is optimal, the results are repeatable, and require little, if any, user inter

vention. As a result, they should be suitable for use by a wide variety of researchers

who have little ba.ckgÎ-ound in the specifies of nonlinear system theory.

Our approach is to use a single Wiener cascade, whose linear element is derived

from the first-order input-output cross-correlation, to drive the mean of the residuals

and the first-order cross-correlation between the input and the residuals to zero.

The linear elements of subsequent paths are derived from the second-order cross

correlation between the input and the residuals. The procedure outlined in this

chapter identifies the Wiener cascade that produces the greatest reduction in the

variance of the residuals, subject to the constraint that the nonlinearity is represented

by a second-order polynomial. When the input is white, this procedure also results

in the greatest reduction in the F-norm of the second-order cross-correlation matrix.

Under noiseless conditions, this procedure should drive the second-order correla-

- tion to zero, USÙlg a number of paths which is at most equal to the memory length of

the :;ystem. If noise is present, this point cannot be reached, as paths will eventually

model the noise instead of remaining dynamies. We provide a criterion to help the

investigator decide when to stop basing cascade paths on the second-order correlation

function•

Finally, we developed a technique that can be used to find the Wiener path that
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produces the greatest reduction in the mean square \'alue of the third-order cross

correlation between the input and the residuals. Because a c10sed form solution to

this problem was not evident, we developed a gradient search scheme. lu principal.

this gradient search could also be used with higher order correlation functions.

Wc have shown how these methods may be applied to multiple input systems.

The approach is essentially the same as that employed \\ith single input systems.

although we have more correlation fonctions at our disposal. Furthermore. the basic

building block is a multiple-input Wiener cascade, Chen's [13] 1-c structure, instead

of the single input systems used in the previous case.

Using numerical simulations, we demonstrated that these algorithms converge

more quickly than the original single-slice based parallel cascade methods, and that

this speed advantage increases with the desired leve1 of model accuracy. Furthermore,

the optimized parallel cascade methods were more robust I\gainst noise than the

original implementations. In Chapter 6, we will demonstrate how these procedures

work when they are applied to data from physical systems.
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Chapter 6

Case Studies in N onlinear

Identification

While much can be leamed in digital simulations, it is diflîcult to simulate many of

the constraints facing ~"Perimenters. Some, such as the finite roll-off of both anti

aliasing and reconstruction filters, which limit the band'l\'idth of the measured input

and output signais, and the finite resolution of analogue to digital converters (AOC),

which generate quantization noise, are due to the data acquisition apparatus. Other

constraints are due to the experiment itself. For example, the band'l\'idth of the test

input may be restricted by the apparatus. In experimental studies of joint d)"D.amics,

perturbations are applied using either torque motoIS or hydraulic actuators, both of

which ad as low-pass filters and limit the perturbation baudwidth. A final constraint

is the presence of measurement noise, which is often assumed to have a Gaussian

distribution and white spectrum. Neither of these assumptions is necessa.rily valid.

This chapter describes two applications of the nonlinear system identification

methods, developed in previous chapters, to real data from two physical systems.

The first is an experiment conducted on an analogue nonlinear system constructed

using a combination of linear filters and an analogue multiplier. We used this exper

iment to assess the applicability of our metliods under laboratory conditions. The

second application is the identification of a model of the re1ationship between the

movement of a joint and the resulting myoelectric activity: the stretch-reflex EMG.
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This was done to e;"amine how our algorithms can be applied to data from an nn

knov.n, physical system and to elucidate some of the choices that must bl' madl'

during an analysis.

6.1 Identification of an Analogue System

6.1.1 Methods

The test system was created using analogue filters and an analogue multiplierl . A

block diagram of this system is shown in Fig. 6.1. Details regarding the construction

of this system can be found in Appendb:: B.

If the linear elements in Figure 6.1 were alliow-pass, it would be possible, at least

theoretically, to map the static nonlinearity simply by applying constant inputs at

various levels. Clearly, if one or more of the elements is high-pass, this approach will

fail. Therefore, we examined how the identification algorithms performed wben both

low-pass and high-pass filters were used in various configurations in the test system.

A summary of the configurations used in the e>:periments is presented in Table 6.1.

'lLl(t)
hl('T)

'lL3(t)
h3('T)

y(t)

'lL2(t)
h2('T) %2(t)

Figure 6.1: Block diagram of the electronic system used in the experimental verifi- .
cation of the eigenva."tor method. Note the internai signais, %1 '%2, and 'lL3 were not
measured, and are included for discussion purposes only.

In each experiment, the system "l'laS driven by two highly coloured inputs. These

consisted of 6000 points of white Gaussian noise, filtered digitally by a fourth-order

Butterworth low-pass :61ter \Vith a normalized cut-off of 0.1. This stimulus, repeated

lMPY-lOOBG Burr Brown
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Experiment hj(r) h2(r) h3(r)
1 Low-Pass Low-Pass Low-Pass
2 Low-Pass Low-Pass High-Pass
3 High-Pass High-Pass Low-Pass

Table 6.1: Summary of e.'i:perimental configurations

5 times, was presented at 1000 Hz by a 16 bit digital to analogue converter, and

low-pass filtered by a 100 Hz reconstruction filter. Ali signaIs were low-pass filtered

at 100 Hz, and then sampled at 1000 Hz, using 16 bit analogue to digital converters.

Once a model had been identified, its accuracy was assessed in two ways. Firstly,

the measured input signaIs were applied to the model, and its output computed. This

was compared with the measured output to yield the "prediction accuracy" attained

by the model. Secondly, "''e generated the second-order cross-kernel for the model,

and compared it ",i.th a theoretical kernel, generated analytically using the impulse

responses of the linear filters employed in the system. This produced the "kernel

accuracy". In both cases, accuracy "'"as reported as the percentage of the variance

accounted for by the model (%VAF) (See Equation 3.5).

6.1.1.1 Choice of Sampling Rate

Ideally, the anti-aliasing filters should have constant gain and linear phase for fIe

quencies between DC and the cut-ofF, followed by a rapid transition to zero gain. In

practice, they have uearly constant gain and linear phase below the cut-ofF frequency,

but the theoretical attenuation is ooly reached well above the cut-ofF frequency. To

avoid distortion and aliasing, we used a sampling frequency approximately ten times

higher !han the expeeted Nyquist frequency [5].

Because the signais were over-sampled, it was necessary to decimate them prior

to the analysis. Decimation in software has two advantages over using a lower initial

sampling rate. Firstly, the raw data is low-pass filtered using a digital filter, whose

charaeteristics are much doser to ideal !han the analogue filters used in the initial

sampling. Secondly, the spectra of the input and output signais cao be exarnined
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prior to selecting the final sampling rate. greatly reducing the risk of inadwrtcntly

aliasing the data.

The choice of sampling rate is straightforward for a linear systems. since tht' pres

ence of energy at a particular frequency in its output implies both that the frequency

is in the pass-band of the system, and that there is power at that frequency in the

input signal. Thus, the bandwidth of the output will be, at most. the smal).!'r of

the input bandwidth and the system bandwidth. If the sampling rate is suflicient to

represent the input signal 'without aliasing, it must also be suflicient to represent the

output.

The problem is more comple..'i: for nonlinear systems since there may be output

power at frequencies different from those present in the input [110]. For e..'(ample,

consider a Wiener system consisting of a linear dynamic clement followed by a squarer.

If the input is sin(wt) then the output of the linear clement v.ill be k sin(wt + 4», for

some gain, k, and phase shift, 4>. The output of the static nonlinearity, however, will

be ~(1 - cos(2wt + 24>)), which contains one term at OC, and another at twice the

frequency of the input. Thus, while a sampling rate between 2w and 4w is adequate

to represent the input [5], the high frequency component in the output would either

be aliased, or eliminated by anti-aliasing filters. In sampling such a system, tare must

be talten to ensure that neither the input nor the output is aliased.

These considerations did not pose problems in this case, as the input bandwidths

were always wide! than those of the outputs. Figure 6.2 shows the power spectra of

the input and output signals measured during an experiment where h1(T) and ~(T)

were low-pass, and h3(T) was a high-pass filter. This coniiguration resu1tecL in the

widest output bandwidth. Therefore, a sampling rate chosen for this coniiguration

would be adequate for all of the experiments.

By e..vamining the spectra in Figure 6.2, we cau see that the "noise f1oor" is reached

at about 200 Hz. Thus, resampling the data at 400 Hz will not resu1t in the loss of any

significaut information. To achieve a decimation by a factor of 2.5, we interpolated

the data by a factor of 2, and then decimated the resu1t by 5, for a final sampling

rate of 400 Hz.
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Figure 6.2: Power Spectra of the input and output signais measured during the low
pass/high-pass experiment.

6.1.1.2 Characterization of the Linear Filters

•

Nominal filter characteristics and impulse responses could have been calculated the

oretically from the component values. However, given the tolerances associated with

each component, there would be considerable uncertainty associated with each of the

mFs. Thus, we determined the filter mFs experimentally v.-ïth the same input se

quences used to identify the nonlinear systems. Due to the low power in the input

signal at high frequencies, the pseudoinverse based deconvolution technique, devel

oped in Chapter 3, was used in the filter estimation. The impulse responses for the

filters are shawn in Figure 6.3. Design parameters for the filters, together with a

circuit diagram, are presented in Appendix B.
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Impulse Responses of Linear Filters
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Figure 6.3: IRFs identmed for the filters used in the analogue simulation
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6.1.1.3 Characterization of the Measurement Noise

The inputs to the circuit were grounded and the output recorded for 30 seconds at

a sampling frequency of 1,000 Hz. Its power spectrum was then estimated using 1

second segmp.nts, which corresponds to a frequency resolution of 1 Hz. The noise

spectrum was white, except for two large peaks at 20 and 40 Hz, as shown in Figure

6.4. The average noise power was 2 x 1O-8V 2•

Power Spectrum with Inputs Grounded
10-5,...-----.----.----""T'"---...,.....-----;

10-9L-__--S ........ ......... ...... -'

o 500
Frequency (Hz)

Figure 6.4: Output power spectrum measured when the inputs were grounded

6.1.1.4 Cbaracterization of the Analogue Multiplier

The inputs to the D).ultiplier were driven with two independent 30,000 point Gaussian

noise sequences, each pre-:6ltered by an eighth order digital Butterworth :6lter with a

cut-ofI of 25 Hz. This pre-:6ltering was used to ensure that both input signals would

not be distorted by either the reconstruction or anti-aliasing :6lters. The product of

the inputs was compared with the measured output. It =unted for 99.996% of the

output variance, which is well within the 1.0% full scale eI!Or (0.01% error variance)
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LPF-l

y(t)
LPF-3

U2(t)
LPF-2

Figure 6.5: Block diagram of the configuration used in the low-pass/low-pass experi
ment. Filter characteristics can be found in Appendbi: B

specified for the multiplier.

6.1.2 Low-Pass/Low-Pass Case

We first examined the low-pass/low-pass configuration shown in Figure 6.5. This

system is complete1y described by its second-order cross-kerne1, which is given by:

T-l

h2u1U.(Tr, T2) =L h3(i)h l (Tl - i)h2(T2 - i)
i=0

•

The filter impulse responses (shown in Figure 6.3), were used to generate the theo

retical kerne1 for this system, which is shown in Figure 6.6.

The optimized paraUe1 cascade method, deve10ped in Chapter 5, was then used

to estimate the second-order cross-kernel for the system. Since the system could

be fully described by its second-order cross-kerne1, the first-order input-output cross

correlation functions contained only noise. Similarly, there was no information present

in the single-input second-order cross-correlations. Therefore, the linear dynamics of

aU paths were estimated from the principal left and right singular vectors of the

second-order cross-cross-correlation, as described in Section.5.3.

Since the inputs were not white, the principal singular vectors were equal to the

first order cross-corre1ations across the linear e1ements, rather than their IRFs. Thus,

the input auto-correlations had to be de.."'onvolved from the singu1ar vectors to esti

mate the impulse responses of the linear e1ements. Deconvolving the input autocor

relation functions using the Toeplitz matrix inversion procedure, as suggested in [3D]

(see Equation 2.9), resulted in models that predicted the output v.-eIl, but the kernels
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• Theoretical Second-Order Cross-Kemel
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Figure 6.6: Second-order cross-kernel of the low-pass/!ow-pass system, generated from
the IRFs of the filters used in the system.

were buried in large amplitude, high frequency noise, as shown in the upper panel of

Figure 6.7. Given the similarity between this situation and the problems that arise

when coloured inputs are used in the identification oflinear systems, we attempted to

use pseudoinverse based input deconvolution (Equation 3.21) to suppress this ringing.

Application of the pseudoinverse based deconvolution to this problem was not

-straightforward since an analytical method of selectîng the correct pseudoinverse or

der had not been developed. For systems estimated from a single-input second-order

cross-correlation, the solution of the generalized eigenvalue problem performs the de

convolution implicitly, and allows the formulation of an equivalent first-order problem,

which may be used to determine the appropriate pseudoinverse order. In contrast, for

the two-input problem, linear dynamics are estimated using a singular value decom

position followed by an explicit deconvolution: a formulation which does not lead to

an equivalent fiIst-order problem. Furthermore, the orders of the two pseudoinverses,
--_.

one for each input, appear to be coupled. As a resu1t, wë1l3.ve been unable to derive
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• Exact Inverse Deconvolution
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Model Accuracy vs. Number of Paths
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Figure 6.8: Accuracy of the kernel estimate and the output prediction as a funetion
of the number of paths estimated in the low-pass/low-pass experiment.

an analytical solution for this problem. Consequently, we used an exhaustive search

over all pairs of deconvolution orders, selecting the pair which mjnjmjzed the residual

variance.

Figure 6.7 shows the kernels of a single, two-input Wiener cascade, whose linear

dynamics were estimated from the principal left and right singu1ar veetors of the

second-order cross-cross-correlation between the inputs and output. The upper panel

shows the kernel of the initial estimate, when the exact inverses of the two input auto

correlation functions were used in the deconvolution. This kernel is dominated by high

frequency ringing, particularly near its four corners. T1iè'wwér panel shows the kernel

obtained when pseudoinverses were employed in the deconvolution of the input auto

correlations. Here, the ringing has been suppressed, revealing the underlying kernel.

The accuracy of the kernel estimates and output predictions are plotted in Figure

6.8, as functions of the number of cascade paths used ta estimate the mode!. Max

imum kernel accuracy was achieved with 10 paths. Using more paths resulted in a
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Figure 6.9: Cross-kemel estimated using 10 paths generated by the optimized parallel
cascade method, using pseudoinverse based input deconvolution. This kemel accounts
for 99.35% of the variance of the true kemel.
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• slight decrease in the kernel accuracy with no significant improvement in the output

prediction. This suggests these additional paths were modelling noise rather than

system dynamics.

The second-order cross-kerne! based on the first 10 paths is shown in Figure 6.9.

This kerne! accounts for 99.4% of the variance of the analytically determined kerne!

and 99.2% of the output variance, demonstrating that an excellent system mode! has

been identified. Note that the kerne! shown in Figure 6.9 has not been smoothed.

The energy remaining in the output residuals was apparently dominated by errors

introduced in estimating the nonlinearities. At each stage, a two-input, second-order

nonlinearity was fitted between the filter outputs and the residuals. The second

order cross term generated the ·:ontribution of the current path to the estimate of

the second-order cross-kerne!. Given the characteristics of the analogue multiplier,

coefficients other than that associated with the second-order cross-kerne! should have

been zero. However, estimates of these coefficients, although small, were non-zero in

general. Indeed, forcing these terms to zero during the identification resulted in. a

mode! which accounted for 99.65% of the output variance and 99.70% of the keI'I'.e!.

Thus, using the correct nonlinearity structure halved the variance of the residuals,

both in the outp:lt prediction and in the kernel.

LPF-1

LPF-2

HPF-1
y(t)

-.

Figure 6.10: Black diagram of the configuration used in. the low-passfhigh-pass ex
periment. Filter characteristics can be found in. Appendix B

6.1.3 Low-Pass/IDgh-Pass Case

Next, we examined the low-passjhigh-pass configuration, in in. which the output filter,

h3(7'), "'"aS a 4.6 Hz Chebyshev type 1 high-pass filter (HPF-1 in Table B.1). A block
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• Theoretical Second-Order Cross-Kernel
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Figure 6.11: The upper panel shows the second-order cross-kemel for the low-pass
/high-pass experiment. The lower panel shows the cross-kemel of the model estimated
using 16 paths. It accounts for 97% of the variance of the theoretical kernel•
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diagram of this configuration is shown in Figure 6.10. The theoretical second-order

cross-kernel for this system, shoWIl in the upper pane! of Figure 6.11, was generated

using the impulse responses shown in Figure 6.3.

The kemel was then estimated from the input-output data using the optimized

parallel cascade method. .-\: paths were based on the second-order input-output

cross-cross-corre!ation, using an exhaustive search over orders of both pseudoinverses

to dec~::lvolvethe input auto-corre!atioIlS from the impulse respo..se estimates. Figure

6.12 shows the mode! accuracy as a function of the number of paths used to estimate

the mode!. Maximum keme! accuracy was achieved with 16 paths. The corresponding

keme! estimate is shOWIl in the lower pane! of Figure 6.11.

Model Accuracy VS. Number of Paths
100r-------,-----...----,....-,.--.......-:--:::--:::-=-::.

.. è è è il il ~ I!> ,; I!> ô ~ ô
I!> I!> g

I!>
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o Kemel Estimate
... Output Prediction

00 20
Number ofPaths

Figure 6.12: Accuracy of the keme! estimate and the output prediction as a function
of the number of paths estimated in the low-passfhigh-pass experiment.

Although the accuracy of the kemel estimate decreased after the first 16 paths had

been identi1ied, the prediction accuracy continu~ to increase slightly. This suggests

that at this point, additional paths modelled measurement noise, and Ilot system

d:y-namics.
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Figure 6.13: Block diagram of the configuration used in the high-passjlow-pass ex
periment. Filter characteristics can be found in Appendbc B
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Figure 6.14: Theoretical high-pass/low-pass cross-kernel
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• 6.1.4 High-PassfLow-Pass System

Finally, we e:'Camined the high-passjlow-pass configuration illustrated in Figure 6.13.

Two high-pass filters, HPF-1 and HPF-2 in Table B.1, were used as inputs to the

multiplier, and a second-order lo~'-pass Butterworth filter, LPF-1, was used to filter

the multiplier output. The analytically generated kernel for this configuration is

shown in Figure 6.14.

Convergence of Parallel Wiener Cascade
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Figure 6.15: Aceuracy of the kernel estimate and the output prediction as a function
of the number of pathsestimated in the high-pass/low-pass experiment.

Figure 6.15 shows both the prediction accuracy and the accuracy of the kernel

estimate plotted as a function of the number of paths added to the model. It is evident

that the combination of the optimized parallel cascade method and the pseudoinverse

based input deconvolution technique produced a model which yielded excellent output

predictions (98.5%VAF). Nevertheless, the model did not estimate the analytically

derived kernel very well.

The best kernel model, shown in Figure 6.16 was generated using the first 14
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• Second-Order Cross-Kemel Estimated from Wiener Cascades
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Figure 6.16: Cross-kernel estimated using 14 paths generated by the optimized parallel
cascade method, using pseudoinverse bascd input deconvolution. This kernel accounts
for 29.3% of the ....ariance of the true kernel.

•

identified Wiener cascades, but accounted for only 29.3% of the variance of the true

kernel. Comparing Figure 6.16 with 6.14, we cao see that the estimated kernel appears

to be a low-pass filtered version of the true kernel. This is not surprising, since the

test inputs were highly :6.ltered to begin with. In deconvolving the input spectra,

the pseudoinverse technique traded this low-pass filtering for a dramatic reduction in

estimation noise.

Depending on the application, this model may or may not be satisfaetory. If the

model is to be used for output prediction, then this model is likely to be adequate,

provided that the desired inputs are not very different, statistically, from that used

to identify the modeL On the other hand, if inferences about the underlying system

were to be drawn from the shape of the kernel, this model would not be satisfactory.

There are at least two possible reasons why the identified kernel differed 50 dra

matically from the theoretical kerneL Either, the inputs were not "rich" enough to

permit the system to be identified, or the expansion based on Wiener cascades, which
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• is optimized to predict the output, failed to model the kemel structure.

Convergence of Mixed Cascade Model
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Figure 6.17: Accuracy of the kernel estimate and the output prediction as a function
of the number of paths estimated in the high-pass / low-pass experiment. Here, the
first path was a Hammerstein system.

If the inputs prevented the system from being identifiable, no identification method

would succeed. On the other hand, using a more appropriate model structure may

result in a model that predicts both the system output and the kernel shape.

6.1.4.1 Use of Cl priori information

The system kernel shawn in Figure 6.14 has most of its energy concentrated near the

diagonal, which is what would be expected for a Hammerstein structure. This is due

to the high-pass filters that precede the analogue multiplier, whose impulse responses

have very short memories.

The rationale behind the selection of the optimal Wiener cascade at each stage in

the parallel cascade method, was ta reduce the estimation noise by minjmjzing ·the

number of paths required in the model. However, for a Hammerstein-like structure
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• even the optimal \Viener system 'I\-il! be a poor choice as a cascade path. since it ,an

only account for a sma1l fraction of the kemel. i\1any such paths \\;U be needed. each

contributing estimation noise to the mode!. As a result, the owralllc\'el of estimation

noise ",-il! be high.

Since the system appeared to be nearly Ha-.nmcrstein and the identification based

on a parallel cascade of Wiener systems failed to produce an adequate model, we

attempted to fit the first path using a Hammerstein structure. The Hammerstein

structure, by itself, cannot represent nonlinear systems wh05e Volterra kemels have

non-zero off-diagonal values. It will, hO'l\'Cver, model much of the system dynamics

which cannot be modelled efliciently by a sum of Wiener cascades. The remaining

c.ynamics, due to off-diagonal elements in the second-order cross-kemel, could then

be modelled using ~iener cascade paths.

Second-ûrcler Cross-Kemel Using Mixed Paths
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Figure 6.18: Cross-kernel estîmated using one Hammerstein path and 10 Wiener
paths. This kemel accounts for 90.28% of the variance of the true kernel.

Ni. we were fitting a second-order eross-kernel, the input to the linear element was

taken to be the product of the two input signaIs. We fitted a linear system between

this product and the measured output, and computed the residuals remaining after
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the output of this path had been removed from the measured output. The remaining

dynamics were modelled using a parallel Wiener cascade fitted between the inputs

and these residuals.

The kernel and prediction accuraci:~ obtained using this mb.;ed structure model

are plotted in Figure 6.1 ï. The Hammerstein pathway accounted for 85% of the

variance of the kernel, and 54% ofthe variance of the output. Adding 10 Wiener paths

to the model increased the prediction accuracy to 9ï.42% and the kernel accuracy to

90.28%.

6.1.5 Snmmary

In this section, we identified three "real" tv,;o-input nonlinear systems using the meth

ods developed in this thesis. System configurations were chosen to represent a v.'ide

variety of nonlinear systems, and to highlight praetical difficulties which may arise in

the identification of physical systems.

We showed that our algorithms estimate models which prediet the system out

put very well. \Vhen the system kernels can be ell:panded efficiently as a SUIn of

Wiener systems, the estimated models have kernels which are accurate estimates of

the theoretical system kernels.

li the system kernels are concentrated near their diagonals, which will be the case

for Hammerstein and nearly Hammerstein systems, an expansion based on Wiener

systems is not efficient, and many pathways will be required to mode! the kernel.

This tan lead to unacceptable noise performance, and failure of the identification. In

this case, Hammerstein paths tan be added to the expansion.

In all cases, the pseudoinverse deconvolution algorithm ,,;as required to suppress

high frequency ringing in the kernel estimates. The order selection criteria developed

for S150 linear and nolÙÎJ1ear systems are not applicable to multiple-input Wiener

cascades identified from multiple-input cross-correla.tion fonctions. In this case, the

pseudoinverse orders appear to be co-dependent. Although computationally expen

sive, an e.'Chaustive search tan be used to select the pseudoinverse orders which result

in the mjnimum residual variance.
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6.2 Parallel Cascade Model of Reflex EMG

In this section, the methods de\'eloped in the previous 3 chapters will be applied to

the identification of the relationship between the angular position of the ankle and the

resulting El\IG. This relationship, the stretch reflex, has been the subject of extensive

study (for a review see [38]). lt is known to be nonlinear. and the output (EI\IG)

measurements are contaminated with high levels of noise.

This "noise~ is dominated by the EMG of ongoing voluntary activity in the mus

cles, which is used to keep the muscles taut and the refle.'C active. There are likely to

be nonIinear interactions between the background and ref!e.'C EMGs which are much

more complex that the usual additive noise model assumed in the development of

identification methods. In addition to the background ElvlG activity, there are other,

more conventional, noise components, such as thermal noise in the electrodes and

amplifiers, discretization noise, and the pick up of 60 Hz signais in the electrode

leads.

One data set from a classical e.xperimental paradigm will be analyzed in detail to

illustrate how each algorithm may be applied. Based on the results from this analysis,

we v.-ill identify potential shortcomings of the paradigm and suggest refinements which

may address them.

6.2.1 Experimental Methods

Subjects lay supine, with their left foot attached to a rotary hydraulic actuator

[39, 117] by means of a custom-fitted fibreglass boot [75]. The subject's ankle was

constrained to rotate about its transverse axis, which v.-as aligned with the rotational

axis of the actuator. The torque produced by the subject was measured, low pass 6.1

tered, and fed back to an oscilloscope mounted above the subjects head. The subject

was asked to make the torque feedback track a "command" signal displayed on the os

cilloscope. With minimal training, subjects were capable of matching the two signais

and producîng a pre-determined torque leve1 under the control of the experimenter.
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Anklc position was measured via a precision potentiometer Z on the a.xis of rota

tion. Torque \'las measured by a torque transducer 3 mounted on the shaft between

the actuator and the subject, whose stiffness, lOsNm/rad, was much greater than that

of the ankle. The rna.'(Îmum nonlinearities of the potentiometer and torque transducer

were ± 0.2% and ± 0.1%, respectively.

E);IGs fro~ the Triceps Surae (TS) and Tibialis Anterior (TA) were measured

using bipolar AgiAgel electrodes 4 placed on the muscle bellies and aligned parallel

1.0 t.he muscle fibres. A reference eleetrode was placed on the patella. The EMGs

were amplified using custom-built pre-amplifiers [82J, high-pass filtered al. 10 Hz "

and full-wave rectified.

Ali signals were anti-alias filtered using 8-pole constant delay filters 6, and sampled

al. 1 Khz by 16-bit A/D converters '.

6.2.2 Identification of Reflex Dynamics

The position of the actuator was sen"O-controlled 1.0 follow a random binary sequence

input v:ith a 100 ms switching tlme. This input "\I;as chosen because il. tends 1.0

produce a large stretch refie.x [40, 41]. More traditional inputs, such as white or

coloured Gaussian noise, have been shown 1.0 suppress the stretch refiex [87j.

The input signal \Vas taken 1.0 be the angular velocity of the ankle, obtained by nu

merically differentiating the position signal. Ankle velocity and TS EMG signais were

decimated 5 times, resulting in a final sampling rate of 200 Hz. The position, velocity

and TS EMG are shov.-n in Figure 6.19, along with an estimate of the probability

density of the computed ankle wlocity.

The input consisted of a 5 second sequence which was repeated 8 times, resulting

in 40 seconds, or 8,000 samples, of data. Prior 1.0 the system identification analysis,

2Beckman 6273-RSK, Beckman Industrlal, FUl1enon, CA
sLebow 211ll-5K, Eaton Corp., Troy NY
•Jason, ElectroTraœ ET30l, Huntington Beach, CA
'Frequen~' Deviees, i72BT-2
6Frequency Deviees, 64PF
'IOTech ADC48S
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0.02• Signals Recorded During Binary Sequence Experiment

~ 31,.. ~ ~
Jg.

c:g ~

ën 0 'g 0kH1H"NI"tbi~('lr\~~~"111
~ ~
~ ~

~ ~ ~

<t -0.02 ~
O~---------J -3:-----------'

505

l' ,

1

time (5)

1r----..,...r----...,
~
0 0.8
c:
G>
CO.6
~

J:I 0.4
ta
J:Iet 0.2 ln

ol..-...L~.L!=."'-~~J.L..._V:...J..<::\-::l-.--t...!':..J
-2 -1 0 1 2

Velocity (rad Is)

o
">
E
;-0.1
::iE
w
~-o.2

time (5)

time (5)
5

•

Figure 6.19: Signals from the binary sequence input llÀ-periment. Note that the
vertical scale in the third panel was chosen to show details away from the centre.
Thus, the central peak has been truncated.

the data was tested for stationarity. Since the input sequence was repeated each time,

one would expect the output sequences to be identical, except for the effects of noise.

We compared each pair of output segments by evaluating the the %VAF between

them. These results are presented in Table 6.2.

If the system remained stationary throughout the experiment, we would expect

an of off-diagonal entries in Table 6.2 to be approximately equal. From this table,

we note that an comparisons between segments 6 - 8 yield greater than 90%VA:F.

Similarly, comparisons between segments 1- 3 yield better than 89%VA:F. However,

comparisons between other pairs of segments are as low as 75%VAF. These results

suggest that the system may have changed during the experiment.

One possibility is that the subject adjusted the level of background contraction,
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• 1 2 3 4 5 6 , 8
1 100
2 92.5 100
3 89.3 96.0 100
4 82.4 82.3 i9.2 100
v 89.4 94.2 93.1 83.6 100
6 89.3 92.0 89.ï 80.6 91.6 100
ï 86.8 8ï.4 85.5 ï8.3 91.4 94.2 100
8 82.1 86.1 81.8 ï5.ï 89.0 93.i 95.3 1.00

Table 6.2: Results of the stationarity analysis applied to the binaI)' sequence data.
The (i,j)'th entry is the o/éVAF evaluated between the i'th and j'th segments of the
output.

to better track the co=and signal. If this were the case, 'Ive would l!Àllect tO see

a change in the variance of the background EMG. Since the refle.'I: contribution to

the EMG consisted of a series of large spikes, it could be eliminated by a simple

thresholding operation. We estimated the '1'ariance of the background component of

the EMG in each of the 8 segments. The estimated background EMG '1'ariance is

presented in Table 6.3.

Segment Number
Background EMG
Variance (JLv-:!)

123456ï8
11.0 12.2 12.1 8.5 9.6 8.4 6.8 6.8

•

Table 6.3: Variance of the background EMG in each data segment.

This table suggests that the level of background"torque, and hence the background

" EMG, underwent a substantial change between the first 3 segments and the last 2-3

segments. Th~~'onlY the last 2,000 samples (la seconds) of data were retained for

further analysis. Of that, 1,000 points were used in the identification of the models

wlÏile the remaining 1,000 points were set aside for mcdel validatio~

Severa! analyses were performed, which will be presented in the next sections.

These results 'l'Iill be su=arized in Table 6.4 on page 168.
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• 6.2.2.1 Wiener Cascade Model

\Ve used the optimized paralle! cascade algorithm to identify a mode! of tht' strt'tch

reflex dynamics. Thus, a parallel array of Wiener systems was fitted bet\wen tht'

ankle velocity and the TS EMG. The first \\ïener cascade was based on the first·

order cross-correlation between the input (ankle angular ve!ocity) and the output

(TS EMG).

The linear part of this fust pat!:., shown in Figure 6.20 'l'."aS identified by fitting a

linear filter between the velocity and EMG signals. This 1inear mode! accounted for

55.01%of the variance of in the validation segment.

!RF of First Wiener Cascade

Unear Fit: 55.0~% VAF 1
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Figure 6.20: !RF for the fust Wiener cascade identified between velocity and EMG.

•
A Tchebyshev polynomial was fitted bew.-een the output of the linear system and

the measured EMG. Polynomials of orders 0 through 8 were fitted, and the %VAF

between the EMG and the polynomial output computed. As no significant increase in

prediction accuracy was noted beyond order 5, a fifth-order polynomial was used. The

resulting Wiener system accounted for 94.64% of the measured EMG variance in the
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validation segment. The output of this Wiener cascade was computed, ?'ld subtracted

from the measured EMG signal, resulting in the first set of output residuals.

We then applied the test described in Equation (5.5) to the second-order cor

relation matrlx evaluated between the input and the residuals, and found that its

principal eigenvalue was a factor of 6.05 times greater than the significance threshold.

This suggested that there were significant dynamics present in the second-order cross

correlation between the input and the residuals. Therefore, the linear subsystem of

the next path was based on the principal generalized eigenvector of the second-order

cross-correlation between the input and the output residuals. This path accounted

for 5.0% of the residual variance, increasing the model accuracy to 94.84%VAF.

The principal eigenvalue of the ne>.."t second-order input-residual cross-correlation

was a factor of 3.56 greater than the threshold, again suggesting that a significant

pathway could be construeted. This pathway aceounted for 2.01%of the residuals,

raising the model accuracy to 94.91%.

Again, \\"e tested the residuals for the possibility of adding a path based on the

second-order cross-correlation. The test returned a ,,-aIue of 2.45. However, we were

unable to construet a Wiener path which increased the accuracy of the prediction

during the validation segment, although small (2-3% depending on the order of the

static nonlinearity) increases were observed during the identification segment. Thus,

the optimal VViener pathway based on the second-order cro~~correlation appea.red to

model noise despite the apparent significance of that correlation funetion, as suggested

by Equation (5.5).

This observation was puzzling, 50 we e:'(Ilmined the second-order cross-correlation

function, which is plotted in Figure 6.21. This correlation function is concentrated

nea.r the diagonal, which suggests either a Hammerstein system or an LNL structure

in which the first linear element has a very short memory. As noted previously,

representing either of these strueturesby a parallel sam of Wiener cascades will

be very ineflicient. Thus, even though there were significant unmodelled dynamics

remaining, no single Wiener path was able to model enough to dynamics to overcome

the effects of noise. An alternative approa.ch would be to use paths whose structure
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• Second-Order Correlation with Residuals
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Figure 6.21: Second-order correlation between ankle ve10city and EMG residuals

more closely approximates that of the underlying-system.

6.2.2.2 Bammersteïn Model

The stretch =~ex bas often been modelled as ,\iiàmmerstein system [36,37,44,45]
. ::::=:

because of the observation that the EMG responds to stretches of the muscle, while

rapid shortening of the muscle produces no r.hange. Thus, the static nonlinearity is

sometimes assumed to be a half-wave rectifier, which is similar to the shape obtained

when the static nonlinearity is identified explicitly [37).

We used the iterative algorithm prop·JSed by Hunter and KorenberP; [31), ar.J de-. .

scribed in Section 2.3.2.1, to fit a Hammel"Stein mode! between the ankle ve10city and

the EMG. The only modification made was to use the pseudoinverse input deconvo- .

lution to estimate the linear subsystem. This system, whose elements are shown in

Figure 6.22, accounted for 94.4i%of the EMG variance in the identification segment

and 95.07% in the validation segment, somewhat better than the result.o; achieved
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Figure 6.22: Static nonlinear e!ement (left) anà dynamic linear subsystem (right) of
the HammeIftein mode! identified for the stretch refiex EMG. Note that the output
of the static nonlinearity is given in arbitrary units (A.U.), as the gain associated
with that s:gnal is unknown.

with the Wiener cascade mode!.

6.2.2.3 Mixed Cascade Model

•

In Section 6.1.4.1, we noted that the Hammerstein structure is very efficient for mod

elling the diagonals of kernels but cannot account for off-diagonal terms. In that

analysis, we hac! used an initial Hammerstein path to capture the kerne! diagonal,

and then acided se\'&a1 Wiener cascades to mode! the off-diagonal kerne! e!ements.

We tried using a sirnilar approach to mode! reflex dynamics. After computing the

initial Hammerstein pathway, its output was subtracted from the measured EMG,

and a second path\\-ay v."aS fit between the input and these residuals.

Unlike fitting a Wiener cascade, estimating the linear dynamics of a Hammerstein

system from the :6.rst-order cross-<:orrelation does not necessarily result in residuals

which are uncorrelated with the input, since Lemma 2 and its corollary do not apply

in this case. Thus, a Wiener cascade, whose linear èynamics were based on the :lirst

order input-residual cross-<:orrelation, \\"aS used to drive the :lirst-order correlation

to zero. It accounted for 2.25% of the residual variance, increasing the prediction

accuracy to 95.24%.

vVe then attempted to fit paths based on the second-order c:oss-correlation. The
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Wiener Cascade Model
path description VAF(incr) VAF(total) n.F (\clid.)

1 Wiener (odd) 93.5494 93.5494 94.640ï
2 Wiener (even) 4.99ï4 93.8ï1ï 94.8405
3 Wiener (even) 2.0105 93.9949 94.910ï

Hammerstein Model
path description VAF(incr) VAF(total) VAF (\clid.)

1 Hammerstein (odd) 94.42lï 94.421ï 95.086ï

Mb,ed 'Wïener/Hammerstein Cascade Model
path description VAF(incr) VAF(total) VAF (\clid.)

1 Hammerstein (odd) 94.42lï 94.421ï 95.086ï
2 Wiener (odd) 2.2493 94.54ï2 95.2435

Table 6.4: Summary of the stretch reflex models identified using a binary pulse se
quence input. Model accuracy is reported as the percent variance accounted for
(VAF). incrementai reports the fit of the current path to the residllals, total is the
fit of the mode! to the identification data, and valid is the fit of the mode! to the
validation set.

principal eigenvalue was a factor of 2.42 greater than the threshold given by (5.5),

suggesting that there were significant dynamics present in the :leCond-order cross

correlation. However, no significant Wiener cascade could be identified. k; in the

Wiener expansion, the second-order cross-corre!ation was concentrated near its diag

onal, suggesting a Hammerstein-like structure.

The results of these,experiments are gllrnrnarized in Table 6.4. In all cases, results

obtained with the validati.ln data closely match those obtained with the identification

segment, indicating that,the models are llDlike]y to be fitting noise. This is an impor

tant observation regarding bath the Wiener cascade and mb.:ed cascade expansions,

because many of the pathways accounted for very little of the residuals ( < 5%).

Since these pathways resulted in sirnilar improvements in both the identification and

validation segments, we can conclude that they were in fact significant.
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6.2.3 Discussion

These experiments raise several interesting questions about the identifiability of non

linear systems, and ho\'! tbis relates to experimental constraints.

It is clear that the binary pulse sequ~nce input is not well suited to the identifica

tion of Hammerstein models since these models inelude a static nonlinear transforma

tion on the input. Clearly, the nonlinearity will only be well defined for values of the

input wbich are commonly present in the identification input. From the third panel

of Figure 6.19, it is evident that the nonlinearity will be well charaeterized near zero

velocity, and perhaps at the extremal velocities. The region between these e.'\."tremes,

however, will not be probed by the input.

Furthermore, the velocity input consists of a train of narrow pulses. Thus, it is

only able to excite the system kernels near their diagonals. For Hammerstein-like

systems, ibis does not pose a serious problem since the kernels 'I\-ill be concentrated

near their diagonals.

These problems could be addressed by using a Gaussian noise input of adequate

bandwidth. The nonlinearities of any Hammerstein path";ays would he weil defined,

since aIl intermediate input levels would be ptobed. Furthermore, th" correlation

structure of the input would ensure that aIl regions of the kernels were excited. How

ever, the use of Gaussian noise inputs results in relatively weak reflex components,

and therefore a low output SNR and pOOt prediction accuracy (:::::50% VAF [111]).

Experiments performed using Gaussian noise inputs support the assumption of a

Hammerstein-like structure. However, since the resulting output SNR is 50 low, ade

quate models cannot he identified. Thus, an alternative input is requited.

The design of an appropriate input signal 15 an important step in imptoving avail

able models of the stretch reflex. The test signal must be rich enough, both in

amplitude and spectral content, to excite aIl relevant modes in the system. However,

it must also have characteristics which ensure a strong reflex and therefore high SNR.

Currently, the effeet of difIerent perturbations on the reflex amplitude is being investi

gated [ï9, 86, 87]. The results ofthis investigation will be used to design an "optimal"
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input signal. This will certainly im'olve a compromise benn-en the gcneralilY of the

identified model, and the output SNR and resulting prediction accuracy.

Another important issue raised by these c-'i:perimcnts is the selection of an appro

priate model structure. In Section 6.1.4, where the identification of the high-pass/low.

pass system was considered, we noted that Hammerstein-like systems cannot be ef

ficiently represented by an c-\.-pansion based on Wiener systems. This point was also

raised in the stretch .eflex identification. In both cases, this difliculty was ovcrcome

by using a mixed cascade mode! in which the first path was a Hammerstein system.

'W1ùle the Wiener cascade c-\.-pansion is very general, there are cases where differcnt

c-\.-pansions ma)' be more efficient. It is important to realize this, and to try other

system types if the paralle! Wiener cascade should fail to produce an adequate mode!.

-:::--
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Chapter 7

Conclusions

In this thesis, we have developed practical methods for the identification of linear and

nonlinear systems which are applicable under the relatively stringent constraints that

exist in the ell:peri!nental study of human joint dynamics. While these techniques

were designed specifically v.ith these constraints in mind, they should be applicable

to elI.l'eriments on a variety of systems in many different fields.

7.1 8tatement of Original Contributions

The following is a list of the original contributions contained in this thesis.

1. A new method for the nonparametric identification of linear systems was devel

oped. Matri."< perturbation analysis was used to develop an improved technique

for the deconvolution of the input aut<KOrre1ation from t,he input-output cross

correlation in the nonparametric identification of linear systems. This new

technique dramatically reduces the variance of m.F estimates, and provides

confidence limits on the resulting estimate.

2. A new method for the identification ofmultiple-input Wiener systems was devel

. oped. The interaction between inputs in a multiple-input nonlinear system were

shown to produce interference in estimates of some parts of the system dynam

ics. An iterative technique was developed which predicted and then eliminateci
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much of this interference. thereby increasing the accuracy of the estirnated sys

tem.

3. An optimized variant of the parallel cascade method wa..< developed. The parallel

cascade method [56] for the identification of nonlinear systems was modified such

that each iteration added the optimal Wiener cascade (in an Ml\ISE sense) to

the model. This results in several advantages over the original algorithm:

• Models have fewer paths, and hence fewer parameters.

• Convergence is much faster.

• The model is less sensitive to noise.

• The model is unique (given the input auto-correlation).

• Once an insignificant pathv;ay is estimated, analysis can be stopped, as no

further paths will be significant.

7.2 Suggestions for Further Research

Much work remains to be done, both in terms of algorithmic development, and in

terms of the application of these techniques to real problems.

7.2.1 Further Investigation of Pseudoinverse Input Decon

volution

Whlle the USe of the a pseudoinverse in the dcconvolution of the input autocorrelation

from the impulse response estimate represents a major innovation in nonparametric

system identification, many questions remain unanswered. In this section, we outline

severa! possible avenues of research related to this topic.

7.2.1.1 Noise in the Input Measurement

The effects of input noise were ignored in the study of the deconvolution of the input

auto-<:orrelation from the impulse response estimate. If instead of using the noise-free
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input, u(t). we let the measured input be:

û(t) = u(t) -+- vu(t)

using the notation established by Figure 2.1, then the input auto-correlation becomes:

provided the input, u(t) and the input noise, v..(t) are independent. We will, of

course, be working with a time-average evaluated from finite length records. Thus,

our estimate of the input auto-correlation becomes:

~ùù(T) - ç)ùù(T) + ~ùù

- ç)uu(T) + ç)v.v.(T) + ~=(T) + ~..v.(T) + ~••u(T) + ~v.v. (T)

Similarly, we must use a finite-length time average to estimate the input-output

cross-correlation:

In performing the perturbation expansion on the inverse of the auto-correlation

matrix, we must decide what to treat as usignal", and what to treat as "noise". The

obvious choice would be to treat tPuu as "signal", and the rest as a perturbation.

However, because of the size of the resulting perturbation, the first-order expansion

is likely only to be valid for high input SNRs. Instead, we v."ill partition the input

autocorrelation estimate as follows.

<Pùù(T) - ç)uu(T) + tilv..... (T)

4>ùù - ~uu(T) + 4>uv.(T) + ~v.u(T)~v.•• (T)
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Given that the terms in oùù are due to the approximation. from finite leugth till1t~

averages, of the correlation between independent signals. they will be small compared

to oùù, and should not compromise the \'alidity of the first-order perturbatiou expa.n

sion on the matri., inversion. If we repeat the analysis that lead to Equation (3.S).

we get:

- '-1' h '_1 0 '-1 0
h=o··ouu -'-o"ou. -0......,uu· 'uu·: ·uuVu"

The effect of the input noise is twc-fold. First. there is an additive term of the same

form as that due to output noise. Thus, the analysis developed in Chapter 3 should

apply equally to this term. ''';"hile the analysis of this term 'l'.ill be similar to that for

the output noise term, it 'l'.ill affect the choice of the order of the pseudoinverse used

in the deconvolution.

Secondly, the input noise induces a distortion in the "signal" term. In the previous

case, we had an unbiased estimate, provided the e.,act inverse of the auto-correlatioll

matrix was used. Now:

- -1E[h] = rPùù rPuuh

Methods which estimate, and compensate for, this distortion need to be developed.

7.2.1.2 Application to Multiple-Input Nonlinear Systems

In the multiple-input case, the cross-correlations across a pair of linear systems are

obtained from the principalleft and right singular vectors of the second-order cross

cross-correlation. The input auto-correlation functions are then deconvolved explic

itl)'.•-\s might be expected, this deconvolution often leads to high frequency "decon

volution noise" in the !RF estimates. Use of appropriate pseudoinverses, one for each

input, eau reduce the variance of this noise. In this thesis, the pseudoinverse orders

were chosen using an exhaustive search procedure.

In the single-input case, impulse responses were extracted from the second-order

cross-correlation function by solving a generalized eigenvalue problem with the input

auto-correlation matrix. Here, the deconvolution was performed ÏIrLplicitly, which
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!ead tu an equivalent linear problem. The solution of this equivalent problem, using

the techniques developeà for deconvolution from first-order cross-correlations, yielded

the pseudoinverse order.

The restricted singular value decomposition (RSVD) [16] could be used to gener

ate a pair of "equivalent linear" identification problems, and would accomplish the

deconvolution implicitly, as the generalized eigenvalue solution does for single-input

systems. Optimality of the RSVD solution should be relatively simple to prove.

Applying the pseudoinverse based do!COIlVolution algorithm to this problem "lill

yield t'lVo pseudoinverse orders, one for each input. It is likely that they will be

interdependent, leading to coupled solutions.

Ali of this, however, is speculative, since algorithms for the computation of the

RSVD are not yet available. 'W"hen, or perhaps if, these algorithms are developed,

research into this multiple-input method may proceed.

7.2.1.3 Estimation of the Bias Error

Ideally, we would like to be able to estimate the absolute value of the induced bias,

at each point in the impulse response estimate. In this work, we succeeded in com

puting its iniinity norm, which gives the maximum absolute value of the bias over

the whole !RF. If the bias error were equally di>tributed over the !RF, this v,rould

be sufficient. Unfortunately, simulations show the bias error is often concentrated

around the largest peaks in the impulse response. Thus, using the infinity norm over

estimates the bias error for most of the impulse response. leading to very conservative

confidence bounds on the !RF estimate. Further· research is needed to improve the

mathematical understanding of the bias induced by the use of the pseudoinverse. and

to obtain a localized estimate of this error.

The solution presented in Chapter 3 uses the results from eJ:tensive Monte Carlo

simulations to approximate the relationship between the decrease in the variance of

the system output, and the infinity norm of the induced bias. It would be preferable

to have an analytical expression, rather than the empirically derived distribution

function.
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We have shown that the parailel cascade method. as implemented in Chapter 5. can

completely model the zero and first order Wiener kernels with a singlt' path. and

that only T paths are necessary to model ail of the dynamics in the second-order

\Viener keme!. Any remaining unmode1led dynamics must be estimatt'd from the

third-order cross-correlation. However, given that the IRFs themselves are only T

points in length, it is clear that any new IRFs will be linear combinations of pre\'iously

identified linear e!ements. Even though the linear elements in the cascades completely

span the subspace occupied by the dynamics of the unknown system. additional paths

may be needed because the single-input nonlinearities do not allow for cross-terms

between the impulse responses which form a basis of that subspace.

An alternative approach vlould be to adopt a more generalized Wiener structure,

such as that used by Wiener in his original monograph [113] arod more recently by

Marmarelis [il]. In this structure, the input signal v.ill be processed by a bank of lin

ear filters. The outputs of the filter bank could then be processed by a multiple-input

nonlinearity, which would provide the cross-terms that are missing in the parallel

cascade structure. However, we suggest using the linear elements identified by the

optimized parallel cascade method, rather than the basis cf Laguerre filters employed

by Wiener [113] and Marmarelis [71]. Figure ï.l illustrates the generalized Wiener

mode!.

The biggest difficulty with this approach is likely to be the identifcation of the

static nonlinearity. In Section 4.3.2, we described the difficulties encountered in the

specification of the domain of definition for a two-input nonlinearity.' The severity of

these problems willlikely increase with the number of inputs to the nonlinearity.

7.2.3 Use of Hammerstein and LNL Cascade Paths

A:D.y time-invariant system which bas a fading memory [9] cao be represented by an

expansion based on Wiener systems. However, even the optimal expansion of this

type, which is identified by the algorithms developed in this thesis, is not necessar-
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Figure i.1: The generalized Wiener system structure

ily very efficient. For example, when the system in question has a "Hammerstein

like" structure, a Hammerstein system optionally preceded by a short memory lîuear

dynamic element, the Volterra kernels are concentrated near their diagonals. As a

result, many linear elements are required to represent the space spanned by the sys

tem dynamics. Thus, any representation based solely on Wiener systems, whether a

parallel cascade, or a generalized Wiener model, \"Till require a large numbcr of linear

elements. Clearly, in these situations, methods are needed for creating Hammerstein

or LNL paths which are somehow optimal. These methods must not assume that the

system being identified has the particular structure in question.

For e."<8JIlple, Korenberg [Si] developed a method for the identification of the

optimal Hammerstein system between a given input and output, which makes no

assumptions about the structure of the true sj"Stem. Unfortunately, this algorithm

requires a white input, and is therefore impraetical in many settings.

V\t"hat is required, is an algorithm that finds the LNL system that generates the

mavimum reduction in the mean-squared size of the second (or higher) order cross

correlation function. This is the approach used to find the "optimal" Wiener pathway,

where the mF turned out to be the principal eigenvector of the second-order cross-
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• correlation. The second-order kernel of an L:\L cascade is:

T

k~('l"~) = L g(O')hh - 0')h('2 - 0')
a=O

where h(T) is the IRF of the lirst linear subsystem, and g(.) is the IRF of the second

linear clement. Thus, we would search for IRFs 9 and h which minimize the error:

(i.1)

•

A brute force approach to this problem would be to minimize (i.1) using a numerical

gradient desceut algorithm.

Equation (i.l) ass:unes that the input signal is white. Therefore, as in the Wiener

cascade case, stable and robust procedures must be deve!oped for the deconvolution

of the input autocorre!ation from the resulting !RF estimates.

7.2.4 Use of Subspace System Identification Methods

Recendy, the MOESP algorithm [96, 98, 99], ,·.rhich identifies discrete state space mod

els of LTI systems in a subspace mode! identification context, has been applied to

MIMO Hammerstein [100] and Wiener [101] systems. The extension to Wiener sys

tems is particu1arly interesting, since these systems form the "building blocks" of the

paralle! cascade representation used throughout this thesis. A particularly exciting

propert)' of the state space models is that the e>.."tension from single-input single

output (SISO) systems to multiple-input multiple-output (MIMO) systems is trivial.

The nonlinear e>..-tensions of the subspace methods have been made, to date, under

the assumption that the underlying system had a \'\Iïener or Hammerstein structure.

The application of the Wiener system extension of MOESP to paralle! cascade identi

fication will require dropping this assumption. The existing algorithm will have to be

modified to find the "optimal" Wiener system between a given input and output, with

no assumptions about the form of the actual system. Once this has been achieved,

the genera1 approach outlined in Chapter 5 can be used.
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7.2.5 Applications to the study of joint dynamics

The techniques developed in this thesis. were designed with the constraints typil'al

of joint dynamic.s experiments in mind. Here. we suggest applications in tho:' field of

joint dynamic.s. where these techniques may prO\'e useful.

7.2.5.1 Use of Narrow-Band Perturbations

Wide-band perturbations, such as white noise (albeit filtered by an electro-hydraulic

actuator), have been shown to suppress the stretch reflex in humans [·W. 411. Re

cent experiments have sought to characterize stretch reflex dynamic.s [42. 431. and

determine the e.\."tent of their contribution to the overall dynamic.s of the ankle. using

relatively narrow-band perturbations. These perturbations produce a strong stretch

refle."I:, but e."I:acerbate the problems caused by the input deconvolution. This seems

to be a natural application for the pseudoinverse deconvolution technique, developed

in Chapter 3, particularly, if it can be e.\."tended to account for input noise.

7.2.5.2 Multiple-Input Experiment5

To date, multiple-input experiments performed on the human neuromuscular system

have linearized the sYStem about a time-varying trajectory [44,45,67,92]. It would be

interesting to repeat some of these experiments using a "richer" stimulus for the sec·

ond input instead of the repeated st~ps or "fast ramps" which were used to modulate

the "operating point" in the time-varying context. The multiple-input techniques de

veloped in tbis document could then be used to produce a more complete description

of the sYStem. The time-varying linearized description could be derived analytically

from the multiple-input nonlinear description, and compared to the results of previous

experiments which used the linear time-varying sYStem description.

In principal, a truly multiple-input sYStem description should provide the inves

tigator with more freedom in the design of the experimental protocol. For example,

time-varying techniques require the operating point to traverse exactly (or almost

exactly, in practice) the same trajectory during each trial. Much processing effort
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is required to rejecl trials in which the operating point trajectory de\'iates from the

regime. and in a1igning the trajectories of those trials \"hieh are retained for further

analysis [66). Csing the a1gorithms presented herein would free the experimenter from

these constraints.
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Appendix A

A MATLAB toolbox for nonlinear

system identification

A.l Data Structures

A.l.l Second-Order Wiener/Volterra Kernels

A second-order kernel or correlation function tan be represented as a matrL'C. Hence,

the MATLAB language is used to store these functions. In general, the first index is

used to represent 1ags with respect to the first input signal. MATLAB itself, stores

matrices in column major order, as is done in FORTRAN, as opposed to the row

major ordering that is used by C.

A.l.2 Third-Order Wiener/Volterra Kernels

Third-order kernels are functions of three indices, h(i, j, k). MATLAB itself only

provides for matrices which have two indices. The functions in this toolbox rep

resent third-order kernels and correlation functions as vectors. It is assumed that

the third-order object is cubic. Therefore the range of the indices i,j and k are all

equal to the cube-root of the length of the vector. If H3 is an 71. by 71. by 71. ker

nel, and it is represented by the 71.3 long vector h, the entry H3(i, j, k) is stored in

h(i* (71.-1)2 +j *(71.-1) +k) . This conversion is accomplished by the c function ma-
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• tm_rej, which is linked ta ail of the mex-files that operate on third-order correlations

and kernels.

A.1.3 Tchebyshev Polynomials

A crucial ~tep in the estimation of a Tchebyshev polynomial is the scaling of the

input ta the range [-1,1]. If x(n) are the input samples, and a and b represent the

minimum and ma.'\Ïmum of the x, then this scaling is accomplished as:

A() b-2x(n)+a
x n =

a-b
(A.l)

•

Hence, in arder ta completely specify the polynomial, both the limits a and b,

and the polynomial cO':'tiicients themselves need to be specified. .A.s a result, the

Tchebyshev polynomials are stored as the column vector [abeocl ... e,,]T. The interval

[ab] can also be used as the domain of defi.nition of the Tchebyshev polynomial.

For two-input Tchebyshev polynomials, Equatio"l (A.l) is used to scale each of the

inputs. Hence, the first four elements of the polynomial representation represent the

domain bounds. The remaining coefficients are stored in order of ascending degree.

Terms of equal degree are stored starting with the term mat has the highest degree

in the first input.

He ce. a two input Tchebysbev polynomial would be stored as: -.

In the single input case, the interval [ab] served as the domain of defi.nition of the

polynomial. In the two input case, things are not quite as simple. In principle, the

rectangle bounded by (a""ay), (a."b,), (b""b,) and (b""ay) could be considered to be

the domain of defi.nition of the polynomial surface. However, it is highly probable

that there will be large parts of this rectangle, where the polynomial estimate is not

supported by any data. A somewhat more robust approach would be ta measure, and

store, the conve.'C hull of aIl of the data points. This is the smal1est c10sed polygon

that enc10sed aIl of the data points. It can be represented ])y the (x, y) co-ordinates

of its \'ertices. To simplify computations involving the polygon, the first vertex is
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• also stOred as the last vertex. If this polygon is included. it is stored foll,,\\"in~ t Ill'

polynomial coefficients. First the coefficients are stored. follow-:d by a NaN. followed

by the x co-ordinates of the vertices. followed by another Nal'f. and the y co-ordinat,,,,

of the vertices. If additional polygons are added. they are appended to th" "nd of th.>

structure. separated by NaNs. The ma.'àmum and minimum values of th" two inputs

remain in the fust four places. just prior t n the polynomial coefficients. While they

could be obtained from the ma.'àmum and minimum \-aIues of the second and third

columns. stating them elI.-plicitly \Vith the polynomial coefficients allows a polygon

other than the conve.x hull of the data points to be u.ed as the domain bGundary.

A.2 List of Functions

A.2.1 Conventions

A.2.1.1 m-files

The fiIst lines of each m-file consist of comments describing the purpose of the routine,

as well as the inputs that it requires and the outputs that it generates. Ail of these

co=ents can be accessed v.ithin MATLAB by typing help "routine name". AIso.

included in this documentation is a list of al! of the other routines within the toolbox

that it calls.

A.2.1.2 mex-files

:

•

For every mex-file, there is a paral!el m-file. These contain co=ent lines, as described

above, which al!ow the user to obtain online help using the MATLAB help utility.

Furthermore, simply typing the routine name from within MATLAB generates a help

message. If the mex-file has not been installed, MATLAB will invoke the m~file, which

will print a message informing th!! user that the mex-file bas not been instal!ed. In

some cases, m-file implemeutations have been provided, however, due to the nature

of the computations, use of these routines is not reco=ended. The comments which

appear at the head of the c-files are not accessible from within MATLAB.
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convex.Jmll
Syntax: bound = convexJlUll(points)

Inputs:
points An N x 2 array where each row contains the x and y co-ordindtes of

one of the N points

Outputs:
bound An K x 2 array, where each row contains the x and y co-ordinates of

one of the K vertices of the conve., hull around the N points passed in

the array points

Creates a polygon that surrouTJds ail of the x-y points passed in the array points.

The routine starts at the rightmost of the N points, and proceeds counter-clockwise

around the boundary. The first and last points in the boundary are equal, forming a

closed figure.

This is intended primarily as a service routine.

It is called by: tchebfit2d

No Local Function Calls:

DTW June 1993
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• deadzone
Synta.,,: v = deadz(llle (u ,limi'C)

This function applies a symmetric deadzone static nonlinearity 1.0 the signa.l u.

The width of the deadzone is limi'C.

If u > limit,

u < -limit

v =u - limit

\" =u + limit

•

-limit < u < limit \" = 0

No Local Function Calls:

DTW 1992
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fil2
Synta.x: [nfil, vaf ,boundsJ = fil2(u ,y ,numlags ,numsides ,level,mode)

Inputs:
u input signal

y output signal

numlags memory length of the identified IRF

numsides 1 for causal systems, 2 for mixed causal/anti-causal systems

level confidence level to be calculated (1 - 100)

mode used to set the pseudoinverse order selection mode, unIess the current

default is desired (see 'toep..man)

Outputs:
nfil estimated IRF

vat output variance accounted for by !RF output

bounds confidence bounds on !RF estimate, speciiied by level

Identifies one and two sided impulse responses using the pseudoinverse based de

convolution algorithm. The method used to determine the pseudoinverse order can

either be selected using 'toep..man, or it can be speciiied by specifying mode on the

command !ine.

Local FunctioDS Called: fil'ter_'ts .scorr.'toep. 'toep2. 'toep..man.'toepsar

DTW 1994
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gen...kern
Synta.'i:: kern = gen...kern (basis. coeff. order. 'type);

Inputs:
basis basis functions on which the system has been expanded

coeff coefficients associated with Hermite polynomials applied to t1u' b'1Sis

vectors

order order of the desited kernel

type volt~rra or wiener. Qnly the first letter is significant. Note. that if

Volterra kernels are desired, the e.\.-pansion must include terms or order

up to and including the actual system order.

Outputs:

ken kernel estimate

Qnly first and second-order Wiener kernels are presently supported.

No Local Function Ca1ls:

DTW March 1994
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• halLwave
Syntax: v = halLwave Cu)

Applies a half wave rectifier to the signal u

If u > 0

u < 0

v = u

v = 0

•

No Local Function Calls:

DTW 1991
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Synta."" y = hard_limi t (x. h..min. h..ma.'I:);

Applies a hard limiter to the input. Bounds of the hard lilllil,'r an' l'a"'<"<1 a~

arguments. If only one \-aIue is passed. the hard limiter is assulI1l'd hl b~' ~Yllllll,'lril'

about 0

If u>hJllax y=O

hJllin < u < h.Jlla,Jf = u

u<hJllin y=O

No Local Function Calls:

DTW 1991
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S:;ntax: ::ew.points = hard_limit.2d (points. bcund);

Inputs:
points An:\ x 2 array containing the x-y co-ordinates of the points ;:0 be

limited

bound An ~l x 2 array containing the x-y coordinates of the bounding polygon

Outputs:
new_points An ~ x 2 array containing the points in points limited to the interior

of the polygon defined by bound

Given a set of n points, stored as an n x 2 matri..", and a closed polygon, repre

sented by its m vertices in an m + 1 x 2 array, bound, 'l\°here the fust and last yertex

are the same, this function leaves all points in the interior of the polygon untouched,

but moyes all e.\."terior points to the nearest point on the polygon.

No Local Function Calls:

DTW July 1993
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irf_esLcross
Synt~,: [h.~lin.hylinJ = irf_est_cross (x,y,v,h.len,iterate);

Inputs:
x, y Inputs tO a t,,"o-input nonlinear system

v Output of the nonlinear system

h-len CCpper bound on) the anticipated memory length of the system

iterate Use iterath'e scheme to impro\'e estimates (yin)

Outputs:

hxlin,hylin Impulse response estimates

Estimates the impulse responses in a t\\'o-input \Viener system based on the

second-order cross-cross-correlation between the inputs x and y. and the output, v.

The memory lengrh of the the impulse responses, hxlin and hylin, is h-len sam

pies. If iterate is [yJ es, then an iterative technique is used to estimate and cancel

interference tenus in the correlation estim:l.te.

This is intended primarily as a service routine.
----"

It is called by: multi_viener

Local Functions Called: phixyz. projO, tchebfit2d. toep

DTW Apr 1992
',.
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irLesLeven
Synta~: [hxli~,hylin] =irf_est_even (x,y,v,h_len,iterate);

Inputs:
x ,y Inputs to il. two-input nonlinear system

v Output of the nonlinear system

h..len (Cpper bound on) the anticipated memory length of the system

i terate Use iterative scheme to improve estimates (yln)

Outputs:

hxlin,hylin Impulse response estimates

Estimates the impulse responses in a two-input Wiener System based on the two

second-order cross-correlation functions, measured between the inputs, x and y, and

the output v. h..len is the length, in samples, of the impulse responses, hxlin and

hylin. If iterate is ' [y] es', then an Iterative technique is used to estimate and cancel

interference in the correlation estimates that is caused by the presence of multiple

input signais.

This is intended primarily as a service routine.

It is called by: multi_lliener

Local Functions Called: phixxy. projO, tchebfit2d. toep

DTW Apr1992
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irLesLodd
S~~tax: Chx. hy) = irf_es~_edd (x.y.=. hlen.i~erate);

Inputs:
x. y Inputs te a two-input nonlinear system

v Output of the nonlinear system

h-len (Upper bound on) the anticipated memory length of the system

i'tera'te Use iterative scheme te improve estimates (yin)

Outputs:

hxlin.hylin Impulse respense estimates

Estimates the impulse responses in a two-input Wiener System based on the t""O

:6.rst-order cross-correlation functions, measured between the inputs, x and y, and

the output v. Uen is the length, in samples, of the impulse respenses, hxlin and

hylin. If iterate is '[y) es', then an iterative technique is used to estimate and cancel

interference in the correlation estimates that is caused by the presence of multiple

input signals.

This is intended primarily as a service routine.

It is called by: mul'tLviener

Local Fonctions Called: phixy. 'tchebfi't2d. 'teep

DTW Apr1992
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• iteration3
Syntax: [k,al~s] = i~era~ion3 (phi,h, Threshold);

Inputs:
phi

h

Threshold

Third-order cross-correlation function

Initial estimate of Impulse response function

Used to decide when to stop iterating (default 1 x 10-6)

•

Outputs:
k Final impulse response estimate

alts Altemate starting points for iterative searches

Performs several steps in a gradient iteration that attempts to find the fust-order

cross-correlation across the linear part of a ""ïener system that has a third-order

cross-correlation that best approximates the given function phi.

alts contain altemate starting points. They are valleys in the mean square errer

function that were not checked, because they were not considered ·optimal'.

This is intended primarily as a service routine.

It is called by: wiener3

Local FunctioDS Called: k3..gen, mult32

DTW July 1992 ~
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iteration32
S~~ta~: [nevh, nevg] = iteration32 (phi,h,g,Threshold);

Inputs:
phi Third-order cross-correlation function

h Initial estimate of first impulse response function

g Initial estimate of second impulse response function

Threshold Used to decide when to stop iterating (default 1 x 10-6)

Outputs:
nellh Final impulse response estimate for first input

nellg Final impulse response estimate for second input

phi is assumed to hold the third-order cross-cross-correlation that is second-order

in its first input, and first-order in its second input. i teration32 returns nevh and

nellg, estimates of the linear filters that are part of a two-input Wiener system, for

which the third-order cross-cross-correlation best approximates that measured from

the input/output data (phi). h and g should contain initial estimates of these IRFs.

Local Functions Called: k32.gen, mult3_101, mu1t32

DTW May 1993
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k32_gen
Syntax: K3 = k32_gen Ch. g, gain) ;

Inputs:
h,g Impulse responses of linear dynamic elements in a two-input Wiener

system.

gain coefficient of the term in the static nonlinearity that is second-order in

the first input and first order in the second input.

Outputs:
K3 Component of the third-order Volterra l-ernel resulting from the 2-1

order term in the two inputs.

Generates the third-order Volterra kernel of a two-input Wiener system, where

the inputs are transformed by h and g, and the static nonlinearity is gain times the

product of the output of the first llnear system squared, and the output of the second

llnear system.

This is intended primarily as a service routine.

It is called by: viener3

Implemented as a MEX file

DTW
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k3_gen
Synta.,: K3 = k3-€;en Ch, gain) ;

Inputs:
h Impulse response of linear dynamic element of a single-illput Wiener

system.

gain coefficient of the third-order term in the static nonlinearity

Outputs:

K3 Third-order Volterra kernel of the Wiener system

Generates the third-order Volterra kernel of a single-input Wiener system consist

ing of the linear eleII:ent h followed by a cuber with a gain of gain.

This is intended primarily as a service routin~.

It is called by: viener3

Implemented as a MEX file

DTW
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k3_sym
Synta.x: H3 = k3_sym (K3);

Inputs:

K3 Third order kerne1

Outputs:

H3 Symmetrized third-order kernel

Given a third-order kerne1, stored as a long vector, this function symmetrizes it

about every possible permutation of its indices.

This is intended primarily as a service routine.

It is called by: lliener3

Implemented as a MEX file

DTW
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kerne13-slice

Inputs:
k3 Third-order kernel or correlation function

slice lag of slice to be displayed

Outputs:

Z Single slice of K3

Displays a surface plot of single slice of the third-order kernel K3. The edges of a

cube are drawn, and the surface plot is positioned within this frame to indicate the

position of the slice v.ithin the original kernel. If an output is specified, the slice is

returned in a matrL'C.

No Local Function Calls:

DTW
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Inlk2
Syntax: kernel = Inlk2 ( g. h. n) ;

Inputs:
g First linear e1ement in L:\L cascade

h Second linear element in LNL cascade

n Memory length of kerne1 (optional)

Outputs:

kernel Second-order Volterra kerne1 of LNL cascade

Given the impulse responses of the two linear e1ements, lnlk2 returns the second

order Volterra kerne1 of the cascade, assuming that the second-order coefficient in the

polynomial expansion of the static-nonlinearity is 1. If n is specified, an n by n kernel

is returned. This may e1ther result in truncation or zero-padding of the actual kernel.

No Local Function Calls:

DTW Jan 1992
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mult31
Synta.'i:: H2 = mu1't31 (K3 ,h) ;

Inputs:
K3 Third order kernel

h vector, or first order kernel

Outputs:

H2 Second-order kernel, or matrL'i:

Computes the product of a third-order kernel with a vector.

R
H2(i,j) = L K3(i, j, k)h(k)

k=l

If, as in the previous equation, the vector has R elements, then K 3 mw;t have R3

elements. H2 will be au R x R matnx.

This is intended primarill' as a service routine.

It is called bl': i teration32

Implemented as a MEX file

DTW 1992
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mult32
Syntax: h = mu1t32(K3,H2);

Inputs:
K3 Third order kemel

H2 matrix, or second-order kemel

Outputs:

h First-order kemel, or vector

Computes the product of a third-order kemel with a matri'l(.

R
h(k) = 2: K3(i,j, k)H2(i,j)

i,j=l

If, as in the previous equation, the matrix has R x R elements, then K3 must have

R3 elements. h will be an R element vector.

This is intended primarily as a service routine.

It is called by: iteration3, iteration32, lliener3

Implemented as a MEX file

DTW 1992
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mult3_101
Synta.,: v = mult3_10l(K3 .h.g);

Inputs:
K3 Third order kernd

h, g vectors, or first-order kernels

Outputs:

v FiIst-order kemel, or vector

Computes the product of a third-order kemel with a two vectors.

R
vU) = I: K 3(i,j,k)h(i)g(k)

i,k=l

If, as in the previous equation, the vectors have length R, then K 3 must have œ
elements. v ",ill be an R element Vettor.

This is intended primarily as a service routine.

It is called by: iteration32

Implemented as a MEX lile

DTW 1992
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multLwiener
Synt~x: [hx,hy,nl,out] = multi_yiener (x,y,z,hlen,order,control);

Inputs:
x, y System inputs

z System output

hlen Upper bound on the system's memory length

order Degree of the highest order kernel e.,:pected in the system

control Control string = [type mode smooth iterate]

type: type of functions used to determine impulse responses can be

either 'first', 'self' or 'cross', which correspond to the first order, sec

ond order self and second order cross input/output cross-correlations,

respectively

mode: mode used in the polynomial fitting routine. Can be either

':lixed', 'auto' or 'manual'. If:lixed is chosen, a polynomial of order

order is returned. If auto or manual is chosen, the best polynomial of

order less or equal to order is returned.

smooth: (yes/no)Turns smoothing on and off.

iterate: (y/n) Turns iterative mF estimate improvement on and off

ln aU cases, only first letters are used. For example the string 'fmny'

corresponds to using-fi.rst-order correlation functions, with manual or

der selection, no smoothing, and iterative estimation correction.

Outputs:
hx hy Impulse responses of linear subsystems associated with inputs JI: and y

Dl Coefli.cients of static nonlinearity. See documentation for tchehfit2d

and Section A.1.3 for details

out Output of the the multiple input \Vïener· system estimated by

multLlliener

Estimates a multiple input \Vïener system between two inputs and a single output.
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The linear subsystems can be based on either the first. or second-arder single-iuput

cross-correlation functions between inputs x and y and output z. or ou the second

order cross-cross-correlation between both inputs and the output.

Local Functions Called: id_es't.cross, irf.es't.even, irf_es't_odd ,

'tchebfi't2d, 'tchebval2d

DTW March 1992
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phix2yz
Syntax: phi = phix2yz (x,y,z,hlen);

Inputs:
x,y Input signaIs

Z Output signal

hlen Maximum number of lags to be calculated +1

Outputs:
phi Third-order cross-cross-correlation between x, y and z. It is second-

order is x and fust-order in y

The means of x,y and z are subtraeted prior to estimation. A biased estimate of

the cross-correlation function is returned:

N

~:2y=(i,j, k) =~:E xo(n - i)xo(n - j)yo(n - k).zo(k)
=1

where N is the length of the signaIs x,y and z, and the subscript 0 refers to signaIs

that have had their average values removed. i.e.:

1 N
xo(n) = x(n) - N ~ x(n)

Implemented as a MEX file

DTW June 1991 .
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phix3y
Synta.,: phi = phix3y (x. y •hlen) ;

Inputs:
x Input signal

y Output signal

hlen Ma.ximum number of lags to be calculated +1

Outputs:
phi Third-order cross-correlation between x and y, stored as a vector. See

Section .-\.1.2 for details

The means of both x and y are subtracted prior to estimation. A biased estimate

of the cross-correlation function is returned:

i>:"y(i,j, k) = ~~ xo(n - i)xo(n - j)xo(n - k)Yo(n)

where N is the length of the signals x and y, and the subscript 0 refers to signals that

have had their average values removed. i.e.:

1 N
zo(n) =zen) - N ~>(n)

_1

Implemented as a MEX file

DTW June 1991 .
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phLadj_phi
Syntax: A = phLadj_phi (phi);

Inputs:

phi Third-order kemel or correlation function, stored as a veetor

Outputs:
A The adjoint operator of phi applied to phi.The eigenvectors of A are

the singular veetors of phi. The eigenvalues of A are the squares of the

singular values of phi.

This is intended primarily as a service routine.

It is called by: wiener3

No Local Function Calls:

DTW June 1992
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phixxy
S)~t~,: phi = phixxy (x,y,hlen);

Inputs:
x Input signal

y Output signal

hlen Maximum number. of lags to be calculated +1

Outputs:

phi Second order cross-correlation between x and y

The means of both x and y are subtracted prior to estimation. A biased estimate

of the cross-correlation function is returned:

~=!I(i,j) = ~ f. xo(n - i)xo(n - j)Yo(n)
n=l

where N is the 1ength of the signais x and y, and the subscript 0 refers to siguals that

have had their average values removed. i.e.:

1 N
xo(n) =x(n) - N L x(n)

=1

Implemented as a MEX file

DTW June 1991 .
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phixy
Syntax: phi = phixy (x,y,hlen);

Inputs:
x Input signal

y Output signal

hlen Maximum number of lags to be calculated +1

Outputs:

phi First order cross-correlation between x and y

Computations are performed in the frequency domain, as in the System Identi·

fication Toolbox routine covf However unlike that function, only the input-output

cross-correlation is computed.

No Local FunctioD Calls:

DTW Aug 1993
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phixyz
S)éIlt~,: phi = phixyz (x,y,z,hlen);

Inputs:
x,y Input signais

z Output signal

hlen M~-o.mum number of lags to be calculated +1

Outputs:
phi Second-order cross-cross-correlation between inputs x and y, and out

put z

The means ofx,y and z are subtracted prior to estimation. A biased estimate of

the cross-correlation function is returned:

~:y=(i,j) =NI f: xo(n - i)Yo(n - j)zo(n)
=1

where N is the length of the signais x,y and z, and the subscript 0 refers to signais

that have had their average values removed. i.e.:

1 N
xo(n) =x(n) - N L x(n)

"=1
Implemented as a MEX. file _

DTW June 1991 .
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projO
Syntax: ou't = projO (x,y)

Inputs:
x Vector to be Projected

y Basis for Projection

Outputs:

ou't projection of (x - mean(x)) onto (y - mean(y))

This is intended primarily as a service routine.

It is called by: irf_es't_cross •irf_es't_even

No Local Function Calls:

DTW August 1993
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tchebconvert
Sj~t~x: pars = tchebconvere ( coeff )

Inputs:
coeff vector of coefficients describing a tchebyshev polynomial. See section

A.1.3 and the routine tchebfit for more details

Outputs:
pars The polynomial is returned with coefficients describing it in terms of

increasing pov,,-ers of x. i.e. the i'th element of pars contains the coeffi

cient of x to the i-1.

No Local Funetion Calls:

DTW
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tchebconvert2d
Syntax: pars = 'tchebconvert 2d( coeff );

Inputs:
coeff vector of coefficients describing a two-variable tchebyshev polynomial.

See section A.1.3 and the routine 'tchebfi't2d for more details

Outputs:
pars The polynomial is returned with coefficients describing it in terms of

the functions xnym.

The vector pars contains terms in the following order:

No Local Function Calls:

DTW
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tchebfit
S)-nt~,; [coeff ,vaf,out]=tchebfit (x,y,order, mode);

Inputs:
x Input to static Nonlinearity

y Output from static Nonlinearity

order Maximum order of the pol)-nomial tO be estimated

mode Method used to choose optimal polynomial order:

'fixed'; a polynomial of order order is returned

'manual': polynomials of orders 0 through order are calculated. The

variance accounted for by estimated polynomials is displayed, and the

used is asked to select the optimal order

'automatic': polynomials of orders 0 through order are calculated.

The order is selected automatically

in an cases only the first letter is significant. The default mode is fixed.

Outputs:
coeff A vector consisting of the minimum .md m~-cimum values of x, followed

by the coefficients of the tchebyshev polynomial functions. For further

information, see Section A.l.3

vaf The percentage of the variance of y accounted for by the polynomial

out The polynomial applied to the input signal x

No Local FunetioD Calls: .'

DTW Sep 1991

215



•

•

tchebfit2d
Syntax: [coeff,vaf,out]= tchebfit2d (x,y,z,order, mode);

Inputs:
x ,y Inputs to static nonlinearity

z Output from static nonlinearity

order Maximum order of the polynomial to be estimated

mode Method used to choose optimal polynomial order:

'fixed': a polynomial of order order is returned

'manual': polynomials of orders 0 through order are calculated. The

variance accounted for by estimated polynomials is displayed, and the

used is asked to select the optimal order

'automatic': polynomials of orders 0 through order are calculated.

The order is seleeted automatically

in al! cases only the first letter is significant. The default mode is f ixed.

Outputs:
coeff A vector describing the two-input tchebyshev polynomial. For a de

scription of its format, see Section A.l.3

vat The percentage of the variance of y accounted for by the polynomial

out The polynomial applied to the input signais x and y

No Local Function Calls:

DTW Oct 1991
:::
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tchebval
Synta.,: y=tchebval(coeff ,x,mode);

Inputs:
coeff A vector describing a single-input tchebyshe,' polynomial. such as thOSl'

returned by tchebfit. For details, see Section A.1.3

x Input signal to be transformed.

mode Method used to treat points outside of the domain of definition of the

polynomial

'clip':points are hard-limited to the minimum and ma.'Ômum of the

input domain

'extend': points are not clipped. This can be lead to unpredictable

results, particularly with high order polynomials

in ail cases ouly the first letter is significant. The default mode is clip.

Outputs:

y The input :x transformed by the tchebyshev polynomial

Local Fonctions Called: harUimit

DTW Sep 1991
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• tchebva12d
Synta~: y=~chebva12d(coeffs,x,y,mode,bound_id);

Inputs:

coeff

x,y

mode

bouncLid

A vector describing a two-input tchebyshev polynomiaL such as those

retumed by tchebfit2d. For details, see Section A.lo3

Input signals to be transformed.

~Iethod used to treat points outside of the domain of definition of the

polynomial

'clip': points are hard-limited to the minimum and ma"cimum of the

input domain

'extend': points are not clipped. This cau be lead to unpredicœble

results, particularly v.ith high order polynomials

in ail cases ouly the:first letter is significant. The default mode is clip.

identityof the bounding polygon (0 through the number of bounds in

cluded in coeffs. 1 is the default \"a1ue. IfbouncLid = 0, a rectangular

domain defined by the :first four elements of coeff is used.

•

Outputs:

y Inputs li: and y transformed by the tchebyshev polynomial

LocalFunctionsCalled: harcLlimit. harcLlimit-2d

DTW Oct 1991

218



•

•

tchebplot
S:~t~~: [dom,ran]=tchebplot(poly,color);

Inputs:
poly coefficients of a tchebyshev polynomiaL as returned by tchebfit

color colour of the plotted line

Outputs:
dom domain values of the p':>ints used to generate the plot

ran range values of the points used ta generate the plot

Local Functions Called: tchebval

DTW Sep 1991
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• tchebplot2d
Syntax: [X, y ,Z] = tchebplot2d ( poly, control, bound);

Inputs:
poly

control

bound

coefficients of a two-dimensional tchebyshev polynomial, as returned by

tchebfit2d

a string that controls the appearance of the plot (see below)

[bound-ids NaN x-size y-size NaN domain..boundsJ

dom..mode:

•

Outputs:
X, Y,Z matrices of the X, Y and Z values of the points used to generate the

polynomial surface. If ooly one output is specified, Z is returned.

control: [pIt_type dOllUllode bouncUnode bouncLcolor]

plt_type: can be 'mesh', 'surf', 'lsurf' or 'contour', corresponding to the MAT

LAB surface plotting functïons. Ooly the first character is significant in

each case.

can either be 'clip' or 'extend'. It controls how the polynomial is

applied to points outside of its domain of definition. They are either

clipped back to the domain, or the polynomial domain is e>.."tended, 50

that the points are simply evaluated. See tchebval2d for more details.

bouncUnode can either be 'contour', 'rectangle', oi 'full'. contour limits the

domain te a specified contour, whicb. is passed in bounds. rectangle

limits the domain to a rectangle defined by the first four elements of

coeff. full setS the domain to that specified in the last four elements

passed in the vector bounds

bouncLcolor specifies whicb. colour is used to plot the clipping boundary

Local FunetioDS Called: harcLlimit, harcLlimit.2d, tchebval2d

DTW Oct 1991
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toep
Synta."(: x = toep Cr. b) ;

Inputs:
r vector used to describe a Toeplitz matrix. Usually the autocorre1ation

function of an input signal

b right hand side of Toeplitz matrL"( equation. Usually the input-output

cross-correlation measured across a dynamic linear system.

Outputs:
x solution of Toeplitz equation. If r and b are the input autocorrela

tion and input-output cross-correlation functiollS, x will be the impulse

response.

This function solves the matrL"( equation Tx = b, where T is a Toeplitz matrix,

described by the vector r. i.e. T(i,j) = rOi - jl + 1). Levinson's [20] algorithm is

used.

No Local Fonction Calls:

EJP Jan 1991
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toep2
Synta.x: x = toep Cr,b ,resid) ;

Inputs:
r vector used to describe a Toeplitz matrLx. Usually the autocorrelation

function of an input signal

b right hand side of Toeplitz matrLx equation. Usually the input-output

CIoss-correlation measured aCIOSS a dynamic linear system.

resid (Optional) channel of residuals. Used to estimate noise statistics.

Outputs:
x solution of Toeplitz equation. If r and b are the input autocorrela-

tion and input-output CIoss-correlation functions, x will be the impulse

response.

This function selves the matrLx equation Tx =b, where Tisa Toeplitz matrlx,

described by the vector T. i.e. T(i,;) = T(li - ;1 + 1). Instead of using the exact

inverse of T, a pseudo-inverse may be employed. The use of a full-inverse as opposed

to a pseudo-inverse, as wel1 as the method used to choose the order of the pseudo

inverse, is controlled by a series of global variables. For details, see toep.man.m

Local Fonctions Called: toep

DTW Sept 1994
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Synt~,: ~oep~an(op~ion.parame~er)

Inputs:
op~ion

parame~er

control string

optional parameter, dependent on which option is selected.

•

Valid options are:

• au~o Enables automatic order selection.

• fixed Use a fi.,ed pseudoinverse order

• fixecLorder specify which order to use

• full Uses e.'I.-act inverse in all deconvolutions

• gui Initializes all global variables, if necessary, and creates a graphical user interface

• help Access to help systems

• ini~ Initializes all global variables

• manual manual order selection, based on displayed thresholds

• s~a~us Displays the value of all global variables, as well as a brief description of

the current order selection mode.

• verbose Toggles verbose mode (stans on)

• visual..lllode User tan manipulate pseudoinverse order using sliders. The current

IRF is plotted together with the full inverse solution.

For detailed information, type ~oep~an('help'), or ~oep~an('gui') and then

examine the help menu on the resulting figure window.

Local Fonctions Called: input_d, input_dl

DTW Sept 1994
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wiener!
Syntax: [irf, po1y, vat, out] =wienerl (x,v,irf1en,order, mode);

Inputs:
x system input

v system output

irf1en memory length of the linear '~ynamic element

order maximum order for the polynomial nonlinearity

mode method used to select polynomial order. See tchebfit

Outputs:
irf impulse response of the dynamic linear subsystem of the V\:ïener cascade

poly static nonlinear subs)"Stem, represented as a tchebyshev polynomial.

For details regarding the format of this vector, see Section A.1.3

vat percentage of the variance of v accounted for by the V\:ïener cascade

output

out output of the Wiener cascade applied to x

Fits a Wiener cascade between input x and output v, using the fiIst-order cross

correlation between x and v, as we1l as the input-autocorrelation, to estimate the

dynamic linear part of the system.

LocalFunctionsCalled: phixy. tchebfit. tchebval, toep

DTW Jan. 1992
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wiener2
S)~t~x: [irf. poly. vaf.ou~) = wiener2 (x.v.irflen.order,mode);

Inputs:
x system input

v system output

irflen memory length of the linear dynamic element

order maximum order for the polynomial nonlinearity

mode method used to select polynomial order. See ~chebfi~

Outputs:
irf impulse response of the dynamic linear subsystem of the Wiener cascade

poly static nonlinear subsystem, represented as a tchebyshev polynomial.

For details regarding the format of this vector, see Section A.1.3

vaf percentage of the variance of v accounted for by the Wiener cascade

output

ou~ output of the Wiener cascade applied to x

Fits a Wiener cascade between input x and output v, using the second-order

cross-correlation between x and v, as well as the input-autocorrelation, to estimate

the dynamic linear part of the system.

Local FunctiODS Called: phixy. phixxy. 'tchebfi't. 'tchebval. 'toep

DTW Jan. 1992
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wiener3
Syntax: [irf.poly.vf.ou~] = yiener3 (x.v.numlags.order.mode.~ol);

Inputs:
x system input

v system output

irflen memory length of the linear dynamic element

order maximum order for the polynomial nonlinearity

mode method used to select polynomial order. See ~chebfi~

~ol tol=ce used to halt gradient search algorithm that is used to find the

optimal mF. Default value is (1 x 10-5)

Outputs:
irf impulse response of the dynamic lin~ subsJ-stem of the V\oïener cascade

poly static nonlinear subsystem, represented as a tchebyshev polynomial.

For details regarding the format of this vector, see Section A.1.3

vaf percentage of the variance of v accounted for by the Wiener cascade

output

out output of the V\oïener cascade applied to li:

Fits a Wiener cascade between input li: and output v, using the third-order cross

correlation between li: and v, as weil as the input-autocorrelation, to estimate the

dynamic linear part of the system.

LocalFunctioDSCalled: iteration3. phixy. phix3y. phi..adj_phi.

tchebfit. tchebval. toep

Dm" June 1992
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Appendix B

Details of the Analogue N onlinear

System

Figure B.1, a repeat of Figure 6.1, shows a block diagram of the analogue system

used in the experiments described in Section 6.1. Details regarding the linear filters

are presented in Table B.l.

y(t)

•

Figure B.1: Block diagram of the electronic system used in the experimental verifi
cation of the eigenvector method (repeat of Figure 6.1)

AU of the filters, except the eighth order Bessel filter, were realized using a second

order Sallen-Key structure [35]. A circuit diagram for a low-pass Sallen-Key filter

is shown in Figure B.2. To obtain a high-pass filter, the resistors marked R and

capacitors marked C are interehanged. The remajnjng filter was a commerciaUy

produced anti-aliasing filter 1•

lFrequency Deviees 902LPF
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Figure B.2: Circuit diagram of the second-order Sallen-Key filters used to construet
the analogue nonlinear system

We estimated impulse responses for the linear filters, using the techniques de

scribed in Chapter 3. These are presented in Figure 6.3. A nonlinear optimization

method was then used to estimate filter parameters for the identified IRFs. These

are presented, along with the design values, in Table B.l.

Cut-Off (Hz) HippIe (Db)
Filter Type Order Design Est. Design Est.
LPF-l Low-Pass Butterworth 2 21.16 19.31 NIA NIA
LPF-2 Low-Pass Butter'l\'Orth 2 10.26 10.58 NIA NIA
LPF-3 Low-Pass Bessel 8 30.00 30.00 NIA NIA
HPF-l High-Pass Chebyshev Type 1 2 4.82 4.58 2 1.65
HPF-2 High-Pass Chebyshev Type 1 2 7.23 7.27 2 1.35

Table B.l: Filters used as linear elements in the analog simulation experiment
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