YOBOL: LOCALITY-AWARE MULTICAST ENGINE FOR A
MASSIVELY MULTIPLAYER GAME ARCHITECTURE

by
Chhunry Pheng

School of Computer Science
McGill University, Montreal

October 2010

A THESIS SUBMITTED TOMCGILL UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF THE DEGREE OF

MASTER OFSCIENCE

Copyright(© 2010 by Chhunry Pheng

Abstract

Massively multiplayer online games have gained such mommetiiroughout the years
that their consumer base has exploded. Being mainly built dreat-server architecture,
the server becomes the bottleneck, causing scalabilitylgmn To alleviate this, peer-to-
peer structures have been exploited in the game context.

In this thesis, we have developed a peer-to-peer bidsagork Enginef the Mammoth
game research framework.Based on pSense [ASBO08], this relaya@r is flexible enough
such that it can be run on different transport protocols. iflea is that players send their
game changes directly to other players that are close to theéhe game world without
going through a server. As clients move, they detect otheeyqus with the help of gos-
siping. Special sensor nodes suggest them to build comnsdid new players. Through
these message exchanges, each client node creates arebupdadist of peers interested in
their movements. Since clients constantly move arounsl g¥erlay maintenance is highly
dynamic. ASuggestion Enginis built to perform this overlay maintenance. Experiments
are designed to analyse and compare the performance ofttherkengine when running
on top of two different transport protocols: UDP/IP and TE&P/I

Résum é

Les jeux en ligne massivement multijoueur ont gagne si grande populagifau cours
des dernieres ages que leur nombre de consommateurs a e&plésréralement concu
pour une architecture client-serveur, celui-ci subi ungégsse au niveau de leur extensibi-
lité, car un goulot dtranglement se forme normalement éteadu serveur. Afin deggler
ce probéme, les architectures posieposte onéte adopé et inegte dans les contextes de
jeu.

Pour cette thse, nous avonsgelopg@ un moteur deaseaux Kletwork Engingcongu
pour une architecture postéeposte pour Mammoth, qui est un logicielégté pour la re-
cherche des jeux en ligne massivement multi-joueursé Bas pSense [ASBO08], notre
couche de@seau est assez flexible afin qu’il puisse supportegrdifits protocoles de trans-
port. Les noeuds clients s@cbuvrent entre eux part I'integdiaire d’'une troisime enét
Cette derréreémet des messages de suggestions aétablir des connections entre les
noeuds clients. Gice aux messages commuréqules noeuds clientséent et fait un mise
a jour de leur liste de noeuds homologue£iasgs par leurs mouvements. Vu que les
clients bougent constamment dans le jeu, cette structureséau doit tre &s dynamique.
Un moteur de suggestiors(iggestion Engineest céé pour faire la maintenance de la
structure. Une suite d’exgriences onéte developgees afin d’analyser et de comparer la
performance du moteur déseau lorsqu’il est @&cug avec deux diffrents protocoles de
transport : UDP/IP et TCP/IP.

Acknowledgments

This work would not have been complete without the supporhahy. First, | would
like to thank my supervisor Bettina Kemme for her constantignce, support and encour-
agement throughout the completion of this work.

Finally, | would like to give special thanks to my parents, sister and the rest of my
family and friends for putting up with me and for their comgtaupport and encouragement

throughout my studies.

Contents

Abstract i
Résune i
Acknowledgments iii
Contents iV
List of Figures Vil
1 Introduction and Contributions 1
1.1 Motivation e 1
1.2 Contributions 3
1.3 ThesisOrganization 3
2 Background and Related Works 5
2.1 Massively Mulitplayer Online Games Overview 5
2.2 Interest Managemento 6
2.2.1 Euclidean Distance Algorithm 7
2.2.2 TileAlgorithm 7
2.3 Existing Architectures 8
2.3.1 Client-Server e 8
2.3.2 Peerto-Peer. 9
2.4 Other Peer-to-Peer StructuresinMMOGs 12
2.5 pSenseAlgorithm 14

2.5.1 Sensor Node Selection and Maintenance 16

25.2 MessageForwardingo 17
2.5.3 Overlay Maintenance 18
2.5.4 Joining and Leaving the Network 02
26 Mammoth 21
2.6.1 Server Architecture and Object Replication 21
2.6.2 Publish/SubscribeBasics 3 2
2.6.3 Interest ManagementinMammoth 4 2
2.6.4 MammothComponents. 25
2.6.5 Communication Strategy oo 28
2.6.6 OtherServices 28
2.7 Transport Protocols: TCP,UDP 29
2.8 MINA . 30
Yobol Concepts 32
3.1 Motivation 32
311 Naming o 34
3.2 Challenges. e 34
3.2.1 OpenConnection e 34
3.2.2 SuggestionConcept 35
3.2.3 Master Object Migration, 35
3.2.4 Distinct Replication Spaces 7 3
Yobol Implementation 38
4.1 Yobol Architecture Overview e 38
4.2 NetworkEngine 40
4.2.1 Yobol Network Engine APl 41
4.2.2 MessageFiltering. 42
4.2.3 Design Variationfor TCPandUDP 42
4.3 SuggestionEngine 44
4.3.1 SuggestionMaking 44

4.3.2 Yobol Suggestion Engine APl 46

4.3.3 Overlay MaintenanceinYobol 7 4
4.4 ReplicationSpace 48
441 Refreshinterval 50
4.4.2 Replication Space: ServerandPeer 51.
4.4.3 Object MigrationinYobol 54
4.5 Peer Communication Strategyo 54
4.6 Boostrapping e 55
5 Experiments 58
5.1 Experimental Environment 0. 58
5.2 SimulationSetup 59
53 Results. 60
5.3.1 Capacity 60
5.3.2 Performance Comparison: TCPVSUDP 63
6 Conclusions and Future Work 75
6.1 Conclusion e 75
6.2 Future Work 75
6.21 Firewall 76
6.2.2 Reliability. 76
6.2.3 SeCUurity 76
6.2.4 PSENSe 77
Appendices
Bibliography 78

Vi

2.1
2.2
2.3
2.4
2.5
2.6
2.7

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

5.1
5.2
5.3

List of Figures

Tile Algorithm Example. e
Game State Partitioning-Zones. 00000
pSense Algorithm figures adjusted from [ASBO8]
Message Forwarding adjusted from[ASBO8]
Player State Update Dissemination - Client-Server
ComponentsinMammoth

MINA Structure OVEIVIEW v v v o e e e e e e e e e e e e e

Different Network Architectures Created by Migrating Master Objects

Player State Update Dissemination - Peer-to-Peer

New Components in Mammoth for Yobol
Yobol Network Engine Class Diagrams
Suggesting Connection Steps Lo
Yobol Suggestion Engine Class Diagrams.
Finding a Better Sensor Node Candidate
Steps Taken to Establish Connection BetweenPeers.
Steps Involved in Replication Space ServerandPeer.
Master Object Migration Steps. o e

RendezVous Node Bootstrapping o 0o

UDP Maximum Load. e
Connection Latency Comparison v v e e e

Performance Comparison-CPUUsage.

Vii

50

5.4
5.5
5.6
5.7
5.8
5.9

Performance Comparison-MemoryUsage. 66

Performance Comparison - Page FaultCount. 68
TCP Message Overheads i i i i iiin 71
TCP Message Overheads (contd). 72
UDP Message Overheads. o o v v v i i i i it 73
UDP Message Overheads (cont'd). 74

viii

Chapter 1
Introduction and Contributions

1.1 Motivation

The popularity of Massively Multiplayer Online Games (MM®&has increased tremen-
dously. Over the last decade MMOGs consist of a virtual gamdd, generally hosted
on the Internet, where many players can log-in and possitigract with all other play-
ers in the game world. For fairness purposes, the game nmgtiprthe same knowledge
about the current game state to every player. To do so, a gmeaint of data needs to be
transmitted over the network.

Traditionally, games are built on a client-server architez. This offers more con-
trol to game companies in terms of managing player accoumgsntaining game state
consistency, and detecting and resolving cheating sitasttiHowever the client-server ar-
chitecture does not scale well. A bottleneck generally o&on the server as more players
connect to the game. Most companies deal with this problemdoyng more servers and
creating server clusters in the system. Although this <eg the scalability problem, it
does not get rid of it. There are costs associated to thigipeawhich include the cost of
buying the machines, replacing computer parts, rentingiatfeto store them, hiring peo-
ple for their maintenance, other utilities, etc. Compan@sgensate these costs by asking
for a monthly or annual membership fee from their players.

1.1. Motivation

To give smaller game companies a chance to get a piece of Hrisetpnumerous ap-
proaches have been proposed for utilizing a peer-to-paestste for MMOGs. The main
advantage of a peer-to-peer architecture is its limitlesdability. However, developers
must deal with some problems that were inexistent or redbtigimple to solve in client-
server architectures. Some of these new challenges arerglayterest management, game
state distribution, and cheat detection and prevention.

Part of the game experience in MMOGs is to play in a virtual ld/l@hared among
a large number of users. In an ideal environment, each plalyject will know about
every other player object in the game as its decisions miglaftected by others’ actions.
However, this is not a plausible solution for MMOGs due toptr scalability. As the
number of player objects in the game grows larger, the numreessages exchanged over
the network and processed at each client node increase$ygrearemedy this, several
interest managemeiaigorithms were introduced to MMOGs. Interest managensetita
mechanism used to determine which information is relevauat player object. The most
common type of perception in MMOG is bounded by what a playgea can see, but is
not strictly limited to proximity. For example, if a game ebj is close to a player object,
but they are separated by a wall, the game object becomésvane to that player object.

The Mammoth research group at McGill University has built @ssively multiplayer
game research framework, named Mammoth. This framework tiraase the implemen-
tation of new game algorithms and provides a means to eealhaim in a real game envi-
ronment, instead of using simulations. One of the major aomepts found in Mammoth
is the network engine. This component implements the camitres for communica-
tion between clients and server. It handles connectionsvassage transmissions using
TCP/IP and supports several communication paradigms. Haweost of these models
are designed for the client-server structure.

Each of the peer-to-peer approaches that have been proposesl past focuses on
some of the game aspects. In the case of pSense [ASBO08], theasimps put on fast
dissemination of player position update messages to stegpeers. Being a peer-to-peer
approach, each client node must perform the interest mamageof its player to determine
who should receive its updates. This is a difficult task to date own. Therefore peer
nodes emit suggestion messages to a client node, notifyalgput other nodes that might

2

1.2. Contributions

be interesting to that client node. By doing so, a peer-to-g&ecture is formed and
maintained dynamically. PSense introduces the concepeaf and sensor nodes. Near
nodes are nodes that are close to a player object and whisegtates might have a direct
impact on the player’s actions. Sensor nodes are nodesrhddaated around a player
object in a certain distance and that find other nodes thail#yer might be interested in.

The task of this master thesis is to build a peer-to-peer orte@ngine capable of lis-
tening to suggestions made from peer nodes. This new enggfezred to as Yobol, is
an extension module to Mammoth that merges game and netwa@ieness. It is flexi-
ble enough to allow executions over different type of tramsprotocols like TCP/IP and
UDP/IP. Based on the pSense algorithm, Yobol contaissggestion enginehich is the
component responsible of determining a client’s interemhagement and making sugges-
tions to peer nodes such that new connections can be ebtahlis

1.2 Contributions

Specific contributions of our work include:

e We provide a design and implementation of a network enginedmmunication
over a peer-to-peer structure in Mammoth. The modular desfigur network layer
allows for quick and easy swapping of transport protocalshghat Yobol can be
run over TCP/IP or UDP/IP.

e We provide a design and implementation of a suggestion erfgmmaintaining the
peer-to-peer overlay according to the pSense algorithnB[r&$

e We give and discuss experimental results on the usage of PGl UDP/IP as
transport protocol in Yobol for MMOGs.

1.3 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2igesvsome background in-
formation and lists related work on some game concepts aadtpegeer solutions for

3

1.3. Thesis Organization

MMOGs. Chapter 4 describes the internal functioning of Yoaod its integration in
Mammoth. Chapter 5 gives analysis results of the performahd@®@bol executing over
different transport protocols (TCP/IP and UDP/IP). Fin&lligapter 6 concludes this work
and suggests future directions for research.

Chapter 2
Background and Related Works

2.1 Massively Mulitplayer Online Games Overview

Massively Multiplayer Online Games or MMOGs are mostly idigtiished by their large
number of players (usually in thousands) simultaneoushneoted to a persistent virtual
world. The large scale of the number of players subscritinipése games clearly differ-
entiates them from other network based online games. Fongea World of Warcraft is
a popular commercial game which currently has over 10 miliabscribers, where more
than 2.5 million of them are from North America [Ent]. In naall multiplayer games,
players take control of a game character, also known asatar. This is the representative
of the player in the virtual game world. It is through theiater that players can see and
hear things occurring in the game. Therefore, the game aséaevto the player is lim-
ited by the abilities of their avatar. Other examples of vk@lbwn MMOGs are Neocron
Evolution [AG], Battleground Europe [Pla], and GuildWars @A

The game settings can largely differ depending on the natiutlee game. It can take
place in a fantasy world with dragons and magicians or a winttlcof aliens and space-
ships. Regardless of the setting, the game world or virtualduesually consists of dif-
ferent types of objects, that can be classified into four ncategories: player characters,
non-player characters (NPCs), mutable objects, and imreutddpects. Player characters
or avatars are controlled by the players. The state of a pteharacter usually contains its

5

2.2. Interest Management

current position in the game world, running directions/)iabs, health or its possessions.
The avatar’s possessions generally consist of items ¢etldry the avatar while moving in
the virtual world. Aside from player characters, there ds® aon-player characters like
monsters or enemies. These are very similar to player cteasabut differ by the fact that
they are controlled by an Al algorithm. Mutable objectselibod and weapons, are ob-
jects with properties that can be modified during the gameekample, a door that can be
opened or closed is a mutable landscape item. Its state voeuliétermined by a position
and a status such as “door is closed”. Lastly, immutablectdr static objects do not have
any properties that can be changed during the game. Theasstan be represented as a 2-
or 3-dimensional vector. Some immutable landscape itermples are doors, windows,
rivers and trees.

The collective states of all objects in the game at a givee tionstitute thgame state
Objects’ states are modified when an action is performed lmndhem. There are three
main actions that can be performed. The first one is the chaiqyesition. When an avatar
or a NPC moves around, its position is modified along with tamg state. The second
is the interaction between players which can alter the sthtene or both parties. For
example, if two players fight against each other, the hedlthoth players will decrease.
The third type of action is the interaction between a player @n object in which the state
of both entities gets changed. For example, if a player dnm&ter from a bottle, the player
is not thirsty anymore and the bottle contains less water.

2.2 Interest Management

In order to provide a shared sense of space among players pégaer must maintain a
copy of the (relevant) game state on his/her computer. Whemplayer performs an action
that affects the world, the game state of all other playefiectdd by that action must be
updated. The simplest approach is for each player to maiataill copy of the game state
and all players broadcast updates to all other players. Tdl@gm with this approach is
that it does not scale well: as the number of player incredlsesiumber of messages sent
over the network and to be processed by each client greatigases.

2.2. Interest Management

One of the most effective strategies to address this proldetm send to a player’s
computer only the messages that are relevant to its avatar ¢aly the update message
of objects it can see, or that are near). The world space of I@§l©ontains a lot of
information and a single player needs only to know about aetubf that information.
Interest Managemer{tM) is the process of determining which information is relat to
each player [Mor96].

The information relevant to a player usually correspondbéqoerception of its avatar.
In the interest management scheme, this is often based amytyy modeled as a sphere
around the avatar. However, the most common type of pemeptiMMOG is what an
avatar can see, which does not always correspond to prgximiparticular, game worlds
usually contain static obstacles that occlude regionsefjime space. For example, if an
object is close to an avatar but is behind a wall, it beconreteivant to that player.

2.2.1 Euclidean Distance Algorithm

In the Euclidean distance algorithm, the area-of-inteieatcircle around the position of
the player. The radius afision rangedetermines the maximum distance a player can see.
If the distance between an object and a player is smaller ttamadius of the area-of-
interest, the object is declared to be in the player’s visasrge. Then the player subscribes
to all objects located in its vision range.

2.2.2 Tile Algorithm

In tile algorithms, the world space is divided in tiles mynesand the player subscribes
to all objects in the tiles that intersect its area-of-iagtr Tiles can be formed of various
shape such as square, rectangle or hexagonal. These tygsoéches try to leverage the
occlusion created by obstacles in the world. An example it¢ aligorithm is the square tile

algorithm. It is a zone-based interest management sucththgame world is divided into

equal-sized squares. The radius of the area-of-interéseqgilayer determines the number
of the squares. For example, at any given time, an avatacshbbs to at most 9 zones, the
one it currently resides in and the 8 (or less) neighbor dlesind it, as depicted in Figure

2.3. Existing Architectures

Game Space

zone -~

™

Zones

visible @
toP

— playerP

Figure 2.1:Tile Algorithm Example

2.1 When a player performs an action, the action is broadoaat players subscribed to
the square in which the action has taken place [JSBV06].

2.3 EXxisting Architectures

There are several ways to implement the network structuMMOGs. Three main ones
are client-server, pure peer-to-peer, and hybrid pe@etr: Each approach has its advan-
tages and disadvantages, ranging from scalability to cexitglof implementation. In this
section, an overview of the three above mentioned netwathitactures is described.

2.3.1 Client-Server

The most commonly used approach in MMOGs is the client-semahitecture. The server
acts as a central component responsible of maintainingaimegtate, meanwhile the client
hosts the user’s avatar and handles the avatar’s stateagpdat start playing, clients must
connect to the server to retrieve the latest game state anel isfocally. Afterward, all
actions performed by clients are converted to state updatesh are wrapped in messages,
and are sent to the server. Upon receipt of clients’ updatsages, the server deserializes
them, processes them to generate a response, serializesplo@ase and multicasts it to all
clients that have an interest in this update according torttezest management. Clients

8

2.3. Existing Architectures

receive the response message and use it to update their geime s

This model is chosen in most cases for its ease of implementand control, such as
detecting and preventing cheating amongst players or gaiiject persistence in order to
handle system crash. Since the server is the main causesyfdtean bottleneck, more than
one server can be used to support a larger number of playbey dan also be arranged
in clusters. Usually, in order to avoid coordination amoagysrs, each server runs its own
instance of the game with a limited number of clients. Gédher@r scalability reasons,
game companies’ servers are located in huge server-farmgdariuary 2008, World of
Warcraft recorded over 10 million users [Ent]. Being one & targest game company,
it can afford purchasing more servers to support the inargasser’'s demands. However,
smaller or start up game companies cannot follow this gyates they will not be able
to afford such setup. For these smaller game companieg tienclient-server model is
not that suitable since the cost of servers will increasyg fast which poses a limit to the
number of servers they can have. The maximum number of gaticg players is limited
by the maximum workload of these servers. Another pointas ifrgame companies want
to look into a different payment method, then they cannatrdfthe large server farms.
Hence, other architectures need to be explored.

2.3.2 Peer-to-Peer

An alternative model is the peer-to-peer architecture wlparticipating nodes qoeers
provide a portion of their resources, like processing paweretwork bandwidth, to other
participants in the network. In contrast to the client-eermodel where the server pro-
cesses and provides information and clients consume its@e both information sup-
pliers and consumers. Peer-to-peer networks are typitaitged dynamically by ad-hoc
additions of nodes. Furthermore, the removal of nodes ghioae no significant impact
on the network. They are highly scalable because the cotignusgaresources and commu-
nication overheads are all shared amongst network paatitsp Their scalability and their
capabilities to build and maintain peer-to-peer overldyesriselves make them favorable
for designing MMOGs network structures.

In a peer-to-peer network, all peers are equal and simuteshg function as both

2.3. Existing Architectures

Game Space
@ . zoneshostedbyq
zone ~_ | q q
N .)
p's player object
zones hosted by p .
p p
P P

Figure 2.2:Game State Partitioning - Zones

“clients” and “servers” to other nodes on the network, su@t ho server is needed. In
a very common setup, the game world is partitioned into mklzones In addition to
hosting the user’s avatar and handling its state updatess pan be assigned one or sev-
eral zones and will become their host. This means that suehvaél act as a “client” for

its user and as a “server” for all objects residing in its Zne

To start playing, clients must connect to a peer node in theark to retrieve the latest
game state and store it locally. Then some zones might bgreeskio them. Afterward,
all actions performed by clients are converted to state tgsdavrapped in messages, and
sent to the appropriate zone host. Upon receipt of updateages from peers, the host
node verifies that the update message concerns a zone it agimgrbefore it processes
the update. Then it prepares a response message and ntsliicasall interested clients.
When peers receive a response message, they apply the idfehmages to their local
game state. Figure 2.2 shows the division of the game stiesmall rectangular zones
where peep is the host of 4 zones and pegmanages 2. The avatar of nodés located
in one of the zones managed §yWhen the avatar movep,sends an update message to
the host nodej, who in turn processes the update, generates a responseudtizds it to
all peers interested in the movement.

The challenge of this game world split is that if an actiomigresting for players that
are outside the zones a peer handles or beyond the regioh Wigi@layers reside in, the
neighboring zones are difficult to detect. Thus, in most engntation, player’s vision
range does not go beyond the zone it is residing in.

10

2.3. Existing Architectures

Pure Peer-to-Peer

An example of pure peer-to-peer system is Solipsis [JKG3% & mathematical model for
a massively multi-participant shared virtual world. Thept-peer network of Solipsis
is modeled by a graph that consists of a set of nodes and a sehoéctions between
those nodes. Each node has a unique ID and is responsibteafiit state. They are able
to sense part of the virtual world, which is inhabited by otbstities. Their neighbors
should recognize by their own initiative that the statushefmode has changed. Therefore,
each node has to know all the entities that are in a certaionmeggound it. Moreover, the
system must ensure that no node will be disconnected frootlars. Each node should
somehow be connected via other entities to every singleipdéee system. However, up to
date no real game implementation of Solipsis exists, matkiisgapproach more theoretical
than practical since no overhead or performance evaluatiave yet been published. This
makes it difficult to judge its suitability for MMOGs.

This type of architecture is very scalable as no server isleste Nevertheless, there
are many unsolved problems like cheating, player autheatifin, and game persistence,
making it not readily suitable for MMOGs.

Hybrid Peer-to-Peer

The idea behind hybrid peer-to-peer architectures is tlagei®f peer-to-peer protocols
while still maintaining servers. This can be found in gamks GuildWars [Are] and
Neocron Evolution [AG]. These servers do not have so markgtisfulfill other than sup-
porting the peer-to-peer structure of the nodes, such &e@azdtion and authentification
making sure that only credible users can access the gamiegsptayers’ persistent states
like account-information or the avatar’s abilities and ggssions. The game state is taken
care of by the players themselves, and not the server assdsdun the previous section.
However, by giving more control to the players, there is atgepossibility for cheating.
Hybrid peer-to-peer offers the advantages of both cliemter and peer-to-peer sys-
tems. It is more scalable than the traditional client-searehitecture and less costly to
develop as no such expensive server-clusters are needaddtelthe number of players.
On the other hand, players will have to participate in kegpine game alive by providing

11

2.4. Other Peer-to-Peer Structures in MMOGs

some upload resources. Moreover, since the hybrid apptoesch server in place, cheating
is relatively easy to control. Every action that takes placthe game will be transferred
to the server. It can control and verify the changes, sudhiftay irregularity arises, the
centralized server can decide if this was due to cheatingpbr This solves the biggest
problem of pure peer-to-peer architectures. The appradobduced in this thesis follows
the hybrid peer-to-peer structure where peer nodes onlgléamformation related to posi-
tion updates. The server is responsible for authentifinaptayer distribution, persistence,
and keeping the game state of mutable landscape items trisis

2.4 Other Peer-to-Peer Structures in MMOGs

Many different approaches for using peer-to-peer algoritfior MMOGSs have been pro-
posed. In some approaches, messages are multicast usstglautied hash table (DHT) or
a dissemination tree. Others are built on group commuieatlystems or gossip protocols.

In some works, the game world is divided into small sub-spaceones which will be
distributed over all participant nodes in a peer-to-pedéwaek. SimMud [BK04] follows
this approach by using a Pastry DHT [RDO1] to map the clienesahd the game objects
(zones, players, pick-able flower, etc.) to an identifiedanly chosen from a uniformily
distributed 128-bit name space. The game sub-spaces aact®bye assigned to client
nodes whose identifier is closest to the object’s identified thus the client becomes their
master node. The DHT is used to lookup where a particularcoigdocated. On top of
the DHT, SimMud uses Scribe [MCRO02] to multicast the game stitw each existing
sub-space, a multicast group is dynamically formed betwsayers located in the same
sub-space. This is made possible by the self-organizingepties of peer-to-peer net-
works. In order to see what is happening in the game, a clieth inas to join to as many
multicast groups as necessary, determined by their iritarea. As players move around,
their multicast groups will change accordingly. Among diést nodes in any multicast
group, one is chosen as the grargordinator. The role of the coordinator is to be the root
of the multicast group as well as to provide newly joinedrdtissin the group with the most
updated state of the sub-space.

12

2.4. Other Peer-to-Peer Structures in MMOGs

Some improvements of SimMum were later proposed in Mopard¥Mvhere a few
optimizations were done to reduce latency. This was acti&yemaking newly joined
clients in the group retrieve the current game state fronttdwoedinator’s local cache in-
stead of getting if from the DHT. This consequently redudes usage of the DHT to
backup data storage. Since accessing data directly frootbrelinator is faster than from
the DHT, the amount of time elapsed before a client recelvegame state is greatly re-
duced. Similarly, in Mercury [ARBSO04], ach subscriptionlanguage was developed to
allow players to express their interests with more flexpilit also provides an efficient
routing mechanism to multicast publisher’s updates tor thalbscribers. Nevertheless, all
these rely on splitting the game world into smaller zoneseZbased approaches comport
many disadvantages, such as expensive hand-shakes wheyeamloves from one zone
to another. Also if a coordinator leaves the game, an expemsconfiguration is required.
Due to the dynamic nature of games, the number of players @astantly vary, making
load-balancing difficult to perform.

A dissemination tree [MCRO02, LP96] is often used to multicasnhg states messages
across all nodes in many peer-to-peer systems. When tree-badticast protocols were
developed, they were mainly aimed for applications with rgdareceiver base. This is
not the case in MMOGSs because generally a message is ontgstite to a few players.
Some argue for using group communication systems (GCS) [GCMBfead, as these
offer primitives to multicast messages to a group of sitesweéter, determining when a
player has to join which group is complex. Also, the actiohpming or leaving a group
are generally expensive operations.

Gossiping protocols [PTEK03, KPBM99] can also be used in MMQ@&multicast di-
rect messages or recover lost messages. They aim at priogagessages of all nodes to
every other node in the system, thus achieving high reltgbHowever, this creates a lot
of redundancy in the system, which is counter-productiaelarge peer-to-peer game envi-
ronment because peer nodes are likely to be overloadedhetlatge amount of messages
to be processed. Additionally, in a peer-to-peer MMOG Bgiteach message should only
reach a small subset of players since only those interestégbiupdate should receive it.
Therefore using a localized multicast mechanism would beeraoitable for this context.

13

2.5. pSense Algorithm

2.5 pSense Algorithm

pSense is a localized multicast for fast dissemination ayei position updates in a dy-
namic game setting [ASBO08]. It exploits a peer-to-peer stmacfor better scalability, as it
is one of the main problems with traditional client-servethétecture. This section summa-
rizes information presented in [ASB08]. A general idea ofpls&nse algorithm is given,
followed by a detailed description of the overlay maintesggrand the joining and leaving
of a node in the network.

For ease of understanding, the distance between two nofies te the distance be-
tween two players hosted by the nodes in the game world. Tdeedrinterest defined by
the interest management is called th&on range The interest management described in
pSense is the Euclidean distance algorithm. Since everg imothe game hosts a player,
the player hosted in node A is referred to as player A. A randoate B is anear node
of A if the player character hosted by node B resides in therigange of player A. The
words player and node will be used interchangeably in tHeviahg.

pSense functionality can be summarized in two main taske fifst task consists of
sending the position updates of a player A to its near nodesnitimoves. Sending the
update message to every other player in the game is not vaigbée. For example, assume
there are 200 active players in a game, and each player nme@esahdom position every
30 seconds. This amounts up to 80,000 position update messsagt every minute. As the
number of players increases, the network runs a greateofigktting overloaded. With
2000 clients, there will be close to 8,000,000 messagesiméitwork per minute just for
position updates. For scalability reason, position updassages will only be sent to near
nodes located in the vision range. It is assumed that théaelhetween a node A and
its near nodes are symmetric. This means that if A is intecest node B, then B is also
interested in player A.

Position update messages are not to be strictly sent to imateatear nodes. Doing so
will greatly risk the creation of game network partitionsetiWork partitions occur when
agglomerations of players are formed in the game, wherea&cituated far apart. A dis-
connection between those groups can occur, such that nergtay one group is aware of
what is happening in the other group. Players then lose blgame information. Once

14

2.5. pSense Algorithm

network partitions exist, they cannot be fixed since no qugrrnode with global knowl-
edge exists in pSense. Thus, the second task of pSense ispdHeenetwork connected.
This is achieved by having each node maintain a listxdénded nodesnown assensor
nodesin pSense. Sensor nodes of a node A are nodes just a bit oafdite vision range
of A. They stick out in every direction like antennas. In Fig2.3(a) the black dot repre-
sents a node A, referred to l€al node The circle around it is its vision range. All nodes
residing in the vision range are maked withindicating immediatenear nodes Figure
2.3(b) shows the space division around the local node A w8giie sections are formed.
Each pie section has an identifier and each sensor node anmgi®dA is assigned to a
specific section. There is only a single extended peer nodsgmtion. Routine checks
will be performed to look for the best sensor node candidatefgiven section. pSense
only considers a 2D space using 8 sectors to divide the spaoadithe local node, such
that extensions might be needed for 3D. Moreover, otherstgpelivision can also be im-
plemented, for example using triangles instead of pie skapgons. Finding an optimal
division configuration is however out of scope of this thesis

Sensor nodes have two main purposes. First, they preveatghgon of game network
partitions by broadening a nodes knowledge of the game. A fodtays informed of
what is happening in its vicinity by the near nodes, and getsesknowledge of what is
happening outside its vision range from its sensor nodesorfk they help a node A to
quickly detect players that enter or leave its vision rarkge.example, assume that a player
P enters the vision range of node A and A and P do not know edwar. oince they do
not have any knowledge of each other, it is difficult for ertbae to initiate the contact.
Assume that one of the sensor nodes of A knows node P and hagyb#ang updates
about P for some time. Once the sensor node sees that P heedghtevision range of A,
it notifies node A about the newcomer with a message containformation about P.

In other words, pSense must restrict sending position @sdat near players, while
avoiding creating network partitions. This is achieved bgking every node keep two
distinct lists: a list of near nodes and a list of sensor nodHse former contains only
the near nodes that are within the local node vision rangetwineed the position updates
very fast. The later contains nodes that are just a bit caitdid vision range, sticking
out in every direction. The sensor nodes of a node A shouldidigtiited as evenly as

15

2.5. pSense Algorithm

O o O
°0 o 4
® O O @ ® O
O 99 g ®o Eanmn R S0
’ ® @ !Vision @

(O] () { vision ® / i Range\Q
! Range
v @ Sensor Node O @
@ ocal Node
O O @ o 5 Il:leig:\:o:i/N:ar Node O @

O Unknown Node

(a) Local View of the Network (b) Sensor Node Selection

2. knows better|sensor.

O

3. sensor node suggestjon

1. sepgor node request

@ Sensor Node

. Local Node A

® Neighbor/Near Node
O Unknown Node

(c) Sensor Node Maintenance

Figure 2.3:pSense Algorithm figures adjusted from [ASB08]

possible around A for a better chance of keeping connectmtise rest of the network,
thus avoiding network partitions, and efficiently detegtirew approaching nodes.

2.5.1 Sensor Node Selection and Maintenance

Sensor nodes of a node A reside a bit outside of the visionerafhd\. They should be
distributed as evenly as possible around A. Figure 2.3(byslan example of how sensor
nodes should be distributed. Since node A does not have rmaeti&dge outside its vision
range, it can hardly find the best sensor candidates on its dWerefore, it periodically
sendssensor requeshessages to the sensor nodes asking them if they know a Geatigir

date for this section. The sensor request message corttaipssition of A and the section
identifier. The sensor node checks if there is a node betitdstihan itself (or could be
itself) and sends aensor suggestiomessage back to A. The sensor suggestion message

16

2.5. pSense Algorithm

contains the identifier of the suggested candidate and titeseadentifier. Node A then
replaces the old sensor node with the new one. This is dejictéigure 2.3(c).

2.5.2 Message Forwarding

According to pSense, whenever a player A moves in the ganmewsposition is sent to
its near nodes and sensor nodes. However, every machinelinaged amount of upload
bandwidth capacity. Therefore, it may not be possible tal$ba update to every near and
sensor node. When the number of nodes in these two sets exbeeadalsioad bandwidth
capacity, the update is only sent to a random subset. Thegsmeceive the new position
directly from player A, using one hop. Upon reception of tipelate, these nodes check in
their own list of near and sensor nodes, looking for nodesrdgde in player A's vision
range (the message originator) and which have not recdreagiidate yet. In Figure 2.4(a),
we assume that node P has either recently entered the vasige of A, or it s not part of
the arbitrary subset of near nodes chosen to receive thequospdate. Near node Q and
sensor nodé; are closer to P, therefore we assume that they already knout & When
Q andS; receive a position update from player A, they find out thatiR the vision range
of A and has not received the position update yet. Either drteemm or both will then
forward that update message to node P. P learns about A asidt uits near node list.
In the next round, P sends its position update to A, which fhés P in its near node list,
if it is not yet there. In some cases, the sensor node canmbafirew node located in As
vision range. It then looks for nodes that are closer to nodéh&se will in turn forward
the message to other nodes that are closer to node A. Thisstgeated until the message
is no longer deemed interesting. In Figure 2.4(b), sensde 89 does not know node P,
but sees that node Q is getting closer to node A and may besgtéetl in the updateS,
forwards the update message to Q. Having knowledge of noQed@es that P is in the
vision range of A and has not received the message yet. Themv@ifds the position
update to P, thus enabling node P and A to discover each other.

Message forwarding plays a crucial part in creating and tasiimg the overlay. It
allows node A to detect new near nodes. However, positioratgpohessage are not to
be forwarded indefinitely. This will create unnecessarylidage messages in the network.

17

2.5. pSense Algorithm

O O
© Sensor Node @ Sensor Node
. Local Node A . Local Node A
® Neighbor/Near Node ® Neighbor/Near Node
—> Position Update —> Position Update
---> Forward ---> Forward
(a) Localized Multicast (b) Indirect Forwarding

Figure 2.4:Message Forwarding adjusted from [ASBO08]

Players are not interested in receiving an old position tgpdéaien a fresher one has already
been received. Aside from limiting the life span of positigpdate messages, detecting
and filtering out duplicate messages is necessary in orderaiotain a lower load and
bandwidth consumption.

2.5.3 Overlay Maintenance

This section details the steps taken to process receivesages, to determine and to send
outgoing messages.

Filter Receive Messages

An arbitrary node A can receive a new message at any time. &vet message could
be a position update message or a sensor request or suggastsage. All messages are
tagged with a unique node identifier and a sequence number.

When a new messageis received, its hash is compared to a list of seen hashes. All
duplicates get discarded. This ensures that no duplicassages will be processed. If
message is a position update, then it is compared to the last positjgiate message
received by the same sender. If the sequence numberiomaller than the sequence
number ofZ, then messagk is discarded as it is not the most recent position updatetabou
that player. All expired/old messages are discarded apttiig. The remaining messages
are put in an incoming message queue, to be processed inthster.

18

2.5. pSense Algorithm

Overlay Maintenance and Multicast

Periodically, node A performs the following actions in artiemaintain the multicast struc-

ture.

1.

Update Near Node Lists

Node A updates its list of near and sensor nodes by first chgeli position updates
and sensor suggestion messages contained in the incomgsggeequeue. All nodes
residing in the vision range are put into the near node lisbsE suitable to be sensor
nodes are selected and put into the sensor node list (saerS2&.1 for details). The
rest are discarded.

. Determine Outgoing Messages

Since message sending only occurs once per round, all nesstealge sent are stored
in an outgoing message queue. Position update messages lifaveéme limit. This

is measured in the number of hops travelled (one plus the auwitforwards). If
the life-time limit of a message is reached, it does not gevtdoded anymore as the
information is no longer considerdgksh

First, a position update message is created with the cupesition of player A
and the recipient list. This list contains the identifiersatifnodes in its near and
sensor list. This will help reducing the number of duplicaiessages in the network.
Second, a sensor request message is sent to each senson rvderito get the
best candidates. Finally, all messages in the incoming agesgueue are processed.
If it is a sensor request message, then a sensor suggestgzageeis created (see
Section 2.5.1) and put in the outgoing message queue, tonbbaek to the message
originator. If it is a position update that has not reachedifie-time limit yet, then
node A checks its near and sensor node list for near nodeslatAave not received
the update yet. If no near nodes are found, it checks for nibdesire closest to the
originator. This is done by sensor nodes after receivingsitipo update from node
A. The recipient list of the update message is modified taimhelthese new receiver
nodes. The update message is then put in the outgoing megpsaige.

19

2.5. pSense Algorithm

3. Send Messages

Before messages contained in the outgoing queue are serd| adiification is per-
formed. If the outgoing message queue exceeds the uploabivizith of node A,
some randomly chosen near nodes in the recipient list aetadilrom the list until it
is small enough to be sent. The update message is then sectto@de in the recip-
ient list. For example, player A sends its new position tpésrs B-Z. The recipient
list in the update message will contain nodes B-Z. Howevebatsdwith limitation
prevents it from sending to all its peers at one time, suchstbime randomly chosen
nodes are deleted from the list. The recipient list in theat@anessage is modified
such that it only contains only node B, D, G, and H. They will beyt only nodes
to receive the position update message directly from A.Altdh it is acceptable to
delete some update messages in order to meet bandwidthtgapemause they can
be recovered through message fowarding, sensor suggesgsages and sensor re-
guest messages never get deleted. Once all messages areosiemcoming and
outgoing queues get cleared.

2.5.4 Joining and Leaving the Network

To join, a new node only needs to know a random node alreadyestiin the network.
This existing node is referred to as thkel node If the old node is in the vision range of
the new node, position update messages are sent direciedetthem. If the old node
is not in its vision range, the new node sends a sensor nodestdrhe old node checks
in the list of known nodes and suggests a better node thdh it$es is repeated until the
new node finds the best sensor node candidates. Meanwligs sensor peer nodes also
receive the position updates of the new node. These updasages are then forwarded
to nodes that are closer to the new node. It will eventualcihea node that is within the
vision range of the new node, which will enable the latteruddoits own near node list.
When a node leaves the network, no special operation is neddedeer node is lost, the
others simply stop sending update messages to that nodsetisg node is lost, a new one
is chosen as described in Section 2.5.1.

20

2.6. Mammoth

Bootstrapping

pSense does not state how to start a game, but suggest d sentsa which players can

connect to and get all necessary information about one pklyeady connected to the
network. An assumption is made that after the first node hasgahe network, the system
will automatically bootstrap itself. Other concepts likyer authentication, game state
distribution, and object replications are not covered ipEe.

2.6 Mammoth

Mammoth is a massively multiplayer game research framewopgtemented in Java. Its
goal is to provide an implementation platform for acaderagearch related to multiplayer
and massively multiplayer online games in the fields of digted systems, fault tolerance,
databases, networking, concurrency, artificial intefigee modeling and simulations, as-
pect orientation and content generation [JK09, Zin08].

Like other multiplayer games, Mammoth requires playersopih and take control
of an avatar. During the game, the avatar can move aroundrtio@lworld and interact
with the environment, like picking or dropping items likewflers, and communicating with
other players through a chat box. When picking items, thepatre the avatar’s inventory,
which may have a limited capacity. Other than player characthere are also immutable
landscape items like trees, walls, fountains, and carsy &beas obstacles preventing the
avatar from moving in a straight line. Currently, there is pedfic goal to achieve in
Mammoth.

2.6.1 Server Architecture and Object Replication

Game objects in Mammoth are distributed according taltbibuted object modehethod-
ology created by Quazal Inc. In this approach, the entireggstate can be described as a
collection of objects where each object has a particulde stehese objects are distributed
across all client machines participating in the game. In MBAQIit is essential that the
state change of an object in a machine will be visible to othachines. Objects must then

21

2.6. Mammoth

beduplicatedover the network to other machines in order for them to seseth@odifica-
tions. An object can either bemaaster objecbr aduplica object As the name suggests it,
the master of an object is the controlling instance who perécall changes to the object’s
state. Duplicas are copies of the master object which aretsesther machines. They
frequently get updated in order to keep their state congistéh the state of the master
object. To be able to control an object, such as a game clearalients will get a copy of
their player object, known asaster duplicaln other words, in a client-server architecture,
all master objects reside on the server. Clients get objgatadis when they subscribe for
updates and get a master duplica of their game charactehwhables them to control the
avatar.

Being a client-server based MMOG, the Mammoth server holdsrthster objects of
all player and other mutable objects in the game. When sgagtigpame, clients connect
to the server to retrieve their avatar information and itsteaduplica. After receiving
the master duplica, clients can start moving their avatahéngame world. The interest
management of the server determines what is visible for ebeht. These can only see
changes after they have received a duplica object from theiseWhenever the avatar
moves, the master duplica on the client node redirects tkeatipn to the master object
on the server by a remote call. It is asking for the permissiochange from the master
object. If the master grants the change, it performs the tepalaitself first and generates
a response message. This response message is then nmadticaat! clients holding the
corresponding object duplica (i.e. subscribed client)r ¢onsistency reasons, actions
like player movements are always performed at the servelidgpthe master object first.
Figure 2.5 illustrate the entire process, client 1 joinsgame and is assigned player Bob. It
gains control of the game character named Bob by holding tlstemduplica. Meanwhile,
a client 2 might be interested in seeing Bob’s state updatddsterefore has a duplica
of Bob. How it receives such duplica will be described in th&treection. Whenever
the avatar Bob makes a movement, its new position is sent tsether who processes
it, creates a response message and multicasts it to allréadrscof object Bob about the
update.

22

2.6. Mammoth

Client 1 Server Client 2
join game connect
[——————————>/assign player Bob

create duplica of Bob

control send master duplica
player Bob[é——__|interest in Bob
send duplica of Bob
—
Bob moves hold duplica of Bob
send state update

process update
generate response R

multicast R | multicast R

Figure 2.5:Player State Update Dissemination - Client-Server

Object Migration in Mammoth

Mammoth currently only supports one model of object migmaitalledBurst Migration

It is designed for distributing objects onto several maekinThis could be used in a server
cluster system where, if a server machine becomes ovedo#d=an migrate some of its
master objects onto other servers to alleviate its loadoutccalso be applied in a zone
approach (see Section 2.2.2) where the host of a given zenéhalds the master objects
of all objects located in the assigned space. This migratiodel is calledburstmigration
because the sever sends the master object to the targetatiestiwithout prior notice or
proper handshake procedure to verify if the receiver endady for the migration to take
place or not.

2.6.2 Publish/Subscribe Basics

Publish/subscribe systems are designed for situationsavehlarge number of subscribers,
with diverse interests, have to be notified about an eventpubdication. Also, whenever
asynchronous communication is necessary, publish/sblescan be used, such that the
publisher does not wait for an answer from the subscribesrbefontinuing. Such systems
are highly scalable because clients do not need the gloloallkdge of the network. Sub-
scribers do not know the publishers, and publishers do nmt/khe consumers. Publishers

23

2.6. Mammoth

are responsible of submitting data as publications or eatifins, whereas subscribers sub-
scribe to publications. Both publishers and subscriberglgeets. Moreover, a client can
be both a publisher and a subscriber at the same time. Themnamy ways to imple-
ment the publish/subscribe scheme, often there is an esprdrsand all communication is
through this server.

The most common publish data model is the topic-based modéih topic-based
publish/subscribe, “subscribing to a topic T can be viewetecoming of a member of a
group T, and publishing an event on topic T translates aaoghdinto broadcasting that
event among the members of T” [EFGKO03].

2.6.3 Interest Management in Mammoth

Interest management is currently done in Mammoth at theesefhe server also has all
master objects but the design allows master objects toeetidny nodes. For example,
the master copy of a player could reside on the node of theeplawhen the interest
management module determines that a player A should knowt gdbayer B, the client
node that controls player A should subscribe to B. This mdaatghe client node of player
A needs to receive a duplica of player B. And then it needs teivecall changes like
position updates that occur on B.

Mammoth does interest management, i.e. determining wholdlsee whom with the
help of a duplication space. In the current version of Manimonly the server has a
duplication space which contains the master objects of athble objects and players.
Both mutable objects and players can be publishers as tahgrdtange. Only players that
are currently logged into the game are potential subsaiasrtheir client modules need
to know about the objects and players of their player’s vigiange. Each publisher A
is associated with a topic or channel X, and all its actiomspblished on this channel.
When a player node subscribes to this channel, its clientrécstives a duplica of A and
later all updates published on the channel. How this messiagemination is done is left
to the network engine.

24

2.6. Mammoth

Matching Policy

The matching function checks whether a mutable game opjagér might be of interest
for an active player. Various matching functions can be wsethey are specific for the
game semantics. They take vision range characteristicsasdount. Mammoth executes
periodically the matching function on every possible otipdayer-vs-active player pub-
lisher/subscriber pair. If it returns true for the first tifog a given pair, the active player
becomes a subscriber to this object player. The serveres@atiuplica object of the pub-
lisher and sends it to the client node of the subscriber. vidhéual state update made to the
publisher object are propagated to all subscribed cliehitsis, clients are kept informed
about the current players or other game objects locatedein ititerest area and receive
their state updates.

Refresh Interval

The refresh interval refers to the amount of time elapse éetweach execution of the
matching policy on the server node. The chosen value playajarmole in determining
how fast a player can discover objects of interest in the gakieo large value will lead
to late object discovery and a too small value will consunmeesaesources unnecessarily.

2.6.4 Mammoth Components

Figure 2.6 gives an overview of the Mammoth software desigfollows a very modular
approach where eaactomponenimplements a major functionality of the systerBub-
modulesare used to encapsulate specific concerns or features irothponents. Com-
ponents provide well-defined interfaces to facilitate thieraction between them. Thus,
the underlying implementation of each component beconasparent to others. This
abstraction allows the developer to create and experimigntvarious algorithms pertain-
ing to their interests without having to modify the entirestgm. For example, if we want
to implement a new communication protocol, then onlyrieévork engineeomponent is
modified. No changes will occur in theient component. Some major components in
Mammoth are:

25

2.6. Mammoth

Interest Manager

Replication Space

Duplication

Master Graphical

Duplica

Nettﬂork Stern Toile Postina
Engine

Figure 2.6:Components in Mammoth

e Network Engine: The network engine implements the core primitives for comimu
cation between clients and server. Currently, connectinds@ssage transmissions
are made through TCP (see Section 2.7). Game state updatesragdéransferred as
serialized messages. The network engine is the most impartenponent for this
project. It is not specific to the game. Several network layeve been implemented
in Mammoth such as:

1. Stern: In the Stern network engine, a star topology is formed whi@iants
are connected to a central hub. The hub handles and redategetwork traffic
as well as manages the publish/subscribe functionalitiésen a player sub-
scribes to a topic X, the hub keeps track of that. When a messauyblished
to a topic X, it is sent to the hub which forwards it to all sufiisers.

2. Toile: The Toile network engine creates a fully connected netwdnkere all
clients are connected to all others. Clients can join the oWy connecting
to aRendezVousode, responsible of managing the arrival of new members.
The RendezVous node returns the IP contacts (address anaupaloer) of all
clients currently in the network. The new client uses thisrimation to connect
to all other nodes in the network. Clients manage their owrlipaons and
subscriptions locally. When a player subscribes to a topith¥,client node
publishing on topic X keeps track of that. When a message iighda to a

26

2.6. Mammoth

topic X, itis directly sent to all subscribers.

3. Postina: Is a self-organizing peer-to-peer network engine usingriPasd
Scribe [RDO1, MCRO02]. It provides publish/subscribe funcgiliies where
clients can publish information to a topic, and all thosessuibed to this topic
will be informed about the publication. Therefore, to reeea publication,
clients must first issue a subscription to the corresponttipge. More details
about the Postina network engine is found in [Zin08].

e Client: The client module contains the implementation of a graphocaa non-
person character (NPC) client. When using a graphical cleegme map is ren-
dered in a graphical display using the OpenGL graphicsrybrdsers click on the
screen to set the destination and make their character dov&lPC client is con-
trolled by an Al algorithm. Users may choose to render a gcagphisplay showing
the NPC client moving on its own without the need of user sxt&on.

e Physics Engine: The purpose of the physics engine is to implement interastio
between two objects following the law of physics. It is cuthg only responsible for
detecting collisions between two objects.

e World Engine: The world engine component stores all game objects in Severa
hashtables in order to provide easy and fast access.

e Replication Engine: The replication engine is responsible for distributing aipd
dating the state of game objects across clients accordiag toterest management
policy. It has one or moreeplication spaceseach representing a different interest
management domain with distinct interest managementypdiite replication space
controls the propagation of update events for a set of abjacthe game state. As
soon as an object/player is in the vision range of a playechvisi determined by the
interest management and the replication engine, the akeseives a duplica of the
object and subscribes to the changes.

27

2.6. Mammoth

2.6.5 Communication Strategy

Mammoth introduces another layer of abstraction to endidats to keep track of their
subscriptions list and to efficiently communicate theirmdys. This layer is called the
communication stratedy Its purpose is to abstract the network communication froen t
rest of the interest management and object replicatiortIadhis creates better code reuse
because the same code can be used on both the server ancethesidle. Some of the
methods found in this communication strategy are:

e publish (topic): is used to send a state update to all clients subcribed tep#ufed
topic.

e replicate (topic): is used to send a duplica object to a client node.

e subscribe (topic): registers the client to a topic such that it will receive thetes
updates.

e unsubscribe (topic): removes the client from a topic such that it will stop recegvi
their state updates.

e sendToMaster (topic): sends a message directly to the node hosting the master ob-
ject.

e sendToTarget (topic): sends a message directly to the specified client node.

2.6.6 Other Services

There are some operations that are orthogonal to the implatien of a game. Example
operations are the assignment of an avatar to a user alsonkaswplayer distribution,
authenticating a user or instant messaging. In Mammotlsetlage calledervicesand
reside in a service server. When clients join a game, theydastact with the service
server to have their credentials verified. If they are deewadid, they continue with their
communication with the game server to retrieve the statdseafame world and their game

1The actual class in Mammoth framework is calRelplication Strategy

28

2.7. Transport Protocols: TCP, UDP

character. However, if the service server cannot validatieat within a certain amount
of time, a time-out exception is thrown and the client progia terminated. Otherwise, if
the client is invalid, then an authentification error is s3u

2.7 Transport Protocols: TCP, UDP

The User Datagram Protocol (UDP) is a connectionless pobtehich does not perform
any implicit hand-shaking dialogues. It is only a best-gffrotocol that offers no guar-
antee for reliability, packet ordering, or data integrifjhus, UDP provides an unreliable
service in which datagrams may arrive out of order, go mgssiithout notice or may be
duplicated (the same datagram is sent more than once). Ufdithas that error checking
and correction is either not necessary or will be performetthe@ application level. This
avoids the processing overhead at the network interfae. [€he small overhead of UDP
makes it appropriate for highly interactive games wheresiheed of packets delivery is
key, like first-person shooter games and car racing.

The Transmission Control Protocol (TCP) is a connectionabeié protocol where a
connection between two machines must be established be&baccan be sent between
them. TCP provides a reliable service and guarantees paaketig. This means that
all packets sent are guaranteed to arrive at the destinatibie same order that they were
sent. Additionally, it uses an end-to-end flow control pomticto avoid having the sender
send data too fast for the TCP receiver to reliably receivepmadess it. This is useful in
heterogeneous environment where machines of diverse nespeeds communicate. TCP
has the advantage of being simpler to use than UDP, but irgessea noticeable amount
of overheads.

In the current implementation of Mammoth, communicatiotwieen clients and server
is made over reliable TCP/IP connections. In this thesis ihiour interest to evaluate
the performance of TCP/IP versus UDP/IP in a peer-to-pedegbnrAlthough TCP guar-
antees message delivery, it generates a connection odewtagah grows as the number
of connections maintained by a peer node increases. UDPah hghter since no initial
connection setup is required, but being an unreliable p@angrotocol, excessive message

29

2.8. MINA

lost can be problematic in a game context.

2.8 MINA

MINA is a framework, made available by Apache, designed sedhe development of
high performance and high scalability network applicatidoy offering an abstract, event-
driven, asynchronous API over various transports prototiké TCP/IP and UDP/IP via
Java NIO [min]. MINA is the acronym foa Multi-purpose Infrastructure for Network
Applications

By using MINA, the effort needed to test the performance ofsteay using different
transport protocols, like comparing TCP with UDP, is greadlgiuced. MINA's structure
consists of four fundamental componentsService loSessionloFilter, andloHandler.
The loService provides supports for input and output opmrat There are two distinct
loServices available: loAccceptor and loConnector. Theck®tor acts as a server by
waiting for incoming connections, while the loConnectorsas a client by establishing a
connection to the server. It is in the loService that thegpant protocol is specified. For
the TCP/IP implementation, we use a SocketAcceptor and aeBocknector. For UDP/IP,
a DatagramAcceptor and a DatagramConnector are put in platead, even though they
do not provide any functionality. In MINA, an establishechoection between two nodes
is referred to an loSession instance. The loSession haatlle=ads and writes between
to endpoints. The next component in MINA is the loFilter. Tio€ilter intercepts all
events and takes the necessary actions. There can be marertedoFilter in place.
These are usually created to handle events such as evemdogwithorization, thread
pool, and message transformation like encryption and géory. Finally, the last module
is the loHandler, which is where the application logic remsaiAll of the above mentioned
components are depicted in Figure 2.7.

30

2.8. MINA

Application Layer ﬁ[loHandler]

Filter Incoming &
Qutgoing Messages

MINA =
Session

Performs /O

(Tremocorer)

Figure 2.7:MINA Structure Overview

31

Chapter 3
Yobol Concepts

The aim of this chapter is to introduce Yobol. First, a gehdescription explain-
ing the capabilities of Yobol is given, followed by a genevaerview of the fundamental
differences between Yobol's implementation from Mammatld pSense as well as some
challenges encountered.

3.1 Motivation

With the increasing popularity of MMOGSs, using traditioméient-server architecture will
not suit future consumer needs as scalability is one of ggdst problem. To remedy this,
peer-to-peer solutions are explored, and pSense is onewf. tlowever, this remains a
theoretical solution as no playable game has implementaddtit remains unclear what
are the challenges when transferring such ideas to a real @M@vironment. Thus, it
IS in our interest to concretize this approach and analyzsuitability for real massively
multiplayer online games. One of the goals of this thesistivaglesign and integration of
a network engine into the Mammoth system that supports teegSapproach of position
update propagation. Until now, all network engines in Marthmeere built on TCP/IP
mainly for its reliability and ease of implementation prdpes. However, in some highly
dynamic contexts, like in car racing games, where the speswssage reception is more
important and messages loss can be tolerated to some dkense of UDP may also be

32

3.1. Motivation

considered. In addition to the integration of this appro@acklammoth, our other goal is
to evaluate its performance with different transport pcots such as TCP/IP and UDP/IP.

Essentially, Yobol is a peer-to-peer network engine imgeted in the Java language.
It is designed for the special requirements of network layemassively multiplayer online
games as it provides methods for direct messaging as welinesidnalities for publish/-
subscribe. Being a peer-to-peer solution, the idea is th#bbwol each client node holds
the master object of the user’s game character. The clietd tieen becomes a server to all
those who are interested in its avatar. The pSense algodtiiynfocuses on propagating
position updates. Therefore, all other mutable objectisatenot game characters will re-
side and be managed by the server. This makes Yobol a hyleretpgeer solution where
each node is equal to all others, but a server is still necgssdhe system to handle all
game messages not related to position updates, like playleeratication and distribution,
initialization of the game state and objects, and handlipdates of mutable non-player
objects such as a flower is picked up.

Being built on top of Mammoth, the framework underwent somesaterable work
remodeling and expanding the existing structure to arrivBecurrent implementation of
Yobol. One of the fundamental changes integrating the qusad pSense into Mammoth
is to create a peer-to-peer structure. This means that sbiine @sponsibilities previously
handled by the server must be carried out in the client noskeaadl. In addition to mod-
ifying the underlying Mammoth architecture to support pSensome adjustments were
also done on the pSense algorithm as well. In pSense all gateradtions and network
maintenances are merged in one system, highly coupling gamantics (position change)
with message dissemination. In contrast, the design of Matmfocuses on the separation
of concerns and code modularity. We resolved this issue é>icrg a new component in
Mammoth, called thesuggestion engineThis engine is aware of both the game logic as
well as the network engine. Moreover it is responsible fomtaning the network struc-
ture by determining which nodes one can see each other. Anstbue is that the pSense
algorithm only loosely describes how the connections betwgeers is done. To make
this work in Mammoth, Yobol integrates a connection protanto the position update
mechanism proposed by pSense.

33

3.2. Challenges

3.1.1 Naming

Yobol is a network layer API designed to handle messaging MOGs, whose resulting
overlay structure is obtained and maintained through peggestions. The name chosen
for Yobol reflects this main featurgobol (it 6as) is the Cambodianword for “sugges-
tion”.

3.2 Challenges

In the abstract description of pSense, nodes have simpftifides and a node can send
a message to another node once it knows the identifier. Noelet cknow each other
through forwarding of position update messages. In a resikgy, things are not as easy.
First, a node needs a duplica of another player before it caangithing with it. Second,
a connection between nodes must be setup prior to any coratiam, even in the case
of UDP (a condition imposed by the Mammoth framework). Alhwaunication in Yobol
is performed using the Apache MINA library. This section em/the main challenges
encountered with Yobol.

3.2.1 Open Connection

Let's recall the messages in pSense. Therepagtion updategrom the originator to
near nodes and sensor nodes and theréoanearding messagedn Yobol, before a node
can send a message to another node, there must be a conretti@en the nodes. For
a connection to be established, one node needs to knowrcertarmation, such as the
node’s IP address and port number and the unique identifitveaiode, all wrapped in an
instance of arobolNodeobject. All this information allows the node to request arp
connection.

1Cambodian or Khmer is the official language of Cambodia. #risaustrio-asiatic language influenced
by Sanskrit and Pali. Please seet p: // en. wi ki pedi a. or g/ wi ki / Khrrer _| anguage for more
information.

34

3.2. Challenges

3.2.2 Suggestion Concept

pSense utilizes message forwarding to detect and conneewtanear nodes, suggesting
that a node A becomes aware of and connects to peer node B oreeeikes position
update messages from B (see Section 2.5.2). In Yobol, naesot communicate with
each other unless they have opened a connection. If neititer A nor B has knowledge
of one another, it is not possible for them to start exchapgnessages with each other.
Yobol tackles this by introducing the concept of maksgggestionsvhere connections
between two nodes are made possible with the help of a thitg. pAn arbitrary node
C, which is aware of both nodes A and B, must provide the requimedmation to either
node. Node C wraps all relevant information about node A suggestion messagad
sends it to node B. The recipient B can then request for an amamection from A.

3.2.3 Master Object Migration

According to pSense, client nodes are to communicate to@aeh in a peer-to-peer man-
ner. It does not, however, provide any further details alodler functionalities found in
a real game environement, like starting up the game, hangliayer authentication and
log in, and maintaining game states. Mammoth, on the othed,hygerforms all these op-
erations from its central server and its authenticatiomiser The central server stores the
master object of all mutable game objects in the game andédmtiteir interest manage-
ment among its several other responsibilities. In adagdaghimoth to support a peer-to-
peer structure, some of these responsibilities are sHifted the server to the client node
as seen in Yobol.

Mammoth’s pub-sub mechanism dictates that to be a publishermust hold the mas-
ter object. Initially, all master objects are kept in the tcahserver. In Yobol, the master
object of the character hosted by the client node residesdnsahosted by the node itself,
thus making it a publisher. When the game’s central serveaitesl, all masters of mutable
game objects are stored in it. Upon a player log in, the sesseds a duplica of this client
game character to the client node. The client then requestsaster object of his charac-
ter from the server. Upon reception of the master objectclieat node has full control of
the character. All other nodes wanting updates from it vékbd to hold a duplica object of

35

3.2. Challenges

O Duplica object

{: Master object O Duplica object
O Master Duplica object {: Master object
(a) Client-Server (b) Peer-to-Peer

Figure 3.1:Different Network Architectures Created by Migrating Master Objects

it. This makes them subscribers to this particular playaratter.

How master objects are distributed in the system is influehgethe type of network
architecture to be used. In the case where all master olygsitie on one particular node,
a client-server architecture is created. On the other h&nthster objects are distributed
across several machines, then a peer-to-peer structumaried. These two cases are illus-
trated in Figure 3.1. In a peer-to-peer system, when a gbamg, it must request the master
object of the player character from the server. The servepgke duplica of the object and
migrates the master object to the client machine. From thistjon, all others interested in
this client’s updates must send their subscription messtgie client hosting the master
object. The host provides them with an object duplica, whailbkbws subscribers to be up-
dated of eventual changes. These steps are detailed ireRBdurClient 1 hosts the master
of player Bob. Client 2 wants to see Bob’s movements, therefstéacription message is
sent to client 1, who in return sends a duplica back. All stht@nges of player Bob will
be multicast to its subscribers. Keeping a duplica objetténserver before the migration
of the master object provides the server with global knogtedf the game world, since
holding a duplica is synonymous to subscribing to the olgatate updates.

36

3.2. Challenges

Client 1 Server Client 2
join game connect
[——————————>fassign player Bob

create duplica of Bob

control send master duplica
player Bob
"] request master object
[—————————>savelocal duplica of Bob
migrate master object [
host of Bob [g—— | interested in
] seeing Bob
subscribe to player Bob -

create duplica — |

send duplica
Bob moves \
generate

response R :
ponse R}l multicast R

multicast R

Figure 3.2:Player State Update Dissemination - Peer-to-Peer

3.2.4 Distinct Replication Spaces

Mammoth relies on its central server to perform the inteneshagement for all mutable
objects in the game. As seen in Section 2.6.4, the interesagmaent is handled by the
replication space in the replication engine, which residebe server. Yobol is a hybrid
peer-to-peer solution where a server is still existant,fautonger performs any interest
management for its player character objects in the gaméh B@ae hosting a player char-
acter will run its own interest managmenent through a newailprted replication space
called thePeer Replication SpaceThis replication space resides in the client node itself.
All other non-player mutable objects in the game are stilhaged by the server, therefore
a distinct replication space for the server is needed, krastheServer Replication Space
How these replication spaces function will be explainedent®n 4.4.2.

37

Chapter 4
Yobol Implementation

In this chapter, more detailed information about Yobol igegisuch as its API and the
internal functioning.

4.1 Yobol Architecture Overview

The first part of this project consists of creating a netwaiel that supports communi-
cation in a peer-to-peer structure. This network enginetrallsw message multicasts,
direct messages, as well as taking suggestions from naiigighmodes. The second part is
to create a suggestion engine which is responsible of mainggthe overlay by emitting
notifications to peers and taking appropriate actions froggsstions received from peers.
The particularity of our approach is the necessity of clientles to build their network
structure themselves by receiving and sending suggedtiom#to peers.

Since each component in Mammoth targets a specific fundiiprod the system, all
procedures related to establishing and maintaining cdiomscbetween nodes, as well as
sending and receiving messages are implemented in the NeBgine. Moreover, all im-
plementation regarding updating the state of an objecatiorg duplica objects, migrating
master objects, and maintaining a list of publishers andilters resides in the Repli-
cation Engine. However, some operations related to theggSaigorithm such as storing
and updating lists of near nodes and sensor nodes, sendinigaawlling sensor request
and sensor suggestion messages, and finding nodes for méssagrding do not fall in

38

4.1. Yobol Architecture Overview

Interest Manager

Replication Space

Dugplication _ Yobol
[[Master 1] [[Server q
[Duplica l [Peer l

\
1 i CoreTCP
Stern Toile Postina Yobol
it y CoreUDP

Figure 4.1:New Components in Mammoth for Yobol

any of the existing components. Moreover, in order to penftdrose operations, we need
some knowledge about the game world. For example, to uptatear nodes list, a node
A retrieves the list of current connections and loops thioigo determine if a peer node
is to be put in the near nodes list or not. For that we need wutzk the distance be-
tween the two nodes. This distance is calculated by compdhiea position of the two
respective nodes, and all game objects’ information, li&siton, are stored in the world
engine. This task can only be achieved if some informatiomfthe network engine and
the world engine are provided. Therefore, we have creategl\acomponent called the
Suggestion Enginavhich has both knowledge of the game world and the netwoginen
to handle all operations related to the peer-to-peer oyeniaintenance. The advantage of
using such design is the flexibility to create various sugige®ngines which implement
different algorithms.

In summary, Yobol adds a few new components to Mammoth: a regwark engine,
a suggestion engine, and a new replication space. Thedatslut each new component
follow in the later sections. Figure 4.1 illustrates thepéndencies with the existing com-
ponents.

39

4.2. Network Engine

YobolINetworkEngine
<<extends BaseNetworkEngine, implements SuggestibleNetworkEngine>>

+connect ()

+createChannel (String)

+di sconnect ()

+forceDisconnect (int)

+i sConnected()

+send(Collection<NetworkEnginel D>, Seri alizabl e)
+send(Networ kEngi nel D, Seri alizable)

+send(String, Serializable)

+sendAl |l (Serializable)

-sendSuggestion(NetworkEnginel D, Yobol Node)
+subscribeChannel (String, Net workEngi nel D)
+subscribeChannel s(Collection<String>, NetworkEngi nel D)
+suggest Connection(NetworkEngi nel D, Net wor kEngi nel D)
+suggest Di sconnecti on(NetworkEngi nel D, Net wor kEngi nel D)
+unsubscri beChannel (String, NetworkEngi nel D)

+unsubscri beChannel s(Collection<String>, NetworkEnginel D)
+unsubscri beChannel s(NetworkEnginel D)

-updat eConnections(ArraylList<Yobol Node>)

-updateDi sconnection(Yobol Node)

-updateDi sconnections(ArrayLi st<Yobol Node>)

Figure 4.2:Yobol Network Engine Class Diagrams

4.2 Network Engine

Yobol's underlying network communication is built using &ghe MINA (version 1.1.7)
2.8 which supports several transport protocols. This aldebol’'s network engine to
be implemented in a modular way such that the underlyingsprart can be seamlessly
switched between TCP and UPD, thus enabling us to measurecamglace the system
performance under each condition. Since all communicdigtween nodes occuring in
Mammoth is done using serialized objects, a custom loFetied the ProtocolCodecFil-
ter was implemented in Yobol. This filter serves in transigta serialized object into a
message object and vice versa.

Several other network layers already exist in Mammoth liter1§ Toile and Postina.
Therefore, it is not surprising that an interface is proditg the framework to ensure mod-
ularity and facilitate future network engine developmerdbwever, the existindNetwork
Engineinterface did not support making connections based on pegyestions. There-
fore, a newSuggestible Network Engineterface is created to make this possible. The
Yobol Network Enginemplements both network interfaces. The following sectmo-
vides an overview of the Application Programming Interféa®1) provided by the Yobol
Network Engine.

40

4.2. Network Engine

4.2.1 Yobol Network Engine API

The YobolNetworkEnginehown in Figure 4.2 builds the core primitive of the Yobol com
munication system. Since every network engine in Mammotbtimoplement all methods

in the Network Engine interface, the Yobol network suppattsnethods described in sec-
tion 2.6.5. Furthermore it offers a set of methods that welrspecifically for the pSense
algorithm. They are listed here in detail.

e connecthas to be called first, before any other operation is posdidlestantiates an
loAcceptor object which acts as a server by waiting for inc@ntonnections. Thus,
the client can accept connections from other nodes.

e disconnectis used to properly disconnect the client from the networdk elnses all
connections, freeing the ports such that they can be redsethger time when new
connections are made.

e sendis a key method in Yobol as it is used to send a message ditecispecified
client or list of clients. Other clients in the network notrpaf the recipients list do
not receive this message.

e sendAll allows a message to be sent to all clients connected to tigerpEmilar to
the broadcast function.

Additionally, the Yobol network engine supports some sstjge making functionali-
ties required by the Suggestible Network Engine interfad¢ese are:

e suggestConnectionnforms a peer node that a connection to a specified node is
desirable. This is useful to alert peers about players whibjgined the game, who
are currently in our vision range or who are approaching @ion range.

e suggestDisconnectiomforms a peer node to disconnect from a specific node. Itis
used to notify a client that a peer has left the network.

41

4.2. Network Engine

4.2.2 Message Filtering

To filter-out duplicate position updates or out-dated mgssathe network engine keeps
a hashtable of previously received update messages. Tleestabes the update message
and uses the identifier of the message originator node ag keyefore, the table contains
a single update message per sender. Every position updatageehas a time stamp indi-
cating when the message was created. The receiver nodéasesn message time stamp
and compares it with the previously received one, foundértale, from the same sender
node. If the new message time stamp is smaller or equal to gtarmap of the existing
message, it gets discarded as the information igreehor is identical. Otherwise, if the
time stamp of the new message is larger than the existingaonkit is the first message
received from that particular sender node, then it is addeda hashtable or replaces the
current message from this sender in the hashtable. It isgbem the incoming message
gueue to be later processed.

When filtering data, only the most recent position update & kethe incoming mes-
sage queue. While old data are of some values as they provide Bistorical motion
information which tell us about the client path from the poess known location to the
current/final position, our focus was on maintaining a snmgibming queue such that in-
coming position update messages are processed as fassddemwsorder to give the client
the most current game state possible.

4.2.3 Design Variation for TCP and UDP

By having a clear separation of concerns and functionaliiesore modular design takes
form where each component can be replaced without causing af@nges in the other de-
pendent modules. MINA's flexible structure and Mammothigeled architecture enabled
us to implement two transport protocols to be used withinYibleol network engine with-
out making any changes in the upper layers. Two new sub-rasdutre created, shown in
Figure 4.1, and namedbbolCoreTCRandYobolCoreUDP

42

4.2. Network Engine

YobolCore - TCP/IP

YobolCoreTCP implements the TCP/IP protocol and uses MINA 8tfatceptor and Sock-
etConnector as loServices. The connection between eachisodiable and all mes-
sages sent are guaranteed to arrive at the destination melde order they were sent out.
The TCP socket receive buffer size is set to 2048 bytes. If ssagesis larger than this
buffer size, the TCP layer automatically splits up the messaip several packets and re-
assembles it at the destination node. Moreover, if the vecaessage queue of the receiver
node is almost full, the sender node will modify its sendipged such that the receiver
gueue will not overflow and cause an out-of-memory errorc&itmese and several other
features are provided by the TCP layer, developers do nottbaa&e care of these things.

YobolCore - UDP/IP

YobolCoreUDP implements the UDP/IP protocol and uses MINAaQeamAcceptor and
DatagramConnector as loServices. Being a connectionlesscpip UDP provides no
guarantee that a sent message will arrive at the destinalomessage that is sent can
be lost during transmission or arrive more than once. Thiamaehat the network layer
in Yobol will have to process and filter out those duplicatessages. Fortunately, Yobol
already has a message filtering mechanism in place to renupheate messages obtained
from message forwarding. It will be more frequently usedhe YobolCoreUDP imple-
mentation because it needs to remove duplicate messageeckckie to the use of the
UDP transport protocol. Another observable differencenes heed to use a larger UDP
socket receive buffer size. Too little UDP buffer space eaubke operating system kernel
to discard UDP packets when it gets full. Therefore, we setbilffer size to 16384 bytes
in order to minimize the likelihood of message loss. Thisag@med at the cost of using
more memory as well. Itis a parameter that might have to bedulynamically depending
on the game configuration.

Another challenge we encountered when using UDP is the ceaee of time-out er-
rors. In Mammoth, when a player joins a game, it must first eshto the service server,
which runs amuthentification servicéo verify the player’s credentials. Then it makes a

43

4.3. Suggestion Engine

call to theplayer distribution servicéo retrieve the user’s avatar. The client communica-
tion with those services must be done within a certain amotitime. If not, a time-out
exception is thrown. Since UDP is not very reliable, the camimation often takes longer
than allowed. The service server then throws an exceptidns drevents the user from
joining the game. To remedy this, YobolCoreUDP uses a mix of 86® UDP. When a
client joins the game, it first establishes a TCP connectiotneéoserver and the service
server. Afterward, all communications between client rsogie made using UDP.

4.3 Suggestion Engine

The Suggestion Engines an essential component in Yobol. Its purpose is to build an
maintain the peer-to-peer structure by communicating péér nodes. It is implemented
according to the pSense algorithm described in SectionBh&. lists of near and sensor
nodes are regularly updated in order to provide the clieth tie most accurate view of
the game as possible. However, such operations can onlyrfegmped if some knowledge
of the game world and the network engine are present.

4.3.1 Suggestion Making

In the sections below, three types of message are mentihéch areposition update mes-
sagesrequest connection messagasdsuggestion messageBosition update messages
are either sent directly from an originator node to a coretepeer, or forwarded from one
peer to another in order to propagate the update. Positidatapnessages are forwarded
to peer nodes that are connected to the originator node betrfta received the update yet,
peer nodes that have just entered the area of interest ofieator, or newly joined nodes
in the game. Request connection messages are sent after eenetkes a position update
message from a new originator node. Request connection gessaee required to gather
more information about the originator node because it needet ayobolNodeanstance

in order to establish a connection. The YobolNode objectaina node specific informa-
tion like the identifier, the address and port number of th@end@Guggestion messages are
used to transfer the required information, including thé&&dlode, in order to establish a

44

4.3. Suggestion Engine

Client 1 Client 2 Client 3
send PU
[———————>|process update

forward PU

[——————————sdonotknow
e | client 1 yet

send request connection

send suggestion
retrieve client 1
connect information
R
connection
created

PU : Position Update

Figure 4.3:Suggesting Connection Steps

connection between peer nodes.

Position update messages contain the identifier of the messayinator, the identifier
of the last sender if the message was forwarded, a list ofsyati@ have already received
the message, the number of times it has been forwarded, antestamp to check for
freshness of information. When a peer node receives a posijdate message, it verifies
if it recognizes the identifier of the message originatordmking in its list of connections.

If there is not yet a connection, this means that it has receittie message from a for-
ward. Thus, it sends @quest connectiomessage to the node from which it received the
message, that is the last forward. Upon receipt of a requstection message, a sug-
gestion message containing the YobolNode object with tlggn@tor node’s information is
returned. This information is applied and a connectionésited. In Figure 4.3, cliefdre-
ceives a position update originating from clidrfor the first time. Since the message was
forwarded by clien®, client3 sends a request connection messagg teho replies with

a suggestion message containing cli€stinformation. Then clien8 can initiate contact
with client 1.

These steps can be simplified by including a YobolNode olgjectaining the informa-
tion of the message originator in the update messages. Howsing so would increase
the size of position update messages and this could lead @ lbamdwidth consumption.
Moreover, using the request connection message yieldster Isetftware design because
a separation of concerns is maintained. This way, positfmate messages are used to

45

4.3. Suggestion Engine

YobolSuggestionEngine

<<implements SuggestionEngine>>

+assign(NetworkEnginel D, ProxyObject)
+checkConnection(NetworkEnginel D, Net workEngi nel D)
+findForwardNodes(Net wor kKEngi nel D)
+findSuggestions()

+get TargetList()

+handl eSuggesti onMessage(Suggesti onMessage)
+sendSensor Request ()

+updat eNodesType()

Figure 4.4:Yobol Suggestion Engine Class Diagrams

update peers about a change in players’ movements and tequeection messages are
for building connections. Thus, better code reusabilitgakieved.

4.3.2 Yobol Suggestion Engine API

Figure 4.4 shows the class diagram of the suggestion engsigreed for Yobol. A short
description of the main methods in the suggestion engiristed below.

e findSuggestionds periodically called by the replication engine to scamtigh the
player’s list of connections and see if some connection ssiygns can be made to
their peers.

e updateNodeTypeis periodically called by the replication engine to upddte mear
node and sensor node lists.

e checkConnectionis called to verify if a suggestion concerning node A and B was
previously sent. This is used to avoid message duplicates.

¢ findForwardNodes is used when forwarding position update messages to pders. |
finds all nodes residing in the specified player’s vision mtigat have not received
the position update message as it is the case of direct fdmgar It also finds all
nodes residing close to the specified player’s vision rangietwmay know others
that have not received the message yet (indirect forwayding

e sendSensorRequesiends a sensor request message to its sensor nodes to request

for the best sensor node candidate given a specified se&inoe the sensor nodes

46

4.3. Suggestion Engine

should be distributed as evenly as possible, each sensernesdles in a distinct
area, also referred to as section.

¢ handleSuggestionMessagikes appropriate actions upon the reception of sugges-
tion messages, which inclu&ensorRequestMessaelSensorSuggestionMessage

types.

4.3.3 Overlay Maintenance in Yobol

The peer-to-peer overlay structure in Yobol is implemeraecbrding to the pSense strat-
egy described in Section 2.5.3. To ensure that the cliemtfevork structure is optimal
according to its interests, some maintenance operatianpearodically executed by the
client node such as:

e Find Suggestions:In most cases, peer nodes discover new nodes by the mean of
message forwarding as described in the pSense algorithditidwhlly to this, Yobol
provides each node the capability of suggesting two distindes to connect to each
other. This operation is performed at evesfresh ratedetermined in the replication
space described in Section 4.4.

Enabling nodes with such action could accelerate the new dagtovery process.

To demonstrate this, we will use the same example of Sect@,Zigure 2.4(a) on
page 18. A new nodP resides in the vision range of the local node A but they do
not know about each other yet. The sensor nSdexecutes its routine inspection

of the connection list and detects thais in A's vision range,S; sends a suggestion
connection message B This can occur even before P receives any forwarding mes-
sage from another node. Peer ndtleceives this suggestion message and opens a
connection with local node A. By the time no@eforwards the update message to
P, P already knows A and thus simply applies the object statetepda

e Update Neighbors List: In the client-server context, a player’s interest managgme
is executed on the server. In Yobol's case, the client neeperform its own interest
management. This is done by checking who its neighbors atsaring them in the

47

4.4. Replication Space

near nodes list. Since Euclidean distance interest maragesiused, all players
residing in the interest area are put in the near nodes lisaters are discarded.

e Update Sensors List:The space around a node A is split into several sections and
each section should contain a sensor node. A sensor nodmtedba bit outside, but
closest to the vision range of the node A and contained wahparticular section.
Each node sends out sensor request messages to each obds rsetes. When a
sensor node receives such a message from node A, it scanglthts connections
list and determines if there is a peer node that is closer tbam itself, within the
specified section. If such peer is found, its informationusip the sensor suggestion
message and sent back to A. Otherwise, the sensor node itgitasn information
in the suggestion message instead and remains the sengdiontitht section again.

To find a better sensor node candidate, the current senserfinstineeds to deter-
mine the section boundaries. In Figure 4.5, the sensor odesection 1. It draws

an arc using the position of node A as point of origin, andfisgthe arc length. A

smaller arc is drawn to represent the vision range of node AeM#uperimposing

both arcs over each other, we are left with a hashed arestrdted as area B in the
figure. If a peer node in the sensor node’s connections lisicested in the area B
and is the closest to node A, then it is the best sensor nodidzde.

When node A receives a sensor suggestion message, if thessedjgede informa-
tion is not the same as the current one, it removes the cusnenfrom the sensor list
and adds the new sensor candidate to the list.

4.4 Replication Space

Yobol follows a peer-to-peer structure which requires #math client machine hosts the
master object of their avatar instead of having them all est@rver. Being a hybrid peer-
to-peer system, Yobol still runs a server who coordinatesadlifications made by mutable
objects that are not d?layertype, such as items that can be picked up or dropped down.
To get the master object of their avatar, the client requbstsaster object from the server

48

4.4. Replication Space

Section 1

. Section 2
Distarice of Sense ™.,
Nodd to Local Node/ ™.

Vision/Range

@ Sensor Node
. Local Node A

O Peer Node

Figure 4.5:Finding a Better Sensor Node Candidate

when it is joining the game. A local duplica is stored on theveeand the master object is
migrated to the client. When the client receives its mastgrabjt is declared as the master
object’s host. Throughout the game, new connections wikloggested from peer nodes
using connection suggestion messages. When node A reces@maction suggestion
message from node B, it opens a connection to B and sends aiptibacmessage. B
also sends a subscription message to A after a connectiaeased. After receiving a
subscription message, a node adds the message sendeutzsitggion list and sends its
own player object’s duplica back. To avoid any ambiguitggse note that the subscription
list contains all peer nodes currently connected to theglihile the near nodes list is a
subset of the subscription list content, containing onlgie®within the vision range of the
client. Once they have received the respective duplicacobj@des will be informed of
state updates of that object if they belong to the near natleFigure 4.6 shows client 2
creating a connection with client 3 after receiving a suggesconnection message from
client 1. Once a connection is opened, they first exchangecsipbion messages notifying
the other party that they are interested in seeing the otitéy’s changes. The operation
is completed when both clients have received the othertdiehject duplica.

49

4.4. Replication Space

Client 1 Client 2 Client 3
T suggest T T
connection to C3
connect

—

send subscription
>< put C2in

put C3in subscribers list

subscribers list send duplica

Figure 4.6:Steps Taken to Establish Connection Between Peers

4.4.1 Refresh Interval

Most operations taking place in the replication space artopeed periodically. Each
period is determined by the refresh interval value, whicthies amount of time elapsed
between each execution of the overlay maintenance on thetciode. It is a parameter
that might have to be adjusted according to the game configardn the current setting,
players make a move every 500 milliseconds. The refreshvailtgalue is set to 15 mil-
liseconds. It is more frequent than the movements of a plagieause the replication space
needs more information in order to set up and maintain the-joepeer overlay structure.
The replication space performs the following actions fartefresh interval:

o verifies if the client master object is migrated or not (onbnd at initialization time)

e scans through the client’s list near and sensor nodes aruk<lifeit can suggest a
connection should be made between two nodes

e updates the client’s near and sensor node lists accordotfpén clients new position
updates and sensor suggestion messages received

e sends sensor request message to find better sensor nodgates@iperformed every
5th refresh interval)

The chosen refresh interval value plays a major role in dgteng how fast a player can
discover other peer nodes in their vision range and findingebsensor node candidates.
The refresh interval value must be chosen with care becéiise oo large, the client can
send its update messages to a stale list of client nodes whiere of them may have already

50

4.4. Replication Space

left the client’s vision range. If the value is too small, ient will perform too frequent
updates on its lists of near and sensor nodes. This leadgherriesource consumption on
the client node and an increase of traffic on the network dileeanessages exchanged to
find better sensor node candidates.

4.4.2 Replication Space: Server and Peer

Since clients can only see other players if they have thgegoblduplica and duplicating ev-
ery game object is usually inefficientyeplication spaceas implemented to manage object
replication in the system (i.e. which client machine shayétla duplica of which object).
Section 2.6.2 describes a replication space that implesrteetdistributed object model.
This replication space is located on the server where a nmat¢hnction is periodically
executed on pairs of publishers and subscribers to let gbbss discover new publish-
ers. The server performs these checks because it has a#émosagects and has a global
knowledge of the game world, which makes it the best candittatnake such decisions.
In Yobol, the master objects are hosted by their respectieats, such that each client
maintains the list of subscribers interested in the movesnafithe client’'s game character.
A new replication space calld®eplicaton Space Peés created to be run on every client
node. It is a space containing all duplicated objects thgitleein the vision range of the
client’s avatar. The Yobol server also has its own replwaspace known aReplication
Space Serverlts usage is limited to assigning a duplica to a newly coteteclient, mi-
grating master object to a client, keeping the state of Idaplicated object up-to-date, and
maintaining master objects of items.

As the name suggests, the Replication Space Server residbe sarver node and is
used to provide a duplicate of the avatar of a newly joinegigio its client node. After
receiving its character’s duplica, the client requestsniaster object from the server, in
order to enable the client to host its own game characters Rbaguest Mastemessage
is of Replication Space Messagge such that it will be handled by the replication space
at the destination, which is the server in this case. Theagigmaster message contains
information about the Player object whose master objeads&ebe retrieved. The server
replication space receives the request master messags,&daplica of the object in order

51

4.4. Replication Space

Client 1 Server
join game connect

rassign player Bob
create duplica of Bob

wait for master
duplica

send master duplica
receive duplica

request master message

periodically check

for master object, 4
hasMaster = false save local duplica of Bob
migration message

host of Bob
hasMaster = true

Figure 4.7:Steps Involved in Replication Space Server and Peer

to remain updated about its later changes, and proceedsheitieneration of Migration
Messagevhich is sent back to the client.

On the client side, a periodic check is performed to verifetiler or not it has received
the master object of its avatar. During the initializationé of the replication space peer, a
boolean flag is created to indicate if the master object ti@rgrocess has already taken
place. Itisinitially set to false, and will be changed tcetanly when the client receives the
Migration Message from the server. The client becomes tsedfdhe master object, and
thus is the publisher of that object. The interaction betwibese two replication spaces is
depicted in Figure 4.7 where the Replication Space Peer ismuhe client node and the
Replication Space Server on the server. No resent of the seqaster message is done if
the client fails to receive its master object. In the casefaflare, a time-out occurs on the
master request forcing the client to exit.

From this point on, players who are interested in the cleemdvements will subscribe
to it in order to receive its publications. Clients can onlg sgher players if they have
their object duplica. Therefore, when new connections asated between two nodes,
they notify their mutual interest by sending a subscriptioessage to each other. When
a subscription message is received, the client createsleadgr each newly connected
client node. This gives control over which client machinel get which object duplica.
In Replication Space Peer, a player object is both a publehea subscriber. A publisher
object disseminates its own state updates, whereas a fgrsaject finds new publish-
ers and subscribes to them in order receive their updategeiRlin MMOGs generally

52

4.4. Replication Space

1- Request Master message
2- Migrate Master object Client D
‘\‘ 0

H
\, S [l

: RN 4-Sends its duplica } 3- Connection established

: A to Client B ': Client B sends its duplica

i \ N N
i N, ~ 1 N N
\ 1 . | .
! \, A i ~ ~ V to Client D
H N . \ \ S i
' N AN H N S i
! \\ Y ! hY ~, !
. ~ N .
\, ~, N, S
\ N N
*, S 4 AN Sz
4 . 4 N
N \
! \ ! % \ S
. \
A O < 3
) 3 ~ O N 7)
N, Pd N, ’
. . . .
X , SY 3 2

1- Request Master message
2- Migrate Master object Client D
. \“s
T \s S
[N
N ~

0 Duplica object = ——> Message exchange O Duplica object = ——> Message exchange
ﬂ Master object «---> Established connection ﬂ Master object «---> Established connection
(a) client D joins the game (b) exchange of duplicas

Figure 4.8:Master Object Migration Steps

control only one player at a time during a game session. Tdwereit is reasonable to
limit each client node to have only one master object of agiat any instance in the
game. Subscribers discover new publishers only when newemtions are created. There
is no matching policy used in this replication space. Thaesfin order to detect new
connections, the client replication space must perioljyicaloke some operations in the
suggestion engine which will trigger the execution of som@ntenance of the peer-to-
peer structure, like finding new connection suggestionshferclient’s peers, updating its
near nodes list, and updating its sensor nodes list by sgmdinsensor request messages
and handling their response (see previous Section 4.3uré&ify8(a) illustrates an exam-
ple where a newly joined node D requests the master objet$ elatar from the server,
since all masters reside on the server initially. Once D lasived the master object, it
can start processing client B’s connection request and egehtineir duplicas, in order to
get updates about each other. B must send its duplica to Dyie@dersa, based from the
assumption that the interest relationship between plagesssnmetrical’if B is interested

in D, then D is also interested in B'This is illustrated in Figure 4.8(b).

53

4.5. Peer Communication Strategy

4.4.3 Object Migration in Yobol

Burst Migrationis the current migration support implemented in Mammothemehthe
sender of the master object can initiate a migration at amgngtime without previously
notifying the receiver end that it wants to migrate some aisjeHowever, in our approach,
object migration is not so sudden anymore because the dhdidtes the contact with
the server first in order to start the object migration praced Therefore, clients do not
have to worry about suddenly receiving a master object. Tibatmotifies the server that
it wants to host the master of a given game object using a stoquoaster message. The
server receives this request message, proceeds withgsthitiiocal copy to a duplica, and
marks the client id as the master object’s host. This infoionas wrapped in a Migration
message and sent back to the client. This allows betteraanter the object migration
procedure.

4.5 Peer Communication Strategy

The creation of object duplicas is managed by the replinatpace contained on the server
or the client node. To maintain the list of subscribers analipbers and abstract the object
replication logic from the network layer, another sub-meds added between the replica-
tion engine, the suggestion engine, and the network enfjiisecalled thePeer Replication
Strategy Its purpose is the same as for the communication strategyioned in Section
2.6.5, but in this peer replication strategy some of thetiexsmethods were overridden
to adapt to the needs of the peer-to-peer structure and éddfobol. By adding another
layer to the structure simplifies the amount of work shoulddseide to change the com-
munication logic. A new implementation can be dropped in eplace the current one,
without requiring much or any modifications to be done in ttteeomodules/engines. The
modified methods are:

e publish: is used to send a state update to all clients subscribed txdisggopic. The
pSense algorithm introduced the idea that client machireas mot be able to send
position updates to all nodes located in their vision range @ a limited amount
of upload bandwidth capacity. Messages are then sent tosesabplayers in the

54

4.6. Boostrapping

vision range. The others will receive the position updateugh message forwarding
(see Section 2.5.3). Yobol follows this approach by cregdiml AX OUT_CAPACITY
parameter which limits the number of messages a client seedposition update.
By default, the position update is to be sent to all clients sehimlentifier is in the
near nodes list. However, if this list is larger than the MAXUT_CAPACITY value,

a copy C of the near nodes list is made. The contents in C affleshand the
list is shrunk to reach the size defined by the MAXUT_CAPACITY parameter.
The recipient list defined in the position update messagéad fivith the identifiers
contained in C.

e sendToTarget: is used to send a message to a target client. With the patgsdiil
sending position update messages to only a subset of peets the limit imposed
by the MAX_OUT_CAPACITY value, the existingendToTargemnethod (see Section
2.6.5) needs to be altered in order to enable such operation.

4.6 Boostrapping

In a common client-server setting, clients must first cohn@the game server in order
to be authenticated, to retrieve the latest state of the gaonkel and of their avatar, such
that they can continue playing where they last left off. Tiaisk has proven to be more
challenging in the context of a peer-to-peer structuregeisily when no superpeer node is
used. With no superpeer nodes, no nodes have a global krgeviddhe game. Therefore,
when a client joins the game, no one can efficiently deterranghom it should connect
to. Note that boostrapping occurs before any game interatakes place.

In Yobol, aRendezVousode was created to facilitate initial connection set-upe T
RendezVous is itself a server node and contains informatitiohwhelps a client A locate
the game server and an active client B currently connectéiteigame. Client A will then
connect to the server, request its master object and cotneetnt B. Once A is connected
to B, A collects information about the current game state f®m@nd builds its near and
sensor list. The RendezVous node is kept separated from the garver node because
each entity focuses on a different concern, and separdteggtconcerns is favorable for

55

4.6. Boostrapping

RendezVous
Node

2-send server addr
& client B addr

2-send client Daddr

2-send
client D
addr

3- establish connection .
> Client D

4- establish
connection

, ~.,

H ™, S
H , AN
1 N, S

N N
1 S ~
1 . ~
' '~

\
! N\, S
\ “
N, .
\ N
S ~
», ~,
L. N
1- join game \
\
A
S
hN ,,'
N g
N B

—3 message exchange upon client D join
<---> existing connection

RendezVous
Node

2-send server addr’

2-send client Aaddr

3- establish connection .
> ClientA

(a) first client joining (b) fourth client joining

Figure 4.9:RendezVous Node Bootstrapping

code reuse and maintenance. Moreover, this allows sereessdo authenticated clients
only, which is desirable for security reason.

In more detail, to join a game the client must first connect® RendezVous node.
Then it waits for a reply message from the Rendez\Vous, whialagas the game server’s
and the service server’s addresses. Once the client is deeatid, it receives an avatar
from the service server and the game states (duplicas) fnenserver. It then loads the
game map. At this point, the client only holds a duplica ofdwatar. The next required
step is to request the server to migrate the master objedtet@ltent. A peer-to-peer
structure is then formed.

When the RendezVous node finds a node that has not been conteeittedame server
yet a new connection is detected. Therefore every 5 sectiredRendez\Vous node scans its
connection list looking for any node whose flag is set to fal$gs means that a new client
node has connected. Once the node is connected to the gavee #srflag is updated
to true, thus indicating that it is an existing node. When a gewnection is found, the
RendezVous node forwards the client’s address to the semdeha authentication service.
If this new node is the first client to connect, then its adsliesforwarded to the server

56

4.6. Boostrapping

and services only. Otherwise, it also forwards the new téeaddress to a random client
who is already connected to the game. These steps aredtiestn Figure 4.9. In the case
(a), there are no previous connected nodes in the netwakeftire client A's address is
only forwarded to the server and vice versa. In (b), client@hts to join the game and the
RendezVous node chooses client B as the node which client IDinstlconnect to. It is
through client B’s connections that client D will build theamenodes list and sensor nodes
list. When a client leaves the game, the RendezVous node escaisconnecevent and
proceeds to remove that node from its connection list.

57

Chapter 5
Experiments

We have run a suite of experiments using different plaugjatee scenarios. Below we
describe the context in place, and present an analysis loastte various data gathered
during the experiments. These discussions demonstratetiimsuitability of Yobol as a
network engine for MMOGs, and also how the system is affebtedsing TCP/IP or UD-
P/IP as transport protocol. The experimental environmeatlus detailed in Section 5.1.
The simulation setup evaluated is presented in Sectionriel2hee results are summarized
in Section 5.3.

5.1 Experimental Environment

The implementation of Yobol has been extensively testedlénslammoth using clients
with Non-Player Characters (NPC). The behavior of the NPCs isseather primitive as
the NPCs are simply moving around in a random pattern in theegaap. However, this
behavior is perfectly appropriate for our interest as itsesumany messages to be sent over
the network. This uses both direct messages (to tell theemtsit the client has moved)
and published messages (to inform other players about thegel). Also, as the NPC
moves around the map, other node discoveries and discammectn be observed.

The NPC-clients were executed on 30-50 computers from theilMs&hool of Com-
puter Science computer labs. Each of these machines ispeglipith a processor that
runs at a minimum speed of 2GHz and with at least 2GB of memArgmall script is

58

5.2. Simulation Setup

used to remotely log in to the machines and then start the Nie@x Several NPC clients
can be run on one machine to simulate higher load settings.sécbnds delay is added
between the startup of each client to avoid a bottleneck erRiéndez\Vous node. Since
in real MMOGSs, players rarely connect all at the same timis, ifhireasonable. Being a
hybrid peer-to-peer system, Yobol's server is run on a nmechvith 2.GHz processor and 8
gigabytes of memory. We use the same virtual game map fouakxperiments. This 30
x 30 size map contains about 500 player objects. This is themuan number of clients
that can connect to it.

5.2 Simulation Setup

In the simulation setup, each NPC has its own environment@amglin its separate thread.
This means, when a new NPC connects to the server compaireagives a copy of every
object it is interested in. It can then interact with the widsly executing actions on those
objects.

Communication between NPCs and the server component is adnising therobol-
NetworkEnginewhich is a real socket-based communication engine. Thualeserver
and the NPCs run on different machines. Each NPC has to spalwasat?2 threads, one
to communicate with the centralized server, another to tootie sockets for incoming
traffic, and additional ones for each node connected to @dtfition, all communication is
routed through the localhost network interface. Each nrechiay be running one or many
NPCs depending on the experiment at hand.

The interest area of the NPC is set to 7 such that each playeader sees about
17% of the game map. With a smaller vision range, the numbepwofections between
nodes decreases. However, the usage of sensor nodes isatdsesupport a peer-to-
peer overlay without causing any network partitions. Natlim the number of outgoing
messages is defined in our experiment such that any playesecehout as many position
update messages as needed after a movement. However, sesagmérwarding is still
expected to be observed as it is used to detect new near nottes metwork. The same
setup is used for all experiments with the exception of theeudging tranport protocol

59

5.3. Results

(TCP/IP or UDP/IP) used in the network engine.

5.3 Results

This section provides some data collected from our experisnand their analysis. To
determine the feasability of using Yobol in a real game @mnnent, some measurements
such as the connection latency of player nodes and detergniine maximum capacity of
each node are performed.

5.3.1 Capacity

Our initial intention was to compare the scalability of theepto-peer system to the exist-
ing client-server structure. However, largely due to a lafockomputing resources, we were
not able to generate enough players to make this analygiesting. From the available
computers in the laboratories, only a subset of 30 machirsesswitable for our experi-
mentations. As many of them are older machines and contsshnfeemory, they quickly
become overloaded especially with the TCP/IP implementatforobol.

Each socket connection uses one file handle. As the numbenokctions per client
increases, the file handle size also increases, up to a dainhwing out of file handles.
This means that no more files can be opened, no more socketat@ms can be accepted,
and no more shared libraries can be loaded. This would riesutienial of service scenario
where no more connections are allowed, and under some @tanges, the game client
node can hang or crash. A simple work around is to increasiehtgandle size. However
this comes with a cost, as overallocating carries a penlopst (memory and/or cpu).
The default value of file handle in Linux is 1024. In order ttoal clients to keep a larger
number of connections, without letting it grow out of hand have limited the size of
this handler file to 51200. Despite our efforts, only 3 NP@mis can be simultaneously
run in a machine without causing it to overload. Therefdne, TCP/IP implementation is
only able to scale up to 90 clients randomly distributed dkiergame map. This does not
signify that the system is not scalable with TCP, but thistiweas reached because many
clients are run on each machine. Generally each maching tolst one client.

60

5.3. Results

Update Messages Sent

30000
25000 4""'.’
20000
&
=
ElSDOD e 1 B8 players
3+
10000 r -0-192 players
5000
-ﬁ-ZOOpIavers
a
- N @™ M M~ < W MMM~ A ;G M
Mmoo o mMmM~o MmM~OCo s M~ O s I
N - o T BT I v B s T = T Y B T = O S v +
L I B I I
time (sec)

(a) Total Number of Position Update Messages Sent

Update Messages Received

30000
25000 /Dg
20000 fo el
15000 -D-lEB players

10000
/ '0-1‘32 players
5000

e 700 players

message

135
269
403
537
671
805
939
1073
1207
1341
1475
1609
1743
1877

time (sec)

(b) Total Number of Position Update Messages Received

Figure 5.1:UDP Maximum Load

61

5.3. Results

The UDP/IP implementation of Yobol requires less computegpurces because it is
a connectionless protocol. Therefore, more clients carattine same time on a machine.
For the TCP experiment, some machines that were not suitaldde used due to their
lack of memories, can now be used for the UDP experimentss ifbreases the number
of machines available to 50. Our experiment demonstratdstite server becomes over-
loaded when more than 300 clients connect to it and a clieshima has the capacity of
running 7 NPC clients using UDP. However, our system was ahlg to scale up to 168
clients randomly distributed in the game before serviceri@ation is observed mainly
because several clients are running on the same machiomgatrto run out of computing
resources. Figure 5.1 (a) and (b) respectively illustrdtedotal number of messages sent
during the game by all players, and the total number of messageived. The x-axis is the
time in seconds, and the y-axis is the number of messagemdiaitialization time, there
are more position update sent out than received. Once thensys stable, the number of
messages sent and received increases linearly becausesgtayplish their new coordinate
regularly to their peers. These graphs show that the laggasunt of message sent and
received in the game is achieved with 168 players. As the eurobclients increases,
the number of messages gradually decreases. This cledibatas a degradation of ser-
vice due to high network traffic. In the peer-to-peer ardtiee, each client sends more
messages. Therefore our client machines saturated fakigg.that in a true peer-to-peer
system, this problem does not arise because each machinkasts one client.

From this experiment, we can conclude that TCP uses morereesothan UDP as
in our setting, TCP only scaled up to a total of 90 players (8/aatlients per machine),
whereas UDP supported up to a total of 168 players (6 actieatsl per machine). In
both cases, the system was overloaded because too martg elene running on the same
machine, and more time was spent on transmitting and recet@ata packets instead of
processing them.

Let’s recall that TCP performs some end-to-end flow controhghat data are not sent
faster than the receiver is able to receive and process it. Bf€&ks large messages into
smaller packets and guarantees that every packet sergsaativts destination in the same
order as it originated. Doing this generates a considemleunt of overhead. This ex-
plains why only 3 active clients can be hosted by one machitie WCP. Being a lighter

62

5.3. Results

protocol, UDP uses less resources as no hand-shaking iseequior to sending a mes-
sage. This can be observed by the fact that each machine thomo 6 active clients.
By putting more than 6 clients on one machine, a lot of strepati®n the machine, which
made it unable to process and perform its clients tasks.alyese cannot judge that UDP
is more scalable than TCP as both have hit a limit which ocdupecause each machine
hosted too many clients at a time.

5.3.2 Performance Comparison: TCP VS UDP

In this section we describes the experiment performed ttys@ahe performance of TCP
and UDP with Yobol. The experiment is run 3 times for each $&00 60, 90, and 120
randomly distributed NPC clients. The measurements amntaker a time span of 20
minutes of game play. Our analysis focuses on four criteha:amount of time requires
for a client node to connect to a peer node, the amount of CPmséhe client machine
and by each client process, the memory usage of a clientgspaed the amount of occured
page faults.

Connection Latency

In Yobol, a local node discovers a new peer node by the use rofemtion suggestion
messages. Our intention in this first experiment is to meathe latency for creating a
connection after the reception of such message. When therloda receives a sugges-
tion connection message, the current time stamp and the odevidentifier is stored in a
table. The local node establishes the proper connectidntivit peer node and waits for
the latter’s replica. When the replica is received, anothee tstamp is generated. The
difference between both times determines the connectiendg. Figure 5.2 illustrates the
latency observed when TCP or UDP is used as transport protéddmlcan observe that it
takes more than 1 second to create a connection betweehrabigées. This is because the
connection latency measured here includes the amount eftiken for a client to request
and receive a duplica object.

Figure 5.2 TCP has a small latency which is comparable or sorastetter than UDP
when the system is not overloaded like with 30 and 60 clieAts90 clients, the lack of

63

5.3. Results

Connection Latency

18000
16000
14000
12000
10000
8000
000
4000 HLDP

2000

millsecond

ETCP

30(1) 60(2) o0 (3) 120(4)

total # players (# client per maching)

Figure 5.2:Connection Latency Comparison

machine resources is starting to put a strain on the cliexetution. Each client needs to
hold more connections and receives much more messages. iBainger TCP, if a client
becomes overburdened by the incoming messages and skamtg itaore time to read, the
sender will adapt its sending speed to the reading speeceaketeiver. If the message
being slowly sent is a connection request, then a largedgiteil be measured. In the case
of UDP, no connection needs to be established before a messagbe sent. Messages
are sent out without any guarantee of being successfulgied. UDP does not adjust the
sender’s write speed to the receiver’s read capability ag ¢by TCP. Since no handshake
needs to be done between two parties before they can sthdregiog messages, and even
with high traffic on the network, nodes can perform a write & fas they can support,
UDP performs much better than TCP under high loads. While TCRugging with the
lack of computing resources, UDP shows a very small vanabibits latency, which is
considerably less than observed with TCP.

Although TCP performs well in under-loaded situations, #ttericy quickly increases
when client nodes become overloaded. Moreover, the sysemmnies overloaded with
only 90 connected players. While this can confirm that TCP hashed its maximum
capacity with 90 active players, UDP’s scalability doesse®m to be affected as its latency

64

5.3. Results

% CPU Usage
35
30 TCP
TCP
75 TCP
3
& 20
=
5 15 = TCP Avg CPU%
#* 10 UDP Avg CPLM:
upp
5 upp |
upp
, | 1l
3001) 60(2) a0 (3) 120(4)
total# players (# client per machine)

Figure 5.3:Performance Comparison - CPU Usage

remains under 2 seconds throughout the experiements.

CPU Usage

Figure 5.3 displays the experimental results for the awergount of CPU used to exe-
cute the application code in the user space (for exampleraneg and libraries). When
comparing the system performance running over TCP and UD#®dry case, TCP needs
more CPU than UDP. As the number of clients in the game incsgeadecal node A needs
to maintain more connections with near nodes. Thereforgatipy its near node list and
sensor node list will take more time because a node A will hago through a longer list
to determine whether a node B should be in its near list or ibe CPU usage for TCP
peaks up at 90 connected clients and suffers a significapt afterward. This confirms
that the maximum capacity of the TCP implementation is ind¥eglayers, because when
more players try to connect to the game, the system becornegl®asied and some of these
connections are dropped, causing a decrease of CPU usadleréonaining clients.
Although TCP uses more resources for keeping connectioresottian UDP, the latter
needs to perform more work in the application layer to corspanfor some of the lacking
features of TCP, like message duplication. As mentioned ati@e2.7, in TCP a message

65

5.3. Results

Memory Usage

2.346E+02
2.344E+09 upp
2.342E+08 ubPp i |
2.34E+09 |
. 23388408 —ypp—— ——— ——— —
£ 2.336E+00 __ mTCP AvgProcess Mem
= 2334E+08 TCp Tep —TCP . yep
2.332E+09 -+ — UDP AvgProcess Mem
2.33E+09 -
2.32BE+09 - -
2.326E+08 -

3001) 60(2) 20 (3) 120(4)

total # players (# client per machine)

Figure 5.4:Performance Comparison - Memory Usage

is either sent once or not at all. UDP does not offer this guamsuch that a message
may be sent zero or many times. In order to provide only releglata to the game layer,
our UDP network layer must filter out more duplicated messagghis is reflected by
an increased usage of CPU as the number of clients grows fangtre UDP transport
protocol. Nevertheless from the above figure, we can judgeUWP’s scalability limit of
168 players is not caused by a lack of CPU power as its CPU usagens well under
10% throughout the experiments.

Process Memory Usage

The average process memory usage of Yobol running on TCPngisantly lower than
on UDP. This difference is due to the use of a larger socketveduffer size for the UDP
implementation. Too little UDP buffer space causes theatpey system kernel to discard
UDP packets. To minimize the likelihood of message loss,hilféer size is increased
to 16384 bytes2'*) for the UDP implementation. The TCP socket receive buffee &
only 2048 bytesq'!). For each datagram socket created a greater amount of mésnor
allocated for the reception of messages. The average useuzl\memory per process for
the TCP and the UDP implementation of Yobol is depicted in Fedgu4.

66

5.3. Results

For TCP, the amount of memory used fluctuates between 2.3326GRB.834GB as the
number of player increases. This is mainly because TCP usealiesreceiver buffer size
than UDP. In the case of UDP, as the number of clients incsgdlse amount of memory
used increases as well. A significant growth is observed woéry from 30 to 60 players
(i.e. from one player to two player per node). An increaseasinections between client
nodes can account for this. However, a smaller augmentafiomemory usage is shown
for 60 to 120 players. This can be explained by the fact thavision range of client nodes
covers about 17% of the map and many groups of clients, lddatdifferent areas in the
map, can be formed. If a client belongs to one of those grdabps;lient’s connections are
limited to the peer nodes in the group along with a few senedes. This is an effect of
an under-populated map. In this case, the number of commeasid by a client at a given
time would not vary much.

From the above figure, we can determine that with a total ofdagers in the game,
there are 4 clients running on each machine. Each clientepgoconsumes on average
about 2.343GB of virtual memory. Since each machine cost®@B of memory, it is not
surprising that UDP hits its scalability limit of 168 plagei6 clients per machine). Once
more, this limit is reached because more than one clieneswggd on one machine, which
is not common in a true peer-to-peer game environment.

Page Fault Count

From Figure 5.5, the occurrence of page faults is very smida both TCP and UDP
under normal load. As TCP reaches its maximum capacity of &ep$, a greater amount
of page faults ensues. Combining this finding to the resulaiobt in the connection
latency section, we can safely conclude that the systemeadaaded from this point on.
However, Figure 5.4 shows that the memory usage for TCP is ldwrigure 5.5 shows
that there is a large number of page faults. An explanatiothis is that the system may
be thrashing. In our TCP implementation, we have used thaitiéfaw-control provided
by MINA, providing the basic functionality. This flow-comtirmay not be adequate for
Mammoth’s game environment as illustrated in the obtairesdilts. With 90 players in
the system, each client has reached a point where it is unalpeocess all incoming

67

5.3. Results

Page Faults Count
300000
TCP
250000
i 200000 TCP
E B TCP AvgPage Faults
150000
:
+ 100000 UDP Avg Page Faults
TCP UDP
50000 -J uDPp —
D -
30(1) 60(2) DOi3) 12004
total# players (# client per machine)

Figure 5.5:Performance Comparison - Page Fault Count

data. Therefore, it requests that its peers reduce the a@mbdata they send at a time by
lowering the window setting value on a TCP packet. If the ¢lierstill unable to process
all incoming data, this window setting value becomes smalfel smaller, to the point
where the data transmitted is smaller than the packet hé@adtr This makes the data
transmission extremely inefficient. Since there is a cerdanount of overhead associated
with processing each packet, the increasing number of pgokeans an increase overhead
to process a decreasing amount of data. This results inshihgasystem, which results in
a large amount of page fault occurrences.

Since the value shown in Figure 5.5 is an average value oikp#ranent runs, TCP
could be running fine for 95% of the time, then at some pointetbing causes all the
memory to be used up for a few minutes and causing thousanuisgef faults. This will
have very little affect on the memory usage analysis, butrgel@ne on the page fault
statistic.

Message Overheads

Aside from sending and receiving position update messages, client node is required to
communicate a set of messages that are essential to thehingtof the game. These fall

68

5.3. Results

into the message overhead category. Some of the observdteademessages are listed
below.

e Sensor request messsagsent to sensor nodes asking for the best sensor candidate
in a given area/slice

e Sensor suggestion messagsent by sensor nodes indicating which node is the best
sensor candidate for a given area/slice

¢ Request connection messageto ask a near node B for more information about
another node C such that it can initiate a connection to C

¢ List update messageto create a connection with new node C (once this message is
received, a concrete socket will be opened on both nodefote dhta transmission)

e Disconnect messageto notify that a near node B left the game

Figures 5.6, 5.7, 5.8, and 5.9 illustrate these overheadages in four different setting:
with 30, 60, 90, and 120 players in the game, using TCP/IP aspiat protocol or UDP/IP.
The y-axis represents the total number of overhead messagasng after a given time
has elapsed. The x-axis is the amount of elapsed time.

When comparing Figure 5.6(b) with Figure 5.7(c), we can olesérat the number of
list update messages increases significantly with 90 aptayeers in the system, while the
number of sensor request messages decreases a little.ohfiisras to the fact that more
connections are needed as the game map becomes more popbldté also suggests
that more computing resources are used to create and hamieations with peers rather
than performing overlay maintenance. At 120 players (sgar€i5.7(d)), TCP is already
overloaded, therefore the number of overhead messagegastioan at 90 players.

When comparing Figures5.8(e-f) and 5.9(g-h), we noticedbdahe number of players
increases, the amount of sensor request messages deerétke svhile the number of re-
guest connection messages increases greatly. This iedittett more effort is put on trying
to create connections with new peers than maintaining thearnk overlay. Another point
worth mentioning is that the number of sent messages is t&egh¢o be greater or equal

69

5.3. Results

to the number of message received for each type of overheasage as some messages
can be lost. As anticipated, the results collected for TCBezbby this. This is because
TCP is a reliable transport protocol such that every datagiasdnt out is guaranteed to
arrive at its destination exactly once. In contrast, a n@ndris observed for UDP where
the number of message sent is less than the number of messagesd, as the game map
becomes more populated. This can be the result of messabjieadiop in UDP. Let’s recall
that UDP does not provide any guarantee that a message $idve wiiccessfully received
at the destination. Also, a message can be sent out more titan such that the same
message is received multiple times, but was counted as k& Seqt.

70

5.3. Results

TCP 30 Players - Message Overheads
2500 BsendSensor Request
msendSensorsuggestion
2000 W Send List Update
- BSendRequest Connection
a 1500
& BSendDisconnect
o
w
a msend Others
E 1000 |
B EReceive Sensor Request
c00 B Eeceive SensorSuggestion
W Receive List Update
0 - B Receive Request Connection
5 10 15 30 B Receive Disconnect
. . W Receive Others
time {min}
(a)
TCP 60 Players - Message Overheads
3000 M5endSensor Request
WsendSensorSuggestion
2500
W sendList Update
" 2000 WsendRequest Connection
a
] I WsendDisconnect
& 1500
E msend Others
b 1000 I I B Receive Sensor Request
M EReceive Sensorsuggestion
300 1 W Receive List Update
o M Eeceive Request Connection
5 10 15 20 W Receive Disconnect
. . W Receive Others
time {min)

(b)

Figure 5.6:TCP Message Overheads

71

5.3. Results

TCP 90 Players - Message Overheads
4000 WsendSensor Request
3500 B sendSensorSuggestion
3000 WsendList Update
WsendRequest Connection
@ 2500
B W send Disconnect
i
g 2000 msend Others
1500 M Eeceive Sensor Request
1000 B Recejve Sensor Suggestion
500 W Receive List Update
0 B Receive Request Connection
5 10 15 20 W Recejve Disconnect
. . W Receive Others
time {min)
(c)
TCP 120 Players - Message Overheads
3500 Wsendsensor Request
3000 msendSensorSuggestion
I . I . msend List Update
2500
- I WsendRequest Connection
a
& 2000 msend Disconnect
s
[
a
£ 1500 W send Others
1k M Eeceive Sensor Request
1000 A
W Receive SensorSuggestion
500 W Receive List Update
o A B Eeceive Request Connection
5 10 15 20 W Receive Disconnect
. . W Receive Others
time {min)
(d)

Figure 5.7:TCP Message Overheads (cont'd)

72

5.3. Results

UDP 30 Players - Message Overheads
G000 WsendSensor Request
msendsensorSuggestion
5000
W sendList Update
» 3000 W 5end Request Connection
a
E W send Disconnect
@ 3000
£ msend Others
4k
2000 M Receive Sensaor Request
M Eeceive SensorSuggestion
1000
W Receive List Update
0 W Receive Request Connection
5 10 15 20 W Receive Disconnect
time {min} W Receive Others
(e)
UDP 60 Players - Message Overheads
loooo Wsendsensor Request
2000 msendSensorSuggestion
5000 WsendList Update
7000
- WsendRequest Connection
a
2 G000 msendDisconnect
i 5000
g Wsend Others

4000
3000
2000 }

M Eeceive Sensor Request

-
™
S
S

W Receive SensorSuggestion

W Receive List Update

1000
0 4 B Eeceive Request Connection
5 10 15 20 W Receive Disconnect
. . W Receive Others
time {min)
®)

Figure 5.8:UDP Message Overheads

73

5.3. Results

UDP 90 Players - Message Overheads
7000 MsendSensor Request
5000 W sendSensor Suggestion
W sendList Update
5000
- W sendRequest Connection
a
e 4000 mSendDisconnect
a
£ 3000 W send Others
4k
] [
2000 | Receive Sensor Request
I MW Eeceive SensorSuggestion
1000 W Receive List Update
0 - M Eeceive Request Connection
5 10 15 20 W Receive Disconnect
time {min} W Receive Others
@
UDP 120 Players - Message Overheads
go00 Wsendsensor Request
J000 msendSensorSuggestion
G000 WsendList Update
2 5000 WsendRequest Connection
E msend Disconnect
@ 4000
£ W send Others
g 3000
M Eeceive Sensor Request
2000 W Receive SensorSuggestion
1000 W Raceive List Update
0 B Eeceive Request Connection
5 10 15 20 W Receive Disconnect
time {min) W Receive Others
(h)

Figure 5.9:UDP Message Overheads (cont'd)

74

Chapter 6
Conclusions and Future Work

6.1 Conclusion

This thesis has shown that MMOGs can be run on a peer-to-denork where player’s
position updates are multicast to interested peers. Thegaywis dynamically built and
updated by information gathered from peers. The performanthis network engine has
been studied with two different transport protocols, whace TCP/IP and UDP/IP. Under
normal load, TCP and UDP performance are very similar, degpé fact that more re-
sources are consumed with TCP. Being resource greedy, TCRItouhéo be less scalable
as we were limited to a maximum of 3 NPC clients in one compdtgig the experi-
ments. In a real game setting, each client machine will baingna single NPC client and
thus that amount of resources used may not be as problen@ui¢he other hand, UDP
scales up very well, but being an unreliable protocol, mgssasses can put a dent in its
performance.

6.2 Future Work

There is a future for building massively multiplayer onlig@mes on a peer-to-peer struc-
ture using a localized multicast. However, there are liates that need to be investigated
or improved; implying a many potential future directions flois work.

75

6.2. Future Work

6.2.1 Firewall

Our experiments were run on lab computers in the McGill’'s patar science network.
Since they all belong to the same network, we did not havedowt for situations where
a firewall is in place or a client machine resides in a netwaik@ NAT. This means that
most private users will not be able to connect to the pegreter-network and thus, will not
be able to use a version of Mammoth with Yobol. From a home ederpwhen a client
tries to connect to a node on a lab machine, the connectisdiae to a firewall preventing
the opening of a TCP connection to the client.

This can be solved by implementing the hole punching algorifFSK05] on top of
the UDP implementation of Yobol. This would allow the trasalrof firewalls and NAT
networks.

6.2.2 Reliability

This research has shown that UDP is a preferable medium t@&hfér MMOGs. UDP
consumes much less resources, since no connection setepdsedbefore sending a mes-
sage. Nevertheless, UDP is known to be an unreliable prbtd&ioce our experiments
were run in a local area network, few message lost were obdetivus having less impact
on the game. However as the load gets higher, messages adraturently lost. This will
eventually spoil the player's game experience. To remedy Home of TCP’s reliability
can be implemented in UDP. A possible approach would be & taxie sending the posi-
tion update unreliably the first four times, and the fifth timmoves, the position is sent
out in a reliable fashion. This ensures that peers will abvageive some updates

6.2.3 Security

Being a peer-to-peer approach, security is a major issue sach client node controls a
master object. Malicious nodes can send out erroneous Haté their state in order to
gain some unfair advantage on their peers, like making tekms invisible. They could
also send out fake messages to overload the network andnpriéveom working well.
Since this topic has not yet been explored, further work ceasary.

76

6.2. Future Work

6.2.4 pSense

Being inspired by pSense, we have focused on distributingeplenaster objects on the
client nodes and left other game objects on the server. Tdnsbe pushed further by
distributing all mutable objects onto clients, making thigsure peer-to-peer approach. On
the other hand, other interest management can be exploveellass other ways to allocate
sensor nodes to optimize the performance.

77

Bibliography

[AG]

[ARBSO04]

[Are]

[ASBOS]

[BKO4]

[EFGKO3]

[Ent]

10Tacle Studios AG.
URL: <ht t p: // ng. neocr on. con>.

M. Agrawal A. R. Bharambe and S. Seshan. Mercury: suppmpscalable
multi-attribute range queries. BIGCOMM pages 353-366, 2004.

Inc. ArenaNet.
URL: <ht t p: / / www. gui | dwar s. con>.

S. Jeckel P. Kabus B. Kemme A. Schmieg, M. Stieler andBAchmann.
psense - maintaining a dynamic localized peer-to-peectsirel for position
based multicast in games. Rroceedings of the 2008 Eighth International
Conference on Peer-to-Peer Computingages 247-256, Washington, DC,
USA, 2008. IEEE Computer Society.

W. Xu B. Hopkins B. Knutsson, H. Lu. Peer-to-peer supdort massively
multiplayer games. IINFOCOM, pages 96—107, USA, 2004. IEEE.

Patrick Th. Eugster, Pascal A. Felber, Rachid Gagarr, and Anne-Marie Ker-
marrec. The many faces of publish/subscri®@M Comput. Sury35(2):114—
131, 2003.

Blizzard Entertainment.
URL: <http://ww. bl i zzar d. con.

78

Bibliography

[FSKO5]

[GCVO01]

[JKO3]

[JKO9]

[JSBVO6]

[KPBM99]

[LP96]

[MCRO2]

[min]

Bryan Ford, Pyda Srisuresh, and Dan Kegel. Peee@w-pommunication

across network address translators AIFEC '05: Proceedings of the Annual
Conference on USENIX Annual Technical Conferepeges 13—-13, Berkeley,
CA, USA, 2005. USENIX Association.

I. Keidar G. Chockler and R. Vitenberg. Group commutaraspecifications:
a comprehensive studpACM Comput. Sury33(4):427-469, 2001.

G. Simon J. Keller. Solipsis: A massively multi-gampant virtual world. In
Proceedings of Parallel and Distributed Processing Teghes and Applica-
tions, pages 262—-268, 2003.

B. Kemme A. Denault M. Hawker J. Kienzle, C. Verbrugge.ahmoth: a
massively multiplayer game research framework.Pceedings of the 4th
International Conference on Foundations of Digital Gamgages 308—-315,
Orlando, Florida, USA, 2009. ACM.

J. Kienzle J.-S. Boulanger and C. Verbrugge. Compadrtegest manage-
ment algorithms for massively multiplayer gamesPhoceedings of 5th ACM
SIGCOMM Workshop on Network and System Support for Gapzege 6,

Singapore, 2006. ACM.

0. Ozkasap Z. Xiao M. Budiu K. P. Birman, M. Hayden and Y. Minsky. Bi-
modal multicastACM Trans. Comput. SystiL7(2):41-88, 1999.

J.C.-H. Lin and S. Paul. Rmtp: A reliable multicast spart protocol. In
INFOCOM, pages 1414-1424, 1996.

A.-M. Kermarrec M. Castro, P. Druschel and A. Rowstromril®: A large-
scale and decentralized application-level multicastiitucture IEEE Jour-
nal on Selected Areas in Communication (JSAZL)(8):100-110, October
2002.

Apache mina.
URL: <htt p: // m na. apache. or g/ >.

79

Bibliography

[Mor96]

[Pla]

[PTEKO3]

[RDO1]

[YVO5]

[Zin08]

K. L. Morse. Interest management in large-scaldriistion simulations.
Technical report, Department of Information and Computeer8e, Univer-
sity of California, Irwine, 1996.

Inc. Playnet.
URL: <ht t p: // www. bat t | egr oundeur ope. com>.

S. B. Handurukande P. Kouznetsov P. T. Eugster, Rrr@oei and A.-M.
Kermarrec. Lightweight probabilistic broadcashCM Tans. Comput. Syst.
21(4):341-374, 2003.

A. Rowstron and P. Druschel. Pastry: Scalable, distet object location
and routing for large-scale peer-to-peer systemslFIR/ACM International
Conference on Distributed Systems Platforms (Middlewarayjes 329-350,
November 2001.

A. P. Yuand S. T. Vuong. Mopar: a mobile peer-to-peeeiday architecture
for interest management of massively multiplayer onlin@gsa. INOSSDAY
pages 99-104. ACM, 2005.

Dominik Zindel. Postina: A publish/subscribe middare designed for mas-
sively multiplayer games. Master’s thesis, McGill UnivigrsUniversity of
Fribourg, Montéal, Qwebec, Canada, Switzerland, 2007-2008.

80

