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Abstract 

This thesis considers M-ary phase coding for the non-coherent AWGN channel. 

More precisely, we develop block-coded MPSK modulation schemes specifically for non­

coherent block detection which significantly 5urpass the performaIlce of ideal uncoded 

coherent MPSK. A class of block codes which are well-matchcd to MPSK modulation, 

r.alled module-phase codes, is presented. The algebraic {ramework used for defining these 

codes relies on elements of module theory which are discussed along with a. method for 

constructing such codes for non-coherent detection. It is shown that differential encod­

ing, when considered on a block basis, may be viewed as a specifie code from a. particular 

class of module-phase codes. Two classes of more powerful codes which achieve signif­

icant coding gain with respect to coherent detection of uncoded MPSK are presented. 

III the first class of module-phase codes, the coding gain is achieved at the expense of 

bandwidth expansion. In the second class, however, the coding gain is achieved at the 

expense of signal constellation expansion without expanding bandwidth. A reduced­

complexity / sub-optimal decoding strategy based on a modification of information set 

decoding is described. Its performance is analysed through the use of computer sim1l­

lations for various different codes. Finally, we address the performance of these codes 

combined with the reduced-complexity decoding method over correlated Rayleigh fading 

channels . 



• 

• 

• 

Sommaire 

Cette thèse porte sur le codage en phase pour le canal non-cohérent à. bruit 

blanc gaussien additif. Plus précisément, on développe des stratégies de modulation 

MPSK codées en bloc, conçues expressément pour la détection non-cohérente de bloc, 

qui dépassent considérablement la performance de MPSK non-codée avec la détection 

cohérente idéale. Une catégorie de codes bloc, nommée codes module-phase, qui va de 

paire avec la modulation MPSK, est introduite. La structure algébrique utilisée pour 

décrire ces codes s'appuie sur des éléments de la théorie des modules, qui seront expliqués 

de même qu'une méthode de construction dans le but de la détection non-cohérente. Il 

est ainsi démontré que le codage différentiel, considéré bloc par bloc, pourrait être vu 

comme un exemple particulier d'un groupe spécial de codes module-phase. Deux groupes 

de codes plus performants qui atteignent des gains de codage considérables comparés à 

la détection cohérente de MPSK non-codée sont présentés. Le gain de codage des codes 

du premier groupe repose sur l'agrandissement è.e la bande passante; ceux du deuxième 

groupe, cependant, réalisent leurs gains de codage par l'agrandissement de l'ordre de la 

modulation. Une stratégie de décodage sous-optima.le à complexité réduite basée ~ur 

unp, modification de information set decoding est présentée. Son analyse pour différents 

codes est accomplie à l'aide de simulations par ordinateur. Finalement, on considère 

la performance de ces CO..1es avec la stratégie de décodage à complexité réduite sur des 

canaux à évanouissement corrélé rayleigh . 
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Chapter 1 

Introduction 

Recently, there has been increased interest in non-coherent detection schemes with im­

proved performance over differentially-coherent systems [1],[2], [3]. The merit of these 

detection techniques is that they do not require carrier phase tracking, while exhibiting 

only a very small SNR degradation with respect to coherent detection. It seems that 

these robust detection schemes could be very attractive for wireless communications 

over channels where carrier phase tracking is very difficult to achieve. In this thesis 

we consider the problem of channel coding for M-ary phase shift keying (MPSK) with 

non-coherent block detection, the goal being to design codes which achieve significant 

performance improvements over uncoded coherent detection of MPSK. Integrating error 

control with modulation and coherent detection has been considered extensively in the 

last 15 years, [6], [7]. The c.orresponding problem with non-coherent detection, however, 

has received little attention. Here we will specifically address the problem of block-coded 

modulation primarily for non-coherent AWGN(additive white gaussian noise) channels. 

Chapter 2 begins with the definition of MPSK with various detection techniques 

followed by a detailed review of non-coherent block detection, which is of primary in­

terest in this thesis. The form of the maximum-likelihood (ML) de co der as weIl as its 

1 
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Chapter 1. Introduction 2 

performance are given. In addition, 1. distance measure suitable for non-coherent block 

detection is defined, as it will be the main criterion used in the design and comparison of 

codes in the subsequent chapters. We then present a comparison of reduced-complexity 

block receiver structures for differentially-encoded MPSK, followed by a survey of pre­

vious work on error-control coding combined with non-coherent detection. 

Chapters 3 and 4 constitute the main contribution of this work. In Chapter 3, 

we present an algebraic framework for a class of linear block codes, called module-phase 

codes, which are well-matched to MPSK modulation. These codes are very similar 

to traditional linear block codes, except that they are defined over rings rather than 

fields. A systematic technique for building these codes for non-coherent block detection 

is then introduced. It is shown that traditional differential-cncoding may be cast into 

this algebraic framework as an example of a simple code which can significantly improve 

performance over a differentially-coherent system, w hen the detection is pcrformed on 

a block basis. Results from computer searches for more powerful codes which achieve 

significant coding gain over uncoded coherent MPSK systems are presented. Two types 

of codes are considered: 

1. Codes which expand bandwidth but do not expand the signal constellation 

2. Codes which expand the signal constellation hut do not expalld bandwidth 

U sing union-bounding techniques, several ex amples of bit error-rate performance curves 

are given, so as to show the performance of these codes at lower signal-to-noise ratios. 

The design of reduced-complexityjsub-optimal decoding strategies is addressed 

in Chapter 4. The proposed method is a modification of information set decoding which 

was firs~ introduced by Prange for decoding cyclic binary block codes in [8]. Additionally, 

it makes use of ideas very similar to those used by Wilson et al. in [2], where reduced­

complexity algorithms are presented for non-coherent block detection of differentially­

encoded MPSK. It is shown through the use of computer simulations that decoding 
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complexity may he significantly reduced compared to a brute-force ma.ximum-likelihood 

de coder, without sacrificing much in terms of performance. Finally, we examine the 

performance of sorne codes comhined with the reduced-complexity decoding rnethod 

over correlated Rayleigh fading channels . 
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Chapter 2 

Non-Coherent Detection of 

Phase-Modulated SignaIs 

2.1 Phase Shift Keying (PSK) 

Phase Shift Keying (PSK) is a well-known digital modulation format which uses the 

phase of a modulated signal to convey information. More precisely, the information is 

conveyed via integers modulo-M which are then mapped into the signal space as M 

distinct phases of a carrier waveform. More often than not, the signal constellation is 

symmetricj that is, th~ M possible phases are equally spaced by 271"/ M radians. We will 

be concerned solely with the symmetric case and will assume throughout this work that 

the mapping from the integers to the signal space points maintains numerical order in 

a counterclockwise fashion. The mapping for MPSK, FMPSK : ZM -. C, may therefore 

be expressed as 

FMPSK(a) = exp [i (:) a], a E ZM 

This situation is depicted in Fig.2.1 for three values for M . 

(2.1) 

We have, therefore, that the transmitted waveform for a single MPSK symbol of 

4 
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1 2 

o 

, 
BPSK (2-PSK) QPSK (4-PSK) 8-PSK 

Figure 2.1: MPSK Signal Constellations for three values of M 

duration T is represented by 

Sm(t)=Re{eXPJ(27rfct+~m)} m=O, ... ,M-1, O~t~T (2.2) 

where Je is the carrier frequency. Using the complex envelope notation (CE) and as­

suming transmission over an additive white Gaussian noise (AWGN) channel, we have 

that the signal upon reception is given by 

r(t)=eJ(~m+4»e(t)+'"i(t) m=0, ... ,M-1, O~t~T (2.3) 

where l'(t) is defined as: 

e(t) = {
l, if 0 < t ~ Tj 

0, otherwise, 
(2.4) 

~ is an unknown phase-shi ft induced by the channel, and the noise fi(t) is a complex 

white Gaussian process with zero mean and two-sided power spectral density No. The 

receiver must somehow extract the information, m, from this signal. 

A receiver is said to be coherent if, by some means, it estimates the channel 

phase shift, 4J, and uses this information in the detection process. If, however, the 

receiver treats ~ as a nuisance parameter and and ignores it in detecting the received 

signal, it is said to be a non-coherent receiver. The main disadvantage attributed to 

a coherent receiver is due to the implementation complexity of estimating ~, which in 
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sorne cases can be significant. Moreover, there exist systems where fast carrier phase 

tracking is needed if coherent detection is to be used (TDMA and frequency hopping 

systems, for instance) which may prove to be impossible. In such instances, sorne form 

of non-coherent detection is required. 

In comparing the two types ofreceivers, it should be noted that the reduced com­

plexity associated with a non-coherent receiver does flot come without sorne performance 

penalty. Typically, non-coherent systems exhibit sorne degradation in signal-to-noise 

ratio (SNR) at a given bit error rate when compared ta ideal coherent systems. For the 

case of uncoded MPSK, there is no choice but to use a coherent receiver, sinee, as will be 

shown analytically later in this chapter, non-coherent detection cannot be used. Indeed, 

the focus of this work will be to consider methods for coding MPSK in arder to perform 

non-coherent detection and, at the same time, outperform uncoded coherent detection. 

By far the simplest method to avoid the need for a coherent receiver for de­

tecting MPSK is to encode the information symbob differentially. More precisely, the 

information is not extracted from each symbol itself, but rather from the phase difference 

between adjacent symbols, which is impervious to any unknown phase. We may express 

the ith transmitted phase as 

(2.5) 

where (Ji is the i th information phase. This technique is known as Differentiai Phase 

Shift Keying (MDPSK). Although the detection of MDPSK is non-coherent, since no 

attempt is made at estimating the channel phase shift, it is usually referred to as being 

differentially-coherent. The reason for this is because of the {act that symbol decisions 

are made using the previous symbol as a phase reference, albeit a noisy one causing a 

degradation with respect to purely coherent MPSK. We will soon see that there is a close 

relationship between differentially-coherent detection and true non-coherent detection 

of MPSK, in the convention al sense. This type of detection provides a very practical 

alternative to coherent detection, and is often the modulation scheme chosen in many 
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practical situations l most notably for fading channels or short burst communications. 

The price paid for the reduced complexity of this scheme when compared with coherent 

detection can, however, be quite severe. While the degradation in SNR for BPSK (or 2-

PSK) is negligible, which makes binary DPSK very popular, the degradation associated 

with larger constellations (M ~ 4) approaches 3dB and cannot be ignored when trying 

to avoid the complexity involved in estimating the carri(~r phase. 

2.2 Non-Coherent Block Detection of MPSK 

In this section the framework for detection of MPSK I;ymbol blocks will be presented. 

Let us consider detecting blocks of N consecutive MPSK symbols. We ma.y view the 

transmitted information as vectors of the form 

C, = ( CiO C,l ••• C,(N -1) ) , Ci; E (0, ... , M - 1). (2.6) 

If, in the detector, we use the duration of an entire blocl~ as the observation interval, the 

baseband equivalent of the received signal, f(t), when Ci was transmitted is given by 

N-l 

f(t) = ~ e.1'P exp [J (~) c.z]l'(t -lT) + n(t), 0 ~ t < NT, (2.7) 
1=0 

where l'(t) is the baseband pulse shape as defined in (2.1). 

2.2.1 Maximum Likelihood Detector 

The maximum likelihood (ML) detector examines the likelihood fundional, p(i(t)lcm), 

over aU possible Cm, where Cm is the m th possible transmiUed vector, 0 ~ m ~ IVI, 
with IVI being the set of possible transmitted vectors. It then choClses the one which 

maximizes it as the most likely transmitted vector. Conside:ring the unknowiÀ phase tP 

as a nuisance parameter, which is modelled as a random variable, we have that this 
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likelihood functional is given by 

(2.8) 

where PA(t)lcm,~(f(t)lcm, <p) the probability distribut10n of the received signal assum­

ing the transmitted codeword,cm, and the random phase, CI> are known. The quantity 

P~lcm(<Plcm is the probability distribution of CI> assuming Cm is known. Since the phase 

is independent of the transmitted vectlJr, we have that 

(2.9) 

The absence of any information on the reference phase is described by a uniform 

distribution for CI over (7r,7r]. Using this probability density, it can be shown [17, p.204] 

that the ML detector computes IVI decision variables according to the following rule:, 

m = 0 ... IVI-1 " , (2.10) 

where s~(t) is the baseband equivalent of the m th transmitted signal given by 

N-l 

s~(t) = L exp [J (~) Cml] {!(t -lT) m = 0,"', IVI- l. (2.11) 
1=0 

Inserting (2.11) into (2.10) and using (2.4) yields the following alternate expression for 

Um 

N-l rlr(l+l)T 1 
Um - L f(t)dt f:nl 

1=0 L IT 

N-l 

L yd:n, (2.12) 
1=0 

where YI is the single symbol correlation of the lth symbol in the received signal given by 

l.
(l+l)T 

YI = f(t)dt = Tél'" Jtl + ni 
IT 

1 = O,"',N -1" (2.13) 

and fal is the base band equivalent of the lth MPSK symbol given by fil = exp [J (~) Cil] 

and ni is a complex gaussian random variable with mean zero and variance No. 
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By forming the vector, y = (Yo Y2 ... YN-l), composed of the N single 

symbol correlations associated with the received signal, we may express (2.13) in vector 

notation as 

(~.14) 

where fj = (j,o j,(N-l») and n = (no n(N-l»)' The decision rule may, 

therefore, be expressed as 

(2.15) 

where Cmy· denotes the inner product between the vectors Cm and y. This rule is simply 

an envelope detector which is essentially identical to the one used for non-coherent 

demodulation for M -ary signaling, however this is a discrete correlation over the entire 

receilved vector. The basic receiver structure using single symbol correlations is shown 

in Figure 2.2. 

T T 

r(l) .. ----1 

T T 

yeN) y(N-)) y(1) y(O) 

nLOCK DETECI'OR 

Figure 2.2: Basic Receiver Structure 

The decision rule in (2.15), unfortunately, does not shed any light on the problem 

of how the maximization is to be carried out. A brute force approach would be to search 

through V one vector at a time. This method, however, has a complexity which will 
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usually increase exponentially with the block size N. It would be practical, therefore, to 

reduce this complexity by performing sorne sort of reduced search through V, possibly 

with a minimalloss in performance. At the same time, imposing sorne structure on V 

should help in this regard. 

2.2.2 Performance of the Màximum Likelihood Detector 

Let us assume that the ith vector was transmlttc.d. We have, therefore, that the received 

vector is 

(2.16) 

and that the decision rule may be expressed as 

(2.17; 

where Pmi is the normalized complex correlation between the i th tnd m th transmitted 

vectors given by 

(2.18) 

and Nm is a complex gaussian random variable with mean zero and variance (Th = N No 

given by 

(2.19) 

If we sepa.rate Nm into its real and imaginary components which are independent 

and identically distributed 

(2.20) 

we have the decision variable, Um , given by 

Um IVm + T Nr~ml cos 4> + J(Wm - T N pmI sin 4»1 

- J(Vm + TN Pmi cos 4>)2 + (Wm - T N Pmi sin 4»2 
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This decision variable has a Rice distribution given by 

( ) Um [-(U~ + 1'2 N2p~')l 1 (UmT N pm,) 
PUm U m ="2 exp 2 0 2 

UN 2UN UN 
(2.21) 

In order to determine the probability of error we follow a union bounding ap­

proach which indicates that the probability 

P(m, i) = Pr[U, ~ Uml fi transmitted], m = 1,2, ... , IVI, m f. i 

must be determined. Clearly, this may be expressed equivalently as 

P(m,i) = Pr[U; ~ U!I fi transmitted], m = 1,2,"" IVI,m f. i 

which is shown in [17, p. 207] to be 

P(m,i) = Q(a, b) - ~e-(a2+b2)/2Io(ab) 
2 

where Q(a, b) is the Marcum Q-function and 

a J Ni [1 - JI -lpml I2] 

b = JN; [1 + JI -lpmlI2] 

(2.22) 

(2.23) 

(2.24) 

with"Y being the SNR per symbol. For high SNR and Pmi> 0 this expression may be 

approximated by [3] 

(2.25) 

The union bound for the overall probability of error associated with the ith transmitted 

vector (for high SNR) may therefore be expressed as 

IVI 
Pe(i) < L P(m, i) (2.26) 

It is useful to define a distance metric to express (2.25) in a manner analogous 

to the corresponding performance measure for coherent detection. The metric is termed 

the non-coherent distance between the m th and ith transmitted vectors and is given by 

d~dm, i) = N(1 - IPm./) (2.27) 
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so that (2.25) may be expressed as 

(2.28) 

The performance measure is therefore determined by the minimum d'1vc over aIl pairs of 

transmitted vectors, as this is the dominant term in the union bound of (~.26). Equiv­

alently, we may consider the maximum correlation magnitude as the performance mca-

sure. 

It was previously mentioned that for uncoded MPSK it is impossible to perform 

non-coherent detection. This can be shown by computing the maximum correlation 

magnitude in this instance. For uncoded MPSK, the set V consists sim ply of ail the 

possible length N vectors whose components are chosen from the integers modulo-M. 

If we examine the two vectors, Ca and Cb = Ca + (a Q Q ), we have that IPabl = 1 

which forces P(a, b) = 1/2. This shows that the uncoded system cannot deal with phase 

ambiguities. Consequently, the system is rendered useless, which makes sorne form of 

coding indispensable, in order for true non-coherent detection to be possible. 

2.3 Non-Coherent Detection of Coded MPSK 

2.3.1 Multiple-Symbol Differentiai Detection of MPSK 

As was already mentioned, the simplest way to code MPSK for non-coherent detection 

is differential encoding. We may consider, however, ta implement a receiver based on 

the block detection process of section 2.2. This type of receiver and its associated 

performance are explored in [1, 3]. The results of these works will be summarized using 

the framework prest'r..ted in 2.2 . 

We may view differential encoding as a means to remove the phase ambiguities 

which corrupt l! non-coherent system. To see this, let us consider the detection of blocks 
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composed of N consecutive differentially encoded MPSK symbols. If the N information 

symbols which are to be transmitted are denoted by 

(2.29) 

we have that after differential encoding, the transmitted vector vien) (before modulation) 

is given by 

v,(n) = (v,(O) + ~ S'(k)) modM 1:50 n :S N, (2.30) 

where ViCO) is the last symbol of the previously transmitted vector. By expanding out the 

dot product in (2.15) for diffentially-encoded blocks, the decision rule may be expressed 

as 

Since the term e-J(if)IJ,(o) can be factored out from each term in the expansion, the 

decision rule becomes 

mi'" y·(O) + f;. y·(n) exp {i (~) lt S,(k)]} (2.31) 

The first term in (2.31) clearly shows that the each vector in V begins with a zero and, 

therefore, we see that the set V in (2.15) is simply aIl the 2N vectors of length N + 1 

which begin with a zero. We have, therefore, that 

"Iv EV, v + (Cl! Cl! ••• Cl) ~ V, (2.32) 

since v + (Q Cl! ct) does not begin with a zero. This means that by differen-

tially encoding the information vector, s,en), we can assure that phase ambiguities are 

removed. 

The decision rule in (2.31) yieids the complete receiver structure shown in Fig.2.3. 

A modification to 2.31 yields an equivalent structure with comparable complexity[3] . 

Divsalar et al. [1] aiso consider a seriaI implementation of the receiver. 
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As was alluded to earlier, it can be shown that the decision rule (2.31) for the 

case N = 1 is completely equivalent to that of convention al DPSK detection. Expressing 

(2.31) for N = 1 we have 

(2.33) 

which rnay be expressed equivalently as 

rnrx {ly(O)1 + ly(1)1 + 2Iy(O)lly(1)1 cos [LY(l) - Ly(O) - (~) S\(l)]} , (2.34) 

and reduces to 

rnrx cos [LY(l) - Ly(O) - (~) Sa(l)] , (2.35) 

or, 

~in ILY(l) - Ly(O) - (~) Sa(l)1 mod27r, (2.36) 

which is the classic differentially-coherent receiver. We may say, therefore, that differentially-

• coherent detection is in fact non-coherent, even in the conventional sense. The perfor­

mance of this scheme approaches that of coherent MPSK as the block length, N is 
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increased. Explicitly, the asymptotic degradation in SNR, in terms of the block length 

N, was shown in [3] to be 

N + 1 + J N2 + 1 + 2N COll ~ 
D(N) = 2N . (2.37) 

Performance values for various block lengths for QPSK and 8-PSK are shown in Ta­

ble 2.1(taken from [3]). It is seen that simply adding one additional symbol to the 

observation interval greatly improves performance over differentially-coherent detection 

(N = 1). 

M N 

1 2 3 4 5 6 

4 2.3 1.2 0.77 0.57 0.45 0.37 

8 2.8 1.6 1.1 0.86 0.70 0.58 

Table 2.1: SNR degradation in dB of optimal non-coherent block detection of MPSK 

(from [3]) 

2.3.2 Reduced-complexity receiver structures 

The receivers of [1, 3] perform maximum likelihood detection in a hrute force fashion. 

That is, they search exhaustively through aU possible transmitted vectors for the one 

which maximizes the decision rule in (2.15). This method, of course, has exponential 

complexity (O(MN », which may be undesirable for large N. It is worthwhile, therefore, 

to consider receiver structures with reduced complexity, which may suffer minimal per­

formance loss in comparison to the maximum likelihood receiver. This type of receiver 

is considered in [2]. Two methods are proposed in this work, both of which attempt to 

significantly reduce the search space of the maximum likelihood decoder without sacri­

ficing too much in terms of performance. This reduction in se arch time is achieved by 

making premature decisions on sorne of the symbols in the block using single symbol 

differential detection. 
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In the first method, named the 2L algorithm, decisions are made on each symbol 

in the block using single symbol differential detection. The N - L most reliable symbols 

are then fixed at these decisions and the set of 2L candidate vectors is formed by filling 

in an possible combinations of best and second best choices in the remaining L positions. 

Maximum-likelihood detection is then performed on this set of candidates via (2.15), 

resulting in a complexity of O(2L ). It was found by computer simulation that L could 

be chosen to be less than K, thereby greatly reducing the search complexity, without 

significantly affecting performance. Even for the case L = 1 noticeable improvement is 

achieved over ordinary differential detection. 

The second method, denoted the N + 1 algorithm, also performs single symbol 

differential detection on the entire block, but reduces the search space in a different 

fashion. This algorithm has complexity O( N) and adopts the philosophy that at most a 

single error occurs in each block if single symbol differential detection is used. Using this 

assumption, N + 1 candidate vectors are formed by placing a second best choice in one 

position and fixing the remaining N - 1 positions at their best, choice. The performance 

of this method for reasonably small N is comparable to that of optimal block detection, 

and yet is achieved with a significant reduction in complexity. 

In [12] Samejima et al. explore another block detection strategy which exploits 

the inherent coding of MDPSK in order to perform non-redundant error correction. AI­

though their method is rather different than the non-coherent block detection schemes 

just presented, it can be considered as being a reduced-complexity block detection 

scheme since it is quite simple to implement. This work considers using L detectors 

in parallel, each of which performs the difference betwecn the i th and (i - k )th symbols 

(k = 1,'" ,L) as shown in Fig.2.4. It is shown that this may be viewcd as a rate 1/ L 

convolutional encoder, whose corresponding code is capable of correcting L - 1 errors. 

U sing this realization an improved receiver is developed which significantly bridges the 

gap between differentially-coherent MPSK and coherent MPSK. The receiver makes use 
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Figure 2.4: Samejima's L stage detector 
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of a syndrome decoding circuit, based on the parity-check matrix of the code correspond. 

ing to the L parallel detectors, in order to correct errors in the block. The performance 

of this technique is determined analytically by evaluating the occurrence probabilities of 

the most likely error patterns at the output of the L stage detector. In order to verify 

the corredness of the analytical results an experimental circuit was tested for QPSK 

and was shown to perform very close to theoretical predictions. For QPSK and us;,,~ 

L = 2 it is shown that a 1.2dB improvement over differentially-coherent detection can 

be obtained. By choosing L = 3 this may be increased to 1.7dB. The remainder of the 

work considers three important pradical issues and how they effect the performance of 

the system, namely the effects of receiving flIter bandwidth, carrier frequency offset and 

an unbalanced receiver. 
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The results of the two reduced-complexity schemes is summarized in Table 2.2, 

where the degradation with respect to coherent detection of the various schemes is 

presented. In order to avoid confusion, we have used N instead of L to indicate the 

order of the Samejima et al. receiver. Wilson et al. only con si der the decoding of 

8-PSK symbol blocks, since a much larger reduction in complexity Îs attainable, in 

comparison with QPSK, by using the 2L or N + 1 algorithms instead of a ML decoder. 

Samejima et al., however, only consider their receiver structure for QPSK, and, therefore, 

a fair comparison of the two strategies cannot be made. We may, however, compare 

both to optimal non-coherent block detection of differentially-\"ncoded MPSK, which 

is shown in the last column of Table 2.2. We see that the 2L method attains optimal 

performance, even for L < N, which allows for a significant reduction in complexity 

without suffering a performance penalty. The N + 1 method, on the other hand, cornes 

close to optimal performance for moderate block sizes, whereas for longer block sizes
" 

in this case N = 10, there is a significant performance penalty. Sam~jima's method, at 

least for the smaIl block sizes considered, performs almost as weIl as the optimal non­

coherent receiver, although it is based on an entirely different premise. More precisely, 

they look at demodulation as a decoding problem, which, ten years ago was a pioneering 

approach to what is well-known and accepted today. 

2.3.3 Error-Control Coding 

We have seen that differential encoding, a rather simplistic form of coding, can be used 

in non-coherent systems with a minimum performance penalty with respect to coherent 

detection, when the block length is increased. We would therefore like to consider more 

powerful coding techniques so as even to surpass the performance of uncoded coherent 

detection. 

Performance enhancement via error-control coding over the gaussian channel is 

achieved by adding sorne sort of redundant information to the signal. This redundancy is 
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Method M N L Degradation( dB) Optimal( dB) 

2L 8 5 1 1.6 0.8( Pb = 10-5
) 

2L 8 5 3 0.8 0.8( Pb = 10-5
) 

2L 8 5 5 0.8 0.8(Pb = 10-5 ) 

N+1 8 3 - 1.4 1.0(Pb = 10-5 ) 

N+ 1 8 5 - 1.0 0.8(Pb = 10-5 ) 

N+ 1 8 10 - 1.0 0.4 (SNR-. 00) 

Samejima 4 2 - 1.3 1.2 (SNR-. 00) 

Samejima 4 3 - 0.8 O.8(Pb = 10-6 ) 

Table 2.2: Performance comparison of reduced complexity strategies 

exploited during the decoding process so as to correct errors introduced by the channel. 

The two types of error-control codes which are most widely used in practice are block 

codes and convolutional codes. In this work we will consider only the former, and how 

th~·y may be used effectively with non-coherent detection of MPSK modulation. 

In mathematical terms, a block code is simply a mapping from a K -dimensional 

space onto an N -dimensional space; that is, vectors of length K over sorne specifie 

symbol alphé~bet, are transformed into vectors of length N, with the redundancy being 

reflected in the N - K additional symbols. The ratio Re = K / N is known as the 

code rate, and refiects the code's redundancy. The codewords are usually selected such 

that they are ais far apart as possible, according to sorne distance measure, or metric. 

More precisely, codes are constructed so that the minimum distance between aIl pairs 

of codewords is maximized. A block code is said to be linear, in the strictest sense, 

if the codewords form an algebraic group. Very often, however, additional structural 

constraints are placed on the codes, more often than not to facilitate construction and 

to allow for efficient decoding strategies. For example, many of the existing block codes 

are subspaces of sorne abstract vector space . 

Tradit,ionally, algebraic coding techniques considered coding and modulation as 
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distinct entities. They main problem with this approach is matching the distance mea­

sure used in the design of the code with that of the channel. This is important because 

distances in the code space are not necessarily preserved after modulation, which can 

be considered as an abstract mapping from the code space onto the signal space. Mod­

ulation can be interpreted, therefore, as a function which warps the distance profile of 

a code. Consequently, a code with excellent distance properties in the code space may 

be completely useless when combined with certain modulation formats. There are, of 

course, certain algebraic metrics which are useful with sorne modulation formats. For 

example, the hamming distance, which is used extensively for binary codes and occa­

sionally non-binary codes as well, is only useful on a coherent Gaussian channel for 

binary and ternary modulation [5]. The Lee metric, on the other hand, is suitable for 

~Y-ary phase modulated signaIs over the coherent Gaussian channel. These two met­

rics are useful in these instances, because they are closely related to euclidean distance 

in the signal space, the distance measure associated with perfectly coherent detection. 

The hamming distance in these two instances is linearly related to euclidean distance, 

whereas the Lee-metric is a close approximation for phase-modulated signaIs [4]. 

In order to alleviate the problem of preserving distances after modulation, it was 

later suggested that considering coding and modulation as a combined entity may yield 

very fruitful performance rewards [9]. The rational behind this suggestion is that by 

using the channel's distance measure, or the distance metric in the signal space, we can 

find a code which maximizes the performance for a given modulation format directly. 

Ungerboeck's trellis-coded modulation [6] revolutionized this realization, and as a result 

many pradical systems have emerged using his techniques. Given the success of this 

technique it would be natural to attempt to design codes according to the distance 

measure for non-coherent block detection of MPSK given in (2.27), which will be the 

subject of the next chapter . 
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2.3.4 Error-Control in Non-Coherent Systems 

In comparison with coherent systems, very little attention has been given to the coding 

problem for non-coherent systems per se. Nevertheless, sorne methods exist for co ding 

of MPSK for use with differentially-coherent detection. In [10], Nakamura develops a 

cIass of linear codes over the ring of integers modulo M for use with MDPSK channels, 

which is the natural choice for a symbol alphabet to use in conjunction with MPSK. 

These are cyclic codes designed for the Lee metric, and their construction is somewhat 

reminiscent to that of the well-known BCH codes. Codes of various rates for M = 4 

and M = 8 are presented which are capable of correcting aIl single and double Lee 

errors. This work only considers the problem of constructing codes for the Lee metric 

and presents the associated algebraic concepts required. Unfortunately, no mention is 

made concerning the performance of the codes over gaussian channels and of decoding 

strategies. Although incomplete, this work does shed light on the problem of finding an 

appropriate algebraic structure for coding MPSK, namely codes defined over the ring of 

integers modulo M. 

Rhodes considers binary block codes for use with binary DPSK modulation in 

[11]. These codes are made up of N = 2n orthogonal codewords of length N, n being 

the number of information bits, and are a generalization of the single symbol(N = 1) 

case. The N codewords are forrned using aIl possible linear combinations of a basis set 

of n codewords plus the aIl-zero codeword. Tables 2.3 and 2.4 show the construction 

of the codes for the case N = 8 and are taken from [11]. The idea of differentially­

coherent detection is naturally extendep. to differential detectic.u between code blocks. 

The performance of these codes is determined analytically and results are presented for 

both coherent and non-coherent binary DPSK and show that sJgnificant co ding gain 

may be obtained with reasonably small block lengths. These gains are summarized for 

non-coherent detection in Table 2.5. The main disadvantage of these codes is that in 

order to achieve significant coding gain, the code rate must be quite low, which implies 
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Basis N umber Codeword 

0 0 0 0 0 0 0 0 0 

2° = 1 0 1 0 1 0 1 0 1 

21 = 2 0 0 1 1 0 0 1 1 

22 = 4 0 0 0 0 1 1 1 1 

Table 2.3: Extended basis set for generating an orthogonal code of length N =8 

--
Orthogonal Word Number Terms of Basis Set Codeword 

0 0 0 0 0 0 0 0 0 0 

1 1 0 1 0 1 0 1 0 1 

2 2 0 0 1 1 0 0 1 1 

3 1+2 0 1 1 0 0 1 1 0 

4 4 0 0 0 0 1 1 1 1 

5 1+4 0 1 0 1 1 0 1 0 

6 2+4 0 0 1 1 0 0 1 1 

7 1+2+4 0 1 1 0 1 0 0 1 

Table 2.4: Extended basis set for generating an orthogonal code of length N =8 

that substantial bandwidth expansion is needed. Secondly, the work only addresses the 

binary case which, although important, is quite limiting. In terms of complexity, this 

system, in one particular instance (N = 16), is roughly comparable to that of a 16-state 

convolutional code with Viterbi decoding, both of which, using coherent detection, share 

similar performance characteristics. 

In [13], Divsalar et al. apply the idea of multiple-symbol detection to trellis·­

coded MDPSK which, however, only yields marginal improvement at the expense of a 

significant increase in complexity. Their decoder uses a sub-optimal modification of the 

Viterbi Aigorithm which uses multiple-symbol decisions to make up the path metricB . 

Two examples of codes are given. The first is a two-state rate 1/2 trellis-coded DQPSK 
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N Asymptotic coding gain 

relative to uncoded DPSK(dB) 

4 3.0 

8 4.0 

16 4.8 

32 5.4 

Table 2.5: Asymptotic Performance of Rhodes' scheme for different values of N 

system. At a bit error rate of 10-5 there is an improvement of approximately 0.25dB 

going from a conventional N = 2 receiver to one with N = 3. Both simulation and 

analytical results are given to demonstrate the improvement. The second ex ample is 

a 16-state, rate 2/3 treUis-coded 8-DPSK system. Using only simulations, it is shown 

that at a bit error-rate of 10-4, an approximate O.75dB improvement is attainable by 

going from a conventional N = 2 receiver to an N = 3 receiver. 

Recently, there have been sorne simple codes developed for non-coherent block 

detection of Minimum Shift Keying (MSK) [14]. Although this is a modulation scheme 

rather different than MPSK, the detection process is somewhat similar since the dis­

tance metric is identical. This work explores the use of simple binary block codes to 

significantly improve performance over an uncoded MSK system. The code redundancy 

is designed 50 as to combine effectively with the inherent MSK redundancy and to in­

crease the minimum non-coherent distance. The performance enhancement is achieved 

by determining the most likely error patterns, or equivalently those codewords which 

have the smallest non-coherent distance from the zero codeword. Once determined, as 

many of the5e as possible are excluded from the code by choosing an appropriate parity­

check matrix which, in turn, defines the code. These codes expand bandwidth in order 

to achieve co ding gain over an uncoded system . 
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Chapter 3 

A Class of Codes for Non-Coherent 

Detection of MPSK 

3.1 The ring ZM and MPSK 

As was stated at the beginning of the last chapter, the mapping for MPSK, FMPSK : 

ZM -. C, 

(3.1) 

translates the ring of integers modulo-M, ZM, into M distinct phdsors along the unit 

circle. For the moment, let us consider ZM only as an algebraic group under addition 

modulo-M, and note that the set of MPSK signal points also forms a group under 

complex multiplication. The important aspect about the mapping F MPSK : ZM -. C, is 

that it is an isomorphism. An isomorphism is defined as follows: 

Definition 1 An isomorphisrn between two groups (9,') and ('H.,o) is a one-to-one 

mapping between the elements of 9 and'H. such that, if aG E 9 4-t aH E 1t and bG E 

9 H bH E 11. then aG . bo H aH 0 bH 

24 
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Clearly, by using addition modulo-M as the composition operation for ZM(g) and 

similarly complex multiplication for the set of MPSK signal points(1i), the mapping 

FMPSK : ZM -+ C is an isomorphism. This is important since it allows us to use ZM and 

the set of MPSK signal points interchangeably, which simplifies the matter of designing 

codes specifically for MPSK modulation. 

Another aspect concerning a mapping which also plays an important role in the 

construction of codes for a particular signal set, is whether or not it is matched for a 

particular distance measure,d(., .) in the signal space. A defini tion for "mat ching" is as 

follows 

Definition 2 A mapping /-t from a group (g, .) onto a signal set S is a matched mapping 

for a particular distance measure d(.,.) ih for all g and g' in 9 1 

(3.2) 

where € is the identity zero element of (9, .) and g-l is the inverse of the element g. 

This definition is similar to one given in [16], except that we do not make the assumption 

that the distance measure d(·, .) is a proper metric. 

ln our case the distance measure is the non-coherent distance d'he ( .,.) defined in 

(2.27) of the previous chapter. This distance is defined for blocks of MPSK symbols, and 

therefore we must consider the extension group of ZM, denoted Z~. Z~ is simply the 

set of length N vectors whose components are elements of ZM. It is clear that Z~ is also 

a group if we consider componentwise addition as the composition operation. Suppose 

that we have a collection of vectors C which form a subgroup of Z~, and consider two 

members of C, Ci and Cj. As in the previons chapter, p" is defined as the complex 

correlation coefficient between the i th and ph transmitted vectors given by 

(3.3) 
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Since Ci and Cj are elements of a group, Ci - Cj must also be an element,cq , of the same 

group. We have, therefore, that 

(3.4) 

where 0 corresponds to the aIl-zero codeword,co, or the identity element of C. From 

this, it is dear that 

where the mapping FMPSK now operates componentwise on a vector in ZM, and, there­

fore, the mapping is matched for the non-coherent distance. 

3.2 Module-Phase Codes 

We now consider an algebraic framework for block-coded M-PSK modulation. li'irst 

of aIl, we would like the codes to be subgroups of Z~, so that they are lincar or group 

codes. A second reason for this restriction relates to the idea of matching. If the codes 

are subgroups of Z~ we have seen that the mapping from the code vectors to the signal 

space is matched for the non-coherent distance. This is important because it is related to 

the distance profile of the code. Since the mapping is matched, we need only determine 

the distances from each codeword to the aIl-zero codeword, since the distance between 

any arbitrary pair of codewords may be computed using (3.5). This assures that the 

codes are superlinear[18]. 

Up until this point we ha.ve eonsidered only the additive properties of ZM and it 

sufficed, therefore, to consider it as a group, and similarly Z~ as its extension group. 

In faet, sinee ZM is actually a ring, we may look at Z~ in a more flexible way, from 

the standpoint of coding. It is actually an example of an another algebraic abstraction 

known as a module. A module, simply put, is the generalization of a vector space, where 

the sealars now belong to an arbitrary ring rather than to a field. The codes we are 
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considering, called module-phase codes, are sub-modules of Z~, which are still groups as 

before, but have additional properties which will prove most useful both in the definition 

of codes over ZM and in their construction for the non-coherent distance measure, 40' 

Sub-modules are analogs of sub-spaces of a vector space, and are themselves 

modules, hence the name module-phase codes. This framework has previously been 

proposed for block codes over ZM for the Hamming metrÏc [19] and Lee-metric [20]. 

Recalling the properties of a ZM-module, we have that a code C over ZM is such that 

1. C forms a commutative group under vector addition 

2. 't/x,y E CandÀ,J.t E ZM we have 

(a) À(J.tx) = (ÀJ.t)x 

(b) 1x= x 

( c) (À + p.)x = Àx + J.tX 

(d) À(x+y)= Àx+Ày 

The concept of linear independence for modules remains the same as in the case 

of vectors over fields. The codes are free modules which have the property that they 

may be finitely generated by a set of linearly independent vectors, called generators, 

gt,g2,'" ,gK E Z~, which are said to form a basis for C. We have, therefore, that 

every codeword Cm E C can be expressed as 

K 

Cm = LXmigi, 
1=1 

where :Z:mi E ZM. We can define this equivalently as 

=XmG, 

(3.6) 

(3.7) 
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where G is the (N - K) X N generator matrix for C and Xm = ( :tml XmK) is the 

information vector. The K-dimensional information vectors, X m , helong to the module 

Z~. Therefore, a module code is the image of an injective homomorphism from Z~ to 

Z~ determined hy the gencrator matrix G. 

Since we are using matrices over rings, it is important to note the similarities 

and differences with the case of matrices over fields. The only concepts that will he 

of interest to us are rank, singularity, and elementary row operations. The rank of a 

matrix is identical to the case over fields, it is simply the maximum number of linearly 

independent rows. The generator matrices for our codes, for example, have rank K. 

The idea of singular matrices differs somewhat from the case over fields. In general, a 

matrix is singular if its determinant is an element which is not invertible. In the case of 

fields, aIl elements except zero are invertibJe, and therefore we need only assure that the 

determinant is non-zero to assess whether or not a matrix is non-singular. In general, 

rings have elements other than zero which are not invertible, and are known as zero 

divis ors. As is the case over fields, a non-singular matrix is invertible. The concept of 

elementary row operations on a matrix is also similar, with the added restriction that 

only multiplication of a row by an invertible element is permitted. 

The only restriction that we put on the rows of the generator matrix, G, is that 

they are linearly independent. It follows, therefore, that there must exist at least one 

set of K columns from G such that the square matrix made up of these columns is 

non-singular. Let us denote this matrix by Q, and define a new generator matrix G' 

given by 

(3.8) 

Clearly, G' is a generator matrix for the same code. The only thing that is altered is 

the mapping from the information vectors Xm to the codewords in C. What is useful 

about this new generator matrix, however, is that is always places an exact copy of the 

information vector in the K positions of each codeword corresponding to the K columns 
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chosen for Q. Such a matrix is said to be in systematic Jorm. In other words, the K 

columns in G' that correspond to the K columns chosen for Q contain the K x K ide'1tity 

matrix, IK. Since interchanging columns does not alter the code, we may obtain a new 

generator matrix by permuting the columns of G' such that the K information symbols 

occur in first K positions of every codeword. Using these suitable transformations, we 

may always express any generator matrix in systematic form as 

TT) Pl . .. P(N-K) . (3.9) 

The codes may be equivalently defined as the vectors from Z~ which belong to 

the kernel of an (N - K) x N -dimensional matrix H of rank N - K. We have, therefore, 

that 

Vc E C {:::::} cHT = O. (3.10) 

Since the generators are themselves codewords, it follows that G HT = 0 and the corre­

sponding form for H is given, therefore, by 

(3.11) 

3.3 A Method for Building Codes 

Using the algebraic structure just presented, we present a technique for finding a set of 

generators that define a submodule of Z~ with reduced maximum correlation magnitude 

IPmo:.:l. It is this reduction in IPmo:J:1 which leads to improved performance over an 

uncoded system. In order to quantify the performance enhancement achieved by coding, 

we will use the measure known as co ding gain. Co ding gain is defined as the difference 

in decibels(dB) between the signal-to-noise ratios(SNR) of a coded scheme and an 

uncoded reference scheme operating at the same error probability. For convenience, all 

of the codes that will be presented in this chapter will be compared to uncoded coherent 
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MPSK. This is done because the performance of uncoded coherent MPSK is aLtays a 

lower bound to any of the non-coherent block detection schemes, and therefore if these 

coded schemes outperform coherent MPSK, they will necessarily outperform any block 

detection scheme and clearly differentially-coherent detection as weIl. 

We note that the probability of symbol error for uncoded coherent MPSK is given 

approximately by [2] 

(3.12) 

Similarly for an (N, K) coded scheme with non-coherent distance d~c at high SNR, the 

probability of codeword error with non-coherent detection is given approximately by 

NH-dkc/2 2' K 2 
Peocleword ~ Nn [ N+l-tP

NC
] Q (N) --ydNC , 

1 ( (3.13) 

where Nn is the number of codewords which share the distance, d~c' The factor KIN 

is due to bandwidth expansion, since K information symbols are contained in each 

codeword of length N. We have, therefore, that the asymptotic coding gain is given by 

[( K) d'1vc 1 Ge = 10 log N 1- cos fi dB. (3.14) 

If we look at the set of possible correlations created by the N-tuples Z~, as 

depicted in Fig.3.1 for Z:, we would like to choose a submodule such that IPml ::; Tmaz , 

for aIl m. This amounts to creating a code which selects a set of correlations that 

lie within a circle of radius TmaJ:' and therefore has d~Cmln ~ N(l - TmaJ:)' The best 

scenario would be if the set of correlations were very packed, as opposed to being spread 

throughout the range of possible values. An ex ample is shown in Fig. 3.2, where we 

show a possible set of correlations for a code which has d~Cmin = 2. 

3.3.1 Code Design by Exclusion of Unwanted Vectors 

In order to choose submodules of zI} which limit the correlation magnitude, the vectors 

with large IPml in zfJ must be determined. Let us assume that we want to generate 
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Figure 3.1: Possible correlation values for an uncoded system in Z: 
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a code which has a maximum correlation magnitude, IPmaxl. The following method 

attempts to exclude these vectors from the desired code, C. Let us create a list, Lo, 

which consists of the vectors that are to be excluded from C. These are the vectors with 

IPml> IPmaxl· Consider now an N-dimensional vector given by 

h,(N-l) 1). (3.15) 

We will choose the initial code, Co, as the kernel of ho, which is chosen so as to exclude 

as many vectors from Lo as possible. The kernel of ho defines a rate (N - l)/N code 

having a generator matrix given by 

Go = [IN-1 1 (-ho1 -h02 (3.16) 

The matrix Go defines an injective homomorphism from Z~-l to Z~ denoted 

by 

G 'ZN-l Go ZN 
O· M --"+ M' (3.17) 

The image of Go, im( Go), is the code generated by Go, Co. Let L' 0 be the set of vectors 

from Lo which also belong to im(Go), and let L1 be the set of vectors from Z~-l which 
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Figure 3.2: Possible correlation values for a coded system in Z: 
are mapped by Go into L'o. It is clear that IL11 < ILol because of the construction of 

Go. We can now repeat this procedure again with respect to the list(set) LI' We choose 

an (N - l)-dimensional vector hl = (hll h1(N-2) 1) such that as many vectors 

as possible from LI a.re excluded from its kernel. Let us consider the generator matrix 

associated with hl, defined by 

(( -hn 

and its associated injective homomorphism 

defined by 

G . ZN-2 G 1 ZN-l 
1· M ---t M 

The code Cl is defined as the image of the composition 

G G . zN-2 Gl ZN-1 Go ZN o 1 • M --"+ M ---'-+ M . 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

Now let L'l be the set of vectors from LI which also belong to im( GJ ). It is clear that 

IL'll < ILll. We may therefore continue this procedure until we have excluded aIl the 
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required vectors. The procedure ends since ILol > ILII > IL21' .. (at each stage we must 

get rid of at least one vector from the Hst), and ILol < 00. The maximum number of 

iterations is ILol, but the actual number of iterations is far less due to the fact that far 

more than one vector is eliminated at each stage. Assuming that we require N - K steps 

to remove aIl the vectors, we are left with an (N, K) code having a generator matrix G 

given by 

(3.22) 

where Gi is a (N - 1 - i) X (N - i) matrix. It should be noted that the performance 

(ie. the minimum-weight codeword) after each step does not necessarily improve, since 

we are simply trying to remove as many vectors as possible at each step. After aIl the 

vectors are removed, however, we are guaranteed an improvement in performance that 

is dictated by the weight of the codeword(s) lying just outside Lo. The factor5zation 

in (3.22) may he viewed as a concatenated coding system which uses K coding stages 

rather than the convention al two-stage approach [15]. 

It should he pointed out that the construction method can he modified somewhat 

to allow for more efficient searching methods. Provided that all the h-vectors and 

corresponding generator matrices are chosen in systematic form, we may search for the h­

vectors in any order. For instance, suppose that we wanted to create a code with specifie 

N and K. We cou Id begin searching for each h-vector in the order ho, hl,"', hN-K-h 

as dictated by the construction method with the hope that at the end of the search, 

we have dcleted all the undesired vectors. We may also se arch in the reverse sense, 

heginning with hN-K -1. Starting from the initialHst Lo, we create a new list, L~, which 

is contains aU the distinct length K + 1 vectors coming from the first K + 1 positions of 

aIl the vectors in Lo. We then choose hN-K-l such that as many of the vectors in Lri lie 

outside its kernel. For each vector, x, which is deleted from L~ we delete those vectors 

from Lo whose first K + 1 positions are identical to x. In general, the numher of vectors 

deleted from Lo will be greater than those deleted from Lb, The vectors from Lo which 

remain undeleted make up the Hst LI. We repeat the same procedure on the Hst LI 
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with the vector h N - K - 2 , and continue to repeat it until we reach ho, hopefully having 

rernoved aIl the undesired vectors along the way. In the end, the factorization of the 

code's generator matrix will, of course, be in the same forrn as in (3.22). This alternate 

view of looking at the code construction method will be used to find sorne of the codes 

in this chapter, as weIl as to search for codes tailored specially for the decoding strategy 

presented in the next chapter. 

3.3.2 Selection of the first vector, ho 

Let us consider codes with only one parity symbol. We need only consider, therefore, the 

construction of ho, whose main function will be to remove phase ambiguities, which are 

catastrophic in any non-coherent system. Phase ambiguities are caused by the vectors 

(a a . .. a), where Cl E ZM, Cl =1 O. It should be clear that if these vectors belong 

to C there would be no way of distinguishing any codeword c from c + ( Cl Cl . .. Cl) 

since IPml is invariant to any phase shift a. For phase vectors having equal components 

we have IPml = 1, and therefore the function of ho is to exclu de the vectors having 

d'1vc = o. 

Theorem 1 In order for the vectors (Cl a ... Cl) to be outside the kernel of ho} 

where Cl E ZM, a f: O} the sum of the components of ho must be an invertible element in 

ZM. 

Proo! Let À = Ef:01 ho. and v be any of the vectors that cause phase ambiguities 

which are to lie outside the kernel of ho. We have, therefore, that 

(3.23) 

In order for this expression not to be zero, for all Cl (a f. 0), which assures that v lies 

outside the kernel of ho, we require that À be an invertible element. The requin'ment, 
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therefore, to assure that phase ambiguities are removed from the code is given by 

N-l 

À = E ho. = any invertible element in ZM Q.E.D. (3.24) 
i=O 

We will now show that it is not possible to remove all of the next worst case 

vectors with ho. From the definition for IPml in (2.18) it should be clear that the next 

worst case vectors are those which contain N -1 identical symbols, a, and one of the two 

symbols nearest to a, either a + 1 or a -1. This is depicted in Figure 3.3, where we show 

Pm composed of N -1 phasors pointing in the same direction (corresponding to the phase 

a) and one pointing upwards or downwards in the next closest direction (corresponding 

to a + 1 or a -1); The angle (~) corresponds to the symbols 1 and M -1( -1) in ZM, 

and therefore the next to worst case vectors have correlation magnitude 

o 

I
N - 1 1 ( 271") 1 IPml = ~+ N exp J M . 

............. 
····-······· ••• lOS ...... 

ncxl lo worst case Ipl 

Figure 3.3: Worst Case and next to worst case correlation values 

We have, therefore, that phase vectors of the form 

(a ... a a+1 a ... a) 

and 

(a ... a a-1 a ... a) 

(3.25) 

(3.26) 

(3.27) 

are the sources of the largest correlations IPml < 1. Letting ho act on the first of these 

two vectors yields 

( a ... a + 1 a ... a ) h~ = Àa + hOi, (3.28) 
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where i is the position of a + 1 in the vector. Since Àa is a distinct element in ZM for 

every a because À is not zero divisor, there will be exactly one a satisfying 

Àa + hOi = O. (3.29) 

Using this argument for each compone nt of ho implies that N such vectors must remain 

after applying ho. The situation is identical, of course, for the second vector. 

We may therefore conclude that ho may be chosen arbitrarily as long as (3.24) is 

satisfied and that its function is to remove phase ambiguities. This being the case, let 

us choose 

ho = (1 0 ... 0). (3.30) 

This amounts to choosing as codewords, aIl the vectors from Z~ beginning with a zero. 

One of the corresponding generator matrices has the form 

(3.31) 

Another equivalent generator matrix will be considered shortly. The generator matrix 

Go in (3.31) corresponds to a phase ambiguity removing code which is the most inner 

stage in (3.22). 

3.3.3 Code Rate Improvement and DifferentiaI Encoding 

The choice for ho in (3.30) is particularly interesting since it allows an improvement 

in the rate of the code, as we shall now demonstrate. First of aIl, since aIl phase 

ambiguities are removed by applying ho, we may choose to transmit a codeword from 

C, or equivalently, from any of its cosets C + (a a ... a), Va E ZM, since IPml is 

invariant over these cosets. Therefore, if we wish to transmit a certain codeword Ci, we 

may equivalently transmit c: = Ci + c~(N-l) (1 1 1), where C~(N_l) is the last 

symbol of the previous codeword, c~. With the aforementioned choice for ho, it is clear 

that the last symbol of the previous codeword will be identical to the first symbol of 
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the next codeword, and clearly only one need be transmitted. This overlapping effect 

therefore increases the rate of the code by N/(N - 1). 

The other interesting point that arises due to this choice for ho combined with the 

overlapping effect is that this scheme is equivalent to differential encoding. The differen­

tial encoding process may be viewed as tirst multiplying an N -dimensional information 

vector by a generator matrix of the form 

0 1 1 1 

0 0 1 1 
Gd = (3.32) 

1 

0 0 0 1 

to yield an N + I-dimensional codeword. Every symbol of the codeword is then incre­

mented by the value of the last symbol of the previous codeword, then the codeword 

is overlapped with the previous codeword. These two operations, multiplication by Gd 

and codeword overlapping, are equivalent to regular differential encoding. Clearly, Gd 

is row-wise equivalent to the matrix in (3.31), and thus the two schemes are equivalent. 

Therefore, using ho alone, we have codes that do not expand bandwidth (ie. Re = 1) 

with respect to M-PSK, remove phase ambiguities but suffer sorne degradation with 

respect to coherent detection. The performance of these codes is equivalent to the non­

coherent detection schemes of [1]-[3] where it is shown that the SNR degradation with 

respect to coherent M-PSK is reduced by increasing the codeword length N. 

U sing codeword overlapping, wc have that the ith transmitted block, hi, including 

the last symbol of the previous block, is given by, 

hi = [ b.-l,N Xi] G (3.33) 

where bi_l,N is the last symbol of the previously transmitted block, Xj is the information 
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vector of the ith codeword, and G is a (K + 1) x (N + 1) matrix gi ven by 

1 1 1 1 

G = [0 0] Go + [ 1 1 ] = 

0 
0 1 

0 (3.34) 
Ge ONXK Ge , , ... 

G ov ... 

0 

The K x N matrix Ge is the generator matrix of what we calI the outer code, that is the 

one corresponding to the parity-check vectors, hl,"', h N - K , which is responsible for 

achieving coding gain over an uncoded system. The matrix Go is a N X (N + 1) generator 

matrix of a phase ambiguity removing code similar to (3.31), and the N x (N + 1) matrix 

Gaver reflects the overlapping operation. 

Although it is not necessary to employ this codew,)rd overlapping technique in 

order to design codes for non-coherent detection, we maintain that by doing so, the 

resulting codes will perform at least as weIl, if not better, than codes that do not use 

it. To see this, let us assume that we have two (N, K) codes Cl and C2 • In addition, 

with C2 we will employ codeword overlapping. This mcans that for C2 , the observation 

interval will be N + 1 symbols, whereas the one with Cl will he N symbols. Codeword 

overlapping assures that each codeword hegins with a zero, as this is the function of 

ho. This makes the complex correlations of the remaining vectors the same as that of a 

scheme of length N, except that they are aIl shifted to the right by one unit, as shown 

in Fig.3.4(a). In order for a code to have a given d'he, we must remove all the vectors 

with complex correlations lying in the annulus bounded by the circles of radii N + 1 and 

N + 1-d'j.,e for C2 and N and N - d'he for Cl as shown in Fig.3.4(b). Clearly, far fewer of 

the vectors need be excluded for the code which uses codeword overlapping which makes 

the chances of designing more powerful codes much better. What this really implies is 

that the outer code for a system which employs codeword overlapping has to do much 

less work to remove the unwanted vectors. Consequently, from this point onward we 

will assume that codeword overlapping is performed, and we will concentrate only on 
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(b) 

Figure 3.4: Advantage of codeword overlapping 

the design of the outer code. 

3.3.4 Design of hl to Yield Coding Gain 

We now consider hl in or der to devise sorne codes which exhibit minimal bandwidth 

expansion (Re = (N - l)jN) but achieve coding gain with respect to coherent M-PSK. 

The form of hl Îs somewhat dependent on the desired codeword length, and therefore 

as an example we will consider building a code with N = 9 in Z8, so that the rate of 

the code is 8/9. After applying ho the remaining worst vectors are shown in Table 3.1, 

which corresponds to the list L~ as previously defined (note that the vectors are actually 

of length N + 1 = 10 since we perform codeword overlapping.) 

Recalling that hl acts on the module zl}, we must focus our attention on the 

symbols in positions 1 through 9 which make up the vector from Z~. The collection 

of vectors composed of the symbols from these positions correspond to the list L1 • In 
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order for as many vectors from LI as possible to lie outside the kernel of hl, we have 

the following constraints on the form of hl: 

2. h1i f 0, 0 ~ i < 8 

4. no sum of any 8 hlt can be zero. 

Each of the four constraints on hl applies to a particular seL of vedors from 

Table 3.1, and assures that none in that corresponding set belong to its kerncl. The first 

constraint applies to the vectors in set 1 and is essentially the same as the condition 

imposed on the form for ho (3.24) since the two vectors are strings of one symbol; 

however, the requirement for the sum is that it not be zero (the strings are made up 

only of l's or 7's). The second constraint, for the vectors in set 2, is required sinee the 

vectors are permutations of the vectors having only a single non-zero component (1 or 

7) and therefore hl may not have a zero in any position. The third constraint simply 

requires that no two components of hl may be additive inverses of each other, since set 

3 contains aU permutations of the vectors with only two non-zero componcnts which are 

identical (1 or 7). The fourth constraint similar to the first since the vectors in set 4 are 

permutations of the vectors with a single 0 and eight l's or 7's. The last set of vectors 

(set no. 5) in the table cannot be entirely removed with hl since it would require that 

no symbol in hl is repeated, which is impossible for a vector in Z:. One. possible vector 

which satisfies aIl four constraints is 

hl = ( 1 1 1 2 3) (3.35) 

and results in a code with d~c = .586. In establishing the performance of this code with 

respect to coherent 8-PSK, we use the relation in (3.14) which yields a coding gain of 

Ge = 10 log [~.586/(1 - cos i)] = 2.50dB. (3.36) 
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Stot no V.ctor Pmi 
1 0 1 1 1 1 1 1 1 1 1 9733 

0 7 7 7 7 7 7 7 7 7 9733 

2 0 7 0 0 0 0 0 0 0 0 9733 
0 0 7 0 0 0 0 0 0 0 9733 

9733 

0 0 0 0 0 0 0 0 7 0 9733 
0 0 0 0 0 0 0 0 0 7 9n3 
0 1 0 0 0 0 0 0 0 0 9733 
0 0 1 0 0 0 0 0 0 0 9733 

9733 

0 0 0 0 0 0 0 0 1 0 9733 
0 0 0 0 0 0 0 0 0 1 9733 

a 0 1 1 0 0 0 0 0 0 0 95~0 

0 1 0 1 0 0 0 0 0 0 9520 

9520 

0 0 0 0 0 0 0 1 0 1 9520 
0 0 0 0 0 0 0 0 1 1 9520 
0 7 7 0 0 0 0 0 0 0 9520 
0 7 0 7 0 0 0 0 0 0 9520 

9520 

0 0 0 0 0 0 0 7 0 7 !)520 
0 0 0 0 0 0 0 0 7 7 0520 

1 0 0 1 1 1 1 1 1 1 1 9520 
0 1 0 1 1 1 1 1 1 1 !J520 

0520 

0 1 1 1 1 1 1 1 0 1 9520 
0 1 1 1 1 1 1 1 1 0 tlSlO 
0 0 7 7 7 7 7 j 7 7 9520 
0 j 0 7 7 7 7 7 7 7 9520 

9520 

0 7 7 7 7 7 7 7 0 7 0520 
0 7 7 7 7 7 7 7 7 0 0520 

5 0 1 7 0 0 0 0 0 0 0 !J-t14 
0 1 0 7 0 0 0 0 0 0 9414 

9414 

0 0 0 0 0 0 0 7 0 1 9414 
0 0 0 0 0 0 0 0 7 1 9411 

Table 3.1: Worst Vectors after applying ho 

3.4 Results from code searches 

In order to find codes with more parity symbols which achieve higher coding gains over 

uncoded coherent M-PSK, a computer program was devised to carry out the previously 

outlined procedure. Details on the computer searches can be found in Appendix A. 

Before discussing the results of the searches, we present a general union bound 

on the bit error probability for these codes. Since the codes are linear, each transmitted 

codeword has the same probability of error associated with it, and we may consider only 

the zero codeword as being transmitted. We have, therefore, that the probability of 
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codeword error is bounded by 

ICI-l 
Pcodeword < ~ P( Co -+ cm)' (3.37) 

m=l 

If we retain only the dominant terms in (3.37), which correspond to the codewords 

having minimum non-coherent distance, and use the actual pairwise error probability 

in (2.24), we obtain the following bound on Pcocleword for high SNR 

(3.38) 

The codeword Cneighbour is one which has a distance d-:Vc, a so-called nearest-neighbour, 

and the factor Nn is the number of such codewords. We would like to express Pcocleworrl 

in terms of 'Yb, the signal-to-noise ratio per transmitted bit. Since there are K log2 M 

information bits in the N transmitted symbols, we have that 

(3.39) 

In order to obtain an expression for the bit error probability, Pb, we determine the 

average number of bit errors per codeword among the set of codewords with minimum 

~c, eb, so that 
eb 

Pb = K log2 MPcodeword. (3.40) 

In determining eb, we will assume that the bit representations of the symbols in ZM are 

Gray coded. This assures that adjacent symbols differ only in one bit position, which 

should make eb smaller. Gray coding for Z4 and Z8 are shawn in Fig. 3.5. 

Tables 3.2 and 3.3 present the asymptotic coding gain over uncoded coherent 

M-PSK for bandwidth-expanding codes in Z4 and Z8 that were found. The number of 

nearest neighbours, Nb, and the average number of bits in error per block, eb, are alao 

shown. Upon first glance, it may seern that sorne of these codes achieve only marginal 

co ding gain. We must note, however, that these gains are expressed with respect to 

coherent detect.ion which is a rather ambitious reference. An additional 2.7dB for 8-

PSK and 2.3dB for QPSK must be added to realize the performance improvement over 
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1(01 ) 

0(00) 4(110) 

2(011) 

6(101) 

Z8 

Figure 3.5: Gray co ding for 24 and Z8 
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an uncoded scheme with differentially-coherent detection. For each code length N, the 

values of K were chosen 50 that the resulting code is more bandwidth efficient than 

the next lower order uncoded modulation format (ie. the QPSK codes aU convey more 

information than uncoded BPSK, and the 8-PSK aH convey more information than 

uncoded QPSK.) We should also note that many of the codes with one parity symbol, 

the (N, N -1) codes, are simply parity-check codes in ZM. These codes are characterized 

by a parity check matrix 

H=(l 1 ... 1), (3.41) 

which means that the components of every valid codeword must sum to zero modulo-M, 

which is a parity-check in ZM. 

We now present the bit-error rate performance of several bandwidth-expanding 

codes in 24 and Z8. We have found that many of the codes have weight distributions 

with a significant number of codewords near the minimum distance, and therefore a 

nearest neighbour approximation to the union-bound is not sufficient even at fairly high 

SNR. The following curves all use several of the minimum weights to more accurately 

describe the bit-error rate. 

In Fig.3.6 we present the probability of bit error for three codes in 2 4 , each 

with a single parity check bit. AH three codes have a fairly large number of nearest 

neighbours, which results in a performance which only reaches asymptotic values for very 
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I
N 1 k 1 d'f..,c 1 N" 1 eb 1 0.,11 1 h-voc.ou 

(e h QPS") 0 l 
3 :1 200 t:z :1 00-0 1 2b dU Il = (1 1 1) 

• • .00 61 26'3 :1 2:2 dU hl = (' • • ~ • .) 

7 6 .00 b6 3000 :) J.f dO la = (1 1 1 1 1 1 1) 

!lI = (3 • 1 l 0 0 1) 

7 4 3 &3 H 3364 "04 dO Il. = (3 • 1 0 0 1) 

b 3 = (3 1 1 1 1 ) 

hl = (3 0 1 • J 0 0 n !) 

9 & 400 17 • \18 347 dO h. = (1 3 • n 0 0 0 1) 

h, = (3 1 1 u 1 0 ') 

b = (1 1 1 1 0 1) 

ID 9 .00 91 1978 :l •• dU h = (1 1 1 1 1 1 1 1 1 1 ) 

!1, = (1 0 1 0 • 1 1 0 n 1 ) 

10 7 '.94 36 3'b6 313 dO h. = (:l • 1 1 0 n :l n 1) 

b 3 = (1 1 1 1 1 1 0 1) 

!ll = (3 1 1 • 3 • , 1 \ 1 ) 

10 6 37' H .. 2~1 3"U dn h. = (1 1 1 " 1 1 .1 1 .) 

h3 = (3 3 1 J J , :l 1 ) 

h. = (3 3 " 3 J 1 1 ) 

Il 10 .00 13:;) 3333 :J lil' dO b l = (1 1 1 1 1 1 1 1 1 1 1) 

!l, = (u 1 n 1 n 1 1 1 " " 1) 

Il a .9. J8 284. 331 dU h. = (3 • • 1 1 Il J 1 " 1 ) 

h. = (1 1 1 1 1 1 0 " 1) 

!ll = (" 0 \1 n • " 
, .\ \ ~ 1 ) 

Il 7 3 &2 6 3 foro7 3.0 dO h. = (. • 0 • \1 \1 .\ 1 Il 1 ) 

h3= (1 0 1 J 1 1 Il , 1) 

h =(1 1 , 1 1 1 3 1) 

hl = (. :1 1 1 0 1 " 
, :1 1 1) 

h. = (2 3 " 0 " 1 :1 • • 1 ) 

Il 6 438 14 4.86 37' dU h3 = (0 CI 3 :1 • 1 1 J 1) 

h4 = (3 u :1 , 1 10 Il 1 ) 

h = (. • 1 1 1 J . ) 

Table 3.2: Bandwidth Expanding codes in 24 

high SNR. Even at Pb = 10-1 aU three have reached only slightly more than half their 

asymptotic coding gain. Significant improvement, however, is still achieved compared 

with differentially-coherent detection. In Fig.3.7 the performance of four codes with 

larger d'1vc is shown. It can be se en that three of the four codes achieve their asymptotic 

performance much more rapidly than was the case with the simple codes, because of 

the smaller number of nearest neighbours. Figs. 3.8 and 3.9 present similar resu1ts for 

codes in Z8. 'Vith these codes we must be a little more careful sinee the more powerful 

ones approach the bandwidth efficiency of QPSK, that is to say their throughput is 

only slightly higher than uncoded QPSK. Although they achieve significant coding gain 

over uncoded coherent 8-PSK, they have an error performance quite close to uncoded 

coherent QPSK because of the approximate 3.6dB gap between coherent QPSK and 

8-PSK. Of course, comparing these codes in Z8 with both differentially-coherent QPSK 
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K d~C Gain h-Yedorl 
Coh 8-PSK 

& 4 &86 lU 1600 l04 dB hl = (1 1 1 1 1) 

6 & .&86 30 1667 III dB hl = (1 1 1 1 1 1 ) 

7 6 &86 &6 3000 l34 dB hl = (1 1 1 1 1 1 1) 

7 ~ aH Il ,667 J 13 dB !ll = (0 3 , 1 l 0 1) 

h, = (l 1 1 1 0 1 ) 

8 7 &80 42 '000 '43 dB Il = (3 1 1 1 1 1 1 1) 

8 01 84a 16 2 '7&0 334 dB !ll = (0 3 , 1 3 2 0 1) 

h 2 = (2 1 1 1 0 0 1) .. 8 &88 42 ~ 000 2 GOdB hl = (3 2 1 1 1 1 1 1 1 ) 

9 7 .UI 3l 306l 3 &4dB !ll = (& 4 3 2 1 3 2 0 1) 

h l - (1 1 1 1 1 0 0 1) 

10 9 &80 90 1800 l UdB hl =(1 1 1 1 1 1 1 1 1 1 ) 

10 8 773 10 & 200 3 '"dB 
!ll = (, 1 0 1 0 3 2 1 0 1 ) 

h, = (& & & 4 4 1 1 1 1 ) 

!ll = (0 0 0 0 l 0 , 0 0 1 ) 
10 7 107 18 '778 40AdB h, = (3 6 4 :1 " 3 1 0 1 ) 

h, = (l 1 1 1 0 0 0 1) 

Table 3.3: Bandwidth Expanding codes In Z8 

and 8-PSK still results in significant performance improvements . 

• 
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Figure 3.6: Performance of sorne simple QPSK codes 
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Figure 3.8: Performance of sorne simple 8-PSK codes 
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3.5 Coding Without Bandwidth Expansion 

In this section we present sorne codes which do not expand bandwidth with respect 

to sorne uncoded reference scheme. Let us assume that we art' using a module-phase 

code generated by the (K x N) matrtx G which can be represented by the homo­

morphism G: z1} ~ Z~. We will also assume that symbols are transrnitted at a rate 

R[symbols/sec]. The information per transmitted symbol is (KIN) log2 M[bits/symbol]. 

We have, therefore, that the information rate, RI is related to the symbol rate, R, via: 

K' G' N' RI = R(K/N)10g2 M[bits/sec]. Suppose that we have another code G': ZMI --. ZMI 

such that RI = R'(K'IN') log2 M'. If the information rates of the two coded systems 

are to be the same, we require that 

R(KIN)10g2 M = R'(K'IN')10g2 M'. (3.42) 

If our reference scheme G' is an uncoded scheme, then K' 1 N' = 1 and R( KIN) log2 M = 

R' log2 M'. In the previous section, the codes were compared with uncoded schemes with 

the same M-PSK constellation. Thus, M = M'and the bandwidth expansion was 

R/R' = N/K. (3.43) 

Since we do not want to expand bandwidth, we are forced to impose the constraint that 

R = R'. This shows that we must have a constellation expansion sinee 10g2 M / 10g2 M' = 
N / K. The code rate (K / N) must therefore satisfy 

K/N = log2 M'/10g2 M (3.44 ) 

in order not to expand bandwidth with respect to uncoded M'-PSK. 

Table 3.4lists sorne bandwidth efficient codes and their performance with respect 

to sorne uncoded coherent scheme. AU were found by computer search, the details of 

which can be found in Appendix A. Sorne of BPSK equivalent codes (ie. codes which do 

not expand bandwidth with respect to uncoded BPSK), have been round by exhaustive 
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N 1 K 

3396 14 2429 

Il 4000 26 3000 

10 4.!>97 3118 

1:1 4938 ~O 3115" 

14 5560 8 & 7t.O 

4000 4~ ~ 851 

9 1256 10 .. 200 

1:1 1494 12 5333 

I!> 10 1699 !i 333 

Zt6 ~.631 1000 

3.11~ ~ 000 

3 &39 3000 

3.18r 3000 

8·· 4011 .. li 000 

• indlcahl An exhaluUve learch 

•• indlc.te •• n il1complet.e ... ndom .eftrch 

Oain 

2 30dP(BPSK) 

30IdB(BPSK) 

30IdP(BPSK) 

3 93dB(BPSK) 

• HdP(BPSK) 

3 OldP(PPSI<) 

1 09dB(QPSI<) 

1 HdB(QPSK) 

2 30dB(QPSI<) 

1 19dB(BPSK) 

200dP(BPSK) 

2 45dP(BPSI<) 

~ 11dB(BPSK) 

3 03dB(BPSK) 

Ge or h-ye-cton 

!ll = (1 1 1 ~ 0 0 0 1) 

h~ = (3 1 1 0 0 0 1) 

h3 = (1 1 2 0 0 1) 

h. = (3 3 1 1 1) 

!ll = (2 1 1 0 3 3 :1 0 1 1 ) 

h~ = (0 3 3 0 1 2 0 1 1) 

h3 = (2 0 3 :1 0 0 1 1) 

114 = (1 1} 0 ~ 1 2 1) 

hs = (2 1 1 1 2 1) 

!ll = (0 1} 0 0 0 2 0 Il 0 0 0 1) 

Il~ = (~ 3 1 0 0 1 0 0 0 0 1) 

113 = (1 3 1 3 1 0 0 0 0 1 ) 

h4 = (3 1 0 2 2 0 0 0 1) 

h!> = (3 ~ ~ 1 0 0 0 1) 

h .. -(I 1 1 1 1 1 1) 

!ll = (1 3 0 2 0 1 1 1 0 3 2 1 0 1) 

h 2 = (2 0 2 2 0 1 0 1} 0 3 0 :1 1) 

h3 = (1 :1 3 1 0 3 :1 1 1 0 1 1) 

h4 = (0 0 0 0 2 0 1 1 0 1 1) 

ho = (~ 3 ~ 1 ~ 0 3 3 1 1 ) 

ho = (1 1} 0 1 3 ~ 3 3 1) 

h7 - (1 1 1 1 0 1 1 1) 

!ll = (1 & :1 4 6 1 2 5 1) 

b~ = (~ 4 1 7 3 4 0 1) 

h3 - (6 6 6 6 3 b 1) 

!ll = (6 1 3 6 ~ 6 7 5 0 1 1 1) 

h~ = (1 4 6 0 1 6 • 5 6 5 1) 

h3 = (0 1 l ~ 1 5 ~ 3 2 1 ) 

Il -(0 1 1 1 .0 1 • 1) 

JII = (0 6 ~ 4 ~ 2 1 6 7 0 1 ~ 1 3 1) 

h~ = (& 0 0 4 & J 1 4 • 6 & 7 2 1) 

h3 = (& • 3 4 1 1 & 4 S 6 6 3 1) 

11. = (4 & & :1 2 Il 0 1) 6 • 4 1) 

h6 = (1 4 5 0 & 1) 1 • 1 1 1) 

Gr. =(1 3 5 16 25) 

Ge = (1 105 41 18 93 96 98) 

Ge = (1 190 188 26 19 153 H3 100) 

Table 3.4: Bandwidth efficient codes 
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computer searches for optimal generator matrices and are marked with an asterisk. 

These codes are interesting because of their simplicity in terms of the small number of 

codewords. Those marked with a double asterisk were found by an incomplete random 

search, and are therefore not necessarily optimum. The remaining codes were found 

using the method of section 3.3. It should he noted that these handwidth efficient codes 

use codeword overlapping, as was the case for the bandwidth expanding codes of the 
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previous section. We have, therefore, that blocks are transmitted as in (3.33) and Ge is 

such that (3.44) is satisfied. 

We note that sorne of the BPSK codes use rings having orders larger than four. 

Most traditional coded-modulation schemes double the size of the modulation format, 

since it was shown in [6] that increasing the modulation order by a factor of more than 

two does not significantly improve performance. This does not mean that codes in 

these larger constellations have no purpose. In our case, for instance, the (8,4) code in 

Z4, achieving an asymptotic coding gain of 3dB over uncoded coherent BPSK, has 256 

codewords, whereas an asymptotically equivalent code in Z8 has 64 codewords. Clearly, 

from a complexity standpoint the code in Z8 is preferable. With coherent detection, 

however, the penalty for using higher order modulation formats is quite severe, since 

carrier phase tracking becomes more difficult as the modulation size grows, and may also 

result in sorne performance degradation. With non-coherent detection, this problem is 

non-existent, since carrier phase tracking is not performed. We may, therefore, consider 

codes in higher order rings, even from a practical standpoint. 

We now present the performance of sorne of the bandwidth efficient codes. We 

must note that, as in the previous section, several of the codewords with sman d~c are 

used and not only the nearest neighbours. Fig.3.10 shows the performance of three very 

simple BPSK equivalent codes. They are simple in the sense that they have a small 

number of codewords (:::; 64). The most powerful of the, three, is really only powerful 

in the asymptotic sense because the number of nearest neighbours is almost as large 

as the total number of codewords, and consequently it attains its asymptotic coding 

gain very slowly. In Fig.3.lI the performance of three more powerful codes, an in 24 is 

shown. They aIl achieve significant improvement over uncoded BPSK even at moderate 

Pb. The final set of BPSK equivalent codes is shown in Fig.3.12. They use increasingly 

higher order rings to achieve coding gain, which, with non-coherent detection, poses 

no practical disadvantage, as was mentioned earlier. Although these codes aU have 
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Figure 3.10: Performance of sorne simple BPSK equivalent codes 
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smaU number of nearest neighbours (two in each case), they aU have many codewords 

with distances very near the minimum distance. They do not, therefore, achieve their 

asymptotic performance as quickly as one would expect looking only at the nearest 

neighbours. Fig.3.13 shows the performance of three QPSK equivalent codes. Clearly 

the (15,10) code is the best since it has very good asymptotic performance and a small 

number of nearest neighbours. The main drawback with these three codes is the large 

number of codewordsj in the case of the (15,10) code, it has 230. Obviously, such large 

codes cannot be deccded using a brute force ML decoder, necessitating sorne sort of 

reduced complexity decoding strategy in order for them to be practical. 



• 

• 

Chapter 3. A Class of Codes for Non-Coherent Detection of MPSK 

10° r-......,,::--r----,----r--.....,---.....,----,----, 

~ 10
4 

W 

ïii 10" 
a 

............ ' 
Coherent .", 

BPSK •.•... , 
\, "', 

.... ",', 
.... " " 

... " .... ,', 
j' 10.5 

jg 

. \ \ 
" \ \ 

. " 
~ 10" - - (8.4) Coded QPSI«3.01dB) 

_. (10.5) Coded QPSK(361dB) 
10.7 .. • .... (14.7) Coded QPSK(4.45dB) 

\\ 
'. , , \ 

\ , 
'. \ \ . '. \ . , \ 

10-8 , \ , \ 

\ \ 

10·g!--~O'_--L--....... --__!_--!\-L>.\ --....L:_:L.\..-.I 
o 2 4 6 8 10 14 

SNRlblt (dB) 

Figure 3.11: Performance of sorne more powerful BPSK equivalent codes 
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Figure 3.12: Performance of sorne BPSK equivalent codes in higher order rings 
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Figure 3.13: Performance of sorne QPSK equivalent codes 
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Chapter 4 

Efficient Decoding of 

Module-Phase Codes with 

Non-Coherent Detection 

While the ML decoder is optimal, the brute force decoding strategy suggestcd by (2.15) 

requires M K comparisons and is therefore computationally inefficient. Moreover, despitc 

the moderate block lengths of the codes we are considering, il. is far 1.00 impractical for 

most of thern. For this reason, the focus of this section will be on rcduced-cornplexity 

decoding strategies which atternpt to make sorne the codes more practical from an 

implernentation standpoint. In sorne cases, the reduction in complcxity cornes al. the 

expense of sorne performance. Another shortcoming of the brute force decoding strategy 

is that it performs a completely unstructured search through the code, lleglecting its 

inherent algebraic structure. We would like to use this added structure to our advantage 

in the design of more efficient decoders . 

54 
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4.1 A General Two-Stage Decoding Strategy 

Let us consider a general framework for a two-stage decoding strategy. During the first 

stage the de co der performs hard decisions on each symbol of the received codeword 

and, based on these decisions, creates a Hst of postulated transmitted codewords, 'P. In 

order to create P, the decoder will use knowledge of both the noise characteristics of 

the channel and the algebraic structure of the code. In the second stage it performs ML 

decoding on 'P, in order to find the most-likely transmitted codeword among the set of 

postulates. 

We may express the probability of error for such a two-stage scheme as follows, 

PE ::; PE(stage 1) + (1 - PE(stage l))PE(ML) (4.1) 

where PE(stage 1) is the probability of making an error during the first stage, and 

PE(ML) is the probability of error of the ML decoder. Clearly, the decoder will always 

make an error in the first stage of decoding if the transmitted codeword is not among 

the set of postulates, and therefore the probability of making an error du ring the first 

stage of decoding is the probability of this event. In terms of performance, the decoder 

will be effective compared with the ML decoder, if PE(stage 1) is smaller than PE(ML). 

As far as complexity is concerned, the decoder will be effective if IPI ~ MK. These 

two initial observations reveal that this type of decoder offers a performance versus 

complexity tradeoff. More precisely, it would seem that if we were willing to sacrifice 

some complexity by increasing l'PI we could reduce PE(stage 1) and vice versa. 

The reduced-complexity receiver structures for non-coherent detection of MDPSK 

in [2] may be cast into this framework. It must be pointed out that these techniques 

were meant for uncoded systems which afford less flexibility in the design of the receiver. 

These schemes use single-symbol differential detection to perform hard decisions on the 

received sequence. The set of postulates 'P is created by ad ding a subset of the most 

likely channel error patterns to the hard decisions, based on the reliability of the hard 
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decisions. Maximum-likelihood detection is then performed on the set of postulates. 

Using this as a starting point, we will generalize this approach for the coded case. 

4.2 Two-Stage Non-Coherent Decoding of Module­

Phase Codes 

The first stage of the general decoder presented in the previous section requires that 

hard decisions be performed on each syrnbol of the received block. These hard decisions 

must be performed in the presence of an unknown phase offset induced by the channel. 

Let us assume that the transmitted codeword belongs to an (N, K) code in ZM with 

generator matrix, Ge, and is transmitted using codeword overlapping, as described in 

Chapter 3. The decoder must process the single symbol correlations, y,. We mayexpress 

the correlations corresponding to the block bi, which were defined in (2.13), as 

y,; = T exp J (4) + (~) b,;) + ni, (4.2) 

where 4> is the unknown phase offset induced by the channel and n, is a complex gaussian 

random variable with mean zero and variance No. The terrn (~) bl , is an element of 

the set (j7) ZM = {O, (j7), (il) 2,"', (~) (M -1)}, whose clements belong to the 

ring of real numbers rnodulo-271", 'R27r • In order to obtain hard decisions on the received 

block we must compute the phase of each of the YI" each of which may be expressed as 

(4.3) 

where 'T/ij is a random phase shift induced by ni,. We should note that <p, "'i, E 'R2f/" Let 

Si be the (N + 1 )-dirnensional vector 

Si - [810 , (Jll, .. ·,(J,N] = (~)bi+<Pl+Ni 

- (~)[b'-lIN xiJG+<p1+Ni (4.4) 
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which is processed in the first decoding stage, where 1 is an aU-one vector, and Ni = 
[ 'lio, '1.1, . . . , '1iN J. 

4.2.1 Generalized Differentiai Detection 

Let us define an (N + 1) X N generalized diJJerential decoding matriz Q over 'R,2,o which 

is a phase-offset annihilator wh en it operates on Si. Assuming that Q will operate on 

the right of Si, we require, therefore, that 

(4.5) 

This condition implies that every column of Q must sum to zero. Let us nowexamine 

the effect of Q on the entire hlock,flj. Looking at the matrix product, [(~) G] Q we 

have 

1 1 1 ... 1 

o 
o 

o 

(4.6) 

where Qs is the N X N matrix formed hy removing the first row from Q. We have, 

therefore, that 

(4.7) 

Since we will he perforrning hard decisions on the vector SiQ, which corresponds 

to quantizing the components of 9iQ to the closest elements in (~) ZM, we require 

that 

(4.8) 
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This is because, in the absence of the noise term Ni', the result of performing hard 

decisions on 9iQ must he bi'. If this is the case, we can surely recover the transmitted 

codeword, XiGc, correctly, by applying Qs -1 to the hard decision vedor. We must 

assure, therefore, that Qs is invertible. 

An important aspect to consider when selecting Q is i ts effect on the noise vector 

Nj. We would like to find a form for Q which minimizes the noise variance in each 

component of Ni'. Since the components of Ni are aIl independent and identically 

distributed, the number of times any one of these components is summed to form NiQ 

should be as small as possible. This assures that the effect that any one component of 

Nj has on the entire vector NiQ is minimal. It is reasonahle, thercfore, to mÎnimize the 

number of non-zero elements in each column of Q. We should also assure that IQI;I ~ 1 

so that the noise variance is never amplified. It should he clear that the IQ(,I'S cannot 

be greater than zero and strictly less than one, sinee (4.8) would, in general, he violated. 

The components of Q must, therefore, only assume the three values -1,0 or 1, and in 

or der to satisfy (4.5), there should be only a single (1,-1) pair in each eolumn. This 

implies that each eomponent of NiQ is a difference of two components of Ni. 

The form that we will use for Q which is, in faet, a matrix representation for 

ordinary differential detection is given hy 

-1 0 0 0 0 
1 -1 0 0 0 

Q= 0 1 -1 0 0 (4.9) 

0 0 0 1 -1 
0 0 0 0 1 

This is, of course, not the only possible good choice for Q. In general, aU matrices 

which have N - 1 rows with two non-zero elements and two rows with a single non-zero 

element which satisfy the other requirements will be equivalent since aIl the components 

of Ni are independent. 



• 

• 

Chapter 4. Efficient Decoding of Module-Phase Codes with Non-Coherent Detection 59 

Let us denote the vector made up of the hard decisions by rH, which is given by 

(4.10) 

where eH is the error-pattern resulting from making hard decisions on the received 

block. Let r be the vector from ZM which corresponds to rH, r = XjGcQs + e. We 

have, therefore, that ris the sum of a codeword from the code generated by GcQs and 

an error pattern induced by the channel. 

4.2.2 Information Set Decoding 

The main function of the first stage of the decoder is to create a set of postulate code­

words P. We would like to create P such that at least one of the postulates is the 

transmitted codeword, which means that we must somehow cancel or cover the error 

pattern e in (4.10). A method for doing this, known as Information Set Decoding was 

first used by Prange in [8] for decoding binary cyclic block codes. This method has also 

been used for soft-decision decoding of binary block codes [15, p.102], which is exactly 

what we intend to do for module-phase codes. The main feature of the method is that it 

exploits properties of vector spaces in or der to cover a specifie number of error patterns. 

We will exploit similar properties for the more general case of modules in or der to decode 

the codes of Chapter 3. 

Let us assume that we have a received vector, r given by 

r = XjG + e (4.11) 

where G is the generator matrix for an arbitrary (N, K) code in ZM. It should be clear 

that iî the information positions of the received codeword are error-free, we can recon­

struct the entire codeword correctly simply by applying G to the information vector . 

The key property of linear codes which is exploited by this technique is that for a given 

code there may be several sets of K symbols, called information sets, which can be used 
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to generate the code. By using several information sets we may cover, in the best case, 

any error pattern made up of N - K or fewer errors. This is because, in the best case, 

any of the (~) information sets can be used to generate the code, and there will always 

be at least one which is error-free for any error pattern having N - K or fewer errors. 

In reality, we cannot expect that any information set can be used to generate the code, 

sinee this would require that aIl K X K sub-matrices of G be non-singular. This is 

especiaIly true for matrices over rings due to the larger number of zero divisors. Because 

of this we calI information set 'Useful if it can be used to generate the entire code. More 

precisely, we have the following definition 

Definition 3 An information set, denoted by the vector 1 whose K components are the 

locations of information positions, is useful if G can be manipulated via elementary row 

operations to form a matriz G}, su ch that the columns of GI corresponding to 1 form the 

K X K identity matriz. 

If we define a matrix VI which is the K x K matrix formed by the columns of 

G which correspond to 1, we have that 1 is useful if VI is non-singular in ZM' If this is 

the case, we have that the generator matrix corresponding to 1 is given by 

(4.12) 

In the design of the decoder, we determine the maximum number of errors, t, 

that we wish to cover. Assuming that this can be done for the code we are using, we 

choose the minimum number of information sets needed to cover up to t errors, and 

compute the appropriate generator matrix for each information set. This can be done 

simply by using a greedy algorithm which forms of Hst of the error positions and chooses 

useful information sets one at a time, so that a maximum number of the error patterns 

are deleted from the Hst at each step. This is continued until aIl the error patterns are 

covered. The decoding strategy is quite simple once these have been determined, and is 

as follows: 
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1. For each information set, 1 

2. Create the information vector, Xl made up of the components of r corresponding 

to 1 

3. Form the codeword c) = X)G) 

4. Add c) to P 

5. If there are information sets remaining go back to 1 

6. Choose the codeword in P closest to the received block according to sorne distance 

criterion as the decoder output 

The complexity of this strategy, in terms of number of comparisons, is proportional to 

the number of information sets, Nt, needed to cover any t-error pattern. 

4.2.3 Modifying the basic scheme for non-coherent detection 

The received vector, r, in the case of non-coherent detection is the result of making 

hard decisions on the differentially-detected block, 8iQ and is given in (4.10). In this 

case, the generator matrix which must be used in the algorithm is not Ge, the generator 

matrix of the code, but rather GcQs. In addition, the postulated codeword that is 

added to P must be post-multiplied by Q;l to reverse the effects of Q on the received 

block. For the general form for Q in (4.9), we have that Q;l is given by 

1 1 1 1 1 

0 1 1 1 1 

0 0 1 1 1 Q -1_ ( 4.13) s -

0 0 0 1 1 

0 0 0 0 1 
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The basic assumption in the information set decoding algorithm is that there is at 

least one information set that is error-free. Unfortunately, because we are using M-ary 

modulation combined with the faet that we employ differential detection to perform hard 

decisions in the nrst stage of decoding, this is a fairly unrealistic assumption. A more 

reasonable one, in this case, would he that at least one information set contains only sm ail 

errors. By small, we mean that no symbol in the information set differs from the actual 

symbol in the transmitted codeword by more than one element. We assume, therefore, 

that each symbol in the information set is either the actual transmitted symhol, s, or 

one of the two symbols closest to s, s + 1 or s - 1. In order to cover these information 

set errors, we will use the 2L algorithm proposed by Wilson et al. in [2] (see chapter 2), 

on each information set. This method will cover any small errors in the information set, 

while the more serious errors will he trapped in the parity set, as in normal information 

set decoding. 

In the design of the modified decoder, we first must decide on the number of 

information set errors that are to be covered, L (L ~ K). We must then determine 

the maximum number of serious errors, t, that we wish to coyer. As hefore, we assume 

that this can he done for the code we are using and we choose the minimum number of 

information sets needed to cover up to t errors, and compute the appropriate generator 

matrix for each information set. The modified decoding strategy is as follows: 

1. For each symbol in the block, BQ, determine the best and second best hard 

decisions and the reliabilities of the best decisions 

2. For each information set, 1 

3. Determine the K - L most reliahle symbols and set those positions to bcst decision 

in the vector Xl, 

4. For each of the 2L possible choices for the remaining positions in x}, j 

5. Form the codeword Clj = xlGI 
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7. If there are additional possible information set vectors return to 4 

8. If there are information sets remaining go back to 2 

9. Choose the codeword in P closest in terms of non-coherent distance to the received 

block y as the decoder output 

The complexity of the this combined scheme, in terms of the number of comparisons, is 

proportional to Nt 2L. In order to reduce the 2L factor in the complexity of this scheme, 

we may use only a subset of the 2L possible information set choices. For instance, we 

may choose only those vectors which contain less thd.n a certain number of second best 

choÎces. If we were to choose only those vectors which have at most a single second 

best choice, it would the same as Wilson's N + 1 algorithm in [2], and would make the 

complexity Nt(K + 1). This reduction in complexity would have to be weighed with a 

possible loss in performance. 

4.3 Searching for codes better suited to Informa­

tion Set Decoding 

The only criterion that was used in the code search described in the previous chapter 

was to maximize the minimum non-coherent distance, d~c' As soon as :~ satisfactory 

code was found, the search was terminated. As far as the brute force ML decoder is 

concerned, these codes are adequate. This may or may not be the case when we use 

an information set decoder. More precisely, because of performance requirements, we 

may require to cover a certain number of error patterns which cannot be covered by 

the generator matrix of the code that was found. For this reason, it is possible that 

the occasion will arise where we must search for equivalent codes, in terms of distance 
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properties, which are better suited for information set decoding. By this we mean that 

a code which has a larger number of useful information sets is more effective for this 

type of decoding. 

A simple modification of the se arch presented in the last chapter can be performed 

to find more amenable codes. Let us assume that we want to search for a code equivalent 

to one which was already found which has N - K parity-check vectors hi,l ~ i ~ N - K. 

We leave any N - K - 1 of these vectors as they are. Let us can the parity-check vector 

which we singled out hs(O), 1 < s ~ N - K which is the vector we will use in the search. 

Using the originallist of vectors which had to he excluded from the code, Lo, we retain 

the vectors which remain after applying the N - K - 1 parity check vectors, and can 

this smaller list L.. Create the list L~ hy retaining the K + 1 - s leading positions of 

each vector in L.. It should he clear, that no vector in L~ is in the kernel of hs(O). 

Starting from the initial value hs(O) we continue searching for new hs(k) such that no 

vector in L~ is in its kernel, which means that hs(k) comhined with the other hi define 

an equivalent code. At the same time we determine the useful information sets fol' the 

matrix 

( 4.14) 

where Gs(k) is the generator matrix corresponding to the parity-check vector, hs(k). 

As soon as we find a code which has the desired characteristics, the se arch is terminated. 

If no such code was found, we may try to repeat the procedure with a different search 

vector hr(O), 1 ~ r ~ N - K, r =/: s. 

4.4 Decoding of Various Module-Phase-Codes 

In this section we will consider various examples of codes, and how they may be efficiently 

decoded, both in terms of complexity and performance, using the modified information 

set decoding algorithm consider in the previous section. We will consider three sets of 
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codes 

1. bandwidth expanding codes for 8-PSK 

2. bandwidth expanding codes for QPSK 

3. bandwidth efficient codes equivalent to uncoded BPSK 

and present results through the use of computer simulations. 

4.4.1 Computer Simulations 

Simulation software for the modified information set decoding algorithm over a non­

coherent channel was written in C. The program requires an input file to characterize 

the coded system which contains the following parameters: 

1. The code parameters, N,K and M 

2. The number of information sets to be used, Nt 

3. Each information set followed by its corresponding generator matrix 

The software simulates a complex baseband MPSK system by transmitting the 

zero codeword across an additive white gaussian noise channel, while accumulating the 

number of bit errors of the decoded output, assuming Gray Coding is used. Complex 

gaussian noise is simulated using a uniform pseudo-random sequence generator and an 

appropriate transformation. The user supplies a range of SNR values and the number 

of experiments to be performed for each noise power level, along with the number of 

trials to be performed per experiment. The error statistics of the decoded output, for a 

given SNR, consist of the average value for the probability of error over the collection 

of experiments, and an estimate of the standard deviation. 
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The bit error-rates of the reduced-complexity decoding strategies are compared, 

in each case, with the union bound for a ML decoder, an uncoded coherent PSK system 

and an uncoded diffel'entially-coherent system. The simulation curves are plotted using 

a cubic-spline interpolation of simulation points spaced 1dB apart. The points are 

averages over ten experiments, with the number of trials per experimcnts chosen 50 as 

to have small standard deviation (shown in the figures as vertical bars at each simulation 

point). 

4.4.2 Bandwidth Expanding Codes in Z4 

A (6,5) Code with d~c = 2.00 

This is a simple parity-check code in 24 which has an asymptotic coding gain of 2.22dB 

over uncoded coherent QPSK. It has the following generator matrix (see Appendix A) 

1 0 0 0 0 3 
0 1 0 0 0 3 

Ge = 0 0 1 0 0 3 
0 0 0 1 0 3 
0 0 0 0 1 3 

We have, therefore, that the generator matrix used in the decoder is Gdcc 

which when expressed in systematic form is given by 

1 0 0 0 0 2 
o 1 0 0 0 3 

Gdee = 0 0 1 0 0 0 
o 0 0 1 0 1 
o 0 0 0 1 2 

(4.15) 

= GeQs, 

(4.16) 

For this code we will use only one information set, and thercfore only attempt 

to cover small errors in the information set. We have chosen to simulatc two decoders, 

one with L = K, and the other with L = K - 1. The results of the simulations are 

shown in Fig.4.1. We see that the reduced-complexity strategy with L = K performs 
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noticeably better than the union bound for a ML decoder, which means that PE(stage1), 

the probability that the transmitted codeword is not in the set of postulates, is inferior 

to PE(ML). The L = K decoder requires 32 comparisons, compared with the 1024 of a 

ML decoder. At Pb = 10-5 we attain a coding gain of approximately 1dB over coherent 

QPSK, and close to 3.5dB over differentially-coherent QPSK. The L = K - 1 decoder 

requires half the number of comparisons (16) but suffers from a noticeable performance 

degradation (.25dB at Pb = 10-5
). 

10 $ (6.5) Coded NC QPSK(2 22dB) 

\ 

10 6L-_---''--_----L. __ ---'-__ \~~_----L._...l.--l 
2 4 6 8 12 14 

SNRlblt(dB) 

Figure 4.1: A (6,5) Code in Z4 

A (7,4) Code with d~c = 3.53 

This is a more powerful code which has an asymptotic coding gam of 3.04dB over 

uncoded coherent QPSK. Consequently, we must cover more errors during the first 

stage of decoding. The generator matrix for the code from in A ppendix A is capable of 

covering single errors, which we have found to be insufficient. It was therefore necessary 

to search for a code which is equivalent, in terms of distance properties, and has a larger 

number of useful information sets. Using the extended search method of section 4.3 
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resulted in an equivalent code which is capable of covering up to two en'ors using seven 

information sets. The generator matrix after performing an extended search is 

G
c

= (~ n H Hl· 
000 1 021 

( 4.17) 

The seven information sets and their corresponding generator matrices used by the 

decoder are given in Table 4.1. It should be dear that aIl seven matrices are row-wise 

equivalent to GcQs. 

Information Set Generator Matrix Information Set Generator Matrix 

U 
0 0 0 0 3 n U 

0 1 1 0 0 

D o 1 2 3 1 0 0 3 1 o 1 4 5 1 1 0 0 0 
0 1 0 1 3 0 2 1 1 0 
0 0 1 3 2 0 1 1 0 1 

U 
1 0 0 3 0 n u 3 3 0 0 3 n o 2 5 6 3 1 1 1 0 o 3 4 6 1 2 1 0 1 
3 0 3 2 1 2 3 0 1 3 
2 0 1 1 0 3 3 0 0 0 

n 1 0 3 0 1 n 0 
1 0 0 3 0 n 1 2 4 6 0 1 1 0 0 1 3 5 6 0 1 1 0 0 

0 0 3 1 1 0 1 0 1 1 
0 0 0 0 1 0 3 0 3 0 

U 
1 1 0 0 0 n 2 3 4 5 3 0 1 0 0 
3 0 0 1 0 
0 0 0 0 1 

Table 4.1: Information sets and generator matrices for decoding a (7,4) code in 2.1 

The simulation results for this decoder are shown in Fig.4.2. As for the last code, 

two decoders were simulated, one having L = K and the other having L = K - 1. In 

both cases, the curves are below the union bound for a ML decoder down to Pb = 10-5 • 

The L = K de co der requires 112 comparisons compared to 256 for a ML decoder, 

wher(;as the L = K - 1 de co der requires 56. There is, however, a slight degradation 

(:::::: .2dB) as a result of this reduction in complexity. For the L = K decoder a coding 

gain of approximately 2dB is attained over uncoded coherent QPSK at Pb = 10-5
, and 

approximately 4.2dB over uncoded differentially-coherent QPSK. 
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10 5 (7,4) Coded Ne OPSK(3 04dB) 

10 6~_--,,--_-,-__ -=---,,--_-:,::-,,,--_:,::---,---:, 
2 4 6 8 10 12 14 

SNRlbll(dB) 

Figure 4.2: A (7,4) Code in 24 

4.4.3 Bandwidth Expanding Codes in Z8 

A (5,4) Code with d~c = .586 

This is a simple parity-check code in 28 which has an asyrnptotic coding gain of 2.07dB 

over uncoded coherent 8-PSK. It has the following generator matrix (see Appendix A) 

0 
0 0 0 

n· Ge = 1 0 0 ( 4.18) 
0 1 0 
0 0 1 

We have, therefore, that the generator rnatrix used in the decoder, Gdee = GCQSl is 

given in systematic form by 

0 
0 0 0 i). Gdec = 
1 0 0 (4.19) 
0 1 0 
0 0 1 

As was the case for the parity-check code in 24 we will use only one information 

set. We will also choose L = K = 4 50 that no hard decisions are performed on the 
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information set. The results of the simulation are shown in Fig.4.3. We see that the 

reduced complexity strategy performs quite close to the union bound for a ML decoder 

down to Pb = 10-5 • Its' complexi ty is also significantly lower, requiring 16 comparisons 

instead of 4096. Even at fairly lowerror rates, we can achieve marginal coding gain 

over coherent detection (ldB for Pb = 10-4). Compared with differentially-coherent 

detection, we achieve close ta 4.5dB at Pb = 10-4 with very little complexity. 

105 (5.4) Coded Ne 8-PSK(2 04dB) 

10&~--~----~--~----~--~----~~~ 
4 6 8 10 12 14 16 18 

SNRlbU(dB) 

Figure 4.3: A (5,4) Code in Za 

A (7,5) Code with d~c = .844 

We will now consider the decoding of a more powerful code which has an asymptotic 

co ding gain of 3.13dB over uncoded coherent 8-PSK. Since this code has a larger d'1vc 

than in the previous case, we must try to cover more errors in the first stage of the 

decoder. In order to do so, we will try to use a minimum number of information sets to 

cover any single error. With the generator matrix given in Appendix A we have found 

that this cannot be done. A search for an equivalent code with enough uscful information 

sets to cover these errors was performed. An equivalent code with the following generator 
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matrix was found 
1 0 0 0 0 6 0 
0 1 0 0 0 2 5 

Ge = 0 0 1 0 0 6 6 ( 4.20) 
0 0 0 1 0 7 7 
0 0 0 0 1 7 6 

Using this matrix, we require four information sets to cover any single error. The four 

generator matrices and their corresponding information sets used by the decoder are 

given in Table 4.2 

Information Set Generator Matrix Information Set Generator Matrix 

(1 
o 0 0 0 3 

n 0 
3 2 0 0 0 

n 1 0 0 0 5 2 3 1 0 0 
o 1 2 3 4 o 1 0 0 3 o 3 4 5 6 7 5 0 1 0 

o 0 1 0 5 3 6 0 0 1 
o 0 0 1 6 1 1 0 0 0 

U 
1 0 0 6 0 

n u 
1 0 6 o 0 

0 0 1 0 3 0 o 1 7 o 0 
1 2 3 5 6 0 0 1 3 0 1 2 4 5 6 o 0 3 1 0 

0 0 0 4 1 o 0 4 o 1 
0 0 0 7 0 o 0 3 o 0 

Table 4.2: Information sets and generator matrices for decoding a (7,5) code 

The simulation results are shown in Fig. 4.4. In this case, we have used L = 

K -= 5. It is seen that we achieve a performance very close to the union bound for 

maximum likelihood decoding, with far fewer comparisons (128 instead of 32768). Even 

at fairly low error rates, significant coding gain can be achieved over coherent detection. 

Compared with differentially-coherent detection at Pb = 10-4 we attain close to 5.5dB 

gain in SNR. 
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105 (7.5) Coded Ne 8-PSK(313dB) 

\ 

\ 
1 0 6~_-,:-__ -:,-_~ __ ,::--,--,::-_--,,-_-,::--,--, 

2 4 6 8 10 12 18 
SNR/blt(dB) 

Figure 44: A (7,5) Code in 28 

4.4.4 Bandwidth Efficient Codes 

An (8,4) Code in 24 with d'te = 4.00 

12 

This is a handwidth efficient code which has an asymptoiic coding gain of 3.0idS over 

uncoded coherent BPSK. As was the case for the (7,4) code in 2 4 , wc have found ihat up 

to two errors may he covered using seven information sets, although not with the code 

whose generator matrix found in Appendix A. The resulting matrix of an equivalcnt 

code after performing an extended search is 

( 

1 0 
G = 0 1 

c 0 0 
o 0 

~~~n~). 
o 1 3 0 2 3 

(4.21) 

The seven information sets and their corresponding gcncrator matrices uscd by the 

decoder are given in Table 4.3 . 

The simulation results for this decoder are shown in Fig.4.5. As for the (7,4) code 

in 2 4 , two decoders were simulated, one having L = K and the other having L = K -- 1. 
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Information Set Generator Matrix Information Set Generator Matrix 

0456 {~HH~H 

15670Huno 
Table 4.3: Information sets and generator matrices for decoding a (8,4) code in 24 

The curve for L = K is below the union bound for a ML decoder down to H = 10-5 • The 

L = K decoder requires 112 comparisons compared to 256 for a ML decoder, whereas the 

L = K - 1 decoder requîres 56. There is, however, a degradation (~ .25dB) as a result 

of this reduction in complexity. For the L = K decoder at Pb = 10-5 , a coding gain 

of slightly less than 2dB is attained over uncoded coherent BPSK, and approximately 

2.6dB over uncoded differentially-coherent BPSK. 

A (14,7) Code in 24 with d-:'IC = 5.566 

This is the most powerful BPSK equivalent code that was found and has an asymptotic 

coding gain of 4.55dB over uncoded coherent BPSK. we have found a generator matrix 

for a code capable of covering up to three errors usîng twenty information sets, which is 

again different that the one found in Appendix A. It is given by 

1 0 0 0 0 0 0 3 2 3 3 1 1 2 
0 1 0 0 0 0 0 3 3 1 0 1 3 0 
0 0 1 0 0 0 0 3 3 2 2 2 1 1 

Gc = 0 0 0 1 0 0 0 3 2 0 3 3 3 2 (4.22) 
0 0 0 0 1 0 0 0 1 1 0 3 3 3 
0 0 0 0 0 1 0 3 1 2 2 3 0 2 
0 0 0 0 0 0 1 3 0 0 2 1 0 2 
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10.5 (8,4) Coded Ne OPSK(3 01dB) 

10~~----~----~----~----~----~~~ o 2 4 6 8 12 
SNR/blt(dB) 

Figure 4.5: An (8,4) Code in Z4 

The information sets are shown in Table 4.4. The corresponding generator matrices have 

not been included here because of space limitations, but can be found simply by (4.12). 

The simulation results for this de co der are shown in FigA.6. Since this code is much 

more complex than the previous ones, we were not able to simulate for low error rates 

« 10-5 ) because of the computing tirnes required for accu rate results. We see, however, 

that the simulation curve is below the union bound for a ML decoder, indicating that 

the reduced complexity decoder performs quite close to a ML decoder. This decoder 

requires 2560 comparisons, whereas the ML decoder requires 16384. At Pb = 10-3 this 

code attains a coding gain of approximately 2dB over uncoded coherent BPSK, and 

approximately 3.5dB over uncoded differentially-coherent BPSK. 
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(0 1 2 3 4 5 6) (0 1 7 8 9 10 11) 
(2 3 4 7 10 12 13) (5 6 8 9 11 12 13 ) 
(0 1 5 6 7 10 13) (0 1 2 3 8 9 12 ) 
(2 3 4 5 7 8 Il) (0 4 6 9 10 11 12 ) 
(0 4 5 8 9 10 13) (1 4 6 7 8 9 13 ) 

(1 2 5 10 11 12 13) (0 2 3 6 7 11 12 ) 
(1 3 4 5 7 11 12) ( 1 2 3 6 8 10 11) 
(0 4 5 6 7 8 12 ) (2 3 5 6 9 10 13 ) 
(0 1 2 4 7 11 13 ) (0 3 4 6 8 10 11) 
(2 5 7 8 9 10 12 ) (0 1 2 3 5 6 7) 

Table 4.4: Information sets for decoding a (14,7) code in Z4 

4.5 Performance over Correlated Rayleigh Fading 
Channels 

Up until this point we have only considered the non-coherent AWGN channel. It 

would be very interesting to investigate the performance of the codes combined with 

the reduced-complexity decoding strategies over correlated Rayleigh fading channels, 

which is a mathematical model appropriate for a mobile radio environment. The corre­

sponding problem for non-coherent block detection of uncoded MPSK is considered in 

[22]. 

Most of the coding systems for fading channels ernploy sorne form of interleaving 

in order to decorrelate the received sequence. Although in theory these systems achieve 

significant performance improvements, the assurnption of ideal interleaving is not valid 

on many practical mobile radio channels because it would require an unacceptably large 

time delay. Consequently, many of these systems fail to perform as expected when em­

ployed over these channels. In this section we will show that it is possible to obtain 

significant performance improvernents using the codes of the previous chapter cornbined 

with the reduced-complexity de co ding strategy. In sorne cases, these performance im­

provements can be obtained without symbol interleaving. 
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Figure 4.6: A (14,7) Code in 24 

4.5.1 The Correlated Rayleigh Fading Model 

Correlated Rayleigh fading can modeled as a correlated complex gaussian process, u" 

which multiplies the transmitted symhols. The received symbols, YI, as in (2.13), are 

therefore gi ven by 

YI = TUt/il + nI 1 = 0, ... , N - 1. ( 4.23) 

It should be noted that the UI'S are statistically independent of the n/'s. In ordcr to 

express (4.23) in vector form, we create the diagonal matrix Fm, who5e main diagonal 

is the vector Cm, 50 that the received vedor may he expressed as 

r = TuFm +n (4.24) 

where u is the vector made up ofthe UI'S, n is as in (2.14), and T is the symbol duration. 

The power spectrum of the UI'S may take on various forms to mode! different situations. 

Here we will URe the land-mobile model for the power spectrum which has the following 

form 
Ifl :s; ID 

Ifl >ID 
(4.25) 
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The constant fD is known as the Doppler frequency, and the product fDT as the fade rate. 

The shape of Sue!) is shown in Fig. 4.7. The autocorrelation function corresponding to 

Su(f), ~uu(m.), is given by 

4>uu(i) = ~E(uiul+') = Jo(21rifDT), (4.26) 

where Jo(') is the zero-order bessel function. Since this is a general gaussian detection 

problem, it is shown in [23, p. 98] that the ML decoding rule is the following minimization 

min r~~lr· 
m=l,2,,,,,lcl 

( 4.27) 

where c)m is the autocorrelation matrix for r assuming the m th codeword was transmit­

ted. This matrix is expressed as 

cJ.)m = ~E(r·r) = F~(cJ.)uu + ~I)Fm, ( 4.28) 

where 'Y is the SNR and cJ.)uu is the autocorrelation matrix of n, whose elements are 

given by 

~uu( i, j) = <Puu( li - j 1). (4.29) 

The decoding ru le is therefore as follows, 

( 4.30) 

It turns out for a fiat fading channel (ie. when fDT = 0) that (4.30) is equivalent to the 

decision rule for the AWGN channel [24], 

4.5.2 Error performance 

The error performance of non-coherent block detection over correlated Rayleigh fading 

channels is treated in [22] for uncoded systems. In this work an exact expression for the 

pairwise error event probability, P( Co --. cm), is given. We will use the same expression 

to generate a union bound for two of the codes of the previous chapter. It also assumed 
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f o 

Figure 4.7: Power spectrum of the land-mobile fading model 

in [22] that the alI-zero codeword may be used to assess the error performance without 

any loss of generality. This follows directly from the form of the decoding rule in (4.30). 

As was the case for the gaussian channel, more than just the minimum-distance 

codewords were used for the evaluation of the union bound. Morcover, the codewords 

with the same d~c cannot be considered as being equivalent over these channels, in 

terms of P( Co ~ Cm), since the performance criterion is no longer d~c' Not surprisingly, 

P(co ~ cm) is somewhat dependent on the location of symbols within a codeword. Wc 

had to therefore evaluate P( Co ~ cm) for each of the codewords within a group sharing 

the same d~c seperately in order to he as accurate as possible in calculating the union 

bound. 

In Fig.4.8 we show the performance of uncoded hinary DPSK and the union 

bound on the performance of the (8,4) and (14,7) BPSK equivalent codes in 2", whose 

generator matrices are given in (4.21) and (4.22), for fade rates of fDT = .001, .01 and .1. 

We see that as the fade rate increases there is a diversity effect, since the symbols within 

a codeword hecome less correlated. Consequently, the performance of the coded system 

improves with increasing fade rates while that of the uncoded system degradcs. ~'or the 
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10° ,..--...----r---r----..,.--T'"""'-..,.----r---, 

", la' .... ~ ......... . 
", ":"'"'' " 

10' 

- DPSK 
.... , (8,4l Coded NC OPSK 

,.,. (14,7) Coded Ne QPSK 

79 

Figure 4.8: Union bound on the performance of two BPSK equivalent codes in 24 for 

fade rates of IDT = .1, .01 and .001 

slow fading case (fDT = .001) we see that the union bounds are worse than the uncoded 

system for error rates less than 10-4
• 

In order to alleviate the situation at very low fade rates, we may wish to use 

sorne symbol interleaving. Let us assume that we use an interleaver with depth Di. This 

means that the symboIs of the codeword will be spaced Dt transmitted symbols apart, 

and we may therefore look at this as artificially increasing the fade rate by a factor of 

DI, as far as the codeword is concerned. More precisely, the matrix CPuu is calculated 

using a fade rate of fDT DI, rather than fDT. For both codes in Fig.4.8 at fDT = .001, 

the performance is quite poor for low error rates. If, however, we use only 10 symbol 

interleaving, which is rather smaIl, we have an effective fade rate of fDT Di = .01, 

which yields a significant improvement. The amount of interleaving required depends, 

of course, on the fade rates experienced in the environment. We see, however, that 

even the rather simple (8,4) code performs quite well at moderate fade rates without 

interleaving and at slow fade rates with only a small amount of interleaving. 
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We will now present sorne simulation results of the reduccd-complexity decodillg 

strategy presented in the first part of this chapter over correlated fading channcls. First 

of aH, to sirnulate correlated fading channels, we use independent cornplex gaussian 

random variables obtained from a pseudo-random sequence gencrator as input to an 

FIR filter whose magnitude response closely appl'Oximates J SuU). The output of this 

fllter is then the pro cess Ul. The filter was designed for a fade rate of fDT = .1 usillg 

512 coefficients. The tap length of the filter has to be long becausc of the sharp cuLoff 

in the power spectrurn of the process. In order to obtain lower fade rates, we linearly 

interpolate the output of the filter. This was neccssary sinee wc round that for lower fade 

rates the length of the filter had to be much longer to closely approximate the desired 

magnitude response, and would therefore significantly increase simulation times. In 

Fig.4.9 we show the ideal auto correlation function and that of our simulation (averagcd 

using a window of 1000 symbols) for a fade rate of fDT = .01. We sec that if wc use 

codewords of moderate length, the autocorrelation function of the simulation c\osely 

matches that of the ideal model. In Fig.4 10 wc show the magnitude and phase of a 

12.-------~------~--------._------_. 
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Figure 4.9: Cornparison of ideal and simulation autocorrelation functioIlS 

typical fading process spanning many symbols, whereas Fig.4.11 shows the variation 
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over a small number of symbols. In a span of ten or so symbols, we see that both the 

amplitude and phase can vary significantly. 
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Figure 4.10: Magnitude and phase of the fading process over many symbols (fDT = .10) 

The (8,4) and (14,7) bandwidth efficient codes in 24 have both been simulated 

over a correlated Rayleigh fading channel with fDT = .01, and the (8,4) code over a 

channel with fDT = .1 as weIl. Both have been decoded using the reduced-complexity 

decoding method of the previous section with L = K. Figs.4.12-4.14 show the results 

of the simulations. In each figure, we compare the simulation resuIt with the union 

bound for a ML decoder for that code, the resuIt of a simulation for a differentiaIly­

coherent system (!II = 2) over the same channel and the performance of ideal coherent 

BPSK over a fiat Rayleigh fading channel (fDT = 0). We see that the simulation 

of the differentially-coherent systems match the analytical curves in Fig.4.8 exactly, 
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Figure 4.11: Magnitude and phase of the fading process over fcw syrnbols (Jv'I' :.=. 10) 

verifying the correctness of our channel simulation. In each case, we see tbat the union 

bound is quite pessimistic for low SNR, and that the slopes of the codcd curvcs arc 

much steeper than the corresponding curve for coherent detection. This accounts for 

the significant improvement in performance. It is intcresting to note that the two coùes 

with fDT = .01 attain the same slope for two orùers of magnitude in H (bct,wccn 10-:1 

and 10-5 ). For both codes at fDT = .01, we also notice that the irrcducibl(! crror­

fioor of the differentially-coherent system is completely cllTninatcù (at leasL ùown Lo 

Pb = 10-5). For the (8,4) code with fDT = .1, which reprcscnts a fairly high fade 

rate, significant performance improvement is obtained even at fairly bigh error-ratcs. 

We do see, however, that the reduced-complexity decoding strategy breaks down at low 

error rates. This can be attributed to the first stage of decoding which uses differential 
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detection and results in an irreducible error Boor around Pb - 10-6 • It is very important 
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FiF;ure 4.12: Simulation results for an (8,4) code ln Z4 (fDT = .01) 

10 '..--,........--r--..----r--..-----.--..------.--. 

la' 

)f-I( 'Jncoded DPSK (fdT. 01) 
uncoded coherent BPSK (fdT -a) 

~ (14,7) Coded NC OPSK (fdT_ 01) 
unIon bound 

\ 
\ 

, 
\ 

, 
10"'--~--J..--_::'_--'::--_::'_--:',,:.'--":---"'::__-_:! la 15 20 25 30 35 40 45 50 

SNRlblt 

Figure 4,13: Simulation results for a (14,7) code ln Z4 (f DT = ,01) 

ta point out that, in each case, these performance enhancements are obtained without 

the use of symbol interleaving, Most other coding schemes for fading channels with fade 
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Figure 4.14: Simulation results for an (8,4) code in 24 (fDT = .1) 

84 

rates as high as fDT = .01, and sometimes higher, use sorne interleaving, see for instance 

[7, Chap.9] . 
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Conclusion 

In this thesis, we addressed the problem of channel coding for the non-coherent AWGN 

channel. We have generalized non-coherent block detection of MPSK as a coding prob­

lem, and presented several examples of codes which achieve significant coding gain over 

uncoded coherent MPSK. 

Using a coding framework, a review of non-coherent block detection of MPSK 

was presented. We defined a distance measure for non-coherent block detcction, which 

was used primarily as a benchmark for comparison and in the design of codes. We then 

investigated a class of block codes called module-phase codes which are weIl matched to 

MPSK. These codes have a rich algebraic structure, as they are bascd on clements of 

module theory and in many ways rcsemble traditional linear block codes. 

A method for constructing module-phase codes for t.he non-coherent distance 

measure was introduced. It was shown that differential-encoding , when considered on 

a block basis, is a particular example of a class of module-phase codes that approaches 

the performance of uncoded coherent MPSK as the black length is increased. Exam­

pIes of more powerfui codes which achieve significant coding gain over uncoded coherent 

MPSK were presented. The coding gain is achieved in one case at the expense of band­

width expansion, and in the ot her case at the expense of signal constellation expansion. 
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The performance of these codes becomes even more impressive wh en compared with 

traditional differentially-coherent detection of MPSK. 

The issue of reduced-complexityJsub-optimal decoding was then addressed. A 

decodingJdemodulation strategy was presented which uses a combination of information 

set decoding and a sub-optimal method proposed for non-coherent block detection of 

differentially-encoded MPSK. It was found that codes which share the same distance 

properties, and are therefore equivalent for ML decoding, are not all necessarilly well­

suited for this decoding technique. Consequently, it was necessary, in sorne cases, to 

search for equivalent codes which were more amenable to this type of decoding. While 

this strategy significantly reduces arithmetic complexity compared with an exhaustive 

ML decoder, computer simulations for various codes indicate that very little perfor­

mance, if any, is sacrificed. 

Finally, we present sorne results on the performance of these codes combined 

with the reduced-complexity decoding method over correlated Rayleigh fading channels, 

again through the use of computer simulations. We have shown that it is possible to 

achieve significant performance enhancement compared with ideal coherent detection 

and even more so compared with differentially-coherent detection. It should also be 

not~d these performance improvements, in sorne cases, arp attained withoui symbol 

interleaving, which is characteristic of most other coding systems over fading channels . 
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Appendix A 

Computer Searches and Code 
Descriptions 

A.1 Computer Searches 

A.1.I Searching for h-vectors 

Here we will briefly outline the methods used for selecting the h-vectors for the construct.ion 
method proposed in Chapter 3. We start by identifying the codewords which must he excluded 
from the code, assuming that codeword overlapping is performed, and knowing the desired 
parameters for the code (ie. N ,K ,M, and d~c)' In arder to reduce the running tirne of 
the scarch, wc start by searching for the vector, hN-K, sinee it has the smallest number of 
components, and then hN-K-I until we reach hl' Once we l'each hl, if no vector is found 
which removes the remalning eodewords, we start at the beginning with a smaller set of target 
C"odewords (ie. a code with a smaller d'1vc.) If N,K, and the set of vectors ta be removed are not 
tao large, we may seareh exhaustively for the h-vector5. Otherwise, we search randomly, with a. 
pseudo-random number generator, for an h-vector which maximizes the number of codewords 
excluded from the code until, after a specified number of repetitions, no improvement is found. 

Aside from shorter running times, the random approaeh has another advantage. The exhaustive 
search will find an h-vector which maxirnizes the number of codewords frorn the target set 
which are excluded but, in general, there are many such vectors. Sorne of thern may be better 
choices when combined with the other h-vectors. The random approaeh, if attcmpted severa} 
times using a different seed for the pseudo-random generator, will have the possibility of 
choosing these better vectors. We ha've found that better codes sometimes result by using the 
random approach, and at the same time require mueh less running time . 
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A.1.2 Searching for Ge 

If N ,K are quite small, we may search for optimal generator matrices, Ge, by searching 
exhallstively through a11 the possible combinations of its elements and calc11lating its d-:Vc' 
This was done for sorne of the simple bandwidth--efficient BPSK equivalent codes. For the 
BPSK equivalent codes in. higher-order rings, the search was done by searching randomly for 
possible generator matrices until, after a specified number of iterations, no improvement in 
the minimum distance of the code was found. This is, of course, an illcomplete search and the 
resulting codes are not necessarily optimum. 

A.2 Code Descriptions for Bandwidth-Expanding 
Codes 

In this section we present a more complete description of the bandwidth-expanding codes 
which were presented in the Tables 3.2 and 3.3 of Chapter 3. For each code we present the h­
vectors as well as the generator matrix which describe it, a portion of its di&tance profile with 
the corresponding average number of bit errors for each of the distances, and its asymptotic 
carling gain. 

A (3,2) Code in Z4 

hl = (1 1 1) 

Ge = (~ ~ :) 

d'1vc Weight eh 

2.00 12 2.00 
4.00 3 2.67 . 

Coding Gain: 1.25dB over uncoded coherent Q1:'SK 

A (6,5) Code in Z4 

hl = (1 1 1 1 1 1 ) 
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d'j.,c Weight eb 

2.00 51 2.62 
2.88 42 6.19 
3.39 120 3.33 
4.00 135 3.33 
4.76 360 5.56 

Coding Gain: 2.22dB over uncoded coherent QPSK 

A (7,6) Code in 2'1 

hl = (1 1 1 1 1 1 1 ) 

d'j.,c Weight eb 

2.000 56 3.000 
2.343 70 3.429 
3.528 336 4.714 
4.eOO 448 5.143 

Coding Gain: 2.34dB over uncoded coherent QPSK 

A (7,4) Code in Z4 

hl = (3 2 1 2 0 0 1 ) 

h 2 = (3 2 1 0 0 1 ) 

h3 = (3 1 1 1 1) 

d~o/C Weight eb 

3.528 44 3.364 
4.000 20 2.800 
5.172 40 4.200 
6.000 116 4.241 

Coding Gain: 3.04dB over uncoded coherent QPSK 

• A (9,5) Code in Z4 
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hl = (3 0 1 2 2 0 0 o 1) 

h 2 = (1 3 2 0 0 0 0 1) 

h3 = (3 1 1 0 1 0 1 ) 

h4 = (1 1 1 0 1 ) 

GO=O n H H H) 
d~c Weigh~ eb 

4.000 17 2.118 
4.169 24 3.500 
4.343 20 5.200 
4.901 40 4.300 
5.528 72 4.111 
5.757 40 4.900 
6.000 56 5.143 

Co ding Gain: 3.47dB over uncoded cohere!1t QPSK 

A (10,9) Code in Z4 

hl = ( J 1 1 1 ] 1 1 1 1 1) 

Ge = 

o 1 

d"1vc Weight eb 

2.000 91 1.978 
2.456 90 7.200 
2.938 530 5.026 
3.720 720 3.600 
4.000 1395 4.413 
4.292 1680 7.200 

Co ding Gain: 2.55dB over uncoded coherent QPSK 

A (10,7) Code in Z4 

• hl = ( 1 0 1 0 2 1 1 0 0 1) 



• 

• 

App~ndjx A. Computer Searches and Code Descriptions 

h 2 = (2 2 1 1 0 0 2 0 1) 

h3 = (1 1 1 1 1 1 0 1) 

dhc Weight eb 

2.938 36 3.556 
3.190 34 3.882 
3.720 38 5.000 
4.000 82 4.780 
4.292 84 5.548 
4.597 174 4.805 

Coding Gain: 3.13dB over uncoded coherent QPSK 

A (10,6) Code in Z4 

hl = (3 1 3 232 3 1 3 1) 

h2 = (1 1 1 3 1 1 3 1 1 ) 

h3 = (3 3 1 2 2 3 2 1) 

h4 = (3 3 3 3 3 1 1 ) 

Gc=(H H H 1 

~ 
1 

n 1 1 
1 ~ 1 

~ 1 g 3 

dhc Weight eb 

3.720 44 4.227 
4.000 29 4.828 
4.292 8 1.750 
4.597 62 4.258 
4.917 22 4.091 
5.615 182 5.484 

Coding Gain: 3A9dB over uncoded coherent QPSK 

An (11,10) Code in 24 

hl = (1 1 1 1 1 1 1 1 1 1 1) 

91 
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d'1v~ Weight eb 

2.000 132 3.333 
3.056 990 4.848 
3.754 1320 5.758 
4.000 3036 6.061 
4.789 110B8 6.970 
5.675 31680 7.879 
6.000 24420 8.182 

Coding Gain: 2.60dB over uncoded coherent QPSK 

An (11,8) Code in 24 

hl = (0 1 0 1 0 1 1 1 0 0 1) 

hl = (3 2 2 1 1 0 2 1 0 1) 

hl = (1 1 1 1 1 1 0 0 1 ) 

d'f..,c Weight eb 

2.945 38 2.842 
3.056 6 5.333 
3.398 40 4.800 
3.515 32 4.750 
3.754 56 5.643 
4.000 112 4.000 
4.384 120 5.467 

1 
2 

! 
3 

Coding Gain: 3.31dB over uncoded coherent QPSK 

An (11,7) Code in 24 

hl = (0 0 0 0 2 0 3 3 3 2 1) 

92 
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h 2 = ( 2 2 0 2 0 0 3 1 0 1) 

h3 = ( 1 0 1 3 1 1 0 3 1) 

h4 = ( 1 1 3 1 1 1 3 1 ) 

d~G Weight eb 

3.515 6 3.667 
3.754 48 4.250 
4.000 38 4.947 
4.789 176 4.932 
5.675 500 5.480 
6.000 336 5.464 
6.343 464 5.759 
7.528 2704 6.655 

Coding Gain: 3.50dB over uncoded coherent QPSK 

An (11,6) Code in Z4 

hl = (2 2 1 1 0 1 0 3 2 1 1) 

h 2 = (2 3 0 0 0 1 2 2 2 1 ) 

h3 = (0 0 3 2 1 3 1 2 1) 

h4 = (3 0 2 3 1 0 0 1 ) 

hs = (1 1 1 1 1 3 1 ) 

GC=U H n H 1 3 0 

n g 1 1 
2 2 

1 1 2 

~ 2 0 
0 1 

d~c Weight eb 

4.384 14 3.333 
4.789 28 4.848 
4.929 42 5.758 
5.675 72 6.061 
6.000 48 6.970 
6.169 108 7.879 
6.343 52 8.182 
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Coding Gain: 3.79dB over uncoded coherent QPSK 

A (5,4) Code in Z8 

hl = (1 1 1 1 1) 

d~c Weight eb 

0.586 20 1.600 
0.969 20 6.400 
1.172 30 3.200 
1.474 40 5.600 
1.528 10 6.400 
1.566 60 3.200 

Coding Gain: 2.04dB over uncoded coherent 8-PSK 

A (6,5) Code in Zs 

hl = (1 1 1 1 1 1) 

d~c Weight eb 

0.586 30 1.667 
0.838 30 6.667 
1.172 90 3.333 
1.285 12 5.833 
1.419 120 6.657 
1.570 120 3.333 
1.757 20 5.000 .-

Coding Gain: 2.22dB over uncoded coherent 8-PSK 

A (7,6) Code in Zs 

hl = (1 1 1 1 1 1 1 ) 

• 
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d~c Weight eb 

0.586 56 3.000 
1.172 420 !'i.143 
1.572 336 5.143 
1.757 560 6.429 
2.000 56 5.571 

Cading Gain: 2.34dB over uncaded coherent 8-PSK 

A (7,5) Code in Z8 

hl = (0 3 2 1 2 0 1 ) 

h2 = (2 1 1 1 0 1 ) 

d'j,yc Weight eb 

0.844 12 2.667 
1.027 4 5.000 
1.129 4 6.000 
1.172 22 3.909 
1.287 4 1.000 
1.426 24 4.667 
1.508 8 3.250 

Cading Gain: 3.13dB over uncaded coherent 8-PSK 

An (8,7) Code in Zs 

hl = (3 1 1 1 1 1 1 1) 
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d~c Weight Cb 

0.586 42 1.714 
0.606 42 5.286 
0.848 14 6.857 
1.045 70 3.571 
1.106 14 7.000 
1.172 560 5.250 
1.203 56 5.821 
1.287 2 8.000 
1.431 210 6.857 

Coding Gain: J.34dB over uncoded coherent 8-PSK 

An (8,6) Code in 28 

hl = ( 0 3 2 1 3 2 0 1 ) 

h 2 = (2 1 1 1 0 0 1) 

d~c Weight Cb 

n.848 16 2.750 
j,.045 18 6.000 
1.106 2 3.000 
1.172 42 3.762 
1.203 2 3.000 
1.225 2 4.000 
1.287 6 3.000 

Coding Gain: 3.34dB over uncoded coherent 8-PSK 

A (9,8) Code in Z8 

hl = ( 3 2 1 1 1 1 1 1 1 ) 

Ge = 1 i III ! III 

96 
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d'1vc Weight eb 

0.586 42 1.714 
0.635 14 6.143 
0.730 42 5.286 
0.761 70 4.571 
0.851 70 4.171 
0.945 2 16.000 
1.059 126 6.317 

Coding Gain: 2.50dB over uncoded coherent 8-PSK 

A (9,7) Code in Z8 

hl = (5 4 3 2 1 3 2 0 1 ) 

h2 = (1 1 1 1 1 0 0 1) 

d'1vc Weight eb 

0.851 32 3.062 
1.059 32 4.438 
1.127 2 3.000 
1.172 58 4.379 
1.205 18 7.444 
1.246 2 3.000 
1.286 6 10.667 
1.288 2 1.000 
1.435 124 5.565 
1.527 32 4.312 

Coding Gain: 3.54dB over uncoded coherent 8-PSK 

A (10,9) Code in Z8 

hl = (1 1 1 1 1 1 1 1 1 1 ) 

Ge = 

1 
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d'1.lc Weight eb 

0.586 90 1.800 
0.659 90 7.200 
1.144 20 9.000 
1.172 1260 3.600 
1.231 1680 7.200 
1.377 420 14.40 
1.577 720 3.600 

Coding Gain: 2.55dB over uncoded coherent 8-PSK 

A (10,8) Code in Z8 

hl = ( 2 1 0 1 0 3 2 1 0 1 ) 

h2 = (5 5 5 4 4 1 1 l 1 ) 

G

e

= i i il! 1 
d'1.lc Weight eb 

0.773 10 5.200 
0.830 28 4.714 
0.854 36 2.389 
0.950 2 2.000 
1.070 28 3.643 
1.172 64 3.781 
1.231 34 5.647 
1.281 16 5.000 
1.334 80 5.775 

Coding Gain: 3.25dB over uncoded coherent 8-PSK 

A (10,7) Code in Z8 

hl = (0 0 0 0 2 0 2 0 0 1 ) 

h2 = (3 6 4 2 5 3 1 0 1 ) 

h3 = (2 1 1 1 0 0 0 1 ) 
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d~c Weight eb 

1.070 18 2.778 
1.172 26 3.000 
1.231 10 9.600 
1.377 8 10.500 
1.438 2 9.000 
1.533 22 2.455 
1.577 14 2.857 

Coding Gain: 4.08dB over uncoded coherent 8-PSK 

A.3 Code Descriptions for Bandwidth-Efficient Codes 

In this section we present more complete descriptions of the codes prcsented in Table3.4 of 
Chapter 3. Sorne of these codes were found either by exhaustive computer search for optimal 
generator matrices or by an incomplete random search, and no h-vectors are given. The 
rema.ining codes were found using the construction method of Chapter 3. 

A (4,1) Code in Z16 

Ge = (1 2 5 8) 

d~c Weight eb 

2.631 2 1.000 
2.764 6 2.333 
2.980 2 3.000 
3.615 2 2.000 
4.000 1 2.000 
4.378 2 2.000 

Coding Gain: 1.19dB over uncoded coherent BPSK 

A (6,3) Code in Z4 
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dke Weight eb 

3.394 14 2.429 
4.000 12 3.833 
4.764 18 2.556 
6.000 19 3.423 

Coding Gain: 2.30dB over uncoded coherent BPSK 

A (6,2) Code in Z8 

d'te Weight eb 

4.000 42 2.857 
6.000 21 3.429 

Coding Gain: 3.00dB over coherent BPSK 

A (5,1) Code in Z32 

Ge = ( 1 3 5 16 25 ) 

d'ke Weight eb 

3.172 2 2.000 
3.277 4 2.500 
3.284 4 2.500 
3.367 4 1.500 
3.551 4 2.500 
3.859 4 3.500 
4.000 1 2.000 
4.966 4 2.500 
5.212 4 3.500 

Coding Gain: 2.00dB over uncoded coherent BPSK 

A (6,1) Code in Z64 

Ge = ( 1 48 8 27 42 52 ) 

• 
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d~c Weight eb d~c Vleight eb 

3.539 2 1.000 3.971 2 2.000 
3.598 2 2.333 4.960 3 2.000 
3.633 2 3.000 4.022 2 2.000 
3.786 2 2.000 4.217 2 2.000 
3.794 2 2.000 4.282 2 2.000 
3.818 2 2.000 4.297 2 2.000 
3.865 2 2.000 4.377 2 2.000 
3.918 2 2.000 4.623 2 2.000 
3.960 4 2.000 4.723 2 2.000 

Coding Gain: 2.48dB over uncoded coherent BPSK 

A (7,1) Code in Z128 

Ge = ( 1 105 41 78 93 96 98 ) 

d'kc Weight eb d'kc Weight eb 

3.787 2 3.000 4.245 2 3.000 
3.832 2 2.000 4.247 2 6.000 
3.834 2 3.000 4.303 2 5.000 
3.839 2 2.000 4.304 2 2.000 
3.911 2 5.000 4.358 2 3.000 
3.985 2 4.000 4.404 2 4.000 
3.993 2 5.000 4.489 2 4.000 
4.000 2 2.000 4.531 2 4.000 
4.056 2 4.000 4.5t.i5 2 3.000 
4.185 2 5.000 4.643 2 2.000 

4.214 2 4.000 4.710 2 5.000 
4.241 2 1.000 4.844 2 2.000 

Coding Gain: 2.77dB over uncoded coherent BPSK 

An (8,1) Code in Z256 

Ge = (1 190 188 26 19 153 143 100 ) 
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d'j..,c Weight eb d'j..,C Weight eb 

4.019 2 4.000 4.521 2 2.000 
4.164 2 3.000 4.522 2 5.000 
4.169 2 3.000 4.563 2 5.000 
4.211 2 4.000 4.571 2 5.000 
4.253 2 4.000 4.640 2 3.000 
4.254 2 4.000 4.653 2 3.000 
4.390 2 4.000 4.746 2 5.000 
4.395 2 3.000 4.775 2 4.000 
4.440 2 4.000 4.797 2 5.000 
4.455 2 3.000 4.800 2 3.000 
4.469 2 6.000 4.807 2 4.000 
4.514 2 6.000 4.822 2 5.000 

Coding Gain: 3.03dB over uncoded coherent BPSK 

An (8,4) Code in Z4 

hl = (1 1 1 2 0 0 0 J) 

h2 = ( 3 1 1 0 0 0 1 ) 

h3 = (1 1 2 0 0 1 ) 

h4 = (3 3 1 1 1) 

d'1vc Weight eb 

4.000 26 3.000 
4.877 18 3.111 
5.394 44 4.000 
6.000 28 4.500 

Coding Gain: 3.01dB over uncoded coherent BPSK 

A (10,5) Code in Z4 

hl = (2 1 1 0 3 3 2 0 1 1 ) 

ha = (0 3 3 0 1 2 0 1 1 ) 

h3 = (2 0 3 2 0 0 1 1) 

h4 = (1 0 0 2 1 2 1 ) 

hs = (2 1 1 1 2 1) 
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d1vc Weight eb 

4.597 18 3.778 
4.917 26 3.923 
5.615 38 4.368 
6.000 87 4.253 

Coding Gain: 3.61dB over uncoded coherent BPSK 

A (12,6) Code in ~! 

hl = (0 0 0 0 0 2 0 0 0 0 o 1) 

h 2 = (2 3 1 0 0 1 0 0 0 0 1 ) 

h3 = (1 3 1 3 1 0 0 0 0 1 ) 

h4 = (3 1 o 2 2 o 0 0 1 ) 

hs = (3 2 2 1 0 0 0 1) 

h6 = (1 1 1 1 1 1 1 ) 

Ge = U ~ ~ i ~ ij 1 
1 1 3 2 i) 2 ~ 1 1 

H ~ 1 o 0 

d'1vc Weight eb 

4.938 26 3.154 
5.190 12 3.667 
5.720 30 4.800 
6.000 25 3.920 
6.292 54 4.630 

6.597 68 4.765 

Coding Gain: 3.93dB over uncoded coherent BPSK 

A (J4,7) Code in Z4 

hl = (1 3 0 2 0 1 1 1 0 3 2 1 0 n 
1 

• h2 = (2 0 2 2 0 1 0 0 0 3 0 2 1 ) 

ha = (1 2 3 1 0 3 2 1 1 0 1 1 ) 



• 

• 
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h4 = (0 0 0 0 201 1 0 1 1) 

hs = (2 3 2 1 2 0 3 3 1 1 ) 

ha = (1 0 0 1 3 2 3 3 1 ) 

h7 = (1 1 1 1 o 1 1 1 ) 

Ge ~ [i j i ~ ~ ; ~ J , ~ i ! ~ l) ~80 00B321 

d~o Weight e" 
5.566 8 5.750 
5.780 42 4.381 
6.000 14 4.571 
6.456 30 5.867 
6.938 168 5.595 

1 0 
92 5.543 7.1...0 

7.720 158 5.734 

Coding Gain: 4.45dB over uncoded coherent BPSK 

A (9,6) Code in Zs 

hl = ( 7 5 2 4 6 1 2 5 1 ) 

h 2 = ( 2 4 7 7 3 4 5 1 ) 

h3=(6 666361) 

d'ive Weight e" d'ive Weight 
1.286 10 4.200 1.757 8 
1.300 4 4.000 1.772 16 
1.435 20 6.500 1.802 6 
1.527 4 2.000 1.808 14 
1.576 6 6.667 1.837 10 
1.637 12 5.000 1.844 14 
1.701 10 5.000 1.873 4 
1.754 2 2.000 1.876 4 

e" 
4.500 
5.000 
4.667 
6.000 
5.800 
5.857 
3.500 
3.000 

Co ding Gain: 1.09dB over uncoded coherent QPSK 
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A (12,8) Code in Zs 

hl = (6 1 3 6 2 6 7 5 o 7 7 1) 

h 2 = (7 4 6 6 1 6 4 5 6 5 1) 

h3 = (5 1 2 2 7 5 2 3 2 1) 

h4 = (5 1 1 1 4 0 1 4 1) 

1111111 
~ ï 6 g 
7 ~ ~ ~ Gc = 1 1 
0 ~ ~ ~ 7 
4 5 2 

d1.Tc Weight ell dj.,c Weight Cil 

1.494 12 5.333 1.757 10 7.800 
1.530 12 5.167 1.822 4 4.000 
1.542 2 1.000 1.847 30 6.000 
1.578 2 3.000 1.875 4 2.500 
1.669 10 7.400 1.906 8 7.000 
1.748 2 2.000 

Coding Gain: 1.74dB over uncoded coherent QPSK 

A (15,10) Code in Zs 

hl = (0 6 4 4 2 2 1 6 7 0 7 2 1 3 1) 

h 2 = (5 5 0 4 5 2 7 4 4 6 5 7 2 1 ) 

h3 = (5 4 3 4 1 754 5 6 6 3 1) 

h4 = (4 5 5 2 2 0 0 0 6 4 4 1 ) 

hs =: ( 1 4 5 0 5 014 1 1 1 ) 

1 q H' 1 g 1 ~ î 

Gc = ~ H H 
1 n ~ 4 2 ~ P 

8 0 t 8 6 7 ~ 

• 
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d~c Weight eb d~c Weight eb 

1.699 6 5.333 1.890 10 6.400 

1.749 12 5.667 1.962 10 7.800 

1.757 10 8.600 2.000 2 2.000 

1.776 2 4.000 2.032 22 7.364 
1.834 2 3.000 2.051 4 5.000 
1.876 4 2.500 2.053 24 6.500 

Coding Gain: 2.30dB over uncoded coherent QPSK 
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