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Abstract

This thesis considers M-ary phase coding for the non—coherent AWGN channel.
More precisely, we develop block-coded MPSK modulation schemes specifically for non-
coherent block detection which significantly surpass the performance of ideal uncoded
coherent MPSK. A class of block codes which are well-matched to MPSK modulation,
called module-phase codes, is presented. The algebraic {framework used for defining these
codes relies on elements of module theory which are discussed along with a method for
constructing such codes for non-coherent detection. It is shown that differential encod-
ing, when considered on a block basis, may be viewed as a specific code from a particular
class of module-phase codes. Two classes of more powerful codes which achieve signif-
icant coding gain with respect to coherent detection of uncoded MPSK are presented.
In the first class of module—phase codes, the coding gain is achieved at the expense of
bandwidth expansion. In the second class, however, the coding gain is achieved at the
expense of signal constellation expansion without expanding bandwidth. A reduced-
complexity /sub-optimal decoding strategy based on a modification of information set
decoding is described. Its performance is analysed through the use of computer simn-
lations for various different codes. Finally, we address the performance of these codes
combined with the reduced—complexity decoding method over correlated Rayleigh fading

channels,



Sommaire

Cette thése porte sur le codage en phase pour le canal non—cohérent a bruit
blanc gaussien additif. Plus précisément, on développe des stratégies de modulation
MPSK codées en bloc, congues expressément pour la détection non-cohérente de bloc,
qui dépassent considérablement la performance de MPSK non-codée avec la détection
cohérente idéale. Une catégorie de codes bloc, nommeée codes module—phase, qui va de
paire avec la modulation MPSK, est introduite. La structure algébrique utilisée pour
décrire ces codes s’appuie sur des éléments de la théorie des modules, qui seront expliqués
de méme qu’une méthode de construction dans le but de la détection non-cohérente. 1l
est ainsi démontré que le codage différentiel, considéré bloc par bloc, pourrait étre vu
comme un exemple particulier d'un groupe spécial de codes module-phase. Deux groupes
de codes plus performants qui atteignent des gains de codage considérables comparés a
la détection cohérente de MPSK non-codée sont présentés. Le gain de codage des codes
du premier groupe repose sur l’agrandissement de la bande passante; ceux du deuxieme
groupe, cependant, réalisent leurs gains de codage par I'agrandissement de l’ordre de la
modulation. Une stratégie de décodage sous—optimale & complexité réduite basée sur
une modification de information set decoding est présentée. Son analyse pour différents
codes est accomplie & l'aide de simulations par ordinateur. Finalement, on considére
la performance de ces codes avec la stratégie de décodage & complexité réduite sur des

canaux & évanouissement corrélé rayleigh.
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Chapter 1

Introduction

Recently, there has been increased interest in non-coherent detection schemes with im-
proved performance over differentially—coherent systems {1],(2], [3]. The merit of these
detection techniques is that they do not require carrier phase tracking, while exhibiting
only a very small SNR degradation with respect to coherent detection. It seems that
these robust detection schemes could be very attractive for wireless communications
over channels where carrier phase tracking is very difficult to achieve. In this thesis
we consider the problem of channel coding for M~ary phase shift keying (MPSK) with
non—coherent block detection, the goal being to design codes which achieve significant
performance improvements over uncoded coherent detection of MPSK. Integrating error
control with modulation and coherent detection has been considered extensively in the
last 15 years, [6], [7]. The corresponding problem with non-coherent detection, however,
has received little attention. Here we will specifically address the problem of block—coded

modulation primarily for non-coherent AWGN(additive white gaussian noise) channels.

Chapter 2 begins with the definition of MPSK with various detection techniques
followed by a detailed review of non-coherent block detection, which is of primary in-

terest in this thesis. The form of the maximum-likelihood (ML) decoder as well as its
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performance are given. In addition, 1 distance measure suitable for non-coherent block
detection is defined, as it will be the main criterion used in the design and comparison of
codes in the subsequent chapters. We then present a comparison of reduced-complexity
block receiver structures for differentially-encoded MPSK, followed by a survey of pre-

vious work on error—control coding combined with non-coherent detection.

Chapters 3 and 4 constitute the main contribution of this work. In Chapter 3,
we present an algebraic framework for a class of linear block codes, called module-phase
codes, which are well-matched to MPSK modulation. These codes are very similar
to traditional linear block codes, except that they are defined over rings rather than
fields. A systematic technique for building these codes for non-coherent block detection
is then introduced. It is shown that traditional differential-encoding may be cast into
this algebraic framework as an example of a simple code which can significantly improve
performance over a differentially-coherent system, when the detection is performed on
a block basis. Results from computer searches for more powerful codes which achieve
significant coding gain over uncoded coherent MPSK systems are presented. Two types

of codes are considered:

1. Codes which expand bandwidth but do not expand the signal constellation

2. Codes which expand the signal constellation hut do not expand bandwidth

Using union-bounding techniques, several examples of bit error-rate performance curves

are given, so as to show the performance of these codes at lower signal-to-noise ratios.

‘The design of reduced-complexity/sub-optimal decoding strategies is addressed
in Chapter 4. The proposed method is a modification of information set decoding which
was firs! introduced by Prange for decoding cyclic binary block codes in [8]. Additionally,
it makes use of ideas very similar to those used by Wilson et al. in [2], where reduced-
complexity algorithms are presented for non—coherent block detection of differentially—-

encoded MPSK. It is shown through the use of computer simulations that decoding
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complexity may be significantly reduced compared to a brute~force maximum-likelihood
decoder, without sacrificing much in terms of performance. Finally, we examine the
performance of some codes combined with the reduced-complexity decoding method

over correlated Rayleigh fading channels.



Chapter 2

Non—Coherent Detection of

Phase—Modulated Signals

2.1 Phase Shift Keying (PSK)

Phase Shift Keying (PSK) is a well-known digital modulation format which uses the
phase of a modulated signal to convey information. More precisely, the information is
conveyed via integers modulo~M which are then mapped into the signal space as M
distinct phases of a carrier waveform. More often than not, the signal constellation is
symmetric; that is, the M possible phases are equally spaced by 27 /M radians. We will
be concerned solely with the symmetric case and will assume throughout this work that
the mapping from the integers to the signal space points maintains numerical order in
a counterclockwise fashion. The mapping for MPSK, Fypsk : Zp — C, may therefore

be expressed as

Fupsk(a) = exp [j (EA_}) a] , a€Zy (2.1)

This situation is depicted in Fig.2.1 for three values for M.

We have, therefore, that the transmitted waveform for a single MPSK symbol of

4
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)

BPSK (2-PSK) QPSK (4-PSK) 8-PSK
Figure 2.1: MPSK Signal Constellations for three values of M

duration T is represented by

sm(t) =Re{exp_1 (2wfct+2ﬁ7rm)} m=0,....M-1, 0<t<T (2.2)

where f, is the carrier frequency. Using the complex envelope notation (CE) and as-

suming transmission over an additive white Gaussian noise (AWGN) channel, we have

that the signal upon reception is given by
7(t) = eXMm™e) g(t) + 4(t) m=0,...,M -1, 0<t<T (2.3)

where g(t) is defined as:

1, f0<t<T;
o) = { (24

0, otherwise,

¢ is an unknown phase-shift induced by the channel, and the noise 7(t) is a complex
white Gaussian process with zero mean and two-sided power spectral density No. The

receiver must somehow extract the information, m, from this signal.

A receiver is said to be coherent if, by some means, it estimates the channel
phase shift, ¢, and uses this information in the detection process. If, however, the
receiver treats ¢ as a nuisance parameter and and ignores it in detecting the received
signal, it is said to be a non-coherent receiver. The main disadvantage attributed to

a coherent receiver is due to the implementation complexity of estimating ¢, which in
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some cases can be significant. Moreover, there exist systems where fast carrier phase
tracking is needed if coherent detection is to be used (TDMA and frequency hopping
systems, for instance) which may prove to be impossible. In such instances, some form

of non-coherent detection is required.

In comparing the two types of receivers, it should be noted that the reduced com-
plexity associated with a non—coherent receiver does not come without some performance
penalty. Typically, non—coherent systems exhibit some degradation in signal-to-noise
ratio (SNR) at a given bit error rate when compared to ideal coherent systems. For the
case of uncoded MPSK, there is no choice but to use a coherent receiver, since, as will be
shown analytically later in this chapter, non-coherent detection cannot be used. Indeed,
the focus of this work will be to consider methods for coding MPSK in order to perform

non-coherent detection and, at the same time, outperform uncoded coherent detection.

By far the simplest method to avoid the need for a coherent receiver for de-
tecting MPSK is to encode the information symbols differentially. More precisely, the
information is not extracted from each symbol itself, but rather from the phase difference
between adjacent symbols, which is impervious to any unknown phase. We may express

the 3*h transmitted phase as

¢1. = ¢l—1 1 0, (25)

where 0; is the :** information phase. This technique is known as Differential Phase
Shift Keying (MDPSK). Although the detection of MDPSK is non-coherent, since no
attempt is made at estimating the channel phase shift, it is usually referred to as being
differentially-coherent. The reason for this is because of the fact that symbol decisions
are made using the previous symbol as a phase reference, albeit a noisy one causing a
degradation with respect to purely coherent MPSK. We will soon see that there is a close
relationship between differentially~coherent detection and true non—coherent detection
of MPSK, in the conventional sense. This type of detection provides a very practical

alternative to coherent detection, and is often the modulation scheme chosen in many
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practical situations, most notably for fading channels or short burst communications.
The price paid for the reduced complexity of this scheme when compared with coherent
detection can, however, be quite severe. While the degradation in SNR for BPSK (or 2-
PSK) is negligible, which makes binary DPSK very popular, the degradation associated
with larger constellations (M > 4) approaches 3dB and cannot be ignored when trying

to avoid the complexity involved in estimating the carrier phase.

2.2 Non—Coherent Block Detection of MPSK

In this section the framework for detection of MPSK symbol blocks will be presented.
Let us consider detecting blocks of N consecutive MPSK symbols. We may view the

transmitted information as vectors of the form
c,=(¢o €a --- C(N-1) ), ¢ €(0,--, M- 1). (2.6)

If, in the detector, we use the duration of an entire block as the observation interval, the
baseband equivalent of the received signal, #(t), when c; was transmitted is given by
N-1
#(t) = Y ePexp [] (gﬁ) c.;] o(t = IT) + 7(t), 0<t< NT, (2.7)
1=0

where g(t) is the baseband pulse shape as defined in (2.1).

2.2.1 Maximum Likelihood Detector

The maximum likelihood (ML) detector examines the likelihood functional, p(¥(t)|cm),
over all possible ¢m, where ¢y is the m** possible transmitted vector, 0 < m < |V|,
with |V| being the set of possible transmitted vectors. It then chooses the one which
maximizes it as the most likely transmitted vector. Considering the unknowi: phase ¢

as a nuisance parameter, which is modelled as a random variable, we have that this
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likelihood functional is given by

p(7(t)lem) = /: PR(t)icme(T(t)|Cm, )Peicm(Blem)dd, (2.8)

where pasyiem,¢(F(£)|cm, ¢) the probability distribution of the received signal assum-
ing the transmitted codeword,cm, and the random phase, ® are known. The quantity
Psjcm (¢lcm is the probability distribution of ® assuming ¢y is known. Since the phase

is independent of the transmitted vector, we have that

PsiCm (dlcm) = pa(4). (2.9)

The absence of any information on the reference phase is described by a uniform
distribution for ® over (7, n]. Using this probability density, it can be shown [17, p.204]

that the ML detector computes [V]| decision variables according to the following rule,

Un =

NT

/ f(t)s:,,(t)dtl m=0, [V -1, (2.10)
0

where s},(t) is the baseband equivalent of the mth transmitted signal given by

st (1) = Tz_:lexp [2 (%) cme(t —1T) m=0,--,|V|-1. (2.11)

Inserting (2.11) into (2.10) and using (2.4) yields the following alternate expression for
Un

N -
2
=0

N-1

i f, ;;1
{=0

1

Un = [ /l ('“)Tf(t)dt} -

T

(2.12)

b

where y; is the single symbol ccrrelation of the I** symbol in the received signal given by
(1+1)T ‘
¥ = /IT F(t)dt = Te®fy+m 1=0,---,N-1,, (2.13)

and f, is the baseband equivalent of the ith MPSK symbol given by fi = exp [] (%") c“]

and n; is a complex gaussian random variable with mean zero and variance Nj.
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By forming the vector, y = (yo ¥z -+ ¥Yn-1), composed of the N single

symbol correlations associated with the received signal, we may express (2.13) in vector

notation as

y =Te®f;+n (2.14)
where §; = (fo -+ fywn-1)) and n = (no -+ nv_y1)). The decision rule may,
therefore, be expressed as

ey, (2.15)

where f,,y* denotes the inner product between the vectors f, and y. This rule is simply
an envelope detector which is essentially identical to the one used for non—coherent
demodulation for M-ary signaling, however this is a discrete correlation over the entire

received vector. The basic receiver structure using single symbol correlations is shown

in Figure 2.2.

LPF
I T nT
T T p—-- T
r(e) . cosw, t a4
sinw . t
b c nT
- T T p—-- T
LPE J {n-1}7 L

¥(N) ¥(N-1) ¥(1) 0)

BLOCK DETECTOR

Figure 2.2: Basic Receiver Structure

The decision rule in (2.15), unfortunately, does not shed any light on the problem
of how the maximization is to be carried out. A brute force approach would be to search

through V one vector at a time. This method, however, has a complexity which will
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usually increase exponentially with the block size N. It would be practical, therefore, to
reduce this complexity by performing some sort of reduced search through V), possibly
with a minimal loss in performance. At the same time, imposing some structure on V

should help in this regard.

2.2.2 Performance of the Maximum Likelihood Detector

Let us assume that the i*® vector was transrmttcd. We have, therefore, that the received

vector is

y = Te®f; +n (2.16)

and that ihe decision rule may be expressed as

max I|TNe"4’pm. 4+ Np| = U (2.17;

m=1,2,...’|v

where p,,, is the normalized complex correlation between the i** tnd mt* transmitted

vectors given by

Pmr = %imf: = (l/N) kgexp [.7 (215') (C'mk - Czk)] (218)

and N,, is a complex gaussian random variable with mean zero and variance o = NNg
given by
Np, =f,.n*. (2.19)

If we separate N,, into its real and imaginary components which are independent
and identically distributed
Ny =V + gWh (2.20)

we have the decision variable, U,,, given by

Un = |Vim+TNzpncosd+ 3 (Wi — TN ppm, sin @)
= \/(Vm + TNppicos ¢)? + (W, — TN pp, sin §)?
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This decision variable has a Rice distribution given by

(02 4 2 a2 2
(u + LN p) | ) (¥mTNpm) s (2.21)
20% ol

Um
exp

pUm(um) = 0__12\;

In order to determine the probability of error we follow a union bounding ap-
proach which indicates that the probability
P(m,1) = Pr[U, < Uy, | f; transmitted], m=1,2,---,|V|,m #1 (2.22)
must be determined. Clearly, this may be expressed equivalently as
P(m,i) = PrlU? < U2|f; transmitted], m=1,2,---,|V|,m #1 (2.23)
which is shown in [17, p. 207] to be
P(m,s) = Q(a, b) %e~(a’+b’>/210(ab) (2.24)

where Q(a,b) is the Marcum Q-function and

e ] ey
b= N [+ VT ol

with « being the SNR. per symbol. For high SNR and pn, > 0 this expression may be

approximated by [3]

P(m,i) ~ [%}—)ﬁj—"']%[ V(T lpm)| (2.25)

The union bound for the overall probability of error associated with the i** transmitted

vector (for high SNR) may therefore be expressed as
14

P) < Y P(m,i) (2.26)
i
It is useful to define a distance metric to express (2.25) in a manner analogous

to the corresponding performance measure for coherent detection. The metric is termed

the non-coherent distance between the m!* and 2t transmitted vectors and is given by

dyc(m,i) = N(1 = |pmi]) (2.27)
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so that (2.25) may be expressed as

P(m,i) ~ [ I~ C(’(';:{;’] [,/yd,,,c (m z] (2.28)

The performance measure is therefore determined by the minimum d3 over all pairs of
transmitted vectors, as this is the dominant term in the union bound of (2.26). Equiv-
alently, we may consider the maximum correlation magnitude as the performance mea-

sure.

It was previously mentioned that for uncoded MPSK it is impossible to perform
non-coherent detection. This can be shown by computing the maximum correlation
magnitude in this instance. For uncoded MPSK, the set V consists simply of all the
possible length N vectors whose components are chosen from the integers modulo-M.
If we examine the two vectors, c;and ¢y =c, +(a a -+ a), we have that |pg| = 1
which forces P(a,b) = 1/2. This shows that the uncoded system cannot deal with phase
ambiguities. Consequently, the system is rendered useless, which makes some form of

coding indispensable, in order for true non-coherent detection to be possible.

2.3 Non—-Coherent Detection of Coded MPSK

2.3.1 Multiple-Symbol Differential Detection of MPSK

As was already mentioned, the simplest way to code MPSK for non-coherent detection
is differential encoding. We may consider, however, to implement a receiver based on
the block detection process of section 2.2. This type of receiver and its associated
performance are explored in (1, 3]. The results of these works will be summarized using

the framework presenied in 2.2.

We may view differential encoding as a means to remove the phase ambiguities

which corrupt 2 non-ccherent system. To see this, let us consider the detection of blocks
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composed of N consecutive differentially encoded MPSK symbols. If the N information

symbols which are to be transmitted are denoted by
sin), 1<n<N, 0<i<2V 1, (2.29)

we have that after differential encoding, the transmitted vector v(n) (before modulation)

is given by .
y(n) = (v;(O) +> s;(k)) modM 1<n<N, (2.30)

k=1
where v;(0) is the last symbol of the previously transmitted vector. By expanding out the

dot product in (2.15) for diffentially-encoded blocks, the decision rule may be expressed

as

mpx oo {3 (2) @)} + S v menn {3 (35) [0+ a0}

n=1

Since the term e=2(3)%©) can be factored out from each term in the expansion, the

decision rule becomes

rnax

v+ Svmen{s (3) 5o || (231)

n=1

The first term in (2.31) clearly shows that the each vector in V begins with a zero and,
therefore, we see that the set V in (2.15) is simply all the 2V vectors of length N + 1
which begin with a zero. We have, therefore, that

VweV , vi(a a - a)é¢V, (2.32)

since v+ (a a --- a) does not begin with a zero. This means that by differen-
tially encoding the information vector, s,(n), we can assure that phase ambiguities are

removed.

The decision rule in (2.31) yields the complete receiver structure shown in Fig.2.3.
A modification to 2.31 yields an equivalent structure with comparable complexity[3].

Divsalar et al. [1] also consider a serial implementation of the receiver.
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Figure 2.3: Complete Receiver Structure

As was alluded to earlier, it can be shown that the decision rule (2.31) for the
case N = 1is completely equivalent to that of conventional DPSK detection. Expressing

(2.31) for N =1 we have
max|y*(0) + " (exn { -3 (37) s} (233)
which may be expressed equivalently as
max {y(0)| + ly(1)| + 2l(O)ly(1) cos [13(1) - 13(0) - (57 ) 0]}, (230

and reduces to

max cos [Ly(l) — £y(0) — (?Mt) s‘(l)} , (2.35)
| rniin Ly(1) — Ly(0) - (ng—) s.(l)l mod2~, (2.36)

which is the classic differentially~coherent receiver. We may say, therefore, that differentially-
‘ coherent detection is in fact non—coherent, even in the conventional sense. The perfor-

mance of this scheme approaches that of coherent MPSK as the block length, N is
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increased. Explicitly, the asymptotic degradation in SNR, in terms of the block length

N, was shown in [3] to be

N+1+4+N24+14+2Ncos
D(N) = VA SN M (2.37)

Performance values for various block lengths for QPSK and 8-PSK are shown in Ta-
ble 2.1(taken from [3]). It is seen that simply adding one additional symbol to the

observation interval greatly improves performance over differentially-coherent detection

(N =1).

M N

112 3 4 5 6
4 123(12]0.7710570.45 |037
8128(16( 1.1 10.860.70 { 0.58

Table 2.1: SNR degradation in dB of optimal non-coherent block detection of MPSK
(from [3])

2.3.2 Reduced-complexity receiver structures

The receivers of [1, 3] perform maximum likelihood detection in a brute force fashion.
That is, they search exhaustively through all possible transmitted vectors for the one
which maximizes the decision rule in (2.15). This method, of course, has exponential
complexity (O(M¥)), which may be undesirable for iarge N. It is worthwhile, therefore,
to consider receiver structures with reduced complexity, which may suffer minimal per-
formance loss in comparison to the maximum likelihood receiver. This type of receiver
is considered in [2]. T'wo methods are proposed in this work, both of which attempt to
significantly reduce the search space of the maximum likelihood decoder without sacri-
ficing too much in terms of performance. This reduction in search time is achieved by
making premature decisions on some of the symbols in the block using single symbol

differential detection.
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In the first method, named the 2% algorithm, decisions are made on each symbol
in the block using single symbol differential detection. The N — L most reliable symbols
are then fixed at these decisions and the set of 2¢ candidate vectors is formed by filling
in all possible combinations of best and second best choices in the remaining L positions.
Maximum-likelihcod detection is then performed on this set of candidates via (2.15),
resulting in a complexity of O(2%). It was found by computer simulation that L could
be chosen to be less than K, thereby greatly reducing the search complexity, without
significantly affecting performance. Even for the case L = 1 noticeable improvement is

achieved over ordinary differential detection.

The second method, denoted the N + 1 algorithm, also performs single symbol
differential detection on the entire block, but reduces the search space in a different
fashion. This algorithm has complexity O(NV) and adopts the philosophy that at most a
single error occurs in each block if single symbol differential detection is used. Using this
assumption, N + 1 candidate vectors are formed by placing a second best choice in one
position and fixing the remaining N — 1 positions at their best choice. The performance
of this method for reasonably small N is comparable to that of optimal block detection,

and yet is achieved with a significant reduction in complexity.

In [12] Samejima et al. explore another block detection strategy which exploits
the inherent coding of MDPSK in order to perform non-redundant error correction. Al-
though their method is rather different than the non-coherent block detection schemes
just presented, it can be considered as being a reduced-complexity block detection
scheme since it is quite simple to implement. This work considers using L detectors
in parallel, each of which performs the difference between the i** and (i — k)** symbols
(k =1,---,L) as shown in Fig.2.4. It is shown that this may be viewed as a rate 1/L
convolutional encoder, whose corresponding code is capable of correcting L — 1 errors.
Using this realization an improved receiver is developed which significantly bridges the

gap between differentially-coherent MPSK and coherent MPSK. The receiver makes use
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Figure 2.4: Samejima’s L stage detector

of a syndrome decoding circuit, based on the parity—check matrix of the code correspond-
ing to the L parallel detectors, in order to correct errors in the block. The performance
of this technique is determined analytically by evaluating the occurrence probabilities of
the most likely error patterns at the output of the L stage detector. In order to verify
the correctness of the analytical results an experimental circuit was tested for QPSK
and was shown to perform very close to theoretical predictions. For QPSK and using
L =2 it is shown that a 1.2dB improvement over differentially-coherent detection can
be obtained. By choosing L = 3 this may be increased to 1.7dB. The remainder of the
work considers three important practical issues and how they effect the performance of
the system, namely the effects of receiving filter bandwidth, carrier frequency offset and

. an unbalanced receiver.
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The results of the two reduced-complexity schemes is sumnmarized in Table 2.2,
where the degradation with respect to coherent detection of the various schemes is
presented. In order to avoid confusion, we have used N instead of L to indicate the
order of the Samejima et al. receiver. Wilson et al. only consider the decoding of
8-PSK symbol blocks, since a much larger reduction in complexity is attainable, in
comparison with QPSK, by using the 2Z or N + 1 algorithms instead of a ML decoder.
Samejima et al., however, only consider their receiver structure for QPSK, and, therefore,
a fair comparison of the two strategies cannot be made. We may, however, compare
both to optimal non-coherent block detection of differentially-encoded MPSK, which
is shown in the last column of Table 2.2. We see that the 2° method attains optimal
performance, even for L < N, which allows for a significant reduction in complexity
without suffering a performance penalty. The N +1 method, on the other hand, comes
close to optimal performance for moderate block sizes, whereas for longer block sizes,
in this case N = 10, there is a significant performance penalty. Samsjima’s method, at
least for the small block sizes considered, performs almost as well as the optimal non-
coherent receiver, although it is based on an entirely different premise. More precisely,
they look at demodulation as a decoding problem, which, ten years ago was a pioneering

approach to what is well-known and accepted today.

2.3.3 Error—Control Coding

We have seen that differential encoding, a rather simplistic form of coding, can be used
in non—coherent systems with a minimum performance penalty with respect to coherent
detection, when the block length is increased. We would therefore like to consider more
powerful coding techniques so as even to surpass the performance of uncoded coherent

detection.

Performance enhancement via error-control coding over the gaussian channel is

achieved by adding some sort of redundant information to the signal. This redundancy is
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Method |M | N | L | Degradation(dB) | Optimal(dB)
2L 8151 1.6 0.8(P =107%)
ot 8|53 0.8 0.8(P, = 107°)
2L 81515 0.8 0.8(P, =10"°)

N+1 813]- 1.4 1.0(P, =1075)
N+1 |8]5]- 1.0 0.8(P, = 1075)
N+1 |8 ]10]- 1.0 0.4 (SNR— 00)
Samejima | 4 | 2 | - 1.3 1.2 (SNR- o0)
Samejima | 4 | 3 | - 0.8 0.8(P, =107%)

Table 2.2: Performance comparison of reduced complexity strategies

exploited during the decoding process so as to correct errors introduced by the channel.
The two types of error-control codes which are most widely used in practice are block
codes and convolutional codes. In this work we will consider only the former, and how

they may be used effectively with non—coherent detection of MPSK modulation.

In mathematical terms, a block code is simply a mapping from a K-dimensional
space onto an N-dimensional space; that is, vectors of length K over some specific
symbol alphabet, are transformed into vectors of length N, with the redundancy being
reflected in the N — K additional symbols. The ratio R. = K/N is known as the
code rate, and reflects the code’s redundancy. The codewords are usually selected such
that they are as far apart as possible, according to some distance measure, or metric.
More precisely, codes are constructed so that the minimum distance between all pairs
of codewords is maximized. A block code is said to be linear, in the strictest sense,
if the codewords form an algebraic group. Very often, however, additional structural
constraints are placed on the codes, more often than not to facilitate construction and
to allow for efficient decoding strategies. For example, many of the existing block codes

are subspaces of some abstract vector space.

Traditionally, algebraic coding techniques considered coding and modulation as
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distinct entities. They main problem with this approach is matching the distance mea-
sure used in the design of the code with that of the channel. This is important because
distances in the code space are not necessarily preserved after modulation, which can
be considered as an abstract mapping from the code space onto the signal space. Mod-
ulation can be interpreted, therefore, as a function which warps the distance profile of
a code. Consequently, a code with excellent distance properties in the code space may
be completely useless when combined with certain modulation formats. There are, of
course, certain algebraic metrics which are useful with some modulation formats. For
example, the hamming distance, which is used extensively for binary codes and occa-
sionally non-binary codes as well, is only useful on a coherent Gaussian channel for
binary and ternary modulation [5]. The Lee metric, on the other hand, is suitable for
M-ary phase modulated signals over the coherent Gaussian channel. These two met-
rics are useful in these instances, because they are closely related to euclidean distance
in the signal space, the distance measure associated with perfectly coherent detection.
The hamming distance in these two instances is linearly related to euclidean distance,

whereas the Lee—-metric is a close approximation for phase-modulated signals [4].

In order to alleviate the problem of preserving distances after modulation, it was
later suggested that considering coding and modulation as a combined entity may yield
very fruitful performance rewards [9]. The rational behind this suggestion is that by
using the channel’s distance measure, or the distance metric in the signal space, we can
find a code which maximizes the performance for a given modulation format directly.
Ungerboeck’s trellis-coded modulation [6] revolutionized this realization, and as a result
many practical systems have emerged using his techniques. Given the success of this
technique it would be natural to attempt to design codes according to the distance
measure for non—coherent block detection of MPSK given in (2.27), which will be the

subject of the next chapter.
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2.3.4 Error-Control in Non—Coherent Systems

In comparison with coherent systems, very little attention has been given to the coding
problem for non-coherent systems per se. Nevertheless, some methods exist for coding
of MPSK for use with differentially—coherent detection. In [10], Nakamura develops a
class of linear codes over the ring of integers modulo M for use with MDPSK channels,
which is the natural choice for a symbol alphabet to use in conjunction with MPSK.
These are cyclic codes designed for the Lee metric, and their construction is somewhat
reminiscent to that of the well-known BCH codes. Codes of various rates for M = 4
and M = 8 are presented which are capable of correcting all single and double Lee
errors. This work only considers the problem of constructing codes for the Lee metric
and presents the associated algebraic concepts required. Unfortunately, no mention is
made concerning the performance of the codes over gaussian channels and of decoding
strategies. Although incomplete, this work does shed light on the problem of finding an

appropriate algebraic structure for coding MPSK, namely codes defined over the ring of

integers modulo M.

Rhodes considers binary block codes for use with binary DPSK modulation in
[11]). These codes are made up of N = 2" orthogonal codewords of length N, n being
the number of information bits, and are a generalization of the single symbol(N = 1)
case. The N codewords are formed using all possible linear combinations of a basis set
of n codewords plus the all-zero codeword. Tables 2.3 and 2.4 show the construction
of the codes for the case N = 8 and are taken from [11]. The idea of differentially—
coherent detection is naturally extended to differential detecticn between code blocks.
The performance of these codes is determined analytically and results are presented for
both coherent and non-coherent binary DPSK and show that significant coding gain
may be obtained with reasonably small block lengths. These gains are summarized for
non-coherent detection in Table 2.5. The main disadvantage of these codes is that in

order to achieve significant coding gain, the code rate must be quite low, which implies
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Basis Number Codeword
0 0000 O0OTO0TO
20 =1 01 01 1 01
2! = 00110011
22 =4 00001 111

Table 2.3: Extended basis set for generating an orthogonal code of length N=8

Orthogonal Word Number | Terms of Basis Set Codeword
0 0 0 0
1
2
142
4
1+4
244
142+4

0 0
01
11
10
11
1 0
1 1

1
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Table 2.4: Extended basis set for generating an orthogonal code of length N=8

that substantial bandwidth expansion is needed. Secondly, the work only addresses the
binary case which, although important, is quite limiting. In terms of complexity, this
system, in one particular instance (N = 16), is roughly comparable to that of a 16-state
convolutional code with Viterbi decoding, both of which, using coherent detection, share

similar performance characteristics.

In [13], Divsalar et al. apply the idea of multiple-symbol detection to trellis-
coded MDPSK which, however, only yields marginal improvement at the expense of a
significant increase in complexity. Their decoder uses a sub-optimal modification of the
Viterbi Algorithm which uses multiple-symbol decisions to make up the path metrics.

Two examples of codes are given. The first is a two-state rate 1/2 trellis-coded DQPSK
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N Asymptotic coding gain
relative to uncoded DPSK(dB)

4 3.0

8 4.0

16 4.8

32 5.4

Table 2.5: Asymptotic Performance of Rhodes’ scheme for different values of N

system. At a bit error rate of 10~° there is an improvement of approximately 0.25dB
going from a conventional N = 2 receiver to one with N = 3. Both simulation and
analytical results are given to demonstrate the improvement. The second example is
a 16-state, rate 2/3 trellis—coded 8-DPSK system. Using only simulations, it is shown
that at a bit error-rate of 10~, an approximate 0.75dB improvement is attainable by

going from a conventional N = 2 receiver to an N = 3 receiver.

Recently, there have been some simple codes developed for non—coherent block
detection of Minimum Shift Keying (MSK) [14]. Although this is a modulation scheme
rather different than MPSK, the detection process is somewhat similar since the dis-
tance metric is identical. This work explores the use of simple binary block codes to
significantly improve performance over an uncoded MSK system. The code redundancy
is designed so as to combine effectively with the inherent MSK redundancy and to in-
crease the minimum non-coherent distance. The performance enhancement is achieved
by determining the most likely error patterns, or equivalently those codewords which
have the smallest non-coherent distance from the zero codeword. Once determined, as
many of these as possible are excluded from the code by choosing an appropriate parity-
check matrix which, in turn, defines the code. These codes expand bandwidth in order

to achieve coding gain over an uncoded system.




Chapter 3

A Class of Codes for Non—Coherent
Detection of MPSK

3.1 The ring Z and MPSK

As was stated at the beginning of the last chapter, the mapping for MPSK, Fypsk :
ZM - C’

27

Fupsk(a) = exp [j (1\_4.) a] ., o€ Zy, (3.1)

translates the ring of integers modulo-M, Zjs, into M distinct phasors along the unit
circle. For the moment, let us consider Zps only as an algebraic group under addition
modulo-M, and note that the set of MPSK signal points also forms a group under
complex multiplication. The important aspect about the mapping Fupsk : Zu — C, i8

that it is an isomorphism. An isomorphism is defined as follows:

Definition 1 An isomorphism between two groups (G,-) and (H,o) i3 a one-to—one
mapping between the elements of G and ‘H such that, if ag € G & ay € H and bg €

Geo by € Hthenag-bg < agoby

24
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Clearly, by using addition modulo-M as the composition operation for Zp(G) and
similarly complex multiplication for the set of MPSK signal points(*), the mapping
Fripsk : Zu — C is an isomorphism. This is important since it allows us to use Zpr and
the set of MPSK signal points interchangeably, which simplifies the matter of designing
codes specifically for MPSK modulation.

Another aspect concerning a mapping which also plays an important role in the
construction of codes for a particular signal set, is whether or not it is matched for a

particular distance measure,d(:, -) in the signal space. A definition for “matching” is as

follows

Definition 2 A mapping u from a group (G, ) onto a signal set S is a matched mapping

for a particular distance measure d(-,-) if, for all g and g’ in G,

d(u(9), #(g")) = d(u(g™* - ¢'), u(€)), (3.2)

where € is the identity zero element of (G,-) and g~! is the inverse of the element g.

This definition is similar to one given in [16], except that we do not make the assumption

that the distance measure d(-,-) is a proper metric.

In our case the distance measure is the non—coherent distance d% (-, -) defined in
(2.27) of the previous chapter. This distance is defined for blocks of MPSK symbols, and
therefore we must consider the extension group of Zy, denoted Z3}. Z} is simply the
set of length N vectors whose components are elements of Zas. It is clear that ZJ is also
a group if we consider componentwise addition as the composition operation. Suppose
that we have a collection of vectors C which form a subgroup of ZJv, and consider two
members of C, c¢; and cj. As in the previous chapter, p,, is defined as the complex

correlation coefficient between the i*# and j** transmitted vectors given by

1., 1Y 27
pi = 8} = N,E exp [J (ﬁ) (cij — c,-k)] : (3.3)
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Since ¢j and c; are elements of a group, ¢; — ¢; must also be an element,cq, of the same

group. We have, therefore, that
Piy = Pa,0; (3.4)

where 0 corresponds to the all-zero codeword,cg, or the identity element of C. From

this, it is clear that

dyc(Fupsk(ci), Fupsk(c;) = dyo(Fupsk(cq), Fapsk(co)), (3.5)

where the mapping Fypsk now operates componentwise on a vector in 2y, and, there-

fore, the mapping is matched for the non-coherent distance.

3.2 Module-Phase Codes

We now consider an algebraic framework for block-coded M-PSK modulation. First
of all, we would like the codes to be subgroups of Z{¥, so that they are linear or group
codes. A second reason for this restriction relates to the idea of matching. If the codes
are subgroups of Z{y we have seen that the mapping from the code vectors to the signal
space is matched for the non-coherent distance. This is important because it is related to
the distance profile of the code. Since the mapping is matched, we need only determine
the distances from each codeword to the all-zero codeword, since the distance between
any arbitrary pair of codewords may be computed using (3.5). This assures that the

codes are superlinear(18].

Up until this point we have considered only the additive properties of Zp and it
sufficed, therefore, to consider it as a group, and similarly Z8} as its extension group.
In fact, since Zy is actually a ring, we may look at ZJy in a more flexible way, from
the standpoint of coding. It is actually an example of an another algebraic abstraction
known as a module. A module, simply put, is the generalization of a vector space, where

the scalars now belong to an arbitrary ring rather than to a field. The codes we are
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considering, called module-phase codes, are sub-modules of 2}, which are still groups as
before, but have additional properties which will prove most useful both in the definition

of codes over Zps and in their construction for the non-coherent distance measure, d};¢.

Sub-modules are analogs of sub-spaces of a vector space, and are themselves
modules, hence the name module-phase codes. This framework has previously been
proposed for block codes over Zps for the Hamming metric [19] and Lee-metric [20].

Recalling the properties of a Zy—module, we have that a code C over Zy is such that

1. C forms a commutative group under vector addition

2. Vx,y € Cand), u € Zp we have

(a) A(ux) = (M)
(b) Ix=x
(€) (A + p)x = Ax + px

(d) Mx+y)=Ix+Xdy

The concept of linear independence for modules remains the same as in the case
of vectors over fields. The codes are free modules which have the property that they
may be finitely generated by a set of linearly independent vectors, called generators,

€1,82, Bk € ZN, which are said to form a basis for C. We have, therefore, that

every codeword c¢,, € C can be expressed as

K
Cm = D Tmiis (3.6)

1=1
where z,,; € Zps. We can define this equivalently as

g1

g
Cm = Xm _2 = XmG, (3.7)

8K
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where G is the (N — K) x N generator matrix for C and X, = (Tm1 *++ Tmk ) is the
information vector. The K-dimensional information vectors, X,,, belong to the module
ZK. Therefore, a module code is the image of an injective homomorphism from Zf to

2} determined by the generator matrix G.

Since we are using matrices over rings, it is important to note the similarities
and differences with the case of matrices over fields. The only concepts that will be
of interest to us are rank, singularity, and elementary row operations. The rank of a
matrix is identical to the case over fields, it is simply the maximum number of linearly
independent rows. The generator matrices for our codes, for example, have rank K.
The idea of singular matrices differs somewhat from the case over fields. In general, a
matrix is singular if its determinant is an element which is not invertible. In the case of
fields, all elements except zero are invertible, and therefore we need only assure that the
determinant is non-zero to assess whether or not a matrix is non-singular. In general,
rings have elements other than zero which are not invertible, and are known as zero
divisors. As is the case over fields, a non-singular matrix is invertible. The concept of
elementary row operations on a matrix is also similar, with the added restriction that

only multiplication of a row by an invertible element is permitted.

The only restriction that we put on the rows of the generator matrix, G, is that
they are linearly independent. It follows, therefore, that there must exist at least one
set of K columns from G such that the square matrix made up of these columns is
non-singular. Let us denote this matrix by Q, and define a new generator matrix G’
given by

G' =Q7'G. (3.8)

Clearly, G’ is a generator matrix for the same code. The only thing that is altered is
the mapping from the information vectors X,, to the codewords in C. What is useful
about this new generator matrix, however, is that is always places an exact copy of the

information vector in the K positions of each codeword corresponding to the K columns
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chosen for Q. Such a matrix is said to be in systematic form. In other words, the K
columns in G’ that correspond to the K columns chosen for Q contain the K x K identity
matrix, Ix. Since interchanging columns does not alter the code, we may obtain a new
generator matrix by permuting the columns of G’ such that the K information symbols
occur in first K positions of every codeword. Using these suitable transformations, we

may always express any generator matrix in systematic form as

G=(Ix | pi - p(TN—K))‘ (3.9)

The codes may be equivalently defined as the vectors from Z§j which belong to
the kernel of an (N — K) x N-dimensional matrix H of rank N — K. We have, therefore,

that
VeeC <= cHT = 0. (3.10)

Since the generators are themselves codewords, it follows that GHT = 0 and the corre-

sponding form for H is given, therefore, by

—P1
H= ( : IN_K) . (3.11)

—P(N-K)

3.3 A Method for Building Codes

Using the algebraic structure just presented, we present a technique for finding a set of
generators that define a submodule of Z1y with reduced maximum correlation magnitude
|Pmaz]- It is this reduction in |pmer| which leads to improved performance over an
uncoded system. In order to quantify the performance enhancement achieved by coding,
we will use the measure known as coding gain. Coding gain is defined as the difference
in decibels(dB) between the signal-to-noise ratios(SNR) of a coded scheme and an
uncoded reference scheme operating at the same error probability. For convenience, all

of the codes that will be presented in this chapter will be compared to uncoded coherent
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MPSK. This is done because the performance of uncoded coherent MPSK is al:vays a
lower bound to any of the non-coherent block detection schemes, and therefore if these
coded schemes outperform coherent MPSK, they will necessarily outperform any block

detection scheme and clearly differentially—coherent detection as well.

We note that the probability of symbol error for uncoded coherent MPSK is given
approximately by [2]

P.~2Q ( (1 = cos %)) . (3.12)

Similarly for an (N, K) coded scheme with non-coherent distance d% ¢ at high SNR, the

probability of codeword error with non-coherent detection is given approximately by

Peodeword ™ Ny, [.I_VI_\}G;I._lnd_/E] Q ( (K) ’Yd ) (313)

where N,, is the number of codewords which share the distance, d%. The factor K/N
is due to bandwidth expansion, since K information symbols are contained in each
codeword of length N. We have, therefore, that the asymptotic coding gain is given by
K 4
e (5
G 0log [ N

If we look at the set of possible correlations created by the N-tuples ZJ, as

] dB. (3.14)

l—cosM

depicted in Fig.3.1 for 2§, we would like to choose a submodule such that |pm| < Pmag,
for all m. This amounts to creating a code which selects a set of correlations that
lie within a circle of radius 74z, and therefore has dicmn = N(1 — Tmaz). The best
scenario would be if the set of correlations were very packed, as opposed to being spread
throughout the range of possible values. An example is shown in Fig. 3.2, where we

show a possible set of correlations for a code which has d¢,.;, = 2.

3.3.1 Code Design by Exclusion of Unwanted Vectors

In order to choose submodules of Z}¥ which limit the correlation magnitude, the vectors

with large |pm| in ZY must be determined. Let us assume that we want to generate
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Figure 3.1: Possible correlation values for an uncoded system in Zg

a code which has a maximum correlation magnitude, |pmax|. The following method
attempts to exclude these vectors from the desired code, C. Let us create a list, Lo,
which consists of the vectors that are to be excluded from C. These are the vectors with

|om| > |pmax|- Consider now an N-dimensional vector given by
ho=(ha ha - hgvony 1). (3.15)

We will choose the initial code, Co, as the kernel of hy, which is chosen so as to exclude

as many vectors from Ly as possible. The kernel of hg defines a rate (N — 1) /N code

having a generator matrix given by

GO = [IN—I I ( —'hOI '_h02 tee _hO(N—l) )T]' (3'16)

The matrix G, defines an injective homomorphism from Zp~' to ZJ denoted

by
Gp: 21 Ss, ZN (3.17)
The image of Gy, im(Gy), is the code generated by Go, Co. Let L'y be the set of vectors

from Lo which also belong to im(Go), and let L; be the set of vectors from Zﬁ'l which
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Figure 3.2: Possible correlation values for a coded system in Z§

are mapped by Gq into L'y. It is clear that |L;| < |Lo| because of the construction of
Go. We can now repeat this procedure again with respect to the list(set) L,. We choose
an (N — 1)-dimensional vector hy = (hy; -+ hyw-z) 1) such that as many vectors
as possible from L, are excluded from its kernel. Let us consider the generator matrix

associated with h;, defined by
((=hu1 -+ —hyn-z) )T | In-2) (3.18)

and its associated injective homomorphism

Gp: ZN-2 G, g1 (3.19)
defined by
¢, = x;Gy. (3.20)

The code C; is defined as the image of the composition
Gy Gy: 2N-2 G, gN-1 Go, N (3.21)

Now let L'; be the set of vectors from L; which also belong to im(G;). It is clear that

|L'1| < |L;|. We may therefore continue this procedure until we have excluded all the
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required vectors. The procedure ends since |Lo| > |L1| > |Ly] - - - (at each stage we must
get rid of at least one vector from the list), and |Lo| < co. The maximum number of
iterations is | Lo|, but the actual number of iterations is far less due to the fact that far
more than one vector is eliminated at each stage. Assuming that we require N — K steps
to remove all the vectors, we are left with an (N, K) code having a generator matrix G
given by

G =Gy_k-1GN-K-2' - G1Gy, (3.22)
where G; is a (N — 1 —1) x (N — 1) matrix. It should be noted that the performance
(ie. the minimum-weight codeword) after each step does not necessarily improve, since
we are simply trying to remove as many vectors as possible at each step. After all the
vectors are removed, however, we are guaranteed an improvement in performance that
is dictated by the weight of the codeword(s) lying just outside Lo. The factorization
in (3.22) may be viewed as a concatenated coding system which uses K coding stages

rather than the conventional two-stage approach [15].

It should be pointed out that the construction method can be modified somewhat
to allow for more efficient searching methods. Provided that all the h-vectors and
corresponding generator matrices are chosen in systematic form, we may search for the h-
vectors in any order. For instance, suppose that we wanted to create a code with specific
N and K. We could begin searching for each h-vector in the order ho, hy,- -, hy_g_1,
as dictated by the construction method with the hope that at the end of the search,
we have decleted all the undesired vectors. We may also search in the reverse sense,
beginning with hy_k_;. Starting from the initial list Lo, we create a new list, L{,, which
is contains all the distinct length K + 1 vectors coming from the first K + 1 positions of
all the vectors in Ly. We then choose hy_g_; such that as many of the vectors in Lj lie
outside its kernel. For each vector, x, which is deleted from L{ we delete those vectors
from Ly whose first K + 1 positions are identical to x. In general, the number of vectors
deleted from L, will be greater than those deleted from Lj. The vectors from Lo which

remain undeleted make up the list L;. We repeat the same procedure on the list L;
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with the vector hy_k_2, and continue to repeat it until we reach hg, hopefully having
removed all the undesired vectors along the way. In the end, the factorization of the
code’s generator matrix will, of course, be in the same form as in (3.22). This alternate
view of looking at the code construction method will be used to find some of the codes
in this chapter, as well as to search for codes tailored specially for the decoding strategy

presented in the next chapter.

3.3.2 Selection of the first vector, hy

Let us consider codes with only one parity symbol. We need only consider, therefore, the
construction of hg, whose main function will be to remove phase ambiguities, which are
catastrophic in any non-coherent system. Phase ambiguities are caused by the vectors
(¢ a --- a), where a € Zy, a # 0. It should be clear that if these vectors belong
to C there would be no way of distinguishing any codeword ¢ fromc+(a a -+ a)

since |pm| is invariant to any phase shift a. For phase vectors having equal components

we have |pm| = 1, and therefore the function of hg is to exclude the vectors having
d?vc = 0.
Theorem 1 In order for the vectors (. o« --- a) to be outside the kernel of ho,

where a € Zy, ¢ # 0, the sum of the components of ho must be an invertible element in

ZMm.

Proof. Let A = >N-1h,, and v be any of the vectors that cause phase ambiguities

which are to lie outside the kernel of hg. We have, therefore, that
vheT = al. (3.23)

In order for this expression not to be zero, for all & (a # 0), which assures that v lies

outside the kernel of hg, we require that A be an invertible element. The requirement,
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therefore, to assure that phase ambiguities are removed from the code is given by

N-1
A= Z ho, = any invertible element in Z)y Q.E.D. (3.24)

1=0

We will now show that it is not possible to remove all of the next worst case
vectors with ho. From the definition for |p,»| in (2.18) it should be clear that the next
worst case vectors are those which contain N —1 identical symbols, ¢, and one of the two
symbols nearest to a, either a+1 or o—1. This is depicted in Figure 3.3, where we show
pm composed of N —1 phasors pointing in the same direction (corresponding to the phase
@) and one pointingithxpwards or downwards in the next closest direction (corresponding
toa+1 or a—1): The angle (zﬁ") corresponds to the symbols 1 and M —1(—1) in Zpy,
and therefore the next to worst case vectors have correlation magnitude

N-1 1

2n
lom| = I_J—V— + exp (Jﬁ) : (3.25)
. waem==» NCXE L0 Worst casc |p]
.,.---"'.- 21t/M
6-#;.»"_’_______ N-1/N N worst casc Ipl
E—
=™ next to worst casc |p|
Figure 3.3: Worst Case and next to worst case correlation values
We have, therefore, that phase vectors of the form
(¢ -+ a a4+l a -+ a) (3.26)
and
(¢ - @a a—1 a -+ a) (3.27)

are the sources of the largest correlations [pm| < 1. Letting hg act on the first of these

two vectors yields

(@ -+ a+1 a -+ a)hd =la+ hg, (3.28)
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where 1 is the position of a + 1 in the vector. Since Aa is a distinct element in 2y for

every a because ) is not zero divisor, there will be exactly one «a satisfying
Aa+ hy = 0. (3.29)

Using this argument for each component of hy implies that N such vectors must remain

after applying ho. The situation is identical, of course, for the second vector.

We may therefore conclude that hy may be chosen arbitrarily as long as (3.24) is
satisfied and that its function is to remove phase ambiguities. This being the case, let
us choose

ho=(1 0 --- 0). (3.30)
This amounts to choosing as codewords, all the vectors from ZJy beginning with a zero.

One of the corresponding generator matrices has the form
Go = ( ON-IT I IN._] ) (331)

Another equivalent generator matrix will be considered shortly. The generator matrix
Go in (3.31) corresponds to a phase ambiguity removing code which is the most inner

stage in (3.22).

3.3.3 Code Rate Improvement and Differential Encoding

The choice for hy in (3.30) is particularly interesting since it allows an improvement
in the rate of the code, as we shall now demonstrate. First of all, since all phase
ambiguities are removed by applying hy, we may choose to transmit a codeword from
C, or equivalently, from any of its cosets C+ (a a -+ a), Va € Zu, since |pp| is
invariant over these cosets. Therefore, if we wish to transmit a certain codeword c;, we
may equivalently transmit ¢; = ¢; + ¢jy_qy(1 1 -+ 1), where ¢jy_,y is the last
symbol of the previous codeword, ¢|. With the aforementioned choice for hy, it is clear

that the last symbol of the previous codeword will be identical to the first symbol of
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the next codeword, and clearly only one need be transmitted. This overlapping effect

therefore increases the rate of the code by N/(N —1).

The other interesting point that arises due to this choice for hg combined with the
overlapping effect is that this scheme is equivalent to differential encoding. The differen-
tial encoding process may be viewed as first multiplying an N-dimensional information

vector by a generator matrix of the form

01 1 1
00 1 1

Gy = (3.32)
1
000 1

to yield an N 4 1-dimensional codeword. Every symbol of the codeword is then incre-
mented by the value of the last symbol of the previous codeword, then the codeword
is overlapped with the previous codeword. These two operations, multiplication by Gq
and codeword overlapping, are equivalent to regular differential encoding. Clearly, Ga
is row-wise equivalent to the matrix in (3.31), and thus the two schemes are equivalent.
Therefore, using hy alone, we have codes that do not expand bandwidth (ie. R, = 1)
with respect to M-PSK, remove phase ambiguities but suffer some degradation with
respect to coherent detection. The performance of these codes is equivalent to the non-
coherent detection schemes of [1]-[3] where it is shown that the SNR degradation with
respect to coherent M-PSK is reduced by increasing the codeword length N.

Using codeword overlapping, we have that the :** transmitted block, b;, including

the last symbol of the previous block, is given by,
b; =[b-iny Xxi]G (3.33)

where b;_; y is the last symbol of the previously transmitted block, x; is the information
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vector of the i** codeword, and G is a (K + 1) x (N + 1) matrix given by

1111 - 1\
0
00 ... 0 1 1 .. 1
Gc R NxK 5 . Gc
Gover :
\ 0 ),

The K x N matrix G is the generator matrix of what we call the outer code, that is the
one corresponding to the parity-check vectors, hy, .-, hy_g, which is responsible for
achieving coding gain over an uncoded system. The matrix Gg is a N x (N +1) generator
matrix of a phase ambiguity removing code similar to (3.31), and the N x (N +1) matrix

Gouer reflects the overlapping operation.

Although it is not necessary to employ this codeword overlapping technique in
order to design codes for non-coherent detection, we maintain that by doing so, the
resulting codes will perform at least as well, if not better, than codes that do not use
it. To see this, let us assume that we have two (N, K) codes C; and C;. In addition,
with C; we will employ codeword overlapping. This mcans that for C;, the observation
interval will be N + 1 symbols, whereas the one with C; will be N symbols. Codeword
overlapping assures that each codeword begins with a zero, as this is the function of
ho. This makes the complex correlations of the remaining vectors the same as that of a
scheme of length N, except that they are all shifted to the right by one unit, as shown
in Fig.3.4(a). In order for a code to have a given d%, we must remove all the vectors
with complex correlations lying in the annulus bounded by the circles of radii N +1 and
N+1—d% for C; and N and N —d% for C; as shown in Fig.3.4(b). Clearly, far fewer of
the vectors need be excluded for the code which uses codeword overlapping which makes
the chances of designing more powerful codes much better. What this really implies is
that the outer code for a system which employs codeword overlapping has to do much
less work to remove the unwanted vectors. Consequently, from this point onward we

will assume that codeword overlapping is performed, and we will concentrate only on
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()
Figure 3.4: Advantage of codeword overlapping

the design of the outer code.

3.3.4 Design of h; to Yield Coding Gain

We now consider h; in order to devise some codes which exhibit minimal bandwidth
expansion (R, = (N — 1)/N) but achieve coding gain with respect to coherent M-PSK.
The form of h; is somewhat dependent on the desired codeword length, and therefore
as an example we will consider building a code with N = 9 in Zg, so that the rate of
the code is 8/9. After applying hg the remaining worst vectors are shown in Table 3.1,
which corresponds to the list Lj as previously defined (note that the vectors are actually

of length N 4 1 = 10 since we perform codeword overlapping.)

Recalling that h; acts on the module ZJ}, we must focus our attention on the
symbols in positions 1 through 9 which make up the vector from ZJ. The collection

of vectors composed of the symbols from these positions correspond to the list L;. In
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order for as many vectors from L, as possible to lie outside the kernel of h,, we have

the following constraints on the form of h;:

1. Y8 hy #0
2. hy#0,0<i<8
3. ifhy, =a,hy;# —a 0<;5<8

4. no sum of any 8 h;, can be zero.

Each of the four constraints on h; applies to a particular set of vectors from
Table 3.1, and assures that none in that corresponding set belong to its kernel. The first
constraint applies to the vectors in set 1 and is essentially the same as the condition
imposed on the form for ho (3.24) since the two vectors are strings of one symbol;
however, the requirement for the sum is that it not be zero (the strings are made up
only of 1’s or 7's). The second constraint, for the vectors in set 2, is required since the
vectors are permutations of the vectors having only a single non-zero component (1 or
7) and therefore h; may not have a zero in any position. The third constraint simply
requires that no two components of h; may be additive inverses of each other, since set
3 contains all permutations of the vectors with only two non-zero components which are
identical (1 or 7). The fourth constraint similar to the first since the vectors in set 4 are
permutations of the vectors with a single 0 and eight 1’s or 7’s. The last set of vectors
(set no. 5) in the table cannot be entirely removed with h; since it would require that
no symbol in h; is repeated, which is impossible for a vector in Z§. One possible vector

which satisfies all four constraints is
hy=(1 1 -~ 1 2 3) (3.35)

and results in a code with d%; = .586. In establishing the performance of this code with

respect to coherent 8-PSK, we use the relation in (3.14) which yields a coding gain of

G. = 10log 3.586/(1 ~ cos )] = 2.504B. (3.36)
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Set no Vector lpm |
1 o I 5 1 11 11 1 1 9733
0o 7 7 v 7117 71 9733

2 0 7 0 0 00 0 0C 0 O 9733
0 07 0 00 0 OC O O 89733

8733

0 00 0 00 0O 7 0 9733

0 0 0000 00 0 7 9733

0 1 06 0 00 OO0 ©0 0 9733

0 0} 0 00 00 O O 9733

9733

0 00 0 0 0 C O 1 O 9733

0O 60 0 00 0 G O 1 9733

3 ¢ 1 1 0 0 0 00 O O 9520
0 1 031y 00 0O O O 9520

9520

a 0 0 0 00 01 0 1 9520

0 0 00 00 0 O0 1 1 9520

0 7 7 0 0 0 00 O O 8520

¢ 7 0 7 0 0 0 0 0 O 9520

9520

0 00 0 00CO0T7T O 7 3520

0 0 0 OO OO O 7 7 0520

1 o o ! t 1t 1 1 1 11 9520
o 1t o 1 1 1 11 11 09520

9520

o 11 1 Vv 1 11 0 1 9520

o 1 1 1 1 1 11 1 0 9520

o 0 7 7 7T T TT T 7 9520

o 7T 07T TITTTTT 9520

9520

o ¢+ 7 7 7771 0 7 9520

Q 7 7 7 T 7T 7 7. 7 0 9520

5 0 { 7 0 0 0 0 0 O O o414
¢ 1 07 00 0 O0 OO 9414

. 2414

0 0 0 00 0 07 O 2414

0 0 06 0 0 0 0 7 9411

Table 3.1: Worst Vectors after applying hg

3.4 Results from code searches

In order to find codes with more parity symbols which achieve higher coding gains over
uncoded coherent M-PSK, a computer program was devised to carry out the previously

outlined procedure. Details on the computer searches can be found in Appendix A.

Before discussing the results of the searches, we present a general union bound
on the bit error probability for these codes. Since the codes are linear, each transmitted
codeword has the same probability of error associated with it, and we may consider only

the zero codeword as being transmitted. We have, therefore, that the probability of
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codeword error is bounded by

Ic]-1
Pcodeward < Z P(Co - cm)- (3.37)

m=1
If we retain only the dominant terms in (3.37), which correspond to the codewords
having minimum non-coherent distance, and use the actual pairwise error probability

in (2.24), we obtain the following bound on Podeword for high SNR
Pcodeword S NnP(CO - cm:ighbour) (338)

The codeword Cpeighbour is one which has a distance di, a so-called nearest-neighbour,
and the factor N, is the number of such codewords. We would like to express P.odeword
in terms of 7, the signal-to—noise ratio per transmitted bit. Since there are K log, M

information bits in the N transmitted symbols, we have that

K
7= 77 (loga M) . (3.39)

In order to obtain an expression for the bit error probability, P,, we determine the
average number of bit errors per codeword among the set of codewords with minimum

d% ¢, &, so that
€y
=—Pcoe ord -
Klog, M~ v

In determining &, we will assume that the bit representations of the symbols in Zps are

P, (3.40)

Gray coded. This assures that adjacent symbols differ only in one bit position, which

should make € smaller. Gray coding for Z; and Zg are shown in Fig. 3.5.

Tables 3.2 and 3.3 present the asymptotic coding gain over uncoded coherent
M-PSK for bandwidth-expanding codes in Z4 and Zg that were found. The number of
nearest neighbours, Nj, and the average number of bits in error per block, &, are also
shown. Upon first glance, it may seem that some of these codes achieve only marginal
coding gain. We must note, however, that these gains are expressed with respect to
coherent detection which is a rather ambitious reference. An additional 2.7dB for 8-

PSK and 2.3dB for QPSK must be added to realize the performance improvement over
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2(11) 0(00) 4(110) 0(000)
S(K 7(100)

310 6(101)
Z4 ZS

Figure 3.5: Gray coding for Z, and Zg

an uncoded scheme with differentially—coherent detection. For each code length N, the
values of K were chosen so that the resulting code is more bandwidth efficient than
the next lower order uncoded modulation format (ie. the QPSK codes all convey more
information than uncoded BPSK, and the 8-PSK all convey more information than
uncoded QPSK.) We should also note that many of the codes with one parity symbol,
the (N, N —1) codes, are simply parity-check codes in Zps. These codes are characterized

by a parity check matrix
H=(1 1 .-- 1), (3.41)

which means that the components of every valid codeword must sum to zero modulo-M,

which is a parity-check in Zjy.

We now present the bit—error rate performance of several bandwidth-expanding
codes in Z; and Z3. We have found that many of the codes have weight distributions
with a significant number of codewords near the minimum distance, and therefore a
nearest neighbour approximation to the union-bound is not sufficient even at fairly high
SNR. The following curves all use several of the minimum weights to more accurately

describe the bit—error rate.

In Fig.3.6 we present the probability of bit error for three codes in 24, each
with a single parity check bit. All three codes have a fairly large number of nearest

neighbours, which results in a performance which only reaches asymptotic values for very
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I N l K l e l Nn % | Gam h-vectors
(Coh_QPSk)
3 2 2 00 12 2 000 135 dB hy=( 1«
s | & 200 | 61 2623 222 4B hy=( 1 1 v 0 )
7 | e 200 | 36 | aooo 2234 dB | TR Y
]l,:(a 2 1 2 0 0 1)
7 4 383 44 3 364 A04 dB ly=(3 2 1 0 0 1)
ky=(3 1 1 1 1)
h.:(a 0O 1 2 2 0 0 0 !)
9 | 5 400 17 | 218 347 4B da=(1 3 20 0 001
Ia=(3 1 t ¢ & 0 1)
ll..:(l 1 1 1 0 1)
10| 9 [ 300 | 81 | 1078 258 dB D= 1+ 10 0 10 1 0 10y
h,:(l a1 0 2 1 v 0 e 1)
10 7 2.94 36 anae 313 dB h,=(q 211 0 6 2 0 1)
ll;,:(l 1 11 1 1 0 )
ll,:(a 1 3 2 3 2 % 1 v )
1w | s a7a a4 4227 249 4B la=(1 1t a1 180
by=(3 a v 2 2 v 2 1)
ll..:(a 3 3 3 3 1 1)
11 10 200 132 3333 a3 60 dB lll=(' | R TS TR TR T S TR B | 1)
ll,:(u | S R S U S SR N TR TR B
11 8 295 a8 2842 331 dB Iy=(3 2 2 v 1+ 0 3 1 v 1)
ll3=(l 11 1t Lo 0 1)
]I.:(n O 00 2 0 v N % o2 1)
1 v 382 6 a2 6o7 350 4B ll;:(: 202 0 0 3 1 0 1)
ll_»,:(l 01 3 1 1 6 3 1)
ll4=(| 1% 1 1 1.3 1)
ll,:(a 21 1 0 1t 0 Y3 1 1)
h,:(: 300 0 1 2 23 1)
1] e | 438 | 14 | 42ee 379 4B No=¢o 03 2 1 s 1 4 1)
h..:(a 0 2 % 1 0 0 )
ll!,:(l 11184

Table 3.2: Bandwidth Expanding codes in 2,

high SNR. Even at P, = 10~7 all three have reached only slightly more than half their
asymptotic coding gain. Significant improvement, however, is still achieved compared
with differentially-coherent detection. In Fig.3.7 the performance of four codes with
larger d% . is shown. It can be seen that three of the four codes achieve their asymptotic
performance much more rapidly than was the case with the simple codes, because of
the smaller number of nearest neighbours. Figs. 3.8 and 3.9 present similar results for
codes in Zg. With these codes we must be a little more careful since the more powerful
ones approach the bandwidth efficiency of QPSK, that is to say their throughput is
only slightly higher than uncoded QPSK. Although they achieve significant coding gain
over uncoded coherent 8-PSK, they have an error performance quite close to uncoded
coherent QPSK because of the approximate 3.6dB gap between coherent QPSK and
8-PSK. Of course, comparing these codes in Zg with both differentially~coherent QPSK
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N K J?VC Nn ey Uain h-~vectors
Coh_8-PSK

5 . 586 20 | 1600 204 4B Ny=(1 11 1 1)

s | 5 [ .s8e 30 | 1667 222 dB hy= 113 1 1)

7 1] e sa6 | 86 | 3000 234 4B hy= 11111

7| s 844 12 | 2087 413 4B hi=0s 21200
1= (2 1 1 1 0 1)

) 7 586 42 | 2000 243 dB hy=(G 1 11 1 11 1

s 6 848 16 | 2780 334 dB hi=wsa218200mn
ll, =(2 1 1 1 0 0 1)

o | & X1 42 | 3000 2 504D D= 2111 111 1)

9 4 851 32 | aoez 3 5448 hi=s 45213200
llg =(1 1 1 1 1 @ 0 1)

10| 9 586 90 | 1600 2 5848 hi= v 1 11 10 11 1 1)

10| s 773 10 | 5200 3 25dB hi=ca v 010332101
ll, =(5 5 5 4 4 1 1 1 1)
ll, =(o 0 0 0 2 0 2 0 0 1)

10 k4 1t 07 18 2778 4 08dB dy=(3 6 4 2 5 3 1 0 1)
ly=(2 1 1 1 0 0 0 1)

Table 3.3: Bandwidth Expanding codes in Z;

and 8-PSK still results in significant performance improvements.

45
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Figure 3.6: Performance of some simple QPSK codes
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Figure 3.7: Performance of some more powerful QPSK codes
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3.5 Coding Without Bandwidth Expansion

In this section we present some codes which do not expand bandwidth with respect
to some uncoded reference scheme. Let us assume that we are using a module-phase
code generated by the (K x N) matrix G which can be represented by the homo-
morphism G: ZE S, Z{¥. We will also assume that symbols are transmitted at a rate
R[symbols/sec]. The information per transmitted symbol is (K/N)log, M bits/symbol].
We have, therefore, that the information rate, R; is related to the symbol rate, R, via:
R; = R(K/N)log, Mbits/sec]. Suppose that we have another code G": 2§, <, zy
such that R} = R'(K'/N')log, M'. If the information rates of the two coded systems

are to be the same, we require that
R(K/N)log, M = R'(K'/N')log, M'. (3.42)

If our reference scheme G’ is an uncoded scheme, then K'/N' = 1and R(K/N)log, M =
R'log, M'. In the previous section, the codes were compared with uncoded schemes with

the same M-PSK constellation. Thus, M = M’ and the bandwidth expansion was
R/R = N/K. (3.43)

Since we do not want to expand bandwidth, we are forced to impose the constraint that
R = R'. This shows that we must have a constellation expansion since log, M/log, M' =

N/K. The code rate (K/N) must therefore satisfy
K/N =log, M'/log, M (3.44)
in order not to expand bandwidth with respect to uncoded M’-PSK.

Table 3.4 lists some bandwidth efficient codes and their performance with respect
to some uncoded coherent scheme. All were found by computer search, the details of
which can be found in Appendix A. Some of BPSK equivalent codes (ie. codes which do
not expand bandwidth with respect to uncoded BPSK), have been found by exhaustive
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[ N l K l Ring l d?‘“., l Nn l €y I Gain ] Gc or h-vectors
7 0 0 1 1 3
e* 3 2y 3396 14 2429 2 30dB(BPSK) Gc ={0o 1 0 0 21
0 0 1 2 0 1
h, =(1 1 1 2 0 0 0 1)
s 4 2z, 4000 | 26 | son0 | 3o014B(BPSK) }:9 = :a t 1 00 ") 1)
a=(1 1 2 0 01
h,. =(3 3 1 1 1)
ll, =(2 t 1 0 3 3 0o 1 1)
h, =(0 3 3 0 1 2 1 1)
10 5 24 4597 | 18 | 3778 | 3614B(BPSK) hy=(203 2 00 1 1)
114 =(1 0 0o 2 1 2 1)
hs =(2 1 1 1 2 1)
ll, =(0 0 0 0 0 2 0 v O 0 0 1)
ll, =(2 31 0 01 06 0 @8 0 1)
12 [ 24 4938 26 3154 3 92dB(BPSK) h-” =(1 31 310000 1)
ll.. =(3 1 0 2 2 0 0 0 1)
115 =(3 2 2 1 0 0 0 1)
he =(1 1 1 1 1 1 1)
lh:(xao:t)lxxoa:lox)
h, =(2 0 2 2 01 0 0 O 3 0 2 1)
ll;, =(1 2 3 1 63 2 1 1 01 1)
14 7 24 5 566 s 5 780 4 454B(BPSK) 1]4 =(0 0 0 0 2 01 1 0 1 1)
ll_., =(2 3 2 1 2 0 3 3 1 1)
hG =(1 0 0 1 3 3 3 3 1)
117 =(1 1 1 1 0 1 1 1)
e* 2 2, 4000 | 42 | 2887 | soumnersk) | Ge = (; Ty ;)
ll, =(7 5 2 4 6 1 2 5 1)
9 o Zq 1206 | 10 | 4300 | 1 00d4B(QPSK) hy=(2 47 72 245 1)
ha =(6 6 6 6 3 b 1)
Il, =(6 1 3 6 2 6 7 5 0 7 7 1)
12 | a8} 2g | 1494 | 12 | 82333 | 174aB(QPSK) b=tz 4661645650
h;, ={(5 1 2 2 7 86 2 3 2 1)
h.. ={(5 1 1 1 4 ¢ 1 4 1)
ll,=(004a2a10707?131)
h,=(550451744 6 5 7 3 1)
15 10 24 1 690 6 | 5333 | 2304B(QPSK) ly=¢s ¢+ 3 4 1756 45 66 a3 1)
ll4=(4 & 5§ 2 2 0 0 0 6 4 4 1)
h,, =(1 4 5 0 & 0 1 4 1 1 1)
4* 1 246 2,601 2 1 000 1 19dB(BPSK) Gc =(1 2 5 8)
[ 3 1 Zap 3172 2 2 000 2 00dB(BPSK) Gc =(1 3 5 16 35)
[ 30 1 Z2g4 3539 2 3 oo 2 484B(BPSK) Gc =(1 48 8 27 42 82)
e 1 2428 3,787 2 3 000 2 17dB(BPSK) Gc =(1 105 41 78 93 96 98)
[ 2 1 2356 4015 2 5 000 3 03dB(BPSK) Gc = (1 190 188 26 19 163 143 100)

¥ indicates an exhaustive search

®* indicates an incomplete random search

Table 3.4;: Bandwidth efficient codes

computer searches for optimal generator matrices and are marked with an asterisk.
These codes are interesting because of their simplicity in terms of the small number of
codewords. Those marked with a double asterisk were found by an incomplete random
search, and are therefore not necessarily optimum. The remaining codes were found
using the method of section 3.3. It should be noted that these bandwidth efficient codes

use codeword overlapping, as was the case for the bandwidth expanding codes of the
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previous section. We have, therefore, that blocks are transmitted as in (3.33) and G is

such that (3.44) is satisfied.

We note that some of the BPSK codes use rings having orders larger than four.
Most traditional coded-modulation schemes double the size of the modulation format,
since it was shown in [6] that increasing the modulation order by a factor of more than
two does not significantly improve performance. This does not mean that codes in
these larger constellations have no purpose. In our case, for instance, the (8,4) code in
2,, achieving an asymptotic coding gain of 3dB over uncoded coherent BPSK, has 256
codewords, whereas an asymptotically equivalent code in Z3 has 64 codewords. Clearly,
from a complexity standpoint the code in Zg is preferable. With coherent detection,
however, the penalty for using higher order modulation formats is quite severe, since
carrier phase tracking becomes more difficult as the modulation size grows, and may also
result in some performance degradation. With non-coherent detection, this problem is
non-existent, since carrier phase tracking is not performed. We may, therefore, consider

codes in higher order rings, even from a practical standpoint.

We now present the performance of some of the bandwidth efficient codes. We
must note that, as in the previous section, several of the codewords with small dy are
used and not only the nearest neighbours. Fig.3.10 shows the performance of three very
simple BPSK equivalent codes. They are simple in the sense that they have a small
number of codewords (< 64). The most powerful of the three, is really only powerful
in the asymptotic sense because the number of nearest neighbours is almost as large
as the total number of codewords, and consequently it attains its asymptotic coding
gain very slowly. In Fig.3.11 the performance of three more powerful codes, all in 24 is
shown. They all achieve significant improvement over uncoded BPSK even at moderate
Py. The final set of BPSK equivalent codes is shown in Fig.3.12. They use increasingly
higher order rings to achieve coding gain, which, with non-coherent detection, poses

no practical disadvantage, as was mentioned earlier. Although these codes all have
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Figure 3.10: Performance of some simple BPSK equivalent codes

small number of nearest neighbours (two in each case), they all have many codewords
with distances very near the minimum distance. They do not, therefore, achieve their
asymptotic performance as quickly as one would expect looking only at the nearest
neighbours. Fig.3.13 shows the performance of three QPSK equivalent codes. Clearly
the (15,10) code is the best since it has very good asymptotic performance and a small
number of nearest neighbours. The main drawback with these three codes is the large
number of codewords; in the case of the (15,10) code, it has 23°. Obviously, such large
codes cannot be deccded using a brute force ML decoder, necessitating some sort of

reduced complexity decoding strategy in order for them to be practical.
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Figure 3.11: Performance of some more powerful BPSK equivalent codes
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Figure 3.12: Performance of some BPSK equivalent codes in higher order rings
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Chapter 4

Efficient Decoding of
Module—Phase Codes with

Non—Coherent Detection

While the ML decoder is optimal, the brute force decoding strategy suggested by (2.15)
requires MX comparisons and is therefore computationally inefficient. Moreover, despite
the moderate block lengths of the codes we are considering, it is far too impractical for
most of them. For this reason, the focus of this section will be on reduced-complexity
decoding strategies which attempt to make some the codes more practical from an
implementation standpoint. In some cases, the reduction in complexity comes at the
expense of some performance. Another shortcoming of the brute force decoding strategy
is that it performs a completely unstructured search through the code, neglecting its
inherent algebraic structure. We would like to use this added structure to our advantage

in the design of more efficient decoders.

54
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4.1 A General Two—Stage Decoding Strategy

Let us consider a general framework for a two—stage decoding strategy. During the first
stage the decoder performs hard decisions on each symbol of the received codeword
and, based on these decisions, creates a list of postulated transmitted codewords, P. In
order to create P, the decoder will use knowledge of both the noise characteristics of
the channel and the algebraic structure of the code. In the second stage it performs ML

decoding on P, in order to find the most-likely transmitted codeword among the set of

postulates.

We may express the probability of error for such a two-stage scheme as follows,
Pg < Pg(stage 1) + (1 — Pg(stage 1))Pg(ML) (4.1)

where Pg(stage 1) is the probability of making an error during the first stage, and
Pg(ML) is the probability of error of the ML decoder. Clearly, the decoder will always
make an error in the first stage of decoding if the transmitted codeword is not among
the set of postulates, and therefore the probability of making an error during the first
stage of decoding is the probability of this event. In terms of performance, the decoder
will be effective compared with the ML decoder, if Pg(stage 1) is smaller than Pg(ML).
As far as complexity is concerned, the decoder will be effective if |P| < MX. These
two initial observations reveal that this type of decoder offers a performance versus
complexity tradeoff. More precisely, it would seem that if we were willing to sacrifice

some complexity by increasing |P| we could reduce Pg(stage 1) and vice versa.

The reduced-complexity receiver structures for non-coherent detection of MDPSK
in [2] may be cast into this framework. It must be pointed out that these techniques
were meant for uncoded systems which afford less flexibility in the design of the receiver.
These schemes use single-symbol differential detection to perform hard decisions on the
received sequence. The set of postulates P is created by adding a subset of the most

likely channel error patterns to the hard decisions, based on the reliability of the hard
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decisions. Maximum-likelihood detection is then performed on the set of postulates.

Using this as a starting point, we will generalize this approach for the coded case.

4.2 Two—Stage Non—Coherent Decoding of Module—
Phase Codes

The first stage of the general decoder presented in the previous section requires that
hard decisions be performed on each symbol of the received block. These hard decisions
must be performed in the presence of an unknown phase offset induced by the channel.
Let us assume that the transmitted codeword belongs to an (N, K) code in Zp with
generator matrix, G, and is transmitted using codeword overlapping, as described in
Chapter 3. The decoder must process the single symbol correlations, y,. We may express

the correlations corresponding to the block b;, which were defined in (2.13), as

;= Texp) (¢ + (%) b.,-) + niy (4.2)

where ¢ is the unknown phase offset induced by the channel and n, is a complex gaussian

random variable with mean zero and variance Ny. The term (%&) b, is an element of

the set (2M7r) Zpm = {0, (%) , (%) 2,:--, (%) (M - 1)}, whose elements belong to the
ring of real numbers modulo-27, R,. In order to obtain hard decisions on the received

block we must compute the phase of each of the y,,, each of which may be expressed as
2w
b, = (ﬁ) bij + ¢+, (4.3)

where 7;; is a random phase shift induced by n;,. We should note that ¢,7;;, € Rax. Let
©; be the (N + 1)-dimensional vector

2
O = [80,0n,,0w]= (37 )bi+ 41+ N;

= (2_M”-) [bi1v X%i]G+ ¢1+ N; (4.4)
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which is processed in the first decoding stage, where 1 is an all-one vector, and N; =

[7’60)7711; o )"71’N]~

4.2.1 Generalized Differential Detection

Let us define an (N + 1) x N generalized differential decoding matriz Q over Rax, which
is a phase-offset annihilator when it operates on ©;. Assuming that Q will operate on

the right of ®;, we require, therefore, that
¢1Q = 01 ¢ € RZ‘R' (45)

This condition implies that every column of Q must sum to zero. Let us now examine

the effect of Q on the entire block,®;. Looking at the matrix product, |(2Z) G| Q we
M

have

Gele-G| o o |2 (fesa ) @
\ 0 )

where Qg is the N x N matrix formed by removing the first row from Q. We have,

therefore, that

0q = [(37)xG| aNiQ (4.7)

M
— bi'+NiI

Since we will be performing hard decisions on the vector ®;Q, which corresponds
to quantizing the components of @;Q to the closest elements in (%}) Zp, We require
that

2m

b{.,e(M)zM 0<j<N. (4.8)
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This is because, in the absence of the noise term Nj', the result of performing hard
decisions on ®;Q must be b;’. If this is the case, we can surely recover the transmitted
codeword, x;Ge, correctly, by applying Qs™" to the hard decision vector. We must

assure, therefore, that Qs is invertible.

An important aspect to consider when selecting Q is its effect on the noise vector
N;. We would like to find a form for Q which minimizes the noise variance in each
component of N;'. Since the components of N; are all independent and identically
distributed, the number of times any one of these components is summed to form N;Q
should be as small as possible. This assures that the effect that any one component of
N; has on the entire vector N;Q is minimal. It is reasonable, therefore, to minimize the
number of non-zero elements in each column of Q. We should also assure that |@,;] <1
so that the noise variance is never amplified. It should be clear that the |@;|'s cannot
be greater than zero and strictly less than one, since (4.8) would, in general, be violated.
The components of Q must, therefore, only assume the three values -1,0 or 1, and in
order to satisfy (4.5), there should be only a single (1,-1) pair in each column. This

implies that each component of N;Q is a difference of two components of N;.

The form that we will use for Q which is, in fact, a matrix representation for

ordinary differential detection is given by

(1 o0 ... 0 o0 o)
1 -1 0 -~ 0 0
o 1 -1 0 --- 0
Q= : : R : h (4.9)
o 0 --- 0 1 -1
\ 0 0 --- 0 O 1}

This is, of course, not the only possible good choice for Q. In general, all matrices
which have N —1 rows with two non—zero elements and two rows with a single non-zero
element which satisfy the other requirements will be equivalent since all the components

of N;j are independent.




Chapter 4. Efficient Decoding of Module~Phase Codes with Non-Coherent Detection 59

Let us denote the vector made up of the hard decisions by rg, which is given by

2
ry = (I}) xiGcQs + en, (4.10)

where ey is the error-pattern resulting from making hard decisions on the received
block. Let r be the vector from Zjs which corresponds to ry, r = x;GcQs + €. We
have, therefore, that r is the sum of a codeword from the code generated by G¢Qs and

an error pattern induced by the channel.

4.2.2 Information Set Decoding

The main function of the first stage of the decoder is to create a set of postulate code-
words P. We would like to create P such that at least one of the postulates is the
transmitted codeword, which means that we must somehow cancel or cover the error
pattern e in (4.10). A method for doing this, known as Information Set Decoding was
first used by Prange in [8] for decoding binary cyclic block codes. This method has also
been used for soft-decision decoding of binary block codes [15, p.102], which is exactly
what we intend to do for module-phase codes. The main feature of the method is that it
exploits properties of vector spaces in order to cover a specific number of error patterns.
We will exploit similar properties for the more general case of modules in order to decode

the codes of Chapter 3.

Let us assurne that we have a received vector, r given by
r=x;G+e (4.11)

where G is the generator matrix for an arbitrary (N, K) code in Zp. It should be clear
that if the information positions of the received codeword are error-free, we can recon-
struct the entire codeword correctly simply by applying G to the information vector.
The key property of linear codes which is exploited by this technique is that for a given

code there may be several sets of K symbols, called information sets, which can be used
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to generate the code. By using several information sets we may cover, in the best case,
any error pattern made up of N — K or fewer errors. This is because, in the best case,
any of the (ﬁ) information sets can be used to generate the code, and there will always
be at least one which is error-free for any error pattern having N — K or fewer errors.
In reality, we cannot expect that any information set can be used to generate the code,
since this would require that all K x K sub-matrices of G be non-singular. This is
especially true for matrices over rings due to the larger number of zero divisors. Because
of this we call information set useful if it can be used to generate the entire code. More

precisely, we have the following definition

Definition 3 An information set, denoted by the vector | whose K components are the
locations of information positions, is useful if G can be manipulated via elementary row
operations to form a matriz Gy, such that the columns of G| corresponding to | form the

K x K identity matriz.

If we define a matrix Uy which is the K x K matrix formed by the columns of
G which correspond to 1, we have that 1 is useful if U is non-singular in Zps. If this is

the case, we have that the generator matrix corresponding to | is given by

G = U'G. (4.12)

In the design of the decoder, we determine the maximum number of errors, ¢,
that we wish to cover. Assuming that this can be done for the code we are using, we
choose the minimum number of information sets needed to cover up to ¢ errors, and
compute the appropriate generator matrix for each information set. This can be done
simply by using a greedy algorithm which forms of list of the error positions and chooses
useful information sets one at a time, so that a maximum number of the error patterns
are deleted from the list at each step. This is continued until all the error patterns are
covered. The decoding strategy is quite simple once these have been determined, and is

as follows:
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1. For each information set, 1

2. Create the information vector, x; made up of the components of r corresponding

tol

3. Form the codeword ¢) = G

4. Addc) to P
5. If there are information sets remaining go back to 1

6. Choose the codeword in P closest to the received block according to some distance

criterion as the decoder output

The complexity of this strategy, in terms of number of comparisons, is proportional to

the number of information sets, N;, needed to cover any t-error pattern.

4.2.3 Modifying the basic scheme for non-coherent detection

The received vector, r, in the case of non-coherent detection is the result of making
hard decisions on the differentially-detected block, ®;Q and is given in (4.10). In this
case, the generator matrix which must be used in the algorithm is not G, the generator
matrix of the code, but rather G¢Qs. In addition, the postulated codeword that is
added to P must be post-multiplied by Q! to reverse the effects of Q on the received
block. For the general form for Q in (4.9), we have that Q! is given by

/11 1 - 1 1\
001 1 - 11
00 1 ... 11
Q'=|. . . .. (4.13)
0 0 011
\0 0 0 0 1)
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The basic assumption in the information set decoding algorithm is that there is at
least one information set that is error-free. Unfortunately, because we are using M-ary
modulation combined with the fact that we employ differential detection to perform hard
decisions in the first stage of decoding, this is a fairly unrealistic assumption. A more
reasonable one, in this case, would be that at least one information set contains only small
errors. By small, we mean that no symbol in the information set differs from the actual
symbol in the transmitted codeword by more than one element. We assume, therefore,
that each symbol in the information set is either the actual transmitted symbol, s, or
one of the two symbols closest to s, s+ 1 or s — 1. In order to cover these information
set errors, we will use the 2F algorithm proposed by Wilson et al. in 2] (see chapter 2),
on each information set. This method will cover any small errors in the information set,
while the more serious errors will be trapped in the parity set, as in normal information

set decoding.

In the design of the modified decoder, we first must decide on the number of
information set errors that are to be covered, L (L < K). We must then determine
the maximum number of serious errors, ¢, that we wish to cover. As before, we assume
that this can be done for the code we are using and we choose the minimum number of
information sets needed to cover up to t errors, and compute the appropriate generator

matrix for each information set. The modified decoding strategy is as follows:

1. For each symbol in the block, ®Q, determine the best and second best hard
decisions and the reliabilities of the best decisions

2. For each information set, |

3. Determine the K — L most reliable symbols and set those positions to best decision

in the vector x;,
4. For each of the 2¥ possible choices for the remaining positions in xj, j

5. Form the codeword cj; = x1G)



£
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6. Add c;Q; to P

7. If there are additional possible information set vectors return to 4

8. If there are information sets remaining go back to 2

9. Choose the codeword in P closest in terms of non—coherent distance to the received

block y as the decoder output

The complexity of the this combined scheme, in terms of the number of comparisons, is
proportional to N,2E. In order to reduce the 27 factor in the complexity of this scheme,
we may use only a subset of the 2% possible information set choices. For instance, we
may choose only those vectors which contain less than a certain number of second best
choices. If we were to choose only those vectors which have at most a single second
best choice, it would the same as Wilson’s N + 1 algorithm in [2], and would make the
complexity N,(K + 1). This reduction in complexity would have to be weighed with a

possible loss in performance.

4.3 Searching for codes better suited to Informa-

tion Set Decoding

The only criterion that was used in the code search described in the previous chapter
was to maximize the minimum non-coherent distance, d% ;. As soon as » satisfactory
code was found, the search was terminated. As far as the brute force ML decoder is
concerned, these codes are adequate. This may or may not be the case when we use
an information set decoder. More precisely, because of performance requirements, we
may require to cover a certain number of error patterns which cannot be covered by
the generator matrix of the code that was found. For this reason, it is possible that

the occasion will arise where we must search for equivalent codes, in terms of distance
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properties, which are better suited for information set decoding. By this we mean that
a code which has a larger number of useful information sets is more effective for this

type of decoding.

A simple modification of the search presented in the last chapter can be performed
to find more amenable codes. Let us assume that we want to search for a code equivalent
to one which was already found which has N — K parity-check vectors h;,1 <:< N—K.
We leave any N — K — 1 of these vectors as they are. Let us call the parity-check vector
which we singled out hg(0), 1 < s < N — K which is the vector we will use in the search.
Using the original list of vectors which had to be excluded from the code, Lo, we retain
the vectors which remain after applying the N — K — 1 parity check vectors, and call
this smaller list L,. Create the list L’ by retaining the K + 1 — s leading positions of
each vector in L,. It should be clear, that no vector in L/ is in the kernel of hg(0).
Starting from the initial value hg(0) we continue searching for new hg(k) such that no
vector in L! is in its kernel, which means that hg(k) combined with the other h; define
an equivalent code. At the same time we determine the useful information sets for the

matrix
G = GN-KGN-K-1'-‘Gs(k)- - -G1G0oQs (4.14)

where Gg(k) is the generator matrix corresponding to the parity-check vector, hg(k).
As soon as we find a code which has the desired characteristics, the search is terminated.
If no such code was found, we may try to repeat the procedure with a different search

vector he(0), 1 <r < N - K,r #s.

4.4 Decoding of Various Module—Phase—-Codes

In this section we will consider various examples of codes, and how they may be efficiently
decoded, both in terms of complexity and performance, using the modified information

set decoding algorithm consider in the previous section. We will consider three sets of
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codes

1. bandwidth expanding codes for 8-PSK

2. bandwidth expanding codes for QPSK

3. bandwidth efficient codes equivalent to uncoded BPSK

and present results through the use of computer simulations.

4.4.1 Computer Simulations

Simulation software for the modified information set decoding algorithm over a non-
coherent channel was written in C. The program requires an input file to characterize

the coded system which contains the following parameters:

1. The code parameters, N,K and M
2. The number of information sets to be used, N,

3. Each information set followed by its corresponding generator matrix

The software simulates a complex baseband MPSK system by transmitting the
zero codeword across an additive white gaussian noise channel, while accumulating the
number of bit errors of the decoded output, assuming Gray Coding is used. Complex
gaussian noise is simulated using a uniform pseudo-random sequence generator and an
appropriate transformation. The user supplies a range of SNR values and the number
of experiments to be performed for each noise power level, along with the number of
trials to be performed per experiment. The error statistics of the decoded output, for a
given SNR, consist of the average value for the probability of error over the collection

of experiments, and an estimate of the standard deviation.
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The bit error-rates of the reduced-complexity decoding strategies are compared,
in each case, with the union bound for a ML decoder, an uncoded coherent PSK system
and an uncoded differentially-coherent system. The simulation curves are plotted using
a cubic-spline interpolation of simulation points spaced 1dB apart. The points are
averages over ten experiments, with the number of trials per experiments chosen so as
to have small standard deviation (shown in the figures as vertical bars at each simulation

point).

4.4.2 Bandwidth Expanding Codes in Z;
A (6,5) Code with d%, =2.00

This is a simple parity—check code in Z4 which has an asymptotic coding gain of 2.22dB
over uncoded coherent QPSK. It has the following generator matrix (see Appendix A)

10000 3
01000 3

Gec=|00100 3 (4.15)
00010 3
000013

We have, therefore, that the generator matrix used in the decoder is Ggee = GeQs,

which when expressed in systematic form is given by

10000 2
010003

Gdec=| 0 010 0 0 (4.16)
0001 01
000012

For this code we will use only one information set, and thercfore only attempt
to cover small errors in the information set. We have chosen to simulate two decoders,
one with L = K, and the other with L = K — 1. The results of the simulations are
shown in Fig.4.1. We see that the reduced-complexity strategy with L = K performs
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noticeably better than the union bound for a ML decoder, which means that Pg(stagel),
the probability that the transmitted codeword is not in the set of postulates, is inferior
to Pg(ML). The L = K decoder requires 32 comparisons, compared with the 1024 of a
ML decoder. At P, = 10~5 we attain a coding gain of approximately 1dB over coherent
QPSK, and close to 3.5dB over differentially-coherent QPSK. The L = K — 1 decoder

requires half the number of comparisons (16) but suffers from a noticeable performance

degradation (.25dB at P, = 107%).

Uncoded
ifferentially-coherent QPSK

Bit Error Probabihty

8 1'2 14
SNR/bIt(dB)

Figure 4.1: A (6,5) Code in Z,

A (7,4) Code with d%. = 3.53

This is a more powerful code which has an asymptotic coding gain of 3.04dB over
uncoded coherent QPSK. Consequently, we must cover more errors during the first
stage of decoding. The generator matrix for the code from in Appendix A is capable of
covering single errors, which we have found to be insufficient. It was therefore necessary
to search for a code which is equivalent, in terms of distance properties, and has a larger

number of useful information sets. Using the extended search method of section 4.3
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resulted in an equivalent code which is capable of covering up to two errors using seven
information sets. The generator matrix after performing an extended search is

3 1

g g . (4.17)
21

The seven information sets and their corresponding generator matrices used by the
decoder are given in Table 4.1. It should be clear that all seven matrices are row—wise

equivalent to G¢Qs.

Information Set Generator Matrix Information Set Generator Matrix _
100003 3 (1011000
01003171 011000 3

0123 00107132 0145 002110 3
0001323 \0 01101 1
(1;00300 (1330030
0311100 0121010

0 256 03037210 0 3 46 0230130
\0 201101 \0 33000 1
(210301 0) 1 100300
1011000 1011000

1 246 10037110 1356 2010110
\3 00001 1) 1030301
0 11000 3)

1301001

2345 3300100

300001 1)

Table 4.1: Information sets and generator matrices for decoding a (7,4) code in 2,

The simulation results for this decoder are shown in Fig.4.2. As for the last code,
two decoders were simulated, one having L = K and the other having L = K — 1. In
both cases, the curves are below the union bound for a ML decoder down to P, = 1075,
The L = K decoder requires 112 comparisons compared to 256 for a ML decoder,
whercas the L = K — 1 decoder requires 56. There is, however, a slight degradation
(=~ .2dB) as a result of this reduction in complexity. For the L = K decoder a coding
gain of approximately 2dB is attained over uncoded coherent QPSK at P, = 105, and
approximately 4.2dB over uncoded differentially—coherent QPSK.




Chapter 4. Efficient Decoding of Module-Phase Codes with Non-Coherent Detection 69

10
10°
Uncoded
Differentially-coherent QPSK
z
810 %
8
o
g
ui 10}
<]
10°
6 .
10 2 4 12 14

8
SNR/bit(dB)

Figure 4.2: A (7,4) Code in 2,

4.4.3 Bandwidth Expanding Codes in Z;
A (5,4) Code with d%, = .586

This is a simple parity-check code in Zg which has an asymptotic coding gain of 2.07dB

over uncoded coherent 8-PSK. It has the following generator matrix (see Appendix A)

10007
o100 7
Ge = 00107 (4.18)
00017

We have, therefore, that the generator matrix used in the decoder, Ggec = GcQs, is

given in systematic form by

1 000 3
10100 4

Gdec = 00105 (4.19)
0 001G

As was the case for the parity-check code in Z4 we will use only one information

set. We will also choose L = K = 4 so that no hard decisions are performed on the
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information set. The results of the simulation are shown in Fig.4.3. We see that the
reduced complexity strategy performs quite close to the union bound for a ML decoder
down to P, = 1075, Its’ complexity is also significantly lower, requiring 16 comparisons
instead of 4096. Even at fairly low error rates, we can achieve marginal coding gain
over coherent detection (1dB for P, = 107*). Compared with differentially-coherent

detection, we achieve close to 4.5dB at P, = 10~* with very little complexity.

Uncoded
Diferentially-coherent 8-PSK 3

=
°-

Uncoded
Coh 8-PSK

-~

Bit Error Probability
o

10°F (5.4) Coded NC 8-PSK(2 04dB)

10 12 14 16 18
SNR/bIdB)

Figure 4.3: A (5,4) Code in Z3

A (7,5) Code with d%, = .844

We will now consider the decoding of a more powerful code which has an asymptotic
coding gain of 3.13dB over uncoded coherent 8-PSK. Since this code has a larger d%¢
than in the previous case, we must try to cover more errors in the first stage of the
decoder. In order to do so, we will try to use a minimum number of information sets to
cover any single error. With the generator matrix given in Appendix A we have found
that this cannot be done. A search for an equivalent code with enough useful information

sets to cover these errors was performed. An equivalent code with the following generator
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matrix was found

1000060
0100025

Ge=|00 10066 (4.20)
0001077
0000176

Using this matrix, we require four information sets to cover any single error. The four
generator matrices and their corresponding information sets used by the decoder are

given in Table 4.2

Information Set Generator Matrix Information Set Generator Matrix
[ 1 0 00 03 4 \ 1 32 0 000 \
0100 05 2 0 231000

01 2 3 4 0 010 03 7 0 3 45 6 0 75 0100
0 001 05 7 0 360 010
\0 000 16 7) \0 11000 1)
[ 5 1 00 6 00 \ 7 106 000 \
1 010 300 6 01 7 00O

1 2 3 5 6 3 001 3 00 1 2 4 5 6 1 003 100
3 000 410 7 00 4 01 0
\2 000 70 1) 300300 1)

Table 4.2: Information sets and generator matrices for decoding a (7,5) code

The simulation results are shown in Fig. 4.4. In this case, we have used L =
K = 5. It is seen that we achieve a performance very close to the union bound for
maximum likelihood decoding, with far fewer comparisons (128 instead of 32768). Even
at fairly low error rates, significant coding gain can be achieved over coherent detection.
Compared with differentially-coherent detection at P, = 10~* we attain close to 5.5dB
gain in SNR.
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Figure 4 4: A (7,5) Code in Z4

4.4.4 Bandwidth Efficient Codes
An (8,4) Code in Z, with d4, = 4.00

This is a bandwidth efficient code which has an asymptotic coding gain of 3.01dB over
uncoded coherent BPSK. As was the case for the (7,4) code in Z,, we have found that up
to two errors may be covered using seven information sets, although not with the code
whose generator matrix found in Appendix A. The resulting matrix of an equivalent

code after performing an extended search is

1 00013 32
0 1001313
- 4.21
Ge 001032233 (121)
0 0013023

The seven information sets and their corresponding gencrator matrices used by the

decoder are given in Table 4.3.

‘ The simulation results for this decoder are shown in Fig.4.5. As for the (7,4) code

in Z,, two decoders were simulated, one having L = K and the other having L = K ~1.
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=

o [ e [T
e [ e [T
o (T

Table 4.3: Information sets and generator matrices for decoding a (8,4) code in Z4

The curve for L = K is below the union bound for a ML decoder down to P, = 1075, The
L = K decoder requires 112 comparisons compared to 256 for a ML decoder, whereas the
L = K — 1 decoder requires 56. There is, however, a degradation (~ .25dB) as a result
of this reduction in complexity. For the L = K decoder at P, = 1075, a coding gain
of slightly less than 2dB is attained over uncoded coherent BPSK, and approximately
2.6dB over uncoded differentially-coherent BPSK.

A (14,7) Code in Z, with d%, = 5.566

This is the most powerful BPSK equivalent code that was found and has an asymptotic
coding gain of 4.55dB over uncoded coherent BPSK. we have found a generator matrix
for a code capable of covering up to three errors using twenty information sets, which is

again different that the one found in Appendix A. It is given by

(1000000323311 2)
01000003310130
0010000332221 °1
Ge=|00010003203332 (4.22)
00001000110333
0000010312230 2
(0000001300210 2)
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Figure 4.5: An (8,4) Code in Z,
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The information sets are shown in Table 4.4. The corresponding generator matrices have

not been included here because of space limitations, but can be found simply by (4.12).

The simulation results for this decoder are shown in Fig.4.6. Since this code is much

more complex than the previous ones, we were not able to simulate for low error rates

(< 1075) because of the computing times required for accurate results. We see, however,

that the simulation curve is below the union bound for a ML decoder, indicating that

the reduced complexity decoder performs quite close to a ML decoder. This decoder

requires 2560 comparisons, whereas the ML decoder requires 16384. At P, = 10~ this

code attains a coding gain of approximately 2dB over uncoded coherent BPSK, and

approximately 3.5dB over uncoded differentially-coherent BPSK.
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75

(0 1 2 3 45 6) |(0 17 89 10 11)
(2 3 4 7 10 12 13) |[(5 6 8 9 11 12 13)
(0 1 56 7 10 13) | (0 1 2 3 8 9 12)
(2 3 4 5 7 8 11) |(0 4 6 9 10 11 12)
(0 4 5 8 9 10 13) | (1 4 6 7 8 9 13)
(1 2 5 10 11 12 13)] (0 2 3 6 7 11 12)
(1 3 45 7 11 12) |(1 2 3 6 8 10 11)
(0 4 56 7 8 12) |(2 3 5 6 9 10 13)
(0 1 2 4 7 11 13) | (0 3 4 6 8 10 11)
(2 5 7 8 9 10 12) | (0 1 2 3 5 6 7)

Table 4.4: Information sets for decoding a (14,7) code in 24

4.5 Performance over Correlated Rayleigh Fading
Channels

Up until this point we have only considered the non—coherent AWGN channel. It
would be very interesting to investigate the performance of the codes combined with
the reduced—complexity decoding strategies over correlated Rayleigh fading channels,
which is a mathematical model appropriate for a mobile radio environment. The corre-

sponding problem for non-coherent block detection of uncoded MPSK is considered in

[22).

Most of the coding systems for fading channels employ some form of interleaving
in order to decorrelate the received sequence. Although in theory these systems achieve
significant performance improvements, the assumption of ideal interleaving is not valid
on many practical mobile radio channels because it would require an unacceptably large
time delay. Consequently, many of these systems fail to perform as expected when em-
ployed over these channels. In this section we will show that it is possible to obtain
significant performance improvements using the codes of the previous chapter combined
with the reduced-complexity decoding strategy. In some cases, these performance im-

provements can be obtained without symbol interleaving.
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Figure 4.6: A (14,7) Code in Z,

4.5.1 The Correlated Rayleigh Fading Model

Correlated Rayleigh fading can modeled as a correlated complex gaussian process, u,

which multiplies the transmitted symbols. The received symbols, y;, as in (2.13), are

therefore given by
nw=Twufa+m 1=0,---,N-1

It should be noted that the w's are statistically independent of the n;’s. In order to

express (4.23) in vector form, we create the diagonal matrix F,,, whose main diagonal

is the vector f,,, so that the received vector may be expressed as

r =TuF,, +n

76

(4.23)

(4.24)

where u is the vector made up of the u;’s, n is as in (2.14), and T is the symbol duration.

The power spectrum of the u;'s may take on various forms to model different situations.

Here we will use the land—-mobile model for the power spectrum which has the following

form

1
o )= VU= 7

Ifl<fo
|fl > fp

(4.25)
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The constant fp is known as the Doppler frequency, and the product fpT as the fade rate.

The shape of S,(f) is shown in Fig. 4.7. The autocorrelation function corresponding to

Su(f)) ¢uu(m): is given by
buuli) = %E’(u,‘ul+,) = Jo(2mifoT), (4.26)

where Jo(-) is the zero-order bessel function. Since this is a general gaussian detection

problem, it is shown in [23, p. 98] that the ML decoding ruleis the following minimization

mi i (4.27)
m=1,2,[C|

where ®,, is the autocorrelation matrix for r assuming the m* codeword was transmit-

ted. This matrix is expressed as

o, =

DN —

B(r*r) = FY ($us + %1)1?,“, (4.28)

where v is the SNR and ®,,, is the autocorrelation matrix of u, whose elements are
given by
Byu(?,5) = buu(li - il)- (4'29)

The decoding rule is therefore as follows,

1
min  rFp(Pu + :y-I)'lFm‘r". (4.30)

m=1,2,-,|C|

It turns out for a flat fading channel (ie. when fpT = 0) that (4.30) is equivalent to the
decision rule for the AWGN channel [24].

4.5.2 Error performance

The error performance of non—-coherent block detection over correlated Rayleigh fading
channels is treated in [22] for uncoded systems. In this work an exact expression for the
pairwise error event probability, P(co — cy), is given. We will use the same expression

to generate a union bound for two of the codes of the previous chapter. It also assumed
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S.(N

Figure 4.7: Power spectrum of the land-mobile fading model

in [22] that the all-zero codeword may be used to assess the error performance without

any loss of generality. This follows directly from the form of the decoding rule in (4.30).

As was the case for the gaussian channel, more than just the minimum-distance
codewords were used for the evaluation of the union bound. Morcover, the codewords
with the same d%, cannot be considered as being equivalent over these channels, in
terms of P(cg — cy,), since the performance criterion is no longer dy . Not surprisingly,
P(ey — ¢,,) is somewhat dependent on the location of symbols within a codeword. We
had to therefore evaluate P(co — cy,) for each of the codewords within a group sharing
the same d% seperately in order to be as accurate as possible in calculating the union

bound.

In Fig.4.8 we show the performance of uncoded binary DPSK and the union
bound on the performance of the (8,4) and (14,7) BPSK equivalent codes in Z,, whose
generator matrices are given in (4.21) and (4.22), for fade rates of fpT = .001,.01 and .1.
We see that as the fade rate increases there is a diversity effect, since the symbols within
a codeword become less correlated. Consequently, the performance of the coded system

improves with increasing fade rates while that of the uncoded system degrades. For the
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Figure 4.8: Union bound on the performance of two BPSK equivalent codes in Z4 for

fade rates of fpT = .1,.01 and .001

slow fading case (fpT = .001) we see that the union bounds are worse than the uncoded

system for error rates less than 107%.

In order to alleviate the situation at very low fade rates, we may wish to use
some symbol interleaving. Let us assume that we use an interleaver with depth D;. This
means that the symbols of the codeword will be spaced D, transmitted symbols apart,
and we may therefore look at this as artificially increasing the fade rate by a factor of
D,, as far as the codeword is concerned. More precisely, the matrix ®,,, is calculated
using a fade rate of fpT D,, rather than fpT. For both codes in Fig.4.8 at fpT = .001,
the performance is quite poor for low error rates. If, however, we use only 10 symbol
interleaving, which is rather small, we have an effective fade rate of fpTD; = .01,
which yields a significant improvement. The amount of interlgaving required depends,
of course, on the fade rates experienced in the environment. We see, however, that
even the rather simple (8,4) code performs quite well at moderate fade rates without

interleaving and at slow fade rates with only a small amount of interleaving.
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We will now present some simulation results of the reduced-complexity decoding
strategy presented in the first part of this chapter over correlated fading channels. First
of all, to simulate correlated fading channels, we use independent complex gaussian
random variables obtained from a pseudo-random sequence generator as input to an
FIR filter whose magnitude response closely approximnates y/S,(f). The output of this
filter is then the process u;. The filter was designed for a fade rate of fpT = .l using
512 coefficients. The tap length of the filter has to be long because of the sharp cutoff
in the power spectrum of the process. In order to obtain lower fade rates, we lincarly
interpolate the output of the filter. This was necessary since we found that for lower fade
rates the length of the filter had to be much longer to closely approximate the desired
magnitude response, and would therefore significantly increase sirmulation times. In
Fig.4.9 we show the ideal autocorrelation function and that of our simulation (averaged
using a window of 1000 symbols) for a fade rate of fpT = .01. We sec that if we use
codewords of moderate length, the autocorrelation function of the simulation closely

matches that of the ideal model. In Fig.4 10 we show the magnitude and phase of a

12

0 8t \ -~ Simulation

06}

04r

o2

Autocorrelation

-0 2

-0 4}

06 50 100 150 200

# of symbols

Figure 4.9: Comparison of ideal and simulation autocorrelation functions

typical fading process spanning many symbols, whereas Fig.4.11 shows the variation
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over a small number of symbols. In a span of ten or so symbols, we see that both the

amplitude and phase can vary significantly.
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Figure 4.10: Magnitude and phase of the fading process over many symbols (fpT = .10)

The (8,4) and (14,7) bandwidth efficient codes in Z4 have both been simulated
over a correlated Rayleigh fading channel with fpT = .01, and the (8,4) code over a
channel with fpT = .1 as well. Both have been decoded using the reduced-complexity
decoding method of the previous section with L = K. Figs.4.12-4.14 show the results
of the simulations. In each figure, we compare the simulation result with the union
bound for a ML decoder for that code, the result of a simulation for a differentially—
coherent system (M = 2) over the same channel and the performance of ideal coherent
BPSK over a flat Rayleigh fading channel (fpT = 0). We see that the simulation

of the differentially-coherent systems match the analytical curves in Fig.4.8 exactly,
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Figure 4.11: Magnitude and phase of the fading process over few symbols (fpT = 10)

verifying the correctness of our channel simulation. In each case, we sec that the union
bound is quite pessimistic for low SNR, and that the slopes of the coded curves are
much steeper than the corresponding curve for coherent detection. This accounts for
the significant improvement in performance. It is interesting to note that the two codes
with fpT = .01 attain the same slope for two orders of magnitude in P, (between 107°
and 107%). For both codes at fpT' = .01, we also notice that the irreducible error-
floor of the differentially~coherent system is completely ehiminated (at least down to
P, = 107%). For the (8,4) code with fpT = .1, which represents a fairly high fade
rate, significant performance improvement is obtained even at fairly high error-rates.
We do see, however, that the reduced-complexity decoding strategy breaks down at low

error rates. This can be attributed to the first stage of decoding which uses differential
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detection and results in an irreducible error floor around P, = 1078, It is very important
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Figure 4.13: Simulation results for a (14,7) code in 2, (fpT = .01)

to point out that, in each case, these performance enhancements are obtained without

the use of symbol interleaving. Most other coding schemes for fading channels with fade
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Figure 4.14: Simulation results for an (8,4) code in 24 (fpT =.1)

rates as high as fpT = .01, and sometimes higher, use some interleaving, see for instance

[7, Chap.9].




Chapter 5

Conclusion

In this thesis, we addressed the problem of channel coding for the non-coherent AWGN
channel. We have generalized non-coherent block detection of MPSK as a coding prob-
lern, and presented several examples of codes which achieve significant coding gain over

uncoded coherent MPSK.

Using a coding framework, a review of non-coherent block detection of MPSK
was presented. We defined a distance measure for non—coherent block detection, which
was used primarily as a benchmark for comparison and in the design of codes . We then
investigated a class of block codes called module-phase codes which are well matched to
MPSK. These codes have a rich algebraic structure, as they are based on clements of

module theory and in many ways resemble traditional linear block codes.

A method for constructing module-phase codes for the non-coherent distance
measure was introduced. It was shown that differential~encoding , when considered on
a block basis, is a particular example of a class of module-phase codes that approaches
the performance of uncoded coherent MPSK as the block length is increased. Exam-
ples of more powerful codes which achieve significant coding gain over uncoded coherent
MPSK were presented. The coding gain is achieved in one case at the expense of band-

width expansion, and in the other case at the expense of signal constellation expansion.
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The performance of these codes becomes even more impressive when compared with

traditional differentially-coherent detection of MPSK.

The issue of reduced—complexity/sub-optimal decoding was then addressed. A
decoding/demodulation strategy was presented which uses a combination of information
set decoding and a sub-optimal method proposed for non-coherent block detection of
differentially-encoded MPSK. It was found that codes which share the same distance
properties, and are therefore equivalent for ML decoding, are not all necessarilly well-
suited for this decoding technique. Consequently, it was necessary, in some cases, to
search for equivalent codes which were more amenable to this type of decoding. While
this strategy significantly reduces arithmetic complexity compared with an exhaustive

ML decoder, computer simulations for various codes indicate that very little perfor-

mance, if any, is sacrificed.

Finally, we present some results on the performance of these codes combined
with the reduced-complexity decoding method over correlated Rayleigh fading channels,
again through the use of computer simulations. We have shown that it is possible to
achieve significant performance enhancement compared with ideal coherent detection
and even more so compared with differentially-coherent detection. It should also be
noted these performance improvements, in some cases, are attained without symbol

interleaving, which is characteristic of most other coding systems over fading channels.




Appendix A

Computer Searches and Code
Descriptions

A.1 Computer Searches

A.1.1 Searching for h—vectors

Here we will briefly outline the methods used for selecting the h—vectors for the construction
method proposed in Chapter 3. We start by identifying the codewords which must he excluded
from the code, assuming that codeword overlapping is performed, and knowing the desired
parameters for the code (ie. N,K,M, and d%c)- In order to reduce the running time of
the search, we start by searching for the vector, hy_g, since it has the smallest number of
components, and then hy_g_; until we reach h;. Once we reach hy, if no vector is found
which removes the remaining codewords, we start at the beginning with a smaller set of target
codewords (ie. a code with a smaller d%.) If N,K, and the set of vectors to be removed are not
too large, we may search exhaustively for the h-vectors. Otherwise, we search randomly, with a
pseudo-random number generator, for an h-vector which maximizes the number of codewords
excluded from the code until, after a specified number of repetitions, no improvement is found.

Aside from shorter running times, the random approach has another advantage. The exhaustive
search will find an h-vector which maximizes the number of codewords from the target set
which are excluded but, in general, there are many such vectors. Some of them may be better
choices when combined with the other h-vectors. The random approach, if attempted several
times using a different seed for the pseudo-random generator, will have the possibility of
choosing these better vectors. We have found that better codes sometimes result by using the
random approach, and at the same time require much less running time.
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A.1.2 Searching for G,

If N,K are quite small, we may search for optimal generator matrices, G., by searching
exhaustively through all the possible combinations of its elements and calculating its d%/¢.
This was done for some of the simple bandwidth-efficient BPSK equivalent codes. For the
BPSK equivalent codes in higher-order rings, the search was done by searching randomly for
possible generator matrices until, after a specified number of iterations, no improvement in
the minimum distance of the code was found. This is, of course, an incomplete search and the
resulting codes are not necessarily optimum.

A.2 Code Descriptions for Bandwidth—Expanding
Codes

In this section we present a more complete description of the bandwidth-expanding codes
which were presented in the Tables 3.2 and 3.3 of Chapter 3. For each code we present the h-
vectors as well as the generator matrix which describe it, a portion of its distance profile with
the corresponding average number of bit errors for each of the distances, and its asymptotic

coding gain.

A (3,2) Code in 24

hy=(1 1 1)

1 0 3
ce=(p 1 3)

d4c | Weight | &
2.00 12 2.00
4.00 3 2.67

Coding Gain: 1.25dB over uncoded coherent QPSK

A (6,5) Code in 24

hy=(1 11 11 1)
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d% o | Weight | &

2.00| 61 |262
2.88| 42 |6.19
339 120 |3.33
4.00 135 3.33
476 | 360 |5.56

Coding Gain: 2.22dB over uncoded coherent QPSK

A (7,8) Code in 2,

hy=(11 11 1 1 1)

(i)

1
2.000 56 3.000
2.343 70 3.429
3.528 | 336 |4.714
4.000 | 448 |5.143

Coding Gain: 2.34dB over uncoded coherent QPSK

A (7,4) Code in 2,

hy=(3 2 120 0 1)
hy=(3 2 10 0 1)
ha=(3 1 11 1)

(L)

d3c | Weight | &

3.528 44 3.364
4.000 20 2.800
5.172 40 4.200
6.000 116 | 4.241

Coding Gain: 3.04dB over uncoded coherent QPSK

A (9,5) Code in 2,4
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Appendix A. Compuier Searches and Code Descriptions

hy=(3 0 122 00 0 1)
h=(1 3 200 00 1)
ha=(3 1 10 1 0 1)
he=(1 1 11 0 1)

d3;c | Weight | &

4.000 17 2.118
4.169 24 3.500
4.343 20 5.200
4.901 40 4.300
5.528 72 4.111
5.757 40 4.900
6.000 56 5.143

Coding Gain: 3.47dB over uncoded coherent QPSK

A (10,9) Code in 24

h1=(]111]11111)

i
gaﬁsm

2.000 91 1.978
2.456 90 7.200
2.938 530 | 5.026
3.720 720 | 3.600
4.000] 1395 |4.413
4.292 | 1680 | 7.200

Coding Gain: 2.55dB over uncoded coherent QPSK

A (10,7) Code in Z4

hy=(1 0 102 11 00 1)
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‘ Appendix A. Computer Searches and Code Descriptions

h,=(2 21100 20 1)
hs=(1 1 1 111 0 1)

119 ;
(I

&, | Weight | &

2.938 | 36 | 3.566
3.190 | 34 | 3.882
3720 | 38 | 5.000
4000 | 82 | 4.780
4292 | 84 |5548
4597 | 174 | 4.805

Coding Gain: 3.13dB over uncoded coherent QPSK

A (10,6) Code in 24

h=(3 13 232 313 1)
hp=(1 11311 311)

ha=(3 31 22 3 2 1)

hy=(3 3 3 33 1 1)
minn

Ge= RER
I

d%c | Weight | &

3.720 | 44 | 4.227
4000 | 29 |4.828
4.292 8 1.750
4597 | 62 | 4.258
4917 | 22 | 4.091
5615 | 182 | 5.484

Coding Gain: 3.49dB over uncoded coherent QPSK

An (11,10) Code in 24

. h=(111 111 111 11)
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Appendix A. Computer Searches and Code Descriptions

3 (55

&, | Weight | &

2.000 | 132 |3.333
3.056 | 990 |4.848
3.754 | 1320 |5.758
4.000 | 3036 |6.061
4.789 | 11088 | 6.970
5.675 | 31680 | 7.879
6.000 | 24420 | 8.182

Coding Gain: 2.60dB over uncoded coherent QPSK

An (11,8) Code in 2,

hh=(0 1 010111 00 1)
hh=(3 2 211021 01)
hy=(1 1111100 1)

1

dic | Weight | &

2.945 38 2.842
3.056 6 5.333
3.398 40 4.800
3.515 32 4.750
3.7564 56 5.643
4.000 | 112 |4.000
4384 | 120 | 5.467

SOOI

Coding Gain: 3.31dB over uncoded coherent QPSK

An (11,7) Code in 2,

hh=(0 0 002033 32 1)

92




Appendix A. Computer Searches and Code Descriptions

h=(2 2 02 003 10 1)
ha=(1 0 13 110 3 1)
h,

(11311131

19§ 2 \
Suliin

d%p | Weight | &

3515] 6 | 3.667
3.754 | 48 | 4.250
4.000 | 38 |4.947
4789 | 176 | 4.932
5.675 | 500 | 5.480
6.000 | 336 | 5.464
6.343 | 464 | 5.759
7.528 | 2704 | 6.655

Coding Gain: 3.50dB over uncoded coherent QPSK

An (11,6) Code in 24

h1=(22110103211)

ha=(2 3 00 01 2 22 1)
h3=(0 0 3 2 1 3 1 2 1)
he=(3 0 23 10 0 1)

hs=(1 1 11 1 3 1)

1? 13 01

017

Ge = §§ 1] 2

80 1801

d}c | Weight [ &

4.384 14 3.333
4.789 28 4.848
4.929 42 5.758
5.675 7?2 6.061
6.000 48 6.970
6.169 108 7.879
6.343 52 8.182
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. Appendix A. Computer Searches and Code Descriptions

Coding Gain: 3.79dB over uncoded coherent QPSK

A (5,4) Code in 24

hy=(1 11 1 1)

«(H1H)

d%c | Weight | &

0.586 | 20 | 1.600
0.969 | 20 | 6.400
1172 | 30 | 3.200
1474 | 40 | 5.600
1528 | 10 | 6.400
1566 | 60 | 3.200

Coding Gain: 2.04dB over uncoded coherent 8-PSK

A (6,5) Code in Zg

hy=(1 11 1 1 1)

“(H1

d%c | Weight | &

0.586 30 1.667
0.838 30 6.667
1.172 90 3.333
1.285 12 5.833
1.419 120 6.657
1.570 120 3.333
1.757 20 5.000

NN

Coding Gain: 2.22dB over uncoded coherent 8-PSK

A (7,6) Code in Zg

hy=(1 11 111 1

o -

Lot S B S L po N | ~—
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Appendix A. Computer Searches and Code Descriptions

d%c | Weight | &

0.586 56 3.000
1.172 420 5.143
1.5672 336 5.143
1.757 y 560 6.429
2.000 56 5571

Coding Gain: 2.34dB over uncoded coherent 8-PSK

A (7,5) Code in Zg

h=(03 2 12 0 1)
hp=(2 11 10 1)

1 9 6{ 0
o=} 0] g .
[

8919 §1
d%rc Weight I3
0.844 12 2.667
1.027 4 5.000
1.129 4 6.000
1.172 22 3.909
1.287 4 1.000

1.426 24 4.667
1.508 8 3.250

Coding Gain: 3.13dB over uncoded coherent 8-PSK

An (8,7) Code in Zj

hh=(3 11 11 111)

I

1

Gc‘—‘-

COHOOO0
IO

OO0

|
|
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Appendix A. Computer Searches and Code Descriptions

dyc | Weight | &

0.586 | 42 |[1.714
0.606 | 42 |5.286
0.848| 14 |6.857
1.045| 70 |3.571
1.106 | 14 | 7.000
1.172| 560 |5.250
1.203| 56 [5.821
1287 2 |8.000
1431| 210 |6.857

Coding Gain: 3.34dB over uncoded coherent 8-PSK

An (8,6) Code in Zg

hy=(0 3 21 3 20 1)
hp=(2 1 11 0 0 1)

6 0

30 P 3

GC= % 7 7
84183

[d%; | Weight | &
0.848 16 | 2.750
045 18 | 6.000
1.106 2 3.000
11721 42 | 3.762
1.203 2 3.000

1.225 2 4.000
1.287 6 3.000

Coding Gain: 3.34dB over uncoded coherent 8-PSK

A (9,8) Code in Z3

hy=(3 2 11 111 11)

Gc=1 M %
i

96



‘ Appendix A. Computer Searches and Code Descriptions 97

dyc | Weight | &

0.586 42 1.714
0.635 14 6.143
0.730 42 5.286
0.761 70 4.571
0.851 70 4.171
0.945 2 16.000
1.059 126 6.317

Coding Gain: 2.50dB over uncoded coherent 8-PSK

A (9,7) Code in 2

h=(5 43 213 20 1)
hp=(1 11 110 01)

R
Sl

dy,c | Weight | &

0.851 32 3.062
1.059 32 4.438
1.127 2 3.000
1.172 58 4.379
1.205 18 7.444
1.246 2 3.000
1.286 6 10.667
1.288 2 1.000
1.435 124 5.565
1.527 32 4.312

Coding Gain: 3.54dB over uncoded coherent 8-PSK

A (10,9) Code in Zg

OO=I~I~I~I~]
=23 TN T Y NN XY

—
~

hy=(1 11111111

Ge

e o R BN BN SR BN SN TR

-
1@",—‘4@




. Appendix A. Computer Searches and Code Descriptions

dic | Weight | &

0.586 | 90 | 1.800
0.659 [ 90 | 7.200
1.144 | 20 |9.000
1.172 | 1260 | 3.600
1.231 | 1680 | 7.200
1.377 | 420 | 14.40
1.577 | 720 | 3.600

Coding Gain: 2.55dB over uncoded coherent 8-PSK

A (10,8) Code in Zg

hy=(2 1 0 10 3 21 0 1)
h,=(5 5 5 4 4 1 1 1 1)

2

I
OO0
oo
oo
o
N R PN XX
N e =

& | Weight | e

0.773 | 10 | 5.200
0830 | 28 |4.714
0.854 | 36 |2.389
0950 | 2 |2.000
1.070 | 28 | 3.643
1172 | 64 |3.781
1231 | 34 |5.647
1281 | 16 |5.000
1334 | 80 [5.775

Coding Gain: 3.25dB over uncoded coherent 8-PSK

A (10,7) Code in Zg

hy=(0 0 0 020 20 0 1)
hyp=(3 6 4 2 5 3 10 1)
h3=(2 1 1 10 0 0 1)
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-l

d%c | Weight | &

1.070 | 18 2.778
1.172 | 26 3.000
1.231| 10 9.600
1.377 8 10.500
1.438 2 9.000
1.533 | 22 2.455
1.577 | 14 2.857

~IOCTROONDIOT

Coding Gain: 4.08dB over uncoded coherent 8-PSK

A.3 Code Descriptions for Bandwidth-Efficient Codes

In this section we present more complete descriptions of the codes presented in Table3.4 of
Chapter 3. Some of these codes were found either by exhaustive computer search for optimal
generator matrices or by an incomplete random search, and no h-vectors are given. The
remaining codes were found using the construction method of Chapter 3.

A (4,1) Code in le

Ge=(1 2 5 8)

d%c | Weight | &

2.631 2 | 1.000
2.764 6 |2.333
2.980 2 | 3.000
3.615 2 | 2.000
4.000 1 |2.000
4.378 2 | 2.000

Coding Gain: 1.19dB over uncoded coherent BPSK

A (6,3) Code in 24

® o-(biEEi)




Appendix A. Computer Searches and Code Descriptions 100

dic | Weight | &

3.394 14 2.429
4.000 12 3.833
4,764 18 2.556
6.000 19 3.423

Coding Gain: 2.30dB over uncoded coherent BPSK

A (6,2) Code in Z4

G- (3098 87)

&, | Weight | &
4000 42 | 2.857
6.000| 21 |3.429

Coding Gain: 3.00dB over coherent BPSK

A (5,1) Code in Z3,

Ge=(1 3 5 16 25)

(&, | Weignt | &
3172 2 | 2.000
3277] 4 | 2.500
32841 4 |2.500
3367 4 |1.500
3551 4 [ 2.500
3859 | 4 |3.500
4000 1 [2.000
4966 ( 4 | 2.500
5212| 4 |3.500

Coding Gain: 2.00dB over uncoded coherent BPSK

A (6,1) Code in Zﬁ4

Ge=(1 48 8 27 42 52)




‘ Appendix A. Computer Searches and Code Descriptions
dc | Weight | & | d}c | Weight | &
3.539 2 1.000 | 3.971 2 2.000
3.598 2 2.333 | 4.960 3 2.000
3.633 2 3.000 | 4.022 2 2.000
3.786 2 2.000 | 4.217 2 2.000
3.794 2 2.000 | 4.282 2 2.000
3.818 2 2.000 | 4.297 2 2.000
3.865 2 2.000 | 4.377 2 2.000
3.918 2 2.000 | 4.623 2 2.000
3.960 4 2.000 | 4.723 2 2.000

Coding Gain: 2.48dB over uncoded coherent BPSK

A (7,1) Code in 2128

Ge=(1 105 41 78 93 96 98)

Ao | Weight | & | dfyc | Weight | &

3.787 2 3.000 | 4.245 2 3.000
3.832 2 2.000 | 4.247 2 6.000
3.834 2 3.000 | 4.303 2 5.000
3.839 2 2.000 | 4.304 2 2.000
3.911 2 5.000 | 4.358 2 3.000
3.985 2 4.000 | 4.404 2 4.000
3.993 2 5.000 | 4.489 2 4.000
4.000 2 2.000 | 4.53i 2 4.000
4.056 2 4.000 | 4.585 2 3.000
4,185 2 5.000 | 4.643 2 2.000
4.214 2 4.000 | 4.710 2 5.000
4.241 2 1.000 | 4.844 2 2.000

Coding Gain: 2.77dB over uncoded coherent BPSK

An (8,1) Code in Zy56

Gc=(1 190 188 26 19 153 143 100)

101




Appendix A. Computer Searches and Code Descriptions

d%c |Weight | & | diyc | Weight | &

4.019 2 4.000 j 4.521 2 2.000
4.164 2 3.000 | 4.5622 2 5.000
4.169 2 3.000 | 4.583 2 5.000
4.211 2 4.000 | 4.571 2 5.000
4.253 2 4.000 | 4.640 2 3.000
4.254 2 4.000 | 4.653 2 3.000
4.390 2 4.000 | 4.746 2 5.000
4.395 2 3.000 | 4.775 2 4.000
4.440 2 4.000 | 4.797 2 5.000
4.456 2 3.000 | 4.800 2 3.000
4.469 2 6.000 | 4.807 2 4.000
4.514 2 6.000 | 4.822 2 5.000

Coding Gain: 3.03dB over uncoded coherent BPSK

An (8,4) Code in 24

hy=(1 112000 /)
hy=(3 1 1 00 0 1)
hy=(1 1 2 0 0 1)
he=(3 3 1 11

(11

d%c | Weight | &

4.000 26 3.000
4.877 18 3.111
5.394 44 4.000
6.000 28 4.500

Coding Gain: 3.01dB over uncoded coherent BPSK

A (10,5) Code in 24

hy=(2 1 103 3 20 1 1)
h=(0 3 3 01 201 1)
hy=(2 0 3 2 0 0 1 1)
hy=(1 0 0 2 1)

hs=(2 1

Poed
—
o

1)
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Appendix A. Computer Searches and Code Descriptions

(LT

d%; | Weight | &

4597 | 18 |3.778
a.017| 26 |3.923
5.615| 38 |4.368
6.000 | 87 |4.253

[\

Coding Gain: 3.61dB over uncoded coherent BPSK

A (12,6) Code in 24

hy=(0 0 00 020000 0 1)
hy=(2 3 1L 0010000 1)
ha=(1 3 13 100 00 1)
hs=(3 1 02 2 00 0 1)
hs=(3 2 2100 0 1)

he=(1 1 1 1 1 1 1)

d3c | Weight | &

4.938 | 26 |3.154
5.190 | 12 | 3.667
5.720 | 30 | 4.800
6.000 | 25 |3.920
6.292 | 54 |4.630
6.597 | 68 | 4.765

Coding Gain: 3.93dB over uncoded coherent BPSK

A (14,7) Code in 24

h,=(130201110321201)
hy=(2 022 01000 302 1)
ha=(1 2 31032 110 11)
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hy=(0 0 0 0 2 0 1 10 1 1)
hs=(2 3 21 203 31 1)
he=(1 0 0 1 3 2 3 3 1)
h,=(1 1 11 01 1 1)

QOO
OSSO
DO
DO OO
(B TN IR

OO
SO0

(==

(=]
CORICDRAKAICANN
O KA

d%c | Weight [ &

5.566 8 5.750
5.780 42 4.381
6.000 14 4.571
6.456 30 5.867
6.938 168 5.595
7.19) 92 5.543
7.720 158 5.734

Coding Gain: 4.45dB over uncoded coherent BPSK

A (9,8) Code in Z

h,
hy=(2 4 77 3 45 1)
ha=(6 6 6 6 3 6 1)

(il

4%, | Weight | & | dic | Weight | &
1.286 | 10 |4.200 | 1.757| 8 | 4.500
1.300 | 4 |4.000|1.772| 16 |5.000
1.435| 20 [6.500[1.802| 6 |4.667
1627 4 |2.000|1.808| 14 |6.000
1576 | 6 |6.667|1.837| 10 |5.800
1.637| 12 |5.000|1.844| 14 |5.857
1.701| 10 |5.000|1.873| 4 |3.500
1.754] 2 |2000[1.876| 4 |3.000

Coding Gain: 1.09dB over uncoded coherent QPSK

(7 524 6125 1)

Il
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Appendix A. Computer Searches and Code Descriptions

A (12,8) Code in Zg

hy=(6 1 3 6 2 6 75077 1)
h,=(7 46 6 1 6 4 5 6 5 1)
h3=(5 1 2 2 7 5 2 3 2 1)
hy=(5 1 1 1 4 0 1 4 1)

(i
Sl

& | Weight | & | dyg | Weight | &
1494 | 12 |5333 [1.757| 10 | 7.800
1530 | 12 |s.167 |1822| 4 | 4.000
1542 | 2 |1.000 | 1.847| 30 |6.000
1578 | 2 [3000]1878| 4 |2.500
1.669 | 10 |7.400|1506| 8 | 7.000
1.748 | 2 |2.000

Coding Gain: 1.74dB over uncoded coherent QPSK

A (15,10) Code in 23

FReJOP=I~I~IW
SOOI UT

BN
DO DOCIONOT

hy=(0 6 4 4 2 216 707 213 1)
hy=(5 5 0 4 5 274 465 7 2 1)
ha=(5 4 3 4 1 7 5 4 5 6 6 3 1)
hy=(4 552 2 000 6 4 4 1)
hs=(1 4 5 05 0 14 1 1 1)

—
—

-

—OO0O

OO0

=OO0O0
~IJHR=JCOOO ]
ONASORONITY-IWO
O~ =IO
~IOOROTNEB

DINONI = ONda=Jbei
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d4c [ Weight | & | djyo | Weight | &
1.699 6 5.333 [1.890 | 10 | 6.400
1.749 | 12 |5.667|1962]| 10 | 7.800
1.757 | 10 | 8.600 {2.000| 2 2.000
1.776 2 | 4.000(2.032| 22 |7.364
1.834 2 3.000 | 2.051 4 5.000
1.876 4 2.500 | 2.053 | 24 | 6.500

Coding Gain: 2.30dB over uncoded coherent QPSK
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