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DEDICATION

This thesis is dedicated to the variables x and y. These variables, arguably the

hardest working of them all, have left an indelible mark throughout all branches of

mathematics since the invention of the lower case Roman alphabet.
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ABSTRACT

In the first part of the thesis, we give a description of the fully residually F quo-

tients of F ∗ 〈x, y〉. The techniques we use rely extensively on the structure results

of fully residually free groups developed by O. Kharlampovich, A. Miasnikov, and

by Z. Sela. We also use the now classical theory of H. Bass and J.-P. Serre of the

actions of groups on trees. As an application we completely recover the descriptions

of the solutions sets of systems of equations in two variables given by Hmelevskĭı

and Ozhigov, the most precise to date, using completely algebraic methods. We also

construct some examples to illustrate the richness of the theory.

In the second part of the thesis, we prove some results on algorithmic complex-

ity. First we show that the the problem of deciding the solvability of an arbitrary

quadratic equation over a free group is NP-complete. We also give an algorithm

for Stallings’ Folding Process; a fundamental technique in geometric group theory;

which, for a fixed free group, runs in worst case time O(n log∗(n)).
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ABRÉGÉ

Dans la première partie de cette thèse, nous décrivons les quotients de F ∗ 〈x, y〉

qui sont des F−groupes limites. Les techniques que nous utilisons proviennent des

résultats sur la structure des groupes limites développées par O. Kharlampovich,

A. Miasnikov et indépendamment par Z. Sela. Nous utilisons également la théorie

maintenant classique de H. Bass et de J.-P. Serre sur les actions des groupes sur les ar-

bres. Comme application nous redérivons les descriptions des solutions des systèmes

d’équations à deux variables données par Hmelevskĭı et Ozhigov, qui jusqu’à présent

demeurent les plus précis, mais cette fois-ci en utilisant des méthodes complètement

algébriques. Nous construisons également des exemples qui illustrent la richesse de

la théorie.

Dans la deuxième partie de cette thèse, nous prouvons des résultats de complexité

algorithmique. Tout d’abord nous démontrons que le problème de décider si une

équation quadratique arbitraire sur un groupe libre a une solution est NP-complet.

Nous donnons finalement un algorithme pour le processus du Stallings’ Folding qui,

donné un groupe libre fixe, opère en temps au plus O(n log∗(n)).
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CHAPTER 1
Introduction

1.1 A slightly biased history of the theory of equations over free groups

Although solving equations is a central theme in mathematics it is in general

a hard thing to do without the right tools. In the next two sections we will review

previous results that lead up to and contextualize my work on systems of equations

in two variables.

1.1.1 Systems of equations over free groups with one unknown

In the 1950’s Vaught conjectured that the solutions for x, y, z in the equation

x2y2z2 = 1

over a free group commuted pairwise. This was answered positively by Lyndon in

1959 [38] using methods from combinatorial group theory. The next year he published

a paper [40] giving a description of the solution set of an equation over a free group

in a single variable in terms of collections of parametric words . This gave a method

to attack the problem. Appel and Lorenc [1, 33] announced more precise descriptions

of the solution set, but the proofs were incomplete.

In 1989 Remeslennikov observed in [49] that finitely generated fully residually

free groups are exactly the models of the existential theory of free groups. Baumslag,

Kharlampovich, Miasnikov and Remeslennikov in [29, 4] set up an analogue the basic

notions of classical (i.e. commutative) algebraic geometry for the class of torsion free
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CSA groups, which includes free groups and torsion-free hyperbolic groups. From this

work we have a characterization of fully residually free groups in terms of coordinate

groups of irreducible varieties. This characterization of fully residually free groups

puts them at the forefront of the study of solutions of equations: indeed every solution

to a system of equations over a free group corresponds to a homomorphism from a

fully residually free group to a free group.

This gave a new approach to study solutions of equations: classify the cor-

responding fully residually free groups. In 2000 Chiswell and Remeslennikov in

[7] using techniques involving length functions and Lyndon’s group F Z[t], devel-

oped by Alperin, Bass, Lyndon, Miasnikov, Remeslennikov, Chiswell, Promislow

and Wilkens, showed that the fully residually free groups that arose fell into only

three categories (see Theorem 4.1.2.) In this way they were finally able to give a

proof of the result claimed by Appel and Lorenc.

1.1.2 From algorithms to the algebraic structure of fully residually free
groups

In 1969 Appel proved that parametric words were insufficient to describe the

solutions to Malc’ev’s equation [x, y] = [a, b]. This foreshadowed the fact that the

two variable case was going to be considerably more complicated. In the early 1970’s

Hmelevskĭı and Wicks worked independently on systems of equations in two variables

over free groups [22, 62]. They both obtained an algorithm to decide solvability of

equations of the form w(x, y) = u where x, y are unknowns and u lies in a free group

F and gave descriptions of solution sets. Hmelevskĭı also had a result for another

specific type equation in two variables.
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In 1983 Ozhigov in [46] obtained an algorithm that outputs the complete solution

set of a system of equations in two variables over free groups. He moreover gave a

description of possible solutions sets in terms of so-called forms. These forms are

like parametric words that also involve something called a Hmelevskĭı function, which

it turns out corresponds to automorphisms of QH subgroups. In 1982 Makanin [42]

constructed an algorithm which decided the solvability of an arbitrary system of

equations over a free group.

So far these results were essentially algorithmic, this changed with the work of

Razborov [48]. In his PhD thesis Razborov improved on Makanin’s result by giving

an algorithm which produced the complete solution set of a system of equations

over a free group. It should be noted that although Razborov’s result in a sense

supersedes Ozhigov’s work, Ozhigov’s detailed description of solutions of systems of

equations in two variables doesn’t follow from Razborov’s machinery.

Razborov’s other big insight was to be more algebraic: his description is given

in terms of a diagram consisting of a collection of epimorphisms of groups associated

to generalized equations . To each of these groups there is an attached group of

canonical automorphisms.

The next step in this direction came from the work of Kharlampovich and Mias-

nikov. In their papers [27, 28] they develop the so-called Elimination Process (EP)

which constructs Hom diagrams which are variations of Razborov’s diagrams and

proved that all solutions of a system of equations can be obtained from solutions of

a finite number of NTQ systems. These groups are shown to embed into chains of

extensions of centralizers and therefore are fully residually free. This work actually
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implies that a finitely generated group is fully residually free if and only if it embeds

into chain of extensions of centralizers.

Finitely generated fully residually free groups were already known to have some

nice properties following directly from their definition, but this embedding theorem

has far reaching consequences. Firstly that finitely generated fully residually free

groups are finitely presented, secondly that if they are not free abelian then they

have non trivial cyclic splittings, and finally that they admit a hierarchy in which

the vertex groups can be studied via so called strict epimorphisms.

Sela in [52], using techniques for groups acting on R-trees (which were also in

part inspired by the work of Makanin), arrived at essentially the same structural

results.

1.1.3 My contribution

In the first part of the thesis I generalize Chiswell and Remeslennikov’s approach

to systems of equation in two variables over free groups. Although the main idea re-

mains the same i.e. classify the arising coordinate groups, the methods are different.

Specifically we must make extensive use of the structure theorems of Kharlampov-

ich, Miasnokov, and Sela for fully residually free groups. Another difference is the

extensive use of Bass-Serre theory, which is useful for dealing with more complicated

graphs of groups.

As a result we obtain Theorem 4.1.6: a classification of the coordinate groups

of the fully residually free groups arising in systems of equations with two unknowns

4



over free groups, extending the classification given in [7]. We are also able to re-

cover the descriptions of solutions of systems of equations in two variables given by

Hmelevskĭı and Ozhigov (see Theorems 3.1.27 and 4.1.8.)

We also give some concrete examples of Hom diagrams and of fully residually

free groups that illustrate the extent of the richness of the theory that can arise even

when considering only two variables (see Figure 3–1, Theorem 3.2.1, and Section

4.1.2.)

1.2 Beyond Decidability: Complexity

Much of the theory of equations over free groups was devoted to algorithmic

decidability results, without mention of running time. For example it is shown in

[32] that Makanin’s original algorithm isn’t even primitive recursive. Nonetheless

it seems that there are more and more results which indicate that this problem

might be algorithmically tractable. The strongest result in this direction to date is

an algorithm in PSPACE due to Plandowski [47] which can be used to decide if a

system of equations over a free group has a solution. Another interesting example is a

result due to Ciobanu given in [8]: there is a polynomial time algorithm which decides

if an equation of the form w(x, y) = u (i.e. like the one considered by Hmelevskĭı

and Wicks) has a solution.

1.2.1 Quadratic equations

The class of quadratic equations (every variable occurs exactly twice) is some-

what special in this theory. Indeed in 1962 Malc’ev gave a complete description of

the solutions to the equation [x, y] = [a, b] over the free group F (a, b) [43]. In the

1980’s Comerford and Edmunds in [10] and Grigorchuk and Kurchanov in [21] gave
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complete and detailed descriptions of solutions of arbitrary quadratic equations over

free groups. The case of quadratic equations is significantly easier than the general

case of equations over free groups. One of the main reasons for this is that Nielsen-

like techniques and the topology of surfaces provide relatively simple yet extremely

powerful tools for dealing with these equations.

In 1989 Ol’shanskĭı and Grigorchuk, Kurchanov gave explicit polynomial time

complexity upper bounds for deciding if a quadratic equation over a free group has

a solution [45, 21]. These upper bounds however are not uniform and depend on the

genus of the equation. This result implies a uniform exponential time upper bound

on the complexity of deciding if a quadratic equation has a solution. NP-hardness

of quadratic word equations was also established by Diekert and Robson [16].

We improve on this in Chapter 6 by showing that the uniform problem for

deciding if a quadratic equation over a free group has a solution is in fact in NP. We

then show a NP-hard lower bound for the complexity of this problem and therefore

establish that the problem of deciding if a quadratic equation over a free group has a

solution is NP-complete. This result is also significant because it gives a lower bound

for the complexity of the problem of deciding if an arbitrary system of equations over

a free group has a solution.

1.2.2 Stallings’ Foldings

Stallings’ foldings were originally used to study subgroups of free groups [54].

Specifically it is a process which takes a set of generators of a subgroup of a free group

and constructs a labeled graph which canonically represents the subgroup. This

graph turns out to be a very useful algorithmic tool which enables us for example to
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solve the membership problem or compute the index of a subgroup of a free group.

See [23, 53, 56] for details.

The technique has also been generalized to Bass-Serre theory in the works of

Stallings, Dunwoody, Feighn, Bestvina, Kapovich, Miasnikov, and Weidmann [55,

5, 17, 25]. There is also a generalization of this to subgroups F Z[t] developed by

Kharlampovich, Miasnikov, Serbin, and Remeslennikov in [31], which for example

allows us to easily solve the conjugacy problem (the equation xgx−1 = h, where x is

the unknown).

In Chapter 7 using a data structure due to Tarjan [58] we give an algorithm to

perform Stallings’ Folding process in worst case time O(n log∗(n)). As a corollary we

have that the uniform membership problem over a fixed free groups runs in almost

linear time.

1.3 Statement of Originality

The material presented in Chapters 3, 4, 6, and 7 of this thesis is new and

constitutes original scholarship in mathematics. Some auxiliary results, included in

this thesis to make it reasonably self contained, are clearly identified as previously

known, and the reader is referred to the original sources.

1.4 Contribution of co-authors

Chapter 6 is based on my joint paper [26] with I.G. Lysënok, O. Kharlampovich,

and A. Miasnikov. The idea of using tiling problems to study the complexity of

quadratic equations is due to A. Miasnikov and I.G. Lysënok. The reduction to the

bin packing problem is due to O. Kharlampovich, the technical details, however, were

my responsibility. The proof that the problem is in NP is also my own.

7



Part I

Structures
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CHAPTER 2
Fully residually F groups and equations

In this chapter we present some preliminary results and definitions that will be

used in Chapters 3 and 4. The material presented here is the starting point of my

work.

2.1 F -groups and Algebraic Geometry

A complete account of the material in this section can be found in [4]. Fix a free

group F . An equation in variables x1, . . . , xn over F is an expression of the form

E(x1, . . . , xn) = 1

where E(x1, . . . , xn) = f1z1
m1 . . . zn

mnfn+1; fi ∈ F, zj ∈ {x1, . . . , xn} and mk ∈ Z.

We view an equation as an element of the group

F [x1, . . . , xn] = F ∗ F (x1, . . . , xn)

. A solution of an equation is a substitution

xi 7→ gi; i = 1, . . . n; gi ∈ F (2.1)

so that in F the product E(g1, . . . , gn) =F 1. A system of equations in vari-

ables x1, . . . , xn; S(x1, . . . , xn) = 1; is a subset of F [x1, . . . , xn] and a solution of

S(x1, . . . , xn) is a substitution as in (2.1) so that all the elements of S(x1, . . . , xn)

vanish in F .
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Definition 2.1.1. A group G equipped with a distinguished monomorphism

i : F →֒ G

is called an F -group, we denote this by (G, i). Given F -groups (G1, i1) and (G2, i2),

we define an F−homomorphism to be a homomorphism of groups f such that the

following diagram commutes:

G1
f // G2

F

i1

OO

i2

=={{{{{{{{

We denote by HomF (G1, G2) the set of F -homomorphisms from (G1, i1) to (G2, i2).

In the remainder the distinguished monomorphisms will in general be obvious

and not explicitly mentioned. It is clear that every mapping of the form (2.1) induces

an F -homomorphism φ(g1, . . . , gn) : F [x1, . . . , xn] → F , it is also clear that every

f ∈ HomF (F [x1, . . . , xn], F ) is induced from such a mapping. It follows that we have

a natural bijective correspondence

HomF (F [x1, . . . , xn], F ) ↔ {(g1, . . . , gn)|gi ∈ F}

Definition 2.1.2. Let S = S(x1, . . . , xn) be a system of equations. The subset

V (S) = {(g1, . . . , gn) ∈ F × . . .× F︸ ︷︷ ︸
n times

| xi 7→ gi is a solution of S}

is called the algebraic variety of S.

We have a natural bijective correspondence

HomF (F [x1, . . . , xn]/ncl(S), F ) ↔ V (S)

10



Definition 2.1.3. The radical of S is the normal subgroup

Rad(S) =
⋂

f∈HomF (F [x1,...,xn]/ncl(S),F )

ker(f)

and we denote the coordinate group of S

FR(S) = F [x1, . . . , xn]/Rad(S)

It follows that there is a natural bijective correspondence

HomF (F [x1, . . . , xn]/ncl(S), F ) ↔ HomF (FR(S), F )

so that V (S) = V (Rad(S)). We say that V (S) or S is reducible if it is a union

V (S) = V (S1) ∪ V (S2);V (S1) ( ∪V (S) ) V (S2)

of algebraic varieties.

Definition 2.1.4. An F -group G is said to be fully residually F if for every finite

subset P ⊂ G there is some fP ∈ HomF (G,F ) such that the restriction of fP to P

is injective.

Theorem 2.1.5 ([4]). S is irreducible if and only if FR(S) is fully residually F .

Theorem 2.1.6 ([4]). Either FR(S) is fully residually F or

V (S) = V (S1) ∪ . . . ∪ V (Sn)

where the V (Si) are irreducible and there are canonical epimorphisms πi : FR(S) →

FR(Si) such that each f ∈ HomF (FR(S), F ) factors through some πi.
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Corollary 2.1.7. If F [x1, . . . , xn]/ncl(S) is fully residually F then FR(S) =

F [x1, . . . , xn]/ncl(S).

Theorem 2.1.8 ([4]). Let FR(S) be fully residually F , then in particular it has the

following properties.

• it is torsion free,

• it satisfies the CSA property (maximal abelian subgroups are malnormal,) which

implies commutation transitivity and 2-acylindricity of any almost-reduced

abelian splitting (see Definition 2.2.12.)

• elements g, h ∈ FR(S) either commute or freely generate a free group of rank 2.

2.1.1 Rational Equivalence

Definition 2.1.9. A map g : F [x1, . . . , xn] → F [x1, . . . , xn] induced by the mapping

f 7→ f ; if f ∈ F

xi 7→ Xi(F, x1, . . . , xn)

is called a polynomial map.

Proposition 2.1.10. Let g be a polynomial map such that g(xi) = Xi(F, x1, . . . , xn)

and S1(F, x!, . . . , xn) be a system of equations. Let S2(F, x1, . . . , xn) =

S1(F, g(x1), . . . , g(xn)). Then the map g̃ : F × . . .× F︸ ︷︷ ︸
n times

→ F × . . .× F︸ ︷︷ ︸
n times

given by

(a1, . . . , an) 7→ (X1(F, a1, . . . , an), . . . , Xn(F, a1, . . . , an))

restricts to a mapping g̃ : V (S2) → V (S1) called a morphism of varieties.

Definition 2.1.11. If there are polynomial maps f, g : F [x1, . . . , xn] → F [x1, . . . , xn]

such that f̃ ◦ g̃ = 1V (S1) and g̃ ◦ f̃ = 1V (S2) then we say that the systems of equations
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S1 is rationally equivalent to S2, moreover we say the varieties V (S1) and V (S2) are

isomorphic.

Theorem 2.1.12 ([4] Corollary 9). FR(S) and FR(S1) are F -isomorphic if and only

if S and S1 are rationally equivalent.

We have an application of this:

Proposition 2.1.13. (i) AutF (F [x1, . . . , xn]) is generated by the elementary

Nielsen transformations on the basis {F, x1, . . . , xn} that fix F elementwise.

(ii) If S, T are rationally equivalent via φ ∈ AutF (F [x1, . . . , xn]), then the natural

map φ̃ in the commutative diagram below is an isomorphism.

F [x1, . . . , xn]
φ //

π

��

F [x1, . . . , xn]

π

��
FR(S)

eφ // FR(T )

Since this thesis deals specifically with systems of equations in two variables,

these next two facts are formulated only in the two variable case.

Proposition 2.1.14. Suppose w(x, y) is a primitive (by primitive we mean an

element that belongs to some basis) element of F (x, y), then there exist words

X(u, z), Y (u, z) such that the set of solutions of w(x, y) = u corresponds to the

set of pairs

(x, y) = (X(u, z), Y (u, z))

where z takes arbitrary values in F .

Proof. Let S = {w(x, y)u}. By assumption there is φ ∈ AutF (F [x, y]) that sends

w(x, y) to x and φ extends to an F -automorphism of F [x, y]. This means that S is
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rationally equivalent to T = {xu−1}. The first thing to note is that FR(T ) is a free

group, hence so is FR(S). HomF (FR(T ), F ) is given by

V (T ) = {(x, y) ∈ F × F |x = u, y ∈ F}

the result now follows by precomposing with φ̃−1, as defined in Proposition 2.1.13.

Lemma 2.1.15. Suppose the free group F (x, y) on generators {x, y} admits a pre-

sentation

F (x, y) = 〈ξ, ζ, p|[ξ, ζ ]p−1〉

where ξ, ζ, p ∈ F (x, y). Then the mapping φ(ξ) = x, φ(ζ) = y, φ(p) = [x, y], extends

to an automorphism φ : F (x, y) → F (x, y).

Proof. Notice that the basis elements x, y of [x, y] obviously satisfy the identity

[x, y][x, y]−1 = 1, so the mapping φ gives an automorphism.

2.2 Splittings

We present the basics of Bass-Serre theory.

Definition 2.2.1. A graph of groups G(A) consists of a connected directed graph A

with vertex set V A and edges EA. A is directed in the sense that to each e ∈ EA

there are functions i : EA → V A, t : EA → V A corresponding to the initial and

terminal vertices of edges. To A we associate the following:

• To each v ∈ V A we assign a vertex group Av.

• To each e ∈ EA we assign an edge group Ae.

• For each edge e ∈ EA we have monomorphisms

ie : Ae → Ai(e), te : Ae → At(e)
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we call the maps ie, te boundary monomorphisms and the images of these maps

boundary subgroups.

We also formally define the following expressions: for each e ∈ EA

(e−1)−1 = e, i(e−1) = t(e), t(e−1) = i(e), ie−1 = te, te−1 = ie

A graph of groups has a fundamental group denoted π1(G(A)). We say that a

group splits as the fundamental group of a graph of groups if G = π1(G(A)) and

refer to the data D = (G,G(A)) as a splitting.

Definition 2.2.2. A sequence of the form

a0, e
ǫ1
1 , a1, e

ǫ2
2 , . . . e

ǫn
n , an

where eǫ11 , . . . e
ǫn
n is an edge path of A and where ai ∈ A

i(e
ǫi+1
i+1 )

= At(eǫi
1 ) is called a

G(A)-path.

Definition 2.2.3. We denote by π1(G(A), u) the group generated by G(A) paths

whose underlying edge path is a loop at u.

We have in particular that π1(G(A), u) ≈ π1(G(A)).

Convention 2.2.4. If FR(S) is the fundamental group of G(A), then we will always

assume that the basepoint v is the vertex v ∈ V A such that F ≤ Av.

Definition 2.2.5 (Moves on G(A)). We have the following moves on G(A) that do

not change the fundamental group.

• Change the orientation of edges in G(A), and relabel the boundary monomor-

phisms.
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• Conjugate boundary monomorphisms, i.e. replace ie by γg ◦ ie where γg denotes

conjugation by g and g ∈ Ai(e).

• Slide, i.e. if there are edges e, f such that ie(Ae) = if (Af ) then we change X

by setting i(f) = t(e) and replacing if by te ◦ i−1
e ◦ if .

• Folding, i.e. if ie(Ae) ≤ A ≤ Ai(e), then replace At(e) by At(e) ∗te(Ae) A, replace

Ae by a copy of A and change the boundary monomorphism accordingly.

• Collapse an edge e, i.e. for some edge e ∈ EA, take the subgraph star(e) =

{i(e), e, t(e)} and consider the quotient of the graph A, subject to the relation

∼ that collapses star(e) to a point. The resulting graph A′ = A/ ∼ is again a

directed graph. Denote the equivalence class v′ = [star(e)] ∈ A′, then we have

A′
v′ = Ai(e) ∗Ae

Gt(e) or Ai(e)∗Ae
depending whether i(e) = t(e) or not. For each

edge f of A incident to either i(e) or t(e), we have boundary monomorphisms

Af → A′
v′ given by i′f = j ◦ if or t′f = j ◦ tf , where j is the one of the inclusion

At(e) ⊂ A′
v′ or Ai(e) ⊂ Av′ .

• Conjugation, i.e. for some g ∈ G replace all the vertex groups Av by Agv and

postcompose boundary monomorphisms with γg (which denotes conjugation

by g).

2.2.1 Relative presentations

Although the use of graphs of groups is critical, they are notationally cumber-

some. We therefore recall how to obtain relative presentations from graphs of groups,

and explain the graphical notation we will use.

Let G1, . . . Gn be groups with presentations 〈X1 | R1〉, . . . , 〈Xn | Rn〉 (resp.) and

t1, . . . tk a set of letters. Let R denote a set of words in
⋃
X±1
i ∪ {t1, . . . tk}±1 then
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we will define the relative presentation

〈G1, . . . , Gn, t1, . . . tk | R〉

to be the group defined by the presentation

〈X1, . . . , Xn, t1, . . . tk | R1, . . . Rn, R〉

If G is the fundamental group of a graph of groups G(A) with vertex groups

G1, . . . , Gn and cyclic edge groups we can give G a relative presentation as follows:

(A) Take a spanning tree T of the underlying graph A.

(B) For each edge e of T we can assume that Gi(e) ∩Gt(e) = Ge, and therefore can

form an iterated amalgam.

(C) For each edge f not in T we add a “stable letter” tf and the relation tf =

(tf)
−1αtf = α′; where α and α′ are the images in Gi(f) and Ge(f) resp. of a

generator of Gf via boundary monomorphisms.

The resulting presentation gives a group isomorphic to G, although it depends

on the choice of spanning tree. We can take the underlying graph A and encode this

relative presentation by labelling as follows:

• Vertices are labelled by the vertex groups.

• Edges in the spanning tree T are represented by undirected edges labelled by

a generator of the edge group.

• Edges f not in the spanning tree T are directed, labelled by the corresponding

stable letter tf , moreover the endpoints are decorated by the elements α, α′ as

defined in (C) above.
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We will switch freely between words represented as G(A)-paths and words in

generators of relative presentations.

2.2.2 The cyclic JSJ decomposition

Definition 2.2.6. An elementary cyclic splitting D of G is a splitting of G as either

a free product with amalgamation or an HNN extension over a cyclic subgroup. We

define the Dehn twist along D, δD, as follows.

• If G = A ∗〈γ〉 B then

δD(x) =





x if x ∈ A

xγ if x ∈ B

• If G = 〈A, t|t−1γt = β〉, γ, β ∈ A then

δD(x) =





x if x ∈ A

tβ if x = t

A Dehn twist generates a cyclic subgroup of Aut(G). A splitting such that all the

edge groups are nontrivial and cyclic is called a cyclic splitting.

We can generalize the notion of a Dehn twist to arbitrary cyclic splittings.

Definition 2.2.7. let D be a cyclic splitting of G with underlying graph A and let

e be an edge of of A. Then a Dehn twist along e is an automorphism that can be

obtained by collapsing all the other edges in A to get a splitting D′ of G with only

the edge e and applying one of the applicable automorphisms of Definition 2.2.6

Definition 2.2.8. (i) A subgroup H ≤ G is elliptic in a splitting D if H is con-

jugable into a vertex group of D, otherwise we say it is hyperbolic.
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(ii) Let D and D′ be two elementary cyclic splittings of a group G with boundary

subgroups C and C ′, respectively. We say that D′ is elliptic in D if C ′ is elliptic

in D. Otherwise D′ is hyperbolic in D

A splitting D of an F -group is said to be modulo F if the subgroup F is contained

in a vertex group.

The following is proved in [50]:

Theorem 2.2.9. (i) Let G be freely indecomposable (modulo F ) and let D′, D be

two elementary cyclic splittings of G (modulo F ). D′ is elliptic in D if and

only if D is elliptic in D′.

(ii) Moreover if D′ is hyperbolic in D then G admits a splitting E such that one of

its vertex groups is the fundamental group Q = π1(S) of a punctured surface S

such that the boundary subgroups of Q are puncture subgroups. Moreover the

cyclic subgroups 〈d〉, 〈d′〉 corresponding to D,D′ respectively are both conjugate

into Q.

Definition 2.2.10. A subgroup Q ≤ G is a quadratically hanging (QH) subgroup

if for some cyclic splitting D of G, Q is a vertex group that arises as in item (ii) of

Theorem 2.2.9.

Not every surface with punctures can yield a QH subgroup. By Theorem 3 of

[27], the projective plane with puncture(s) and the Klein bottle with puncture(s)

cannot give QH subgroups.

Definition 2.2.11. (i) A QH subgroup Q ofG is a maximal QH (MQH) subgroup

if for any other QH subgroup Q′ of G, if Q ≤ Q′ then Q = Q′.
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(ii) Let D be a splitting of G with Q be a QH vertex subgroup and let C be a

splitting of Q with boundary subgroup 〈c〉 then there is a splitting D′ of G

called a refinement of D along C such that D is obtained from a collapse of

D′ along an edge whose corresponding group is 〈c〉.

Definition 2.2.12. (i) A splitting D is almost reduced if vertices of valence one

and two properly contain the images of edge groups, except vertices between

two MQH subgroups that may coincide with one of the edge groups.

(ii) A splitting D of G is unfolded if D can not be obtained from another splitting

D′ via a folding move (See Definition 2.2.5).

Theorem 2.2.13 (Proposition 2.15 of [30]). Let H be a freely indecomposable modulo

F f.g. fully residually F group. Then there exists an almost reduced unfolded cyclic

splitting D called the cyclic JSJ splitting ofH modulo F with the following properties:

(1) Every MQH subgroup of H can be conjugated into a vertex group in D; every

QH subgroup of H can be conjugated into one of the MQH subgroups of H;

non-MQH [vertex] subgroups in D are of two types: maximal abelian and non-

abelian [rigid], every non-MQH vertex group in D is elliptic in every cyclic

splitting of H modulo F .

(2) If an elementary cyclic splitting H = A ∗C B or H = A∗C is hyperbolic in

another elementary cyclic splitting, then C can be conjugated into some MQH

subgroup.

(3) Every elementary cyclic splitting H = A ∗C B or H = A∗C modulo F which

is elliptic with respect to any other elementary cyclic splitting modulo F of H

can be obtained from D by a sequence of moves given in Definition 2.2.5.
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(4) If D1 is another cyclic splitting of H modulo F that has properties (1)-(2)

then D1 can be obtained from D by a sequence of slidings, conjugations, and

modifying boundary monomorphisms by conjugation (see Definition 2.2.5.)

Definition 2.2.14. Suppose first that G is freely indecomposable. Given D, a

cyclic JSJ decomposition of FR(S) modulo F , we define the group ∆ of canonical

F−automorphisms with respect to D of FR(S) to be generated by the following:

• Dehn twists along edges of D that fox F pointwise;

• automorphisms of the MQH groups that fix edge groups pointwise;

• automorphisms of the abelian vertex groups that fix edge groups point wise.

If G is freely decomposable modulo F then ∆ is generated by the extensions of the

canonical F−automorphisms of its freely indecomposable free factors.

Convention 2.2.15. Unless stated otherwise, instead of saying the cyclic JSJ de-

composition of FR(S) modulo F , we will simply say the JSJ of FR(S).

Convention 2.2.16. Unless stated otherwise, instead of saying the canonical

F−automorphisms with respect to D where D is a JSJ, we will simply say the canon-

ical automorphisms of FR(S).

The following Theorem is proved in [28].

Theorem 2.2.17. If FR(S) 6= F is fully residually free and is freely indecomposable

(modulo F ) then it admits a non trivial cyclic splitting modulo F .

Corollary 2.2.18. If FR(S) 6= F then it has a nontrivial JSJ.

2.3 The Structure of HomF (FR(S), F )

Definition 2.3.1. A Hom diagram for HomF (G,F ), denoted Diag(G,F ), consists

of a finite directed rooted tree T with root v0, along with the following data:
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• To each vertex, except the root, v of T we associate a fully residually F group

FR(Sv).

• The group associated to each leaf of T is a free product F ∗ F (Y ) where Y is

some set of variables.

• To each edge e with initial vertex vi and terminal vertex vt we have a proper

F -epimorphism πe : FR(Sv1 ) → FR(Sv2 )

We point out that in the work of Sela, the Hom diagram is called a Makanin-

Razborov diagram (relative to F) and that our fully residually F groups are limit

groups (relative to F). The following theorem gives a finite parametrisation of the

solutions of systems of equations over a free group.

Theorem 2.3.2 ([30, 52]). For any system of equations S(x1, . . . , xn) there exists a

Hom diagram Diag(FR(S), F ) such that for every f ∈ HomF (FR(S), F ) there is a path

v0, e1, v1, e2, . . . , em+1, vm+1

from the root v0 to a leaf vm+1 such that

f = ρ ◦ πvm+1 ◦ σvm
◦ . . . ◦ σv1 ◦ πe1

where the σvj
are canonical F -automorphisms of FR(Svj

), the πj are epimorphisms

πj : FR(Svj
) → FR(Svj+1 ) inside Diag(FR(S), F ), and ρ is any F -homomorphism ρ :

FR(Svm+1 ) → F from the free group FR(Svm+1 ) to F .

Definition 2.3.3. Let D be a cyclic splitting of FR(S). If v is a valence 1 vertex of

A, the graph underlying D, and Av is cyclic, then it is called a hair.
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Definition 2.3.4. Let D be the JSJ of FR(S) and let D′ be splitting of FR(S) obtained

by collapsing hairs into the adjacent vertex groups. Then D′ is called the hairless

JSJ of FR(S).

Lemma 2.3.5. Theorem 2.3.2 holds if we replace the canonical automorphisms w.r.t.

the JSJ by the canonical automorphisms w.r.t. the hairless JSJ.

Proof. Since the hairless JSJ is a collapse of the JSJ, we have that the canonical

automorphisms w.r.t. the hairless JSJ are a subset of the canonical automorphisms.

On the other hand all the Dehn twists associated to hairs are trivial so the sets of

automorphisms are equal.

Convention 2.3.6. Unless stated otherwise, we will always replace the JSJ by the

hairless JSJ.

2.3.1 Resolutions

An extremely useful tool for studying the vertex groups and getting structural

information is resolutions.

Definition 2.3.7. An epimorphism of ρ : FR(S) → FR(S′) of fully residually F groups

is called strict if it satisfies the following conditions on the cyclic JSJ splitting modulo

F .

• For each abelian vertex group A, ρ is injective on the subgroup A1 ≤ A gener-

ated by the boundary subgroups in A.

• ρ is injective on edge groups.

• The image of QH subgroups is nonabelian.

• For every rigid subgroup R, ρ is injective on the envelope R̃ of R, defined

by first replacing each abelian vertex group with its boundary subgroups and
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letting R̃ be the subgroup of the resulting group generated by R and by the

centralizers of incident edge groups.

Definition 2.3.8. A resolution of FR(S)

R : FR(S) π1

// . . .
πp

// FR(Sp)πp+1

// F

is a sequence of proper epimorphisms of fully residually F groups.1 A strict resolu-

tion is a resolution such that all the epimorphisms are strict.

The next result follow immediately from Theorem 2.3.2.

Theorem 2.3.9. [52, 28] If FR(S) is fully residually F then it admits a strict reso-

lution.

This next result, however, requires more work:

Lemma 2.3.10. [52, 28] The subset ΦR ≤ homF (FR(S), F ) of F -morphisms that

factor through a strict resolution R F -discriminate FR(S).

This next definition illustrates what is going on with non-free rigid vertex groups

and why they eventually split along the strict resolution.

Definition 2.3.11. Let R1 ≤ FR(S) be a non free rigid subgroup and let β ∈ R1

generate a boundary subgroup. We say that β obstructs R1 if there is a splitting

of R1 in which β is hyperbolic. We say that an element of an abelian vertex group

A ≤ FR(S) is exposed if it does not lie in a boundary subgroup.

1 In [28] this is called a fundamental sequence
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2.3.2 Parametric words

Parametric words were first used by Lyndon to describe the solution sets of one

variable equations. Although collections of parametric words alone are insufficient to

describe solutions of systems of equations over free groups in general, even for only

two variables (Appel [2],) they appear very often. Given the description of solutions

given in Theorem 2.3.2 it should be clear how these parametric words arise naturally.

Definition 2.3.12. Let F be a free group. An expression of the form

f1p
n1
1 f2 . . . fnp

n2
2 fn1

where the fi and pi lie in F and the ni are variables in Z is called a one level

parametric word in F . Inductively we define an n-level parametric word to be an

expression of the form

f1p
n1
1 f2 . . . fnp

n2
2 fn1

where fi ∈ F, ni are variables and the pi are mi-level parametric with

max(mi) = n− 1

Formally, a parametric word defines a subset of F .
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CHAPTER 3
The equation w(x, y) = u over free groups

In this chapter we will study equations of the simple form w(x, y) = u over F ,

where u ∈ F , w(x, y) is a word in {x, y}±1 and x, y are the unknowns. This is the

class of equations was considered by Hmelevskĭı and Wicks in [22, 62]. Not only will

we give a complete description of the possible arising coordinate groups, but we will

also describe all the possible Hom diagrams, see Theorem 3.1.27. This enables us to

give a complete and explicit description of the solutions sets of these equations. We

will then give an example of a single equation not of the type above whose solution

set does not fall into the previous description.

The content of this chapter is based on the published article [60].

3.1 The system of equations S = {w(x, y)u−1}

Definition 3.1.1. Let φ be a solution of S, then the rank of φ is the rank of the

subgroup 〈φ(x), φ(y)〉 ≤ F .

If all solutions of S are of rank 1, then V (S) is easy to describe and is given in

Section 3.1.1. If S has solutions of rank 2, then there will be infinitely many such

solutions. For this case we will prove that Diag(FR(S), F ) correspond to one of three

cases (see Figure 3–1.) We will moreover describe the possible splittings of FR(S)

and the associated canonical automorphisms. This description along with Theorem

2.3.2, will enable us to describe V (S) as a set of pairs of words in F (see Theorem

3.1.27).
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F

F FFFFF F

FR(S) FR(S) FR(S)

F1

V − V (S1) V − V (S1)

π1

π2

π3

Figure 3–1: Hom diagrams corresponding to cases 1., 2., and 3. of Corollary 3.1.11,
π1, π2, π3 are given in Proposition 3.1.13.

3.1.1 Easy Cases and Reductions

By Proposition 2.1.14 we need only concern ourselves with the case where w(x, y)

is not primitive. We state some results that enable us to simplify matters:

Lemma 3.1.2. The equation w(x, y) = 1 doesn’t admit any rank 2 solutions.

Let σx(w) and σy(w) be the exponents sums of x and y respectively in the word

w(x, y). Then it is easy to see that

V (S) = {(rn1, rn2) ∈ F × F |r ∈ F ; n1σx(w) + n2σy(w) = 0} (3.1)

In this case we have that FR(S) ≈ F∗ < t > and the mapping F [x, y]/ncl(S) → FR(S)

is given by the mapping 



f 7→ f, f ∈ F

x 7→ trx

y 7→ try

where (rx, ry) is a generator of the subgroup {(a, b) ∈ Z ⊕ Z|aσx(w) + bσy(w) = 0}.
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Lemma 3.1.3. If w(x, y) = v(x, y)n, n > 1 then either the variety V ({w(x, y)u−1})

is empty or u = rn for some r ∈ F and we have the equality V ({w(x, y)u−1}) =

V ({v(x, y)r−1}).

We will always assume that w(x, y) is not a proper power. Although this may

seem somewhat contrived, our reason for doing so is twofold: firstly, requiring that

an element is primitive is not enough; in our theorems we want to exclude the case

where w(x, y) is a proper power of a primitive element as, again, solutions are easy

to describe. Secondly, if w(x, y) = v(x, y)n with n maximal, then in the cyclic JSJ

splitting of FR(S) modulo F , the edge group will be generated by v(x, y) and not

w(x, y). For the next result we need the following theorem:

Theorem 3.1.4 (Main Theorem of [3]). Let w = w(x1, x2, . . . , xn) be an element of

a free group F freely generated by x1, x2, . . . , xn which is neither a proper power nor

a primitive. If g2, g2, . . . , gn, g are elements of a free group connected by the relation

w(g1, g2, . . . , gn) = gm (m > 1)

then the rank of the group generated by g1, g2, . . . , gn is at most n− 1.

Corollary 3.1.5. Suppose that w(x, y) is neither primitive nor a proper power. If

u = rn, n > 1 is a proper power then the equation w(x, y) = u doesn’t have any rank

2 solutions.

Proof. Suppose not then there is a solution φ : FR(S) → F such that x = φx, y = φy

and [x, y] 6= 1 which means that 〈x, y〉 is free group of rank two. But we have the

identity w(x, y) = rn, which by Theorem 3.1.4 implies that rank of 〈x, y〉 is at most

one –contradiction.
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3.1.2 Possible cyclic JSJ splittings of FR(S) and canonical automorphisms

Lemma 3.1.6. Suppose that w(x, y) is neither primitive nor a proper power. If

w(x, y) = u has a rank 2 solution then the group

F [x, y]/ncl(S) ≈ F ∗u=w(x,y) 〈x, y〉

is fully residually F and, in particular, we have that

FR(S) = F ∗u=w(x,y) 〈x, y〉

Proof. Let (x, y) be a rank 2 solution. Let F1 = 〈F, t|t−1ut = u〉, F1 is a rank one

free extension of a centralizer of F , and therefore is fully residually F . By definition

F−subgroups are also fully residually F . Let H = 〈x, y〉 ≤ F and let H ′ = t−1Ht.

By Britton’s Lemma we see that H ′ ∩ F = 〈u〉 and that

〈F,H〉 ≈ Fu=w(xt,yt)H
′ ≈ F ∗u=w(x,y) 〈x, y〉

so this gives an F−embedding F ∗u=w(x,y) 〈x, y〉 →֒ F1 so F ∗u=w(x,y) 〈x, y〉 is fully

residually F . By Corollary 2.1.7 we obtain the equality

FR(S) = F [x, y]/ncl(S)

Lemma 3.1.7. If w(x, y) is not primitive nor a proper power then FR(S) = F ∗u=w(x,y)

〈x, y〉 is freely indecomposable modulo F .

Proof. Suppose not. Since 〈x, y〉 is a free group of rank 2, if it splits freely with

nontrivial factors, then it must split as a free product of two cyclic groups. Since any
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splitting of FR(S) modulo F must also be modulo w(x, y) we have that w(x, y) must

lie in one of these free cyclic factors, contradicting the hypotheses of the lemma.

Given this first decomposition as an amalgam, we wish to see how it can be

refined to a cyclic JSJ decomposition modulo F . By the Freiheitssatz, the subgroup

〈x, y〉 ≤ FR(S) is free of rank 2. So to investigate cyclic JSJ decomposition modulo

F , we must first look at the possible cyclic splitting of 〈x, y〉. Our main tool will be

the following theorem of Swarup:

Theorem 3.1.8 (Theorem 1 of [57]). (A) Let G = G1 ∗HG2 be an amalgamated free

product decomposition of a free group G with H finitely generated. Then, there is a

non-trivial free factor H ′ of H such that H ′ is a free factor of either G1 or G2.

(B) Let G = J∗H,t be an HNN decomposition of a free group G with H finitely

generated. Then there are decompositions H = H1 ∗ H2, J = J1 ∗ J2 with H1 non

trivial such that H1 is a free factor of J1 and t−1H1t is conjugate in J to a subgroup

of J2.

Corollary 3.1.9. If G = G1 ∗〈γ〉 G2 is an amalgamated free product decomposition

of a free group over a nontrivial cyclic subgroup, then Rank(G) = Rank(G1) +

Rank(G2) − 1.

Lemma 3.1.10. Let G be a free group of rank 2 and let w ∈ G be non primitive, and

not a proper power. Then the only possible almost reduced (see Definition 2.2.12)

nontrivial cyclic splittings of G as the fundamental group of a graph of groups with

w elliptic are as

(i) a star of groups, specifically a graph of groups whose underlying graph is simply

connected, consisting of a center vertex vc and a collection of peripheral vertices
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v1, . . . , vm connected to vc by an edge. The group associated to vc, called the

central group, is free of rank 2 and each edge group is nontrivial, cyclic and is

a proper finite index subgroup of the associated “peripheral” vertex group1 ; or

(ii) as an HNN extension

G = 〈H, t|t−1pt = q〉; p, q ∈ H − {1}

where w ∈ H and H is another free group of rank 2. Moreover we have that

H = 〈p〉 ∗ 〈q〉 i.e. G = 〈p, t〉.

Proof. Let D be a splitting of G. If G splits as a free product with amalgamation

G = G1 ∗〈γ〉 G2 then if γ is not trivial, Corollary 3.1.9 forces one of the factors to be

cyclic. Since we are assuming almost reducedness we must have that the edge group

is a finite index subgroup of one of the cyclic factors. Suppose G2 is a cyclic factor

and let z be a generator of G2. Then the free group G is obtained by adjoining the

nth root z of the element γ ∈ G1, which is a free group of rank 2. It is however

impossible to have a further splitting G1 ∗〈γ〉 G2 ∗〈γ′〉 ∗G3 with G2 and G3 cyclic and

with 〈γ〉, 〈γ′〉 proper finite index subgroups of G2, G3 (resp.) since then, by an easy

computation using normal forms, it would be possible to get a counter example to

commutation transitivity, which must hold in a free group. The general star case

follows.

1 The vertex groups v1, . . . , vm are in fact hairs as in Definition 2.3.3
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If the underlying graph of D is simply connected and one of the edge groups

is trivial, then we can collapse D to a free product G1 ∗ G2 with nontrivial factors,

and with w lying in one of the vertex groups, by Grushko’s Theorem we must have

Rank(G1) = Rank(G2) = 1 and our assumption that w is elliptic in D and not a

proper power forces w to be primitive –contradiction. We have therefore covered the

case where the underlying graph is simply connected.

If the underlying graphs has two cycles (and a nontrivial vertex group), then we

would have a proper epimorphism G→ F (a, b) which contradicts the Hopf property.

Claim: If G = 〈H, t|t−1pt = q〉, then H is a free group of rank 2. By Theorem 3.1.8

(B) and conjugating boundary monomorphisms we can arrange so that

H = H1 ∗H2 with p ∈ H1 and q ∈ H2 (3.2)

Theorem 3.1.8 (B) moreover gives us that without loss of generality we can assume

that 〈q〉 is a free factor of H2. This means that

H2 = H ′
2 ∗ 〈q〉 (3.3)

Letting H ′ = H1 ∗H ′
2 we get that H = H ′ ∗ 〈q〉 so combining (3.2) and (3.3) gives

us a presentation G = 〈H ′, t, q|t−1pt = q〉 which via a Tietze transformation gives us

G = 〈H ′, t|∅〉 (3.4)

which forces H ′ to be cyclic which means that H has rank 2. Moreover, we see

immediately that H = 〈p〉 ∗ 〈q〉.
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Recall that by Lemma 2.3.5 we can ingore case (i) above. We denote by ∆ the

group of canonical F−automorphisms of FR(S) (see Definition 2.2.14.)

Corollary 3.1.11. There are three possible classes of cyclic JSJ decomposition mod-

ulo F of FR(S):

1. FR(S) ≈ F ∗u=w(x,y) 〈x, y〉 and ∆ = 〈γw〉, where γw is the automorphism that

extend the mapping:

γw :





f 7→ f ; f ∈ F

z 7→ w−1zw; z ∈ 〈x, y〉

2. The subgroup 〈x, y〉 splits as a cyclic HNN-extension:

〈x, y〉 = 〈H, t|t−1pt = q〉

with w(x, y) ∈ H so that FR(S) ≈ F ∗u=w(x,y) 〈H, t|t−1pt = q〉 and ∆ = 〈γw, τ〉

where these are the automorphisms that extend the mappings:

γw :





f 7→ f ; f ∈ F

z 7→ w−1zw; z ∈ 〈x, y〉
; τ :





z 7→ z; z ∈ 〈F,H〉

t 7→ tq

3. FR(S) ≈ F ∗u=w(x,y)Q where Q is a QH subgroup and, up to rational equivalence,

Q = 〈x, y, w|[x, y]w−1〉. ∆ is generated by the automorphisms extending the

mappings:

γw; δx :





x 7→ yx

identity on F ∪ {y}
; δy :





y 7→ xy

identity on F ∪ {x}
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Proof. Suppose first that the cyclic JSJ decomposition of FR(S) modulo F has a QH

subgroup Q. Then Q must be a subgroup of 〈x, y〉, in particular there must be a

splitting of 〈x, y〉 modulo w such that Q is one of its vertex groups. By Lemma 3.1.10

we must either have that Q = 〈x, y〉, or 〈x, y〉 is an HNN extension of Q. Either way

we must have that Q is a free group of rank 2. The possible punctured surfaces S

such that π1(S) is a free group of rank 2 are the once punctured torus or the once

punctured Klein bottle, the latter is not allowed (see Theorem 3 of [27].) Moreover,

we see that if 〈x, y〉 is an HNN extension of Q then the associated subgroups must be

conjugate in Q, which would imply that 〈x, y〉 contains an abelian free group of rank

2 –contradiction. It follows from Corollary 2.1.15 that, up to rational equivalence,

the only possibility is as in case 3. of the statement.

The rest of the statement follows immediately from Lemma 3.1.10 and Definition

2.2.14.

3.1.3 Solutions of rank 1

We now consider solutions of rank 1. Although everything can easily be de-

scribed in terms of linear algebra, it is instructive to explain this in terms of Hom

diagrams and canonical automorphisms, because as we shall see these provide exam-

ples of canonical epimorphisms that are not strict (recall Definition 2.3.7.)

As we saw earlier, rank 1 solutions occur when we are solving w(x, y) = 1.

More generally a rank 1 solutions occurs if and only if w(x, y) = u = vd where

d = gcd(σx(w), σy(w)); σx(w), σy(w) denote the exponent sums of x, y in w(x, y).

Corollary 3.1.5 states that if d > 1, but w(x, y) not primitive and not a proper
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power, then all solution of w(x, y) = u have rank 1. If d = 1 then w(x, y) = u may

have both rank 1 and rank 2 solutions.

Let S1 = {w(x, y)u−1, [x, y]}, then all rank 1 solutions must factor through

FR(S1). If d > 1 then, since all solutions are rank 1, we must have we in fact have

Rad({w(x, y)u−1}) = ncl({w(x, y)u−1, [x, y]}). As a set, these solutions are easy to

describe:

V (S1) = {(un1, un2) ∈ F × F |n1σx(w) + n2σy(w) = d} (3.5)

Let p, q be integers such that

pσx(w) + qσy(w) = d (3.6)

then doing some linear algebra we have that n1, n2 in (3.5) are given by

(n1, n2) = (p, q) +m(σy(w),−σx(w)); m ∈ Z (3.7)

We now investigate the situation where w(x, y) = u has rank 1 and rank 2

solutions, i.e V (S) ) V (S1). We first want to understand FR(S1).

Lemma 3.1.12. Suppose that w(x, y) is not primitive nor a proper power and sup-

pose moreover that w(x, y) = u admits rank 1 and rank 2 solutions. Then there

FR(S1) is isomorphic to 〈F, s|[u, s] = 1〉 = F1. The F−morphism π1 : FR(S1) → F1

given by

π1(x) = upsσy(w) = x; π1(y) = uqs−σx(w) = y (3.8)

where p, q are as in equation (3.6), realizes this isomorphism.
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Proof. Consider the F−epimorphism π1 : FR(S1) → 〈F, s|[u, s] = 1〉 = F1 given by

(3.8) On one hand we see that π1 is surjective which gives an injection

HomF (F1, F ) →֒ HomF (FR(S1), F ) (3.9)

via pullbacks f 7→ f ◦ π1. On the other hand F1, a free rank 1 extension of a

centralizer, is fully residually free. On the third hand the group ∆1 of canonical F

automorphisms of F1 is generated by the automorphism given by:

δ :





s 7→ su

f 7→ f f ∈ F

and if we consider the F−epimorphism π2 : F1 → F given by π2(s) = u then we

immediately see that the set

V = {(π2(σ
m(x)), π2(σ

m(y)) ∈ F × F |σ ∈ ∆1}

of images of (x, y) via the mappings π2 ◦ σ ◦ π1, σ ∈ ∆1 coincides with V (S1). And

since HomF (F1, F ) = {π2 ◦σ|σ ∈ ∆1} we get that the correspondence (3.9) is in fact

a bijective correspondence. It follows that FR(S1) ≈F F1.

Proposition 3.1.13. Let w(x, y) be non primitive and not a proper power. Suppose

moreover that w(x, y) = u has rank 1 and rank 2 solutions. Then

(i) if FR(S) is as in 1. in Corollary 3.1.11 , then V (S1) is represented by the fol-

lowing branch in Diag(FR(S), F ):

FR(S)
π1 // F1

σ

�� π2 // F (3.10)

36



where σ ∈ ∆1.

(ii) If FR(S) is as in 2. in Corollary 3.1.11 , then V (S1) is represented by the

following branch in Diag(FR(S), F ):

FR(S)

σ

��
π3 // F (3.11)

where σ ∈ ∆ and π3 = π2 ◦ π1

Where π1, π2 and ∆1 were defined in the previous proof.

Proof. We first note that if FR(S) corresponds to case 3. of Corollary 3.1.11, then the

equality (3.6) is impossible. In both possible cases we have epimorphisms

FR(S)
π1 // F1

π2 // F (3.12)

We saw that all solutions rank 1 solutions factor through π1. If FR(S) is as in 1. in

Corollary 3.1.11 then ∆ is generated by γw, now since π1 ◦ γw = π1 we have that

solutions in V (S1) must factor through F1 and are parameterized by ∆1.

If FR(S) is as in 2. in Corollary 3.1.11, then 〈x, y〉 splits as

〈H, t|t−1pt = q〉; p, q ∈ H

moreover by Lemma 3.1.10 we have that 〈x, y〉 = 〈p, t〉. We consider this basis of

〈x, y〉. Let π1(t) = t, π1(p) = p, then the subgroup Z ⊕ Z ≈ A = 〈u, s〉 ≤ F1 is

generated by p, t. We note that in FR(S), as written as a word in {p, t}±1, w(x, y) =

w′(p, t) = u has exponent sum zero in the letter t. Since A is the abelianization of

〈x, y〉, we have that in A, u = 0t+ np and since u lies in a minimal generating set of
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A we must have n = ±1. It therefore follows that for the Dehn twist τ , which sends

t 7→ tq, we have π1 ◦ τ = δ ◦ π1, where δ is the generator of ∆1. It follows that the

canonical F -automorphisms of F1 in (3.12) can be “lifted” to FR(S) and the branch

(3.11) gives us a parameterization of V (S1).

3.1.4 Solutions of rank 2

Before being able to make our finiteness arguments we need some preliminary

setup. We will study more closely mappings F (x, y) → F .

Definition 3.1.14. (i) Let (f1, f2) be a pair of words in a free group, then an

elementary Nielsen move (e.N.m.) is a mapping of the form

(f1, f2) 7→ (f1, (f
ǫ1
2 f

ǫ2
1 )ǫ3) or (f1, f2) 7→ ((f ǫ11 f

ǫ2
2 )ǫ3), f2)

with ǫ1, ǫ3 ∈ {−1, 1} and ǫ2 ∈ {−1, 0, 1}.

(ii) For F (x, y), the free group on the basis {x, y}, an elementary Nielsen transfor-

mation (e.N.t.) is an element of Aut(F (x, y)) that is defined by the mappings:





x 7→ (xǫ1yǫ2)ǫ3

y 7→ y
or





x 7→ x

y 7→ (yǫ1xǫ2)ǫ3

with ǫ1, ǫ3 ∈ {−1, 1} and ǫ2 ∈ {−1, 0, 1}.

Lemma 3.1.15. Suppose φ, given by (x0, y0) ∈ F × F , is a rank 2 solution of

w(x, y) = u, let

(x0, y0) m1

// . . .
mn

// (xn, yn)

be a sequence of e.N.m. then
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(i) there is a corresponding sequence of e.N.t t1, . . . , tn such that letting w0(x, y) =

w(x, y) and wj+1(x, y) = tj+1(wj(x, y)) we have the equalities

u = w0(x0, y0) = . . . = wn(xn, yn) (3.13)

(ii) Let

α = tn ◦ . . . ◦ t1 ∈ Aut(F (x, y)) (3.14)

then the mapping φ′ = φ ◦ α−1 : F (x, y) → F is given by the pair (xn, yn)

sketch of proof. Noting that a rank 2 solution isomorphically identifies the subgroup

〈x, y〉 ≤ FR(S) with a rank 2 subgroup of a free group, the proof is essentially the same

as the proof that elementary Nielsen transformations generate the automorphisms of

a f.g. free group (See Proposition I.4.1. of [39]).

The reader can look at Section I.2 of [39] for the necessary background for the

next lemma.

Lemma 3.1.16. Fix a basis X of F , then to any subgroup H ≤ F of rank n we

can canonically associate an ordered set of Nielsen reduced generators (j1, . . . , jn),

moreover this ordered set can be obtained from any ordered n-tuple of generators

(h1, . . . , hn) of H via a sequence of e.N.m.

We now give names to all of these:

Definition 3.1.17. Let φ, given by (x0, y0), be a solution of w(x, y) = u. Let

(x0, y0) m1

// . . .
mn

// (xn, yn)
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be the sequence of e.N.m. that brings the pair (x0, y0) to the canonical pair (xn, yn)

of generators of 〈x0, y0〉 guaranteed by Lemma 3.1.16. Then we have:

• The pair (xn, yn) is called the terminal pair of φ (denoted tp(φ).)

• The word wn(x, y) ∈ 〈x, y〉 in (3.13) is called the terminal word of φ (denoted

tw(φ).)

• The automorphism α ∈ Aut(F (x, y)), is the automorphism associated to φ

(denoted αφ.)

Proposition 3.1.18. Let S = {w(x, y) = u} and let U ⊂ V (S) be the open subvari-

ety of rank 2 solutions, then there are only finitely many possible terminal pairs and

terminal words that can be associated to solutions φ ∈ U .

Proof. Fix a basis X of F , we first show finiteness of possible terminal pairs.

Let φ be a solution, given by (x0, y0) and let H = 〈x0, y0〉 ≤ F and let Γ be the

Stallings graph for H (See, for instance, [54].) Then there is a path in Γ with label

u. We also have that Nielsen generators can be read directly off Γ (see [23]) as labels

of simple closed paths. If we define the radius of Γ to be the distance between the

basepoint of Γ and the “farthest” vertex, then we see that the length of the Nielsen

generators (xm, ym) is bounded by two times the radius. Moreover since w(x, y) is

neither primitive nor a proper power in F (x, y) ≈ H , u is not primitive nor a proper

power in H . It follows that the reduced path in Γ labeled u must cover the whole

graph which means |u| is at least twice the radius, hence

|xm|, |ym| ≤ |u|

so the number of possible terminal pairs is bounded.
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Consider now the terminal word wn(x, y). Since (xm, ym) ∈ F × F is a Nielsen

reduced pair we have that

|wn(x, y)|{x,y} ≤ |wn(xn, yn)|X = |u|X

which bounds the number of terminal words.

We now connect all these ideas to solutions of equations. The next observation

is obvious but critical.

Lemma 3.1.19. Let FR(S) be the coordinate group of w(x, y) = u, with w(x, y) not

primitive, not a proper power and such that w(x, y) has a rank 2 solution. Then

the group of F -automorphisms of FR(S) are induced by the automorphisms of the free

subgroup 〈x, y〉 that fix w(x, y).

Proposition 3.1.20. Suppose that φ and φ′ are solutions FR(S) → F of w(x, y) = u.

And suppose moreover that tp(φ) = tp(φ′) and tw(φ) = tw(φ′), then there is an

automorphism β ∈ AutF (FR(S)) such that φ′ = φ ◦ β.

Proof. Let φ be given by (x0, y0) and let φ′ be given by (x′0, y
′
0). Then we have a

sequence of e.N.m.

(x0, y0) m1
// . . .

mn

// tp(φ) = tp(φ′) . . .
m′

r

oo (x′0, y
′
0)m′

1

oo

And we have automorphisms αφ, αφ′ such that αφ(w(x, y)) = αφ′(w(x, y)) = tw(φ).

On one hand we have that β = α−1
φ ◦ αφ′ ∈ stab(w), so by Lemma 3.1.19, β ∈

Aut(F (x, y)) extends to an automorphism of FR(S). We moreover have by Lemma
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3.1.15 we have that the mappings F (x, y) → F , φ′ ◦α−1
φ′ = φ ◦α−1

φ which means that

φ′ = φ ◦ α−1
φ ◦ αφ′ = φ ◦ β

So we have proved that all rank 2 solutions are obtained from a finite family

φ1, . . . φN of solutions and precomposition with F−automorphisms of FR(S). Nothing

so far has been said about canonical automorphisms.

Definition 3.1.21. Let ∆ ≤ Aut(FR(S)) be the group of canonical F−auto-

morphisms of FR(S) associated to a cyclic JSJ decomposition modulo F . Let

φ, φ′ ∈ HomF (FR(S), F ), we say φ ∼∆ φ′ if there is a σ ∈ ∆ such that φ ◦ σ = φ′.

φ ∈ HomF (FR(S), F ) is minimal if after fixing a basis X of F the quantity

lf = |φ(x)| + |φ(y)| is minimal among all F -morphisms in φ’s ∼∆ equivalence class.

We wish to show that there are only finitely many ∆-minimal rank 2 solutions

to w(x, y) = u. In light of Proposition 3.1.20, this is equivalent to the statement

[stab(w) : ∆] <∞.

Proving finite index

In [6], it is proved that for freely indecomposable fully residually free groups,

the subgroup canonical automorphism is of finite finite index in the group of outer

automorphisms. Unfortunately, the result as formulated does not cover the case

involving only automorphisms modulo F . We therefore prove this fact directly.

What we will essentially show is that the internal F-automorphisms are of finite

index in the whole group of F-automorphisms. The main pillars of the argument are
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that the JSJ decomposition is canonical in the sense of (4) of Theorem 2.2.13 and

the following Theorem:

Theorem 3.1.22 (Corollary 15.2 of [30]). Let G be a nonabelian fully residually free

group, and let A = {A1, . . . , An} be a finite set of maximal abelian subgroups of G.

Denote by Out(G;A) the set of those outer automorphisms of G which map each

Ai ∈ A onto a conjugate of itself. If Out(G;A) is infinite, then G has a nontrivial

abelian splitting, where each subgroup in A is elliptic. There is an algorithm to decide

whether Out(G;A) is finite or infinite. If Out(G;A) is infinite, the algorithm finds

the splitting. If Out(G;A) is finite, the algorithm finds all its elements.

This next lemma follows immediately from the fact that in free groups nth roots

are unique and centralizers of elements are cyclic.

Lemma 3.1.23. Let 〈x, y〉 be a free group and suppose

〈x, y〉 = 〈H, t|t−1pt = q〉; p, q ∈ H − {1}

Suppose that for some g ∈ 〈x, y〉 we have the equality

g−1pg = q

then g = tqj for some j ∈ Z.

Proposition 3.1.24. ∆ ≤ Aut(F (x, y)) is of finite index in stab(w).

Proof. If w is conjugate to either [x, y] or [y, x] then the result follows immediately

since the stab(w) coincides with the automorphisms given in Corollary 3.1.11. (See,

for instance, [43].) We first concentrate on the case where the JSJ of FR(S) is as in

case 2. of Corollary 3.1.11.
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Suppose the induced splitting of 〈x, y〉 is of the form

〈x, y〉 = 〈H, t|t−1pt = q〉p, q ∈ H − {1}

Let α ∈ stab(w) ≤ Aut(〈x, y〉), then we can extend α to α̂ : FR(S) → FR(S). We

wish to understand the action of α̂ on FR(S). First note that α̂ restricted to F is

the identity and α̂(〈x, y〉) = 〈x, y〉 On the other hand, α̂ gives another cyclic JSJ

decomposition D1 modulo F :

FR(S) = F ∗u=w(x,y) 〈α̂(H), α̂(t)|α̂(t)−1α̂(p)α̂(t) = α̂(q)〉 (3.15)

with w ∈ α̂(H). By Theorem 2.2.13 (4), D1 can be obtained from D by a sequence

of slidings, conjugations and modifying boundary monomorphisms.

α̂(H)∩F = 〈w〉, andH must be obtained from α̂(H) as in (4) of Theorem 2.2.13,

i.e. by slidings, conjugating boundary monomorphisms and conjugations. The only

inner automorphism of FR(S) that fixes w is conjugation by wk; k ∈ Z; (use Bass-

Serre theory and properties of free groups) and since α̂(H) and H are attached to

F at 〈w〉, slidings will have no effect. It follows that α̂(H) = H . Applying Theorem

2.2.13 again forces p, q to be conjugate in H to α̂(p), α̂(q) [respectively or in the other

order]. We now have strong information enough on the dynamics of stab(w) to apply

Theorem 3.1.22.

Indeed since α̂(H) = H , we have a natural homomorphism ρ : stab(w) →
˜stab(w) ≤ Aut(H) given by the restriction α 7→ α|H . Moreover we see that any

almost reduced cyclic splitting of H modulo {〈w〉, 〈p〉, 〈q〉} must be trivial, otherwise

contradicting Lemma 3.1.10. Let π : Aut(H) → Out(H) be the canonical map (i.e.
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quotient out by Inn(G), the subgroup of inner automorphisms). It therefore follows

from Theorem 3.1.22 that the image π ◦ ρ(stab(w)) = stab(w) must be finite.

First note that Inn(H) ∩ ˜stab(w) = 〈γw〉 which means that

stab(w) ≈ ˜stab(w)/〈γw〉

and this isomorphism is natural. Let α ∈ ker ρ then we must have that α|H = 1. In

particular we have

α(t)−1pα(t) = q

which by Lemma 3.1.23 implies that α(t) = tqj it follows that ker(ρ) ≤ 〈τ〉. The

other inclusion is obvious so

ker(ρ) = 〈τ〉

There is a bijective correspondence between subgroups K of ˜stab(w) and subgroups

of stab(w) that contain 〈τ〉 given by K 7→ ρ−1(K). Moreover this correspondence

sends normal subgroups to normal subgroups. It follows that ker(π ◦ ρ) = 〈τ, γw〉

and so we get:

stab(w)/〈τ, γw〉 ≈ stab(w)

which is finite. It follows that [stab(w) : 〈τ, γw〉] <∞.

In the case where D, the cyclic JSJ of FR(S) modulo F is as in case 1. of

Corollary 3.1.11 then again elements of α ∈ stab(w) will give new splittings FR(S) =

F ∗u=w(x,y) α̂(H). Arguing as before, we get that α̂(H) = H and we can apply

Theorem 3.1.22 with A = {〈w〉}. We get that Out(H ;A) ≈ stab(w)/〈γw〉 must
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be finite, otherwise H could split further, contradicting the fact that D was a JSJ

splitting, and the result follows.

By Lemma 3.1.19, Propositions 3.1.18, 3.1.20, and 3.1.24 we get the second half

of our main result:

Proposition 3.1.25. Suppose that w(x, y) is not a proper power, nor is it primitive.

Then there are finitely many ∆−minimal rank 2 solutions to the equation w(x, y) =

u.

3.1.5 The description of V ({w(x, y)u−1})

These next two results now follow immediately from Proposition 3.1.25, 3.1.13,

Corollary 3.1.11, Lemma 3.1.10 and Theorem 2.3.2.

Theorem 3.1.26. Suppose that w(x, y) = u has rank 2 solutions and that w(x, y)

is not a power of a primitive element. Then the possible Hom diagrams are given in

Figure 3–1.

Theorem 3.1.27. Suppose that w(x, y) = u has rank 2 solutions and that w(x, y) is

neither primitive nor a proper power. Let {φi|i ∈ I} be the collection of ∆−minimal

solutions. Then V (S) = V (S1) ∪ V ′, where V ′ = V (S) − V (S1),is given by the

following:

1. FR(S) ≈ F ∗u=w(x,y) 〈x, y〉, let φi(x) = xi, φi(y) = yi then V (S) = V (S1) ∪ V ′

where

V ′ = {(u−nxiun, u−nyiun)|i ∈ I and n ∈ Z}

and if the exponent sums σx(w), σy(w) of x, y respectively in w are relatively

prime, then V (S1) is non empty and is given by (3.5).
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2. FR(S) ≈ F ∗u=w(x,y) 〈H, t|t−1pt = q〉, H = 〈p, q〉 and we can write x, y ∈ 〈x, y〉

as words x = X(p, q, t), y = Y (p, q, t). Let φi(p) = pi, φi(q) = qi, φi(t) = ti then

we have that V (S) = V (S1) ∪ V ′ where

V ′ ={(X(u−npiu
n, u−nqiu

n, u−ntiq
m
i u

n),

Y (u−npiu
n, u−nqiu

n, u−ntiq
m
i u

n)) | i ∈ I, n,m ∈ Z}

and if the exponent sums σx(w), σy(w) of x, y respectively in w are relatively

prime, then V (S1) is non empty and is given by (3.5).

3. FR(S) ≈ F ∗u=w(x,y)Q where Q is a QH subgroup and, up to rational equivalence,

Q = 〈x, y, w|[x, y]w−1〉. Then V (S1) is empty. Let φi(x) = xi, φi(y) = yi then

V (S) = {(Xσ(xi, yi), Yσ(xi, yi))|σ ∈ ∆}

where the words σ(x) = Xσ(x, y), σ(y) = Yσ(x, y) ∈ 〈x, y〉.

We finally note that unless w(x, y) = u is quadratic, then solutions are given by

“one level parametric” words (see Definition 2.3.12.)

3.2 An Interesting Example

The Hom diagrams given for w(x, y) = u were very simple. In particular, modulo

the slight technicalities of Theorem 3.1.27 item 1, we can say that; unless w(x, y)

is a power of a primitive element; there are only finitely many minimal solutions to

w(x, y) = u with respect to a group of canonical automorphisms. This translates

as the Hom diagram having only one “level”. This also means that all fundamental

sequences or strict resolutions of FR(S) have length 1 (see [28] or [52], respectively for
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definitions.) It is natural to ask this holds true for general equations in two variables.

We answer this negatively:

Theorem 3.2.1. Let F = F (a, b) then the Hom diagram associated to the equation

with variables x, y

[a−1ba[b, a][x, y]2x, a] = 1 (3.16)

has branches corresponding to rank 2 solutions that have length at least 2.

Proof. First note that via Tietze transformations, we have the following isomorphism:

〈F, x, y|[a−1ba[b, a][x, y]2x, a] = 1〉

≈ 〈F, x, y, t|[x, y]2x = [a, b]a−1b−1at; [t, a] = 1〉

Let w(x, y) = [x, y]2x and let u = [a, b]a−1b−1at. We now embed G =

〈F, x, y, t|w(x, y) = u, [t, a] = 1〉 into a chain of extensions of centralizers. Let F1 =

〈F, t|[t, a] = 1〉 and let F2 = 〈F1, s|[u, s] = 1〉. Let x = b−1t and y = b−1ab. First

note that

[x, y]2x = ((t−1b)(b−1a−1b)(b−1t)(b−1ab))2(b−1t) = [a, b]a−1b−1at = u

We now form a double, i.e. we set x = xs, y = ys and let H = 〈x, y〉 = 〈x, y〉s. By

Britton’s Lemma we have that H∩F̃1 = 〈u〉 and it follows that 〈F, x, y〉 is isomorphic

to the amalgam F1∗〈u〉H = G. Since chains of extensions of centralizers of F are fully

residually F , we have that our equation (3.16) is an irreducible system of equations,

we write FR(S) = G. We note that we have the nontrivial cyclic splitting

D : FR(S) ≈ F1 ∗〈u=w(x,y)〉 〈x, y〉
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moreover since w(x, y) = [x, y]2x cannot belong to a basis (see [9]) of 〈x, y〉 we have

that FR(S) is freely indecomposable modulo F1. On the other hand, if we take the

Grushko decomposition of FR(S) modulo F

FR(S) = F̃ ∗K1 ∗ . . .Kn; F ≤ F̃

we see that we must have F1 ≤ F̃ since [t, a] = 1 ⇒ t ∈ F̃ . It follows that FR(S)

is actually freely indecomposable modulo F . It follows that D can be refined to a

cyclic JSJ decomposition modulo F .

Suppose towards a contradiction that all branches of the Hom diagram for

HomF (FR(S), F ) corresponding to rank 2 solutions had length 1. This means that

there are finitely many minimal rank 2 solutions φ : FR(S) → F . On one hand the

element t must be sent to arbitrarily high powers of a, since FR(S) is fully residu-

ally F . On the other hand, for there to be a canonical automorphism of FR(S) that

sends t 7→ tan, there must be a splitting D′ of FR(S) with some conjugate of 〈a〉 as a

boundary subgroup, but u would have to be hyperbolic in such a splitting, and since

〈a〉 is elliptic in D, we would have an elliptic-hyperbolic splitting which by Theorem

2.2.9 would contradict free indecomposability modulo F .

We now provide some illustration. We determined that FR(S) = F1 ∗〈u=w(x,y)〉

〈x, y〉 with u = [a, b]ab−1a−1t. Now the mapping x 7→ xu and y 7→ yu extends to

a canonical automorphism of FR(S) and along some branch there must be another

canonical automorphism that maps t 7→ tar. By checking directly we see that φ :

FR(S) 7→ F given by x = b−1a, y = b−1ab is a solution, so we can get the family of
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solutions:

x = ([a, b]ab−1a−1an)m(b−1a)([a, b]ab−1a−1an)−m

y = ([a, b]ab−1a−1an)m(b−1ab)([a, b]ab−1a−1an)−m

with n,m in Z. Notice that no precomposition by a canonical automorphism of

FR(S) can affect the n parameter. It follows that the set of solution of (3.16) can not

be given by precomposing a finite collection of maps φ1, . . . , φn : FR(S) → F with

canonical automorphisms.
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CHAPTER 4
The fully residually F quotients of F ∗ 〈x, y〉

In this chapter we classify the fully residually F quotients of F [x, y]. We give a

list containing all possible coordinate groups of systems of equations in two variables

over F in terms of their cyclic JSJ splittings modulo F . Specifically we give the

underlying graphs of groups and the possible vertex groups (see Theorem 4.1.6.)

We also give examples showing that many of the entries in this list actually occur.

Combining this with the results of Chapter 3 we are able to recover the description

of the solutions of systems of equations in two variables given by Ozhigov in [46].

We shall first state the main results before presenting the additional necessary

machinery and proof.

4.1 The Classification Theorem

So far the only comprehensive classification theorems of fully residually free

groups in terms of the number of generators are the following:

Theorem 4.1.1. [19] If G is fully residually free group, then

1. if Rank(G) = 1 then G is infinite cyclic.

2. if Rank(G) = 2 then G is free or free abelian of rank 2.

3. if Rank(G) = 3 then G is either free or free abelian of rank 3 or, G is iso-

morphic to a free rank one extension of a centralizer of a free group of rank

2.
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This next result follows from the results of Appel and Lorenc, although their

proofs contained gaps. A correct proof was provided by Chiswell and Remeslennikov.

Theorem 4.1.2. [1, 33, 7] If S(x) is a an irreducible system of equations over F in

one variable then

FR(S) ≈





F

F ∗ 〈t〉

F ∗u Ab(u, t)

(4.1)

where Ab(u, t) denotes the free abelian group with basis {u, t}.

The class of coordinate groups of irreducible systems of equations in two vari-

ables over F is much more varied. The classification we give will be in terms of

cyclic JSJ decompositions modulo F . Specifically we will describe the cyclic graphs

of groups in terms of the underlying graph, vertex groups, and edge groups. We will

also indicate where, up to rational equivalence, the variables x, y are sent.

The groups will be organized as follows: (A) will be the freely decomposable

modulo F groups; (B) will be the groups whose JSJ has only one vertex; (C) will

be the groups whose JSJ has more than one vertex group, but such that only one of

them is nonabelian; (D),(E), and (F) will be the remaining cases. This classification

closely follows the proof.

Definition 4.1.3. If FR(S) has a JSJ D with more than 2 nonabelian vertex groups,

then we will call a cyclic collapse of D a graph of groups obtained by performing

a maximal number of edge collapses (see Definition 2.2.5) while ensuring that the

resulting graph of groups has at least two nonabelian vertex groups.
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Definition 4.1.4. The first Betti number of G denoted b1(G) is the rank of the

torsion-free summand of the abelianization of G.

Convention 4.1.5. Throughout the paper whenever FR(S) is given as the funda-

mental group of a graph of groups modulo F , we shall denote by F̃ the vertex group

that contains F .

Theorem 4.1.6 (The classification theorem). Let F be a free group of rank N ≥ 2.

If S = S(x, y) is an irreducible system of equations over F in two variables then

FR(S) must be one of the following.

(A) If FR(S) is freely decomposable then,

FR(S) ≈





F ∗ 〈t〉

F ∗H ; where H is fully residually free of rank 2

(F ∗u Ab(u, t)) ∗ 〈s〉

(B) If the JSJ of FR(S) modulo F has one vertex group and one edge group then,

up to rational equivalence, we can arrange to have a relative presentation

βF̃ β′

y
��

such that F̃ = 〈F, x, β ′〉 and β ∈ 〈F, x〉. If the JSJ has two edges, then, up to

rational equivalence, we can arrange to have a relative presentation

α
α′F̃

β
β′

x (( yvv

such that F̃ = 〈F, α′, β ′〉 and α ∈ F . In both cases the vertex group F̃ is either

F ∗ 〈z〉 or a cyclic HNN extension of F ∗ 〈z〉 and we must have b1(F̃ ) = N +1.
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(C) If the cyclic JSJ decomposition of FR(S) modulo F has only the nonabelian

vertex group F̃ and all other vertex groups are abelian, then the possible graphs

of groups are:

G(A) = u• •v , v• •u •w , or u•88 •v

with Au = F̃ and the other vertex groups free abelian. Moreover we have

b1(F̃ ) ≤ N +1 if there are two vertex group and F̃ = F if there are three vertex

groups. In the case where we have two edges and two vertices, then exactly one

of the boundary subgroups must be conjugate into F itself.

Otherwise, the cyclic JSJ decomposition modulo F of FR(S) is given by a graph

of groups G(A) that has at least two non abelian vertex groups, in which case either:

(D) The JSJ of FR(S) has the cyclic collapse u• •v . In all cases we have two

nonabelian vertex groups. Up to rational equivalence we can arrange to have

the following:

(I) The JSJ of FR(S) has one edge and we have the relative presentation

FR(S) = F̃ ∗p H. Moreover either:

1. F̃ 6= F then F̃ = F ∗u Ab(u, t), p 6∈ F and H is free of rank 2 and

generated by x and y; or

2. F̃ = F and H is free of rank 2 and generated by x, y and p ∈ F ;

moreover

3. H is a QH subgroup then we can arrange so that

FR(S) = F ∗u=p 〈x, y, p|[x, y] = p〉.
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(II) The JSJ of FR(S) has two edges and either:

1. there are only two vertex groups, then the JSJ is

FR(S) = F̃ u H ′q
q′ mm

where the subgroups u and q are not conjugate in FR(S). The subgroup

H ′q
q′ = H is free of rank 2 and F̃ and H are as in (I) above; or

2. there are three vertices and we have a presentation

FR(S) = F ∗u H ∗q Ab(q, t)

H is free of rank 2 and the subgroup H ∗uAb(q, t) is generated by x, y

and u ∈ F . Moreover u and q may be conjugate.

(III) The JSJ of FR(S) has three edge groups, then the only possibility is

FR(S) = F u
αHα′

t

��

p Ab(u, s)

moreover α may be conjugate to either u or p, but not both.

(E) The JSJ of FR(S) has the cyclic collapse u• •v and again there are two

nonabelian vertex groups. Up to rational equivalence we can arrange to have

the following:

(I) The JSJ of FR(S) has two edges and we have a relative presentation:

FR(S) = F̃ β
α

y ++
γH

moreover either:

55



1. F̃ = F and H is a free group of rank 2 generated by x, α, γ. Where

γ = y−1βy, with β ∈ F .

2. F̃ = F ∗uAb(u, s) and H is a free group of rank 2 generated by x and

α ∈ F .

(II) The JSJ of FR(S) has three edges and either:

1. We have the relative presentation

FR(S) ≈ F γ
α

y ,, γ′H ′q
q′ xx

where H = γH ′q
q′ ss is free of rank 2, moreover α and γ are not con-

jugate, but it is possible for q to be conjugate to one of them. The

vertex groups are generated as in (II).1. above.

2. FR(S) = F β
α

y ++
γH u Ab(u, s) where H is a free group of rank 2

and the rank 1 free extension of a centralizer H∗uAb(u, s) is generated

by α, γ, x. Again γ and α cannot be conjugate, but u may be conjugate

to one of them.

(F) The JSJ FR(S) has cyclic collapse v• •u and up to rational equivalence

we can get the relative presentation

FR(S) ≈ F β
γ α

x **
y 44 δǫH

where x and y are sent to stable letters and H is a free group of rank 2 generated

by α, δ, ǫ.

In all cases the cyclic edge groups can be taken to be maximal cyclic in the vertex

groups.
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We finally note that this description in terms of relative presentations also gives

a description of what irreducible systems of equations over F look like since these

systems of equations are the relations of the groups. We make some remarks that

could be seen as corollaries of this theorem.

Remark 1. If the JSJ of FR(S) has three vertices or three edges then one of the

vertex groups is F and the other vertex groups are free of rank 2 or free abelian of

rank 2.

Remark 2. If the JSJ of FR(S) has at least two nonabelian vertex groups, then one

of them is free of rank 2.

Remark 3. If Rank(F ) = N and b1(FR(S)) = N + 1 then using Proposition 4.2.8

and looking at abelianized relative presentations we see that either FR(S) is a rank

1 free extension of a centralizer of F or FR(S) doesn’t have any noncyclic abelian

subgroups.

Direct inspection shows us that:

Corollary 4.1.7. The height of the canonical analysis lattice relative to F (see Sec-

tion 4 of [52]) for FR(S) is at most 3, i.e. the lattice terminates at level L2.

4.1.1 A description of Solutions

In [46], Ozhigov gives a description of the solution set of a system of equations

in two variables over F . For each system of equations, his algorithm produces a finite

collection of forms. Theorem 4.1.8 below gives us exactly the same description.

Denote by Φ = StabAut(F (x,y))([x, y]). We have φ(x) = W (x, y), φ(y) = V (x, y).

For a pair (u, v) ∈ F × F and φ ∈ Φ as before we denote

φx(u) = W (u, v), φy(v) = V (u, v)
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Theorem 4.1.8. Let S(x, y) = 1 be any system of equations over F . Then the

solutions of S(x, y) in F × F are described by a finite number of families of pairs of

the following form:

(a) (f, g) where f, g take arbitrary values in F .

(b) (P (F, r), Q(F, r)) where P,Q are parametric words in F ∗ 〈r〉 and r takes ar-

bitrary values in F .

(c) (P (F ), Q(F )) where P,Q are parametric words in F

(d) (P (F, φx(u), φy(v)), Q(F, φx(u), φy(v))) where u, v ∈ F are fixed and P,Q are

fixed parametric words in F ∪ {φx(u), φy(v)}±1, where φ takes arbitrary values

in Φ.

Proof. Apply Theorem 2.3.2. Each family that is given corresponds to the solutions

that factor through a branch of the Hom diagram. We also know what all the possible

canonical automorphisms look like, in particular and non-surface automorphism will

affect the variables in the parametric words.

From Theorem 4.1.6. it is easy to see the what HomF (FR(S), F ) is when FR(S) is

freely decomposable, in particular all such Hom diagrams have one level. In particular

they fall into category (a) and (b).

There is only one type fully residually F quotient of F [x, y] that contains a QH

subgroup, moreover by the description of Hom diagrams for such fully residually F

groups given in Chapter 3 (also deducible from [45, 21, 41]) we see that any branch

in the Hom diagram that contains a group with a QH subgroup will give a family of

solutions describable as (d).
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4.1.2 Examples and Questions

We give some examples of the groups given in Theorem 4.1.6. We first note

that all the freely decomposable groups are easy to construct as quotients of F [x, y].

Examples of Theorem 4.1.6 (C) are easy to construct by taking extensions of cen-

tralizers of F or F ∗ 〈r〉 or by taking a chain of extension of centralizers of height 2.

The next few examples are more delicate.

Example 4.1.9 (Example of (D).I.1 of Theorem 4.1.6). Let F = F (a, b). Recall

from Section 3.2 that the group

G = 〈F, x, y|[a−1ba[b, a][x, y]2x, a] = 1〉

≈ 〈F, x, y, t|[x, y]2x = [a, b]a−1b−1at; [t, a] = 1〉

is freely indecomposable modulo F , that

G ≈ F1 ∗〈u=w(x,y)〉 〈x, y〉

where F1 is a rank 1-extension of a centralizer of F . Moreover G is shown to be fully

residually F by the F -embedding into the chain of extensions of centralizers

F2 = 〈F, t, s | [t, a] = 1, [s, u] = 1〉

where u = [a, b]a−1b−1at via the mapping, x 7→ s−1(b−1t)s and y 7→ s−1(b−1ab)s

Example 4.1.10 (Example of (E).I.2 of Theorem 4.1.6). We modify Example 4.1.9.

Let F = F (a, b) and let

F1 = 〈F, s, t, r|[t, a] = 1, [s, b−1ab] = 1, [u, r] = 1〉
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where u = [a, b]a−1b−1at. F1 is a chain of extensions of centralizers. Let x′ =

b−1t, y′ = b−1ab and let G = 〈F, r−1x′r, sr〉. Let H = r−1〈x′, y′〉r and consider

G ∩H . We see that (sr)−1b−1ab(sr) = r−1b−1abr so H ≤ G ∩H , on the other hand

letting y = (sr) and x = r−1x′r and by Britton’s lemma we have a splitting:

G = F̃ b−1ab
y **
u H

With F̃ = 〈F, t〉 and H free of rank 2, not freely decomposable modulo edge groups.

Example 4.1.11 (Example of (D).III of Theorem 4.1.6). Let F = F (a, b) and

consider the chain of extensions of centralizers

F2 = 〈F, s, t | [s, a] = 1, [t, (a2(b−1ab)2)s] = 1〉

One can check that the subgroup K ≤ 〈F, s−1bs, t〉 has induced splitting:

F ∗a γHγ′

r

��
∗p Ab(p, t)

where H = s−1〈a, b−1ab〉s, γ = s−1as, γ′ = s−1b−1abs, r = s−1bs, and p =

(a2(b−1ab)2)s. Moreover it is freely indecomposable, fully residually F and gener-

ated by two elements modulo F .

Compared to these, constructing an example of (F) of Theorem 4.1.6 is relatively

easy.

Questions

Conspicuously absent from the list is an example of Theorem 4.1.6 (B). In fact

I have been unable to construct examples of such groups which leads me to the

following conjecture:
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Conjecture 4.1.12. There are no fully residually F groups generated by two ele-

ments modulo F such that their JSJ has only one vertex group, i.e. where the HNN

extensions are separated.

Also absent from the examples are groups from Theorem 4.1.6 (C) such that the

vertex group is not simply an extension of a centralizer or groups like in case (D).II.2

where u and q are conjugate. This motivates the following question:

Question 4.1.13. Consider the free group F (a, b), is there a non primitive element

u ∈ F (a, b) and some element w ∈ F (a, b) such that 〈u, w〉 � F (a, b) but for some

conjugate pup−1 of u in F (a, b) we have 〈u, pup−1, w〉 = F (a, b)?

A positive answer would enable the construction of such groups, whereas a

negative answer would probably exclude a few possibilities.

4.2 Tools for fully residually F groups:

We first give some extra machinery that will be needed later.

Definition 4.2.1. A subgroup K ≤ G is said to have property CC (conjugacy

closed) if for k, k′ ∈ K

∃g ∈ G such that kg = k′ ⇒ ∃k̃ ∈ K such that k
ek = k′

Lemma 4.2.2. F ≤ FR(S) has property CC

Proof. Let f, f ′ ∈ F we have a retraction r : FR(S) → F , then

f g = f ′ = r(f ′) = r(f g) = f r(g)

We give some first tools for analyzing fully residually F groups.
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4.2.1 Some notions of complexity

We present two measures of complexity. The first one gives us bounds on the

complexity of underlying graphs of groups:

Definition 4.2.3. Let G(X) be a graph of groups modulo F . We define the com-

plexity B(G(X)) to be following

B(G(X) = Rank(π1(X)) +
∑

v∈V X

χ(v)

where

• χ(v) = 0 if F ≤ Gv.

• χ(v) = ( Rank(Gv)−
∑

Rank(Bi)) if Gv is abelian and the Bi are the boundary

subgroups in Gv.

• χ(v) = max{0, 2−k} if Gv is rigid and k is the number of incident edge groups.

• χ(v) = 2g if Gv is a QH subgroup and where g is the genus of the underlying

surface.

Lemma 4.2.4. Let H be a fully residually free group of rank two or greater, and let

γ ∈ H then the “one relator” quotient H/ncl(γ) is non trivial.

Proof. If H is abelian, the result is clear. If H is nonabelian then H admits an

epimorphism ψ onto a free group K of rank at least two, we have the following

commutative diagram:

H

��

ψ // K

��
H/ncl(γ)

ψ// K/ncl(ψ(γ)) = K

(4.2)
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and the one relator group K is seen to be nontrivial by abelianizing.

Proposition 4.2.5. The complexity B(G(X)) gives a lower bound for the rank of

π1(G(X)). Specifically, if FR(S) = π1(G(X)) then B(G(X) cannot exceed the number

of variables in S.

Proof. Consider a quotient G of G = π1(G(X)) obtained by killing F̃ , the vertex

group containing F , and killing all the edge groups. G is therefore a free product,

and Lemma 4.2.4 implies that χ(v) indeed gives a lower bound for the rank of the

image of Gv in G. The lower bound for Rank(G) now follows from Grushko’s

Theorem.

If G is a quotient of F [x1, . . . , xn] then G is generated by 〈x1, . . . , xn〉, this proves

the second part of the claim.

Corollary 4.2.6. If S = S(x, y) and FR(S) = π1(G(X)) then B(G(X) ≤ 2.

Our second measure of complexity is the first Betti number.

Since fully residually free groups are finitely presented it is easy to compute

b1 directly from the presentation. The fundamental group of a graph of groups

G = π1(G(X)) with cyclic edge groups we have the following lower bound: for

T ⊂ X a maximal spanning tree we have

b1(G) ≥
∑

v∈T

b1(Gv) − E (4.3)

where E is the number of edges in T . If there is an epimorphism G → H then

b1(G) ≥ b1(H). The following useful fact is obvious from a relative presentation:
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Lemma 4.2.7. Let H < G be a rank n extension of a centralizer of H, then b1(G) =

b1(H) + n.

Proposition 4.2.8. Let F be a free group of rank N and let G be a fully residually

F F−group. Then b1(G) = N if and only if G = F .

Proof. Suppose towards a contradiction that G 6= F but b1(G) = N . Then, by being

fully residually F , there is a retraction G → F . It follows that b1(G) ≥ N . By

Corollary 2.2.18, G has D, a nontrivial JSJ decomposition. Let F ≤ F̃ ≤ G be the

vertex group containing F , obviously F̃ is also fully residually F . By formula (4.3),

b1(G) ≥ b1(F̃ ) and if D has more than one vertex group then the inequality is proper

which forces b1(G) > N – contradiction. We must therefore have that D is a bouquet

of circles with a single vertex group F̃ . By Lemma 4.2.2 if F̃ = F then the stable

letters of the splitting D in fact extend centralizers of elements of F , so by Lemma

4.2.7 we have that b1(G) > b1(F ) – contradiction.

It follows that we cannot have F̃ = F . We therefore look at the JSJ of F̃ . Again

we find that it must have a unique vertex group F̃ 1. Combining Theorem 2.2.17,

finite presentability of G, and the hierarchical accessibility result in [15] over the

class of cyclic splittings gives a finite sequence of inclusions

F̃ > F̃ 1 > . . . F̃ r > F̃ r+1 = F

where F̃ i+1 is the unique vertex group of the JSJ of F̃ i. Now, by assumption, we

must have N = b1(F̃ ) ≥ b1(F̃
1) . . . ≥ b1(F̃

r+1) = N but we must have that F̃ r has

a splitting Dr that is a bouquet of circles with vertex group F , we saw that in this

case we must have b1(F̃
r) > b1(F ) –contradiction.

64



4.3 Bass-Serre Theory Techniques

We first establish some notation; we will denote the commutator x−1y−1xy =

[x, y]. For conjugation we will use the following convention:

xw = w−1xw

wx = wxw−1

We use this convention since x(yw) = xyw. Our group will always act on a tree T

from the left i.e. for all g, h ∈ FR(S) and for all v ∈ T we have

ghv = g(hv)

It follows that if for any point v ∈ T , and for any g ∈ FR(S) we will have stab(gv) =

g(stab(v))g−1 = gstab(x).

We will write w = w(F,X), for example, to denote a word ; i.e. an explicit

product of symbols from F and X±1.

Definition 4.3.1. Let G act on a simplicial tree T without edge inversions and let

K ≤ G act on T via the normal restriction. We will say that two vertices v, w of

T are K-equivalent or of the same K-type, denoted tpK(v) = tpK(w), if there is a

k ∈ K such that kv = w. We similarly define have K-types for edges of T (K).

Theorem 4.3.2 (The Fundamental Theorem of Bass-Serre Theory). If G acts on

a simplicial tree T without edge inversions and the quotient A = G\T is a finite

graph, then G splits as a the fundamental group of a graph of groups with underlying

graph A. Vertex and edge groups correspond to stabilizers of vertices and edges of T

(respectively) via the action of G.
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Conversely, if G splits as a graph of groups, then it acts on a simplicial tree T

without inversions called the Bass-Serre tree.

Definition 4.3.3. An action of G on a tree T is said to be k−acylindrical if the

largest subset of T fixed by an element of G has diameter k. A splitting of G is said

to be k-acylindrical if the action of G on the induced Bass-Serre tree is k-acylindrical.

We note that if we take a splitting of FR(S) whose edge groups are maximal

abelian in the vertex groups, then the splitting will be 1−acylindrical.

4.3.1 Induced splittings and G(A)-graphs

Suppose that G has a splitting D as the fundamental group of a graph of groups

and let H be a subgroup of G. Then G acts on a tree T and H acts on the minimal

H-invariant subtree T (H) ⊂ T in such a way that H also splits as a graph of groups.

We call this splitting DH the induced splitting of H.

We now present the folding machinery developed in [25], which is a more com-

binatorial version of the Stallings-Bestvina-Feighn-Dunwoody folding techniques in

Bass-Serre theory, used to compute induced splittings. Although this machinery is

technically demanding, it gives an alternative to normal forms when dealing with

fundamental groups of graphs of groups which greatly simplifies the arguments of

Sections 4.4 and 4.6.

Basic definitions

We follow [25].

Definition 4.3.4. A G(A)-graph B consists of an underlying graph B with the

following data:

• A graph morphism [.] : B → A
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• For each u ∈ V B there is a group Bu with Bu ≤ A[u], called a vertex group.

• To each edge e ∈ EB there are two associated elements ei ∈ A[i(f)] and et ∈

A[t(f) such that (e−1)i = (et)
−1 for all e ∈ EB.

Convention 4.3.5. We will usually denote G(A)−graphs by B and will assume that

the underlying graph of B is some graph B.

When drawing these graphs we give vertices v the label (Bv, [v]). We give an

edge e the label (ei, [e], et). We will say that an edge e is of type [e].

Definition 4.3.6. Let B be a G(A)-graph and suppose that eǫ11 , . . . , e
ǫn
n ; where ej ∈

EB, ǫj ∈ {±1}; is an edge path of B. A sequence of the form

b0, e
ǫ1
1 , b1, e

ǫ2
2 , . . . , e

ǫn
n , bn

where bj ∈ B
t(e

ǫj
j )

is called a B-path. To each b path we associate a label

µ(p) = a0[e1]
ǫ1a1[e2]

ǫ2 . . . [en]
ǫnan

where a0 = b0(e
ǫ1
1 )i, aj = (eǫ1j )tbj(e

ǫ1
j+1)i and an = (eǫnn )tbn which is a G(A)-path.

Definition 4.3.7. Let B be a G(A)-graph with a basepoint u. Then we define the

subgroup π1(B, u) ≤ π1(G(A), [u]) to be the subgroup generated by the µ(p) where

p is a B-loop based at u.

Example 4.3.8. Let G = π1(G(X), u)) = A ∗C B. The underlying graph is

u• e •v
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with Xu = A,Xv = B and Xe = C. Let g = a1b2a3b4a5 where ai ∈ A and bj ∈ B.

Then the G(X)-graph

B = •
(b2,e−1,1)

��@
@@

@@
@@

u•

(a1,e,1)
==|||||||| •

(a3,e,1)��~~
~~

~~
~

•
(b4,e−1,a5)

aaBBBBBBBB

whose vertex groups are all trivial is such that π1(B, u) = 〈g〉

This example motivates a definition.

Definition 4.3.9. Let g = b0, e
ǫ1
1 , b1, e

ǫ2
2 , . . . , e

ǫn
n , bn be some element of π1(G(X), u).

Then we call the based G(X)-graph L(g; u) a g-loop if L(g; u) consists of a cycle

starting at u whose edges are all coherently oriented and have labels

(b0, e
ǫ1
1 , 1), (b1, e

ǫ2
2 , 1), . . . , (bn−2, e

ǫn−1

n−1 , 1), (bn−1, e
ǫn
n , bn)

respectively.

Definition 4.3.10. (G(A), v0) be be a graph of groups decomposition of FR(S). Let

the x, y-wedge, W(F, x, y; u), be the based G(A)-graph formed from a vertex v with

label (F, v0) and two attaching the loops L(x; v0) and L(y; v0).

It is clear that π1(W(F, x, y; u), u) = 〈F, x, y〉 = FR(S). Usually we will omit the

mention of the vertex u.

Moves on G(A)-graphs

Let B be a G(A) graph, with underlying graph B. We now briefly define the

moves on B given in [25] that we will use, we will sometimes replace an edge e by

e−1 to shorten the descriptions:
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A0: Conjugation at v: For some vertex v, assume w.l.o.g. that for each edge

incident to v, i(e) = v. For some some g ∈ A[v] do the following: replace Bv by

gBvg
−1, for each edge such that i(e) = v replace ei by gei, and for each edge

such that t(e) = v replace et by etg
−1.

A1: Bass-Serre Move at e: For some edge e, replace its label (a, [e], b) by

(aie(c), [e], te(c
−1)b) for some c in A[e].

A2: Simple adjustment at u on e: For some vertex u and some edge e such that

w.l.o.g i(e) = v, we replace the label (a, [e], b) by (ga, [e], b) where g ∈ Bu

F1: Simple fold of e1 and e2 at the vertex u: For a vertex u and edges e1, e2

such that w.l.o.g. i(e1) = i(e2) = u but t(e1) = v1 6= t(e2) = v2 but [v1] = [v2],

if e1 and e2 have the same label, then identify the edges e1 and e2. The resulting

edge has the same label as e1 and the vertex resulting from the identification

of v1 and v2 has label 〈Bv1 , Bv2〉.

F4: Double edge fold (or collapse) of e1 and e2 at the vertex u: For edges

e1, e2 such that w.l.o.g. i(e1) = i(e2) = u, t(e2) = t(e2) = v, and [e1] = [e2] = f

if they have labels (a, f, b1) and (a, f, b2) respectively, and moreover [e1] =

[e2] = f , then we can identify the edges e1 and e2, the image of these edges has

label (a, f, b1) and the the group Bv is replaced by 〈Bv, b
−1
1 b2〉. We will also

call such a fold a collapse from u towards v.

The moves F2 and F3 in [25] are analogous to F1 and F4, respectively only they

involve simple loops. However, because these moves only show up in the proof of

Lemma 4.7.1, we do not describe them explicitly. We also introduce four new moves:
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T1: Transmission from u to v through e: For an edge e such that i(e) = u and

t(e) = v with label (a, [e], b), let g ∈ A[e] be such that ai[e](g)a
−1 = c ∈ Bu,

then replace Bv by 〈Bv, b
−1t[e](g)b〉.

L1: Long range adjustment: Perform a sequence of transmissions through edges

e1, . . . en followed by a simple adjustment that changes the label of an edge f

which is not one of the e1, . . . en and leaves unchanged the labels of the edges

e1, . . . en. Finally replace all the modified vertex groups by what they were

before the sequence of transmissions.

N1: Nielsen move: Replace a wedge W(F, x, y) by W(F, x′, y′), where the triple

(F, x′, y′) is obtained from (F, x, y) via a Nielsen move modulo F .

S1: Shaving move: Suppose that u is a vertex of valence 1 such that u = t(e) and

v = i(e), e has label (a, [e], b) and Bu = b−1(t[e](C))b, where C ≤ G[e]. Then

delete the vertex u and the edge e and replace Bv by 〈Bv, a(i[e](C))a−1〉.

Convention 4.3.11. Although formally applying a move to a G(A)-graph B gives

a new graph B′ unless noted otherwise we will denote this new G(A)-graph as B as

well.

We regard the transmission above as the group Bu sending the element c to Bv

through the edge e. When edge groups are slender in the sense of [18], multiple

transmissions can be used instead of the edge equalizing moves F5-F6 in [25]. N1

type moves are products of A0-A3, L1 and F1 type moves. We also notice that the

moves T1, L1, S1 and N1 do not change the group π1(B, u). Note that vertices of

valence 1 with trivial group can always be shaved off.
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The Folding Process

Definition 4.3.12. A G(A)-graph such that it is impossible to apply any moves

other than A0-A2 is called folded.

This next important result is essentially a combination of Proposition 4.3,

Lemma 4.16 and Proposition 4.15 of [25].

Theorem 4.3.13. [25] Applying the moves A0-A2, F1-F4, and T1 to B do not

change H = π1(B, u), moreover if B is folded, then the associated data (see Definition

4.3.4) gives the groups decomposition of H induced by H ≤ π1(G(A))

This theorem implies the existence of a folding process. Consider the three

following moves:

• Adjustment: Apply a sequence of moves A0-A2, L1,S1, and N1.

• Folding: Apply moves of type F1 and F4.

• Transmission: Apply a move of type T1.

First note that each folding decreases the number of edges in the graph, and that

adjustments (except for shavings) are essentially reversible. In the folding process

there is therefore a finite number of foldings and between foldings there are adjust-

ments and transmissions. Transmissions enlarge the vertex groups and so in a sense

increase the complexity of the G(A)-graph.

The goal of the next section is to find conditions that enable us to perform a

maximal number of foldings without having to resort to transmissions. In a sense

it will give us a folding process where each step decreases the complexity of the

G(A)-graph, making it more tractable.
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Transmission graphs and 1-acylindrical splittings

Suppose that G(A) is 1-acylindrical and the edge groups are maximal abelian.

Let B be a G(A)-graph.

Definition 4.3.14. We define the transmission graph B0 of B to be the the under-

lying graph B of B equipped with the following coloring:

• A vertex v such that Bv is nonabelian is green.

• A vertex v such that Bv is abelian is yellow.

• Otherwise edges and vertices are black.

Suppose that we performed a sequence of transmission t1, . . . , tn on a G(A) graph

B. We will produce a analogous sequence of colored graphs B1, . . . , Bn. As follows

for Bi+1 start with Bi and make the following changes:

1. If for a vertex v, Bv is abelian and nontrivial, then color it yellow.

2. If for a vertex v, Bv is non-abelian, then color it green.

3. If the transmission move ti+1 is through the edge e, then color e red.

Lemma 4.3.15. Let G(A) be 1-acylindrical and let B be a G(A)−graph and let

Bn be a transmission graph. Then after performing the corresponding sequence of

transmission moves we have that for each black vertex u, Bu is trivial, for each yellow

vertex v, such that w.l.o.g. v = t(e), and the incoming edge e is labeled (a, [e], b) we

have Bu ≤ b−1(t[e](G[e]))b.

Proof. This follows immediately from 1-acylindricity of G(A) and the construction.

The usefulness of the next lemmas is that they enables us to control the vertex

groups during the folding process.
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Definition 4.3.16. A path in a transmission graph that consists of two red edges

and a yellow vertex u is called a cancellable path centered at u.

Lemma 4.3.17. Let G(A) be 1-acylindrical and let B be a G(A)−graph and suppose

that after a sequence of transmissions t1, . . . , tn the transmission graph Bn has a

cancellable path centered at u. Then it is possible to perform a folding (F1 or F4) at

u in B after using only a Bass-Serre A1 move, and maybe a conjugation A0 move.

Proof. If u is yellow, but has two (or more) adjacent red edges, then w.l.o.g. we have

i(e) = i(e′) = u and that e and e′ have labels (a, [e], b) and (a′, [e], b′) respectively.

Let A denote the image of G[e] in A[e]. The fact that both edges e′ and e are red in

particular imply that aAa−1 ∩a′A(a′)−1 6= {1} which implies that (a′)−1(aAa−1)a′ 6=

{1}. Now 1-acylindricity implies malnormality of the edge groups, it therefore follows

that

a′−1a = α ∈ A⇒ a = a′α

This means that in B all we need is to do a Bass-Serre move A1 so that the label of

e′ becomes (a′α, [e], α−1b′) and then (for move F1) a conjugation move A0 so that e′

has the same label (a′α, [e], b) = (a, [e], b) as e.

Lemma 4.3.18. Let G(A) be 1-acylindrical and let B be a G(A)−graph. Suppose

that after a series of transmissions and adjustments it is possible to perform either

move F1 or F4 at a yellow or black vertex u, of the corresponding transmission graph,

then it is also possible to perform a folding move F1 or F4 at v after only a sequence

of adjustments.
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Proof. Let B′ be the result of applying all the transmission moves to B. Suppose

that it was impossible to perform the move F1 or F4 at u in B but that it is possible

to to it in B′. Then it follows that B′
u > Bu and that there is an A2 move that can

now be performed at u so that F1 or F4 is now possible.

Suppose first that u is black then Bu = B′
u = {1}, which in particular implies

that the move F1 or F4 could already have been applied to u in B.

Suppose now that u is yellow and that in B′ we can perform an A2 move changing

the label of e, where i(e) = u and then after performing moves A1,A0 at t(e) we can

do either move F1 or F4 identifying e and e′. In particular e and e′ had labels (a, [e], b)

and (a′, [e], b′) respectively and after doing move A2 the labels became (a′, [e], b) and

(a′, [e], b′) respectively. We wish to show that instead we can change the label of e in

the same way by performing a long range adjustment in B or moves A0,A1.

The only obstruction to long range adjustments is if both edges e and e′ are

either directed or red. By the construction of the transmission graph, a yellow

vertex cannot have two incoming directed edges or an incoming edge and a red edge

because that implies that the vertex is green. It follows that the only obstruction is

if both edges e, e′ are red, in which case Lemma 4.3.17 applies.

Definition 4.3.19. The transmission graphs obtained after performing all possible

transmissions is called an terminal transmission graph.
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4.3.2 When FR(S) splits as a graph of groups with two cycles

We suppose our group FR(S) = 〈F, x, y〉 can be collapsed to a cyclic graph of

groups modulo F with one vertex and two edges, i.e.

FR(S) = F̃t 77 sgg (4.4)

where F ≤ F̃ . We denote by s and t the corresponding stable letters.

It should be noted that the three stable letter case cannot occur, since killing the

vertex group FR(S) yields a quotient that is a free group of rank 3 that is generated

by two elements –contradiction.

Definition 4.3.20. For a generating set X and a word W = W (X) in X, for a letter

x ∈ X we denote the exponent sum of x in W by σx(W ).

Definition 4.3.21. For a stable letter t from a splitting of G and a word an element

g ∈ G, let 〈X|R〉 be a presentation that represents the splitting, i.e. t ∈ X and we

have the appropriate relation. Let g = W (X) where W (X) is in normal form. We

define the exponent sum σt(g) of t in g as

σt(g) = σt(W (X))

It follows from Britton’s Lemma that this quantity doesn’t depend the choice of

word chosen to represent g.

Definition 4.3.22. For g ∈ G, we define the (t, s)-signature sgn(t,s)(g) of g to be

the be the pair of integers

sgn(t,s)(g) = (σt(g), σs(g))
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It is customary to drop the subscripts.

We must be able to write t = T (F, x, y) and s = S(F, x, y) as words in our

generators. On the other hand, by Britton’s Lemma, for any word V = V (F, x, y)

we have for u = t, s

σu(V ) = σx(V )σu(x) + σy(V )σu(y) (4.5)

Which means that we should be able to express vectors (1, 0) and (0, 1) as linear

combinations of sgn(x) and sgn(y) in Z2, in particular they are linearly independent

as vectors.

Lemma 4.3.23. Suppose FR(S) split as (4.4), then if some word W (F, x, y) lies in

F̃ then it must have exponent sum 0 in both x and y.

Proof. If w = W (F, x, y) ∈ F̃ , then sgn(w) = (0, 0). The result now follows immedi-

ately from equation (4.5) and the fact that sgn(x) and sgn(y) are linearly indepen-

dent.

Lemma 4.3.24. Suppose A ≤ FR(S) is a noncyclic abelian subgroup of FR(S). Then

A cannot be generated by words Wi(F, x, y) such that for each Wi the exponent sums

in x and y are zero.

Proof. Let R be a strict resolution with fully residually F groups {FR(Si)}i∈I . Then

for some j ∈ I we must have that a summand 〈r〉 ≤ A is exposed in the JSJ of

FR(Sj ). Without loss of generality π(A) = A′ ⊕ 〈r〉, where π is the composition of

maps π : FR(S) → FR(Sj ). We can now view FR(Sj) as an HNN extension

FR(Sj ) = 〈G, r|∀a ∈ A′, [r, a] = 1〉
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On one hand x and y are sent to elements with normal forms x′(H, r), y′(H, r)

on the other hand, r is in the image of A and by hypothesis we can write

r = R(F, x′(H, r), y′(H, r)) where R has exponent sum zero in x′(H, r) and y′(H, r),

but by Britton’s Lemma R(F, x′(H, r), y′(H, r)) = r must have exponent sum zero

in r which is a contradiction.

Corollary 4.3.25. If FR(S) has a cyclic splitting modulo F with two cycles, then

none of the vertex groups can contain noncyclic abelian subgroups.

4.3.3 The Nielsen Weidmann Technique for Groups acting on Trees

We present some of the techniques developed by Richard Weidmann in [61]. Let

G be a group and let T be a simplicial tree on which G acts.

Definition 4.3.26. Let M ⊂ G be partitioned as

M = S1 ⊔ . . . Sp ⊔H

where H = {h1, . . . , hs}. We say that M has markings (S1, . . . , Sp;H). We now have

elementary Nielsen transformations on marked sets:

T1 : Replace some Si by Sgi where g ∈M − Si.

T2 : Replace some element h ∈ H by g1hg2 where g1, g2 ∈M − {h}

Let

Ti = {x ∈ T |∃g ∈ 〈Si〉 such that gx = x} ∪ the minimal 〈Si〉-invariant subtree

An important subcase will be when the groups 〈Si〉 have global fixed points. It is

convenient to note that there is no difference if we replace an element a subset Si by

the subgroup 〈Si〉. We can now formulate the main results in [61].
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Theorem 4.3.27. Let M be a set with markings (S1, . . . , Sp;H). Then either

〈M〉 = 〈S1〉 ∗ . . . ∗ 〈Sp〉 ∗ F (H)

or by successively applying transformations T1 and T2 we can bring (S1, . . . , Sp;H)

to a normalized marked set M̃ = 〈S̃1, . . . , S̃p, H̃} such that one of the following must

hold:

1. T̃i ∩ T̃j 6= ∅, for some i 6= j.

2. ∃h ∈ H̃, hT̃i ∩ T̃i 6= ∅

3. There is some h ∈ H̃ that has a fixed point.

This is especially useful to us if we let F ≤ S1. Notice that replacing transfor-

mation T1 by T ′
1 given by:

• For S1, do nothing.

• If g 6∈ Si replace Si by Sg
−1

i . If g ∈ Si do nothing.

• If g 6= h replace h by hg
−1

. If g = H do nothing.

We can arrange so that in Theorem 4.3.27 S̃1 = S1 and that the results still holds.

We call these Nielsen moves on marked sets modulo F .

4.3.4 Hyperbolic elements with small translation lengths

Lemma 4.3.28. Let FR(S) act on a simplicial tree T with maximal abelian edge

stabilizers. Then F ≤ FR(S) acts transitively on the edges of TF (see Definition

4.3.26). In particular if we have that A is an edge stabilizer and that F ∩ A = 〈α〉

and there are g ∈ FR(S), u ∈ F such that ug = αn then there is some g′ ∈ F such

that ug
′

= αn, this means that g−1g′ ∈ A
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Proof. Let e1, e2 be edges of TF . Let stab(e1) ∩ F = 〈γ〉, stab(e2) ∩ F = 〈β〉. There

is some g ∈ FR(S) such that ge1 = e2. It follows that

gγg−1e2 = (gγg−1)e1 = e2

which means that

gγg−1 ∈ stab(e2) ⇒ [gγg−1, β] = 1

Suppose first that gγg−1 6∈ 〈β〉, then 〈β, gγg−1〉 forms a free abelian group of rank

2, but since γ ∈ F we see that Lemma 4.3.24 applies and yields a contradiction. It

therefore follows that gγg−1 = βn for some n ∈ Z−{0}. Since F has property CC it

follows that there exists g′ ∈ F such that g′γg′−1 = βn, it follows that (g′)−1g fixes

e1. Since e1 and e2 were arbitrary, the result follows.

We now focus on the situation where the action of FR(S) on its Bass-Serre tree

T is 1-acylindrical. Of particular interest to us is the situation in Theorem 4.3.27

when TF ∩ ρTF 6= ∅ and where d(v0, ρv0) ≤ 2 where v0 is the vertex of T fixed by

F . To simplify notation we will use relative presentations. The path from v0 to ρv0

contains either one or two edge types in which case the splitting of FR(S) contains

the “subgraphs”

F̃R

t ++
C SH or F̃ C H (4.6)

with F ≤ F̃ .

Lemma 4.3.29. Suppose that we have F ≤ F̃ ≤ FR(S) and T as above, assume

moreover that the action of FR(S) on T is 1-acylindrical. If there is some ρ such that

TF ∩ ρTF 6= ∅, with v0 = fix(F ), then there are f1, f2 ∈ F such that either
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v0

bv0 = b1a1v0

a2b1v0 = a2b1a1v0

ẽ

a1ẽ
a2ẽ

a2b1ẽ

b1ẽ
w0

a1w0

b1a1w0

a2w0

TF

ρTF

Figure 4–1: The path from v0 to ρv0 only contains 1 edge G-type

1. the path [v0, ρv0] contains one edge G−type and f2ρf1 = h ∈ H; or

2. the path [v0, ρv0] contains two edge G−types and f2ρf1 = th for some h ∈ H;

which could be assumed to be the stable letter t if we change the presentation

by conjugating a boundary monomorphism.

Proof. We first prove case 1. We first must have that TF is not just a point. If

necessary, we conjugate boundary monomorphisms so that the lift ẽ of the edge e

in T is fixed by some element of F . Suppose we have that there is only one edge

G−type traversed on the path from v0 to ρv0, as in Figure 4–1. Then we must have

ρ = a2b1a1; ai ∈ F̃ , b1 ∈ H

and looking at Figure 4–1 we see that there must be some κ ∈ F that fixes the edge

a2ẽ. Let C = stabG(ẽ) be the subgroup stabilizer of the edge ẽ. Then there is some

g ∈ FR(S) such that gκ ∈ C. By Lemma 4.3.28 we find that there is some g′ ∈ F
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such that gκ = g′κ ∈ C ∩ F . Letting g′ = f2 ∈ F we have f2κ = γ ∈ stab(ẽ) so

γf2 ∈ stab(a2ẽ) ⇒ f−1
2 ẽ = a2ẽ⇒ f2a2ẽ = ẽ

which means f2a2 = b′ ∈ stab(te) ≤ H . This means that

f2ρ = f2a2b1a1 = b′b1a1; b
′b1 ∈ H

so we may assume from now on that a2 = 1.

We look again at Figure 4–1 and we see that the edge b1ẽ must lie in ρTF and

since ρ = b1a1 we have:

b1stab(e) ∩ b1a1F 6= 1

⇒ stab(e) ∩ a1F 6= 1

⇒ a−1
1 stab(e) ∩ F 6= 1

which is like saying that stab(a−1
1 e) = a−1

1 C ∩ F 6= 1. Reusing the argument to

get rid of a2 we can find some f1 ∈ F such that a1f1 ∈ stab(ẽ) ≤ H which means

that ρf1 = b ∈ H . This completes case 1 of the Lemma.

We now tackle case 2 of the Lemma. Consider Figure 4–2. Then we see that

since we have TF ∩ ρTF 6= ∅ and that TK has radius at most 1, we must have that

d(v0, ρv0) ≤ 2 which means that

ρ = a2tb1a1, ai ∈ F̃ , b1 ∈ H

and letting R = stab eF (t), C = stab(ẽ) we can arrange, perhaps after conjugating

boundary monomorphisms, that F ∩ C 6= 1 6= F ∩ R. We can then find f1, f2 such
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t

tb1ẽ tẽ
tw0 tv0

a2t

a2tw0

v0

b1v0

b1t b1tw0

tb1v0 = tb1a1v0

a2tb1v0 = a2tb1a1v0

ẽ

a2tb1ẽ

b1ẽ

w0
b1tv0

TF

Figure 4–2: The path from v0 to ρv0 contains 2 edge G-types

that

f2ρf1 = f2a2tb1a1f1 = tb′

as in case 1. The proof is almost exactly as in case 1. The only difference is that we

get f2a2 = r ∈ R which means that we can “commute” it through the stable letter t

to get the result.

4.4 Coordinate Groups that are freely decomposable modulo F

Proposition 4.4.1. Suppose that FR(S) = F̃ ∗H, then

Rank(F̃ ) + Rank(H) ≤ N + 2

Proof. First note that the underlying graph of the splitting FR(S) = F̃ ∗H consists

of an edge and two distinct vertices. Let G(A) denote this graph of groups and let

B be any G(A)-graph. Only the moves A0-A3,F1,and F4 can be applied.

Take W to be the wedge W(F, x, y). Since π1(W) = FR(S) we have by Theorem

4.3.13 that W can be brought to a graph with a single edge and two distinct vertices.

The underlying graph of W has two cycles and A has no cycles, which means that
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two collapses must occur. Moreover each collapse, maybe after applying F1 moves,

either contributes a generator to H or to F̃ . The result now follows.

Corollary 4.4.2. If FR(S) is freely decomposable modulo F then either it is one

generated modulo F or

FR(S) ≈





F ∗ 〈x, y〉

F ∗u Ab(u, t) ∗ 〈x〉

F ∗ Ab(x, y)

Proof. Apply Proposition 4.4.1 and Theorems 4.1.1 and 4.1.2.

4.5 Splittings with one nonabelian vertex group and at least one abelian
vertex group

We prove item (C) of Theorem 4.1.6, i.e. we consider the case where the JSJ of

FR(S) has abelian vertex groups but only one nonabelian vertex group F̃ ≥ F .

Lemma 4.5.1. If the cyclic JSJ decomposition of FR(S) modulo F contains only one

nonabelian vertex group then we need only consider the following possibilities

FR(S) =





A1 ∗u F̃ ∗v A2

F̃ ∗u A

F̃77 u A

A1
β1

δ1
α1
γ1
F̃ α
γ

β
δA

µ
η F̃

α
γ

t --
β
δA

F̃ A

where the vertex groups A,A1, A2 are abelian.
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Proof. By the complexity bound given in Corollary 4.2.6, the only missing possibility

is

FR(S) = A1 ∗u F̃ α
γ

β
δA

But by Corollary 4.2.6 we see that the Rank(A1) = 2, which means that A1 ∗u F̃ can

be seen as an extension of a centralizer, which is an HNN extension and therefore

falls in one of the mentioned cases.

Proposition 4.5.2. If the cyclic JSJ decomposition modulo F of FR(S) contains

at least two vertex groups but only one of them, F̃ , is non-abelian, then the only

possibilities for the splitting are

FR(S) = A1 ∗u F̃ ∗v A2, F̃ ∗u A, or F̃77 u A

with A,A1, A2 abelian.

Proof. First suppose that the underlying graph of D, the cyclic JSJ decomposition

modulo F , contains two cycles. Then we can collapseD to a double HNN extension of

some group H , say with stable letters s, t. By Corollary 4.3.25, H cannot contain any

non-cyclic abelian subgroups – contradiction. The underlying graph of D therefore

contains at most one cycle.

The only case left to check is when FR(S) = F̃ α
γ

β
δA . Since F̃ 6= F we

have that α, γ obstruct F̃ . Let R : FR(S) π1
// . . .

πp

// FR(Sp) be a strict resolution.

As long as β, α are unexposed (which means, F̃ can’t split) we have that F̃ and A′

are mapped monomorphically. On one hand the images of β and δ must be sent to

powers of some common element in F since they commute. By Lemma 2.3.10 the
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associated ΦR-morphisms F -discriminate FR(S), β and δ must be sent to arbitrarily

high powers via ΦR-morphisms. It follows that for some FR(Si) in R, say, β is exposed.

At this point either F̃ splits or it doesn’t, if it doesn’t split F̃ lies in a nonabelian

vertex group and α therefore fixes a vertex of nonabelian type, whereas β doesn’t

contradicting the fact that α and β are conjugate in FR(Si). If F̃ splits in FR(Si),

since γ and δ are conjugate, γ must be elliptic which means that α obstructed F̃ and

therefore is hyperbolic in FR(Si), but β is elliptic –contradiction.

Combining Proposition 4.5.2 and the following proposition proves most of item

(C) of Theorem 4.1.6.

Proposition 4.5.3. If FR(S) = F̃ ∗αA1 or FR(S) = A2 ∗β F̃ ∗γ A3 and Rank(A1) ≥ 3

then F̃ = F .

Proof. This follows immediately from computing b1(FR(S)).

Case (C) of Theorem 4.1.6 is therefore proved.

4.6 Splittings with two or more nonabelian vertex groups

4.6.1 Maximal Abelian Collapses

Suppose that that JSJ decomposition of FR(S) contains at least two nonabelian

vertex groups. The complexity bounds given in Section 4.2.1 do not give us bounds

on the actual number of vertices in D. To have something more tractable to work

with we take D and do the following (see Definition 2.2.5):

(i) If any boundary subgroup 〈α〉 = ie(Ge) is a proper subgroup of a maximal

abelian subgroup A, then do a folding move where we replace Ge by a copy of

A.
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(ii) Ensuring that the resulting graph of groups always has at least two non abelian

vertex groups perform sliding and collapsing moves until it is no longer possible

to decrease the number of vertices or edges

In the end the resulting graph of groups G(A) will have one of three possible

forms:

F̃ H , F̃ H , or F̃ H (4.7)

where the vertex group F̃ contains F and boundary subgroups are maximal abelian

in their vertex groups. Moreover, by item (ii) of our construction, distinct edges have

distinct boundary subgroups. It follows that this splitting is 1-acylindrical. It also

follows that only the moves given in Section 4.3.1 are applicable to G(A)-graphs.

Definition 4.6.1. We will call such a splitting a maximal abelian collapse of FR(S).

The strategy

To analyze the possibilities for FR(S), for each possibility given in (4.7) we will

do the following:

1. Get the abelian collapse of the JSJ of FR(S), and use this splitting as the

underlying graph of groups.

2. Start with the wedge W = W(F, x, y). Then using Theorem 4.3.27 and Lemma

4.3.29 we will simplify W by N1 moves (see Section 4.3.1) so that the loop L(x)

is somehow simple.

3. We will then apply moves F1,F4, and L1 to simplify the graph as much as

possible. It will turn out that the resulting G(A)-graph B will have the same

underlying graph as G(A).
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4. All that will remain to get a folded graph is to make some transmission moves,

keeping track of these will tell us how the vertex groups are generated.

5. Finally, by arguing algebraically we will recover the original cyclic JSJ decom-

position modulo F .

4.6.2 The one edge case

We consider the case where FR(S) splits as

FR(S) = F̃ ∗A H (4.8)

with F ≤ F̃ , A maximal abelian in both factors and H non abelian. Throughout

this section F̃ , A,H will denote these groups.

Lemma 4.6.2. Let FR(S) split as in (4.8). Using Nielsen moves on (F, x, y) modulo

F we can arrange, conjugating boundary monomorphisms if necessary, that x lies in

either F̃ or H.

Proof. Since we are assuming free indecomposability of FR(S) modulo F , we can apply

Theorem 4.3.27. Let T be the Bass-Serre tree induced from the splitting (4.8). Let

v0 be the vertex fixed by F ≤ FR(S). We start by looking at the marked generating

set (F ; {x, y}). We consider different cases.1

Case 1) TF is a point: Since FR(S) isn’t freely decomposable by Theorem 4.3.27

without loss of generality x must be elliptic. Tx is either a vertex or an edge

1 Our notation is such that e.g. Case 2.3.4 is a subcase of Case 2.3.
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Case 1.1) TF ∩ Tx = ∅: Consider the the marked generating set (F, 〈x〉; {y}) and

apply Theorem 4.3.27 again. We now find that either, without loss of generality,

yTx ∩ Tx 6= ∅ or y is also elliptic.

The first case is impossible. Indeed, by 1-acylindricity Tx is either an edge or a

point so for yTx ∩Tx 6= ∅ we must have that x fixes one of the endpoints of Tx which

implies that y is elliptic.

If y is also elliptic then the trees TF , Tx, Ty cannot all be disjoint, otherwise FR(S)

would be freely decomposable. If Ty ∩ TF 6= ∅ then we can switch x and y and pass

to Case 1.2. Otherwise Ty ∩Tx 6= ∅ then the tree T〈y,x〉 is either an edge or has radius

1. Passing to the marking (F, 〈x, y〉; ∅) and applying Theorem 4.3.27 implies that

T〈y,x〉 can be taken so that TF ∩ T〈y,x〉 6= ∅. Which means that both x and y can be

brought into H .

Case 1.2) TF ∩ Tx 6= ∅: Since we have the splitting (4.8) and by our assumptions

on edge stabilizers we have that if x fixes v0 then x ∈ F̃ and we are done.

Case 2) TF is not a point: Conjugating boundary monomorphism, we can arrange

for some generator α of A to lie in F . We apply Theorem 4.3.27 and find that either

xTF ∩TF 6= ∅ or x is elliptic. In the former case, since TF has radius 1 and F ≤ FR(S)

has property CC we can apply Lemma 4.3.29 to make x ∈ H and we are done.

Otherwise x is elliptic and we consider the next case.

Case 2.1) TF ∩ Tx = ∅: We consider the marked set (F, x; {y}) and we see that

applying Theorem 4.3.27 we can either arrange for y to be elliptic or get that either

TF ∩ yTF 6= ∅ or Tx ∩ yTx 6= ∅. In Case 1.1 the latter possibility was seen to be
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impossible unless y was elliptic. If yTF ∩ TF 6= ∅, then we can apply Lemma 4.3.29

as for the previous case and obtain that y ∈ H and we are done.

The remaining possibility in this case is that y is elliptic and Ty ∩ TF = ∅. For

our group not to be freely decomposable we must have that Ty ∩ Tx 6= ∅, moreover

since both x, y are elliptic the tree T〈x,y〉 must have radius 1. This is dealt with

exactly as in the end of Case 1.1.

Case 2.2) TF ∩ Tx 6= ∅: Then we have, after perhaps changing the boundary

monomorphisms, that x ∈ H or x ∈ F̃ and we are done.

Lemma 4.6.3. Suppose FR(S) splits as (4.8) maximal abelian group A with F ≤ F̃

and H non abelian. If x can be brought into the subgroup F̃ via Nielsen moves modulo

F , then FR(S) is freely decomposable.

Proof. Let G(X) be the graph of groups representing the splitting (4.8). We start

with the wedge W(F, x, y), and suppose that after a sequence of N1 moves, the

element x lies in F̃ . Then FR(S) can be represented with a G(X)-graph graph (B, v),

which consists of a vertex v and a y-loop L(y, v), where the vertex v has label 〈F, x〉.

Since π1(B, v) = FR(S), by Theorem 4.3.13 we should be able to bring B to G(X).

Now only the vertex group Bv of B is non trivial. We do our folding process, but only

doing adjustments and foldings, in particular, doing moves only A0-A3,F1,F4,L1 and

S1. If a collapse occurs then B doesn’t have any cycles and B0 has an extra yellow

vertex. By doing S1 shaving moves we can assume that B0 has at most one yellow

vertex. By Lemma 4.3.18, as long as the terminal transmission graph has at most

one green vertex or a cancellable path, we will always be able to perform one of the

moves F1, F4, S1 after a some sequence of L1 and A0-A3 moves.
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We see that each step of the way the terminal transmission graph of B has at

most one green vertex or cancellable path, unless one of three possibilities occurs,

let v be the vertex such that Bv ≥ 〈F, x〉:

(a) B has two vertices v, u and one edge e and after a transmission Bu is generated

by at most two elements. The graph is then folded, but we see that H = A∗H ′

which implies free decomposability.

(b) B has no cycles, three vertices and two edges. We assume that all shaving

moves were performed. Then the only possibility for B is that it has endpoints

v and u, and Bu is cyclic. But then if the transmission graph had any red edges

then the vertex u could have been shaved off. It follows that it is impossible

for the transmission graph to have two green vertices.

(c) B consists of a cycle of length 2, with vertices v and u. This means that the

vertex group Bu is trivial. For B to be folded, after a transmission we must be

able to perform a F4 collapse move.

If the collapse is towards u then no transmissions are needed and Bu will be

generated by some element and the edge group, which implies free decompos-

ability. If the collapse is towards v then if the collapse can be done without

doing transmissions first, we reduce to case (a).

Otherwise, before the collapse, do a conjugation move at u and two transmis-

sions so that Bu = 〈b1A′b−1
1 , A′′〉 where A′, A′′ ⊂ A and b1 6∈ A, we now do a

simple adjustment and collapse, in the end we get that Bu = H = 〈b1A′b−1
1 , A〉.

By Lemma 4.6.14 this implies free decomposability.
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Lemma 4.6.4. Suppose FR(S) splits as (4.8) and via Nielsen moves we were able to

bring x ∈ H. Then FR(S) is generated by 〈F, x, y′〉 where y′ also lies in H.

Proof. We start with the graph with one edge e and two vertices v, u with Bv = F

and Bu = 〈x〉 and then at v attach the y-loop L(y, v). Start our adjustment-folding

process applying only moves A0-A3,F1,F4,L1,S1, as much as possible. By Lemma

4.3.18, as long as the transmission graph has at most two green vertices, we will

always be able to perform one of the moves F1, F4, S1 after a some sequence of L1

and A0-A3 moves.

Suppose first that along the process avoiding transmissions, a collapse occurred,

then B doesn’t have any cycles, either B can be brought to a graph with one edge

and two vertices in which case, applying Lemma 4.6.3 if Bu = 〈x〉, the result follows.

Otherwise, after shaving, we may assume that B has three vertices u, v, w and

two edges. We already have an edge e between u and v which means that the other

edge f must be either between v and w; in which case we can perform F1 at v without

doing any transmissions; or f is between w and u; in which case transmission from

w to u implies that w can be shaved off, so we can do an F1 move at u without

transmissions. Either way, by Lemma 4.6.3 we must have Bv = F and Bu = 〈x, y′〉

and all that is needed to get a folded graph is transmissions, so the result holds.

Suppose now that no collapses occurred, but it is impossible to perform any

moves of type F1 or F4 without doing transmissions. Then by Lemma 4.3.18, the

transmission graph must have at least three green vertices, this can occur only if one
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of these cases occur:

Case I Case II Case III

w•
f f ′

v• e •u

w•
g g′

v• e •u

v• •u

We first tackle Case I. If after transmissions a move of type F1 is possible, then

it is easy to see that such a move could have been done without transmission and

this reduces to Case III. It therefore follows that the edges f, f ′ have to be collapsed.

If the collapse is towards w, then no transmission moves are necessary, we get a

graph with three vertices with Bw = 〈y′〉, Bv = F and Bu = 〈x〉, we note that if

any transmissions from w or u to v are possible, then we can shave off these vertices

and end up as in the case of Lemma 4.6.3. It therefore follows that we can perform

a F1 folding move at v and replacing y′ by a conjugate if necessary we get a graph

with two vertices v, u with Bv = F and Bu = 〈x, y′〉, all that remains to get a folded

graph are transmission moves so the result follows.

Suppose now that the collapse was towards v then first we transmit towards

w through both edges f and f ′ (if we only needed to transmit through one edge,

we could have used a long range adjustment contradicting the assumption.) Now

suppose i(f) = i(f ′) = w and after a conjugation move we have that f and f ′ have

labels (c, [f ], b) and (1, [f ], b′) respectively. Moreover c 6∈ A, since otherwise we could

have used a Bass-Serre move A1, and then collapsed. Then after the transmissions

Bw = 〈α, cαc−1〉 where 〈α〉 = F ∩ A. To be able to make an F4 move, we must be

able to make a simple adjustment which implies that c ∈ 〈α, cαc−1〉. Let cαc−1 = β,
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we have that 〈α, β〉 freely generate a free group of rank 2. But if c = W (α, β), then

we would have the relation

W (α, β)αW (α, β)−1 = β

which is impossible.

We now consider Case II, as before it may reduce to Case III. Let g and g′ be

the edges between v and w. Suppose first that the collapse is towards u, but there

had to be transmissions to w first, then as in the previous paragraph we can derive

a contradiction. It follows that the collapse must be towards w, but in this case long

range adjustments can be used instead of transmissions and simple adjustments and

we revert to the no cycle case.

Finally, we consider Case III, since there can be no transmissions from u to

v, we must have that the collapse is from v to u. Note that since F has property

CC and that if it was possible to transmit through both edges towards v, instead

of doing so one can make a simple adjustment A2 at F and collapse towards u and

the result holds. This means that only one edge can transmit, so it follows that the

F4 move can simply be preceded by long range adjustments and A0,A2 moves. But

then we have that Bv = 〈x〉 and the only moves left are transmissions which imply

that H = 〈x〉 ∗ A which implies free decomposability of FR(S).

From the previous lemmas we get.

Proposition 4.6.5. If FR(S) is freely indecomposable and splits as in (4.8) with

F ≤ F̃ . Then FR(S) can be generated by F and two elements x, y′ ∈ H. Therefore,

up to rational equivalence, we can assume that x, y are sent into H.
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This next proposition enables us to revert back to a cyclic splitting.

Proposition 4.6.6. Suppose that FR(S) has a splitting as in (4.8) then FR(S) admits

a cyclic splitting

F̃ ′ ∗〈p〉 H ′

where either:

1. F̃ ′ = F and H is generated by 〈p, x, y〉, p ∈ F i.e. H is a three generated fully

residually free group (see Theorem 4.1.1).

2. F̃ = 〈F, p〉 and H ′ = 〈x, y〉 with p ∈ H ′ i.e. H ′ is free of rank 2.

Proof. We first consider when the amalgamating maximal abelian subgroup A in

(4.8) is cyclic. We write A = 〈p〉 and F̃ ′ = F̃ , H ′ = H , then we apply Proposition

4.6.5 and we get that x, y ∈ H . Looking at normal forms we have that F̃ = 〈F, p〉

and H = 〈p, x, y〉 if p ∈ F then F̃ = F and H is three generated fully residually

free. If p 6∈ F then we must have by normal forms that p ∈ 〈x, y〉 and it follows that

H = 〈x, y〉.

We now consider the case where A in (4.8) is not cyclic. By Proposition 4.6.5

we can assume that x, y ∈ H and it follows that F̃ = 〈F,A〉. F̃ is fully residually F

but not equal to F so F̃ has a nontrivial cyclic splitting modulo F and A must be

elliptic. By Theorem 4.1.2, the only possibility for 〈F,A〉 is

F̃ = F ∗p A

which means that FR(S) admits the splitting:

FR(S) = F ∗p (A ∗A H)
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and as before we get that H = 〈x, y, p〉 is a three generated fully residually free

group.

Lemma 4.6.7. Suppose FR(S) splits as

F̃ ∗u (〈u〉 ⊕ 〈γ〉) ∗γ 〈x, y〉

then FR(S) is freely decomposable, in particular, 〈γ〉 must be a free factor of F (x, y).

Proof. There are solutions f : FR(S) → F such that the restriction of f to F (x, y)

is a monomorphism since F (x, y) is a two generated nonabelian subgroup of a fully

residually free group. We fix a solution f and denote by H ≤ F the image of F (x, y).

H is free of rank 2 but we see that in the ambient group γ = f(γ) is a proper power,

i.e. γ = un and n can be made arbitrarily large via Dehn twists. Theorem 3.1.4

applies and the assumption that γ ∈ F (x, y) is not a proper power (by malnormality

of boundary subgroups) and not primitive (by free indecomposability modulo F )

force the image of F (x, y) → F to by cyclic contradicting injectivity.

Proposition 4.6.8 (Theorem 4.1.6 (D) item 1). If FR(S) has a QH subgroup then

the only possibility is

FR(S) = F ∗u=p 〈x, y, p|[x, y] = p〉

Proof. Note that by Proposition 4.2.5 and Corollary 4.2.6 there can be at most one

MQH subgroup which must have genus at most 1, and the underlying graph of the

graph of groups must be simply connected. The only suitable surface is the torus

with one puncture. Again using the complexity bound in Corollary 4.2.6 the only
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possible cyclic JSJ splittings modulo F are of the form:

FR(S) = F̃ ′ ∗qH1 ∗a2 . . . ∗ak
Hk∗p︸ ︷︷ ︸

H

Q

where Q is the MQH subgroup and F ≤ F̃ ′. Consider the splitting

(F̃ ′ ∗q H) ∗p Q

where p lies inside a maximal abelian subgroup A, then we fold if necessary to get

(F̃ ′ ∗q H) ∗A (A ∗p Q)

we now apply Proposition 4.6.5 to get x, y ∈ (A ∗p Q). First suppose that A is

noncyclic abelian, then we get F̃ = F̃ ′ ∗q H = 〈F,A〉 which as in the proof of

Proposition 4.6.6 must be F̃ = F ∗q A so we get that FR(S) = F ∗q A ∗p Q. If p 6= q

then, by Lemma 4.6.7, FR(S) is freely decomposable modulo F . If p = q then if G(X)

is the corresponding graph of groups with vertex groups F,A,Q then we find that

B(G(X)) ≥ 3 which contradicts Corollary 4.2.6.

The possibility A = 〈p〉 remains. Proposition 4.6.5 gives us that FR(S) is gener-

ated by F and by x, y ∈ Q and by Proposition 4.6.6 we have either p ∈ F or p 6∈ F , in

the former case the result follows i.e. we have that Q = 〈x, y, p〉) and F̃ = F . In the

latter case we have F̃ = 〈F, p〉 and we must have p ∈ 〈x, y〉. By Theorem 4.1.2 and by

free indecomposability modulo F we must have that 〈F, p〉 = F̃ ≈ 〈F, t|t−1ut = u〉.

I.e. F̃ contains a free abelian group of rank 2. On the other hand p has exponent

sum 0 in both x and y, so by Lemma 4.3.24 we have a contradiction.

96



Proposition 4.6.9. Suppose that FR(S) splits as

F ∗〈p〉 H (4.9)

and H = G ∗q Ab(q, t) is a rank 1 free extension of a centralizer of a free group of

rank 2. Then (4.9) refines to

F ∗〈p〉 G ∗q Ab(q, t) (4.10)

Proof. This situations corresponds to item 1 of Proposition 4.6.6. We need to show

that p is conjugable into G. Suppose towards a contradiction that this was impossible.

We first consider the possible cyclic JSJ splittings of FR(S), since q must be

elliptic, any induced cyclic splitting of H must induced a cyclic splitting of G modulo

q. G is a free group of rank two so, by Lemma 3.1.10, G may only split further as

an HNN extension G = 〈G′, s | s−1us = u′〉 modulo q.

Now consider the cyclic JSJ splitting of H modulo p, by Lemma 4.6.7 p is not

conjugate to a power of t. By our assumption and, if necessary, by replacing G with a

vertex group G′ containing p and q we have that H has no nontrivial cyclic splittings

modulo p. On the other hand H is not free and there is an H-discriminating family

of F -homomorphisms that send p to some fixed element of F , we must therefore have

that H has a cyclic splitting modulo p –contradiction.

We note that this proof did not exclude the case where p=q.

Proposition 4.6.10. Suppose that FR(S) splits as

F̃ ∗〈p〉 H or
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where H is free of rank 2 and suppose moreover that H splits further as an HNN

extension

H = 〈G, t | t−1µt = µ′〉

modulo p. Then we have that p and µ cannot be conjugate in H.

Proof. By Lemma 3.1.10, we must have that H = 〈µ, t〉, if α and µ are conjugate in

H then by conjugating boundary monomorphisms and doing Tietze transformations

we see that FR(S) = F̃ ∗ 〈t〉.

The same argument yields:

Proposition 4.6.11. Suppose that FR(S′) splits as

F ∗〈p〉 H ∗u Ab(u, t)

with H free of rank 2 and suppose moreover that H splits further as an HNN extension

H = 〈G, t | t−1µt = µ′〉

modulo p and u, then we cannot have that both p and u are conjugate to µ

Corollary 4.6.12. If FR(S) is freely indecomposable and the maximal abelian collapse

of its cyclic JSJ decomposition modulo F is a free product with amalgamation. Then

all the possibilities for the JSJ of FR(S) are given in item (D) of Theorem 4.1.6

4.6.3 The two edge case

We now consider the case where, after “folding and sliding”, the splitting of

FR(S) has underlying graph

X = v•
f

e

•u (4.11)
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and to which we give the relative presentation:

F̃B
A

t ++
CH (4.12)

where F ≤ F̃ = Xu, H = Xv and A,B,C are maximal abelian and conjugacy

separated (in their vertex groups). In particular we have that the action of FR(S) on

the corresponding Bass-Serre tree is 1-acylindrical. We now prove the lemmas that

will enable us to prove item (E) of Theorem 4.1.6.

Lemma 4.6.13. If FR(S) splits as in (4.12), then using Nielsen moves on (F, x, y)

modulo F we can arrange, conjugating boundary monomorphisms if necessary, that

x either lies in F̃ ∪H or x = t.

Proof. We first observe that FR(S) cannot be generated by elliptic elements w.r.t. the

splitting (4.12). We assume free indecomposability modulo F and apply Theorem

4.3.27 to the marked generating set (F ; {x, y}). Let T be the Bass-Serre tree of the

splitting. Let v0 ∈ T be the vertex fixed by F ≤ FR(S).

Suppose that TF is a point. Then by Theorem 4.3.27 we are forced to have that

x can be brought to an elliptic element and that we can arrange Tx ∩ TF 6= ∅ or

yTx ∩ TF 6= ∅. It follows that we can bring x ∈ F̃ . Suppose now that TF is not a

point. Either

1. TF ∩ xTF 6= ∅. Then we can apply Lemma 4.3.29 and get that x is either in H

or x = th, h ∈ H ; or

2. x is elliptic. Then we use Theorem 4.3.27 on the marked set (F, x; {y}). y

cannot also be elliptic.
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If TF ∩ Tx 6= ∅ then if v0 ∈ Tx then we can assume that x ∈ F̃ . If x fixes a

vertex w′ adjacent to v0, then we can assume that x ∈ stab(w′). By Lemma

4.3.28 we either have that x can be brought into H or tHt−1, after possibly

changing the spanning tree, the result follows.

If TF ∩yTF 6= ∅ then as before we can arrange to that y = th and interchanging

x and y the result will follow. The remaining case is Tx ∩ yTx 6= ∅. We note,

however, that Tx has at most one FR(S)−type of edge, but since y has exponent

sum 1 in the stable letter, we find that the path ρ connecting Tx and yTx

must contain both edge types. It follows that Tx ∩ yTx = ∅. So we must have

TF ∩ yTx 6= ∅ which reduces to an earlier possibility.

Lemma 4.6.14. Let A,B ≤ G be two abelian subgroups of a fully residually free

group G such that for some a ∈ A, b ∈ B we have [a, b] 6= 1. Then we have

〈A,B〉 = A ∗B

Proof. Let w = a1b2a3 . . . bn be product of non trivial factors ai ∈ A and bj ∈ B

with perhaps the exception that a1 or bn are trivial. Since G is fully residually free

there exists a map of G into F such that all the nontrivial ai, bj as well as some

commutator [a, b], a ∈ A, b ∈ B do not vanish. We have that the ai are sent to

powers of some element u ∈ F and the bj are sent to powers of some v ∈ F . It

follows that the homomorphic image of w is sent to a freely reduced word in u and

v, and since u, v ∈ F do not commute they freely generate a free subgroup of F . It

follows that w is not sent to a trivial element.
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Lemma 4.6.15. If the vertex group H in the splitting (4.12) is generated by conju-

gates of its boundary subgroups, i.e. H = 〈Ah1, Ch2〉, hi ∈ H, then FR(S) is freely

decomposable modulo F .

Proof. Without loss of generality, by conjugating boundary subgroups we may as-

sume, h1, h2 = 1. Take the presentation of FR(S) from the splitting, since by Lemma

4.6.14 H = A ∗ C we can use a Tietze transformation to get rid of C. The resulting

group will have a relative presentation

〈F̃ , t|∅〉 = F̃ ∗ 〈t〉

Lemma 4.6.16. Suppose that FR(S) splits an in (4.12) and that x ∈ F̃ , then FR(S)

is freely decomposable modulo F .

Proof. It is clear that, perhaps after Nielsen moves modulo 〈F, x〉, y can be sent to an

element with exactly one occurrence of the stable letter t. A and C are not conjugate,

which implies that B ∩ 〈F, x〉 = B′ 6= 1 and that the occurrences of t cancel in some

product

ζ−1βζ

for some β ∈ B′. Let C ′ = (B′)y, we have that C ′ is conjugable into H . Let

A′ = 〈F, x〉 ∩ A.

To derive free decomposability it is enough to assume that C ′ ≤ H . C ′ ∩A = 1

which means that 〈C ′, A〉 = C ′ ∗ A and in particular that 〈C,A′〉 ∩ A = A′ which
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means that H ∩ 〈F, x, y〉 = 〈A,C ′〉, which by Lemma 4.6.15 implies that FR(S) is

freely decomposable.

Lemma 4.6.17. Suppose that x ∈ H, then we can arrange so that FR(S) is generated

by F and elements x ∈ H and some y′ = th, h ∈ H.

Proof. We first note that if x is conjugate into an edge group, then we can assume

x ∈ F̃ , which leads to a contradiction. The hypotheses imply that FR(S) is the

fundamental group of a G(X)− graph B obtained by taking an edge labelled, say

(1, e, 1), with endpoints v and u, attaching the y−loop L(y, v), and setting Bv =

F,Bu = 〈x〉.

The transmission graph B0 has the green vertex v and the yellow vertex u. We

start our folding process using only moves A0-A3,F1,F4,L1,S1. Note that if a F4

collapse move occurs, then the underlying graph will be simply connected, which is

impossible. By Lemma 4.3.18, this will be able to continue folding and adjusting

as long as the terminal transmission graph has at most two green vertices or a

cancellable path, which must be the case if, after shaving, there are more than four

vertices.

Suppose that B has only four vertices, noting that this must fold to a graph like

(4.11) using F1 moves we see (exchanging the labels e and f , if necessary) that the

only possibilities after doing S1 moves are:

u1•
e

e •v1

f

v• e •v

u1•
e

f •v1

e

v• e •v

u1•
f

e •v1

e

v• e •v
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where here the edges are labelled by their type. If we look more closely at the possible

transmissions, we see that the vertices u1, v1 will always be yellow in transmission

graphs, so we can continue folding without using transmissions.

Suppose now that B has only three vertices, then the only possibilities after

doing S1 moves are

u1•
f e

v• e •u

v1•
e f

v• e •u
Since the only folding that can occur is a F4 move at v or u, we see that we can use

moves A0-A4,L1 and then make an F1 move.

It follows that B can be brought to a graph of the form:

v•
(a1,e,b1)

44 •u
(b2,f,a2)
tt

with Bv = F and Bu = 〈x〉. Moreover our assumption that x ∈ H meant that

a1 = b1 = 1. FR(S) is therefore generated by F, x ∈ H and y′ = f, b2, e, a2 with

a2 ∈ F̃ and b2 ∈ H , by conjugating boundary monomorphisms we can assume that

y′ = t.

Lemma 4.6.18. Suppose that x = t, then we can arrange so that FR(S) is generated

by F , x and some y′ ∈ H.

Proof. The hypotheses imply that FR(S) is the fundamental group of a G(X)-graph B

obtained by taking two edges with labels (1, e, 1) and (1, f, 1) with common endpoints

v and u, setting Bv = F,Bu = {1}, and attaching the y-loop L(y, v).

103



The transmission graph B0 has only the green vertex v, but the terminal trans-

mission graph has green vertices u and v. We start our folding process using only

moves A0-A3,F1,F4,L1,S1 as much as possible. By Lemma 4.3.18, this will be able

to continue as long as the terminal transmission graph has at most two green vertices

or a cancellable path.

Suppose first that a F4 collapse occurred. Then B has one cycle. After shaving,

the only possibilities (interchanging labels e and f , if necessary) so that the terminal

transmission graph has more than two green vertices are

u1•
e

v•
e

f

•u

•v1

e

v•
e

f

•u

(4.13)

We note that in this case, on can always use moves A0-A3,and L1 so that F1 can

be performed. In these cases we either get a graph with Bv = 〈F, y′〉, Bu = {1} or

Bv = F,Bu = {y′}. To get a folded graph, all that remains are transmissions, but

note that in the former case, Lemma 4.6.15 will imply free decomposability modulo

F , in the latter case the result follows.

Suppose that no collapses occurred, but the terminal transmission graph has

more than two green vertices and no cancellable paths. Then B has at most 4

vertices and the only possibility with 4 vertices is something of the form:

u1• •v1

v• •u
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Either an F1 type fold can be performed at u or v, in which case we need only make

moves A0-A3,L1 before, or the fold occurs at v1 or u1. In these latter cases (noting

that all vertex groups except Bv are trivial) we see that if either u1 or v1 become

green then before doing the F1 type fold, we will only need to use moves A0-A3. It

follows that we can continue without transmissions.

Suppose now that B has three vertices, then the possibilities are:

u1•

v• •u

v1•

v• •u

If the next fold will be of type F1, then it will occur at either v or u and moves

A0-A3,L1, will be sufficient, and we get a graph with two vertices and three edges. If

the next fold is a collapse, first note that, by the exact same arguments as in Lemma

4.6.4 Case I, if it is possible to get to collapse towards either v or u, then this must be

possible without using transmissions first. Either collapse will reduce the situation

to (4.13).

Suppose now that B has two distinct vertices and three edges, the possibilities

are

v•
(1,f,1)

**
f

(1,e,1)

44 •u v•
(1,f,1)

**
e

(1,e,1)

44 •u

where the remaining edge is marked only by its type. Note that these cases are

symmetric. Suppose the third edge has label (a, e, b) with a ∈ F̃ and b ∈ H . First

note that if it is possible to transmit through both e-type edges from v to u, because

F has property CC this means that there is some a′ ∈ F such that a′a ∈ Xe which

means that after an A1 Bass-Serre move we can make a F4 collapse towards u.
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The remaining case is that one cannot transmit through both e-type edges from

v to u, but then this means that we can make a long range adjustment to either

bring (a, e, b) to (a, e, 1) or bring (1, e, 1) to (1, e, b), and collapse.

If the collapse is towards v, then Bv = 〈F, y′〉 and Bu = {1}, or Bv = F and

Bu = 〈y′〉. All that remains to be done to get a folded graph is transmissions, in the

latter case the result follows, in the former case we can derive free decomposability

modulo F .

All these lemmas combine to give:

Proposition 4.6.19. If we have the splitting described in (4.12) then we have that

FR(S) is generated by the stable letter t and some element y′ ∈ H . Therefore, up to

rational equivalence, we can assume that x = t and y us sent into H.

The next proposition enables us to revert to a cyclic splitting.

Proposition 4.6.20. Suppose that FR(S) has a splitting as in (4.12), then FR(S)

admits one of the two possible cyclic splittings:

1. FR(S) = F β x **
α H ′ where H ′ = 〈α, x−1βx, y〉 is a three generated fully resid-

ually free group.

2. FR(S) = F̃ β
x **
α H ′ where F̃ is a rank 1 free extension of a centralizer of F

and H ′ is generated by α, y. Moreover H ′ may not split further as an HNN

extension.

Proof. Let F̃ , A,B, C,H, t be as in (4.12). By Proposition 4.6.19 we can assume that

x = t and y ∈ H . We can always assume that either F ∩ A 6= {1} (otherwise we

could derive free decomposability modulo F .)
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Suppose first that F ∩ A = 〈α〉 and F ∩ B = {1}. To ensure free indecompos-

ability modulo F we need there to be some γ ∈ 〈α, y〉 such that xγx−1 = β ∈ F̃ ∩B.

Now by Theorem 4.1.2 if 〈F, β〉 6= F ∗〈β〉 then we must have 〈F, β〉 = 〈F, t|[u, t] = 1〉

for some u ∈ F . If u is not conjugate to α in F then FR(S) has a cyclic splitting as

in item 2. If u and α are conjugate in F , then we can assume that α = u, so then

the group A in (4.12) is noncyclic abelian of rank 2. We study the maximal abelian

subgroup C ≤ H . We already had that γ(y, α) ∈ C. If C ≤ H is not cyclic then

there must be some γ1 ∈ 〈y, A〉 such that γ and γ1 do not lie in a common cyclic

subgroup and which satisfies the relation

[γ, γ1] = 1 (4.14)

however by Lemma 4.6.14 we have

〈A, y〉 = A ∗ 〈y〉 (4.15)

which means that (4.14) is impossible. It follows that F̃ = 〈F, β〉. This gives the

cyclic splitting:

FR(S) = 〈F, t〉 α
x -- γ〈α, y〉

Suppose now towards a contradiction that 〈α, y〉 split further as an HNN extension:

〈α, y〉 = 〈K|pt = q〉; p, q ∈ K

then we have

FR(S) = F̃ β
α

,,
22
β′

α′Kp
q
tvv
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Then we can collapse this splitting to a double HNN extension, and applying Lemmas

4.3.23 and 4.3.24 we see that F̃ cannot contain any noncyclic abelian subgroups –

contradiction.

Suppose now that F ∩ A = 〈α〉 and F ∩ B = 〈β〉: Then we first consider

H ′′ = 〈F, α, γ〉 where γ = x−1βx. Suppose that A are B are non cyclic, then we see

that

〈F,A,B〉 = A ∗α F ∗β B

since 〈F,A,B〉 is fully residually F . which means that letting H ′ = 〈H ′′, A,B〉 we

get the cyclic splitting

FR(S) ≈ F β x ++
α

γH ′

and looking at normal forms and words in {F, x, y} we see that H ′ = 〈α, γ, y〉. In

particular we have a splitting as in item 1. Having exhausted all the possibilities, the

result holds

Proposition 4.6.21. Suppose that FR(S) splits as

F β
++

α
γH

and suppose moreover that H splits as an HNN extension

H = 〈G, s | s−1µs = µ′〉

modulo α, γ. Then α and γ cannot both be conjugate to µ in H.

Proof. After conjugating boundary monomorphisms and applying Lemma 3.1.10, it

is easy to get Tietze transformations that exhibit a free decomposition.
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Proposition 4.6.22. Suppose that FR(S) splits as FR(S) = F β
y **
α H ′ where H ′

is a rank 1 free extension of a centralizer of a free group H of rank 2. Then this

splitting can be refined to

FR(S) = F β
α

y ++
γH u Ab(u, s)

such that α and γ are not conjugate and such that u is not conjugate to both α, γ.

This cyclic splitting cannot be further refined.

Proof. Noting that the elements α and γ = x−1βx of H ′ are conjugate into F enables

us to use the arguments of Proposition 4.6.9 to show that the elements α and γ must

be conjugable into H ′.

If u is conjugate to both α, γ, then it is clear that the group is freely decompos-

able modulo F .

Finally, if this splitting could be refined, then the only possibility by Lemma

3.1.10 is that H refines to an HNN extension, but then we could apply Lemma 4.3.24,

contradicting the existence of a non-cyclic abelian subgroup.

All these Propositions imply:

Corollary 4.6.23. If FR(S) is freely indecomposable and the maximal abelian collapse

of its cyclic JSJ decomposition modulo F has two edges. Then all the possibilities

for the JSJ of FR(S) are given in item (E) of Theorem 4.1.6
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4.6.4 The three edge case

We now consider the case where, after “folding, sliding, and collapsing”, the

splitting of FR(S) has underlying graph

X = v•
e **
f //
g

44 •u (4.16)

and to which we give the relative presentation:

F̃A
D

s ++
C

t
33
B
EH (4.17)

Where F ≤ F̃ = Xv, H = Xu and A,B,C,D,E are maximal abelian in their ver-

tex groups, hence the splitting is 1-acylindrical. Note that by Corollary 4.3.25,

FR(S) cannot contain any noncyclic abelian subgroups, in particular the subgroups

A,B,C,D,E must all be cyclic.

Lemma 4.6.24. Let FR(S) split as in (4.17). Using Nielsen moves on (F, x, y)

modulo F we can arrange; conjugating boundary monomorphisms if necessary so

that x = t.

Proof. Since we are assuming free indecomposability of FR(S) modulo F , we can

apply Theorem 4.3.27. Let T be the Bass-Serre tree corresponding to the splitting

(4.16). We note that neither x nor y can be brought to elliptic elements w.r.t. the

splitting (4.16). Let v0 be the vertex fixed by F . W.l.o.g. we have TF ∩ xTf 6= ∅.

1-acylindricity implies that d(v0, xv0) = 2. It follows w.l.o.g. that x is of the form

a1, f, b1, e
−1, a2 where b1 ∈ H, a1, a2 ∈ F̃ , by Lemma 4.3.29 we can arrange so that

x = f, b, e−1, and conjugating boundary monomorphisms enables us to assume that

x = f, e−1 = s−1 in terms of the relative presentation (4.17).
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Lemma 4.6.25. Suppose that FR(S) splits as in (4.17) and that x = t, then FR(S) is

generated by F , t, and s

Proof. The hypotheses imply that FR(S) is the fundamental group of a G(X)-graph B

obtained by taking two edges with labels (1, e, 1) and (1, f, 1) with common endpoints

v and u, setting Bv = F,Bu = {1}, and attaching the y-loop L(y, v).

Again we start our adjustment-folding process, using only moves A0-A2,L1,F1,

and F4. Moreover we see that F4 collapses are forbidden since they reduce the

number of cycles in the underlying graph. As long as there are strictly more than

4 vertices, the terminal transmission graph will only have two green vertices or a

cancellable path. Suppose that the terminal transmission graph has only 4 vertices

then, interchanging e and f if necessary, and noting that sgns(y) = 1, the only

possibilities are:

u1•
e

e •v1

g

v•
e

f

•v

u1•
e

g •v1

e

v•
e

f

•v

u1•
g

e •v1

e

v•
e

f

•v

where the edges are marked by their type. In all three cases, though, we see that the

vertices w1, v1 in the terminal transmission graph must be yellow, so we can continue

our adjustment-folding process.

If there are only three vertices then we only the have possibilities:

u1•

v•
f

44
e **

e

VV
g

HH

•u

v1•
g

��
e

��
v•

f

44
e ** •u
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and the last fold is of type F1 at either u or v and in particular no transmissions are

needed. We get that B is given by

v•
(a1,g,b1)

**
e //
f 44 •v

where the edges labelled e and f have labels (1, e, 1) and (1, f, 1) respectively. In

the end we have that FR(S) is generated by F, t and some element y′ = a1, g, b1, e
−1

where b1 ∈ H and a1 ∈ F̃ . After conjugating boundary monomorphisms, we may

assume that y′ = s.

Corollary 4.6.26. If FR(S) is freely indecomposable and the maximal abelian collapse

of its cyclic JSJ decomposition modulo F has three edges, then the JSJ of FR(S) is

what is described in item (F ) of Theorem 4.1.6

Proof. All we need to show is that the vertex groups are F and a free group of rank

2.

By the two previous lemmas we have that FR(S) is the fundamental group of the

G(X)-graph

B = v•
g

**
e //
f 44 •u

with Bv = F and Bu = {1}. To get a folded graph, all that are needed are trans-

missions. We also saw that the edge groups are cyclic. Suppose first that the only

possible transmission is from u to v through e, then by 1-acylindricity, it is impos-

sible for there to be any further transmissions from u back to v through the other

edges.
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Suppose that now there were transmissions possible only from v to u through

edges e and f . So as not to have free decomposability modulo F , we must have a

transmission from u to v through g. We note that the boundary subgroups associated

to the edges e, f must be maximal cyclic because they lie in F , it then follows that

there are no further possible transmissions and the graph is folded. In particular we

find that Bu = F̃ = 〈F, α〉 where α is the element transmitted from H to F̃ . FR(S)

is freely indecomposable only if F̃ 6= F ∗ 〈α〉, but by Theorem 4.1.2 the only other

possibility for 〈F, α〉 is F ∗uAb(u, t), which is impossible since FR(S) has no noncyclic

abelian subgroups.

It therefore follows that F̃ = F and H is a free group of rank 2 generated by its

boundary subgroups.

4.7 Splittings with one vertex group

We now consider the situation where FR(S) has a cyclic JSJ decompositions

modulo F , which yields relative presentations:

βF̃ β′

t
��

(4.18)

α
α′ F̃

β

β′t %% syy (4.19)

4.7.1 First Classifications

We give a first description of the vertex group. Note that if F̃ = F then the

splittings (4.18) (4.19) must be extensions of centralizers of F .

Lemma 4.7.1. Suppose FR(S) has the cyclic JSJ decomposition modulo F (4.19)

then either F̃ = F , or the following hold:
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1. One of the vertex groups, say 〈α〉, is conjugate into F .

2. F̃ is two generated modulo F .

3. The elements α and β are not conjugate in FR(S)

4. F̃ has no abelian subgroups

5. The splitting is 1-acylindrical.

6. Up to rational equivalence we can assume x = t and y = t

7. If F̃ is freely indecomposable, then its JSJ has two vertices and at most two

edges. Moreover one of the vertex groups is F .

Proof. The fact that F̃ cannot contain any abelian subgroups follows immediately

from Corollary 4.3.25. We are assuming that F̃ 6= F which means that F̃ has a

nontrivial cyclic D eF splitting modulo F . It follows that α and β must obstruct

this splitting. On the other hand we have free indecomposability of FR(S), and it is

impossible for both x and y to be elliptic in this splitting (linear algebra on exponent

sums of stable letters.) It follows that Theorem 4.3.27 forces TF to have edges, i.e.

w.l.o.g. α ∈ F .

Suppose now that α and β were conjugate. α ∈ F would imply that α′, β, β ′

are elliptic in D eF , contradicting the fact that α, β obstruct the splitting 〈δ〉 eF . We

have thus shown that the edge groups are maximal abelian and that α, β are not

conjugate, it follows that the splitting (4.19) is 1-acylindrical.

We apply Theorem 4.3.27 to the marked generating set (F ; {x, y}). We can

arrange via Nielsen moves so that TF ∩ xTF 6= ∅, by 1-acylindricity we have

d(v0, xv0) < 2 where v0 = fix(F ). Since β is not conjugate into F we have that

path from v0 to xv0 has only t-type edges, and since sgn(t,s)(x), sgn(t,s)(y) are a basis
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of Z2 (see Definition 4.3.22) we have that x = f1tf2, fi ∈ F̃ , so conjugating boundary

monomorphisms we can assume that x = t.

FR(S) is given by the G(X)−graph B with one vertex labelled v with label

(〈F̃ , α′〉, [v]), an edge e with label (1, [e], 1), i.e. L(x, v); and the y−loop L(y, v).

By 1-acylindricity we see that we can bring B to a graph with one vertex and two

edges without any transmissions. In order to get a folded graph, we must finally

transmit through the other edge so that the new label of v is (〈F, α′, β ′〉, [v]). It

follows that FR(S) is generated by F, s, t and F̃ = 〈F, α′, β ′〉.

Finally, suppose that the JSJ of FR(S) had only one vertex. Then since F̃ 6= F

the JSJ is nontrivial. Eventually the monomorphic image of F̃ will split in some term

FR(S′) of a strict resolution of FR(S). In particular, F̃ is generated by elliptic elements

F and α′. Moreover since the induced splitting of F̃ is as an HNN extension, then

FR(S′) must also split as an HNN extension, say with stable letter z. Since F and

α′ are elliptic, β ∈ 〈F, α′〉 must have exponent sum 0 in z. On the other hand since

F̃ = F, α′, β ′ splits as an HNN extension, β ′ is forced to have exponent sum 1 in z,

which is impossible since β ′ and β are conjugate in FR(S′).

Since F̃ cannot have any abelian subgroups, previous classifications imply that

the JSJ of FR(S) has exactly two vertex groups one of which is F . Moreover in the

F̃ is generated by F and α′ which are elliptic and some β ′ which may or may not be

elliptic. Now a simple exponent sum argument excludes the possibility of a JSJ with

more than two edges.
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Corollary 4.7.2. Suppose that FR(S) has cyclic JSJ modulo F :

α
α′F̃11 u A

with A abelian, then α and u are not conjugate and moreover either α or u are

conjugate into F .

Lemma 4.7.3. If FR(S) splits as (4.18) and F̃ 6= F then β, β ′ 6∈ F ≤ F̃ and F̃

is 2 generated modulo F , in particular F̃ = 〈F, x, β ′〉. Moreover the splitting is

1-acylindrical and, up to rational equivalence, we can assume that y = t.

Proof. Suppose towards a contradiction that β ∈ F , then since F̃ 6= F , F̃ has a

nontrivial cyclic splitting modulo F D eF It follows that β ′ must also be elliptic in

D eF , in which case we can “refine” the splitting (4.18), contradicting the fact that

it’s a cyclic JSJ modulo F . 1-acylindricity now follows from the fact that β, β ′ are

hyperbolic in a cyclic splitting of F̃ modulo F , which means that β, β ′ cannot lie in

noncyclic abelian subgroups.

We now let FR(S) act on the Bass-Serre tree corresponding to (4.18) and consider

the marked generating set (F ; {x, y}). We have that TF must be a point, so by

Theorem 4.3.27 x can be sent to an elliptic element and can be sent into F̃ via

Nielsen moves modulo F . It follows that we must have β ∈ 〈F, x〉. And since we

must have T〈F,x〉 ∩ yT〈F,x〉 6= ∅ by 1-acylindricity we easily conclude y = f1t
±1f2 for

f1, f2 ∈ F̃ , conjugating boundary monomorphisms, we may therefore assume that

y = s and we have F̃ = 〈F, x, β ′〉.
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4.7.2 The case where F̃ is not freely decomposable modulo F

In order to be able to say more about F̃ we pass to a quotient of FR(S). In

a strict quotient π : FR(S) → FR(S′), the restriction π| eF is injective but the image

π(F̃ ) will have a nontrivial induced cyclic splitting modulo F . We will identify F̃

with its image in FR(S′). The author wishes to acknowledge that many ideas in this

section, in particular Lemma 4.7.10 as well as its effect on the first Betti number

come from the proof of Proposition 4.3 of [52], i.e. the construction of the so-called

cyclic analysis lattice.

Convention 4.7.4. We will first consider the case where where the JSJ of FR(S) has

one vertex and one edge. Hence from now until Section 4.7.2 FR(S) will be assumed

to have a JSJ with one edge and one vertex.

Lemma 4.7.5. Let π : FR(S) → FR(S′) be a strict quotient. Then there are no cyclic

splittings of FR(S) modulo F̃ .

Proof. Suppose towards a contradiction that was not the case. Then we can obtain

a cyclic splitting of FR(S′)

A ∗C B or CAC′

r
��

such that F̃ ≤ A. π is surjective. If FR(S′) split as an amalgam then we would have

π(y)−1βπ(y) = β (4.20)

where β and lie in A, and π(y) must not lie in A. If B is abelian of rank 3 then

A = F and we must have that F̃ = F . If B is abelian of rank 2 then we will consider

this splitting as an HNN extension and tackle it in the next case. We can therefore
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assume that B is nonabelian and by malnormality of the centralizer of C in both

factors we see that (4.20) is impossible.

Suppose now that FR(S′) split as an HNN extension then y must have exponent

sum 1 in the stable letter r. In particular, by Britton’s lemma we see that β and β ′

must be conjugate into C and C ′, that A = FR(S′) ∩ 〈F, π(x), π(y)〉 must be equal to

F̃ and so that that conjugating boundary monomorphisms we can bring π(y) to r,

contradicting the fact that π is a proper surjection.

Corollary 4.7.6. Any cyclic splitting of FR(S′) induces a cyclic splitting of F̃ .

Corollary 4.7.7. If F̃ is freely indecomposable modulo F , then so must be FR(S′).

Definition 4.7.8. Let e be an edge in the cyclic JSJ splitting of F̃ modulo F . We

say that e is visible in a one edge splitting D of FR(S′) if the edge group associated

to e is conjugate into the edge group of D.

Definition 4.7.9. We will call the conjugacy classes of a boundary subgroup bound-

ary an edge class.

Controlling induced splittings

The proofs in this section are very technical. Their goal is to obtain Corollary

4.7.14. Using this corollary we will be able to apply the following Lemma:

Lemma 4.7.10. If FR(S′) has a one edge cyclic D splitting and if F̃ has an induced

one edge cyclic splitting D eF , then FR(S′) can be obtained from F̃ by adding an element

n
√
η: an nth root of the generator η of an edge group of D eF .

Proof. Consider the action of FR(S′) and F̃ on the Bass-Serre tree T corresponding

to the splitting D. Abusing notation we also use y to denote the image of y in FR(S′).
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We have hyperbolic elements β, β ′ ∈ F̃ such that βy = β ′. This means that

yAxis(β ′) = Axis(β). Which means that there is are edges e′, e ∈ Axis(β ′),Axis(β)

respectively such that ye′ = e. On the other hand Axis(β),Axis(β ′) ⊂ T (F̃ ), the

minimal F̃−invariant subtree.

We also have that D eF has only one edge, which means that F̃ is transitive on

the set of edges in T (F̃ ). Let g ∈ F̃ be such that ge = e′. Then we have that

yg ∈ stab eF (e). Let stabFR(S′)
(e) ∩ F̃ = 〈η〉, then we have that 〈η, yg〉 ≤ stabFR(S′)

(e)

which is cyclic, so 〈η, yg〉 = 〈 n
√
η〉. By F̃ -transitivity on the edges of T (F̃ ), stab eF (e)

for each e ∈ T (F̃ ) are conjugate in F̃ so the result follows.

It should be noted that the many ideas from the proof of Proposition 4.3 of [52]

are used. We now prove the lemmas.

Lemma 4.7.11. Let F be a free group and let µ, µ′ ∈ F be two conjugate elements.

Let K = 〈µ, µ′〉 ≤ F be noncyclic and let γ ∈ K be some element that is conjugate

to µ in F . Then γ must be conjugate to either µ or µ′ in K.

Proof. If H is cyclic the result follows. Fix a basis of F so that µ is cyclically

reduced. Suppose towards a contradiction that the result did not hold. Let Γ(H) be

the Stallings graph over F for H with basepoint v (see [23],[54]). Let µ′ = f−1µf .

Then Γ(H) is obtained by connecting two loops labelled µ by a path labelled f and

folding.

Topologically, the resulting folded graph will always composed of two vertices

and three arcs α, β, I. Since the graph must contain two cycles, we have two topo-

logical possibilities: either the graph can be broken into two connected components

by removal of an arc; in which case we say it is separable; or there is no such arc.
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We first consider the separable case. We have that the two cycles c1, c2, as point

sets, are contained in the arcs α, β. Let u ∈ Γ(H) be the basepoint, w.l.o.g. it

is contained in the arc α. Consider the covering space Γ̃(H) corresponding to the

subgroup 〈γ〉. Γ̃(H) is a union of arcs that map either on to α, β or I. The core of

Γ̃(H) must be a cycle c, moreover the cyclic word (in the basis of F ) read along this

arc is reduced in fact it is the cyclic word of γ. If c consists only of an arc of type α

or β then we see that γ is conjugate to either µ or µ′ in H . On the other hand if c

contains an I-type arc, then it’s length must automatically exceed that of µ, which

is impossible since µ and γ are conjugate and hence must have equal cyclic words.

We now consider the non separating case. Γ(H) consists of three arcs, moreover

up to changing basis of F , we can arrange so that the path labelled µ in Γ(H)

starting at v is obtained by traversing I and then α (in particular the basepoint v

is a topological vertex of Γ(H)). Since we are assuming that µ is cyclically reduced

and not a proper power we have that the label of α is different from the label of I.

We moreover see that, up to conjugating µ′ by µn for some n that (µ′)±1 is the label

read, starting at the basepoint v, around the cycle going first through the arc I and

then through the arc β. We consider I, α, β as subwords so, abusing notation we

write µ′ = (Iβ)±1 and µ = Iα.

We have |α| = |β|. Again we take the covering space Γ̃(H) corresponding to the

subgroup 〈γ〉, and look at the core c. c is a cycle composed of arcs that map onto

α, β, I. If c contains an arc of type I, then it must contain an arc of type either α

or β. Since c has the same length as µ, c can only consist of those two arcs, which

120



immediately implies that γ is conjugate to either µ or µ′ in H . It follows that c can

only consist of arcs that map onto α and β.

If |I| ≤ |µ|/2 then |c| ≥ |α| + |β| > |µ|, which is impossible.

Suppose finally that |I| ≥ |µ|/2. We first make an observation about cycli-

cally reduced words over free groups. Let w, w̃ be cyclically reduced words that are

conjugate over the alphabet X±1 then the biinfinite words

. . . www . . .

. . . w̃w̃w̃ . . .

viewed as maps Z → X±1 differ only by precomposition by some translation n 7→ n+a

with a < |w|. This means that when considering the biinfinite words given by µ and

µ′ the subwords labelling the segment I must overlap, hence they are coherently

oriented. We must therefore have that µ′ is the label of the path starting at v, going

first through I and then through β. We have that γ labels a path (α−1β)n for some

nonzero integer n. w.l.o.g. γ = (α−1β)n with n > 0. Since γ and µ are conjugate we

must have that up to a shift the biinfinite words

. . . α−1βα−1βα−1β . . .

. . . IαIαIα

are equal. There can be no overlap between the α and α−1 segments, on one hand

this forces |β| = |I| which implies |I| = |µ|/2. We must then have I = α−1 implying

triviality of µ–contradiction. Having exhausted all possibilities the result follows.
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Lemma 4.7.12. If the JSJ of F̃ does not contain an abelian vertex group then we

can always find a one edged cyclic splitting of FR(S′) modulo F such that the induced

splitting of F̃ also has only one edge.

Proof. Since F̃ is 2 generated modulo F and is freely indecomposable modulo F , it

must a group of the types previously described.

If the cyclic JSJ decomposition of F̃ modulo F has only one edge and one vertex,

then there is nothing to show. We now consider the cyclic JSJ splittings modulo F

with two edges.

If the splitting of F̃ has two edges and one vertex then, as we saw, either both

edge classes are conjugate into F and they are conjugacy separated in F or only one

of the edge classes lies in F . In both these cases only one of the edges can be visible

in a one edged splitting of FR(S′).

If the splitting of F̃ has two edges we have possibilities for F̃ = G(A):

2-2-A 2-2-B 2-2-C

u• e1
•v
e2

u• e1
v• e2

•w v•
e2

e1
•u

In case 2-2-C either the edges classes associated to e1 and e2 are both conjugate into

F and are conjugacy separated or only one of them is conjugate into F , either way

we can always find a one edge splitting of FR(S′) such that only one edge is visible.

By what has been proved so far in Theorem 4.1.6, we know that case 2-2-A

is either an amalgam of F̃ 1 ≥ F and a free group H of rank 2 that splits as an

HNN extension; or Av ≥ F and Au is abelian. In the latter case there is nothing

to show. By Proposition 4.6.10 the edge classes associated to e1 and e2 are not
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conjugate in F̃ , but if both edges were visible in a one edged splitting of FR(S′) then

the corresponding edge classes would be conjugate in FR(S′). It follows that we could

find a map φ : F̃ → F that is injective on H , and such that the corresponding

boundary subgroups were sent to conjugates. By Lemma 3.1.10 and Lemma 4.7.11

we get that the generators of the boundary subgroups are conjugate in φ(H), and

hence also in H and hence in FR(S′)–contradiction.

In case 2-2-B we can assume that Aw is abelian so there is nothing to show.

The splittings with three edges that occur are:

2-3-A 2-3-B 2-3-C

u• e1

e2

•v e3 u• e1

e2

•v e3 •w u• e1

e2

e3

•v

2-3-D

u• e1
•v
e2

e3 •w

In cases 2-3-B and 2-3-D, one of the vertex groups, say Aw, must be abelian so

there is nothing to show.

Consider case 2-3-A. Then by the classification and Lemma 3.1.10, the subgroup

•v e3 is free of rank 2 and Av is generated by the boundary subgroups associated to

e3. Moreover by Proposition 4.6.21 we know that there must be at least two distinct

edge classes. We moreover know that Au = F . Consider first the case where the edge

class associated to e1 (or symmetrically e2) is conjugate to the edge class associated

to e3. Since the edges e1 and e2 are never both visible in a one-edged splitting of

FR(S′), the only possible obstruction is that, say, both e1 and e3 are visible in a

one edged splitting of FR(S′). If the cyclic JSJ splitting D of FR(S′) modulo F has
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more than one edge then by Corollary 4.7.6 we can get another splitting of FR(S′)

such that only e2 is visible. D must therefore have only one edge, and this edge

must be conjugate into F . The only possibilities by Lemma 4.7.3 and our previous

classification is that FR(S′) is of the form F ∗uH where H is either free of rank 2, free

abelian of rank 2 or 3, or a rank 1 extension of a centralizer with only one edge class.

We look at possible induced splittings. Since the edge e2 is not visible the subgroup

u• e2 •v must be elliptic. Since it contains F it must be a subgroup of F which

is impossible.

In case 2-3-C either there are only two edge classes, and we find ourselves as in

case of 2-3-A or all edge classes are conjugate into F and F−conjugacy separated, so

that only one edge will be visible in a 1 edge splitting of FR(S′). We have exhausted

all the possibilities and the result follows.

We now tackle the remaining case.

Lemma 4.7.13. Suppose that the JSJ of F̃ has an abelian vertex group then we can

find a one edge splitting of FR(S′) modulo F such that the induced splitting of F̃ also

has one edge.

Proof. In this case the possible JSJs of FR(S) are 2-2-A, 2-2-B, 2-3-B, and 2-3-D of

Lemma 4.7.12. Moreover obstructions only occur when the JSJ of FR(S′) has only one

edge class. In particular, if the edge class is conjugate into F , then the possibilities

for FR(S′) are

F ∗u A, F ∗u H, or F ∗u H ∗u A
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where H is free of rank 2 and A is free abelian of rank 2 or 3. We note moreover

that none of the groups under consideration can be embedded into F∗H since this

group has no noncyclic abelian subgroups.

In case 2-2-A, Corollary 4.7.2 applies and we have that the edge groups associ-

ated to e1 and e2 cannot be conjugate.

In case 2-3-B, the vertex group Au = F . The edge classes associated to e1 and

e2 are either equal, in which case after sliding we reduce to case 2-3-D; or they are

distinct in which case the edges cannot be simultaneously visible in a one edged

splitting of FR(S′). The only obstruction is that, say, the edges e1 and e3 are visible

in a one edged splitting of FR(S′), then we must have that the JSJ of FR(S′) has only

one edge class which forces (as in case 2-3-A of the previous proof) F ∗Ae2
Au to lie

in F .

In case 2-3-D we can assume that Au = F . Moreover the subgroup •v e2 is free

of rank 2. By Proposition 4.6.11 there must be at least two edge classes associated to

e1, e2, e3 in F̃ . By Lemmas 3.1.10 and 4.7.11 arguing as in case 2-3-A in the previous

proof, it follows that all three edges cannot be visible in a one edged splitting of

FR(S′).

Suppose first that the edges e2 and e3 were visible in a one edged splitting of

FR(S′), then we would have that F ∗Ae1
Av is elliptic in FR(S′). If one of the vertex

groups of the JSJ of FR(S′) is F itself, then we immediately get a contradiction. If

the JSJ of FR(S′) has two vertices and one edge, then it must be of the form

F̃ 1 ∗q H
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where F̃ 1 is rank 1 extension of a centralizer of F and H is free, but to get the

desired induced splitting, we must have that Aw, which is free abelian of rank 2, is a

subgroup of a conjugate of H which is impossible. The remaining possibility is that

FR(S′) has one edge and one vertex, but to get the induced splitting of F̃ in question

we would need the one of the boundary subgroups of FR(S′) to lie in a non cyclic free

abelian subgroup, which by Lemma 4.7.3, forces FR(S′) = F ∗uA with A free abelian,

and we can easily derive a contradiction.

Suppose now that only the edges e1 and e2 were visible in a one edge splitting

of FR(S′), then by earlier arguments we must have that the edge classes associated

to e1 and e2 coincide in F̃ . Then the edge class of the JSJ of FR(S′) is conjugate into

F . We also have that the subgroup Av ∗Ae3
Aw is elliptic. This is clearly impossible

unless FR(S′) = F ∗u H ∗u A with H free and A abelian. In which case we have

that Av ∗Ae3
Aw is conjugate into H ∗u A, which is only possible if if u is conjugate

to Ae3 in FR(S′). This means that boundary subgroups associated to e1, e2 and e3

are all conjugate in FR(S′), using Lemma 4.7.11 and some earlier arguments we can

show that the boundary subgroups associated to e1, e2 and e3 are conjugate in F̃

–contradiction.

The remaining possibility is that only the edges e1 and e3 are visible in the one

edged splitting. Since •v e2 is free of rank 2, we can reduce this to case 2-2-B.

We now tackle case 2-2-B. We can assume that Au = F,Av is free of rank 2, and

Aw is free abelian of rank 2. We moreover have two cases the separated case, where

F̃ has two edge classes; and the unseparated case, where F̃ has one edge class.
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We first consider the unseparated subcase. Since the edge class is conjugate into

F , any one edged splitting of FR(S′) must have F as a vertex group. The possibilities

for FR(S′) are

F ∗u A or F ∗u H ∗u A

where A is abelian and H is free. By basic Bass-Serre theory we see that F̃ cannot be

embedded into F∗uA in such a way that both edges are visible. If FR(S′) = F∗uH∗uA,

then either Av is conjugate into F or into H . If Av is conjugate into F , then it must

be embedded into some subgroup of faHa−1f−1 with f ∈ F and a ∈ A, then we

can collapse the splitting of FR(S′) to (F ∗u A) ∗u H and we get a splitting of FR(S′)

modulo F̃ – contradiction. We therefore have that Av is conjugable into H and Aw

is conjugable into A, it follows that the splitting of F̃ induced by (F ∗u A) ∗u H has

only one edge.

We now consider the separated case. There are only two problematic cases for

FR(S′) = π1(G(X))

G(X) = u• e // •v

G(X) = •v u•e1oo e2 // •w

Where Xu = F,Xv is noncyclic abelian and Xw is free of rank 2. Moreover all edge

groups are conjugate. Consider first the case where FR(S′) has two edges, and consider

the induced splitting of F̃ in FR(S′). If we collapse the edge e2 then if the splitting of

F̃ in this new induced splitting has only one edge then we are done, otherwise the

induced splitting of F̃ still has two edges.
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We can therefore reduce to the case where FR(S′) is the fundamental group of

G(X) = u• e // •v (4.21)

with Xu non abelian and Xv noncyclic abelian. We also have F̃ = F ∗pH ∗qA which

gives the graph of groups

G(Y ) = r•
f1

// s•
f2

// •t (4.22)

and this must be the splitting induced from F̃ ≤ FR(S′) with the splitting (4.21).

There is only one way to embed F̃ into FR(S′), the embedding is

F̃ ≈ F ∗p [a(H ∗gp
gA)a−1] (4.23)

where a ∈ Xv, g ∈ F = Xu, A ≤ Xv, and H ≤ F . Moreover, we have that p, gp ∈ H

but g 6∈ H. It follows that if we construct the induced G(X)-graph B we have

(F, u)•
(1,e,1)

// •(〈p〉, v)
(a,e−1,1)

// •(H, u)
(g,e,1)

// •(A, v) (4.24)

in particular the edge f1 has length 2 and the edge f2 has length 1. Consider the

action of F̃ on the Bass-Serre tree T corresponding to the splitting (4.21) of FR(S′).

We have elements β, β ′ of F̃ that are conjugate via the image t of the stable

letter t from the splittings (4.18),(4.19) in FR(S′). In particular we have tAxis(β ′) =

Axis(β). If t sends an edge ǫ′ ∈ Axis(β ′) to an edge ǫ ∈ Axis(β) such that there is

some h ∈ F̃ such that hǫ′ = ǫ then as in the proof Lemma 4.7.10 we get that FR(S′)

is obtained from F̃ by adjoining a root to generator of an edge group, which here

implies F̃ = FR(S′), and the result follows.
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Otherwise let T ′ = T (F̃ ) ≤ T be the minimal F̃ -invariant subtree. Looking at

(4.24) we see that there are three F̃ -orbits E1, E2, and E3 of edges in T ′∩ (Axis(β)∪

Axis(β ′)) we assume that E2 corresponds to the edge f2 in (4.22). Let S1, S2, S3 ≤ F̃

each stabilize an edge of in E1, E2, E3 resp.

Consider an edge ǫ′ in Axis(β ′)∩E2 that is fixed by some conjugate of the edge

group Ef2 ≤ F̃ of f2 in the splitting (4.22). Then since tAxis(β ′) = Axis(β). We have

that tS2t
−1 fixes some edge say in ǫ ∈ Axis(β) ∩ S1. The possibilities are limited

and it follows that by conjugating boundary monomorphisms, i.e. replacing t by

f1tf2; f1, f2 ∈ F̃ , we can arrange so that t = aga−1, where a, g are as in (4.23). This

means that t interchanges edges in E1 and E2. It follows that t must map edges in

E3 to edges in E3, i.e. there is some ǫ ∈ E3 and some h ∈ F̃ such that hǫ = tǫ and

the result follows.

We combine these two parts:

Corollary 4.7.14. We can find a one edge splitting of FR(S′) such that the induced

splitting of F̃ also has one edge.

Controlling the Strict Quotients

Proposition 4.7.15. If the JSJ of FR(S) has only one edge and one vertex group F̃

that is not freely decomposable modulo F and the JSJ of F̃ has more than one edge

and one vertex group, then FR(S) is an extension of a centralizer of F̃ .

Proof. Let F < F̃ ′ be the vertex group of the JSJ of F̃ that contains F . Suppose

first that F̃ ′ = F or was an extension of a centralizer and that the root n
√
η obtained

in Lemma 4.7.10 was added to an edge group 〈η〉 lying in F̃ . η ∈ F then n
√
η = η and

FR(S′) = F̃ so the result follows. If F̃ ′ was an extension of a centralizer F ∗uAb(u, s)
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then by our classification since either η ∈ F or F̃ ′ = 〈F, η〉 which means that η±1 =

f1sf2 with fi ∈ F − 〈u〉 we have that there is no F−morphisms FR(S) → F that

sends η to a proper power in F so again n
√
η = η

Otherwise we see that FR(S′) is obtained from F̃ by adding elements to its vertex

groups. Consider the graph of groups obtained from the JSJ of F̃ and adding these

elements to the vertex groups. This gives a cyclic splitting D′ of FR(S′) with the same

underlying graph as the JSJ of FR(S). It follows from our classification so far that

we can in fact collapse D′ to a one edge splitting so that the induced splitting of F̃

either has an edge group that lies in F or in F̃ in the way described in the previous

paragraph.

It follows that FR(S′) = F̃ so FR(S) is an extension of a centralizer of F̃ .

Definition 4.7.16. We say that two elements in x, y ∈ G are pseudo-conjugate if

the difference [x] − [y] of their images in the abelianization of G lies in the torsion

subgroup.

Proposition 4.7.17. If the JSJ of FR(S) has only one edge and one vertex group F̃

which is freely indecomposable and π : FR(S) → FR(S′) is a proper strict quotient then

b1(FR(S′)) < b1(FR(S)).

Proof. If F̃ and FR(S) satisfied the hypotheses of Proposition 4.7.15 then the result

follows immediately. We consider simultaneously the cases where the JSJ of FR(S)

has one or two edges (i.e. (4.18) or (4.19)) replacing F̃ by α
αF̃t 33 if need be.

Denote by Ab(F̃ ) the abelianization of F̃ . We see that FR(S′) is obtained from

F̃ by adding a the root of an element it follows that b1(FR(S′)) ≤ b1(F̃ ). We consider

two the elements β, β ′ given in (4.18) and (4.19) and consider two cases.

130



Suppose first that β and β ′ are pseudo-conjugate in F̃ , then we see that

b1(FR(S)) > b1(F̃ ) by abelianizing a relative presentation. The result now follows.

Suppose now that β and β ′ are not pseudo-conjugate in F̃ . Then in particular

the element [β]− [β ′] does not lie in the torsion subgroup. Ab(FR(S′)) can be obtained

from Ab(F̃ ) by first adding the root n
√
η of some element, which does not change b1

and then identifying the images [β] and [β ′] which sends [β] − [β ′] to zero, thus

dropping the rank of the torsion free summand. The result now follows.

The two edge case

Proposition 4.7.18. If the JSJ of FR(S) has two edges and one vertex then F̃ must

be be freely decomposable modulo F .

Proof. Suppose towards a contradiction that F̃ was freely indecomposable modulo

F . Let FR(S′) be the first term in a strict resolution of FR(S) where F̃ splits. Then

the elements β, β ′ must be hyperbolic elements of FR(S′). Consider first the case

where the JSJ of F̃ has only one edge. Then the corresponding edge group must

lie in F and this splitting of F̃ must be induced by a one edged splitting of FR(S′)

which means that Lemma 4.7.10 applies, and in fact we must have that β and β ′ are

conjugate in F̃ , contradicting the choice of JSJ.

Suppose now that the JSJ of F̃ had two edges, then the possibilities are

F H ; F H

Suppose first that FR(S′) split as an HNN extension with stable letter z and that the

induced splitting of F̃ also had one edge. The one of the corresponding edge group
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either lies in F , which is impossible, or we are adding a proper root to elements of

the vertex group H of F̃ .

In this latter case, we have that β must have exponent sum 0 in z, but that β ′,

because F̃ = 〈F, α′, β ′〉 has an induced splitting as an HNN extension, must have

exponent sum 1 in z, which is impossible since they are conjugate in FR(S′).

If FR(S′) splits as an amalgam, and the induced splitting of F̃ has only one edge,

then F̃ must also split as an amalgam and the corresponding edge group must lie in

F .

If the induced splitting of F̃ has two edges, then either conjugation my t, the

image of the stable letter t, permutes the edge classes or fixes them. First note that

the edge classes must be conjugacy separated in F̃ . If conjugation by t fixes them,

we can again argue that t contributes a root of an edge group lying in F , which

implies that 〈F̃ , t〉 = F̃ .

Otherwise t permutes the edge classes which is impossible by Lemma 4.7.11, or

by the fact that both have corresponding subgroups lying in F .

4.7.3 The case where F̃ is freely decomposable modulo F

Proposition 4.7.19. Suppose that the JSJ of FR(S) has only one vertex group F̃

and suppose that F̃ is freely decomposable modulo F . Then the vertex group F̃ can

only be F ∗ 〈z〉

Proof. By Lemmas 4.7.3 and 4.7.1 and Theorem 4.1.6 (A). F̃ must be either F ∗

〈z〉, F ∗u Ab(u, r) ∗ 〈w〉, F ∗ 〈z, w〉. If F̃ = F ∗ 〈z, w〉 then Lemmas 4.7.3 and 4.7.1

would imply that FR(S) is freely decomposable. Applying Corollary 4.3.25 to the
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two edged case excludes F ∗u Ab(u, z) ∗ 〈w〉 as a vertex group. We now prove that

F ∗u Ab(u, z) ∗ 〈w〉 cannot be a vertex group in a one edged splitting.

Suppose towards a contradiction that F ∗u Ab(u, z) ∗ 〈w〉 was the vertex group

of a one edged, one vertex JSJ of FR(S). By Lemma 4.7.3 we may assume that F̃ is

generated by x and some element β ′. We know moreover that the exponent sums of

z and w of words in F ∪ {z, w}±1 representing x, β, β ′ do not depend on the choice

of word.

β ∈ 〈F, x〉 which means that writing β as a word in F ∪ {x}±1 gives equalities

of exponent sums σz(β) = σx(β) ∗ σz(x) and σw(β) = σx(β) ∗ σw(x). Which means

that we have an equality of vectors:

(σu(β), σw(β)) = σx(β)(σz(x), σw(x)) (4.25)

i.e. they are linearly dependent. Now b1((F ∗u Ab(u, z) ∗ 〈w〉) = N + 2 which means

that if b1(FR(S)) ≤ N+2 then β and β ′ must lie in the same one dimensional subgroup

in the abelianization of F ∪ {x}±1, which means that

l(σz(β), σw(β)) = k(σz(β
′), σw(β ′))

for some l, k ∈ Z, but this and (4.25) imply that x and β ′ cannot generate F̃ modulo

F –contradiction.

Lemma 4.7.20. Suppose the JSJ of FR(S) has one vertex group F̃ that is freely

indecomposable, but does not satisfy the hypotheses of Proposition 4.7.15. Then the
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image of a strict epimorphism FR(S) → FR(S′) must be

FR(S′) = δ
δ′F̃

′s
// (4.26)

where F̃ ′ = F ∗ 〈r〉. Moreover F̃ must be of the form

F̃ = γ
γ′F̃1t .. (4.27)

where F̃1 ≈ F ∗ 〈z〉 ≤ F̃ ′.

Proof. By the hypotheses, we must have that the JSJ of F̃ has one vertex group F̃1

and one edge. By Corollary 4.7.7 FR(S′) must be freely indecomposable.

By Proposition 4.7.17, b1(FR(S′)) ≤ N + 1 where N is the rank of F . If

b1(FR(S′)) = N then by Proposition 4.2.8 FR(S′) = F which would force F̃ = F

contradicting our hypotheses.

Let F̃ ≤ F̃ ′ be the vertex group of the JSJ of FR(S′) that contains F . We have

that F̃1 ≤ F̃ ′. If F̃ ′ is freely indecomposable then we could take a strict quotient

of FR(S′), apply Proposition 4.7.17 we would get that the image of this quotient is

F , which means that F̃ ′ ≤ F . It would then follow that F̃1 = F and F̃ would have

to be a rank 1 free extension of a centralizer of F . But then F̃ would satisfy the

hypotheses of Proposition 4.7.15, which is a contradiction.

It therefore follows that F̃ ′ must be freely decomposable modulo F . Looking at

the possibilities given in Proposition 4.7.19 and recalling that b1(FR(S′)) ≤ N + 1 we

have that the only possibility of F̃ ′ is F̃ ′ ≈ F ∗ 〈r〉. Since F̃1 is a subgroup of F̃ ′ the

only possibility is F̃1 ≈ F ∗ 〈z〉.
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Proposition 4.7.21. If the JSJ of FR(S) has only one vertex group F̃ , then b1(F̃ ) =

N + 1.

Proof. In light of Proposition 4.7.19 and Lemma 4.7.20 we need only verify the case

in Lemma 4.7.20.

Since b1(FR(S′)) ≤ N+1 we must have that the elements δ, δ′ given in (4.26). By

Lemma 4.7.10, FR(S′) is obtained from F̃ by the adjunction of roots of γ and γ given

in (4.27). F̃1 is a free subgroup of the free group F̃ ′, obtained by adjoining roots. On

one hand both F̃ ′ and F̃1 have the same rank. On the other hand, by Theorem 3.1.4,

Rank(F̃ ′) = Rank(F̃1) only if γ, γ′ are primitive elements of F̃ ′. Now consider the

map of free abelian groups j : A → A′ obtained by adding a proper root to one

basis element and then adding a proper root to another basis element. Suppose that

b1(F̃ ) = N + 2. Then we must have that γ′, γ are pseudo conjugate, but if that were

the case, since the abelianization of F̃ embeds naturally into the abelianization of

F̃1 we must have that δ, δ′ are also pseudo conjugate, which is a contradiction.

Collecting all these results gives:

Corollary 4.7.22. If the JSJ of FR(S) has one vertex group, then all the possibilities

for FR(S) are given by item (B) of Theorem 4.1.6
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Part II

Complexity
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CHAPTER 5
Problems, algorithms and complexity

We now briefly give notions of complexity theory that will be used in this part.

We refer the reader to [12] for a more comprehensive treatment.

Formally, a decision problem P is a mapping from a usually infinite set of inputs

to a set of outputs {“yes”,“no”} corresponding to a question. For example P(x, y)

might be “is x greater than y?” and we would have P(3, 2) =“yes”. An algorithm

A is a procedure which takes an input and after finitely many steps produces an

output and terminates. The field of complexity theory is devoted to how difficult a

decision problem is to solve. One measure is time complexity, or for this discussion

simply complexity.

The worst case complexity of an algorithm A is a function cA : N → N. Noting

that the input of a problem or algorithm is always a string of symbols over a fixed

alphabet we define cA(n) = “The maximum number, over all inputs i of length ≤ n,

of basic steps needed by A to terminate on the input i.”

We now define big O notation, which is used to give upper bounds for complexity.

Given two functions f : N → N and g : N → N we say that f is O(g) if and only if

there is a positive C and k ∈ N such that for all n > k we have such that

f(n) ≤ Cg(n)
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For a given function f : N → N we say that an algorithm runs in time O(f(n)) if

cA(n) is O(f(n)). In particular we will say that an algorithm A runs in polynomial

time if for some m ∈ N we have cA(n) is = O(nm).

We say a problem P has complexity bounded above by f : N → N if there

is an algorithm solving P that runs in time O(f). We say that a problem P has

complexity bounded below by f : N → N if for every algorithm A solving P we have

f(n) is O(cA(n)). This gives us an intrinsic definition of the complexity of a decision

problem. It goes without saying that the complexity of a problem gives us a lot of

information about how feasible it is in real life to solve it.

We say that a problem P is in NP if there is a polynomial time algorithm A

and a a fixed m ∈ N such that for every input i, P(i) =“yes” if and only if there

exists certificate c(i) of length less than
(
length(i)

)m
such that A(c(i)) =“yes”. NP

stands for “non-deterministic polynomial”. The significance of this complexity class

comes from a result of Cook [11] in which he gives a problem P in NP such that for

any other problem P ′ that is in NP there exists a polynomial time algorithm AP,P ′

such that

P ′(i) = P(AP,P ′(i))

In other words he gave a problem that was in NP that was, up to polynomial time

reduction, at least as hard as any other problem in NP. Such a problem is said

to be NP-complete . NP-complete is therefore an upper and lower bound for the

complexity of a problem which means that it is as hard as possible within the class

NP.
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Many examples of NP-complete problems were soon discovered afterwards, we

refer the reader to [20] for additional details and examples. These problems are

particularly tantalizing because showing that an NP-complete problem either has a

polynomial upper bound or has a superpolynomial lower bound for complexity guar-

antees instant fame, since it would answer the question “does polynomial coincide

with NP?” which at the time of writing is the most outstanding open problem in

computer science.
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CHAPTER 6
The solvability problem for quadratic equations over free groups is

NP-complete

We will now prove (see Theorems 6.2.11 and 6.1.2) that deciding if a quadratic

equations over a free group has a solution is an NP-complete problem. Our proofs

are geometric, relying on the topological results of [45] and disc diagram techniques.

The content of this chapter is based on the published article [26] and is reproduced

here with kind permission of Springer Science and Business Media.

6.1 The Solvability Problem for Quadratic equations over free groups is
in NP

Let A be a finite alphabet and let A−1 be a set of formal inverses of elements of

A. We denote by (A ∪ A−1)∗ the free monoid with involution with basis A and for

w ∈ (A∪A−1)∗, we denote by w−1 its involution. We denote by F (A) the free group

on A.

6.1.1 Standard form

A quadratic equation E with variables {xi, yi, zj} and non-trivial coefficients

{wi, d} ∈ F (A) is said to be in standard form if its coefficients are expressed as

freely and cyclically reduced words in A∗ and E has either the form:

(
g∏

i=1

[xi, yi]

)(
m−1∏

j=1

z−1
j wjzj

)
d = 1 or

(
g∏

i=1

[xi, yi]

)
d = 1 (6.1)
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where [x, y] = x−1y−1xy, in which case we say it is orientable or it has the form

(
g∏

i=1

x2
i

)(
m−1∏

j=1

z−1
j wjzj

)
d = 1 or

(
g∏

i=1

x2
i

)
d = 1 (6.2)

in which case we say it is non-orientable. The genus of a quadratic equation is the

number g in (6.1) and (6.2) and m is the number of coefficients. If g = 0 then we will

define E to be orientable. If E is a quadratic equation we define its reduced Euler

characteristic, χ as follows:

χ(E) =





2 − 2g if E is orientable

2 − g if E is not orientable

We finally define the length of a quadratic equation E to be

length(E) = |w1| + . . .+ |wn−1| + d+ 2(number of variables)

It is a well known fact that an arbitrary quadratic equation over a free group can be

brought to a standard form in time polynomial in its length.

6.1.2 Ol’shanskii’s result

The following is proved in [45].

Theorem 6.1.1. Let E be a quadratic equation over F (A) in standard form. If

g = 0, m = 2, or E is not orientable and g = 1, m = 1 then we set N = 1. Otherwise

we set N = 3(m− χ(E)). E has a solution if and only if for some n ≤ N ;

(i) there is a set P = {p1, . . . pn} of variables and a collection of m discs

D1, . . . , Dm such that,
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(ii) the boundaries of these discs are circular 1-complexes with directed and labeled

edges such that each edge has a label in P and each pj ∈ P occurs exactly twice

in the union of boundaries;

(iii) if we glue the discs together by edges with the same label, respecting the edge

orientations, then we will have a collection Σ0, . . . ,Σl of closed surfaces and

the following inequalities: if E is orientable then each Σi is orientable and

( l∑

i=0

χ(Σi)

)
− 2l ≥ χ(E)

if E is non-orientable either at least one Σi is non-orientable and

( l∑

i=0

χ(Σi)

)
− 2l ≥ χ(E)

or, each Σi is orientable and

( l∑

i=0

χ(Σi)

)
− 2l ≥ χ(E) + 2

and

(iv) there is a mapping ψ : P → (A ∪A−1)∗ such that upon substitution, the coeffi-

cients w1, . . . , wm−1 and d can be read without cancellations around the bound-

aries of D1, . . . , Dm−1 and Dm, respectively; and finally that

(v) if E is orientable the discs D1, . . . , Dm can be oriented so that wi is read clock-

wise around ∂Di and d is read clockwise around ∂Dm, moreover all these ori-

entations must be compatible with the gluings.

Proof. It is shown in Sections 2.4 [45] that the solvability of a quadratic equation

over F (A) coincides with the existence of a diagram ∆ over F (A) on the appropriate
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surface Σ with boundary. This diagram may not be simple, so via surgeries we

produce from Σ a finite collection of surfaces Σ1, . . . ,Σl with induced simple diagrams

∆1, . . .∆l which we can recombine to get back Σ and ∆. So existence of a diagram

∆ on Σ is equivalent to existence of a collection of simple diagrams ∆i on surfaces

Σi such that the inequalities involving Euler characteristics given in the statement

of the Theorem are satisfied.

In Section 2.3 of [45] the bounds on n are proved. It is also shown in that section

that if one can glue discs together as described in the statement of the Theorem with

the condition on the boundaries , then there exist simple diagrams ∆i on surfaces

Σi.

6.1.3 The certificate

Theorem 6.1.1 enables us to construct a good certificate.

Theorem 6.1.2. There exists a polynomial time algorithm A such that a quadratic

equation E over F (A) in standard form has a solution if and only if there is a

certificate c of size bounded by

2(|w1| + . . .+ |wm − 1| + |d| + 3(2g +m)) ≤ 8 ∗ length(E)

such that A answers “yes” on the input (E, c).

Proof. The certificate will consist of the following:

1. A collection of variables P = {p1, . . . , pn} where n ≤ max{3(2g +m), 1}

2. A collection of substitutions ψ = {pi 7→ ai, i = 1 . . . n} where ai ∈ (A ∪A−1)∗.
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3. A collection of words in P ∗

C =





C1 = pǫ1111 . . . p
ǫ1j(l)

1l

. . .

Cm = pǫm1
m1 . . . p

ǫmj(m)

mj(m)

with pij ∈ P, ǫij ∈ {−1, 1} and each pi ∈ P occurring exactly twice.

The C ′
is represent the labels of the boundaries of the discs D1, . . .Dl. It follows that

checking conditions (i) and (ii) of Theorem 6.1.1 can be done quickly, moreover we

see that the size of C is at most 2n ≤ 6(2g +m).

ψ extends to a monoid homomorphism ψ : (P ∪ P−1)∗ → (A ∪ A−1)∗. (iv) can

also be verified quickly since for i = 1, . . .m − 1 we just need to check that some

cyclic permutation of ψ(Ci) is equal to wi and some cyclic permutation of ψ(Cm) is

equal do d. Moreover, since the equality is graphical we have that

|a1| + . . . |an| ≤ |w1| + . . .+ |wm| + |d|

Therefore the size of the certificate is bounded as advertised. All that is left is

to determine the topology of the glued together discs. We describe the algorithm

without too much detail.

Step 1: Built a forest of discs: We make a graph Γ such that each vertex vi ∈ V (Γ)

corresponds the disc Di and each edge ej ∈ E(Γ) corresponds to the variable pj ∈ P .

The edge ek goes from vi to vj if and only if the variable pk occurs in the boundary

of Di and in the boundary of Dj or if i = j then there are two different occurrences

of the variable pk. We construct a spanning forest F . This enables us to count the

number of connected components Σ0, . . . ,Σl.
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Step 2: Determine orientability: For each maximal tree Tr ⊂ F we get a “tree of

discs” by gluing together only the pairs of edges whose labels correspond to elements

of E(Tr). The resulting tree of discs is a simply connected topological space that

can be embedded in the plane and we can read a cyclic word c(Tr) in P ∗ along its

boundary. The surface Σr obtained by gluing together the remaining paired edges

of the tree of discs will be orientable only if whenever p±1
j occurs in c(Tr) then p∓1

j

also occurs. We can also check (v) at this point.

Step 3: Compute Euler characteristic: The identification of the boundary of the

discs with graphs, enables us to think of the discs as polygons. If a disc Di has Ni

sides then we give each corner of Di an angle of π(Ni− 2)/Ni. Then for each tree of

discs produced in the previous step, we identify the remaining pairs of edges to get

the surfaces Σ0, . . .Σl, which now have an extra angular structure. To each Σi, we

can apply the Combinatorial Gauss-Bonnet Theorem (see Section 4 of [44]) which

states that for an angled two-complex X,

2πχ(X) =
∑

f∈X(2)

κ(f) +
∑

v∈X(0)

κ(v)

where X(2) is the set of faces and X(0) is the set of vertices. This angle assignment

gives each face f a curvature κ(f) = 0 and each vertex has curvature

κ(v) = 2π −


 ∑

c∈link(v)

∡(c)




i.e. κ(v) is 2π minus the sum of the angles that meet at v.
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With an appropriate data structure one can perform steps 1-3 (not necessarily

in sequential order) in at most quadratic time in the size of C. Once all that is done,

verifying the inequalities of (iii) is easy and we are finished.

6.2 The Solvability Problem for Quadratic equations over free groups is
NP-hard

We will present the bin packing problem which is known to be NP-complete and

show that it is equivalent to deciding if a certain type of quadratic equation has a

solution.

6.2.1 Bin Packing

Problem 6.2.1 (Bin Packing).

• INPUT: A k−tuple of positive integers (r1, . . . , rk) and positive integers B,N .

• QUESTION: Is there a partition of {1, . . . , k} into N subsets

{1, . . . , k} = S1 ⊔ . . . ⊔ SN

such that for each i = 1, . . . , N we have

∑

j∈Si

rj ≤ B (6.3)

This problem is NP-hard in the strong sense (see [20] p.226), i.e. there are NP-

hard instances of this problem when both B and the rj are bounded by a polynomial

function of k.

Let t = NB − ∑k
i=1 ri. Then by replacing (r1, . . . , rk) by the k + t-tuple

(r1, . . . , rk, . . . , 1, . . . , 1) we can assume that the inequalities (6.3) are actually equali-

ties. This modified version is still NP hard in the strong sense. We state it explicitly:
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Problem 6.2.2 (Exact Bin Packing).

• INPUT: A k−tuple of positive integers (r1, . . . , rk) and positive integers B,N .

• QUESTION: Is there a partition of {1, . . . , k} into N subsets

{1, . . . , k} = S1 ⊔ . . . ⊔ SN

such that for each i = 1, . . . , N we have

∑

j∈Si

rj = B (6.4)

The authors warmly thank Laszlo Babai for drawing their attention to this

problem in connection to tiling problems.

6.2.2 Tiling discs

Throughout this section we will consider the discs to be embedded in the Eu-

clidean plane E2 and will always read clockwise around closed curves.

Definition 6.2.3. An [a, bn]-disc is a disc as in section 6.1.2 equipped with an

orientation along whose boundary one can read the cyclic word [a, bn] in the clockwise

direction. We will always assume that n ≥ 1.

Definition 6.2.4. An [a, bn]-ribbon is a rectangular cell complex embedded in E2

obtained by attaching [a, bj ]-discs by their a-labeled edges, while respecting orienta-

tion, such that we can read [a, bn] along its boundary. The top of an [a, bn] ribbon

is the boundary subpath along which we can read the word b−n, the bottom is the

boundary subpath along which we can read the word bn.

Definition 6.2.5. Let D be a disc embedded in E2 tiled by coherently oriented

[a, bn]-discs. We define the a−pattern of D to be the graph defined as follows:
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1. In the middle of each a-labeled edge put a vertex.

2. Between any two vertices contained in the same [a, bn]-disc draw an edge.

Connected components of a−patterns are called a−tracks

Lemma 6.2.6. A disc D embedded in E2 tiled by finitely many coherently oriented

[a, bn]-discs cannot have any circular a−tracks.

Proof. It is clear that every a−track is a graph whose vertices have valence at most

2. If an a−track t has vertices of valence 1 then they must lie on ∂D.

Suppose towards a contradiction that D has a circular a-track c. Then c divides

D into two components: an interior and an exterior. If we examine the interior we

see that it is a planar union of discs with only the letter b occurring on its boundary,

it follows that the interior contains a disc D′ with circular a-track. Repeating the

argument we find thatD must have infinitely many cells which is a contradiction.

Corollary 6.2.7. Let D be a disc embedded in E2 tiled by finitely many coherently

oriented [a, bn]-discs. Then it is impossible for an a-track t to start and end inside a

segment α ⊂ ∂D labeled am for some m ≥ 1.

Proof. Suppose towards a contradiction that this was not true. Then for some D

and some a-track t in D, we have that t starts and ends in some arc α ⊂ ∂D

labeled am. Without loss of generality α lies on the x−axis of E2 and consider the

reflection about the x − axis, then we have a resulting disc D′, and reversing the

orientations of all the b−labeled edges, makes D′ another disc tiled by finitely many

[a, bn]-discs. Attaching D to D′ along α gives a new disc D′′ that has a circular

a-track, contradicting Lemma 6.2.6
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Corollary 6.2.8. We cannot tile a sphere S with finitely many coherently oriented

[a, bn]-discs.

Proof. Suppose towards a contradiction that this was possible. Then in particular

all the a-tracks are closed and compact and therefore circles. If S contains only one

a-track t, then S is obtained as some topological quotient of an annulus A such that

A is obtained by gluing the edges labeled a in the boundary of some [a, bN ]-ribbon.

Now ∂A consists of two circles c1, c2 with label bN . Since t separates S into two

discs, we see that the images of c1, c2 are disjoint via the quotient map π : A→ S. It

therefore follows that π must continuously map c1, which has label bN , to something

simply connected, i.e. a simplicial tree, while respecting the orientations of the edges,

which is impossible.

Otherwise S has at at least two a-tracks, if we remove from S some [a.bn]-disc

D not lying in some track t. Then S − D embeds into E2, has a circular a-track,

and therefore contradicts Lemma 6.2.6

Lemma 6.2.9. Let R be some [a, bN ]-ribbon. Suppose there is a continuous map

ψ : R → D where D is a disc embedded in E2 tiled by finitely many coherently

oriented [a, bn]-discs, such that ψ is injective on the interior of R and sends edges to

edges, labels to labels and preserves edge orientations. Then ψ is an embedding.

Proof. Let t ⊂ R be the unique a-track and let tR and bR be the top and bottom

of R respectively. By Lemma 6.2.6 the edges labeled a of ∂R have disjoint images.

We can remove [a, bn]-discs from D to get a smaller disc D′ such that ψ(t) separates

D′ into two pieces. From this it is clear that the images ψ(tR) ∩ ψ(bR) are disjoint.
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It follows that the only possible failures of injectivity are in restrictions to tR or bR.

Suppose ψ is not injective on, say, tR. Then if ψ(tR) bounds a sub-disc in D′′ ≤ D,

then we see that D′′ must have a circular a-track –contradiction. It follows that

ψ(tR) maps onto a tree of edges labeled b, but this would contradict the fact that ψ

preserved edge orientations.

Proposition 6.2.10. Suppose that D is a disc embedded in E2 with boundary label

[aN , bB] that is the result of gluings of [a, bn]-discs respecting the orientation, then it

is obtained from a collection of M [a, bB]-ribbons R1, . . . RM such that the bottom of

Ri+1 is glued to the top of Ri, i = 1, . . .M .

Proof. We divide ∂D into four arcs la, tb, ra, bb that have labels a−N , b−B, aN , bB re-

spectively, i.e. the left, top, right and bottom sides. By Lemma 6.2.6 and Corollary

6.2.7 each a-track starts in la and ends in ra. By Lemma 6.2.9 each a-track lies in

an embedded ribbon. Since each [a, bn] disc lies in one of these ribbons, it follows

that D is obtained by gluing together N -ribbons as stated in the Proposition. Now

bb must lie in the bottom-most ribbon R1 which means that R1 is an [a, bB]-ribbon.

It follows that all the ribbons are [a, bB ]-ribbons.

6.2.3 A special genus zero quadratic equation

Equipped with Proposition 6.2.10 we shall deduce NP hardness of the following

equation:
k∏

j=1

z−1
j [a, bnj ]zj = [aN , bB] (6.5)

By Theorem 6.1.1, (6.5) has a solution if and only if there is a collection of discs Dj

with boundary labels [a, bnj ] for j = 1 . . . k respectively and a disc Dm with boundary
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label [aN , bB] such that, glued together in a way that respect labels and orientation of

edges, form a union of spheres (this is forced by the first inequality in (iii), Theorem

6.1.1.

Theorem 6.2.11. Deciding if the quadratic equation (6.5) with coefficients

[a, bn1 ], . . . , [a, bnk ] and [aN , bB]

has a solution is equivalent to deciding if problem 6.2.2; with input (n1, . . . , nm) and

positive integers B,N ; has a positive answer.

Proof. “Bin packing ⇒ solution.” Suppose that Problem 6.2.2 has a positive answer

on the specified inputs. For each subset Si of the given partition of {1, . . . , k} we

form a [a, bB]-ribbon Ri by gluing together the [a, bnj ]-discs for j ∈ Si, this is possible

by (iv) of Theorem 6.1.1 and equation (6.4). We then construct one hemisphere by

gluing the ribbons R1, . . . , RN . The other hemisphere is the remaining disc with

boundary label [aN , bB]−1, the resulting sphere proves the solvability of (6.5) with

the given coefficients.

“Solution ⇒ bin packing.” If (6.5) has a solution then there is a union of spheres

tiled with [a, bni ]-discs and one [aN , bB]−1-disc, moreover these discs are coherently

oriented. By condition (v) and Corollary 6.2.8 there can only be one sphere: the

sphere S0 containing the unique [aN , bB]−1-disc. If we remove this [aN , bB]−1-disc from

S0 what remains will be a disc D with boundary label [aN , bB] tiled with [a, bni ]-discs.

Applying Proposition 6.2.10 divides D into ribbons R1, . . . RN and we immediately

see that these ribbons provide a partition of {n1, . . . nk}, showing that Problem 6.2.2

has a positive solution on the given input.
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CHAPTER 7
A fast algorithm for Stallings’ folding process

We now give an algorithm that quickly performs Stallings’ Folding algorithm

for finitely generated subgroups of a free group. The content of this chapter is based

on the published article [59].

Let Γ be a directed labeled graph with the labels lying in some alphabet X =

{x1, x2, . . . , xn}. Such a graph is said to be folded if at each vertex v there is at most

one edge with a given label and incidence starting (or terminating) at v. We now

state the following topologically flavored definition.

Definition 7.0.12. An elementary folding of a directed labeled graph Γ is a (con-

tinuous) quotient map π : Γ → ∆, where ∆ is another directed labeled graph, that is

obtained by identifying two edges e1 and e2, which at some vertex v, have the same

incidence and label at v and if e1 and e2 are edges between vertices v, w and v, w′

respectively then the vertices w and w′ are also identified.

A folding process takes as input reduced words in J1, . . . , Jm in X±1, makes a

graph with m loops with labels J1, . . . , Jm and attaches them all at some vertex v0

to make a graph Γ0 which is a bouquet of m circles with labels J1, . . . , Jm if read

starting at v0 and following the obvious convention with respect to incidence and

inverses. The algorithm then consists of a sequence of elementary foldings until it is
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Figure 7–1: A Stallings’ folding process

impossible to fold any further:

Γ0 → Γ1 → . . .→ ΓM = Γ

The process terminates because Γ0 has finitely many edges and each elementary

folding decreases the number of edges by 1. The output will be the folded graph

Γ = Γ(J1, . . . , Jm) which is independent of the sequence of foldings (see [23]).

Example 7.0.13. Figure 7–1 is a Stallings’ folding process for inputs:J1 = abba, J2 =

a−1ba, J3 = aaa. The thickened edges represent the elementary foldings. The pro-

gression is to be read left to right, top to bottom.
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When we get to a point where we can no longer fold and so we stop. From this,

we can now infer that H = 〈J1, J2, J3〉 = F (a, b)

This folded graph gives us a picture of the subgroup H = 〈J1, . . . Jm〉 ≤ F (X).

Topologically, if we view F (X) as the fundamental group π1(B, x0) of a bouquet of

n circles B, then constructing Γ amounts to constructing the “core” of the covering

space B̃ of B corresponding to the subgroup H . [54]

What is also of great interest are the “computational” properties of Γ. One can

immediately verify that w ∈ H by checking that w is the label of a loop based at

v0. It follows that once Γ is constructed the membership problem for the word w

and the subgroup H is solvable in linear time. If we take a spanning tree of Γ using

the breadth first method, which takes time linear in the number of vertices of the

graph, we can obtain a Nielsen Basis for H . We can also compute the index of H

in F (X): if Γ is regular, i.e. at each vertex v for each x ∈ X there are edges with

label x with both incidences, then the index is the number of vertices in Γ otherwise,

[F (X) : H ] = ∞. There is also a bijective correspondence between spanning trees of

Γ and Schreier systems of coset representatives (given a spanning tree T , take labels

of subtrees of T rooted at v0 that do not have any vertices of valency more than two).

These systems of coset representatives are very important in the theory of rewriting

systems. We now state the main result [53, 56]:

Definition 7.0.14. The function log∗ : N → N assigns to each natural number n

the least natural number k such that:

log ◦ log ◦ . . . ◦ log︸ ︷︷ ︸
k times

(n) ≤ 1
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where we are using the base 2 logarithm. Equivalently log∗(2n) = log∗(n) + 1.

Notice that:

log∗(2222
2

) = log∗(2 · 1019728) = 5

It follows that for most practical purposes, log∗ grows so slowly that it can be con-

sidered a constant.

Theorem 7.0.15. Let F (X) be the free group over the generators x1, . . . , xn, let

J1, . . . , Jm be words in X±1 and let N =
∑ |Ji|. Then there is an algorithm for

the folding process that given the input J1, . . . , Jm will terminate in time at most

O(N · log∗(N)).

Corollary 7.0.16. Given generators J1, . . . , Jm as before and the subgroup H =

〈J1, . . . , Jm〉 ≤ F (X) we can:

1. Compute the index of H.

2. Obtain a Nielsen Basis for H.

3. Get a Schreier Transversal

In time O(N · log∗(N)). And once Γ is constructed we can solve the membership

problem for a word w in time O(m) where m is the length of w.

We can also slightly generalize the algorithm to obtain the following very useful

fact:

Theorem 7.0.17. Let ∆ be any connected directed labeled graph. Suppose it has V

vertices and E edges, then there is an algorithm that will fold ∆ in time at most

O(E + (V + E)log∗(V )).
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We first present the data structures that will be used in our algorithm and state

results pertaining to running times of various operations. All this could then be

coded using object oriented languages like Java or C++.

7.1 Data Structures

The terminology I will use is non-standard in computer science, but hopefully

more comprehensible to mathematicians. The details in this section are only given

for completeness, all that is really important here are the theorems on running times.

For our purposes, a data type is a tuple (X, f1, . . . , fm) where X is a set and

f1, . . . , fm are n-ary functions, i.e. functions with n arguments such that for each i

and a fixed Yi:

fi : X × . . .×X︸ ︷︷ ︸
ni times

→ Yi

Moreover we allow the functions to be undefined and allow ourselves to change their

values. These functions will be called operations. For example X = P(N) is the

collection of sets of natural numbers, with binary operations, union, intersection

and the unary operation least element (which a set to to a natural number). We

will also want to allow different instances of a data type, e.g. the data type is

math students with the function grade: {students} → R and we have two instances:

calculus students and linear algebra students. Maybe some students will be taking

both classes so they will have two grades, one for calculus and one for linear algebra

it follows that there will be two instances of the grade function defined on different

(though maybe not disjoint) sets of students.

156



So far nothing can be said about running times. To this end we have to flesh out

our construction, we give the actual algorithms that perform our operations. Primi-

tive operations are unary operations (or simply functions) that either correspond to

variable assignment or so-called pointers used in object oriented programming. We

will directly invoke primitive operations in algorithms. We assume that the operating

time cost of either evaluating a primitive operation or changing its value on one entry

will be 1.

Some operations will not be primitive, so to calculate them we will provide a

method which is basically an algorithm which, using primitive operations, enables

one to perform a more complicated operation. Once a method is given, it will be

possible to calculate the running time of the associated operation. The reason the

word method is used instead of simply algorithm is that we want to stress that it is

at a lower level of abstraction, once it’s given we want to forget everything about it

other than its running time and the fact it works. As will be seen, there will also be

a certain structure to the way the elements in our data type are interrelated which

motivates the terminology data structure.

The reason for this rather artificial formalism is mainly to ease analysis. The

main algorithm that will be given in Section 7.2.3 will be given in terms of operations

whose semantic meaning is clear and it will be obvious that the algorithm actually

works. The explicit methods presented in this section will give us running times for

our operations and we’ll be able to compute the running time of the algorithm.
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As a remark to computer scientists, the definition of data type given here resem-

bles an interface and combined with the methods, what we’re actually describing is

an abstract data structure.

7.1.1 Ordered Sets

This data structure actually is actually made of two interdependent components

lists and list nodes. List nodes have two primitive operations:

1. next : {list nodes} → {list nodes}

2. prev : {list nodes} → {list nodes}

And two operations that will require methods.

1. list : {list nodes} → {lists}

2. remove : {list nodes} → {lists}

For lists we have the two primitive operations:

1. head : {lists} → {list nodes}

2. tail : {lists} → {list nodes}

As well as the binary operation:

1. concatenate:{lists} × {lists} → {lists}

Finally, we need an operation to add a node to a list:

1. addnode : {list nodes} × {lists} → {lists}

So far we have two types of objects and some functions. An ordered set will be

encoded as a doubly linked list. It can be thought of as a chain of list nodes.

Example 7.1.1. Here we have a list L, and list nodes a,b and c. We encode this as

shown in Table 7–1. We visualize this as Figure 7–2.
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Table 7–1: Encoding a doubly linked list

list node n next(n) prev(n) list(n)
a b undefined L
b c a undefined
c undefined b L

ListX head(X) tail(X)
L a c

a b c

L

?

?

?

Figure 7–2: A well formed list
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Figure 7–3: A badly formed list

A priori, there are no restrictions on what values functions can take, but if we’re

not careful our list will not be well formed, for example see Figure 7–3

We can ensure that our structures will be well formed if we make sure that our

methods keep structures well formed and only use these methods. We now give the

methods associated to operations on ordered sets. When invoking a method we will

use the typewriter font. The method associated to the function remove will be

called remove and we will denote “performing the remove method on a list node n”

by remove(n). This method does not return anything, it simply removes the list

node n from a list while keeping it well formed

remove(n):

1. Get the variables h=head(list(n)) and t=tail(list(n)).

2. If h = t = n then make head(list(n)) and tail(list(n)) undefined.

3. If h = n 6= t then set head(list(n))=next(n), set list(next(n))=list(n), set

prev(next(n))=undefined, and set next(n)=prev(n)=undefined.

4. If h 6= n = t then do the same as the previous with prev and next interchanged.

5. If h 6= n 6= t then set next(prev(n))=next(n), set prev(next(n))= prev(n) and

set next(n)=prev(n)=undefined.
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Figure 7–4: Concatenating two lists

The next method is for the concatenate operation for two lists l1, l2. We call the

method concatenate, it appends the list nodes of l2 to those of l1 and leaves the list

l2 empty.

concatenate(l1, l2):

1. If head(l2) is undefined (l2 is empty) then do nothing.

2. If head(l1) is undefined, then set head(l1)=head(l2), set list(head(l2))=l1, set

tail(l1)=tail(l2), set list(tail(l2))=l1 and set head(l2)=tail(l2)=undefined.

3. Else set next(tail(l1))=head(l2), set prev(head(l2))=tail(l1), set tail(l1)=tail(l2)

and set list(tail(l2))=l1.

The Figure 7–4 illustrates the concatenate operation. The method addnode

for the addnode operation will not be given, but it is quite obvious. The following

theorem holds.
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Theorem 7.1.2. There exists methods of the operations remove, concatenate and

addnode that take a constant amount of time.

Proof. The associated methods remove, concatenate and addnode involve only a

bounded number of primitive operations.

We can also enumerate a list l1, indeed take head(l1) then repeatedly perform

“next” operations, once the value “undefined” is reached, the list is exhausted.

7.1.2 Disjoint Sets

In our case we have a sequence of elementary foldings:

Γ0 → Γ1 → . . .→ ΓM = Γ

The composition, π = πM ◦πM−1 . . .◦π1 of all the quotient maps πi : Γi → Γi+1 gives

a quotient map π : Γ0 → Γ. This map π, in turn, induces an equivalence relation

on the vertices of of Γ0, i.e v ∼ w ⇐⇒ π(v) = π(w). In fact one can consider the

vertices of Γ as equivalence classes of vertices of Γ0. These equivalence classes are

“built” from smaller disjoint sets by successively merging them in each elementary

folding. For example if the vertices v, w in Γi correspond to equivalence classes

{v1, . . . , vr}, {w1, . . . ws} respectively and if πi(v) = πi(w) = ū, then the vertex ū of

Γi+1 will correspond to the set of vertices {v1, . . . , vr, w1, . . . , ws} ⊂ Vertices(Γ0).

Though this doesn’t fully motivate our interest in the following data structure and

it’s clever methods it does give an example of how they are going to be used.

The Disjoint Set Forest data structure has an underlying set of nodes. On the

set of nodes we have the following primitive operations:

1. rank:{nodes} → N
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2. parent:{nodes} → {nodes}.

From this it is seen that nodes can be organized into rooted trees. We have the

following non-primitive operations:

1. root:{nodes} → {nodes}

2. merge: {nodes} × {nodes} → {trees}

Some explanations are in order. We have a set X of nodes and we want to build

equivalence classes out of them. An equivalence class will be encoded as a rooted

directed tree. We shall identify the trees by their root nodes, i.e. the unique node

in the tree that has itself as a parent. If we want to know to which equivalence

class a node n belongs we use the function root(n) which returns the root of n’s

tree, similarly we can check if two nodes are “congruent” by checking if they have

the same root. We will use the merge(u, v) operation to form the union of the

equivalence classes containing u and v. It is clear that here too some care must be

taken to avoid “malformed” trees.

Example 7.1.3. Figure 7–5 shows a set partitioned into two equivalence classes.

Notice that the nodes pointing to themselves are roots or equivalence class represen-

tatives.

Initialization: When a node n is created we need the to set following initial

values so that everything works:

1. set parent(n)=n

2. set rank(n)=0.

This is like putting n into an equivalence class with only itself in it.
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Figure 7–5: Trees encoding sets

To perform the root(n) operation we use a method called Find-set(n) which

takes a node n and returns the node r which is the root of its tree. It is given

recursively:

Find-set(n)

1. If parent(n)=n, return n.

2. Else set parent(n)=Find-set(parent(n)) and return parent(n).

Proposition 7.1.4. This method actually works.

Proof. We basically do this by induction on the depth of n i.e. the least integer M

such that:

parent ◦ . . . ◦ parent︸ ︷︷ ︸
M−1 times

(n) = parent ◦ . . . ◦ parent︸ ︷︷ ︸
M times

(n)

If the depth is 0, i.e. n is a root, then it works. If it works for all nodes of depth M

or less and n has depth M + 1 then Find-set(parent(n)) will return the root of n’s

tree and all is well.

Clearly this is not the most expedient way to get the root node (which in this

case would simply consist of successively evaluating parents until we hit a “fixed
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Figure 7–6: Path compression

point”). However something interesting happens, instead of working your way up to

the tree root r, you work your way up to the root and then back down again and

at each step on the way back you set the values of parent functions to r. This is

called path compression and it makes the tree “bushier” and will make successive

root operations faster. Figure 7–6 shows what arises after performing root(a):

Though tree itself changes, the mathematical object it represents is the same:

we still have the same nodes and the same equivalence classes. The tree, however,

has been partially optimized.

The last operation, merge, should takes two nodes x, y and make the union of of

the equivalence classes containing x and y respectively. Here we use the rank, which

is basically an upper bound on the depth of the tree. It is used to determine which

node will be the new parent. We call the associated method Merge(x, y):

1. Get r1 =Find-set(x), r2 =Find-set(y).

2. If rank(r1)>rank(r2) then set parent(r2)=parent(r1).

3. If rank(r2)>rank(r1) then set parent(r1)=parent(r2).

4. Else set parent(r2)=r1 and set rank(r1)=rank(r1)+1
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We now come to a truly amazing result due to Tarjan whose proof can be found

in [12]. This proof uses the methods we just described. This result, however, is not

obvious to prove. An amortized running time is the combined running time of a

sequence of operations.

Theorem 7.1.5. Suppose we perform n Disjoint Set operations, i.e. root and merge

operations, on a Disjoint Set forest containing N nodes. Then there exist methods

for the root and merge operations such that the amortized running time devoted to

these operations will be at most O((n+N) · log∗(N)).1

7.1.3 Directed Labeled Graphs

We now encode a graph. We assume that we are working over F = F (a, b) the

free group on the alphabet {a, b}. A graph will have two underlying sets consisting

of vertex objects and edge objects. The idea is that there are functions assigning to

edges their terminal and initial vertices and each vertex has list of adjacent edges.

It follows that each edge will be a node in two lists. We will also want to organize

vertices into Disjoint Set forests and put them in a list called UNFOLDED. We have

the following primitive operations:

1. edgelist:{vertices} → {lists}

2. initial:{edges} → {vertices}

3. terminal:{edges} → {vertices}

4. label:{edges} → {a, b}

1 The result in [12] actually gives an even better bound: instead of log∗ it’s an
inverse Ackerman function.
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We also want to make lists of edges so we define two instances of the list node

operations on the set of edges. One instance for the list at an edge’s initial vertex

and one instance for the list at an edge’s terminal vertex. Hopefully the nomenclature

will be self-explanatory:

1. next-initial:{edges} → {edges}

2. next-terminal:{edges} → {edges}

3. prev-initial:{edges} → {edges}

4. prev-terminal:{edges} → {edges}

5. remove-initial:{edges} → {lists}

6. remove-terminal:{edges} → {lists}

7. addnode-initial:{edges} × {lists} → {lists}

8. addnode-terminal:{edges} × {lists} → {lists}

And for vertices we have the following additional operations:

1. next-UNFOLDED:{vertices} → {vertices}

2. prev-UNFOLDED:{vertices} → {vertices}

3. remove-UNFOLDED:{vertices} → {lists}

4. addnode-UNFOLDED:{vertices} × {lists} → {lists}

5. root:{vertices} → {vertices}

6. rank:{vertices} → N

7. merge:{vertices} × {vertices} → {trees}
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Figure 7–7: Elementary Folding

7.2 Ideas and the Algorithm

7.2.1 Elementary Foldings

Recall that in the sequence of elementary foldings

Γ0 → Γ1 → . . .→ ΓM = Γ

The vertices of Γi could be seen as equivalence classes of vertices of Γ0. For this

reason we will denote vertices of Γi as [v], i.e. “the equivalence class in the set of

vertices of Γ0 with representative v.”

Definition 7.2.1. A vertex [v] is said to be folded if there are no edges with same

label and incidence an [v]. Otherwise we say [v] is unfolded.

Consider the following identification of the edges e1 and e2 via an elementary

folding shown in Figure 7–7

We see that that the vertices [u] and [w] get identified so that in the next graph in

our sequence the equivalence class represented by u will consist of the union [u]∪ [w]

we shall denote this by [u]′. In our computer program such an elementary folding

would be accomplished by performing the operation merge(u, v) (in the example

rank(u) ≥ rank(w)), removing the edge e2 from the edge lists at w and v (essentially

deleting it) and finally performing concatenate(edgelist(u),edgelist(w)). Recall that
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after an elementary folding the edges at [u]′ will be the edges at [u] plus the edges

at [w] minus the deleted edge. This is reflected by concatenating the edgelists and

though none of the edges in [w]’s old edgelist are set to point to u yet (edges go

between vertices, not equivalence classes) it is possible to update them. However if

we completely update all the edges at each folding we’ll end up having something

that runs in quadratic time! Some care is therefore needed. The updating of edges

only occurs when checking whether a vertex is folded (see Observation 1 in Section

7.2.2) and in the second step of the loop in the algorithm in Section 7.2.3 and when

either case happens, we only update at most five edges at a time. This is the trick

to get the algorithm to run in almost linear time.

Consider the Figure 7–8. The figure on the top is the graph Γi as a topological

object with vertices corresponding to equivalence classes of vertices of Γ0. We see

that the edges outgoing from [u] labeled a will be identified in some elementary

folding. The figure on the bottom is at a lower level of abstraction, it shows what

is encoded in the computer. The circles represent “vertex” objects, notice that the

vertices parent pointers as well as graph edges coming out of (going into) them:

We see that the equivalence class [u] contains eight elements, that the v’s edgelist

has four entries but that there is only one edge “actually” at v, i.e. some edge e with

label(e)=b and initial(e)=v.

7.2.2 Detecting Unfolded Vertices

The only other difficulty is figuring out where to fold. Three observations tell us

that we can easily keep track of the unfolded vertices and when we know that there

are none left, then we’re done.
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Figure 7–8: A view “under the hood”

Observation 1. To check whether or not a vertex [v] is folded takes a bounded

number of operations. Indeed, we need only go through the edge list of [v] and check

the labels and incidences of the edges.

To find the incidence of an edge e in [v]’s edge list, find u =initial(e) and

w =terminal(e) and perform the operations root(u) and root(w) to find equivalence

class representatives. If for example root(u)=v then e is outgoing at [v]. Sim-

ilarly we can determine if e is incoming or forms a simple loop at [v]. At this

point we could also update the edges i.e. set initial(e)=root(initial(e)) and set

terminal(e)=root(terminal(e)) for an extra two operations.

Now go through the edge list of v. Either you find two edges with same label

and incidence so [v] is unfolded or you exhaust the edgelist without finding edges

with the same incidence and label so [v] is folded. Since we are assuming that we are

working over F (a, b) it is clear that an edgelist with five or more entries must result

in unfoldedness. It follows that we never check more than 5 edges at a time.
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Observation 2. An elementary folding is an essentially local operation. That is,

whenever two edges get identified we need only to check for three vertices whether

they have gone from being folded to unfolded or vice-versa. Any vertex that is not

the initial or terminal vertex of some edge being identified with another edge at that

elementary folding will have the same number of incoming and outgoing edges after

the elementary folding.

Observation 3. At the beginning there is exactly one unfolded vertex, i.e. where we

initially attach our loops, and the algorithm terminates when there are no unfolded

vertices left.

These three observations tell that we can have a list called UNFOLDED which

contains exactly the unfolded vertices and that at each elementary folding we need

perform a bounded number of primitive, ordered set and disjoint set operations to

keep it updated.

7.2.3 The Algorithm

We will make a distinction between ordered set operations and disjoint set op-

erations. We will call primitive operations and ordered set operations simply “oper-

ations” and mention disjoint set operations explicitly.

Initialization:

We are given an input (J1, . . . , Jn) of reduced words in F (a, b). For each Ji we

make a directed labeled loop li with label Ji starting at v0 and initialize each vertex

as in Section 7.1.2 we call the resulting graph Γ0 (Figure 7–9.) At this point there

is only one unfolded vertex: v0. We also create the list UNFOLDED containing the

single vertex v0.

171



l1

l2

l3

ln
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Figure 7–9: The bouquet of generators

All this takes time O(N).

Folding:

While UNFOLDED is not empty do the following:

1. Get v=head(UNFOLDED) to get an unfolded vertex. This costs 1 operation.

2. Get L=edgelist(v). Get e1=head(L) get u1=root(initial(e1)),

v1=root(terminal(e1)) and label(e1) to get the label and incidence of e1

at [v]. Then set initial(e1))=u1 and set terminal(e1)=v1 to “update” the

edge. Take e2= either next-initial(e1) or next-terminal(e1) (depending on the

incidence of e1) and again get the incidence, get the label and update the

edge. Keep performing “next” operations until you get two edges with the

same label and incidence and can fold. This costs 1+1 operations + ≤ 5 · (6

operations + 2 disjoint set operation + some constant amount of time)
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Figure 7–10: Different folding situations

At this point we have found 2 edges ei1 , ei2 (without loss of generality e1, e2) with

same incidence and label. We have the four possible local situations given by Figure

7–10.

From Step 2 we know the the endpoints of e2 and e1 and can therefore establish

which case we are dealing with (this takes constant time).

Case I:

I.1 merge(u, w) (assume the new representative is u.) This costs 1 disjoint set

operation.

I.2 if necessary, remove the non representative vertex w from UNFOLDED. This

costs 1 operation.

I.3 concatenate(edgelist(u),edgelist(w)). This costs 1 operation.
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I.4 We assume that e2 is the edge going from v to w. Then we do remove-initial(e2)

and remove-terminal(e2). At this point we can assume that e2 is deleted. This

costs is 2 operations.

I.5 Check whether the remaining vertices [u] and [v] are folded and add or remove

them from UNFOLDED accordingly. By Observation 1 this again takes a

bounded number of disjoint set and “normal” operations.

How to handle cases II-IV is similar and will not be given. When we exit the

“while” loop, i.e. UNFOLDED is empty, the algorithm terminates. All the remaining

edges point to their representative vertices and no vertex is unfolded, so we have a

usable folded graph.

7.2.4 Analysis

Each time the “while” loop executes an edge gets deleted so the loop runs at

most N times i.e. the total length of the input. Each run through the loop in fact

corresponds to an elementary folding. Each time the loop runs, a constant bounded

number of “standard” and disjoint-set operations are executed so applying Theorem

7.1.5 this runs in time O(N)+O(N log∗(N)) = O(N log∗(N)). This proves the main

result, Theorem 7.0.15. We can also give the following:

Proof of Theorem 7.0.17. We do a search through our graph and check at each vertex

v if it is folded. If not then we add v to UNFOLDED. The search takes time O(E).

We then proceed as usual.
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CHAPTER 8
Conclusion

The first part of this thesis gives the most extensive account of the fully residually

F groups arising from systems of equations in two variables over free groups to date.

This enabled us in particular to recover all previously known qualitative descriptions

of the solutions of this class of systems of equations. Nonetheless, I still do not think

that the given treatment is completely satisfactory. Some questions still remain,

such as those brought up in Section 4.1.2. What would also be really nice is a

complete description of the Hom diagrams, like the one given in Chapter 3, but

for arbitrary systems of equations in two variables over free groups. Given the

announced proof that fully residually free groups have finite Krull dimensions by

Louder [34, 35, 36, 37], such a finite description exists. Moreover I am optimistic

that the Hom diagrams will be much smaller than the upper bounds given in Louder’s

work.

However I believe that the methods we have used so far are insufficient for this

task. We need a better understanding of the possible epimorphisms between fully

residually free groups and possibly a better understanding of how to combine fully

residually free groups. In fact a good characterization of when a free product of

two free groups with amalgamation over a cyclic group is fully residually free is still

unknown. There is still much more work to be done in this field and the special case

of two variable equations will remain a useful testing ground.
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Another direction is the study of systems of equations in two variables over

torsion free hyperbolic groups. The structure theorems for fully residually torsion

free hyperbolic groups are very similar, the main difficulties will come from the study

of two generated subgroups of torsion free hyperbolic groups. A good starting point

for this would be the paper of Kapovich and Weidmann [24] where they obtain a

result that is not unlike Lemma 3.1.10 and the work of Delzant [14] which bounds the

number of conjugacy classes of non-free two generated subgroups of word hyperbolic

groups.

The complexity of solving equations is also a very exciting topic these days.

Indeed it was recently announced by I.G. Lysënok that the general problem of solving

a system of equations over a free group is in fact in NP, thus by our result NP-

complete. This result is not only interesting in its own right, but also because solving

equations over groups plays an important role for many algorithmic applications, for

example in the solutions to the isomorphisms problems for torsion free hyperbolic

groups that do not have a small essential action on an R-tree by Sela [51], for fully

residually free groups by Bumagin, Kharlampovich and Miasnikov [6], and for toral

relatively hyperbolic groups by Dahmani and Groves [13]. NP is still pretty fast,

and algorithmic tractability results in this direction are therefore very encouraging

for the feasibility of these algorithms in real life.

The fast algorithm for Stallings’ folding process is a good concrete result. Many

basic algorithmic problems involving subgroups of free groups can be now solved

extremely quickly. In my opinion this demonstrates some of the power of geometric

reasoning. The previously known best running time was quadratic, which isn’t that
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bad. However for practical applications, say for example computing the image of

a subgroup of a free group under successive endomorphisms, the advantage of the

almost linear running time becomes quite apparent. Hopefully this algorithm will

become standard in computer algebra packages.

The next step is to try to obtain an upper bound for the complexity of the

analogue of Stalling’s folding process for subgroups of F Z[t].
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