
YOBOL: LOCALITY-AWARE MULTICAST ENGINE FOR A
MASSIVELY MULTIPLAYER GAME ARCHITECTURE

by

Chhunry Pheng

School of Computer Science

McGill University, Montreal

October 2010

A THESIS SUBMITTED TOMCGILL UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF THE DEGREE OF

MASTER OFSCIENCE

Copyright c© 2010 by Chhunry Pheng

Abstract

Massively multiplayer online games have gained such momentum throughout the years

that their consumer base has exploded. Being mainly built on aclient-server architecture,

the server becomes the bottleneck, causing scalability problem. To alleviate this, peer-to-

peer structures have been exploited in the game context.

In this thesis, we have developed a peer-to-peer basedNetwork Engineof the Mammoth

game research framework.Based on pSense [ASB08], this network layer is flexible enough

such that it can be run on different transport protocols. Theidea is that players send their

game changes directly to other players that are close to themin the game world without

going through a server. As clients move, they detect other players with the help of gos-

siping. Special sensor nodes suggest them to build connections to new players. Through

these message exchanges, each client node creates and updates the list of peers interested in

their movements. Since clients constantly move around, this overlay maintenance is highly

dynamic. ASuggestion Engineis built to perform this overlay maintenance. Experiments

are designed to analyse and compare the performance of the network engine when running

on top of two different transport protocols: UDP/IP and TCP/IP.

i

Résum é

Les jeux en ligne massivement multijoueur ont gagné une si grande popularité au cours

des dernieres années que leur nombre de consommateurs a explosé. Ǵeńeralement conçu

pour une architecture client-serveur, celui-ci subi une faiblesse au niveau de leur extensibi-

lit é, car un goulot d’́etranglement se forme normalement du côté du serveur. Afin de régler

ce probl̀eme, les architectures poste-à-poste ont́et́e adopt́e et int́egŕe dans les contextes de

jeu.

Pour cette th̀ese, nous avons dévelopṕe un moteur de réseaux (Network Engine) conçu

pour une architecture poste-à-poste pour Mammoth, qui est un logiciel intégŕe pour la re-

cherche des jeux en ligne massivement multi-joueurs. Basé sur pSense [ASB08], notre

couche de ŕeseau est assez flexible afin qu’il puisse supporter différents protocoles de trans-

port. Les noeuds clients se découvrent entre eux part l’interḿediaire d’une troisime entité.

Cette dernìereémet des messages de suggestions afin d’établir des connections entre les

noeuds clients. Grâce aux messages communiqués, les noeuds clients créent et fait un mise

à jour de leur liste de noeuds homologues intéresśes par leurs mouvements. Vu que les

clients bougent constamment dans le jeu, cette structure deréseau doit tre très dynamique.

Un moteur de suggestion (Suggestion Engine) est cŕeé pour faire la maintenance de la

structure. Une suite d’expériences ont́et́e d́evelopṕees afin d’analyser et de comparer la

performance du moteur de réseau lorsqu’il est exécut́e avec deux diff́erents protocoles de

transport : UDP/IP et TCP/IP.

ii

Acknowledgments

This work would not have been complete without the support ofmany. First, I would

like to thank my supervisor Bettina Kemme for her constant guidance, support and encour-

agement throughout the completion of this work.

Finally, I would like to give special thanks to my parents, mysister and the rest of my

family and friends for putting up with me and for their constant support and encouragement

throughout my studies.

iii

Contents

Abstract i

Résuḿe ii

Acknowledgments iii

Contents iv

List of Figures vii

1 Introduction and Contributions 1

1.1 Motivation . 1

1.2 Contributions . 3

1.3 Thesis Organization .3

2 Background and Related Works 5

2.1 Massively Mulitplayer Online Games Overview 5

2.2 Interest Management . 6

2.2.1 Euclidean Distance Algorithm .7

2.2.2 Tile Algorithm . 7

2.3 Existing Architectures .. 8

2.3.1 Client-Server . 8

2.3.2 Peer-to-Peer . 9

2.4 Other Peer-to-Peer Structures in MMOGs 12

2.5 pSense Algorithm . 14

iv

2.5.1 Sensor Node Selection and Maintenance 16

2.5.2 Message Forwarding . 17

2.5.3 Overlay Maintenance . 18

2.5.4 Joining and Leaving the Network 20

2.6 Mammoth . 21

2.6.1 Server Architecture and Object Replication 21

2.6.2 Publish/Subscribe Basics . 23

2.6.3 Interest Management in Mammoth 24

2.6.4 Mammoth Components . 25

2.6.5 Communication Strategy . 28

2.6.6 Other Services . 28

2.7 Transport Protocols: TCP, UDP .. 29

2.8 MINA . 30

3 Yobol Concepts 32

3.1 Motivation . 32

3.1.1 Naming . 34

3.2 Challenges . 34

3.2.1 Open Connection . 34

3.2.2 Suggestion Concept . 35

3.2.3 Master Object Migration . 35

3.2.4 Distinct Replication Spaces . 37

4 Yobol Implementation 38

4.1 Yobol Architecture Overview .. . 38

4.2 Network Engine . 40

4.2.1 Yobol Network Engine API . 41

4.2.2 Message Filtering . 42

4.2.3 Design Variation for TCP and UDP 42

4.3 Suggestion Engine . 44

4.3.1 Suggestion Making . 44

v

4.3.2 Yobol Suggestion Engine API . 46

4.3.3 Overlay Maintenance in Yobol . 47

4.4 Replication Space . 48

4.4.1 Refresh Interval . 50

4.4.2 Replication Space: Server and Peer51

4.4.3 Object Migration in Yobol . 54

4.5 Peer Communication Strategy .54

4.6 Boostrapping . 55

5 Experiments 58

5.1 Experimental Environment .. 58

5.2 Simulation Setup . 59

5.3 Results . 60

5.3.1 Capacity . 60

5.3.2 Performance Comparison: TCP VS UDP 63

6 Conclusions and Future Work 75

6.1 Conclusion . 75

6.2 Future Work . 75

6.2.1 Firewall . 76

6.2.2 Reliability . 76

6.2.3 Security . 76

6.2.4 pSense . 77

Appendices

Bibliography 78

vi

List of Figures

2.1 Tile Algorithm Example. 8

2.2 Game State Partitioning - Zones. 10

2.3 pSense Algorithm figures adjusted from [ASB08]. 16

2.4 Message Forwarding adjusted from [ASB08]. 18

2.5 Player State Update Dissemination - Client-Server. 23

2.6 Components in Mammoth. 26

2.7 MINA Structure Overview . 31

3.1 Different Network Architectures Created by Migrating Master Objects. 36

3.2 Player State Update Dissemination - Peer-to-Peer. 37

4.1 New Components in Mammoth for Yobol. 39

4.2 Yobol Network Engine Class Diagrams. 40

4.3 Suggesting Connection Steps. 45

4.4 Yobol Suggestion Engine Class Diagrams. 46

4.5 Finding a Better Sensor Node Candidate. 49

4.6 Steps Taken to Establish Connection Between Peers. 50

4.7 Steps Involved in Replication Space Server and Peer. 52

4.8 Master Object Migration Steps. 53

4.9 RendezVous Node Bootstrapping. 56

5.1 UDP Maximum Load. 61

5.2 Connection Latency Comparison. 64

5.3 Performance Comparison - CPU Usage. 65

vii

5.4 Performance Comparison - Memory Usage. 66

5.5 Performance Comparison - Page Fault Count. 68

5.6 TCP Message Overheads. 71

5.7 TCP Message Overheads (cont’d). 72

5.8 UDP Message Overheads. 73

5.9 UDP Message Overheads (cont’d). 74

viii

Chapter 1

Introduction and Contributions

1.1 Motivation

The popularity of Massively Multiplayer Online Games (MMOGs) has increased tremen-

dously. Over the last decade MMOGs consist of a virtual game-world, generally hosted

on the Internet, where many players can log-in and possibly interact with all other play-

ers in the game world. For fairness purposes, the game must provide the same knowledge

about the current game state to every player. To do so, a greatamount of data needs to be

transmitted over the network.

Traditionally, games are built on a client-server architecture. This offers more con-

trol to game companies in terms of managing player accounts,maintaining game state

consistency, and detecting and resolving cheating situations. However the client-server ar-

chitecture does not scale well. A bottleneck generally occurs on the server as more players

connect to the game. Most companies deal with this problem byadding more servers and

creating server clusters in the system. Although this alleviates the scalability problem, it

does not get rid of it. There are costs associated to this practice which include the cost of

buying the machines, replacing computer parts, renting a facility to store them, hiring peo-

ple for their maintenance, other utilities, etc. Companies compensate these costs by asking

for a monthly or annual membership fee from their players.

1

1.1. Motivation

To give smaller game companies a chance to get a piece of this market, numerous ap-

proaches have been proposed for utilizing a peer-to-peer structure for MMOGs. The main

advantage of a peer-to-peer architecture is its limitless scalability. However, developers

must deal with some problems that were inexistent or relatively simple to solve in client-

server architectures. Some of these new challenges are player’s interest management, game

state distribution, and cheat detection and prevention.

Part of the game experience in MMOGs is to play in a virtual world shared among

a large number of users. In an ideal environment, each playerobject will know about

every other player object in the game as its decisions might be affected by others’ actions.

However, this is not a plausible solution for MMOGs due to itspoor scalability. As the

number of player objects in the game grows larger, the numberof messages exchanged over

the network and processed at each client node increases greatly. To remedy this, several

interest managementalgorithms were introduced to MMOGs. Interest management is the

mechanism used to determine which information is relevant to a player object. The most

common type of perception in MMOG is bounded by what a player object can see, but is

not strictly limited to proximity. For example, if a game object is close to a player object,

but they are separated by a wall, the game object becomes irrelevant to that player object.

The Mammoth research group at McGill University has built a massively multiplayer

game research framework, named Mammoth. This framework aims to ease the implemen-

tation of new game algorithms and provides a means to evaluate them in a real game envi-

ronment, instead of using simulations. One of the major components found in Mammoth

is the network engine. This component implements the core primitives for communica-

tion between clients and server. It handles connections andmessage transmissions using

TCP/IP and supports several communication paradigms. However, most of these models

are designed for the client-server structure.

Each of the peer-to-peer approaches that have been proposedin the past focuses on

some of the game aspects. In the case of pSense [ASB08], the emphasis is put on fast

dissemination of player position update messages to interested peers. Being a peer-to-peer

approach, each client node must perform the interest management of its player to determine

who should receive its updates. This is a difficult task to do on its own. Therefore peer

nodes emit suggestion messages to a client node, notifying it about other nodes that might

2

1.2. Contributions

be interesting to that client node. By doing so, a peer-to-peer structure is formed and

maintained dynamically. PSense introduces the concept of near and sensor nodes. Near

nodes are nodes that are close to a player object and whose state updates might have a direct

impact on the player’s actions. Sensor nodes are nodes that are located around a player

object in a certain distance and that find other nodes that theplayer might be interested in.

The task of this master thesis is to build a peer-to-peer network engine capable of lis-

tening to suggestions made from peer nodes. This new engine,referred to as Yobol, is

an extension module to Mammoth that merges game and network awareness. It is flexi-

ble enough to allow executions over different type of transport protocols like TCP/IP and

UDP/IP. Based on the pSense algorithm, Yobol contains asuggestion enginewhich is the

component responsible of determining a client’s interest management and making sugges-

tions to peer nodes such that new connections can be established.

1.2 Contributions

Specific contributions of our work include:

• We provide a design and implementation of a network engine for communication

over a peer-to-peer structure in Mammoth. The modular design of our network layer

allows for quick and easy swapping of transport protocols, such that Yobol can be

run over TCP/IP or UDP/IP.

• We provide a design and implementation of a suggestion engine for maintaining the

peer-to-peer overlay according to the pSense algorithm [ASB08].

• We give and discuss experimental results on the usage of TCP/IP and UDP/IP as

transport protocol in Yobol for MMOGs.

1.3 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 provides some background in-

formation and lists related work on some game concepts and peer-to-peer solutions for

3

1.3. Thesis Organization

MMOGs. Chapter 4 describes the internal functioning of Yoboland its integration in

Mammoth. Chapter 5 gives analysis results of the performanceof Yobol executing over

different transport protocols (TCP/IP and UDP/IP). FinallyChapter 6 concludes this work

and suggests future directions for research.

4

Chapter 2

Background and Related Works

2.1 Massively Mulitplayer Online Games Overview

Massively Multiplayer Online Games or MMOGs are mostly distinguished by their large

number of players (usually in thousands) simultaneously connected to a persistent virtual

world. The large scale of the number of players subscribing to these games clearly differ-

entiates them from other network based online games. For example, World of Warcraft is

a popular commercial game which currently has over 10 million subscribers, where more

than 2.5 million of them are from North America [Ent]. In nearly all multiplayer games,

players take control of a game character, also known as anavatar. This is the representative

of the player in the virtual game world. It is through their avatar that players can see and

hear things occurring in the game. Therefore, the game area visible to the player is lim-

ited by the abilities of their avatar. Other examples of wellknown MMOGs are Neocron

Evolution [AG], Battleground Europe [Pla], and GuildWars [Are].

The game settings can largely differ depending on the natureof the game. It can take

place in a fantasy world with dragons and magicians or a worldfull of aliens and space-

ships. Regardless of the setting, the game world or virtual world usually consists of dif-

ferent types of objects, that can be classified into four maincategories: player characters,

non-player characters (NPCs), mutable objects, and immutable objects. Player characters

or avatars are controlled by the players. The state of a player character usually contains its

5

2.2. Interest Management

current position in the game world, running directions, abilities, health or its possessions.

The avatar’s possessions generally consist of items collected by the avatar while moving in

the virtual world. Aside from player characters, there are also non-player characters like

monsters or enemies. These are very similar to player characters, but differ by the fact that

they are controlled by an AI algorithm. Mutable objects, like food and weapons, are ob-

jects with properties that can be modified during the game. For example, a door that can be

opened or closed is a mutable landscape item. Its state wouldbe determined by a position

and a status such as “door is closed”. Lastly, immutable objects or static objects do not have

any properties that can be changed during the game. Their states can be represented as a 2-

or 3-dimensional vector. Some immutable landscape item examples are doors, windows,

rivers and trees.

The collective states of all objects in the game at a given time constitute thegame state.

Objects’ states are modified when an action is performed by oron them. There are three

main actions that can be performed. The first one is the changeof position. When an avatar

or a NPC moves around, its position is modified along with the game state. The second

is the interaction between players which can alter the stateof one or both parties. For

example, if two players fight against each other, the health of both players will decrease.

The third type of action is the interaction between a player and an object in which the state

of both entities gets changed. For example, if a player drinks water from a bottle, the player

is not thirsty anymore and the bottle contains less water.

2.2 Interest Management

In order to provide a shared sense of space among players, each player must maintain a

copy of the (relevant) game state on his/her computer. When one player performs an action

that affects the world, the game state of all other players affected by that action must be

updated. The simplest approach is for each player to maintain a full copy of the game state

and all players broadcast updates to all other players. The problem with this approach is

that it does not scale well: as the number of player increases, the number of messages sent

over the network and to be processed by each client greatly increases.

6

2.2. Interest Management

One of the most effective strategies to address this problemis to send to a player’s

computer only the messages that are relevant to its avatar (e.g. only the update message

of objects it can see, or that are near). The world space of MMOGs contains a lot of

information and a single player needs only to know about a subset of that information.

Interest Management(IM) is the process of determining which information is relevant to

each player [Mor96].

The information relevant to a player usually corresponds tothe perception of its avatar.

In the interest management scheme, this is often based on proximity, modeled as a sphere

around the avatar. However, the most common type of perception in MMOG is what an

avatar can see, which does not always correspond to proximity. In particular, game worlds

usually contain static obstacles that occlude regions of the game space. For example, if an

object is close to an avatar but is behind a wall, it becomes irrelevant to that player.

2.2.1 Euclidean Distance Algorithm

In the Euclidean distance algorithm, the area-of-interestis a circle around the position of

the player. The radius orvision rangedetermines the maximum distance a player can see.

If the distance between an object and a player is smaller thanthe radius of the area-of-

interest, the object is declared to be in the player’s visionrange. Then the player subscribes

to all objects located in its vision range.

2.2.2 Tile Algorithm

In tile algorithms, the world space is divided in tiles orzonesand the player subscribes

to all objects in the tiles that intersect its area-of-interest. Tiles can be formed of various

shape such as square, rectangle or hexagonal. These types ofapproaches try to leverage the

occlusion created by obstacles in the world. An example of a tile algorithm is the square tile

algorithm. It is a zone-based interest management such thatthe game world is divided into

equal-sized squares. The radius of the area-of-interest ofthe player determines the number

of the squares. For example, at any given time, an avatar subscribes to at most 9 zones, the

one it currently resides in and the 8 (or less) neighbor tilesaround it, as depicted in Figure

7

2.3. Existing Architectures

Figure 2.1:Tile Algorithm Example

2.1 When a player performs an action, the action is broadcast to all players subscribed to

the square in which the action has taken place [JSBV06].

2.3 Existing Architectures

There are several ways to implement the network structure ofMMOGs. Three main ones

are client-server, pure peer-to-peer, and hybrid peer-to-peer. Each approach has its advan-

tages and disadvantages, ranging from scalability to complexity of implementation. In this

section, an overview of the three above mentioned network architectures is described.

2.3.1 Client-Server

The most commonly used approach in MMOGs is the client-server architecture. The server

acts as a central component responsible of maintaining the game state, meanwhile the client

hosts the user’s avatar and handles the avatar’s state updates. To start playing, clients must

connect to the server to retrieve the latest game state and store it locally. Afterward, all

actions performed by clients are converted to state updates, which are wrapped in messages,

and are sent to the server. Upon receipt of clients’ update messages, the server deserializes

them, processes them to generate a response, serializes theresponse and multicasts it to all

clients that have an interest in this update according to theinterest management. Clients

8

2.3. Existing Architectures

receive the response message and use it to update their game state.

This model is chosen in most cases for its ease of implementation and control, such as

detecting and preventing cheating amongst players or adding object persistence in order to

handle system crash. Since the server is the main cause of thesystem bottleneck, more than

one server can be used to support a larger number of players. They can also be arranged

in clusters. Usually, in order to avoid coordination among servers, each server runs its own

instance of the game with a limited number of clients. Generally, for scalability reasons,

game companies’ servers are located in huge server-farms. In January 2008, World of

Warcraft recorded over 10 million users [Ent]. Being one of the largest game company,

it can afford purchasing more servers to support the increasing user’s demands. However,

smaller or start up game companies cannot follow this strategy as they will not be able

to afford such setup. For these smaller game companies, using the client-server model is

not that suitable since the cost of servers will increase very fast which poses a limit to the

number of servers they can have. The maximum number of participating players is limited

by the maximum workload of these servers. Another point is that if game companies want

to look into a different payment method, then they cannot afford the large server farms.

Hence, other architectures need to be explored.

2.3.2 Peer-to-Peer

An alternative model is the peer-to-peer architecture where participating nodes orpeers

provide a portion of their resources, like processing poweror network bandwidth, to other

participants in the network. In contrast to the client-server model where the server pro-

cesses and provides information and clients consume it, peers are both information sup-

pliers and consumers. Peer-to-peer networks are typicallyformed dynamically by ad-hoc

additions of nodes. Furthermore, the removal of nodes should have no significant impact

on the network. They are highly scalable because the computations, resources and commu-

nication overheads are all shared amongst network participants. Their scalability and their

capabilities to build and maintain peer-to-peer overlays themselves make them favorable

for designing MMOGs network structures.

In a peer-to-peer network, all peers are equal and simultaneously function as both

9

2.3. Existing Architectures

Figure 2.2:Game State Partitioning - Zones

“clients” and “servers” to other nodes on the network, such that no server is needed. In

a very common setup, the game world is partitioned into multiple zones. In addition to

hosting the user’s avatar and handling its state updates, peers can be assigned one or sev-

eral zones and will become their host. This means that such peer will act as a “client” for

its user and as a “server” for all objects residing in its zones.

To start playing, clients must connect to a peer node in the network to retrieve the latest

game state and store it locally. Then some zones might be assigned to them. Afterward,

all actions performed by clients are converted to state updates, wrapped in messages, and

sent to the appropriate zone host. Upon receipt of update messages from peers, the host

node verifies that the update message concerns a zone it is managing before it processes

the update. Then it prepares a response message and multicasts it to all interested clients.

When peers receive a response message, they apply the informed changes to their local

game state. Figure 2.2 shows the division of the game state into small rectangular zones

where peerp is the host of 4 zones and peerq manages 2. The avatar of nodep is located

in one of the zones managed byq. When the avatar moves,p sends an update message to

the host nodeq, who in turn processes the update, generates a response and multicast it to

all peers interested in the movement.

The challenge of this game world split is that if an action is interesting for players that

are outside the zones a peer handles or beyond the region which the players reside in, the

neighboring zones are difficult to detect. Thus, in most implementation, player’s vision

range does not go beyond the zone it is residing in.

10

2.3. Existing Architectures

Pure Peer-to-Peer

An example of pure peer-to-peer system is Solipsis [JK03]. It is a mathematical model for

a massively multi-participant shared virtual world. The peer-to-peer network of Solipsis

is modeled by a graph that consists of a set of nodes and a set ofconnections between

those nodes. Each node has a unique ID and is responsible of its own state. They are able

to sense part of the virtual world, which is inhabited by other entities. Their neighbors

should recognize by their own initiative that the status of the node has changed. Therefore,

each node has to know all the entities that are in a certain region around it. Moreover, the

system must ensure that no node will be disconnected from allothers. Each node should

somehow be connected via other entities to every single peerin the system. However, up to

date no real game implementation of Solipsis exists, makingthis approach more theoretical

than practical since no overhead or performance evaluations have yet been published. This

makes it difficult to judge its suitability for MMOGs.

This type of architecture is very scalable as no server is needed. Nevertheless, there

are many unsolved problems like cheating, player authentification, and game persistence,

making it not readily suitable for MMOGs.

Hybrid Peer-to-Peer

The idea behind hybrid peer-to-peer architectures is the usage of peer-to-peer protocols

while still maintaining servers. This can be found in games like GuildWars [Are] and

Neocron Evolution [AG]. These servers do not have so many tasks to fulfill other than sup-

porting the peer-to-peer structure of the nodes, such as authorization and authentification

making sure that only credible users can access the game, storing players’ persistent states

like account-information or the avatar’s abilities and possessions. The game state is taken

care of by the players themselves, and not the server as discussed in the previous section.

However, by giving more control to the players, there is a greater possibility for cheating.

Hybrid peer-to-peer offers the advantages of both client-server and peer-to-peer sys-

tems. It is more scalable than the traditional client-server architecture and less costly to

develop as no such expensive server-clusters are needed to handle the number of players.

On the other hand, players will have to participate in keeping the game alive by providing

11

2.4. Other Peer-to-Peer Structures in MMOGs

some upload resources. Moreover, since the hybrid approachhas a server in place, cheating

is relatively easy to control. Every action that takes placein the game will be transferred

to the server. It can control and verify the changes, such that if any irregularity arises, the

centralized server can decide if this was due to cheating or not. This solves the biggest

problem of pure peer-to-peer architectures. The approach introduced in this thesis follows

the hybrid peer-to-peer structure where peer nodes only handle information related to posi-

tion updates. The server is responsible for authentification, player distribution, persistence,

and keeping the game state of mutable landscape items consistent.

2.4 Other Peer-to-Peer Structures in MMOGs

Many different approaches for using peer-to-peer algorithms for MMOGs have been pro-

posed. In some approaches, messages are multicast using a distributed hash table (DHT) or

a dissemination tree. Others are built on group communication systems or gossip protocols.

In some works, the game world is divided into small sub-spaces or zones which will be

distributed over all participant nodes in a peer-to-peer network. SimMud [BK04] follows

this approach by using a Pastry DHT [RD01] to map the client nodes and the game objects

(zones, players, pick-able flower, etc.) to an identifier randomly chosen from a uniformily

distributed 128-bit name space. The game sub-spaces and objects are assigned to client

nodes whose identifier is closest to the object’s identifier,and thus the client becomes their

master node. The DHT is used to lookup where a particular object is located. On top of

the DHT, SimMud uses Scribe [MCR02] to multicast the game state. For each existing

sub-space, a multicast group is dynamically formed betweenplayers located in the same

sub-space. This is made possible by the self-organizing properties of peer-to-peer net-

works. In order to see what is happening in the game, a client node has to join to as many

multicast groups as necessary, determined by their interest area. As players move around,

their multicast groups will change accordingly. Among all client nodes in any multicast

group, one is chosen as the groupcoordinator. The role of the coordinator is to be the root

of the multicast group as well as to provide newly joined clients in the group with the most

updated state of the sub-space.

12

2.4. Other Peer-to-Peer Structures in MMOGs

Some improvements of SimMum were later proposed in Mopar [YV05] where a few

optimizations were done to reduce latency. This was achieved by making newly joined

clients in the group retrieve the current game state from thecoordinator’s local cache in-

stead of getting if from the DHT. This consequently reduces the usage of the DHT to

backup data storage. Since accessing data directly from thecoordinator is faster than from

the DHT, the amount of time elapsed before a client receives the game state is greatly re-

duced. Similarly, in Mercury [ARBS04], arich subscriptionlanguage was developed to

allow players to express their interests with more flexibility. It also provides an efficient

routing mechanism to multicast publisher’s updates to their subscribers. Nevertheless, all

these rely on splitting the game world into smaller zones. Zone-based approaches comport

many disadvantages, such as expensive hand-shakes when a player moves from one zone

to another. Also if a coordinator leaves the game, an expensive reconfiguration is required.

Due to the dynamic nature of games, the number of players can constantly vary, making

load-balancing difficult to perform.

A dissemination tree [MCR02, LP96] is often used to multicast game states messages

across all nodes in many peer-to-peer systems. When tree-based multicast protocols were

developed, they were mainly aimed for applications with a large receiver base. This is

not the case in MMOGs because generally a message is only interesting to a few players.

Some argue for using group communication systems (GCS) [GCV01] instead, as these

offer primitives to multicast messages to a group of sites. However, determining when a

player has to join which group is complex. Also, the actions of joining or leaving a group

are generally expensive operations.

Gossiping protocols [PTEK03,KPBM99] can also be used in MMOGs to multicast di-

rect messages or recover lost messages. They aim at propagating messages of all nodes to

every other node in the system, thus achieving high reliability. However, this creates a lot

of redundancy in the system, which is counter-productive ina large peer-to-peer game envi-

ronment because peer nodes are likely to be overloaded with the large amount of messages

to be processed. Additionally, in a peer-to-peer MMOG setting, each message should only

reach a small subset of players since only those interested in the update should receive it.

Therefore using a localized multicast mechanism would be more suitable for this context.

13

2.5. pSense Algorithm

2.5 pSense Algorithm

pSense is a localized multicast for fast dissemination of player position updates in a dy-

namic game setting [ASB08]. It exploits a peer-to-peer structure for better scalability, as it

is one of the main problems with traditional client-server architecture. This section summa-

rizes information presented in [ASB08]. A general idea of thepSense algorithm is given,

followed by a detailed description of the overlay maintenance, and the joining and leaving

of a node in the network.

For ease of understanding, the distance between two nodes refers to the distance be-

tween two players hosted by the nodes in the game world. The area of interest defined by

the interest management is called thevision range. The interest management described in

pSense is the Euclidean distance algorithm. Since every node in the game hosts a player,

the player hosted in node A is referred to as player A. A randomnode B is anear node

of A if the player character hosted by node B resides in the vision range of player A. The

words player and node will be used interchangeably in the following.

pSense functionality can be summarized in two main tasks. The first task consists of

sending the position updates of a player A to its near nodes when it moves. Sending the

update message to every other player in the game is not very scalable. For example, assume

there are 200 active players in a game, and each player moves to a random position every

30 seconds. This amounts up to 80,000 position update messages sent every minute. As the

number of players increases, the network runs a greater riskof getting overloaded. With

2000 clients, there will be close to 8,000,000 messages in the network per minute just for

position updates. For scalability reason, position updatemessages will only be sent to near

nodes located in the vision range. It is assumed that the relation between a node A and

its near nodes are symmetric. This means that if A is interested in node B, then B is also

interested in player A.

Position update messages are not to be strictly sent to immediate near nodes. Doing so

will greatly risk the creation of game network partitions. Network partitions occur when

agglomerations of players are formed in the game, where eachare situated far apart. A dis-

connection between those groups can occur, such that no player from one group is aware of

what is happening in the other group. Players then lose valuable game information. Once

14

2.5. pSense Algorithm

network partitions exist, they cannot be fixed since no superpeer node with global knowl-

edge exists in pSense. Thus, the second task of pSense is to keep the network connected.

This is achieved by having each node maintain a list ofextended nodesknown assensor

nodesin pSense. Sensor nodes of a node A are nodes just a bit outsideof the vision range

of A. They stick out in every direction like antennas. In Figure 2.3(a) the black dot repre-

sents a node A, referred to aslocal node. The circle around it is its vision range. All nodes

residing in the vision range are maked withN indicating immediatenear nodes. Figure

2.3(b) shows the space division around the local node A where8 pie sections are formed.

Each pie section has an identifier and each sensor node aroundnode A is assigned to a

specific section. There is only a single extended peer node per section. Routine checks

will be performed to look for the best sensor node candidate for a given section. pSense

only considers a 2D space using 8 sectors to divide the space around the local node, such

that extensions might be needed for 3D. Moreover, other types of division can also be im-

plemented, for example using triangles instead of pie shapesections. Finding an optimal

division configuration is however out of scope of this thesis.

Sensor nodes have two main purposes. First, they prevent thecreation of game network

partitions by broadening a nodes knowledge of the game. A node A stays informed of

what is happening in its vicinity by the near nodes, and gets some knowledge of what is

happening outside its vision range from its sensor nodes. Second, they help a node A to

quickly detect players that enter or leave its vision range.For example, assume that a player

P enters the vision range of node A and A and P do not know each other. Since they do

not have any knowledge of each other, it is difficult for either one to initiate the contact.

Assume that one of the sensor nodes of A knows node P and has been getting updates

about P for some time. Once the sensor node sees that P has entered the vision range of A,

it notifies node A about the newcomer with a message containing information about P.

In other words, pSense must restrict sending position updates to near players, while

avoiding creating network partitions. This is achieved by making every node keep two

distinct lists: a list of near nodes and a list of sensor nodes. The former contains only

the near nodes that are within the local node vision range which need the position updates

very fast. The later contains nodes that are just a bit outside the vision range, sticking

out in every direction. The sensor nodes of a node A should be distributed as evenly as

15

2.5. pSense Algorithm

Vision

Range
S Sensor Node

Local Node A

Neighbor/Near Node

S

N

Unknown Node

S

S

S

S

S

S

S

N
N

N N

(a) Local View of the Network (b) Sensor Node Selection

S Sensor Node

Local Node A

Neighbor/Near NodeN

Unknown Node

S

1. sensor node request

2. knows better sensor

3. sensor node suggestion

(c) Sensor Node Maintenance

Figure 2.3:pSense Algorithm figures adjusted from [ASB08]

possible around A for a better chance of keeping connectionsto the rest of the network,

thus avoiding network partitions, and efficiently detecting new approaching nodes.

2.5.1 Sensor Node Selection and Maintenance

Sensor nodes of a node A reside a bit outside of the vision range of A. They should be

distributed as evenly as possible around A. Figure 2.3(b) shows an example of how sensor

nodes should be distributed. Since node A does not have much knowledge outside its vision

range, it can hardly find the best sensor candidates on its own. Therefore, it periodically

sendssensor requestmessages to the sensor nodes asking them if they know a bettercandi-

date for this section. The sensor request message contains the position of A and the section

identifier. The sensor node checks if there is a node better suited than itself (or could be

itself) and sends asensor suggestionmessage back to A. The sensor suggestion message

16

2.5. pSense Algorithm

contains the identifier of the suggested candidate and the section identifier. Node A then

replaces the old sensor node with the new one. This is depicted in Figure 2.3(c).

2.5.2 Message Forwarding

According to pSense, whenever a player A moves in the game itsnew position is sent to

its near nodes and sensor nodes. However, every machine has alimited amount of upload

bandwidth capacity. Therefore, it may not be possible to send the update to every near and

sensor node. When the number of nodes in these two sets exceedsthe upload bandwidth

capacity, the update is only sent to a random subset. These nodes receive the new position

directly from player A, using one hop. Upon reception of the update, these nodes check in

their own list of near and sensor nodes, looking for nodes that reside in player A’s vision

range (the message originator) and which have not received the update yet. In Figure 2.4(a),

we assume that node P has either recently entered the vision range of A, or it s not part of

the arbitrary subset of near nodes chosen to receive the position update. Near node Q and

sensor nodeS1 are closer to P, therefore we assume that they already know about P. When

Q andS1 receive a position update from player A, they find out that P isin the vision range

of A and has not received the position update yet. Either one of them or both will then

forward that update message to node P. P learns about A and puts it in its near node list.

In the next round, P sends its position update to A, which thenputs P in its near node list,

if it is not yet there. In some cases, the sensor node cannot find a new node located in A’s

vision range. It then looks for nodes that are closer to node A. These will in turn forward

the message to other nodes that are closer to node A. This stepis repeated until the message

is no longer deemed interesting. In Figure 2.4(b), sensor nodeS1 does not know node P,

but sees that node Q is getting closer to node A and may be interested in the update.S1

forwards the update message to Q. Having knowledge of node P,Q sees that P is in the

vision range of A and has not received the message yet. Then Q forwards the position

update to P, thus enabling node P and A to discover each other.

Message forwarding plays a crucial part in creating and maintaining the overlay. It

allows node A to detect new near nodes. However, position update message are not to

be forwarded indefinitely. This will create unnecessary duplicate messages in the network.

17

2.5. pSense Algorithm

S Sensor Node

Local Node A

Neighbor/Near NodeN

S

Sp
N

N

N N

Position Update

Forward

q

S Sensor Node

Local Node A

Neighbor/Near NodeN

S

S

q

p
N

N

N N

Position Update

Forward

(a) Localized Multicast (b) Indirect Forwarding

Figure 2.4:Message Forwarding adjusted from [ASB08]

Players are not interested in receiving an old position update when a fresher one has already

been received. Aside from limiting the life span of positionupdate messages, detecting

and filtering out duplicate messages is necessary in order tomaintain a lower load and

bandwidth consumption.

2.5.3 Overlay Maintenance

This section details the steps taken to process received messages, to determine and to send

outgoing messages.

Filter Receive Messages

An arbitrary node A can receive a new message at any time. A received message could

be a position update message or a sensor request or suggestion message. All messages are

tagged with a unique node identifier and a sequence number.

When a new messageX is received, its hash is compared to a list of seen hashes. All

duplicates get discarded. This ensures that no duplicate messages will be processed. If

messageX is a position update, then it is compared to the last positionupdate messageZ

received by the same sender. If the sequence number ofX is smaller than the sequence

number ofZ, then messageX is discarded as it is not the most recent position update about

that player. All expired/old messages are discarded at thispoint. The remaining messages

are put in an incoming message queue, to be processed in the next step.

18

2.5. pSense Algorithm

Overlay Maintenance and Multicast

Periodically, node A performs the following actions in order to maintain the multicast struc-

ture.

1. Update Near Node Lists:

Node A updates its list of near and sensor nodes by first checking all position updates

and sensor suggestion messages contained in the incoming message queue. All nodes

residing in the vision range are put into the near node list. Those suitable to be sensor

nodes are selected and put into the sensor node list (see Section 2.5.1 for details). The

rest are discarded.

2. Determine Outgoing Messages:

Since message sending only occurs once per round, all messages to be sent are stored

in an outgoing message queue. Position update messages havea life-time limit. This

is measured in the number of hops travelled (one plus the number of forwards). If

the life-time limit of a message is reached, it does not get forwarded anymore as the

information is no longer consideredfresh.

First, a position update message is created with the currentposition of player A

and the recipient list. This list contains the identifiers ofall nodes in its near and

sensor list. This will help reducing the number of duplicatemessages in the network.

Second, a sensor request message is sent to each sensor node in order to get the

best candidates. Finally, all messages in the incoming message queue are processed.

If it is a sensor request message, then a sensor suggestion message is created (see

Section 2.5.1) and put in the outgoing message queue, to be sent back to the message

originator. If it is a position update that has not reached its life-time limit yet, then

node A checks its near and sensor node list for near nodes of A that have not received

the update yet. If no near nodes are found, it checks for nodesthat are closest to the

originator. This is done by sensor nodes after receiving a position update from node

A. The recipient list of the update message is modified to include these new receiver

nodes. The update message is then put in the outgoing messagequeue.

19

2.5. pSense Algorithm

3. Send Messages:

Before messages contained in the outgoing queue are sent, a final verification is per-

formed. If the outgoing message queue exceeds the upload bandwidth of node A,

some randomly chosen near nodes in the recipient list are deleted from the list until it

is small enough to be sent. The update message is then sent to each node in the recip-

ient list. For example, player A sends its new position to itspeers B-Z. The recipient

list in the update message will contain nodes B-Z. However itsbandwith limitation

prevents it from sending to all its peers at one time, such that some randomly chosen

nodes are deleted from the list. The recipient list in the update message is modified

such that it only contains only node B, D, G, and H. They will be they only nodes

to receive the position update message directly from A. Although it is acceptable to

delete some update messages in order to meet bandwidth capacity because they can

be recovered through message fowarding, sensor suggestionmessages and sensor re-

quest messages never get deleted. Once all messages are sent, both incoming and

outgoing queues get cleared.

2.5.4 Joining and Leaving the Network

To join, a new node only needs to know a random node already existent in the network.

This existing node is referred to as theold node. If the old node is in the vision range of

the new node, position update messages are sent directly between them. If the old node

is not in its vision range, the new node sends a sensor node request. The old node checks

in the list of known nodes and suggests a better node than itself. This is repeated until the

new node finds the best sensor node candidates. Meanwhile, these sensor peer nodes also

receive the position updates of the new node. These update messages are then forwarded

to nodes that are closer to the new node. It will eventually reach a node that is within the

vision range of the new node, which will enable the latter to build its own near node list.

When a node leaves the network, no special operation is needed. If a peer node is lost, the

others simply stop sending update messages to that node. If asense node is lost, a new one

is chosen as described in Section 2.5.1.

20

2.6. Mammoth

Bootstrapping

pSense does not state how to start a game, but suggest a central server which players can

connect to and get all necessary information about one player already connected to the

network. An assumption is made that after the first node has joined the network, the system

will automatically bootstrap itself. Other concepts like player authentication, game state

distribution, and object replications are not covered in pSense.

2.6 Mammoth

Mammoth is a massively multiplayer game research frameworkimplemented in Java. Its

goal is to provide an implementation platform for academic research related to multiplayer

and massively multiplayer online games in the fields of distributed systems, fault tolerance,

databases, networking, concurrency, artificial intelligence, modeling and simulations, as-

pect orientation and content generation [JK09,Zin08].

Like other multiplayer games, Mammoth requires players to log in and take control

of an avatar. During the game, the avatar can move around the virtual world and interact

with the environment, like picking or dropping items like flowers, and communicating with

other players through a chat box. When picking items, they areput in the avatar’s inventory,

which may have a limited capacity. Other than player characters, there are also immutable

landscape items like trees, walls, fountains, and cars. They act as obstacles preventing the

avatar from moving in a straight line. Currently, there is no specific goal to achieve in

Mammoth.

2.6.1 Server Architecture and Object Replication

Game objects in Mammoth are distributed according to thedistributed object modelmethod-

ology created by Quazal Inc. In this approach, the entire game state can be described as a

collection of objects where each object has a particular state. These objects are distributed

across all client machines participating in the game. In MMOGs, it is essential that the

state change of an object in a machine will be visible to othermachines. Objects must then

21

2.6. Mammoth

beduplicatedover the network to other machines in order for them to see these modifica-

tions. An object can either be amaster objector aduplica object. As the name suggests it,

the master of an object is the controlling instance who performs all changes to the object’s

state. Duplicas are copies of the master object which are sent to other machines. They

frequently get updated in order to keep their state consistent with the state of the master

object. To be able to control an object, such as a game character, clients will get a copy of

their player object, known asmaster duplica. In other words, in a client-server architecture,

all master objects reside on the server. Clients get object duplicas when they subscribe for

updates and get a master duplica of their game character which enables them to control the

avatar.

Being a client-server based MMOG, the Mammoth server holds the master objects of

all player and other mutable objects in the game. When starting a game, clients connect

to the server to retrieve their avatar information and its master duplica. After receiving

the master duplica, clients can start moving their avatar inthe game world. The interest

management of the server determines what is visible for eachclient. These can only see

changes after they have received a duplica object from the server. Whenever the avatar

moves, the master duplica on the client node redirects the operation to the master object

on the server by a remote call. It is asking for the permissionto change from the master

object. If the master grants the change, it performs the update on itself first and generates

a response message. This response message is then multicasted to all clients holding the

corresponding object duplica (i.e. subscribed clients). For consistency reasons, actions

like player movements are always performed at the server holding the master object first.

Figure 2.5 illustrate the entire process, client 1 joins thegame and is assigned player Bob. It

gains control of the game character named Bob by holding the master duplica. Meanwhile,

a client 2 might be interested in seeing Bob’s state updates and therefore has a duplica

of Bob. How it receives such duplica will be described in the next section. Whenever

the avatar Bob makes a movement, its new position is sent to theserver who processes

it, creates a response message and multicasts it to all subscribers of object Bob about the

update.

22

2.6. Mammoth

join game connect

assign player Bob

create duplica of Bob

control send master duplica

player Bob interest in Bob

send duplica of Bob

Bob moves hold duplica of Bob

send state update

process update

generate response R

multicast R multicast R

Client 1 Server Client 2

Figure 2.5:Player State Update Dissemination - Client-Server

Object Migration in Mammoth

Mammoth currently only supports one model of object migration calledBurst Migration.

It is designed for distributing objects onto several machines. This could be used in a server

cluster system where, if a server machine becomes overloaded, it can migrate some of its

master objects onto other servers to alleviate its load. It could also be applied in a zone

approach (see Section 2.2.2) where the host of a given zone also holds the master objects

of all objects located in the assigned space. This migrationmodel is calledburstmigration

because the sever sends the master object to the target destination without prior notice or

proper handshake procedure to verify if the receiver end is ready for the migration to take

place or not.

2.6.2 Publish/Subscribe Basics

Publish/subscribe systems are designed for situations where a large number of subscribers,

with diverse interests, have to be notified about an event or apublication. Also, whenever

asynchronous communication is necessary, publish/subscribe can be used, such that the

publisher does not wait for an answer from the subscriber before continuing. Such systems

are highly scalable because clients do not need the global knowledge of the network. Sub-

scribers do not know the publishers, and publishers do not know the consumers. Publishers

23

2.6. Mammoth

are responsible of submitting data as publications or notifications, whereas subscribers sub-

scribe to publications. Both publishers and subscribers areclients. Moreover, a client can

be both a publisher and a subscriber at the same time. There are many ways to imple-

ment the publish/subscribe scheme, often there is an event server and all communication is

through this server.

The most common publish data model is the topic-based model.With topic-based

publish/subscribe, “subscribing to a topic T can be viewed as becoming of a member of a

group T, and publishing an event on topic T translates accordingly into broadcasting that

event among the members of T” [EFGK03].

2.6.3 Interest Management in Mammoth

Interest management is currently done in Mammoth at the server. The server also has all

master objects but the design allows master objects to reside at any nodes. For example,

the master copy of a player could reside on the node of the player. When the interest

management module determines that a player A should know about player B, the client

node that controls player A should subscribe to B. This means that the client node of player

A needs to receive a duplica of player B. And then it needs to receive all changes like

position updates that occur on B.

Mammoth does interest management, i.e. determining who should see whom with the

help of a duplication space. In the current version of Mammoth, only the server has a

duplication space which contains the master objects of all mutable objects and players.

Both mutable objects and players can be publishers as their state change. Only players that

are currently logged into the game are potential subscribers as their client modules need

to know about the objects and players of their player’s vision range. Each publisher A

is associated with a topic or channel X, and all its actions are published on this channel.

When a player node subscribes to this channel, its client firstreceives a duplica of A and

later all updates published on the channel. How this messagedissemination is done is left

to the network engine.

24

2.6. Mammoth

Matching Policy

The matching function checks whether a mutable game object/player might be of interest

for an active player. Various matching functions can be usedas they are specific for the

game semantics. They take vision range characteristics into account. Mammoth executes

periodically the matching function on every possible object/player-vs-active player pub-

lisher/subscriber pair. If it returns true for the first timefor a given pair, the active player

becomes a subscriber to this object player. The server creates a duplica object of the pub-

lisher and sends it to the client node of the subscriber. All eventual state update made to the

publisher object are propagated to all subscribed clients.Thus, clients are kept informed

about the current players or other game objects located in their interest area and receive

their state updates.

Refresh Interval

The refresh interval refers to the amount of time elapse between each execution of the

matching policy on the server node. The chosen value plays a major role in determining

how fast a player can discover objects of interest in the game. A too large value will lead

to late object discovery and a too small value will consume server resources unnecessarily.

2.6.4 Mammoth Components

Figure 2.6 gives an overview of the Mammoth software design.It follows a very modular

approach where eachcomponentimplements a major functionality of the system.Sub-

modulesare used to encapsulate specific concerns or features in the components. Com-

ponents provide well-defined interfaces to facilitate the interaction between them. Thus,

the underlying implementation of each component becomes transparent to others. This

abstraction allows the developer to create and experiment with various algorithms pertain-

ing to their interests without having to modify the entire system. For example, if we want

to implement a new communication protocol, then only thenetwork enginecomponent is

modified. No changes will occur in theclient component. Some major components in

Mammoth are:

25

2.6. Mammoth

World

Engine

Network

Engine

Replication Engine

Interest Manager Client

NPC

Graphical

Stern Toile Postina

Replication Space

Duplication

Master

Duplica

Physics

Engine

Figure 2.6:Components in Mammoth

• Network Engine: The network engine implements the core primitives for communi-

cation between clients and server. Currently, connections and message transmissions

are made through TCP (see Section 2.7). Game state updates arebeing transferred as

serialized messages. The network engine is the most important component for this

project. It is not specific to the game. Several network layers have been implemented

in Mammoth such as:

1. Stern: In the Stern network engine, a star topology is formed where all clients

are connected to a central hub. The hub handles and redirectsall network traffic

as well as manages the publish/subscribe functionalities.When a player sub-

scribes to a topic X, the hub keeps track of that. When a messageis published

to a topic X, it is sent to the hub which forwards it to all subscribers.

2. Toile: The Toile network engine creates a fully connected network where all

clients are connected to all others. Clients can join the network by connecting

to a RendezVousnode, responsible of managing the arrival of new members.

The RendezVous node returns the IP contacts (address and portnumber) of all

clients currently in the network. The new client uses this information to connect

to all other nodes in the network. Clients manage their own publications and

subscriptions locally. When a player subscribes to a topic X,the client node

publishing on topic X keeps track of that. When a message is published to a

26

2.6. Mammoth

topic X, it is directly sent to all subscribers.

3. Postina: Is a self-organizing peer-to-peer network engine using Pastry and

Scribe [RD01, MCR02]. It provides publish/subscribe functionalities where

clients can publish information to a topic, and all those subscribed to this topic

will be informed about the publication. Therefore, to receive a publication,

clients must first issue a subscription to the correspondingtopic. More details

about the Postina network engine is found in [Zin08].

• Client: The client module contains the implementation of a graphical or a non-

person character (NPC) client. When using a graphical client,a game map is ren-

dered in a graphical display using the OpenGL graphics library. Users click on the

screen to set the destination and make their character move.An NPC client is con-

trolled by an AI algorithm. Users may choose to render a graphical display showing

the NPC client moving on its own without the need of user interaction.

• Physics Engine: The purpose of the physics engine is to implement interactions

between two objects following the law of physics. It is currently only responsible for

detecting collisions between two objects.

• World Engine: The world engine component stores all game objects in several

hashtables in order to provide easy and fast access.

• Replication Engine: The replication engine is responsible for distributing andup-

dating the state of game objects across clients according toan interest management

policy. It has one or morereplication spaces, each representing a different interest

management domain with distinct interest management policy. The replication space

controls the propagation of update events for a set of objects in the game state. As

soon as an object/player is in the vision range of a player which is determined by the

interest management and the replication engine, the clientreceives a duplica of the

object and subscribes to the changes.

27

2.6. Mammoth

2.6.5 Communication Strategy

Mammoth introduces another layer of abstraction to enable clients to keep track of their

subscriptions list and to efficiently communicate their changes. This layer is called the

communication strategy1. Its purpose is to abstract the network communication from the

rest of the interest management and object replication logic. This creates better code reuse

because the same code can be used on both the server and the client side. Some of the

methods found in this communication strategy are:

• publish (topic): is used to send a state update to all clients subcribed to the specified

topic.

• replicate (topic): is used to send a duplica object to a client node.

• subscribe (topic): registers the client to a topic such that it will receive the state

updates.

• unsubscribe (topic): removes the client from a topic such that it will stop receiving

their state updates.

• sendToMaster (topic): sends a message directly to the node hosting the master ob-

ject.

• sendToTarget (topic): sends a message directly to the specified client node.

2.6.6 Other Services

There are some operations that are orthogonal to the implementation of a game. Example

operations are the assignment of an avatar to a user also known as player distribution,

authenticating a user or instant messaging. In Mammoth, these are calledservicesand

reside in a service server. When clients join a game, they firstcontact with the service

server to have their credentials verified. If they are deemedvalid, they continue with their

communication with the game server to retrieve the states ofthe game world and their game

1The actual class in Mammoth framework is calledReplication Strategy.

28

2.7. Transport Protocols: TCP, UDP

character. However, if the service server cannot validate aclient within a certain amount

of time, a time-out exception is thrown and the client program is terminated. Otherwise, if

the client is invalid, then an authentification error is issued.

2.7 Transport Protocols: TCP, UDP

The User Datagram Protocol (UDP) is a connectionless protocol which does not perform

any implicit hand-shaking dialogues. It is only a best-effort protocol that offers no guar-

antee for reliability, packet ordering, or data integrity.Thus, UDP provides an unreliable

service in which datagrams may arrive out of order, go missing without notice or may be

duplicated (the same datagram is sent more than once). UDP assumes that error checking

and correction is either not necessary or will be performed at the application level. This

avoids the processing overhead at the network interface level. The small overhead of UDP

makes it appropriate for highly interactive games where thespeed of packets delivery is

key, like first-person shooter games and car racing.

The Transmission Control Protocol (TCP) is a connection-oriented protocol where a

connection between two machines must be established beforedata can be sent between

them. TCP provides a reliable service and guarantees packet ordering. This means that

all packets sent are guaranteed to arrive at the destinationin the same order that they were

sent. Additionally, it uses an end-to-end flow control protocol to avoid having the sender

send data too fast for the TCP receiver to reliably receive andprocess it. This is useful in

heterogeneous environment where machines of diverse network speeds communicate. TCP

has the advantage of being simpler to use than UDP, but it generates a noticeable amount

of overheads.

In the current implementation of Mammoth, communication between clients and server

is made over reliable TCP/IP connections. In this thesis, it is in our interest to evaluate

the performance of TCP/IP versus UDP/IP in a peer-to-peer context. Although TCP guar-

antees message delivery, it generates a connection overhead which grows as the number

of connections maintained by a peer node increases. UDP is much lighter since no initial

connection setup is required, but being an unreliable transport protocol, excessive message

29

2.8. MINA

lost can be problematic in a game context.

2.8 MINA

MINA is a framework, made available by Apache, designed to ease the development of

high performance and high scalability network applications, by offering an abstract, event-

driven, asynchronous API over various transports protocols like TCP/IP and UDP/IP via

Java NIO [min]. MINA is the acronym fora Multi-purpose Infrastructure for Network

Applications.

By using MINA, the effort needed to test the performance of a system using different

transport protocols, like comparing TCP with UDP, is greatlyreduced. MINA’s structure

consists of four fundamental components:IoService, IoSession, IoFilter, andIoHandler.

The IoService provides supports for input and output operations. There are two distinct

IoServices available: IoAccceptor and IoConnector. The IoAcceptor acts as a server by

waiting for incoming connections, while the IoConnector acts as a client by establishing a

connection to the server. It is in the IoService that the transport protocol is specified. For

the TCP/IP implementation, we use a SocketAcceptor and a SocketConnector. For UDP/IP,

a DatagramAcceptor and a DatagramConnector are put in place instead, even though they

do not provide any functionality. In MINA, an established connection between two nodes

is referred to an IoSession instance. The IoSession handlesall reads and writes between

to endpoints. The next component in MINA is the IoFilter. TheIoFilter intercepts all

events and takes the necessary actions. There can be more than one IoFilter in place.

These are usually created to handle events such as event logging, authorization, thread

pool, and message transformation like encryption and decryption. Finally, the last module

is the IoHandler, which is where the application logic remains. All of the above mentioned

components are depicted in Figure 2.7.

30

2.8. MINA

Figure 2.7:MINA Structure Overview

31

Chapter 3

Yobol Concepts

The aim of this chapter is to introduce Yobol. First, a general description explain-

ing the capabilities of Yobol is given, followed by a generaloverview of the fundamental

differences between Yobol’s implementation from Mammoth and pSense as well as some

challenges encountered.

3.1 Motivation

With the increasing popularity of MMOGs, using traditionalclient-server architecture will

not suit future consumer needs as scalability is one of its biggest problem. To remedy this,

peer-to-peer solutions are explored, and pSense is one of them. However, this remains a

theoretical solution as no playable game has implemented itand it remains unclear what

are the challenges when transferring such ideas to a real MMOG environment. Thus, it

is in our interest to concretize this approach and analyze its suitability for real massively

multiplayer online games. One of the goals of this thesis wasthe design and integration of

a network engine into the Mammoth system that supports the pSense approach of position

update propagation. Until now, all network engines in Mammoth were built on TCP/IP

mainly for its reliability and ease of implementation properties. However, in some highly

dynamic contexts, like in car racing games, where the speed of message reception is more

important and messages loss can be tolerated to some extent,the use of UDP may also be

32

3.1. Motivation

considered. In addition to the integration of this approachin Mammoth, our other goal is

to evaluate its performance with different transport protocols such as TCP/IP and UDP/IP.

Essentially, Yobol is a peer-to-peer network engine implemented in the Java language.

It is designed for the special requirements of network layers in massively multiplayer online

games as it provides methods for direct messaging as well as functionalities for publish/-

subscribe. Being a peer-to-peer solution, the idea is that inYobol each client node holds

the master object of the user’s game character. The client node then becomes a server to all

those who are interested in its avatar. The pSense algorithmonly focuses on propagating

position updates. Therefore, all other mutable objects that are not game characters will re-

side and be managed by the server. This makes Yobol a hybrid peer-to-peer solution where

each node is equal to all others, but a server is still necessary in the system to handle all

game messages not related to position updates, like player authentication and distribution,

initialization of the game state and objects, and handling updates of mutable non-player

objects such as a flower is picked up.

Being built on top of Mammoth, the framework underwent some considerable work

remodeling and expanding the existing structure to arrive at the current implementation of

Yobol. One of the fundamental changes integrating the concepts of pSense into Mammoth

is to create a peer-to-peer structure. This means that some of the responsibilities previously

handled by the server must be carried out in the client node instead. In addition to mod-

ifying the underlying Mammoth architecture to support pSense, some adjustments were

also done on the pSense algorithm as well. In pSense all game interactions and network

maintenances are merged in one system, highly coupling gamesemantics (position change)

with message dissemination. In contrast, the design of Mammoth focuses on the separation

of concerns and code modularity. We resolved this issue by creating a new component in

Mammoth, called thesuggestion engine. This engine is aware of both the game logic as

well as the network engine. Moreover it is responsible for maintaining the network struc-

ture by determining which nodes one can see each other. Another issue is that the pSense

algorithm only loosely describes how the connections between peers is done. To make

this work in Mammoth, Yobol integrates a connection protocol into the position update

mechanism proposed by pSense.

33

3.2. Challenges

3.1.1 Naming

Yobol is a network layer API designed to handle messaging in MMOGs, whose resulting

overlay structure is obtained and maintained through peer suggestions. The name chosen

for Yobol reflects this main feature:yobol() is the Cambodian1 word for “sugges-

tion”.

3.2 Challenges

In the abstract description of pSense, nodes have simple identifiers and a node can send

a message to another node once it knows the identifier. Nodes get to know each other

through forwarding of position update messages. In a real system, things are not as easy.

First, a node needs a duplica of another player before it can do anything with it. Second,

a connection between nodes must be setup prior to any communication, even in the case

of UDP (a condition imposed by the Mammoth framework). All communication in Yobol

is performed using the Apache MINA library. This section covers the main challenges

encountered with Yobol.

3.2.1 Open Connection

Let’s recall the messages in pSense. There areposition updatesfrom the originator to

near nodes and sensor nodes and there areforwarding messages. In Yobol, before a node

can send a message to another node, there must be a connectionbetween the nodes. For

a connection to be established, one node needs to know certain information, such as the

node’s IP address and port number and the unique identifier ofthe node, all wrapped in an

instance of aYobolNodeobject. All this information allows the node to request an open

connection.
1Cambodian or Khmer is the official language of Cambodia. It isan austrio-asiatic language influenced

by Sanskrit and Pali. Please seehttp://en.wikipedia.org/wiki/Khmer language for more
information.

34

3.2. Challenges

3.2.2 Suggestion Concept

pSense utilizes message forwarding to detect and connect tonew near nodes, suggesting

that a node A becomes aware of and connects to peer node B once Areceives position

update messages from B (see Section 2.5.2). In Yobol, nodes cannot communicate with

each other unless they have opened a connection. If neither node A nor B has knowledge

of one another, it is not possible for them to start exchanging messages with each other.

Yobol tackles this by introducing the concept of makingsuggestionswhere connections

between two nodes are made possible with the help of a third party. An arbitrary node

C, which is aware of both nodes A and B, must provide the requiredinformation to either

node. Node C wraps all relevant information about node A in asuggestion messageand

sends it to node B. The recipient B can then request for an open connection from A.

3.2.3 Master Object Migration

According to pSense, client nodes are to communicate to eachother in a peer-to-peer man-

ner. It does not, however, provide any further details aboutother functionalities found in

a real game environement, like starting up the game, handling player authentication and

log in, and maintaining game states. Mammoth, on the other hand, performs all these op-

erations from its central server and its authentication service. The central server stores the

master object of all mutable game objects in the game and handles their interest manage-

ment among its several other responsibilities. In adaptingMammoth to support a peer-to-

peer structure, some of these responsibilities are shiftedfrom the server to the client node

as seen in Yobol.

Mammoth’s pub-sub mechanism dictates that to be a publisher, one must hold the mas-

ter object. Initially, all master objects are kept in the central server. In Yobol, the master

object of the character hosted by the client node resides in and is hosted by the node itself,

thus making it a publisher. When the game’s central server is started, all masters of mutable

game objects are stored in it. Upon a player log in, the serversends a duplica of this client

game character to the client node. The client then requests the master object of his charac-

ter from the server. Upon reception of the master object, theclient node has full control of

the character. All other nodes wanting updates from it will need to hold a duplica object of

35

3.2. Challenges

Duplica object

Master object

Master Duplica object

Server

Client D

Client A Client B

Client C

Duplica object

Master object

Client D

Client A

Client B

Client C

(a) Client-Server (b) Peer-to-Peer

Figure 3.1:Different Network Architectures Created by Migrating Master Objects

it. This makes them subscribers to this particular player character.

How master objects are distributed in the system is influenced by the type of network

architecture to be used. In the case where all master objectsreside on one particular node,

a client-server architecture is created. On the other hand,if master objects are distributed

across several machines, then a peer-to-peer structure is formed. These two cases are illus-

trated in Figure 3.1. In a peer-to-peer system, when a clientjoins, it must request the master

object of the player character from the server. The server keeps a duplica of the object and

migrates the master object to the client machine. From this point on, all others interested in

this client’s updates must send their subscription messages to the client hosting the master

object. The host provides them with an object duplica, whichallows subscribers to be up-

dated of eventual changes. These steps are detailed in Figure 3.2. Client 1 hosts the master

of player Bob. Client 2 wants to see Bob’s movements, therefore asubscription message is

sent to client 1, who in return sends a duplica back. All statechanges of player Bob will

be multicast to its subscribers. Keeping a duplica object inthe server before the migration

of the master object provides the server with global knowledge of the game world, since

holding a duplica is synonymous to subscribing to the object’s state updates.

36

3.2. Challenges

join game connect

assign player Bob

create duplica of Bob

control send master duplica

player Bob

���uest master object

save local duplica of Bob

migrate master object

host of Bob interested in

seeing Bob

subscribe to player Bob

create duplica

send duplica

Bob moves

generate

response R

Client 1 Server Client 2

multicast R

multicast R

Figure 3.2:Player State Update Dissemination - Peer-to-Peer

3.2.4 Distinct Replication Spaces

Mammoth relies on its central server to perform the interestmanagement for all mutable

objects in the game. As seen in Section 2.6.4, the interest managment is handled by the

replication space in the replication engine, which residesin the server. Yobol is a hybrid

peer-to-peer solution where a server is still existant, butno longer performs any interest

management for its player character objects in the game. Each node hosting a player char-

acter will run its own interest managmenent through a newly tailored replication space

called thePeer Replication Space. This replication space resides in the client node itself.

All other non-player mutable objects in the game are still managed by the server, therefore

a distinct replication space for the server is needed, knownas theServer Replication Space.

How these replication spaces function will be explained in Section 4.4.2.

37

Chapter 4

Yobol Implementation

In this chapter, more detailed information about Yobol is given such as its API and the

internal functioning.

4.1 Yobol Architecture Overview

The first part of this project consists of creating a network layer that supports communi-

cation in a peer-to-peer structure. This network engine must allow message multicasts,

direct messages, as well as taking suggestions from neighboring nodes. The second part is

to create a suggestion engine which is responsible of maintaining the overlay by emitting

notifications to peers and taking appropriate actions from suggestions received from peers.

The particularity of our approach is the necessity of clientnodes to build their network

structure themselves by receiving and sending suggestionsfrom/to peers.

Since each component in Mammoth targets a specific functionality of the system, all

procedures related to establishing and maintaining connections between nodes, as well as

sending and receiving messages are implemented in the Network Engine. Moreover, all im-

plementation regarding updating the state of an object, creating duplica objects, migrating

master objects, and maintaining a list of publishers and subscribers resides in the Repli-

cation Engine. However, some operations related to the pSense algorithm such as storing

and updating lists of near nodes and sensor nodes, sending and handling sensor request

and sensor suggestion messages, and finding nodes for message forwarding do not fall in

38

4.1. Yobol Architecture Overview

Figure 4.1:New Components in Mammoth for Yobol

any of the existing components. Moreover, in order to perform those operations, we need

some knowledge about the game world. For example, to update its near nodes list, a node

A retrieves the list of current connections and loops through it to determine if a peer node

is to be put in the near nodes list or not. For that we need to calculate the distance be-

tween the two nodes. This distance is calculated by comparing the position of the two

respective nodes, and all game objects’ information, like position, are stored in the world

engine. This task can only be achieved if some information from the network engine and

the world engine are provided. Therefore, we have created a new component called the

Suggestion Engine, which has both knowledge of the game world and the network engine,

to handle all operations related to the peer-to-peer overlay maintenance. The advantage of

using such design is the flexibility to create various suggestion engines which implement

different algorithms.

In summary, Yobol adds a few new components to Mammoth: a new network engine,

a suggestion engine, and a new replication space. The details about each new component

follow in the later sections. Figure 4.1 illustrates their dependencies with the existing com-

ponents.

39

4.2. Network Engine

Y o b o l N e t w o r k E n g i n e
< < e x t e n d s B a s e N e t w o r k E n g i n e , i m p l e m e n t s S u g g e s t i b l e N e t w o r k E n g i n e > >

+ c o n n e c t ()

+ c r e a t e C h a n n e l (S t r i n g)

+ d i s c o n n e c t ()

+ f o r c e D i s c o n n e c t (i n t)

+ i s C o n n e c t e d ()

+ s e n d (C o l l e c t i o n < N e t w o r k E n g i n e I D > , S e r i a l i z a b l e)

+ s e n d (N e t w o r k E n g i n e I D , S e r i a l i z a b l e)

+ s e n d (S t r i n g , S e r i a l i z a b l e)

+ s e n d A l l (S e r i a l i z a b l e)

- s e n d S u g g e s t i o n (N e t w o r k E n g i n e I D , Y o b o l N o d e)

+ s u b s c r i b e C h a n n e l (S t r i n g , N e t w o r k E n g i n e I D)

+ s u b s c r i b e C h a n n e l s (C o l l e c t i o n < S t r i n g > , N e t w o r k E n g i n e I D)

+ s u g g e s t C o n n e c t i o n (N e t w o r k E n g i n e I D , N e t w o r k E n g i n e I D)

+ s u g g e s t D i s c o n n e c t i o n (N e t w o r k E n g i n e I D , N e t w o r k E n g i n e I D)

+ u n s u b s c r i b e C h a n n e l (S t r i n g , N e t w o r k E n g i n e I D)

+ u n s u b s c r i b e C h a n n e l s (C o l l e c t i o n < S t r i n g > , N e t w o r k E n g i n e I D)

+ u n s u b s c r i b e C h a n n e l s (N e t w o r k E n g i n e I D)

- u p d a t e C o n n e c t i o n s (A r r a y L i s t < Y o b o l N o d e >)

- u p d a t e D i s c o n n e c t i o n (Y o b o l N o d e)

- u p d a t e D i s c o n n e c t i o n s (A r r a y L i s t < Y o b o l N o d e >)

Figure 4.2:Yobol Network Engine Class Diagrams

4.2 Network Engine

Yobol’s underlying network communication is built using Apache MINA (version 1.1.7)

2.8 which supports several transport protocols. This allows Yobol’s network engine to

be implemented in a modular way such that the underlying transport can be seamlessly

switched between TCP and UPD, thus enabling us to measure and compare the system

performance under each condition. Since all communicationbetween nodes occuring in

Mammoth is done using serialized objects, a custom IoFiltercalled the ProtocolCodecFil-

ter was implemented in Yobol. This filter serves in translating a serialized object into a

message object and vice versa.

Several other network layers already exist in Mammoth like Stern, Toile and Postina.

Therefore, it is not surprising that an interface is provided by the framework to ensure mod-

ularity and facilitate future network engine development.However, the existingNetwork

Engineinterface did not support making connections based on peer suggestions. There-

fore, a newSuggestible Network Engineinterface is created to make this possible. The

Yobol Network Engineimplements both network interfaces. The following sectionpro-

vides an overview of the Application Programming Interface(API) provided by the Yobol

Network Engine.

40

4.2. Network Engine

4.2.1 Yobol Network Engine API

TheYobolNetworkEngineshown in Figure 4.2 builds the core primitive of the Yobol com-

munication system. Since every network engine in Mammoth must implement all methods

in the Network Engine interface, the Yobol network supportsall methods described in sec-

tion 2.6.5. Furthermore it offers a set of methods that we need specifically for the pSense

algorithm. They are listed here in detail.

• connecthas to be called first, before any other operation is possible. It instantiates an

IoAcceptor object which acts as a server by waiting for incoming connections. Thus,

the client can accept connections from other nodes.

• disconnectis used to properly disconnect the client from the network and closes all

connections, freeing the ports such that they can be reused at a later time when new

connections are made.

• sendis a key method in Yobol as it is used to send a message directlyto a specified

client or list of clients. Other clients in the network not part of the recipients list do

not receive this message.

• sendAll allows a message to be sent to all clients connected to the player, similar to

the broadcast function.

Additionally, the Yobol network engine supports some suggestion making functionali-

ties required by the Suggestible Network Engine interface.These are:

• suggestConnectioninforms a peer node that a connection to a specified node is

desirable. This is useful to alert peers about players who just joined the game, who

are currently in our vision range or who are approaching our vision range.

• suggestDisconnectioninforms a peer node to disconnect from a specific node. It is

used to notify a client that a peer has left the network.

41

4.2. Network Engine

4.2.2 Message Filtering

To filter-out duplicate position updates or out-dated messages, the network engine keeps

a hashtable of previously received update messages. The table stores the update message

and uses the identifier of the message originator node as key.Therefore, the table contains

a single update message per sender. Every position update message has a time stamp indi-

cating when the message was created. The receiver node uses the new message time stamp

and compares it with the previously received one, found in the table, from the same sender

node. If the new message time stamp is smaller or equal to timestamp of the existing

message, it gets discarded as the information is notfreshor is identical. Otherwise, if the

time stamp of the new message is larger than the existing one,or if it is the first message

received from that particular sender node, then it is added in the hashtable or replaces the

current message from this sender in the hashtable. It is thenput in the incoming message

queue to be later processed.

When filtering data, only the most recent position update is kept in the incoming mes-

sage queue. While old data are of some values as they provide some historical motion

information which tell us about the client path from the previous known location to the

current/final position, our focus was on maintaining a smallincoming queue such that in-

coming position update messages are processed as fast as possible in order to give the client

the most current game state possible.

4.2.3 Design Variation for TCP and UDP

By having a clear separation of concerns and functionalities, a more modular design takes

form where each component can be replaced without causing many changes in the other de-

pendent modules. MINA’s flexible structure and Mammoth’s layered architecture enabled

us to implement two transport protocols to be used within theYobol network engine with-

out making any changes in the upper layers. Two new sub-modules were created, shown in

Figure 4.1, and namedYobolCoreTCPandYobolCoreUDP.

42

4.2. Network Engine

YobolCore - TCP/IP

YobolCoreTCP implements the TCP/IP protocol and uses MINA SocketAcceptor and Sock-

etConnector as IoServices. The connection between each nodeis reliable and all mes-

sages sent are guaranteed to arrive at the destination node in the order they were sent out.

The TCP socket receive buffer size is set to 2048 bytes. If a message is larger than this

buffer size, the TCP layer automatically splits up the message into several packets and re-

assembles it at the destination node. Moreover, if the receive message queue of the receiver

node is almost full, the sender node will modify its sending speed such that the receiver

queue will not overflow and cause an out-of-memory error. Since these and several other

features are provided by the TCP layer, developers do not haveto take care of these things.

YobolCore - UDP/IP

YobolCoreUDP implements the UDP/IP protocol and uses MINA DatagramAcceptor and

DatagramConnector as IoServices. Being a connectionless protocol, UDP provides no

guarantee that a sent message will arrive at the destination. A message that is sent can

be lost during transmission or arrive more than once. This means that the network layer

in Yobol will have to process and filter out those duplicate messages. Fortunately, Yobol

already has a message filtering mechanism in place to remove duplicate messages obtained

from message forwarding. It will be more frequently used in the YobolCoreUDP imple-

mentation because it needs to remove duplicate message received due to the use of the

UDP transport protocol. Another observable difference is the need to use a larger UDP

socket receive buffer size. Too little UDP buffer space causes the operating system kernel

to discard UDP packets when it gets full. Therefore, we set the buffer size to 16384 bytes

in order to minimize the likelihood of message loss. This is performed at the cost of using

more memory as well. It is a parameter that might have to be tuned dynamically depending

on the game configuration.

Another challenge we encountered when using UDP is the occurrence of time-out er-

rors. In Mammoth, when a player joins a game, it must first connect to the service server,

which runs anauthentification serviceto verify the player’s credentials. Then it makes a

43

4.3. Suggestion Engine

call to theplayer distribution serviceto retrieve the user’s avatar. The client communica-

tion with those services must be done within a certain amountof time. If not, a time-out

exception is thrown. Since UDP is not very reliable, the communication often takes longer

than allowed. The service server then throws an exception. This prevents the user from

joining the game. To remedy this, YobolCoreUDP uses a mix of TCPand UDP. When a

client joins the game, it first establishes a TCP connection tothe server and the service

server. Afterward, all communications between client nodes are made using UDP.

4.3 Suggestion Engine

The Suggestion Engineis an essential component in Yobol. Its purpose is to build and

maintain the peer-to-peer structure by communicating withpeer nodes. It is implemented

according to the pSense algorithm described in Section 2.5.The lists of near and sensor

nodes are regularly updated in order to provide the client with the most accurate view of

the game as possible. However, such operations can only be performed if some knowledge

of the game world and the network engine are present.

4.3.1 Suggestion Making

In the sections below, three types of message are mentioned,which areposition update mes-

sages, request connection messages, andsuggestion messages. Position update messages

are either sent directly from an originator node to a connected peer, or forwarded from one

peer to another in order to propagate the update. Position update messages are forwarded

to peer nodes that are connected to the originator node but have not received the update yet,

peer nodes that have just entered the area of interest of the originator, or newly joined nodes

in the game. Request connection messages are sent after a nodereceives a position update

message from a new originator node. Request connection messages are required to gather

more information about the originator node because it needsto get aYobolNodeinstance

in order to establish a connection. The YobolNode object contains node specific informa-

tion like the identifier, the address and port number of the node. Suggestion messages are

used to transfer the required information, including the YobolNode, in order to establish a

44

4.3. Suggestion Engine

send PU

process update

forward PU

do not know

client 1 yet

send request connection

send suggestion

retrieve client 1

connect information

connection

created

Client 1 Client 2 Client 3

PU : Position Update

Figure 4.3:Suggesting Connection Steps

connection between peer nodes.

Position update messages contain the identifier of the message originator, the identifier

of the last sender if the message was forwarded, a list of nodes who have already received

the message, the number of times it has been forwarded, and a timestamp to check for

freshness of information. When a peer node receives a position update message, it verifies

if it recognizes the identifier of the message originator by looking in its list of connections.

If there is not yet a connection, this means that it has received the message from a for-

ward. Thus, it sends arequest connectionmessage to the node from which it received the

message, that is the last forward. Upon receipt of a request connection message, a sug-

gestion message containing the YobolNode object with the originator node’s information is

returned. This information is applied and a connection is created. In Figure 4.3, client3 re-

ceives a position update originating from client1 for the first time. Since the message was

forwarded by client2, client 3 sends a request connection message to2, who replies with

a suggestion message containing client1’s information. Then client3 can initiate contact

with client1.

These steps can be simplified by including a YobolNode objectcontaining the informa-

tion of the message originator in the update messages. However, doing so would increase

the size of position update messages and this could lead to more bandwidth consumption.

Moreover, using the request connection message yields a better software design because

a separation of concerns is maintained. This way, position update messages are used to

45

4.3. Suggestion Engine

Y o b o l S u g g e s t i o n E n g i n e
< < i m p l e m e n t s S u g g e s t i o n E n g i n e > >

+ a s s i g n (N e t w o r k E n g i n e I D , P r o x y O b j e c t)

+ c h e c k C o n n e c t i o n (N e t w o r k E n g i n e I D , N e t w o r k E n g i n e I D)

+ f i n d F o r w a r d N o d e s (N e t w o r k E n g i n e I D)

+ f i n d S u g g e s t i o n s ()

+ g e t T a r g e t L i s t ()

+ h a n d l e S u g g e s t i o n M e s s a g e (S u g g e s t i o n M e s s a g e)

+ s e n d S e n s o r R e q u e s t ()

+ u p d a t e N o d e s T y p e ()

Figure 4.4:Yobol Suggestion Engine Class Diagrams

update peers about a change in players’ movements and request connection messages are

for building connections. Thus, better code reusability isachieved.

4.3.2 Yobol Suggestion Engine API

Figure 4.4 shows the class diagram of the suggestion engine designed for Yobol. A short

description of the main methods in the suggestion engine is listed below.

• findSuggestionsis periodically called by the replication engine to scan through the

player’s list of connections and see if some connection suggestions can be made to

their peers.

• updateNodeTypeis periodically called by the replication engine to update the near

node and sensor node lists.

• checkConnectionis called to verify if a suggestion concerning node A and B was

previously sent. This is used to avoid message duplicates.

• findForwardNodes is used when forwarding position update messages to peers. It

finds all nodes residing in the specified player’s vision range that have not received

the position update message as it is the case of direct forwarding. It also finds all

nodes residing close to the specified player’s vision range which may know others

that have not received the message yet (indirect forwarding).

• sendSensorRequestsends a sensor request message to its sensor nodes to request

for the best sensor node candidate given a specified section.Since the sensor nodes

46

4.3. Suggestion Engine

should be distributed as evenly as possible, each sensor node resides in a distinct

area, also referred to as section.

• handleSuggestionMessagetakes appropriate actions upon the reception of sugges-

tion messages, which includeSensorRequestMessageandSensorSuggestionMessage

types.

4.3.3 Overlay Maintenance in Yobol

The peer-to-peer overlay structure in Yobol is implementedaccording to the pSense strat-

egy described in Section 2.5.3. To ensure that the client’s network structure is optimal

according to its interests, some maintenance operations are periodically executed by the

client node such as:

• Find Suggestions: In most cases, peer nodes discover new nodes by the mean of

message forwarding as described in the pSense algorithm. Additionally to this, Yobol

provides each node the capability of suggesting two distinct nodes to connect to each

other. This operation is performed at everyrefresh ratedetermined in the replication

space described in Section 4.4.

Enabling nodes with such action could accelerate the new node discovery process.

To demonstrate this, we will use the same example of Section 2.5.2, Figure 2.4(a) on

page 18. A new nodeP resides in the vision range of the local node A but they do

not know about each other yet. The sensor nodeS1 executes its routine inspection

of the connection list and detects thatP is in A’s vision range,S1 sends a suggestion

connection message toP. This can occur even before P receives any forwarding mes-

sage from another node. Peer nodeP receives this suggestion message and opens a

connection with local node A. By the time nodeQ forwards the update message to

P, P already knows A and thus simply applies the object state update.

• Update Neighbors List: In the client-server context, a player’s interest management

is executed on the server. In Yobol’s case, the client needs to perform its own interest

management. This is done by checking who its neighbors are and saving them in the

47

4.4. Replication Space

near nodes list. Since Euclidean distance interest management is used, all players

residing in the interest area are put in the near nodes list. All others are discarded.

• Update Sensors List:The space around a node A is split into several sections and

each section should contain a sensor node. A sensor node is located a bit outside, but

closest to the vision range of the node A and contained withina particular section.

Each node sends out sensor request messages to each of its sensor nodes. When a

sensor node receives such a message from node A, it scans through its connections

list and determines if there is a peer node that is closer to A than itself, within the

specified section. If such peer is found, its information is put in the sensor suggestion

message and sent back to A. Otherwise, the sensor node writesits own information

in the suggestion message instead and remains the sensor node for that section again.

To find a better sensor node candidate, the current sensor node first needs to deter-

mine the section boundaries. In Figure 4.5, the sensor node is in section 1. It draws

an arc using the position of node A as point of origin, and itself as the arc length. A

smaller arc is drawn to represent the vision range of node A. When superimposing

both arcs over each other, we are left with a hashed area, illustrated as area B in the

figure. If a peer node in the sensor node’s connections list islocated in the area B

and is the closest to node A, then it is the best sensor node candidate.

When node A receives a sensor suggestion message, if the suggested node informa-

tion is not the same as the current one, it removes the currentone from the sensor list

and adds the new sensor candidate to the list.

4.4 Replication Space

Yobol follows a peer-to-peer structure which requires thateach client machine hosts the

master object of their avatar instead of having them all on the server. Being a hybrid peer-

to-peer system, Yobol still runs a server who coordinates all modifications made by mutable

objects that are not ofPlayer type, such as items that can be picked up or dropped down.

To get the master object of their avatar, the client requeststhe master object from the server

48

4.4. Replication Space

Section 1

Section 2

Vision Range

S

Area B

Distance of Sense

Node to Local Node

Sensor Node

Local Node A

Peer Node

S

Figure 4.5:Finding a Better Sensor Node Candidate

when it is joining the game. A local duplica is stored on the server and the master object is

migrated to the client. When the client receives its master object, it is declared as the master

object’s host. Throughout the game, new connections will besuggested from peer nodes

using connection suggestion messages. When node A receives aconnection suggestion

message from node B, it opens a connection to B and sends a subscription message. B

also sends a subscription message to A after a connection is created. After receiving a

subscription message, a node adds the message sender to its subscription list and sends its

own player object’s duplica back. To avoid any ambiguity, please note that the subscription

list contains all peer nodes currently connected to the client, while the near nodes list is a

subset of the subscription list content, containing only nodes within the vision range of the

client. Once they have received the respective duplica object, nodes will be informed of

state updates of that object if they belong to the near node list. Figure 4.6 shows client 2

creating a connection with client 3 after receiving a suggestion connection message from

client 1. Once a connection is opened, they first exchange subscription messages notifying

the other party that they are interested in seeing the other entity’s changes. The operation

is completed when both clients have received the other client’s object duplica.

49

4.4. Replication Space

connect

send subscription

put C2 in

put C3 in subscribers list

subscribers list send duplica

Client 1 Client 2 Client 3

suggest

connection to C3

Figure 4.6:Steps Taken to Establish Connection Between Peers

4.4.1 Refresh Interval

Most operations taking place in the replication space are performed periodically. Each

period is determined by the refresh interval value, which isthe amount of time elapsed

between each execution of the overlay maintenance on the client node. It is a parameter

that might have to be adjusted according to the game configuration. In the current setting,

players make a move every 500 milliseconds. The refresh interval value is set to 15 mil-

liseconds. It is more frequent than the movements of a playerbecause the replication space

needs more information in order to set up and maintain the peer-to-peer overlay structure.

The replication space performs the following actions for each refresh interval:

• verifies if the client master object is migrated or not (only done at initialization time)

• scans through the client’s list near and sensor nodes and checks if it can suggest a

connection should be made between two nodes

• updates the client’s near and sensor node lists according toother clients new position

updates and sensor suggestion messages received

• sends sensor request message to find better sensor node candidates (performed every

5th refresh interval)

The chosen refresh interval value plays a major role in determining how fast a player can

discover other peer nodes in their vision range and finding better sensor node candidates.

The refresh interval value must be chosen with care because if it is too large, the client can

send its update messages to a stale list of client nodes wheresome of them may have already

50

4.4. Replication Space

left the client’s vision range. If the value is too small, theclient will perform too frequent

updates on its lists of near and sensor nodes. This leads to higher resource consumption on

the client node and an increase of traffic on the network due tothe messages exchanged to

find better sensor node candidates.

4.4.2 Replication Space: Server and Peer

Since clients can only see other players if they have their object duplica and duplicating ev-

ery game object is usually inefficient, areplication spaceis implemented to manage object

replication in the system (i.e. which client machine shouldget a duplica of which object).

Section 2.6.2 describes a replication space that implements the distributed object model.

This replication space is located on the server where a matching function is periodically

executed on pairs of publishers and subscribers to let subscribers discover new publish-

ers. The server performs these checks because it has all master objects and has a global

knowledge of the game world, which makes it the best candidate to make such decisions.

In Yobol, the master objects are hosted by their respective clients, such that each client

maintains the list of subscribers interested in the movements of the client’s game character.

A new replication space calledReplicaton Space Peeris created to be run on every client

node. It is a space containing all duplicated objects that reside in the vision range of the

client’s avatar. The Yobol server also has its own replication space known asReplication

Space Server. Its usage is limited to assigning a duplica to a newly connected client, mi-

grating master object to a client, keeping the state of localduplicated object up-to-date, and

maintaining master objects of items.

As the name suggests, the Replication Space Server resides onthe server node and is

used to provide a duplicate of the avatar of a newly joined player to its client node. After

receiving its character’s duplica, the client requests themaster object from the server, in

order to enable the client to host its own game character. This Request Mastermessage

is of Replication Space Messagetype such that it will be handled by the replication space

at the destination, which is the server in this case. The request master message contains

information about the Player object whose master object needs to be retrieved. The server

replication space receives the request master message, keeps a duplica of the object in order

51

4.4. Replication Space

join game connect

assign player Bob

create duplica of Bob

send master duplica

receive duplica

���uest master message

save local duplica of Bob

migration message

host of Bob

hasMaster = true

���ent 1 Server

wait for master

duplica

periodically check

for master object,

hasMaster = false

Figure 4.7:Steps Involved in Replication Space Server and Peer

to remain updated about its later changes, and proceeds withthe generation of aMigration

Messagewhich is sent back to the client.

On the client side, a periodic check is performed to verify whether or not it has received

the master object of its avatar. During the initialization time of the replication space peer, a

boolean flag is created to indicate if the master object migration process has already taken

place. It is initially set to false, and will be changed to true only when the client receives the

Migration Message from the server. The client becomes the host of the master object, and

thus is the publisher of that object. The interaction between these two replication spaces is

depicted in Figure 4.7 where the Replication Space Peer is runon the client node and the

Replication Space Server on the server. No resent of the request master message is done if

the client fails to receive its master object. In the case of afailure, a time-out occurs on the

master request forcing the client to exit.

From this point on, players who are interested in the client’s movements will subscribe

to it in order to receive its publications. Clients can only see other players if they have

their object duplica. Therefore, when new connections are created between two nodes,

they notify their mutual interest by sending a subscriptionmessage to each other. When

a subscription message is received, the client creates a duplica for each newly connected

client node. This gives control over which client machines will get which object duplica.

In Replication Space Peer, a player object is both a publisherand a subscriber. A publisher

object disseminates its own state updates, whereas a subscriber object finds new publish-

ers and subscribes to them in order receive their updates. Players in MMOGs generally

52

4.4. Replication Space

Message exchange

Established connection

 Duplica object

 Master object

Server Client D

1‐ Request Master message

Client A Client B

Client C

2‐ Migrate Master object

Message exchange

Established connection

 Duplica object

 Master object

Server Client D

1‐ Request Master message

Client A Client B

Client C

2‐ Migrate Master object

"� Connection established

Client B sends its duplica

to Client D

#� ��nds its duplica

to Client B

(a) client D joins the game (b) exchange of duplicas

Figure 4.8:Master Object Migration Steps

control only one player at a time during a game session. Therefore, it is reasonable to

limit each client node to have only one master object of a player at any instance in the

game. Subscribers discover new publishers only when new connections are created. There

is no matching policy used in this replication space. Therefore, in order to detect new

connections, the client replication space must periodically invoke some operations in the

suggestion engine which will trigger the execution of some maintenance of the peer-to-

peer structure, like finding new connection suggestions forthe client’s peers, updating its

near nodes list, and updating its sensor nodes list by sending out sensor request messages

and handling their response (see previous Section 4.3). Figure 4.8(a) illustrates an exam-

ple where a newly joined node D requests the master object of its avatar from the server,

since all masters reside on the server initially. Once D has received the master object, it

can start processing client B’s connection request and exchange their duplicas, in order to

get updates about each other. B must send its duplica to D, andvice versa, based from the

assumption that the interest relationship between playersis symmetrical:“if B is interested

in D, then D is also interested in B”. This is illustrated in Figure 4.8(b).

53

4.5. Peer Communication Strategy

4.4.3 Object Migration in Yobol

Burst Migration is the current migration support implemented in Mammoth, where the

sender of the master object can initiate a migration at any given time without previously

notifying the receiver end that it wants to migrate some objects. However, in our approach,

object migration is not so sudden anymore because the clientinitiates the contact with

the server first in order to start the object migration procedure. Therefore, clients do not

have to worry about suddenly receiving a master object. The client notifies the server that

it wants to host the master of a given game object using a request master message. The

server receives this request message, proceeds with setting the local copy to a duplica, and

marks the client id as the master object’s host. This information is wrapped in a Migration

message and sent back to the client. This allows better control over the object migration

procedure.

4.5 Peer Communication Strategy

The creation of object duplicas is managed by the replication space contained on the server

or the client node. To maintain the list of subscribers and publishers and abstract the object

replication logic from the network layer, another sub-module is added between the replica-

tion engine, the suggestion engine, and the network engine.It is called thePeer Replication

Strategy. Its purpose is the same as for the communication strategy mentioned in Section

2.6.5, but in this peer replication strategy some of the existing methods were overridden

to adapt to the needs of the peer-to-peer structure and logicof Yobol. By adding another

layer to the structure simplifies the amount of work should wedecide to change the com-

munication logic. A new implementation can be dropped in andreplace the current one,

without requiring much or any modifications to be done in the other modules/engines. The

modified methods are:

• publish: is used to send a state update to all clients subscribed to a specific topic. The

pSense algorithm introduced the idea that client machines may not be able to send

position updates to all nodes located in their vision range due to a limited amount

of upload bandwidth capacity. Messages are then sent to a subset of players in the

54

4.6. Boostrapping

vision range. The others will receive the position update through message forwarding

(see Section 2.5.3). Yobol follows this approach by creating aMAX OUT CAPACITY

parameter which limits the number of messages a client sendsper position update.

By default, the position update is to be sent to all clients whose identifier is in the

near nodes list. However, if this list is larger than the MAXOUT CAPACITY value,

a copy C of the near nodes list is made. The contents in C are shuffled and the

list is shrunk to reach the size defined by the MAXOUT CAPACITY parameter.

The recipient list defined in the position update message is filled with the identifiers

contained in C.

• sendToTarget: is used to send a message to a target client. With the possibility of

sending position update messages to only a subset of peers due to the limit imposed

by the MAX OUT CAPACITY value, the existingsendToTargetmethod (see Section

2.6.5) needs to be altered in order to enable such operation.

4.6 Boostrapping

In a common client-server setting, clients must first connect to the game server in order

to be authenticated, to retrieve the latest state of the gameworld and of their avatar, such

that they can continue playing where they last left off. Thistask has proven to be more

challenging in the context of a peer-to-peer structure, especially when no superpeer node is

used. With no superpeer nodes, no nodes have a global knowledge of the game. Therefore,

when a client joins the game, no one can efficiently determineto whom it should connect

to. Note that boostrapping occurs before any game interaction takes place.

In Yobol, a RendezVousnode was created to facilitate initial connection set-up. The

RendezVous is itself a server node and contains information which helps a client A locate

the game server and an active client B currently connected inthe game. Client A will then

connect to the server, request its master object and connectto client B. Once A is connected

to B, A collects information about the current game state fromB and builds its near and

sensor list. The RendezVous node is kept separated from the game server node because

each entity focuses on a different concern, and separating these concerns is favorable for

55

4.6. Boostrapping

RendezVous

Node

Server Client A

1 ‐ join game

2‐ send server addr

2‐ send client A addr

3‐ establish connection

message exchange upon client D join

existing connection

RendezVous

Node

Server Client D

1 ‐ join game

2‐ send server addr

& client B addr

2‐ send client Daddr

3‐ establish connection

Client A Client B

Client C

4‐ establish

connection

2‐ send

client D

addr

(a) first client joining (b) fourth client joining

Figure 4.9:RendezVous Node Bootstrapping

code reuse and maintenance. Moreover, this allows server access to authenticated clients

only, which is desirable for security reason.

In more detail, to join a game the client must first connect to the RendezVous node.

Then it waits for a reply message from the RendezVous, which contains the game server’s

and the service server’s addresses. Once the client is deemed valid, it receives an avatar

from the service server and the game states (duplicas) from the server. It then loads the

game map. At this point, the client only holds a duplica of hisavatar. The next required

step is to request the server to migrate the master object to the client. A peer-to-peer

structure is then formed.

When the RendezVous node finds a node that has not been connectedto the game server

yet a new connection is detected. Therefore every 5 seconds,the RendezVous node scans its

connection list looking for any node whose flag is set to false. This means that a new client

node has connected. Once the node is connected to the game server, its flag is updated

to true, thus indicating that it is an existing node. When a newconnection is found, the

RendezVous node forwards the client’s address to the server and the authentication service.

If this new node is the first client to connect, then its address is forwarded to the server

56

4.6. Boostrapping

and services only. Otherwise, it also forwards the new client’s address to a random client

who is already connected to the game. These steps are illustrated in Figure 4.9. In the case

(a), there are no previous connected nodes in the network, therefore client A’s address is

only forwarded to the server and vice versa. In (b), client D wants to join the game and the

RendezVous node chooses client B as the node which client D will first connect to. It is

through client B’s connections that client D will build the near nodes list and sensor nodes

list. When a client leaves the game, the RendezVous node receives adisconnectevent and

proceeds to remove that node from its connection list.

57

Chapter 5

Experiments

We have run a suite of experiments using different plausiblegame scenarios. Below we

describe the context in place, and present an analysis basedon the various data gathered

during the experiments. These discussions demonstrate both the suitability of Yobol as a

network engine for MMOGs, and also how the system is affectedby using TCP/IP or UD-

P/IP as transport protocol. The experimental environment used is detailed in Section 5.1.

The simulation setup evaluated is presented in Section 5.2 and the results are summarized

in Section 5.3.

5.1 Experimental Environment

The implementation of Yobol has been extensively tested inside Mammoth using clients

with Non-Player Characters (NPC). The behavior of the NPCs usedis rather primitive as

the NPCs are simply moving around in a random pattern in the game map. However, this

behavior is perfectly appropriate for our interest as it causes many messages to be sent over

the network. This uses both direct messages (to tell the master that the client has moved)

and published messages (to inform other players about the change). Also, as the NPC

moves around the map, other node discoveries and disconnections can be observed.

The NPC-clients were executed on 30-50 computers from the McGill School of Com-

puter Science computer labs. Each of these machines is equipped with a processor that

runs at a minimum speed of 2GHz and with at least 2GB of memory.A small script is

58

5.2. Simulation Setup

used to remotely log in to the machines and then start the NPC clients. Several NPC clients

can be run on one machine to simulate higher load settings. A 5seconds delay is added

between the startup of each client to avoid a bottleneck on the RendezVous node. Since

in real MMOGs, players rarely connect all at the same time, this is reasonable. Being a

hybrid peer-to-peer system, Yobol’s server is run on a machine with 2.GHz processor and 8

gigabytes of memory. We use the same virtual game map for all our experiments. This 30

x 30 size map contains about 500 player objects. This is the maximum number of clients

that can connect to it.

5.2 Simulation Setup

In the simulation setup, each NPC has its own environment andruns in its separate thread.

This means, when a new NPC connects to the server component, it receives a copy of every

object it is interested in. It can then interact with the world by executing actions on those

objects.

Communication between NPCs and the server component is achieved using theYobol-

NetworkEngine, which is a real socket-based communication engine. The central server

and the NPCs run on different machines. Each NPC has to spawn atleast 2 threads, one

to communicate with the centralized server, another to monitor the sockets for incoming

traffic, and additional ones for each node connected to it. Inaddition, all communication is

routed through the localhost network interface. Each machine may be running one or many

NPCs depending on the experiment at hand.

The interest area of the NPC is set to 7 such that each player character sees about

17% of the game map. With a smaller vision range, the number ofconnections between

nodes decreases. However, the usage of sensor nodes is essential to support a peer-to-

peer overlay without causing any network partitions. No limit in the number of outgoing

messages is defined in our experiment such that any player cansend out as many position

update messages as needed after a movement. However, some message forwarding is still

expected to be observed as it is used to detect new near nodes in the network. The same

setup is used for all experiments with the exception of the underlying tranport protocol

59

5.3. Results

(TCP/IP or UDP/IP) used in the network engine.

5.3 Results

This section provides some data collected from our experiments and their analysis. To

determine the feasability of using Yobol in a real game environment, some measurements

such as the connection latency of player nodes and determining the maximum capacity of

each node are performed.

5.3.1 Capacity

Our initial intention was to compare the scalability of the peer-to-peer system to the exist-

ing client-server structure. However, largely due to a lackof computing resources, we were

not able to generate enough players to make this analysis interesting. From the available

computers in the laboratories, only a subset of 30 machines was suitable for our experi-

mentations. As many of them are older machines and contain less memory, they quickly

become overloaded especially with the TCP/IP implementation of Yobol.

Each socket connection uses one file handle. As the number of connections per client

increases, the file handle size also increases, up to a point of running out of file handles.

This means that no more files can be opened, no more socket connections can be accepted,

and no more shared libraries can be loaded. This would resultin a denial of service scenario

where no more connections are allowed, and under some circumstances, the game client

node can hang or crash. A simple work around is to increase thefile handle size. However

this comes with a cost, as overallocating carries a penalty of cost (memory and/or cpu).

The default value of file handle in Linux is 1024. In order to allow clients to keep a larger

number of connections, without letting it grow out of hand, we have limited the size of

this handler file to 51200. Despite our efforts, only 3 NPC clients can be simultaneously

run in a machine without causing it to overload. Therefore, the TCP/IP implementation is

only able to scale up to 90 clients randomly distributed overthe game map. This does not

signify that the system is not scalable with TCP, but this limit was reached because many

clients are run on each machine. Generally each machine hosts only one client.

60

5.3. Results

(a) Total Number of Position Update Messages Sent

(b) Total Number of Position Update Messages Received

Figure 5.1:UDP Maximum Load

61

5.3. Results

The UDP/IP implementation of Yobol requires less computingresources because it is

a connectionless protocol. Therefore, more clients can runat the same time on a machine.

For the TCP experiment, some machines that were not suitable to be used due to their

lack of memories, can now be used for the UDP experiments. This increases the number

of machines available to 50. Our experiment demonstrates that the server becomes over-

loaded when more than 300 clients connect to it and a client machine has the capacity of

running 7 NPC clients using UDP. However, our system was onlyable to scale up to 168

clients randomly distributed in the game before service deterioration is observed mainly

because several clients are running on the same machine, forcing it to run out of computing

resources. Figure 5.1 (a) and (b) respectively illustratesthe total number of messages sent

during the game by all players, and the total number of messages received. The x-axis is the

time in seconds, and the y-axis is the number of messages. During initialization time, there

are more position update sent out than received. Once the system is stable, the number of

messages sent and received increases linearly because players publish their new coordinate

regularly to their peers. These graphs show that the largestamount of message sent and

received in the game is achieved with 168 players. As the number of clients increases,

the number of messages gradually decreases. This clearly indicates a degradation of ser-

vice due to high network traffic. In the peer-to-peer architecture, each client sends more

messages. Therefore our client machines saturated faster.Note that in a true peer-to-peer

system, this problem does not arise because each machine only hosts one client.

From this experiment, we can conclude that TCP uses more resources than UDP as

in our setting, TCP only scaled up to a total of 90 players (3 active clients per machine),

whereas UDP supported up to a total of 168 players (6 active clients per machine). In

both cases, the system was overloaded because too many clients were running on the same

machine, and more time was spent on transmitting and receiving data packets instead of

processing them.

Let’s recall that TCP performs some end-to-end flow control such that data are not sent

faster than the receiver is able to receive and process it. TCPbreaks large messages into

smaller packets and guarantees that every packet sent arrives at its destination in the same

order as it originated. Doing this generates a considerableamount of overhead. This ex-

plains why only 3 active clients can be hosted by one machine with TCP. Being a lighter

62

5.3. Results

protocol, UDP uses less resources as no hand-shaking is required prior to sending a mes-

sage. This can be observed by the fact that each machine can hold up to 6 active clients.

By putting more than 6 clients on one machine, a lot of stress isput on the machine, which

made it unable to process and perform its clients tasks. Overall, we cannot judge that UDP

is more scalable than TCP as both have hit a limit which occurred because each machine

hosted too many clients at a time.

5.3.2 Performance Comparison: TCP VS UDP

In this section we describes the experiment performed to analyse the performance of TCP

and UDP with Yobol. The experiment is run 3 times for each set of 30, 60, 90, and 120

randomly distributed NPC clients. The measurements are taken over a time span of 20

minutes of game play. Our analysis focuses on four criteria:the amount of time requires

for a client node to connect to a peer node, the amount of CPU used by the client machine

and by each client process, the memory usage of a client process, and the amount of occured

page faults.

Connection Latency

In Yobol, a local node discovers a new peer node by the use of connection suggestion

messages. Our intention in this first experiment is to measure the latency for creating a

connection after the reception of such message. When the local node receives a sugges-

tion connection message, the current time stamp and the new node identifier is stored in a

table. The local node establishes the proper connection with the peer node and waits for

the latter’s replica. When the replica is received, another time stamp is generated. The

difference between both times determines the connection latency. Figure 5.2 illustrates the

latency observed when TCP or UDP is used as transport protocol. We can observe that it

takes more than 1 second to create a connection between client nodes. This is because the

connection latency measured here includes the amount of time taken for a client to request

and receive a duplica object.

Figure 5.2 TCP has a small latency which is comparable or sometimes better than UDP

when the system is not overloaded like with 30 and 60 clients.At 90 clients, the lack of

63

5.3. Results

Figure 5.2:Connection Latency Comparison

machine resources is starting to put a strain on the clients’execution. Each client needs to

hold more connections and receives much more messages. Beingrun over TCP, if a client

becomes overburdened by the incoming messages and starts taking more time to read, the

sender will adapt its sending speed to the reading speed of the receiver. If the message

being slowly sent is a connection request, then a large latency will be measured. In the case

of UDP, no connection needs to be established before a message can be sent. Messages

are sent out without any guarantee of being successfully received. UDP does not adjust the

sender’s write speed to the receiver’s read capability as done by TCP. Since no handshake

needs to be done between two parties before they can start exchanging messages, and even

with high traffic on the network, nodes can perform a write as fast as they can support,

UDP performs much better than TCP under high loads. While TCP is struggling with the

lack of computing resources, UDP shows a very small variation of its latency, which is

considerably less than observed with TCP.

Although TCP performs well in under-loaded situations, the latency quickly increases

when client nodes become overloaded. Moreover, the system becomes overloaded with

only 90 connected players. While this can confirm that TCP has reached its maximum

capacity with 90 active players, UDP’s scalability does notseem to be affected as its latency

64

5.3. Results

Figure 5.3:Performance Comparison - CPU Usage

remains under 2 seconds throughout the experiements.

CPU Usage

Figure 5.3 displays the experimental results for the average amount of CPU used to exe-

cute the application code in the user space (for example programs and libraries). When

comparing the system performance running over TCP and UDP, inevery case, TCP needs

more CPU than UDP. As the number of clients in the game increases, a local node A needs

to maintain more connections with near nodes. Therefore, updating its near node list and

sensor node list will take more time because a node A will haveto go through a longer list

to determine whether a node B should be in its near list or not.The CPU usage for TCP

peaks up at 90 connected clients and suffers a significant drop afterward. This confirms

that the maximum capacity of the TCP implementation is indeed90 players, because when

more players try to connect to the game, the system becomes overloaded and some of these

connections are dropped, causing a decrease of CPU usage for all remaining clients.

Although TCP uses more resources for keeping connection sockets than UDP, the latter

needs to perform more work in the application layer to compensate for some of the lacking

features of TCP, like message duplication. As mentioned in Section 2.7, in TCP a message

65

5.3. Results

Figure 5.4:Performance Comparison - Memory Usage

is either sent once or not at all. UDP does not offer this guarantee such that a message

may be sent zero or many times. In order to provide only relevant data to the game layer,

our UDP network layer must filter out more duplicated messages. This is reflected by

an increased usage of CPU as the number of clients grows largerfor the UDP transport

protocol. Nevertheless from the above figure, we can judge that UDP’s scalability limit of

168 players is not caused by a lack of CPU power as its CPU usage remains well under

10% throughout the experiments.

Process Memory Usage

The average process memory usage of Yobol running on TCP is significantly lower than

on UDP. This difference is due to the use of a larger socket receive buffer size for the UDP

implementation. Too little UDP buffer space causes the operating system kernel to discard

UDP packets. To minimize the likelihood of message loss, thebuffer size is increased

to 16384 bytes (214) for the UDP implementation. The TCP socket receive buffer size is

only 2048 bytes (211). For each datagram socket created a greater amount of memory is

allocated for the reception of messages. The average use of virtual memory per process for

the TCP and the UDP implementation of Yobol is depicted in Figure 5.4.

66

5.3. Results

For TCP, the amount of memory used fluctuates between 2.332GB and 2.334GB as the

number of player increases. This is mainly because TCP uses a smaller receiver buffer size

than UDP. In the case of UDP, as the number of clients increases, the amount of memory

used increases as well. A significant growth is observed whengoing from 30 to 60 players

(i.e. from one player to two player per node). An increase of connections between client

nodes can account for this. However, a smaller augmentationof memory usage is shown

for 60 to 120 players. This can be explained by the fact that the vision range of client nodes

covers about 17% of the map and many groups of clients, located in different areas in the

map, can be formed. If a client belongs to one of those groups,the client’s connections are

limited to the peer nodes in the group along with a few sensor nodes. This is an effect of

an under-populated map. In this case, the number of connection held by a client at a given

time would not vary much.

From the above figure, we can determine that with a total of 120players in the game,

there are 4 clients running on each machine. Each client process consumes on average

about 2.343GB of virtual memory. Since each machine contains 8GB of memory, it is not

surprising that UDP hits its scalability limit of 168 players (6 clients per machine). Once

more, this limit is reached because more than one client is executed on one machine, which

is not common in a true peer-to-peer game environment.

Page Fault Count

From Figure 5.5, the occurrence of page faults is very similar for both TCP and UDP

under normal load. As TCP reaches its maximum capacity of 90 players, a greater amount

of page faults ensues. Combining this finding to the result obtained in the connection

latency section, we can safely conclude that the system is overloaded from this point on.

However, Figure 5.4 shows that the memory usage for TCP is low but Figure 5.5 shows

that there is a large number of page faults. An explanation for this is that the system may

be thrashing. In our TCP implementation, we have used the default flow-control provided

by MINA, providing the basic functionality. This flow-control may not be adequate for

Mammoth’s game environment as illustrated in the obtained results. With 90 players in

the system, each client has reached a point where it is unableto process all incoming

67

5.3. Results

Figure 5.5:Performance Comparison - Page Fault Count

data. Therefore, it requests that its peers reduce the amount of data they send at a time by

lowering the window setting value on a TCP packet. If the client is still unable to process

all incoming data, this window setting value becomes smaller and smaller, to the point

where the data transmitted is smaller than the packet headeritself. This makes the data

transmission extremely inefficient. Since there is a certain amount of overhead associated

with processing each packet, the increasing number of packets means an increase overhead

to process a decreasing amount of data. This results in a thrashing system, which results in

a large amount of page fault occurrences.

Since the value shown in Figure 5.5 is an average value of all experiment runs, TCP

could be running fine for 95% of the time, then at some point something causes all the

memory to be used up for a few minutes and causing thousands ofpage faults. This will

have very little affect on the memory usage analysis, but a large one on the page fault

statistic.

Message Overheads

Aside from sending and receiving position update messages,each client node is required to

communicate a set of messages that are essential to the functioning of the game. These fall

68

5.3. Results

into the message overhead category. Some of the observed overhead messages are listed

below.

• Sensor request messsage:sent to sensor nodes asking for the best sensor candidate

in a given area/slice

• Sensor suggestion message:sent by sensor nodes indicating which node is the best

sensor candidate for a given area/slice

• Request connection message:to ask a near node B for more information about

another node C such that it can initiate a connection to C

• List update message:to create a connection with new node C (once this message is

received, a concrete socket will be opened on both nodes to allow data transmission)

• Disconnect message:to notify that a near node B left the game

Figures 5.6, 5.7, 5.8, and 5.9 illustrate these overhead messages in four different setting:

with 30, 60, 90, and 120 players in the game, using TCP/IP as transport protocol or UDP/IP.

The y-axis represents the total number of overhead messagesoccuring after a given time

has elapsed. The x-axis is the amount of elapsed time.

When comparing Figure 5.6(b) with Figure 5.7(c), we can observe that the number of

list update messages increases significantly with 90 activeplayers in the system, while the

number of sensor request messages decreases a little. This conforms to the fact that more

connections are needed as the game map becomes more populated, but it also suggests

that more computing resources are used to create and handle connections with peers rather

than performing overlay maintenance. At 120 players (see Figure 5.7(d)), TCP is already

overloaded, therefore the number of overhead messages is lower than at 90 players.

When comparing Figures5.8(e-f) and 5.9(g-h), we notice thatas the number of players

increases, the amount of sensor request messages decreasesa little, while the number of re-

quest connection messages increases greatly. This indicates that more effort is put on trying

to create connections with new peers than maintaining the network overlay. Another point

worth mentioning is that the number of sent messages is expected to be greater or equal

69

5.3. Results

to the number of message received for each type of overhead message as some messages

can be lost. As anticipated, the results collected for TCP abides by this. This is because

TCP is a reliable transport protocol such that every data packet sent out is guaranteed to

arrive at its destination exactly once. In contrast, a new trend is observed for UDP where

the number of message sent is less than the number of message received, as the game map

becomes more populated. This can be the result of message duplication in UDP. Let’s recall

that UDP does not provide any guarantee that a message sent will be successfully received

at the destination. Also, a message can be sent out more than once, such that the same

message is received multiple times, but was counted as a single sent.

70

5.3. Results

(a)

(b)

Figure 5.6:TCP Message Overheads

71

5.3. Results

(c)

(d)

Figure 5.7:TCP Message Overheads (cont’d)

72

5.3. Results

(e)

(f)

Figure 5.8:UDP Message Overheads

73

5.3. Results

(g)

(h)

Figure 5.9:UDP Message Overheads (cont’d)

74

Chapter 6

Conclusions and Future Work

6.1 Conclusion

This thesis has shown that MMOGs can be run on a peer-to-peer network where player’s

position updates are multicast to interested peers. This overlay is dynamically built and

updated by information gathered from peers. The performance of this network engine has

been studied with two different transport protocols, whichare TCP/IP and UDP/IP. Under

normal load, TCP and UDP performance are very similar, despite the fact that more re-

sources are consumed with TCP. Being resource greedy, TCP turned out to be less scalable

as we were limited to a maximum of 3 NPC clients in one computerduring the experi-

ments. In a real game setting, each client machine will be running a single NPC client and

thus that amount of resources used may not be as problematic.On the other hand, UDP

scales up very well, but being an unreliable protocol, message losses can put a dent in its

performance.

6.2 Future Work

There is a future for building massively multiplayer onlinegames on a peer-to-peer struc-

ture using a localized multicast. However, there are limitations that need to be investigated

or improved; implying a many potential future directions for this work.

75

6.2. Future Work

6.2.1 Firewall

Our experiments were run on lab computers in the McGill’s computer science network.

Since they all belong to the same network, we did not have to account for situations where

a firewall is in place or a client machine resides in a network using NAT. This means that

most private users will not be able to connect to the peer-to-peer network and thus, will not

be able to use a version of Mammoth with Yobol. From a home computer, when a client

tries to connect to a node on a lab machine, the connection fails due to a firewall preventing

the opening of a TCP connection to the client.

This can be solved by implementing the hole punching algorithm [FSK05] on top of

the UDP implementation of Yobol. This would allow the traversal of firewalls and NAT

networks.

6.2.2 Reliability

This research has shown that UDP is a preferable medium than TCP for MMOGs. UDP

consumes much less resources, since no connection setup is needed before sending a mes-

sage. Nevertheless, UDP is known to be an unreliable protocol. Since our experiments

were run in a local area network, few message lost were observed, thus having less impact

on the game. However as the load gets higher, messages are more frequently lost. This will

eventually spoil the player’s game experience. To remedy this, some of TCP’s reliability

can be implemented in UDP. A possible approach would be a local node sending the posi-

tion update unreliably the first four times, and the fifth timeit moves, the position is sent

out in a reliable fashion. This ensures that peers will always receive some updates

6.2.3 Security

Being a peer-to-peer approach, security is a major issue since each client node controls a

master object. Malicious nodes can send out erroneous data about their state in order to

gain some unfair advantage on their peers, like making themselves invisible. They could

also send out fake messages to overload the network and prevent it from working well.

Since this topic has not yet been explored, further work is necessary.

76

6.2. Future Work

6.2.4 pSense

Being inspired by pSense, we have focused on distributing player master objects on the

client nodes and left other game objects on the server. This can be pushed further by

distributing all mutable objects onto clients, making thisa pure peer-to-peer approach. On

the other hand, other interest management can be explored aswell as other ways to allocate

sensor nodes to optimize the performance.

77

Bibliography

[AG] 10Tacle Studios AG.

URL: <http://ng.neocron.com>.

[ARBS04] M. Agrawal A. R. Bharambe and S. Seshan. Mercury: supporting scalable

multi-attribute range queries. InSIGCOMM, pages 353–366, 2004.

[Are] Inc. ArenaNet.

URL: <http://www.guildwars.com>.

[ASB08] S. Jeckel P. Kabus B. Kemme A. Schmieg, M. Stieler and A.Buchmann.

psense - maintaining a dynamic localized peer-to-peer structure for position

based multicast in games. InProceedings of the 2008 Eighth International

Conference on Peer-to-Peer Computing, pages 247–256, Washington, DC,

USA, 2008. IEEE Computer Society.

[BK04] W. Xu B. Hopkins B. Knutsson, H. Lu. Peer-to-peer supportfor massively

multiplayer games. InINFOCOM, pages 96–107, USA, 2004. IEEE.

[EFGK03] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Ker-

marrec. The many faces of publish/subscribe.ACM Comput. Surv., 35(2):114–

131, 2003.

[Ent] Blizzard Entertainment.

URL: <http://www.blizzard.com>.

78

Bibliography

[FSK05] Bryan Ford, Pyda Srisuresh, and Dan Kegel. Peer-to-peer communication

across network address translators. InATEC ’05: Proceedings of the Annual

Conference on USENIX Annual Technical Conference, pages 13–13, Berkeley,

CA, USA, 2005. USENIX Association.

[GCV01] I. Keidar G. Chockler and R. Vitenberg. Group communication specifications:

a comprehensive study.ACM Comput. Surv., 33(4):427–469, 2001.

[JK03] G. Simon J. Keller. Solipsis: A massively multi-participant virtual world. In

Proceedings of Parallel and Distributed Processing Techniques and Applica-

tions, pages 262–268, 2003.

[JK09] B. Kemme A. Denault M. Hawker J. Kienzle, C. Verbrugge. Mammoth: a

massively multiplayer game research framework. InProceedings of the 4th

International Conference on Foundations of Digital Games, pages 308–315,

Orlando, Florida, USA, 2009. ACM.

[JSBV06] J. Kienzle J.-S. Boulanger and C. Verbrugge. Comparinginterest manage-

ment algorithms for massively multiplayer games. InProceedings of 5th ACM

SIGCOMM Workshop on Network and System Support for Games, page 6,

Singapore, 2006. ACM.

[KPBM99] Ö. Özkasap Z. Xiao M. Budiu K. P. Birman, M. Hayden and Y. Minsky. Bi-

modal multicast.ACM Trans. Comput. Syst., 17(2):41–88, 1999.

[LP96] J.C.-H. Lin and S. Paul. Rmtp: A reliable multicast transport protocol. In

INFOCOM, pages 1414–1424, 1996.

[MCR02] A.-M. Kermarrec M. Castro, P. Druschel and A. Rowstron. Scribe: A large-

scale and decentralized application-level multicast infrastructure.IEEE Jour-

nal on Selected Areas in Communication (JSAC), 20(8):100–110, October

2002.

[min] Apache mina.

URL: <http://mina.apache.org/>.

79

Bibliography

[Mor96] K. L. Morse. Interest management in large-scale distribution simulations.

Technical report, Department of Information and Computer Science, Univer-

sity of California, Irwine, 1996.

[Pla] Inc. Playnet.

URL: <http://www.battlegroundeurope.com>.

[PTEK03] S. B. Handurukande P. Kouznetsov P. T. Eugster, R. Guerraoui and A.-M.

Kermarrec. Lightweight probabilistic broadcast.ACM Tans. Comput. Syst.,

21(4):341–374, 2003.

[RD01] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location

and routing for large-scale peer-to-peer systems. InIFIP/ACM International

Conference on Distributed Systems Platforms (Middleware), pages 329–350,

November 2001.

[YV05] A. P. Yu and S. T. Vuong. Mopar: a mobile peer-to-peer overlay architecture

for interest management of massively multiplayer online games. InNOSSDAV,

pages 99–104. ACM, 2005.

[Zin08] Dominik Zindel. Postina: A publish/subscribe middleware designed for mas-

sively multiplayer games. Master’s thesis, McGill University, University of

Fribourg, Montŕeal, Qúebec, Canada, Switzerland, 2007-2008.

80

