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Abstract

Detecting groups of vehicles traveling together as a convoy is an important problem in mil-

itary and law enforcement applications. License plate recognition sensors are an emerging

technology which can be used to solve this problem. The sensors are deployed throughout

road networks across the world and meta-data about the vehicles passing in front of each

sensor is collected. These provide discrete, irregularly sampled, time series information

about where vehicles are traveling. This thesis proposes a method to solve the problem

of detecting convoys utilizing irregularly sampled time series information about objects

moving between sensors.

The system presented in this thesis is a hypothesis test to determine if a pair of objects

is traveling in a convoy or independently. The models for the hypothesis test are based on

a semi-Markov process model for an object traveling between sensor locations which are

the states in the Markov process. The system is analyzed utilizing a real dataset which

shows that it does in fact detect pairs of objects which appear to be traveling together in

a convoy. It is then analyzed utilizing a simulated dataset containing an equal number of

pairs traveling in convoys as well as independently and the performance on the number of

accurate detections as well as false detections is summarized.

The system described solves the problem of detecting convoys utilizing limited-range

sensors, such as license plate recognition sensors. The system presented is represented as

a general system determining if “objects” are moving together in a path that appears tied

together versus independently. This allows the system to have future applications to other

fields that is not just license plate recognition information of vehicular movements. It can be

generalized to other problems of determining similar paths in Markov chain environments.
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Sommaire

Détecter des groupes de véhicules se déplaçant ensemble en convoi est un problème im-

portant dans les domaines militaires et policiers. Les capteurs capables de reconnâıtre les

plaques d’immatriculation forment un nouveau type de capteurs qui peuvent être utilisés

pour résoudre ce problème. Ces capteurs sont déployés tout au long de réseaux routiers à

travers le monde et des métadonnées sur les véhicules traversant devant ceux-ci sont recueil-

lies. Ces métadonnées procurent des informations discrètes et irrégulièrement échantillonnées

sous forme de séries temporelles indiquant la direction de déplacement des véhicules. Cette

thèse propose une méthode qui utilise des séries temporelles irrégulièrement échantillonnées

d’information à propos d’objets en déplacement entre capteurs afin de résoudre le problème

de détection de convois.

Le système présenté dans cette thèse crée un test d’hypothèse afin de déterminer si

une paire d’objets se déplacent dans un convoi ou indépendamment. Les modèles pour le

test d’hypothèse sont basés sur un semi-processus de Markov pour un objet qui se déplace

entre les emplacements de capteurs, emplacements qui forment les états du processus de

Markov. Le système est analysé avec une banque de données réelles et démontre qu’il

peut effectivement détecter des paires d’objets qui semblent se déplacer conjointement.

Le système est ensuite analysé avec une banque de données artificielles contenant autant

de paires d’objets formant une escorte que de paires se déplaçant indépendamment et sa

performance sur le nombre de détections exactes ainsi que fausses est résumée.

Le système décrit ci-haut résout le problème de détection de convois par utilisation de

capteurs à portée réduite tels que les lecteurs de plaque d’immatriculation automatisés. Le

système décrit est traité sous la forme d’un système général qui distingue entre des objets

se déplaçant ensemble sur une voie donnée où ils semblent liés et des objets se déplaçant

indépendamment. Cette description laisse place à de futures applications dans d’autres

domaines qui ne comptent pas nécéssairement sur des lecteurs de plaques d’immatriculation

pour obtenir des données sur le mouvement de véhicules. Le système peut-être généralisé

à d’autres problèmes de détection de cheminement dans des environnements utilisant des

châınes de Markov.
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Chapter 1

Introduction

1.1 License Plate Recognition

Lately there has been an emergence of license plate recognition (LPR) sensors on the streets

of the world. Traffic today can be measured and estimated utilizing the data retrieved from

these sensors. These sensors provide discrete data about which vehicles, herein referred to

as objects, pass by them. When a sensor captures an object passing in front of it, it then

records and reports meta information about the capture (eg., time, location, etc).

From these sensors, which are positioned on roads around the world, one would like to

estimate which vehicles are traveling together as a convoy. This then requires the ability

to, online, detect convoys in live traffic.

1.2 Convoys

A definition of what a convoy means is needed to provide intuition into why the problem

of convoy detection requires the solution provided in this thesis. The definition of a convoy

is two objects traveling a similar path together. To judge this, it is necessary to investigate

the provided data. For all intensive purposes, it is given that the data is sampled from

discrete locations on the world where the sensors receive “all” objects who pass by them.

For the purposes of the analysis in this thesis, it is assumed that there are no errors in the

provided data. Errors in the data are an area for future work.

However a significant problem is what determines a “similar” path? This thesis’ solu-

tion to that problem is a likelihood ratio test against the probability that the objects are

2013/12/09
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traveling independently. The probability that two objects are traveling independently is

shown through a Markov process between the various states since there is not continuous

data about an object. Therefore when viewing the data it appears as though the objects

move between sensor locations without traveling anywhere else. This then fits a Markov

process-like scenario where the number of sensors is the number of states in the Markov

process.

After this, there needs to be a definition the probability that two objects traveling

dependently through the state space of the Markov process as outlined in Section 4.4.1.

With both probabilistic models for independent and dependent travel one can then perform

a sequential likelihood ratio test [2] for when the objects are traveling together rather than

independently as described in Chapter 4.

1.3 Contribution

This thesis provides models which describe what it means to be traveling as a convoy or

traveling independently. It then proposes a testing procedure and describes a system im-

plementing this procedure to detect convoys in an online fashion. The algorithms provided

in this thesis give a new method for determining when two objects are traveling together

when only discrete observations of their state and the time of that observation is available.

The proposed convoy detection system greatly reduces the amount of data traditionally

[3,4] required in convoy detection routines. It also reduces the need for high-range sensors

since only discrete observations of objects is necessary.

1.4 Overview

This thesis is broken into six chapters. The first, this chapter, is simply and introduction

into the problem as well as some introduction to the data available to solve the problem.

The second chapter provides a brief overview of related methods for convoy detection

and their applications. The following chapter is an overview of the techniques utilized in

the proposed convoy detection system and the relevant references.

Chapter 4 contains the mathematical definition of the statistical testing routine utilized

to detect convoys in an online system. Following this is an outline of the system which

utilizes the models defined and a sequential hypothesis test in order to test the performance



1 Introduction 3

of the hypothesis test against real data.

Chapter 6 is a summary of the results defining some performance statistics of the system

as well as some example detected convoys in the data are provided. Finally Chapter 7 is

a brief conclusion of the results and future works which we wish to visit next with this

problem.
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Chapter 2

Previous Work

The problem of tracking groups traveling together as a convoy has received limited atten-

tion. The main comparable works utilize radar sensor information about tracking vehicles.

This thesis’ review of previous works will begin with some methods utilizing this radar sen-

sor information. Then the review will move to looking at irregular time series and methods

for analyzing convoys in irregular time series data.

2.1 Radar Sensor Based Convoy Tracking

The majority of the previous work on the topic of convoy detection and tracking [3, 4]

relates to data in the form of Ground Moving Target Indicator (GMTI) data. This data

is collected from one or many radar sensors and makes a tracking indicator based on the

physical characteristics of a vehicle. These methods also allow for regularly sampled data

to be gathered over time for a specific vehicle. Lastly each sensor can provide coverage for

a large physical area.

In the problem considered in this thesis, the data available is of the form of irregularly

sampled data from sensors with very limited range, not nearly the range of a GMTI radar

sensor. Also one cannot guarantee that there will be multiple samples for a vehicle in any

period of time. The solutions in [3, 4] to these problems require that regular samples be

available to determine a fit to the data, where in the data used in this thesis does not have

a regular sampling rate. This therefore excludes the methods explored in [3] and [4] from

being applicable to this problem.
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2.2 Irregular Time Series

Irregular time series have been studied in many different applications. However the corre-

lation of time series data where the sampling rate cannot be guaranteed or even modeled as

a known distribution has not been studied thoroughly. If the data is received at irregular

rates where the arrival times follow a known distribution then some additional techniques

do become available [5].

Some techniques attempt to analyze the spectral features of irregularly sampled time

series [6]. The techniques presented by Martin in [6] focus on prediction and filtering

techniques in irregular time series. These techniques are trying to “fit” data to some model

which causes some loss of accuracy. With the problem of convoy detection a loss of accuracy

is not desirable excluding the techniques presented by Martin.

There are also techniques which attempt to map irregularly sampled time series data

into regularly sampled series. However this usually requires an interpolation of some kind [5]

and this also causes a reduction in accuracy which is undesirable. Also even once into a

regularly sampled rate the problem at hand is not trivial of determining when convoys are

present.

2.2.1 Variogram

Traditional irregular time series analysis techniques require mathematical tools to compare

various time series within space and time without any way of correlating the samples of the

series. This is where an application of the variogram [7] can be applied. The variogram is

a technique utilized in geostatistics for comparing metrics over space and time which are

not traditionally done at regularly sampled times. The empirical variogram (γ̂(h)), which

is utilized in data-driven contexts, has the form

γ̂(h) =
1

|N(h)|
∑

(i,j)∈N(h)

|Z(ri)− Z(rj)|2

N(h) = {i, j : |ri − rj| ∈ [h− δh, h+ δh)} (2.1)

where the process Z(r) is the process being estimated, r ∈ D ⊂ R2, and N(h) is the

set of pairs of observations, i and j, which are deemed “comparable” by the constraint h.

The quantity δ is used to allow a range of distances allowed between observations and is
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implementation specific. Also |N(h)| is the number of pairs in this set. What determines

two samples to be comparable is left to be defined according to the problem [7]. The

example given in [7] is that of mining core samples which are done at different sites over

the course of months. The variogram analysis of these samples wishes to compare the

sample values to see which mining sites have similar characteristics.

The convoy detection problem can be solved using the empirical variogram for estima-

tion of an anti-correlation between various entries. However, if attempting to solve the

problem this way, there is a problem of “lookback” in the data. Lookback is the problem

of having data considered multiple times. For example, assume the object X is observed

with values {X(t1), X(t2), ..., X(tn)} at times {t1, t2, ..., tn} and the object Y is viewed

with values {Y (t1), Y (t2), ..., Y (tn)}. Also assume that the determination of what points

are comparable is that the difference in time is less than some parameter T . Then when

comparing data for X versus Y , there is no guarantee that when comparing X(tn) one will

only consider Y (tn). Comparing X(tn) might compare with every point in the observations

of Y in which the other samples of Y might have already been computed. This causes

a skew in the results which is undesirable. There may be ways to extract this skew, but

Cressie’s work in [7] is unclear how to account for this in irregular time series data.
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Chapter 3

Background

In order to create a system to determine that two vehicles are moving together in a convoy,

one first requires the definition of a likelihood ratio test in order to test the probability

of independent travel versus traveling as a convoy. After the test is defined, it can then

be converted into a sequential test to allow the system to operate in an online fashion so

a decision can be made with the fewest number of samples needed. This sequential test

requires that one compares a model representing the default, no-convoy, case with the case

that two objects are traveling in a convoy together. These models are defined utilizing

a Markov chain to represent the objects movement over time. The last phase required is

to estimate the parameters of the Markov chain utilizing a density estimation procedure.

Background on hypothesis testing, sequential hypothesis testing, Markov processes, and

density estimation is presented in this chapter.

Lastly some background on the Haversine equation is provided. This does not directly

relate to the likelihood ratio test and probability densities, however it is used in intermediary

equations for computing distances between locations that are specified.

3.1 Hypothesis Testing

Hypothesis testing refers to the body of statistical methods for making decisions given a

collection of observations [1, 8]. A statistical hypothesis test defines a significance level

which determines if one model is significantly more likely to be the underlying true model

of an observation than another.

In this type of test, two definitions are necessary. The first is the null hypothesis, called
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H0. This is the hypothesis that means the default case is true. The other definition is the

alternate hypothesis, H1. For example in the binary case given two Gaussian distributions,

H0 could be that the mean of the Gaussian is θ0 and for H1 the mean is θ1. Then once

given enough observations have been viewed it can be determined by the test if the data

comes from H0 ∼ N (θ0, σ) or H1 ∼ N (θ1, σ) assuming a shared standard deviation σ [1].

Decision H0 is true H1 is true

Accept H0 Correct Wrong (Type II Error)
Accept H1 Wrong (Type I Error) Correct

Table 3.1 Error definitions for statistical hypothesis testing [1]

When testing two hypotheses, four possible results are possible as outlined in Table

3.1. There are two types of errors possible in this test, Type I and Type II errors. Each

error type defines if the incorrect outcome came when the null or alternate were true. One

can define a significance level, η, based on the likelihood ratio as shown in the following

equation [9].

Λ(X) =
Pr(X|H1)

Pr(X|H0)
(3.1)

where X is a sequence of observations, {x0, x1, ..., xn} , of the random variable X which

could be acting according to the null or alternate distribution. This ratio is the likelihood

ratio calculated when a test is to be run. Assuming a significance level, η, the likelihood

ratio test is [9]

Λ(X)
H1

≷
H0

η. (3.2)

The level η can be related to probabilities which describe the performance of the system

as done in [9]. There are four probabilities that describe the performance of the system, the

first two relate to when an incorrect decision is made (an error) and the last two describe

correct decisions of the system. The two probabilities for errors are the probability of false

detection or Type I error (PFD), while the second is the probability of a missed detection

or Type II error (PMD). The other two quantities are the probability of detection, PD,

and the quantity Pr(H0|H0) which is traditionally left undefined however can be stated to

be a correct decision that an observation truly comes from the null hypothesis [2]. These

probabilities are also traditionally set to be defined by two quantities α and β which are
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defined to be
PFD = Pr(H1|H0) = α

PD = Pr(H1|H1) = β

PMiss = Pr(H0|H1) = 1− β
Pr(H0|H0) = 1− α.

(3.3)

3.1.1 Neyman-Pearson Criterion

In general, hypothesis testing involves defining a function g(X) which maps X to a decision

region H0 or H1. There are trade-offs in the performance of a hypothesis test, however,

to the choice of η or alternatively the boundary where g(X) changes from returning H0 to

H1. Adjusting η to increase the probability of detection will also increase the probability

of false detection as well as the inverse, decreasing the probability of false detection will

decrease the probability of detection. Another way of determining the quantity η is called

the Neyman-Pearson criterion [9]. This is the definition of an optimization problem in

which one maximizes the probability of detection PD while keeping the probability of false

detection PFD small. It has the form

max
R1

PD subject to PFD ≤ α

whereR1 = {X : g(X) = H1} is the region in which one decides for the alternate hypothesis

over the null. However when solving the optimization probability, there is a possibility that

PF may never equal the constraining value α since the underlying probabilities may not be

continuous making the solution more difficult to analyze [9]. Solving this problem, using

Lagrange multipliers [10], is shown to yield a decision test of

Pr(X|H1)

Pr(X|H0

H1

≷
H0

−λ (3.4)

where λ is the Lagrange multiplier [9].

Using this solution via the Neyman-Pearson criteria allows a new definition of the

probability of a false detection as

PFD =

∞∫
−λ

Pr (Λ|H0) dΛ. (3.5)
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This equation is solved by setting PFD = α, where the selection of α is problem dependent,

and then solving the integral for the likelihood ratio. Neyman and Pearson showed that a

solution always exists which yields an optimal λ [9].

3.1.2 Decisions using Variable Amounts of Data

In the traditional application, standard hypothesis testing does not allow an area of un-

certainty in which a decision can not be ascertained and more data considered. All data

must be available to compute the entire test statistic ahead of time and it must yield a

result of one hypothesis. For an online system, this is unreasonable since more data may

continually arrive and the need to completely re-compute the test is a waste. Therefore we

would like decisions to be made using an minimal amount of data and adjusted as more

data arrives. All of these problems can be addressed with sequential hypothesis testing

techniques, which are discussed next.

3.2 Sequential Hypothesis Testing

Sequential hypothesis testing is a method which allows one to receive data over time and

update the likelihood ratio as new data becomes available. Sequential analysis of the like-

lihood ratio requires that two parameters be defined which will be utilized in the definition

of decision regions for the likelihood ratio, Λ.

The original hypothesis test can be converted into a sequential test with the definition of

two thresholds, η0 and η1. These thresholds define three decision regions [2]: null, alternate,

and “need more data”. In sequential hypothesis testing, the likelihood ratio is now defined

as the value after N observations, as ΛN . Unlike in standard hypothesis testing, where

all data is available from the start, there is now a new decision region which defines that

neither hypothesis can yet be decided, which is the “need more data” region. ΛN(X) in

ΛN(X) < η0 decide H0

η0 ≤ ΛN(X) < η1 decide “need more data”

η1 ≤ ΛN(X) decide H1

(3.6)

is the likelihood ratio test after N samples of the random variable X. This test relates the

thresholds, η0 and η1, to the value of the likelihood ratio after N samples.
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The decision thresholds, η0 and η1, can be related to the values of α and β in order

to set performance conditions on the accuracy of the test. As shown by Wald in [2], to

guarantee the probability for false detection, α, and the probability of detection, β, the

thresholds should be set to

η0 =
1− β
1− α

and η1 =
β

α
. (3.7)

These relationships are the maximum value of η0 and minimum value of η1 which guarantee

the probability of false detection, α, and of detection, β. It is also stated by Wald in [2]

that for any test to have a possibility of returning any correct decisions, α must be less

than β.

H1

H0

0 2 4 6 8
−10

ln η0 = −5

0

ln η1 = 5

10

N

ln
Λ
N

(X
)

Fig. 3.1 An example of how the likelihood ratio wanders between two deci-
sion regions and finally decides on the alternate hypothesis

Figure 3.1 illustrates an example where the result of the log-likelihood ratio wanders

between two decision thresholds ln η0 = −5 and ln η1 = 5. While the result of ln Λ(X) ∈
(ln η0, ln η1) the test is deciding in the “need more data” region and does not make a decision

of H0 or H1. Once it crosses one of the thresholds, a decision (in this case H1) is reported.
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3.3 Markov Processes

3.3.1 Discrete Time Markov Chains

A discrete-time Markov chain (DTMC) [11] is a random process which models an object

moving from one state to another. The set of states the object can move between is referred

to as the state space, S. In all of the analysis in this thesis, the state space S is considered

to have finite size, |S| < ∞. Any observation of a random variable (X), referred to as

xi, is in the state space, xi ∈ S. A key aspect of a DTMC is that it satisfies the Markov

property [11], which is that the probability that xi is in its current state only depends on

the previous state of xi. This property can also be expressed by

Pr (Xn = xn|Xn−1 = xn−1, ..., X1 = x1, X0 = x0) = Pr (Xn = xn|Xn−1 = xn−1) (3.8)

where Xn is the random variable X at time step n. This means that the entire history of

X until time step n−1 is irrelevant to the probability of its location at time n. The sample

path of an object X is denoted as X = {x0, x1, ..., xn−1} where n is the number of samples.

The probability that a particular path is followed by an object, X, is given by

Pr(X) = Pr(X0 = x0, X1 = x1, ..., Xn−1 = xn−1)

= π(x0) ·
n−1∏
i=1

Pi−1,i (3.9)

where π is the initial distribution over the state space S and P is the transition matrix

which defines the probability of transitioning to state xi given the current state of xi−1.

The transition matrix P is of dimension |S| × |S| and all entries in the matrix satisfy

0 ≥ Pi,j ≤ 1. The transition matrix P also has the property of being a row stochastic

matrix, where all the rows sum to 1 (
∑

xj∈S Pi,j = 1).

3.3.2 Continuous Time Markov Processes

A continuous-time Markov chain (CTMC) [11] (also referred to a continuous-time Markov

process or Markov jump process) is an extension of the DTMC in which the time an object

spends in a state is a random variable described by an exponential distribution. There are

still a finite number of available states in the model for a random object, X, to traverse.



3 Background 13

Similar to a DTMC, a CTMC is parametrized by an |S| × |S| matrix. For a CTMC,

this is called the transition rate matrix, denoted by R, and Ri,j is the rate parameter of

the exponential waiting time given that the chain is in state xi and will transition to state

xj. Therefore we require that Ri,j ≥ 0, but not necessarily that
∑

xj∈S Ri,j = 1.

The probability that a transition from state xi−1 to xi after time τi = ti−ti−1,has passed

since the last transition is given by [11]

Pr(X(ti) = xi|X(ti−1) = xi−1) =

{
Ri−1,i · e−Ri−1,iτi , τi > 0

0, else.
(3.10)

The variable τi in the equation represents the amount of time that X waits to transition

from xi−1 to xi., or equivalently ti − ti−1 where ti is the time of the ith transition.

As in the case of the DTMC, the probability that a specific path is traversed at transition

times, {X(t0) = x0, X(t1) = x1, ..., X(tn) = xn}, can be calculated by

Pr(X(t0) = x0, X(t1) = x1, ..., X(tn) = xn) = π(x0)
n∏
i=1

Pr(X(ti) = xi|X(ti−1) = xi−1)

(3.11)

where as in the DTMC case, π denotes the initial distribution over all states.

The exponential distribution has a key property which is that to find the minimum of a

set of exponential distributions, one simply needs to sum their rate parameters to define a

new parameter which is the minimum distribution. Therefore the CTMC can be rewritten

as two discrete units; an exit rate, E(s), and an embedded DTMC, P embd. The exit rate

of a state, s ∈ S, is the parameter to the exponential distribution on time representing

the minimum timespan spent waiting before making a transition. This can be computed

by [11]

E(s) =
∑
s′∈S

R(s, s′). (3.12)

Now when computing the distribution for the exit time, one can simply compute the density

f(τ ;E(s)) =

{
E(s) · e−E(s)·τ , τ > 0

0, else
. (3.13)

When the time since the last transition, τ , has elapsed then the choice of which state to

move to is taken according to the distribution on the embedded DTMC, P embd. For two
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states, s and s′ [11]

P embd(s, s′) =


R(s,s′)
E(s)

if E(s) > 0

1 if E(s) = 0 and s = s′

0 else

. (3.14)

After time τ has elapsed, the a realization of the discrete transition probability of making

a transition from state s to some s′ by the embedded DTMC defines the state transitioned

to. The use of Ri,j versus E(s) and P embd is equivalent. The latter will be useful in defining

the semi-Markov processes in the next section.

The order of which distribution is computed first is irrelevant. To first choose the state

to move to, then wait the required amount of time according to the exit rate or to first

wait then choose according to P embd does not matter due to the two operations being

independent [11].

3.3.3 Semi-Markov Processes

Semi-Markov processes (SMP) [12] are extensions of the continuous-time Markov process

which remove the assumption that the waiting times follow an exponential distribution.

The semi-Markov process requires a distribution for the transition time on a per-

transition basis. Therefore there can be up to |S|2 different distributions, where S is

the state space of the process. With τ , which previously was defined as the time since the

last transition, and states s and s′ the probability that τ time has elapsed for a transition

from state s to state s′ is

Pr(τ |s, s′) := Fτ (τ |s, s′) ∈ [0, 1] . (3.15)

The embedded transition matrix, P embd, for the SMP is denoted in the same manner as

for the CTMC. However with the removal of the assumption of exponentially distributed

waiting times, the embedded transition matrix cannot be computed from an exit rate vector

or rate transition matrix since they are not exponentially distributed. Also unlike in the

CTMC, the order of distribution computations is important due to every transition possibly

having a different distribution over time. Therefore one must first compute the distribution

of the embedded chain from state s and then once a destination state is identified a density
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from the time distribution can be attained.

There can still be a an exit rate vector of state s, E(s). This rate is the distribution over

the time spent in state s before transitioning to any other state. However depending on the

underlying distributions for each transition, s to s′, this may not be an easily calculable

distribution.

For a SMP, it is possible to compute the probability of making any single transition

given the current state as

Pr(X(ti) = xi|X(ti−1) = xi−1) = P embd(xi−1, xi)Fτ (τi|xi−1, xi) (3.16)

where τi is the time since the last transition or equivalently τi = ti− ti−1. This then allows

the computation of the probability of traversing a defined path of object X with sample

path X = {X(t0) = x0, X(t1) = x1, ..., X(tn) = xn}. This is given by

Pr(X) = Pr(X(t0) = x0, X(t1) = x1, ..., X(tn) = xn)

= Pr(X(t0) = x0)
n∏
i=1

Pr(X(ti) = xi|X(ti−1) = xi−1)

= π(x0)
n∏
i=1

P embd(xi−1, xi)Fτ (τ |xi−1, xi) (3.17)

where as in a CTMC, π is the initial distribution over the state space and P embd is the

embedded DTMC of the semi-Markov process.

3.4 Density Estimation

A method for determining the density function of a random distribution from samples of

the function is necessary to estimate underlying distributions of the system being created.

A simple method for density estimation is the histogram [13] in which the range over which

the data is provided is binned into discretely ranged bins and the number of samples which

fall in each bin is recorded. This gives us a sampling technique to an arbitrary precision

from which we can quickly estimate the density function which underlies the provided data.

The bins of the histogram can be represented by a binwidth (h) with the following
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relation to the number of bins, given a set of datapoints x,

k =
maxx−minx

h
(3.18)

where k is the resulting number of bins for the histogram. Another property of the his-

togram is that the total number of points in x, |x| = n, equals the sum of all counts for all

bins. This means that all datapoints in x are accounted for.

There are also other complex techniques for more accurately estimating density func-

tions such as Kernel Density Estimation (KDE) [14,15] or recently, Robust Kernel Density

Estimation (RKDE) [16], which is robust against data drawn from another, undesirable,

distribution. However these types of density estimation routines typically require knowl-

edge of the entire dataset ahead of time and are more computationally intensive than the

histogram.

The main difficulty with utilizing a histogram based density estimation technique is the

choice of bin width or alternatively the number of bins if the data range is known. As shown

previously, the choice of bin width affects the number of bins and vice-versa. Due to the

fact that the algorithms in this thesis are utilizing the histogram to estimate a density over

time, an arbitrary bin width of 1 minute is chosen. This provides a sufficiently accurate

bin window with which to work with.

3.5 Computing Distances on the Surface of a Sphere

Due to the nature of the data being utilized in this project, there is a requirement for a

specialized formula to determine spatial distance on a sphere, specifically the globe. This

requires the use of the Haversine [17] distance to determine the distance between two

latitudinal and longitudinal points.

Given two points on a sphere represented by p1 and p2 which contain the latitude and

longitude (in degrees) on the sphere, the Haversine formula is given in Algorithm 1. The

Haversine formula from Algorithm 1 will be referred to as HAVERSINE(p1, p2) for the

distance between two points, p1 and p2, in equations in the rest of this thesis.



3 Background 17

Algorithm 1 Haversine algorithm

Require: R = 6371.0 . Earth Radius (km)
function haversine(p1, p2)

dlat← π
180
· (latitude(p2) - latitude(p1))

dlon← π
180
· (longitude(p2) - longitude(p1))

a← sin2(dlat/2) + cos( π
180

(latitude(p1)) · cos( π
180

(latitude(p2))) · sin2(dlon/2)
c← 2 · arcsin

√
a

return R ∗ c
end function
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Chapter 4

Convoy Detection via Sequential

Hypothesis Testing

This chapter outlines the proposed model for determining when there is a convoy involving

two or more vehicles. First a problem formulation is required to describe the notation and

type of data being analyzed. With observations of various random objects, two models are

required to determine the probability that two observed objects are traveling independently

or jointly in a convoy.

A Markov model approach is taken to fit the sampled objects to two hypotheses uti-

lizing the sequential hypothesis testing framework outlined in Section 3.2. The model is

introduced next along with the necessary distributions in order to show two objects are

traveling together, defined as the lag property.

Utilizing the models of two objects traveling as a convoy (H1) or independently (H0),

a sequential hypothesis test is then defined which allows for a decision of convoy or not by

receiving observations of the objects in an online fashion. Lastly, in order to meet real-

world computational constraints, a method for determining which objects to test against

each other is outlined as well as how the proposed solution can detect convoys of more than

two vehicles.

4.1 Problem Formulation

To set up the problem, information about the type of processes being modeled needs to

be defined. First, assume there are C static sensors which are the states that objects can
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be observed at. These sensors create a state space S = {1, 2, ..., C}. All sensors are time

synchronized so that measurements from them can be correctly ordered at a fusion center.

Also no two sensors may submit a measurement at the exact same time. There is always

some time between measurements. Each measurement contains the coordinates at which

it was measured. Also the sensor regions have no overlap; in other words they are spread

out across a large area.

Now assume that two objects are moving between these states, following unknown

routes, and they can be observed at discrete times when they pass by a sensor. Each

object, labeled as object X and object Y , results in the following sample path observations

X = {X(tx0) = x0, X(tx1) =x1, ..., X(txnx(t)) = xnx(t)}

and

Y = {Y (ty0) = y0, Y (ty1) =y1, ..., Y (tyny(t)
) = yny(t)}

where txi is the time of the ith sample of X and similarly for Y . Also nx(t) and ny(t) are

defined as

nx(t) = max{k : txk ≤ t}

ny(t) = max{k : tyk ≤ t} (4.1)

or equivalently the number of samples of X and Y up to time t. The inter-arrival times

for random objects X and Y are represented by τxi = (txi − txi−1) and τ yi = (tyi − tyi−1),

respectively.

There is now information to define a joint observation process of X and Y , which will

be called Z. The joint observation, Z, is defined as

Z(t) =
[
X(txnx(t)), Y (tyny(t)

)
]
. (4.2)

An observation of the joint observation Z at time ti yields

(Z(ti) = zi) =
[
X(txnx(ti)

) = xnx(ti), Y (tyny(ti)
) = yny(ti)

]
(4.3)

which means that the state of the random variable Z at any real-valued time, ti, is the

joint state of the states of X at the time of the last observation of X prior to ti and Y at
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the last observation time of Y prior to ti. The set of observations of Z is denoted as

Z = {Z(t0) = z0, Z(t1) = z1, ...} . (4.4)

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

2
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Fig. 4.1 An example sample path of Z through the state space, S.

Figure 4.1 shows an example path of the random process, Z(t). On the top of the figure

are time labels with no superscript. These signify observation times of the Z process where

an observation of Z is irrespective of if it is an indicated observation of X or Y . The bottom

axis demonstrates the unique samples of X or Y , indicated by the superscript. It should be

noted that the inter-observation times, {τ1 = (t1−t0), τ2 = (t2−t1), ..., τn = (tn−tn−1)} are

not necessarily equally spaced nor can they be necessarily modeled by a typical parametric

distribution. In this example, there are a total of 10 observations. 6 observations are of

the object X and 4 of the object Y . At each sample point, there is information about the

state either X or Y transitioned to along with the time of the transition.

From this, we wish to define a sequential hypothesis test which will determine if X and

Y are traveling together in a convoy. We will utilize sequential hypothesis testing since the

data are being received in an online fashion and sequential testing allows the algorithm to

make a decision possibly before all samples are received (Section 3.1). However in order to

define a hypothesis test, we first need to define Pr(Z|H1) and Pr(Z|H0).
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4.2 Markov Model for a Single Object

Before defining the model that describes the joint process, Z, one must first describe the

model for each of the random objects in the joint process, X and Y . We model each of

these objects as a Markov process. Assume that one is given an observed path of a random

object X and the rate transition matrix for the Markov chain, R, which is of dimension

|S| × |S|. One can then compute the probability that X has followed the observed path by

the standard CTMC path probability computation from Equation 3.11. The probability

of travelling an observed path is simply the product of the individual probabilities of the

transitions made in the observed path, multiplied by the initial distribution over all states.

However in order to accurately model the joint process, Z, one must be able to evaluate

the probability that X has followed a path at any time t. This means that given the

observed path up to time t, there are nx(t) observations of X. There is then some possible

residual time, t−txnx(t)
which is denoted as τxnx(t)

. This time span is the amount of time that

X is assumed to have stayed at state xnx(t) without making a transition. The probability

of a path being traversed and X staying in its current state at least τxnx(t)
time is

Pr(X) = Pr(X(tx0) = x0, X(tx1) = x1, ..., X(txnx(t)) = xnx(t), X(t) = xnx(t))

= Pr(X(tx0) = x0, X(tx1) = x1, ..., X(txnx(t)) = xnx(t)) · Pr(X(t) = xnx(t)|X(txnx(t)) = xnx(t))

which is the Markov path probability multiplied by the probability that X has stayed in

its current state at least τxnx(t)
time. This can be expressed by

Pr(X(t) = xnx(t)|X(txnx(t)) = xnx(t))

= Pr(τxnx(t) > t− txnx(t)|xnx(t))

= 1− Pr(τxnx(t) ≤ t− txnx(t)|xnx(t))

= 1− Fτ (τ
x
nx(t)|xnx(t)) (4.5)

where Fτ is the cumulative distribution function (CDF) of the random variable τ , which

is the waiting time. This can be computed from the CDF of exit rate, E(xnx(t)), for state

xnx(t). This is because τxnx(t)
represents the current amount of time X has already spent

waiting at state xnx(t) and one wishes to compute the probability that it is still waiting.

If the value of t−txnx(t)
= 0, then this means that the time of evaluation, t, is a time of an



4 Convoy Detection via Sequential Hypothesis Testing 22

observation of X and there is no residual waiting time at X’s last state, so Fτ (0, xnx(t)) = 0.

According to the CTMC definition of an exit rate, E(s), and embedded DTMC, P embd

one can then combine the newly defined distribution over τ and the probability of any path

being traversed to yield a total path probability for object X at any real-time t to be

Pr(X(tx0) = x0, X(tx1) = x1, ..., X(txnx(t)) = xnx(t), X(t))

= Pr(τ > t− txnx(t)) · π(x0) ·
nx(t)∏
i=1

P embd(xi−1, xi) exp(−E(xi−1)(t
x
i − txi−1)) (4.6)

where as usual, π is the initial distribution over the state space, S.

4.3 Markov Model for Two Independently Moving Objects

Now that there is a defined model for a single object travelling through the Markov chain

at any continuous time, one can extend to defining a joint probability for X and Y when

they are travelling independently. This will form the null hypothesis, H0 utilized in the

hypothesis test used later. Based on the problem setup in Section 4.1, one can formulate

an expression for Z, the random tuple of random objects X and Y . The probability that

Z made any transition under H0 is

Pr(Z(ti) = zi|Z(ti−1) = zi−1, H0)

= Pr(X(ti), X(txnx(ti)
) = xnx(ti)|X(txnx(ti−1)

) = xnx(ti−1)) (4.7)

× Pr(Y (ti), Y (tyny(ti)
) = yny(ti)|Y (tyny(ti−1)

) = yny(ti−1))

= Pr(X(ti)|X(txnx(ti)
) = xnx(ti))× Pr(X(txnx(ti)

) = xnx(ti)|X(txnx(ti−1)
) = xnx(ti−1))

× Pr(Y (ti)|Y (tyny(ti)
) = yny(ti))× Pr(Y (tyny(ti)

) = yny(ti)|Y (tyny(ti−1)
) = yny(ti−1))

= Pr(τxnx(ti)
> ti − txnx(ti)

|xnx(ti))× Pr(X(txnx(ti)
) = xnx(ti)|X(txnx(ti−1)

) = xnx(ti−1))

× Pr(τ yny(ti)
> ti − tyny(ti)

|yny(ti))× Pr(Y (tyny(ti)
) = yny(ti)|Y (tyny(ti−1)

) = yny(ti−1)).

One condition that should be noted is that if txnx(ti)
= txnx(ti−1)

then this means that X

did not transition at the times ti nor ti−1. When viewing observations of the random tuple,

Z, this would mean that two consecutive observations of Y were received before another

observation of X. In this case, the probability that X is at xnx(ti) given it was at xnx(ti−1)
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is of course 1, since they are the same value.

By this logic, there are three possible cases to Equation 4.7. The first case is that the

time t is neither the time of an observation of X nor Y .

Pr(Z(t) = z|Z(ti) = zi, H0, t 6= txnx(t), t 6= tyny(t)
)

= Pr(τxnx(ti)
> ti − txnx(t)|X(txnx(t)) = xnx(t)) · Pr(τ yny(ti)

> ti − tyny(t)
|Y (tyny(t)

) = yny(t)).

The second case is that the time t is the time of an observation of X, or in other words

t = txnx(t)
. This would yield a simplification of

Pr(Z(t) = z|Z(ti) = zi, H0, t = txnx(t), t 6= tyny(t)
)

= Pr(τ yny(ti)
> ti − tyny(t)

) · Pr(X(txnx(ti)
) = xnx(ti)|X(txnx(ti−1)

) = xnx(ti−1)).

The last case is that the time t is the time of an observation of Y . This follows the same

logic as the previous case yielding

Pr(Z(t) = z|Z(ti) = zi, H0, t 6= txnx(t), t = tyny(t)
)

= Pr(τxnx(ti)
> ti − txnx(t)) · Pr(Y (tyny(ti)

) = yny(ti)|Y (tyny(ti−1)
) = yny(ti−1)).

Equation 4.7 models the random objects X and Y are moving between states indepen-

dently, so the probability of the traversed path is simply the product of the two objects’

paths. This forms the likelihood for the null hypothesis, H0, in the likelihood ratio test to

be defined later.

If one again assumes that the chain is a CTMC, then by (4.6) one can expand the

definition of the probability of the observed path, Z, in the null hypothesis as

Pr(Z|H0) = Pr(Z(t0) = z0, Z(t1) = z1, ..., Z(tn) = zn, Z(t) = z)

= Pr(Z(t) = z|Z(tn) = zn, H0) · π(z0|H0) ·
n∏
i=1

Pr(Z(ti) = zi|Z(ti−1) = zi−1, H0) (4.8)

where π(z0|H0) = π(x0) ·π(y0) and Pr(Z(ti) = zi|Z(ti−1) = zi−1, H0) is defined in Equation

4.7.
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4.4 Markov Model for Two Dependent Objects

Now that a definition for the probability of Z under the null hypothesis is defined, we need

to define the probability of Z under the alternate hypothesis. The alternate hypothesis

should be designed to capture the probability that two objects are travelling together in

a convoy. In order to define this, we rewrite the basic expansion of the probability of Z

under the alternate hypothesis. The joint probability under the alternate is

Pr(Z(ti) = zi|Z(ti−1) = zi−1, H1)

= Pr(X(ti), Y (ti), X(txnx(ti)
) = xnx(ti), Y (tyny(ti)

) = yny(ti)|

X(txnx(ti−1)
) = xnx(ti−1), Y (tyny(ti−1)

) = yny(ti−1)). (4.9)

If one assumes that the times in which the random objects X and Y transition from their

current states is independent of them being a convoy, then the only dependent probability

is which transitions are being made. This assumption allows the factorization of Equation

4.9 to

Pr(Z(ti) = zi|Z(ti−1) = zi−1, H1)

= Pr(X(ti)|X(txnx(ti)
) = xnx(ti)) · Pr(Y (ti)|Y (tyny(ti)

) = yny(ti))

× Pr(X(txnx(ti)
) = xnx(ti), Y (tyny(ti)

) = yny(ti)|X(txnx(ti−1)
) = xnx(ti−1), Y (tyny(ti−1)

) = yny(ti−1))

(4.10)

where the waiting times of X and Y have been factored out. The assumption that all

waiting times are independent allows for a much larger simplification later in the likelihood

ratio. Recalling the null hypothesis from Equation 4.7, one can see that these are the same

waiting times terms as in the independent model. Again there are three possible cases for

what these can simplify to.

The first case is again where the time is neither a transition of X nor Y , i.e. ti 6=
tyny(ti)

∧ ti 6= txnx(ti)
. There is therefore no transition probability for the joint transition of X

and Y , simplifying to

Pr(Z(ti) = zi|Z(ti−1) = zi−1, H1) = Pr(τxi > ti − txnx(ti)
|xnx(ti)) · Pr(τ yi > ti − tyny(ti)

|yny(ti))

(4.11)
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which is the probability that both X and Y stayed in their current state since their last

observation.

The second case is where the random object X transitioned at time ti, i.e. ti = txnx(ti)
.

This simplifies to

Pr(Z(ti) = zi|Z(ti−1) = zi−1)

= Pr(τ yi > ti − tyny(ti)
|yny(ti)) (4.12)

× Pr(X(txnx(ti)
) = xnx(ti), Y (tyny(ti)

) = yny(ti)|X(txnx(ti−1)
) = xnx(ti−1), Y (tyny(ti−1)

) = yny(ti−1))

= Pr(τ yi > ti − tyny(ti)
|yny(ti))

× Pr(X(txnx(ti)
) = xnx(ti)|X(txnx(ti−1)

) = xnx(ti−1), Y (tyny(ti−1)
) = yny(ti−1)).

The reason that the joint probability can be simplified to only a probability of X is that

Y did not transition and therefore

Pr
(
Y (tyny(ti)

) = yny(ti)|Y (tyny(ti−1)
= yny(ti−1)

)
= 1. (4.13)

The last case is simply the alternate to case two, where Y transitioned instead of X.

By the same logic as in case two, the probability becomes

Pr(Z(ti) = zi|Z(ti−1) = zi−1)

= Pr(τxi > ti − txnx(ti)
|xnx(ti)) (4.14)

× Pr(Y (tyny(ti)
) = yny(ti)|X(txnx(ti−1)

) = xnx(ti−1), Y (tyny(ti−1)
) = yny(ti−1))

where now it is the probability that X is still in its last state multiplied by the probability

that Y made the transition observed.

These three cases define the probability of the joint observation at a time ti given

an observation at time ti−1 of Z. After the previous three cases which define what the

probability of Z’s path can simplify to, there is now a need to calculate

Pr(X(txnx(ti)
) = xnx(ti), Y (tyny(ti)

) = yny(ti)|X(txnx(ti−1)
) = xnx(ti−1), Y (tyny(ti−1)

) = yny(ti−1))

where there are actually two sets of random variables in this probability, the transition

times of X and Y and the corresponding states of X and Y . The first is the random times



4 Convoy Detection via Sequential Hypothesis Testing 26

that X and Y wait before making a transition. These waiting times, as previously stated,

are independent of each other and will be factored out. The second set of random variables

in this probability are the random states, xnx(ti) and yny(ti), of X and Y at their respective

transition times. However there are again three cases which need to be considered when

looking at the joint density.

The first case is again where neither X nor Y transitioned. This is the joint probability

that, at time ti, X and Y are in their respective states given they were there at time ti−1.

This probability is simply 1 since in this probability the waiting times are not considered.

This is equivalent to the number of samples of X and Y at time ti remaining the same as

at time ti−1, or

nx(ti) = nx(ti−1) ∧ ny(ti) = ny(ti−1). (4.15)

The second case is also where only X transitions. Since Y will not transition, the

probability for Y to be at its current state given its previous state is 1, since it has not

moves, leaving only the transition probability of X. This is equivalent to

Pr(X(txnx(ti)
) = xnx(ti), Y (tyny(ti)

) = yny(ti)|X(txnx(ti−1)
) = xnx(ti−1), Y (tyny(ti−1)

) = yny(ti−1))

= Pr(xnx(ti)|xnx(ti−1), yny(ti−1)) · fτ (τxi |xnx(ti), xnx(ti−1)) (4.16)

when nx(ti) 6= nx(ti−1) ∧ ny(ti) = ny(ti−1).

The last case is the alternate of the second case, where Y transitions and X remains

where it was. It is simply the alternate of the previous which is

Pr(X(txnx(ti)
) = xnx(ti), Y (tyny(ti)

) = yny(ti)|X(txnx(ti−1)
) = xnx(ti−1), Y (tyny(ti−1)

) = yny(ti−1))

= Pr(yny(ti)|xnx(ti−1), yny(ti−1)) · fτ (τ
y
i |yny(ti), yny(ti−1)) (4.17)

when nx(ti) = nx(ti−1)∧ny(ti) 6= ny(ti−1). Now joining the three cases, the total probability
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becomes

Pr(X(txnx(ti)
) = xnx(ti), Y (tyny(ti)

) = yny(ti)|X(txnx(ti−1)
) = xnx(ti−1), Y (tyny(ti−1)

) = yny(ti−1))

=


1, nx(ti) = nx(ti−1) ∧ ny(ti) = ny(ti−1)

Pr(xnx(ti)|xnx(ti−1), yny(ti−1)) · fτ (τxi |xnx(ti), xnx(ti−1)), nx(ti) 6= nx(ti−1) ∧ ny(ti) = ny(ti−1)

Pr(yny(ti)|xnx(ti−1), yny(ti−1)) · fτ (τ
y
i |yny(ti), yny(ti−1)), nx(ti) = nx(ti−1) ∧ ny(ti) 6= ny(ti−1)

(4.18)

Now there is a need to define the joint path transition probability,

Pr(xnx(ti), yny(ti)|xnx(ti−1), yny(ti−1)).

This term needs to relate the correlation between random objects X and Y . By the

assumption that the transition times are independent, one is not looking for a correlation

in the time it takes to make transitions but simply in which transitions are being made.

4.4.1 Lag

The form of the joint probability

Pr(xnx(ti), yny(ti)|xnx(ti−1), yny(ti−1))

which defines the density in H1 is still undefined. This term describes the correlation of X

and Y in the alternate hypothesis. In order to help describe this we introduce a new term,

called the lag.

Definition 1. Lag (Γ) is the physical distance between two objects at a given time, given

by the haversine formula (§3.5).

Γ(zi) = Γ(xnx(ti), yny(ti)) = HAVERSINE(xnx(ti), yny(ti)) (4.19)

We would now like to describe the change in the lag between observations of Z. In

order to do this, we need to describe a new random variable which describes the change in

lag, δ. It is defined to be

δi =
Γ(zi−1)− Γ(zi)

Γ(zi−1)
(4.20)
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which is a signed value as the sign signifies if the lag is growing or shrinking between

transitions. The possible values taken by δi are in the range (−∞, 1]. One can then define

a density over this variable to be fδ(zi|zi−1). In order for this to be a valid density it must

satisfy ∫
R

fδ(zi|zi−1)dδ = 1 (4.21)

and be positive for all δi.

Now one can use this new density over a change in physical distance to describe the

previously undefined probability in the alternate hypothesis. It yields

Pr(xnx(ti), yny(ti)|xnx(ti−1), yny(ti−1)) = fδ(zi|zi−1) (4.22)

To compute the probability of a series of lags, {γ0, γ1, ..., γn}, the equation takes a

similar form to that of the Markov path probability due to the form of Equation 4.20. It is

Pr(Γ(z0) = γ0,Γ(z1) = γ1, ...,Γ(zn) = γn) = π(γ0)
n∏
i=1

fδ(zi|zi−1) (4.23)

where π here is the initial distribution of lags over the state space. For this problem, it is

set to be equivalent to the initial distribution over the state space S of the Markov chain.

To assign a density to the lag property, an expanded understanding of the state space is

necessary. When observations of objects are made, they are assumed to be at the location

of the state. This means that all objects can only be viewed at the discrete locations

of the sensors. Therefore there is not a continuous density over the lag property since

Pr(xnx(ti)|xnx(ti−1), yny(ti−1)) or Pr(yny(ti)|xnx(ti−1), yny(ti−1)) are probabilities over |S| number

of possibilities.

Therefore this creates a discrete density where∑
xnx(ti)

∈S

Pr(xnx(ti)|xnx(ti−1), yny(ti−1)) = 1. (4.24)

There is only one free variable at any time ti since only one transition, either of X or Y ,

can occur. If there was the possibility that both X and Y could transition at time ti then

there would be a density over |S|2 possibilities.
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We want to relate the change in lag to the probability that two objects are moving in

a convoy. Therefore we propose the definition of this density as

Pr(xnx(ti)|xnx(ti−1), yny(ti−1)) =


Pr(xnx(ti)|xnx(ti−1)), Γ(zi−1) < L{

1+δi
2
, −1 ≤ δi ≤ 1

0, δi < −1
, Γ(zi−1) ≥ L

(4.25)

where L is the maximum allowable lag, a deployment specific parameter. The first case,

when Γ(zi−1) < L, is already a valid discrete density, but the second is not. Once these

values are computed, then one must normalize the existing entries so for when Γ(zi−1) ≥ L

the probability sums to 1. This is problem specific and therefore can only be done on

deployment. There is also an equivalent density for Pr(yny(ti)|xnx(ti−1), yny(ti−1)).

The density over δi states that if two objects were close together at time ti−1, i.e., within

a distance of L apart, then the object which transitions for the next state is “leading” the

pair. Therefore their transition probability is simply the embedded chain probability for

the transition. If there were already more than L distance apart from each other, then this

density states that in this transition, the realized object, is “following” the other object

and the definition of the lag when Γ(zi−1) > L is applied. The lag density defines a linear

density over the support region of (−1, 1). The linear density definition is there to state

that if the previous lag was large, then the smaller the new lag is the more likely a convoy

is.

4.4.2 Extension to Semi-Markov Process Model

The problem with the previous analysis is that it requires that the data fit a standard

continuous time Markov chain model where the transition times fit an exponential distri-

bution. This may not however be the case in a practical system. Therefore a generalization

of the distributions of transition times is necessary. Assume object X wishes to transition

from state s to s′ and τxi time has passed since its last transition. The transition time of X

can now be modeled by a density function over τ , fτ (τ
x
i |s, s′). This is a probability density

function which depends on the transition being made, s to s′, as well as the random time

needed for the transition to occur, τxi .

In general these distributions are of unknown form and cannot be modeled by a paramet-

ric distribution. They will be estimated through a density function from the observations
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directly. Rewriting the definition for the probability that Z made a transition under the

null hypothesis, one can now get

Pr(Z(ti) = zi|Z(ti−1) = zi−1, H0)

= Pr(τ > ti − txnx(ti)
|xnx(ti))× P embd(xnx(ti−1), xnx(ti))× fτ (τ |xnx(ti−1), xnx(ti))

× Pr(τ > ti − tyny(ti)
|yny(ti))× P embd(yny(ti−1), yny(ti))× fτ (τ |yny(ti−1), yny(ti)).

(4.26)

Alternatively under the alternate hypothesis the probability of a transition of Z is

Pr(Z(ti) = zi|Z(ti−1) = zi−1, H1)

= Pr(τ yi > ti − tyny(ti)
|yny(ti))× Pr(τxi > ti − txnx(ti)

|xnx(ti))

× fτ (τxi |xnx(ti), xnx(ti−1))× fτ (τ
y
i |yny(ti), yny(ti−1))

× Pr(xnx(ti), yny(ti)|xnx(ti−1), yny(ti−1)). (4.27)

Again the probability Pr(τ ji > ti − tjnj(ti)
|jnj(ti)) is still described by a density over the

exit times, E(·). However in this case the exit rate is much more difficult to calculate. The

total path probabilities under the null and alternate hypotheses from Equations 4.7 and

4.9 still hold. However they now have the definitions for a singular transition as defined

above.

4.5 Hypothesis Testing

This section expands on the information provided in §3.2 to develop a method which

provides a discrete test for the model under the null versus alternate hypothesis created

in Section 4.4.2. This section first begins by defining the base likelihood ratio given all

observations up to some n. It then expands this into a recursive definition of the likelihood

ratio dependent on the previous ratio. With this recursive definition, one can then perform

an analysis to determine the average number of observations the test will take to make a

decision.
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4.5.1 Formulation of a Likelihood Ratio

The first step when taking the likelihood ratio in this scenario is to simplify the basic ratio

to only the portions needed. The definition of the likelihood ratio for testing the random

tuple Z at some time t is defined as

Λ(Z(ti)|Z(ti−1)) =
Pr(Z(ti) = zi|Z(ti−1) = zi−1, H1)

Pr(Z(ti) = zi|Z(ti−1) = zi−1, H0)
(4.28)

which is the combination of the probability of Z’s observed path under the alternate hy-

pothesis over the null. Taking the logarithm of both sides, this becomes

lnΛ(Z(ti)|Z(ti−1))

= ln Pr(Z(ti) = zi|Z(ti−1) = zi−1, H1)− ln Pr(Z(ti) = zi|Z(ti−1) = zi−1, H0). (4.29)

Now that there is the relationship between the two models defined in the likelihood

ratio, substituting in the expressions for the likelihood under H1 and H0 from Equations

4.7 and 4.9 yields

ln Λ(Z(ti)|Z(ti−1))

= ln Pr
(
X(ti)|X(txnx(ti)

) = xnx(ti)

)
+ ln Pr

(
Y (ti)|Y (tyny(ti

) = yny(ti

)
+ ln Pr

(
X(txnx(ti)

) = xnx(ti), Y (tyny(ti
) = yny(ti |X(txnx(ti−1)

) = xnx(ti−1), Y (tyny(ti−1
) = yny(ti−1

)
− ln Pr

(
X(ti)|X(txnx(ti)

) = xnx(ti)

)
− ln Pr

(
Y (ti)|Y (tyny(ti

) = yny(ti

)
− ln Pr

(
X(txnx(ti)

) = xnx(ti)|X(txnx(ti−1)
) = xnx(ti−1)

)
− ln Pr

(
Y (tyny(ti

) = yny(ti |Y (tyny(ti−1
) = yny(ti−1

)
= ln Pr

(
X(txnx(ti)

) = xnx(ti), Y (tyny(ti
) = yny(ti |X(txnx(ti−1)

) = xnx(ti−1), Y (tyny(ti−1
) = yny(ti−1

)
− ln Pr

(
X(txnx(ti)

) = xnx(ti)|X(txnx(ti−1)
) = xnx(ti−1)

)
− ln Pr

(
Y (tyny(ti

) = yny(ti |Y (tyny(ti−1
) = yny(ti−1

)
(4.30)

where one can see that the waiting time densities cancel out. Now expanding the inner
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densities for the transition probabilities, more cancellations occur yielding

ln Λ(Z(ti)|Z(ti−1))

= ln Pr(xnx(ti), yny(ti)|xnx(ti−1), yny(ti−1))

+ ln fτ (τ
x
i |xnx(ti), xnx(ti−1)) + ln fτ (τ

y
i |yny(ti), yny(ti−1))

− ln Pr(xnx(ti)|xnx(ti−1))− ln Pr(yny(ti)|yny(ti−1))

− ln fτ (τ
x
i |xnx(ti), xnx(ti−1))− ln fτ (τ

y
i |yny(ti), yny(ti−1))

= ln Pr(xnx(ti), yny(ti)|xnx(ti−1), yny(ti−1))

− ln Pr(xnx(ti)|xnx(ti−1))− ln Pr(yny(ti)|yny(ti−1)) (4.31)

where it can be noted that the densities for the transition times of X and Y , τxi and τ yi ,

cancel out leaving only the remaining terms relating to which transitions are occurring.

Assume now that Zn is a vector of n observations of the joint observation variable Z at

times {t0, t1, ..., tn}. This allows one to fully specify the likelihood ratio given n observations

as

ln Λ(Zn) = ln Λ (Z(t0) = z0, Z(t1) = z1, ..., Z(tn) = zn)

= lnπ(z0|H1) +
n∑
i=1

ln Pr(xnx(ti), yny(ti)|xnx(ti−1), yny(ti−1))

− ln π(z0|H0)−
n∑
i=1

[
ln Pr

(
xnx(ti)|xnx(ti−1)

)
+ ln Pr

(
yny(ti)|yny(ti−1)

)]
(4.32)

where the initial probabilities (π) under the null, H0, and alternate, H1, are assumed equal

to the initial state distribution of the underlying Markov chain and therefore cancel out

as well. The reason for this assumption is to allow some weak estimate of the underlying

density. As n→∞, this prior will have increasingly less influence on the likelihood ratio.

Also since H0 and H1 are equal, they are stating that no pair of vehicles is more likely a

convoy nor not a convoy, they have an equal chance of being either. This is an assumption

and could be set to something different, however for now we assume this holds. Now
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grouping terms and simplifying yields

ln Λ(Zn) =
n∑
i=1

[
ln Pr(xnx(ti), yny(ti)|xnx(ti−1), yny(ti−1))

− ln Pr
(
xnx(ti)|xnx(ti−1)

)
− ln Pr

(
yny(ti)|yny(ti−1)

)]
. (4.33)

4.5.2 Recursive Definition of Likelihood Ratio

The likelihood ratio derived in Equation 4.33 can also be defined recursively. This will

prove very useful when defining the sequential test as a new likelihood ratio is formed from

the previous plus the discrete probability of the currently received observation. This will

also be necessary to compute the average number of observations analysis later.

The recursive log-likelihood ratio has the form

ln Λ(Zn) = lnΛ(Zn−1) + ln Pr(xnx(ti), yny(ti)|xnx(ti−1), yny(ti−1))

− ln Pr(xnx(ti)|xnx(ti−1))− ln Pr(yny(ti)|yny(ti−1)) (4.34)

where ln Λ(Zn−1) is the likelihood after n − 1 observations of Z. This quantity is only

valid for values of n ≥ 2, since there needs to be at least one observation of X and one

of Y in order to do a comparison. The log-likelihood when the test starts, i.e., ln Λ(Z2),

is zero because of the initial probabilities canceling out. This definition creates a Markov-

like dependence on the previous log-likelihood meaning that the current likelihood only

depends on the previous value and the probabilities of the possible movements from the

current state of the random tuple Z.

Depending on which object is being observed, there are again three cases of simplifica-
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tions which can occur. The cases appear as

lnΛ(Zn) = ln Λ(Zn−1)+

0, ny(ti) = ny(ti−1) ∧ nx(ti) = nx(ti−1)

ln Pr(xnx(ti)|xnx(ti−1), yny(ti−1))

− ln Pr(xnx(ti)|xnx(ti−1))
, ny(ti) = ny(ti−1) ∧ nx(ti) 6= nx(ti−1)

ln Pr(yny(ti)|xnx(ti−1), yny(ti−1))

− ln Pr(yny(ti)|yny(ti−1))
, ny(ti) 6= ny(ti−1) ∧ nx(ti) = nx(ti−1).

(4.35)

This simplification concretely shows that if an evaluation of the log-likelihood is requested

at a time which is not an observation of X or Y then it should remain the same since there

is no new information. It also shows how the lag property is related to individual path

probabilities for observations of each random object.

4.6 Average Number of Observations

A useful analysis of this system is to determine the average number of observations needed

to make a decision. In order to determine the expected number of observations (E[No] where

No ≥ 2), evaluations for both possible models H0 and H1 are necessary. The first is when

the null hypothesis is true and then the other is when the alternate (convoy) is true [2].

Both contexts need to be considered because the expected value will vary depending on

which model is true.

Starting with the recursive definition of the likelihood ratio from Equation 4.34, one can

compute the expected value, E [ln ΛNo(Z)|H0], which is the expected value of the likelihood

ratio after some random number No of observations of the random object Z given the null

hypothesis is true. Then by using the rules of conditional expectation, one can find that

the expected value assuming H0 is true is

E [ln ΛNo(Z)|H0] = E [E [ln Λn(Z)|H0, No = n]] (4.36)

where the outer expectation is evaluated with respect to the distribution over No and the
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inner expectation of the log-likelihood assuming that No = n observations were required to

choose H0 [2].

Given the recursive definition of the log-likelihood ratio defined above, one can compute

the expected value given No = n observations. This is

E[lnΛn(Z)|H0, No = n,No ≥ 2]

=E

[
No∑
i=1

ln Pr(xnx(ti), yny(ti)|xnx(ti−1), yny(ti−1))− ln Pr(xnx(ti)|xnx(ti−1))

− ln Pr(yny(ti)|yny(ti−1))|No = n
]

=
n∑
i=1

E
[
ln Pr(xnx(ti), yny(ti)|xnx(ti−1), yny(ti−1))− ln Pr(xnx(ti)|xnx(ti−1))

− ln Pr(yny(ti)|yny(ti−1))|N0 = n
]

becaues No is independent

=n× E
[
ln Pr(xnx(ti), yny(ti)|xnx(ti−1), yny(ti−1))− ln Pr(xnx(ti)|xnx(ti−1))

− ln Pr(yny(ti)|yny(ti−1))
]

(4.37)

which shows that the expected value of the log-likelihood after n observations is simply n

times the expected value of a single observation, given that at least two observations have

occurred. The expected value of any single observation in this is now

E[lnΛ(Z(ti)|Z(ti−1))|H0]

=E
[
ln Pr(xnx(ti), yny(ti)|xnx(ti−1), yny(ti−1))− ln Pr(xnx(ti)|xnx(ti−1))

− ln Pr(yny(ti)|yny(ti−1))
]

(4.38)

by the previous simplification. Due to this, one can express the expected value given No = n

samples as

E [ln Λn(Z)|H0, No = n] = n× E [ln Λ(zi|zi−1)|H0] . (4.39)

This then shows that in Equation 4.36, the expected value on the right is a constant

with respect to the outer expected value. Therefore one can see that

E [ln ΛNo |H0] = E [No|H0] · E [ln Λ(Z(ti) = zi|Z(ti−1) = zi−1)|H0] (4.40)
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where, after rearranging terms we have that

E [No|H0] =
E [ln ΛNo |H0]

E [ln Λ(Z(ti) = zi|Z(ti−1) = zi−1)|H0]
. (4.41)

Similar arguments for the alternate hypothesis, H1, give that

E [No|H1] =
E [ln ΛNo |H1]

E [ln Λ(Z(ti) = zi|Z(ti−1) = zi−1)|H1]
. (4.42)

In these analyses, there are approximations for the numerators in equations 4.41 and

4.42 given by Wald in [2] which shows that

E [ln ΛNo(Z)|H0] ≈ α ln η1 + (1− α) ln η0

= α ln

(
β

α

)
+ (1− α) ln

(
1− β
1− α

)
(4.43)

and

E [ln ΛNo(Z)|H1] ≈ β ln η1 + (1− β) ln η0

= β ln

(
β

α

)
+ (1− β) ln

(
1− β
1− α

)
(4.44)

where α, β, η0, and η1 are defined in Equations 3.3 and 3.7. Again Wald in [2] shows

that these approximations hold for any distribution over the likelihood ratio. However the

denominators of the expected values for No must be evaluated on a per-problem basis.

By expanding Equation 4.38 to an expression for both models there is enough to solve

the average number of observations.

4.7 Determining When to Start a Sequential Test

The previous section defined a method to test observations of two random objects in order

to determine if they are traveling together in a convoy or independently. However in a

real system it is unfeasible to test all observations of all objects against all observations of

all other objects. This then requires a method to determine when to begin performing a

sequential hypothesis test. The conditions upon which a sequential test should be formed
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can be concretely stated as two boundary parameters, T and Q. The constant T is a

temporal boundary in which any object must be seen within T seconds of another object in

order to qualify starting a sequential test. The other constant, Q, is the spatial boundary

in which two objects must be seen within in order to qualify starting the test.

Together these become the logical test

start(Z(ti) = zi) =
(
|txnx(ti)

− tyny(ti)
| < T

)
∧ (Γ(zi) < Q) (4.45)

in which start(·) will return true if the instances of X and Y qualify starting a sequential

test. Only information where t ≥ min(txnx(ti)
, tyny(ti)

) will be considered for the test. This

ensures that prior information is not considered to bias the test.

4.8 Convoys of More Than Two Vehicles

So far this detection system has only considered two vehicles traveling together as a convoy

or not. To detect groups of convoys of more than two objects, this is done via post-queries

to the system output. Once a target convoy is detected, then the system looks for all other

pairs which appear as convoys with the two detected vehicles in the original convoy. The

system tests all possibly pairs of vehicles which could be considered convoys.

Consider vehicles X and Y which are detected as a convoy together. Since all pairs of

vehicles are analyzed, then in order to detect a group the system looks for all other vehicles

which are also reported a convoy with X and Y . This can then be judged a convoy “group”

of more than two vehicles.
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Chapter 5

System Implementation

The entire system is built utilizing asynchronous processing agents in the Microsoft .NET

Framework. These agents intercommunicate to form the convoy detection system. Each

agent keeps a discrete state and maintains discrete communication channels to and from

itself, called ports. Agent ports are of two formats, input and output ports. Input ports are

a first-in, first-out (FIFO) queue of messages for the agent to receive and process. Output

ports are a publish/subscribe system were one poster posts a message and any subscriber

on the port will receive the message. Agents can post to other agents’ input ports to trigger

actions and can also subscribe to other agents’ output ports in order to receive their output

events.

This basic agent framework is the basis for the various utilized agents described in the

following chapter. First, a brief background on how the agent framework deals with failure

and reporting state changes is presented. The four types of agents (SQL Logging Agent,

Convoy Tracker Agent, Object Tracker Agent, Buffer Agent) are then defined in what they

do discretely and lastly a flow diagram demonstrates how they interconnect to each other.

5.1 Agent Reporting

The agent framework used herein breaks down into a process tree where the root of the tree

is defined by some root agent. This process tree is modelled after the Erlang agent failure

structure which allows the agents to handle failure and have a reporting model up the tree

which will guarantee robustness [18]. This failure model is designed so that any agent,

except for the root, must report to another agent higher in the process tree. Therefore
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when an agent fails, another agent is notified and may take an action on what to do. For

example, if a child agent, b, of agent a fails, a may choose to restart b, leave it dead, or fail

itself and report further up the hierarchy.

The failure model designed in this system yields a virtually fail-proof system as long as

the root agent does nothing else but spawn child agents. If the root agent has a potential

of failing then it could cause a system crash. However if it is built correctly then the root

will always be notified even if the entire sub-tree dies and can restart the system utilizing

information from just before the crash and the reason for the crash.

5.2 SQL Database

This system also utilizes SQL databases for recording system status information as well as

results from the analysis. The use of this SQL platform includes an automatic class-to-SQL

mapping utility which easily allows the system to create log entries and query back stateful

information. The logging systems contain the following feature set

• Automatic backup and log rotation

– When data is needed to be stored it is written to a SQL log file which is monitored

for size. When the size exceeds some threshold a backup copy is created and

a new logfile is opened. A monitor also checks to see if there are more than a

certain number of backed up logs, if so it deletes old ones.

• Automatic programmatic mapping between objects and SQL records.

– Anything that needs to be recorded in the logs is originally an object in the

.NET framework. These object require a programmatic way of recording to the

log file and being read back. This is handled by the logging agent.

• Query ability via programmatic constructs

– The agent has the ability to query old log files for specific information if it is

necessary.

• Automatic recovery for failures
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– Old logs are used to reconstruct the state of the system at the time of failure

and recover automatically.

A single log agent reports to the SQL database when log messages are posted to it via

its operational input port. The agent also has a control input port which handles control

messages on logging ability, log batch size, etc.

5.3 Convoy Tracker

The convoy tracking agent (CTA) is the root agent of this system. It initially opens a TCP

port to receive incoming information from the sensors and launches a TCP listener agent

in order to read the messages coming in. It then launches a logging agent in order to record

events which will arise through the tracking and also launches the Object Tracking Agent

(OTA).

5.4 Object Tracking Agent

For each object that is observed by the system there is a corresponding OTA. It keeps an

internal state which contains a list of all current possible convoys along with information

for computing the hypothesis test (§4.5.2). Every OTA receives all observations from the

system of all objects. Upon receiving an observation Algorithm 2 is run. In this algorithm

each unit keeps a time since the last instance of the object is was tracking. If a maximum

time T has passed, then the agent terminates itself and all tracks for it as the system deems

the track to have been “lost”.

In order for an OTA to keep track of all possible pairs of vehicles which could be judged

a convoy, it needs to keep a mutable list of an individual likelihood ratio test between itself

and all possibilities. Because of the recursive definition of the likelihood ratio test (§4.5.2),

the system only requires the previous state of the test to compute the next step of the

test. This greatly reduces the amount of memory required to keep all possible convoys in

memory.
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Algorithm 2 Object Tracking Agent (for object X) processing algorithm

Initialize convoy list to empty
repeat

m← receive next()
if m is instance of X then

Update all possible convoys with new instance, m
else

if Instance of m is tracked then
Update the instance of m convoy track inside agent X

else
Start a new instance track of X and the instance of m

end if
end if

until T has passed since last instance of X

5.5 Buffer Agent

The buffer agent is the last agent needed to track convoys using the likelihood ratio test

that’s been defined previously. The buffer agent’s job is to maintain a list of all OTAs and

which object they are tracking. The agent will “buffer” all incoming entries, first checking

to make sure observations of new objects have an OTA to track them. This is defined

in Algorithm 3. This agent also is notified when any OTA dies and then appropriately

removes that OTA from the list of current OTAs.

Algorithm 3 Buffer agent processing algorithm

Initialize OTA list to empty
loop

m← receive next()
if Instance of m ∈ OTA list then

Pass m to all OTAs
else

Launch new OTA for instance of m
Pass m to all OTAs

end if
end loop
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5.6 Agent Flow Diagram

To demonstrate the relationship between the various agents in this system, Figure 5.1

demonstrates a dependency tree outlining the nested agents. This tree shows the data flow

path through the various agents. The multiple paths between the buffer agent and the

OTA represent that the buffer agent can launch multiple instances of the OTAs, one for

each object viewed by the system.

Convoy Base
Process

Tcp Socket
Agent

Convoy
Buffer Agent

Sql Log-
ging Agent

Object Track-
ing Agent

Fig. 5.1 Agent flow diagram
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Chapter 6

Experiments and Results

This chapter outlines various experimental results obtained from running the defined system

on a real dataset. First is an introduction into the dataset which was gathered from a

real sensor network. Then the system parameters and analysis of the system output is

presented with the real dataset. The simulation parameters utilized in the analysis of the

real dataset are also defined with reasoning on their choices. Finally a examination into

the choice of the decision thresholds, η0 and η1, is discussed when taking into account the

output performance of the system.

6.1 Dataset information

The dataset utilized in this chapter is from a real sensor network where very few parameters

of the system were provided. The sensors are of the form of license plate recognition

(LPR) sensors. They read individual license plates of vehicles as they pass by the sensor.

The dataset was provided by Genetec Inc. on behalf of one of their customers and was

anonymized before being provided. There are 20 sensors in the dataset, defining 20 states

in the semi-Markov process. The dataset is a time-ordered set of observations of objects

(vehicles) over a period of 32 days. For each observation, there are the fields described in

Table 6.1.

A brief summary of the dataset as a whole is shown at Table 6.2. It can be noted that

the observations in the dataset have a periodic nature underlying them. This period can

be realized in the histogram of the number of reads over time in Figure 6.1.

All experiments outlined below were run on a single day’s worth of data due to com-
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Field Format

Object Unique Identifier String
Timestamp Time (UTC)
Latitude Floating Point Number
Longitude Floating Point Number
State Captured At Integer

Table 6.1 Description of the various fields available from the dataset
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Fig. 6.1 A histogram of the number of observations in the data through 10
days.

Field Value

Number of observations 1,468,362
Number of distinct objects 154,509
Timespan 32 Days
Number of States (observation locations) 20

Table 6.2 Information about the anonymous dataset
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putational limitations. The system parameters however were not estimated on the testing

data. They were estimated using a random sample of the remaining data excluding the

date used in testing.

6.2 Estimation of the Semi-Markov process parameters

Before running the system with the dataset utilizing the Semi-Markov process analysis

previously outlined in Chapter 4, the estimation of the embedded DTMC as well as the

transfer time distributions between states is necessary.

This estimation was done by taking all the transfer times between two states (directed

transfer), excluding the test date, and estimating a density utilizing a histogram as outlined

in §3.4. There is now a histogram estimate of the density for every transition time between

states. A example of the estimated histogram for a transition from state 14 to 5 yields

the histogram outlined in Figure 6.2. As can be seen in the figure, there is an apparent

exponential-like distribution, however this distribution is not guaranteed for all transitions.

As another example, Figure 6.3 outlines the transition from state 17 to 2 where a there is

a low-density to the left of the peak, alternate to an exponential.
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Fig. 6.2 Histogram of transition
times from state 14 to state 5
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Fig. 6.3 Histogram of transition
times from state 17 to state 2

From this one can see that it is impossible to just estimate a parameter of a distribution

and utilize that, one must keep a discrete density estimate for each possible transition. Also
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since there is not an exponential distribution on the exit time it is impossible to utilize

the simple exponential exit rate with an embedded DTMC (as in the case of a CTMC) so

one must keep the full density estimate for every state transition time distribution. This

introduces a space complexity, but by limiting the bin-width to only 1 minute and by having

only |S| = 20 states, the memory requirements are low.

6.3 Experimental Results

This section outlines some results of the hypothesis testing system designed.

6.3.1 Experiment Parameters

When running the system against the dataset there are a few tuning parameters which

need to be initially stated. The first two are the probability of false detection, α, and the

probability of detection, β. For these experiments they have been set to

α = 0.0005 and β = 0.99 (6.1)

These probabilities yield bounds on the log-likelihood ratio of

ln η0 = ln 1−β
1−α = −4.60467 and ln η1 = ln β

α
= 7.59085 (6.2)

One also needs to specify the initial track start parameters, for when to spawn a track

when two actors get within a certain spacial (D) and temporal (T ) difference of each other.

These parameters are set to

D = 0.5km and T = 5min. (6.3)

There is also an final parameter, called the maximum track time, which is called MTT .

This value defines how long a track remains active if no observations of an object have been

received. The MTT is set to 20 minutes for these experiments. Now with these parameters

the various tests of the system performance can be run.



6 Experiments and Results 47

6.3.2 System Output

The designed system outputs information about the various decisions on convoys it is

performing over time into an SQL database. The format of these is the following

Field Type

Convoy Id Integer
Type {Convoy, Independent, Track Lost}
First Actor String
Second Actor String
Log Likelihood Floating Point Number
Start Track Time Time
Decision Time Time

Table 6.3 System Output Field Description

The field Type determines the type of decision which was made. If the field’s value is

Convoy, then that signifies that the likelihood has exceeded η1 or alternatively that H1

won. If the value of the Type field is Independent that means that the likelihood was

below η0. Finally the last value of Track Lost means that the maximum track time was

exceeded and the OTA has terminated due to a time exemption. In this case no discrete

decision was made, however the current likelihood at time of termination is logged for

further analysis. This field identifier allows easy searching and analysis filtering without

the need of looking at every value logged during the “need more data” phases.

6.3.3 Unsupervised Analysis

The dataset was not provided labeled with true convoys. Therefore an exploratory analysis

of convoys was performed and some visual inspections are provided.

The following analysis was done on a single day where there are 48974 observations

of 19750 distinct objects. With the previously defined system parameters, the analysis

was performed. Figure 6.4 provides a histogram of the number of observations required

to first decide a convoy. Similarly, Figure 6.5 provides the same analysis, however this

histogram describes the number of observations received when the test terminated. This

is in essence the full number of observations of each pair before they were either lost or

the test terminated. Upon reporting a convoy, the system continues to analyze the pair to

see if the likelihood ratio gets stronger towards the alternate hypothesis or returns to the
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undecided region or null hypothesis. Having this ability allows the analysis of the most

accurate representation of a possible convoy, with the most amount of data without loss of

information due to re-creation of the hypothesis test.
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Fig. 6.4 Histogram of the number of
observations required to first decide for
the alternate hypothesis, i.e., convoy.
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Fig. 6.5 Histogram of the number of
observations received to make the last
decision of convoy for a pair.

The specific analysis reported 27,299 convoys. Since the system can report convoys

multiple times, as more data becomes available, it is therefore necessary to also know how

many of these were “distinct” pairs. This means “how many pairs were rated convoys“

ignoring multiple instances. The number of distinct pairs was 21,499 in this analysis. This

means that of the total number of convoys reports, there were some pairs which continued

to have additional information provided after initially being deemed a convoy. Looking at

the values of Λ(Zn) at the time of convoys being reported, we noted that the pairs with the

highest likelihood ratio were those with the highest number of observations. The convoys

which were only reported once were mostly false positives reported by the system initially.

The additional test to determine when to start a sequential hypothesis test helps simplify

the number of compared pairs. There were a total of 6,191,364 pairs which were analyzed

out of a theoretically possible 197502 = 390, 062, 500 pairs, which is the number of unique

objects in the dataset, squared. One can see that the number actually tested is much lower

than the theoretical maximum which is a great reduction in computational requirements.

Another useful property of the analysis is the number of observations that were needed
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Fig. 6.6 Histogram of the number of observations required to decide not a
convoy

to decide for the null hypothesis (traveling independently). For the same day as previously

utilized, this quantity is represented in Figure 6.6. As seen in the figure, the average time

to decide for a non-convoy is relatively fast ( ≈ 3 samples).

Detected Probable Convoys

Due to the unlabeled nature of the data, as previously stated, this yields a large difficulty

into determining what is detected as true convoys. However, by taking two random exam-

ples of the top ten convoys with the highest reported likelihood ratio, one can see that the

system is actually detecting what is required.

The first of the two presented test cases is when there was 8 samples of two objects.

The first test case is depicted in Figures 6.7 and 6.8. The first figure (6.7) shows the real

path through the objects coordinates through time. It can be noted that in this case the

transitions being made were identical. These two objects were detected and reported as

being a convoy after 8 samples of the joint process of the two individual objects. The

observations of the two objects in this example were received over the course of 12 minutes.

The second example case is demonstrated in Figures 6.9 and 6.10. Like the previous
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Fig. 6.7 Path of 8-sample detected
convoy.
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Fig. 6.8 State transition plot for 8-
sample convoy of two objects.

example, the first figure demonstrates the real path (in coordinates) through time, while

the second are the state transitions. This is a good example demonstrating the necessity of

different transitions still being captured as a convoy. The initial states of the two objects

were different, however the physical distance of the two still was close and resulted in a

detected convoy.

It should be noted in these examples that the labeling of the state space does not

correspond to the physical distance between the states. In the second example, in Figure

6.10, the labels of the two initial states could be arbitrarily far apart and they could still

be physically close. The state space is tagged with integer identifiers arbitrarily.

To show the arbitrary tagging and capturing by different cameras aspect of a possible

convoy, another example of a probable detected convoy is given in Figures 6.11 and 6.12.

This probable convoy is only deemed a convoy later in the tracking of the two objects. As

can be seen in the path of the two objects they start farther apart and synchronize later in

the tracking of the two objects. This appears to be the red path moving to meet the blue

path, time-lagged by some amount. This track of the pair occurred over 30 minutes.

Independent Path Detection

The other important aspect of the system is to also determine which pairs of objects are

traveling independently of each other and therefore are not a convoy. This is demonstrated
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Fig. 6.9 Path of 10-sample detected
convoy.
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Fig. 6.10 State transition plot for 10-
sample convoy of two objects.
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Fig. 6.11 Path of 10-sample detected
convoy with different sensors.

Fig. 6.12 State transition plot for 10-
sample convoy of two objects utilizing
different sensors.
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Fig. 6.13 Path of 9-sample indepen-
dent pair.

Fig. 6.14 State transition plot for 9-
sample independent path of a pair of
objects.

by an example independent pair represented in Figures 6.14 and 6.13. This example shows

a track of a pair of two objects which are seen at a similar location. Once started, the

following observations received eventually show that the two objects’ paths are simply

following the embedded Markov chain, independent of each other.

6.3.4 Supervised Analysis

In this section a simulated database of pairs traveling in a convoy and independently was

created. It then becomes possible to investigate the effects of choosing η0 and η1, the

threshold parameters, upon the performance of the algorithm. The performance is investi-

gated through examining PFD, the probability of false detection, and PD, the probability

of detection.

This analysis required simulated data which allows control over the specific properties

of a convoy and non-convoy. The simulate a convoy, one chooses a starting point for

two objects and then randomly samples for X and Y from the SMP according to the

embedded distribution over the state space. Simulation of the waiting time distributions

is unnecessary since the likelihood ratio is independent of the transition times of X and Y .

The information which needs to be simulated are the state transitions of X and Y . Object

X will initially make some transition. Object Y then makes a similar transition to X

which maintains some dependence according to the lag distribution and also is temporally
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separated from the sample of X. Which vehicles “leads” with respect to the lag property

is randomly assigned at each observation point based on a fair coin flip (Bernoulli w.p.

1/2). Also the number of observations of each convoy is uniformly distributed in the range

[5, 10].

In order to simulate objects not traveling in a convoy, two objects start at the same

location and then travel according to the SMP embedded transition matrix without any

dependence on each other. Pairs of objects not traveling in a convoy are simulated for

between 5 and 10 samples each, where the amount is uniformly distributed between [5, 10].

There is no dependence on the lag property in this model.

Probability of False Detection and Detection Analysis

Fig. 6.15 Surface plot of the change
in PD with variations of threshold con-
ditions η0 and η1.

Fig. 6.16 Surface plot of the change
in PFD with variations of threshold
conditions η0 and η1.

In order to generate an appropriate dataset, 1000 convoys and 1000 non-convoys were

simulated according to the models specified previously. The threshold parameters were set

to the various η0 and η1 values represented in Figures 6.15 and 6.16 and the system was

run and the outputs recorded. Also the embedded chain utilized to simulate this data is

the same chain estimated from the real, unlabeled dataset.

From this simulation of the model, there is exact knowledge of vehicles traveling in a

convoy and therefore one can compute the true underlying probabilities of false detection

(PFD) and detection (PD). The probability of detection is the number of true convoy
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pairs whose likelihood ratios exceeded η1, divided by the true number of convoys, and the

probability of false detection is the number of pairs whose likelihood ratios exceeded η1

that are not a true convoy, divided by the number of true non-convoys. This is represented

as well in Figures 6.15 and 6.16. These figures represent the various values which PD and

PFD take according to the different combinations of the threshold parameters, η0 and η1.

The performance analysis is represented in surface plots rather than a traditional re-

ceiver operating characteristic plot due there being two free parameters which have a direct

impact on the performance measures PD and PFD. Therefore these surface plots allow a

representation dependent on the threshold conditions chosen for an application. It should

also be noted that not ever pair results in a decision, especially with higher and lower

values of η1 and η0, respectively. Having a high η1 and low η0 makes the “need more data”

region larger where a decision is not made. In the case of no decision, PFD and PD are not

based on those pairs. The probabilities PFD and PD are only computed on pairs deemed a

convoy.
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Fig. 6.17 Plot of the probability of detection and false detection given a
fixed η0.

Once can also investigate the values of the probability of false detection and detection

where η0 is fixed and η1 varied. Figure 6.17 demonstrates this analysis where ln η0 = −10.0.

This shows a relationship between PFD and PD for what we consider a reasonable choice

for the lower threshold, η0. The value of η0 impacts the outputs of PFD and PD the greatest
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Fig. 6.18 Surface plot of the average
number of observations before a deci-
sion of convoy (H1) was made.

Fig. 6.19 Surface plot of the average
number of observations before a deci-
sion of not a convoy (H0) was made.

when the value is low. This is due to how PD and PFD are calculated as mentioned earlier.

The value η0 only effects whether the likelihood ratio of a true convoy or falsely detected

convoy is deemed from the null hypothesis, and therefore terminated at this point, before

being deemed a convoy. At a low value, η0 will more likely prematurely terminate a ratio

test before deciding for H1.

Average Number of Observations

The average number of observations needed to make a decision for the null or alternate

hypothesis in the simulated dataset is represented in Figures 6.19 and 6.18, respectively.

These surface plots indicate how the average number of observations change with respect

to the threshold parameters η0 and η1. Depending on the properties of the distribution of

the number of observations available in data, these thresholds can also be tuned to allow

for a decision using the least amount of data necessary to make an accurate decision. If,

for example, in data available for a certain deployment, there are a limited average number

of observations of any specific object, then perhaps it is necessary to allow a greater PFD

in order to allow for a sufficient PD with the limited number of observations.

In Figure 6.18 one can see that the average number of observations required to make a

decision is closely tied to η1, the threshold for deciding for H1. It does get effected by η0
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however it is much more dependent on η1. The other plot, in Figure 6.19, however does not

hold to this. As the value of η1 is increased, the number of observations required appears

to increase as well, however there is a plateau that begins to form, so eventually it will

approach a constant limit. The limit however is problem dependent. This limit comes from

the fact that for some problem specific η0 and η1 all the data available for pairs of vehicles

is being taken into account and we see that the number of observations required to make

a decision is bounded by the number of observations available. If there was infinite data

about every pair of vehicles being combined, the surfaces would never plateau.

6.3.5 Performance Summary

The performance of the system is dependent on the underlying embedded Markov chain

transition matrix between the static camera states. This dependence is present greatly in

this dataset due to the small number of states and the high probability that one path is

followed through time. The underlying pattern of the dataset shows one path which forms

a loop through some states with a high probability. This loop biases the results to signal

more convoys than is truly there. This method does not perform as well when there is a

high path probability which forces most traffic along one route. It still detects convoys at

a similar rate, however the number of convoys which are detected rises dramatically when

normal traffic follows a single path through the SMP.

When looking at the false detections in this system, in the simulated dataset, the non-

convoys which were deemed convoys look similar to convoys for at least part of the total

path. Restricting the thresholds to more extreme values allows for more accurate ratings

on convoys and non-convoys, however there is the trade-off that many convoys are missed

in this context. In the real dataset, visual inspection seemed to indicate that real convoys

typically take unlikely paths. This causes the independent probabilities for the paths of

X and Y to be low, while the joint convoy probability to remain higher, which greatly

improves performance of the system.

In the simulated dataset, the vehicular paths were simulated to follow the Markov

process when in a convoy and when not. This may not be true underlying model since,

when traveling in a convoy, vehicles may tend to make transitions which are separate from

the underlying Markov process for independently traveling vehicles. By simulating pairs

of objects in a convoy from the Markov process it may allow bias to the simulated data.
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However by simulating data from the underlying Markov chain from the real dataset, it

does some allow analysis of the performance of the system that is not available with the

anonymous dataset. This is because in the anonymous dataset no ground-truth exists for

what are true convoys. Future work, in Chapter 7, explains how a fully simulated dataset

is necessary for more detailed analysis of system performance.

Another issue is when a detection of a true convoy is missed. One would like the

probability of a missed detection to be at a minimum, however in order to have this value

go to 0, PFD will tend to 1. Attempting to find missed detections in the simulated dataset

proved not possible. Upon searching the results after processing the simulated data, pairs in

a convoy which were incorrectly labeled as pairs traveling independently were not present.

It should be noted that these errors are possible to occur when processing real datasets,

however for the simulated data they were not present. The only intuition into why this

might occur with a simulated dataset is the large loop-path through a set of states which

when simulating may result in most of the traffic where objects do not deviate yielding

an independent decision. Again however, due to the unlabeled nature of the real dataset,

finding convoys which were judged independent is a time-intensive task.

Not making a decision is also a common issue, since pairs where they are not deemed a

convoy nor independent cannot be utilized to compute performance statistics of the system.

However, this information should not be reported because the observations of a pair can

neither be deemed a convoy nor independent. We deem it better to not make a decision

rather than make an incorrect one.
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Chapter 7

Conclusions and Future Work

A solution to the problem of detecting convoys of objects utilizing sensors with a limited

range is presented in this work. In this chapter we look at the summary of the system

presented in this thesis. This summary discusses the conclusions of the system initially. It

then discusses the limitations of the system and discusses ways to remove those limitations.

Lastly it discusses future avenues of research with this convoy detection system.

7.1 Conclusions

This work outlined a system for deciding which sets of objects are traveling together in a

convoy. In the beginning of Chapter 4 we presented the mathematical definitions for the

null and alternate hypothesis. These definitions required a new definition of an unknown

quantity of what determines two objects traveling in a convoy. This is where the lag

property (§4.4.1) is introduced to model this spatial dependence through observations of

objects.

With the models defined, a sequential hypothesis test is defined in Section 4.5 which

can test which model is the underlying model for a set of observations. The sequential

hypothesis test relies on a likelihood ratio which is defined given the current number of

observations received. This definition was then extended to be recursively defined based

on the previous ratio in order to only need a previous observation in order to update the

current estimate of the likelihood ratio for the decision test.

Chapter 5 described a system which utilized the sequential hypothesis test defined in

Chapter 4 utilizing a fault-tolerant agent framework. This agent framework is designed to
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also allow the system to dynamically grow and shrink as the load from sensors varies.

Finally the output of the system from Chapter 5 is analyzed in order to determine

the performance of the system given a real and simulated dataset. The real analysis, due

to the lack of labeling of the data, only allowed for an investigation into the number of

observations needed to decided if pairs were traveling convoy or independently. Also two

example cases of reported convoys found in the real data show that the system is able

to detect convoys traveling together through a real sensor network. The simulated data

however allowed an investigation into the performance of the system by investigating the

probability of false detection (PFD) and the probability of detection (PD).

7.2 Limitations

The method presented in this thesis has a few design limitations which can be addressed.

The first is the assumption that the waiting times in the independent transition model

are distributed the same as the the dependent model. This assumption allows a lot of

simplification in the likelihood ratio. However by not making this simplification of the

waiting time distributions may allow for a more accurate model for convoy detection.

Another limitation is the fact that the assumption that the initial distributions under

the null and alternate are equivalent. This may bias the likelihood ratio to making more

incorrect decisions. If enough samples are received however, the initial distributions under

the null and alternate become less dominant in the likelihood ratio and therefore are not

as dominating as the assumption on the distributions on time. By setting this initial

distribution to a model more tailored to for the null probability of the joint process Z, one

may allow the hypothesis test to terminate with less observations.

7.3 Future Work

In this section we describe a few avenues which could be explored in the next phases of

this research. Some possible avenues of future focus are to make the system automatically

adjust the Markov chain upon receiving samples, adding the ability to automatically scale

and distribute the system based on geographical loads, and lastly to fully simulate data to

get precise performance analysis on the system.
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7.3.1 Online Estimation of a Semi-Markov Process

The first future work that should be investigated is not to analyze the Semi-Markov process

parameters offline, with the entire dataset (defeating the purpose of an online system) but

to estimate these parameters in an online fashion. This requires estimating the transition

probabilities in the embedded DTMC and the density estimate for transfer times between

states.

The proposed solution to this is to utilize an update-able histogram density system.

This requires keeping a bin count for each bin in each density estimate along with a total

count for each density estimate. Then the operation of computing the actual density is

simply an order O(log n) operation since you only need to iterate until the appropriate bin

is greater than the quantity provided, not through all the bins.

Also to estimate the transition probabilities one simply needs the counts of transitions

between states along with the total number of exits between states. This is an order O(1)

operation. These online estimates would also allow for more states to be added into the

densities on-the-fly if transitions not previously realized are then realized.

This does require the knowledge of actors making a “transition” from a state, s, to an-

other state, s′. This of course requires that the current state knowledge of actors be known

so the specific transition can be realized. Luckily in the existing system, this information

is already present and need only be accessed.

7.3.2 Geographical Distribution

Another future problem which should be investigated is a load-based problem. Each system

tracking this information can only realistically handle a specific load (in the amount of

sensors feeding information to it). This load has yet been determined and should be

realized, however when the load is exceeded there should be a scaling procedure to be

executed.

This procedure should distribute the load of multiple cameras across multiple tracking

nodes (servers). A logical solution to this is to distribute the load based on geographical

information. Since one is tracking actors through space, only local spaces need to be realized

and when they exceed one space they transfer to another server realizing a different space.



7 Conclusions and Future Work 61

7.3.3 Simulated Data Analysis

Lastly analysis with fully simulated data in which the number of convoys can be completely

controlled is necessary. This will allow discrete performance measures on the system as to

what the bounds are on a convoy which can be detected and the maximum allowable lag

of a convoy for it to be detected by the system.

This may result in a more accurate tuning method for choosing the probabilities α and

β described in Equation 3.7.
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