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ABSTRACT

Classical models of differentiation assume that cell fate is determined by the concen-

tration of a static morphogen gradient. In contrast, we provide a setup for in silico dif-

ferentiation and patterning of embryos under the action of a temporal morphogen signal.

We analyze a simplified model for neural tube patterning and use dynamical system theory

to uncover the emergence of a slow timescale due to a saddle-node bifurcation. Using the

theory of slow manifolds, we give an analytic solution for the canalization of gene expression

in phase space. We generalize the patterning mechanism and find gene networks with higher

number of genes that lead to an equal number of domains and show that, locally, they are

analogous to the low dimensional case. We analyze the model under stochastic conditions

with the Langevin equation and find that predictive power decreases as a function of time

for low numbers of molecules. We propose a cell-to-cell interaction to confer robustness and

restore predictive power. Parameters are found through in silico evolution and the influence

of noise is greatly reduced.
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ABRÉGÉ

Les modèles classiques de différenciation supposent que le destin des cellules est déterminé

par la concentration d’un gradient de morphogène statique. Nous fournissons un modèle pour

la différenciation et la structuration des embryons in silico sous l’influence d’un signal de

morphogène temporel. Nous analysons un modèle simplifié pour la formation des motifs dans

le tube neural et utilisons la théorie des systèmes dynamiques pour découvrir l’émergence

d’une échelle de temps lente due à une bifurcation du type col-noeud. Utilisant la théorie des

variétés lentes, nous trouvons une solution analytique pour la canalisation de l’expression des

gènes dans l’espace des phases. Nous généralisons le mécanisme pour de plus grands réseaux

de gènes tout en montrant que, localement, ils ont les mêmes propriétés. Nous analysons le

modèle dans toute sa stochasticité avec l’équation de Langevin et constatons qu’il y a une

perte du pouvoir de prédiction en fonction du temps. Nous proposons une intéraction de cel-

lule à cellule qui confère de la robustesse et permet de restaurer le pouvoir de prédiction. Les

paramètres sont trouvés par évolution in silico et l’influence du bruit est considérablement

réduite.
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Chapter 1 - INTRODUCTION: PRINCIPLES OF
DEVELOPMENT

There is evidently a perception of complexity in living organisms, it is one of the rea-

sons why life is a controversial subject to begin with. We invoke physics and chemistry to

formulate the principles by which the world abides, but relegate to biology what goes on

inside us. Yet, some treat and teach biology as a descriptive science, cataloging the vari-

ous processes of life rather than exploring how they emerge from their constituents. And

while the division between the living and the inanimate is intuitive, it is not well-defined nor

necessarily useful from a molecular point of view. We believe that guided by the principles

that served physics so well up to now, we can bridge the gap between the living and the

inanimate. The application of a physical way of thinking to biological problems has worked

for many problems in the past and there is hope to reduce these complex living organisms

to systems of working parts that are more informative.

For the purpose of this thesis, we turn our attention to the specific yet vast subfield

of developmental biology. The primary question is How does the fertilized egg give rise to

a multicellular organism? This question is too broad to digest on its own and the road to

an answer will spawn many more questions. We shall therefore further restrict ourselves to

embryonic development and more specifically to the modeling of gene networks under the

influence of signaling molecules, termed morphogens, as a means for cell differentiation. An

exceptional quality of the developing embryo is the similarly across vastly different species.

There are relatively few genes that control development and many species look very alike at

their phylotypic stages. As such, we do not attempt to study any particular organism, we

instead search for a general principle to answer a precise question: How can a gene regula-

tory network (GRN) be used to differentiate cells based on a temporal variable such as the

exposure time to a morphogen?
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1.1 Probing in the dark

Biology has for a long time been constrained by our ability to carry experiments. Each

breakthrough in the experimentalist’s tool set led to a radically new way of thinking about

life. With the advent of the microscope, the discovery of the cell [1] led scientists to abandon

of the idea of preformation, that embryos are fully formed and grow in size to become adults.

Instead, it is now understood that the embryo starts with a tiny single cell which divides into

many more. Those cells themselves further divide and differentiate to form the precursor to

structures such organs, limbs or the nervous system.

How those cells differentiated was not clear and, at the time, the experiments consisted

of removing cells or grafting them near other cells. In this way, Wilhelm Roux [2] was able

to show that when destroying one of the two cells of a frog egg after the first cleavage,

the resulting embryo was half developed. A similar experiment by Hans Driesch [3] on a

sea urchin, however, gave rise to a whole gastrula, albeit smaller in size. This lead to the

developmental process known as regulation. Experiments on newt embryo by Hans Spemann

and Hilde Mangold led to the discovery that cells influence the development of neighboring

cells [4]. By grafting tissue from the dorsal lip of the blastopore to the blastocoel roof, they

obtained an embryo with the induced structure of a second independent embryo.

It took a while for genetics to be recognized as an important player in development.

Initially seen as a way to transmit hereditary elements from generation to generation, it

wasn’t until the 1940s when it became clear that genes encode proteins that they became

fundamental to development. It had been understood that proteins determine the properties

of cells and by controlling which protein is produced, genes could control development. By

the 1960s it was understood that genes could produce proteins which would regulate the

activity of other genes, effectively leading to the idea of GRNs.

For a long time developmental genes could only be identified through spontaneous muta-

tions. In particular, mutated recessive genes can be found in heterozygous embryos through

their effect on the phenotype. Once a trait was attributed to a single gene, it could be mapped

to a region of the chromosome through genetic mapping techniques. Relying on spontaneous

mutations and on changes in phenotype was, however, very inconvenient. Advances in chem-

ical and X-ray mutagenesis allowed the discovery of many more developmental genes [5] while
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the use of immunostaining and fluorescence imaging made possible the measurement of gene

activity in specific cells of the embryo.

Most experiments that shaped the current theory had a major drawback. Experiments

were built around measurements taken after a certain time, whether by measuring gene

concentration or observing a change in phenotype. Having access to gene concentrations

after a certain time, but not to a complete and accurate time series, lead to a static view of

development with emphasis on concentration as a function of cell position and cell fate as a

steady-state decision. The dynamical nature of gene expression was hard to probe and as a

result the methods by which cells time events are still not well understood.

1.2 French Flag Model: A temporal approach

An important question in developmental biology is: How do cells acquire positional

information? Cells are organized in the embryo according to their position relative to some

axes such as the anterior-posterior and the dorsal-ventral axis or according to their proximity

to some structures such as the tail bud in the formation of somites or the limb bud for the

formation of limbs. However, for cells to know their position along such axes, there must be

something to sense which is specific to that position along the axis. If we imagine that cells

responds to a molecule, termed morphogen, we can imagine that a gradient along the axis

can specify cell fate. Each cell would sense the concentration and different concentration

thresholds would lead to different cell fates. This is the essence of the Wolpert’s French Flag

Model [6, 7] depicted in Fig. 1–1.

These morphogens gradients are often termed fields and they can specify multiple cell

fates. If the cells are differentiated a morphogen field can still lead to different cell fates even

when exposed to similar concentrations. The typical example is that of the French flag and

the USA flag, Fig. 1–2. Cells that make up the French flag can differentiate into either blue,

white or red cells, according to the concentration of morphogen they sense. On the other

hand, cells that make up the USA flag can either become starry or stripped. If we graft

cells from the left side of the French flag to the right side, they would become blue, not red,

because they are exposed to a low concentration of morphogen. On the other hand, if we

3



Figure 1–1: The French Flag Model explains
how positional information can be interpreted
by the cell in order to allow for patterning. Ini-
tially, each cell of a given type has the poten-
tial to develop as blue, white or red. Each cell
has a position along the organism’s axis, but
cannot on its own determine it. To interpret
its positional value, the cell senses the concen-
tration of a morphogen gradient along the axis.
Different concentration threshold lead to pat-
terning into blue, white and red cells. As long
as the morphogen gradient can be replicated
and scaled, the pattern will develop even if half
the embryo is removed. Figure reproduced as
in Principles of Development by Wolpert [6].

grafted cells from the French flag onto the US flag, the grafted cells would keep their French

flag identity and differentiate according to their position along the flag’s left-right axis.

The French Flag Model is a good example of a regulatory model. Cells do not need

to predetermine their fate, it can be given to them as a result of their environment. If we

revisit Driesch’s experiment on sea urchins, we can explain how the destruction of half the

embryo at an early stage can still lead to a fully developed, although smaller embryo. If the

morphogen gradient can be re-established, then the entire pattern can be reproduced albeit

on a smaller scale. The French Flag Model has also been successful in modeling regeneration,

whereby some animals can regenerate missing limbs.

With the advent of real time imaging, movies can now be produced where the expression

of genes can be followed as a function of time [8]. This opens up the possibility to test for

4



Figure 1–2: Morphogen gradients give positional information to the cell so that it can gen-
erate a pattern through differentiation. On the other hand, the gradient cannot change the
outcome of a group of cells that are already predetermined to be of one type, e.g. French
flag vs. US flag. a) The French flag pattern. b) The US flag pattern. c) ,d) e) grafting
cells from the US to the French flag does not change their type, but changes their motif
corresponding to their new position. f) g) Two halves of different types joined together lead
to an hybrid flag. Figure reproduced as in Positional Information and the Spatial Pattern
of Cellular Differentiation by Wolpert [7].

new dynamical models of development based on both temporal and positional factors. While

the steady-state approach has been useful in explaining some aspects of development, there

is much to be gained by considering the dynamical aspect of gene activation. For example,

embryonic development can be broken down in stages whose relative duration is tightly

controlled [9]. Meanwhile in somitogenesis, the segmentation clock driven by Wnt and Notch

signaling controls the periodic formation of future vertebrae [10,11]. Periodic clocks are not
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the only possible timing mechanism and there is evidence that many differentiation processes

are at least partially controlled by the duration of exposure to some morphogens [12–14].

An interesting property of the French Flag Model is that positional information need

not be given by the concentration of a morphogen. In reality, positional information can be

acquired in many ways, one of which is the time of exposure to certain morphogens. In this

temporal French Flag Model, Fig. 1–3, it is not only the concentration of morphogen, but

the duration of exposure that specifies cell fate. We can imagine plotting the French flag,

replacing the position axis by a time axis. Cells exposed for a short period become blue, cells

exposed for a moderate period become white and cells exposed for a long period become red.

The problem reduces to a matter of generating positional information from exposure time.

This can be done for example by imagining that cells progressively migrate from a budding

region, cells which leave early are exposed for shorter periods of time than cells which leave

last. In such a way, we can generate a map between exposure time and cell position.

Figure 1–3: Morphogen gradients are typically used to interpret positional information. If
positional information can instead be related to exposure time to a morphogen, one gets a
Temporal French Flag Model. In the example of limb formation of Sec. 2.2, the time spent
in the progress zone gives a relationship between position and exposure time as the limb
grows along the proximal-distal axis. In the Temporal French Flag Model, the dynamics of
gene expression cannot be ignored in favour of a steady-state description. Figure reproduced
as in Principles of Development by Wolpert [6].

The problem then becomes one of finding a way for the cell to sense how long it has been

exposed to a given morphogen. It is currently still unknown how such timing is performed
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by genetic and metabolic networks. One way could be through a timing variable [15, 16],

effectively setting a time scale that could be used to capture temporal information. Models

exist where a slowly accumulating protein plays the role of a slow variable which controls

other faster variables. The faster variables quickly reach quasi-static equilibrium and become

slaved to the slow variable [16]. Time of exposure then becomes a function of the concentra-

tion of the accumulating protein. Such timers have yet to identified, but experimental data

suggests possible candidates.

However, recent experimental and computation results suggest a more elegant alter-

native. Rather than using an explicit timer, the timing mechanism could be an emerging

property of the underlying gene regulatory network [14,17], whereby the interactions between

genes give rise to a wide range of timescales much slower than the typical degradation rate.

1.3 Thesis Overview

Chapter 2 presents three examples from developmental biology from which we draw

our inspiration. Sec. 2.1 is an overview of the Hox genes, the lessons to keep in mind is

the existence of the various Hox clusters and the outcome of gene knocking out. Sec. 2.2

provides a biological context to the application of a Temporal French Flag model. Sec. 2.3

presents the network which sparked our interest in the emergence of timescales and their

role in patterning.

In Chapter 3 we review the theory of GRNs and the tools available to us. In Sec.

3.1 we define gene networks and the equations that govern their interactions. In Sec. 3.2-

3.4 we review dynamical systems theory and the tools it provides to study the dynamics

associated with the a given GRN. Sec. 3.5 addresses the difference between deterministic

and stochastic realizations of a GRN. We define the Langevin equation which we will use to

probe the question of noise robustness.

We present our results in Chapter 4 starting with the setup used to simulate pattern

formation given temporal morphogen signaling. We then, in Sec. 4.2 through Sec. 4.3

analyse and give analytical solutions to the GRN proposed by Balaskas et. al. [14, 17]. In

Sec.4.4 we generalize the GRN to an arbitrary number of genes and show how locally the

7



two networks are the same. Finally in Sec. 4.6 and onwards, we explore the effect of noise

using the tools presented in Sec. 3.5.

Finally, in Chapter 5, we discuss the evolvability and emergence of timescales as a

result of the GRN interactions. In Sec. 5.2 we contrast our model with previous models

using explicit timers and describe how network duplication can lead to the behaviour seen

in Hox genes expression. We conclude with Sec. 5.3 where we describe the future work to

be done and the open questions that remain.

Two appendices are included at the end. Appendix A is an overview of the evolution

algorithm used for parameter selection. We present two types of fitnesses which are used

to select for domain patterning and noise robustness respectively. Appendix B presents a

five dimensional network obtained via in silico evolution under the action of a temporal

morphogen signal.
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Chapter 2 - MOTIVATION

In this chapter, we provide a little bit of biological context to illustrate how the principles

we study relate to development. We begin with an introduction to Hox genes and some of

their properties. We later review how the formation of the chick limb can be an example of

a temporal French Flag Model. We conclude with the work of Balaskas et al. [14, 17] which

probes the timing mechanism of neural tube patterning.

2.1 Hox genes

The Hox genes [18] are a large family of genes that share a DNA sequence known as the

homeobox1 . They were historically discovered through mutations that led to one structure

being transformed into another. For example, a mutation in the fly Drosophilia leads to a

segment that does not bear wings to be replaced by a wing bearing segment resulting in a

fly with two pairs of wings [19].

The Hox genes are grouped in clusters [20,21] which presumably come from duplication

of an ancestral cluster. Vertebrates share many of these clusters on their chromosomes. For

example, humans have four clusters: Hox A, HoxB, HoxC and HoxD on chromosomes 7,

17, 2 and 12 respectively. In mouse (Fig. 2–1), those clusters are located on chromosomes

6, 11, 15 and 2. Duplicated genes are knowns as paralogs and the corresponding group of

genes across clusters is called a paralogous subgroup. For example, Hoxa4, Hoxb4, Hoxc4

and Hoxd4 form a paralogous subgroup in the mice. Not all paralogous subgroup span all

clusters so that in mouse, Hoxa1, Hoxb1 and Hoxd1 form a paralogous subgroup in which

there is no Hoxc1.

One interesting property of the Hox gene is colinearity. In many organism, but not

all [21], the Hox genes are expressed sequentially in the embryo in the same order as they

appear along DNA. See Fig 2–1. This cascading sequence of gene expression is a property

we want to model as a function of time. We want to construct a gene network in which

1 From which they derive their name, HOmeoboX.
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Figure 2–1: Hox Genes in Drosophila and mouse. They are expressed sequentially in the
same order as they appear along DNA and color coded according to the regions they are
responsible for. The Hox genes are ancestral and common to many organisms, such as
the fruit fly and mice, through their duplication. Hox genes in the same column form a
paralogous subgroup and those in the same row form a cluster. Figure reproduced as in
Principles of Development by Wolpert. [6]

genes are sequentially activated such that stabilization after a period of time depends on the

current gene being expressed. The proximity of these genes on DNA and their sequential

expression might be a clue as to the nature of their interactions.

These three properties together can be used to compare our models and formulate

predictions. Insertional mutagenesis and gene knock-out are two techniques whereby a gene

can be modified or removed to observe its importance and influence on the development of

the embryo. One example is the deletion of Hoxc8 in mouse embryo. Mutants lacking Hoxc8

never survive more than a few days and have many abnormalities, the most obvious is the
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development of an extra pair of ribs [22]. The first lumbar vertebra is transformed into a

more anterior structure, a rib-bearing thoracic vertebra. This suggests that in the absence of

a gene, the gene network is nonetheless able to express the anterior genes. The Hox clusters

might provide a redundancy in development which allows a modified gene network to retain

some functionality. We explore this idea in the discussion of Chapter 5.

2.2 The formation of the limbs in chick embryo

The formation of the limbs in vertebrates is a prominent example of how the dynamical

nature of developmental may come into play. Because the pattern is simple and easy to

probe by surgical means, the chick limb is a good model for studying pattern development

and inter-cellular signaling. By the third day after the egg is laid, the chick embryo develops

limb buds which will lay out the structure of the limb (cartilage, muscles and tendons) within

the next seven days [23].

At the tip of the limb bud is a thickening of the ectoderm called the apical ectodermal

ridge, or simply the apical ridge. The progress zone is a region beneath the ridge in which

undifferentiated mesenchymal cells reside. As those cells leave the progress zone, they dif-

ferentiate into the cartilaginous structure that will later develop into the bones of the limb

(in order, the humerus, radius and ulna, the carpas and the digits). The amount of time

they spend in the progress zone is theorized to play a role in deciding the cell fate [24].

The proximal-distal axis is the axis that runs along the limb. As the limb grows, cells most

proximal appear in the mesenchyme and leave the progress zone which migrates away from

the body as the limb grows in length, Fig 2–2. The apical ridge stays further along the distal

axis and the polarizing region (also called zone of polarizing activity, ZPA) which specifies

position along the anterior-posterior axis is located along the limb on the posterior side, Fig.

2–2.

Many manipulations can be done on the limb bud without altering the resulting pattern,

however both the apical ridge and the polarizing region are necessary for the correct pattern

development. Grafting the ZPA on the other side of the limb bud leads to a mirroring of

along the proximal-distal axis [25], while early ablation of the apical ridge leads to incomplete

limbs with the most distal structures truncated [26]. This effect is countered if beads releasing

11



Figure 2–2: The polarizing region and the apical ectodermal ridge in the developing limb
bud. The polarizing region (ZPA) together with the apical ridge are in a feedback loop
maintaining their expression levels. The ZPA provides the positional information along the
anterior-posterior axis while the the apical ridge is thought to specify position, via time spent
in the progress zone, along the proximal-distal. The formation of the humerus, radius, ulna
and the carpals is sequential in time. Figure reproduced as in Principles of Development by
Wolpert [6].

the growth factor FGF-4 are grafted in place of the apical ridge [27]. Sonic HedgeHog in

the polarizing region and FGF-4 in the apical ridge are in a positive feedback loop which

maintains their expression [28]. Thus the duration of exposure to morphogens [12,13] in the

progress region leads to patterning along the embryo. If the exposure time is cut short, more

distal structures cannot develop and the limb is abruptly terminated [26, 29]. The position

of the structure depends on the time spent in the progress zone and gives rise to a temporal

French Flag Model as in Fig. 1–3.

We will model this type of time dependency in Sec 4.1 and use this mechanism to

generate a patterned embryo with a temporal French Flag Model where the cell position is

in direct correspondence with the exposure time to some morphogen.

2.3 A simplified model for neural tube patterning

As an additional example of a biological process where a static positional morphogen

gradient is not enough to explain patterning [30,31], we introduce a model used by Balaskas

et al. [14, 17] to explain neural tube patterning guided by Sonic HedgeHog (Shh). In the

vertebrate central nervous system, Shh protein controls the formation of five neural progen-

itor domains from the ventral neuroepithelium [32]. Increasing concentration of Shh ligand
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or increasing activity of Gli (regulated by Shh) leads to successively more ventral neutral

fates [30, 33]. In addition, the duration of Shh signaling plays a role in the subtype identity

of the neural progenitor domains such that longer exposure to Shh signaling is necessary for

more ventral neural progenitor identities. As per Fig 2–3, these neural progenitor domains

and identities correspond to the expression of three transcription factors Pax6 (P ), Olig2

(O), Nkx2.2 (N) of which O and N are activated by Gli3 (G) which varies in time [33–35].

Figure 2–3: Gli(G) through the
Shh gradient originating from
the floor plate (FP) leads to
the patterned gene expression of
Pax6 (P ),Olig2 (O),Nkx2.2 (N).
In turn, their level leads to the
formation of the progenitor domains
(p1,p2,p3,pMN) which eventually
generate distinct neuronal subtypes
(V2,MN,V3). Figure reproduced as
in Gene Regulatory Logic for Read-
ing the Sonic Hedgehog Signaling
Gradient in the Vertebrate Neural
Tube by Balaskas et al. [14]

Balaskas et al. offer a model of the interactions between these transcription factors

which successfully explains how the duration of Shh signaling is interpreted by the network

to produce the neural progenitor domains. Figure 2–4. summarizes the interactions and Eq.

2.1 is the mathematical relationship for their expression2 . The early P represses the late N ,

O represses P and N , N represses O and P , and finally G activates N and O, but not P .

2 Note that the notation and the corresponding ODEs do not agree with the convention we adopt in Sec.
3.1. The difference in behaviour is negligible.
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Figure 2–4: GRN represent-
ing the interactions between
Nkx2.2 (N),Olig2 (O),Pax6 (P ) and
Gli (G) through Shh (S). Flat arrows
are repression and normal arrows are
activation. Figure reproduced as in
Gene Regulatory Logic for Reading the
Sonic Hedgehog Signaling Gradient in the
Vertebrate Neural Tube by Balaskas et
al. [14]

Ṗ =
α

1 +
(

N
NcritP

)h1 +
(

O
OcritP

)h2
− k1P
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βG

1 +G
× 1

1 +
(

N
NcritO

)h3
− k2O

Ṅ =
γG

1 +G
× 1

1 +
(

O
OcritN

)h4 +
(

P
PcritN

)h5
− k3N

(2.1)

This model is of particular interest to us because a timescale emerges from the property

of the network whereby a transition from P → O → N successively happens (Fig. 2–5)

in time and eventually leads to five domains,. Upon careful examination, this timescale is

found to be controlled by the concentration of G, or alternatively by parameters mediating

the activation of O and N by G (parameters not considered in the formulation given by

Balaskas et al.). The full details of the analysis are considered in Chapter 4 and we will

generalize this type of gene network to simulate patterning with a temporal French Flag

Model for greater number of genes.
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Figure 2–5: Fluorescence of O,N and P at different stages of neural tube patterning. The
gene expression levels change in time and there is a transition from P → O → N . Figure
reproduced as in Gene Regulatory Logic for Reading the Sonic Hedgehog Signaling Gradient
in the Vertebrate Neural Tube by Balaskas et al. [14]
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Chapter 3 - Dynamical system theory for Gene
Regulator Networks

3.1 Genes Regulatory Networks (GRN)

Proteins are complex macromolecules involved in virtually all processes within the cell.

Specific proteins direct molecules to their rightful place, others act as enzymes catalyzing

important reactions, some even directly influence the very process by which they are tran-

scribed. We call the aggregate of proteins, DNA, RNA and the various other molecules

involved a Gene Regulatory Network (GRN). Many approaches exist to the modeling of

GRNs and we shall give a brief introduction to some notable formalisms.

In the context of developmental biology and cell fate, it is possible to classify cells by

attributes such as their function, position and composition. It is also possible to collect data

regarding the various genes being expressed in a given cell type. Together these two variables

can be used to form some sort of table cataloging the different cells and their respective

genes distribution. From this table, one can compute correlations of various orders between

distinct cell types and genes. One can use this type of data to model genes as being part of a

network of interacting nodes. Like in an Ising model [36], where the spin of an electron can be

either up or down, a gene can either be on or off according to some threshold concentration.

Interactions between genes can be modeled as a favourable or disfavourable change in the

energy E(C) of a configuration C = {g1, g2, g3, . . . , gN} where gi ∈ {+1,−1}. If we only

allow two point interactions, E(C) is given by eq. 3.1

E(C) =
1

2

∑

i,j

Jijgigj +
∑

i

higi (3.1)

The cell fate can then be defined as a configuration C that is a local minimum of E(C)

and the strength of the interactions Jij, hi can be inferred from the data table of cell types

and gene expression. The network can be made time dependent if we update the network

every time step τ by changing gi according to some rule based on C. This type of Ising model

has been successfully applied to other fields of biology, notably the Hopfield network [37]

in the context of memory and neural networks. This type of approach tends to be very
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high dimensional, there are thousand of genes in an organism (or alternatively billions of

neurons in the human brain) and the method offers a very coarse insight on the nature of

gene interactions. The same types of generalizations that apply to the Ising model tend to

be applicable in biology, for example, as a type of Potts model [38], the genes gi could take

on a wider range of values than {+1,−1}. It is also possible to take into account higher

order interactions of the form 1
n!

∑
i1,i2,...,in

wi1i2...ingi1gi2 . . . gin in Eq. 3.1.

A more detailed approach consists in making a biologically faithful model of interactions

while remaining simple enough to be computationally useful. By modeling gene expression

as a set of coupled ordinary differential equations (ODEs) [39], either deterministically or

stochastically, one can work with variables Gi(t) representing the time dependent concentra-

tion of various genes. The steady-state of the ODEs is used to represent the potentially viable

fate of the cell and many phenomena arise from the complex solutions to these ODEs. We

are particularly interested in the time dependence of gene expression and how the transient

behaviour can be used in the context of development [40].

A gene interacts with another through extra terms acting on the production rate of the

affected gene. The effect of morphogens is encapsulated in additional variables Mj(t) whose

values are externally fixed as a function of time. Their interactions are also described as

changes in the gene’s production rate. Gene networks can be mathematically transcribed

into an equation of the form

dGi

dt
= Pi(M1,M2, . . . ,Mn, G1, G2, . . . , GN)− λiGi (3.2)

where Pi is the production term and λiGi is the degradation term with λi the associated

degradation rate. The usual form of Pi is either assumed based on a phenomenological model

or can be given by Law of Mass-Action which serves to predict the behaviour of chemical

solutions in dynamic equilibrium. The Pi’s are usually taken as low order polynomials or

products of Hill functions (see Eq. 3.4 for a concrete example).

Hill(G, T, h) =
1

1 + (G/T )h
=






Th

Th+Gh if h > 0, T > 0

Gh

Th+Gh if h < 0, T > 0

1 if h = 0, T = 0

(3.3)
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Figure 3–1: Example Hill functions for gene activation or repression. Red dots correspond
to half occupancy/activity. A. Activation with h = −0.5,−1,−2,−5,−400 and T = 2 from
left to right respectively. B. Activation with h = −3 and T = 0.1, 0.5, 1, 2, 5 from left to right
respectively. C. Repression with h = 0.5, 1, 2, 5, 400 and T = 2 from left to right respectively.
D. Repression with h = 3 and T = 0.1, 0.5, 1, 2, 5 from left to right respectively.

Eq. 3.3 is the Hill function and is most notably used in the context of ligands binding

[41]. It describes the fraction of ligands bound as a function of ligand concentration. G > 0 is

usually the ligand concentration, T > 0 is the ligand concentration producing half occupancy

and h is the Hill coefficient1 describing the cooperativity. −1 < h < 0 denotes negative

cooperativity, h < −1 is positive cooperativity and h = −1 is non-cooperative binding.

However, in the context of gene networks, Hill functions are also used to describe acti-

vation and repression of genes as was shown in the case of Hunchback and Bicoid [42]. In

that context, G > 0 is the concentration of the gene acting on the production rate of an-

other gene. T > 0 is the threshold of concentration halving the production and h is the Hill

1 Eq. 3.3 is sometimes defined as 1
1+(T/G)h in which case the Hill coefficients h are the negative of those

we present.
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coefficient describing the strength (steepness of the curve) of the activation or repression. A

positive Hill coefficient corresponds to repression, i.e. gene G impedes the production, while

a negative Hill coefficient corresponds to activation, i.e. the gene catalyzes the reaction. In

the limit h → ±∞, the Hill function converges to the Heavyside function which is either

zero or one with a sharp transition at G = T . We take the convention that h = 0, T = 0

leads to no effect on the production. Figure 3–1 shows four families of Hill functions with

varying parameters.

Gene networks graphs are used to represent genes and their interactions. Genes and

morphogens are represented as nodes and interactions are edges. Nodes are sometimes codi-

fied by shape to differentiate between morphogens (inputs), genes that are outputs (realizator

genes) and regular genes (genes which interact with the outputs but are not outputs them-

selves). Arrows running from G1 to G2 represent activation of G2 by G1, flat-headed arrows

from G1 to G2 represent repression of G2 by G1. An arrow from a node to itself represents

self-activation or self-repression. It must be noted that these interactions are not faithful

representations of reality, but instead effective interactions averaging over the details to sim-

plify the model. In reality it is not the genes that activates or represses other genes, instead

a gene, say G1 codes for a certain protein which in turn affects the complicated process of

DNA transcription thereby changing the rate at which G2 is transcribed. The process is

abstracted as an interaction between G1 and G2 through the Hill function.

Figure 3–2 shows a gene network graph with a legend to illustrate the convention. Figure

3–2 B. also shows the steady-state concentration of the genes of an array of cells (represented

by the position axis). Each cell is exposed to different concentration of the input morphogen

0 which leads to patterning into three separated domains. The parameters and the topology

of the network (i.e. the way in which the edges relate to the nodes) determine the resulting

pattern.
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Figure 3–2: Graph and Output for an example GRN. A. Graph of genes and corresponding
interactions. B. Output of an array of cells (same GRN) denoted by position. Each cell
is subjected to a different morphogen profile leading to distinct fates represented by the
three domains. C. Legend corresponding to the GRN graph. The figure is reproduced as in
Francois, Siggia, 2010 [16].

dG1

dt
= α1max{Hill(M,T1M , h1M),Hill(G1, T11, h11)}− λ1G1

dG2

dt
= α2max{Hill(M,T2M , h2M),Hill(G2, T22, h22)}Hill(G1, T21, h21)Hill(G3, T23, h23)− λ2G2

dG3

dt
= α3max{Hill(M,T3M , h3M),Hill(G3, T33, h33)}Hill(G1, T31, h31)− λ3G3

(3.4)

Eq. 3.4 is the set of coupled ODEs corresponding to the GRN of Fig. 3–2. αi,λi

is the production rate, degradation rate of Gi respectively. Tij, hij are the parameters of

the Hill function parameterizing the effect of Gj on Gi. Similarly, TiMj , hiMj parametrize

the effect of the morphogen Mj on Gi. In the case of repression i.e. hij < 0, each Hill

function multiplies the rate. In the case of activation, only the maximum of the activating

Hill functions multiplies the rate, the catalyst effectively compete with each other and the

strongest effect is felt. The general equation relating all the interactions is given by Eq. 3.5.

Compare with Eq. 3.4 and the interactions of Fig. 3–2.
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We now introduce a matrix notation to store hill parameters in a compact way and

show case interactions. Eq. 3.5 is the general ODE that can be constructed given a full set

of parameters (of which some might be zero, representing no interaction). Once familiar,

these matrices immediately tell us how each gene is affected by the other genes. Table 3–1

summarizes Eq. 3.4 in accordance with Eq. 3.5 for the GRN of Fig. 3–2. The sign of

hij, hiMj is made explicit through the use of absolute value.

Rates
G1 G2 G3

Production α α1 α2 α3

Degradation γ γ1 γ2 γ3

Hill Coefficients
G1 G2 G3 M

G1 −|h11| 0 0 −|h1M |
G2 h21 −|h22| h23 −|h2M |
G2 h31 0 −|h33| −|h3M |

Thresholds
G1 G2 G3 M

G1 T11 0 0 T1M

G2 T21 T22 T23 T2M

G2 T31 0 T33 T3M

Table 3–1: Example table for the 3D GRN of Fig. 3–2.

dGi
dt = αi max

hij<0
hiMj

<0

{Hill(Sj, Ti{j,Mj}, hi{j,Mj})}
∏

hij≥0
hiMj

≥0

Hill(Sj, Ti{j,Mj}, hi{j,Mj})− λiGi

Where Sj stands for Gj or Mj with corresponding parameters Ti,{j,Mj}, hi,{j,Mj}

(3.5)
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3.2 Phase Space and Multistability

The phase space [43] is a mathematical tool which we borrow from physics to explain

the dynamics of gene networks. In the phase space, each possible state of the system is

represented by a point in a multidimensional space corresponding to the degrees of freedom

of the system. As such, changing a variable (such as position or gene concentration) in the

mathematical model corresponds to shifting along the dimension of that degree of freedom.

If the variables depend on a parameter such as time and are constrained by a relationship

or rule (such as the interactions in a GRN or the laws of motion in classical physics) then

we can draw a curve through phase space depicting the state of the system as a function of

time. The first order system of ordinary differential equations in vector form

d)x

dt
= )f()x)

is an example of a relationship specifying the state )x(t+dt) as a function of the previous

state )x(t). In classical physics, position q and momentum p are two degrees of freedom related

through Newton’s Laws of motion which specify a set of coupled first order differential

equations to solve for the degrees of freedom as a function of time starting from an initial

condition. Plotting the resulting trajectory on the phase space shows the evolution of the

state (q(t), p(t)) compatible with the initial state (q(t0), p(t0)). A family of such curves can

then be plotted for various initial states (p, q) to show the possible responses and outcomes

of the system to be studied. Fig. 3–3 is the phase portrait of the non-linear pendulum for

different energies where (θ, θ̇) play the role of the canonical variables (q, p) [44].

The phase space often has specials points and trajectories. For example, In Fig. 3–3, the

separatrix is the set of points which separates two regions of phase space with very different

behaviour. Another special set of points are the nullclines associated to xi which are defined

as the states )xnull such that, for a given i,

dxi

dt
= fi()x) = 0.

Their intersection defines a fixed point, or alternatively steady state, a special state of

the system which does not change as a function of time. A specific example is given in Sec.
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Figure 3–3: Phase portrait of the non-linear pendulum where (θ, θ̇) play the role of the canon-
ical variables (q, p). Because energy is conserved, each curve corresponds to a given energy.
The separatrix is the boundary between rotations and liberation. The figure reproduced as
in Analytical Mechanics by Hand & Finch. [44]

3.4 with the associated figure 3–4. Mathematically, those points are defined as any point )x∗

satisfying the equation

d)x

dt
= )f()x∗) = )0

Fixed points can either be stable or unstable. A stable fixed point is one such that

given a tiny perturbation of the state )x∗ into the state )x∗ + δ)x converges back into the fixed

point )x∗ in finite time. An unstable fixed point is one such that a tiny perturbation leads to

a large change in the system’s state away from the fixed point )x∗. A fixed point for which

perturbations in different directions lead to both attractive and repulsive behaviour is also

called a saddle. Mathematically, this behaviour can be captured by Taylor expanding around

the fixed point and examining the eigenvalues of the resulting linear system Eq. 3.6
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d)x

dt
= )f()x∗ + δ)x) ≈ )f()x∗) + Â()x∗) · δ)x

Â()x∗) =
d)f

d)x

∣∣
!x∗

(3.6)

where Â is the Jacobian matrix whose columns are the gradients of the entries xi of )x

evaluated at the fixed point )x∗. The stability of )x∗ in the direction of the eigenvector )vi can be

read off from the corresponding eigenvalue λi of Â, negative eigenvalues are associated with

a stable direction and positive eigenvalues with unstable directions. Complex eigenvalues

come in pairs and are indicative of oscillations while zero eigenvalues are a special subject

we will treat in the next section.

Stable fixed points are of particular importance to us and we will assume cell fates

correspond to stable fixed points. Unstable fixed points are less relevant due to the effect

of noise on the viability of such states. The phase space then corresponds to all states

accessible to the cell, of which fixed points represent all possible cell fates. The set of initial

conditions accessible to a cell further restrict which fixed points are realizable fates for a

given cell. Multistability is then the mathematical statement that multiple fates can be

sustained simultaneously in an environment and regulation is the act of driving cells to one

fate over another.

As we mentioned above, complex eigenvalues lead to oscillation. In particular, they

lead to limit cycles which can be either attractive or unstable depending on the sign of the

real part of the eigenvalue. Oscillators are useful and can be used to model development of

periodic structures, however oscillators are fundamentally different from fixed points in that

they constantly change in time although in a predictable and regular manner. As such, to

model cell fate as the steady state outcome of a GRN, we will require a method for oscillators

to reach stability. It is a priori not obvious how GRN can give rise to oscillating genes in

one regime (such a high concentration of a morphogen) while being multistable in another

regime (low concentration of a morphogen).
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3.3 Slow manifolds

We saw in section 3.2 that in order to assess the stability of a fixed point, it is necessary

to look at the eigenvalues λi of the linearized system near the fixed point. We can define

four linear invariant subspaces based on the eigenvalues λi of Â

• The stable subspace spanned by the generalized eigenvectors corresponding to the

eigenvalues λi with Re(λi) < 0.

• The unstable subspace spanned by the generalized eigenvectors corresponding to the

eigenvalues λi with Re(λi) > 0.

• The center subspace spanned by the generalized eigenvectors corresponding to the

eigenvalues λi with Re(λi) = 0.

• The slow subspace spanned by the generalized eigenvectors corresponding to the eigen-

values λi with λi = 0.

From our definition, it is clear that the slow subspace is a, possibly empty, subspace of

the center manifold. The behaviour of the center subspace cannot in general be described

by the linearization of the system. Indeed, it is a sign that the quadratic or higher order

terms play an important role. Center subspaces often arise in bifurcation theory and lead

to interesting phenomena. The linearized subspaces play an important role in the theory of

non-linear systems as they define tangent spaces to the invariant manifolds of the non-linear

system.

We will focus on the slow manifold as a relevant object of study. It has numerous sim-

plifying properties. Because of their zero eigenvalues, slow manifolds act as master variables

upon which faster variables reach quasi-static equilibrium. Fast variables can therefore be

’integrated out’ leading to a lower dimensional system approximating the original non-linear

system [45–47]. Lower dimensional systems, by virtue of their comparable simplicity, tend

to be easier to study and analytical result are more readily extracted. In this way, slow man-

ifold theory can be used to simplify both ODE and PDE systems. Interestingly, the theory

of slow manifolds has also been applied to stochastic systems in biology [48, 49], although

there are considerably more subtleties such as the correlations between variables.

An important point that must be kept in mind is that a slow subspace is rigorously

defined precisely at a fixed point )x∗ with one or many eigenvalues λi precisely equal to zero.
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Despite this, slow manifold theory can sometimes successfully be used near a fixed point

provided slow and continuous changes in phase space, in which case the constant term in

the Taylor expansion is non zero, yet sufficiently small. Fast variables can also be eliminated

even in the case λ ≈ 0 as long as there is a clear separation in magnitude compared to the

other eigenvalues.

3.4 Bifurcation theory

Bifurcation theory is the study of topological changes in families of curves as a result of

infinitesimal parameter variation. A family of curves could be, for example, the solutions to

a differential equation while a topological change might be the apparition of fixed points or

limit cycles. The parameter to be varied could be the mass of an object, the concentration

of a morphogen or the production rate of a protein. Bifurcation diagrams, like that of Fig.

3–5, are plots of the fixed points as a function of the bifurcation parameter. They serve

to illustrate the topological change that can happen at critical values of the bifurcation

parameter.

Bifurcations come in two kinds, local and global. A local bifurcation can be analyzed

through changes in the local stability of fixed points. They are limited small regions of phase

space as the bifurcation parameter is smoothly changed. Global bifurcations, on the other

hand, lead to changes in topology that extend to arbitrary large distances. They cannot be

studied through the local stability of fixed points.

We will focus on local bifurcations. The most well known local bifurcations are saddle-

node, pitchfork and Hopf bifurcations. In the saddle-node bifurcation, two fixed points, one

stable and one unstable, collide and disappear leaving no trace as the bifurcation parameter

is varied. In a pitchfork bifurcation, the number of fixed points locally goes from one to three,

preserving the the number of stable fixed points minus the number of unstable fixed points.

In a Hopf bifurcation, a shrinking limit cycle collides with a fixed point and disappears. If

the fixed point is attractive, the limit cycle is unstable and vice versa.

In the present work, we will deal exclusively with saddle node bifurcations, thus we give

a simple biological example, a switch [50]. Let x be the concentration of a protein and y
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Figure 3–4: Phase portrait of the biological switch corresponding to Eq. 3.7 for a = 0.45, b =
1. The black arrows indicate the direction and magnitude of the flow. The blue lines are
families of curves tangent to the arrows. The red lines are the nullclines given by Eq. 3.8
which intersect in three points corresponding to the fixed points.

the concentration of mRNA translating a gene. Let the gene produce protein x and let x

activate the gene. In dimensionless form, this leads to the following ODEs:

ẋ = y − ax

ẏ =
x2

1 + x2
− by

(3.7)

where a > 0 and b > 0 are degradation rates. The system is either stable or bistable

after undergoing a saddle-node bifurcation. To see this, observe the nullclines in Fig. 3–4

given by Eq. 3.8.
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0 = y − ax → y = ax

0 =
x2

1 + x2
− by → y =

x2

b(1 + x2)

(3.8)

To find where the nullclines intersect, we solve the equation ax = x2

b(1+x2) for which

x∗ = 0, y∗ = 0 is a always solution. Assuming x (= 0, we only need to solve the quadratic

equation ab(1 + x2)− x = 0 to get the remaining roots. The solution is then

x∗
± =

1±
√
1− 4a2b2

2ab
, x∗ = 0

y∗± =
1±

√
1− 4a2b2

2b
, y∗ = 0

There are two solutions when the discriminant is positive, i.e. 2ab < 1. If we vary a,

the bifurcation happens when ac = 1
2b , past the bifurcation x∗

+ corresponds to the stable

fixed point and x∗
− corresponds to the unstable fixed point, x∗ = 0 is always stable. The

bifurcation diagram Fig. 3–5 shows the annihilation of the two fixed points at ac = 0.5 for

b = 1.

Figure 3–5: Bifurcation diagram of the biological switch corresponding to Eq. 3.7 for b = 1
as a is varied past ac = 0.5. Full lines are stable fixed points and dashed lines represent
unstable fixed points. The two fixed points collide at ac = 0.5 leaving only x∗, y∗ = 0 as a
stable fixed point. A. shows the x-component of the stable fixed points and B. shows the
y-components.
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3.5 Langevin Equation and Tau Leaping

So far we have only considered deterministic equations, however, biological systems

tend to be very noisy [51]. Without robust models [52] that take into account the stochastic

nature of chemical reactions, there is little hope to describe development accurately and

many phenomena can be missed [53]. The effective number of reacting molecules tends to

be relatively low, sometimes as low as ten molecules as in the case of ligands in the immune

system. With such low numbers of molecules, stochastic approaches are necessary to get

realistic results. The effect of noise in development might be so great as to prohibit or favor

certain types of interactions [54, 55]. It sets an effective upper bound on how accurately

information can be inferred from biological quantities [56]. In particular, it was shown that

GRNs are not limited to ”on/off” states and can carry information greater than one bit even

in the presence of noise [57].

In essence, the most general way to model a stochastic system is by writing out every

possible state and assign probabilities to transition from one state to another. The proba-

bility distribution is then the solution of the Master Equation [58], the equation that relates

every state to another. One can try to solve the Master Equation, but unless one is working

with the simplest systems, there is little hope for an analytic solution. The Fokker-Planck

equation, a PDE which serves as a continuous approximation to the Master equation can

sometimes be solved such as in the case of the continuous Wiener process, but often time

the only hope is to numerically tackle the problem.

A stochastically faithful algorithm was given by Gillespie [59], it generates accurate

realizations of a noisy system. However, the exactness of the simulation comes at great

computational cost. The chemical Langevin equation is a stochastic differential equation

which approximates the Master Equation and is equivalent to the Fokker-Planck equation.

It treats the stochastic system as being a deterministic system with a noise driven force. For

a single species which can undergo M reactions, the chemical Langevin equation is:

dX(t)

dt
=

M∑

j=1

νjaj(X(t)) +
M∑

j=1

νj

√
aj(X(t))Γj(t) (3.9)
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where X(t) is the chemical specie, νj is the stoichiometric coefficient of reaction j, aj is

the propensity function which regulates the effect of X(t) and Γj is uncorrelated Gaussian

white noise obeying

〈Γj(t),Γj′(t
′)〉 = δjj′δ(t− t′)

Eq. 3.9 can be numerically integrated using the Tau Leaping method [60]. Taking time

steps τ , we can perform the Euler method with the iterative equation

X(t+ τ) = X(t) +
M∑

j=1

νjaj(X(t))τ +
M∑

j=1

νj

√
aj(X(t))

√
τ Γ̃j(µ = 0, σ = 1) (3.10)

where Γ̃j(0, 1) is a Gaussian with mean zero and standard deviation one. τ here must

be small enough that the propensity functions aj do not change much. At the same time τ

cannot be too small, it must be big enough that all reactions fire multiple times within time

τ .

In this thesis, we will stick to GRN and limit ourselves to a production term )f(M, )x)

regulated by a morphogen M and a degradation term )g()x). We work with )x as a concentra-

tion rather than a number of molecules and taking N , the number of molecules per volume,

to set the strength noise threshold. Our deterministic equations is then of the form

)̇x = )f(s, )x)− )g()x)

and the associated iterative Langevin equation for each component is

xi(t+ τ) = xi(t) + τ(fi(s, )x)− gi()x)) +

√
τ

N

(√
fi(s, )x)Γ̃i1(0, 1) +

√
gi()x)Γ̃i2(0, 1)

)
(3.11)
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Figure 3–6: Two Langevin realizations for the biological switch, Eq. 3.7 with a = 0.45, b = 1.
A. N = 50 leads to big fluctuations. B. N = 500 leads to smaller fluctuations.

As an example, we take again the biological switch, Eq. 3.7 and integrate it for N = 50

and N = 500. Eq. 3.12 is the associated Langevin equation and Fig. 3–6 compares the

deterministic solution to the stochastic realization. Note that as N increases, the stochastic

result converges to the deterministic curve as expected since in the limit N → ∞, Eq. 3.12

becomes the deterministic equation 3.7.

x(t+ τ) = x(t) + τ
(
y(t)− ax(t)

)
+

√
τ

N

(√
y(t) Γ̃11(0, 1) +

√
ax(t) Γ̃12(0, 1)

)

y(t+ τ) = y(t) + τ
( x2(t)

1 + x2(t)
− by(t)

)
+

√
τ

N

(√
x2(t)

1 + x2(t)
Γ̃21(0, 1) +

√
by(t) Γ̃22(0, 1)

)

(3.12)
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Chapter 4 - Results

In section 2.3, we introduced the GRN used by Balaskas et. al. [14, 17] to model the

dependence on the duration of Shh signaling neural tube patterning. According to their

model, more ventral neural progenitor identities require longer durations of Shh signaling.

We aim to explain their finding and generalize it to higher numbers of genes. We start by

simplifying the model to reduce its dimensionality, thereby allowing us to visualize its phase

space.

Figure 4–1: Simplified network through the removal of P . The interactions between O, N
and S are the same.

In the GRN, Pax6 (P ) is an initial state which gets repressed over time by Olig2 (O) and

Nkx2.2 (N). Removing P from the network changes the timescale, but does not influence

the dynamics we are interested in: O is activated first and N takes over after. We will,

therefore, remove and ignore P for the purposes of our analysis, the remaining network is

then two dimensional and depicted in Fig. 4–1. Eq. 4.1 with parameters given in Table. 4–1

dictates the possible fates, where we have adopted the convention and notation from Sec.

3.1.
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Ṅ = αN
ShNS

ShNS + T hNS
NS

T hNO
NO

OhNO + T hNO
NO

− γnN

Ȯ = αO
ShOS

ShOS + T hOS
OS

T hON
ON

NhON + T hON
ON

− γoO

(4.1)

Rates
N O

Production α 5 5
Degradation γ 1 1

Hill Coefficients hij and TiS

N O S
N 0 1 1
O 5 0 1

Treshholds Tij and TiS

N O S
N 0 1 -1
O 1 0 -1

Table 4–1: Table for the simplified 2-dimensional GRN of Fig. 4–1.

4.1 Setup for embryo

Our goal is to make use of a dynamic morphogen signal to create a patterned embryo

along an axis. We use this section to present our setup for the in silico simulation of an

embryo. We define the embryo as an array of cells that can be one, two or three dimensional.

We will initially work with a one dimensional embryo where each cell is arranged in a line.

Later after having established our result, we will generalize our set up to a two dimensional

array of cells where the increased number of neighbors can improve the noise robustness

through cell-to-cell interactions.

Consider a GRN such as the one represented by Eq. 4.1. It is a cell autonomous model

because it is completely independent of the state of the other cells. Consider now a one

dimensional cell array along a position axis. To each cell corresponds a position and we

wish to obtain a pattern whereby the array can be separated in two distinct and continuous

domains of gene expression. Given the same morphogen input each cell must stabilize in
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Figure 4–2: We model S as a travelling wave along the embryo. The first cells are exposed
for a very brief times and cells farther along the axis are exposed for longer periods of time.

the same fate and as such it is impossible to obtain patterning. The classical solution is to

assume the morphogen gradient carries positional information , that is each cell is exposed

to a different morphogen concentration as a function of its position. We seek to find a

solution to this patterning problem where the concentration is not a function of position.

Rather, we seek to expose cells to a constant concentration of morphogen for a given length

of time. If each cell is exposed to the morphogen for a different length of time, then positional

information can be inferred from exposure time to obtain a Temporal French Flag model.

To vary exposure time, we model Shh as a traveling wave along the embryo. Cells

Cm are initially all exposed to the same concentration of morphogen, but after some time

the concentration in posterior cells drops to a lower level L, the wavefront due to the drop

in concentration travels along the embryo such that progressively more anterior cells are

exposed for longer periods of time. After a certain time, Shh reaches steady-state in all cells

and cell fate is established. Fig. 4–2 shows Shh as a function of time at various cell positions.

Biologically, cells could acquire different exposure times by leaving a budding region, the

longer cells stay in the budding region, the longer they are exposed to the morphogen [23].

Anterior cells are the first to leave the budding region and are therefore exposed for short

times. Another way to obtain such a traveling wave is to imagine that S is repressed by

another molecule M and that M is absent in the embryo. If the anterior region suddenly
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starts producing molecule M , the concentration of S will fall to lower levels L as a result

of the repression by M . Over time these molecules M will diffuse through the embryo and

posterior cells by their greater distance to the anterior source ofM will maintain higher levels

of S for a longer period of time. All in all, we make no claim as to why S(t) is a travelling

wave along the embryo. We simply model it as such to simulate a Temporal French Flag

model.

Figure 4–3: We model S as a con-
stant plus a Hill function such that
after roughly θ hours, S has fallen to
a steady-state concentration.

To model this traveling wave, we take Sm(t) as in Fig. 4–3. The concentration of S at

Cell m is a constant L added to Hill function with a threshold θm which corresponds to the

time of exposure for cell m (Fig 4–2). L + Lt is the initial concentration of S which drops

to the steady-state value L after ≈ θm time. η, the Hill coefficient quantifies the abruptness

of the concentration drop. Eq. 4.2 is the complete mathematical description of the system

where Cm[O], Cm[N ], Sm(t) is the concentration of O,N, S in Cell m respectively as in Fig.

4–2.

Sm(t) = L+ Lt
θηm

θηm + tη

Ċm[O] = αO
ShOS
m

ShOS
m + T hOS

OS

T hON
ON

Cm[N ]hON + T hON
ON

− γoCm[O]

Ċm[N ] = αN
ShNS
m

ShNS
m + T hNS

NS

T hNO
NO

Cm[O]hNO + T hNO
NO

− γnCm[N ]

(4.2)
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Figure 4–4. shows the solution to Eq. 4.2 for two different values of θ. For both cells,

the initial time course is identical, a difference only arises near θ. For the anterior cells, the

concentration of S abruptly falls and the system stabilizes in a stable O-state. In posterior

cell, while O was initially expressed, it slowly degrades as N takes over. By the time the

concentration of S drops in the posterior cell, N is fully expressed and the system simply

stabilizes in the N -state. This creates a patterned embryo where anterior cells begin to

express O and posterior cells express N . See Fig. 4–5.

Figure 4–4: Graph of O,N as a func-
tion of time for two different expo-
sure times θ. A. θ = 7 B. θ = 15.
In both cases O is expressed first, if
the system is exposed to S = 0.8 for a
sufficiently long time, N is the steady
state.
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Figure 4–5: We model S as a traveling wave along the embryo. Leftmost cells are exposed
for very brief times and cells farther along the axis are exposed for longer periods of time.
All cells initially express the same profile (Fig. 4–4), but as they begin to stabilize after θm
time a 2D pattern is created. Red is high O, Red/Green is a transient state and Green is
high N .
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4.2 Phase space

Armed with eq. 4.2 we can now evaluate the response of the network to the morphogen

Shh (S). Fig. 4–6 shows the phase space for S = 0.6. We notice the nullclines cross in three

points. Two of them are stable fixed points, they correspond to the N fate and the O fate.

In between them there is an unstable fixed point. For initial conditions near the origin, the

system is driven to the O fixed point. The separatrix is the line separating the two basins

of attraction, the flow cannot cross it and therefore the N state cannot be reached.

Figure 4–6: Phase portrait of
the simplified network 4–1 at
S = 0.6 . The black lines are
the nullclines crossing in three
points (blue and yellow for sta-
ble and unstable respectively).
The blue separatrix separates
the two domains. The red line
is the flow from the origin con-
verging to the O-state.

For larger values of S, the nullclines move and the number of crossings change. Fig. 4–

7A. shows the separatrix and fixed points for increasing values of S. The unstable fixed point

migrates toward the stable O state and a saddle-node bifurcation happens at S+ ≈ 0.710.

Fig. 4–7 B. shows the phase space for S = S+, the nullclines are near parallel at the

bifurcation, the O state having vanished, the flow is free to proceed towards the N state,

constrained between the nullclines. Fig. 4–8 is the bifurcation diagram for the process. As

S varies from 0 to 1 the position of the fixed points change and two saddle-node bifurcations

happen. One at S+ and another one for lower values at S− ≈ 0.558. In the S− bifurcation,

it is the N state that collides with the unstable state, leaving behind the lone O state.

Interestingly, this leads to hysteresis which has also been observed in other biological contexts

[61].

If we take a look at the gene expression as a function of time we see that N can only be

expressed after O recedes. The network spends a long time in the O state before reaching
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Figure 4–7: Phase portrait of the simplified network 4–1 as a function of S and for S+ =
0.710. A. The red stable O-state moves toward the unstable black point to ultimately
annihilate at S+ = 0.710. The blue separatrix moves to the left and the purple stable N -
state moves to the right. B. At S+ = 0.710, the nullclines are nearly parallel and the flow is
constrained to move between the nullclines until it reaches steady-state at the N -state.

the N state, on the order of 12 hours. This is relatively slow and not comparable to the

typical degradation rate (γo, γn = 1). Not only that, but the typical time before activation

of N is variable and controlled by S. Fig. 4–9 shows the time series for decreasing values

of S, O persists for longer and longer until S = S+ leads to stabilization. The timescale

becomes infinite when S → S+ from above.

Figure 4–8: Bifurcation diagram sim-
plified network 4–1 as a function of S.
Two saddle-node bifurcations hap-
pen. The first one at S− = 0.558
leads to the creation of the N state
and an unstable fixed point. The un-
stable fixed point then migrates to-
wards the O-state and collides with
it during the second saddle-node bi-
furcation at S+ = 0.710 A. Concen-
tration of O of the fixed points as a
function of S. B. Concentration of N
of the fixed points as a function of S.
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Figure 4–9:

Change of timescale as a func-
tion of S through the closeness
to the bifurcation. T is the mini-
mum time of exposure needed to
converge to the N -state. As S
approaches S+ from above, the
timescale becomes infinite.

A. S = 0.8 =⇒ T = 11.02h

B. S = 0.74 =⇒ T = 26.05h

C. S = 0.73 =⇒ T = 35.35h

D. S = 0.72 =⇒ T = 58.05h

E. S = 0.715 =⇒ T = 91.9h

F. S = 0.712 =⇒ T = 157.85h

This slow timescale persist in phase space, an attractive line exists between the nullclines

where motion along the curve is much slower than motion transverse to it. Effectively, the

flow converges quickly on the line and then slowly relaxes to the fixed point N . We will term

this curve the ”Valley” and analyze it from the point of view of slow manifold theory.

4.3 Analytical Solution

We write eq. 4.1 in a more compact form and use parameters as chosen by Balaskas [14].

We will proceed to locally analyze the phase space. We Taylor expand near an arbitrary

point (N0, O0) = )x0 to get the linear ODEs, Eq. 4.3 where f, g are Hill functions.

Ṅ = f(O)−N ≈ f ′(O0)O −N + f(O0)− f ′(O0)Oo

Ȯ = g(N)−O ≈ g′(N0)N −O + g(N0)− g′(N0)No

≡ )̇x = Â(xo))x+ )B(x0) (4.3)
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This is valid only for )x =



 N

O



 near )xo. The matrix Â and vector )B depend on )x0

but are otherwise constant once we have chosen a specific point )x0 we are interested in. The

eigenvalues λ± and eigenvectors )v± of Â can be computed and are relevant to define the slow

manifold.

λ± = −1±
√

g′(N0)f ′(O0), )v± =



 ±
√

f ′(O0)
g′(N0)

1



 (4.4)

Fixed points correspond to points )x∗
0 such that )̇x = Â)x∗

0+ )B = 0. At a fixed point )x∗
0, we

read the stability along )v± from the sign of λ±. When S < S+, there are three fixed points,

which we label )x∗
O, )x

∗
N , )x

∗
U for the O state, the N state and the unstable state respectively.

At S = S+, )x∗
O = )x∗

U as the two fixed points collide, we call )x∗
C the critical point where

the O state meets the unstable state. The collision implies implies that λO,± = λU,± at

S = S+. For S < S+ we have λO,± < 0 by stability of O and λU,+ > 0,λU,− < 0 because

)x∗
U is a saddle. By continuity, this forces λU,+ = λO,+ = 0 when S = S+. This means that

)vC,+ = )vO,+ = )vU,+ defines a slow manifold at )xC .

To see how a slow manifold would arise near a region with a large separation in eigen-

values, consider a linear system like in eq. 4.3 near a point )x0 such that |λ+| / |λ−|. The

solution is then

)x = aeλ+t)v+ + beλ−t)v− − Â−1 )B (4.5)

with a and b are given by initial conditions, i.e. a, b such that Â)xt=0 + )B = a)v+ + b)v+.

In the case of |λ+| / |λ−|, beλ−t)v− goes to zero much faster than aeλ+t)v+ as in Fig. 4–10 and

the motion lies parallel to )v+. Therefore the dynamics is quickly canalized on a 1D manifold

defined by v+ at the bifurcation.

To find an equation for this 1D manifold, we make explicit use of the constraints that

the flow is parallel to )v+. In the case of first order ODEs, such as the one we are dealing

with, the flow is entirely constrained by )̇x, therefore the constraint we are looking for is

)̇x ∝ )v+. This is a local statement, at a given point )x0, we are computing the eigenvector of

Â()x0) from the linearization at )x0 and comparing it to the flow )̇x at )x0. We take the set of
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Figure 4–10: Linear solution of
Eq. 4.3 for various initial con-
ditions. The colored dots are
the linear solution plotted with
a constant time step of 30 min,
it illustrates a quick convergence
onto a slowly moving line. The
thin blue lines represent the flow
in phase space and the thick
cyan line is the ”Valley”.

all points {)x0 s.t. )̇x()x0) ∝ )v+()x0)} for which this condition holds to be the slow manifold.

In actuality, the equation )̇x = )v+ is only approximate, it becomes exact at the critical point

)x∗
C and when S = S+, elsewhere it is only approximate because the linear term in the Taylor

approximation is non-zero. When S < S+, the equation is also approximate because we are

not at a fixed point and because λ+ is not identical to zero. As long as λ+ ≈ 0 and the linear

term in the Taylor expansion is small, the equation will be approximately valid.

We now apply the constraint )̇x ∝ )v+ to the system at hand.

)̇x =



 Ṅ

Ȯ



 =



 f(O)−N

g(N)−O



 ∝



 ±
√

f ′(O)
g′(N)

1



 = )v+ (4.6)

Eq. 4.6 is a system of three unknowns, N,O and α the constant of proportionality

between )̇x and )v+, and two equations corresponding to the two dimensions of the vectors.

Solving this system of equations, we obtain Eq. 4.7, the implicit equation between N and

O describing the valley. Fig. 4–11 shows the implicit curve along with linear solutions

converging to the valley.

(f(O)−N) = (g(N)−O)

√
f ′(O)

g′(N)
(4.7)
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Figure 4–11: Implicit plot of the Valley for different values of S. Blue lines are the flow
and the cyan curve is the valley as given by Eq. 4.7 Red are the nullclines. A. S = 0.6 the
valley is tightly snug between the nullclines. B. S = 0.75, just past the bifurcation, Eq. 4.7
approximates the canalization of the flow very well. C. S = 1, well past the bifurcation the
nullclines start to separate and the difference between the flow and Eq. 4.7 becomes visible.

Finally, we can take the norm of )̇x to find the phase space ”velocity” along the valley.

This is in a sense how quickly gene concentration changes as a function of time. Fig. 4–12

A. compares the true velocity and eq. 4.8 as a function of time for a trajectory starting

from the origin. The agreement is optimal near the critical point. Fig. 4–12 B. shows the

eigenvalues as a function of time for the same trajectory, λ+ is closest to zero when the

velocity is slowest.

v = ‖ )̇xv‖ = |g(Nv)−Ov|‖)v+‖ = |g(Nv)−Ov|

√

1 +
f ′(Ov)

g′(Nv)
(4.8)

Expression 4.8 is also helpful to understand the origin of the slow time-scales: near the

critical point v ∝ |g(Nv)− Ov| ≈ 0 as it is the O component of A)x0 + )B so the system will

escape the ghost fixed point in a time τ ∝ 1
v , which is big compared to any parameter of the

system. This explains the ”timing effect” : much of the time evolution of the system is spent

close to the O ghost state. This becomes especially noticeable very close to the bifurcation

as τ → ∞. It is important to note that the approximation breaks down as we get further

from the bifurcation and the distance between the nullclines increases which indicates that

A)x0 + )B becomes big.
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Figure 4–12: Comparison of phase space velocity, the approximate Valley velocity and the
eigenvalues as a function of time. A. The true velocity as a function of time of a trajectory
starting from the origin is well approximated by Eq. 4.8 when the nullclines are close. B.
The eigenvalues of Â are plotted as a function of time for a trajectory starting from the
origin. λ+ is very near zero once the flow canalizes on the valley.

4.4 Higher dimension

Having elucidated the mechanism by which patterning emerges in the presence of a

temporal gradient of Sonic Hedgehog, we seek to generalize our results to higher dimensional

gene networks. We search for a gene network template that is easily altered to produce

networks leading to as many domains as genes (that is, we only want realizator genes). We

also want to preserve the scaling property of the domains as well as the sequential expression

of the genes as a function of time. Fig. 4–13 shows the concentration of a morphogen M

as a function of time with the corresponding desired temporal gene expression leading to a

clearly defined pattern.

To make clear the fact that only the transient behaviour of the morphogen is needed

for patterning, we choose L, the steady-state concentration of M to be equal to zero, (Fig.

4–14. In order for the gene expression to be sustained when no (activating) morphogen is

present it is necessary to either have self-activation or make M a repressor. We choose the

latter option and in addition require that our gene networks be fully repressing, that is, each

gene represses every other gene albeit with varying strength. This choice is also motivated

by recent findings which have shown that mutual repression enhances the steepness and

precision of gene expression boundaries [54]. The ODEs corresponding to the set up with
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Figure 4–13: We model M as a traveling wave along the embryo. Leftmost cells are exposed
for very brief times and cells farther along the axis are exposed for longer periods of time.
All cells initially express the same profile, but as they begin to stabilize after θm time the
profile of later cells diverges and explores new states. Each color corresponds to a gene Gi

expressed in the same temporal order as their positional order.
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Figure 4–14: We model M as a Hill
function such that after roughly θ
hours, M has fallen to a steady-state
concentration of 0.

parameters in Table 4–2 is summarized in Eq. 4.9 in accordance to our notation from Sec.

3.1 with the difference that the lack of activating genes has been made explicit and we assume

a single repressing morphogen M .

M(t) = Lt
θη

θη + tη

dGi

dt
= αiHill(M,TiM , hiM)

∏

hij≤0

Hill(Gj, Tij, hij)− λiGi

(4.9)

The pattern of interactions for the n genes is clear, Gi represses all genes strongly

except its successor Gi+1 which it represses at a higher threshold. Fig. 4–15 recapitulates this

pattern, only the weak repressions are shown together with the interaction of the morphogen.

Not shown are the arrows of strong repression between all genes except their successor.

By keeping the same pattern while increasing the number of genes, we can generate gene

networks that give rise to an arbitrary number of domains equal to the number of genes.

This choice of parameters essentially builds ordered interactions that direct the flow in

phase space from one gene to its successor, as shown in Fig. 4–16 A. When S is high, genes

repress each other in such a way that when Gi is expressed, only Gi+1 can be produced.

As Gi+1 accumulates, it starts to repress Gi. After some time Gi+1 wins over Gi and the

cycle continues with the accumulation of Gi+2. This stops when i = n where the specific

parameter T1n has been chosen so that G1 the successor of Gn cannot be produced. When

S is low, genes repress each other in such a way that only one gene can be expressed. The

n steady-states then correspond to high concentration of the n genes.
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Rates
G1 G2 G3 G4 G5

Production α 6 6 6 6 6
Degradation γ 1 1 1 1 1

Hill Coefficients hij and TiM

G1 G2 G3 G4 G5 M
G1 0 5 5 5 5 3
G2 5 0 5 5 5 3
G3 5 5 0 5 5 3
G4 5 5 5 0 5 3
G5 5 5 5 5 0 3

Treshholds Tij and TiM

G1 G2 G3 G4 G5 M
G1 0 0.4 0.4 0.4 0.4 1.5
G2 2.5 0 0.4 0.4 0.4 1.5
G3 0.4 2.5 0 0.4 0.4 1.5
G4 0.4 0.4 2.5 0 0.4 1.5
G5 0.4 0.4 0.4 2.5 0 1.5

Table 4–2: Table for the n = 5 dimensional GRN of Fig. 4–15.

Figure 4–15: 5D generalized GRN.
All genes strongly repress each other
(not shown), except the neighbor in-
teractions which are shown. Blue
and red arrows label weak or strong
repression, respectively. M , the mor-
phogen, represses all genes equally
except G5. Parameters as given in
Table 4–2

The structure of the interaction is such that at any given time, only three genes can be

expressed, Gi−1, Gi, Gi+1. The entire flow during such a transition is therefore constrained

to a 3D phase space as shown in Fig 4–16 B. The trajectory is similar to the 2D valley we

uncovered in Sec. 4.3. In Sec. 4.5, we will see that locally, the two are the same.

Like its two dimensional counter part, there is an emerging time scale which can be varied

through a single parameter. Eq. 4.10 defines the effective production rate of gene Gi as a
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Figure 4–16: Trajectories of the 5D GRN with parameters in Table 4–2, with the exception
of TiM = 1.58 and associated flow for M = 1. A. Gi versus time. B. 3D phase portrait of
G2, G3, G4, neighboring genes are connected by a valley.

function of the repression due to M . αi,eff can be varied by changing any of αi,M, TiM , hiM .

We will vary TiM specifically because it allows control of expression time for an individual

Gi through αi,eff.

αi,eff = αiHill(M,TiM , hiM) (4.10)

The duration of expression of a gene Gi gives rise to a domain of proportional length

(Fig. 4–17) such that by varying the parameter TiM , which controls the length of time spent

expressing Gi, directly influences the length of the domain. Fig. 4–17 shows this principle

in action. By changing T3M we induce a very long domain of cells with fate G3. Similarly by

changing all TiM equally, we can speed up or slow down the entire process which leads to a

shortened or elongated pattern. Not surprisingly, if we connect G5 to G1 by weakening the

repression threshold to T15 = 0.4 and we get an oscillator resulting in an oscillating pattern

as in Fig. 4–17.

4.5 Bifurcation analysis

The many interesting properties due to the criticality still occur and we can approximate

the valley following the same methodology as that applied to the 2D valley case in Sec 4.3.

As αi,eff is varied, either by changing M or TiM , there is a critical point for which the system
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Figure 4–17: A bifurcation controls the timescale of individual genes. By changing TiM we
can lengthen or shorten the timescale of individual genes which leads to scaled domains. All
figures are the timecourses of Gi for M = 1. A. A’. shows TiM = 1.58 which leads to a slow
timescale for the whole embryo. B. B’. TiM = 1.5, T3M = 1.575 leads to a long timescale for
G3. C. C’.TiM = 1.5 for all genes leads to a very fast timescale and short domains. D. D’.
By connecting G5 to G1 through T51 = 0.4 we get an oscillator that stabilizes into oscillating
domains.

undergoes a local saddle-node bifurcation which creates a stable fixed point for the gene Gi.

This bifurcation is the very reason why TiM can be varied to change the domain lengths.

To study this network, we proceed to linearize the system at an arbitrary point )P in phase

space. The entries of )P are some concentrations Pi corresponding to the ith gene.

Because the system is five dimensional, the linearisation of the system is much more

complicated, in particular the Jacobian matrix

Â()P ) =
dĠi

dGj

∣∣∣∣∣
Gi=Pi

contains many non-zero terms depending on Pi and is hard to visualize. However,

near the peaks of maximum gene expression where the bifurcation happens, the matrix Â

simplifies and becomes effectively 2D. In the case of the G2 peak (the block matrix shifts up

or down depending on which peak we linearize at), we have
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Figure 4–18: The nullclines are hy-
perplanes whose projection is shown
here for G1, G2, G3 at the first peak.
TiM = 1.58, M = 1. The blue curve
is the valley stuck in between the
nullclines. Compare with Fig. 4–7

Â(2nd Peak) =





−1 0 0 0 0

0 −1 f ′(P3) 0 0

0 g′(P2) −1 0 0

0 0 0 −1 0

0 0 0 0 −1





where f and g are the Hill functions between genes G2 and G3 evaluated at G2 = P2

and G3 = P3 with their respective parameters. Focusing on the 2x2 block, we have as before

the eigenvalues and eigenvectors

λ± = −1±
√

g′(P2)f ′(P3), )v± =





0

±
√

f ′(P3)
g′(P2)

1

0

0





This exact correspondence allows the computation of the approximate valley near the

peaks by removing the fast degrees of freedom and keeping the flow parallel to the slow

eigenvector. However, the approximation breaks down as the system departs from the peak.

The effect of the other genes becomes non-negligible leading to non-zero terms in the matrix
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A which regains its full dimensionality in the trough between peaks. As the system enters

another peak, the matrix becomes block diagonal again and the system follows the new

slow eigenvector, creating a new valley. In the transition between the peaks, all eigenvalues

converge to −1 at the same time, it is therefore impossible to follow an eigenvector from one

peak to another, as such the valley can only approximate peaks and cannot be analytically

connected at the troughs.

As before, this local behaviour explains the change in timescale as we vary TiM to

go closer to a bifurcation: the system spends more time close to a ”former-fixed-point” as

λ+ ≈ 0, which gives rise to a bigger domain of expression at steady state for the corresponding

gene as in Fig 4–17.

One can use the relation )v+ ∝ d !G
dt to determine an approximate equation for the valley

that holds in the vicinity of the bifurcation. It is of the same form as Eq. 4.7. The

method consists of solving a system of two equations in three unknowns to find an implicit

relationship between Gi and Gi+1. Alternatively, one can perform a detailed approach and

obtain a system of five equations in six unknowns, but there is little hope of solving such a

system.

4.6 Stochastic analysis

Up to now, we have only considered development and patterning as a deterministic

process. In reality, the cell environment is very noisy due to the fact that only a finite

number of molecules are interacting and the process is inherently stochastic. In Sec 3.5, we

presented theory of the chemical Langevin equation which we use to numerically simulate

noise using the Tau Leapping algorithm.

To have a useful model, it needs to be robust to noise, or at least we must offer an

argument for how it can be made more robust [51]. There is an obvious problem when

considering a system that evolves in time stochastically. Time compounds noise, especially

in system with sharp transitions such as those we present. The fact that there is a bifurcation

with a time scale finely controlled by the proximity to a critical value also means that there

is a trade off between noise robustness and the ability to produce domains of variable length.
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Figure 4–19: Stochastic ensemble average of the oscillating 5D GRN with a fast timescale,
TiM = 1.5 and different N . The higher N the closer to the deterministic result and the
variance becomes constrained to the transition between two genes. For smaller N , the
variance increases quickly and the predictive power is lost. A.-D. represent the values of
N = 500, 1500, 5000, 50000.

Figure 4–19 and 4–20 show ensemble averages of many trials at a given noise level,

controlled by N , the number of molecules in a given volume. The average time course

resembles the deterministic time course and in the N → ∞ we retrieve the deterministic

solution. However, for smaller N , the peaks’ amplitudes of gene expression are decaying as

a function of time, as the variance increase. As time goes on, we lose predictive power and

it becomes impossible to predict which state will be expressed at some later time t. This

actually becomes worse as TiM is adjusted to lengthen the domains. For comparison, the

average number of transcription factors for a given gene in a cell lies between 1000 and 5000.
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Figure 4–20: Stochastic ensemble average of the oscillating 5D GRN with a slow timescale,
TiM = 1.58 and different N . The GRN with slow timescale is much more sensitive to
the noise than the fast one. The higher N the closer to the deterministic result and the
variance becomes constrained to the transition between two genes. For smaller N , the
variance increases quickly and the predictive power is lost. A.-D. represent the values of
N = 500, 1500, 5000, 50000.

To remedy this problem, we therefore propose a model by which cells interact with each

other to reduce noise.

4.6.1 Cell averaging

For this part, we simulate cell development with a two dimensional cell array. Each cell

Cmn is exposed to a concentration of morphogen Mmn as in Sec. 4.1. We model Smn as a

travelling wave propagating along the x axis so that each cell along the y axis is exposed to

the same concentration of M at a given time.
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Cell sorting has been suggested as a way to repair the effect of noise [62]. An alternative

is to postulate cell-to-cell interactions. To model cell interactions we will add an interaction

term to our set of coupled ODEs. The resulting system is not cell autonomous and requires

keeping track of every cell individually. To motivate the form of our interaction term, we

note that it is known that cells interact with each other through many means such as simple

diffusion, endocytosis, the use of transport proteins such proteoglycans or signaling pathways

(e.g. Notch) [63]. Rather than modeling a particular form of cell-to-cell interaction, we want

a phenomenological effective term. We model interactions between two cells using the rate

function

Figure 4–21: Shape of the cell-to-cell
interaction function which scales ac-
cording to ξint the interaction length
and σint the interaction strength.
Given two cells with gene concentra-
tions G and G∗, they interact with a
rate ≈ σ when |G−G∗| ≈ ξ towards
their average.

Fint(Cmn[Gi]− Cpq[Gi], ξint, σint) = −σint(Cmn[Gi]− Cpq[Gi])

ξint
e−

(
Cmn[Gi]−Cpq [Gi]

ξint

)2

(4.11)

where Cmn[Gi], Cpq[Gi] are the concentration of the gene Gi in the two different cells

indexed by (m,n), (p, q) in the cell array, ξint is the length of interaction sets a concentration

scale1 past which the cells do not interact and σint is the strength of interaction which plays

the role of the rate at which the interaction happens.

1 By interaction length, we do not mean physical distance between cell, but difference between gene
concentrations.
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The purpose of this interaction is to average the difference between two interacting

cells. When Cmn[Gi]−Cpq[Gi] is zero, the function returns zero and there is no interaction.

When |Cmn[Gi] − Cpq[Gi]| 2 ξint the cells are deemed dissimilar and they do not interact.

If |Cmn[Gi] − Cpq[Gi]| ! ξint, the cells interact in such a way as to return to their mean.

If Cmn[Gi] > Cpq[Gi], Fint will be an effective degradation rate and if Cmn[Gi] < Cpq[Gi],

Fint will be an effective production rate. The function Fint is plotted in Fig. 4–21. it has

the shape of the first excited state of the quantum harmonic oscillator. By construction, for

reasonable values of ξint, σint , Fint cannot change the deterministic steady state because it

vanishes at zero and and for values much greater than ξint.

We then assume all cells interact with each other with an interaction strength that falls

off with their distance. Define

d(Cmn, Cpq) =
√

(m− p)2 + (n− q)2 (4.12)

to be the cartesian distance between the two cells at position (m,n) and (p, q) respec-

tively, in the array. Then they interact with an interaction strength σ̃int = σinte−
1−d
2 such

that neighbor cells for which d = 1 interact with strength Sint and cells separated separated

by d > 10 interact very little.

Mmn(t) = Lt
θhmn

θhmn + th

dCmn[Gi]

dt
= αiHill(Smn, TiM , hiM)

∏

hij≤0

Hill(Cmn[Gj], Tij, hij)− λiCmn[Gi]

+ Cmn[Gi]
∑

p &=m

∑

q &=n

Fint(Cmn[Gi]− Cpq[Gi], ξint, σint e
− d(Cmn,Cpq)−1

2 )

(4.13)

Finally, the deterministic coupled ODEs that represent these interactions are given by

Eq. 4.13 where θmn is the exposure time which depends on cell position (m,n). The chemical

Langevin equation is implemented as in Sec. 3.5 treating the production and degradation

terms as noisy reactions. The interaction term is assumed to be exact.
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4.6.2 In Silico Evolution selects for ξint, σint

The interaction parameters ξint, σint have to be carefully chosen to counteract two op-

posing forces. If the parameters are too small, the averaging effect will be too weak and

there will be little improvement in noise robustness. If the parameters are too big, then cells

which have been exposed for shorter period of time and have, therefore, achieved steady

state will bias the expression of cells which are still deciding their fate.

The quotient σint
ξint

approximately define a timescale through which small differences in

gene concentration between cells degrade to zero. If this timescale is too long, cell-to-cell

interactions will not be able to mitigate the effect of noise before it decouples cells from their

neighbors. If the timescale is very short, the coupling is near-instantaneous and cells will

not decouple at a gene expression boundary.

To find suitable values for the interaction parameters, we run the evolution algorithm

described in Sec A.1. To do so, we create a population of embryos (i.e. cell arrays equipped

with the GRN) each with different parameters ξint, σint. We integrate the the embryo once

deterministically without interaction terms to get C̃mn[Gi](t) and multiple times stochas-

tically with the interaction term to get each time Cmn[Gi](t). Embryos are then ranked

according to their fitness (Sec. A.2) given by Eq. 4.14. Survival of the fittest dictates that

embryos with bad fitness are replaced by embryos with better fitness. The population is

then mutated by slightly changing ξint and σint and keeping all other parameters constant.

F = − 1

Nrows

∑

m

1

Ncols

∑

n

1

Ngenes

∑

i

√
1

Nt

∑

t

(C̃mn[Gi](t)− Cmn[Gi](t))2

Favg =
1

Ntries

∑

trials

F

(4.14)

For this simulation, we used N = 500, Nrows = 100, Ncols = 30, Ngenes = 5, Nt =

5000, Ntries = 5. We set TiS = 1.59 which gives a long timescale. The best parameters were

found to be ξint = 0.0588 and σint = 0.0300. Figure 4–22. is the ensemble average of all cells

in column 90 over 5 trials (hence the steplike properties of the graph). Comparing to Fig.

4–19 and 4–20, we conclude that cell averaging preserves the timescale and the predictive

power which would otherwise be lost to noise.
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Figure 4–22: Stochastic ensemble average for N = 500 with cell-to-cell interaction with ξ =
0.0588, σ = 0.0300 and TiM = 1.59. M90(t) profile is as in Fig. 4–14 with θ = 133.8h, Lt = 1.
Compare to 4–20-A. A. Average of all cells in column 90 over 5 trials. B. Deterministic,
cell-autonomous solution for a cell in column 90.
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Chapter 5 - Discussion

We have created a model of the embryo in Section 4.1 in which a temporal morphogenic

signal is to be interpreted to generate patterning. This Temporal French Flag model necessi-

tates a GRN which is both multistable in some regimes and incorporates a process by which

cell fate is chosen based on the exposure time. The suggested GRN is highly generalizable

to any number of genes, all of which are outputs. In this chapter, we discuss the implication

of such a network, the experiments that can probe its behaviour and the modifications that

can be done to circumvent some limitations.

5.1 Emergence of timescales and evolvability

In the Temporal French Flag model, cell fate is not only determined by a given concentra-

tion of morphogen, but also by the duration of the signal [6]. Past efforts to explain how gene

networks could interpret such a signal relied on explicit timers which were added by hand.

These timers are typically slowly accumulating genes which regulate other fast genes [16].

In our present work, we showed how a slow timescale can be an emerging property of a gene

network. In our GRN, all degradation rates are the same and there is no special gene which

acts as a timer. Instead, the network naturally follows a cascading pattern, consecutively

expressing genes with a duration controlled by the proximity to a bifurcation.

The proximity to the bifurcation confers not only the slow timescale, but also a mecha-

nism by which the gene network becomes multistable. This suggests that both timing effects

and differentiation are two interconnected features of the network’s dynamical properties.

As others have advocated, the geometrical properties of the phase space should, therefore,

play an important role in our understanding of development [40, 64, 65]. Importantly, our

analysis is applicable to any number of genes and the mechanism, by virtue of bifurcation’s

locality, can be understood and visualized despite the large number of genes.

Interestingly, the GRN has no particular topology, all genes repress each other and it

is impossible to distinguish between two genes purely from their connection (ignoring their

parameters) in the directed graph . Each gene represses all the others and only the respective
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parameters matter. This bolsters the idea that the richness of dynamics is more parameter-

dependent than topology-dependent [66]. The observed flow whereby genes are successively

expressed can be generated by the nested structure of the parameters in Table 4–2 where Gi

repressed weakly Gi+1. This structure in parameters together with the order in which genes

are activated could suggest that colinearity is involved (Gi might appear sequentially in the

DNA) and might imply a specific form of interactions between neighbor genes.

The inherent structure in parameter suggests an evolutionary pathway that might lead

to such a gene network. A D-dimensional network can grow in size by gene duplication.

Duplication of a gene and its interactions almost readily creates an extension to a D + 1

version of this GRN, the only missing step is the required interaction between the last gene

and the new duplicated version to replicate the pattern. To test this, we have run in silico

evolutionary simulations on embryos as described in Sec. 4.4 and Fig. 4–13 with the mutual-

information based fitness condition (Sec. A.2) that the resulting embryo have D domains.

It is interesting to note that while we did not specifically select for it, the resulting networks

did exhibit the ability to alter the timescale. However, the mechanism was never as clean as

the one presented in Sec. 4.5 due to the more complex interaction between the many genes.

Details are given appendix B.

5.2 Gene knocking and comparison to previous models

There are two types of gene knocking experiments that can be done directly on our

model. The first one is complete removal of a gene. The easiest way to knock out gene

Gi is to set the production rate αi = 0, this insures that the gene will never be expressed

spontaneously. It is easy to see that removing Gi in our model simply amounts to removing

the bridge between Gi−1 and Gi+1. The only gene which can be expressed concurrently with

Gi−1 is Gi, and the only way Gi+1 can ever take off is if Gi is expressed. The end result

is a system which can never proceed to the later fates of Gi+1, Gi+2, . . .. It is effectively by

prohibiting imposing strong repression that we prohibit the transition G5 → G1. Without

this repression the system behaves like an oscillator.

The second way we can knock off a gene is to do it temporarily by exposing the cell to a

strong repressor. This doesn’t change αi (= 0 and it allows the system to keep producing Gi.
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By adding a strong repressor, we can temporarily suppress Gi → 0. We model this as setting

Gi = 0 at some time t and letting the system continue its time course as if nothing happened.

Doing this to our GRN, the genes Gi+1, Gi+2, . . . are progressively expressed with increasing

amplitude and a short period, until the system stabilizes in the last state or retraces its

oscillating cycle (when GD → G1 is allowed). The timescale is greatly affected as can be

seen in Fig. 5–1.

Figure 5–1: Temporary gene knock off in the 5D GRN. We set G3 = 0 at t = 20. The
system continues in the same order G3 → G4 → G5 but with increasing amplitude and a
fast timescale.

The previous models of Francois [16], which used an explicit timer, do not react in the

same way to such a gene knock out. Instead, after Gi is set to zero, the system re-expresses

Gi and resumes its normal time course. This is because the genes are slaved to the slow time

gene. Their expression is directly tied to the expression of the timer gene in a way such that

setting Gi = 0 merely delays the system shortly as Gi rises back to its previous levels. This

provides a method by which experiment can distinguish between a model with an emerging

timescale and one with an explicit timer.

60



Although, the model in this form is not robust to removal of genes, it is theoretically

possible to duplicate the network and add some interactions between the duplicated network

to create a redundancy which makes the network resistant to gene deletion. Imagine an

oscillating GRN in which GD → G1 is allowed. The two networks of genes Gi and the dupli-

cated Fi act like two coupled oscillators in the high morphogen regime. As time progresses,

Gi transitions to Gi+1 and then to Gi+2 and so on. In the absence of Gi+1, the interactions

due to Fi+1 allows Gi+2 to rise and keep the oscillation going. The Hox clusters might be

such a type of network duplication and it is known that deletion of certain Hox genes leads

to the formation of anterior structures [19, 22].

This type of modification comes at a cost however. The redundancy introduced leads

to a doubling in the size of the gene network as many regulator genes have to be added. The

timescale is also not controlled by the bifurcation anymore as the duplicated network controls

the activation of the successive gene. It is not clear whether this trade-off is necessary and

it might not be possible to keep both the bifurcation and the robustness to gene deletion.

5.3 Future directions

There models presented in this work raise many questions. Although we have imple-

mented a cell-to-cell interaction scheme to provide noise robustness, the effect of noise in

dynamical based systems is still a relevant issue to be explored. Is the sensibility to a critical

parameter, like TiM in direct contradiction with the prevailing stochastic nature of biologi-

cal systems? Is a static morphogen gradient a better mechanism for patterning in a noisy

environment [56]?

Finally, criticality1 has been invoked in many biological processes [67, 68]. In fly de-

velopment, the gap genes mutually repress each other and the dynamical flow has been

observed to be canalized [69]. The underlying mechanism that leads to this canalization still

remains largely unknown, however, our model predicts canalization as a result of the slow

manifold and the two problems might be more similar than they look. On the other hand,

1 Criticality is hard to define, especially in this context, and refers to a vast array of phenomena. In our
case, it is the transition to an infinite timescale during a saddle-node bifurcation.
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it has been found that the gap genes exhibit strong correlations at their boundary [67]. It

is argued that the boundary between gap genes is a byproduct of criticality and our model

similarly predicts strong correlations in-between peaks of the valley due to canalization. The

relationship between these two types of criticality is still unclear, in our case it happens

under a dynamical morphogen while in the fly, it is under the control of steady morphogen

gradients. The two might be closely related and we suggest that an in-depth analysis of the

correlations < Gi, Gj > as a function of time might reveal similarities.
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Appendix A - Computational Evolution

There is something very appealing about simulating the process of evolution. It is

a clever process which through selection overcomes the odds and allows the needle to be

separated from the hay. However, what nature does, we have yet to reproduce but in a

crude way. We can select through a fitness function, for a specific pattern formation, but

the result can often be disappointing. There are often fringe cases which can satisfy a given

fitness function, yet only through a loophole we overlooked. There is the danger of fine-

tuning, a network might be selected for with great agreement with the fitness function, but

depend too heavily on unimportant parameters. Generating a network in agreement with

broad and flexible principles is sometimes as much of an art as it is a science.

We give here the outlines of Francois’ evolution algorithm [16,70] through which we can

select for network topology, parameters or test models according to a fitness function. It is a

great resource for the biologist who wishes to test models with networks in a systematic way.

Francois’ algorithm has been able to produce working networks whose complexity might have

prohibited a more pedestrian approach.

A.1 Evolution Algorithm

The evolution algorithm tries to mimic nature as closely as possible. We break the

process into conceptual steps.

• The evolution algorithm selects at the generation level

• Each generation corresponds to a population of networks

• The population is made up of a number of organisms networks, each represented as a

network with its own topology and parameters

• The organism develops in silico. We construct an array of cells governed by the or-

ganism’s network, an input morphogen and the underlying model which can include

things such as cell to cell interactions, or artificial gene inhibition mid-development.

• The array of cell is integrated (perhaps multiple times, perhaps with noise) and the

resulting output for each cell is issued. Output can be genes’ concentration at steady-

state or even the entire time series.
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• The output is used to evaluate the fitness for each organism. It is up to the biologist

to carefully select a fitness function according to his needs.

• The population is ranked according to their fitness (smaller fitness is better) and indi-

viduals with poor fitness are discarded.

• Fit individuals are allowed to mutate and take part in the next generation. Mutations

are random, sparse and can either change the topology or parameters of a certain

interaction.

Some shortfalls of the algorithm include speed and scalability. Convergence to a fit

network can be very slow. In addition, the bigger the networks the longer the selection

process takes. Big networks tend to have many more parameters and therefore a much greater

parameter-space has to be explored. It is possible to speed up the process by sequentially

evolving bigger networks. A three gene network might converge relatively quickly. One can

then duplicate an existing gene to generate a four gene network. Because the network is

based on an already working three dimensional network, convergence with four genes might

happen much faster. The process can then be repeated until sufficiently big networks have

been generated.

A.2 Fitness Function

The fitness function is the core of the evolution algorithm. Without it, the algorithm

is nothing more than a brute force attack on the parameter space. In order to avoid bad

surprises, it is imperative to choose a fitness function that is well understood. We give here

two examples relevant to the present work.

The first fitness function serves to select for patterns along a cell array of length L. We

look for a fitness which creates a clear distinction between domains, so that better fitness

is acheived if a single output gene is expressed. We also look for even domains, so that

each domain has similar length. Suppose Cim is the concentration of the realization gene

i in cell m, then a good candidate fitness is mutual information [71] given by Eq. A.1.

By maximizing the mutual information between genes across the array of cells, we create

domains where only one gene can be activated and embryos where all genes are represented

equally. The mutual information is then a negative scalar (more negative is better) on the
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Figure A–1: Mutual Information of various cell arrays. A. N perfect equal domains has
perfect fitness F = − log(N) so that three domains have fitness F = − log(3). B. Overlap
between domains is penalized, F = − log(2.5577) C. Uneven domains are penalized. F =
− log(2.8399). D. As long as there is no domain overlap, noise does not change the fitness,
F = − log(3). E. The domains do not have to be continuous, F = − log(3). F. Two almost
even domains lead to near perfect fitness F = − log(1.9956)

order of −ln(N) where N is the number of domains. Fig. A–1 shows the fitness of various

cell arrays. Three equal and clear domains lead to perfect fitness. Overlaps between domains

is penalized, and so are domains that are too short or too long. As long as the domains do

not overlap, the actual value of the realizator gene does not matter and neither does the

continuity of the domains. As a consequence, if we want only two consecutive domains, this

fitness function is not enough. If the clustering of domains matters, it is then necessary to

add another term to our fitness function, perhaps one that counts the number of boundaries

between domains and tries to minimize it.

F =
∑

i pi log(pi) +
∑

m pm log(pm)−
∑

i

∑
m pim log(pim)

Where pim = Cim
L
∑

k Ckm
, pi =

∑
m pim and pm = 1

L .
(A.1)
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The second fitness function we present is meant to select for noise robustness. An array

of cells could be computed in two ways, one by integrating the network in a cell autonomous

way and the other by allowing cell-to-cell interactions. If we wish to test our mechanism

for cell-to-cell interaction as a means of noise reduction, we might conjure a fitness which

compares the deterministic time series to the stochastic time series. By integrating both for

each cell, we can compare them through the quadratic mean of their difference. Suppose

)x(ti) is the time series for the deterministic run and )̃x(ti) that of the stochastic time series.

Eq. A.2 counts the deviation from the deterministic time series where n is the number of

time steps.

F ()x(t), )̃x(t)) =
1

Ngenes

∑

j

√∑

ti

(xj(ti)− x̃j(ti))2

n
(A.2)

When F is at a minimum, the two time series are identical. In practice, x and x̃ will

never be identical, but if we manage to select a good model and good parameters, we can

hope to minimize the effect the effect of noise on x̃. Fig. A–2 shows the fitness of three

Langevin realization of the biological switch,Eq. 3.7 , which we introduced in Sec. 3.4. As

expected the fitness function decreases as N , the number of molecules per volume which

quantifies the noise level, increases.

Figure A–2: RMS fitness for three different Langevin realizations of the noise for the biolog-
ical switch, Eq. 3.7 with a = 0.45, b = 1. A. N = 100 leads to a fitness of F = 0.1103. B.
N = 500 has fitness F = 0.0546. C. N = 5000 is nearly deterministic with F = 0.0143.
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Appendix B - Evolution of temporal networks

To model developmental patterning under the influence of a temporal morphogen signal,

we have used the evolutionary algorithm described in Appendix A. We have selected for

multidimensional networks which give rise to domains according to the setup of Fig. 4–13.

That is, we model M(t) as a traveling wave along the embryo which stabilizes after θm time

in cell m corresponding to the exposure time. We have assumed a fully repressing network

where all genes repress each other, we have further assumed that M represses all genes.

Eq. B.1 is the set of coupled ODEs for each cell Cm in the array. Cm[Gi] is the

concentration of geneGi in cellm. Once the equations have been integrated deterministically,

an array Cim is filled with the concentration of genes i at cellm. The fitness is then computed

from Cim using mutual information (Eq. A.1). The best network is selected according to

the most negative fitness and each generation new mutations are introduced. We fix the

topology of the network and choose to mutate the Hill coefficients and thresholds of random

nodes.

Mm(t) = Lt
θηm

θηm + tη

Ċm[Gi] = αiHill(Mm(t), TiM , hiM)
∏

hij≤0

Hill(Cm[Gj], Tij, hij)− λiCm[Gi]
(B.1)

Given the enormous parameter space for a higher dimensional GRN, evolving an maxi-

mum number of domains is an ardous task. To speed up the process we evolved the network

in increasing dimensions. First, we evolved a 3D network first which can give three domains.

We then duplicated the last gene to get a 4D network which will give three domains. We let

the evolution algorithm select for parameters so that the 4D network can give four domains.

Once we have four domains, we duplicate the last gene again and select for parameters that

allow for five domains. The resulting network parameters are given in Table B–1. The in-

teractions are very entangled due to the random nature of mutations. In some cases, it is

possible to see how some parameters were left unchanged after duplication.
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Figure B–1: Time course (A) and gene expression domains (B) for an evolved GRN. Gene
activation is sequential and it is possible to control the timescale by changing TiM . However,
the interactions between genes tend to be such that the timescales are entangled and cannot
be entirely isolated for a single gene.
Top: T1M = 4.59, T2M = 0.987, T3M = 2.64, T4M = 1.53, T5M = 2.48,
Bottom : T1M = 3.30, T2M = 1.10, T3M = 2.30, T4M = 1.82, T5M = 2.48.

Nevertheless, the GRN still leads to patterning when exposed to a temporal morphogen

gradient. Fig. B–1 shows the time course and the associated domains for two sets of thresh-

olds TiM . Interestingly, there is a change of timescale and domain length when changing TiM .

Mutual information select for domains of equal size, but it does not select for the network’s

ability to alter the domain’s length. This result implies that networks based on temporal

signaling are likely to be those equipped with the ability to adapt to the timescale provided

by the morphogen.
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Rates
G1 G2 G3 G4 G5

Production α 5 5 5 5 5
Degradation γ 1 0.761 1 0.847 1

Hill Coefficients hij and TiM

G1 G2 G3 G4 G5 M
G1 0 2.2 1.58 3.62 4.14 3.43
G2 4.38 0 3.05 4.73 4.14 1.36
G3 1.42 2.70 0 3.57 4.14 4.72
G4 2.31 3.65 4.00 0 4.14 1.75
G5 3.64 0.847 4.84 4.80 0 0.515

Treshholds Tij and TiM

G1 G2 G3 G4 G5 M
G1 0 1.21 0.431 0.226 1.57 4.59
G2 4.06 0 2.35 0.699 0.0325 0.987
G3 1.39 2.22 0 0.950 0.0325 2.64
G4 1.38 0.0336 3.71 0 0.325 1.53
G5 1.70 1.32 0.0840 1.40 0 2.48

Table B–1: Table for the n = 5 dimensional evolved GRN.
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Philippe Brûlet, Pierre Chambon, and Jacqueline Deschamps. Axial skeletal patterning
in mice lacking all paralogous group 8 hox genes. Development, 128(10):1911–1921,
2001.

[23] C Tickle. Patterning systems —from one end of the limb to the other. Developmental
cell, 4(4):449–458, 2003.

[24] Jean-Denis Bénazet and Rolf Zeller. Vertebrate limb development: moving from classical
morphogen gradients to an integrated 4-dimensional patterning system. Cold Spring
Harbor perspectives in biology, 1(4):a001339, 2009.

[25] C Tickle. The number of polarizing region cells required to specify additional digits in
the developing chick wing. 1981.

[26] Dennis Summerbell. A quantitative analysis of the effect of excision of the aer from the
chick limb-bud. Journal of embryology and experimental morphology, 32(3):651–660,
1974.

[27] Lee Niswander, Cheryll Tickle, Astrid Vogel, Iain Booth, and Gail R Martin. Fgf-4
replaces the apical ectodermal ridge and directs outgrowth and patterning of the limb.
Cell, 75(3):579–587, 1993.

[28] Robert D Riddle, Randy L Johnson, Ed Laufer, and Cliff Tabin. Sonic hedgehog medi-
ates the polarizing activity of the zpa. Cell, 75(7):1401–1416, 1993.

[29] L Wolpert, C Tickle, M Sampford, and JH Lewis. The effect of cell killing by x-
irradiation on pattern formation in the chick limb. Journal of embryology and experi-
mental morphology, 50(1):175–198, 1979.



72

[30] Eric Dessaud, Lin Lin Yang, Katy Hill, Barny Cox, Fausto Ulloa, Ana Ribeiro, Anita
Mynett, Bennett G Novitch, and James Briscoe. Interpretation of the sonic hedgehog
morphogen gradient by a temporal adaptation mechanism. Nature, 450(7170):717–720,
2007.

[31] Eric Dessaud, Vanessa Ribes, Nikolaos Balaskas, Lin Lin Yang, Alessandra Pierani,
Anna Kicheva, Bennett G Novitch, James Briscoe, and Noriaki Sasai. Dynamic assign-
ment and maintenance of positional identity in the ventral neural tube by the morphogen
sonic hedgehog. PLoS biology, 8(6):e1000382, 2010.

[32] Thomas M Jessell. Neuronal specification in the spinal cord: inductive signals and
transcriptional codes. Nature Reviews Genetics, 1(1):20–29, 2000.

[33] J Ericson, P Rashbass, A Schedl, SKAWAKAMI Brenner-Morton, A Kawakami,
V Van Heyningen, TM Jessell, and J Briscoe. Pax6 controls progenitor cell identity
and neuronal fate in response to graded shh signaling. Cell, 90(1):169–180, 1997.

[34] J Briscoe, L Sussel, P Serup, D Hartigan-O’Connor, TM Jessell, JLR Rubenstein, and
J Ericson. Homeobox gene nkx2. 2 and specification of neuronal identity by graded
sonic hedgehog signalling. Nature, 398(6728):622–627, 1999.

[35] Bennett G Novitch, Albert I Chen, and Thomas M Jessell. Coordinate regulation of
motor neuron subtype identity and pan-neuronal properties by the bhlh repressor olig2.
Neuron, 31(5):773–789, 2001.

[36] Nigel Goldenfeld. Lectures on phase transitions and the renormalization group. 1992.

[37] J J Hopfield. Neural networks and physical systems with emergent collective compu-
tational abilities. Proceedings of the National Academy of Sciences, 79(8):2554–2558,
1982.

[38] Fa-Yueh Wu. The potts model. Reviews of modern physics, 54(1):235, 1982.

[39] Hidde De Jong. Modeling and simulation of genetic regulatory systems: a literature
review. Journal of computational biology, 9(1):67–103, 2002.

[40] Johannes Jaeger, David Irons, and Nick Monk. The Inheritance of Process: A Dy-
namical Systems Approachs. Journal of Experimental Zoology Part B: Molecular and
Developmental Evolution, pages 1–22, October 2012.

[41] James N Weiss. The hill equation revisited: uses and misuses. The FASEB Journal,
11(11):835–841, 1997.
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