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~. PREFACE 
1 

At the start of this degree, DNA microarrays were still emerging on the scientific stage. 

Since then much has changed. Initial microarray studies inspired the imagination - we 

imagined that we were viewing the global machinery of the cell for the first time. Would 

it be possible to understand the entire gene network? As the technology evolved, this 

enthusiasm has been followed by the realization that statistical evaluations were needed. 

This has not replaced the questions raised during the initial phase of inspiration but rather 

made us aware ofhow challenging it will be to answer such questions convincingly, even 

at aIl. Over the course of this thesis l observed the evolution of a technology, a process 

whereby multiple disciplines interacted to develop a common vocabulary. Many 

questions remain. l have addressed a small fraction of the field in my thesis; the scope of 

this experiment is already vast beyond the imagination. Along the way, a great number of 

analytical tools were developed and applied. The following chapters coyer my own 

process of evolution in the understanding and application of these techniques to address 

biological questions. 

Along the way l have received help from many sources. l present a partiallist of names to 

acknowledge the individuals who, without their support, this degree would not have been 

possible: my supervisors Thomas Hudson, Michael Hallett, members ofmy advisory 

committee, Marcel Behr, Patricia Tonin; at the McGill University and Genome Quebec 

Centre for Innovation, Rob Sladek, Jaroslav Novak, Celia Greenwood, Tomi Pastinen, 

Bing Ge, Bob Nadon, Pierre Lepage, Jamie Engert, Chon Loredo-Osti, Jenny Koulis, 
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Andrei Verner, Tibor van Rooij, Donna Sinnett, Sebastien Brunet, Vincenzo Forgetta, 

Janet Faith, Sebastien de Grandpre; members of the McGill Centre for Bioinformatics, 

Marina Takane, Greg Finak, Francois Pepin, Michelle Scott, Ernesto Iacucci, Trevor 

Bruen, Rachel Bevan, Kaleigh Smith; members of the MUHC Emil Skamene, Serge 

Mostowy; the Human Genetics Student Society, in particular, Emily Manderson, Judith 

Caron, Caroline Gallant and Vanessa Sancho, co-organizers of the Bioinformatics 

Research Day; the laboratory of Alan Peterson; the Animal Facility at the Montreal 

General Hospital Research Institute; Laura Benner, Fran Langton at the Dept ofHuman 

Genetics; Leon Glass, and Michael Mackey at the Centre for Nonlinear Dynamics; Pablo 

Tamayo, Todd Golub, Bing Ren, David DeGraffe at the WhiteheadlMIT Center for 

Genome Research and Michael Rebhan at Astra-Zeneca who provided stimulating 

discussions at the start of this degree; Spyro Mousses at TGEN and Hilmi Ozcelik at the 

University of Toronto for continued encouragement along the way; Prof Charles J. 

Lumsden of the University of Toronto who first made me aware ofbioinformatics and the 

importance of imagination in science; Jerome Holmes, Johanne O'Malley and the staff of 

Thomson House for unwavering their support, the Post Graduate Student Society, an 

example of graduate student governance beyond compare - Thomson House and the 

PGSS represent environments for interdisciplinary interaction, applied learning, and are 

among the highest benefits of pursuing graduate studies at McGill. Thanks to those who 

read and edited this thesis, Tom Hudson, Rob Sladek, Jamie Engert, Anny Fortin, Celia 

Greenwood and Pierre Lepage, who provided the French translation of the abstracto 

Special thanks to Monica Herman for her help in times of need. There are many others, 

Cathy Neighbor, Paul Shoniker, Julia Shiu, Martha Shiu. l thank you aIl. 
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For my sister, Mary-Esther Lee and in memory ofmy mom, Esther Kuo Wah Lee, my 

dad, Rev. David Yiu Shan Lee, and my brother, John David Lee. 
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ABSTRACT (ENGLISH) 

The majority of genetic traits including most common diseases are believed to be 

multigenic and arise both from variations in coding sequences as weU as from 

regulatory polymorphisms. Genome-wide approaches are needed to develop 

models for understanding this complexity. This the sis develops approaches for 

studying genetic variation affecting gene expression on a genome-wide scale. 

This included development of experimental design principles and analytical 

methods for microarray data. These principles were then applied to characterize 

differences between commonly-used AlJ and C57BL/6J inbred mouse strains at 

the molecular level identifying over 2000 genes differentiaUy expressed between 

these strains across 4 tissues. To further investigate the role of genetic variation in 

genome-wide expression changes, we analyzed expression profiles of lung tissue 

obtained from a panel of recombinant congenic strains (RCS) derived from the 

same inbred strains. An ANOV A was applied using a model to test the association 

of expression profiles with donor-strain of origin (DSO, inferred from RCS 

genotyping data), and with genetic background. This model identified over 1500 

genes whose expression levels were associated with DSO status (P<0.05) having 

adjusted for the variability due to predominant strain of background, suggestive of 

cis-regulatory variation in these genes. We randomly selected 50 positive genes 

displaying association between DSO and 80 negative genes for validation using 

aUelic imbalance (AI), a method that uses intragenic SNPs for detecting genes 

with cis-regulatory variation that measures aUele-specific transcript levels in 

cDNA ofheterozygous individuals. Of the genes chosen, 54% of positive versus 
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27% of negative genes contained at least one SNP within ~ lkbp of 3' UTR 

sequenced (P<0.05 Fisher exact test). AI was found in 63% of positive genes 

versus 23% ofnegative genes (P<O.Ol Fisher exact test) representing a greater 

than 10-fold enrichment over random screening for the detection of genes with 

potential cis-acting regulation. The study conservatively estimates 34% 

potentially cis-regulated genes, similar to other studies in mammalian systems. 

This study furthermore demonstrates a multidisciplinary approach capable of 

genome-wide cataloguing of genes subject to cis-acting regulatory variation, an 

initial step towards mapping complex traits and developing models of gene 

regulation throughout the mammalian genome. 

r--", . ' 
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RÉSUMÉ (FRANÇAIS) 

La plupart des traits génétiques dont ceux causant les maladies communes semblent être 

de nature multigénique. Ces traits découlent de variations dans la séquence codante ou 

dans les régions régulatrices des gènes. Des approches à l'échelle du génome devront être 

développées pour comprendre la complexité de ces traits multigéniques. Cette thèse 

décrit de telles approches pour l'étude des variations de séquences qui peuvent affecter 

l'expression génique. L'une de ces approches visait à définir des principes de base pour 

le développement de protocoles expérimentaux reliés aux études faisant usage de puces à 

ADN et pour l'analyse des résultats qui en découlent. Ces principes de base ont ensuite 

été appliqués dans une étude visant à identifier les différences d'expression génique entre 

deux souches pures de souris couramment utilisées, AlJ et C57BL/6J. Cette étude a 

permis d'identifier plus de 2000 gènes dont l'expression varie entre ces deux souches 

dans 4 tissus différents. Afin d'étudier plus à fond l'influence que les variations 

génétiques peuvent avoir sur les changements de niveaux d'expression génique à 

l'échelle du génome, les profils d'expression d'extraits de tissus pulmonaires provenant 

d'un panel de lignées de souris congéniques dérivées des deux mêmes souches pures ont 

été analysés. Une ANOVA a été appliquée selon un modèle pour évaluer s'il existe une 

association entre l'expression des gènes et leur souche donatrice d'origine (SDO, 

déterminée par génotypage des lignées congéniques). Après un ajustement pour 

compenser la variabilité due à la souche dominante dans chaque lignée congénique, ce 

modèle a permis d'identifier plus de 1500 gènes dont le niveau d'expression est associé 

avec leur SDO (P < 0,05), ce qui suggère la présence de variation en cis pour la 
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régulation de l'expression de ces gènes. Nous avons sélectionné au hasard 50 gènes avec 

une association positive (positifs) avec leur SDO et 80 gènes non associées (négatifs) 

pour une validation de cette association à l'aide d'une méthode basée sur le déséquilibre 

allélique. Cette méthode utilise des variations de séquences intragéniques pour 

déterminer la différence du niveau d'expression des deux allèles d'un même gène chez un 

individu et ainsi détecter des gènes dont l'expression est affectée par la présence de 

variations en cis. Sur les gènes sélectionnés, 54% des gènes positifs renfermaient au 

moins une variation de séquence dans une région de 1000 nucléotides du 3' non traduit 

contre seulement 27% pour les gènes négatifs (P < 0,05, test exact de Fisher). Ces gènes 

ont été utilisés pour détecter la présence d'un déséquilibre allélique. Chez 63% des 

positifs contre 23% des négatifs (P < 0,01, test exact de Fisher), on a constaté la présence 

d'un déséquilibre allélique. Cette proportion représente un enrichissement de la détection 

de régions régulatrices potentielles de plus de 10 fois par rapport à une recherche 

aléatoire. Cette étude permet d'estimer de façon conservatrice que 34% des gènes 

renferment une région de régulation potentielle, une estimation très semblable à celles 

rapportées dans d'autres études effectuées chez les mammifères. De plus, cette étude 

démontre qu'une approche multidisciplinaire peut permettre de cataloguer les gènes 

susceptibles de contenir des variations en cis pouvant affecter leur régulation, une étape 

primordiale pour la cartographie des traits génétiques complexes et le développement de 

modèles de régulation génique des génomes de mammifères. 
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INTRODUCTION 

PART 1. BIOLOGICAL MODELS 

Biology is a science where general principles for the most part remain to be defined. A 

few have been elucidated. Perhaps the equivalent to the Copemican revolution in biology 

is evolution1
, Darwin's statement that species evolve from each other under selective 

pressure from the environment. Around the same time in 1866, Mendel demonstrated that 

traits are transmitted from generation to generation. This has formed the foundation of 

quantitative genetics, the search for genetic causes of phenotypes2
. N earl y 100 years 

later, the molecular basis for heritability was discovered3
• The so-called "Central 

Dogma,,4, states that DNA is the material used to transmit information from generation to 

generation and that genes code for pro teins via a 3 base code preserved across alllife 

forms. This concept has formed the foundation of molecular biology for the last 50 years 

and has enabled the study of genes by manipulation ofDNA. However, much remains to 

be answered. While the genetic code accounts for the process by which a protein is 

synthesized using a specific segment ofDNA as its template, the system does not behave 

in ways predictable by these principles alone. Knowledge of the DNA alone has not 

revealed to us how phenotypes arise from genes. The whole appears far more complex 

than its parts. 

Perhaps the major conceptualleap offered by completion of the genome projects and 

large-scale genomics is that we now realize how complicated the picture really is. 

Awareness of this complexity began to emerge over 40 years ago when the logic of gene 

regulation was first observed5
• Proteins interact with other proteins, DNA, and RNA in 
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precise logical patterns regulating the activity of genes, akin to a molecular circuitry6. 

When expanded to the genome-wide scale, the concept of a molecular circuitry reaches 

levels of complexity that defy explanation using current models of molecular biology. 

The concept of a genome-wide regulatory network was initiaIly proposed over 30 years 

ag07
• Only in recent years through advances in genomic technology has it become 

possible to gather data on the scale necessary to test these concepts. Further layers of 

complexity exist; Transcripts are furthermore known to interact with other transcripts, as 

weIl as acting enzymaticaIly. DNA is intricately woven into chromatin, the rules by 

which it behaves yet to be resolved. CeIls interact with each other via finely regulated 

communication mechanisms. It appears that each level of organization represents a giant 

leap in the complexity of the system and in its ability to respond to intrinsic and extrinsic 

factors. This has led sorne to describe a model of biology as one consisting of layers of 

organization, each with its own complexity from the genome to proteome to metabolome 

to ceIlulome to physiome, aIl sublayers of the phenome8
• Our ability to translate our 

knowledge from one level to the next currently remains limited. In the face of such 

complexity, how do we begin to construct the scaffolding upon which to assemble our 

understanding of the biological system as a whole? How do aIl these factors (and perhaps 

others we have yet to imagine) interact to bring about a functioning ceIl, a tissue, and an 

organism from the quaternary genetic code? Information transmission appears to occur 

throughout biological systems, from gene to protein, from generation to generation. 

Systematic cataloguing of each layer may expose the missing links by which information 

passes between these layers of organization. The goal of genomics research and systems 

biology is to find these links. 
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Figure 1. Biological models. 
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PART 2. GENETICS OF GENE REGULATION 

The field of genetics has demonstrated a great ability to isolate genes responsible for 

monogenic traits, those caused by a single alteration of a single gene and displaying 

inheritance in ratios predicted by Mendelian inheritance. However, monogenic traits are 

generally rare. The majority of phenotypes including most common diseases are 

multigenic or complex. A trait is said to be complex when multiple factors (both genetic 

and environmental) contribute to the phenotype. Complex traits are much more difficult 

to dissect. While it is assumed that the individual genetic components of a multigenic 

phenotype remain transmitted in proportions according to Mendel, merely estimating the 

number of these factors involved in a given trait is a difficult task. The coordinated 

interactions between these factors only further obscure the relationship between genes 

and phenotypes. The biologist is faced with a potentially immense degree of complexity 

that increases exponentially with the number of genes involved. To date, while the study 

of simple Mendelian or monogenic traits has resulted in the identification of numerous 

genes, relatively few examples exist where genes contributing to complex phenotypes 

have been identified 9. 

The search for genetic determinants of complex traits typically proceeds via an approach 

of measuring the association between phenotypes and genotypes across a given 

population. The use of inbred mice greatly facilitates this task by offering a population 

where genetic and environmental sources of variability may be controlled relatively weIl, 

and where phenotypes and segregating alleles may be observed over generations of 

individuals. Controlled breeding strategies may be used to further isolate strains or 

19 



individuals with a genetic composition more amenable to genetic analysis. The search 

culminates in the mapping of one or more quantitative trait loci (QTL). These may range 

in size from regions containing tens of genes to entire chromosomes. Fine mapping to 

narrow down these intervals is a laborious task, demanding much time and often involves 

breeding of animaIs with successively smaller portions of the segment of interest. The 

task may further be complicated by the presence of interactions within the locus in 

question. Genomic approaches offer a genome-wide perspective that provides a more 

immediate link between phenotypes and the level of individual genes. 

In recent years, much attention has focused on the development of methods for 

determining complex traits where multiple loci (and, presumably, genes) interact to bring 

about a complex phenotype. This interaction effect is known as epistasis, or gene 

dependence. The importance of background genetic effects 10 and modifier genes have 

been recognized for sorne time. In certain cases, QTLs were discovered from the analysis 

of modifier genes Il, 12. One example providing evidence for the substantial effect of 

modifier genes as weIl as the complexity of interactions, is that of bristle number in 

Drosophila 13, 14. Examples where epistatic loci have been mapped in mice leading to 

candidate gene interactions include Mom! mouse intestinal cancer 15,16 and Moth! for 

hearing IOSSI7. The challenge of determining such interactions has led to the development 

of special experimental systems designed to dissect the nature of complex interactions. 

These include recombinant congenic strains (RCS) 18 and chromosome substitution 

strains (CSS) 19. A major advantage offered by these strains over and ab ove the F2 inbred 

panels traditionally used in mapping studies is the segregation of interacting alleles. 
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Two major theories about the allelic distribution of complex traits exist, one proposing a 

minority of alleles of major effect, the other proposing a multitude of genes all having a 

minor effect. In alllikelihood both exist in varying degrees on a continuous scale as 

would be consistent with a hypothesis of genes interacting in complex regulatory 

networks. However, determining the extent to which each exists, in what conditions, or 

what proportions, remains to be characterized. Surveying this landscape of complexity is 

a necessary step in defining the framework for further discussion. 

Our concepts of gene regulation date back over 40 years ago to the characterization of the 

first genetic regulatory system, the lac operon controlling the metabolism of lactose and 

B-galactosides in E. coli 5. This work provided the theoretical groundwork upon which 

subsequent studies of gene regulation have been based - namely, that the control of 

transcription is govemed by sequence elements upstream of the transcription start site, 

within the 5' UTR as well as within introns. Since then, numerous gene regulatory 

mechanisms have been elucidated. While the model of transcription controlled by 

activation factors and sequence elements upstream of a gene is conceptually simple, 

regulation of transcript levels are now believed to be much more complicated. The 

definitions of activation sequences have proven difficult to generalize, mainly due to the 

great variety in genetic promoter and enhancer elements. Context dependence of these 

elements, and the large distances (> 1 OOkb) over which these elements may be dispersed20 

further complicate the task of finding and predicting gene regulatory mechanisms. The 

methodology for assaying gene regulation currently lies at the scale of individual genes 
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through transient transfection and mutagenesis assays in vitro. While these enable 

targeted analysis of an affected gene, such studies remove the gene from its natural in 

vivo context, making it difficult to relate results on a broader scale to observations in 

other experimental systems. In spite of our knowledge that many proteins bind to DNA, 

relatively few regulatory sequences have been characterized. At the genome-wide level, 

the picture of gene regulation remains sparse. New approaches are needed to find these 

mechanisms, and new vocabulary is required to expand our models of gene regulation 

encompass the tens of thousands of genes thought to exist in mammalian genomes. 

Genes regulated by multiple factors often exhibit interactions between factors in a 

complex set of rules and context dependencies. One example is the cis-regulatory logic 

(~. , . elucidated for the sea urchin gene, endo 16 21
• Here, 12 binding species and 13 cis-

regulatory elements located within a 2300bp region interact to control the expression of 

endo16, which is involved in early development. The precise mechanisms by which these 

species interact have been described by a series of conditionallogic statements that 

accurately predicts operation of the system. Should such regulatory complexity exist for 

the majority of genes, the task of elucidating these dependencies on a large scale shall be 

challenging indeed. 

The terms, cis and trans, used to described gene regulation, find their origins in the 

complementation test in Drosophila 22 where the terms were used to de scribe the 

configuration of mutant alleles. The terms now refer to the configuration of regulatory 

factors with respect to the affected gene and whether or not they reside on the same DNA 
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molecule or chromosome 23 (Figure 2). Darnell defines "Cis-acting: Referring to a 

regulatory sequence in DNA (e.g., enhancer, promoter) that can control a gene only on 

the same chromosome. In bacteria, cis-acting elements are adjacent or proximal to the 

gene(s) they control, whereas in eukaryotes they may also be far away," and "Trans­

acting: Referring to DNA sequences encoding diffusible proteins (e.g., transcription 

activators and repressors) that control genes on the same or different chromosomes." 24. 

NaturaHy, gene regulation is a concept that defies such a simplistic classification scheme. 

The sheer complexity of gene interactions shaH require a new vocabulary to accurately 

describe and classify genetic regulatory networks on the scale of hundreds to thousands 

of genes. However, until further categories of gene regulation are described, the 

distinction, no matter how simplistic or even erroneous, remains useful to geneticists and 

biologists alike trying to make inroads into the morass of gene interactions and regulatory 

networks. 
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Figure 2. Models of gene regulation - cis versus trans acting mechanisms. 
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'~_1' 

F or the purpose of our discussion of genetic variation affecting gene regulation, gene 

expression shall be said to be cis-regulated when the factor affecting gene expression 

level is located proximal to it on the same chromosome. Conversely, gene expression 

variation shall be said to be trans-regulated when it is affected by other genes or elements 

located distally on other chromosomes. For genetic mapping studies attempting to 

identify genetic variants involved in complex traits, knowledge of whether markers and 

disease alleles reside on the same or different chromosomes is an important step in 

simplifying the search for these genes. Recent studies estimate the proportion of genes 

affected by cis-regulatory mechanisms to be between 30% and 50% in humans25
,26. 

Trans-acting regulatory interactions are believed to affect the majority of genes stemming 

mostly from observations in yeast including surveys for DNA binding proteins20
, gene 

.~. 
network inference from gene expression profiling in gene knockout panels27

, and QTL 
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mapping of expression traits28
• In mammals, estimating the proportion oftrans-regulatory 

variation has been more difficult. A recent study in humans estimated 77% of gene 

expression variation to be trans-regulated29
, 30. Evidence from the evolutionary 

perspective may shed further light on the importance of regulatory variation between 

populations. A comparison of gene expression in primates and mice subspecies has 

shown that species-specific expression profiles may be used to reconstruct the 

phylogenetic relationship between species 31. Similar differential expression has been 

shown between related populations in a number model systems inc1uding yease2
, 

Fundulus33 
34, and Drosophila35

• The observations point to the importance of variation in 

gene expression with respect to phenotypic differences and imply an extensive role of 

variants affecting gene regulation throughout the genome. 

While traditional molecular biology enables dissection of regulatory mechanisms for 

individual genes or small sets of genes, the work is time-intensive and generally must 

proceed based on prior hypotheses of the mechanism in question. This pie ce-wise 

progression has led to a graduaI increase in knowledge about regulatory mechanisms 

biased towards a minority of genes for which prior knowledge exists. From this type of 

research, pathway diagrams of small sets of genes have been constructed with little 

knowledge of the contextual dependencies of such models with respect to the system as a 

whole. With information becoming available for entire genomes, a picture is emerging 

that most genes interact in sorne way with other genes. Ifwe are to understand the action 

of one gene, or even one pathway, we must understand the simultaneous action of many 

~. 
others in the system. In short, we cannot fully understand one gene or pathway outside 

1 
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the context of the entire network in which it exists. The advantage of system-wide 

experimental techniques is that we may be able to identify new mechanisms of which we 

had no prior knowledge, and to begin creating models that capture context dependence 

over the entire system. 

ln alllikelihood, genes function in a complex network of dependencies, as predicted over 

30 years ago7
• During the course ofthis thesis, evidence has emerged in support ofthis 

prediction. Analysis of single and double gene deletion yeast strains has revealed a 

varying degree of connectivity between genes27
, 36, 37. Studies of DNA binding proteins 

using chromatin immunoprecipitation have arrived at similar conclusions2o• Efforts to 

understand complex phenotypes will require a broader map of this network in mammals. 

If the genome functions in a highly coordinated fashion, as many lines of evidence 

suggest, then a system-wide survey of gene regulatory mechanisms is needed to gain the 

necessary perspective for constructing the map of gene regulation on a genome-wide 

scale. What kinds of regulation exist in the genome? What are the categories that will be 

useful for genetic studies linking genes to phenotypes? How many genes will there be in 

each category? Are there general principles regarding gene regulation applicable to all 

biological systems? If so then how can we find them? 

PART 3. MICROARRA y TECHNOLOGY 

During my graduate studies, 1 witnessed the evolution ofDNA microarray technology. 

Upon their inception, the ability to monitor expression levels for all genes simultaneously 

was both exciting and daunting at the same time. Excitement stemmed from the 
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knowledge that these profiles were a reading from the molecular circuitry of the cell. It 

was hoped that with the correct interpretation of these signatures, the entire circuitry of 

gene interactions could be deduced. The initial experiments applied methods from 

artificial intelligence to the data in hopes that the patterns would lead to an understanding 

of the circuitry38, 39. However, the task has proven to be far more difficult than initially 

imagined. Biological processes are generally believed to give rise to patterns in data. A 

large number of patterns may be extracted from microarray data using a variety of 

methods38, 39. However, distinguishing biologically meaningful patterns from spurious 

correlations has proven difficult in practice. There are many sources of variability 

contained in microarray data, aIl of which may confound biologically significant 

correlations. The number of steps between the capture ofbiological material and 

observation of gene hybridization levels renders it difficult to extract biologically 

significant signaIs from experimental and technical noise (to be discussed in detail further 

on). Besides issues of noise pertaining to statistics and study design, the complexity of 

the biological system may be greater than previously anticipated. The prevalence of 

complex gene interactions leaves scientists with relatively few starting points upon which 

to base a frame of reference. The challenge is furthermore complicated by the fact that 

biological systems are dynamic whereas microarray measurements represent static 

images of the system. The eventual goal of such an approach is to construct a genome­

wide model of the molecular workings of the cell. While the understanding may not arise 

from a single study, a cumulative approach may enable the snapshots to be assembled 

into a rough sketch of the genetic network. 
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A BRIEF REVIEW OF MICROARRA y TECHNOLOGY 

DNA microarrays represent a miniaturization and scaling up of traditional hybridization 

assays such as dot blots where DNA fragments derived from each gene or EST are 

attached to a solid support. These attached fragments then act as probes for labeled 
, 

cDNAs derived from sample mRNA. Two main platforms are in common use: 1) Glass 

slide arrays (often termed cDNA arrays), which involve depositing cDNAs onto a coated 

glass slide using a robotic spotting apparatus40
• This method offers the advantages of 

flexibility in the design of the array and a lower cost to produce. The disadvantages of the 

method include the multitude ofvariables affecting the manufacture of the array, most of 

which translate in variations in spot quality. Conditions such as temperature and humidity 

can influence the quality of arrays produced. Variations in spot size and shape typical of 

capillary tube spotting, contribute further to the overall variability observed in the system. 

Commercially produced arrays alleviate sorne of these issues. Since none of the 

experimentation in this thesis involved use of spotted cDNA arrays, the platform shall not 

be discussed any further. 2) Oligonucleotide arrays produced by Affymetrix were used 

for aIl expression studies in this thesis. These arrays are generated by a process of 

photolithography where oligonucleotides are synthesized directly onto the array 

substrate41
,42. A collection of oligonucleotides is designed generally from the 3' UTR of 

each transcript and each probe is paired with an oligonucleotide containing a mismatch at 

a central position. The hybridization intensities from each probe in a probeset are then 

combined or summarized to generate a single intensity measurement for each gene. A 

variety of statistics exist for summarizing probe sets in to a single reading and are 

examined throughout the following chapters. 
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Any method used to analyze microarray data faces the same question: How good is the 

data? It is a difficult question to answer. This thesis attempts to address sorne ofthese 

issues, in particular, those of experimental control and reproducibility. The fact remains 

that microarrays provide images of genomic function, unprecedented in biological 

research. Relating these results to existing research continues to be a challenge. One may 

choose to base estimates of accuracy on how well the technique identifies previously 

characterized relationships. However, most existing knowledge has been generated in 

targeted experimental systems with no guarantees of universality across broader 

experimental designs. Comparison of microarray analysis against independent biological 

assays such as RT-PCR or Northem blotting has been viewed as an acceptable method of 

cross validation. These techniques inevitably involve a greater investment of time and 

resources, in addition to requiring larger amounts of biological material than is 

sometimes possible. Furthermore, each technique involves a degree ofvariability, 

sensitivity and reproducibility of its own, not all of which have been subjected to as much 

statistical investigation to date 43. While microarrays are more recent than traditional 

methods, much more is known about the platform statistically. Since their inception, 

microarrays have received intense statistical scrutiny aiming to determine the optimal 

methods for analyzing the data. By comparison, RT-PCR and blotting assays have 

received less attention with respect to reproducibility, replication and overall statistical 

characteristics. lndeed the issue of using single-gene assays to verify microarray datasets 

raises more questions than it answers, and the need to corroborate microarray results with 

traditional assays remains a contentious issue within the community. 
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PART 4. INBRED MI CE 

lnbred mice have been used for close to a century as a model system in which to study 

genetics44
• lndeed there are numerous mouse models for human diseases45

-
49

• The main 

advantage of the mouse is that it is a model organism that is relatively closely related to 

humans. While certain subsets of characteristics are shared across all organisms, many 

are only shared between mammals. Startling similarities are known to exist between 

mouse and human phenotypes50
• Decades ofwork characterizing phenotypic differences 

between strains have led to a wealth ofknowledge about this system at the cellular, 

physiologic and organismallevel. Furthermore, this information has been systematically 

catalogued over the last 5 years culminating in the Mouse Phenome Database51
• This kind 

of knowledge base is an invaluable resource for the validation of genomic results. 

From the standpoint of genetic research, mice offer numerous practical advantages to 

scientists. Besides being small and easily housed in controlled environments, they breed 

rapidly and have easily identifiable physiological phenotypes. Collectors initially 

established the inbred lines currently in use in the late 1800s and early 1900s. The 

systematic cataloguing and standardization ofbreeding culminated in the foundation of 

the Jackson Laboratory in 1930 by Castle44
• The genealogy of the strains has been well 

recorded 52, the most commonly-used inbred strains deriving from the Mus musculus 

group 44. Nomenclature, breeding and distribution of inbred mouse strains are now 

standardized at the Jackson lab where strains are defined as inbred after greater than 20 

generations of sibling breeding, and are considered to be homozygous at every locus 

(>96%). This provides a population that is effectively genetically identical, dramatically 
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simplifying the search for genetic loci. Furthermore, the presence of multiple strains, 

each with different genetic compositions, allows the design oftargeted breeding 

experiments whereby traits and genetic markers may be observed simultaneously over 

multiple generations. Indeed, mice represent an experimental system free from many 

confounding issues facing studies in humans, such as sampling bias, genetic diversity of 

the sampled population and environmental variables. The elimination of confounding 

variables together with the ability to gather large sample sizes create an experimental 

system with increased power to observe biological variables ofinterest. 

In recent years, much attention has focused on characterizing the molecular differences 

between mouse strains. The complete genome sequence was completed for Mus musculus 

in 2002, followed by partial genome sequencing of a number of the more common inbred 

strains53. One rationale for this sequencing was to characterize in fiuer detail the genetic 

polymorphisms between these strains. Traditionally, mapping studies have used 

micro satellites or SSLPs, (simple sequence length polymorphisms) located on the 

chromosomes by genetic mapping in mouse pedigrees or by radiation hybrid mapping of 

the mouse genome54. While SSLPs still constitute a sequence-verified repository of 

genetic markers, SNPs are estimated to exist at a much higher frequency and thus 

promise to allow mapping of genetic variation at a much higher resolution55. SNPs exist 

in regions ofhigh density (100 per 500kbp) and low density (10 per 500kbp)56. These 

regions appear to correlate with the haplotype structure of the mouse genome57, 58. 

Studies have revealed that the genome of inbred strains appears to share a proportion of 

blocks derived from a common ancestor with different overlapping regions shared 
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between different strains. Knowledge of this haplotype structure not only complements 

existing mapping studies but may also provide a means to map traits via comparison of 

inbred strains directly59. 

This study focuses on two of the most commonly used inbred strains, AlJ and C57BL/6J. 

These have been bred for over 100 generations and represent two of the earliest 

established inbred strains44
• Phenotypic comparisons between these two strains date back 

decades60
• These strains have been characterized for hundreds of phenotypes (inc1uding 

asthma, diabetes, cancer) with over 850 registered studies in the Phenome Database 

(www.phenome.org). The two strains both derive from the Mus musculus subgroup and 

are known to differ for at least 3200 micro satellite markers 61,62 and for over 120,000 

SNPs 63. Genetic studies in AlJ and C57BL/6J mice have resulted in numerous QTL 

mapped for a range of phenotypes (for a comprehensive list see Table 6, Chapter 2). The 

wealth of systematically catalogued knowledge from numerous studies at allieveis of 

function, together with the availability of genomic resources makes the use of these 

animaIs extremely attractive for genomic approaches. 

PART 5. INTEGRATIVE APPROACHES 

The difficulties in finding genes underlying complex traits using current methods have 

been well documented64
• The number of epistatic interactions between loci together with 

combinatory complexity makes the definitive isolation of a QTL highly context 

dependent. Effects seen in one context may manifest entirely differently in a separate 

experimental system. Furthermore, strategies for fine mapping to identify candidate genes 
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are also hampered by the combinatorial complexity of gene interactions, as weIl as the 

genomic size of many QTL, which may contain hundreds of genes. Because of this, the 

molecular basis of most QTLs remains a mystery. More recent studies have demonstrated 

the effectiveness of incorporating gene expression profiling into the process of studying 

complex traits in mice28
, 65-67. By this approach, gene expression levels are considered 

molecular phenotypes, which can then be associated with recombination patterns detected 

by genetic marker analysis. Such an approach marries a system-wide view of molecular 

biology with genetic marker analysis and offers the advantage ofbringing the studyof 

complex traits from the level of genetic regions to individual genes68
• However, the 

complexity of gene regulation and interactions suggests that expression profiling per se 

will not suffice69
• 

As shaH be evident from the foHowing chapters, one aspect of utilizing genomic 

technologies like DNA microarrays is the difficulty in drawing conclusions similar to 

those of molecular biology where the causality of a given gene-gene interaction, for 

example, may be demonstrated conclusively albeit within a restricted experimental 

system. In a genome-wide experiment there are degrees of variation, the measurement of 

which cornes with estimates of error. While it is possible to measure degrees of 

association, assignment of causality is far more difficult. This is where a diversity of 

approaches and information sources may excel over a single-faceted study. The combined 

approach of using multiple information databases, multiple genomic technologies across 

multiple experimental systems has been shown to be an effective means to answering 

complex biological questions70
• Integrative approaches provide a multifaceted view of the 

33 



r" biological system that surpasses the capacity of each technique when applied separately. 

This thesis represents such an integration of approaches. 
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PART 6. THE SIS OBJECTIVES 

The focus of my thesis was to investigate the genetic basis of gene expression and 

regulation on a genome-wide scale focusing on understanding gene expression profiles in 

inbred mice. The thesis is divided into three chapters. Chapter 1 represents an effort to 

understand the technology of genome-wide expression profiling, examining the 

variability inherent in the data in order to determine how to best design and control 

microarray experiments. These studies showed that microarray data contains different 

sources of variability, which must be taken into account in the design of experiments. 

Chapter 2 deals with the application of the technology to a model system of importance 

to biology and genetics, inbred mice. This study analyzed expression profiles of two 

inbred strains ofmice (AlJ and C57BL/6J), demonstrating extensive baseline gene 

expression variability between inbred strains for multiple tissues and addressing issues of 

reproducibility in microarray experiments. The study further identified genes within 

previously mapped QTL indicating the potential for the approach to prioritize the search 

for candidate genes within QTL. Chapter 3 further investigates the dependencies of gene 

expression differences upon specifie genetic differences via an integrated approach 

combining expression profiling obtained over a panel ofRCS mice, and validating the 

results using allelic imbalance (AI). The increased incidence of allelic imbalance in genes 

identified by expression profiling demonstrates the effectiveness of an integrated 

approach for enriched detection of potentially cis-regulated genes. This approach may 

facilitate large-scale cataloguing of cis-regulated genes. 
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CHAPTER 1 - UNDERSTANDING THE SYSTEM: CONTROLS IN 

MICROARRA Y EXPERIMENTS 

The first and most pressing question facing early microarray experiments was what 

constituted an effective control in comparing different expression profiles. In spite of 

much progress in the field, the question remains an issue to this day. Much ofwhat we 

know about gene expression experiments cornes from experience with traditional 

hybridization-based assays, such as Northern blots, slot blots, and RT-PCR, where use of 

a control gene constitutes an adequate control for measuring small numbers oftranscripts. 

It was not clear that similar strategies could be applied to microarray data. This study 

aimed to better characterize the nature of microarray data and to determine adequate 

methods for developing internaI controls for microarray experiments. What appeared to 

be a simple question at first has since become a far more involved discussion, as 

microarray data has proven far more complex than had previously been imagined. 

Upon first sight of microarray experiments, scientists were faced with a phenomenon that 

had never been seen before, snapshots of expression levels genes measured 

simultaneously for thousands of transcripts. One approach to describing a novel 

observation is to relate the new phenomenon to a pre-existing concept as a means of 

defining a framework for further discussion and exploration. Sorne of the earliest studies 

applied clustering and other pattern recognition tools derived from other disciplines to 

analyze the data38
, 39. However, while these proved to be a quick and accessible way to 

visualize and superficially explore microarray datasets, they had limited utility in terms 

of defining the data in a way that could be related to existing hypotheses. There was no 
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way to test the accuracy or precision of the gene expression changes detected. In the face 

ofthis dilemma, we first posed the question: What constitutes an effective control in 

microarray experiments? How could we better estimate the association between gene 

expression changes and independent variables within one experiment, and how reliable 

would such estimates hold up between experiments and test systems? 

Early microarray experiments were primarily exploratory71. Datasets were generated 

without replicates and controls, and consisted of comparisons against reference samples. 

Admittedly, the excitement ofthese early stages led to studies that explored the 

possibilities of the technology, rather than exposing its pitfalls. However, the question 

remained, how significant were these changes, and how reliable were conclusions that 

were based on this data? 

Quantitative measurement of mRNA transcripts was established early in technological 

development of microarrays 40,42. However, establishing the reliability of transcript 

measurements for thousands of genes raised new questions of controls. Traditional 

methods for mRNA detection for single gene measurements compared transcript levels 

. with those of a control gene, usually one thought to be ubiquitously expressed at a 

relatively stable level 72. Calculations of relative transcript levels have been the standard 

for techniques such as Northem blots and RT-PCR. While such studies focused on 

questions confined to specific cellular contexts, microarray studies tended to involve 

comparisons over much broader experimental contexts. Previously it had been assumed 

that genes existed that were expressed ubiquitously across all tissues, and whose 

37 



expression did not vary. The term "housekeeping genes" were coined to describe their 

presumed function, one that was necessary for sorne maintenance role in every cell 

regardless of tissue. Controls for aIl mRNA hybridization experiments to date were based 

on this assumption. This study examined the validity of this assumption by analyzing 

three previously published datasets in addition to one generated with containing technical 

and biological replicates. Levels of traditional control genes and different sources of 

variability were examined. This study also examined the impact of these observations on 

normalization methods and began to evaluate statistical methods for the determination of 

differentially expressed genes, as opposed to methods based on fold-change calculations 

commonly used at the time. 

Note about analysis methods: Since the time this analysis was performed, analytical 

methods have progressed substantiaIly. Work on summary statistics was limited at the 

time. This study used MAS4.O (an average difference calculated from both PM and MM 

probe signaIs). This method has since been deprecated. No longer are mismatch 

oligonuc1eotides included in summary calculations of expression levels for individual 

genes. Numerous normalization and summary methods have since emerged and were 

used in Chapters 2 and 3. While these methods have helped to improve the sensitivity of 

subsequent analyses, a comparison of the various methods led us to believe these 

differences would not have had appreciable effect on the conclusions ofthis chapter. 

38 



CONTROL GENES AND VARIABILITY: ABSENCE OF UBIQUITOUS 
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ABSTRACT 

Control genes, commonly defined as genes that are ubiquitously expressed at stable 

levels in different biological contexts, have been used to standardize quantitative 

expression studies for more than 25 years. We analyzed a group of large mammalian 

microarray datasets including the NCI60 cancer ceIlline panel, a leukemia tumor panel, 

and a TP A induction time course as weIl as human and mouse tissue panels. Twelve 

housekeeping genes commonly used as controls in classical expression studies (including 

GAPD, ACTB, B2M, TUBA, G6PD, LDHA, and HPRT) show considerable variability 

of expression both within and across microarray datasets. While we can identify genes 

with lower variability within individual datasets by heuristic filtering, such genes 

invariably show different expression levels when compared across other microarray 

datasets. We confirm these results with an analysis of variance in a controlled mouse 

dataset demonstrating the extent ofvariability in gene expression across tissues. The 

results demonstrate the problems inherent in the classical use of control genes in 

estimating gene expression levels in different mammalian cell contexts, and highlight the 

importance of controlled study design in the construction of microarray experiments. 
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INTRODUCTION 

While DNA microarrays open the door to large-scale expression experiments 73,74, a 

major challenge facing these studies is the design of experimental controls that will 

permit comparison of quantitative expression profiles obtained from diverse biological 

contexts. In traditional assays, standardization of rnRNA levels has been achieved by 

comparison to the leve1 of a control gene, commonly defined as one that is ubiquitously 

expressed at stable levels across many biological contexts. Methods of standardization 

based on control genes have furthermore been used in microarray and genomic studies 75, 

76. We re-examine the traditional concepts of controls in expression experiments with the 

aim of determining appropriate measures for the control of microarray experiments. 

In an attempt to identify genes that are expressed at constant levels across a wide range of 

biological contexts, we analyzed four published datasets prepared following similar 

methods based on a single microarray technology (Affymetrix oligonucleotide 

microarrays). The NCI60 dataset 77 consists ofmicroarray measurements ofgene 

expression in 60 cancer celllines originating from 9 tissue types. A datas et obtained from 

patients with hematologic malignancies 78 includes expression profiles for multiple 

homogeneous ALL and AML tumor samples. Temporal and developmental fluctuations 

in control gene expression were assessed using a dataset obtained from four celllines 

following treatment with TPA 38. Finally, the Huge Index dataset provides in vivo gene 

expression data for six human tissues 79. 
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METHODS 

Public Microarray Datasets 

Microarray datasets for the NCI60 cancer cellline panel, the ALL/AML tumors, and the 

TP A treatment in HL60, U93 7, NB4 and Jurkat celllines are available at 

http://www.genome.wLmit.edulMPRIdatasets). The human tissue expression profiles 

contained in the Huge Index dataset were obtained at http://www.hugeindex.org/). 

Mouse Microarray Dataset 

Mouse tissues were obtained from three adult male C57BL/6J littermates. Mice were 

killed by cervical dislocation and the tissues rapidly dissected and homogenized in Trizol 

reagent (Life Technologies). Total cellular RNA was prepared according to the 

manufacturer's instructions and analyzed by non-denaturing (1 % agarose-1xTBE) gel 

electrophoresis. Probes for the microarray studies were prepared by priming 20 ~g of 

total RNA with 100 pmol ofT7- (T) 24 primer (Genosys). The RNA-primer mixture was 

denatured for 10 minutes at 70°C then chilled on ice. First strand cDNA was synthesized 

using Superscript II reverse transcriptase (Life Technologies). Second strand synthesis 

was performed using RNAse H, DNA polymerase 1 and E. coli DNA ligase (Life 

Technologies). Biotinylated riboprobes were prepared from the entire cDNA reaction 

using the ENZO Bioarray High Yield RNA Transcript Labeling Kit (ENZO Diagnostics). 

The average probe length was reduced by incubating the probe in IX Fragmentation 

Buffer for 35 minutes at 95°C. Hybridization was performed at 45°C for 16-20 hours 

using 15~g ofbiotinylated probe. Following hybridization, the arrays were subjected to 

10 low-stringency washes and 4 high-stringency washes using a GeneChip Fluidics 
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Station 400 (Affymetrix). Bound probe was detected by incubating arrays with SAPE 

(streptavidin phycoerthryin, Molecular Probes) and scanning the chips using a GeneArray 

Scanner (Agilent). Scanned images were analyzed using the GeneChip Analysis Suite 3.3 

(Affymetrix). Full details of the microarray methods have been described previously8o. 

Data analysis 

Traditional control genes analyzed in human datasets included: beta-actin (ACTB), beta-

2-microglobulin (B2M), phosphofructokinase (PFKP), phosphoglycerate kinase (PGKI), 

aldolase A (ALDOA), phosphoglycerate mutase (PGAM), alpha-tubulin (TUBA), 

glyceraldehyde-3 phosphate dehydrogenase (GAPD), glucose-6 phosphate 

dehydrogenase (G6PD), lactate dehydrogenase A (LDHA), hypoxanthine 

phosphoribosyltransferase (HPRT), and vimentin (VIM). Traditional control genes 

analyzed in mouse datasets included: asparagine synthetase (Asns), phosphofructokinase 

(Pfkp), lactate dehydrogenase A (LdhI), vimentin (Vim), phosphoglycerate kinase 

(PgkI), ubiquitin (Ubc), glucose-6 phosphate dehydrogenase (G6pd), phosphoglycerate 

mutase (PgamI), beta-2-microglobulin (B2m), glutamate dehydrogenase (Glud), 

hypoxanthine phosphoribosyltransferase (Hprt), alpha-tubulin (TubaI). For accession 

numbers see Table 1. 

Regression scaling was performed only on datapoints assigned a 'P' absolute calI by the 

Affymetrix GeneChip software: the absolute caU estimates the hybridization quality for 

an individual probe set based on measures of background and signal dispersion. The 

regression scaling algorithm has been described previously8o: it utilizes normalization to 
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the regression coefficient of the first sample in each dataset. We rescaled datasets based 

on mean overaU intensity per scan. Mean intensity was calculated on the genes with a 

minimum average difference of 50 and an absolute caU of 'P' by the GeneChip 

algorithm. 

Data analysis was accomplished using Perl or VBScripts in Microsoft Excel. Graphs 

were created using R (http://www.r-project.org). ANOVA was carried out using SAS 

(SAS Institute Inc) testing the amount of observed variability in expression of each gene 

due to replicate (repeat hybridizations of the same RNA sample), mouse (samples from 

three individual mice), or tissue (samples from 4 different tissues); Generallinear model 

was used on a per-gene basis (PROC GLM). P values considered were calculated for 

each variable individuaUy having adjusted for the variation due to remaining variables 

(added-Iast test / SAS Type III F-Test). We conducted ANOVA separately on subsets of 

the data meeting initial filtering criteria of minimum expression levels of greater than 20, 

50, 100 or 200 units across aU 12 experiments. ANOVA results must be interpreted with 

caution as the smaU sample size makes assessments of normality and homoscedascity 

difficult. P-values considered were for the added-Iast F-test (testing each variable 

individuaUy having adjusted for aU other variables). Datasets, figures, tables, and 

analytical scripts are available at http://www.mcb.mcgill.ca/~pdlee/control genes. 

RESUL TS AND DISCUSSION 

We initiaUy studied the expression levels of 12 genes commonly employed to normalize 

RNA levels measured by Northem blots or RT-PCR. The expression levels for many of 
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these genes fluctuates dramatically both within and across datasets (Figure 1). Within 

datasets, the maximum fold change (MFC - the ratio of the maximum and minimum 

values observed within a datas et) ranges from 1.3 for ACTB within the TP A induction 

datas et to greater than 300 for VIM in the NCI60 dataset (Table 2). AlI commonly used 

control genes have MFC of greater than 2.0 in at least one datas et. In addition, the 

observed coefficients of variation (CVs) are frequently greater than 0.5, reflecting the 

highly variable levels of expression of these genes within data sets. 

We next employed a simple heuristic filter to identify sets of genes showing lower 

variability. After excluding genes with signal intensities below threshold and with a MFC 

greater than 2, genes were sorted and ranked according to their CV s. We use this measure 

ofvariability as it compensates for the apparent dependence of dispersion on signal8o• 

Similar results were obtained using altemate methods of estimating dispersion (data not 

shown). Of the housekeeping genes analyzed, only GAPD and ACTB rank among the 

100 genes with the lowest variability; however, no traditional control genes display 

consistently low variability across the four datasets. Nine genes identified by filtering 

have CVs less than 0.7 across aIl four datasets (Table 3). These are not genes that have 

commonly been used as controls, but include several ribosomal protein (RP) genes 

(including RPS27A, RPL19, RPL11, RPS29, RPS3). Even this set of genes shows 

differing amounts ofvariability across datasets (Figure 2). For example, while RPS27A 

has the lowest CV in the NCI60 and leukemia datasets, its MFC ranges from 2.2 in the 

NCI60 dataset to 5.6 in the TPA induction dataset. 
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Our failure to identify control genes in the four expression datasets studied might occur if 

the microarray measurements were associated with high levels of technical variability. In 

order to assess whether the observed variation could be due to technical variability rather 

than biological context, we examined expression levels in triplicate for RNA samples 

obtained from liver, he art, lung and brain ofthree male C57BL/6J mice reared under 

identical conditions using MU11KA and B arrays (Affymetrix) containing probe-sets for 

11000 mouse genes and ESTs. The expression levels oftraditional control genes show 

greater variability among RNA samples obtained from different tissues than among RNA 

obtained from the same tissue harvested from different mice, or among identical RNA 

samples hybridized to replicate microarrays (Figure 3). To determine whether other genes 

displayed similar behavior, we performed analysis of variance (ANOVA) on a per-gene 

basis to determine the amount of observed variability that could be attributed to 

differences among replicates, mice or tissues. Technical replicates using identical RNA 

samples hybridized to 3 distinct arrays show the least amount ofvariability: only 3% of 

genes display significant differences across replicates (P<0.05). Among biological 

replicates using RNA from 3 individual mice, 5-10% of genes show significant 

differences (P<0.05) after adjusting for variation between tissues, and between technical 

replicates. In contrast, 81-99% of genes show significant variability (P< 0.05) among 

different tissues after adjusting for the variability between technical and biological 

replicates. This trend remains consistent regardless of the filtering criteria or procedure 

used to select genes (Tables 4,5,6,7, Figure 4). ANOVA performed on the TPA induction 

and NCI60 datasets similarly reveals greater variability in gene expression across 

different tissues than across different time points, celllines or datasets. Performing our 
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analysis using multiple normalization methods did not impact our findings (Figure SA 

and B). These results indicate that the variability in gene expression detected in this 

experiment is not due to technical or inter-mouse variability, but rather due to the 

inherent differences in individual RNA levels present among different tissue types. 

It is possible that our failure to identify control genes may result from data filtering 

techniques that excluded RNA species expressed at low copy number across a wide range 

of tissues, or, genes that are simply not present on the microarrays used in these studies. 

These issues may be addressed by the future development of more sensitive complete 

genome arrays. Despite this, our results clearly show that the expression levels of genes 

\ 

that have been commonly used as controls in classical experiments vary significantly 

among different cellular and experimental contexts. Furthermore, we fail to identify 

mammalian genes that qualify as "control genes" based on a definition of ubiquitous and 

stable expression. While sorne genes do appear quite stable in expression level within any 

one experiment, there do not appear to be any genes expressed at stable levels across aU 

four datasets studied in this paper. Furthermore, the extent ofvariability between datasets 

appears to differ substantiaUy (Table 8). Hence the traditional use of individual genes, as 

normalization controls in experiments that compare diverse biological tissues would lead 

to substantial errors in the derived estimates of fold change in gene expression levels. 

From inspection of the data it is apparent that sorne transcripts may serve as control genes 

for studies performed in a single tissue context, however these conclusions are limited by 

a study design that does not address the effects of physiologie regulation on the 

r---\ expression of the se genes. 
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The unproven existence of control genes seems to have achieved acceptance in part due 

to its conceptual simplicity and practicallimitations of the past. Recent studies have 

expressed concern that individual genes or groups of genes may serve as inadequate 

internaI standards for measuring RNA expression levels72
, 81-87; Measures for data 

standardization and quality control in microarray databases are currently being reviewed 

by the MGED working group on Microarray Data Annotations (www.mged.org). The 

establishment of common frames of reference requires a re-examination of assumptions 

inherent in the design of biological experiments. From these findings we propose that aH 

genes are differentially expressed in at least one biological context and that the 

expression of every gene is therefore context dependent. Given the absence of ubiquitous 

control genes, variation in microarray expression studies must instead be interpreted 

using statistical characteristics of the data without preconceptions arising from the 

traditional notions of internaI control genes. 
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r---\ Table 1. Accession numbers of traditional control genes tested 

ACTB M10277 
X63432 

ALDOA X12447 
H24754 

G6PD X55448 
X03674 

GAPD X01677 
T55131 

B2M S82297 
T48041 

PFKP D25328 
H28131 

PGKI V00572 
PGAMI J04173 

TUBAI X01703 
K03460 

HPRTI M31642 
V00530 

VIM Z19554 
T51852 

LDHA X02152 

RPS27A S79522 
H89983 

RPLI9 X63527 

HSPCA X15183 

RPLII X79234 

RPS29 U14973 

NONO U02493 

AAMP M95627 

RPS3 X55715 

ARHGDI X69550 
A 
Asns U38940 

B2m X01838 
AA059700 

TubaI M13445 

Vim X51438 
W21013 
AA024049 

Pfkp AA072252 

Ubc D50527 

G6pd Z11911 
Pgkl AA097524 

W75817 
Hprt J00423 

Glud X57024 

Pgaml AA065739 
AA161799 

LdhI X02520 
Y00309 
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Table 2. Traditional control genes across 4 datasets. 

Gene Description NCI60 AMLIALL Huge Index TPA 

MFC CV MFC CV MFC CV MFC CV 
ACTB Actin, beta 7.8 0.39 3.5 0.32 1.3 0.11 4.6 0.35 

ALDOA Aldolase A 8.2 0.37 5.7 0.48 2.9 0.37 2.9 0.31 

G6PD G1ucose-6-phosphate 7.7 0.90 5.0 0.45 2 0.28 4.6 0.43 

dehydrogenase) 

GAPD Glyceraldehyde-3-phosphate 5.3 0.31 12.3 0.33 2 0.19 1.9 0.17 

dehydrogenase 

B2M Beta-2-Microglobulin 25.6 0.58 14.0 0.42 3.4 0.27 4.6 0.49 

PFKP Phosphofructokinase, 12.4 0.68 >12 1.66 >96 0.08 14.0 0.56 

platelet 

PGKI Phosphoglycerate kinase 1 6.5 0.44 6.8 0.36 NIA NIA 4.9 0.41 

PGAMI Phosphoglycerate mutase 1 5.2 0.40 12.4 0.48 1.6 0.19 3.6 0.47 

(brain) 

TUBAI Tubulin, alpha 1 (testis >50 1.09 53.7 0.78 3.1 0.84 6.7 0.46 

specific) 

~ HPRTl Hypoxanthine 10.7 0.45 43.9 0.53 1.6 0.42 5.6 0.49 

phosphoribosyltransferase 1 

(Lesch-Nyhan syndrome) 

VIM Vimentin >300 0.68 12.7 0.42 3.8 0.41 28.9 0.94 

LDHA Lactate dehydrogenase A 91.0 0.38 9.2 0.40 5.5 0.60 4.1 0.34 

CV - coefficient of variation, MFC - maximum fold change, NCI60 - expression datas et 

generated from the NCI panel of60 cancer celllinesss, AMLIALL - acute myeloid 

leukemia and acute lymphohlastic leukemia datasees, the Huge Index datasee9, TP A -

expression data from HL60 cells treated with TPA3s. 
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Table 3. Genes identified by jiltering with CV less than 0.7 across ail 4 datasets. 

Gene Description NCI60 AMLIALL Huge Index TPA 

MFC CV MFC CV MFC CV MFC CV 
RPS27A Ribosomal prote in S27a 2.2 0.17 3.2 0.19 3.1 0.37 5.6 0.61 

RPLI9 Ribosomal prote in L19 3.2 0.24 2.6 0.19 2 0.21 2.6 0.29 

HSPCA Heat shock 90kD protein 1, 9.8 0.25 7.7 0.44 7.3 0.47 4.8 0.32 

alpha 

RPLI1 Ribosomal protein LI1 3.4 0.25 3.8 0.2 2.8 0.3 11.8 0.54 

RPS29 Ribosomal protein S29 3.1 0.26 4.2 0.25 1.6 0.16 3.3 0.33 

NONO Non-POU-domain- 4 0.28 3.7 0.25 1.4 0.1 4.3 0.33 

containing, octamer-

binding 

AAMP Angio-associated migratory 4 0.31 8.4 0.34 2.2 0.31 4.2 0.43 

cell protein 

RPS3 Ribosomal protein S3 4.2 0.32 3.5 0.24 3.9 0.35 2.7 0.26 

ARHGDIA Rho GDP dissociation 7.6 0.38 7 0.29 1.4 0.15 3.8 0.31 

inhibitor (GDI) alpha 

CV - coefficient of variation, MFC - maximum fold change, NCI60 - expression datas et 

generated from the NCI panel of 60 cancer celllines88
, AMLI ALL - acute myeloid 

leukemia and acute lymphoblastic leukemia datasee8
, the Huge Index datasee9

, TP A -

expression data from HL60 cells treated with TPA38
• 
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Table 4. Summary of ANOVA conducted on mouse dataset. 

Threshold Number of genes with Proportion of genes with P-value < 0.05 when following 

expression> threshold variables were tested individually* 

Replicate (n=3) Mouse (n=3) Tissue (n=4) 

>0 6016 0.035 0.066 0.814 

>20 963 0.031 0.086 0.978 

>50 773 0.031 0.082 0.978 

>100 440 0.030 0.098 0.980 

>200 220 0.023 0.055 0.990 

Generallinear model tested on a per-gene basis (PROC GLM; modellevel=timepoint cell 

line; by gene). P values considered were calculated for each variable individually having 

adjusted for the variation due to remaining variables (added-Iast test / SAS Type III F­

Test). 
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Table 5. Summary of ANOVA conducted on TPA time course dataset. 

Threshold Number of genes with Proportion of genes with P-value < 0.05 when following 

expression> threshold variables were tested individually* 

Time Point (n=4) Cell Line (n=4) 

>0 2867 0.120 0.621 

>20 1327 0.094 0.502 

>50 746 0.132 0.797 

>100 434 0.098 0.980 

>200 229 0.055 0.990 

Generallinear model tested on a per-gene basis (PROC GLM; modellevel=timepoint cell 

line; by gene). P values considered were calculated for each variable individually having 

adjusted for the variation due to remaining variables (added-Iast test / SAS Type III F­

Test). 
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Table 6. Summary of ANOVA conducted within NC/60 dataset. 

Threshold Number of genes with Proportion of genes with P-value < 0.05 when following 

expression> threshold variables were tested individually* 

Cell Line (n=60) Tissue (n=8) 

>0 7110 0.056 0.214 

>20 871 0.044 0.336 

>50 543 0.044 0.359 

>100 350 0.040 0.380 

>200 200 0.030 0.202 

Generallinear model tested on a per-gene basis (PROC GLM; modellevel=cellline 

tissue; by gene). P values considered were ca1culated for each variable individually 

having adjusted for the variation due to remaining variables (added-Iast test / SAS Type 

III F-Test). 
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Table 7. Summary of ANOVA conducted across multiple human datasets. 

Threshold Number of genes with Proportion of genes with P-value < 0.05 when following 

expression> threshold variables were tested individually* 

Dataset (n=3) Tissue (n=lO) 

>0 1097 0.066 0.814 

>20 585 0.086 0.978 

>50 341 0.082 0.978 

>100 206 0.098 0.980 

>200 139 0.055 0.990 

*Generallinear model tested on a per-gene basis (PROC GLM; modellevel=dataset 

tissue; by gene). P values considered were calculated for each variable individually 

having adjusted for the variation due to remaining variables (added-Iast test / SAS Type 

III F -Test). 
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Table 8. Outlier detection. 

Dataset Number of Total number of Number of genes with Percentage of genes with expression 

genes detected samples at least one below threshold 

measurement outside 

+/-3SD 

NCI60 7129 60 3598 55.9 

AML/ALL 7129 72 5695 50.6 

HL60 7129 17 5093 58.5 

NCI60 - expression dataset generated from the NCI panel of 60 cancer celllines88
, 

AMLIALL - acute myeloid leukemia and acute lymphoblastic leukemia datasee8
, the 

Huge Index datasee9
, HL60 - expression data from HL60 cells treated with TP A38

• 
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FIGURE LEGENDS 

Figure 1. Gene expression profiles of classic control genes examined across multiple 

datasets: NCI60 celIline panel, ALLI AML tumor panel, Huge Index and TP A CelI-line 

induction. Gene expression levels uniformly rescaled are plotted on the y-axis; samples 

(ordered according to their arrangement given in each respective study) are plotted on the 

x-axis. AlI datasets with the exception of the Huge Index were rescaled based on mean 

intensity per scan. 

Figure 2. Replicate samples from 4 mouse tissues. RNA was extracted from the liver, 

he art, lung and brain of 3 adult male C57BLl6J mice. To assess technical variability, the 

RNA from each tissue of one mouse was divided and hybridized in replicate to 3 separate 

arrays. To assess biological variability, RNA from identical tissues of 3 individual mice 

were hybridized to 3 separate arrays. Points are arranged in the following order for each 

tissue: mouse l-replicate 1, mouse l-replicate2, mouse l-replicate3, mouse2-replicate 1, 

mouse3-replicate 1. Multiple probe sets, present for Glud, Pgki, Pgami and Ldhi show 

consistency in measurements of expression levels across tissues. Other probe sets for 

Tubai, Vim, and B2m show a higher degree of variability indicating issues inherent in 

probe design. Samples were normalized by mean intensity per scan. 
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~ .. Figure 3. Genes identified by heuristic filtering: Expression profiles for genes oflow 

variability across 4 datasets. Genes were sorted based on degree ofvariability. Analysis 

revealed that in any given dataset, gene sets could be identified with less variability in 

gene expression however the composition of such sets did not remain consistent. 

Figure 4. Normal-quantile plot ofP-values from ANOV A conducted gene-by-gene on the 

mouse replicate dataset taking into account variation among technical replicates, 

individual mice and 4 separate tissues (brain, heart, liver and lung). P-values are those 

derived from the added-Iast F-test (Type III GLM in SAS). This tests the contribution of 

each variable individually towards explaining the observed variation in a given gene's 

expression level across aIl samples. TypicaIly genes had lower P-values for tissue 

indicating this variable is more significant, having adjusted for the variation due to mouse 

and replicate variables. This effect remains consistent with different data filtering 

criterion. Data was centered using mean intensity for each scan. 

Figure 5A. Rescaling factors across NCI60 and ALLI AML datasets. In order to assess the 

influence of normalization techniques on the analyses, we compare rescaling factors 

calculated by various approaches including global mean, median, regression factors, and 

filtered subsets of genes. Rescaling factors are given for mean and median methods as 

calculated on filtered subsets of the data (genes with average difference levels greater 

than 20 and 50). AlI methods show a similar level variability. 
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~\ Figure SB. Effect ofrescaling by different methods on the average expression level of 

traditional housekeeping genes in NCI60, leukemia training and independent datasets. 

Traditional control genes analyzed included: beta-actin (ACTB), beta-2-microglobulin 

(B2M), phosphofructokinase (PFKP), phosphoglycerate kinase (PGKl), aldolase A 

(ALDOA), phosphoglycerate mutase (PGAM), alpha-tubulin (TUBA), glyceraldehyde-3 

phosphate dehydrogenase (GAP D), glucose-6 phosphate dehydrogenase (G6P D), lactate 

dehydrogenase A (LDHA), hypoxanthine phosphoribosyltransferase (HPRT), and 

vimentin (V/M). Using different normalization methods does not appear to have a 

significant impact on the observed level of expression variability. 
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Figure 4. 
Mouse dataset 
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Figure SA. 
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Figure 5B. 
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CHAPTER 2 - APPLICATION TO EXPERIMENTAL SYSTEMS: GENE 

EXPRESSION ANALYSIS OF INBRED MOUSE STRAINS 

The connection between gene expression and cellular/organismal phenotypes has long 

been recognized. Early work in mice and flies determined that changes in gene 

transcription were critical to an organism's development.89 ln these studies, mutations in 

transcriptional networks disrupted normallimb development, organogenesis, and other 

developmental processes. Indeed embryonic development has been described in part as 

the timed activation and repression of gene transcription. Microarrays offer the 

opportunity to characterize organisms at the level of gene e~pression. The questions 

remain, how are expression changes are related to observed differences at the organismal 

level, and, how does gene expression differ between organisms of differing genetic 

background? 

The second part of this the sis focused on gene expression analysis of inhred mouse 

strains. Collected by hobbyists around the turn of the century for their coat colours, 

inbred strains were found to differ dramatically for a wide range ofphenotypes60
• These 

strains have become a commonly used model system in which to study the genetic 

components of phenotypes pertaining to human disease. Since then, the genealogy, 

nomenclature and breeding of mouse strains has been standardized, catalogued and 

maintained due to the centralization of efforts at the Jackson Laboratories. This study 

focused on two widely studied strains: AlJ and C57BL/6J. AlJ (albino) mi ce have a 

known propensity for a range of disease phenotypes including low breeding rate, asthma, 
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susceptibility to cancer and infectious diseases. C57BL/6J are considered normal for 

many phenotypes and have been used as a standard for comparisons against many of the 

inbred strains. These comparisons have formed the basis for numerous studies leading to 

the identification many genetic loci. At the molecular level, the strains have been fully 

sequenced and are known to differ for a multitude of genetic markers53
• However, little 

remains known of how these strains differ at the level of gene expression. 

Many phenotypes studied between strains involve sorne form oftreatment. For example, 

studies of atherosc1erosis and obesity often involve administration of diets with varying 

levels of cholesteroI90
-
92

• Susceptibility to infection is tested by inoculation with 

pathogens93
-
96

, and cancer predisposition has been measured as tumor count following 

administration ofknown carcinogens97
, 98. While most studies focus on characterizing 

differences in the response to stimuli, little remains known of the context in which these 

responses are acting, the underlying level of variability in gene expression observed 

between untreated animaIs. Baseline differences in gene expression have already been 

seen to have an heritable component30 in humans. This chapter provides an analysis of 

expression profiles in AlJ and C57BL/6J untreated adult male mice across four tissues 

with relevance to previously studied phenotypes. The study aimed to characterize 

differences in molecular context between these two strains at the level of gene 

expression. 

In the time between this and the previous chapter, the field of microarray analysis 

advanced considerably. Methods for summarizing probe level data and normalization 
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techniques evolved from heuristic convention-based approaches to methods based on 

statistical modeling of the data. Summary statistics are a concem specific to the 

Affymetrix technology and refer to the methods used to derive a single measure of gene 

expression from hybridization signaIs obtained over aIl probes in a probeset. 

Normalization refers to methods used to correct for fluctuations in overall hybridization 

efficiency between arrays. These methods are often referred to as data preprocessing 

steps since they precede analysis of differential gene expression. An assortment of 

methods was developed for both tasks within a short period of time. Most significantly, 

open access to these tools via the Bioconductor project (www.bioconductor.org), a 

package developed for the R statistical package (www.r-project.org) offered a dramatic 

improvement in the ability to analyze microarray data. Data preprocessing has been seen 

to greatly influence the results of subsequent analyses detecting differentially-expressed 

genes99
• A portion of the study therefore compared summary and normalization methods 

available at the time in order to examine the impact of data preprocessing on analysis, 

and to determine the optimal combination of techniques. 

This study furthermore investigated reproducibility by comparing identical experiments 

conducted 1 year apart, an experimental condition that has been neglected in most 

microarray studies. A multitude of factors are known to influence the observed variability 

in a microarray dataset; tissue dissections, RNA preparation steps, changes in personnel. 

OveraIllevels of variability due to these sources have not been addressed in traditional 

RNA measurement assays such as RT-PCR and Northem blots. However, with 

microarray measurements, statistical determination of differential expression hinges 
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criticaUy upon the ability to assess the relative contribution of different sources of 

variability. While inter-experimental variability has been questioned for quite sorne time, 

quantitative estimates of the magnitude of the effect remained unaddressed. This study 

provided a direct comparison of two repeat experiments conducted one year apart, 

replicating aU conditions to the best of abilities. Statistical analysis demonstrated a 

substantial degree of inter-experimental variation, underlining the necessity for analytical 

methods to correct for such variability together with an adequate number of replicates. 

The study furthermore estimated the degree of inter-experimental variability potentially 

due to biological causes, particularly differences in tissue specific variability, indicating 

experiments in certain biological systems may exhibit differing sensitivities to 

environmental variables over time. This study is the first in the field to address these 

questions. 
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ABSTRACT 

lnbred mouse strains A/J and C57BL/6J have long been used ta study the genetic basis of 

disease and are known ta differ for a wide variety of simple and complex phenotypes. 

Despite the large number of loci mapped between these strains, the genetic variants 

underpinning the majority of these phenotypes remain ta be characterized. Here we 

compare gene expression profiles across 4 tissues ofuntreated A/J and C57BL/6J mice in 

arder ta de scribe the diversity of these inbred strains at the level of gene expression. We 

report the levels of inter-experimental variability, demonstrate the effect of analysis 

methods on the reproducibility of results and provide approaches ta adjust for such 

variability. We also address issues of consistency of our results over time by repeating 

the experiment. Our results show that when inter-experimental variability is accounted 

for, 853,459,652 and 1229 genes vary significantly between parental strains in heart, 

liver, lung and spleen respectively (P<O.OI), having corrected for the effect due ta the 

time the experiment was performed (n=6 replicates). Comparisons among tissues show 

moderate degrees of overlap with between 9% and 25% of genes being differentially 

expressed within a given tissue, and with 19 genes being differentially expressed across 

all tissues. We provide several comparisons of differentially expressed genes located 

within support intervals ofpreviously mapped quantitative trait loci (QTLs) to illustrate 

possible applications for prioritizing disease gene candidates underlying genetic loci 

mapped for complex traits. 

71 



INTRODUCTION 

Inbred mouse strains have been used for nearly a century as model systems for hum an 

disease and to study the genetic basis of complex phenotypes. These strains have been 

seen to offer the advantage of a confined experimental system whereby associations 

between phenotypic and genomic sequence variation may be studied in an environment 

that reduces additional sources ofvariability. Despite the many physiologie variables 

catalogued for these strains, little is known about the nature of the differences between 

inbred strains at the molecular level in vivo. One obstacle facing such studies is that for 

the majority of traits, a multitude of genetic and epigenetic factors interact to cause the 

observed phenotype. This complexity presents numerous difficulties to fine mapping 

efforts that attempt to identify genes underlying previously mapped quantitative trait loci 

(QTL). Compounding these difficulties is the fact that QTL often span large regions of 

the genome encompassing hundreds or thousands of genes. New approaches are needed 

to complement mapping studies in order to accelerate the identification of candidate 

genes9
. 

Several directions of research have been proposed to address this challenge. Recently, the 

diversity between inbred strains has been more finely characterized, improving the 

information that may be exploited in the design of QTL mapping studies56
, 58,100. In 

addition to increasing the resolution for detecting genetic differences between strains, 

recent studies suggest that gene expression profiling may provide a complementary 

approach for prioritizing candidate genes in the search for the molecular determinants of 
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complex traits67
, 101-103. 1t is known that variation in genomic DNA sequence causes 

genome-wide changes in gene expression levels and that these changes are detectable 

between populations of individuals31
, 34, 104. These studies highlight the utility of 

combining genomic data with expression profiling in order to better understand the 

molecular biology of complex traits. Another rationale for this approach lies in the 

multivariate nature ofbiological systems and the unequivocal context-dependence of the 

phenotypes studied. Genome-wide expression profiling offers a means to capture the 

molecular context in which these phenotypes may be manifested. Background or basal 

variability in gene expression may affect phenotypic measurements especially where 

treatments are involved that may alter gene regulatory pathways. While interpretation of 

expression profiles alone presents numerous challenges, methods that measure expression 

profiles across multiple tissues, strains or species have proven fruitful in identifying 

genes with related function70
• Approaches that combine genomic sequence data with 

expression profiling provide a me ans to cross-validate experimental results and may 

advance the study of genetic regulatory mechanisms on a genome-wide scale3o. 

Here were present expression profiles ofuntreated AlJ and C57BL/6J mice as an initial 

sketch of the differences between the two strains at the molecular level. A/J and 

C57BL/6J are among the most widely used inbred mouse strains in medical research and 

are known to differ for a wide spectrum of quantitative physiologic traits including 

diabetes and obesity, cancer, atherosclerosis, asthma, pain sensitivity, a1coholism, as weIl 

as host response to a variety ofinfectious agents105
• GeneticaIly, these two strains are 

known to differ at over 3200 microsatellite markers61
, 62 and for at least 120,000 SNPS63

• 
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These differences have facilitated the mapping of numerous quantitative trait loci 

(reviewed in Table 1). However, because of the aforementioned challenges inherent in 

the characterization of these traits64, few candidate genes have been identified for these 

traits. 

We present expression profiles for 4 tissues (he art, liver, lung, and spleen) with relevance 

to previously studied phenotypes. We previously studied the expression variability 

between tissues within individual C57BL/6J mice and show that differences in expression 

between tissues, within a strain, may be assessed reproduciblylo6. Here we examine 

differences between strains. Previous microarray gene expression profiling in C57BL/6J 

mice showed levels of gene expression variability observed between individual mice to 

be similar to that between technical replicates (identical RNA preparations used for 

distinct array hybridizations) with the greatest variability occurring between tissues l07. 

We compare the variance observed between strains, tissues, and repeat performances of 

the experiment as well as the effects ofvarious analytical techniques. The differences in 

gene expression profiles detected between strains are contrasted between tissues and we 

provide examples where these differences correspond with QTL previously identified in 

A/J and C57BL/6J. This study provides an illustration of the variability to be expected 

when applying gene expression profiling to inbred mouse strains and we discuss 

approaches to deal with this variability by appropriate analysis and experimental design. 
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MATERIALS AND METHODS 

RNA preparation. Mouse tissues (liver, lung, spleen, heart tissue) were harvested from 

three adult male littermates from each of AIJ and C57BL/6J strains. The mice were 

sacrificed at three months of age by cervical dislocation and the tissues rapidly dissected 

and homogenized in Trizol reagent. Total cellular RNA was prepared according to the 

manufacturer's instructions and analyzed by gel electrophoresis. The procedure was 

repeated 12 months later using mice of the same strains obtained from Jackson 

Laboratories and sacrificed at the same age. 

Microarray hybridizations. Biotinylated probes for the microarray studies were prepared 

by using 20 /-tg of total RNA. Hybridization was performed ovemight at 45°C using 15/-tg 

ofbiotinylated probe. Following hybridization, the arrays were processed using a 

GeneChip Fluidics Station 400 (Affymetrix). The experimental protocol has previously 

been described in detail 108
• In each case, a single chip hybridization was performed for 

each RNA sample. 

Microarray data analysis. Data analysis was accomplished using Perl and Bioconductor 

in R (www.bioconductor.org). We applied a generallinear model on a gene-by-gene 

basis to determine the effect of strain on gene expression correcting for the effect due to 

replicate mice (separate samples from three identical mice), and time, (the year that the 

hybridizations were performed): p values were calculated for each variable individually 

having adjusted for the variation due to remaining variables. We used a threshold of 
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P<0.05 for significance of differential expression. In order to evaluate the effect of 

analytical methods on our results, we compared quantile normalization with invariant set 

and mean-based scaling, as weIl as comparing RMA estimates of gene expression109 with 

the average difference (Microarray Analysis Suite 5.0, Affymetrix) and Li-Wong (Dchip) 

summary methods110
• Final results are based on RMA summaries with quanti le 

normalization, since this method gave comparatively the most uniform variance dynamic 

range ofhybridization signal. The datas et has been submitted to the NCBI Gene 

Expression Omnibus (Series number GSE2148). 

Initial analysis used the t-test to compare expression between strains, in each of the two 

experiments. InitiaIly genes in each tissue were tested separately. An ANOV A model 

was applied to adjust for inter-individual variability. ANOV A and t-tests were conducted 

in R on a gene-by-gene basis. Upon observing the inter-individual variability to be a 

minor component, we tested additional ANOV A models including 

expression=strain+time, testing interaction terms, expression=strain+time+strain*time. 

We also compared the contribution of tissue to the dataset testing models 

expression=strain+time+tissue, and a model containing aIl possible interaction terms. 

Physicallocalization of genes and comparison with QTL results. Probe sequences from 

the Affymetrix MU74Av2 oligonucleotide array were aligned against the Feb 2003 build 

of the NCBI mouse genome using BLAT with default parametersll1
. Of the 12422 probe 

sequences on the chip, 11105 were localized reliably. Physical positions corresponding to 

previously described QTL were determined by aligning marker sequences to the same 
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assembly using BLAST and retrieving all primer matches with intervening sequences less 

than 500 bp (wordsize=12, p=.90, e=O.1) and iteratively relaxing matching parameters in 

the event of no match. This procedure matched 90% of the markers from QTL studies. 

Support intervals for each QTL were estimated as the region with a LOD score greater 

than 3 on either side of the peak marker. This generated intervals ranging in length from 

1.5cM to greater than 60 cM. Ifflanking marker information was not available, the QTL 

support intervals were estimated as 40 Mb in either direction from the peak marker. 

Supplementary data, figures, tables, and analytical scripts are available at 

http://www.mcb.mcgill.ca/~pdlee/ AxB. 
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RESULTS 

Since there are many reasons why in vivo gene expression profiling experiments at one 

time could give different results; (for example, litter effects, changes in handling, new 

reagents, or different chip lots), we repeated expression profiling at two time points 12 

months apart. We initially analyzed each dataset separately before doing a combined 

analysis, in addition to comparing several combinations of summary statistics (Figure lA, 

Table 2). In these analysis we reconfirm that the level of variability between littermates is 

very close to that oftechnical replicates106
• A comparison of observed P-values with 

calculation of expression differences between strains confirms that statistically significant 

differences between strains do not necessarily correlate with large fold changes (Figure 

lB). However, because of the substantial contribution oftime to the observed gene 

expression variability, we analyzed the two datasets together using an ANOVA that 

included the time of experiment as a factor (results available at 

http://www.mcb.mcgill.ca/-pdlee/AxBL). Among genes detected in separate analysis of 

time points, expression differences between strains exhibit varying directional fold 

changes (Figure 1 C), further indicating the potential for time to confound effects due to 

strain (Figure ID). Whereas separate analyses of the time points detects between 121 and 

577 genes per tissue (intersections between separate analyses), 459 to 1229 genes display 

expression differences (P<O.O 1) when a single model is used, correcting for time of the 

analysis (Table 3). The proportion of genes displaying significant time-dependent effects 

(P<O.Ol) ranged from 26% to 41 % ofprobesets for each tissue (3545 in heart, 3396 in 

lung, 5145 in liver, 3250 in spleen). Among the intersections between tissues (Table 4), 

gene expression in A/J exceed C57BL/6J more often with 77% to 100% of genes 
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displaying conserved directionality of expression differences between strains in the 

overlapping sets. Of the total 3193 differentially expressed genes identified, 2109 are 

differentially expressed exclusively in one tissue indicating a strong tissue-dependent 

effect. The two tissues with the most number of genes in common that are differentially 

expressed between strains were heart and spleen (170 genes) while liver and lung have 

the least number in common (70 genes) (Figure 2A). Only 19 genes display differential 

expression between strains across aIl 4 tissues (Table 5, Figure 2B). To further 

investigate these observations, we conducted an ANOV A over the entire dataset, tissue as 

a term in the model. These analyses reveal the extent of variability due to tissue to be 

similar to that due to time (Figure 3), and show the degree of interaction between terms 

in the model (Figure 4). 

In order to investigate the physiological significance of our results, we compared the 

locations of differentially expressed genes within over 20 previously mapped QTL from 

an exhaustive search for studies comparing AlJ versus C57BL/6J strains (Table 1). We 

aligned marker and probe sequences against the mouse genome assembly from NCBI 

using BLA TIll. Of the 2109 genes differentially expressed in only one tissue, 1931 had 

chromosomallocations that could be assigned using Feb 2003 assembly of the mouse 

genome and were distributed across aIl chromosomes. We present the results of a 

comparison of our lung data (Figures 5 and 6, Table 6) against QTL for asthma, acute 

lung injury and lung cancer phenotypes. Of the more than 3400 transcripts on the array 

that located within these previously mapped QTL intervals, we observe in excess of 750 

differentially expressed genes between strains. 
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~\ 

DISCUSSION 

A/J and C57BL/6J are two of the most widely used inbred mouse strains in genetic 

research. A/J is a subline of the A strain that was generated by Strong in 1921 and 

distributed to the Jackson Laboratory in 1947. C57BL/6J originated with Little in 1921 

and is a widely used strain as genetic background for mutation and cross breeding 

experiments60
• In direct comparisons, the two strains have been characterized for 

hundreds of phenotypes (www.jax.org/phenome). In this study we report differences in 

basal gene expression between wild-type A/J and C57BL/6J mice of similar age and sex 

across key tissues of relevance to phenotypes observed at the physiologicallevel. We 

present comprehensive results testing for consistency and reproducibility, correcting for 

the extent of inter-individual variability and for the variability due to time the experiment 

was performed. In spite of our best attempts to insure accuracy and reproducibility of our 

analysis, the complex nature of microarray data makes resolution of these issues difficult. 

While assumptions of normality and homoscedascity in microarray data have been 

evaluated with respect to identifying the adequate number ofreplicates l12
, the expected 

collinearity between genes, as weIl as the potential nonlinear response ofhybridization 

signaIs to experimental factors warrant caution in the interpretation of the results. 

Statistical thresholds for significance were chosen to permit a broad comparison of strain­

specific differences. While this may result in a greater occurrence of false positives, we 

propose comparisons with previously determined QTL as a method of cross-validation. 

However, given the possibility of spurious correlations due to multiple hypothesis 

te sting 1 
13 , we advise that putative candidate genes identified in these lists be subsequently 

validated in appropriate samples and models. 
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Concerns of reproducibility in microarray analysis have led to many approaches to 

confirm results including cross-validation using RT-PCR or Northern blots43
• To address 

issues of reproducibility we chose to repeat the experiment, duplicating to the best of our 

abilities aIl experimental conditions. Our results show that the amount of variability 

between experiments is substantial. There are several possible explanations for these 

results. Technical factors included relocation of the laboratory, recalibrating the scanner, 

chip lot, reagents and changes in the team performing RNA extractions and 

hybridizations. The choice of analytical method and the number of sample replicates are 

known to jointly affect consistency of results; in particular, estimates of standard 

deviation based on only 3 replicates are not stable, and could easily vary substantially 

between the first and second experiments. However, within the intersection of gene sets 

obtained from separate analysis of the two experiments, the direction of gene expression 

changes between strains was well preserved (77-100% of genes) between replicated 

experiments for aIl tissues (Figure lB), indicating that such genes may reliably be 

measured when correcting for environmental variables. As expected, analysis of the 2 

experiments together using a single model factoring for the effect due to time of analysis 

identified far more genes as differentiaIly expressed in each tissue as compared to 

separate analyses (Tables 2 and 3). Explanations include the improved power to detect 

differentially-expressed genes with larger sample sizes1l4 and the ability of the ANOVA 

to correct for the confounding effect of time on strain-specific variation. While questions 

persist as to the appropriateness of parametric methods applied to microarray analysis, we 

propose that the higher number of replicates in the combined dataset provides increased 
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power to detect differentially-expressed genes and that our analysis represents an 

accurate capture of gene expression variability in the experimental system over time. 

The variability observed between experiments may furthermore be due to biological 

causes. While this environment replicated as many variables as possible, both handling 

and housing are known to affect biological variablesl15
. Interestingly, an ANOVA that 

included the effect of time-strain interaction detected 2677 genes for which this 

interaction was significant at P<O.OI (Table 7, Figure 5). This suggests that a proportion 

of the time-dependent gene expression variability will vary depending on strain, and 

supports the hypothesis of a biological component to the time-dependent effect. 

Furthermore, individual tissues appear to show different sensitivity; in particular, there 

were over 1000 liver genes showing evidence for strain-time interaction. This agrees with 

previous findings 116 and suggests that liver displays the most sensitivity to inter­

experimental variation, possibly as a result of experimental technique (i.e.: tissue 

extractions) and/or due to biological responses within the mice. These frndings suggest 

that studies measuring molecular phenotypes must take into account the inherent 

dependence of each tissue on environmental factors. The number of uncharacterized 

potential sources ofvariability, both biological and technical, renders interpretation of 

these results difficult. We report the levels of variation to be expected between 

microarray experiments to inform users of this data and strongly suggest using analytical 

methods that adjust for such variability. 
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The varying degree of overlap in differential expression among tissues suggests that the 

majority of gene expression changes refleet tissue-specifie effeets and that gene 

regulation differenees between inbred strains are largely dependent on tissue eontext. 

DifferentiaI expression between strains common to all tissues was seen for only 19 genes 

upon separate analysis of tissues (Table 3, Figure 2B), a result echoed when tissues were 

analyzed together (Figures 5 and 6). Common strain-specific expression differences 

between tissues may indicate involvement ofthese genes in steady-state conditions 

important to all tissues rather than transient roles in more specialized cellular processes. 

The results point to possible strategies for exploiting the degree of tissue similarity at the 

molecular level for more efficient querying of the biological system. Overlapping 

molecular signatures may underlie the pleiotropy observed for many phenotypes and 

whieh may be testable using informative combinations of tissues. Our inability to find a 

large amount of strain-specific variability common to all tissues suggests that distinct 

subnetworks regulate gene expression in the different tissues. 

We believe our estimates of gene expression variability between inbred strains represents 

a lower limit for several reasons; First, while the experiment was repeated at two time 

points in adult male mice, transcriptional switches are known to regulate many of the 

transition points in growth and development. Therefore a comparison of strains at 

different ages willlikely expose more gene expression differences. Second, sex-

dependent differences between genetically divergent strains, whieh were not studied in 

our experiments, have been observed to be substantial in other model systems ll7
. Third, 

an analysis of basal gene expression for a wider range of tissues may expose far more 
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differences in transcriptional activity resulting from differences in genetic sequence. 

Finally, while we focus on comparing two inbred strains, the diversity observed between 

other commonly used inbred strains lOO would suggest similar tissue-specific diversity of 

gene expression may be observed across a broader sampling of strains. 

The application of gene expression profiling has been suggested as a means for informed 

prioritization of gene candidates within QTL. The tissues chosen in this study represent a 

subset of those that may be affected by various phenotypes characterized in these strains. 

In order to present examples ofhow the expression data results may be used by 

laboratories studying disease phenotypes in these strains, we compared the location of 

differentially expressed genes an exhaustive search of QTL support intervals previously 

mapped in AxB comparisons. We observe interesting correlations (Table 8) when 

comparing the spleen data for genes relevant to malaria resistancel18
• Vcaml, 

differentially expressed in spleen, localizes within the Char410cus for susceptibility to P. 

chabaudi infection on chromosome 3, and is upregulated in mice infected with P. 

falciparum 119. We furthermore detect differential expression ofPon3; this gene is located 

within the region of the Aliq410cus for acute lung injury on chromosome 6120. 

Paraoxonases are implicated in response to oxidative stress121 and have been implicated 

in a variety of other disease l22
• Other examples include Kras 1, a putative candidate within 

the Pas 1 locus for predisposition to lung adenoma 123, 124, Anxa2, Casp2, Ctsc and Gpx3 

implicated in the pathogenesis of asthmaI2S
-
128

, and Infgr, Il6ra and Csf3r detected in 

spleen and implicated in resistance to Listeria infectionl29
• Our study detects 

differentially regulated genes that have been identified in previous studies 13o. However 
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our ability to detect more differentially expressed candidates within lung QTL most likely 

rests upon our increased number ofreplicates (n=12), as well as the sensitivity offered by 

combined application of RMA and ANOV A methods. While such candidates remain to 

be tested experimentally, the coincidence of our results with previous studies illustrates 

the potential utility of gene expression analysis in the prioritization of disease gene 

candidates within previously mapped loci. However, the large number of genes within 

QTLs suggests that microarray expression profiling alone will not be sufficient and that a 

more in-depth of analysis of the relationship between specific genetic variability and 

expression differences shall be required. 

While polymorphisms in coding sequences have been identified underlying complex 

traits, reeent studies indicate that regulatory polymorphisms may be more prevalent than 

previously anticipated, and that gene expression profiling provides the opportunity to 

detect such mechanisms on a genome-wide scale29
, 104, 131. Our results lend support to the 

theory that phenotypie differenees between AlJ and C57BL/6J may in part be due to 

differences in gene regulation. Evidence from other studies highlight this prevalence of 

regulatory variants in complex traits132 and demonstrate the utility of gene expression in 

uneovering genetie regulatory meehanisms using inbred mouse strains67
, 133-135. Similar 

comparisons of gene expression profiles between inbred strains, such as C57BL6 versus 

129SvEv in brain136
, comparison of transgenic strains137

, and thymie gene expression 

profiles in NOD strains67 confirm the utility of the approaeh for studying complex traits. 

Further studies attribute the diversity of gene expression between populations to 

regulatory polymorphisms34 with allele specific variation in gene expression dependent 
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upon tissue context135
• The genome-wide expression changes observed in this study, 

many of which lie within previously identified QTL, suggest a more thorough 

investigation of the association between specifie genetic variations and gene expression 

may better elucidate the molecular mechanisms of complex traits. An investigation is 

currently underway to determine the relationship between genetic variation, gene 

expression and gene regulation in a panel of recombinant congenic strains. 
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/-, Table 1. QTL previously mapped in AIJ versus C57BLI6J comparisons. 
f 

Trait Tissue LOD Chr Marker Locus Reference 

TB susceptibility Lung 138 

Co caine locomotor activation Brain 5.71 12 D5Mit32 Lapls2-10 139 

Co caine locomotor activation Brain 4.72 15 DI 5Mitl 05 Pdgtb 139 

Airway responsiveness Lung 3.1 2 D2Mit409 Bhrl 140 

Airway responsiveness Lung 3.8 15 DI 5Mitl 07 Bhr2 140 

Airway responsiveness Lung 2.9 17 DI7Mit26 Bhr3 140 

Nitrosurea-induced lung adenoma Lung 6 Pasl 123 

Nitrosurea-induced lung adenoma Lung 17 Pas2 123 

Nitrosurea-induced lung adenoma Lung 7 19 Pas3 123 

Legionella susceptibility Macrophages 9.9 13 DI3Mit146 Lgnl 141 

~C\ 

PKC activity Lung 3.4 3 D3Mitl9 142 

PKC activity Lung 2.7 11 DIIMit333 142 

Lung adenoma Lung 6.46 4 143 

Malaria susceptibility RBC 6.57 3 D3Mitl09 Char4 118 

Malaria susceptibility RBC 2.53 10 DI0Mit189 118 

Fear-like behaviour Brain 7.7 DIMitl44 144 

Fear-like behaviour Brain 9.3 10 DIOMit237 144 

Fear-like behaviour Brain 3.95 19 DI9Mit86 144 

Fear-like behaviour Brain 3.48 14 D14Mit133 144 

Fear-like behaviour Brain 2.77 6 D6mit86 144 

Fear-like behaviour Brain 2.84 X DXMitl72 144 

Alcohollocomotor activation Brain 3.02 16 DI6Mit47 145 

Alcohollocomotor activation Brain 3.36 18 Iapls3-7 145 
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r~\ Trait Tissue LOD Chr Marker Locus Reference 

Alcohol preference Brain 3.5 2 D2Mit74 146 

Alcohol preference Brain 4 D4Mitl72 146 

Alcohol preference Brain 7 D7Mit31 146 

Alcohol preference Brain 11 Dl1Mit35 Alcp2 146 

Helicobacter hepatic Liver 19 147 

inflammation 

Listeria susceptibility Spleen 129 

Age-related hearing loss Nervous 70 10 DlOMitl12 148 

Obesity White adipose 8.59 2 D2Mit66 !tg 149 

Obesity White adipose 4.98 3 D3MitlO Ngfb 149 

Obesity White adipose 12.54 8 D8Mitl28 149 

Obesity WAT 3.63 19 D19Mit86 Rln 149 

r' Axonal regeneration Nervous 150 

Urethane-induced adenomas Lung 6 Pas1 151 

LPS response Spleen 7.2 D1Mit132 Mol2 152 

LPS response Spleen 7 D7Mitl55 Moll 152 

, LPS response Spleen 6.5 Il Dl 1 Mit299 Mol4 152 

LPS response Spleen 8 13 Dl3Mit Mo13 152 

LPS response Liver 2.76 5 D5Mit233 Hpil 153 

LPS response Liver 4.8 13 Dl3Mit88 Hpi2 153 

Benzodiazepine sensitivity Brain Xmv-41 154 

Benzodiazepine sensitivity Brain 10 DlOMit2 154 

Benzodiazepine sensitivity Brain 15 Dl5Mit5 154 

Sensitivity to Inflammation Brain 155 

Resistance to endotoxin Lymphoid 156 

,~ 
Lung injury ozone Lung 6.8 11 D11Mit289 Ngfr 120 
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~ .... Trait Tissue LOD Chr Marker Locus Reference 

Lung injury ozone Lung 6.8 11 Dl1Mitl79 Alil 157 

Lung injury ozone Lung 13 Ali2 157 

Lung injury ozone Lung 4.3 17 Dl7Mit2 Ali3 157 

Lung injury nickel Lung 2.58 Dl Mit213 158 

Lung injury nickel Lung 3.02 6 D6Mitl85 Ali4 158 

Lung injury nickel Lung 2.33 12 Dl2Mitl12 158 

Hormone-induced ovulation rate Ovary 2.084 2 D2Mit433 Oriq2 159 

Hormone-induced ovulation rate Ovary 1.979 6 D6Mit316 Oriq3 159 

Hormone-induced ovulation rate Ovary 2.228 9 D9Mit4 Oriql 159 

Hormone-induced ovulation rate Ovary 2.743 X DXmit22 Oriq4 159 

Hormone-induced ovulation rate Ovary 7 159 

Hormone-induced ovulation rate Ovary 10 159 

~. Blood pressure Cardiovascular Dl Mit334 Bpql 160 

Blood pressure Cardiovascular DIMitl4 Bpq2 160 

Blood pressure Cardiovascular 4 D4Mitl64 Bpq3 160 

Blood pressure Cardiovascular 5 D5Mit31 Bpq4 160 

Blood pressure Cardiovascular 6 D6Mitl5 Bpq5 160 

Blood pressure Cardiovascular 15 D15Mitl52 Bpq6 160 

Hyperglycemia, hyperinsulinemia Pancreatic 161 

Diet-induced obesity Adipose 90 

Histoplasma capsulatum resistance Lung 162 
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~' Table 2. Number of genes found to be differentially expressed (P<O.05) via separate 

analysis of old and new datasets and comparing RMA with Dchip (intersections - n 

between datasets are italicized). 

Tissue Method Year 1 Year2 T-test Year 1 Year2 ANOVA T-test 
t-test t-test Yearl ANOVA ANOVA Yearl () 

P<0.05 P<0.05 () P<0.05 P<0.05 () ANOVA 
Year2 Year2 Yearl/ 

Year2 
Heart RMA 1723 1492 456 1716 1369 420 1402/ 

1154 

Dchip 1800 1298 403 1783 1251 381 1459/ 
1056 

() 992 732 230 955 659 301 190 

Liver RMA 1118 2547 357 1117 2361 338 841/ 
2024 

Dchip 970 2936 344 983 2763 337 733/ 
2731 

r" 
487 1468 171 459 1339 142 112 

Lung RMA 1164 1518 311 1201 1560 300 920/ 
1170 

Dchip 1100 1528 295 1124 1561 270 855/ 
1182 

() 562 693 142 557 665 121 88 

Spleen RMA 2051 2063 518 2034 2082 510 1624/ 
1688 

Dchip 2253 2217 577 2261 2333 569 1794/ 
1888 

1047 1300 263 1026 1293 239 180 
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Table 3. Number of genes identified by ANOVA correctingfor the time. 

Tissue P<O.Ol Strain P<O.Ol Strain P>O.Ol Strain 

P>O.Ol Time P<O.Ol Time P<O.Ol Time 

Heart 853 475 3070 

Liver 459 449 4696 

Lung 652 336 3058 

Spleen 1229 453 2797 

ANOV A model tested: Expression ~ Time + Strain 
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r'\ Table 4. Differentially expressed genes in common between tissues. 

Heart Liver Lung Spleen 

Heart 853 93 141 170 

(312/541 ) (72/21) (67/74) (101/69) 

Liver 93 459 70 116 

(51/42) (265/194) (41/29) (70/46) 

Lung 141 70 652 160 

(66/75) (41/29) (323/329) (95/65) 

Spleen 170 116 160 1229 

(89/81) (73/43) (101/59) (630/559) 

Numbers of differentially-expressed genes identified by an ANOVA correcting for time, 

P<O.Ol are indicated for each tissue comparison. The numbers in parentheses indicate 

numbers of genes in the intersecting set of each tissue in the column header where mean 

expression in A/J exceeds C57BL/6J versus the opposite. 
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~\ Table 5. Genes commonly differentially expressed across ail tissues (P<O.Ol) using an 

ANOVA correctingfor time effects. 

Gene Description Chr Heart Liver Lung Spleen 

Pval Pval Pval Pval 

Psmb5 proteasome (prosome, macropain) subunit, 11 5.70E-06 2,44E-04 7.14E-07 2.20E-04 

beta type 5 

2810452K22Rik RlKEN cDNA 281 0452K22 gene 12 3.58E-03 2.57E-04 2.62E-03 1.69E-03 

4932416N17Rik Mus musculus mRNA for mKIAA0350 16 1,49E-07 2.15E-03 8.85E-08 8.5lE-04 

protein 

Galnt11 UDP-N-acetyl-alpha-D- 5 1.23E-03 9.0lE-07 2.3lE-03 5.6lE-04 

galactosamine:polypeptide N-

acetylgalactosaminyltransferase Il 

Ctsc cathepsin C 7 3,4lE-03 6.17E-04 9.97E-05 6.l6E-05 

Clu Clusterin 14 5.06E-04 5.83E-03 2.16E-04 4,44E-03 

Mapre1 microtubule-associated prote in, RPIEB 2 8.87E-03 8.03E-03 2.93E-04 1.82E-04 

family, member 1 

Glo1 glyoxalase 1 17 5.50E-11 1.25E-06 3.69E-08 1.65E-07 

r' Cap1 adenylyl cyclase-associated CAP prote in 4 6,48E-03 1.28E-05 1.88E-04 5.97E-05 

homolog 1 (S. cerevisiae, S. pombe) 

Thumpd1 THUMP domain containing 1 7 3.12E-06 3.26E-04 3.84E-07 1.92E-07 

Ifi202a interferon activated gene 202A 2.l7E-03 7.53E-03 3.62E-06 1.05E-04 

Gnb1 guanine nucleotide binding prote in, beta 1 4 8.l9E-061.53E-06 9.34E-09 7.76E-03 

D9Wsu18e DNA segment, Chr 9, Wayne State 9 3.55E-08 3.52E-04 2.56E-04 5.14E-06 

University 18, expressed 

Zfp68 Zinc finger protein 68 5 5.76E-04 2.0lE-03 3.27E-04 4.52E-03 

Tceb3 transcription elongation factor B (SIII), 4 1.68E-05 3.13E-04 8.l0E-05 1.72E-03 

polypeptide 3 (11 OkD) 

Hod homeobox only do main 5 1.09E-094.28E-05 1.86E-09 2.3lE-04 

Arpp19 cyclic AMP-regulated phosphoprotein 9 8.50E-05 4.35E-05 1.53E-049.29E-03 

1110033Jl9Rik RlKEN cDNA 1110033Jl9 gene 6 2.62E-06 3.04E-04 7.94E-05 8.09E-05 

Gas5 growth arrest specifie 5 4.9IE-l1 1.86E-07 3.32E-07 9.19E-08 
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~ ... " Table 6. Coincidence of differentially expressed genes within QTL LOD intervals 

previously mapped in lung. 

Tissue Trait Locus Chr LOD Number of Reference 

differentially 

expressed genes, 

P<O.Ol (vs. total) 

within QTL 

interval 

Lung Acute lung injury 2.58 88 158 

(417) 

Lung Airway Bhrl 2 3.8 86 140 

responsiveness (411) 

Lung PKC activity 3 2.7 58 142 

(275) 

Lung Acute lung injury Ali4 6 3.02 125 158 

(602) 

Lung Lung adenoma Pas1 6 9 41 124 

r' (166) 

Lung Acute lung injury Ali1 11 6.8 68 120 

(203) 

Lung Acute lung injury 12 2.33 36 158 

(164) 

Lung Airway Bhr2 15 3.8 35 140 

responsiveness (193) 

Lung Airway Bhr3 17 2.9 112 140 

responsiveness (508) 

Lung Acute lung injury Ali3 17 4.3 19 157 

(105) 

Lung Lung adenoma Pas2 17 3.0 23 123 

(97) 

Lung Lung adenoma Pas3 19 7 65 123 

(322) 

Total 756 (3463) 

Total nurrnber of genes on MGU74Av2 array contained within the QTL interval IS 

(" indicated in parentheses. 
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r' Table 7. Interaction of strain with time-dependent effects. Analysis of old and new 

datasets together - ANOVA correctingfor the time ex periment was conducted with the 

model: Expression ~ Time + Strain + Strain*Time (Number ofgenes with P>O.Ol for 

Strain*Time). 

Tissue <0.01 Strain <0.01 Strain >0.01 Strain <0.01 Strain*Time 

>0,01 Time <0,01 Time <0,01 Time 

Heart 881 570 3063 442 

813 475 2928 

Liver 567 681 4911 1116 

431 479 4513 

Lung 725 440 3204 463 

667 361 3056 

Spleen 1229 453 2954 656 

r" 
1105 468 2777 
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~' Table 8. Examples of genes detected by this study in agreement with previous phenotypic 

studies in A/J and C57BL/6J mice. 

Gene Desc Chr Tissue P Value Trait QTL Ref 

Ifnrg Interferon 10 Spleen 7.58E-06 Listeria 129 

gamma receptor resistance 

Il6ra Interleukin 3 Spleen 0.00035 Listeria 129 

receptor alpha resistance 

Csf3r Colony 4 Spleen 0.00805 Listeria 129 

stimulating resistance 

factor3 receptor 

(granulocyte) 

Kras2 Kirsten rat 6 Lung 0.00034 Lung Pasl 123 

sarcoma adenoma 

oncogene 2, 

expressed 

Pon3 paraoxonase 3 6 Lung 0.00260 Lung injury Aliq4 120 

Vcaml vascular cell 3 Spleen 0.00813 Malaria Char4 118 

r' adhesion resistance 

molecule 1 
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FIGURE LEGENDS 

Figure lA. Separate analysis of experiments conducted at two time points: Histogram of 

the number of differentially-expressed genes retrieved by various combinations of 

analysis and summary statistics. DifferentiaI expression was determined either by T -test 

(P<O.05) on data summarized by Dchip with invariant set normalization, or RMA with 

quantile normalization (Bioconductor). 

Figure lB. Volcano plots for genes differentially expressed in each lung across A/J and 

C57BL/6J strains. P-values are plotted on the Y -axis versus the maximum fold change 

between strains on the X-axis. Maximum fold changes (MFC) were calculated between 

A/J and C57BL/6J at time 1 versus at time 2. P-values were obtained by applying either a 

Student's t-test or an ANOV A (testing the model expression=replicate+strain). Analyses 

furthermore compared probeset summary and normalization techniques, Dchip with 

invariant set normalization, and RMA with quantile normalization. Genes detected as 

differentially expressed are displayed in red. 

Figure 1 C. Comparison of gene expression changes in datasets from both time points for 

lung: Mean fold changes between A/J and C57BL/6J at time 1 versus at time 2. Genes 

detected as differentially expressed at both time points (in red) display a consistent 

change of direction between strains. 

Figure ID. QQ plots ofP-values obtained from applying ANOVA to each tissue 

separately using the mode!: Expression ~ Strain + Time+ Strain*Time. 

97 



Figure 2A. Comparison of genes commonly differentiaUy expressed across Ail and 

C57BL/6l across tissues (he art, liver, lung and spleen). Histogram of the number genes 

differentiaUy expressed in common between tissues. 

Figure 2B. Histograms of 19 genes found to be differentiaUy expressed (P<O.OI) between 

Ail and C57BL/6l across aU tissues: log of the ratio between mean expression levels 

between stains is expressed on the vertical Z-axis, the first horizontal axis lists genes 

from Table 3 ranked by log ratio in heart, and the second horizontal axis denotes tissues. 

Figure 3. QQ plots ofP-values obtained from applying ANOVA to the combined dataset 

of aU tissues using the model: Expression ~ Strain + Time + Tissue 

Figure 4. QQ plots ofP-values obtained from applying ANOVA to the combined dataset 

of aU tissues using the model including an possible interaction terms: Expression ~ Strain 

+ Time + Tissue + Strain*Time + Strain*Tissue + Tissue*Time + Strain*Tissue*Time 

Figure 5. Chromosomal position of genes differentiaUy expressed between strains 

compared with QTL intervals previously mapped for asthma in blue 140, 142, 163, acute lung 

injury in green 120,157,158,164, and lung cancer in purple 123,165. Left Y axis: P value 

(inverted), Right Y axis: LOD score of QTL, X axis: Chromosomallocation expressed as 

a fraction of chromosome length. 
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~\ Figure 6. Genes differentially expressed between strains in each tissue. P-values (Y-axis 

inverted) versus fractional chromosomal position for A) chromosomes 1-5, B) 

chromosomes 6-10, C) chromosomes 11-15, D) chromosomes 16-19 and X. 
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r~ Figure 18. 

RMA with quantile normalization 
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Figure 1C. 
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Figure 10. 
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Figure 2A. 
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Figure 28. 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Figure GA. 
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Figure GC. 
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Figure 60. 
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CHAPTER 3 - INTEGRA TIVE APPROACHES TO DETECTING CIS­
REGULATORY VARIATION ACROSS THE MOUSE GENOME 

The previous chapter demonstrated that, like studies comparing more distantly related 

organisms31
, 34,166 (separated by millions ofyears of evolution), expression profiling 

revealed a substantial degree of gene expression variability between mouse inbred strains 

(separated by one hundred ofyears ofbreeding). Such evidence points to a connection 

between differences in gene expression the evolution ofheritable traits l67
, 168. The 

heritability of gene expression differences has been demonstrated30
, 104, 169. However, 

these and other studies have established few direct links between gene regulation and 

changes in gene expression. The work of the previous chapter indirectly demonstrated the 

correlation between gene expression differences between A/J and C57BL/6J mice, strains 

known to differ genetically. Direct association between gene expression and regulatory 

genetic variation is the focus of this chapter. 

Changes in genetic sequence may bring out phenotypic changes through either coding 

polymorphisms, affecting the structure of a gene product, or by regulatory 

polymorphisms, affecting the expression of a gene through the quantity of transcript. 

Regulatory polymorphisms were previously believed to reside primarily in the promoter 

region of the gene, affecting the binding sites for transcriptional activating proteins 

upstream from the transcription start site170
• We now believe that regulatory variants may 

reside over large genomic regions, and can act via several mechanisms such as alternative 

splicing oftranscripts 171, and differential rates of transcript degradation 170. Regulatory 

polymorphisms located proximal to the affected gene are termed cis-acting whereas 
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variants that affect the expression of distal genes are termed trans-acting. For the sake of 

this discussion, cis-acting shall be used to de scribe regulatory elements located on the 

same chromosome as the target gene. Genes affected by cis-acting regulatory 

polymorphisms may be revealed by measuring allele-specific expression ratios in 

heterozygous individuals. The method for measuring this, allelic imbalance (AI), uses 

co ding SNPs to measure the relative transcription levels of different alleles in individuals 

heterozygous for the given locus. AI is currently considered a method for the detection of 

cis-regulated genes because it provides a comparison of the expression levels oftwo 

alleles under the identical cellular context172
• 

The work described in the current chapter attempts to detect potential cis-regulated genes 

by combining expression profiling data with genotyping data from a panel of ReS mice. 

The ReS panel was initially developed as an experimental tool for more refined mapping 

of quantitative traits1S
, 173. By providing a panel of strains, each genetically composed of 

variable segments of one inbred strain's genome on the background of another, the panel 

pro vides an experimental system with reduced genetic background. The smaller size of 

segments distributed over the genome for all strains enables finer mapping of phenotypic 

associates, reducing the initial size ofmapped 10ci174
-
176

, and offering the possibility to 

better study interactions between multiple loci, since they are separated by the breeding 

process and will be present in varied combinations across the panel of strains15
, 16, 177. 

By applying expression profiling to ReS, this study represents a combination of 

functional genomics and genetic approaches. The Res panel used in this study were 
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generated from AlJ and C57BL/6J parental strains and were previously genotyped for 

621 micro satellite markers separated on average by 2.6 cM (~5Mb)62. Our analysis began 

by aligning probe sequences from the Affymetrix U74Av2 oligonucleotide array and 

micro satellite markers with the Feb 2003 UCSC assembly of the mouse genome using 

BLAT178
• Genotype information from these markers enabled the parental strain (which 

we termed donor strain of origin or DSO) of each probeset on the array to be inferred for 

each strain. This allowed determination of the association between expression profiles 

over an strains with DSO profile. 

The use of the se strains furthermore permitted measuring the association of expression 

with background strain of origin (BG). Because approximately half of the strains 

contained genomic segments primarily from one or the other parental strain (to a ratio 

averaging 1 :7) the contribution ofBG to the observed variability in expression could be 

measured by including a term for BG in the ANOV A model. Evidence for the potential 

role ofBG in expression variability came from the previous chapter's comparison of the 

parental strains where over 600 genes showed differential expression between strains 

(having adjusted for time effects). While it was not possible to determine the proportion 

of expression changes between parental strains that were due to cis or trans acting 

variants, the RCS panel provides the experimental tool to make this distinction. The 

parental comparison indicated that a substantial portion of the expression variability 

observed across the RCS panel could be due to BG. Therefore BG constituted a potential 

confounding variable for which adjustment was necessary. 
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ABSTRACT 

A high proportion of genetic variants modifying complex traits are believed to influence 

the regulation of gene expression levels. Cis-acting variation in gene regulation, 

estimated to affect 30-50% ofhuman genes, remains largely uncharacterized. Better 

methods are required for genome-wide discovery of genes affected by cis-acting 

regulatory variation. We conducted expression profiling on lung tissue obtained from a 

panel of 30 AcB/BcA recombinant congenic strains (RCS) generated from AlJ and 

C57BL/6J mice. By applying an ANOV A model adjusting for predominant background 

strain, we detected over 1500 genes displaying an association between expression levels 

and the donor strain of origin (DSO) for the corresponding locus. To further characterize 

associations detected by this model, we conducted SNP discovery by resequencing genes 

randomly selected from those whose expression did or did not associate with DSO. 

Within lkb of3'UTR resequenced, SNPs were found in 52% of the positive genes versus 

27.5 % ofnegative genes (P<0.05, Fisher Exact Test). To investigate whether the 

frequency of regulatory variants might differ among these subsets, we measured allelic 

imbalance (AI) using cDNA from FI mice generated from an AlJ X C57BL/6J cross. We 

detect a significant enrichment of AI in genes identified by expression profiling; 63% of 

positive genes showed AI versus 23% ofnegative genes (P<O.OI, Fisher Exact Test) 

indicating a higher rate of cis-acting regulatory variation in genes displaying expression 

association with DSO across the Res panel. This study demonstrates an integrated 

genome-wide approach for enriched detection of genes affected by cis-regulatory 

variation in mice. 
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INTRODUCTION 

While genetic research has identified many examples of diseases caused by genetic 

variants affecting coding sequences, genetic variants affecting gene regulation are now 

believed to account for a large proportion of changes contributing to the evolution of 

complex traits25
• Since CUITent techniques that study gene regulation are best suited for 

investigating individual genes, new approaches are necessary to identify genetic 

variability as it affects gene regulatory mechanisms on a genome-wide scale. The 

importance of characterizing genetic regulation using large-scale approaches is 

furthermore emphasized by recent studies demonstrating the heritability of gene 

expression 104, mapping of expression traits28
, as well as the impact of regulatory variants 

in human disease 29,30,104,131,179. 

Increasing evidence suggests that variation in gene regulation affecting gene expression 

plays an important role in complex phenotypes180
• The se arch for regulatory variants 

underlying complex traits lags behind the identification of protein coding variants, 

perhaps due to the lack of generalized knowledge about transcriptional regulation on a 

genome-wide scale as well as to the complexity of interactions between activators and 

sequence elements seen to regulate gene transcription21
• This has led to the development 

of numerous experimental systems that attempt to augment the identification of candidate 

genes underlying complex traits by reducing genetic complexity of the sample 

population. Recombinant congenic strains (ReS) represent one such murine system, 

where specific breeding of two inbred strains generates a panel of strains, each containing 

variable congenic segments from the genome of the donor strain (averaging 12%) on that 
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ofthe background strain173
• An RCS panel of sufficient size (>20 lines) insures that 95% 

of genes are contained on donor congenic segments and provides a system for separating 

loci involved in multigenic traits, permitting each locus to be analyzed separately175. The 

increase in mapping efficiency afforded by RCS has led to identification of candidate 

genes181 as weIl as multilocus interaction effects177. 

The combination of gene expression profiling with such experimental systems offers 

numerous advantages over and above either technique alone68
• Correlations between gene 

expression levels and sequence variation permit genetic analysis at the level of individual 

genes rather than broad genomic regions typical of QTL analysis. Furthermore, this 

approach permits the identification of interactions and potential pathways suggestive of 

gene regulation eventsl3l
. Recent studies in yeast using integrated approaches have 

introduced a classification of regulatory effects across the genomé8
, 36 ranging in 

complexity from a small proportion of genes affected by single locus cis-effects, to a 

larger number affected by two loci, and an even higher proportion displaying complex 

modes of inheritance. Studies in humans show that gene expression is a heritable traieo 

and that regulatory variants affecting the level of transcripts can have phenotypic 

effects180
• 

Gene regulatory mechanisms may be broadly categorized into cis-acting, operating 

proximal to the interrogated gene, and trans-acting, exerting their effects distally at one or 

more genes on other chromosomes, usually occurring via the expression of other genes 

such as transcription factors. The presence of cis-acting variants may be detected by 
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analysis of allele-specific expression ratios for a specific gene170
• Where transcripts 

contain informative SNPs, the relative expression levels of the two alleles may be 

measured in individuals heterozygous for intragenic polymorphisms using a variety of 

techniques135
, 172, 182. Allelic imbalance (AI) de scribes the state where one allele is 

overexpressed with respect to the other. A difference in allele-specific transcript levels 

for a given gene indicates the presence of cis-acting regulatory variants since 

transcription levels of the two alleles are compared under identical cellular contexts in 

vivo135
• The technique is furthermore sufficiently scalable to allow surveying of cis-acting 

gene regulation on a genome-wide scale 172. 

In this study we compare 2 inbred strains of mice, AlJ and C57BL/6J, both used for close 

to a century as model systems for human disease and previously characterized for 

numerous complex phenotypes. We have previously reported the baseline gene 

expression differences between adult males of these strains and demonstrated widespread 

tissue-specific expression variability between these strains in 4 tissues183
• Other studies 

have also demonstrated the presence of allele specific expression differences between 

these strains across 3 tissues135
• This study involves genome-wide expression profiling on 

lung tissue across a panel of 12 AcB and 18 BcA RCS previously derived by reciprocal 

backcrossing of A/J and C57BL/6J mice62
• We further investigated the correspondence of 

these results with genetic variability between the strains by resequencing for SNPs in 

genes identified by expression analysis. To further investigate the presence of cis-acting 

regulatory variation among the donor strains, genes identified by expression analysis 
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were subsequently evaluated for allelic imbalance using a sequence-based method in FI 

offspring of an A/J x C57BL/6J cross. 
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MATERIAL AND METHODS 

Mice: This study used a RCS panel previously developed and genotyped in duplicate for 

621 micro satellite markers at an average spacing of 2.6cM62
• Mice were housed with free 

access to food and water in the animal colony of the Montreal General Hospital Research 

Institute under conditions of 12 hours of darkness and 12 hours of light. AnimaIs were 

fasted for 24 hours before sacrificing. Genotying data was obtained by virtue of a 

Material Transfer Agreement with Emerillon Therapeutics, Montreal. Out of the 26746 

genotypes, 25571 results agreed between replicates, 520 results disagreed between 

replicates (where one result was definite and the other undefined), 19 results were 

contradictory between replicates (showing results from opposing parental origins for the 

same locus) and 33 results were undetermined. Disagreeing or contradictory results were 

discarded by assigning an undetermined status for those loci. As these results were 

dispersed throughout the dataset (over aH markers and strains), the effect on individual 

genes and strains in the analysis was minimal. 

Microarray studies: Lung tissue was obtained from two 3-month-old male mice from 

each of 12 AcB and 18 BcA RCS by rapid dissection and freezing in liquid nitrogen. The 

duplicate samples were homogenized in Trizol reagent and RNA was prepared and 

hybridized to Affymetrix MGU74Av2 oligonucleotide arrays as described previously8o. 

Expression data was summarized with RMA and quantile normalized using Bioconductor 

(www.bioconductor.org). These methods were chosen after comparison ofMVA plots for 

various combinations of normalization and summary methods (data not shown). Plots that 

displayed the least change in variance over the average intensity were chosen so as to 
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minimize departures from assumptions of constant variance in parametric analysis 

methods used subsequently. 

Probe sequences from the Affymetrix MGU74Av2 oligonucleotide array were aligned 

against the Feb 2003 NCBI build of the mouse genome using BLAT with default 

parameterslll . Of the 12422 probe sequences on the chip, 11293 were localized reliably. 

Physical positions of SSLPs from the RCS genotype data were retrieved by aligning 

marker sequences to the same assembly using BLAST and retrieving aIl primer matches 

with intervening sequences less than 500bp (wordsize=12, p=.90, e=O.1) and iteratively 

relaxing matching parameters in the event of no match. This procedure matched 566 of 

621 (90%) markers from the genotyping data. We inferred DSO for each gene based on 

the DSO of surrounding SSLPs; Genes flanked by markers of identical DSO were 

assigned the same DSO. If flanking markers differed (e.g. the boundary of a recombined 

segment), genes in between were assigned an unknown DSO status. Genes at the ends of 

chromosomes were assigned the DSO of the closest SSLP. 

ANOVA was conducted gene by gene assuming independence of loci, using the linear 

model: EXPRESSION ~ DSO + BG + DSO*BG (where background, BG, was calculated 

for each strain as the ratio of total segment lengths over the entire genome with DSO 

from one parent over the other). Positive association between expression and DSO was 

assigned if the P<0.05 for DSO and P>O.1 for DSO*BG. AlI analyses were conducted 

using R (www.r-project.org). 
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Validation studies: From sets of genes positive and negative for DSO association, 50 

positive genes and 80 negative genes were selected randomly for resequencing lkb of3' 

UTR in A/J and C57BL/6J genomic DNA. Randomization was done on the subset 

filtered for a MAS5.0 mean value of 500 or more over all strains. This was done based on 

observations that this signallevel corresponds to greater success of the sequence-based 

AI assay184. Selection was restricted to genes without documented alternative splicing in 

the Alternative Splicing Database185 (http://www.ebi.ac.uk/asd/). and without complex 

loci (overlapping transcripts, reversed overlapping transcripts) in the UCSC Genome 

Browser186 (http://genome.ucsc.edu).Primers for resequencing were designed using 

Primer3.0187 using default parameters. 

AI was measured in FI mice (5 males) generated by crossing an AlJ male with a 

C57BL/6J female mouse. Lung tissue was harvested at 13 weeks and RNA extracted as 

above. cDNA was generated using reverse-transcriptase. Sequence traces were generated 

using the sequencing primers in FI cDNA and gDNA for all SNP-containing genes using 

methods previously describedl72
• SNP peak heights in cDNA from these samples versus 

gDNA were measured using PeakPickerO.5, developed in-house, which normalizes SNP 

peak heights against those of the surrounding sequence. This method can detect 

differences in allelic expression> 1.2 fold 170. AI was determined by a paired Student' s t­

test comparing peak height ratios of the two alleles in gDNA versus cDNA over 5 

replicate FI mice. Association of SNP frequency and AI frequency with DSO expression 

analysis results was done in R using a one-tailed Fisher exact test and logistic regression 

models: AI ~ PV AL, and SNP ~ PV AL. 
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RESULTS 

We first used the genotypes provided for 621 SSLPs spaced on average 2.6 cM apart62 to 

infer DSO in 12 AcB and 18 BcA RCS lines for the probe sets contained on the 

MGU74Av2 oligonucleotide array. We define donor strain of origin (DSO) as the 

parental strain from which a congenic segment derives. The overview of our 

experimental approach is outlined in Figure 1. Because of uncertainty as to the position 

of the recombination site between SSLPs of differing DSO (indicative of a 

recombination), we assigned an unknown DSO status to genes falling within such regions 

(Figure 2). This still permitted assignment ofDSO to over 90% of the probe sets on the 

array over aH strains. We assigned unknown status 6.8% of the time (22882 of338790 

results) with the number ofunknown assignments ranging from 220 for BcA82 and 1503 

for BcA83 (genome-wide), and a maximum per chromosome of 366 for BcA 7 4 on 

chromosome 8. The largest stretch of genes affected was on chromosome 10 for BcA70 

where 46% of genes were assigned an unknown DSO status. Over aH the entire dataset 

(aH chromosomes) unknown DSO ranged from 4% for BcA6 to 38% for AcB51, 

averaging 21 % over aH strains. Strains contained between 26 and 56 congenic segments 

genome-wide, averaging 43.7 (between 4 and 38 AlJ segments, 7 and 35 C57BL/6J 

segments, both averaging 22 over an strains). The maximum number of segments per 

chromosome was 5 (for BcA83 on chromosome 6 and AcB56 on chromosome Il). As 

expected the rate of unknown DSO assignment correlates with the number of recombined 

segments (Figure 3) indicating that higher frequencies of recombination decreased the 

amount of data included in our analysis. 
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To identify genes displaying associations between expression and DSO for the 

surrounding locus, we applied an ANOVA on a per-gene basis using a model that 

included terms for DSO, background strain (BG) and their interaction (DSO*BG). We 

included BG in the model based on our previous observations of numerous differences in 

baseline gene expression between A/J and C57BL/6J strains in multiple tissues inc1uding 

lung. The model assumes independence between loci and genes. This assumption 

provided between 38 and 62 effective replicates per gene (the number ofresults in the 

datas et for which DSO = AlJ or C57BL/6J for any locus). The variability between 

individual replicate mice was factored into the error term for the ANOV A model. We 

note large chromosomal segments where most RCS are derived from one parental strain. 

This correlates with our observation of uneven partitioning of the datas et by the two 

terms in the ANOVA model (DSO and BG). As a result, a proportion of genes (30%) 

could not be tested. The association test was thus performed for 8860 genes. 

Of the genes tested, we identify over 1500 genes with significant association between 

expression and DSO ofP<0.05 having adjusted for BG and DSO*BG interaction (Table 

1). This includes over 130 probe sets with documented involvement in transcription 

(Table 2). A comparison of the extent to which each variable contributes to the overall 

variability reveals that DSO contributes the most, followed by BG and their interaction 

(Figure 4). We further note that 1213 genes display significant association (P<0.05) 

between expression and BG, and 651 for the interaction term DSO*BG. These results 

may indicate the presence of elements located distal to the locus affected. We chose 
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relaxed thresholds purposely in order to maximize the sensitivity of detecting genes 

affected by cis-regulatory polymorphisms. 

Previous studies have attributed 97% of the genetic variability between inbred strains to a 

minority of regions throughout the genome thought to diverge from a common ancestral 

genome58
, 100. These divergent haplotype blocks have been proposed as an additional tool 

for the genetic mapping of complex traits and correspond to regions of higher 

polymorphism between strains55
, 56, 59. The contribution of this variable becomes further 

evident given the number of genes found to display significant contribution of effects due 

to BO. To confirm whether the results of our expression analysis corresponded to genetic 

differences at the surrounding locus we resequenced 1 kb of 3 'UTR for randomly selected 

genes from those negative and positive for DSO association to assess SNP content. We 

find a significantly increased occurrence of SNPs in genes positive for association 

between DSO and expression (Table 3). Resequencing of genomic DNA from parental 

strains AlJ and C57BL/6J showed that 54% genes with positive DSO association 

contained SNPs as opposed to 27.5% ofnegative genes (P<0.05 Fisher Exact Test). We 

further observe a trend of increasing likelihood for SNP occurrence with significance of 

association between gene expression association and DSO in the ANOV A model (Figure 

5). Because the frequency of SNPs in the negative set was lower, we resequenced 30 

more genes in this set versus the positive. 

The association of expression with DSO suggests the presence of factors affecting 

expression proximal to the affected gene. To investigate this observation further, we 

127 



sought to determine whether the set of genes identified by the model showed differences 

in allelic expression (indicative of cis~acting gene regulation) by measuring AI in SNP~ 

containing genes using 5 replicate FI mice generated from the two parental strains AlJ 

and C57BL/6J (Figure 6). We selected 50 genes positive for DSO association and 80 

without because of the lower rate of SNP discovery in the negative set. The genes 

containing SNPs displayed AI in 63% of positive genes versus 23% ofnegative genes 

(P<O.OI Fisher Exact Test). The presence of AI also displays dependence on the 

significance of DSO expression association by logistic regression (Figure 7), suggesting 

that the likelihood of AI increases with higher significance of association' between 

expression and DSO in the ANOVA model (Figure 8A-C). Results for AI are 

summarized in Table 3 and Figure 9. 
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DISCUSSION 

We demonstrate an integrated approach for the genome-wide determination of genes 

subject to likely cis-acting genetic variation. The large-scale categorization and 

classification of genes based on modes of regulation is needed to understand the genetics 

of complex traits and may eventually lead to genome-wide models of gene regulation. 

The ReS expression dataset, combined with the FI studies of allelic imbalance, allow us 

to estimate that 8-11 % of genes are affected by cis-acting regulatory variation in one 

tissue among these strains. This estimate is higher than that of a previous study across 3 

tissues and 4 mouse inbred strains where allelic expression differences were found in 3-

6% ofrandomly selected genes, depending on the combination of tissue and strain135
• A 

significant proportion of genes have been estimated to be subject to cis-acting regulation 
~, 

1 
in yeast and humans29

, 169. Demonstration of the heritability of gene expression, together 

with widespread gene-expression differences observed between subspecies further 

implies an evolutionary role for variation in gene regulation26
, 167, 188. 

The ReS expression approach enriches for the detection of cis-acting regulatory 

variation. ReS mice provided a unique opportunity to link knowledge of genetic 

variation and gene expression due to the restricted and well-characterized level of 

variation across the derived strains. Since Res are homozygous at every locus, a simple 

test for association between gene expression and DSO of the surrounding locus could be 

applied. The detection of allelic imbalance validates the presence of a functional cis-

acting variant influencing the gene ofinterest. We demonstrate AI in 63% of genes 

showing an association between expression and DSO. This represents between a 10 and 
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20-fold efficiency of detection as compared to random screening of genes 135
, 172. We note 

that the detection of association between expression and DSD was greatly enhanced by 

our ability to subtract the effect due to the predominant strain of background. By contrast, 

an initial analysis without correction for background detected far fewer genes of smaller 

effect indicating the substantial contribution of background to the overall variability and 

the potential for background to confound proximal effects tested by the DSO term (data 

not shown). Logistic regression suggests that higher thresholds for significance in the 

ANDV Amay correlate with a higher frequency of AI suggesting greater enrichment with 

more stringent thresholds. 

The estimated 8-11 % of genes subject to cis-acting regulation represents a lower limit for 

a number of reasons. A single tissue (lung) was analyzed at one developmental stage 

(adult). Since cis-regulation is known to act in a tissue-dependent fashion135
, and 

transcriptional changes abound throughout development, an analysis of more tissues over 

a greater number of developmental stages is likely to uncover additional genes affected 

by cis-regulatory variants. Our design excluded genes falling within segments containing 

a recombination since the positions of recombination sites were not characterized. While 

this affected a small percentage of results dispersed throughout the dataset (6%), this 

exclusion together with varied levels of heterogeneity in the dataset led to 70% of the 

genes on the microarray being tested by the ANDV A model. Improvements in map 

resolution would reduce the amount of missing data points by permitting DSO to be 

assigned for a higher percentage of genes. The sequence-based AI assay is se en to detect 

differences between aUele-specific transcription as low as 1.2_fold189
• Subtler differences 
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may reflect the present of compensatory effects such as negative feedback control 

mechanisms acting to tightly regulate transcript levels. AI detection depended upon the 

variance observed among replicate samples in cDNA and gDNA; larger gDNA variances 

rendered an indeterminate measurement of AI. In addition, the study assumed 

independence for each locus tested; this may not be appropriate since dependencies 

between genes and loci may exist that are on the same chromosome, largely dependent on 

the distance between loci 190. An analytical strategy involving more traditional mapping 

techniques such as QTL mapping191 and linkage analysis192 would take into account the 

dependence on location as weIl as recombination rate throughout the genome. 

There are additional causes of AI besides upstream cis-acting regulatory polymorphisms. 

Imprinting, whereby the allele of one parent is silenced by that of the other, was formerly 

thought to be the sole cause of differential allele expression. This phenomena, however, 

is quite rare thus far accounting for about 80 genes in humans193 and 60 in mice193 which 

have been catalogued194
• To date, there is no evidence that known or new cases of 

imprinting were observed by AI in this study. 

CUITent efforts to characterize the ancestral haplotype structure of inbred mice suggest 

that a major proportion of the variability between strains may be attributable to segments 

of the genome that differ ancestraIly58, which are embedded in the long segments created 

by the breeding process used to generate the RCS panel. What effects this might have on 

the sensitivity of the method used in this studyare difficult to state in advance. However, 

one can only speculate that inclusion of this factor would increase our sensitivity to detect 
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cis-regulated genes. The higher number of SNPs found in the 3' UTR of genes displaying 

association between expression and DSO suggests a higher rate of polymorphism in the 

loci of affected genes. These more polymorphic genes are probably in regions that are 

most divergent between inbred strains reflecting haplotypes not inherited from a common 

ancestorlOO
• This also implies that genes located in shared ancestral haplotypes should be 

less likely to exhibit an association between DSO and transcript level, further refining the 

location of cis-acting regulatory variants in the associations detected by our model. A 

comprehensive set of publicly available SNPs polymorphic between A/J and C57BL/6J 

strains is required to investigate this question thoroughly. 

Our results suggest that a proportion of genes with cis-acting variants do not display 

expression differences that are detectable across the RCS panel. We observe five genes 

negative for association (P>0.05 for DSO) display AI. One explanation is that gene 

expression levels on the array may not have been sensitive enough to detect subtler 

changes in gene expression over the strains. However, owing to the transformations we 

used in the analysis, signal intensity-dependent effects are not likely to have exerted a 

major effect on the results l09
. Subtle effects may also indicate the presence of one or 

more collinear variables that confound the expression results, such as epistatic trans 

interactions suppressing variability. Given the extent of gene interactions believed to 

exist across the genome, collinear variables are more likely to be the norm rather than the 

exception. We note the substantial contribution of the background genetic composition to 

the overall expression variability observed across the strains; over 1200 genes displayed 

significant associations with BG (P<0.05), in addition to 600 genes that displayed 
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significant association with the interaction term, DSO*BG. These observations point to 

many determinants of expression variability that is distal to the affected gene, suggestive 

of trans-acting regulatory mechanisms. The estimation of the size of the background 

effect may prove useful in future determinations of trans effects and the extent to which 

genes may be affected by both forms of regulation. Other analytical methods designed 

specifically to detect epistatic interactions are required to provide corroborating evidence 

in this area. 

While genes displaying AI in this study are more likely to contain cis-acting regulatory 

variants195
, identification of the causative polymorphisms remains to be determined 

empirically. The ability to identify potentially cis-regulated genes genome-wide would 

provide a key resource in the search for genetic determinants of complex traits and act as 

a prioritization tool for further detailed analysis. Mapping strategies to dissect such traits 

consistently face the difficulty of tracking multiple variables simultaneously, testing 

numerous interaction terms with little prior knowledge upon which to base hypotheses. 

Recent studies in yeast have shown progression towards classification of genes based on 

gene regulatory interactions28
, 36. Construction of a systematic catalogue would not only 

favor the discovery of candidate genes, but also initiate the formation of a common 

vocabulary by which to de scribe this area of biology where little is known at the genome­

wide level. 
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Table 1. DifJerentially expressed genes in Res. 

DSO BG DSO*BG 

P<O.OI 894 515 178 

P<0.05 1591 1213 651 

P<O.lO 2190 1816 1159 

Numbers of differentially expressed genes identified for each term in the ANOV A model: 

Expression ~ DSO + BG + DSO*BG. 
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~ Table 2. Transcription factors with association between expression and DSO by the 

ANOVA model. 

AFFYID Gene DSO BG DSO*BG Accession Description 
P-value P-value P-value 

92399 at Runx1 8.77E-12 0.1590 0.6970 D26532 runt related transcription 
factor 1 

101980_at Rpo2tc1 1.96E-ll 0.1450 0.5600 J03750 RNA polymerase II 
transcriptional 
coactivator 

95536_at Tceb3 4.00E-10 0.3360 0.1310 AB025015 transcription elongation 
factor B (SIII), 
polypeptide 3 

160616 at Whsc2h 8.1IE-10 0.2340 0.6470 AW047201 W olf-Hirschhorn 
syndrome candidate 2 
homo log (human) 

104340 at Mbd1 1.75E-09 0.0107 0.1450 AF072240 methyl-CpG binding 
domain protein 1 

161466J_at Asb3 2.59E-09 0.2610 0.2730 AV347947 ankyrin repeat and SOCS 
box-containing protein 3 

101943 at Tceb3 1.40E-07 0.8810 0.3270 AA960259 transcription elongation 
factor B (SIII), 
polypeptide 3 (11 OkD) 

93728_at Tgfb1i4 2.97E-07 0.7160 0.5500 X62940 transforming growth 
( 
/~, 

factor beta 1 induced 
transcript 4 

101382 at Pbx2 3.56E-07 0.4890 0.0352 AF020198 pre B-cell leukemia 
transcription factor 2 

104536 at Madh2 1.41E-06 0.6290 0.9230 U60530 MAD homo log 2 
(Drosophila) 

95616 at Crsp3 2.12E-06 0.1490 0.5620 AA674714 cofactor required for Sp 1 
transcriptional 
activation, subunit 3 

96672 at Hop-pending 4.64E-06 0.0656 0.5650 A W123564 homeodomain only 
protein 

94804 at Pbx1 6.10E-06 0.0166 0.5180 L27453 pre B-cellieukemia 
transcription factor 1 

100010 at Klf3 7.13E-06 0.7740 0.9030 U36340 Kruppel-like factor 3 
(basic) 

102641 at Sfpil 7.15E-06 3.77E-03 0.0241 L03215 SFFV proviral 
integration 1 

94406 at Phtf 1.07E-05 0.0426 0.7650 AJ242864 putative homeodomain 
transcription factor 

99901_at Ptrf U8E-05 6.57E-03 1.25E-04 AF036249 polymerase 1 and 
transcript release factor 

93656_g_at Usfl 2.49E-05 0.1500 0.1310 X95316 upstream transcription 
factor 1 

102864 at Hoxa7 2.69E-05 4.38E-03 0.0144 M17192 homeo box A7 

100513 at Ddefl 5.17E-05 0.3580 0.2000 AF075461 Development and 

/~, 
differentiation enhancing 

, 
94189 at Bcl6b 6.4IE-05 0.1990 0.4900 ABOl1665 B-cell CLLllymphoma 6, 

memberB 
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AFFYID Gene DSO BG DSO*BG Accession Description 
P-value P-value P-value 

101631 at Soxll 8.92E-05 8.62E-08 0.8710 AF009414 SRY -box containing 
gene Il 

103925 at MIlt3 9.37E-05 5.06E-03 0.3750 AW120605 myeloid/lymphoid or 
mixed lineage-Ieukemia 
translocation to 3 
homolog (Drosophila) 

100011_at KIf3 9.90E-05 0.3820 0.3930 AI851658 Kruppel-like factor 3 
(basic) 

99917 at Ezh2 1.04E-04 0.8810 0.2750 U52951 enhancer of zeste 
homo log 2 (Drosophila) 

92804 at Polr2h 1.8lE-04 0.7580 0.0117 A W122864 polymerase (RNA) II 
(DNA directed) 
polypeptide H 

100307 at Nfix 2.16E-04 0.9840 0.5930 AA002843 Mus musculus 4 days 
neonate male adipose 
cDNA, RIKEN full-
length enriched library, 
clone:B43 0214 H24 
productnucIear factor 
IIX, 

92927_at Etvl 2.20E-04 0.0556 004020 Ll0426 ets variant gene 1 

99846 at Foxt2 2A2E-04 0.0367 0.3690 Y12293 forkhead box F2 

103236_at Ringl 2.85E-04 0.0901 0.8940 Y12881 ring finger protein 1 

98032 at Zfp35 2.90E-04 004530 0.9250 M36146 zinc finger protein 35 

97926 s at Pparg 5.3lE-04 0.8100 0.0803 Ul0374 peroxisome proliferator 
activated receptor 
gamma 

92443 i at Zfpl 6A4E-04 0.3970 0.0857 X16493 zinc finger protein 1 

101034 at Grb2 8.17E-04 0.9290 0.8740 U07617 growth factor receptor 
bound protein 2 

92935 at Cbfa2t1h 1 AlE-03 0.3190 0.9770 D32007 CBF A2T1 identified 
gene homo log (human) 

100553 at Trim27 1.44E-03 9.87E-04 0.9300 L46855 tripartite motif prote in 27 

92782_at Tmpo lA7E-03 0.1180 0.0935 U39074 thymopoietin 

98030_at Trim30 lA9E-03 0.0152 0.0239 J03776 tripartite motifprotein 30 

161067_at Ifld2 1.5lE-03 0.0533 0.9680 AA770736 induced in fatty liver 
dystrophy 2 

97969_at Nrlh4 1.69E-03 0.5910 0.1250 U09416 nucIear receptor 
subfamily 1, group H, 
member4 

92974 at Zfp37 1.93E-03 0.0189 0.5500 X52533 zinc finger protein 37 

103437 at Zfp57 1.94E-03 7.36E-03 0.3050 D21850 zinc finger protein 57 

98963_at Trpv2 2.24E-03 1.68E-04 0.2550 AB021665 transient receptor 
potential cation channel, 
subfamily V, member 2 

103387 at Tctex3 2.34E-03 0.7230 0.8710 AB011550 t-complex testis-
expressed 3 

103288 at Nripl 2.39E-03 0.8420 0.1980 AF053062 nucIear receptor 

r--' interacting protein 1 
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~\ AFFYID Gene DSO BG DSO*BG Accession Description 
1 P-value P-value P-value 

99111 at Skd3 2.42E-03 4.96E-04 0.3430 U09874 suppressor of K + 
transport defect 3 

103634 at Isgf3g 3.24E-03 0.0176 0.4540 U51992 interferon dependent 
positive acting 
transcription factor 3 
gamma 

101014 at Ifnar2 3.43E-03 0.6610 0.5790 Y09864 interferon (alpha and 
beta) receptor 2 

101930 at Nfix 3.89E-03 0.1860 0.9040 Y07688 nuclear factor I/X 

92882 at RabI 4.37E-03 0.3040 0.0205 YOO094 RAB 1, member RAS 
oncogene family 

100422 i at Stat5a 4.79E-03 0.8530 0.8810 AJ237939 signal transducer and 
activator of transcription 
5A 

161139 f at Ddefl 5.0lE-03 0.1770 0.0374 AV175719 Development and 
differentiation enhancing 

93547 at Cbtb 5.56E-03 0.6390 0.3620 L03279 core binding factor beta 

99635 at Ing4 6.92E-03 0.1950 0.6170 AI845183 inhibitor of growth 
family, member 4 

99622 at Klf4 7.53E-03 0.7860 0.0563 U20344 Kruppel-like factor 4 
(gut) 

96327 at Skz I-pending 7.62E-03 0.8490 0.9210 AI852535 SCAN-KRAB-zinc 
finger gene 1 

~. 96824 at Sox15 8.7lE-03 0.2470 0.5420 AB025354 SRY-box containing 
gene 15 

92658 at Foxql 9.12E-03 0.0123 0.7320 AFOI0405 forkhead box QI 

92652 at Notch4 1.00E-02 0.2630 0.8840 AF030001 Notch gene homolog 4, 
(Drosophila) 

102893 at Pou2fl 0.0109 0.4120 0.1910 X68363 POU domain, class 2, 
transcription factor 1 

102069_at Mtt2 0.0110 0.2750 0.9090 S78454 metal response e1ement 
binding transcription 
factor 2 

102901 at Six3 0.0117 0.3180 0.1610 D83144 sine oculis-re1ated 
homeobox 3 homo log 
(Drosophila) 

160160 at Dedd 0.0122 0.1480 0.3820 AF100342 death effector domain-
containing 

94408 at Nabl 0.0122 0.0413 0.5460 U47008 Ngfi-A binding protein 1 

92991 at Sp4 0.0125 0.8610 0.8900 U62522 trans-acting transcription 
factor 4 

160225_at LOC229906 0.0127 0.0764 0.0228 AI840450 similar to TFIIB 

102039_at Gtt2h4 0.0151 0.0475 0.5880 AI850881 general transcription 
factor II H, polypeptide 4 

103057 at Poldl 0.0157 0.8260 8.50E-03 AF024570 polymerase (DNA 
directed), delta l, 
cata1ytic subunit 
(1 25kDa) 

r'-~, 
93697 at Cbx4 0.0160 0.1390 0.6870 U63387 chromobox homo log 4 

/ (Drosophila Pc class) 
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r' AFFYID Gene DSO BG DSO*BG Accession Description 
P-value P-value P-value 

10 1529_Lat Tceal 0.0162 0.8100 0.1970 D00925 transcription elongation 
factor A (SIl) 1 

93546_s_at Cbtb 0.0167 0.7900 0.7330 D14572 core binding factor beta 

93250J_at Hmgb2 0.0169 0.0227 0.3330 X67668 high mobility group box 
2 

99169_at Carm I-pending 0.0171 0.5330 0.9100 AW122165 coactivator-associated 
arginine 
methyltransferase 1 

100554 at Pdliml 0.0174 0.1030 0.4340 AF053367 PDZ and LIM domain 1 
( elfin) 

102363J_at Junb 0.0177 0.3810 0.1540 U20735 Jun-B oncogene 
102344_s_at Tcea3 0.0177 0.3560 0.3600 AIl32239 transcription elongation 

factor A (SIl), 3 
103354_at Mrps31 0.0180 0.3960 0.1850 Z46966 mitochondrial ribosomal 

protein S31 
102362_tat Junb 0.0190 0.4720 0.1570 U20735 Jun-B oncogene 

98790_s_at Meisl 0.0197 0.0664 0.1820 U33629 myeloid ecotropic viral 
integration site 1 

102048_at Crap 0.0214 0.5020 0.7700 AF041847 cardiac responsive 
adriamycin protein 

102955_at Nfil3 0.0215 0.2560 0.9560 U83148 nuclear factor, 
interleukin 3, regulated 

94821_at Xbpl 0.0228 0.8510 0.0321 A W123880 X-box binding protein 1 

162016 f at Foxc2 0.0233 0.8380 0.3240 A V251191 forkhead box C2 

97550_at Hdac7a 0.0243 0.1080 0.6180 A W04 7228 histone deacetylase 7 A 

98336 s at Reccl 0.0251 0.8700 0.3500 M88489 replication factor C, 140 
kDa 

102917 _at C2ta 0.0274 0.1360 0.6860 AF042158 c1ass II transactivator 

94198_at Ppard 0.0292 0.9200 0.2870 L28116 peroxisome proliferator 
activator receptor delta 

102671_at Crebl 0.0301 0.1040 0.7990 X67719 cAMP responsive 
element binding protein 
1 

103283 at Elf5 0.0304 0.7240 0.7790 AF049702 E74-Iike factor 5 

99891_at Pou6fl 0.0311 0.0806 0.0432 Ll3763 POU domain, c1ass 6, 
transcription factor 1 

97157 at Nkx3-1 0.0313 0.8600 0.2160 U88542 NK-3 transcription 
factor, locus 1 
(Drosophila) 

97695_s_at RpI7 0.0314 0.0935 0.5210 M29015 ribosomal protein L 7 

162204J_at Notchl 0.0317 0.5140 0.0186 AV374287 Notch gene homolog l, 
(Drosophila) 

92956_at Notch3 0.0336 0.4340 0.5820 X74760 Notch gene homo log 3, 
(Drosophila) 

160833_at Mbd2 0.0341 0.3290 0.3470 AF072243 methyl-CpG binding 
do main protein 2 

93856 at Wtl 0.0346 0.0486 0.4230 M55512 Wilms tumor homolog 

(" ... 
93008_at Lsm4-pending 0.0351 0.7710 0.8120 A W120557 U6 snRNA-associated 

SM-like protein 4 
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~\ AFFYID Gene DSO BG DSO*BG Accession Description 
P-value P-value P-value 

10 1902_at Rbpsuh 0.0357 0.4990 0.7680 X17459 recombining binding 
protein suppressor of 
hairless (Drosophila) 

95297 at Hoxa1 0.0370 0.6240 0.5790 M22115 homeo boxAI 

93918 at Taf9 0.0378 0.8270 0.7010 AA673500 TAF9 RNA polymerase 
II, T AT A box binding 
protein (TBP)-associated 
factor, 32 kDa 

98726 at Pgr 0.0383 6.06E-03 0.9240 M68915 progesterone receptor 

102364_at Jund1 0.0402 3.77E-03 0.1390 J04509 Jun proto-oncogene 
related gene dl 

97159_at Aire 0.0417 Q.7690 0.5500 AJOO7715 auto immune regulator 
(autoimmune 
po lyendocrinopathy 
candidiasis ectodermal 
dystrophy) 

101903_at Bop 0.0418 0.8450 0.2140 U76371 CD8beta opposite strand 

160068_at Sap30 0.0420 0.3080 0.7700 AF075136 sin3 associated 
polypeptide, 30kD 

160780_at TcS 0.0441 0.0482 0.4210 AJ223069 transcription factor 3 

98040 at Tcfe2a 0.0450 0.1240 0.3430 D16631 transcription factor E2a 

98150 at Rab11b 0.0462 0.3230 0.2510 L26528 RAB Il B, member RAS 
oncogene family 

(' 98816_s_at Evx1 0.0476 0.5320 0.3180 AW049988 even skipped homeotic 
gene 1 homo log 

97994_at Tct7 0.0497 0.2030 0.2870 AI019193 transcription factor 7, T-
cell s]2ecific 
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~. Table 3. SNP diseovery and al/elie imbalanee results in 130 genes. 

Association Total number of Number of genes SNPs per gene per Number of genes 

between gene genes tested with SNPs base pair with AI 

expression and sequenced 

DSO 

Positive 50 27 2.2IE-03 17 

Negative 80 22 0.79E-03 5 

SNPs discovered by sequencing IOOObp of 3' UTR of genes randomly selected from sets 

with and without association between DSO and gene expression. Association is 

significant ifP<0.05, using a one-tailed Fisher exact test. Genes were called positive for 

AI if at least one SNP displayed significant differential expression between alleles in a 

comparison of peak heights in gDNA versus cDNA from FI mice (P<0.05, paired one­

tailed Student's t-test, n=5 FI replicates) and no contradictory results between SNPs 

(where multiple SNPs show opposite allele ratios in the same gene). Association between 

genes with expression associated with DSO and AI is significant P<O.Ol, one-tailed 

Fisher exact test. 
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FIGURE LEGENDS 

Figure 1. Overview of the approach for the detection of genes with putative cis-regulatory 

variation. AI is detected using a sequence-based approach previously describedl72
• On the 

right side of the figure, allelic imbalance is illustrated using a sequencing-based assay. 

Sequence traces obtained using genomic DNA from AlJ (upper left) and C57BL6 (lower 

left) parentallines show a GIA SNP (black arrows). Differences in relative peak heights 

in sequence traces from AxB FI genomic (upper right) and cDNA (lower right) reflect 

aUe1e-specific differences in transcript levels. 

Figure 2. Demonstration of rules for assigning donor strain of origin (DSO) for genes 

using SSLP data. SSLPs and oligonucleotide probe sets were aligned to the UCSC Feb 

2003 mouse genome assembly. Probesets flanked by SSLPs originating from the same 

parental strain were assigned the same DSO. Genes flanked by SSLPs from different 

parents were assigned an unknown DSO status. 

Figure 3. The percentage ofunknown DSO assignments versus number of segments 

(recombinations); the percentage ofunknown DSO assignments was calculated over the 

entire genome for each of the 44 strains contained in the original RCS genotyping 

dataset. The number of congenic segments was calculated over the entire genome for 

each of the 44 strains. 

Figure 4. QQ plot ofP-values obtained from ANOVA testing the model: 
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Expression - DSO + BG +DSO*BG. Experimental P-values are sorted and plotted versus 

the sorted P-values of a normal distribution. 

Figure 5. Fitted values oflogistic regression for SNP occurrence and frequency versus P­

value of association between gene expression and DSO. Experimental P-values are sorted 

and plotted versus the sorted P-values of a normal distribution. 

Figure 6. Demonstration of allelic imbalance using a sequencing-based assay. Sequence 

traces obtained from lkb of3' UTR using genomic DNA from Ail (upper left) and 

C57BL6 (lower left) parentallines show a GIA SNP (black arrows). Differences in the 

relative peak heights of the two alle1es in sequence traces from AxB FI genomic (upper 

right) versus cDNA (lower right) were used to calculate the allele-specific differences in 

transcript levels. 

Figure 7. Fitted values oflogistic regression for occurrence of AI versus P-value of 

association between gene expression and DSO in the ANOV A model. Experimental P­

values are sorted and plotted versus the sorted P-values of a normal distribution. 

Figure 8. Genes ranked by P-value for DSO in the ANOV A model where P<O.05 are 

indicated in red and p>O.05 in blue. A) Randomly selected genes for resequencing 

indicated by crosses. B) Genes found to contain SNPs indicated by closed circles. C) 

Genes showing AI indicated by triangles. 
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Figure 9. Summary of AI results expressed as a percentage of genes tested from sets of 

genes positive or negative for association between DSO and expression. 
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GENERAL DISCUSSION 

The research in this thesis has provided a framework for understanding microarray data 

analysis, how to apply this understanding to the design of expression profiling 

experiments, and how to extend their application by combining genetic and genomic 

approaches. Applications focused on inbred mice with the goal of relating gene 

expression differences to gene regulation in a mammalian system. This study established 

gene expression differences between inbred mouse strains and addressed long-standing 

concems about the consistency of microarray results when applied to an in vivo 

mammalian system. 

The goal of this thesis was to develop genomic approaches that may be used to eventually 

construct a genome-wide model for genetic regulation in mammalian systems. This work 

focused specifically on understanding what was, at the start ofthis degree, a novel 

technology (DNA microarrays) and applying these approaches to the question of gene 

expression and genetic variability in inbred mice. The goal of this work has always been 

to attempt an understanding of the biological system at a genome-wide level. The 

snapshots we have gained from high-throughput genomics have given us glimpses of 

complexity that exceeded all previous expectations. There shall be no shortage of 

discoveries to be made for quite sorne time. 

Chapter 1 proposed a naïve question pertinent to experimental controls and in doing so 

debunked common conception and methods in practice at the time. Previously, controls 

in microarray experiments were accomplished by calculation of fold changes with 
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normalization against one or a handful of traditionally recognized control genes, a 

technique derived from traditional RNA assays. This study asked, are there genes that in 

fact do not vary across experimental systems? The answer was a resounding no. There 

were no genes that could be said to display a "stable" degree of expression across tissues 

or celllines in an analysis of previously generated datasets, as well as in a comparison of 

tissues obtained from mice. Prior to this, it was thought that there existed a set of genes, 

ubiquitously expressed in all tissues at a constant level. These so-called "housekeeping 

genes" were thought to be expressed in this manner because of their hypothesized 

function (that of essential maintenance). This study once and for all disproved the 

existence of such genes and exposed the long-standing pitfalls of relying on any one gene 

as an invariant control to determine expression change. 

These findings impacted upon extant opinions on microarray normalization, the process 

whereby chip-to-chip variability is adjusted via an attempt to equalize their overall 

hybridization intensity. Previously it was thought that utilization of control genes or sorne 

subset of genes with lower variability would provide the optimal technique for inter­

hybridization correction. This study demonstrated that there was no added improvement 

offered by using a smaller subset, and in fact, that this approach actually impeded control 

of experiments by hindering auditing of analytical steps. Since the time of this study, 

there have been many welcome advances in the field. The advent ofprobe-Ievel analysis 

196 and the development normalization methods such as quantile normalization 197 and 

loess 198, now in widespread use, attest to the benefits ofwhole dataset methods, rather 

than a tailored subset. 
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This chapter furthermore provided a picture of variability across biological test systems. 

Previously, experimental systems whether derived from tissue sampi es or celllines were 

used without consideration of the different degrees ofvariability inherent in the systems. 

By comparing gene expression profiling in multiple datasets inc1uding the NCI60 cancer 

cellline panel 88, and the Huge Index, a panel human tissues 79, this study demonstrated 

differences in the inherent variability contained in these datasets. The baseline level of 

expression variability impacts heavily upon subsequent analyses. Where study designs at 

the time may have assumed a constant degree of background variability, this was the first 

study to draw attention to these differences and the need to first characterize such levels 

. of variability in experimental systems. 

The study was one of the first to employa study design employing replicates (not 

common at the time), and one of the first to apply a gene-by-gene ANOVA to assess the 

effects due to multiple simultaneous factors in a study design. Prior to this, the majority 

of microarray studies used fold-change cutoffs to determine differentially expressed 

genes. Indeed, use of such cutoffs persists to this day. This study, as weIl as many others 

since33
, 35, maintain that fold change cutoffs are inadequate for microarray studies and are 

based on notions of gene expression change derived from conventional RNA assays, 

rather than statistically-valid concepts. High fold changes may not correspond to 

statistically significant differences (spurious results), whereas genes displaying highly 

significant differences may show relatively subtle changes. The methods and lessons 
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learned in this part of the study formed the foundation for our analysis of microarray data 

in aIl subsequent studies. 

The comparison of the variability between technological and biological replicates 

established a precedent for later experiments. The study showed a remarkable similarity 

in the degree of variability between genetically identical mice raised in the same cage, 

and that observed between repeat hybridizations of the same RNA preparation. This 

initial estimation of the intra-strain variability represented an important step for 

subsequent studies employing replicates. Where a comparable level of variation was 

observed between replicates, this factor could safely be factored into the error terms of 

ANOV A models. This did not abrogate the need for replicates, but rather provide greater 

degrees of freedom with which to measure associations with experimental treatment 

variables. More formaI analysis has since examined the effect of replicate number upon 

the application ofparametric analysis methods112
• In exposing flaws in the extant 

concepts of control genes, normalization and methods to define differentially expressed 

genes, this study demonstrated the need for improvements in these areas, many of which 

have since been addressed by the field as a whole. 

Where Chapter 1 demonstrated analytical methods and the need to characterize the 

baseline variability in any experimental systems, chapter 2 focused on applying these 

principles to the model system used throughout the remainder of the thesis, inbred mice 

strains AlJ and C57BL/6J. In characterizing the baseline gene expression variability 

between strains across 4 tissues, this study was able to show substantial differences in 
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gene expression between these two strains, echoing the differences observed between 

these strains at the physiologicallevel. Characterization of the extent of expression 

variability in healthy, untreated adult mice of each strain establishes the context in which 

subsequent studies ofpathological states may be compared. At the start ofthis study, 

experiments comparing normal subjects were rare with most studies focusing on 

pathological conditions. Since then, the importance ofknowing the baseline variability in 

normal tissues has been acknowledged as a fundamental first step towards studying the 

diseased state199
• In mice, where disease phenotypes are studied by comparison between 

strains, baseline gene expression differences between strains remain largely 

uncharacterized. This baseline variability may act as a confounding variable in studies 

attempting to relate gene expression to disease phenotypes. Expression profiling across 

more tissues and strains willlikely become necessary as more disease phenotypes are 

studied at the level of gene expression. 

This chapter also addressed a long~standing concem with microarray studies, mainly that 

of reproducibility over time. While experiments repeated one year apart were performed 

in a controlled manner to the best of our knowledge, time~specific effects were seen to be 

substantial. In spite of rigorous controls, other variables yet unidentified could play a role 

in the variability observed from one time point to the next. The multitude of 

nonautomated procedures separating the lab animal from the final hybridization intensity 

measurement renders determination of each source ofvariability difficult. However, this 

study represents one of the first to estimate the magnitude of inter~experimental 

variability in an in vivo microarray experiment, and the first to demonstrate the ability to 
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adjust for the confounding effect ofthis variable. This study furthermore identified a 

biological component to the time variable in the experiment, in particular, the tissue-time 

and the tissue-strain-time interaction terms showing significant contributions to the 

overaIl variability observed in the experiment. This result cautions future experimenters 

about the sensitivities of the different tissues to inter-experimental variability, an issue 

affecting studies involving simultaneous comparisons of multiple tissues. 

Across the 4 tissues, over 750 genes localized within previously mapped QTL. While 

these included severallikely candidates identified by previous studies, the large number 

of genes suggests that gene expression profiling on its own may not be sufficient to 

determine the genes underlying QTL. Gene expression changes do not automaticaIly 

imply involvement of these genes in a phenotype. The complex mixture of gene 

expression changes resulting from direct and indirect activation insures that this remains 

a difficult hypothesis to prove. Likewise, subtle variations in expression, typical of genes 

whose transcription is tightly regulated (e.g. negative feedback regulation), will remain 

unidentified in expression studies because such changes faIl outside the detection limits 

of the technology. Because gene interactions are believed to exist to such a high degree, 

correlations between differential expression and its causes shaIl remain difficult to 

identify. By its very design, this experiment did not attempt to address potential genetic 

causes ofthe observed expression variability. Instead, Chapter 2 established the baseline 

expression variability for future comparisons of experimental treatments or genetic 

recombinants involving AlJ vs. C57BL/6J comparisons. 
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Whereas Chapter 2 provided indirect evidence of an association between expression 

differences across a system known to contain genetic variation, Chapter 3 provided direct 

evidence. Here, association of gene expression variability with the genetic composition of 

the surrounding locus provided compelling evidence for a correlation between 

transcription levels and cis-acting genetic variants. Application of an independent 

genomic approach, allelic imbalance, further confirmed hypotheses of cis-acting gene 

regulation for these genes. The RCS panel represents an experimental system controlled 

for a level of genetic heterogeneity permitting the differentiation of proximal and distal 

factors affecting gene expression. 

Genetic variants underlying complex traits may affect the quality of the gene product (via 

alterations in protein coding sequences), or quantity (altering the level oftranscript). 

While numerous genetic variants affecting protein sequence have been identified, far 

fewer regulatory variants have been isolated, mainly due to the lack of methods to find 

such variants in large-scale. Observations of large intergenic regions in the mammalian 

genome and the heritability of gene expression differences between individuals suggest 

many of the variants underlying complex traits are regulatory affecting gene expression. 

While gene regulation appears to function in a highly coordinated fashion across the 

genome, the picture of gene regulation on a genome-wide scale is sparsely populated with 

a minority of genes that are functionally characterized. Integrated approaches are required 

to better characterize gene regulation and to understand the genetics of complex traits. 
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The combination of gene expression profiling in experimental systems traditionally used 

in genetic research exposes new avenues that would not be accessible through either 

technology alone. Where genetic mapping studies have traditionally dealt with the 

problem ofnarrowing down phenotypic associations observed over large regions of the 

genome, expression profiling immediately brings the focus of study to the functional 

molecular level. Knowledge of genetic variation enables us to explore the potential 

causes of differential gene expression and to begin addressing questions of gene 

regulation on a genome-wide scale. One criticism of genomic approaches pertains to their 

validity with respect to previously documented evidence. lnbred mice offer a wealth of 

information accumulated over decades of research at the phenotypic level providing a 

link to observations at the molecular level. A combination of genomic approaches may 

furthermore provide independent methods for verification of results. Our integration of 

expression profiling in RCS mice together with screening for allelic expression 

differences represents such an approach. 

Gene regulation is currently classified into categories of cis-acting and trans-acting, 

differentiating variants located proximally versus distally to the affected gene. The 

distinction proves useful in genetic research where cis-acting factors may display simple 

modes of inheritance while trans-acting factors correspond to more complex inheritance. 

Characterizing the extent of each form of regulation across the genome may prove 

informative in fine-mapping strategies and efforts to decipher traits arising from 

numerous loci. To date, genome-wide mapping of either form of regulation remains to be 

done. However, cis-acting variants may be more readily mapped by combined genomic 
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and genetic approaches. Trans-acting variants describing the epistatic interactions 

between genes are more difficult to ascertain, but are believed to predominate. Whereas 

the study in Chapter 2 identified differential expression containing a complex mixture of 

cis and trans effects, the RCS panel used in Chapter 3 offered the unique opportunity to 

distinguish differential expression due to cis or trans effects. In the future, this strategy 

may help prioritize genes for further empirical study and functional annotation. This 

classification of genes may provide the first steps towards building a model of genome­

wide gene regulation. 

We have demonstrated the feasibility of an integrated genomic approach suitable for 

genome-wide cataloguing of cis-acting regulatory effects. As awareness of gene 

regulatory variants and gene interactions in complex phenotypes increases, so shall the 

need to chart gene regulation on a genome-wide scale. Recent studies estimate between 

25 and 50% of genes in humans display evidence of allelic expression indicative of cis­

regulation135
• A random screening study across 3 tissues in 4 mouse inbred strains 

previously found allelic expression differences in 3-6% of genes tested, depending on the 

combination of tissue and strain 135. This study arrived at a slightly higher estimate of 8-

Il % of genes. This falls close to the latest estimates in yeast28 and humans30
• While more 

accurate estimations await the development ofhigher resolution SNP maps and whole­

genome arrays, this study demonstrates the efficiency of the approach towards finding the 

cis-regulated genes in the mammalian system. 
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One of the primary questions regarding complex traits is whether a small number of loci 

account for the majority of variation, or whether it is due to a large number, each 

contributing a small amount. Furthermore, are the effects of multiple QTL additive, or do 

they interact in a nonadditive way? This comes from the observations that most heritable 

traits show a continuous spectrum of variation across a population2oo• Judging from 

recent studies, mostly in yeast, the picture is likely a mixture of aIl mechanisms in 

varying proportions. A recent study mapping gene expression traits in yeast determined 

that 3% oftranscripts demonstrated heritability consistent with a single-locus mode l, 17-

18% with a two-locus model, and greater than 50% with extensive genetic complexity 

consistent with 3 or more loci28
• Descriptive work of this kind enables a map to be 

generated of the overall topology of the genetic network, establishing a framework for 

future discussion, and provides a rough model of genetic regulation across the genome. 

Determining the same distributions for more complex organisms such as mice shall be 

the logical next step. 

From the ons et, it appears that the majority of gene regulatory variations are believed to 

be trans-acting or epistatic, involving the interactions between multiple genes. Owing to 

the number of genes in the genome, analytical determination of these interactions is 

extremely chaIlenging201
• The number of possible outcomes increases exponentially with 

number of interacting genes, and study designs often suffer from inadequate sample sizes 

to account for the combinatorial explosion2
0
2

• The task is further complicated by the 

question of multiple hypotheses testing, which is magnified exponentially in a test for 

trans effects. The number of permutations required to test so many hypotheses renders 
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r analyses to be computationally intensive involving compute farms with hundreds of 
r 

processors. Finally, so little is known about the trans-acting network on a genome-wide 

scale that the very dimensionality of the dataset remains to be determined - how many 

variables are important at any given time, and in what proportions? Directional or more 

intricate logical dependencies between genes and regulatory elements are even more 

difficult to delineate. If the level of complexity is anything like that seen in simpler model 

systems such as yeast203
,204, the task ofsorting out trans-interaction networks is likely to 

remain a challenge for years to come. 

One goal of mapping trans-regulatory effects is to construct network diagrams of gene 

interactions or models of the genetic network. These are generally displayed as directed 

graphs where genes are represented by nodes and the interactions by edges. These 

interactions include any mechanism whereby the input or affector node affects the output 

or effector. In this sense, genes may be represented as inputs and outputs. The 

information that passes between genes may be complex. For example, transcriptional 

activation of one gene by another (where one gene's protein product binds to the 

promoter region of another gene) may entail additional protein-protein interactions, such 

as recruiting of multiple tethering factors or chaperones which may act on enhancer sites 

far from the actual transcription start site (e.g. activation mechanisms known to govern 

glucocorticoid-regulated genes205
). While identification of the precise mechanisms of 

specific gene interactions may lie outside the scope of system-wide surveys, confirming 

the presence of such interactions on a genome-wide scale, together with determining 

conditional dependencies across experimental systems establishes a framework for 
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integrating empirical studies from varied sources. Once individual interactions are 

identified between pairs of genes, the next step becomes to characterize patterns of 

interactions among more genes, or network motifs. In simpler experimental systems, a 

limited number of motifs have been observed to exist with varying degrees of 

frequency206-208. Diagrams of such subnetworks may enable the understanding of specifie 

systems and their context dependence such as sets of genes underlying disease 

phenotypes. Are there motifs that are more highly represented in disease versus health? 

When such diagrams are assembled on a genome-wide scale, the model ofhow the 

genome functions as a whole shaH begin to take shape. 

Several analytical methods have been proposed to address the issue of trans-acting gene 

regulation and gene interactions. One method is based on decision trees (C4.5) involving 

the calculation of conditional entropy. Here, gene expression profiles are taken as an 

outcome variable and compared in every pairwise comparison against the DSO profiles 

(attributes) of every other gene. Information gain is calculated as the decrease in entropy, 

or amount of heterogeneity in the expression data that is explained by the other genes. 

The method may be expanded to incorporate compound attributes consisting of both DSO 

and expression profiles for genes against which any given gene's expression may be 

compared. Tree construction occurs by progressive splitting of the expression data with 

the most informative nodes located higher up on the tree. Other comparable methods for 

determining interactions between variables include classification and regression trees209 

(CART), random forests210, and multifactorial dimensionality reduction211 (MDR). 
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Another approach is to utilize gene expression profiles as a quantitive trait in a whole 

212 213 ( QTL ') d . f 'nh' O' genome scan' e mappmg ,an to examme patterns 0 1 entance. wmg to 

the number of traits in these expression profiles (> 12000), this would be quite 

computationally intensive, not merely for single-gene associations but for gene-gene 

interactions. A typical study involving 1000 permutation tests over 12488 genes is 

calculated to take 100,000 CPU hours (over 8 days using a multi-processor machine with 

>500 processors)201. However, as computing resources increase exponentially, this 

analysis is rapidly becoming more accessible. An analysis of the RCS data using such an 

approach is currently in progress. 

The concept ofa gene network was first coined over 30 years ag07,214,215 has only 

recently become testable experimentaIly, even in the broadest sense. Estimation of 

interaction networks in yeast has proceeded from several angles including chromatic 

immunoprecipitation assays20, Bayesian network inference27, and expression QTL 

mapping28, 169,216, using panels of single or double gene deletion strains. Studies of 

similar scale have yet to be realized in higher muiticellular organisms, largely due to the 

increased cost and experimental complexity associated with such systems. The studies in 

yeast arrive at similar conclusions regarding the overall topology of the network; a 

minority of genes displays a simple connectivity, and a majority exhibits complex 

dependencies between multiple genes. Ifthese observations reflect general principles 

obeyed by aIl gene networks, then we should see similar distributions in multicellular 

organlsms. 
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An eventual goal of forming a model of gene regulation is to create dynamic simulations 

in order to predict effects of variants or perturbations on the network and the system as a 

who le. While an ambitious goal, the first steps in direction have begun in isolated 

experimental systems217. A major obstacle currently faced by such studies is the level of 

noise seen in biological systems at the molecular level. To circumvent sorne ofthese 

challenges, subnetworks of genes have been specifically engineered to allow 

measurement of transcription rates218-221 in single cells. Obviously much remains to be 

discovered. However, the study of gene regulation dynamics inside a living cell remains 

an exciting area of study under development. 

CONCLUSIONS 

As complete genome sequences become available for more model organisms, similar 

high-throughput approaches shall be required to progressively map gene regulation 

throughout the genomes of many species. This shaH be a graduaI process. This thesis 

represents one step. The approach outlined could be expanded to catalogue cis-regulation 

on a genome-wide scale. This shalllikely be completed for a number of model systems 

within the next 5 years, and a picture oftrans-regulation is likely to follow shortly 

thereafter. Gradually, with time and luck, these and other such efforts shall populate the 

model of gene regulation throughout the genome. The process will most likely yield 

unexpected discoveries, perhaps exposing behaviors of the system that we have yet to 

recognize. Regardless, a more complete picture of gene regulation on a genome-wide 

scale shall form the basis for more efficient identification of genes underlying complex 

phenotypes, and the molecular mechanisms of disease. Combined with further high-

167 



throughput approaches, we may eventually be able to forge the links between the layers 

of complexity that comprise the phenome8
• Ultimately, the goal ofthis research is to 

enable novel ways ofthinking about biology. Understanding genome-wide networks of 

regulation shall require new concepts that can accommodate the scale and complexity of 

observations provided by genomic technologies. It has been over 100 years since Mendel 

demonstrated the heritability oftraits2 and since Darwin postulated evolution1
• It has been 

over 50 years since Watson and Crick elucidated the structure ofDNA3 and the 

deciphering of the genetic code4
• The next principles shalllikely pertain to the structure 

of gene networks across all biological systems as they pertain to complexity and self­

organization222
• 

It is perhaps useful to note that, should technological development continue along its 

path, there should be no decrease in our ability to generate data. At the start of this 

degree, the Human Genome Project223 was approaching completion. Genome sequences 

for Drosophila melanogaster22\ Caenorhabditis elegan;25 and Mus Musculu;26 were 

also completed during this time. Other forms of functional data such as genome-wide 

expression profiles are now accumulating at rates similar to sequence databases. SNP and 

phenotype databases are growing dramatically with the increasing focus on complex 

traits and diseases. The need for adequate means to analyze and integrate this data shaH 

continue to be an issue as these resources grow. So long as the tools for efficient access to 

information follow suit, the growth of biological databases promises many discoveries for 

generations to come. 
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With the increasing array of genomic technologies at our disposaI, the complexity of 

biology may eventually yield its secrets. In the face of such technological development, 

the link between data and knowledge hinges critically on our ability to create conceptual 

models to structure our observations. The integration and assimilation of genomic data 

shall require a framework of sufficient scale and complexity. The models shalllikely be 

imperfect, conceptual toys allowing us to form testable hypotheses. However, 1 believe 

that these approaches are a preliminary step towards understanding biology on a genome-

wide scale. This thesis has provided a glimpse of what lies ahead and an approach for 

journeying into the unknown. 
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La puce à ADN en médecine 
et en science 

~ La révolution génomique offre 
de nouveaux outils pour l'étude 
de processus biologiques 
complexes à l'échelle pan­
génomique. Cet article passe en 
revue les différents principes et 
applications de l'une de ces 
technologies émergentes, celle 
des puces à ADN. Il existe 
actuellement deux procédés 
majeurs de fabrication de puces à 
ADN: (1) le dépôt direct de 
molécules d'ADNc ; (2) la 
synthèse in situ 

. d'oligonucléotides sur une 
surface solide. Ces deux types de 
procédés, bien que présentant 
des différences qualitatives, 
offrent tous deux la possibilité 
d'un grand nombre d'applications 
nouvelles, à la fois fondamentales 
et cliniques, en permettant 
d'étudier simultanément plusieurs 
milliers de gènes et de découvrir 
rapidement de nombreux 
polymorphismes fonctionnels au 
niveau génomique ...... 

L
e projet de séquençage du 
génome humain est en plein 
développement, et une pre­
mière version préliminaire 
sera probablement disponible 

dès le printemps de cette année (voir 
l'article de Jean Weissenbach et Mar­
cei Salanoubat, p. 10 de ce numéro). 
L'avènement de ce programme de 
séquençage, et des projets similaires 
concernant d'autres organismes, révo­
lutionne la recherche en biomédecine, 
tant par l'élaboration de nouvelles 
technologies d'analyses de l'ADN que 
par la création d'immenses banques 
de données informatiques. Ces res­
sources extraordinaires amènent la 
communauté scientifique à se poser 
de nouvelles questions et permettront 
vraisemblablement d'élucider des 
mécanismes moléculaires com­
plexes. 
Traditionnellement, les biologistes 
ont utilisé des approches réduction­
nistes afin de disséquer un problème. 
La portée de chacune des questions 
posées est ainsi bien souvent limitée, 
tous les efforts étant tournés vers la 
résolution de points très spécifiques. 
Nous analysons ainsi de façon minu­
tieuse, à l'échelle moléculaire, 
chaque composante d'un processus 
biologique de base. Cependant, les 

Peter Lee 
ThomasJ. Hudson 
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Montréal, Université McGill, 1650, Cedar 
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techniques de biologie moléculaire 
classique trouvent leurs limites 
lorsqu'elles sont appliquées à l'éluci­
dation de processus complexes. Les 
fruits des divers projets de séquen­
çage de génomes offrent de nouveaux 
outils afin d'étudier ces processus à 
l'échelle du génome. Dans cet article, 
nous examinerons l'un de ces outils, 
dont l'utilisation est de plus en plus 
répandue, la puce à ADN ou 
microarray. 
Le principe de l'hybridation molécu­
laire permettant de détecter la pré­
sence d'acides nucléiques est mainte­
nant bien établi. Les Southern blots et 
les Northern blots font depuis long­
temps partie des techniques de base 
de tous les laboratoires de· recherche 
en biologie. Le jumelage de plusieurs 
technologies a permis la miniaturisa­
tion de ces techniques d'hybridation, 
permettant ainsi de déceler des mil­
liers de molécules d'acide nucléique 
de façon simultanée sur .des. matrices 
solides mesurant .quelques centimètres 
carrés. Deux procédés majeurs de 
fabrication de puces à ADN sont cou­
ramment utilisés: (1) le dépôt direct 
d'ADNe sur lamelle de verre activée; 
ou (2) la synthèse in situ d'oligonu­
cléotides par photolithographie 
(figure 1). 
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Figure 1. Puces à ADN. A. Puce à ADN produite par AffYmetrix. La puce à ADN 
est contenue dans une plaquette de plastique contenant une chambre d'hybri­
dation. Après l'hybridation d'un échantillon d'ADN ou d'ARN marqué par un 
fluorophore, la surface contenant les 60 000 à 400 000 oligonucléotides est 
analysée par microscopie confocale et photographiée. Le grossissement de 
l'image permet de visualiser chaque espèce d'oligonucléotide retrouvé sur 
une surface de 20 Jlm x 20 Jlm. Dans l'exemple du bas~ un gène est représenté 
par une série d'oligonucléotides de 25nucléotides dérivés de la séquence du 
gène (SS: sonde spécifique). Chaque oligonucléotide possède son propre 
contrôle d'hybridation, obtenu par la synthèse d'un second oligonucléotide 
dont la séquence varie d'un seul nucléotide en position centrale (ST: sonde 
témoin). La concentration de l'ARN est mesurée par la moyenne des diffé­
rences des oligonucléotides SS et SC. B. Puces à ADN préparées en parallèle 
à l'aide d'un micropipetteur robotisé qui dépose des ADNc sur la surface de 
la puce. Deux échantillons d'A RN provenant de différents tissus ou traite­
ments sont marqués par des f1uorophores différents (Cy-3 vert et Cy-5 rouge). 
La quantité relative de chaque gène est déterminée par le rapport d'émission 
de chaque fluorophore à des longueurs d'ondes différentes. La partie B est 
adaptée du site internet (<http://cmgm.Stanford.EDU/pbrown/>http:// 
cmgm.Stanford.EDU/pbrown/) avec la permission de Joseph DeRisi. 

1 Dépôt de sondes 
sur puce à ADN 

Le premier type de puce à ADN 
consiste en une lamelle de verre (iden­
tique à celle utilisée en microscopie 
traditionnelle) sur laquelle des milliers 
d'ADNc sont déposés à l'aide d'un 

~ micropipetteur robotisé. Grâce à cette 
r \technique, chacun des gènes (de fonc­

tion connue ou inconnue) est repré-

senté par un seul point sur la lamelle. 
En général, deux échantillons d'ARN 
(sous forme d'ADNc obtenus par trans­
cription inverse) sont co-hybridés sur la 
puce à ADNc. Les deux écha~ti~lons 
marqués par un fluorophore dlfferent 
(Cy-3 vert ou Cy-5 rouge) s'hybrident 
simultanément avec les molécules 
complémentaires sur la puce. L:inten­
sité du signal lumineux mesuree aux 
deux longueurs d'ondes correspondant 
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aux différents fluorophores est alors 
mesurée à l'aide d'un microscope 
confocal. Le rapport de fluorescence 
rouge/vert est ainsi déterminé et permet 
de comparer les taux d'expression rela­
tifs de chacun des gènes pour les deux 
échantillons d'ADNe. Un excès du 
gène X dans l'échantillon marqué en 
rouge produira un signal rouge; un 
excès du gène Y dans l'échantillon 
marqué en vert produira un signal vert ; 
enfin, une expression équivalente du 
gène Z dans les deux échantillons pro­
duira un signal jaune. L'un des avan­
tages de cette analyse comparée repose 
sur le fait que le rapport rouge/vert n'est 
pas influencé par la qualité de la goutte 
déposée par le pipetteur robotisé. 

1 
Synthèse 
d'oligonucléotides 
sur puce à ADN 

Le second type de puce à ADN, pro­
posé par la société Affymetrix, est 
constitué d' 01 igonucléotides synthétisés 
directement sur un substrat solide par 
photolithographie. Dans ce procédé, 
une lumière dirigée sur des sites spéci­
fiques de la puce active la réaction 
d' oligo-synthèse [l, 2]. La synthèse 
d'un oligonucléotide de 25 paires de 
bases occupe un carré de 20/lm x 
20 J.lm et contient plus de 107 copies de 
cette molécule. La surface d'une puce 
est d'environ 1,28cm2, et peut contenir 
400 000 oligonucléotides différents! 
Une puce à ADN destinée à des études 
d'expression contient pour chaque 
gène un ensemble d'oligonucléotides 
mimant la séquence du gène, souvent 
choisis dans sa région 3', réduisant 
ainsi les risques d'hybridations croisées 
avec des séquences homologues de ce 
gène. Des oligonucléotides, dont la 
séquence varie pour une seule base, 
sont également ajoutés, ce qui permet 
de confirmer que le signal obtenu pour 
chacun des gènes est bien spécifique. 
Contrairement à la puce à ADN décrite 
plus haut, celle produite par ce pro­
cédé permet l'hybridation d'un seul 
échantillon marqué à la fois. L'intensité 
de l'hybridation est également mesurée 
par microscopie confocale. 

1 
Comparaison des puces 
à ADN construites 
par ces deux procédés 

L~s pu.ces à ADN produites par 
mlcroplpetteurs offrent une grande 



souplesse d'utilisation car il est facile 
pour le chercheur d'en modifier le 
contenu. En outre, elles sont relative­
ment peu coûteuses, et, pour les ama­
teurs, les modalités de construction 
d'un système robotisé sont dispo­
nibles sur Internet (Tableau 1). La pré­
paration et l'optimisation de ces 
puces à ADN ne sont cependant pas 
simples, l'assemblage de milliers de 
gènes sur une puce nécessitant la 
validation et la purification de nom­
breux ADNe. Les puces à ADN pro­
duites' par Affymetrix permettent 
d'étudier plus de 45 000 gènes 
humains, plus de 30 000 gènes 
murins et environ 6 000 gènes de 
levures. Elles ont cependant le désa­
vantage d'être très coûteuses et leur 
contenu n'est pas modulable. Il est à 
souhaiter qu'avec le temps, elles 
deviennent plus fonctionnelles. 
Ces deux technologies sont d'ores et 
déjà très prometteuses. D'autres types 
de puces, comme les biopuces élec­
troniques (Nanogen), dans lesquelles 
des circuits électriques miniatures 
sont utilisés afin de diriger les tests 
moléculaires à la surface de la puce, 

sont maintenant en développement. 
Cette technologie permettra entre 
autres la séparation de cellules par 
affinité ainsi que le développement 
d'autres tests moléculaires. 

1 Applications des puces 
à ADN 

Analyses d'expression de gènes 

Les premières puces ont servi à évaluer 
l'expression simultanée de milliers de 
gènes dans des systèmes biologiques 
bien connus, tels que celui du métabo­
lisme respiratoire et de fermentation 
chez la levure [3], le cycle cellulaire 
de la levure (figure 2) [4, 5], la sporu­
lation [6] et la stimulation de fibro­
blastes par le sérum [7]. Ces premiers 
travaux ont permis de valider la tech­
nologie. La comparaison des résultats 
obtenus par les puces à ADN avec 
ceux préalablement obtenus par 
d'autres approches a démontré une 
concordance pour les gènes dont 
l'expression était déjà connue dans ces 
systèmes biologiques. De plus, pour 
les milliers de nouveaux résultats obte-

nus, il existe une conformité « intui­
tive» avec des connaissances prove­
nant d'autres processus cellulaires. 

Analyses de voies biochimiques 

Les puces à ADN permettent l'ana­
lyse de voies métaboliques spéci­
fiques. Ainsi, Fambrough et al. [8] ont 
étudié. la cascade de signalisation des 
récepteurs à activité tyrosine kinase 
dans les cellules NIH-3T3. Cette 
famille de récepteurs membranaires 
est conservée de la levure jusqu'à 
l'homme et joue un rôle fondamental 
dans la transmission de signaux de la 
membrane au noyau cellulaire. L'une 
des analyses utilisant des puces à 
ADN a été réalisée avec des cellules 
exprimant un récepteur muté du 
PDGF (platelet derived growth 
factor), sur lequel les résidus tyrosine 
potentiellement spécifiques de cer­
taines cascades de signalisation ont 
été modifiés. Or, cette analyse a 
révélé une redondance fonctionnelle 
considérable entre les différents 
mutants, qui n'avait pu être anticipée 
par les seuls modèles exploités anté-
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Figure 2. Analyse d'expression du 
cycle cellulaire de la levure. Les don­
nées provenant de multiples mesures 
d'expression par puces à ADN à diffé­
rentes étapes du cycle cellulaire de la 
levure engendrent un déluge d'infor­
mations. Un algorithme nommé Self­
Organizing Maps (SOM), inventé par 
Kohonen [21], a été utilisé par 
Tamayo [17J pour l'étude des don­
nées génomiques. Cette méthode 
permet de regrouper les gènes ayant 
un profil d'expression' semblable. 

. Brièvement, les données sont d'abord 
localisees dans un espace (ou matrice 
d'expression) et sont ensuite grou­
pées selon leur proximité dans cet 
espace, signifiant qu'elles ont des pro­
fils d'expression semblables. Dans 
l'exemple provenant du cycle cellu­
laire, plusieurs classes de gènes ont 
été décelées (de fonctions connues et 
inconnues), ayant des profils d'expres­
sion démontrant une périodicité sem­
blable pendant le cycle cellulaire. 
L'exemple donné à la partie inférieure 
de la figure représente les gènes 
ayant une expression maximale 
durant la transition de la phase G1 à 
la phase S du cycle cellulaire de la 
levure. (Adapté de l'article de Tamayo 
et al. [17J avec la permission de Proe 
Natl Aead Sei USA.) 

rieurement. L'étude a aussi permis de 
démontrer que ces récepteurs peu­
vent remplir d'autres fonctions, telles 
que lastimulàtion de la production 
d'interleukine(s) pour l'un des récep­
teurs mutés. Il est possible que cer­
taines de ces réponses soient répri­
mées dans le cas des récepteurs 
normaux, et l'utilisation. de puces à 
ADN aurait alors permis de mettre en 
évidence l'existence de voies biochi­
miques alternatives. 

Validation de mécanismes 
d'action de médicaments 

Les puces à ADN peuvent également 
être utilisées pour étudier le méca­
nisme d'action d'un médicament. En 
principe, un médicament qui agit par 
inhibition spécifique d'un seul gène 
ou de son produit devrait engendrer 
un effet identique à celui résultant de 
l'inactivation de ce gène par délétion 
Ol) par mutation. Marton et al. [91 ont 
utilisé une puce à ADN contenant 
l'ensemble des gènes de la levure afin 
de démontrer l'existence d'une corré­
lation significative entre le profil 

obtenu lors d'une stimulation médi­
camenteuse antimicrobienne et le 
profil d'expression d'une levure por­
tant un gène muté et impliqué dans le 
métabolisme d'action de ce médica­
ment. Ce principe peut être exploité 
pou"r la création d'une base de don­
nées contenant un grand nombre de 
profils d'expression, provenant à la 
fois de cellules stimulées par des 
médicaments et de souches conte­
nant différentes mutations. Ces don­
nées offrent un moyen de « décoder» 
les profils complexes d'expression de 
groupes de gènes modulés par diffé­
rentes classes de médicaments. 

Classification phénotypique 
et prédiction 

En clinique, la distinction entre une 
leucémie myléoïde aiguë (LMA) et 
une leucémie lymphoïde aiguë (LLA) 
est d'une importance cruciale afin de 
bien orienter le traitement thérapeu­
tique. Néanmoins, les techniques 
usuelles de cytopathologie sont com­
plexes et requièrent une très grande 
expertise. Golub et al. [101 ont tenté 
de définir différentes classes de leucé­
mies sur la base du' profil d'expres­
sion de près de 6 000 gènes humains. 
L'analyse d'une soixantaine de leucé­
mies présentant des cytopathologies 
connues a permis de distinguer plus 
d'une centaine de gènes ayant un 
profil différent dans les cas de LMA et 
de LLA. Bien qu'aucun de ces gènes 
(telle la myéloperoxidase) n'ait un 
mode d'expression identifique pour 
toutes les leucémies d'une même 
classe, l'analyse du groupe composé 
des 50 à 100 gènes les plus différents 
entre les deux classes de leucémies a 
une valeur prédictive significative 
(pratiquement de 100 % dans les­
cohortes de validation ultérieure, 
lorsque le taux de confiance est jugé 
satisfaisant). De plus, ces analyses ont 
permis d'identifier un troisième type 
de leucémies non identifiables par la 
seule approche cytopathologique. Les 
analyses par les puces à ADN ont 
donc une application immédiate en 
clinique, et présentent en outre la 
possibilité d'identifier de nouvelles 
classes de phénotypes pathologiques. 

Analyses d'ADN génomique 

L'étude des variations génomiques est 
d'une grande utilité en recherche bio-
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médicale. Une grande partie de la 
variabilité interindividuelle observée 
au sein d'une même espèce, en parti­
cùlier la susceptibilité à certaines 
maladies, est due à des différences 
(ou polymorphismes) existant au 
niveau de la séquence de l'ADN 
génomique. En raison de leur poten­
tiel et de la rapidité d'analyse qu'elles 
présentent, les puces à ADN offrent 
un avantage considérable sur les 
techniques déjà existantes pour abor­
der ces variations. 

Études génomiques comparées 
- Behr et al. [11) ont étudié plusieurs 

souches du bacille de Calmette et 
Guérin (BCG) originaires de l'Institut 
Pasteur au cours du xxe siècle 
(figure 3). A partir de la séquence 
complète de M. tuberculosis, un 
assemblage de sondes génomiques 
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couvrant l'ensemble de ce génome a 
été déposé sur une puce à ADN. Le 
génome de chaque souche de BCG 
étudiée a été amplifié, marqué par un 
fluorochrome et hybridé sur la puce à 
ADN. Cela a permis d'identifier des 
divergences au niveau génomique et 
de les corréler de façon temporelle 
avec l'historique de la dissémination 
mondiale de ces souches. Cette étude 
suggère l'existence d'un lien entre 
l'efficacité du vaccin contre le BCG 
et la prééminence des souches classi­
fiées par ces marqueurs génomiques. 
A l'avenir, ce type d'analyse sera 
sûrement appliquée à d'autres patho­
gènes. 

Reséquençage: détection de SNP 
Grâce aux puces à ADN, une 
séquence connue peut être séquen­
cée de nouveau dans l'intention de 
découvrir des polymorphismes affec­
tant un seul nucléotide (SNP, single 
nucleotide polymorphisms). Cette 
technologie utilise le principe de 
séquençage par hybridation (SPH) 
[12]. Brièvement, une séquence 
connue peut être caractérisée par un 
assemblage d'oligonuc/éotides che­
vauchants. Pour cette application par-

ticulière, il faut donc créer une puce 
à ADN contenant tous les 25 mers 
chevauchants, définissant la séquence 
à interroger ainsi que trois amorces 
contenant les trois permutations pos­
sibles pour le nucléotide central de 
l'amorce (c'est-à-dire qu'un T sera 
remplacé par un A, un C et un G). 
Cette méthode a été uti 1 isée par 
Wang et al. [13] pour reséquencer 
2,3 Mb du génome chez 7 individus 
et a ainsi permis d'identifier 
3241 SNP humains. Cette approche a 
également été utilisée afin d'identifier 
des polymorphismes dans un gène de 
susceptibilité au cancer du sein 
(BRCA 1) [14) ainsi que pour plus 
d'une centaine d'autres gènes impli­
qués dans des processus vasculaires, 
métaboliques et endocriniens [15). 
Enfin, le reséquençage de génomes 
de pathogènes (tel celui du VIH) per­
met d'identifier des mutations fonc­
tionnelles, ouvrant ainsi la voie vers 
des thérapies spécifiques et détermi­
nées en fonction des polymorphismes 
génomiques du pathogène. 

Génotypage 
La détermination du génotype pour 
un SNP donné exploite la haute spé-

Figure 3. Analyse génomique de souches BCG. Une puce à ADN contenant 
des sondes génomiques de M. tuberculosis a été utilisée pour interroger le 
génome de plusieurs souches de BCG {11]. Dans cet exemple, les comparai­
sons entre deux souches ont permis d'identifier de petites régions géno­
miques affichant un excès de couleur rouge, signifiant une délétion au sein 
du génome de la souche B marquée en vert. L'analyse complète de plusieurs 
souches a mis en évidence plusieurs microdélétions (contenant parfois un ou 
plusieurs gènes). (Adapté de l'article de Behr et al. (11] avec la permission de 
Science.) 
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cificité de la puce à ADN à discrimi­
ner une complémentarité parfaite ver­
sus une complémentarité imparfaite 
causée par une seule paire de bases 
non appariées. La puce à ADN de 
génotypage (figure 4) contient donc 
des amorces spécifiques de chacun 
des allèles, outre des amorces 
témoins [131. Une puce à ADN a la 
capacité de contenir des milliers de 
polymorphismes. Les applications 
possibles pour ces puces à ADN sont 
nombreuses: criblage génomique 
pour études de liaison génétique, 
études d'association avec des milliers 
de gènes candidats, caractérisation 
d'anomalies cytogénétiques, etc. 

1 Informatique 

La gestion du déluge d'informations 
produites par ces technologies repré­
sente un défi énorme pour les biolo­
gistes. L'un des facteurs limitants est 
donc la capacité d'analyse de l'infor­
mation, pour laquelle de nouvelles 
méthodes sont nécessaires. Une nou­
velle génération d'outils informa­
tiques est actuellement en développe­
ment: ainsi, pour réaliser les études 
d'expression, il existe des algorithmes 
capables d'identifier des groupes de 
gènes partageant des profi Is d'expres­
sion semblables (cluster [16], gene 
cluster [17]). D'autres méthodes sont 
destinées à trouver des relations entre 
des gènes ayant des expressions iden­
tiques, comme la recherche de motifs 
semblables au niveau des séquences 
localisées en 5' ou 3' du gène (par 
exemple, Yeast Toolset AlignACE 
pour la levure [18]). La création de 
ces nouvelles bases de données est 
indispensable afin de pouvoir regrou­
per, visualiser et partager les profils 
d'expression obtenus par les puces à 
ADN (ArrayViewer, ArrayDB [19]). Le 
Tableau 1 dresse la liste des res­
sources informatiques disponibles sur 
Internet et qui concernent les puces à 
ADN. 
Ainsi, moins de cinquante ans après 
la découverte de la structure de 
l'ADN, nous entrons résolument dans 
l'ère post-génomique. Ces technolo­
gies fascinantes permettront d'explo­
rer l'univers cellulaire dans toute sa 
complexité. Ayant gardé longtemps 

~ les apparences d'un roman de 
( science-fiction, la révolution géno­

mique est désormais une réalité capti­
vante. 
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Figure 4. Génotypage de SNP. Pour réaliser le génotypage d'un SNP, tel 
que celui qui apparaît en haut de cette figure, deux séries d'oligonucléo­
tides doivent être présents sur la puce, chaque série représentant un allèle 
différent. Chaque colonne contient des oligonucléotides successifs qui sont 
complémentaires de la séquence interrogée et dont la base centrale est 
substituée par un A, C, G, ou T dans les quatre rangées. Les sondes spéci­
fiques aux allèles A et C apparaissent en blanc, tandis que les sondes 
témoins apparaissent en gris. Le génotype d'un individu peut être déter­
miné par l'analyse de la variation du signal d'hybridation provenant d'un 
produit PCR marqué contenant le SNP. Le signal d'hybridation de trois 
individus avec les génotypes AA, AC et CC est présenté à la partie infé­
rieure de la figure. Une micropuce peut d'ailleurs interroger des milliers de 
SNP en parallèle. (Adapté de l'article de Wang et al. [13] avec la permission 
de Science.) 
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JllIS2000 
Summary 
DNA chips in medicine 
and science 

The Human Genome Project is 
changing our conception of modern 
biology. Recent advances in tech­
nology are now enabling us to 
observe complex processes on a 
genome-wide scale. This review 
examines the emerging technology 
of DNA microarrays. Notwithstan­
ding the differences related to 
manufacture characteristics and 
properties of the two major techno­
logies used today, DNA microarrays 
offer the potential to simultaneously 
investigate thousands of genes. 
Expression DNA chips containing 
gene probes rely on the expression 
profile of collections of ge,nes to 
investigate complex biochemical 
pathways, validate drug targets, and 
c1assify cell phenotype. Microarrays 
may be used to detect variations in 
DNA sequences and correlate these 
with phenotypes - as in genome 
scans for linkage studies, mutations 
detection, large-scale association 
studies, and analyses of drug res­
ponses. Numerous applications 
related to modern medicine in the 
areas of diagnostics and drug mana­
gement are rapidly emerging. 
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