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Abstract

In this thesis, we developed techniques which are capable of identifving single and
eultiple-input, linear and nonlinear systems. They were derived within an analvtical
framework which imposes few restrictions on the nature of the input signals, and
includes the possibility of measurement noise. Extensive simulations demonstrated
that these methods are robust in the presence of measurement noise, and that they
can be used with highly coloured test inputs. A series of experiments were performed
on a known, physical, nonlinear system to validate the simulation results. Finally,
an investigation of the stretch reflex electromyogram was used to demonstrate the

applicability of these methods to a physiological system.

[
.



Résumé

Dans cette thése, nous avons développé des techniques nous permettant d'identifier
des systemes linéaires et non-linéaires a entrées simples et multiples. Ces techniques
sont dérivées d’une structure anaiytique qui n'impose que peu de restrictions sur la
nature des signaux d’entrée. De plus, les signaux mesurés peuvent contenir un certain
degré de bruit. Les résultats des simulations appronfondies ont servi & démontrer que
les techuniques présentées ici sont robustes en presence de bruit et peuvent étre utilisées
avec des signaux colorés. Des simulations ont été faites sur un systéme physique,
non-linéaire et connu afin de démontrer la validité des résultats obtenus. Finalement,
ces techniques ont été appliquées a un électromyogramme représentant une réponse
réflexe de déplacement afin de démontrer la possibilité d’application de ces méthodes
& des systémes physiologiques.
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Chapter 1

Introduction

In the introduction to treatises on the subject of system identification, it is not uncom-
mon to find the authors drawing comparisons between the construction of mathemat-
ical models and the pursuit of knowledge itself [11, 65]. Further musings invariably
extend the analogy, casting system identification in the role of the scientific method.
To further extend this allegory, the development of new algorithms for system iden-
tification can be seen as the creation of new tools for the scientist. In making this
observation, an important point is raised. The development of new algorithms should
not be an end in itself; they are tools, and nothing more. Foremost in.the mind of
any tool builder should be the applications, for without these, of what use is a tool?

In this thesis, we have attempted to further the discipline of nonlinear system
identification by developing tools which may be applied under fairly liberal conditions.
Traditionally, the application of nonlinear system identification has been limited by
the need for rather stringent assumptions about the properties of the data. We have
eased some of these restrictions, allowing wider use of these techniques.

We have designed our tools considering the requirements -'fmposed by the study
of joint dynamics, where the systems being examined can be highly nonlinear and
involve the interaction of several inputs. Furthermore, the nature of the experimental
apparatus imposes severe constraints on the “richness” of the input stimulus. Finally,
measurements of the system inputs and outputs are often corrupted by measurement

noise. Although we have developed these tools for this particular application, we



believe they will be usable in 2 large number of disciplines.

1.1 Overview

Chapter 2 presents a general introduction to the topic of system identification together
with a discussion of the requirements and constraints inherent in the study of human
joint dynamics. This is followed with a detailed review of the recent system identifi-
cation literature, payving particular attention to methods that may be applicable to
the study of biomedical systems, and in particular, human joint dynamics.

Chapter 3 presents a theoretical examination of an established algorithm which is
used widely for the identification of linear systems. Based on this analysis, we develop
a new algorithm that yields estimates with dramatically lower variances than existing
methods. This procedure will be used in the algerithms developed in later chapters.

Chapter 4 introduces an important block structured nonlinear system: the multi-
input Wiener structure. After a theoretical investigation of this nonlinear system,
we develop algorithms for its identification. In later chapters, we will construct more
general nonlinear systems using both single- and multiple-input Wiener structures as
“building blocks”.

Chapter 5 presents algorithms for the identification of general nonlinear systems.
We start with the parallel cascade method, recently proposed by Korenberg [56],
which models an unknown system as a sum of Wiener models. Our contribution is
a new procedure that finds the “best” possible Wiener cascade at each stage. This
results in faster convergence, simpler models, and better noise performance than the
* original method. Furthermore, we will show that this expansion depends only on the
statistics of the input and is therefore unique. We will present algorithms for both
single- and multiple-input systems.

In Chapter 6, we present two applications of the techniques developed in this
thesis. First, we construct a known, physical, nonlinear system, using several linear
filters, and a four quadrant analogue multiplier. Using this system, we validate the
identification methods under experimental conditions. Secondly, we investigate the



dynamics of the stretch reflex electromyogram {EMG). using the methods developed
in Chapters 3 and 5. The analvsis of this system is used as an example. illustrating
how and when the various algorithms developed in this document can be applied.
Finally, in Chapter 7. we summarize the contributions made in this thests. and
offer suggestions for further developments and improvements. \We finish the chapter

by discussing further applications for these techniques.



Chapter 2

Literature Review

2.1 Overview

In this review, our primary objective will be to describe techniques that are suitable
for building models of the human peripheral neuromuscular system. Our description
of this system will reveal multiple inputs and outputs, nested feedback loops, and the
presence of several nonlinearities. A survey of the techniques used to model systems
of this complexity reveals two broad classes: a priori or morphological modelling, and
a posteriori or black-box modelling, which is also known as system identification. We
begin our discussion by describing these two families of techniques in general terms.

- To place this discussion in context, we will consider the problems associated with
the modelling of human joint dynamics. With reference to the recent literature, we
will describe the system and discuss the types of experiments that can be performed,
each of which will limit our choice of modelling techniques in different ways. Thus,
a minimum level of model complexity will be mandated by the nature of the system
itself, whereas limitations in the data that can be obtained experimentally will dictate
an upper bound on the model complexity that can be justified. Given this perspective,
we will discuss the merits and pitfalls of both @ priori and “black-box” modelling as
applied to the study of the peripheral neuromuscular control system.



2.1.1 Morphological vs. Black-Box Models

A priori modelling uses analysis based on first principles, knowledge of the svstem
structure, and the function of its subsystems, to create models of an entire svstem.
These models are frequently referred to as morphological models since the individual
elements and their interconnections are often related directly to the structure of the
system being modelled.

Typically, such models incorporate a large pumber of parameters that must be
determined experimentally. For examples of ¢ priori models of the peripheral neuro-
muscular system see the series of review articles by Agarwal and Gottlieb [1, 2, 3].

In contrast, the a posteriori approach attempts to model the syvstem without
making assumptions about its structure. This approach is sometimes referred to
as black-box modelling, since the resulting model is simply a “black box™ whose
behaviour mimics that of the system. This class of models describes the relationship
between the system inputs and outputs, but may provide little structural or functional
irformation about the system or its components.

In general, there are two uses for the models produced by system identification:
control and understanding. In the design of control systems, particularly predictive
control systems, models are needed to predict the plant’s response to its input in
order to design an effective controller. It is usually desirable to have the simplest
possible model that describes the dynamics of the plant to be controlled.

The other broad app]ication of system identification, pursued here, is to gain
insight into the operation of a system. In this case, we want to extract the maximum
amount of information from the input/output data. K one is willing to believe that
2 more complicated model will lead to better understanding of the system, it can be
argued that our objective should be to create the most complex model that can be
justified by the data. In any case, models identified for insight are ofter much more
complex than those used for control.

Let us consider the generél identification problem, as posed in Verhaegen and
Dewilde [99], and illustrated in Figure 2.1. We will use this figure to establish the

o
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Figure 2.1: Block diagram representation of a generalized identification problem.
Redrawn from [99]

notation used in the rest of this discussion.

We will define the “system™ to consist of everything within the dotted box in
Figure 2.1. It cobsists of two parts: one stochastic, and one deterministic. The
stochastic part of the system is driven by a vu.rhiie-noise process, wy(t), which is not

‘available to the experimenter. The deterministic part is driven by the sum of a

controlled input, u(t), and a filtered version of an inaccessible white noise process,

wa(t). In addition to having control over u(t), we will assume that the experimenter

‘has access to a noise corrupted version of the complete input signal, ﬁ(tj.

The noise-free output, y(t), is the sum of the outputs of the deterministic and
stochastic parts of the system. The experimenter, however, usually only has access
to a corrupted version of the output signal, z(z).



Given thie structure, several problems can be addressed.

o Identification of the deterministic model. P. This consists of finding a rela-
tionship between u(t) and y(t). assuming that the process noise. w,(t). iz zero.
Note that both the input and output may still be corrupted by observation
noise, v,(t) and v.(t), respectively. The identificatior of deierministic svstems
is generally pursued when the objective is to gain insight into tbhe functioning

of a system. This is the problem that is pursued in the balance of this thesis.

o Identification of the noise model, F'n. We are interested here in the relationship
between wi(t) and y(t), given observations of only the system output, y(t).
Usually, the input signal, u(2), is assumed to be zero or constant. This type
of identification problem is used in applications such as the study of economic
systems, where the inputs are not available to the experimenter, or where it is

unclear which signals are inputs, and which are outputs.

o Identification of the complete model. Given both the input and the output,
estimate both P and Fn, the deterministic and noise models. This problem
formulation is used when accurate predictions are desired, such as in the design

of model based control systems.

2.1.2 Modelling of Joint Dynamics

In this section, we will consider how the problems of modelling joint dynamics relate
to the @ priori modelling and system identification approaches outlined above. We
will start by defining the problem, and then examine the strengths and weaknesses
of each approach. )
Figure 2.2, redrawn from [38] and modified to include the myoelectric signal output
(EMG), shows a simplified block diagram of information flow in the peripheral nervous
system. Several important simplifications have been made in this dJagram |

o The actions of agonist and antagonist muscle groups have been lumped into 2
single block (the dashed box).
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Figure 2.2: Information Flow Diagram for the Peripheral Neuromuscular System

e The myriad descending commands have been lumped into two inputs: one to
the alpba motoneuron pool, which drives the muscle through the “activation
dynamics”, and one to the “reflex dynamics”.

e The gain associated with the descending “alpha” command charnel, as well
as that of the reflex dynamics, can be modulated via interneurons [33]. This

~ command channel is not represented in the diagram, in any form.

¢ Inputs from the receptors associated with other muscles, as well as those from
receptors other than the muscle spindles, are entirely absent from this diagram.

_ D&pzte these simplifications, Figure 2.2 still repr&sent:s_ a complex system, which will

" be difficult to model accﬁmtel:}, whatever approach is employed. Analyses based on
either morphological modelling or system identification each have distinct disadvan-
tages, which will be dealt with in turn.



Constructing an a priori model of the dynamics of a single joint is an extremely
difficult underzaking. Even the simplified schematic shown in Figure 2.2 countains
several subsystems and many interconnections. Treated in isolation. each block shown
in Figure 2.2 has been the subject of extensive modelling efforts [1. 2. 3]. An overall
model must include each of these subsystems and account for interactions between
them.

Validation of such a complex model poses its own problems. Assuming a model of
the whole system could be postulated, how does one prove that it mimics the original
system at all levels of detail included in the model? Without such a validation, of
what significance is the model? While the detailed structure of the model may suggest
explanations of how the system functions, without adequate model validation such
explanations remain speculative.

On the other hand, the chief disadvantage of black box models is that they provide
no direct functional or structural information. They can, however, act as a reference
against which morphological models can be validated. Thus, black box modelling may
provide the means to validate morphological models, and so provide the functional
insight which is our final objective.

We will now focus on the system identification approach. Our first, step will be to
relate the system shown in Figure 2.2 to the general identification problem outlined
by Figure 2.1. As we can see, the system has one input, the external torque, that can
be directly manipulated by the experimenter, as well as two inputs from the central
nervous system, which are inaccessible. The outputs from the system are the joint
position and the myoelectric signal.

Consider first the problems associated with applying the inputs. A mechanical .
actuator [39], using appropriate feedback, can be configured as either a torque or po-
sition servo. Figure 2.3 shows how an actuator can be used to generate a controllable
torque input. In suck an experiment, the position could be measured and fed back to
the subject, who would be instructed to maintain 2 constant position. Ar alternative
experiment is illustrated in Figure 2.4. In this case, the actuator is used to make
the joint track a given position command input. The subject would be instructed to



Torque Applied Position

To - tput
Command STEN Controller and raue Joint | Outpu
\':‘/ | Actuator Dynarmics
Figure 2.3: Actuator configured as a torque servo
Position %pplied Ic”)osition
orque X utput
Command L Controlier and 4 Joint P
&/ Actuator Dynamics

Figure 2.4: Actuator configured as a position servo

generate 2 prescribed muscle force, given the measured reaction torque as feedback.

Kearney and Hunter discussed the merits and pitfalls of both experimental ap-
proaches in 2 review of the joint dynamics literature [38]. They determined that -
generating a position input is more technically demanding, as a faster, more powerful
actuator is required than for the torque input case. Their analysis concluded that,
all things being equal, a position control experiment should yield better estimates at
relatively high frequencies, whereas torque control experiments should produce better
estimates of the low frequency response.

However the actuator is configured, the signal applied to the physiological system
will be a torque whose spectrum is dependent both on the spectrum of the input signal
and the dynamics of the actuator. In general, the actuator will act as:a. low-pass filter.
For example, the electro-hydraulic actuator described by Kearney et al. {39] had a
gain which was flat to 25 Hz, followed by a third-order (60 dB per decade) roll-off.
A more recent design [117] provides a flat gain to 100 Hz, which then rolls off at 60
dB per decade. Thus, the spectrum of the test input will depend on the dynamics
of the actuator. Any system identification method must take this non-white input
spectrum into account.

10



We must also concern ourselves with measurement noise. Sources include nonlin-
earities in the position and torque transducers, electrical noise ia the signal condition-
ing apparatus, environmental noise, and quantization noise produced by the analogue
to digital converters.

If the system is likely to remain constant over extended periods of time. notse
effects can be reduced by collecting long data records. This option is not available
in studying joint dyvnamics, as long experiments are likely to induce fatigue in the
subject. While the extent of the changes induced by fatigue is not clear. for example
compare [29] with [46], it is clear that we must minimize the effects of noise by using
robust techniques rather than by relying on the averaging properties of long data
records.

Fipally, we must acknowledge that the system contains nonlinearities. For ex-
ample, there is evidence [37] to suggest that the “Reflex Dynamics™ block in Figure
2.2 responds primarily to the velocity of muscle stretching, implying the presence of
something like a half-wave rectifier.

Further evidence supporting the existence of nonlinearities is provided by the
quasi-linear analysis performed by Weiss et. al. [104, 105, 106, 107, 108]. A second-
order, linear model described the relationship between torque and position well, pro-
vided that the position input was limited to small perturbations around a fixed mear
position. The parameters of the second-order model varied strongly with the raean
position, the level of background contraction. and the size of the perturbations. The
changes in the linearized model strongly suggest the presence of underlying nonlinear
behaviour. : |

Therefore, we need system identification methods that are capable of identifying
nonlinear systems using non-white test inputs, and that are robust in the presence
of measurement noise in the input, the output, or preferably both. Although we
can only manipulate one of the inputs directly, we can modulate the desgen/:\\:{::
inputs either electrically, [92], or by asking the subject to track a moviﬁ;g,target
signal [45, 67). Because these limited two-input experiments are possible, we will also
examine methods for identifying multiple-input systems.

11-



The balance of this review is organized as follows:

e Section 2.2 will explore the various representations used to describe linear sys-
tems and the methods used to identify them from measurements of input-output

data.

e Section 2.3 will consider several descriptions of nonlinear svstems and the tech-
niques used in their identification. This treatment will be limited to single-input

systems.

e Section 2.4 will describe how some of the methods reviewed in Sections 2.2 and

2.3 have been extended to deal with multiple-input systems.

e Section 2.5 summarizes the methods discussed in this review, concentrating on

their potential application to the study of joint dyramics.

2.2 Linear System Identification

A linear system obeys two properties: su:.erposition and scaling. Hence, if F is a

linear operator:

n(t) = F(u:(t)

Plhu _p
3’L'!(t) - F(uz(t)) = (k 1(t) + kzuz(t)) 1311(*) + kzyz(t)

2.2.1 Parametric Representations

A parametric model consists of a set of differential or difference equations which
describe the system dynamics. Such equations usually contain a small number of
parameters, which can be varied to alter the behaviour of the equations. The iden-
ﬁﬁcaﬁpn of an unknown system comprises two stages. First the structure of the
parametric model is chosen, then the parameters themselves are estimated. What
follows is a brief description of some important parametric linear system structures.
For a comprehensive review of the techniques used to identify them, see Caines [11],
or Ljung [65)].



2.2.1.1 Linear Difference Equations

We can write the relationship between the input. output. and noise as a linear differ-
ence equation. Following Ljung [63]. we write:
y({t) + a1yt - D+ ...+ e, y(t —n,) =
biu(t — 1) + bou(t — 2) + ... + by u(t — np)+ (2.1)
ety +aet—1)+... +¢pe(t — n.)

which can be written more compactly:
A(gy(t) = B(g)u(t) + Clq)e(?) (2.2)

where A(q) = 1+ a1g™* +... + an, g™ and ¢! is the backward shift operator.
This is the auto-regressive, moving average exogenous (ARMAX) model. The cur-
rent output, y(t), depends on an exogenous input, u(t), an innovations process, e(t),
and the past values of the output. With respect to Figure 2.1, the polynomials
(A(q), B(q)) correspond to the deterministic model, P, whereas (A(g), C(g)) repre-
sent the stochastic system, Fn. This model has several special cases, the first of
which is the autoregressive (AR) model:

Alg)y(t) = e(t)

in which the output depends on the current disturbance, as well as the n, previous

valu_es of the output.
Another special case is the moving average (MA) model:

y(2) = Clg)e(t)

in which the output depends on the previous values of the disturbance, e(t).
Combining these two, we get the autoregressive moving average (ARMA) model:

A(g)y(t) = Clq)e(t)

If we add an accessible input, u(t), to the AR model, the result is an auto-regressive
exogenous input (ARX) model: "

A(g)y(t) = Blg)u(t) +e(t)

13



A special case of the ARX structure, in which there is no disturbance input, is the

finite impulse response (FIR) model:

y(t) = B(q)u(t)

In this case, the output depends solely on the previous values of the exogenous in-
put. This structure forms the basis of many so-called non-parametric identification
schemes,

Once 2 candidate model structure and order have been chosen, the model represen-
tation can be reduced to a parameter vector, © = [A(g)B(g)C(g)]. The identification
problem, then, is to find the optimal vector in parameter space, given a particular

cost function.

2.2.1.2 State Space Models

Another parametric system representation is the state space model. In this case, we

consider a set of equations of the form:

T4l = .4Ik + Buk

(2.3)
Yk = Czr + Du

where the sequences ux, ¥, and z; represent the system’s input, output, and state
respectively. The classical method for identifying these models is the Ho-Kalman [28,
118] realization scheme. The impulse response (Markov parameters) of the system is
first identified from input-output data, and then used to compute the system matrices,
ABC,and D.

Recently, Verhaegen and co-workers [96, 97, 98, 99] proposed a class of subspace
identification methods which estimate the system matrices directly, to within a simi-
larity transform, from the input/output data. In this approach, the inpui; and output
data sequences are entered into a Hankel ma.tnx, ‘which is then compressed by an
RQ factorization [20]. By partitioning R, it is possible to recover a matrix with the
same column space as that of the extended observability matrix. Applying a singular
value decomposition [20] to this partition, and retaining only the singular vectors that

14



correspond to significant singular values, recovers the observability matrix. to within
a similarity transformation. The number of singular values retained determines the
rank of the observability matrix. and hence the order of the svstem. As a result. the
task of model order selection is performed explicitly, in contrast with other paramet-
ric identification methods that generally rely on a separate model order test. such as
one of the many variants of the Akaike information criterion (AIC) [4. 11].

Similar methods have been proposed by Van Overschee and de Moor [94. 95]. and
Moonen and Ramos [74]. Recently, subspace fitting teckniques, originally developed
for array signal processing [91, 93, 102], have been used to increase the accuracy of

the estimates of the system matrices [76).

2.2.2 Nonparametric Representations

A linear system can be represented by its impulse response. In continuous time, we

can compute the output via the convolution integral:
T
y(t) = -/; R(T)u(t — 7)dr (2.4)

where T is the memory length of the system, and h(7) is the impulse response. In
this case, as the lower bound of the integration is 0, the system is causal.

Given that the analysis will be performed using sampled data on 2 digital com-
puter, we will require a discrete time formulation. One benefit gained by restricting
ourselves to discrete time is that it avoids the mathematical difficulties associated
with a continuous-time white-noise signal. In continuous time, a white noise signal
has infinite bandwidth and hence infinite power. In discrete time, however, it is sim-
ply a sequence of independently distributed random variables. In discrete time. the

convolution integral becomes the summation:
T-1

y(t) = At- ¥ h(rut—7) | (2.5)
=0 ) -

Here the memory length, T, and the lag, 7, are integers. If the system is non-
causal, then the lower imit of the summation will be negative. The sampling incre-
ment is At; for notational simplicity, we will assume that the samwpling increment is
1, so that it can be dropped. /.
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If the input process is white, it can be shown [68] that the impulse response can
be recovered from the input/output cross-correlation function. Given N data points.
a biased estimate of the cross-correlation {5] can be obtained as:

N

bulr) =5 T ult =0 (26)

t=r+1

Substituting (2.5) into (2.6)

R 1 X T-1
bu(r) = § 2 ult—7) 2 hGult-j) (2.7)
t=7+1 =0
T-1 N
= }:0 h(3) { EH u(t — 7)u(t - J')}
T=1 .
= Z; h(7)Pze(7 = )

Hence, the input-output cross-correlation is equal to the convolution of the impulse
response with the input auto-correlation function. If the input is white, the auto-
correlation function is an impulse, and the cross-correlation and impuise response
are equal. If the input is non-white, the input auto-correlation function must be
deconvolved, somehow, from the cross-correlation estimate.

Ljung [65] approached this problem by modelling the observed input as a white-
noise process filtered by an autoregressive filter. This filter can be estimated, and its
inverse (a moving average filter) applied to both the input and output signals. The
cross-correlation between the ﬁltered input and filtered output is then estimated.
Since the filtered input signal is eﬁectnrely white, the cross-correlation estimate pro-
v1d$ an estimate of the impulse response.

Hunter and Kearney [30] used a different a.pproach The input auto-correlation was

estimated, and the convolutmn between the mput auto-correlaﬁon and the impulse

response written in matrix form:
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[ 6u©® ] ] Gu®  du) . SwT-1 ][ O
Swll) || Ga@ S euT- ) Ao
| 6w(T=1) ] | 6ulT-1) 6u(T=-2) ... 6u(0) ||AT-1)]

which may be written compactly as:
‘i’uy = (‘puuh (29)

This equation can be solved efficiently, using Levinson’s algorithm [20], since O,
the matrix derived from the input auto-correlation function, has a symmetric Toeplitz

structure. As we shall see in Chapter 3, this procedure has substantial numerical
advantages over the scheme proposed by Ljung [65].

2.3 Nonlinear System Identification

2.3.1 Functional Expansion Methods

As was shown in Equation (2.5), 2 linear system can be represented by its impulse
response; superposition guarantees that this fully characterizes the system. Volterra
[103] developed a generalization of this representation for nonlinear systems in which
the single impulse response is replaced with a series of integration kermels. This
generalization of the impulse response, usually called the Volterra series, can be used
to approximate a wide variety of systems. Indeed, Boyd and Chua [9] showed that a
finite Volterra series can be used to approximate any time invariant operator which
has fading memory. In the general case, the system output is generated by a series
of generalized convolutions:

y(t) = g:‘f .- -jh.,,(‘r;, ey Ta)u(t = 71) .. u(t = T)dmy . dTy, . (210)

The zero-order term, hy, is a constant, and is independent of any input to the
system. Clearly, for linear systems this term will be zero.

The first order kernel is similar to the linear impulse response. Indeed, for linear
systems the Volterra series collapses into its first order term, which is then precisely
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equal to the impulse response. In any case, the first-order term represents that part
of the system response to an impulsive input that scales linearly with the weight of

the impulse. Its output is computed using a convolution integral:

| " h(Fult = )dr (2.11)

The second-order Volterra kernel is used to compute the system response due to
the interaction of pairs of impulsive inputs. The second-order response is computed

via a generalized convolution integral:

T T
jo jo ha(r1, T2)u(t — Ty )u(t — T2)drydre (2.12)

For this purpose, a single impulse can be thought of 25 2 pair of coincident impulses.
Thus, the diagonal elements of the second-order kernel give rise to that part of the
impulse response which scales with the square of the weight of the impulsive input.
Similarly, the n'th order Volterra kernel can be used to compute the system response
to n impulsive inputs, and its diagonal values will correspond to that component of
the impulse response which scales with the n’th power of the weight of the impulsive
input.

While this representation is useful in computing the system response to a given
input, the terms in the series are not orthogonal, and therefore must be identified
all at once. A least squares solution to this problem, demonstrated by Doukoglon
and Hunter (17, 32], is computationally intensive, even for low-order systems with
comparatively short memory lengths.

Wiener {113] proposed 2 solution to this problem in which the Volterra sexies -
is orthogonalized using a Gramm-Schmidt orthogonalization [20], assuming that the
input is a one-dimensional Brownian motion, z(t, &). Wiener [113] defined Brownian
motion as the motion of a pa.rticlé, in one dimension, such that given a reference
time, ¢,, the departure at any time, ¢;, from the original reference position has a
Gaussian distribution. In addition, the distributions taken over two non-overlapping
time increments must be independent.

The parameter o, in the Brownian motion z(t, a), ranges continuously from 0
to 1, and determines its path. Each path that the Brownian motion could follow is
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associated with 2 unique value of . Thus, integrating over a from 0 to 1 is equivalent
to integrating over the distribution of all possible Brownian motions.

Other investigators [62] recast Wiener's continuous time formulation in discrete
time, replacing the Brownian motion input with a “white” Gaussian signal with
variance o-. Each sample of this discrete time white noise sequence is the time integral
of a one-dimensional Brownian motion over the corresponding sample period. Thus,
this signal becomes a sequence of independent Gaussian random variables.

In both cases, the terms in the Wiener series are orthogonal, and can be estimated
individually. Following the developments given by Wiener [113], the system output
can be written:

0
¥(t) = ’an[Kmm(te o)} (2.13)
K, is referred to as the n’th order Wiener kernel, and the functionals, Gy[Kn, z(t, )i,
will be chosen to be orthogonal, giver a Brownian motion input, z(t,a). Wiener's
approach involves constructing each successive functional, G,,, such that it is orthog-
onal to any homogeneous functional of lower order. The first such functional, K, is
of zero order, and is a constant. A general form for the first order functional is:

GilKs, a(t, o)) = [ Ka(r)da(r, o) +kyo
To make this orthogonal to any zero-order functional, we must solve:
E [G1[K1,z(t, a)]Fo[z(t, a)]] =0

for any zero order functional, Fpjz(2, @)]. As z(t,a) is a Brownian motion, setting
k; 0 equal to zero solves this and orthogonalizes the first two functionals.
Similarly, starting with a general, second-order functional:

Gaf Ko, 2(t, @) = j [ Koy, 72) dz(my, ) dz(ms, @) +

f ka1 (T)dz (7, @) + ko
and orthogonalizing it with respect to all z&o and first-order functionals yields:

Go[K,, z(t,a)] = [ f Ko(r, 2)dz(n, a)dz(my, @) = j Ky(7,7)dr
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Note that in the preceding equations, the functionals have been defined in terms
of “Stieltjes” integrals, where the integration takes place along the trajectory of the
Brownian motion. Wiener [113] demonstrated that this could be transformed into a

time integral by integrating by parts:

/ ' F6)dat o) = F(1)2(1L, @) — / ' )z, a)dt

provided that the derivative of f(t) exists, and is bounded. The boundedness of the
derivative of the kernels is one of the conditions that restricts the class of functions
that can be represented by the Wiener series.

Lee and Schetzen [62] reformulated the Wiener series in discrete time using a
Gaussian “white noise” input signal. In this formulation, the Stieltjes integrals of
Wiener’s [113] Brownian motion formulation are replaced with generalized convo-
lutions. Palm and Poggio [78] investigated the mathematical implications of this
change in the Wiener series formulation. In particular, they distinguished between
the “Stieltjes kernels” employed by Wiener [113] and the “symbolic kernels” used by
Lee and Schetzen [62]. They concluded that the validity of the Lee-Schetzen method
is restricted to the class of systems whose derivatives belong to the original Wiener
class of systems, and that this new class of systems is smaller than the Wiener class.

In the discrete-time framework, the first three symBolic ‘Wiener functionals be-

come:

Go[Ko,u(t)] = Kp

R=1

Gi[Ky,u(t)] = gm(i)u(t-i)

R=1 ) R=1
GalKa,u(t)] = )j,o Kz(z;j)u(t—-z‘)u(t—j)—o?.gofc.»(i,i)
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Similarly, the n’th order discrete Wiener functional can be written:
{3)] BR-1  R-1 R-1  R-1 i
(=1¥nla?

Glkmu@®] =Y T .Y T..T o

: . — g
=0 51=0 Fa_x=0 k=0 k=0 = (n _1). 1.

Kn(jl :Jn—": kl L]_ ..... L is k,)‘lt(t —_ 31) e u(t -_ jn_gi)
where || refers to the largest integer less than or equal to Z.
Marmarelis and Marmarelis [68] and Rugh {84] give equations relating the Wiener
and Volterra kernels of nonlinear systems. Given the Volterra kernels, h,, the Wiener

kernels are found to be:

Kn('Tl: ‘n) Z (n-i-"g)'cr'J

por S

] h(n-l-?j)(Tl: sioy T, 01,00,-.., 05, aj)dala ey da;
-0

Similarly, given the Wiener kernels, the Volterra kernels can be computed as:

hu(fl,...,rn) == f: (—1)5(n+ 2.7')30';':3'

P 5123

‘/m;{(nd-?j)(rh -1 Tn, 01,01, ,Uj,aj)dol, e :do’j

As each functional, Gp{Kp, u(t)], is orthogonal to all functionals not of the same
order, Wiener [113] observed that “instrumental” kernels could be used to isolate
an individual kernel. If y(t) is given by Equation (2.13), and Qy, is an m’th order
functional, Qp,lgm, u(t)], then:

E®Qn(0] = 3 BCA0Qn(t] (2.14)
However, due to the orthogonality of the Wiener functionals:
| BGQntl=0  formen
Hence, the only non-zero term in (2.14) is:

ElGn Q@m0 =mioZ [ ... [ hnlris- s (7 - Ty

Furthermore, if the m’th order system kernel is to be expanded in terms of an
orthogonal basis, then m'’th order instrumental kernels can be constructed from those
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basis functions. Applying these to the input, multiplying the result by the observed
output, and taking the time average results in the coefficients of the basis functions
and, eventually, an estimate of the m’th order kernel.

Wieper [113] suggested the use of Laguerre functions as a basis for the kernels. He
showed how these could be gererated using simple RC ladder networks, and detailed
apparatus for performing both tke multiplication and time averaging operations.

Lee and Schetzen [62] used products of delta functions as the instrumental kernels.
As such, the coefficient computation was implemented as a series of cross-corrélation
calculations. The zero order Wiener kernel is equal to the output mean. Once this

has been computed, it is subtracted from the output.

ho = 3ot 2.15)
= thy ) (2.15

w(t) = y(t)— ko (2.16)

The first-order Wiener kernel is then estimated by computing the cross-correlation
between the input and the output residuals.

N

A7) = Guye(7) = Tir' 3 ult — 7)yo(t) (2.17)

=7l
The output due to the first-order kernel can then be evaluated using a discrete
convolution, -and subtracted from the remaining system output:

CT-1
n (@) =yo(t) — Z; hy(F)u(t = 7) | (2.18)
The second-order kernel is then estiriated from the second-order cross-correlation
between the input and the residuals. '

N
ka(11,72) = Guugn (11, 72) = ';-r m% )'“-(t = n)u(t — =)y (t) (2.19)
t=1+max(nm '

Marmarelis and Marmarelis [68] considered the computation of Wiemer kernels
" via the Lee and Schetzen [62] approach using Gaussian white noise inputs, as well as
several families of pseudo-random. sequences.
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. The Lee and Schetzen implementation of the Wiener series has two distinct disad-
vantages. First, it requires a white noise input which is often impossible to generate.
Secondly, the shape of the kernels is a function of the input power level. o2. French
[19] and Korenberg and Hunter [61] considered how to estimate Wiener kernels us-
ing nomn-white inputs. French calculated the Wiener kernels in the frequency domain

using the following relations for the zero through second-order Wiener kernels:

Hy, = Y(0) (2.20)
o - S
Hywn) = —Y@EnU@U@> L (2.22)

2 < Uw)U(w) >< Un)U*(n) >

where U(w) is the Fourier transform of u(t), U™(w) is its complex conjugate, and <>
represents an ensemble average.

Korenberg and Hunter [61] computed kernels in the time domain and compensated
for non-white input spectra by deconvolving the input auto-correlation from the high
order input-output cross-correlations. Specifically, the first order kernel was estimated
using Equation (2.9). To estimate the second-order kernel; Ra(3y,12), Observe that:

Puny(1,2) = 2 z ha (%1, 32)Buu(i1 = %1)uu(dz — i2) (2.23)
11,i2=0
Define:.
I
g0 i) = D holfy, 12)du(fs — 41) Juta=0,...,I (2.24)
#1=0

‘We can then rewrite Equa.tlon (2.23) as:

Puuy (1, J2) = 2 2 g1, 2)Puuldz — i) (2-25)

. which can be used to solve for each of the columns of g. Equation (2.24) can then be
solved, row by row, to yield an estimate of h2(4;,%,). Similar procedures can be used
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to correct higher-order Wiener kernels for imperfections in the input spectrum. Notice
that the estimation of an n’th order kernel requires each one-dimensional slice of the
n’th order cross-correlation, taken parallel to each of its n axes, to be multiplied by
the inverse of the Toeplitz structured auto-correlation matrix. This is equivalent to
dividing the n’th order cross-spectrum by the n’th power of the input auto-spectrum
in the frequency domain.

The time and frequency domain techniques are equivalent {109]. and car compen-
sate for minor imperfections in the input spectrum. However, in estimating second
and higher-order kernels, both techniques will break down if the input spectrum has
any significant “holes”. For the first-order kernel, we can see from Equation (2.21),
that for any frequencies, w, where U/(w) is near zero any noise present in the es-
timate of Y(w) will be amplified by I'iﬁ!uﬁ For the second-order kernel, Equation
(2.22), shows that estimation noise will be amplified by m; Thus, the sensitivity
to defects in the input spectrum increases dramatically with the kernel order.

These rernel estimation methods are based on cross-correlations or cross-spectra,
of various orders, between the system input and output. Korenberg et al. [54. 55, 59)
developed a technique in which a series of signals are derived from the measured
input and then orthogonalized with respect to each other. A least squares fit with
the system output is then used to assign optimal weights to each of these orthogonal
basis functions. In its original form [59], the basis functions were created and orthog-
onalized explicitly, before performing the regression. A subsequent “fast-orthogonal®
algorithm [54, 55] functions similarly, but the orthogonal functionals are never com-
puted eiplidtly, resulting in a large saving of computation time.

Goussard et al. "[21] proposed a kernel estimation technique based on stochas-
tic approximation. As in Korenberg’s orthogonal methods, Goussard’s technique

attempts to solve the minimum mean square error problem. However, it uses an °

iterative stochastic approximé.tion techrique to obtain the solution, rather than the
exact minimization used by Korenberg.

Marmarelis [71] recently proposed a method, closely related to Wiener's [113] orig-
inal proposal, in which the kernels are expanded using a basis of Laguerre polynomial
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filters and synthesized using a multiple-input Hermite polyromial nonlinearity. Unlike
Wiener’s proposal, all of these operations are accomplished digitally. Furthermore.
the projections onto the instrumental kernels are accomplished using a least squares
error regression, rather than a weighted time average. This approach is implemented
by filtering the system input with a bank of Laguerre filters. and using a least squares
regression to fit a multiple-input Hermite polynomial between the outputs of the fil-
ter bank and the observed output. In addition, because the polynomial coefficients
are evaluated in a single regression, rather than with individual time-averages as in
Wiener's [113] original method, the white-noise requirement can be relaxed some-
what. This method vields very accurate estimates, from relatively short data records,
and requires relatively little computational effort.

The only potential shortcoming of this method lies in the size of the least squares
regression. If m basis functions are required and k is the maximum kernel order, the
regression matrix will have %E’%’-' columns [71] and N rows, where JV is the number of
data points. While this approach works excellently with relatively few basis functions,
the size and complexity of the regression increase rapidly with both the number of
basis functions and the kernel order. This leads to a relatively large number of model
parameters, and hence to relatively poor noise performance.

One approach used to overcome this difficulty involves the identification of prin-
cipal dynamic modes (72, 73]. This technique identifies so-called principal dynamic
modes of a system bj: performing an eigen-decomposition on a matrix consisting of
the first and second-order coefficients of the static nonlinearity. The principal eigen-
vectors of this matrix correspond to-the impulse responses of the principal dynamic
modes. The new nonlinearity is then fitted between 1;he outputs of the principal dy-
namic modes and the observed output. If the system has a small pumber of thwe
modes, this intérmediate step can result in 2 dramatic reduction in the number of
parameters required, and hence an increase in robustness. Note however, that the use
of an eigen-decomposition limits this method to extracting the dynamic modes from
the first and second-order Wiener kernels.



. 2.3.2 Block Structured Methods

In the block-structured approach systems are represented by an interconnection of
linear dynamic and static nonlinear elements. A common block structure is the LNL
or sandwich model illustrated in Figure 2.3. This model consists of a linear dynamic
element, h(7), whose output, z(t), is transformed by a static nonlinearity, m(-). The
output of the nonlinearity, w(t) = m(z(t)). is processed by 2 second linear system,
g(7) . Methods for the identification of these systems were first proposed by Korenberg
[48, 49, 50]. Subsequently, several other methods have been proposed [6, 60, 85, 90].

Dynamic Linear Static Nonlinear DPynamic Linear

u(t) z(t) w(t) y(2)
— A7) m() o)

Figure 2.5: Block diagram of an LNL sandwich system

The LNL cascade has two special cases, the Hammerstein systera (NL) and the
Wiener system (LN), shown in Figures 2.6 and 2.7, respectively. Hunter and Koren-
berg [31] developed methods for the identification of the LNL cascade, and these two
special cases, based on an application of the following theorem, whick is originally
due to Bussgang [10].

Let u(t) end y(t) be two zero-mean Geussien signels, and let m(-) be e
L continuous, zero-memory, nonlinear transformation. If z(t) = m(y(t)),
o then:
¢u.=:(7') =K ¢=v(7')
- where K is a constant which depends on the variance of y(t) and on the
shape of the nonlinearity. '

Hence, the linear element in a Wiener or Hammerstein system can be estimated
. from the first-order cross-correlation between the system input and output. By Buss-
gang’s theorem, this will be proportional to the cross-c&:jrela.tion measured across the
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linear element. The impulse response can then be estimated by deconvolving the
input auto-correlation function using Equation(2.9).

If the Taylor series for the nonlinearity contains no significant odd terms, then
the constant of proportionality in Bussgang's theorem will be zero. and identifi-
cation based on the first-order input-output cross-correlation will not be possible.
However, Korenberg and Hunter [31, 60] demonstrated that any non-zero slice of
the second-order input-output cross-correlation will be proportional to the cross-
correlation across the linear element. For the second-order cross-correlation to be
non-zero, the Taylor series for the nonlinearity must contain at least one significant
even term. Thus, if identification based on the first-order correlation fails, a single
slice of the second-order correlation can be used instead.

The identification of an LNL cascade model depends on the fact that its Wiener
and Volterra kernels are proportional to each other [48, 49, 50, 60}, a corollary of
Bussgang’s theorem [10]. Hence, for a white Gaussian input signal:

T
bur) = K [ 9(@)hir - o)do (2.26)

buamom) = ko [ 9(ohln — o)l — 0)do (227)

where k; and k, are constants of proportionality which depend on the shape of the
nonlinearity m(-). If the time integral of h(7) is non-zero, i.e. the first linear element is
not high-pass, Equation (2.27) alone will be sufficient to identify both linear elements -
[60], provided that k, is non-zero.

2.3.2.1 Hammerstein Systems

Tterative methods have been proposed for the identification of Wiener and Ham-
merstein systems [31]. The first step in the identification of 2 Hammerstein system
(NL, see Figure 2.6), is to fit a linear system between the output, y(t), and the input,
u(¢). This resuits in A~1(7), an estimate of the inverse of the linear element. Con-
volving this with y(£) produces an initial estimate, Z(t), of the intermediate signal,
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. Static Nonlinear Dynamic Linear
u(t) z(t) y(t)

— ™) A —

Figure 2.6: Block diagram of a Hammerstein system

z(t). We can then approximate the static nonlinearity, m(-), by fitting a high-order
polynomial between the input, and #(t). Applying this polynomial to the input, u(t),
produces an updated estimate of the intermediate signal, z(¢). The inverse of the
linear element, A=1(7), can then be updated by fitting a linear system between the
output and the updated estimate of the intermediate signal. This process is repeated
until it converges. Note that the inverse filter may be non-causal, and the static
nonlinearity never needs to be inverted.

2.3.2.2 Wiener Systems

A similar method was proposed [31] for Wiener systems (LN, see Figure 2.7). A
linear flter, A(7), is estimated between the input, .u(t), and the output, y(t), and
its output, &(t), is generated by convolution with u(%). A static nonlinearity is then
fitted between y(t) and Z(t); this provides an estimate of the inverse of the static
nonlinearity in the original system. The output, y(t), is then transformed by this
inverse estimate, producing an updated estimate, Z(t), of the intermediate signal,
z(t). The linear element is then re-estimated, this time between the input and Z(2).
The iteration continues until it converges.

Dynamic Linear  Static Nonlinear
u(t) z(t) y(®)

— k(@) m() p—

Figure 2.7: Block -diagram of a Wiener system

. o The major difficulty with this approach lies in the estimation of the inverse of
the static nonlinearity. If the static nonlinearity is not a one-to-one function over the
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range probed by the identification experiment, its inverse will not exist since there
will be information present in the nonlinearity’s input, z(t). that cannot be recovered
from its output, y(t).

Wigren [114] considered the estimation of Wiener systems under the assumption
that the static ncnlinearity was a one-to-one function and exactly known. The output
was assumed to contain additive noise. Recursive output-error methods were devel-
oped which identified the linear system from the input-output data, and compared
with “conventional linearizing inversion”, in which the inverse of the static nonlin-
earity is applied to the output signal, vielding an estimate of the output of the linear
element. The signal to noise ratio (SNR) of the measured output was shown to be
higher than that of the “linearized” signal. It was suggested that if the noise entered
the system before the static nonlinearity, then the linearizing inversion would yield
better results than methods which use the input and output measurements directly.

2.3.2.3 LNL Systems

Korenberg and Hunter [60] described an iterative procedure for LNL identification.
Using Equation (2.26), the convolution of the two linear elements is estimated from the
first-order input-output cross-correlation. A first-order unity-gain filter is constructed
with a time constant that best fits this correlation, and is used as an initial estimate
for the first linear element, (7). Its output, i(£), is then generated by convolving A(t)
with u(t). A Hammerstein system is then estimated between Z(t) and the output,
¥(t), using the iterative technique described above. A relaxation technique is then
used to modify the estimate of the initial linear system, and the process repeated.
As in the Hammerstein case, the nornlinearity is never inverted, thus avoidiﬁg the
difficulties posed by non-invertible non-linearities. '
" Correlation-based methods for the identification of Wiener, Hammerstein, and
LNL block cascades all assume that the system actually has the appropriate struc- -
ture. Korenberg [57] developed a least squares method which estimates the best
Hammerstein system between a given input and output witkout assu:mng any pé.rtic-
ular structure for the system. It calculates the Hammerstein system that minimizes |
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the mean square error between the system and model outputs. Although this algo-
rithm is limited to white input signals, it requires no assumptions about the amplitude

distribution.

2.3.2.4 Estimation of the Nonlinearity

The methods discussed above concentrate on the identification of the dynamic linear
elements of block-structured models. Relatively little attention has been given to the
static nonlinearity, which is usually modelled as a polynomial function.

However, Greblicki and Pawlak [22, 23, 24, 25, 26, 2T, 80, 81] developed methods
in which the static nonlinear elements of both Wiener and Hammerstein systems are
represented by nonparametric functions. The identification of the linear subsystems
was not discussed, but they were assumed to be represented by a set of linear state
equations (2.3) that had to be at least asymptotically stable.

Their technique for Wiener systems [23] requires the estimation of the inverse
of the static norlinearity. As a result, the nonlinearity is restricted to the class of
strictly monotonic Borel functions having bounded derivatives. The restriction to
strictly monotoric nonlinearities is shared by the algorithm described by Hunter and
Korenberg [31].

For a Hammerstein system, such as in Figure 2.6, where the linear subsystem is
represented by a state space model such as in Equations (2.3), the method proceeds

as follows. The output sequence is:
e = Czy + Dm{uy)

where m(-) is the static nonlinearity. If the samples of ux are independent, then the
static nonlinearity output, m{z), will also be white. Furthermore, the current value
of the state, z;, will be independent of the current input, u;. Hence:

Elyklux =4 = C_'E[:rklu:;, =]+ DE[m(ukjlﬁk = )
CE[:!:;;] + Dm(u)

B + am(u)



Therefore, 3 depends on the expected value of the state. z;, as well as anv con-
stant offset present in the static nonlinearity. If the nonlinear characteristic, m(-).
is assumed to be odd and the input distribution is assumed to be symmetric about
zero, 3 = 0. The value of & can be assumed to be 1, as any change in the scaling of
the nonlinearity output will be absorbed in the estimate of the linear element.

Greblicki and Pawlak also considered the case where m(-) was not odd. or the
input distribution was not symmetric. They concluded that under those conditions.
it was possible to recover only am(-) + 8, with both & and § unknown. However, if
m(0) was known to be zero, they observed that they could take m{u) — ™(0) as an
estimate of am(-). Thus, although a parametric representation of the nonlinearity is
never required, it is still severely restricted in form. It must either be odd and have
a symmetric input, or m(0) must be 0. Given these restrictions, it is unclear how
applicable these techniques, at least in their present form, would be to the study of
physical systems.

2.3.3 Parallel Cascades

Palm [77] showed that any finite dimension, finite order, finite memory Voiterra sys-
tem can be represented exactly by a finite sum of LNL models, as illustrated in Figure
2.8. More recently, Korenberg [56] showed that this was true for Wiener cascade ele-
ments as well. This was a significant advancement, since the identification algoritbms
for Wiener models are much simpler than those for LNL cascades (See Section 2.3.2).
Thus, practical methods for the identification of parallel cascade models were made
possible. '

In general, the parallel cascade method [51, 52, 56, 58, 77| consists of first fitting
a block-structured, nonlinear system between the input and the output. The output
of this first system is computed, and subtracted from the measured output. A second
block structured model is thén fitted between the input and tiae output residuals. This
process is repeated until the variance of the output residuals is reduced to the point
where no additional significant paths can be added to the model. The estimation of
the first two paths is illustrated in Figure 2.9.
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Figure 2.8: A paralle] cascade model made up of LNL paths

With reference to Figure 2.9, consider the identification of the j'th path. In
this case, a Wiener cascade will be fitted between the input, u(t), and the residuals
remaining after the outputs of the first § — 1 paths have been removed, v;_;(t). The
output of this new cascade will be labelled §;(z).

The key to the parallel cascade method’s success is the estimation of the linear
parts of the cascade paths. Palm [77] was not aware of any method for the identi-
fication of LNL cascades. Korenberg [56] made a number of suggestions as to how

Wiener or LNL paths might be constructed. The only method developed in detail
. involved using slices of input/output cross-correlation functions, of various orders,
as estimates of the linear subsystems of Wiener cascades. The impulse response of
the linear part of the first Wiener cascade was estimated from the first-order input-
output cross-correlation. Subsequent paths used single slices, selected at random, of
the second-order cross-correlation function between the input and the output residu-
als. Furthermore, randomly weighted impulses were added to the diagonal elements of
thé slices. For eicample, if the j°th path was based or the #’th slicfjfaf the second-order
correlation, the linear subsystem would have:

T=1
hy(r) = _ T ue == et + (2.28)
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Figure 2.9: The parallel cascade method for nonlinear system identification.

1. Fit a Wiener cascade between the input and output of the nonlinear system.

‘2. Subtract the output of the first cascade from that of the unknown system,
generating the output residuals. Fit 2 Wiener cascade between the input, and

the output residuals.



as its impulse response, where ¢; is a random weight, chosen such that the sequence of
weights, ¢;, vanishes as j goes to infinity, and ;- is the Kroneker delta. The vanishing
sequence of randomly weighted impulses were required to prove convergence.

Given the random selection of paths, it is likely that many insignificant paths
would be selected. Korenberg proposed a correlation based test to determire whether
or not a given cascade path models 2 significant portion of the remaining dyvnamics.
Specifically, ke observed that if a cascade path were fitted between two independent,
zero-mean Gaussian sequences, then: |

?Ii2+ (t) 4
w <N-T+1 (2.29)

with a probability of about 0.95. In keeping with our notation, y;.1(n) is the output
of the i+ 1'th path, v;(n) is the i’th residual, V is the length of the data records and
T is the memory length of the cascade path. The overbar indicates a time average.

Thus, when a new cascade path is identified, the ratio given on the left hand side
of (2.29) is formed. If this ratio exceeds the threshold given on the right, then the
new pathway is likely to contain useful information about the system dynamics, and
is added to the model. ¥ the ratio is less than the threshold, the pathway is probably
modelling noise, and is rejected.

2.3.4 Parametric Methods

Billings and Leontarities [63, 64] proposed a general parametric structure for the
analysis of nonlinear systems. This so-called NARMAX structure can be used for the
identification of both the‘stochastic and deterministic components of a system. If we
let F' be a nonlinear mapping, and\ €(n) be the disturbance, or innovations, process,
then the model output can be written: ' |

y(n) = Fly(n=1),...,y(n— k), u(n),...,u(n —p), e(n—1),...,e(n =) +¢n) -
In general, extended least squares methods (7, 8] are used to identify the parameters
of this class of models. Korenberg’s [54] fast orthogonal algorithm is well suited to
this class of nonlinear difference equations. Recently, neural networks have been used
to select the optimal parameters for these models [14].
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2.4 Multiple Input Systems

In this section, we will consider the identification of multiple-input single-output
(M1S0) systems. In one sense, the extension to multiple-input multiple-output (MIMO)
systems is trivial, as one MISO system can be identified for each of the outputs. This
approach, which was used by Korenberg and Hunter [31. 53] in their treatment of
MIMO LNL systems, has the disadvantage that any dynamics that are common to all
outputs must be modelled separately in each subsystem.

One of the convenient features of state space models (See Equation 2.3) is that
they are readily generalizable to the MIMO case. All that changes are the dimensions
of the system matrices 4, B, C and D.

2.4.1 Linear Systems

Given that one of the defining properties of a linear system is superposition [5], there
is little difference between single-input and multiple-input linear system identification.
Furthermore, a multiple-input system is fully characterized by the impulse responses
associated with each of its inputs. Provided that the test signals are uncorrelated
with each other, performing single input identifications between each input and the
output will yield the impulse responses, and give a complete description of the system.

a) b)
u1(2) %n(t)
w1 (£) —  ho(7)
Multiple-Input y(t) y(t)
ua(t) Linear System |
- ‘uz(t) y2(t)

hz (T)

Figure 2.10: Using superposition, a two-input linear system (a) can be decomposed
into two single-input linear systems (b)

Consider a two-input system, shown in Figure 2.10, driven by two independent
inputs, u;{t) and us(t). Let the output due to u,(t) acting alone be y;(t), and the

35



output due to u(t) be ya(t). Then the output observed when the the first input is

driven by u; and the second input is driven by u, is:

y(t) = wi(t) + velt)

Given that the inputs are uncorrelated, 3 and y» will also be uncorrelated. Hence,
if one were to attempt to fit a linear system between u, and y, the signal y» would
appear to be output noise. Similarly, ¥, would act like output noise in an attempted
identification between u, and y. As a result, it is often better to attempt to identify
the whole system in one operation. This is the approach used by MIMO state-space
methods such as the MOESP schemes [96, 98, 99].

2.4.2 Quasi-Linear and Time-Varying Systems

A classical method for analyzing nonlinear systems is to linearize them over a narrow
range around ap operating point. For a single-input system, the operating point is
defined in terms of the statistics of the input signal, usually its mean. For a multiple-
input system, the operating point may depend on the values of the other inputs. In
identifying such a system, all of the parameters that define the operating point are
fixed. A linear identification is then performed between the remaining input and the
output. The operating point is changed, and the experiment repeated. Once a family
of linear descriptions has been identified, a regression may be performed between the
parameters of the operating point and some features of the linear responses.

This approach was used by Weiss et. al. [104, 105, 106, 107, 108], in the study
of the dynamics of the human ankle. A secord-order linear model was shown to be
adequate to explain the dynamics of the human ankle, but the parameters of the
model depended on the operating point. In analyzing the results, Weiss et. al. used
the IBK form of the second-order linear model, hence:

T(2) = IS(t) + Bé(t) + Ko(t)

where T is the torque, © is the angular position, and I,B and K are the elastic, viscous
and inertial parameters of the model. The inertial parameter, I,was shown to be
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constant over the full range of motion. and at all levels of background contraction. The
spring constant, A’ was shown to vary linearly with the mean background contraction.
although the slope was higher for increasing contraction in the plantarflexing muscles
than in the dorsiflexing muscles. The viscous parameter, B, varied in such a wayv as
t0 keep the damping of the system relatively constant, despite large variations in the
background contraction level.

While this quasi-linear approach can be used to produce models of the svstem
under a wide variety of conditions, it is limited to describing the system at a particular
operating point. It provides no information about how the system behaves while the
operating point changes.

If the operating point follows a particular time trajectory, the system can be
linearized about that trajectory, and represented as a time-varying system [65]. Such
a system can be described using a time-varying convolution [67].

T-1
y(t) = Z:o h{t, )=(t - 5) (2.30)

where h{t, j) describes the time-varying linear system. In this formulation, the func-
tion A(t, 7). evaluated at time t, computes the current output, y(t), from previous
T — 1 samples of the input. Hence this description corresponds to a time-varying
weighting function.

There is an equally valid formulation where the system is described using a time- -
varying impulse response:

t

y(t)= > h(t,5)z(5) (2.31)

j=t-T

In this case, h(t,j) indicates the value of the impulse response that is associated |
with the input that occurred at time 7. The two descriptions are equivalent. MacNeil
et. ol [67] describe the transformation between the two formulations.

Note that this description depends on the particular time course, or fra_jectory, ‘
followed by the operating point. No information is provided about the system during
trajectories other than that used to create the model. In order to achieve that goal,
a more general multiple-input nonlinear s:,'stem description is needed.
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Recently, this time-varying technique was used to study changes in the linearized
dvnamics of the human ankle during step changes in the background contraction
level [67], as well as during an electrically evoked muscle twitch [92]. They have
alsu been used to examine changes in the dynamics of the stretch reflex EMG during
rapid isometric contractions [43] and rapid imposed movements [44]. In all of these
experiments, the quasi-linear second-order models proposed by Weiss et. al. [104, 103,
106, 107, 108] were shown to apply before and well after the change in operating point.
Had there beer no dynamics associated with the operating point, the time-varving
model would have shifted through a series of second-order models whose parameters
varied as they did in the quasi-static experiments. However, in all cases, the second-
order models broke down during the rapid shift in the operating point. This suggests
that there is a dynamic, nonlinear relationship between the parameters that define
the operating point in each of these experiments, and the position perturbation.
Hence, these experiments bave taken a dynamic, multiple-input. nonlinear system,
and allowed it to be linearized about a particular trajectory. The time-varving, quasi-
linear analysis vields a description of the system, but only for points on the trajectory
imposed by the experiment. To fully explore the multiple-input nonlinear relationship,
a more general model, and tools for its identification, are needed.

2.4.3 Functional Expansions

The Volterra series representation of a nonlinear system has been extended to cover
multiple-input systems [69]. Two types of kernels are required: self-kernels, each
driven by a single input, and cross-kernels, which have multiple inputs. Thus, for a
two-input system terms of the form:

T
f j B s (T2, 2) s (E — T)ua(t — T)dndn, (2.32)

n.n=0

are added to the Volterra series output given in Equation (2.10). Here, ko y, u, (71, 72)
is a second-order cross-kernel which is first-order in each of two inputs, u; and u,.
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Similar expressions can be written for higher-order cross-kernels. and for cross-kernels
that involve more than two inputs. The lowest :rder cross-kernel that can be associ-
ated with & inputs is first-order in all &£ inputs. or &'th order overall.

As in the single-input case, the terms in the multiple-input Volterra series are not
orthogonal. As a result, methods for the identification of multiple-input functional
expansions must be based on the Wiener series, and to date have required either
white, or nearly white, Gaussian inputs. These methods have been used primarily in
vision research [69, 115, 116], where the generation of such inputs does not pose any
special problems.

A particular focus in this review has been towards methods suited for the study of
human joint dynamics. As stated previously, one of the key requirements is the use of
significantly non-white test signals. Hence, the functional-expansion based methods,
which require white inputs, are likely to be of little use.

2.4.4 Block Structures

Multiple input block structures seem to hold more promise. Korenberg [53] briefly
considered the extension of single input LNL cascades to a MIMO case, and showed
that single-input identification methods could be used to identify a multiple-input
LNL cascade. The only extension required was the estimation of a multi-dimensional
nonlinearity.

Chen et. al [12, 13] studied several muitiple-input block structures, and derived
characteristic relationships between their low order self- and cross-kernels. These
relationships provide necessary, but not sufficient, conditions. If a system has a par-
- ticylar structure, the kernels must obey these relationships. However, kernels which
~ obey these relationships do not necessarily arise from systems with that structure.

Thus, if anatomical considerations were to rule out all‘but a small number of
possible structures, kernel tests could be used to deteiirine the most a.pprc;priate
stracture, and the method specialized to that structure used to identify it. Chen
[12]- developed several techniques, each specialized to a particular structure, which
could be used to compute the IRF's of the linear elements, given estimates of the first-
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Figure 2.11: Multiple-input Wiener cascade path proposed by Korenberg

through third-order Volterra kernels. The accuracy of these techniques, however,
is hmited by the accuracy of the initial kernel estimates. Unfortunately, there are,
as yet, few methods specialized to particular multiple-input block structures, which
estimate their dynamics directly from the input-output data.

2.4.5 Parallel Cascades

Korenberg [56] considered the extension of the parallel cascade method to the multiple-
input case. The dynamics of the self-kernels could be modelled using single-input
cascade paths, as in the single-input version of the algorithm, described in Section
2.3.3. To capture the dynamics of the cross-kernels, Korenberg proposed incorporat-

ing paths where: |
1 T-1
h()=% 2 wult-7ul-dy) (2.33)
t=mazx(i,r)

and where the output is computed as:

wa(t) = Til ﬁ(‘r)m(t —7) + Caua(t — 1)
=0

. where C,, is a randomly chosen weight. A block diagram of 2 single path is shown in

Figure 2.11. In principle, 2 parallel cascade assembled from elements such as these is
capable of representing any system which has a multiple-input, finite Volterra series
expansion. However, convergencé is likely to be slow, as the slices used in Equation

_(2.33) are selected randomly. Furthermore, the only nonlinear interaction between
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inputs is provided by the single-input nonlinearity acting on the sum of the output
of the linear filter (the top pathway in Figure 2.11) and the delayed and (randomly)

scaled version of the other input (the lower pathway).

2.5 Summary

In this review, we considered methods that might be used to construct mathematical
models of the human peripheral neuromuscular system. We considered the strengths
and weaknesses of both morphological modelling and system identification. We con-
cluded that system identification techniques should be used to create a black-box
model, which could then be used to validate any morphological models that may be
postulated.

Given the structure and complexity of the peripheral neuromuscular system, meth-
ods must be capable of identifying multiple-input nonlinear systems. Due to the con-
straints imposed by the experimental apparatus, these methods must be resistant to
the effects of noise, and should place minimal restrictions on the test input. The bal-
ance of the review considered various system identification techniques, with reference

to these requirements. Our findings may be summarized:

¢ The parallel cascade [56] and the Laguerre expansion [71] methods both hold
promise for the identification of single-input nonlinear systems, especially when
there is no a priori structural information available. If the system is known
to have a simple block structure, such as 2 Wiener, Hammerstein or LNL, a
method specialized to that structure should be used.

o When 2 biock-structured method is used, the only dynamic elements that must

i

be estimated are linear systems. Hence, correction for the input spectrum in-
volves only a single division in the frequency domain (Equation 2.21), or solu-
tion of Toeplitz matrix equation in the time domain {Equation 2.9). As a re-
sult, block-structured methods, and by extension, the parallel cascade method,
should be relatively insensitive to defects in the input spectrum.

41



t‘/

e No suitable method for the identification of multiple-input nonlinear systems is
evident. Given the relative insensitivity of block-structured methods to defects
in the input spectrum, the extension of either specific block-structured methods
or the paralle] cascade method to the multiple-input case would seem to hold
promise. Given its modest computational requirements and relative insensitivity
to the input spectrum, an extension of the Laguerre expansion method to the

mauitiple-input case may also be applicable.

In the subsequent three chapters, we will explore some of these possibilities.
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Chapter 3

Nonparametric Identification of

Linear Systems

In this chapter, we will analyze the performance of the nonparametric FIR filter
estimate provided by the inversion of the Toeplitz matrix in Equation (2.9). Aside
from its use in the identification of linear systems, this algorithm forms the basis for
the ensemble method used to identify time-varying systems [44, 45, 67, 92|, as well as
the block-structured [31, 60] and parallel cascade [56] methods. Furthermore, it will
play an important role in several new algorithms developed in this thesis.

3.1 Preliminaries

Throughout this and the subsequeﬁt two chapters we will make extensive use of the
following result, which can be found, for example, in Bendat and Piersol [3]. Given

n zero-mean, jointly Gaussian random variables z; through z,, the product:
Ejzy-z0-... Ty

is zero for odd values of =, and for even n, the expected value is equal to the sum,
over all possible permutations of the product of the expected values of products of

pairs of random variables. For example, when = is 4:

Elz1Z:73%4) = Ez1%2)E[z374) + Elz123)E[22%4] + Flz124) E[7273)]
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and, in the special case where all the z, are identically distributed:

Elzi Za+... 2s) = (1-8:5+...-n—1)E[ziz;]?
(n-1)!

= WE[xixj]% i#j (3.1)

The other result which we will need concerns the estimation of correlation func-
tions, and can also be found in Bendat and Piersol [5]. If we use Equation (2.6) to
estimate the cross-correlation between two signals, u(t) and y(t), the variance of that

estimate is:

Varbu(r)] = & [1f1- &) (buterento+ 2)

Suy(€ + T)Bpu(€ — 7)) dE

In general, the length of the data records, N, will be much greater thar the support

of the correlacion functions, hence:

Var [Bor)] = 5 [ (Bel@)6n(€) + Suyl6 + 7IoulE = 7)) (33)

Similarly, the variance of the anto-correlation estimate may be approximated by:
Var [fualr)] % % [ (6206) + Gl + TIonlE — 7)) (3.4
u N g\ - :

Throughout the rest of this thesis, we will need to evaluate the accuracy of a
model, or perhaps that of its output. Let § be an estimate of y, and define the
“percent variance accounted for” (%VAF) by this estimate as:

_ var(y — §) |
% VAF = 100 x W (35)

where var(z) is the variance of the random variable z. In practice these quantities

-will be estimated from time averages.



3.2 Linear System Identification

Assume that u(t) and y(t) are the input and output of a linear system, which will be

represented by its impulse response, k(7). Thus:

T-1
y(t) = 3 A(r)u(t - 7)

=0

Given the input-output cross-correlation,
buy(7) = Efu(t — r)y(t)]

and a Toeplitz structured matrix generated by the input auto-correlation,
Puu (i, 5) = Efult — u(t - 7)]

Equation (2.9) can be used to compute the impulse response of the linear system.
h= 37 buy

However, since we do not have access to the actual correlation functions, we must
use estimates obtained from finite segments of data. Furthermore, instead of the

output signal, y(t), we have access to a noise corrupted measurement,
z(t) = y(t) + v.(t)

where v.(t) is assumed to be a zero-mean sequence which is independent of the input,
u(t). We will write our correlation estimates as the sum of the actual correlation
functions and the associated estimation errors. Thus:

$uy(T) = Guy(7) + b7
$uslT) = Guy(T) + Guy(7) + G, (7)

where @ is an estimate of ¢, and @ is the estimation error.
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We use a first-order perturbation expansion [88] for the matrix inversion in Equa-
tion (2.9). to estimate the effects of these estimation errors on the impulse response

estimate. Hence:

hoe (07 - 07080 3)) (Suy + Guy + Buv,) (3.6)
Expanding:
b= ket @7 0w — O®uh + B b, (3.7)

- (I):i' ém-l ‘I);& .éuy - Q;g]; éuuq);i éuv;

In keeping with the matrix perturbation expansion used to write Equation (3.6),
we will restrict ourselves to a first-order analysis. Hence, we can discard the last two
terms in (3.7). Note the following:

$.h = Tf&»,.u(r, k(2

=0
Tw1

= gn auu('r - i)h(i)

T-1

N
> (qu,('r —i) - %gu(t - 7)u(t — z)) h(z)

=0

1 N T=1
= Guy— N Soult —7) Y h{i)u(t—1)
=1 =0

As the record length is assnmed to be much greater than the system memory, we
T-1

may ignore initial conditions, Y h(i)u(t — i) = y(t). Hence:
_ =0 -

N
Sk = Gy~ %gu(t —7)y(t)
= d’uy - ény
= Guy
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the second and third terms on the right of (3.7) cancel. and it reduces to:
h=h+ 7 6., (3.8)

Therefore, when Equation (2.9) is used to estimate the impulse response of a
linear system, the only terms of first-order magnitude in the estimation error are due
to the output noise. To a first-order approximation, under noise-free conditions this
algorithm completely corrects for any statistical fluctuations in the cross-correlation

estimates.

Next, let us calculate the statistics of this one remaining first-order term. First

consider its expected value:
E[h(7)] = ¥ E{6u,) = 0 (3.9)

The error variance is:

- T )
Var(h(r)) = E [(Zdzi(-r,i)%(i))z] (3.10)
i=l
T
= X ¥a( DR )E [, ()60, (7)) (3.11)
ij=1

To proceed further, we must evaluate the expectation operation on on the right
hand side of (3.11). Hence:

N
Efeaeni] = 5 3 Eult = Goiutts = ioutes)
N
= 3 2 (belbm )+

buults = t2 — i + §)Po,v, (8 — t2) +
Guna (tr — t2 = s, (t2 — 11 — 1)}

N
3 Guults = t2 = i+ §)Bu,u, (t1 — t2)
1

tita=

1

3
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Mzazkiny a change of variables. such that ¢ = ¢, — ¢,, this becomes:

T 1 I . o
E (60, 8u.()] = 57 2 (V= 1t DounB)omli—i- 1) (3.12)
t==T
In all applications, the number of data points, N, will be much greater than the

number of lags in the estimated filter, T. Thus, NV — |t} = N, and (3.12) becomes:

Tz el = e 1 .
E [uo, 0w, ()] = Zwn(isd) = T X dun (0uli —i— 1) (3.13)
¢ t==T

The covariance matrix of the input-noise cross-correlation estimate, =,y (2, 7), is
a Toeplitz matrix. Its entries can be computed by filtering the input auto-correlation
function with the auto-correlation of the measurement noise, provided both functions

are represented as two-sided filters.
Substituting (3.13) into {3.11), we see that the variance of the estimation error is:

- T -
Var(h(7)) = 3 ®5 (72 9)Zu, (6, )25 (G, 7) (3.14)
iy=1

Writing this more compactly, we see that the error variance is equal to the diagonal

of the matrix:
Q;‘l} E"Uﬂx ¢;1}

Whether or not the noise is white, we can see that the the estimation variance
depends only on the statistics of the input and measurement noise, and not on the
vaiue of the impulse response. If the measurement noise is white, then =,, will be

proportioral to ®,,, and the error variance becomes:
: Ty, a1 '
Var(h(r)) = - 25(r, ) (3.15)

where o2, is the variance of the noise sequence v.. Finally, if the input is also white,
this reduces to:

e O
Var(h(r)) = 2%



3.2.1 TUse of a Pseudoinverse

Rewriting Equation (3.8), we can see that, to a first-order approximation. the impulse

Tesponse estimate is:
P _ &-1g -1
h=®5, Ouuht + @7, O,

The first term is the contribution from the system, and will be exactly k. provided

the auto-correlation matrix, ®,,,, is nonsingular.

Consider the singular value decomposition (SVD) {20] of the input auto-correlation

matrix, Oy,
&, =USVT (3.16)

where U and V' are unitary matrices, and S is diagonal with positive real entries
S > 82> ...> s, > 0. To proceed further, we must show that &,, is a positive
definite matrix, in which case I/ will be equal to V. Thus, we need the following

lemma:

Lemma 1 Let h be the impulse response of a linear FIR filter, and u be ¢ finite seg-
ment, of length N, of a zero-mean stochastic process. Let $.m(‘r) be a biased estimate
of the autocorrelation of u, generated using Equation (2.6), and $,.(%, j) be a Toeplitz
matriz, generated from @uu (7). If y is the output of the filter h, when driven by u and
starting from zero initial conditions, then the mean squere value of y is given by:

Ely? = AT,k

Proof

Efy’]

WAL =SSN
% 5 h(_z)'u,(n - z))

1 N_;'i.—;n =
= x5 3 3 RERGu(n - duln —1)
n=11ij=0 _
= 52 harG) (-1— i‘ u(n - duln— '))
- i,jz=:0 N n=1 7
= hT®h O
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As a direct result of Lemma 1, &,, must be positive definite, ' = V', and the

auto-correlation inverse becomes:
¢o =VSVT (3.17)

where $™! = diag(1/s:,....1/s,). Now, let { = V7h be the projection of » onto the
columns of the unitary matrix V. Furthermore, let us define the projection of the
noise correlation as: v = VTq-')u,,:. Substitute these projections, along with Equation
(3.17) into (2.9):

b o1
|

= VSWIVS(C+Vv)

VE+VSty
T

= Y6+ 2w

=1 S

where V' = [vy;w;...v7), and (; and v; are the #’th entries of { and v respectively.
Clearly, terms for which '_:_‘l >| ¢; | will add more “noise” than “signal” to the impulse
response estimate k. Eliminating terms which are dominated by noise should lead to
an improvement in the estimate of the impulse response. In this way, we make use of
a pseudoinverse of &, [20]. Let us partition the SVD of &, as follows:

. s o |[w
b=V} Vz][o 52”%,} (3.18)

where the subscript “1” refers to the terms which will be retained, and “2" denotes
terms whick will be dropped. The correspording pseudoinverse is then:
&, =SV

In constructing the pseudoinverse, we must decide which terms to retain, and
which to drop. To aid in this decision, let us examine the first two moments of the
noise coefficients, »;. From Equations (3.12) through (3.14), replacing ®,, with its

'SVD, given in (3.16), we see that »; is zero in cxpectation, and its variance is:

o2 = EVf] = v S ' (3.19)



where =,, is defined in (3.13). Let us define a threshold. which depends on i:

20,
Thy= = (3.20)

§;

If | {; | exceeds this threshold, we can be 90% certain that it is not noise. because
the coefficients are normally distributed, with 0 mean and variance given by Equation
(3.19). Of course, constants other than 2 can be used. resulting in different confidence
levels. ¥] in Equation {3.18) will include all terms for which the coefficients, ¢; + /s,
exceed the threshold Th;. Using this pseudoinverse, the IRF estimate becomes:

h =&} &y (3.21)
and the variance of the estimation error will be the diagonal of:
8, Zu Bl (322

Using the pseudoinverse should result in better conditioned estimates of the im-
pulse response (3.21) and the estimation variance (3.22). In many cases, it may be
possible to derive 2 meaningful estimate of the estimation variance due to the out-
put noise by simply applying Equations (3.22) and (3.13) to the input signal and
the residuals. This improvement will be at the cost of introducing a bias into the
estimate. The expected value of the IRF estimate becomes:

E[R] = &t .. (3.23)

Furthermore, estimation of the induced bias is not straightforward. An obvious
procedure would be to compare & and & _&,.~. This will not work, however, because

‘i’i,,‘i’uu is a projection operation. Thus:
& &, = (B, B..)?
As a result, h and @w(i)wfz will be identical, to within machine accuracy.
While we cannot estimate the point by point magnitude of the bias, we can es-

timate its norm over the length of the IRF. From Equation (2.21), we see that the
deconvolution operation is equivalent to dividing the input-output cross-spectrum by
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the input auto-spectrum. If it is assumed that the noise in the correlation estimate
is approximately white. then the noise ir the IRF estimate will be concentrated at
frequencies where there is little input power. Thus, there will be little overlap be-
tween the spectra of the input signal and that of the noise in the IRF estimate, and
this estimation noise should have little effect on the output prediction. Any change
in the predicted output can therefore be attributed to bias introduced into the IRF
estimate.

Let fzo and h; be the IRFs estimated using the full inverse, and the k’th order
pseudoinverse, respectively, and let the variances of their outputs be 0'30 and ‘73‘.- Ifwe
assume that any change in the output variance is the result of bias errors introduced
into the IRF estimate, we can approximate the 2-norm of the bias as:
%

o2
to

Il &b fi3=1l & 1I3 (3.24)

where Ah is the bias error. The 2-norm is an upper bound on the infinity norm [20],
which is the absolute value of the largest element. Hence, (3.24) is an estimate of an

upper bound on the largest bias error in the IRF estimate.

3.2.1.1 Algorithmic Summary

The following steps are required to estimate a linear impulse response between an
input % and a possibly noise corrupted output, z. The variance of the first order
noise term and the norm of the bias introduced by the use of the pseudoinverse are
also estimated.

1. Use Equation (2.6) to estimate the input auto-correlation, ¢y, and the input

Ime—

output cross-correlation @

)

Create a Toeplitz matrix from the estimated auto-correlation:
&6 ) = dwlli =3 |)-

3. Form an initial estimate of the impulse response, ko using Equation (2.9)

4. Compute the following SVD: &, =USVT

—



3. Project hg onto the columns of the unitary matrix 17,

6. Use Equations (3.13), (3.19) and (3.20) to compute  decision levels Th,. using

the output residuals from hg as an estimate of the noise process v..

=1

. Sum the terms whose coefficients exceed the threshold function. to create an
enhanced estimate of the IRF, f,.

8. Generate a new set of output residuais, and use these. together with the pseu-

doinverse to compute the estimation variance, using Equations (3.13 and 3.22).

9. Use Equation {3.24) to compute the 2-norm of the bias error.

3.2.2 Validity of the First-Order Approximation

The magnitude of the second-order terms will depend on the square of the record
length, IV, in general. For the rest of this discussion, we will restrict our: elves to the
two second-order terms dropped from Equation (3.7). The first of these is:

Q;& &)ﬂuq%:& éuy = Q:& éuué;i (i)uuh (3.25)

which depends on the square of the error in the estimate of the input auto-correlation.
Thus, its variance will depend on the square of the record length (see Equation 3.4).

Since this term also depends on the square of ®72, it may become significant if
this matrix is particuiarly ill-conditioned, which will be the case if the input is highly
coloured. Use of the pseudoinverse deconvolution, however, effectively improves the
condition of the auto-correlation matrix. Therefore, this term should remain insignif-
icant if the pseudoinverse is used in the decon§olution.

The second term whichk was dropped from (3.7) is:

=15 -1 -
Quu Qﬂuéw @uv; R T

This term is not likely to be significant, as it depends on the magnitude of the
output noise. The first-order noise term will dominate in all cases.

" In cases where the record lengths are short, and the signal to noise ratio is high,

the term in (3.25) could become significant, with respect to the first-order noise term.
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3.2.3 Simulations Involving Linear Systems

We performed several Monte Carlo simulations, to validate the theoretical results
obtained in the previous section. In these simulations we wished to address three

points.

1. In the noise free case, do the first-order terms in the estimation error cancel, as

suggested bv Equation (3.8)7

5

Can a pseudo inverse of the auto-correlation matrix be sed to increase the

robustness of the IRF estimate?

3. How reliable are the estimates of the error variance and bias?

3.2.3.1 First-Order Terms

The system simulated was a fourth-order Butterworth low-pass filter, with a nor-
malized cut-off frequency of 0.4. Its impulse response is shown in Figure 3.1. We
performed 2 Monte Carlo simulation involving 10,000 repetitions. Duriﬁg each trial,
the filter was driven by a different 1000 point sequence of white Gaussian noise. We
then calculated the cross-correlation between the input and output, using Equation
(2.6), as well as the impulse response, using Equation (2.9). As the input was zero-
mean white Gaussian noise with unit variance, both the cross-correlation and the
IRF estimate should have been equal to the IRF of the simulated filter. Thus, the
estimation error in the cross-correlation was taken to be the difference between the
‘cross-correlation estimate, and the simulated IRF. Once all the trials had been per-
formed, we calculated thé mean and variance of the cross-correlation and impulse
response errors as functions of lag over the ensemble.

Figure 3.2 shows the variances of the impulse response and cross-correlation esti-
mates, plotted as a function of the lag, 7. The variance of the IRF estimate is-two
to three orders of magnitude smaller than that of the cross-correlation. Nevertheless,
comparing these variances with the impulse response in Figure 3.1, makes it clear that
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Estimates were computed from noiseless records.

o
(41



Estimation Variance as a Function of Record Length
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Figure 3.3: Estimation variance, averaged over the impulse response length, as a
function of the length of the data records. Note that the impulse response variance
decreases with the square of the record length, whereas the cross-correlation variance
depends linearly on the record length.

both the correlation and IRF estimates are excellent, as would be expected given the
length of the data records and the absence of noise.

Next, we examined the effect of varying the record length. The Monte Carlo
simulation was repeated, with record lengths from 200 to 10,000 points. Figure 3.3
shows the estimation variance, averaged over the length of the IRF,, as a function of the
record length. On this log-log plot, we can see that the variance of the IRF estimate
decreases with the square of the record length, while that of the cross-correlation
estimate decreases linearly with the record length. This, together with the previous
ﬁgﬁre, supports our claim, based on Equation (3.8), that the Toeplitz matrix inversion
procedure corrects for all first-order error terms in the cross-correlation estimate.

Finally, we added noise to the filter output, at a signal to noise ratio of 10 dB,
and compared the variance of the impulse response estimate with that of the cross-
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Figure 3.4: Effect of output noise on the variance of cross-correlation and impuise
response estimates. The variance of the IRF estimated when the SNR was 10 dB is
approximately equal to the difference between the variances of the cross-correlation
estimated under 10 dB noise, and under noise free conditions.

correlation estimate. This time, both estimates were dominated by terms whose
variance scaled linearly with the record length. As can be be seen in Figure 3.4, the
variance of the IRF error was approximately equal to the difference between that
of the cross-correlation function estimated with and without the noise. Hence, we
concluded that when the input signal is a finite segment of a realization of a white
process, the impulse response and cross-correlation estimates both contain the same
noise term. The impulse response estimate, however, is not influenced by statistical
fluctuations in the sognal components of the correlation estimates caused by the finite
record length.



Impulse Response Estimates from One Trial
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Figure 3.5: Results from a single trial of the Monte Carlo simulation. Impulse re-
sponse estimates are plotted with that of the simulated system.

3.2.3.2 Examination of the Pseudoinverse

We used another Monte Carlo simulation to compare the performance of the pseu-
doinverse based IRF estimate with that provided by Equation (2.9). We examined
the effects of using the pseudoinverse on the the estimation variance, and the bias
error. These changes were compared to those resulting from the application of 2
simple three point smoothing filter to the initial IRF estimate. We chose to use the
3 point smoother for comparison purposes, as it is commonly used to suppress high
frequency noise in IRF estimates [66, 92].

As in the previous simulations, the system was a fourth-order Butterworth low-
pass filter, with a normalized cut-off of 0.4. In this case, the input was a coloured
Gaussian sequence, generated by filtering a white Gauésian sequence with a second-
order Butterworth filter with a normalized cut-off of 0.4. Ten thousand trials were
performed using 1000 point data records, ﬁth the SNR set to 10 dB.



During each trial. we computed three filter estimates: the exact deconvolution, the
smoothed deconvolution, and the pseudoinverse. We compared the impulse response
estimates directly with the true impulse response, and compared the outputs predicted
by the estimated filters with both the clean and noise corrupted outputs of the original
filter. In all cases, we assessed the accuracy as the percentage of the signal variance
accounted for by the model {3.5).

Figure 3.5 shows typical IRF estimates from a single trial of the simulation. The
first panel shows the IRF identified using the exact inverse of the Toeplitz auto-
correlation matrix. This IRF estixate contains noise concentrated near the Nvquist
frequency, whose amplitude is comparable to that of the actual IRF.

The IRF shown in the second panel was computed by applying a 3-point smoother
10 the exact inverse solution. While the smoothing filter eliminated almost all of the
high frequency noise, (visible in the second half of the estimate, where the simulated
IRT is zero), it attenuated the peaks in the IRF.

The third panel shows the IRF estimated using the pseudoinverse based input
deconvolution. Like the smoothed IRF estimate, there is virtually no high frequency
ringing in the tail of the impulse response. In contrst with the smoothed IRF, the
pseudoinvserse did not attenuate the the peaks in the IRF.

Figure 3.6 shows the distributions of the IRF and prediction accuracies for the
three methods. The first panel, in the upper left corner, shows the estimated proba-
bility density functions of the impulse response accuracy. Note that the results from
from the inverse solution (Equation 2.9) are absen: from this panel, as that distri-
bution fell well below the other two (mean 50.5% standard deviation 24.3%). From
this panel, we see that the psendoinverse produces significantly better estimates of
the IRF shape than does smoothing of the inverse solution.

The second panel shows the prediction accuracy, with respect to the uncorrupted
output, y(t). Both the exact inverse and pseudoinverse solutions yielded signiﬁc#ntly
better predictions than did the smoothed solution. The pseudoinverse solution yielded
a slightly better output prediction than the exact inverse solution. On average, the
prediction error due to the pseudoinverse method was 38.6% less than that due to the
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Probability Density Functions for 3 Measures of Model Accuracy
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Figure 3.6: Probability density functions estimated from the Monte Carlo simula-
tion. The first panel shows the estimated PDF of the accuracy of the IRF estimates.
In the second panel and third panels, the PDFs of the prediction accuracy for the
uncorrupted output and noise-corrupted output are shown.

exact inverse solution. Due to the excellent predictions produced by both methods,
this only corresponded to an average 0.077% increase in the VAF, with a standard
deviation of 0.049%.

The third panel in Figure 3.6 shows the distributions of the prediction accuracies,
with respect to the noise corrupted signal, z(t). Again, both the exact inverse and
ﬁhe pseudoinverse produce significantly better predictions than the smoothed solu-
tion. Here, however, the exact inverse predicts slightly more variance (mean 0.15%,
standard deviation 0.06%) than does the pseudoinverse techniques. This observa-
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Impulse Response Estimates from One Trial
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Figure 3.7: Estimates of the impulse response of a high-pass system. The first panel
shows the result of using the full inverse of the autocorrelation matrix in the decon-
volution. The second panel was produced by smoothing the inverse solution using
a three-point, zero-phase smoother. The third panel shows the result of using the
psendoinverse based deconvolution technique developed in this chapter.

tion, taken together with the results from the previous panel, suggests that the exact
solution models slightly more of the noise than does the pseudoinverse solution.

In this simulation, the pseudoinverse technique produced better estimates of the
both the IRF shape and output than either the exact inverse solution, or the smoothed
IRF.

Finally, we repeated the experiment, using a fourth-order Butterworth high-pass
filter as the system, to demonstrate that the pseudoinverse method is not limited to
low-pass systems. The input signal was white Gaussian noise, filtered by a fourth-
order band-pass filter. White noise was added to the output.

Figure 3.7 shows the results of 2 typical single identification using the three meth-
ods. The first panel shows the estimate produced using the exact inverse (Equation
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2.9) solution; it is contaminated with substantial noise at both low and high fre-
quency. The second panel shows the result of smoothing this estimate using one pass
of a three point smoothing filter. The high frequency ripple has been eliminated, but
the peaks in the IRF have be'n greatly attenuated. Furthermore, the slow drift is
still present. The final panel shows the IRF returned by the pseudoinverse method.
Most of the high frequency noise, as well as all of the low frequency drift has been
eliminated. As a result, this estimate is dramatically better than the other two.

3.2.3.3 Study of the Estimation Variance Estimate

Given the Toeplitz structured input aunto-correlation mairix, the pseudoinverse used
in the IRF estimation, and the IRF of the simulated system, we computed the bias

error as follows:

€hias = h — ¥, Buuk (3.26)
We could also calculate the random error:

€rand = Piu Bunh — A (3.27)

Thus, for each trial in the Monte Carlo simulation, we calculated the random and
bias components of the error in the impulse response estimate.

During each trial, we calculated the residuals, and used Equations (3.13) and
(3.22) to predict the standard deviation of the JRF estimate, as a function of the
lag. We then computed the ratio of this theoretical standard devi_ql_tion to the random
component of the measured error. The distribution functions _-for these ratios {one
per point in the IRF) are plotted in Figure 3.8. We found that the distribution of
the ratio of the random error to the theoretical standard deviation was well described
(VAF > 97% in all cases) by a zero-mean Gaussian distribution, with unit variance.
Thus, we conclude that Equa:bions (3.13) and (3.22) produce accurate estimates of
the variance of the random component of the estimation error.
| Urfortunately, we do not have 2 point by point estimate of the bias error, and must
limit ourselves to predicting its 2-norm. For each run in the Monte Carlo simulation,
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Normalized PDFs of Random Error Component

Estimated PDF

Normalized Error

Figure 3.8: Estimated probability density functions of the ratio of the measured
random error to the square root of the variance predicted by Equation (Estimation-
Variance). Probability densities were estimated from a 10,000 trial Monte Carlo
simulation.



Ratio of Maximum Bias Error to Predicted 2-Norm

Estimated Probability Density

Ratio of Biases

Figure 3.9: Estimated probability depsity function of the ratio of the maximum ab-
sclute bias error to the prediction of the 2-norm produced by Equation. (3.24).
Probability densities were estimated from a 10000 trial Monte Carlo simulation

we computed the 2-norm of the bias component of the estimation error (3.26), and
compared it to the estimate provided by Equation (3.24). The measured bias norm
was always between half and double that of the estimate. In establishing a confidence
interval for the IRF estimate, the 2-norm of the bias is of little use, as it provides no
information about the bias at any one point.

However, given the an estimate its 2-norm, it is possible to construct confidence
bounds on the bias component of the error, since the 2-norm of a vector is an upper
bound on its infinity norm, [20]. We compared the estimate of the 2-norm of bias, to
the maximum absolute value, the infinity norm in other words, of the measured bias.
. The probability density of this ratio is shown in Figure 3.9. Numerically integrating
this PDF, we see that the 95% confidence bound on the maximum bias error is
approximately 0.94 times the 2-norm estimate provided by Equation (3.24).

Similarly, we can construct confidence intervals due to the r;ndom component in
the error. Because its distribution is Gaussiaﬁ, twice the square-root of the variance
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Figure 3.10: The upper panel shows an estimated IRF, between 95% confidence
estimates. The lower panel shows the estimated probability, point by point, of the
IRF lying outside of the 67% and 95% confidence bounds

predicted by Equation (3.14) is a 95% bound on the random component of the error.
If we assume that the two error components are independent, the total error variance
will be the sum of the variances of the two components. The confidence limits may
be estimated as the square-root of the sum of the squared confidence bounds.

This confidence bound was tested on the results of the Monte Carlo simulation.
The first panel of Figure 3.10 shows the results from 2 typical single trial, with the
IRF estimate plotted between the estimated 95% confidence bounds. In the lower
panel, we summarize the results from the whole simulation. The traces show the
probability that each point in the true will IRF lie outside either the 67% or the
95% confidence bounds. We can see that the two bounds are only appropriate for
one point, the first point in the IRF. All other points are well i:_;side the confidence
bounds. This is because the bias component could only be estiziated globally. Thus,
the maximum bias error must be assumed for every point in the IRF, which leads to
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a very conservative error bound in most places.

3.3 Multiple-Input Linear Systems

Consider a multiple-input linear system, such as that shown in Figure 2.10. We will
assume that the two inputs, u(¢) and u»(¢) are independent, and therefore, so are

v1(¢) and y»(t). Then:
éuw(r) = é"llﬂ (7) - 5“:!&1 (T') + éuw'.‘ (T)

If we follow the development surrounding Equations (3.6) through (3.8), we can

see that the only first-order error terms in the impulse response estimate will be:
—1 I ] —1 i
q’u;u; -éu:‘l’: a ¢t-‘u; .ouxy-_-

Therefore, in the estimation of hy(7), ¥2(t) acts exactly like a second source of ob-
servation noise. Thus, Equation (3.14) may be used to predict the variance of h(7),
provided the measurement noise, v.(t) in (3.14) is replaced with an “equivalent noise

signal”, v,.(t), which is the sum:
'Unc(t) = v:(t) + ‘yz(t)

Similarly, ¥ (t) acts as 2 second source of observation noise in the estimate of
ha(7). Thus, to estimate the variance in ke estimate of hy(7), let:

Vne(t) = v:(2) + w(t)

and aryiv Equation (3.14), replacing v-(2) with v,.(2)-

It is also evident that the pseudoinverse may be exploited exactly as with single
inpﬁt systems. It is likely that the spectra of the linear systems will overlap signifi-
cantly, so the pseudoinverse alone will not remove all of the noise terms. In the next
chapter, we will consider how to do so in a more general case: the multiple-input
Wiener structure. The multiple-input linear svstem is a special case of this, and the
techniques developed in Chapter 4 will apply.
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3.4 Linear Elements of Wiener Systems

Here, we will consider the estimation of a Wiener (LN) system. as illustrated in
Figure 2.7, when the nonlinearity has at least one significant odd term in its Taylor
series. We will show how the expressions developed above can be used to estimate
the variance of the impulse response estimate.

In keeping with the notation established by Figure 2.7, let (). z(¢) and y(2)
be the input signal, the output of the linear element, and the output of the Wiener
system, respectively. We will represent the static nonlinearity with a power series:

o
y(t) =Y cix'(t)
i=0
As in our general identification framework, v.(2) is an additive noise sequence.

Thus, the observed output is:

z(t) = y(t} + v:(t)

Consider the cross-correlation between u(t) and z(t):

éuz(t) = E ['u. t—r)-{i czi(t) + ‘v:(t)}]

=0

S ciElult - 7))

=0
& 2i + 1)loZ
= Z Coidl pinire ANt (2!:_1 (2 _3_ 1)1 d"u:(‘r)

This last step is obtained using Equation (3.1), which allows us to discard the
terms which contain the product of an odd number of zero-mean Gaussian random
variables (i.e. even powers of z). This result is simply ar illustration of Bussgang’s
theorem [10]: If 2 linear IRF is fitted between %(t) and z(t) using cross-correlation
and Toeplitz matrix inversion (Equation 2.9), its expected ‘value will be:

Efh(r)] = kmh(7)
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where the constant k,, is:

ic_ (2i + 1)lo2
L T g (- 1))

Let us subdivide the output signal y(t) into two components, y,(t) and y.(t),
whick we shall call the “odd”™ and “even” components of y(¢). As the names suggest,
the odd component, will contain all terms that include an odd power of z(t). and
the even component will contain 2ll even powers of z(t). Then, the input-output

cross-correlation estimate can be written:
Guc(T) = kmGue(T) + Guyy (7) + Ouye (7) + Gu (7)

Applying the first-order perturbation estimate for the matrix inversion, and discarding

higher-order terms results in:
b= kb + @5 buy, — Bt Buu 5 Guy + B Guv, + Bl Guge (3.28)
Furthermore, since:

Puu t—ﬂ} ¢ay = kméuuh
T-1

= kn Zo 6uu(7'? z)h(?')
- ;'1( (79 3 3-ale = muls = )
= km; Guu(T =1 —-ﬁhlu r)u(t — 2} | h(3)

T-1

b o 3
= kméu: - "Kf Zu(t - T) . h(z)'u.(t - z)
=V =1 =0

Guge

the second and third terms on the right hand side of Equation (3.28) cancel, and the
only first order terms remaining in the estimation error are due t0 the observation
noise and the even terms in the static nonlinearity.

The error term due to the even powers in the static nonlinea.i'ity enters Equation

(3.28) exactly like the output noise term. Therefore, we can treat the even-power
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error terms as if they were simply other sources of observation noise. Define the

following “equivalent noise” signal:
'Une(t) = v:(t) + yc(t)

Equations (3.12) and (3.13) may now be used to predict the estimation variance, if we
use vn.(t) in place of the measurement noise term. v.(t). Similarly, the pseudoinverse
algorithm, described in Section 3.2.1.1, may be applied to Wiener systems whose

nonlirearities include at least one significant odd term.

3.5 Summary

In this chapter, we have developed expressions for the variance of the impulse response
estimate provided by the Toeplitz matrix inversion procedure [30] detailed in Equation
(2.9). Analysis of the variance in the impulse response estimate suggested that it could
be reduced, often dramatically, by replacing the inverse of the Toeplitz structured
auto-correlation matrix with a suitably chosen pseudoinverse. This improvement in
the estimation variance was realized at the cost of introducing a bias into the impulse
response estimate. We developed procedures for choosing the pseudoinverse which
sought a compromise between the reduction in the variance of the random error and
the magnitude of the resulting bias. =

We demonstrated that this procedure can be used for both low-pass and high-pass
systems. It can remove both low frequency drift and high frequency noise from the
impulse response estimate, and introduces comparatively little bias. This is in marked
contrast to the use of a three point smoother, which cannot remove low frequency
noise, and introduces considerable bias, especially to h.igh-passﬁystems.;

Use of the pseudoinverse also iniproved the condition of the estimate of the estima-
tion variance. Simulations demonstrated that the estimation variance at each point
in the IRF estimate could be estimated accurately using only measured quantities.

Estimation of the bias error proved to be more difficult. We were ﬁnable to develop

any sort of point by point estimate or bound for the bias error. Hence, we attempted

69



to estimate the mean square value of the bias. Simulations demonstrated how this
estimate of the mean square bias could he used to bound the bias errer over the whole
IRF estimate.

Finally. we illustrated how this analvsis can be applied to both multiple-input
linear systems and single-input Wiener systems. The estimation of multiple-input

Wiener systems is the topic of the next chapter.



Chapter 4

Multiple-Input Wiener Systems

4.1 Preliminaries and Notation

In this chapter, we will develop algorithms for the identification of a particularly
important block-structure: the multiple-input Wiener system. We will deal first with
two-input systems and then illustrate how our algorithms may be extended to deal
with n-input systems.

A single-input Wiener system, as illustrated in Figure 2.7, consists of a dynamic
linear element followed by a zero-memory nonlinearity {31]. Two possible multiple-
input Wiener system structures, termed the b- and le-structures by Chen [13], a.2
shown, for two-inputs, in Figure 4.1. In both cases, the inputs, (u;,u,), are processed
by separate linear dynamic systems, (R, hy2). IR the lc-structure {Fig. 4.1a) the lin-
ear element outputs, (z1,Z2) are transformed by a multiple-input static nonlinearity,
(m(-,)). In the b-structure (Fig. 4.1b) the linear system outputs are summed, and
then transformed by a single-input static nonlinearity. Clearly, the b-structure is a
special case of the 1-c structure.

Given either structure, let u;(t) through un(t) represent the n system inputs, and '
let y(t) represent its output. As stated previously, we will concentrate our discussion
on the two-input case, where the inputs are u;(t) and uz(t). We will assume that
the system is time-invariant and that the inputs, %;(t) and u5(t), are independent,

stationary, zero-mean Gaussian signals, which need not be white. Let NV represent
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a) Dynamic Linear

2, (t) ha(r) | z(t) Multiple-Input
1 XStatic Nonlinear
() y(?)
Dynamic Linear T
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b) Dynamic Linear
ua(2) Zi(t)  Single-Input
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| Static Nonlinear )
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uz(t) I
hoa(7) | 22(E)

Figure 4.1: Two two-input Wiener system structures. The inputs u;(¢) and u»(t) are
processed by the dynamic linear systems hy;(7) and k(7). In the first case (a), the
outputs of the linear system are transformed by a multiple input nonlinearity, m(-, ).
A special case of this is (b), where the Linear system outputs are summed to from
z(t), whick is then transformed by a single-input static nonlinearity m(-).



the number of input/output points available in the data records. and let T represent
the memory length of the linear elements.

We will also assume that the non-linearity can be represented by a power series:
this forces the static nonlinearity to be continuously differentiable with respect to

its input, and is required for the following mathematical development. Thus for the

more general lc-structure:

x .
m(T1,Z2) = D Cigi7}%h (4.1)
ij=1
and the output can be written:
w . .
y(t) = 2 o ($)ai(t) (4.2)
ij=l1

For the simpler b-structure, shown in Fig. 4.1b:

m(z) = i &zt (4.3)
=1

the output becomes:

¥ = 3 a@m) + @)

i=1
2 | ) G
= Zci}:a B Ed OF 10 (4.4)
=l j= 3
; -t
where : is the binomial coefficient: -——z—,7
j (e = !

4.2 Identification of the b-Structure

| Due to its simpler structure, we will consider the b-structure first, and then show how
the methods developed for it can be applied to the more general lc-structure. For
this simpler system, there are two cases which must be considered separately: the
first case occurs when the polynomial representation of the nonlinearity contéins at
least one significant odd term, in the second case, the nonlinearity contains at least

one significant even term. Clearly, these two are not mutually exclusive.
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4.2.1 Case 1 - Nonlinearities Containing Odd Terms

If the polynomial representation of m(-} contains significant odd terms, the linear
subsystems can be estimated from first-order cross-covariances, as shown in Korenberg
[53]. To see how this is achieved, examine the cross-covariance between one input ()

and the output, (y).
bury(7) = Efua(t)(y(t + ) — Efy(2)])] (4.5)

where E[z] refers to the expected value of z. Substituting (4.4), we get:

buas(7) = zqz( ) Efu(t - )2 (o) - Bl (456)

i=l j=0

This is a weighted sum of terms of the form:
Efur(t - 7)2{ (1)) - Elz}(0)] (47)

The terms in (4.7) are expected values of products of jointly Gaussian random
variables. From the discussion proceeding Equation (3.1), we know that this will
be zero, for odd numbers of terms. Hence, if 7 is odd, the second term in (4.7) will
vanish. If 7 is even, the second term will be non-zero, but an even value of 7 will cause
the first term to contain an odd number of terms, and therefore vanish. Therefore,
unless j is even and 7 is odd, (4.7) yvields zero. For even j and odd 7, both expected
values are non-zero, and using (3.1), we can see that (4.7) becomes:

(-3eee (= A+ Bere - (= D)oL V0L, Gy (7) (48)

where g, is the standard deviation of the linear subsystem output z,(t). Therefore,
each term in (4.6) is either equal to zero, or is proportional to the cross-covariance
between u, (t) and x,(t). Hence. as can be seen in (21) of Korenberg [53], the weighted
sum is also proportional to the cross-covariance taken across the linear sub-system.

- G2y(7) = Kz (7) (4.9) _
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where K is given by:

= & 2 +1
K= cun (1-3....-(28=27+1)) -
i=0 j=0 2 (4.10)

(1-3-...- (2 — 1))o-2%

It is evident that K depends on the shape of the nonlinearity, through the de-
pendence on the polynomial coefficients ¢;, and the variances of the outputs of the
two linear subsystemns. It might appear that the constant of proportionality would
depend on which linear subsystem was being identified. However, by rewriting the

expression for K in terms of the factorial operation, we get:

2i+1 i
K = 262;-;-12( )L_2‘z'_) 5(; g 3.1

i=0 J=0
= io 2:+1(21+1)I(0'2 +0%,) (4.11)

Hence K is a function of the shape of the nonlinearity and the total power at its input,
but does not depend on the input being used. Therefore, using input-output cross-
covariances to estimate the cross-covariances across the linear elements introduces no
relative scaling; each subsystem has its cross-covariance scaled by the same amount.
Hence, by decorvolving the input antocorrelation, as in Equation (2.9), we can recover

the impulse responses of the linear systems to within a single scaling factor.

4.2.1.1 Improved Covariance Estimates

Covariances estimated using finite duration time averages wiil contain noise, whose
amplitude will decrease as the length of the time average is increased, (see Equations
3.2 through 3.4) . Terms in (4.6) which vanish in expectation, will nonetheless con-
tribute noise to finite-length covariance estimates. Eliminating those terms should
improve the covariance estimate by reducing the number of terms in the sum which

contribute only noise. This may be seen by considering the cross-covariance between

75



a zero-mean Gaussian signal, w(t), (possibly correlated with either u;(t), u»(t), or

both), and the output, y(t).

Suy(i) = ZC;Z( )E[w(t— ERIEA0) (4.12)
j

=1 j=0

Because u;(t) and uo(t) are independent, it is possible to decompose w(t) into two

orthogonal components w (), and wa(t) such that :

'UJ(t) =us (t) + ’lUg(t)

and
Efu;(t = p)wa(t)] =0 (4.13)
Elua(t — p)ua(t)] =0

Now, using this orthogonal construction, we can rewrite (4.12):
buy(p) = gag ( ) {Blur(t - w)={~D @] Elzi(e) w1

+ E[z{ ()| Blwa(t - m)ah(@)]}
Using the arguments surrounding {4.6) through (4.10), we can rewrite (4.14):
¢wy(.“") =K ¢’w=: (F”) + K ¢u:=‘2 (F‘) (4.15)

Assume that we have formed an initial estimate of the linear subsystem, hyo(7).
Let us see how we can use this to improve our estimate of the other linear system.
The initial subsystem estimate is:

R (7) = Khuo(7) + na(7) (4.16)

where ns(7) is an additive, zero mean noise process. Estimate the output due to

hya(7) by convolution:

2a(t) = huo(7) *x ua(?)
= Khuol7) % un(t) + na(7) * u2(2) (4.17)
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The cross-covariance between the input signal (). and #2(t) is:
Ouyia (1) = KOy zo(pt) + 12(7) * Guyux (1) (4.18)

In the expected value sense, or equivalently if time averages are performed using
infinitely long records, all the terms on both sides of (4.18) will go to zero. However.
estimates of these terms produced from finite duration time averages may be non
Z€e70.

Now, consider the cross-covariance between the input u;(t). and the system out-

put. Using (4.13), replacing w(t) with the input signal u,(t), we get:
éuw(ﬂ) = K‘f’um () + K?éuxzz (n) (4.19)

As u;(2) and us(t) are independent, @y,..(#) is identically equal to zero. However,
‘5:;;:2 (i) is an estimate obtained from finite data records, which may be non-zero and
so contribute noise to the cross-covariance estimate. To form an improved estimate

for the cross-covariance across the first subsystem, subtract (4.18) from (4.19).
Pury—in) () = Kuyz, (1) — m2(7) * Puyue (1) (4.20)

Comparing equations (4.19) and (4.20), it is clear that an improvement in the
cross-covariance estimate will result if:

| na(7) * éu;ug(ﬂ) | <] Kéuz:n (1) | = | Khya(r) * énwz(p') i (4.21)

To interpret this condition, we must know the statistical properties of éum ().
Its expected values is zero, as u1(t) and u»(t) are independent. Its autocorrelation
can be computed:

. . 1 X .
Elpun (= 0unl = 57 2 bunl—t2+7)uu(t—t)  (4.22)

t1,t2=1

Making a change of variables, and assuming that the correlation lengths are much
less than the data length, this becomes:

1 N
'N-" Z Duyu; (t+ T)d’uzuz(t)

t==N



hence, the auto-zorrelation of @y, is equal to the convolution of the autocorrelations
of the two input signals, and its spectrum is equal to the product of the spectra of the
two inputs. Therefore, given (4.21), improvement in the estimate of h,; will result if
the power of the noise component in (4.16) is less than power in the signal component
over the bandwidth of éum (which is less than the bandwidth of either of the two
input signals).

Subtracting its output from the sy-tem output and computing the cross-covariance
between u, and this new signal will lead to an improved estimate of the first subsys-
tem. This process can be applied iteratively, first updating one half of the system,
and then the other. Note that while this iterative process can theoretically eliminate
the noise arising from the vanishing terms in (4.6) it will have no effect on the noise

in the pron-vanishing terms.

4.2.1.2 Algorithm for Non-Even Systems

The overall algorithm for identifying a two-input Wiener system (b-structure) with a

non-even nonlinearity is:

1. Estimate a linear IRF between u; and y, fm (7)

o

. Generate £,(t), the convolution of () and ;.

3. Generate #;(t) = y(t) — %:(2)

4. Estimate a linear IRF between u, and §(t) (Rua(s,

5. Generate Z»(t), the convolution of ﬁ@(‘r) and u,.

6. Generate (1) = y(t) — Z2(2)

7. Identify a linear response between u; and Fa(t) (Bu (7))

S. If a significant change in the IRFs has occurred, go to step 2. Otherwise,

continue.

9. Generate Zf-'(t) = (t) + s (t)



10. Fit a polvnomial betweer #(t) and y(t)

For systems having more than two inputs. the algorithm must be modified as

follows.
¢ Repeat steps 4. 5 and 6 for every input.

e In step 6, if A,(7) is to be estimated in step 7. then the estimated outputs of

all of the other linear subsystems must be subtracted from y(2).

4.2.2 Case 2 - Even Nonlinearities

If the static nonlinearity contains no significant odd terms the first order input-output
cross-covariances will vanish, and the method outlined above will fail. In this case,
an approach employing either the second-order input-output cross-covariances, as
suggested by Korenberg [53] or the second-order, cross-cross-covariance function. as

suggested by Chen et ol, [13], may be used. Consider the second-order cross-cross-

covariance function:

¢u;u2y(71’72) = E[ul (t - Tl)uZ(t - 72)(y(t) - E[y(t)])] (4'23)

= Bk ( Q-i )E[u‘(t"ﬁ)zﬁﬁ""(t)} :

=0 j=0 J

Efua(t = m2)z3(t)]

Proceeding as before, we may eliminate all terms for which the expected value is
zero. In this case, terms for which j is even will have expected values of zero since
they contain products of an odd number of zero-mean Gaussian random variables.
So, '
2¢

¢u;ugy(713 1l'2) = icﬁzt: (

i=l )=l

)E[ul(t—n)zf"’""’*‘(t)l :

2j—1 (4.24)

Elus(t — 75)z3 ' (¢)]
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Using (3.1) to evaluate the expected values and then simplifving. we can write:

Ouzu:y(71! T—) = Ka- 90121(7‘1)‘3‘“:::‘(‘—2) (4-25)
where
o 195\
i c:h‘\-z)' 2 ' 2 - P
K= oo mi7a T oa)" (4.26)
i=1- -

Equation {4.23) provides the means to estimate the cross-covariances for the two
linear subsystems, as every column of @y, v,y 15 proportional 10 ¢y,z,. Similarly, every
TOW Of Puyusy is proportional to @u,z.. However, instead of the exact cross-covariance,
we must use an estimate derived from finite length records. This will surely contain
some estimation noise. Given estimates of the linear subsystem cross-covariances, we
can use (4.23) to estimate the second-order cross-cross-covariance function. Estimates
of Guy;z, a0d @y.z, Should be chosen such that the mean square error (MSE) between
the measured and computed values of Py,u.y is minimized. Thus:

1 L& gz o2 a1 e\
T2 2 > {¢uxuzr(‘: ) = Guz, (D)PurzaJ )} (4.27)

i=l1j=1

should be minimized. Minimizing the MSE over the entire cross-covariance function
will use all of the information available in that function to estimate the first-order
cross-covariances. These optimal estimates of the first order-covariance functions can
be obtained using the singular value decomposition (SVD) [20] as follows. Let the
SVD of Puyuzy be:

Buruay =USVT | , (4.28)
ﬁrhere U and V are orthogonal matrices, and S is a diagonal matrix:

S = diag(s1, 2, ..., S1)

with positive real entries, ordered such that s; > s2 = ... > sr. We will use an
overbar to denote vectors, and to avoid a notational collision with the input signals

u1(t) and uo(t). Thus, we write the colurns of U and V as:
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Then, we rewrite the SVD of @y,ysy as [20]:

In expectation, the cross-cross-correlation is:

Duyusy = Quyz; .éu-_,g-_.

Since the U and V are orthogonal matrices, the optimal choices for ¢.,r, and
@z, are the left and right singular vectors, 7 and %y, which are associated with the
largest singular value, s;.

4.2.2.1 Improved Estimates

The resulting cross-covariance estimates will be scaled by an unknown constant and
contain noise arising from the estimation of both vanishing and non-vanishing terms.
In the odd case, described above, we proposed an iterative process to reduce the noise
due to the estimation of terms which vanish in expectation. This process was derived
by evaluating the cross-covariance between a generic signal, w(t) and the system
output. Separating w(t) into components w;(t) and wo(t) allowed us to analyze
all the terms in the cross-covariance and so find alternate ways of estimating the
vanishing terms. Wewilluseas_imilarprocedﬁre for the even case; this time, an
additional generic signal will be requued since it is the second-order, cross-cross-
_ covariance function that must be estimated. Denote this new signal by 2(z) and
define z)(¢) and z(2) as in (4.13). The second-order cross—cross-cova:ia..nce: between

w, 2, and ¥ can be written:
Susy(71,72) = Elw(t — 7)z(t — m){y(t) — Ey@)]} , (4.29)
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. Note that the expected value of the output is subtracted prior to the evaiuation of
the covariance function, just as in (4.23). Using procedures similar to those ontlined

in {4.23) through (4.26). it can be shown that:

Ousy(T1:72) = Ko+ [ Guizi(71)0n2:(72) + 0wz, (11)0sza (72) {4.30)

+Ouwazn (my )¢::=1 (m2) + Ounz(T1 )d:gxg (7".’)]

Now, replace the signals w and z with the inputs u; and u» respectively. Thus uy,
the component of w which is parallel to u), is simply w;. Similarly, z, = u.. Thus,
the second term on the right side of Equation (4.30) corresponds to the ideal resuit
in Equation (4.25).

Clearly, wa, which is the component of w which is orthogonal to u;, and z;,
both will be zero, in expectation. Therefore, the first, third and fourth terms in
Equation (4.30) will have zero expected value. However, for finite record lengths,
these estimates are unlikely to be exactly zero, so removing them from (4.30) should
improve the estimates of the cross-cross-covariance function. The problem then is to
obtain independent estimates of these terms; this is possible for the first and fourth
terms as follows.

The first term in (4.30) may be estimated by computing the second-order, cross-
cross-covariance between the two inputs, u;(t) and u»(t), and x%(t), multiplied by
an appropriate scale factor. This scale factor may be determined by forming a least
squares estimate for the gain between the squared linear system output, z%(t), and
the actual system output, y(t).

_ Elsk] - BB |
") = "Gt = B (31

Expanding the above, noting that z, is zero mean and Gaussia.n, yields:
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2 2 B(im gt
z:c.,z ( o ) Ela?) {El1"")
<]

-3, - E[:z:;(‘_J)]}

Expanding the expected values and gathering similar terms:

n 1 = C ..2 L) :_ K-’_)
sz =323 -?(5-1)1( 2 ot yi= B2 (4.32)

But, the cross-cross-covariance between wy, ; and x(z3, y)(z? — E[x}]) is:
K2 ,
2 20unz:(71) 922, (T2) (4.33)
Hence, we can estimate the term x(z?,y)z3(t) and subtract it from the output,
y(t). Substituting this signal for y(t) in(4.29) will eliminate the first term in (4.30).
The fourth term in (4.30) can be eliminated by repeating the above process, using
the output of the second subsystem. Elimirating both the first and fourth terms in
(4.30) should improve the estimate of the cross-cross-covariance, and lead to better
estimates of the linear subsystem dynamics. This iterative process can be repeated
until it converges. As before, it will be limited by the noise inherent in the estimates
of non-vanishing terms in (4.23).

4.2.2.2 Scaiing Issues:

As the matrices returned by the SVD, U and V, are unitary, the cross-covariance
estimates will be scaled to have unit norms. This will result in linear subsystem
estimates that are scaled by different amounts. To proceed further, we must estimate
the degree of relative scaling, and correct for it. (Note that in the non-even case,
scaling was not an issue since the scale factor introduced by the estimation procedure
was the same for both linear elements.) |

The previous section provides a mechanism to estimate the degree of relative

83



scaling. Assume that &,(t) = kyx;(t) and Za(¢) = kara{t). Then:

h‘.(f? . y) ko :
E —-—‘—] = (—) 1.3
[R(I'.‘;- y) k i (
Hence. we can estimate the relative gain applied to the linear subsvstems. Once

the linear subsystem outputs have been rescaled. thev can be summed. and a static

function fitted between this and the system output.

4.2.2.3 Algorithm for Even Wiener Systems

The complete algorithm for even systems is similar to that for non-even systems
except that it is based on the second-order cross-cross-covariance. It proceeds as

follows:

1. Estimate @y,u.y(T1, 72) from the input/output data.

(3]

. Apply the singular value decomposition t0 @y,u.y(Ti,72) . Use the columns of

U and V associated with the largest singular value as @u,z, (T1) and yz.(72).
3. Estimate hy(7) from @,z (11)-
4. BEstimate hy(7) from Guyz, (72)-

5. Calculate the outputs due to the linear subsystems by convolution, and square

them. - -

6. rUse (4.31) to scale the squared linear subsystem outputs.

7. Estimate the variance accounted for by the squared linear subsystem outputs.
If this has not improved since the last iteration, go to step 10.

8. Subtract the scaled squared outputs (step 6) from y(t), producing %(t).
9. Estimate Q.qu,;-(‘r;, T2), 20d go to step 2.

10. Use (4.34) to estimate the relative gain. Correct for this and generate 3(t), a
scaled estimate of z(t).



11. Fit a static nonlinearizy between Z(t) and y(t).

If the system beirg identified has more than two inputs, the following modifications

to the algorithm are necessary:

o In steps 1 and 9. a second-order cross-cross-covariance function must be esti-
mated for everv pair of inputs (i.e. 2 3 or 4 input system will require two such

functions).

e Steps 2 and 3 must be repeated for every estimated linear subsystem.

4.2.3 Simulations

The performance of tl.e method was assessed using data obtained from simulations of
the two-input Wiener system shown in Figure 4.2. The linear subsystems were rep-
reseated as low-pass filters, similar to those encountered in neuromuscular research.
A half-wave rectifier was used for the static noalinearity because it is neither an
even nor an odd function. Furthermore, it is not continuously differentiable, hence
its polynomial representation requires many high-order terms. The simulation and

the identification procedures were carried out using MATLAB?, a commercial software -‘
pa:age for scientific and engineering numeric computation. In all cases, the identi-
fication accuracy was assessed in terms of prediction accuracy evaluated using white

Gaussian inputs.

4.2.3.1 Odd Method

The first set of simula.tion_s-was carried out using white Gaussian inputs, with no mea-
surement noise. For input signals containing 10,000 points, the algbrithm converged
quickly producing the estimates shown in Figure 4.3 which accounted for 98.93% of
the output variance of the data set used in the identification procedure. More impor-
tantly, the estimates accounted for 98.59% of the output variance when tested with 2
independent set of white Gaussian inputs. Notice that although the amp]itﬁde scale

1The MathWorks Inc., Natick, Mass
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Figure 4.2: Block diagram of the simulated multiple-input Wiener system.
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Figure 4.3: Estimated elements for the multiple-input Wiener system in Figure 4.2
For this simulation, the system was driven by two independent 10,000 point white
Gaussian signals. The identified model accounted for 98.9% of the output variance.
Note the different divisions of the overall system gain between this and Figure 4.2.
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. Spectra of the Non-White Test Inputs
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Figure 4.4: Power spectra of the low-pass filtered PRBS inputs which were used in
the noise performance experiments.

of the IRFs in Figure 4.3 was abouc twice that of thosé in Figure 4.2 there was an
equal reduction in the input scale for the static nonlinearity so the overall system
gain was unchanged.

The algorithm was then evaluated under more realistic conditions:

o Shorter record lengths, 5,000 and 2,500 points, were used to assess the effect of

record length on the identification accuracy.

¢ Measurement noise was simulated by adding white Gaussian noise, having 2

variance of 10 to 100% of the model output variance, to the output signal.

o Low-pass filtered pseudo-random-binary-sequences (PRBS) were used as inputs.
The spectra of these non-Gaussian inputs, shown in Figure 4.4, were signifi-

cantly non-white.

| In all cases the iteration procedure converged rapidly; the most significant im-

provements were achieved in the first few iterations while subsequent iterations had

. little effect. This is illustrated in Table 4.1 which shows prediction accuracy of the
linear subsystem estimates for the first five iterations in the noise free case. The iter- -
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ation procedure contributed relatively little (1-2%) when long records were used since
the estimates obtained with the first iteration were very good. However. when shorter
records were used, the initial estimate was not as good and the iterative procedure
brought about more substantial improvements (4-7%). The last line of Table 4.1
presents these results in terms of the reduction in residual variance. instead of the
gain in variance accounted for. Here the value of the iterative cnhancement becomes

clear, as it produced between 2 3 and 9 fold reduction in the variance of the residuals.

Iteration }0,000 poinlz records | 5,000 point records | 2,000 peint records
huat) R R k() [ ha() Rl

1 99.57 99.32 98.35 97.20 96.66 96.56

2 99.39 99.84 99.61 09.64 99.32 99.12

3 99.90 99.85 99.67 99.71 99.49 99.10

4 99.90 99.85 99.67 99.69 99.45 99.13

5 99.90 99.85 99.70 99.69 99.45 99.12

Ratio of

Residual | 4.30 4.53 3.5 9.03 6.07 3.57

Variances

Table 4.1: The accuracy of the linear subsystem estimates is shown at each iteration of
the non-even system. (Fig. 4.3) Accuracy is measured as percent vatiance accounted
for (% VAF) The last line in the table shows the reduction in the the residual variances.
It is the ratio of the initial and final resiqual variances.

Figure 4.5 summarizes the results of the evaluation procedure in terms of the
model accuracy as a function of output noise level for each condition. It is evident
that the algorithm is robust in the presence of output noise. Excellent estimates
of the linear and nonlinear subsystems were obtained even with large amounts of
output noise. Thus, even when the variance of the noise was equal to that of the
system output, the models identified with 10,000 point records predicted almost 95%
of the noise-free output variance. As vould be expected, performance of the method
in the presence of noise improved with increasing record length. Thus, the prediction
accuracy decreased with increasing noise levels for all record lengths; but the rate of
decrease became larger as the record length was decreased.

Figure 4.5 also demonstrates that there was no significant change in the preds-
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Identification Accuracy in the Presence of Noise
Half-Wave Rectifier, Odd Method
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Figurs 4.5: Noise performance of the odd algorithm applied to the system shown
in Figure 4.2. Four different inputs were used" Gaussian White Noise records with
lengths of 10,000, 5,000 and 2,500 points, and 10,000 point, low-pass filtered pseudo-
random binary sequences.

cation accuracy when the low-pass filtered PRBS inputs were used rather than the
Gaussian white noise. This indicates that the method is likely to work with the
types of input signals that can be applied under realistic experimental conditions.
However, the results obtained with the non-white inputs must be interpreted with
caution. Initial estimates of the linear TRF's obtained with ron-white inputs were
contaminated with high frequency noise. We were able to reduce this contamination
by using the pseudoinverse based techriques developed in the previous chapter. Pro-
vided that the inputs had significant power over the bandwidths of the linear systems
that they excited, the pseudoinverse technique was able to separate the estimates of
the impulse responses from much of the random estimation error. We must stress,
however, that using the pseudoinverse technique introduced bias into the impulse
response estimates, and that the magnitude of this bias was not easily estimated.
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Identification Accuracy in the Presence of Noise
Half-Wave Reciifier. Even Method
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Figure 4.6: Noise performance of the even algorithm applied to the system shown in
Figure 4.2.

4.2.3.2 Even Method

We repeated the simulations discussed above, using the even method to identify the
system. Once more, the algorithm converged rapidly in all cases and gave good esti-
mates of the system. The results of these simulations are summarized in Figure 4.6.
The behaviour in the presence of noise, the sensitivity to record length, and per-
formance with non-white, non-Gaussian inputs were generally similar to that of the
non-even algorithm. The major difference between the two algorithms is that the
accuracy of the even algorithm was generally somewhat lower than for the “odd”
algorithm under equivalent conditions.

4.2.3.3 Aliernate Methods for Even Systéms

Korenberg {53] and Korenberg and Hunter [60] suggested using a single slice of the

second-ozder cross-covariance function to estimate the linear dynamics of a single-
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] Estimates using the cross-cross- | Estimates using the the second-

covariance. order cross-covariance.

SVD Average Slice SVD Average Slice
Initial Estimate
by, (7) 96.91 95.24 0447 | 9444 79.36 83.07
Py (7) 91.u8 82.07 69.35 91.92 87.21 27.7
Final Estimate
by, (7) 98.45 98.44 93.00 98.08 96.97 97.01
Py (7) 96.91 96.94 93.27 | 99.02 98.44 80.81

Table 4.2: Accuracy of the linear system estimates based on the second-order cross-
covariance functions. Accuracy is expressed in terms of the percent of the variance
accounted for by the estimated system

input even Wiener system. This is also possible in the multiple input case, and
would greatly reduce the computational burden associated with estimating the linear
subsystem dynamics. Korenberg and Hunter [60] also suggest using the average of
the second-order cross-correlation. We examined these possibilities using the half-
wave rectifier simulation under noiseless conditions. Table 4.2 shows the prediction
accuracy of initial linear system estimates obtained from the SVD, the best single rows
and columns, and the average over the rows and columns of the second-order cross-
cross-covariance function. The second row in this table shows the accuracy of the
IRF estimates resulting from the iteration process. The IRF estimates obtained from
the best single slices were always inferior to the those produced using the principal
singular vectors. Averaging of the covariance function produced esﬁmates comparable
to the SVD, but only after convergen?bf the iteration had dramatically reduced
the estimation noise in the cross-covariance function. In producing linear system
~ estimates from the noisy initial estimate of the cross-covariance function, the SVD

was vastly superior to averaging.

4.3 Identification of the 1-¢ Structure

Thus far, we have restricted ourselves to the b-structure illustrated in Fig. 4.1b. We
will now consider the identification of systems having the more general lc-structure

91



shown in Fig. 4.1a. The outpu* of a general two-input Wiener system was given by

Equation (4.2):

y() = 3 cupt ()T
ig=1

4.3.1 Estimation of the Linear Dynamic Elements

The svmmetries present in (4.4) are not present in (4.2). For the b-structure. we
developed methods for systems which were members of two (not mutually exclusive)
classes: those with odd terms in their nonlinearities. and those with even terms. An
algorithm was developed for each class; svstems which fell into both classes could be
identified using either algorithm. For the more general le-structure three classes of
systems can be described. Any system whose nonlinearity includes terms in which
both z;(t) and z.(t) are raised to odd powers will be called an odd/odd system.

Similarly, we can define even/even and even/odd systems.

4.3.1.1 0dd/0dd Systems

If the output of a generalized multiple-input Wiener system contains significant
odd/odd terms, the dynamics of both linear subsystems may be estimated from the
second-order cross-cross-correlation function. In fact, the first 9 steps of our algorithm
for even b-structures may be applied exactly as presented. Once the linear elements
have been estimated, a two-input nonlinearity is fitted between the linear subsystem
outputs and the measured system output.

4.3.1.2 Even/Even Systems

If the output contains significant even/even terms, initial estimates of the linear
subsystem dynamics may be inferred from the second-order cross-covariances between
each of the inputs and the output, as suggested by Korenberg {53]. While in principle
a single slice of this function may be used, we suggest using the SVD over the whole

second-order cross-covariance function.
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The development of section 4.2.2 may be modified to produce beiter estimates of
the second-order, single-input cross-covariance. Replacing z(¢) with «(t) in (4.29) and
(4.30) makes these equations apply 0 the single input covariance function, instead of

the dual input function. Following the rest of the development, we can compute:
§i(t) = y(t) - (23, 9)E3(t) — £(Z1£2, )1 ()2a(2) (4.35)

where x(z.y) is defined in (4.31). Calculating the second order cross-covariance be-
tweer the input u;(t), and this new signal, will result in ar improved estimate of
hu1(7). provided reasonably good estimates of the dynamics of both linear systems

are available (see 4.21).

4.3.1.3 Odd/Even Systems

The presence of odd/even terms in (4.2) allows us to estimate the dynamics of hy; (7)
from the firsy order cross-covariance between u;(t) and y(¢). Similarly, even/odd
terms allow the estimation of hyo(7) from a first order covariance function. I both
odd/even and even/cdd terms are present, our odd-system algorithm may be used
as presented to produce estimates of the linear subsystem dynamics. If, however, the
system contains ouiy odd/even terms, a third-order cross-covariance function (first
order in u(t) and second order in u,(t)) will be required to gain an estimate of k(7).
In Section 5.2.3 we will develop a gradient s:ea.rch procedure to extract an impulse
response function from a third-order cross-correlation.

4.3.2 Estimation of the Nonlinearity

In all cases where the 1-c structure is used, a multiple-input polynomial surface must
be estimated, which leads to a more demancing least squares problem than in the
single-input case. For example, consider a two input system, where z,(t) and z,(t)
are the outputs of the linear elements. If we let R be the maximum polynomial order
fitted, then we must choose the coefficients ¢; ; to minimize: :

N

R 2
=33 (y(t) -3 el (t)ai)T(l‘z(t)aj))

=1
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where T(z(2). {) is the #*th order Tchebyshev polynomial appiied to z(t). Although
this is a somewhat more difficult least squares problem than that for the simplified
syster, it does eliminate the need for the relative gain calculation (4.34). since any
relative scaling introduced by the IRF estimation will be compensated for by the
scales of the domains of the polynomial surface.
The difficuities associated with estimating this nonlinear surface have received
ittle, if any, attention in the literature on multiple-input block-structures. Korenberg
and Hunter {31, 53] consider a MIMO extension of the LNL cascade which includes
this tvpe of nonlirearity, and provide references for techniqies to estimate them.
However, these papers [83, 112] deal primarily with single input functions, treating the
multiple-input case as a simple generalization. They do, however, deal with the very
interesting problems associated with performing least-squares fitting when both the
input and the output contain measurement errors. This is the “Total Least Squares”
problem, and is particularly relevant to cascade identification, as the input(s) to the
static nonlinearity will certainly contam noise due to errors in the estimates of the
linear system(s). 2
_Apart from the added complexity of the coefficient estimation, using a multiple-

_input nonlinearity involves some additional difficulties in dealing with the domain of

the polynomial. To illustrate, first consider the estimation of 2 single-input polyno-
mial, m(-), given records of its input and output, z(t) and y(t) respectively. Clearly,
the largest domain over which we may reliably characterize the polynomial is the

interval from the minimum to the maximum of the input record. Hence:
Dom(#(-)) = {z : min(z(t)) < z < max(z(t))}

If the distribution of the input is heavily weighted towards its mean value, asin a
Gaussian distribution,Aour estimate of the polynomiél will be much less reliable near
the edges of its domain, where there are comparatively few data points to influence
the cost function, than in the middle. " -

If we use 7(-) to predict the output due to an arbitrary input, 2(t), we must treat
any points outside of the domain with care. At the very least, any points in z(t) that
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lie outside of the domain of definition for /n should be tagged as unreliable estimates.
Alternatively, the input signal could be limited to the domain of definition of the

polvnomial. In that case. we compute m(Z(t)), where:

5() = min(a()) 2(t) < min(z(t))
() = z(2) min{z(t)) < =(t) < max(z(2))
5() = max(z(t)) 2(t) > max(z(?))

Let us consider how this procedure may be applied to an estimate of a two-input
nonlinearity. Given mi(-,-), an estimate of the polynomial obtained from inputs, z,(2)

and z.(t), and output y(t), we might be tempted to define its domain as follows:

Dom(m(-,-)) = {[a:,,z,,] : (4.36)

min(z,(t)) < &, < max(z;(2))
min(z,(t)) < 2. < max(za(2))

This definition of the domain, however, is not restrictive enough. Consider the
following simulation. Two independent, Gaussian signals, z;(t) and z,(t), were gen-
erated, and plotted as ordered pairs in an x-v plot (Figure 4.7). The dashed line
is the boundary of the domain defined in (4.36). It is evident from this figure that
there are large regions in the [z;, z;] plane that are within the simple rectangular
domain, that are not near any of the data-points. Clearly, if a polynomial is fitted
between the input sequences, ,(t) and z,(t), and the output sequence y(t), there are
1o data-points in the corners of this domain 1'.6 influence the cost function. Hence,
the polynomial value in these regions will not necessarily reflect the behaviour of the
actual system. i : -

A somewhat better &escription of the domain of support is given by the convex huil
(15, 34] of the points (z1(t), 22(2)). This is defined as the smallest convex polygon that
includes all of the points in (z; (%), z2(%)), and is marked by the solid line in Figure 4.7.
Although it gives a much better characterization of the support of the two sequences
than is provided by the simple rectangular domain, there are still poorly defined
regions within the convex hull. This is similar to the one dimensional case, where
there can be relatively few points influencing the polynomial fit near the edges of the

domain.



X-Y plot of two Gaussian sequences

Input x2(t)

0
Input x1(f)

Figure 4.7: X-Y plot of two Gaussian sequences. The dashed line is the rectangular
domain defined by the two sequences. The solid line is their convex hull.

When performing output prediction in the single-input case, the input signal was
limited to the domain of support of the input signal that was used to estimate the
polvnomial. In the two-input case, we must limit the input pairs to the domain
defined either by the simple rectangular domain, or to the convex hull. Restriction to
the rectangular domain is easily achieved, as the inputs can be limited independently.
With the convex hull, we must project any exferior points onto the closest edge.

For more than two inputs, the problem of describing the support of the polynomial
becomes very complex. In three dimensions, one could construct a convex hull, from

 triangles whqsé»‘vertices are all data-points. In constructing the hull, the triangular

elements _,wcfi;:ld share each of their sides with a neighbouring element. A four input

system would require constructing a boundary in four-dimensicual space, where the

hull would be made up of tetrahedrons, each joined to four others by a common
surface. |
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. Construction of a convex hull is relatively straight forward. We will summarize it

below, using the three dimensional case, with co-ordinates z,y and z as an example.

—

. Select the points with the maximum and minimum values for each co-ordinate.

These points are surely on the boundary

o

. Construct a surface of triangular elements, whose vertices are currently selected

boundary points

(28]

. For each triangular surface element, calculate the perpendicular distance from
each point to the plane defined by that surface, defining the direction of the
outer surface normal as being positive. Find the point (if any) with the largest
positive distance from the plane, and add it to the list of vertices. If, after all of
the triangular surface elements have been checked, no new vertices have been
added to the list, exit. Otherwise, go to step 2

This algorithm generalizes to higher dimensional spaces in a straightforward man-
ner. For the two-dimensional case, there are more elegant solutions, such as those
presented in [15].

4.3.3 Simulations

A third set of simulations was i:erformed, this time using a general, second-order,
two-input nonlinearity: *

¥(t) = ez (£) + c1oZ2(t) + ez (t) + coca (£)22(t) + coo23(2) (4.37)

This nonlinearity was c%osen because its output includes all three types of terms:
odd/odd, odd/even and even/even, allowing each of the methods for identifying a
general multiple-input Wiener system to be tested. The coefficients, ¢y through
cze, Were adjusted such that each of the five terms on the right of (4.37) had equal
variance. Thus, we cdmpa:ed the three algorithms under similar conditions.
. The linear elements were the same as in the previous simulations. They were

both driver by 10,000 point sequences of white Gaussian noise. Noise was added to
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Identification Accuracy in the Presence of Noise
Two-Input Nonlinearity
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Figure 4.8: Performance of the three algorithms for generalized systems. The inputs
were 10,000 point records of Gaussian White Noise.

the output at levels between 0 and 100% of the output variance, producing signal
1o noise ratios between infinity, and 0dB. Figure 4.8 shows the noise performance of
each method. As in the previous simulation, the model accuracy is reported as the
percentage of the output variance accounted for by the model, using an independent
set of input-output data for the validation.

In this experiment, the performance of the three algorithms was similar, aithough
the odd/even method, which is based on first-order input-output cross-correlations,
performed slightly better than the other two methods, which are based on second-
order correlations, at all noise levels. Furthermore, from Figure 4.8, it appears that
the odd/even method is slightly more noise resistant than either the even/even or the
odd/odd method. '

Cieazly, the performance of the various methods depends on the relative contribu-
tions made by the different terms in the nonlinearity. Hence, £o1; an unknown system,
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one of the methods could vield substantially better results than the other two, simply

because of the type of nonlinearity in the system.

4.4 Summary

In this chapter, we have developed a set of algorithms which, taken together, are ca-
pable of identifying any muitiple-input Wiener structured system. Given its superior
noise performance, and more modest computational requirements, we suggest using
the “odd” algorithm first. Should this fail, or should the nonlinearity be dominated
by even terms, one of the “even” algorithms should be used to identify the system.

Using simulations, we have demonstrated that the these methods are robust in
the presence of output noise, and that they do not require a white input, although
the input must contain significant power over the bandwidth of the linear elements.
Furthermore, we have shown that these techniques can be applied when the input is
2 low-pass filtered PRBS signal, which is neither Gaussian nor white.

The algorithms developed in this chapter are all included in the MATLAB toolbox
for nonlinear identification, described in Appendix A.
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Chapter 5

Optimized Identification of
Parallel Cascade Models

5.1 Overview

In this chapter, we develop an algorithm that produces a parallel Wiener cascade
mode! of a nonlinear system. We start with single-input systems, and show how the
algorithm proposed by Korenberg [36] can be optimized, resulting in a system de-
scription which is unique, given the statistics of the input sequence. We demonstrate
that this optimization results in simpler models, faster convergence, and better noise
performance than the original single-slice version of the algorithm. Furthermore, we
demonstrate a practical method for modelling the dynamics present in the third (and
potentially higher) order Volterra kernels. '

In the multiple-input case, we show how multiple-input Wiener cascades can be
used to form a parallel cascade expansion. We also show that using the techniques de-
veloped in the previous chapter results in an optimization analogous to that developed
for single input systems.

" Digital simulations are used to demonstrate the capabilities of these new algo-
rithms. Applications to physical systems will be shown in Chapter 6.
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5.2 Single Input Systems

In this section, we will consider the estimation of a single-input parallel cascade
model, as proposed by Korenberg [36] and reviewed in Section 2.3.3. Figure 5.1, a
repeat of Figure 2.9, illustrates the central idea behind the parallel cascade method.
A Wiener system is fit between the input and output of a nonlinear system, and
the prediction error, also called the output residuals, is calculated. The input and
residuals are then considered to be the input and output of a new nonlinear system,
which is then approximated by a second Wiener cascade. In this way, a sum of Wiener
cascades, whose input/output behaviour converges to that of the unknown system, is
assembled.

Clearly, the rate of convergence of this expansion, as well as whether or not it
converges at all, depends entirely on the methods used to fit the Wiener cascades.
Korenberg [56] proved convergence for the parallel Wiener cascade and used the proof,
which is constructive in nature, as the basis for the single-slice impleraentation of the
parallel cascade method.

The first Wiener cascade had lirear dynamies which were estimated from the first-
order cross-correlation between the input and output. Korenberg [51, 56 proved that
this pathway reduced the first-order correlation between the input and the residuals
to zero.

Korenberg [56] then showed that the second-order input-residual cross-correlation
could be driven to zero using a finite number of Wiener cascades. The linear element of .
each of these cascades had an IRF which was equal to a randomly chosen single slice of
the second-order input-residual cross-correlation, with a randomly weighted impulse
added at the position corresponding to the diagonal in the whole cross;correlation
function (see Equation 2.28). To prove :convergence, the randomly chosen weights
were required to tend to zero with the variance of the residuals.

This procedure was then generalized for higher-order correlations. Paths based on
single-slices of the third-order correlation required two randomly weighted impulses:
one on each diagonél (i.e. each point in the correlation function for which at least 2
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Step 1:

Unknown %a(t)
Nonlinear System
u(2)
Dynamic Linear Ssatic Nonlinear
o(t)
ha(7) ma(") -
Step 2:
Unknown y(t)
Norlinear System
+ 1 ui{t)
u(t) ﬁo(t)_
hy () m(-) |
Dynamic Linear  Static Nonlinear .
th (T
hy (1_) o () %1 (2)

Figure 5.1: The parallel cascade method for nonlinear system identification.

1. Fit a Wiener cascade between the input and output of the nonlinear system.

2. Subtract the output of the first cascade from that of the unknown system,

generating the output residuals. Fit a Wiener cascade between the input, and
the output residuals.
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of the 3 indices are equal). A finite number cf these paths could then be used to drive
the third-order cross-correlation to zero. Similarly, paths based on the n'th order
correlation required n — 1 such impulses.

In this chapter, we will derive an optimized variant of the parallel cascade method.
As in the original single slice method [56], correlations between the input and the
residuals will be reduced to zero, starting with the first-order cross-correlation. Once
it has been reduced to zero, the second-order cross-correlation, followed in turn by
any higher-order correlation functions, will be driven to zero.

Our objective will be to find the path that is optimal, in some sense, at each stage
in the iteration. First, we must define optimality in the context of a parallel cascade
identification. At each stage in the analysis, the procedure will attempt to reduce the
magnitude of the lowest-order non-zero input-residual cross-correlation. Therefore,
at least in a local sense, the optimal path will be that which contributes the most to
this correlation function, while introducing no lower order correlations between the
input and residuals.

We will start by showing how 2 single Wiener cascade path can be used to reduce
both the residual mean and the first-order cross-correlation between the input and
the output residuals to zero. We shall then show that a maximum of T paths, where
T is the memory length of the system, are necessary to reduce the second-order cross-
correlation between the input and the output residuals to zero. Finally, we shall
‘develop new methods for estimating additional paths based on the third- and, in
principle, higher-order input-residual cross-correlation functions.

5.2.1 First Order Correlation Function

The linear element of the first Wiener cascade, &, may be calculated from the first-
order cross-correlation between the input, u(t), and the output, y(t). If the input is
non-white, the exact deconvolution presented in Equation (2.9), or the psendo-inverse
based deconvolution in Equation (3.21), may be used to compute the IRF from the
cross-correlation. Then, the output of this linear element, z(t), may be computed by
convolving the IRF with the input. The nonlinearity may then be characterized by
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fitting a polynomial between z(t) and 2(t). using a MMISE fitting procedure.

Consider the following lemma:

Lemma 2 Let u(t) and y(t) be the sampled input and output of a finite dimensional.

finite memory nonlinear system. Then, the variance of the residuals:

v(t) = Z h(3)u(t - J) . (3.1)

3=0

where h(j) is computed by solving (2.9), will always be less than or equal to the

veriance of y(t), with equality only occurring when @,y,(k) =0

Proof

Evaluate the variance of v(z):

T=1
ER*(t) = E (y(t) Zo h(j)u(t - J)) ]

=

T=1 r-1

-2 2% h(§)Efult = j)y(t)] + Zoh(z)h(J)E[u(t - t)u(t )
J= =
T-1 -1
= g5 -2 Zo h(§)puy(F) + _f_,:)h(i)h(:i)fﬁuu(i —J)

Tewrite this as a matrix equation:

E?(t)) = o2 — 2hT¢uy + BT Ouh _
= 2hT Gy + W R @2 Gy

Y 3

[
-ﬂ.a -ﬂ: uqu

Thereforé the residual variance is reduced by an amount equal to AT ®,,h, which,
by Lemma 1, is equal to the variance of the output of the linear filter h(j), and is
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therefore nonnegative. Furthermore, it can only be zero if the impulse response A{j),

and therefore the cross-correlation 6.y (7). is identically equal to 0 for all lags 5. ©

Corollary 1 Thus, using Eq. (2.9) to determine the linear part of @ Wiener cascade,
and then estimating the static nonlinearity using orthogonal polynomials end a mini-
mum mean squared error fitting technique, results in a caescade that reduces both the
residual mean and the first-order cross-correlation between the input and the output

restduals to zero.

Proof

The polynomial representation of the nonlinearity includes a constant term which is
orthogonal to the rest of the nonlinearity. Thus, using a MMSE fitting technique will
result in a zero-mean residual.

Since the cross-correlation across 2 compound system, made up of the difference
of the original system and the Wiener cascade, must be proportional to the cross-
correlation evaluated across the original system, any further path added to the model,
which is based on the first-order input-residual correlation, will have a linear element
that is proportional to that of the first path. Because the first nonlinearity was fitted
using a MMSE technique and the outputs of the two linear systems are proportional
to each other, no further reduction in the residual variance is possible. From Lemma
2, we can see that the only remaining solution is that the residual cross-correlation
itself is zero. Clearly, if another path is added to the model, the resulting residuals
must remain uicorrelated with the input. ‘ [m]

This result is originally due to Korenberg [51]. It has been included here for
~ continuity, and to establish the form of the argument, which will be used in later
proofs. o

5.2.2 A S_econd-Order Correlations -

The residual mean and the first-order correlation bet:ween the input and the residuals
will be zero after fitting the first pathway. Thus, any dynamics remaining in the
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svstem must be inferred from higher order correlation functions. In this section, we
will consider how the second-order cross-correlation car be used for this. We will
assurmne that u(t) and y(t) are the input and output of a nonlinear system. where the
output, y(t), is zero-mean and the first-order input-output cross-correlation. @.,(7).

is zero.

Theorem 1 Let Guuy(71, 7o) be the second-order cross-correlation between the input.
u(t), and the output, (1), of a nonlinear system. Assume that u(t) ts ¢ Gaussian noise
sequence of arbitrary colour, y(t) is zero mean. and the first-order cross-correlation

between u(t) and y(2) is zero. Let v(t) be the residuals:

v(t) =y(t) -k f h(r)u(t — ‘r))- + khT @ h (5.2)
Jor some filter, h, and gain, k. Then, the variance of the residuals, v(t), i minimized
when h is the principal generalized eigenvector of the pencil (Guuy: Pun)-
proof
Let z(t) be the output of k(7). By Lemma 1, the variance of z(2) is:

o2 = hT®uh

Thus, the residual, ¥(t), is zero mean. Its variance can be written:

b
1l

Ep?(t)]
E [(3(t) — k2*(2) + ko2)?]
E[y?] - 2kE[z*y] + 2ko2E[y] + K E[z*] — 2k*E[z*|02 + K6}

Recall that y is zero mean, by assumption. Using Equation (3.1), E[z¢] = 302 -
Therefore: ' i

0% = o2 — 2kE[y(t)z*(¢)] + 2kc
However, we may expand Efy(f)z2(t)] as follows:

106



T-1
Ey()z*(t)) = E |y(t) 3 h{m)h(n)u(t — m)u(t — 72)

Tme=0

7-1
2. h(m)h(m)Ely(t)ult — n)u(t — 7))

T1,Te=0
= AT ¢’uuyh

Thus:
0% = 02 = 2khT Guuyh -+ 2k* (BT Buuh)? (5.3)

Let (A;,9;) be the generalized eigenvalues and eigenvectors of the matrix pencil
(Puuy: Pun). Since @uyy is 2 real symmetric matrix [68], and P, is positive definite
(Lemma 1), the pencil is symmetric definite. Thus, for any two generalized eigenvec-

tors, g; and g;:
Q,T <pm;.g_:i = 6:'3'

where §;; is the Kronecker delta.

Express h as a sum of the eigenvectors:

T
h=3"ajg;

i=1

and, due to the presence of the gain k in (5.2), let:

T
Za.?:l

=1
Differentiate (5.3) with respect to one of the weights, a;:
e o (T by ) + S D) T )
But Guuygi = Xi®Puuli, and hT®,,g; = a;. Thus:
do2 b
B, = “Hhe(h—2k)

Optimizing, we see that either k =0, a; =0, or k = 4. Thus, h must be one of the

9i, in which case the residual variance becomes:

107



"

e 3 A . :\;‘
o, = 0, —2 (-2—') 97 Guuygi + 2 (—O—)
i

Thus, the variance is reduced by 52& The maximum reduction in the residual variance
is achieved by choosing h to be the eigenvector associated with the largest generalized

eigenvalue. O

Theorem 2 Let u(t) and y(t) be the input and output of a nonlinear sysiem, where
u(t) is an arbitrarily coloured, zero-mean Gaussian sequence, y(t) is zero-mean, and
the first-order cross-correlation between u(t) and y(t) is zero. Let (N, g;) be the gen-
eralized eigenvalues and eigenvectors of (Puuy, Puu). Let z(t) be the convolution:

T-1

z(t) = Zo gx(T)ult —7)

for some generalized eigenvector g, and let m(-) be a polynomial fitted between z(t)
and y(t), using ¢ MMSE technique. Let v(t) = y(t) — m(z(t)).

Then, fori # k, (X, g;) are generalized eigenvalues and eigenvectors of (Guuy, Pus),
" and gx is in the null-space of Guuy-

Proof

First, use the MMSE second-order polynomial nonliriearity, m(z) = 3z* — 3, which
was derived in Theorem 1. In that case, the second-order cross-correlation between
the input and the residuals, ¥(t), is: o

- Gy = Quuy — Aléw(glgf)Quu
Multiplying by one of the generalized eigenvectors of ¢yuy:

Guxvi = ¢uuygi - AkasgIt:gl,;l éuugi
= M®uubi = AePuugrdei
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where 6g; is 2 Kronecker delta. Thus, the generalized eigenvectors of (Oyyy, Puu) are
equal to those of (@uuy, Puu}, except that Ay, the eigenvalue associated with the IRF
of the linear part of the Wierer system, has been reduced to zero.

If we replace the second-order polynomial nonlinearity with a higher order polyno-
mial, the second-order cross-correlation across the Wiener path will be scaled. Thus,
if we recompute the residuals, v(t), using a different nonlinearity, the g; will continue
to be the generalized eigenvectors of (Guuy, Puu), and the only eigenvalue affected by
the change will be A,;.

If, however, the new nonlinearity is fitted using 2 MMSE technique, then the
principal eigenvalue of (Guuy, Puu) will be reduced to zero, just as it was by the
second-order polynomial nonlinearity. If this were not the case, @yuvr = APy gr, and
Theorem 1 would guarautee a reduction in the residual variance of at least &, which
is clearly not possible, since the nonlinearity was fitted using a MMSE technique.
Therefore g, must be in the null-space of Guyy. o

Note that if the input, u(t), is white, then ®,, = o2I. Thus, the generalized
eigenvalue problem is replaced with an ordinary eigenvalue problem. Using the prin-
cipal eigenvalue of ¢, results in the greatest reduction possible in residual variance,
when the nonlinearity is restricted to second-order polynomials, as in the non-white
case. Furthermore, such a path results in the maximum reduction in the Frobenius
norm [20] of the second-order cross-correlation between the input and the residuals.

5.2.2.1 Proposed Algorithm

We propose the following algorithm to build a parallel cascade model between u(t)
and y(t). We assume that y(t) is zero-mean, and that ¢, = 0. This will be the

case for any system once the output of a Wiener paﬁh based on the first-order cross-

correlation between u(%) and y(t) has been removed from the output.

1. Compute ®..., a symmetric Toeplitz matrix whose first row is an estimate of
the input autocorrelation.

2. Initialize the residuals, vp(t) = y(t), and set k = 1.
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3. Compute Gyur,_,. ad estimate of the second-order cross-correlation between u(t)

and ve— ().

4. Solve the generalized eigenvalue problem: Ouye,_,9 = A®uug. and let by = g,.
the generalized eigenvector associated with the largest eigenvalue (in absolute
value).

3. Compute z(t), the convolution of h; with u(t).

6. Fit a high-order polynomial, m;(-), between the IRF output, z(¢), and the

current residuals, ve—1(t).

=1

. Calculate the next set of residuals: v(t) = w1 () — ms(2(2))

8. Either exit, or set ¥ = k <+ 1 and return to step 3

Each iteration adds one vector to the null-space of the second-order correlation
between the input and the residuals. Thus, after T iterations the second-order cross-
correlation will be reduced to zero. Furthermore, the impulse responses returned by
this procedure will be equal to the generalized eigenvectors of ¢y, and they will be
returned in decreasing order of significance. Thus, for a given system, this algorithm
will lead to a model which depends only on the input auto-correlation function.

5.2.2.2 Benefit of Iterative Computation

Given the discussion surrounding the algorithm given in Section 5.2.2.1, one must
ask why we compute the paths from the second-order cross-correlation between the
input and tl;e current set of output residuals, rather than simply computing the
cross~correlation once, and then basing the cascade paths on the eigenvectors of that
cross-correlation matrix. To answer this question, we must consider the effects of
estimation errors on the cross-correlation matrix and, in particular, on its eigenvalues
and eigenvectors. To that end, we present the following lemma.
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Lemma 3 Let u(t) end y(t) be zero-mean signals, and let h be a generalized eigen-

vector of (Guuy, Pu), with eigenvalue X. If

T-1
w(t) = y(t) ZO A(7)u(t - 7)

Then.:

Guw = Ayl

Proof
Because & is a generalized eigenvalue of (@uuy:. Puu):
/\q’uuh = ¢uuyh

Expanding the product dyuyh:

T T
Z ¢1“W(7-1’ Tg)h(fg) = Z h(Tg)E[‘u(t - 7‘1)11(15 - Tg)y(t)]

=1 =1

= Elut—m) Y h(mult—m)ud)

2=l

= Efu(t — m)uw(?)]
Bu(T1) u]

Thus, instead of examining the effects of measurement noise on the estimate ém,
we need only consider the estimation error in the first-order cross-correlation @uyu-
From Equation (3.3), we see that:

Var [fu(r)] = 37 [ (Ben(E)ilE) + bum(E+ (€ = 7)) d

" The second term depends only on the value of the cross-correlation, @, and is
not affected by the iterative computation. Consider ¢y, which appears in the first

term.

$uww(7) = Elz(t)z(t — T)y(#)y(t — 7]

where z(t) is the convolution of k and u(t). We ccn see that the estimation error in
the impulse response depends in part on the variance of the output, y(t). Thus, by
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performing the calculation iteratively. we reduce the output variance as far as possible
prior to the calculation of each path. and therefore get the best possible estimate of

each path in the model.

5.2.2.3 Choosing the Final Path

At some point, the relative noise and signal powers present in the residuals will be
such that subsequent paths will be dominated by estimation error, and will there-
fore corrupt the model. As the optimal path is selected at each stage, once this
point is reached, no further paths can be based on the second-order cross-correlation.
Consequently, we will develop a test to determine when this point has been reached.

To determine whether or not the current path is primarily due to signal or noise,
we will examine its associated eigenvalue in the second-order cross-correlation matrix.
If the magnitude of its eigenvalue is consistent with the hypothesis that the residuals
contain only noise, we will reject the path, and conclude that no further paths can
be based on the second-order cross-correlation.

First, consider the perturbation of the eigenvalues of a Hermetian matrix, which
is perturbed by a Hermetian perturbation. From {89], we see that the maximum
perturbation in the principal eigenvalue of Gyus = Buuy + Guun is less than the 2-rorm
Of Gyum. Our task, then, is to estimate the 2-norm of the perturbation, Guun, using
known quantities.

We will need to know the second-order statistics of the entries of the perturbation
matriX, Guun. The expected value of the perturbation is zero, since u and n are

independent. If n is white, the perturbation variance can be written:

Bl )] = B [% 5 u(t—i)u(t—j)n(t)u(s—i)s(s-j_)n(s)]

st=]

wla i Efu(t — t)u(t — j)u(s - d)u(s — HEn(s)n(t)]
s=1

% [26,i - )+ 6%.00)]
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Thus, aside from points near the diagonal, the variance of the perturbation ele-
. agtat
ments is &,

From [47], we have the following matrix inequality:
I Alle< Vmax || g |l2 (5.4)

where Afa; ez ... ap] is an m by n matrix. Due to length of the data records
and the central limit theorem, the elements of the perturbation matrix must have
nearly Gaussian elements. Therefore, the squared 2-norms of its columns will have
chi-squared distributions, with T degrees of freedom.

Thus, to continue adding paths based on the second-order cross-correlation to
the model, we will require the principal eigenvalue of the cross-correlation matrix to
exceed the following threshold:

32> ——x‘/?:&s (3.5)
where ¥ is the “chi-squared” level for T' degrees of freedom 2t a some chosen confidence
level. Give.n that Equation (5.5) was derived using a fairly loose upper bound, it will
be quite conservative, and may reject paths that are still dominated by the system
dynamics. Simulations, presented in Section 5.2.4.5, will be used to demonstrate
the efficacy of this technique, as well as to establish an appropriate value for the
confidence level, which in turn will determine x and the threshold.

Two comments are in order. Firstly, we do not have access to the noise signal,
v, so the variance of the current residuals must be used in this test, making it even
more conservative. Secondly, this threshold is not based on the residuals that result
from the addition of the current path to the model, and therefore is not influenced
by any errors in the nonlinearity estimation. |

5.2.2.4 Use of a Pseudo-inverse

In Chapter 3, we used a pseudo-inverse based deconvolution operation to remove noise
from IRF's estimated using coloured input signals. In this section, we will examine
how this technique can be applied to IRF estimates obtained by solving a generalized
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eigenvalue problem involving the second-order input-output cross-correlation. Gyyy.
and the Toeplitz structured input auto-correlation matrix, ®,,.

To apply the pseudo-inverse based deconvolution, we replace h with o} &, k.
where &}, is a pseudo-inverse of ®,,. This is the projection of & onto the subspace
spanned by V7, the singular vectors of ®,, which correspond to significant singular
values. To achieve this, we must choose the order of the pseudo-inverse, and hence
the dimension of the space spanned by Vi, appropriately.

Let z(t) be the convolution:

T-1
z(t) =3 h(7)u(t - 7)
=0
and w(t) is the product z(t)z(t). From Lemma 3, we see that if (k, A) are a generalized
eigenvector and eigenvalue of (Guuy, @), then they are also solutions to:

Ouw = A@uuht

which we shall call the “equivalent linear problem”. In effect, in forming w(t), we
have increased the order of all of the nonlinearities in the system by one, transforming
an even system into an odd system.

Once we have estimated h from the generalized eigenvalue problem, we compute
z(t) and w(t). A polynomial, 77, (-) is fitted between them and the residuals:

() = w(t) — u(x(2))

are computed. We now apply the algorithm described in Section 3.2.1.1, using ¢uw
and 2,,(¢) as the cross-correlation and noise, to determine the correct order for the

pseudo-inverse, 3, . We then use ¥}, ®.,h as the IRF of the Wiener cascade.

5.2.3 Third-Order Correlations

Consider a nonlinear system, with input u(t) and output y(t). Assume that we have
used the parallel cascade method to drive the first and second-order cross-correlations
between the input and the output residuals to zero. Let v(t) represent thé current
output residuals. |
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As there is no information left in the first and second-order correlaticns, we must
estimate the linear element of the next cascade from the third-order correlation be-
tween the input and the output residuals. Given N data points, a biased estimate of
the third-order cross-correlation between z(t) and »(t) is:

N
uuan(3,3.1) = 5 3 (= Juln = j)u(n — K)o(n) (5

n=l

Let k(i) be the impuise response of the next Wiener cascade. The static nonlin-
earity in this cascade will be chosen such that the first and second-order correlations
between the cascade input and output are zero. In this case, the third-order cross-

correlation function across this system can be written:

Guunn(1, 3, ) = ch(DR(7)R(K) (3.7
where ¢ is the third-order term in the polynomial representation of the static nonlin-
earity.

We will choose h(Z) such that the mean squared error (MSE) between the third-
order cross-correlations measured across the cascade (5.7) and estimated from the
data (5.6) is minimized. The MSE is:

T - -
= 3 (Bl B) = cROR(AE)” (5.8)
igk=1

We will attempt to find A(7) using a gradient search procedure. Assuming that
we have an initial guess for h(z), the gradient can be written:

. _ OMSE
9(i) = hG)

%3 { i w5, RIRCVRCIICR) — R éhz(i))}

Jik=1

We can also compute the best distance to go in the direction of the gradient. If
we replace our guess h(?) with k(%) + ag(z), and optimize with respect to a;, we get a
ﬁfth degree polynomial equation:

Ac’+Ba'+Cao®+Do? +Ea+F =0 (5.9)
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with coefficients:

4 = —'3[979]3
B = -13[g.9)[g. 4]

C = -24[g,gllg, A* — 6[h, hl[g. g

T, (5.10)
D=3 gj_l Suwar(is J: E)9(1)5(7)g (k) — 18], Rl{h, g]lg. 6] — 12[. o]
T
E = 6_g_lému(i,j,k)g(i)y(j)h(k)-12Ih,h][9,h12-3[h,h12[g,g]
T
3 3 Guulisd KIR()A()g(k) - B[k, H*[h. o]

1.5.k=1

F

where [R, g] is taken to be the inner product between the vectors h(z) and g(z). Equa-
tion (5.9) will either have 1,3 or 5 real solutions, which correspond to the local extrema
of the MSE along the gradient vector. As o = oo correspond to maxima in the MSE,
only the odd numbered roots need be considered. The best of these is used as the
starting point for the next iteration.

This gradient iteration can be applied repeatedly, until no further reduction in
the MSE is obtained. Furthermore, it can be shown that when the gradient vanishes,
the vector h(z) will have the following property, which is in some sense analogous to
it being an eigenvector. '

_ZT;I Puwun(hs 3, KIR(E)R(F) = Ah(k) (5.11)
ig=

This result can be used to test the convergence of the_iteration, and determine
when a (potentially local) minimum has been reached.

Clearly, a similar derivation could be used to develop a gradient search algorithm
for fourth (or higher) order systems.

5.2.4 Single Input Simulations

We examined the behaviour of these algorithms by simulating 2 single-input, homoge-
neous second-order system. This system was completely deseribed by the second-order

116



Simulated Second-Order Kemnel
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Figure 5.2: Second-order Volterra kernel of the system used in the single-input sim-
ulations.

Volterra kernel shown in Figure 5.2. This kerrel was produced by placing 3 weighted
impulses on a 64 by 64 point grid. “Mirror images” of the impulses were placed across
the diagonal, and the resulting kernel smoothed.

This kernel was designed to have several different features of different sizes, so that
the quality of the kernel estimates would be reaﬁily evident from a visual inspection.
The largest feature was the peak at (0,0) lag. This, and the two negative peaks,
one along each axis, were well modelled by all methods. The next smallest feature
was the negative peak on the diagonal. Finally, the small ridge separating the two
negative peaks near the origin provides a feature that is quite difficult to model.

In the first set of simulations, the input was a 10,000 point sequence of whité
Gaussian noise. The kernel output was generated using a second-order convolution
(Equation 2.12). |
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Second=Order Kemel Esumate
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Smoothed Second—-Order Kemnel Estimate

0.015+

0.0 )

Amplitude
o
§

iy

° lag (samDIBS)

lag (samples)

Figure 5.3: Second-order Wiener kernel estmated using the Lee-Schetzen cross-
correlation method, before (upper) and after (lower) smoothing
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5.2.4.1 Lee-Schetzen Cross-Correlation

First, for comparison purposes, we estimated the second-order Wiener kernel. shown
in the upper panel of Figure 5.3, using the Lee and Schetzer cross-correlation method
[62]. Even though the input was white Gaussian noise, the cross-correlation estimate
was dominated by high frequency noise. This noise could be suppressed, somewhat,
using a 9-point smoothing filter. The smoothed kernel estimate is shown in the lower
panel of Figure 5.3. Although the noise is much reduced, only the largest of the kernel

features are visible.

5.2.4.2 Parallel Cascade Methods

We examined two versions of the parallel cascade method. In the first case, the linear
elements of the Wiener paths were based on randomly selected single slices of the
second-order cross-correlation function. In the second case, the principal eigenvector
of the whole second-order cross-correlation function was used to identify the linear
elements.

We first examined convergence speed under noiseless conditions. After each path
kad been added to the model, the residual variance was computed. This was used to
compute the percentage of the output variance that had been accounted for by the
model (%VAF, see Equation 3.5). The number of floating point operations (fops)
required in the computation of each path was also determined. Convergence speed
was evaluated in terms of the number of flops required to reach a given level of model
accuracy. "

Figure 5.4 plots the model accuracy (% VAF) against the number of flops for the
two methods. 7Initial convergence was faster when the linear dynamics were estimated
from single slices of the second-order correlation function, as suggested by Korenberg
[56). This was due to the high cost associated with the computation of each path using

_the eigenvector method. Both methods required approximately the same number of
 computations to reach an accuracy of 90%VAF. For higher accuracies, the eigenvector
method proved to be faster than the single slice implementation since many féwer
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Model Accuracy as a Function of Computation Time
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Figure 5.4: Convergence speed for the single slice and eigenvector versions of the
parallel cascade method under noiseless conditions. The model accuracy, expressed
as the percentage of the output variance accounted for by the model, is plotted as a
function of the number of floating point operations (flops) required in the computa-
tions. Each + sign represents one pathway added by the eigenvector method. Each
cross indicates the addition of 10 pathways by the single-slice algorithm

paths needed to be computed.

Figure 5.5 shows the kernel estimated by the original single slice variant of the
parallel cascade method. This kernel accounted for 97.8% of the variance of the
output, but contained high frequency estimation noise. Note that at this stage, the
single-slice model comprised 90 Wiener cascade paths,-and had more parameters than
the original second order kernel.

Applying the eigenvector method and fitting 5 Wiener paths resulted in a model
which accounted for 99.7% of the output variance. All the features present in the
simulated kernel were clearly visible in the model’s second-order kernel, shown in
Fig. 5.6. Unlike that produced by the single slice implementation, this modei had far
fewer parameters than the simulated system.

Using the eigenvector method to add an additional 5 paths to the model, resulted
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Figure 5.5: Second-order Volterra kernel computed from the first 90 paths identified

by the single slice method. It accounts for 97.8% of the output variance.
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Figure 5.6: Second-order Volterra kernel computed from the first 5 paths identified

by the eigenvector method. It accounts for 99.7% of the output variance.
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Estimated Second-Order Kernel

lag (samples)

lag {(samples}

Figure 5.7: Second-order Volterra kernel computed from the first {0 paths identified
by the eigenvector method under noiseless conditions. This kernel accounts for 99.97%
of the output variance.

in a model that accounted for 99.97% of the output variance. At this stage, the kernel
estimate, shown in Figure §.7, is virtually indistinguishable from the true kernel.

5.2.4.3 Performance Under Noisy Conditions

We then examined the performance of these methods in the presence of output noise.
White Gaussian noise was added to the system-output, with variances ranging from
10 - 100% of the output signal variance. Both methods were used to identify the
system at each noise level. Model accuracy was assessed by, measuring the ability
of the identified systems to predict the uncorrupted system output. In all cases, as
paths were added to the model, the prediction accuracy increased initially, reached 2
maximum, and then decreased, as subsequent paths began to model the noise present
~ in the residuals rather than the underlying dynamics. Fig. 5.8 shows the maximum
model a,cmlracyobtaine-d by each method as a function of the output noise level.
It is evident that the eigenvector method produced better estimates of the system
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Model Accuracy as a Function of Qutput Noise Level
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Figure 5.3: The maximum model accuracy obtained as a function of the output noise
level. In all cases, model accuracy was assessed in terms of output error with respect
to the uncorrupted output signal

dynamics, at all noise levels. Furthermore, the eigenvector method performed much
better at higher noise levels than did the single slice method.

5.2.4.4 Performance Using Band-Limited Inpﬁts

In this section, we present a simulation which shows that when the test input is
band-limited kernel estimates obtained from noisy data can be obscured by decon-
volution noise, as suggested m Section 5.2.2.4. Furthermore, we will demonstrate
the improvements in both the kernel estimates and the prediction accuracy that are

‘realized when the pseudo-inverse deconvolution algorithm is used to suppress the

deconvolution noise.. ,

In this simulation, a band-limited limited input signal was generated by filtering
a 10,000 point sequence of white Gaussian noise witk a fourth order Butterworth
low-pass ilter with a normalized cut-off of 0.1. This band-limited Gaussian signal
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Relevant Spectra

10 . i ‘ —
/\Fr — Coloured Input Signal
o~ Output Noise (10 dB)
== Output (White Input) 3
== Qutput (Coloured Input);

1.0
Normalized Frequency

Figure 5.9: Spectra relevant to the band-limited input simulation. The solid line
shows the power spectrum of the band-limited test input used during the identification
experiment. The dashed and dash-dotted lines show the power spectra of the system
output, when the system was driven with a white input and the band-limited test
input, respectively. The measurement noise spectrum is plotted as a dotted line.

was then processed by the kernel shown in Figure 5.2. White Gaussian noise was
added to the kernel output at a SNR of 10 dB.

Figure 5.9 shows four spectra which are relevant to the simulation. The input
spectrum is plotted as a solid line. It is evident that at normalized frequencies of less
than 0.15, the output spectrum evoked by 2 white input (dashed line) and that evoked
by the band-limited test input (dash-dotted line) are identical. At higher frequencies
the white input evokes more power than the band-limited input, however both soon
drop below the noise spectrum (dotted line). Thus. the band-limited input appears
to excite those dynamic modes present in the system which are visible through the

_-~noise, Hence, this input should be adequate for system identification purposes under
- these conditions.

124
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Figure 5.10: Second-order Volterra kernel estimated by applying the optimized par-
allel cascade method with exact deconvolution to noisy, band-limited data.
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Figure 5.11: Kernel estimated from noisy band-limited data using the pseudo-inverse
based deconvolution
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As in previous simulations, a parallel Wiener cascade model was identified using
the generalized eigenvector algorithm described in Section 5.2.2.1. The resulting
kernel, shown in Figure 5.10, was dominated by large amplitude, high frequency
noise. which is assumed to be due to the exact deconvolution perfurmed implicitly
by the generalized eigenvector algorithm. Despite the presence of this noise, which
completely obscures the kernel, this model predicted 98.6% of the variance of the
noise-free output.

The kernel shown in Figure 5.11 was generated using the generalized eigenvec-
tor algorithm in conjunction with the pseudo-inverse based deconvolution method,
described in Section 5.2.2.4. Here, the deconvolution noise has been effectively sup-
pressed. This model predicts 99.8% of the noise-free output and 98.3% of the ker-
nel variance, both substantial improvements over the model gencrated without the

pseudo-inverse based deconvolution.

5.2.4.5 Choosing the Final Path

A series of Monte Carlo simulations was performed to determine how well the thresh-
old proposed in Equation (5.5) discriminated paths that contributed information
about the system from those that modelled mostly noise. During each run of the
Monte Carlo simulation, new system input and output and noise signals were gen-
erated. A 20 path Wiener cascade model was then fitted between the input and
the noise corrupted output. As each path was estimated, the ratio of the principal
eigenvalue to the threshold given in (5.5) was computed, as well as the prediction
accuracy of the model. Once 2ll 20 paths had been fitted, the prediction accuracy
was normalized with respect to the maximum obtaired during that run. For each
run, the normalized prediction accuracy was evaluated as a function of the threshold
level.

This test was performed on three different systems, chosen such that the paraliel
cascade expansion would converge at different rates for each system. The first system
was the homogeneous, second-order system, shown in Figure 5.2, used in the previous
simulations. The second system had a kerpel, shown in the upper panel of Figure
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Figure 5.12: The top panel shows the second-order Volterra kernel of the secord
system used in the threshold tests. The kernel for the third test system is shown in
the lower panel.



Convergence under Noiseless Conditions
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Figure 5.13: Convergence, under noise-free conditions, of the optimized parallel cas-
cade method applied to the three systems used in the threshold simulations.

5.12, which was constructed in a similar manner to the first. However, the peaks in
the kernel were concentrated near the diagonal to slow the convergence of the parallel
cascade. The third system was an LNL cascade consisting of a fourth-order Butter-
worth high-pass filter, followed by a squarer, followed by a fourth-order Butterworth
low-pass filter. Given the nearly diagonal shape of this kernel, shown in the lower
_panel of Figure 5.12, we would expect convergence to be slow indeed.

The three systems were first identified under noiseless conditions, to atabligh the
speed at which the parallel cascade expansion converged for each system. Figure 5.13
shows the prediction accuracy as a function of the number of paths for models of the
three systems. From this figure, it is evident that parailel cascade models of the three
systems converge at very different rates. Taken together, simulations performed on
these three systems shounld be representative of the bebaviour expected with a wide
variety of unknown systems.
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Effect of Thresholding Eigenvalues
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Figure 5.14: Normalized model accuracy as a function of the decision threshold.

Normalized accuracy of 1 corresponds to the best model produced by a given parallel
cascade identification.

Ten runs were performed on each system, at each of four SNRs: 0, 3, 6 and 10
dB. In each case, the confidence level, which determines the value of x in Equation
(5.5), was set to 50%.

The upper trace in Figure 5.14 plots the mean normalized accuracy, evaluated
over all systems and SNRs, as a function of the decision threshold. This plot has a
peak at a threshold of 0.7, which yields a normalized accuracy of 0.9992. Thus, on
average, if a decision threshold of 0.7 is used, the resulting model would account for
99.92% of the variance accounted for by the best possible model estimated from the
data.

The Jower two traces in Figure 5.14 show the mean less one standard deviation and
the minimum normalized prediction accuracies. These curves also reach a maximum
for a threshold of 0.7. The minimum normalized accuracy was 0.9901. Thus, even
in the worst case observed, using a decision threshold of 0.7 resulted in a model
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which accounted for 99.01% of the variance accounted for by the best parallel Wicner

cascade model which could be obtained from the given data.

5.3 Multiple-Input Systems

As we discussed in Section 2.4, multiple-input systems can be represented by Wiener/
Volterra series that contain two types of kernels: self-kernels and cross-kernels.

The self-kernels are driven by single inputs; in general, a multiple-input system
will have a series of self-kernels for each of its inputs. In principle, these may be
identified in the same ways as the kernels of 2 single-input system. However. as
was the case with the multiple-input Wiener structures considered in Chapter 4, the
presence of multiple inputs can cause special interference problems.

The cross-kernels, on the other hand, receive excitation from several inputs. Iu
principal, they may be estimated from multiple-input cross-correlation functions. In
this case, the presence of any self-kernels, or of cross-kernels involving different sets
of inputs, can lead to interference, and estimation error.

The lowest order cross-kernel is second-order (first-order in two inputs). This may
be estimated much like the second-order self-kernel. We will now develop a method to
find the two-input Wiener system, as illustrated in Fig. 5.15, that best approximates
the cross-kernel.

Initially, assume that the inputs, u;(2) and u.(t), are white, so that the cross-
correlations, @,z (7) and @,,.,(7), are equal to the impulse responses, h,,(r) and
by (7), respectively. If the inputs are not white, the analysis presented in this sec-
tion will estimate the correlations rather than the IR¥s. The input auto-correlation
functions will then have to be deconvolved, as suggested by Hunter and Kearney {30],
and presented in Equation (2.9). .

- Calculate the second-order cross-cross-correlation across the candidate path:

Puyuay(71, 72) = Bl (t — 1)t — 2)y(8)] = khoy (12 (72) (5-12)

and determine the mean-squared error between the cross-correlation observed in the
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Figure 5.15: A multiple-input nonlinear system (top), and the multiple-input Wiener
system (bottom) that is used to approximate it.

data, and that calculated for our candidate path. We will seek impulse responses.
hu,(71) and hy,(72), that minimize this MSE, which car be written:
1 e .. NERY:
MSE = 75 3. ($uusas(fod) = khua (Yhua () (5.13)
ij=
Calculate the optimal value for the constant, k, given the two IRFs h,, (n) and
by, (12) by differentiating the MSE with respect to k, and setting the result to zero.
Due to the scaling introduced by k, let h,,(71) and hy,(72) have unit norms.

T
k= __zl 61:;1.::1«(‘5, J)hm (‘)huzo) (5'14)
iJ=
Given this value for k, expand Eq (5.13)
T 2
7 MSE = 1_1;2- { Z éfuu:y(i! J) - [i 5mh-u; (z)hu:(:')] } (5'15)
=1 j=1

We must therefore maximize the second term in (5.15), subject to the constraint
of unit norms for the IRFs. To achieve this, write the cross-cross-correlation matrix
in terms of its singular value decomposition (SVD) {20]:

5u;u:y =[SV T (5.16)
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where [/ and V" are orthonormal matrices with rows equal to the left and right singular
vectors of the cross-correlation matrix. S is a diagonal matrix of the singular values.

sg. Now, write the IRFs h,,(7) and h,,(7) as weighted sums of the singular vectors

Uy, and Tg:

T T
hoy = B, huy =D BT (5.17)

k=1 k=1

We must now choose the oy and B to minimize the MSE. Expanding (5.15) it

can be shown that this is equivalent to maximizing:

T 2
{Z Skakﬁk} (5.18)
k=1

subject to the constraints:

T T
Yoap=> fi=1 (5.19)
k=] k=1

Solving this constrained optimization, we see that all of the o, and 3, must
be equal to zero, except those that are associated with the largest singular value,
which must both be unity. Therefore choosing the vectors associated with the largest
-singular value gives us the optimal choice of the IRFs. As stated previously, if the
inputs are non-white, the singular vectors will have to have the input auto- correlation
functions deconvolved from them, as suggested in Hunter and Kearney {30].

5.3.1 Simulations Involving Multiple-Input Systems

For these simulations, we created a two-input, second-order system that had first
and second-order self-kernels associated with each input, as well as a cross-kernel
that processed both inputs. For the first-order kernels, shown in the upper panel of
Figure 5.16, we used the IRF's of the two-input Wiener system simulated in Chapter
4. The second-order kernels were geﬁera.ted using techniques similar to that used in
the single-input simulation, presented in Section 5.2.4; by placing impulses onr a grid,
and then smoothing the resulting kernel. These kernels, shown in Figures 5.16 and
5.17, had memory lengths of 64 points each, totalling 8256 independent kernel values.
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Figure 5.16: Kernels of the simulated two-input system. The upper panel shows two
first-order self-kernels, one for each input. The second-order cross-kernel is shown in

the lower panel
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Simulated Second—Order Self Kernel {(input ul(t))
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Figure 5.17: Second-order self-kernels of the simulated two-input system. The upper
panel shows the kernel associated with u,(t). The kernel which was driven by ua(t)

is shown in the lower panel
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Two 25,000 point records of white Gaussian noise were used as inputs. Kernels were
estimated using the methods presented in this paper, and by using single slices of the
correlation functions, as suggested by Korenberg [56].

As in the previous simulations, we evaluated model accuracy as a function of the
number of computations required, both under noiseless conditions, and with various
levels of output noise. Figure 5.18 shows the rate of convergence under noiseless
conditions for both methods. Even under noiseless conditions, the SVD method

converged significantly faster than the single slice formulation.

Model Accuracy as a Function of Computation Time
two—input system

100

Model Accuracy
(percent VAF)

+  eigenvector method
»¥—X single slice method

0 Number of Operations 200
(tens of millions)

Figure 5.18: Convergence speed for the muitiple-input implementatior of the single-
slice and eigenvector methods. Model accuracy is plotted as a function of the number
of fiops required in the computations. The -+ signs each represent one pathway being
added by the eigenvector method. The crosses each represent 25 pathways being
added by the single slice method '

In Fig. 5.19, the maximum model accuracy obtained is plotted as a function of
‘the output noise level. From this figure, it is evident that the SVD based method
produced much better models than the single-slice method, at all noise levels.

Even under noiseless conditions the single slice method was only able to account
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Model Accuracy as a Function of Output Noise Level

two-input system
100:':_ T T T
X
x
=
x
[ x
x
x
=
x x
il -
i
1]
5 § o
o =]
O E | e 4
< g
o 2
T @©
2L o
= S -
[+]
Q
o
= ° -
x eigenvector method ° o
© single slice method )
70 1 L L

0 Noise Level 100

(percent of output signal varaince)

Figure 5.19: Noise performance of the multiple-input algorithms.

for 85% of the output variance. This poor performance is probably due to interference
in the cerrelation estimates caused by nonlinear interactions among the input signals,
as described in the previous chapter, which dealt with multiple-input Wiener systems.

This interference will be present, regardless of which method is used, and result in
the degradation of correlation estimates. Provided an adequate initial estimate of the
IRF's is available, the iterations proposed in Chapter 4 may be used to estimate and
remove much of this interference. At some point, due to it’s poor noise performance,
the single slice method becomes unable to provide such an initial estimate, and the
iteration fails.

However, due to its superior noise performance, the SVD method is less sensitive to
this degradation, and therefore produces better estimates of the system. Furthermore,
these estimates can then be used to initiate the interference suppression. Thus, the
superior noise performance of the SVD based method provides two advantages: first,
it yields better initial estimates than the single slice method, and second, it allows
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the iterative noise suppression techniques, developed in Chapter 4 to be used at lower

SNRs, further increasing its advantage in modet accuracy.

5.4 Summary

In this chapter, we considered how to model nonlinear systems using a parallel sum of
Wiener systems. We developed procedures that estimate the optimal Wiener system
to add to the array at each stage in the modelling. Furthermore, we demonstrated
that our expansion is unique, given the input auto-correlation.

The development of these methods represents an important advance in the tech-
nology of nonlinear system identification. Because our expansion is unique, and each
pathway is optimal, the results are repeatable, and require little, if any, user inter-
vention. As a resuit, they should be suitable for use by a wide variety of researchers
who have little background in the specifics of nonlinear system theory.

Our approach is to use a single Wiener cascade, whose linear element is derived
from the first-order input-output cross-correlation, to drive the mean of the residuals
and the first-order cross-correlation between the input and the residuals to zero.

The linear elements of subsequent paths are derived from the second-order cross-
correlation between the input and the residuals. The procedure outlined in this
chapter identifies the Wiener cascade that produces the greatest reduction in the
variance of the residuals, subject to the constraint that the nonlinearity is represented
by a second-order polynomial. When the input is white, this procedure also results
in the greatest reduction in the F-norm of the second-order cross-correlation matrix.

Under noiseless conditions, this procedure should drive the second-order correle-
- tion to zero, using a number of paths which is at most equal to the memory length of

the system. If noise is present, this point cannot be reached, as paths will eventually
-model the noise instead of remaining dynamics. We provide a criterion to help the
investigator decide when to stop basing cascade paths on the second-order correlation
function.
Finally, we developed a techinique that can be used to find the Wiener path that
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produces the greatest reduction in the mean square value of the third-order cross-
correlation between the input and the residuals. Because a closed form solution to
this problem was not evident, we developed a gradient search scheme, In principal.
this gradient search could also be used with higher order correlation functions.

We have shown how these methods may be applied to multiple input systems.
The approach is essentially the same as that emploved with single input svstems.
although we have more correlation functions at our disposal. Furthermore, the basic
building block is a multiple-input Wiener cascade, Chen’s [13] 1-c structure, instead
of the single input systems used in the previous case.

Using numerical simulations, we demonstrated that these algorithms converge
more quickly than the original single-slice based parallel cascade methods, and that
this speed advantage increases with the desired level of model accuracy. Furthermore,
the optimized parallel cascade methods were more robust against noise than the
original implementations. In Chapter 6, we will demonstrate how these procedures
work when they are applied to data from physical systems.

i
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Chapter 6

Case Studies in Nonlinear

Identification

While much can be learned in digital simulations, it is difficult to simulate many of
the constraints facing experimenters. Some, such as the finite roll-off of both anti-
aliasing and reconstruction filters, which limit the bandwidth of the measured input
and output signals, and the finite resolution of analogue to digital converters (ADC),
which generate quantization noise, are due to the data acquisition apparatus. Qther
constraints are due to the experiment itself. For example, the bandwidth of the test
input may be restricted by the apparatus. In experimental studies of joint dynamics,
perturbations are applied using either torque motors or hydraulic actuators, both of
which act as low-pass filters and limit the perturbation bandwidth. A final constraint
is the presence of measurement noise, which is often assumed to have a Gaussian
distribution and white spectrum. Neither of these assumptions is necessarily valid.
This chapter describes two applications of the nonlinear system identification
methods, developed in previous chapters, to real data from two physical systems.
The first is an experiment conducted on an analogue nonlinear system constructed
using a combiﬁation of linear filters and an analogue multiplier. We used this exper-
iment to assess the applicability of our methods under laboratory conditions. The
second application is the identification of a model of the relationship between the
movement of a joint and the resulting myoelectric activity: the stretch-refiex EMG.
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This was done to examine how our algorithms can be applied to data from an un-
known, physical system and to elucidate some of the choices that must be made

during an analysis.

6.1 Identification of an Analogue System

6.1.1 Methods

The test system was created using analogue filters and an analogue multiplier!. A
block diagram of this system is shown in Fig. 6.1. Details regarding the construction
of this system can be found in Appendix B.

If the linear elements in Figure 6.1 were all low-pass, it would be possible, at least
theoretically, to map the static nonlinearity simply by applying constant inputs at
various levels. Clearly, if one or more of the elements is high-pass, this approach will
fail. Therefore, we examined how the identification algorithms performed whben both
low-pass and high-pass filters were used in various configurations in the test system.
A summary of the configurations used in the experiments is presented in Table 6.1.

u(t)

— k() | ()

ua(t) ha(r) | ¥(@)
t
u—Z(—)" ha(7) Za(1)

Figure 6.1: Block diagram of the electronic system used in the experimental verifi--
cation of the eigenvector method. Note the internal signals, z,,z2, and u; were not
measured, and are included for discussion purposes only.

In each experiment, the system was driven by two highly coloured inputs. These
consisted of 6000 points of white Gaussian noise, filtered digitally by a fourth-order -
Butterworth low-pass filter with a normalized cut-off of 0.1. This stimulus, repeated

IMPY-100BG Burr Brown
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Experiment hi(7T) ha(7) hi(7)

1 Low-Pass Low-Pass Low-Pass
Low-Pass Low-Pass High-Pass
High-Pass High-Pass Low-Pass

Lo o

Table 6.1: Summary of experimental configurations

5 times, was presented at 1000 Hz by a 16 bit digital to analogue converter, and
low-pass filtered by a 100 Hz reconstruction filter. All signals were low-pass filtered
at 100 Hz, and then sampled at 1000 Hz, using 16 bit analogue to digital converters.

Once a model had been identified, its accuracy was assessed in two ways. Firstly.
the measured input signals were applied to the model, and its output computed. This
was compared with the measured output to vield the “prediction accuracy” attained
by the model. Secondly, we generated the second-order cross-kermel for the model,
and compared it with a theoretical kernel, generated analytically using the impulse
responses of the linear filters employed in the system. This produced the “kernel
accuracy”. In both cases, accuracy was reported as the percentage of the variance
accounted for by the model (%VAF) (See Equation 3.5).

6.1.1.1 Choice of Sampling Rate

Ideally, the anti-aliasing filters should have constant gain and linear phase for fre-
quencies between DC and the cut-off, followed by a rapid transition to zero gain. In
practice, they have nearly constant gain and linear phase below the cut-off frequency,
but the theoretical attenuation is only reached well above the cut-off frequency. To
avoid distortion and aliasing, we used 2 sampling frequency approximately ten times
kigher than the expected Nyquist frequency [5].

Because the signals were over-sampled, it was necessary to decimate them prior
to the analysis. Decimation in software has two advantages over using a lower initial
sampling rate. Firstly, the raw data is low-pass filtered using a digital filter, whose
characteristics are much closer to ideal than the analogue filters used in the initial
sampling. Secondly, the spectra of the input and output signals can be examined
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prior to selecting the final sampling rate, greatly reducing the risk of inadvertently
aliasing the data.

The choice of sampling rate is straightforward for a linear systems, since the pres-
ence of energy at a particular frequency in its output implies both that the frequency
is in the pass-band of the system, and that there is power at that frequency in the
input signal. Thus, the bandwidth of the output will be, at most. the smaller of
the input bandwidth and the system bandwidth. If the sampling rate is sufficient to
represent the input signal without aliasing, it must also be sufficient to represent the
output.

The problem is more complex for nonlinear systems since there may be output
power at frequencies different from those present in the input {110]. For example,
consider 2 Wiener system consisting of a linear dynamic element followed by a squarer.
If the input is sin(wt) then the output of the linear element will be & sin(wt + ¢), for
some gain, k, and phase shift, ¢. The output of the static nonlinearity, however, will
be £(1 — cos(2wt + 2¢)), which contains one term at DC, and another at twice the
frequency of the input. Thus, while a sampling rate between 2w and 4w is adequate
to represent the input [5], the high frequency component in the output would either
be aliased, or eliminated by anti-aliasing filters. In sampling such a system, care must
be taken to ensure that neither the input nor the output is aliased.

These considerations did not pose problems in this case, as the input bandwidths
were always wider than those of the outputs. Figure 6.2 shows the power spectra of
the input and output signals measured during an experiment where hy(7) and ha(7)
were low-pass, and hs(7) was 2 high-pass filter. This configuration resulted in the
widest output bandwidth. Therefore, a sampling rate chosen for this con:ﬁg-;ra.tion
would be adequate for all of the experiments. )

By examining the spectra in Figure 6.2, we can see that the “noise floor” is reached
at about 200 Hz. Thus, resampling the data at 400 Hz will not result in the loss of any
significant information. To achieve a decimation by a factor of 2.5, we interpolated

the data by a factor of 2, and then decimated the result by 5, for a final sampling
rate of 400 Hz.
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Input and Output Power Spectra
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Figure 6.2: Power Spectra of the input and output signals measured during the low-
pass/high-pass experiment.

6.1.1.2 Characterization of the Linear Filters

Nominal filter characteristics and impulise responses could have been calculated the-
oretically from the component values. However, given the tolerances associated with
each component, there would be considerable uncertainty associated with each of the
IRFs. Thus, we determined the filter IRFs experimentally with the same input se-
quences used to identify the nonlinear systems. Due to the low power in the input
sigral at high frequencies, the pseudoinverse based deconvolution technique, devel-
oped in Chapter 3, was used in the filter estimation. The impulse responses for the
filters are shown in Figure 6.3. Design parameters for the filters, together with a
circuit diagram, are presented in Appendix B.
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Impulse Responses of Linear Filters
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Figure 6.3: IRF's identified for the filters used in the _analogue simulation
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6.1.1.3 Characterization of the Measurement Noise

The inputs to the circuit were grounded and the output recorded for 30 seconds at
a sampling frequency of 1,000 Hz. Its power spectrum was then estimated using 1
second segments, which corresponds to a frequency resolution of 1 Hz. The noise
spectrum was white, except for two large peaks at 20 and 40 Hz, as shown in Figure

6.4. The average noise power was 2 x 10~8V72,

Power Spectrum with Inputs Grounded
10 I : . ‘

h
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o

}
1
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> ' ' ' ' 500
Frequency (Hz)

Figure 6.4: Output power spectrum measured when the inputs were grounded

6.1.1.4 Characterization of the Analogue Multiplier

The inputs to the multiplier were driven with two independent 30,000 point Gaussian
noise sequences, each pre-filtered by an eighth order digital Butterworth filter with a
cut-off of 25 Hz. This pre-filtering was used to ensure that both input signals would
not be distorted by either the reconstruction or anti-aliasing filters. The product of
the inputs was compared with the measured output. It accounted for 99.996% of the
output variance, which is well within the 1.0% full scale error (0.01% error variance)
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Figure 6.5: Block diagram of the configuration used in the low-pass/low-pass experi-
ment. Filter characteristics can be found in Appendix B

specified for the multiplier.

6.1.2 Low-Pass/Low-Pass Case

We first examined the low-pass/low-pass configuration shown in Figure 6.5. This

system is completely described by its second-order cross-kernel, which is given by:
T-1

houyua (1, T2) = 'Zo ha()hi(1y — ) ha(ma — )
The filter impulse responses (shown in Figure 6.3), were used to generate the theo-
retical kernel for this system, which is shown in Figure 6.6.

The optimized parallel cascade method, developed in Chapter 5, was then used
to estimate the second-order cross-kernel for the system. Since the system could
be fully described by its second-order cross-kernel, the first-order input-output cross-
correlation functions contained only noise. Similarly, there was no information present
in the single-input second-order cross-correlations. Therefore, the linear dynamics of
all paths were estimated from the principal left and right singular vectors of the
éécond—order cross-cross-correlation, as described in Section, 5.3.

Since the inputs were not white, the principal singular vectors were equal to the
. first order cross-correlations across the linear elements, rather than their IRFs. Thus,
the input auto-correlations had to be 'dec-onvolved from the singular vectors to esti-
mate the impulse responses of the linear elements. Deconvolving the iﬁput a.uﬁocor-
relation functions using the Toeplitz matrix inversion procedure, as suggwted in [30]
(see Equation 2.9), resulted in models that predicted the output well, but the kernels

146



Theoretical Second—Order Cross—Kernel
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Figure 6.6: Second-order cross-kernel of the low-pass/low-pass system, generated from
the IRFs of the filters used in the system.

were buried in large amplitude, high frequency noise, as shown in the upper panel of
Figure 6.7. Given the similarity between this situation and the problems that arise
when coloured inputs are used in the identification of linear systems, we attempted to
use pseudoinverse based input deconvolution (Equation 3.21) to suppress tkis ringing.
Application of the pseudoinverse based deconvolution to this problem was not

- straightforward since an analytical method of selecting the correct pseudoinverse or-
der had not been developed. For svstems estimated from a single-input second-order
cross-correlation, the solution of the generalized eigenvalue problem performs the de-
convolution implicitly, and allows the formulation of an equivaleat, first-order problem,
which may be used to determine the appropriate pseudoinverse order. In contrast, for
the two-input problem, linear dynamics are estimated using 2 singular value decom-
position followed by an explicit deconvolution: a formulation whick does not lead to
an equivalent first-order problem. Furthermore, the orders of thg two pseudoinverses,

one for each input, appear to be coupled. As a result, we“haw;e been unable to derive
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Exact Inverse Deconvolution
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Figure 6.7: Effect of using pseudoinverse deconvolution on the initial estimate of the
second-order cross-kernel. Note that the amplitude of the kernels is arbitrary, as these

models do not include a static nonlinearity.
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Model Accuracy vs. Number of Paths
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Figure 6.8: Accuracy of the kernel estimate and the output prediction as a function
of the number of paths estimated in the low-pass/low-pass experiment.

an analytical solution for this problem. Consequently, we used an exhaustive search
over all pairs of deconvolution orders, selecting the pair which minimized the residual
variance.

Figm;e 6.7 shows the kernels of a single, two-input Wiener cascade, whose linear
dynamics were estimated from the principal left and right singular vectors of the
second-order cross-cross-correlation between the inputs and output. The upper panel
shows the kernel of the initial estimate, when the exact inverses of the two input auto-
correlation functions were used in the deconvolution. This kernel is dominated by high
frequency ringing, particularly near its four corners. The Iower panel shows the kernel
obtained when pseudoinverses were employed in the deconvolution of the input auto-
correlations. Here, the ringing has been suppressed, revealing thé underlying kernel.

The accuracy of the kernel estimates and output predictions are plotted in Figure
6.8, as functions of the number of cascade paths used to estimate the model. Max-
imum kernel accuracy was achieved with 10 paths. Using more paths resulted in a

= 149



Second—-Order Cross—-Kemel Estimate

2 .
A
S

1hl)Vs
8

Amplit_tfde (
8

o

| WO A

o

0.15

0.05 0.1

0.1 0.05
015 ¢

lag (seconds) lag (seconds)

Figure 6.9: Cross-kernel estimated using 10 paths generated by the optimized parallel

cascade method, using pseudoinverse based input deconvolution. This kernel accounts
for 99.35% of the variance of the true kernel.
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slight decrease in the kernel accuracy with no significant improvement in the output
prediction. This suggests these additional paths were modelling noise rather than
system dynamics.

The second-order cross-kernel based on the first 10 paths is shown in Figure 6.9.
This kernel accounts for 99.4% of the variance of the analytically determined kernel
and 99.2% of the output variance, demonstrating that an excellent system model has
been identified. Note that the kernel shown in Figure 6.9 has not been smoothed.

The energy remaining in the output residuals was appareatly dominated by errors
introduced in estimating the nonlinearities. At each stage, a two-input, second-order
nonlinearity was fitted between the filter outputs and the residuals. The second-
order cross term generated the contribution of the current path to the estimate of
the second-order cross-kernel. Given the characteristics of the analogue multiplier,
coefficients other than that associated with the second-order cross-kernel should have
been zero. However, estimates of these coefficients, although small, were non-zero in
general. Indeed, forcing these terms to zero during the identification resulted in a -
model which accounted for 99.65% of the output variance and 99.70% of the kernel.
Thus, using the correct nonlinearity structure halved the variance of the residuals,
both in the output prediction and in the kernel.

u(t)
— LPF-1
y(t
HPF-1 —-)-
us(t
A

Figure 6.10: Block d.xa.g:a.m of the configuration used in the low-pass/high-pass ex-
periment. Filter characteristics can be found in Appendix B

6.1.3 Low-Pass/High-Pass Case

Next, we examined the low-pass/high-pass configuration, in in which the output filter,
h3(7), was a 4.6 Hz Chebyshev type I high-pass filter (HPF-1 in Table B.1). A block
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Figure 6.11: The upper panel shows the second-order cross-kernel for the low-pass |

/high-pass experiment. The lower panel shows the cross-kernel of the model estimated
' . using 16 paths. It accounts for 97% of the variance of the theoretical kernel '
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diagram of this configuration is shown in Figure 6.10. The theoretical second-order
cross-kernel for this system, shown in the upper panel of Figure 6.11, was generated
using the impulse responses shown in Figure 6.3.

The kernel was then estimated from the input-output data using the optimized
parallel cascade method. AL paths were based on the second-order input-output
cross-cross-correlation, using an exhaustive search over orders of both pseudoinverses
to deconvolve the input auto-correlations from the impulse respouse estimates. Figure
6.12 shows the model accuracy as a function of the number of paths used to estimate
the model. Maximum kernel accuracy was achieved with 16 paths. The corresponding
kernel estimate is shown in the lower panel of Figure 6.11.

Model Accuracy vs. Number of Paths
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Figure 6.12: Accuracy of the kernel estimate and the output prediction as a function
of the number of paths estimated in the low-pass/high-pass experiment.

_ Although the accuracy of the kernel estimate decreased after the first 16 paths bad
been identified, the prediction accuracy continued to increase slightly. This suggests
that at this point, additional paths modelled measurement noise, and not system

dynamics.

153



ua(t)

HPF-1

y(t)

ua(t)

HPF-2

Figure 6.13: Block diagram of the configuration used in the high-pass/low-pass ex-
periment. Filter characteristics can be found in Appendix B
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Figure 6.14: Theoretical high-pass/low-pass cross-kernel
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6.1.4 High-Pass/Low-Pass System

Finally, we examined the high-pass/low-pass configuration illustrated in Figure 6.13.
Two high-pass filters, HPF-1 and HPF-2 in Table B.1, were used as inputs to the
multiplier, and a second-order low-pass Butterworth filter, LPF-1, was used to filter
the multiplier output. The analyticallvy generated kernel for this configuration is
shown in Figure 6.14.

Convergence of Parallel Wiener Cascade
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Figure 6.15: Accuracy of the kernel estimate and the output prediction as a function
of the number of paths estimated in the high-pass/low-pass experiment.

Figure 6.15 shows bothk the prediction accuracy and the accuracy of the kernel
estimate plotted as a function of the number of paths added to the model. It is evident
that the combination of the optimized parallel cascade method aad the psendoinverse
based input deconvolution techrique produced a model which yielded excellent output
predictions (98.5%VAF'). Nevertheless, the model did not estimate the analytically
derived kernel very well.

The best kernel model, shown in Figure 6.16 was generated using the first 14
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Second-Order Cross—Kemel Estimated from Wiener Cascades
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Figure 6.16: Cross-kernel estimated using 14 paths generated by the optimized parallel
cascade method, using pseudoinverse based input deconvolution. This kernel accounts
for 29.3% of the variance of the true kernel.

identified Wiener cascades, but accounted for only 29.3% of the variance of the true
kernel. Comparing Figure 6.16 with 6.14, we can see that the estimated kernel appears
to be a low-pass filtered version of the true kernel. This is not surprising, since the
test inputs were highly filtered to begin with. In deconvolving the input spectra,
the pseudoinverse technique traded this low-pass filtering for a dramatic reduction in
estimation noise.

Depending on the application, this model may or may not be satisfactory. If the
model is to be used for output prediction, then this model is likely to be adequate,
provided that the desired inputs are not very different, statistically, from that used
to identify the model. On the other hand, if inferences about the underlying system
were to be drawn from the shape of the kernel, this model would not be satisfactory.

There are at least two possible reasons why the identified kernel differed so dra-
matically from the theoretical kernel. Either, the inputs were not “rich” enough to
permit the system to be identified, or the expansion based on Wiener cascades, which
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is optimized to predict the output, failed to model the kernel structure.

Convergence of Mixed Cascade Model
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Figure 6.17: Accuracy of the kernel estimate and the output prediction as a function
of the number of paths estimated in the high-pass / low-pass experiment. Here, the
first path was a Hammerstein system.

If the inputs prevented the system from being identifiable, no identification method
would succeed. On the other hand, using a more appropriate model structure may
result in a model that predicts both the system output and the kernel shape.

6.1.4.1 Useofa priori information

The system kernel shown in Figure 6.14 has most of its energy concentrated near the
diagonal, which is what would be expected for a Hammerstein structure. This is due
to the high-pass filters that precede the analogue multiplier, whose impulse responses
have very short memories.

The rationale behind the selection of the optimal Wiener cascade at each stage in

the parallel cascade method, was to reduce the estimation noise by minimizing -the
number of paths required in the model. However, for 2 Hammerstein-like structure
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even the optimal Wiener system will be a poor choice as a cascade path. since it can
only account for a small fraction of the kernel. Many such paths will be needed. each
contributing estimation noise to the model. As a result, the overall level of estimation
noise will be high.

Since the system appeared to be nearly Hanmerstein and the identification based
on a parallel cascade of Wiener systems failed to produce an adequate model, we
attempted to fit the first path using a Hammerstein structure. The Hammerstein
structure, by itself, cannot represent nonlinear systems whose Volterra kernels have
non-zero offi-diagonal values. It will, however, model much of the system dynamics
which cannot be modelled efficiently by a sum of Wiener cascades. The remaining
¢ynamics, due to off-diagonal elements in the second-order cross-kernel, could then

be modelled using Wiener cascade paths.
Second-Order Cross—Kermnel Using Mixed Paths
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Figure 6.18: Cross-kernel estimated using one Hammerstein path and 10 Wieper
paths. This kernel accounts for 90.28% of the variance of the true kernel.

As we were fitting a second-order cross-kernel, the input to the linear element was
taken to be the product of the two input signals. We fitted a linear system between
this product and the measured output, and computed the residuals remaining after
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the output of this path had been removed from the measured output. The remaining
dynamics were modelled using a parallel Wiener cascade fitted between the inputs
and these residuals.

The kernel and prediction accuracic: obtained using this mixed structure model
are plotted in Figure 6.17. The Hammerstein pathway accounted for 85% of the
variance of the kernel, and 54% of the variance of the output. Adding 10 Wiener paths
to the model increased the prediction accuracy to 97.42% and the kernel accuracy to
90.28%.

6.1.5 Summary

In this section, we identified three “real” two-input nonlinear systems using the meth-
ods developed in this thesis. System configurations were chosen to represent a wide
variety of nonlinear systems, and to highlight practical difficulties which may arise in
the identification of physical systems.

We showed that our algorithms estimate models which predict the system out-
put very well. When the system kernels can be expanded efficiently as a sum of
Wiener systems, the estimated models have kernels which are accurate estimates of
the theoretical system kernels.

If the system kernels are concentrated near their diagonals, which will be the case
for Hammerstein and nearly Hammerstein systems, an expansion based on Wiener
systems is not efficient, and many pathways will be required to model the kernel.
This can lead to unacceptable noise performance, and failure of the identification. In
this case, Hammerstein paths can be added to the expansion. T

In all cases, the pseudoinverse deconvolution algorithm was required to suppress
high frequency ringing in the kernel estimates. The order selection criteria developed
for SISO linear and nonlinear systems are not applicable to multiple-input Wiener
cascades identified from multiple-input cross-correlation functions. In this case, the
pseudoinverse orders appear to be co-dependent. Although computationally expen-
sive, an exhaustive search can be used to select the pseudoinverse orders which result

in the minimum residual variance.
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6.2 Parallel Cascade Model of Reflex EMG

In this section, the methods developed in the previous 3 chapters will be applied to
the identification of the relationship between the angular position of the ankle and the
resulting EMG. This relationship, the stretch reflex, has been the subject of extensive
study (for a review see [38]). It is known to be nonlinear. and the output (EMG)
measurements are conftaminated with high levels of noise.

This “noise™ is dominated by the EMG of ongoing voluntary activity in the mus-
cles, which is used to keep the muscles taut and the reflex active. There are likely to
be nonlinear interactions between the background and refiex EMGs which are much
more complex that the usual additive noise model assumed in the development of
identification methods. In addition to the background EMG activity, there are other,
more conventional, noise components, such as thermal noise in the electrodes and
amplifiers, discretization noise, and the pick up of 60 Hz signals in the electrode
leads.

One data set from a classical experimental paradigm will be analyzed in detail to
illustrate how each algorithm may be applied. Based on the results from this analysis,
we will identify potential shortcomings of the paradigm and suggest refinements which
may address them.

6.2.1 Experimental Methods

Subjects lay supine, with their left foot attached to a rotary hydraulic actuator
(39, 117] by means of a custom-fitted fibreglass boot [75]. The subject’s ankle was
constrained to rotate about its transverse axis, which was aligned with the rotational
axis of the actuator. The torque produced by the subject was measured, low pass fil-
tered, and fed back to an oscilloscope mounted above the subjects head. The subject
was asked to make the torque feedback track 2 “command” signal displayed on the os-
cilloscope. With minimal training, subjects were capable of matching the two signals
and producing a pre-determined torque level under the control of the experimenter.
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Ankle position was measured via a precision potentiometer ° on the axis of rota-
tion. Torque was measured by a torque transducer * mounted on the shaft between
the actuator and the subject, whose stiffness, 10°Nm/rad, was much grearer than that
of the ankle. The maximum nonlinearities of the potentiometer and torque transducer
were = 0.2% and =+ 0.1%, respectively.

EMGs fro. the Triceps Surae (TS) and Tibialis Anterior (TA) were measured
using bipolar Ag/AgCl electrodes * placed on the muscle bellies and aligned parallel
to the muscle fibres. A reference electrode was placed on the patella. The EMGs
were amplified using custom-built pre-amplifiers [82], high-pass filtered at 10 Hz °,
and full-wave rectified.

All signals were anti-alias filtered using 8-pole constant delay filters ®, and sampled
at 1 Khz by 16-bit A/D converters .

6.2.2 Identification of Reflex Dynamics

The position of the actuator was servo-controlled to follow a random binary sequence
input with a 100 ms switching time. This input was chosen because it tends to
produce 2 large stretch reflex [40, 41]. More traditional inputs, such as white or
coloured Gaussian noise, have been shown to suppress the stretch reflex [87i.

The input signal was taken to be the angular velocity of the ankle, obtained by nu-
merically differentiating the position signal. Ankle velocity and TS EMG signals were
decimated 5 times, resuiting in a final sampling rate of 200 Hz. The position, velocity
and TS EMG are shown in Figure 6.19, along with an estimate of the probability
density of the computed ankle velocity.

The input consisted of a 5 second sequence which was repeated 8 times, resulting
in 40 seconds, or 8,000 samples, of data. Prior to the system identification analysis,

2Beckman 6273-R5K, Beckman Industrial, Fullerton, CA

3Lebow 2110-5K, Eator Corp., Troy NY

1Jason, ElectroTrace ET301, Huntington Beach, CA

SFrequency Devices, T72BT-2 a
SFrequency Devices, 64PF

TI0OTeck ADC488
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Signals Recorded During Binary Sequence Experiment
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Figure 6.19: Sigpnals from the binary sequence input experiment. Note that the
vertical scale in the third panel was chosen to show details away from the centre.
Thus, the central peak has been truncated.

the data was tested for stationparity. Since the input sequence was repeated each time,
one would expect the output sequences to be identical, except for the effects of noise.
We compared each pair of output segments by evaluating the the %VAF between
them. These results are presented in Table 6.2.

If the system remained stationary throughout the experiment, we would expect
all of off-diagonal entries in Table 6.2 to be approximately equal. From this table,
we note that all comparisons between segments 6 — 8 yield greater than 90%VAF.
Similarly, comparisons between segments 1 — 3 yield better than 89%VAF. However,
comparisons between other pairs of segments are as low as 75%VAF. These results
suggest that the system may have changed during the experiment.

One possibility is that the subject adjusted the level of background contraction,
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1 2 3 4 5 6 7 &
1] 100
21925 100
31893 96.0 100
4824 823 792 100
5834 942 93.1 836 100
6(89.3 920 89.7 80.6 91.6 100
718.8 874 855 783 914 942 100
8821 86.1 8l.8 75.7 8.0 93.7 953 1.00

Table 6.2: Results of the stationarity analysis applied to the binary sequence data.
The (7, 7)’th entry is the %VAF evaluated between the ¢’th and j’th segments of the
output.

to better track the command signal. If this were the case, we would expect to see
a change in the variance of the background EMG. Since the refilex contribution to
the EMG consisted of a series of large spikes, it could be eliminated by a simple
thresholding operation. We estimated the variance of the background component of
the EMG in each of the 8 segments. The estimated background EMG variance is
presented in Table 6.3.

Segment Number 1 2 3 4 5 6 T 8
Background EMG | 11.0 122 121 85 96 84 68 6.8
Variance {uV?) ,

Table 6.3: Variance of the background EMG in each data segment.

This table suggests that the level of background torque, and hence the background
_ EMG, underwent a substantial change between the first 3 segments and the last 2-3
‘ segments. Thﬁ‘s:,“only the last 2,000 samples (10 seconds) of data were retained for
further analysis. Of that, 1,000 points were used in the identification of the models
while the remaining 1,000 points were set aside for medel validation.

Several analyses were performed, which will be presented in the next sections.
These results will be summarized in Table 6.4 on page 168.
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We used the optimized parallel cascade algorithm to identify a model of the stretch
reflex dynamics. Thus, a parallel array of Wiener systems was fitted between the
ankle velocity and the TS EMG. The first Wiener cascade was based on the first-
order cross-correlation between the input (ankle angular velocity) and the output
(TS EMG).

The linear part of this first patk, shown in Figure 6.20 was identified by fitting a
linear filter between the velocity and EMG signals. This linear model accounted for

55.01% of the variance of in the validation segment.

IRF of First Wiener Cascade
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Figure 6.20: IRF for the first Wiener cascade identified between velocity and EMG.

A Tchebyshev polynomial was fitted between the output of the linear system and
the measured EMG. Polynomials of orders 0 through 8 were fitted, and the %VAF
between the EMG and the polynomial output computed. As no signiﬁcanr, increase in
prediction accuracy was noted beyond order 5, a fifth-order polynomial was used. The

resulting Wiener system accounted for 94.64% of the measured EMG variance in the
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validation segment. The output of this Wiener cascade was computed, 2nd subtracted
from the measured EMG signal, resulting in the first set of output residuals.

We then applied the test described in Equation (5.5) to the second-order cor-
relation matrix evaluated between the input and the residuals, and found that its
principal eigenvalue was a factor of 6.05 times greater than the significance threshold.
This suggested that there were significant dvnamics present in the second-order cross-
correlation between the input and the residuals. Therefore, the linear subsystem of
the next path was based on the principal generalized eigenvector of the second-order
cross-correlation between the input and the output residuals. This path accounted
for 5.0% of the residual variance, increasing the model accuracy to 94.84%VAF.

The principal eigenvalue of the next second-order input-residual cross-correlation
was a factor of 3.56 greater than the threshold, again suggesting that a significant
patkway could be constructed. This pathway accounted for 2.01% of the residuals,
raising the model accuracy to 94.91%.

Again, we tested the residuals for the possibility of adding a path based on the
second-order cross-correlation. The test returned a value of 2.45. However, we were
unable to construct a Wiener path which increased the accuracy of the prediction
during the validation segment, although small (2-3% depending on the order of the
static nonlinearity) increases were observed during the identification segment. Thus,
the optimal Wiener pathway based on the second-order cro~s-correlation appeared to
model noise despite the apparent significance of that correlation function, as suggested
by Equation (5.5).

This observation was puzzling, so we examined the second-order cross-correlation
function, which is plotted in Figure 6.21. This correlation function is concentrated
near the diagonal, which suggests either a Hammerstein system or an LNL structure
in which the first linear element has a very short memory. - As noted previously,
representing either of these structures by a parallel sum of Wiener caénc‘édes will
be very inefficient. Thus, even though there were significant unmodelled dynamics
remaining, no single Wiener path was able to model enough to dynamics to overcome
the effects of noise. An alternative approach would be to use paths whose structure
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Figure 6.21: Second-order correlation between ankle velocity and EMG residuals

more closely approximates that of the underlying system.

6.2.2.2 Hammerstein Model

- The stretch zeflex has often been modelled as Li'fr_fa!.mmerstein system [36, 37, 44, 45]

because of the observation that the EMG r&sponds to stretches of the muscle, while
rapid shortening of the muscle produces no change. Thus, the static nonlinearity is
sometimes assumed to be a half~wave rectifier, which is similar to the shape obtained
when the static nonlinearity is identified explicitly [37].

We used the iterative algorithm proposed by Hunter and Korenbers [31], and de-
scribed in Section 2.3.2.1, to fit 2 Hammerstein model between the ankle velocity and _
the EMG. The only modification made was to use the pseudoinverse input deconvo-
lution to estimate the linear subsystem. This system, whose elements are shown in
Figure 6.22, accounted for 94.41% of the EMG variance in the identification segment
and 95.07% in the velidation segment, somewhat better than the results achieved
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Figure 6.22: Static nonlinear element (left) and dynamic linear subsystem (right) of
the Hammerstein model identified for the stretch reflex EMG. Note that the output
of the static nonlinearity is given in arbitrary units (A.U.), as the gain associated
with that signal is unkmown.

with the Wiener cascade model.

6.2.2.3 Mixed Cascade Model

In Section 6.1.4.1, we noted that the Hammerstein structure is very efficient for mod-
elling the diagonals of kernels but cannot account for off-diagonal terms. In that
analysis, we had used ap initial Hammerstein path to capture the kernel diagonal,
and then added several Wiener cascades to model the off-diagonal kernel elements.
We tried using a similar approach to model reflex dynamics. After computing the
initial Hammerstein pathway, its output was subtracted from the measured EMG,
and a second pathway was fit between the input and these residuals.

Unlike fitting a Wiener cascade, estimating the linear dynamics of a Hammerstein
system from the first-order cross-correlation does not necessarily result in residuals
which are uncorrelated with the input, since Leﬁ:ma 2 and its corollary do not apply
in tlns case. Thus, a Wiener cascade, whose linear dynamics were based on the first-
order inpuf-_residual cro&-correiation, was used to drive the first-order correlation
to zero. It accounted for 2.25% of the residual variance, increasing the prediction
aceuracy to 95.24%.

We then attempted to fit paths based on the second-order cross-correlation. The
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Wiener Cascade Model

path description VAF(incr) VAF(total) VAF {valid.)
1 Wiener {(odd) 93.5494 93.5494 94.6407
2 Wiener (even) 4.9974 93.8717 9.4.8405
3  Wiener (even) 2.0105 93.9949 94.9107

Hammerstein Model

path description VAF(incr) VAF(total) VAF (valid.)

1 Hammerstein (odd) | 94.4217 94.4217 95.0867
Mixed Wiener/Hammerstein Cascade Model

 path _description VAF(incr) VAF(total) VAF (valid.)
T  Hammerstein (odd) | 94.4217  94.4217 95.0867
2  Wiener (odd) 2.2493 94.5472 95.2435

Table 6.4: Summary of the stretch refiex models identified using a binary pulse se-
quence input. Model accuracy is reported as the percent variance accounted for
(VAF). Incremental reports the fit of the current path to the residuals, total is the
fit of the model to the identification data, and valid is the fit of the model to the
validation set.

principal eigenvalue was a factor of 2.42 greater than the threshold given by (5.5),
suggesting that there were significant dynamics present in the second-order cross-
correlation. However, no significant Wiener cascade could be identified. As in the
Wiener expansion, the second-order cross-correlation was concentrated near its diag-
onal, suggesting a Hammerstein-like structure.

The results of these experiments are summarized in Table 6.4. In all cases, results
obtained with the validation data closely match those obtained with the identification
segment, indicating that-the models are unlikely to be fitting noise. This is an impor-‘
tant observation regarding both the Wiener cas;cade and mixed cascade expansions, |
because many of the pathways accounted for very little of the residuals { < 5%).
Since these pathways resulted in similar improvements in both the identification and
validation segments, we can conclude that they were in fact significant.
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6.2.3 Discussion

These experiments raise several interesting questions about the identifiability of non-
linear systems, and how this relates to experimental constraints.

It is clear that the binary pulse sequence input is not well suited to the identifica-
tion of Hammerstein models since these models include a static nonlinear transforma-
tion on the input. Clearly, the nonlinearity will only be well defined for values of the
input which are commonly present in the identification input. From the third panel
of Figure 6.19, it is evident that the nonlinearity will be well characterized near zero
velocity, and perhaps at the extremal velocities. The region between these extremes,
however, will not be probed by the input.

Furthermore, the velocity input consists of a train of narrow pulses. Thus, it is
only able to excite the system kernels near their diagorals. For Hammerstein-like
systems, this does not pose a serious problem since the kernels will be concentrated
near their diagonals.

These problems could be addressed by using a Gaussian noise input of adequate
bandwidth. The nonlinearities of any Hammerstein pathways would be well defined,
since all intermediate input levels would be probed. Furthermore, the correlation
structure of the input would ensure that all regions of the kernels were excited. How-
ever, the use of Gaussian noise inputs results in relatively weak reflex compornents,
and therefore a low output SNR and poor prediction accuracy (=50% VAF [111}).
Experiments performed usmg Gaussian noise inputs support the assumption of a
Hammerstein-like structure. However, since the resulting output SNR is so low, ade-
quate models cannot be identified. Thus, an alternative input is required.

The design of an appropriate input signal is an important step in improving avail-
able models of the stretch reflex. The test signal must be rich enough, both in
amplitude and spectral content, to excite all relevant modes in the system. However,
it must also have characteristics which ensure a strong reflex and therefore high SNR.
Currently, the effect of different perturbations on the reflex amplitude is being investi-
gated [79, 86, 87]. The results of this investigation will be used to design an “optimal”
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input signal. This will certainly involve a compromise between the gererality of the
identified model, and the output SNR and resulting prediction accuracy.

Another important issuve raised by these experiments is the selection of an appro-
priate model structure. In Section 6.1.4, where the identification of the high-pass/low-
pass svstem was considered, we noted that Hammerstein-like syvstems cannot be ef-
ficiently represented by an expansion based on Wiener systems. This point was also
raised in the stretch reflex identification. In both cases, this difficulty was overcome
by using a mixed cascade model in which the first path was a Hammerstein svstem.
While the Wiener cascade expansion is very general, there are cases where different
expansions may be more efficient. It is important to realize this, and to try other

system types if the parallel Wiener cascade should fail to produce an adequate model.
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Chapter 7

Conclusions

In this thesis, we have developed practical methods for the identification of linear and
nonlinear systems which are applicable under the relatively stringent constraints that
exist in the experimental study of human joint dynamics. While these techniques
were designed specifically with these constraints in mind, they should be applicable

to experiments on a variety of systems in many different felds.

7.1 Statement of Original Contributions
The following is a list of the original contributions contained in this thesis.

1. A new method for the nonparametric identification of linear systems was devel-
oped. Matrix perturbation analysis was used to develop an improved techrique
for the deconvolution of the input auto-correlation from the input-output cross-
correlation in the nonparametric identification of linear -systems. This new
technique dramatically reduces the variance of IRF estimates, and provides
confidence limits on the resulting estimate.

)

A new method for the identification of multiple-input Wiener systems was devel-
_. oped. The interaction between inputs in a multiple-input noplinear system were
shown to produce interference in estimates of some parts of the system dynam-
ics. An iterative technique was developed which predicted and then eliminated
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much of this interference. thereby increasing the accuracy of the estimated svs-

tem.

3. An optimized variant of the parallel cascade method was developed. The parallel
cascade method [36] for the identification of nonlinear systems was modified such
that each iteration added the optimal Wiener cascade (in an MMSE sense) to
the model. This results in several advauntages over the original algorithm:

e Models have fewer paths, and hence fewer parameters.
o Convergence is much faster.
e The model is less sensitive to noise.

e The model is unique (given the input auto-correlation).

e Once an insignificant pathway is estimated, analysis can be stopped, as no
further paths will be significant.

7.2 Suggestions for Further Research

Much work remains to be done, both in terms of algorithmic development, and in

terms of the application of these techniques to real problems.

7.2.1 Further Investigation of Pseudoinverse Input Decon-

volution

While the use of the a pseudoinverse in the deconvolution of the input autocorrelation
from the impulse response estimate represents a major innovation in nonparametric
system identification, many questions remain unanswered. In this section, we outline
several poséible avennes of research related to this topic. “

7.2.1.1 Noise in the Input Measurement

The effects of input noise were ignored in the study of the deconvolution of the input
auto-correlation from the impulse response estimate. If instead of using the noise-free
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input, u(t). we let the measured input be:
a(t) = ut) + vu(t)

using the notation established by Figure 2.1, then the input auto-correlation becomes:
$ual(T) = Guu(7) + Gu,0 (7)

provided the input, u(t) and the input noise, v,(t) are independent. We will, of
course, be working with a time-average evaluated from finite length records. Thus,

our estimate of the input auto-correlation becomes:

bual(T) = Gual(T) + das

= Guul?) + Guuo, (7) + (7)) + Gy (7) + Buuul(®) + Guuz (7)

Similarly, we must use a finite-length time average to estimate the input-output

cross-correlation:
éuy(T) = ¢uy(7) + éuy('r) + 604’; (T) + ‘;vuy("—) + E’vw; (T)

In performing the perturbation expansion on the inverse of the auto-correlation
matrix, we must decide what to treat as “signal”, and what to treat as “noise”. The
obvious choice would be to treat ¢y, as “signal”, and the rest as a perturbation.
However, because of the size of the resulting perturbation, the first-order expansion
is likely only to be valid for high input SNRs. Instead, we will partition the input-
antocorrelation estimate as follows.

$a(T) = GuulT) + Pupun(7)

G = 5“(7') + 5&% (r)+ 5::..::(7)5%”-. (7
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Given that the terms in 04, are due to the approximation. from finite length time-
averages, of the correlation between independent signals. thev will be small compared
10 &uz, and should not compromise the validity of the first-order perturbation expan-

sion on the matrix inversion. If we repeat the analysis that lead to Equation (3.8).

we get:
3 =1 L A=l i1 3
h = ¢7;Ouuht + 67} Guy, — 33 Ouv,

The effect of the input noise is twe-fold. First, there is an additive term of the same
form as that due to output noise. Thus, the analysis developed in Chapter 3 should
apply equally to this term. While the analysis of this term will be similar to that for
the output noise term, it will affect the choice of the order of the pseudoinverse used
in the deconvolution.

Secondly, the input noise induces a distortion in the “signal” term. In the previous
case, we had an unbiased estimate, provided the exact inverse of the auto-correlation

matrix was used. Now:
Efh] = ¢7; fush
Methods which estimate, and compensate for, this distortion need to be developed.

7.2.1.2 Application to Multiple-Input Nonlinear Systems

In the multiple-input case, the cross-correlations across a pair of linear systems are
obtained from the principal left and right singular vectors of the second-order cross-
cross-correlation. The input auto-correlation functions are then deconvolved explic-
itly. As might be expected, this deconvolution often leads to high frequency “decon-
volution noise” in the IRF estimates. Use of appropriate pseudoinverses, one for each
input, can reduce the variance of this noise. In this thesis, the pseudoinverse orders
were chosen using an exhaustive search procedure.

In the single-input case, impulse responses were extracted from the second-order
cross-correlation function by solving a generalized eigenvalue problem with the input
auto-correlation matrix. Here, the deconvolution was performed implicitly, which
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lead to an equivalent linear problem. The solution of this equivalent problem, using
the techniques developed for deconvolution from first-order cross-correlations, vielded
the pseudoinverse order.

The restricted singular value decomposition (RSVD) [16] could be used to gener-
ate a pair of “equivalent linear” identification problems, and would accomplish the
deconvolution implicitly, as the generalized eigenvalue solution does for single-input
svstems. Optimality of the RSVD solution should be relatively simple to prove.

Applying the pseudoinverse based decoxvolution algorithm to this problem will
vield two pseudoinverse orders, one for each input. It is likely that they will be
interdependent, leading to coupled solutions.

All of this, however, is speculative, since aigorithms for the computation of the
RSVD are not vet available. When, or perhaps if, these algorithms are developed,

research into this multiple-input method may proceed.

7.2.1.3 Estimation of the Bias Error

Ideally, we would like to be able to estimate the absolute value of the induced bias,
at each point in the impulse response estimate. In this work, we succeeded in com-
puting its infinity norm, which gives the maximum absolute value of the bias over
the whole IRF. If the bias error were equally distributed over the IRF, this would
be sufficient. Unfortunately, simulations show the bias error is often concentrated
around the largest peaks in the impulse response. Thus, using the infinity norm over-
estimates the bias error for most of the impulse response, leading to very conservative
confidence bounds on the IRF estimate. Further research is needed to improve the
mathematical understanding of the bias induced by the use of the psendoinverse, and
to obtain a localized estimate of this error.

The solution presented in Chapter 3 uses the results from extensive Monte Carlo
simulations to approximate the relationship between the decrease in the variance of
the system output, and the infinity norm of the induced bias. It would be preferable
to have an analytical expression, rather than the empirically derived distribution
function.



7.2.2 VUse of Generalized Wiener Models

Ve have shown that the paralle] cascade method. as implemented in Chapter 5. can
completely model the zero and first order Wiener kernels with a single path, and
that only T paths are necessary 10 model all of the dvnamics in the second-order
Wiener kernel. Any remaining unmodelled dvnamics must be estimated from the
third-order cross-correlation. However, given that the IRFs themselves are only T
points in length, it is clear that any new IRFs will be linear combinations of previously
identified linear elements. Even though the linear elements in the cascades completely
span the subspace occupied by the dynamics of the unknown system. additional paths
may be needed because the single-input nonlinearities do not allow for cross-terms
between the impulse responses which form a basis of that subspace.

An alternative approach would be to adopt a more generalized Wiener structure,
such as that used by Wiener in his original monograph [113] and more recently by
Marmarelis [71]. In this structure, the input signal will be processed by a bank of lin-
ear filters. The outputs of the filter bank could then be processed by a multiple-input
nonlinearity, which would provide the cross-terms that are missing in the paraliel
cascade structure. However, we suggest using the linear elements identified by the
optimized parallel cascade method, rather than the basis cf Laguerre filters employed
by Wiener [113] and Marmarelis [71]. Figure 7.1 illustrates the generalized Wiener
model.

The biggest difficulty with this approach is likely to be the identifcation of the
static nonlinearity. In Section 4.3.2, we described the difficulties encountered in the
specification of the domain of definition for a two-input nonlinearity.” The severity of
these problems will likely increase with the number of inputs to the nonlinearity.

7.2.3 Use of Hammerstein and LNNL Cascade Paths

Any time-invariant system w}_Lich has a fading memory [9] can be represented by an
expansion based on Wiener systems. However, even the optimal expansion of this
tvpe, which is identified by the algorithms developed in this thesis, is not necessar-
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Figure 7.1: The generalized Wiener system structure

ily very efficient. For example, when the system in question has a “Hammerstein
like” structure, a Hammerstein system optionally preceded by a short memory linear
dynamic element, the Volterra kernels are concentrated near their diagonals. As a
result, many linear elements are required to represent the space spanned by the sys-
tem dynamics. Thus, any representation based solely on Wiener systerhs, whether a
parallel cascade, or a generalized Wiener model, will require a large number of linear
elements. Clearly, in these situations, methods are needed for creating Hammerstein
or LNL paths which are somehow optimal. These methods must not assume that the
system being identified has the particular structure in question.

For example, Korenberg [57] developed a method for the identification of the -
optimal Hammerstein system between a given input and output, which makes no
assumptions about the structure of the true system. Unfortunately, this algorithm
requires a white input, and is therefore impractical in many settings.

What is required, is an algorithm that finds the LNL system that generates the
maximum reduction in the mean-squared size of the second (or higher) order cross-
correlation function. This is the approach used 1o find the “optimal® Wiener pathway,
where the IRF turned out to be the principal eigenvector of the second-order cross-
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correlation. The second-order kernel of an LNL cascade is:
T
kal7y,7a) = Z glo)h(my — o)h(m - o)
o=0
where h(7) is the IRF of the first linear subsystem, and g(7) is the IRF of the second

linear element. Thus, we would search for IRFs g and & which minimize the error:

e

T T <
C(g, h) = Z (¢uu:(71:72) - Z g(o‘)h("-l - a)h(f'.’ - O’)) (71)

71,72=0 o=0

A brute force approack to this problem would be to minimize (7.1) using 2 numerical
gradient descent algorithm.

Equation (7.1) assiames that the input signal is white. Therefore, as in the Wiener
cascade case, stable and robust procedures must be developed for the deconvolution

of the input autocorrelation from the resulting IRF estimates.

7.2.4 Use of Subspace System Identification Methods

Recently, the MOESP algorithm [96, 98, 99], which identifies discrete state space mod-
els of LTI systems in a subspace model identification context, has been applied to
MIMO Hammerstein [100] and Wiener [101] systems. The extension to Wiener sys-
tems is particularly interesting, since these systems form the “building blocks” of the
parallel cascade representation used throughout this thesis. A particularly exciting
property of the state space models is that the extension from single-input single-
output (SISO) systems to multiple-input multiple-output (MIMO) systems is trivial.

The nonlinear extensions of the subspace methods have been made, to date, under
the assumption that the underlying system had a Wiener or Hammerstein structure.
The application of the Wiener system extension of MOESP to parallel cascade identi-
fication will require dropping this assumption. The existing algorithm will have to be
modified to find the “optimal” Wiener system between a given input and output, with
no assumptions about the form of the actual system. Once this has been achieved,
the general approach outlined in Chapter 5 can be used.
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7.2.5 Applications to the study of joint dynamics

The techniques developed in this thesis. were designed with the constraints tvpical
of joint dynamics experiments in mind. Here. we suggest applications in the field of

joint dvnamics, where these techniques may prove useful.

7.2.5.1 TUse of Narrow-Band Perturbations

Wide-band perturbations, such as white noise (albeit filtered by an electro-hydraulic
actuator), have been shown to suppress the stretch reflex in humans {40, 41]. Re-
cent experiments have sought to characterize stretch reflex dynamics {42, 43]. and
determine the extent of their contribution to the overall dynamics of the ankle, using
relatively narrow-band perturbations. These perturbations produce a strong stretch
reflex, but exacerbate the problems caused by the input deconvolution. This seems
to be a natural application for the pseudoinverse deconvolution technique, developed

in Chapter 3, particularly, if it can be extended to account for input noise.

7.2.5.2 Multiple-Input Experiments

To date, multiple-input experiments performed on the human neuromuscular system
have linearized the system about a time-varying trajectory [44, 43, 67, 92]. It would be
interesting to repeat some of these experiments using a “richer” stimulus for the sec-
ond input instead of the repeated steps or “fast ramps” which were used to modulate
the “operating point” in the time-v;rying context. The multiple-input techniques de-
veloped in this document could then be used to produce a more complete description
of the system. The time-varying linearized description could be derived analytically
from the multiple-input nonlinear description, and compared to the results of previous
experiments which used the linear time-varying system description.

In principal, 2 truly multiple-input system deseription should provide the inves-
tigator with more freedom in the design of the experimental protocol. For example,
time-varying techniques require the operating point to traverse exactly (or almost
exactly, in practice) the same trajectory during each trial. Much processing effort
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is required to reject trials in which the operating point trajectory deviates from the
regime, and in aligning the trajectories of those trials which are retained for further
analysis [66]. Using the algorithms presented herein would free the experimenter from

these constraints.
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Appendix A

A MATLAB toolbox for nonlinear

system identification

A.1 Data Structures

A.1.1 Second-Order Wiener/Volterra Kernels

A second-order kernel or correlation function can be represented as a matrix. Hence,
the MATLAB language is used to store these functions. In general, the first index is
used to represent lags with respect to the first input signal. MATLAB itself, stores
matrices in column major order, as is done in FORTRAN, as opposed to the row
major ordering that is used by C.

A.1.2 Third-Order Wiener/Volterra Kernels

Third-order kernels are functions of three indices, h(%,j,k). MATLAB itself only-
provides for matrices which have two indices. The functions in this toolbox rep-
resent third-order kernels and correlation functions as vectors. It is assumed that
the third-order object is cubic. Therefore the range of the indices 7,j and & are all
equal to the cube-root of the length of the vector. If Hj is an n by n by n ker-
nel, and it is represented by the n* long vector A, the entry Ha(i, 7, %) is stored in
R(ix(n—1)*+j*(n—1)-+k) . This conversion is accomplished by the ¢ function ma-
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trz_ref, which is linked to all of the mex-files that operate on third-order correlations

and kernels.

A.1.3 Tchebyshev Polynomials

A crucial step in the estimation of a Tchebyshev polynomial is the scaling of the
input to the range [~1,1]. If z(n) are the input samples, and e and b represent the
minimum and maximum of the z, then this scaling is accomplished as:

b—2z(n)+a
a—b

#(n) = (A1)

Hence, in order to completely specify the polynomial, both the limits @ and b,
and the polynomial cocfficients themselves need to be specified. As a result, the
Tchebyshev polynomials are stored as the column vector [abcoc; - .. ¢q]T. The interval
[ab] can also be used as the domain of definition of the Tchebyshev polynomial.

For two-input Tchebyshev polynomials, Equation (A.1) is used to scale each of the
inputs. Hence, the first four elements of the polynomial representation represent the
domain bounds. The remaining coefficients are stored in order of ascending degree.
Terms of equal degree are stored starting with the term that has the highest degree
in the first input.

H ce. a two input Tchebyshev polynomial would be stored as:

[0zbzaybycocacyearayCyacas . . Coyim-nepn [T

In the single input case, the interval {ab] served as the domain of definition of the
polynomial. In the two input case, things are not quite as simple. In pringiple, the
rectangle bounded by (az, ay), (6=, by), (b, by) and (bz, ¢;) could be considered to be
the domain of definition of the polynomial surface. However, it is highly probable
that there will be large parts of this rectangle, where the polynomial estimate is not
supported by any data. A somewhat more robust approach would be to measure, and
store, the convex hull of all of the data points. This is the smallest closed polygon
that enclosed all of the data points. It can be represented by the (z,y) co-ordinates
of its vertices. To simplify computations involving the polygon, the first vertex is
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also stored as the last vertex. If this polvgon is included. it is stored following the
polynomial coefficients. First the coefficients are stored. followed by a NaN. followed
by the z co-ordinates of the vertices. followed by another NaN. and the ¥ co-ordinates
of the vertices. If additional polygons are added. they are appended to the end of the
structure, separated by NalNs. The maximum and minimum values of the two inputs
remain in the first four places, just prior v the polvnomial coefficients. While they
could be obtained from the maximum and minimum values of the second and third
columns, stating them explicitly with the polynomial coefficients allows a polygon

other than the convex hull of the data points to be vsed as the domain boundary.

A.2 List of Functions

A.2.1 Conventions

A.2.1.1 m-files

The first lines of each m-file consist of comments describing the purpose of the routine,

as well as the inputs that it requires and the outputs that it generates. All of these

comments can be accessed within MATLAB by typing help “routine name”. Also,
included in this documentation is a list of all of the other routines within the toolbox

that it calls.

A.2.1.2 mex-files

For every mex-file, thereis a parallei m-file. These contain comment lines, as described
above, which allow the user to obtain online help using the MATLAB help utility.
Furthermore, simply typing the routine name from within MATLAB generates a help
message. If the mex-file has not been installed, MATLAB will invoke the m—’ﬁle, which
will print a message informing th user that the mex-file has not been installed. In
some cases, m-file iniplementatioﬁs have been provided, however, due to the nature
of the computations, use of these routines is not recommended. The comments which

appear at the head of the c-files are not accessible from within MATLAB.

183



convex_hull

Svntax: bound = convex.hull(points)

Inputs:
points An N x 2 array where each row contains the x and ¥ co-ordinates of

one of the N points

Outputs:
bound An K x 2 array. where each row contains the x and v co-ordinates of

one of the K vertices of the convex hull around the N points passed in

the array points

Creates a polygon that surrounds all of the x-y points passed in the array points.
The routine starts at the rightmost of the ¥ points, and proceeds counter-clockwise
around the boundary. The first and last points in the boundary are equal, forming a
closed figure.

This is intended primarily as a service routine.
It is called by: tchebfit2d

No Local Function Calls:

DTW June 1993

(|
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deadzone

Syvotax: v = deadzoae (u,limit)

This function applies a symmetric deadzone static nonlinearity to the signal u.

The width of the deadzone is limit.

I u> limit, v =u - limit
u < -limit v =1u -+ limit
-limit < v < limitv =0

No Local Function Calls:

DTW 1992



fil2

Syntax: [pfil,vaf,bounds]= fil2(u,y,numlags,numsides,level ,mode)

Inputs:
u input signal
y output signal

numlags memory length of the identified IRF

numsides 1 for causal systems, 2 for mixed causal/anti-causal systems

level confidence level to be calculated (1 - 100)

mode used to set the pseudoinverse order selection mode, unless the current

default is desired (see toep_man)

Outputs:
nfil estimated IRF

vaf output variance accounted for by IRF output
bounds confidence bounds on IRF estimate, specified by level
Identifies one and two sided impulse responses using the pseudoinverse based de-
convolution algorithm. The method used to determine the pseudoinverse order can
either be selected using toep.man, or it can be specified by specifying mode on the

command line.

Local Functions Called: filter_ts,scorr,toep,toep2,toep_man,toep_var

DTW 1994
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gen_kern

Syvntax: kern = gen kern (basis, coeff, order, type);

Inputs:
basis basis functions on which the system has been expanded

coeff coefficients associated with Hermite polynomials applied to the basis
vectors

order order of the desiced kernel

type voltarra or wiener. Only the first letter is significant. Note, that if
Volterra kernels are desired, the expansion must include terms or order

up to and including the actual system order.

Outputs:

kern kernel estimate

Only first and second-order Wiener kernels are presently supported.
No Local Function Calls:

DTW March 1994
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half wave

Svntax: v = half_wave (u)

Applies a half wave rectifier to the signal v

If u>0 v

"
=

n
o

2<0 v

No Local Function Calls:

DTW 1991
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hard_limit

Syntax: y = hard.limit (x, amin, hmax);

Applies 2 hard limiter to the input. Bounds of the hard limiter are passed as

arguments. If only one value is passed. the hard limiter is assumed to by svmmetric

about 0

If w> hmax y=0
hmin < u < hmay =1
u < homin y=20

No Local Function Calls:

DTW 1991
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hard_limit_2d

Syvntax: new_points = hard.limit.2d (points, bound);

Inputs:
points An N x 2 array containing the x-v co-ordinates of the points 0 be

limited

bound  An M x 2 array containing the x-v coordinates of the boundirg polvgon

QOutputs:
new_points An N x 2 array containing the points in points limited to the interior

of the polvgon defined by bound
Given a set of n points, stored as an n x 2 matrix, and a closed polygon, repre-
sented by its m vertices in an m + 1 x 2 array, bound. where the first and last vertex
are the same, this function leaves all points in the interior of the polygon untouched.
but moves all exterior points to the nearest point on the polvgon.
No Local Function Calls:

DTW July 1993
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irf_est_cross

Syvntax: [hxlin,hyiin] = irf_est.cross (x,y,v,h.len,iterate);

Inpats:
X,y Inputs to a2 two-input nonlinear system
v Output of the nonlinear svstem
hlen (Upper bound on) the anticipated memory length of the system

iterate Use iterative scheme to improve estimates (y/n)

Outputs:
hxlin,hylin Impulse response estimates
Estimates the impulse responses in a two-input Wiener system based on the
second-order cross-cross-correlation between the inputs x and y, and the output, v.
The memory length of the the impulse responses, kxlin and hylin, is h_len sam-

ples. I iterate is [yles, then an iterative technique is used to estimate and cancel

interference terms in the correlation estimate.

This is intended primarily as a service routine.
It is called by: multi_wiener

Local Functions Called: phixyz, proj0, tchebfit2d, toep

- DTW Apr 1992

,\\‘
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irf_est_even

Swvntax: [hxlir,hylin] = irf_est.even (x,y,v,h_len,iterate);

Inputs:
X,y [nputs to a two-input nonlinear system
v QOutput of the nonlinear system

h.len (Upper bound on) the anticipated memory length of the system

iterate Use iterative scheme to improve estimates (y/n)

Qutputs:

bhxlin,hylin Impulse response estimates

Estimates the impulse responses in a two-input Wiener System based on the two
second-order cross-correlation functions, measured between the inputs, x and y. and
the output v. h_len is the length, in samples, of the impulse responses, hxlin and
hylin. If iterate is ’[y]les’, then an iterative technique is used to estimate and cancel
interference in the correlation estimates that is caused by the presence of multiple

input signals.

This is intended primarily as a service routine.

It is called by: multi wiener

Local Functions Céllled: phixxy, proj0, tchebfit2d, toep

DTW Apr 1992
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irf_est_odd

Syntax: [bx, hy] = irf_est_odd (x,y,z, hlen,iterate);

Inputs:
X,y Inputs to a two-input nonlinear system
v Output of the nonlinear svstem

hden (Upper bound on) the anticipated memory length of the system

iterate Use iterative scheme to improve estimates (y/n)

Outputs:
hxlin,hylin Impulse response estimates
Estimates the impulse responses in a two-input Wiener System based on the two
first-order cross-correlation functions, measured between the inputs, x and y, and
the output v. h.len is the length, in samples, of the impulse responses, hxlin and
hylin. If iterate is ’[y]es’, ther an jterative technique is used to estimate and cancel

interference in the correlation estimates that is caused by the presence of multiple

input signals.

This is intended primarily as a service routine.
It is called by: multi_wiener

Local Functions Called: phixy, tchebfit2d, toep

DTW Apr 1992
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iteration3
Syntax: [k,alts] = iteration3 (phi,h, Threshold);

Inputs:
phi Third-order cross-correlation function
b Initial estimate of Impulse response function

Threshold Used to decide when to stop iterating (default 1 x 107¢)

Outputs:
k Final impulse response estimate

alts Alternate starting points for iterative searches
Performs several steps in a gradient iteration that attempts to find the first-order
cross-correlation across the linear part of a Wiener system that has a third-order
cross-correlation that best approximates the given function phi.
alts contain alternate starting points. They are vallevs in the mean square error
function that were not checked, because they were not considered ‘optimal’. '

This is intended primanly as 2 service routine.
It is called by: wiener3

Local Functions Called: k3_gen, mult32

"DTW July 1992 ~
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iteration32

Symntax: [newh, rewgl = iteration32 (pki,h,g,Threshold);

Inputs:
phi Third-order cross-correlation function
h Initial estimate of first impulse response function
g Initial estimate of second impulse response function

Threshold Used to decide when to stop iterating (default 1 x 107%)

Outputs:
newh Final impulse response estimate for first input
newg Final impulse response estimate for second input
phi is assumed to hold the third-order cross-cross-correlation that is second-order
in its first input, and first-order in its second input. iteration32 returns newh and
newg, estimates of the linear filters that are part of a two-input Wiener system, for
which the third-order cross-cross-correlation best approximates that measured from

the input/output data (phi). h and g should contain initial estimates of these IRF's.

Local Functions Called: k32_gen, mult3.101, mult32

DTW May 1993



k32_gen

Syntax: K3 = k32_gen (h,g,gain);

Inputs:
k,g Impulse responses of linear dvnamic elements in a two-input Wiener

system.
gain coefficient of the term in the static nonlinearity that is second-order in

the first input and first order in the second input.

Outputs:
K3 Component of the third-order Volterra kernel resulting from the 2-1

order term in the two inputs.

Generates the third-order Volterra kernel of a two-input Wiener system, where
the inputs are transformed by h and g, and the static nonlinearity is gain times the
product of the output of the first linear system squared, and the output of the second
linear system.

This is intended primarily as a service routine.
It is called by: wiener3

Implemented as a MEX file

DTW - %
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k3_gen

Swyntax: K3 = k3_gen (h,gain);

Inputs:
h Impulse response of linear dvnamic element of a single-input Wiener
system.

gain coefficient of the third-order term in the static nonlinearity

Outputs:
K3 Third-order Volterra kernel of the Wiener system

Generates the third-order Volterra kernel of a single-input Wiener system consist-

ing of the linear elercent h followed by a cuber with a gain of gain.

This is intended primarily as a service routine.
It is called by: wiener3

Implemented as a MEX file

DTW
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k3 _sym
Syntax: H3 = k3_.sym (K3);

Inputs:
K3 Third order kernel

Qutputs:

#3 Symmetrized third-order kernel

Given a third-order kernei, stored as a long vector, this function symmetrizes it

about every possible permutation of its indices.

This is intended primarily as a service routine.

It is called by: wiener3
Implemented as a MEX file

DTW

1938



kernel3_slice

Syntax: Z = kernel3_slice (k3,slice);

Inputs:
k3 Third-order kernel or correlation function

slice lag of slice to be displayed

Outputs:
Z Single slice of K3

Displays a surface plot of single slice of the third-order kernel K3. The edges of a
cube are drawn, and the surface plot is positioned within this frame to indicate the
position of the slice within the original kernel. If an output is specified, the slice is
returned in a matrix.

No Local Function Calls:

DTW
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Inlk2

Svntax: kernel = Inlk2 ( g,h,n);

Inputs:
g First linear element in LNL cascade

h Second linear element in LNL cascade

n Memory length of kernel (optional)

Outputs:
kernel Second-order Volterra kernel of LNL cascade
Given the impulse responses of the two linear elements. inlk?2 returns the second-
order Volterra kernel of the cascade, assuming that the second-order coefficient in the
polynomial expansion of the static-nonlinearity is 1. If n is specified, an n by n kernel
is returned. This may either result in truncation or zero-padding of the actual kernel.
No Local Function Calls:

DTW Jan 1992
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mult31
Syntax: H2 = mult31(K3,h);

Inputs:
K3 Third order kernel

h  vector, or first order kernel

Outputs:

H2 Secord-order kernel, or matrix

Computes the product of a third-order kernel with a vector.

R

k=1

If, as in the previous equation, the vector has R elements, then K3 must have R®
elements. H; will be su R X R matrix.

This is intended primarily as a service routine.
It is called by: iteration32

Implemented as a MEX file

DTW 1992
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mult32
Syntax: h = mult32(K3,H2);

Inputs:
K3 Third order kernel

H2 matrix, or second-order kernel

Outputs:

h First-order kernel, or vector

Computes the product of a third-order kernel with a matrix.
R
h(k) = z K3(i2j’ k)H'.’(z:J)
ij=1
If, as in the previous equation, the matrix has R x R elements, then K3 must have

R3 elements. A will be an R element vector.

This is intended primarily as a service routine.

. Tt is called by: iteration3, iteration32, wiener3
Implemented as a MEX file

DTW 1992
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mult3_101
Syvntax: v = muelt3.101(K3,h,g);

Inputs:
K3  Third order kernel

h,g vectors, or first-order kernels

QOutputs:

v First-order kernel, or vector

Computes the product of a third-order kernel with a two vectors.

R
v(j) = 2 Ka(i, j. k)h(i)g(k)

ik=1

If, as in the previous equation, the vectors have length R, then K3 must bave R®

elements. v will be an R element vector.

This is intended primarily as a service routine.

It is called by: iteration32
Implemented as a MEX file

DTW 1992
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. multi_wiener

Syntax: [bx,hy,nl,out] = multi_wiemer (x,y,z,hlen,order,control);

Inputs:
X,y

z
hlen
order

control

QOutputs:

System inputs

System output

Upper bound on the system’s memory length

Degree of the highest order kernel expected in the system

Control string = [type mode smooth iterate]

type: type of functions used to determine impulse responses can be
either 'first’, 'self’ or ‘cross’, which correspond to the first order, sec-
ond order self and second order cross input/output cross-correlations,
respectively

mode: mode used in the polynomial fitting routine. Can be either
fixed’, ’auto’ or ‘'manual’. If fixed is chosen, a polynomial of order
order is returned. If auto or manual is chosen, the best polynomial of
order less or equal to order is returned.

smooth: (ves/no)Turns smoothing on and off.

iterate: (v/n) Turns iterative IRF estimate improvement on and off
In all cases, only first letters are used. For example the string ‘fmny’
corresponds to using first-order correlation functions, with manual or-
der selection, no smoothing, and iterative estimation coﬁecﬁon.

hx hjr Impulse responses of linear subsystems associated with inputs x and y

nl

out

Coefficients of static nonlinearity. See documentation for tchebfit2d
and Section A.1.3 for details
Output of the the multiple input Wiener system estimated by

milti_wiener

Estimates a multiple input Wiener system between two inputs and a single output.
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The linear subsystems can be tased on either the first. or second-order single-input
cross-correlation functions between inputs x and y and output z. or on the second-

order cross-cross-correlation between both inputs and the output.

Local Functions Called: irf_est._cross, irf_est.even, irf.est_odd,

tchebfit2d, tchebval2d

DTW March 1992
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® phix2yz

Syntax: phi = phix2yz (x,y,z,hlen);

Inputs:
x,y Input signals
z Output signal
hien Maximum number of lags to be calculated +1

Outputs:
phi Third-order cross-cross-correlation between x,y and z. It is second-

order is x and first-order in y
The means of x,y and z are subtracted prior to estimation. A biased estimate of

the cross-correlation function is returned:
. 1 X
Geay(1,,K) = 55 2 3o(n — zo(n — J)a(n = )z0(k)
n=l

where N is the length of the signals x,y and z, and the subscript 0 refers to signals
that have had their average values removed. i.e.: |

1N
zo(n) = z{n) — 7 Zla:(n)

Implemented as a MEX file

 DTW June 1991 .

(3
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phix3y
Svntax: phi = phix3y (x,y,hlen);

Inputs:
x Input signal
y Output signal
hlen Maximum number of lags to be calculated +1

Outputs:
phi Third-order cross-correlation between x and y, stored as a vector. See
Section A.1.2 for details
The means of both x and y are subtracted prior to estimation. A biased estimate

of the cross-correlation function is returned:
- 1 X
G=y(8,5: k) = n§1 zo(n — 2)Zo(n — F)zo(n — K)yo(n)

‘where N is the length of the signals x and y, and the subscript 0 refers to signals that

have had their average values removed. i.e.:

1 N
zo(n) = 3(n) - 5 3 2(n)
n=1
Implemented as a MEX file

DTW June 1991 .
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phi_adj_phi
Svotax: A = phi_adj.phi (phi);

Inputs:

phi Third-order kernel or correlation function, stored as a vector

Outputs:
A The adjoint operator of phi applied to phi.The eigenvectors of A are

the singular vectors of phi. The eigenvalues of A are the squares of the
singular values of phi.

This is intended primarily as a service routine.
It is called by: wiener3

No Local Function Calls:

DTW June 1992
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phixxy

Syntax: phi = phixxy (x,y,hlen);

Inputs:
x Input signal
¥y Output signal

hlen Maximum number of lags to be calculated +1

Outputs:

phi Second order cross-correlation between x and y

The means of both x and y are subtracted prior to estimation. A biased estimate

of the cross-correlation function is returned:

. 1 ¥ :

Gumy(i J) = N > zo(n = $)zo(n — §)uo(n)

n=1
where N is the length of the signals x and y, and the subscript 0 refers to signals that
bave had their average values removed. i.e.:
1 N
zaln) = 2(n) - 5 3 3(n)
n=1

Implemented as a MEX file

DTW June 1991 .
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phixy
Syntax: phi = phixy (x,y,hklen);

Inputs:
x Input signal
y Output signal
hlen Maximum number of lags to be calculated +1

Outputs:

phi First order cross-correlation between x and y

Computations are performed in the frequency domain, as in the System Identi-
fication Toolbor routine covf However unlike that function, only the input-output
cross-correlation is computed.

No Local Function Calls:

DTW Aug 1993
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phixyz

Syntax: phi = phixyz (x,y,z,hlen);

Inputs:
x,y Input signals
z Qutput signal
hien Maximum number of lags to be calculated +1

Outputs:
phi Second-order cross-cross-correlation between inputs x and y, and out-

put z

The means of x,y and z are subtracted prior to estimation. A biased estimate of

the cross-correlation function is returned:

N
el ) = 57 2 aaln = Dol = 9)2(m)

where N is the length of the signals x,y and z, and the subscript 0 refers to signals
that have had their average values removed. i.e.:

1 N
zo() = 2(n) - = 3 2(n)

n=1

Implemented as a MEX file

DTW June 1991 .
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projo

Syntax: out = proj0 (x,y)
Inputs:

x Vector to be Projected

y Basis for Projection

Outputs:

out projection of (x - mean(x)) onto (y - mean(y))

This is intended primarily as a service routine.

It is called by: irf_est_cross ,irf_est.even
No Local Function Calls:

DTW August 1993
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tchebconvert

Syntax: pars = tchebconvert ( coeff )

Inputs:
coeff vector of coefficients describing a tchebyshev polynomial. See section

A.l.3 and the routine tchebfit for more details

Outputs:
pars The polynomial is returned with coefficients describing it in terms of
increasing powers of X. i.e. the i’th element of pars contains the coeffi-

cient of x to the i-1.

No Local Function Calls:

DTW
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tchebconvert2d

Syntax: pars = tchebconvert 2d( coeff );

Inputs:
coeff vector of coefficients describing a two-variable tchebyshev polynomial.

See section A.1.3 and the routine tchebfit2d for more details

Outputs:
pars The polynomial is returned with coefficients describing it in terms of

the functions z"y™.

The vector pars contains terms in the following order:
Nzyzizyy?z® oy e®.. )

No Local Function Calis:

DTW

214



tchebfit

Syntax:

[coeff,vaf,out]=tchebfit(x,y,order, mode);

Inputs:
x Input to static Nonlinearity
y Output from static Nonlinearity
order Maximum order of the polynomial to be estimated
mode Method used to choose optimal polvnomial order:
‘fixed”: a polynomial of order order is returned
‘manual’: polynomials of orders 0 through order are calculated. The
variance accounted for by estimated polynomials is displayed, and the
used is asked to select the optimal order
‘automatic’ polynomials of orders O through order are calculated.
The order is selected automatically
in 21l cases only the first letter is significant. The default mode is fixed.
Outputs:
coeff A vector consisting of the minimum and maximum values of x, followed
by the coefficients of the tchebyshev polynomial functions. For further
infofma.tion, see Section A.1.3 ,
vaf The percentage of the variance of y accounted for by the polynomial
out The polynomial applied to the input signal x

No Local Function Calls:

DTW Sep 1991



tchebfit2d

Syntax:

[coeff,vaf,out]l= tchebfit2d (x,y,z,order, mode);

Inputs:
X,y Inputs to static nonlinearity
z QOutput from static nonlinearity
order Maximum order of the polynomial to be estimated
mode  Method used to choose optimal polynomial order:
‘fixed’: a polynomial of order order is returned
‘manunal’: polynomials of orders 0 through order are calculated. The
variance accounted for by estimated polynomials is displayed, and the
used is asked to select the optimal order
‘avtomatic’ polynomials of orders 0 through order are calculated.
The order is selected automatically
in all cases only the first letter is significant. The default mode is £1xed.
Outputs:
coeff A vector describing the two-input tchebyshev polynomial. For a de-
scription of its format, see Section A.1.3
vaf The percentage of the variance of y accounted for by the polynomial
out  The polynomial applied to the input signals x and y
No Local Function Calls:
DTW Oct 1991
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tchebval

Syntax: y=tchebval(coeff,x,mode);

Inputs:

coeff A vector describing a single-input tchebyshev polynomial. such as those
returned by tchebfit. For details, see Section A.1.3

x Input signal to be transformed.

mode  Method used to treat points outside of the domain of definition of the
polynomial
‘clip’:points are bard-limited to the minimum and maximum of the
input domain
‘extend’: points are not clipped. This can be lead to unpredictable
results, particularly with high order polynomials
in all cases only the first letter is significant. The default mode is clip.

Outputs:
y The input x transformed by the tchebyshev polynomial

Local Functions Called: hard limit

DTW Sep 1991
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tchebval2d

Syntax: y=tchebval2d(coeffs,x,y,node,bound_id);

Inputs:
coeff

X,y
mode

bound_id

Qutputs:

A vector describing a two-input tchebyvshev polynomial, suck as those
returned by tchebfit2d. For details, see Section A.1.3

Input signals to be transformed.

Method used t0 treat points outside of the domain of definition of the
polvnomial

‘clip”: points are hard-limited to the minimum and maximum of the
input domain

‘extend’: points are not clipped. This can be lead to unpredictable
results, particularly with high order polynomials

in all cases only the first letter is significant. The default mode is clip.
identity-of the bounding polygon (0 through the number of bounds in-
cluded in coeffs. 1 is the default value. If bound_id = 0, a rectangular
domain defined by the first four elements of coeff is used.

y Inputs x and y transformed by the tchebyshev polynomial

Local Functions Called: bhard.limit, hard limit.2d

DTW Oct 1991



tchebplot

Syntax: [dom,ran]=tchebplot{poly,color);

Inputs:
poly coefficients of a tchebyshev polvnomial, as returned by tchebfit

color colour of the plotted line

Outputs:

dom domain values of the points used to generate the plot

ran range values of the points used to generate the plot
Local Functions Called: tchebval

DTW Sep 1991
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tchebplot2d

Syntax: [X,Y,Z] = tchebplot2d ( poly, control, bound);

Inputs:

poly coefficients of a two-dimensional tchebyshev polynomial, as returned by

tchebfit2d

control a string that controls the appearance of the plot {see below)

bound [bound_ids NaN x_size y.size NaN domain bounds]

Outputs:

X,Y,Z matrices of the X,Y and Z values of the points used to generate the

polynomial surface. If only one output is specified, Z is returned.

control: [plt_type dom.mode bound mode bound color]

plt_type:

dom_mode:

bound.mode

bound._color

can be ‘mesh’, ‘surf’, ‘Isurf’ or ‘contour’, corresponding to the MAT-
LAB surface plotting functions. Only the first character is significant in
each case.

can either be ‘clip’ or ‘extend’. It comtrols how the polynomial is
applied to points outside of its domain of definition. They are cither
clipped back to the domain, or the polynomial domain is extended, so
that the points are simply evaluated. See tchebval2d for more details.
can either be ‘contour’, ‘rectangle’; or ‘full’. contour limits the
domain to a specified contour, which is passed in bounds. rectangle
limits the domain to a rectangle defined by the first four elements of
coeff. full sefs the domain to that specified in the last four elements
passed in the vector bounds 7

specifies which colour is used to plot the clipping boundary

Local Functions Called: hard limit, hard 1imit.2d, tchebval2d

DTW Oct 1991

N

220



toep

Syvotax: x = toep (r,b);

Inputs:
r vector used to describe a Toeplitz matrix. Usually the autocorrelation
function of an input signal
b right hand side of Toeplitz matrix equation. Usually the input-output

cross-correlation measured across a dynamic linear system.

Outputs:
x solution of Toeplitz equation. If r and b are the input autocorrela-

tion and input-output cross-correlation functions, x will be the impulse
response.

This function solves the matrix equation 7'z = b, where T is a Toeplitz matrix,
described by the vector r. i.e. T'(3,7) = (i — j| + 1). Levinson’s [20] algorithm is
used.

No Local Function Calls:

EJP Jan 1991
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toep2

Syntax: x = toep (r,b,resid);

Inputs:
r vector used to describe a Toeplitz matrix. Usually the autocorrelation
function of an input signal
b right hand side of Toeplitz matrix equation. Usually the input-output

cross-correlation measured across 2 dynamic linear system.
resid (Optional) channel of residuals. Used to estimate noise statistics.

Qutputs:
x solution of Toeplitz equation. If r and b are the input autocorrela-

tion and input-output cross-correlation functions, x will be the impulse
respounse.

This function solves the matrix equation Tz = b, where T is a Toeplitz matrix,
described by the vector r. ie. T(3,5) = 7(li — j| + 1). Instead of using the exact
inverse of T, a pseudo-inverse may be employed. The use of a full-inverse as opposed
to a psendo-inverse, as well as the method used to choose the order of the pseudo-

inverse, is controlled by a series of global variables. For details, see toepman.n

Local Functions Called: toep

DTW Sept 1994
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toep.man

Syntax: toepman{option,parameter)

Inputs:

option control string

parameter optional parameter, dependent on which option is selected.

Valid options are:
¢ auto Enables automatic order selection.
e fixed Use a fixed pseudoinverse order
e fixed_order specify which order to use
e full Uses exact inverse in all deconvolutions
e gui Initializes all global variables, if necessary, and creates a graphical user interface
e help Access to help systems
e init Initializes all global variables
¢ manual manual order selection, based or displayed thresholds
e status Displays the value of all global variables, as well as a brief description of
the current order selection mode.
e verbose Toggles verbose mode (starts on)
e visual mode User can manipulate pseudoinverse order using sliders. The current
IRF is plotted together with the full inverse solution.
For detailed information, type toep.man(’help’), or toep.man{’gui’) and then
examine the help menu on the resulting figure window.

Local Functions Called: input.d,input.dl

DTW Sept 1994



wienerl

Syntax: [irf, poly, vaf, out] = wiemerl (x,v,irflen,order, mode);

Inputs:
X system 1nput
v system output

irflen memory length of the linear ynamic element
order maximum order for the polynomial nonlinearity

mode method used to select polynomial order. See tchebfit

Outputs:
irf impulse response of the dynamic linear subsystem of the Wiener cascade

poly static nonlinear subsystem, represented as a tchebyshev polynomial.
For details regarding the format of this vector, see Section A.1.3
vaf percentage of the variance of v accounted for by the Wiener cascade
output
out output of the Wiener cascade applied to x
Fits a Wiener cascade between input x and output v, using the first-order cross-
correlation between x and v, as well as the input-autocorrelation, to estimate the
dynamic linear part of the system.

Local Functions Called: phixy, tchebfit, tchebval, toep

DTW Jan. 1992
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wiener2

Syntax: [irf, poly, vaf,out] = wiener?2 (x,v,irflen,order,mode);

Inputs:
X system input
v system output

irflen memory length of the linear dynamic element
order maximum order for the polynomial nonlinearity

mode method used to select polvromial order. See tchebfit

Outputs: :
irf impulse response of the dynamic linear subsystem of the Wiener cascade
poly static nonlinear subsystem, represented as a tchebyshev polynomial.
For details regarding the format of this vector, see Section A.1.3
vaf  percentage of the variance of v accounted for by the Wiener cascade
output
out output of the Wiener cascade applied to x
Fits a Wiener cascade between input x and output v, using the second-order
cross-correlation between x and v, as well as the input-autocorrelation, to estimate
the dynamic linear part of the system.

Local Functions Called: phixy, phixxy, tchebfit, tchebval, toep

DTW Jan. 1992
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wiener3

Syntax: [irf,poly,vf,out] = wiener3 (x,v,numlags,order,mode,tol);

Inputs:
x system input
v system output

irflen memory length of the linear dynamic element

order maximum order for the polyromial nonlinearity

mode method used to select polynomial order. See tchebfit

tol tolerance used to halt gradient search algorithm that is used to find the
optimal IRF. Default value is (1 x 107)

Outputs:
irf impulse response of the dynamic linear subsystem of the Wiener cascade
poly static nonlinear subsystem, represented as a tchebyshev polynomial.
For details regarding the format of this vector, see Section A.1.3
vaf percentage of the variance of v accounted for by the Wiener cascade
output
out output of the Wiener cascade applied to x
Fits a Wiener cascade between input x and output v, using the third-order cross-
correlation between x and v, as well as the input-autocorrelation, to estimate the
dynamic linear part of the system.

Local Functions Called: iteration3, phixy, phix3y, phi_adj_phi,
| tchebfit, tchebval, toep
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Appendix B

Details of the Analogue Nonlinear
System

Figure B.1; a repeat of Figure 6.1, shows a block diagram of the analogue system

used in the experiments described in Section 6.1. Details regarding the linear filters
are presented in Table B.1.

ﬂ- h (1-)

X hy (1") —i(t)-

ua(t)

ha(T)

Figure B.1: Block diagram of the electronic system used in the experimental verifi-
cation of the eigenvector method (repeat of Figure 6.1)

Al of the filters, except the eighth order Bessel filter, were realized using a second-
order Sallen-Key structure [35]. A circuit diagram for a low-pass Sallen-Key filter
is shown in Figure B.2. To obtain a high-pass filter, the resistors marked R and _
capacitors marked C are ipterchanged. The remaining filter was a commercially
produced anti-aliasing filter .

1Frequency Devices 902LPF
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Figure B.2: Circuit diagram of the second-order Sallen-Key filters used to coastruct
the analogue nonlinear system

We estimated impulse responses for the linear filters, using the techniques de-
scribed in Chapter 3. These are presented in Figure 6.3. A nonlinear optimization
method was then used to estimate filter parameters for the identified IRFs. These
are presented, along with the design values, in Table B.1.

Cut-OF (Hz) | Ripple (Db)
Filter | Type Order | Design  Est. | Design  Est.
LPF-1 | Low-Pass Butterworth 2 2116 1931 N/A N/A
LPF-2 | Low-Pass Butterworth 2 10.26 10.58| N/A N/A
LPF-3 | Low-Pass Bessel 8 3000 30.00| N/A N/A

2

2

HPF-1 | High-Pass Chebyshev Type I 482 4.58 2 1.65
HPF-2 | High-Pass Chebyshev Tvpe 1 723 727 2 135

—

Table B.1: Filters used as linear elements in the analog simulation experiment
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