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ABSTRACT 

This thesis investigates control and optimization of distributed stochastic systems 

motivated by current wireless applications. In wireless communication systems, power 

control is important at the user level in order to minimize energy requirements and 

to maintain communication Quality of Service (QoS) in the face of user mobility and 

fading channel variability. Clever power allocation provides an efficient means to 

overcome in the uplink the so-called near-far effect, in which nearby users with higher 

received powers at the base station may overwhelm signal transmission of far away 

users with lower received powers, and to compensate for the random fluctuations 

of received power due to combined shadowing and possibly fast fading (multipath 

interference) effects. 

With the wireless uplink power control problem for dynamic lognormal shadow 

fading channels as an initial paradigm, a class of stochastic control problems is for

mulated which includes a fading channel model and a power adjustment model. For 

optimization of such a system, a cost function is proposed which reflects the QoS 

requirements of mobile users in wireless systems. For the resulting stochastic control 

problem, existence and uniqueness of the optimal control is established. 

By dynamic programming, a Hamilton-Jacobi-Bellman (HJB) equation is derived 

for the value function associated with the stochastic power control problem. However, 

due to the degenerate nature of the HJB equation, the value function cannot be in

terpreted as a classical solution, which hinders the solution of explicit control laws or 

even the reliance on numerical methods. In the next step, a perturbation technique is 

applied to the HJB equation and a suboptimal control law using a classical solution 
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to the perturbed HJB equation is derived. Control computation via numerical meth

ods becomes possible and indicates an interesting equalization phenomenon for the 

dynamic power adjustment under an i.i.d. channel dynamics assumption. Analysis 

of the suboptimal control reveals an interesting bang-bang control structure which 

indicates simple manipulation in power adjustment. However, in view of the partial 

differential equations involved, implementation for systems with more than two users 

appears elusive. 

The above stochastic power control problem suggests an investigation of a wider 

class of degenerate stochastic control problems which are characterized both by a 

weak coupling condition for the components of the involved diffusion process, and by 

a particular rapid growth condition in the cost function. We analyze viscosity solu

tions to the resulting HJB equations. We develop a localized semiconvex/semiconcave 

approximation technique to deal with the rapid growth condition. A maximum prin

ciple is established for the viscosity subsolution/supersolution of the HJB equation 

and it is used to prove uniqueness of the viscosity solution. The theoretical tools 

thus developed serve as a mathematical foundation for our stochastic power control 

problem. 

At this point, with the aim of constructing an analytically more tractable solution 

to the wireless power control problem, we consider a linear quadratic optimization 

approach in which the power attenuation is treated as a random parameter. In this 

setup, the value function is expressed as a quadratic form of the vector of individual 

user powers, and the optimal feedback control is proved to be affine in the power. 

Unfortunately, the resulting control law remains too formidable to compute in large 

systems. However, based on the obtained analytic solution, we are able to develop 

local polynomial approximations for the value function and seek approximate solu

tions to the HJB equation by an algebraic approach under small noise conditions. 

Suboptimal control laws are also constructed using the approximate solutions. Re

markably, here the scheme for approximation solutions can be combined with a single 

user based design to construct a localized control law for each user in systems with 

in 
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large populations. The single user based design substantially reduces the complexity 

of determining the power control law. 

It is of significant interest to consider the asymptotics of power optimization 

for large population systems. In such systems, it may be unrealistic to apply the 

standard stochastic optimal control approach due to the complexity of implementing 

the centralized control law. Suboptimal but distributed control laws may be more 

desirable. Before proceeding to investigate this challenging issue, we first consider a 

large-scale linear quadratic Gaussian (LQG) model for which the agents contained in 

the system interact with each other either via a global cost or via related individual 

costs. We study both the optimal control problem based on the global cost, and the 

LQG game based on individual costs. For the LQG game, we develop an aggregation 

technique based on examining individual and mass behaviour; highly localized control 

strategies for all agents are obtained and a so-called e-Nash equilibrium property for 

these strategies is proved. Finally, we evaluate the loss incurred by opting for the the 

distributed game theoretic solution, versus the centralized optimal control solution, 

as measured by the associated costs differential. 

For the large population power control problem, apart from the centralized sto

chastic control approach, we also consider optimization in a game theoretic context 

by generalizing the techniques in the large-scale LQG problem. The combination of 

the individual costs and state aggregation leads to decentralized power control. 

IV 



RESUME 

Cette these investigue la commande et 1'optimisation de systeme stochastique dis-

tribue, ces derniers etant motives par les applications sans fil actuelles. Dans les 

systemes de communication sans fil, il est important de regler la puissance au niveau 

de l'utilisateur dans le but de minimiser l'energie requise et pour maintenir la qualite 

de service (QoS) en presence de deplacement de l'usager et de variabilite dans les voies 

sujettes a evanouissement. Une allocation de puissance intelligente fournit un moyen 

efficace de surmonter, dans la liaison montante, l'effet dit de proximite-eloignement 

pour lequel les usagers avoisinant et disposant d'une puissance de reception plus elevee 

peuvent submerger le signal de transmisson d'usagers eloignes du point d'acces sans 

fil. De plus, cette allocation permet de compenser pour les fluctuations aleatoires 

de la puissance regue resultant d'ombrages combines et, possiblement, d'effets 

d'evanouissements rapides (i.e. interferences par trajet multiple). 

Avec le probleme de regulation de puissance dans la liaison montante sans fil 

applique aux voies log normales dynamiques d'evanouissement d'ombrage comme 

paradigme de depart, une classe de probleme de commande stochastique est formulee 

en incluant un modele de voie devanouissement et un modele d'ajustement de puis

sance. Pour l'optimisation de tels sytemes, une fonction de cout est proposee refletant 

les demandes de QoS des usagers mobiles des systemes sans fil. Pour le probleme de 

commande stochastique resultant, l'existence et l'unicite de la commande optimale 

sont demontrees. 

Par programmation dynamique, une equation de Hamilton-Jacobi-Bellman (HJB) 

est derivee pour la fonction de valeur associee avec le probleme stochastique de 

regulation de puissance. Toutefois, en raison de la nature degeneree de l'equation 
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HJB, la fonction de valeur ne peut pas etre interpreted comme une solution classique, 

ceci entrave la solution explicite de lois de controle et affecte raeme la confiance ac-

cordee aux methodes numeriques. A l'etape suivante, une technique de perturbation 

est appliquee a l'equation HJB et une loi de controle suboptimale utilisant une solution 

classique de l'equation HJB perturbee est derivee. Des calculs controles par methode 

numerique deviennent possibles et indiquent un interessant phenomene d'egalisation 

de l'ajustement dynamique de puissance sous la supposition d'une voie dynamique 

i.i.d. L'analyse de la commande suboptimale revele une interessante structure de com

mande de type bang-bang, i.e. indiquant une simple manipulation de l'ajustement de 

puissance. Neanmoins, en raison des equations differentielles aux derivees partielles 

impliquees, l'implementation de systeme avec plus que deux utilisateurs apparait il-

lusoire. 

Le probleme stochastique de regulation de puissance ci-dessus suggere une inves

tigation d'une classe plus large de probleme de commande stochastique degenere car-

acterise a la fois par une faible condition de couplage des composants impliques dans le 

processus de diffusion et par une condition particuliere de croissance rapide de la fonc

tion de cout. Nous analysons les solutions de viscosite resultant des equations HJB. 

Nous developpons une technique d'approximation localisee semiconvexe/semiconcave 

pour traiter la condition de croissance rapide. Un principe de maximisation est etabli 

pour la sous-solution/super-solution de viscosite de l'equation HJB et celui-ci est 

utilise pour prouver l'unicite de la solution de viscosite. Les outils theoriques ainsi 

developpes sont utilises comme fondement mathematique de notre probleme stochas

tique de regulation de puissance. 

A ce point, dans le but de construire une solution analytique avec une tractabilitee 

accrue pour le probleme de regulation de puissance sans fil, nous considerons une ap-

proche d'optimisation quadratique lineaire dans laquelle l'attenuation de puissance 

est traitee comme un parametre aleatoire. Dans cette configuration, la fonction de 

valeur est exprimee comme un vecteur de forme quadratique des puissances individu-

elles des utilisateurs, et la commande optimdal d'asservissement est prouvee etre affine 

vi 
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en puissance. Malheureusement, la loi de controle resultante demeure trop complexe 

pour le calcul de systeme de grande dimension. Toutefois, sur la base des solutions 

analytiques obtenues, nous somme capable de developper des approximations polyno

m i a l s locales de la fonction de valeur et de rechercher des solutions approximatives 

de l'equation HJB par une methode algebrique soumise a des conditions de faible 

bruit. Des lois de controle suboptimales sont aussi construites en utilisant les so

lutions approximatives. Remarquablement, le mecanisme de solution approximative 

peut aussi etre combine avec un design base sur un usager unique pour construire 

une loi de commande locale pour chacun des usagers dans les systemes avec une pop

ulation importante. Le design base sur un usager unique reduit substantiellement la 

complexity pour determiner la loi de commande de puissance. 

II est d'interet significatif de considerer les asymptotes de l'optimisation de puis

sance pour les systemes avec une population importante. Pour de tels systemes, il 

peut etre irrealiste d'appliquer l'approche de la commande stochastique optimale en 

raison de la complexite de l'implementation d'une loi de controle centralisee. Des lois 

de controle suboptimales mais distributes peuvent etre davantages desirables. Avant 

de debuter 1'investigation de ce stimulant probleme, nous devons d'abord considerer 

le cas d'un modele lineaire quadratique gaussien (LQG) de grande dimension pour 

lequel les agents contenus dans le systeme interagissent entre eux soit via a un cout 

global ou via des couts relies entre les individus. Nous etudions a la fois le probleme 

de commande optimale base sur le cout global et le jeux LQG base sur les couts in-

dividuels. Pour le jeux LQG, nous developpons une technique d'agregation basee sur 

l'examen des individus et le comportements de masse; des strategies de commande 

hautement localisees pour tous les agents sont obtenues et une propriete dite equilibre 

e-Nash est prouvee pour ces strategies. Finallement, nous evaluons la perte induite 

par le choix de solutions distributes par theorie des jeux versus la solution centralisee 

optimal sur la base de la mesure du cout differentiel associe. 

Pour le probleme de commande de population importante, mis a part l'approche 

de la commande stochastique centralisee, nous considerons aussi l'optimisation dans 

vn 
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le contexte de la theorie des jeux en generalisant les techniques du probleme LQG 

de grande dimension. La combinaison des couts individuels et l'agregration des etats 

menent a la commande de puissance decentralisee. 

vm 



CLAIMS OF ORIGINALITY 

The following original contributions are presented in this thesis: 

• Formulation of code division multiple access (CDMA) uplink wireless power 

adjustment as a stochastic control problem including: (1) a dynamic lognor-

mal fading channel model, (2) a bounded rate based power control model 

and (3) the signal to interference based performance measure. 

• Proof of existence and uniqueness of the optimal control. 

• For computability, perturbation of the associated degenerate Hamilton-

Jacobi-Bellman (HJB) equation and synthesis of resulting suboptimal con

trol laws via numerical methods. 

• Consideration of a related class of degenerate stochastic control problems 

with weakly coupled dynamics and rapid growth conditions; viscosity solu

tion analysis; localized semiconvex/semiconcave approximation technique 

proposed for the proof of an associated maximum principle. 

• For analytic tractability, reformulation of power allocation as a linear qua

dratic optimization problem; analysis of the classical solutions; suboptimal 

approximation methods by local polynomial equation systems; a one against 

the mass scheme for partially decentralized power control in systems with 

large populations. 

• Isolation of a new class of large-scale stochastic control problems; formula

tion of a related linear quadratic Gaussian (LQG) optimal control and dy

namic game for large population systems, namely, dynamically independent 
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and cost-coupled systems of significance in communications and economics, 

etc. 

• Investigation of these large-scale LQG systems in the context of central

ized and distributed (or decentralized) control. Explicit expression of the 

feedback control law for the centralized optimal control problem. Dynamic 

LQG game solution; state aggregation techniques for extracting the dy

namics of the mass influence on a given agent; individual-mass behaviour 

analysis and approximate Nash equilibria. Discrepancy between the opti

mal control and decentralized game in terms of a cost gap, state trajectories 

as well as population behaviour. 

• Formulation of power control for large population systems; the optimal 

control approach; initial investigation of decentralized control via a gener

alization of the state aggregation technique in the LQG game framework 

to the nonlinear power control context. 

N.B. Almost all of the work above appears in articles which have been published 

or are currently under review and revision for publication; see page xi. 
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CHAPTER 1 

Introduction 

There is a significant body of literature on stochastic control theory, which has been 

developed for the analysis and optimization of various physical and social systems 

experiencing random disturbances from their ambient environment. The existing 

stochastic control theory finds its applications to a vast range of areas, including 

industrial control systems, inventory theory, dynamic resource allocation, production 

planning, queuing networks, mathematical finance, and many others; see [4, 5, 8, 

47, 48, 65, 78] among others. 

In addition to the well known stochastic system models in the above mentioned 

areas, the emergence and advances of new technology give rise to new opportunities for 

formulating the associated optimal control problems within the powerful framework of 

stochastic control. Specifically, the rapid development of modern wireless technology 

has unveiled a world of characteristically complex wireless networks with inherent 

statistical properties concerning their dynamic behaviour. Typically, this kind of 

systems involve service providers as well as a great number of clients, which may 

be conveniently termed as agents in future analysis. Sometimes, in order to gain a 

more concrete sense, we will also feel free to term various variables or objects for the 

involved more general stochastic control systems by their counterparts in the wireless 

communication networks. 



CHAPTER 1. INTRODUCTION 

In this thesis we study the control and optimization of a class of distributed 

stochastic systems as well as their generalization where current mobile communication 

systems serve as a motivating technological background. In such wireless systems, a 

large number of mobile users are distributed in large areas and communicate with 

each other through one or more base stations, and the transmitted signals are subject 

to random fading. Modelling and optimization of such systems naturally resorts to 

stochastic system theory. 

We set out to investigate the stochastic wireless power control problem and then 

investigate control problems of a more general form which are well motivated by the 

underlying power control problem. A feature shared by all systems considered in this 

thesis is that they involve multiple dynamic agents which can act based on individual 

interests, while their dynamics interact weakly through the utility function they seek 

to optimize. 

Dynamic Modell ing of Radio Propagation and Stochastic Power Control 

There has been an extensive literature on modelling of radio propagation. Gen

erally, radio channels experience both small-scale (short-term) fading and large-scale 

(long-term) fading, and various statistical models have been proposed to model the 

resulting random fluctuation of received signal power. In general, the two different 

fading effects are understood as superimposed and can be treated separately due to 

the different mechanisms from which they are generated. Indeed, small-scale (with 

a time scale of millisecond) fading is caused by multipath replicas of the same sig

nal which in view of their respective phase shifts, can interact either constructively, 

or destructively. It is a problem which can be addressed via the so-called diversity 

techniques (see [43, 63]). Large-scale (with a time scale of hundreds of milliseconds) 

fading is caused by shadowing effects due to buildings and moving obstacles, such as 

trucks, partially blocking or deflecting mobile or base station signals. 
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In this thesis we only consider the modelling of the large-scale fading and inves

tigate effective methods for mitigating its impairments on the channel; this will be 

achieved by transmission power control. In a static context, for any fixed positioning 

for the user and the base station, the large scale fading can be accurately modelled 

by a lognormal random variable, or a normal random variable measured in decibels 

(dB). Due to the idealized assumption of no relative motion between the transmitter 

and the receiver, the static lognormal modelling is inadequate for applications. To 

get realistic modelling for the channel condition, one has to take into account the 

user mobility and environment variations in the vicinity of the user in a communi

cation scenario. This dictates the use of dynamic channel models able to capture 

the spatio-temporal correlation properties of fading channels. In some early research, 

a first order auto-regressive (AR) innovation model was proposed for modelling the 

large scale fading for mobile users [28, 75]. In this thesis, we adopt the continuous 

time modelling for the lognormal fading by use of stochastic differential equations 

introduced by Charalambous et. al. [17]. The dynamics is intended to model the 

fading channels for both outdoor and indoor users where the fading effect exhibits 

spatial and temporal variations. 

Using the above modelling framework, in Chapter 2 we formulate the distributed 

stochastic control problem. A primary issue here is to determine the way the power 

should be adjusted. In this Chapter, a bounded rate based control model is proposed 

for power adjustment. It is motivated by the way power control is achieved through a 

sequence of fixed steps in current wireless technology. The next issue in approaching 

such a problem is to set the criteria for system optimization. To this end, a cost 

function is introduced which measures the performance of different control strategies. 

The cost function adopted here aims at achieving the required signal to interference 

ratio while limiting power usage as far as possible. The existence and uniqueness of 

the optimal control is investigated in Chapter 2. The analysis is complicated by the 

fact that one faces a degenerate stochastic control system. 
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In general, the degenerate Hamilton-Jacobi-Bellman (HJB) equation derived in 

Chapter 2 admits no classical solutions, and hence it is difficult to explicitly specify 

the optimal control law. To circumvent this difficulty, a meaningful approach is 

to consider approximating the HJB equation or the value function for the optimal 

control problem, via a perturbed HJB equation. This program is carried out in 

Chapter 3, whereby approximated value functions which are classical solutions to 

perturbed HJB equations can be obtained. Numerical simulations are performed to 

verify the satisfactory performance of the resulting suboptimal controller. In this 

setup for the suboptimal control law, the value function can be approximated off-line 

and the suboptimal control law in real time can be determined by some simple rules. 

However, computations are prohibitively complex for multiuser systems. 

Viscosity Solutions for Systems with Rapid Growth Conditions 

Chapter 4 is in itself, a contribution to the mathematics of stochastic control, 

we study a general class of degenerate stochastic control problems which includes 

the system in Chapter 2 as a special case. A viscosity solution analysis is presented 

in this Chapter. We develop a certain semiconvex/semiconcave approximation tech

nique for functions with rapid growth. The approximation is achieved by use of a 

pair of localized envelope functions and it is proved that the envelope functions have 

semiconvex/semiconcave properties on a compact set when the parameters involved 

in the definition of the envelope functions are appropriately set. Further we apply 

this approximation to establish a maximum principle for the degenerate HJB equation 

under a weak coupling condition on the dynamics, and uniqueness of the viscosity 

to the HJB equation follows as a corollary. Uniqueness of the viscosity solution is 

an important aspect to the stochastic control problem both for understanding the 

nature of the optimal cost function, and developing numerical solutions, since a mul

tiple solution situation may cause additional difficulty in finding a desired numerical 

approximation. 
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Linear Quadratic Power Optimization 

The initial formulation of the stochastic power control problem, although realistic, 

is hindered by significant mathematical difficulties, and does not scale up easily in 

terms of computations. 

The analysis of Chapter 5 employs instead a quadratic type cost function with 

the specific input bound constraint replaced by a penalty term for the input in the 

cost. The control problem is analyzed in terms of classical solutions. The optimal 

control law can be expressed analytically. We then address the important issue of the 

computability of the solutions to certain Riccati equations which stem from analysis 

of the problem. For a significant number of users, an analysis of local expansions of 

solutions around a steady state is useful in the small noise case because the system 

state is expected to spend a disproportionate of time in a small neighborhood of 

the steady state. The nearly optimal control law thus obtained enjoys a simple 

structure which enables efficient implementation in a simple feedback form. Extensive 

numerical approximations are developed to construct nearly optimal control laws. 

Finally, we give a thorough analysis for the single user system and then apply the 

results to systems of large populations via a relatively coarse approximation relying 

on state aggregation. In the treatment of large systems, a certain scaling technique 

is adopted in the definition of the cost function. This is necessary in order to get 

a meaningful mass behaviour in a context where the number of users is allowed to 

increase to a significant level by assuming sufficiently large cell capacity. In this 

setup, after the scaling step the impact received by an individual from all the other 

agents can be approximated by a deterministic process which is then substituted into 

the control law. It turns out that the individual user can effectively adapt to the 

behaviour of the mass and the total population will gradually settle down to a steady 

state behaviour. 

Large-scale Linear Quadratic Gaussian Systems and e-Nash Equilibria 
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The next two Chapters of the thesis are specifically focussed on the asymptotics 

(as the number of agents increases) of centralized, versus distributed (or decentral

ized) control and the potential system performance degradation as measured by the 

corresponding cost differences. Game theoretic concepts play a central role. Chapter 

6 is a strictly linear quadratic version of the problem, inspired in its structure by 

the wireless power control problem, but interesting in its own right. In Chapter 7, 

we consider approximations to the nonlinear power control problem, based on the 

analysis of Chapter 6. 

In Chapter 6 we investigate a special class of Linear Quadratic Gaussian (LQG) 

optimization problems. In this context, the system in question consists of many 

players which are governed by independent dynamics subject to individual controls. 

All the players are linked by a global cost function with an additive structure. By a 

simple splitting, one can derive a set of individual costs from this global cost function. 

Thus the system can be optimized either based on the global cost, or starting from 

the individual costs. The global cost based optimization can be approached by the 

standard LQG method, while for the latter individual cost based dynamic game, the 

solution is sought in the Nash equilibrium framework. Specifically, for the individual 

cost based optimization, we study decentralized approximate Nash equilibria, or so-

called £-Nash equilibria. It is shown that such decentralized e-Nash equilibria possess 

an inherent stability feature, which is interesting in a large population system since 

in this solution framework the involved individual strategies will lead the players to 

eventually reach a stable mass behaviour. Also, a cost gap is evidenced between the 

cost associated with the global cost derived control, and that associated with the 

individual cost derived control. 

Large Populat ion Power Control 

For wireless systems accommodating a large population of users, the standard sto

chastic control approach suffers from high computational complexity. In additional 

6 
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to the heavy computational load, this approach also requires close coordination be

tween all users in order to maximize the overall interest of the population. In a large 

distributed network, such coordination is a highly demanding task. In addition, the 

centralized optimal control approach lacks robustness in the face of misbehaviour of 

individuals and possibly unreliable transmission of commands. 

These facts naturally suggest we consider individual cost based control for the 

large population power control. In Chapter 7 we make initial investigation of this 

approach by assigning a cost function to each mobile user. In the reformulation of 

the large population power control problem, it is also recognized that in the presence 

of a large number of users, their collective impact on a given user coalesces into a 

largely deterministic but time-varying signal. For optimization of the given user, the 

source of uncertainty reduces mainly to its own channel variation. We then apply a 

heuristic argument to generalize the method developed for the LQG problem to the 

nonlinear power control problem aiming at decentralized power allocation strategies. 

In this manner, we can extract the dynamics of the mass behaviour by a deterministic 

approximation. By a combination of the individual dynamics and the mass evolution, 

we obtain highly localized control laws for each user. 



CHAPTER 2 

Distributed Stochastic Systems Arising in 

Wireless Communications 

2.1. The Background Systems 

In the past decades, stochastic control theory has been developed and success

fully applied to various areas including industrial process control, inventory theory, 

dynamic resource allocation, production planning, queuing networks, mathematical 

finance, and many others [4, 5, 8, 47, 48, 65]. In the framework of stochastic control 

and optimization, typically the dynamic behavior of the object under consideration 

is described by a random process. In many applications, the modelling and control of 

evolution of the object are relatively simple in that the underlying physical system is 

located and operates in a small region, the system state is of low dimension and the 

way the system experiences random disturbances is simple. 

In this Chapter, we introduce a class of stochastic systems which differs from the 

traditional ones mentioned above. First, the object we are concerned with in this 

research consists of many sub-objects, which may be called individuals or agents with 

their own control objectives when participating in the system's evolution; second, 

the sub-objects are geographically distributed in large areas. Indeed, this highly 

distributed feature does not increase the complexity of the system dynamics for the 

individual's activity; however it may give rise to challenging issues in the design 
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of control strategies since, in this case, it is significantly more difficult to exchange 

information among different components of the system for determination of individual 

control actions. From the specific distributed feature of such systems arises the need 

of designing control laws with relatively simple structure. Finally, to get a more 

precise modelling for practical systems, we need to take into account the effect of 

human behaviour which is less predictable. The human factor makes the modelling 

aspect more difficult. 

In this Chapter the considered class of control problems is motivated by the 

current theory and technological implementations in wireless communications. We 

will use the underlying wireless communication model as the workhorse for a general 

theoretic analysis. In particular, we focus on the power control problem for dynamic 

lognormal fading channels. 

In Chapter 4 we treat a more general system model of which the lognormal power 

control model of this Chapter is a special case. To begin with, we give a brief overview 

of the power control problem in the literature under various frameworks. 

2.2. The Power Control Problem 

In current digital communication systems, the mobile users are partitioned into 

different cells and each mobile user accesses the network through the base station 

able to provide service with lowest power requirements. Power control in cellular 

telephone systems is important at the user level both in order to minimize energy 

requirements, and to guarantee constant or adaptable Quality of Service (QoS) in the 

face of telephone mobility and fading channels. This is particularly crucial in code 

division multiple access (CDMA) systems where individual users are identified not by 

a particular frequency carrier and a particular frequency content, but by a wideband 

signal associated with a given pseudo-random number code. In such a context, the 

received signal of a given user at the base station views all other user signals within 

the same cell, as well as other cell signals arriving at the base station, as interference 

or noise, because both degrade the decoding process of identifying and extracting a 

9 
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given user's signal. Thus, it becomes crucial that individual mobiles emit power at 

a level which will insure adequate signal to noise ratio at the base station. More 

specifically, excess levels of signalling from a given mobile will act as interference 

on other mobile signals and contribute to an accelerated depletion of cellular phone 

batteries. Conversely, low levels of signalling will result in inadequate QoS. In fact, 

tight power control is indirectly related to the ability of the CDMA base station to 

accommodate as many users as possible while maintaining a required QoS [76]. 

There has been a rich literature on the topic of power control. Previous attempts 

at capacity determination in CDMA systems have been based on a "load balancing" 

view of the power control problem [76]. This reflects an essentially static or at best 

quasi-static view of the power control problem which largely ignores the dynamics of 

channel fading as well as user mobility. In essence, in this formulation power control 

at successive sampling time points is viewed as a pointwise optimization problem 

with total statistical independence assumed between the variables (control or signal) 

at distinct time points. In a deterministic framework, [68, 69, 70] present an at

tempt at reintroducing dynamics into the analysis, at least insofar as convergence 

analysis to the static pointwise optimum is concerned. This is achieved by recogniz

ing that in current technological implementations, power level set points dictated by 

the base station to the mobile can only increase or decrease by fixed amounts. In 

[1], power control is considered for a CDMA system in which a signal to interference 

ratio (SIR) based utility function is assigned to each individual user; this gives rise 

to a multi-objective power optimization formulation. In the stochastic framework, 

attempts at recognizing the time correlated nature of signals are made in [56], where 

blocking is defined, not as an instantaneous reaching of a global interference level but 

via the sojourn time of global interference above a given level which, if sufficiently 

long, induces blocking. The resulting analysis employs the theory of level crossings. 

Stochastic approximation algorithms are proposed in [73] for distributed power con

trol with constant channel gains, and mean square convergence to the optimum is 

proved. In [46], the authors proposed power control methods for Rayleigh fading 

10 



2.2 THE POWER CONTROL PROBLEM 

channels based on outage probability. At each time snapshot, the power is computed 

by minimizing total power subject to outage probability constraints or by minimizing 

outage probability subject to power constraints. Down link power control for fading 

channels is studied in [13] by heavy traffic limit where averaging methods are used. 

In [16], the authors consider decentralized dynamic power control for a finite state 

Markovian channel, the power control law is determined by the so-called single-user 

policy where the intercell and incell interferences are approximated by a constant on 

the overall time duration of power control. 

In contrast to the above research, the modelling and analysis of power control 

strategies investigated in this thesis employ continuous time wireless models which are 

time-varying and subject to fading. In particular, the dynamic model for power loss 

expressed in dBs is a linear stochastic differential equation whose properties model 

the long-term fading effects due to (i) reflection power loss, and (ii) power loss due to 

long distance transmission of electromagnetic waves over large areas [17, 19]. This 

gives rise to power loss trajectories which are log-normally distributed. Lognormal 

power loss models are justified by experimental data [61, 63]. Recently, there is 

an increasing interest in the effect of lognormal fading on communication quality of 

service; see [81, 2, 29]. 

Motivated by the current 

technology in use [62], in this 

Chapter we propose a (bounded) 

rate based power control model 

for the power adjustment of log-

normal fading channels and then 

a performance function is intro

duced. An important conse-

FlGURE 2.1. A typical cell consisting 

of a base station and many users 

quence of the existence of a bound on the rate of change of mobile power, is that 

successive uplink power adjustments can no longer be considered as a sequence of in

dependent pointwise optimization problems (currently prevailing telecommunications 

11 
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view). The structure of the performance function is related to the system signal to 

interference ratio (SIR) requirements. We do not make direct use of the SIR or other 

related quantities such as the bit error rates (BER) or outage probabilities in the 

definition of the performance function [22]; instead we use a loss function integrated 

over time which depends upon the factors determining the SIRs and the power levels. 

By this means we will be able to avoid certain technical difficulty in the analysis and 

computation of the control laws. Our current analysis of the optimal control law of 

each individual user involves centralized information, i.e., the control input of each 

user depends on the state variable of all the users. It would be of significant interest 

to investigate the feasibility of decentralized control under fading channels since this 

would potentially reduce the system complexity for practical implementation of the 

control laws. This important issue will be addressed in Chapter 7. 

2.3. Dynamic Modelling for Radio Propagation under User 

Mobility 

2.3.1. Traditional Modelling for Fading. In mobile communication sys

tems, the signal delivered from the transmitter to the receiver experiences two types of 

fading — small scale (short-term) fading and large-scale (long-term) fading [61, 63]. 

For the uplink of a mobile communication system our convention is that the transmit

ter and the receiver shall refer to the mobile user and the base station, respectively. 

Small-scale fading is characterized as deep and rapid fluctuation of the amplitude 

of the received signal over a very short time duration or over very short travelling 

distances (up to a few wavelengths). This kind of rapid fading is caused by the multi-

path effect in which the received signal is the superposition of multiple replicas of the 

transmitted signal arriving at the receiver with slightly different delays [59]. Small-

scale fading is typically modelled by Rayleigh distributions. Specifically, the received 

signal envelope (with amplitude r > 0) is Rayleigh distributed and is described by 

12 
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the density function 

r2 

fray{r) = { ray 

0, r < 0, 

where o$a > 0 is the time average power of the received signal before envelope 

detection [63]. It can be shown that subject to Rayleigh fading the received signal 

power is exponentially distributed [46]. In certain circumstances, apart from the 

multipath effect there exists a dominant signal component reaching the receiver from 

the transmitter (for instance, due to a line-of-sight (LOS) propagation path). In 

this case the small-scale fading envelope has a Rician distribution. This situation is 

termed as Rician fading. The density function of a Rician distribution is expressed by 

modifying the Rayleigh density with a modified Bessel function of the first kind and 

of zero-order; the interested reader is referred to [63] for details. When the dominant 

component vanishes, the Rician distribution degenerates to a Rayleigh distribution. 

In contrast, large-scale fading is used to characterize signal attenuation over long 

distances caused by shadowing effects due to variations of the terrain profile and the 

surroundings of the transmitter and the receiver. Large-scale fading is conveniently 

described in terms of large-scale path loss (PL) (simply called path loss), which mea

sures the amount of amplitude decrease by decibels (dB) when the power is delivered 

from the transmitter to the receiver. Extensive experiments and their statistical anal

ysis indicate that expressed in dB the path loss is the sum of two terms: the power-law 

distance loss and a zero mean random variable with a normal distribution [63]. The 

power-law distance loss is determined by the distance between the user and the base 

station and a power-law loss exponent. Quantitatively, the path loss is represented 

as 

d(m,B). 
PL(m,B) = [PL(d0) + 1 0 7 l o g 1 0 ( ^ - ^ ) ] +&(m,B) 

A 
= PL(m,B)+&{m,B), 

13 



2.3 DYNAMIC MODELLING FOR RADIO PROPAGATION UNDER USER MOBILITY 

where do is a reference distance from the base station B and 7 is the power-law loss 

exponent which is in the range [2,4] [63], d(m, B) denotes the distance between the 

position m of the mobile user and the base station, and PL(d0) is a deterministic value 

representing the average large-scale path loss for a transmitter-receiver separation 

distance of do. We shall call PL(m,B) the power-law distance loss. —PL(m,B) 

is usually called the power attenuation at m with respect to the base station B. 

The variance a2 of the spatially indexed normal random variable ^(m, B) will also 

be called the standard deviation of the lognormal fading. Lognormal fading is also 

commonly called lognormal shadow fading due to the role of shadowing effects in 

generating large-scale fading. For a large suburban area (or an urban area), the 

standard deviation <r2 of the lognormal fading is a constant depending on the near 

ground geography of large areas. The spatial correlation of the lognormal fading can 

be determined by experiments and is shown to decay with separation distance at an 

exponential rate [28]. 

In the following table we list the three frequently used models (Rayleigh, Rician 

and lognormal) for a comparison. 

distribution 

Rayleigh 

Rician 

Lognormal 

category 

small-scale 

small-scale 

large-scale 

time-scale 

millisecond 

millisecond 

hundreds of milliseconds 

caused by 

multipath 

multipath 

dominant paths 

shadowing 

For radio propagation, the large-scale fading and small-scale fading are considered 

as superimposed and can be treated separately due to the independence assumption 

of the two phenomena [49, 63]. Also, the methods to mitigate the impairments 

of large-scale fading and small-scale fading are quite different. In general, practical 

power control algorithms can efficiently compensate for large-scale fading but cannot 
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effectively cope with small-scale fading [30]; the more effective techniques to combat 

small-scale fading include antenna arrays, coding, etc. [81]. 

For these reasons, in the subsequent analysis we only deal with lognormal fading, 

and the small-scale fading will not be in the scope of our research. We note that in 

certain environments the small-scale component may play an increasingly important 

role for channel modelling. 

2.3.2. C h a n n e l Var i a t ion D u e t o O u t d o o r User Mobi l i ty . In [49], 

systematic experimental investigations are carried out on an integrated simulation 

platform. In the experiments, power control is applied under signal propagation 

conditions for travelling mobile users. The radio power loss is modelled as a spatially 

correlated lognormal stochastic process. This also naturally gives a time correlated 

lognormal stochastic process for a real time power control when the spatial location 

of the user changes from time to time. This illustrates the apparent rationality of 

modelling the lognormal fading of a user by a random process under an outdoor 

mobility condition. 

We use the following example to illustrate the spatial variation of the large-scale 

path loss and show the necessity of dynamic modelling of lognormal fading for mobile 

users. We consider a large coverage cellular system (macrocell) which is typically used 

in suburban areas. Let B be the location of the base station at the center of a 15 

kmx 15 km service area. Denote by d(m\, m2) the distance between two user locations 

mi and ra2. Suppose d(mi, B) = 5 km, d(m2, B) — 5.1 km and d(m1,m2) — 0.1 km, 

i.e., m2 is on the straight line determined by B and m^. In the macrocell case the 

reference distance do can be taken as 1 km [63]. Using the representation of the 

previous subsection, we write 

PL(ml,B) = F7L(do) + l frylogxo^™1 ' B)) +^(muB), 

,d(m2,B). 
PL(m2,B) = PL(do) + 107logio( V , 0+^(m2>g). 

an 
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The spatial correlation R(mi,m2) between £a2(mi,B) and £a2(m2,B) can be accu

rately described by R(m^m2) = a2exp(- r f ( m^;m 2 )) [28, 49]. 

For illustration, we take o2 = 10 dB, 7 = 2.7, and d* = 0.5 km. With this 

selection of d*, the correlation for a separation distance of 0.1 km is 0.8187; see [28] 

for determination of d* from experimental measurements. Experimental data as well 

as systematic statistical analysis on determining these parameters for the lognormal 

shadowing effect can be found in [63, 28]. We have 

PL(mi , B) - P-L(m2, B) = 107 log10 ( | ^ f j ) < 

J7\c ( u\ c ( DM 2 % / c r 2 - i ? ( m i , m 2 ) 

W e h a v e P L ( m i , £ ) - P L ( m 2 , £ ) = -0.2895 and E\&(mu B)-^2(m2, B)\ = 1.5143. 

This indicates that in the process of successive user position changes, the lognormal 

shadowing effect actually causes a much greater fluctuation in the path loss than the 

increase or decrease of distance does. This clearly shows the necessity of capturing 

the spatial variations of the lognormal fading in a mobile communication situation. 

2.3.3. Spatio-Temporal Correlation of Indoor Fading. In the classic log-

normal modelling of large-scale fading, each location is assigned a lognormal random 

variable and experimental verification is performed with fixed transmitter-receiver 

positioning. In this modelling irregular human disturbances around the transmitter 

and receiver are neglected. For an indoor environment (consisting of walls, indoor 

obstacles,etc) such a simplification is not acceptable; this is due to the extreme sensi

tivity of propagation patterns with respect to source and obstacle motion; this motion 

consequently becomes a very significant aspect of the modelling exercise. 

It is shown by experiments in [26, 27] that the local movement of personnel near 

the terminal (i.e. transmitter or receiver) and the local movement of the terminal 

around a give location (for instance, slightly shaking the terminal by the user) have 

drastic effect on the received power. Under such conditions the lognormal fading 

model still fits with the measurements, however the channel exhibits observable short 
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time and spatial variations. So in a practical indoor communication scenario, it is 

infeasible to model the channel condition by a static lognormal distribution, 

Well justified by the above facts, for a practical indoor communication scenario, 

although the user is physically confined in a small area it is more realistic and po

tentially more precise to introduce dynamic modelling of lognormal fading which is 

likely to capture the spatio-temporal variations of the channel and will be able to fur

ther characterize the underlying spatio-temporal correlation feature of the lognormal 

process. 

2.3.4. The S D E modell ing of Dynamic Channel Characteristics. For 

both outdoor and indoor scenarios, taking into account user mobility and variations 

of the surroundings of the user, the lognormal fading the user experiences can be 

modelled as a lognormal random process with certain statistical properties. In [28] 

a first order autoregressive (AR) innovation model was used to model the evolution 

of the lognormal fading for mobile users along an evenly sampled time sequence; see 

also [75]. As a natural generalization to the continuous time case, Charalambous et. 

al. [17] employ a linear stochastic differential equation (SDE) in the modelling of the 

channel characteristic. In both [28, 75] and [17], the basic modelling hypothesis is a 

Markovian assumption concerning the property of the lognormal fading process. More 

general but more complex modelling can be obtained by considering inhomogeneous 

Markovian modelling in contrast to the homogeneous (or time-invariant) Markovian 

models in [17, 75, 28]. For mobile users, the variation associated with the power-

law distance loss can also be explicitly incorporated into the modelling. In general, 

for indoor users and outdoor users moving in a small area, the power-law distance 

loss can be approximated by a constant. For users travelling in a large area within 

the duration of service, the situation is more complicated; several factors including 

travelling speed, cell size and handover should be taken into account for realistic 

channel modelling. In the stochastic control formulation of this Chapter, we will 

follow the fading channel model in [17]. These more complicated inhomogeneous 

models involving high speed travelling conditions will not be considered here. 
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2.4. A Stochastic Optimal Control Formulation 

2.4.1. The Dynamic Lognormal Fading Channel Model . Let Xi(t), 1 < 

i < n, denote the attenuation (expressed in dBs and scaled to the natural logarithm 

basis) at the instant t of the power of the i-ih mobile user of a network and let 

oti(i) = eXi^ denote the corresponding power loss. Based on the work in [17], we 

model the power attenuation dynamics by 

dxi =—ai(xt + bi)dt + Oidwi, t>0, 1 < i < n, (2.1) 

where n denotes the number of mobiles, {wi, 1 < i < n} are n independent standard 

Wiener processes, and the initial states £;(0), 1 < i < n, a r e mutually independent 

Gaussian random variables which are also independent of the Wiener processes. In 

(2.1), ai > 0,bi > 0, Oi > 0, 1 < i < n. The first term in (2.1) implies a long-

term adjustment of x, towards the long-term mean — 6j, and a, is the speed of the 

adjustment. Correspondingly, the i-th. power loss a* has a long-term adjustment 

toward its long-term mean, which is the average large-scale path loss [17]. 

The model (2.1) corresponds to a stable diffusion process due to the positivity of 

ai, and the process Xi is referred to as a mean reverting Ornstein-Uhlenbeck process 

[17], where the mean —6j of the power attenuation is explicitly incorporated into the 

dynamics. 

2.4.2. Rate Based Power Control. Currently, the power control algorithms 

employed in the mobile telephone domain use gradient type algorithms with bounded 

step size [62]. This is motivated by the fact that cautious algorithms are sought which 

behave adaptively in a communications environment in which the actual position of 

the mobile and its corresponding channel properties are unknown and varying. 

We model the adaptive step-wise adjustments of the (sent) power p{ (i.e., that 

sent in practice by the i-th mobile) by the so-called rate adjustment model [31, 32] 

dpi = Uidt, t>0, \ui\ < uimax, l<i<n, (2.2) 

18 



2.4 A STOCHASTIC OPTIMAL CONTROL FORMULATION 

where the bounded input Ui controls the size of increment dpx at the instant t. Without 

loss of generality, uimax will be set equal to one. The adaptive nature of practical 

rate adjustment control laws is replaced here by an optimal control calculation based 

on full knowledge of channel parameters at, 6j, and c^, 1 < i < n. In the intended 

practical implementation of our solution these parameters would be replaced by on

line estimates. We write 

x [xu--- ,xn]
T, p= [ p i , - - - ,pn]

T, u=[uu--- ,uny 

Notice that the above rate adjustment model (2.2) may be compared with the 

up/down power control scheme proposed in [67] where the power of the next time 

step is calculated from the current power level and an additive adjustment which is 

optimized by a statistical linearization technique. The algorithm in [67] is in discrete 

time, and the required information for updating power includes the current power, 

the channel state and a target SIR. 

2.4.3. Quality of Service Requirements and Criteria for Optimization. 

Let r\ > 0 be the constant system background noise intensity which is assumed to 

be the same for all n mobile users in a network. Then, in terms of the power levels 

Pi > 0, 1 < i < n, and the channel power attenuations ai, 1 < i < n, the so-called 

signal to interference ratio (SIR) for the i-th mobile is given by 

T, = _ n
 aiPl ^ , 1 < i < n. (2.3) 

A standard communications Quality of Service (QoS) constraint is to require that 

T{ > 7t > 0, 1 < i < n, (2.4) 

where 7*, 1 < i < n, is a prescribed set of individual target signal to interference 

ratios. We note that the constraints (2.4) are equivalent to the linear constraints 
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otiPi > liiYl^i ajPj +rl)y 1 < * < n> which, in turn, are equivalent to 

n 

(1 + 7i)QjPi > 7 t ( ^ OjPj +77), 1 < i < n, 
i=i 

and hence to 

r i = ™ — — — ; — > A*t> 1 < » < n, (2-5) 
2J J = i Qj-pj + 77 

where p{ = y ^ - > 0, 1 < i < n. Further, since 

£ r ; = JF"-1*'1? , (2.6) 

it neccessarily follows that 

n 

J > i < l , (2-7) 
i = l 

if (2.5) is solvable with p; > 0, 1 < i < n. 

A plausible power allocation would be satisfying the generalized SIR requirements 

(2.5) with as low power consumption as possible. In a real time power allocation 

senario, a straightforward way to formulate the optimization problem would be to seek 

control functions which yield the minimization of the integrated power L Y^=\ Pi if)dt 

subject to the constraints (2.5)-(2.7) at each instant t, 0 < t < T. 

Here we begin by considering the pointwise global minimization of the summed 

power Yl?=iPi u n d e r the inequality constraints (2.5)-(2.7) and the constraints pi > 0, 

1 < i < n. Setting n inequalities in (2.5) as equalities and taking into account the 

constraint (2.7), we get a positive power vector p° = (p°, • • • ,p°) given by 

P> = „h ^ nV l ^ ^ U- ^ 8 ) 

It turns out that p° is the unique positive vector which minimizes Y^i=\Pi under 

constraints (2.5)-(2.7). Furthermore, it can be shown [70] that any nontrivial local 

perturbation of p° to a vector p which also satisfies the constraints results in a strict 
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2.4 A STOCHASTIC OPTIMAL CONTROL FORMULATION 

increase of each component p°. Hence, such a p° is a local (linear inequality con

strained) minimum which is also a global (linear inequality constrained) minimum. 

In other words, provided (2.7) holds, the solution to 

n 

minimize /~_]pi, Pi > 0, (2.9) 
2 = 1 

subject to the constraints (2.5) is the unique solution to 

^ n a%Pl , =// i , l < z < n . (2.10) 

(See [70]). Hence it is well motivated to replace the above pointwise constrained de

terministic optimization problem with the corresponding unconstrained deterministic 

penalty function optimization problem: 

n n n 

minimize y^[a,Pi - toC^2 aiPi + v)? + ^ X ^ P i ' ^ - °' (2-H) 
2 = 1 j=l 1=1 

over Pi > 0, 1 < i < n. However, because the power vector is a part of the stochastic 

channel-power system state with dynamics (2.1)-(2.2) and full state (a,p), it is im

possible to instantaneously minimize (2.11) via u(t) at all times t. Hence, over the 

interval [0, T], we employ the following averaged integrated cost function: 

. . j 1 n n n 

E {j2iaiPr-Mj2ajPj+ri)}2 + xJ2p^dt (2-1 2) 
^ ° 1=1 j=\ 1=1 

subject to (2.1) and (2.2), where A > 0. Here the small positive parameter A is used 

to adjust the power level and to avoid potential power overshoot. 

In the cost function (2.12), the first term of the integrand is related to the instan

taneous SIR in an indirect way. If the SIR term defined by (2.4) is directly applied in 

the cost function, this will cause a potential zero division problem and present more 

analytic difficulties since in our current formulation we do not add hard constraints 

to ensure positivity of the powers. 

In a practical implementation, the power of each user should remain positive. To 

meet such a requirement, one can choose appropriate control models and associated 
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2.4 A STOCHASTIC OPTIMAL CONTROL FORMULATION 

cost functions. For example, one might choose the control model 

dpi — UiPidt, t > 0, 1 < i < n, 

with a positive initial power for each individual mobile; then all power trajectories 

will remain positive with probability 1 on [0,T]. However, this and related setups 

may deviate significantly from the current technology in that the power adjustment 

is done in an additive way in practice. Instead, we use the rate based control model 

and the cost function introduced above. By choosing a small weight coefficient A 

and increasing the upper bound Uimax for the control input, we can guarantee that 

the optimally controlled power process p obtained below in the stochastic optimal 

control framework takes non-positive values with only a small probability. For a 

better understanding of this point, we consider the ideal powers for minimizing the 

integrand of (2.12). For a fixed time, we take the attenuations as constants and write 

P2 

/ 1 - /Jl - / ^ i 

- / i 2 1 - /J2 -p>2 

-Vl 
\ 

\ Pn J \ ~Vn ~l*n 

And we write the integrand in (2.12) as 

/ « iP i 

CV2P2 

\ 

(2.13) 

1 - nn ) \ anpn J 

^ ( ^ - / i ^ + A ^ A p i , (2.14) 
i = l i = l 

where the coefficients Pi are determined from (2.13). The minimum of (2.14) is 

attained at 

2/̂ 77 - \f3{ 
Pi \<i<n. (2-15) 

Thus, when the attenuations are fixed and 0 < A < < 1, (2.15) gives a positive vector 

p. By a straightforward algebraic calculation it can be further shown that under 

assumption (2.7), the coefficient matrix in (2.13) has an inverse with all positive 

entries and therefore we can obtain a positive power vector p° from p. Although p° 
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2.5 OPTIMAL CONTROL AND THE HJB EQUATION 

cannot be realized by a control input, the optimal control will try to track p°. Once 

the actual power is deviating from p°, a greater penalty results. In such a manner the 

optimal control makes efforts to steer the optimally controlled power to be positive 

with a large probability. We remark that it is of interest to consider power adjustment 

using the rate based power control model (2.2) with positive power constraints. This 

issue will be addressed in Chapter 4 in a more general context. 

We introduce the assumption: 

(H2.1) The positive constants [ix, 1 < i < n, in (2.12) satisfy X)"=i to < •*•• D 

Throughtout Chapters 2-3 we assume (H2.1) holds for the formulation of the 

power control problem. However we note that technically (H2.1) is used only in the 

proof of Theorem 2.1 below. 

2.5. Optimal Control and the HJB Equation 

In the following we will analyze the optimal control problem in terms of the state 

vector (x,p); this facilitates the definition of the value function v since xx is defined 

on R, while ax is only defined on R+ , 1 < i < n. Clearly the results in terms of x 

can be re-expressed in terms of the power loss a by substitution of variables. Further 

define 

( - a i ( x i + 6i) * 

/ ( * ) = 

z = 

H 

( 

\ 

o\ 

0 

0 \ 

o-. ' " / 

/ 
G x 

i , * = i 

p / \ u 

where the second block of G is an n x n zero matrix. Now we write the equations 

(2.1) and (2.2) together in the vector form 
dz = i>dt + Gdw, t > 0, (2.16) 
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2.5 OPTIMAL CONTROL AND THE HJB EQUATION 

where w is an n x 1 standard Wiener process determined by (2.1). In further analysis 

we will denote the state variable either by (x, p) or by z, or in a mixing form, when 

it is convenient. We also rewrite the integrand in (2.12) in terms of (x,p) as 

n n n 

l(z) = l(x,p) = Y^P'Pi ~ toC£eX3P] + v)]2 + A I > ' A ^ °-
i = l j=l i = l 

The admissible control set is specified as 

U = {u(-) | u{t) is adapted to o(xs,ps, s < t), and u(t) £ U = [-1,1]", V 0 < i < T } . 

As is stated in Section 2.4.1, the initial state vector is independent of the n x 1 Wiener 

process; we make the additional assumption that p has a deterministic initial value 

p(0) at t — 0. Then it is evident that a(xs,ps,s < t) = a(x0)ws,s < t). We also 

introduce 

C = {u(-) | u is adapted to o(xs,ps, s < t), and EjQ \ut\
2dt < oo, }. 

If C is endowed with an inner product {u,u') = E JQ uTu'ds, for u,v! e C, then C 

constitutes a Hilbert space. By the above inner product we can induce a norm || • || 

on C. Under this norm U is a bounded, closed and convex subset of C. Finally, the 

cost associated with the system (2.16) and a control u(-) is specified to be 

J(s,x,p,u) = E[ / l(xt,Pt)dt\xa = x,ps =p], 
J s 

where s € [0, T] is taken as the initial time of the system; further we set the value 

function 

v(s,x,p) = inf J(s,x,p, u), (2.17) 

and simply write J(0,x,p,u) as J(x,p,u). 

24 



2.5 OPTIMAL CONTROL AND THE HJB EQUATION 

Theorem 2.1. If Assumption (H2.1) holds, there exists a unique optimal control 

u EU such that 

J(x0,pQ,u) = inf J(x0,p0,u), 

where (x0,p0) is the initial state at time 5 = 0, and uniqueness holds in the following 

sense: if u 6 U is another control such that J(x0,p0, u) = J(x0,po,u), then PQ(US ^ 

us) > 0 only on a set of times s e [0, T] of Lebesgue measure zero, where Q is the 

underlying probability sample space. 

PROOF. The existence of the optimal control can be established by a typical 

approximation argument on the subset U of the Hilbert space C, and the details are 

omitted here (see, e.g., [78]). 

Uniqueness: Assume there is u 6 U such that J(x0,p0,u) — J(x0,Po,u), and 

denote the power corresponding to u by p. For any fixed x 6 Rn, by (H2.1) it can be 

verified that a 2 *s strictly positive definite, and therefore l(x,p) is strictly convex 

with respect to p. So we have 

l(xs,^(Ps+Ps)) < -[l(xs,ps)+l{xs,ps)}, (2.18) 

and a strict inequality holds on the set ^4° = {(s,u>) £ [0, T] x Q,,ps ^ p s } . Now we 

assume that E fQ l(ps^ps)ds > 0, i.e., A° has a strictly positive measure, and then the 

control | (u + u) eU yields 

J{xo,Po, 7i(u + u)) < -[J{x0,p0,u) + J(x0,p0,u)] = inf J(x0,p0,u), 
Z 2 v.eu 

by integrating and taking expectation on both sides of (2.18), which is a contradiction, 

and therefore 

E f l&.&.)ds = 0. (2.19) 

Since with probability 1 the trajectories of ps are continuous, by (2.19) we have 

Ps - Ps = 0 on [0, T] 
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2.5 OPTIMAL CONTROL AND THE HJB EQUATION 

with probability 1. By (2.2) we have 

/ (ut - ut)dt = ps- ps, 
Jo 

for all s e [0, T], so that with probability l,us — us = 0 a.e. on [0, T]; or equivalently, 

E / l(us^us)ds = / PQ(us / us)ds = 0. 
Jo Jo 

So that PQ(US 7̂  us) > 0 only on a set of times s G [0, T] of Lebesgue measure zero. 

This proves uniqueness. • 

Proposit ion 2.1. The value function v is continuous on [0, T] x R2n, and fur

thermore, 

v(t,x,P)<c(i + j2pt + Y,e4x'^ (2-2°) 
1 = 1 2 = 1 

where C > 0 is a constant independent of (t,x,p). 

PROOF. The continuity of i> can be established by continuous dependence of the 

cost on the initial condition of the system (2.16). The inequality (2.20) is obtained 

by a direct estimate of the cost function. D 

The above growth estimate of the value function will be used in Chapter 3 to 

define a function class in which approximate solutions are sought. 
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C H A P T E R 3 

The HJB Equation and its Approximation 

3.1. The Dynamic Programming Equation 

In this Chapter we continue the investigation of the stochastic control problem 

introduced in Chapter 2. The notation used below is consistent with that of Section 

2.5 of the previous Chapter. Formally applying dynamic programming to the stochas

tic optimal control problem formulated in Section 2.5, Chapter 2, we may write the 

Hamilton-Jacobi-Bellman (HJB) equation for the value function v defined by (2.17) 

as follows: 

dv dTv 1 d2v 

v(T,x,p) = 0, 

where z = (xT,pT)T. It is seen that in (3.1) the covariance matrix GGT is not of 

full rank. In general, under such a condition the corresponding stochastic optimal 

control problem does not admit classical solutions due to the degenerate nature of the 

resulting HJB equations. The solution for such an HJB equation can be formulated 

in the viscosity solution framework. The definition of a viscosity solution will be 

given in Chapter 4. After the existence of a viscosity solution is proved for the HJB 

equation, an interesting issue arises as to whether the value function is the unique 

viscosity solution in a certain function class. For such degenerate HJB equations 



3.2 PERTURBATION OF THE HJB EQUATION 

proving the uniqueness of viscosity solutions is not only of apparent mathematical 

interest, but is also important for analyzing convergence to the viscosity solution for 

certain approximation schemes [7, 24]. 

In order to prove uniqueness of the viscosity solution to the above HJB equation, 

we introduce the function class Q such that each v(t,x,p) G Q satisfies 

(i) veC{[0,T] x R 2 n ) a n d 

(ii) there exist C, ku k2 > 0 such that \v\ < C[l + £ " = 1 efcl|^l + E ^ i d ^ l * 2 + 

|pi|fc2)], where the constants C, ki, k2 can vary with each v. 

T h e o r e m 3 .1 . The value function v defined by (2.17) is a viscosity solution to 

the HJB equation (3.1), and moreover, the value function v is a unique viscosity 

solution to (3.1) in the class Q. 

PROOF. It is easy to verify that the stochastic control problem formulated in 

Section 2.5 is a special case of the class of stochastic control problems in Section 4.2. 

Specifically, the system (2.16) satisfies Assumptions (H4.1)- (H4.2) of Chapter 4. 

Hence by Theorems 4.1 we see that v defined by (2.17) is a viscosity solution to (3.1). 

Obviously the value function v is in the class Q by Proposition 2.1. By Theorem 

4.3 it follows that v is a unique viscosity solution to (3.1) in the class Q. • 

3.2. Perturbation of the HJB Equation 

As is pointed out in Section 3.1, in general, one cannot prove the existence of a 

classical solution to the HJB equation (3.1) due to the lack of uniform parabolicity. 

Now we modify (3.1) by adding a perturbing term \ X™=i ^ J ^ anc* formally carrying 

out the minimization to get 

dve 1ST* 2<9V l A 2d
2vt ^ dve , ^ dve 

0 = ̂  + 2 E ^ + 2 S £ % - S ^ ^ . + '>.)-i:i^-|+'. (3-2) 
2 = 1 % 2 = 1 l 2 = 1 2 = 1 

where we use v£ to indicate the dependence of the solution on e > 0. We will seek a 

classical solution ve in the class T: 

(i) ve G C1-2((0,T) x R2n) n C([0,T] x R2n) and 
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3.2 PERTURBATION OF THE HJB EQUATION 

(ii) |7je| < C ( l + |p|fcl + ek2^), where C, kx, k2 > 0 can vary with each ve, and 

(iii) 7j£(T,x,p) = 0. 

We prove the existence of a solution to (3.2) in T by an approximation approach. 

First we fix 0 < e < 1. For integer d > 1, we introduce a cut-off function hd(x,p) — 

hd(z) such that hd(z) = 1 for \z\ < d, hd(z) = 0 for \z\ > d + 1, and \hd
Zi\ < 2, 

1 < i < 2n. Write the auxiliary equation 

2 = 1 l 2 = 1 r l 2 = 1 

n rlvd 

2 = 1 ^ l 

vd(T,x,p) = 0. 

T h e o r e m 3.2. The equation (3.2) has a unique classical solution in the class T 

for all e > 0. 

PROOF. The existence of a classical solution can be proved in a way similar to the 

proof of Theorem VI6.2 [23], and it can be shown first that (3.3) admits a classical 

solution vd in the class T. Fix any d0 > 1. We take D = (0,T) x (|(x,p)| < do). Then 

for any d > d0, vd(t, x,p) in (3.3) satisfies (3.2) for \z\ < d0, and moreover vd, vd., vd. 

are uniformly bounded on D with respect to d. For any Q = (0, T) x (|z| < d'), 

0 < d' < do, by local estimates it can be shown that 

î iS> = I A * + I«;U,Q + E Kks + E K*AQ 
,d|(2) A 

I'" \X,Q T \us\\,Q T ^ \vZi\\,Q T-
* t.J 

is uniformly bounded with respect to d, where | • |A,Q denotes the LX(Q) norm. In the 

above we can take A > n + 2, and therefore by the Holder estimates, vd. satisfies a 

uniform Holder condition on Q. We can further use the Holder estimates to show that 

vd vd..., d = do+1, d 0 +2, • • •, satisfy a uniform Holder condition on Q. Finally we use 

Arzela-Ascoli theorem [64] to take a subsequence {dkq, q > 1} of {d^ = do + fc, k > 1} 

such that vdki, vs
kq, vz*

q, vz^ converge uniformly to ve, v£
s, v

£
z., v

e
z.z. on Q, respectively, 

as q —> oo, where vs satisfies (3.2) and is in the class T. By the growth condition 
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3.2 PERTURBATION OF THE HJB EQUATION 

of v£, we can use Ito's formula to show that ve is the value function to a related 

stochastic control system, and thus it is a unique solution to (3.2) in the class T. D 

T h e o r e m 3.3. For 0 < e < 1 and B a compact subset of R2n, if ve is the solution 

of (3.2) in class T, then v£ —>• v uniformly on [0, T] x B, where v is the value function 

of the system (2.16). 

PROOF. Suppose {wi, v^ 1 < i < n} are mutually independent standard Wiener 

processes. Write 

dp\ = Uidt + edui, 1 < i < n. (3.4) 

Here we use Uw^ to denote a(uii, i^-adapted controls satisfying |w,| < 1, 1 < i < n. 

It can be shown that the optimal cost of the system (2.16) does not change when 

in (2.17) U is replaced by W-v'. In fact, in both cases of admissible control set U 

and Uw,v we can prove by dynamic programming that the resulting value functions 

are a viscosity solution to the associated HJB equation (3.1) in the class T and the 

viscosity solution is unique; see the viscosity solution analysis in Chapter 4 or [36]. 

Hence in the following proof we always take controls from Uw,v. And in fact, v£ G T 

determined by (3.2) is the value function to the stochastic control problem (2.1)-(3.4), 

i.e., 

v£(s,x,p) = inf J(s,x,p,u) = inf E[ / l(xt,Pt)dt\xs — x ,p s = p]. 
ueuw'L' u Js 

For a fixed u G Uw,u, we have P{\ime^0 sup0< t<T \p£ — px\ = 0} = 1, and using 

Lebesgue's dominated convergence theorem [64] we obtain 

| Je(s, x, p, u) — J(s, x, p, u) I —> 0, a s e ^ 0, 

and therefore, v£(s,x,p) —> v(s,x,p), as e —> 0. It is easy to verify that t>e(s,x,p) is 

uniformly bounded on [0, T] x B for 0 < e < 1. Furthermore, by taking two different 

initial conditions we can show that on [0, T] x B, v£ is equicontinuous with respect to 
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0 < e < 1. By Arzela-Ascoli theorem, v£(s, x,p) —• v(s,x,p) uniformly on [0, T] x B, 

as £ —>• 0. D 

3.3. Interpretation of Bounded Rate Control 

In the HJB equation (3.1), the value function is specified by the formal use of its 

first and second order derivatives, and then the equation is interpreted in a viscosity 

solution sense. Evidently the optimal control is not specified as a function of time and 

the state variable globally due to the nondifferentiable points of the value function. 

However, by checking the Dynamic Programming Principle at any point (t, x,p) such 

that the value function v is differentiate in a neighbourhood of (t, x,p), we see that 

locally the optimal control can be specified by the derivative information of the value 

function around such a point and the control input is a bang-bang control. 

After the perturbation of HJB equation, the associated suboptimal cost function 

is differentiable everywhere. Then the suboptimal control law is constructed by the 

rule: 

,e dv 
u — axg mm/ipT——: (3.5) 

ueu az 

which also gives a bang-bang control. We note that the suboptimal control law (3.5) 

resembles the up/down power control algorithms in [67] where at each discrete time 

instant the power is increased or decreased by a fixed amount and the increment is 

determined by the current power, the observed random channel gain and a target SIR 

level. But our method here differs from [67] since the fading dynamics modelled by 

(2.1) are incorporated into the calculation of the control law (3.5). Clearly for (3.5), 

Ui = — sgnl^- since Ui G [— 1,1]. In a discrete time implementation, we assume the 

time axis is evenly sampled by a period of AT. At time kAT, k = 0,1,2, • • •, the z-th 

user only needs to increase or decrease its power by A T in the case ^-\t=kAT < 0 or 

^f-\t=kAT > 0, respectively; if ^-\t=kAT = 0, the power increment for p{ is set as 0. 

The significance of the suboptimal control law is that it gives a very simple scheme 

(i.e., increase or decrease the power by a fixed amount or keep the same power level) 
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for updating the power of users by requiring limited information exchange between 

the base station and the users (in the current technology, the base station sends the 

power adjustment command to the users based on its information on the operating 

status of each user), and thus reduces implementational complexity. 

On the other hand, from the structure of the suboptimal control law we see that 

each user should use centralized information, i.e., the current powers and attenuations 

of all the users, to determine its own power adjustment. In general, to implement the 

centralized control law requires more information exchange between the base station 

and the individual users than in the case of static channels [68, 69, 82]. 

3.4. Numerical Implementation of ^-Perturbation Suboptimal 

Control 

From the above analysis it is seen that for a numerical implementation, we only 

need to choose a small positive constant £ > 0 and solve equation (3.2) and the 

suboptimal control is determined in a feedback control form. Consider the case of 

two users with i.i.d. channel dynamics 

dxx = —a(xi + b)dt + adwi, i = 1,2, 0 < t < 1. 

We take the time interval [0, 1] and use a performance function E JQ l(xt,pt)dt with 

/ =[eXl
Pl - 0.4(eXlpi + eX2p2 + 0.25)]2 

+ [eX2p2 - 0A(eXl
Pl + eX2p2 + 0.25)]2 + X(px +p2). 

In order to compute the suboptimal control law, we need to solve the approximation 

equation numerically, 

0 = vt + -o2(vXlXl + vX2X2) + -£2{vPlPl + vP2P2) (3.6) 

- a(xx + b)vXl - a(x2 + b)vX2 - \vPl | - \vV2 \ + I, 

v(l,x,p) = 0 . 
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The above equation is solved by a standard difference scheme [3] in a bounded region 

S = {(t,x,p): 0<t< 1, - 4 < x i , x 2 < 3 , |pi | , |p2 | < 3}. 

An additional boundary condition is added such that v(t,x,p)\g — 0, where 

d = dS — {(t,x,p),t = 0}. We let 6t, h > 0 be the step sizes, and denote z = 

(xx,x2,px,p2)
T, e, — (0, • • • , 1, • • • ,0)T where 1 is the z-th entry in the row. We 

discretize (3.6) to get the difference equation 

0=hv{t + 6t,z)-v(t,z)] (3.7) 

where 

a2 

St1 

+ i^pW^z + eih) + v ^ z - eih) ~ M^ z)] 
2 

+ ^ 2 M*< z + e2h) + v(t, z - e2h) - 2v(t, z)) 

£2 

+ ztfW^ z + e^h) + v(^ z ~ e*h) ~ 2v(t, z)] 
£2 

+ 2tfHt> z + e4h) + v{t, z - e4h) - 2TJ(C, Z)] 

a(xx + b). . 
7 [v{t, z + exh) - v(t, z)\l{a{xi+b)<0} 

a(xx + b) r n 
7 [v(t, z) - v(t, z - ei/i)Jl{a ( l l+6 )>o} 

a(x2 + b). . . 
^ [v{t z + e2h) - v(t, z)Jl{a( l2+6)<0} 

a(x2 + b). . n 
^ [v(t, z) - v(t, z - e2h)\l{a{X2+b)>0} 

+ OT[V(* ' - + e3h) ~ v(f^ z ~ e3^)] 

u2 

2hl 

+ ^r[v(*, z + e4h) - v(t, z - e4h)] + l(z), 
2W 

ux = -sgn[v(t, z + e3h) - v{t, z - e3h)}, (3.8) 

u2 = -sgn[i>(£, z + e4h) - v(t, z - e4h)}. (3.9) 
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With the boundary condition and an initial approximate solution, we can determine 

the variables ux and u2 (the control variables) by the rules (3.8)-(3.9), and update 

the numerical solution. The iterations converge to the exact solution to the difference 

equation (3.7), as can be proved by the method in [53]. We remark that there are 

general results concerning the convergence of this type of difference scheme to the 

solution of the original partial differential equation. The interested reader is referred 

to the literature (see, e.g., [24, 50, 51]). 

3 .4.1. Numerical Examples. In the numerical simulations, we consider the 

system with parameters a = 4, b = 0.3, o2 = 0.09, e2 = 0.15, and three cases for A: 

(1) A = 0.01; (2) A = 0.001; (3) A = 0. In the difference scheme the step size is 0.1 

for t, Xj, pi, i — 1,2. To improve the approximation we may reduce £, and at the 

same time we should reduce h to guarantee convergence of iterations of the difference 

scheme [53]. In the simulation, the value function will be further interpolated to get 

a step size of 0.05 which will help reduce overshoot in the power adjustment. The 

power loss processes are also discretized with a time step size of 0.05. In the control 

determination, a current time space vector (t, xx, x2,px,p2) is mapped to a grid point. 

Then the control is determined by the descent direction of the value function with 

respect to the control input ux, i'. = 1, 2. If either increasing or decreasing the power 

level does not result in an evident decrease of the value function, we set the control 

to be 0. Figures 3.1-3.3 present the numerical simulation results where xx, x2 denote 

the attenuations, pi, p2 denote the powers for two users, and qx, q2 are the pointwise 

optimal powers obtained from (2.8). Figures 3.1, 3.2, 3.3 correspond to cases 1, 2, 3, 

respectively. It can be seen in all of the cases that after a certain period of time, the 

two power levels are very close to each other. 

When at the initial time one mobile has a significantly different power level than 

the other, we see that an interesting equalization phenomenon takes place; this is 

shown in Figures 3.1 (b), 3.2 (b) and 3.3 (b). Starting from the initial instant the 

controller will first make the mobile with a high power level reduce power and the 

other increase power; after a certain period however both mobiles will increase their 
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3.4 NUMERICAL IMPLEMENTATION OF e-PERTURBATION SUBOPTIMAL CONTROL 

power together. This happens because a large difference in the two powers induces a 

large penalty in the performance function. 

Figures 3.1, 3.2 and 3.3 show that the power is rather sensitive to the weight 

factor A. When the cost function places a small emphasis upon power saving the 

optimal power trajectories are seen to be close to the pointwise optimal powers. 

Figures 3.4 and 3.5 demonstrate the the trajectories of the attenuation, the con

trolled power and the associated control input for two users. The control for each 

user has a bang-bang feature where for most of time it takes -1 or 1, and the control 

is set as 0 for some rare cases when the calculated gradient of the value function w.r.t. 

the control is very small and thus treated as 0 derivative. 

Figure 3.6 shows two surfaces of the value function at different times when the 

attenuations are fixed. It illustrates the variation of the value function w.r.t. different 

power levels. 

(a)pi(0) = 0.01,p2(0) = 0 (b)pi(0) = 0.21,p2(0) = 0.6 

FIGURE 3.1. The trajectories for the attenuation Xi and power px; Different 
initial powers are used in (a) and (b); The power weight A = 0.01 
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weight A = 0.001 
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FIGURE 3.3. The trajectories for the attenuation Xi and power px; The power 
weight A = 0 

(a) pi(0) = 0.01, p2(0) = 0, A = 0.001 (b) ux, u2, A = 0.001 

F I G U R E 3.4. Left: the trajectories for the attenuation x\ and power px, 
Right: the control input ux of two users; The power weight A = 0.001 
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(a) pi(0) = 0.11, p2(0) = 0.6, A = 0.001 (b) ux, u2, A = 0.001 

FIGURE 3.5. Left: the trajectories for the attenuation Xi and power pf, 
Right: the control input Ui of two users; The power weight A = 0.001 

(a) xx,x2 = —0.3,t = 0 (b) xx,x2 = -0 .3 , t = 0.9 

FIGURE 3.6. The surfaces of the value function for fixed x and varying p; 
The power weight A = 0.001 
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C H A P T E R 4 

Viscosity Solution Analysis for a Class of 

Degenerate Stochastic Control Problems 

4.1. Introduction 

This Chapter is concerned with a class of optimization problems arising from the 

power control problem for wireless communication systems and forms a mathematical 

foundation for the results in Chapters 2 and 3 and the papers [32, 35]. The material in 

this Chapter follows the papers [33, 36]. We will first formulate a class of degenerate 

stochastic control problems which take the form of the regulation the state of a 

controlled process where an exogenous random parameter process is involved in the 

performance function, and then we show that the communication application reduces 

to a special case for the general formulation. A mathematical finance problem will 

also be introduced for illustration of the general case. 

The random parameter process and the controlled process are denoted by xt 6 Rn 

andp f G R71, t € R+, respectively. Suppose x is modelled by the stochastic differential 

equation 

dx = f(t,x)dt + o(t,x)dw, t>0, (4.1) 

where / and o are the drift and diffusion coefficients, respectively, w is an n dimen

sional standard Wiener process with covariance EwtvS[ = tl and the initial state x0 

is independent of {wu t > 0} with finite exponential moment, i.e., Ee2^ < oo. 
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The process p is governed by the model 

dp = g(t,p,u)dt, t>0, (4.2) 

where the component gi(t,p,u), 1 < i < n, controls the size of the increment dpi at 

the time instant t, u G R", |UJ| < uijnax, 1 < i < n. Without loss of generality we set 

tomax = 15 and we shall write 

x = [xx,- •• ,xn]
T, p = [ p i , - •• , p n ] r , u = [ux,--- ,un]

T. 

In the regulation of p, we introduce the following cost function 

E f \pTC(x)p + 2DT(x)p]dt, (4.3) 

Jo 

where T < oo, C(x), D(x) are n x n positive definite matrix (for any x G R n ) , n x l 

vector, respectively, and the components of C(x) and D(x) are exponential functions 

of linear combinations of Xi, 1 < i < n. For simplicity, in this Chapter we take 

Cij(x) — CijeXl+xi, Di(x) — dxe
Xi + s^ for 1 < i,j < n, where C{j,di,Si G R are 

constants. This particular structure of the weight coefficients indicates that each px 

is directly associated with the parameter component xx through the cost function 

for 1 < z < n, when expanding the integrand in (4.3) into its components. The 

more general case of expressing the components of C(x) and D(x) as exponential 

function of general linear combinations of Xj, 1 < z < n, can be considered without 

further difficulty. We will give the complete optimal control formulation in Section 

4.2, where the technical assumptions of weak coupling for the dynamics (4.1)-(4.2) 

will be introduced. 

4.1.1. The Stochastic Power Control Example. We now briefly review 

the motivating stochastic power control problem for lognormal fading channels. In 

an urban or suburban environment, the power attenuations of wireless networks are 

described by lognormal random processes. Let £;(£), 1 < z < n, denote the power 

attenuation (expressed in dBs and scaled to the natural logarithm basis) at the instant 
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t of the z-th mobile and let ai(t) = eXl(t) denote the actual attenuation. Based on the 

work in [17], the power attenuation dynamics adopted in Chapters 2, 3 and in the 

papers [32, 35] are given as a special form of (4.1): 

dxx = -ax(xi + bx)dt + Oidwi, t > 0, 1 < z < n. (4.4) 

In (4.4) the constants ai,bi,Ui > 0, 1 < i < n. (See [17] for a physical interpretation 

of the parameters in (4.4)). In a network, at time t the z-th mobile sends its power 

Pi(t) and the resulting received power at the base station is eXi^Pi(t). The mobile 

has to adjust its power px in real time so that a certain Quality of Service (QoS) is 

maintained. In Chapters 2, 3 and [31, 32, 38] the adjustment of the (sent) power 

vector p for the n users is modelled by simply taking g(t,p,u) = u in (4.2) which 

is called the rate adjustment model. Subsequently, based on the system signal to 

interference ratio (SIR) requirements, the following averaged integrated performance 

function 

~T n n n 

E { E [ e ^ - ^ ( E e ^ + ^ 2 + A E ^ (4-5) 
^ ° i=l j=l i=l 

was employed, where n > 0 is the system background noise intensity, A > 0, and 

yUi, 1 < z < n, is a set of positive numbers determined from the SIR requirements. 

The resulting power control problem is to adjust u as a function of the system state 

(x,p) so that the above performance function is minimized. 

4.1.2. A Mathematical Finance Example. In the area of mathematical 

finance we take a special form of (4.1) in which 

dxi = fi(i)dt + Oi(t)dwi, 1 < z < n, (4.6) 

where fi(t) and ax(t) are continuous on [0,T]. Taking ai = eXi we obtain from (4.6) 

— = W) + ̂ ]dt + oi(t)dwi ax 2 

= bi(t)dt + Gi(t)dWi, 1 < z < n, (4.7) 
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which is the so-called geometric Brownian motion (GBM) model and is well known in 

mathematical finance for modelling prices of risky assets, for instance, stocks [57, 48]. 

(4.7) is also the fundamental stock price model in the celebrated Black-Scholes theory 

[12, 48]. We now suppose (4.7) models the prices for n stocks. A shareholder's 

decisions are usually made by means of adjusting the fraction of wealth invested 

on the n stocks while consideration is also given to possibly other investment (for 

instance, savings) as well as to consumption. This leads to utility based portfolio 

optimization. Let Pi, 1 < z < n, stand for the number of shares of the z-th stock. 

In the process of asset management, at time t the value carried by the stock shares 

of the investor is the sum of the terms eXi^px(t), 1 < i < n. The share number Pi 

varies with time according to the investing strategy of the shareholder and since this 

is a controlled quantity a connection with the power control problem in this thesis is 

revealed which will be studied in future research. 

4.1.3. Organization of the Analysis. The analysis in this Chapter treats 

a general class of performance functions that have an exponential growth rate with 

respect to Xj, 1 < i < n; hence this analysis covers the loss function in (4.5) and it 

differs from that appearing in most stochastic control problems in the literature, where 

linear or polynomial growth conditions usually pertain [23, 78]. Two novel features 

of the class of models (4.1)-(4.2) are (i) neither the drift nor the diffusion of the state 

subprocess x are subject to control and hence x can be regarded as an exogenous 

signal, and (ii) further, the controlled state subprocess p has no diffusion part. Hence 

(4.1)-(4.2) gives rise to degenerate stochastic control systems. As is well known, the 

optimization of such systems leads to degenerate Hamiltonian-Jacobi-Bellman (HJB) 

equations which in general do not admit classical solutions [24, 78]. 

This Chapter deals with the mathematical control theoretic questions arising 

from the class of stochastic optimal control problems considered in Chapter 3 and 

[32] where some approximation and numerical methods are proposed for implemen

tation of the control laws. For the resulting degenerate HJB equations, we adopt 
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viscosity solutions and show that the value function of the optimal control is a vis

cosity solution. To prove uniqueness of the viscosity solution, we develop a localized 

semiconvex/semiconcave approximation technique. Specifically, we introduce par

ticular localized envelope functions in the unbounded domain to generate semicon

vex/semiconcave approximations on any compact set. Compared to previous works 

[24, 78], by use of the set of envelope functions, we can treat very rapid growth 

conditions, and we note that no Lipschitz or Holder type continuity assumption is 

required for the function class involved. We also consider the optimal control subject 

to state constraints which leads to the formulation of constrained viscosity solutions 

to the associated second order HJB equations; this part is parallel to [66], where a 

first order HJB equation is investigated. This Chapter is organized as follows: in 

Section 4.2 we state existence and uniqueness of the optimal control, and show that 

the value function is a viscosity solution to a degenerate HJB equation; we then give 

two theorems as the main results about the solution of the HJB equation. Section 

4.3 is devoted to introducing a class of semiconvex/semiconcave approximations for 

continuous functions; this technique permits us to treat viscosity solutions with rapid 

growth. In Section 4.4, we analyze the HJB equation and prove a maximum principle 

by which it follows that the HJB equation has a unique viscosity solution in a certain 

function class. Section 4.5 considers the control problem subject to state constraints. 

4.2. Optimal Control and the HJB Equations 

Define 

P j \ 9 J \ Onxn 

We now write the equations (4.1) and (4.2) together in the vector form 

dz = ijjdt + Gdw, t > 0. (4.8) 

In the following analysis we will denote the state variable by (x,p) or z, or in a 

mixing form; As we do in Section 4.5, we may also write the functions in (4.1)-(4.2) 
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in a unifying way in terms of (t, z). We write the integrand in (4.3) as 

l(z) = l(x,p) = pTC(x)p + 2DT(x)p, (4.9) 

where C(x) > 0 for all x G Rn . The admissible control set is specified as 

U = {u(-) | ut is adapted to o(zS) s < t) and ut G U = [ -1 , l ] n , V 0 < t < T}. 

As is stated in the introduction, the initial state vector is independent of the n x 1 

Wiener process; we make the additional assumption that p has a deterministic initial 

value po at t — 0. Then it is easily verified that o(zs,s < t) = o-(xs,s < t). Define 

C = {u(-) | u is adapted to cr(za, s < t), ut G Rn and E JQ |w|2ds < oo}. If we endow 

C with an inner product (u, u') = E J0 uTu'ds, u, u' G C, then C constitutes a Hilbert 

space with the induced norm \\u\\ = (u, u)a > 0, u G C. Under this norm, U is a 

bounded, closed and convex subset of L. Finally, the cost associated with the system 

(4.8) and a control u G U is specified to be 

J(s,z,u) = E[ l(zt)dt\zs = z], 
J s 

where s G [0, T] is taken as the initial time of the system; further we set the value 

function v(s, z) = infue^ J(s, z, u), and simply write J(0, z, u) as J(z, u). 

The following assumptions on the time interval [0, T] will be used in our further 

analysis: 

(H4.1) In (4.1)-(4.2), / G C([0,T] x R n , R n ) , o G C([0,T] x R n , R n x n ) , g G 

C([0, T] x R 2 n ,R n ) and / , a, g satisfy a uniform Lipschitz condition, i.e., 

there exists a constant Cx > 0 such that \f(t,x) — f(s,y)\ < Cx(\t — s\ + 

\x ~y\), W(t,x) -a(s,y)\ < Cx(\t- s\ + \x -y\), \g(t,p,u) - g(s,q,u)\ < 

C i ( | r - s\ + \p- q\) for all t,s G [0,T], x,y,p,q G Rn, u G U. In addition, 

there exists a constant Ca such that |cri;7-(r, x) | < Ca for 1 < i,j < n and 

(t,x) G [0,T] x R n . • 
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(H4.2) For 1 < z < n, fi(x) can be written as /i(x) = —ax{t)Xi + ff(t,x), where 

ai(t) > 0 for t G [0,T], and supr0)TixRn \f^(t,x)\ < Cp for a constant 

Cfo > 0. D 

Throughout this Chapter we assume (H4.1) holds. (H4.2) is used only in The

orems 4.3 and 4.2. 

R e m a r k 4 . 1 . Assumption (H4.1) ensures existence and uniqueness of the so

lution to (4.8) for any fixed u G U. In (H4.1) , the Lipschitz condition with respect 

to t will be used to obtain certain estimates in the proof of uniqueness of the vis

cosity solution. Here a is assumed to be bounded to get a finite cost for any initial 

state and admissible control. Obviously (H4.2) covers the lognormal fading channel 

model. From (H4.2) it is seen that the evolution of Xj does not receive strong in

fluence from the other state components Xj,j ^ i, in the sense that the cross term 

fi(t, x) is bounded by a constant. (H4.2) shall be called the weak coupling condition 

which will be used to establish uniqueness of the viscosity solution. • 

P r o p o s i t i o n 4 . 1 . Assuming in the control model (4.2), g(t,p,u) is linear in p 

and u, i.e., there exist continuous functions At, Bt such that g(t,p,u) = Atp + Btu, 

there exists an optimal control u G U such that J(x0,Po,u) — infueu J(x0,po,u), 

where (xo,po) is the initial state at time s = 0; if in addition, Bt is invertible for 

all t G [0,T], then the optimal control u is unique and uniqueness holds in the 

following sense: if u G U is another control such that J(xo,Po,u) = J(xo,po,u), then 

PQ{US 7̂  us) > 0 only on a set of times s G [0, T] of Lebesgue measure zero, where Q 

is the underlying probability sample space. • 

The proof of Proposition 4.1 can be given in the same say as the proof of Theorem 

2.1 and is omitted here. 

44 



4.2 OPTIMAL CONTROL AND THE HJB EQUATIONS 

Proposition 4.2. The value function v(s,z) is continuous on [0, T] x R2n, and 

furthermore 

n 2n 

v(s, z) <C[1 + J2 eAZl + J2 z^ (4-10) 
i=l i=n+l 

where C > 0 is a constant independent of (s, z). 

PROOF. The continuity of v can be established by continuous dependence of the 

cost on the initial condition of the system (4.8). For an initial state zs = z and any 

fixed input u, from the equation (4.8), using the structure of C(x) and D(x) in the 

cost integrand we have the estimates 

PT"1 pi1 n 2n 

J(s,z,u) = E f l(zt)dt<E f C0[l + ^ e 4 2 ' ( t ) + ] T zf(t)]dt 
J* Js t=l i=n+l 

n 2n 

<C[\ + YJ^+ Y, & 
i=l i=n+l 

for some constants Co, C independent of (s, z), and (4.10) follows. • 

We see that in (4.8) the noise covariance matrix GGT is not of full rank. In 

general, under such a condition the corresponding stochastic optimal control problem 

does not admit classical solutions due to the degenerate nature of the arising HJB 

equations. Here we analyze viscosity solutions. 

Definition 4.1. v(t,z) G C([0,T] x R2n) is called a viscosity subsolution to 

the HJB equation 

dv dTv 1 d2v 

° = - ^ + ̂ - ^ > - 2 t r f e G ^ - ^ <4-n> 
v \t=T= h(z), z G R2n, 

if v |t=T< h, and for any <p(t,z) G C1,2([0,T] x R2n), whenever y_ — ip takes a local 

maximum at (t, z) G [0, T) x R2n, we have 

^ + smo{-^}-hv(^GGn-l<0, zeR2n (4.12) 
dt ueu dz 2 dz2 

45 



4.2 OPTIMAL CONTROL AND THE HJB EQUATIONS 

at (t,z). v(t,z) G C([0,T] x R2n) is called a viscosity supersolution to (4.11) if 

v |t=T> h, and in (4.12) we have an opposite inequality at (t, z), whenever v — ip takes 

a local minimum at (t, z) G [0, T) x R2n. v(t, z) is called a viscosity solution if it is 

both a viscosity subsolution and a viscosity supersolution. • 

Theorem 4.1. The value function v is a viscosity solution to the HJB equation 

dv dTv 1 d2v 

v{T.z) = 0. 

PROOF. The value function v is continuous (by Proposition 4.2) and it satisfies 

the boundary condition in (4.13). Now, for any <p(t,z) G C1,2([0,T] x R2 n) , suppose 

v — sp has a local maximum at (s, zQ), s < T. We denote by z^\z^ the first n and last 

n components of z, respectively. In the following proof, we assume that ip(t, z) — 0 

for all z(1) such that \z^ — zG \ > C > 0; otherwise we can multiply ip(t, z) by a C°° 

function ((z^) with compact support and C ( z ^ ) = 1 f° r \z^ — zQ \ < ^ . We take 

a constant control u G [—1,1] on [s,T] to generate zu with initial state zs = z0 and 

write A(t,z) = v(t,z) — tp(t,z). Since (s,zo) is a local maximum point of A(t,z), 

we can find e > 0 such that A(sx, z) < A(s,z0) for \sx — s\ + \z — z0\ < e. For 

sx G (s, T], zs = z0, write lA, = l ( |Sl_s |+ |2si_2o |>e). Then 

E[A(s,z0)-A(sx,zSl)} 

= E[A(s,z0) - A(si ,2S l)]( l - lAt) + E[A(s,z0) - A{Sl,zSl)]lA< 

> E[A(s,z0) - A(sx,zSl)]lA, = 0(Ee2^\A<) (4.14) 

= 0(Ee2^\zi,_z^/2) (4.15) 

= 0 ( | S - S l | 2 ) (4.16) 

when sx | s. Here we get (4.14) by basic estimates for the change of optimal cost 

with respect to different initial states, obtain (4.15) by zSl —> ZQ uniformly as sx J, s, 

and obtain the bound (4.16) using basic moment estimates for zSl . It follows from 
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(4.16) that 

lim E[A(s, zo) - A(sx,zSl)) > 0. (4.17) 

s\[s Sx — S 

But for sx G [s,T], we also have 

1 1 fSl 

E[A(s,z0)-A{sx,zSl)] < E[ l(zt)dt-ip(s,z0) + (p(sx,zSl)] 
sx - s sx- s Js 

-i^+dI+d^\A^GGT)' W€U' (418) 

as sx I s, where we get the inequality by the principle of optimality, and obtain 

the last line by using Ito's formula to express f(sx,zSl) near (5,20) and then taking 

expectations. In the above since v satisfies the growth condition in Proposition 4.2, 

(p(t, z) — 0 for \z^ — z0 I > C, all the expectations are finite. Therefore, for z G R2", 

by (4.17) and (4.18) 
£ + m i n {^ } +Ifc&GG')+ l>0, 
ds ueu dz 2 dz2 

at (5, ZQ). On the other hand, if v — ip has a local minimum at (s, z0),s < T, then for 

any small £ > 0, we can choose sufficiently small sx G (s, T] and find a control u GW 

generating zu such that 

E{v(s,z0) -ip(s,z0) -v(si,z8l) + (f(si,zSl)} 

>E{ l(zt)dt + <p(sx,zSl)-ip(s,zo)}-£(sx-s). (4.19) 
J s 

Similar to (4.16), we also have 

E[A(s, z0) - A(si, zSl)} < 0(\s - si|2), 

which together with (4.19) and Ito's formula gives 

§£ + min{^} + itr(f!GCr) + ( < 0 , 
os ueu dz 2 ozz 

at (s, ZQ), so that the value function v is a viscosity solution. • 
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To analyze uniqueness of the viscosity solution, we introduce the function class 

Q such that each W(t, z) G Q satisfies: 

(i) WeC([0,T] xR 2 n ) and 

(ii) there exist C, kx,k2 > 0 such that \W\ < C[l + Y"=x e
fclkl + E?=i N H 

where the constants C, kx, k2 can vary with each W. 

Here we state a general maximum principle in an unbounded domain for the HJB 

equation (4.13). The proof of the maximum principle is postponed to Section 4.4. 

Theorem 4.2. Assuming (H4.1) and (H4.2) hold, if v, v G Q are viscosity 

subsolution and supersolution to (4.13), respectively, and supa»g0(;y — v) < oo, then 

sup(z; — v) = sup (v — v), (4.20) 
Qo d*Q0 

where Q0 = [0, T] x R2n, d*Q0 = {(T,z): ze R2n}. D 

Theorem 4.3. Assuming (H4.1) and (H4.2) hold, there exists a unique viscos

ity solution to the equation (4.13) in the class Q. 

PROOF. By considering two possibly distinct viscosity solutions vx and v2 both 

in Q, and setting respectively (vx,v2) = (v,v) and (v2,vx) = (v_,v) in Theorem 4.2, 

we obtain Theorem 4.3 as a corollary. • 

4.3. Semiconvex and Semiconcave Approximations over Com

pact Sets 

To facilitate our analysis, write the Hamiltonian 

H(t,z,u,£,V) = -emz,u) - ±tr{VG(t,z)GT(t,z)} - l(z), (4.21) 

H(t,z,Z,V) = supH{t,z,u,Z,V), 
ueu 
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where £ G R2n , V is a 2n x 2n real symmetric matrix, and the other terms are defined 

in Section 4.2. Then the HJB equation (4.13) can be written as 

0 = -vt + H(t,z,vz,vzz), (4.22) 

v{T,z) = 0. (4.23) 

Definition 4.2. [78] A function <p(x) defined on a convex set Q C Rm is said 

to be semiconvex on Q, if there exists a constant C > 0 such that </?(x) + C|x|2 is 

convex. ip(x) is semiconcave on Q if — <p(x) is semiconvex on Q. Q 

Definition 4.3. A function ip(x) defined on a convex set Q C Rm is said to be 

locally semiconvex on Q, if for any y G Q, there exists a convex neighborhood Ny 

(relative to Q) of y such that <£>(x) is semiconvex on Ny. 0 

P r o p o s i t i o n 4 .3 . If ip(x) is locally semiconvex on a convex compact set Q, then 

Lp(x) is semiconvex on Q. 

PROOF. For any y G Q there exists a convex Ny open relative to Q such that 

y G Ny and <p(x) is semiconvex on Ny. So there exists Cy > 0 such that ip(x)+Cy\x\2 is 

convex on A^. Since {Ny, y G Q} is an open cover of Q, there exists a finite subcover 

{Nyi, 1 < z < A;}. Take C = maxi<i<fcCyi and then obviously </?(x) + C|x|2 = <J?(x) 

is convex on each Nyi, 1 < i < k. Now for any Xi, x2 G Q, 0 < A < 1, we 

prove that <^(Axi + (1 — A)x2) < A^(xi) + (1 — \)(p(x2). We only need to consider 

the case 0 < A < 1. First, from the collection {NVi, 1 < i; < k} we select open 

sets, without loss of generality, denoted as N — {Nyi, i — 1, • • • ,m < k} such that 

L = {x : x = Axi+(1—A)x2, 0 < A < 1} C \J^y.e^Nyi. For simplicity we consider the 

case m = 2 and Xi G Nyi, x2 G Ny2. The general case can be treated inductively. To 

avoid triviality, we assume neither Nyi nor Ny2 covers L individually, and then we can 

find xa G L, xa ^ x\ such that xa G Nyi DNy2 and xa = C1X1 + (1 — Ci)x2, 0 < ci < 1. 

Without loss of generality we assume x\ is between Xi and xa. Then we further choose 

Xb G iVyi D Ny2 such that x^ = c2Xi + (1 — c2)x2 and xj, is between xa and x2. Now it 
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is obvious t h a t 0 < c2 < Ci < A < 1. It is s t ra ightforward t o verify t h a t 

A — Ci 1 — A cx — c2 A — Ci c2 cx — c2 
X\ = xi + xa, xa = xA + xb, xb = —xa H x 2 . 

1 — Ci 1 — Ci A — c2 A — c2 cx cx 

Hence we have 

<fi{x\) < z -<f{xi) + z <p{xa), 

1 — Ci 1 — Ci 

V{Xa) < ~s <P{X\) + T sp(xb), 

A - c2 A - c2 

<f{Xb) < —fi(Xa) + — -<P(X2), 
Ci Ci 

where we get the first two inequalities and the last one by the local convexity of <p(x) 

on Nyi and NV2, respectively. By a simple transformation with the above inequalities 

to eliminate <p(xa) and <p(xb) we obtain 

<p(x\) < \fi(xx) + (1 - \)<p(x2). 

By arbitrariness of Xi, x2 in Q it follows that <p(x) is convex on Q. This completes 

the proof. • 

We adopt the semiconvex/semiconcave approximation technique of [78, 20, 42, 

44, 45], but due to the highly nonlinear growth condition of the class Q, we apply 

a particular localized technique to construct envelope functions to generate semicon

vex/semiconcave approximations on any bounded domain. For any W G Q, define 

the upper/lower envelope functions with r\ G (0,1], 

{W(s,w) - -
(s,w)GB ,'(t,z) 

WT'(t,z)= sup {W(s,w)--^(\t-s\2 + \z-w\2)}, (4.24) 
In 

W„(t,z)= inf {W(s,w) + 7^(\t-s\2 + \z-w\2)}, (4.25) 
(s,tu)€S"(t,z) 2f]z 

where Bv(t,z) denotes the closed ball (relative to [0,T] x R2n) centering (t,z) with 

radius n. As will be shown in the following lemma, our construction above will 

generate semiconvex/semiconcave approximations to a given continuous function on 

a compact set for small rj. 
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Lemma 4.1. For any fixed W G Q and compact convex set Q C [0,T] x R2n, 

there exists a constant VQ < 1 depending only on Q so that for all n < TJQ, W ( t , z) 

is semiconvex on Q and Wn(t, z) is semiconcave on Q. 

PROOF. Since any fixed W G Q is uniformly continuous and bounded on any 

compact set Q, there exists VQ > 0 depending only on Q, so that for all n <T\Q and 

( * , 2 ) € Q , 

WTI(t,z) = sup { W ( s , w ) - - ^ [ | £ - s | 2 + | 2 - H 2 ] } . (4.26) 
(s,u>)eB"/2(t,z) 2?7 

Indeed, we can find IJQ > 0 such that for all 77 < 77 ,̂ |W(s,w;) — W(t, z)\ < ^ for 

(s, iu) G 5 , ?(t, 2), where (£, z) G Q. Then for any (s, w) satisfying ^- < \s — t\2 + \w — 

z\2 < n2, we have 

W(s,w) - ±(\s -t\2 + \w - z\2) <W(t,z) + 1 - ± £ <W(t,z), 

and (4.26) follows. In the following we assume rj < T]Q. Next we show that for 

any (to,z0) G Q, Wn(t, z) is semiconvex on Bn/A(to,Zo). It suffices to show that 
1 

2rf W^(t, z) + — ( r 2 + \z\2) is convex on B^to, z0). Denote 

R(s,w,t,z) = W(s,w) - — ( | * - s|2 + |z - wf ) + —2(t
2 + \z\2). 

If (ti,zx), (t2,z2) G B^A(t0,z0), we have (i2 ,z2) G B^2(tx,zx). For any A G [0,1], 

denote (tx, zx) = {Xtx + (1 - A)t2, Azi + (1 - \)z2). It is obvious that B^itx, zx) C 

B^(tx, zx) n J S ^ , z 2 ) . Then it follows 

W*(tx,zx) + ±[t2
x + \zx\

2} 

= sup R{s,w,tx,zx)= sup R(s,w,tx,zx) 
{s,w)6Bn(tx,zx) (s,w)eB"/2(tx,zx) 

= sup [Ai2(s,w,ti,2;i) + (1 - \)R(s,w,t2,z2)] 
(s,w)eBi/2(tx,zx) 

< sup XR(s,w,tx,zx) + sup (1 - X)R(s,w,t2,z2) 
{s,w)£B*/2{tx,zx) (s,w)€B*/*(tx,zx) 
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< sup XR(s,w,tx,zx) + sup (1 — X)R(s,w, t2, z2) 
(s,w)GBi(ti,zi) (s,w)eS"(t2,Z2) 

=X[W\tuzx) + J L ( t ? + |z!|2)] + (1 - A)[W"(t2, s2) + ^ + M 2 ) ] . 

So that W( t , . z ) is semiconvex on B^^(t0,z0). And by Proposition 4.3, W^(t,z) is 

semiconvex on Q. Similarly we can prove Wv(t, z) is semiconcave on Q. • 

We use an example to illustrate the construction of the semiconvex approximation 

to a given function. 

Example 4.1. Consider a continuous function W: R —> R defined as follows: 

f (x - l ) 3 + 1 for x < 0, 
W(x) = { 

[ - ( x + l ) 3 + l for x > 0. 

We take 0 < n < 0.125 and write 

1 

6^2 
9(x) = 1 - x + — - J[\ - x + £]* - (1 - x)\ x < 0. 

It is evident that the upper envelope function Wn(x) is even on R and its value on 

(—oo,0] is determined by 

W^x) 

W(x + r))-\ for x < 1 - 77 - 4 - , 
%/$?' 

W(x + 0(x)) -e-M for 1 - 77 - - ^ < x < -3n2, (4.27) 27J2 i w i x ' ' v /3^ 

2TJ2' 
W(0) -fi for - 3r?2 < x < 0. 

D 

From Figure 4.1 it is seen that at x = 0 the first order derivative of W(x) has 

a negative jump, which corresponds to a sharp turn at x = 0 on the function curve. 

After the semiconvexifying procedure, the sharp turn at x = 0 vanishes as shown by 

the curve of Wv(x). 

We give a lemma which is parallel to the one in [78]. But here we do not make 

Lipschitz or Holder type continuity assumptions on W. For completeness we give the 

details. 
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- ,-/ 

— - Uppar •nvslops V / V ) 

" ^ ^ ^ 

'X\-

(a) (b) 

FIGURE 4.1. Semiconvex approximation with r\ = 0.125, (a) The curves in 
a large range, (b) The curves in the local region 

Lemma 4.2. For W G Q and n G (0,1], Wv and Wn are equicontinuous (w.r.t. 

77) on any compact set Q C [0, T] x R2n and 

n 2n 

W^t, z) < C[l + ]T efcl|;!l + Y \zi\k2}, (4.28) 
i = i i=\ 

1 
W*(t, z) = W(tQ, z0) -z—:(\t- t0\

2 + \z- zQ\2), for some (t0, zQ) G B*(t, z), 

2n2 

2n 

\t — to\2 + \z — ZQ|2) -* 0 uniformly on Q, as r\ —> 0, and 

0 < W ( r , z) - W{t, z) -»• 0 uniformly on Q, as 77 -»• 0, 

(4.29) 

(4.30) 

(4-31) 

where C is a constant independent of n. (4.28)-(4.30) also hold when Wn is replaced 

by Wv, and 

0 < W(t, z) - Wr,(t, z) -> 0 uniformly on Q, as 77 -»• 0. (4.32) 

PROOF. (4.28) follows from the definition of Q, and (4.29) is obvious. Moreover, 

by (4.29) we have 

1 

2T7 : :
(\t - t 0 r + \z ~ z0\

2) = W(t0, z0) - Wit, z) < W(tQ, z0) - W(t, z). (4.33) 

Since |r — io| + \z — zo\ —> 0 as 77 —> 0, by (4.33) and the uniform continuity of W on 

Q, (4.30) follows. (4.31) follows from (4.29) and (4.30). The equicontinuity of W" 
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(w.r.t. 77) on Q can be established by (4.31) and the continuous dependence of W71 

on (77, t, z) G [E, 1] x Q for any 0 < £ < 1. The case of Wn can be treated similarly. D 

We define 

# " ( t ) 2 , £ , K ) = inf sup H(s,w,u,Z,V), (4.34) 
(s,w)€Bi(t,z)ueU 

Hv{t,z,S,V)= sup sup H(s,w,u,i,V). (4.35) 

(s,w)eBi(t,z) ueu 

Then it can be shown that Hv and Hv converge to H(t, z, £, V) uniformly on any 

compact subset of [0, T] x R2n x R2n x S2n as 77 -> 0, where S2n denotes the set of 

2n x 2n real symmetric matrices. The following lemma can be proved by a similar 

method as in [24, 42, 45]. The proof is omitted here. Notice that the viscosity 

sub/supersolution properties hold on a domain smaller than [0, T] x R2n. 

Lemma 4.3. If v (v, respectively) is a viscosity subsolution (supersolution, re

spectively) to (4.22) on [0, T] xR 2 n , then vv (v^, respectively) is a viscosity subsolution 

(supersolution, respectively) to HJB equation A (B, respectively) on [0,T — 77] x R2n, 

where the HJB equations A and B are given by 

J -vt + HT1(t,z,vz,vzz) = 0, J -vt + Hv(t,z,vz,vzz) = 0, 

[ v(T - 77, z) = v?(T - 77, z), y v(T - 77, z) = vv(T - 77, z). 

In the above vP and vv are defined by (4.24)-(4.25). • 

4.4. Proof of the Maximum Principle 

In the Section we give a proof of Theorem 4.2. We note that certain technical 

but standard arguments are not included here for reasons of economy of exposition; 

complete references to the detailed versions of these parts of the proof are supplied 

at appropriate places in the proof. 

We follow the method in [78, 24] employing the particular structure of the system 

dynamics and will make necessary modifications. For the viscosity subsolution and 
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supersolution v, v G Q, we prove that 

sup(z; -v) = sup(z; - v) = c0 for Qx = [TX,T] x R2n, (4.36) 

where Tx = T — j ^ , A — 2bn(Cg + Ca) + 10C/o, Cg is a finite constant such that 

\9i{t,P,u)\ < Cg(\ + E L i \Pk\) for t G [0,T], p G Rn, w G t/, 1 < z < n, for ^ given 

in (4.2), and Ca,Cp are given in Assumptions (H4.1)- (H4.2) in Section 4.2. The 

maximum principle (4.2) follows by repeating the above procedure backward with 

time. Our proof by contradiction starts with observation that if (4.36) is not true, 

there exists (i, z) G (T\,T) x R2n such that 

v(t, z) - v{t, z) = 4> c0. (4.37) 

We break the proof into several steps: (1) we construct a comparison function A 

depending on positive parameters a, (3, £, A, and based upon (4.37), A is used to induce 

a certain interior maximum, (2) using the viscosity sub/supersolutions conditions, we 

get a set of inequalities at the interior maximum, and (3) we establish an inequality 

relation between a and (3 by taking appropriate vanishing subsequences of e, A, 77, 

and this inequality relation is shown to lead to a contradiction. The weak coupling 

condition is used to obtain estimates used in Step 3 below. 

Step 1: Constructing a comparison function and the interior maximum. 

To avoid introducing too many constants, we assume v and v belong to the class Q 

with associated constants kx = k2 = 4. The more general case can be treated in 

exactly the same way. Now we define the comparison function 

A(t, z, s, w) = a ( 2 / ^ - * ) { ^ [ e 5 ^ T I + e5V^] + £(2e + we)}_ p{t + s) 

^ 1 = 1 2 = 1 

1 , ,0 1 , ,2 A A 

+ 7r-\t - sr + —\z - wr H — + 2er' ' 2e' ' t - Tx s - Tx 

where a,/3,£,X G (0,1], // = 1 + ^ , z,w G R2n and t,s G (TX,T]. We write 

<&(t,z,s,w) = vn{t,z)—vv(s,w)—A(t,z,s,w), where y? andzJ,, are also in Q by Lemma 

4.2. Noticing that $ —• —00 as tAs —> Tx or \z\ + \w\ —> 00, there exists (t0, z0, SQ, WQ) 
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such that $(t0,z0,So,Wo) = s u p Q l x Q i $(*, z, s,w). By $(t0 , z0,s0, w0) > $ (T ,0 ,T ,0 ) , 

one can find a constant Ca depending only on a such that (see Remark 4.2) 

\zo\ + \ui0\ +—\t0 - s0\
2 +—\z0 - w0\

2 < Ca and t0,s0e [Tx + — ,T]. (4.38) 
Z£ Z£ (_yQ 

Combining 2$(t0, z0,s0,Wo) > $(t0,z0,t0, z0) + ^(s0,w0,s0,Wo), (4.38) and Lemma 

4.2 we get (see Remark 4.3) 

H * o - s 0 | 2 + — \zo-w0\
2^0, a s e ^ O . (4.39) 

Z£ ZE 

In this Section, we take (3 G (0, Cp
4~

c°). We further show that there exists a0 > 0 

such that for a < a0 and for sufficiently small r0 (which may depend upon a) and 

V < r0i ̂  < ?~0i ̂  < ro, the maximum of $ on Qi is attained at an interior point 

(to, z0, s0, w0) of the set 

Qa = {{t, z, s, w) : Tx + — < t, s < T - n, and \z\, \w\ < 2CQ}, (4.40) 
2Ca 

where Ca is determined in (4.38). 

We begin by observing that <I?(to, ZQ, SQ, WQ) > $(t , z, t, z) yields 

z/^t, z) - vv(i, z) < ^ ( t o , 20) - ^ ( s o , ^o) - A(^o, z0, s0, WQ) + A(t, z, i, z) 
~ •. n 2 n 

< ^ ( t 0 , z 0 ) - 7 J , ( 5 o , ^ 0 ) + 2/?r + 7 - — + 2 a [ ^ e 5 V / i ^ T + ^ z f ] . (4.41) 
1 1 = 1 z = l 

Let H^ stand for the assertion that there exists cto such that when a < a0 and 

max{77, £, A} < r0 for sufficiently small r0, (to, <£o, So, zuo) is an interior point of Qa in 

(4.40). 

If Hr5 is not true, then there exists an arbitrarily small a G (0,1] such that for this 

fixed a we can select 77^, £^k\ A ^ —• 0 for which the resulting (t0 , z0', s0 , w0 ) <£ 

Int(QQ). By (4.38) it necessarily follows that t0*° V s0
fc) > T - n{k) -> T and (4.39) 

gives |t0 — s0 I +1s0 —w0 J —> 0. It is also clear that (t0 , ZQ , s0 , u>0 ) is contained 

in a compact set determined by a. Then by selecting an appropriate subsequence of 
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(t0 , z0 , s0 ,w0 ) and taking the limit in (4.41) along this subsequence, we get 

_j_ n 2 n 

v(i, z) - v(t, z) < v(T, za) - v(T, za) + ^2_Z£o + 2 a [ ^ e 5 v / i F^ + ^ ^ 
i=l t=l 

4. n 2n 

. - ^ - . ^ - , „ (4.42) 
1=1 1=1 

where za denotes the common limit of the selected subsequences of z0 and w0 . 

Sending a —> 0, we get z;(t, z) — v(i, z) < CQ , which contradicts (4.37), hence M13 holds. 

From the argument leading to (4.42) it is seen that a0 can be chosen independently 

of/?. 

Step 2: Applying Ishii's Lemma. Hereafter we assume (3 < CQ
4~

C° , a < a0 

and max{?7, t , A} < r0 are always satisfied and thus H^ holds. We assume <i> attains a 

strict maximum at (t0, z0, so, Wo); otherwise we replace AbyA-) - | t — to|2 + |s — So|2 + 

\z — z0\
4 + \w — Wo\4. Following the derivations in [78, 42, 24], and using the interior 

maximum obtained in Step 1, the semiconvexity of vv, and the semiconcavity of v^ 

for 77 < 77QQ by Lemma 4.1, and by Lemma 4.3, we obtain the so-called Ishii's lemma, 

i.e., there exist 2n x 2n symmetric matrices M^, k = 1, 2 such that 

- A t(t0, zo, so, w0) + / f ( t 0 , z0, Az(t0, z0, s0, w0), Mx) < 0, (4.43) 

As(t0, z0, s0, TWO) + Hv(s0, w0, -Aw(t0, z0, s0, w0), M2) > 0, (4.44) 

AT A 
zw lvww 

(to,ZO,So,U)o), 
(4.45) 

We note that it is important to have to V So < T — n in order to establish (4.43)-

(4.44) by Lemma 4.3 and an approximation procedure (see e.g. [24] for the case of a 

bounded domain). Now (4.43) and (4.44) yield 

- At(to, ZQ, so, w0) - As(t0, ZQ, s0, w0) 

<Hv(s0, wo, -Aw(t0, z0, so, wo), M2) - Hv(t0, z0, Az(t0, z0, s0, w0),Mx). (4.46) 
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Step 3: Estimates for LHS and RHS of (4.46). The final stage in our 

deduction of a contradiction from (4.37) involves estimates of the LHS and RHS of 

(4.46). The estimates for both sides of (4.46) are taken at (to,z0,s0,Wo), but for 

brevity we omit the subscript 0 for each variable. We have 

LHS of (4.46) = ^ £ > V ^ + e 5 V ^ ) + £ ( * ? + ws)} 

^ i=l i = l 

+ 2(3 + (± „„ + 
(t-Tx)

2 (s-Txy 

and 

n n 
a r^ \ , c.. /,2_i_i t;. A , ,2 . 

^ t = l i = l 

RHS of (4.46) = sup[A£,(t, z, s, w)ip(s, w, u)] - sup[-A^(t, z, s, w)i/j(t, z, u)] 
ueu ueu 

+ itr[G(f, z)GT(t, z)Mx] - hr[G(s, w)GT(s, w)M2] + l(?) - l(w) 

< sup[AJ^(t, z, s, w)ip(s, w, u) + AI(t, Z, 5, w)ip(t, z, u)] 
ueu 

+ hr[G(t, z)GT(t, z)Mx] - itr[G(s, w)GT(s, w)M2] - l(z) - l(w), 

which together with (4.45), (4.34)-(4.35) leads to 

RHS of (4.46) < sup[A;(t, z, s, w)ip(s, w, u) + AT
z(t, z, s, w)if>(t, z, u)] (= Ax) 

ueu 

+±-tr{[G(t, z) - G(s, w)Y[G(t, z) - G(s, w)]} £ A2) 

+ a(2»T-t-s) £ I 2Al£)(r(2j) + 3Qz4) + ff2fe(?)~)(r>.} + 30wt)] (A A3) 
2pT ^ 2 

i,k=l 
, A 

+[l(z)-l(w)] (=A4) 

= AX+A2 + A3 + A4, (4.48) 

where T(r) = e^vTO V" = g and (to,z0) e B\t0,z0), {s0,w0) e B^(so,w0). 

Notice that the set Sv<£ = {(t0, z0), (to, %), (s0, w0), (so, W0)} is contained in a compact 
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set Q*a determined by a. For 0 < £ < 1 appearing in A(t, z, s, w), there exists ^ > 0 

such that for all 0 < 77 < ?7e, 

RHS of (4.46) KA^ + Al + Al + Al + e, (4.49) 

where, without writing the subscript 0 for (to,zo,So,w0), we denote 

A\ = sup[A^(t, z, s, w)ip(s, w, u) + AT
z(t, z, s, w)tp(t, z, u)}, 

u€U 

A°2 = ^tr{[G(t, z) - G(s, w)]T[G(t, z) - G(s, w)}}, 

A°3 = a{2fiT
2J

 s) £ IwUt.zW^z^ + soz^ + olis^ir'iw^ + sowt)}, 

A°4 = l(z)-l{w). 

Since SVt£ is contained in Q*a and the diameter of SVi£ tends to 0 as 77, £ —»• 0, by 

taking an appropriate sequence (n^,^, A(fc)) —> 0 satisfying nw < n£(k), we get a 

convergent sequence (t0 , 4 ), ftU )< (so ,^0 )' ( 4 > ^0 ) ~* (*> 2), a s ^ ~* °°. 

In the following we use the same C to denote different constants which are independent 

of a. We have the three relations 

0 n 2n 

limsup LHS of (4.46) (V
W,£W,X^) > - ^ [ ^ e 5 V / i F ^ + ^ |^|6] + 2/?, (4.50) 

lim (A§ + A°4) (n
{k\ £{k\ X{k)) = 0, (4.51) 

k—»oo 

limsup 4J (77(fc),£
(fc),AW) < ^ ^ - a ^ ( 2 5 e 5 V / ^ + 30|zI |

4), (4.52) 
/c—»oo to'- i = 1 

where (4.50) follows from (4.47), and (4.51) follows from continuity of l(z), Lipschitz 

continuity of G(t,z) by (H4.1), and (4.39). Now we analyze ^4°. 

2n 

A°x <sup J~] [AZi(t,z,s,w)^i(t,z,u) + AWi(t,z,s,w)ipi(s,w,u)} 
i=n+l 

n 

+ £ [A 2 i ( t , z, s, w)fi(t, z) + AWi(t, z, s, w)fi(s, w)} = A°n + A°12. 
i = i 
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Then it follows that 

2n ,-.— *•* ATI 

limsup A°n(n^,£^,X^) < ^ L l A y l2Cg[2n\~zx\
6 + \zx\

5}. (4.53) 
k—>oo 

We employ ai(t) > 0 for t G [0, T] in the weak coupling condition (H4.2), and the 

Lipschitz continuity property of fi(t, z) = ai(t)zx + ff(t, z) by (H4.1) to obtain 

2MT ^ " v ^ F 
1 = 1 

+ [ 5^e5v^TT + g 5 + 
Wi ZXir , N . c0 / i][-a,(S)«., + /°(S,j«)]} 

* Q%~r~ s ) £«T7=teeV;FI+fe.W(f. -) 
i = l 

Hence invoking (4.39), it follows that 

|t — s\2 \z — w\2 

+J -£ 
) • 

2 = 1 

which together with (4.51)-(4.53) gives 

limsup RHS of (4.46) (nw, £{k), A(fc)) 
k—>oo 

<[10C/o + 25n(C(T + C g ) ] a ( / x T - t ) [ ^ c 5 A / i F T T | j j V |6 | g ] 

r̂ 
i = i i=l 

2n 

^^E^'2+1+Ei5-i6+ci. 
i = i 

Hence it follows from (4.46), (4.50) and (4.56) that 

2n 

+ £ N6} + aC < aC. 3a ,^^, 
2/5<"7T^{£ 

n 2n 

2/JT 
I = I i = l 

(4.54) 

limsup A ? 2 ( T / V , A W ) < ^ > ^ _ ^ y [ 1 0 e V ^ I + l2|z,|5], (4.55) 

(4.56) 

(4.57) 
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4.5 CONTROL WITH STATE CONSTRAINTS 

We recall from Step 1 that 0 < 1 can take a strictly positive value from the in

terval (0, ^ ^ ) and a G (0,a 0) . Letting a -> 0 in (4.57) yields (3 < 0 which is a 
AT 

trs R a ((\ -
AT 

contradiction to (3 G (0, CQ
4T

C°), and this completes the proof. D 

Remark 4.2. By O(t0 ,z0 ,so,wQ) > <1>(T,0,T,0) and \v-v\ = o([Er=i( e 5 | z ' ' + 

e 5M) + Y^2x(zf + ™f)]), there exists 5a > 0, C > 0 such that 

I | 2 1 I | 2 

— | t 0 - s 0 | + — |Zo-tOo| + -. TF + 2el U| 2e' ' t0 - 7\ s0 - 7\ 
n 2n 

+5 Q £( e
5 v^4 : + e5v^<:) + ^ ( ^ + ̂  i}] < a 

1 = 1 2 = 1 

Then (4.38) follows readily. D 

Remark 4.3. By expanding 23>(t0, z0, s0, w0) > $( t 0 , zb, t0, ^o) + ^ ( s o , w0, s0, w0) 

using all the individual terms, it is found that ^\to — So\2 + ^\z0 — Wo\2 is dominated 

by a continuous function F(to, z0, SO,WQ) which goes to zero as |t0 — So|-r-|2o — ̂ o | -^ 0, 

which also follows from (4.38) when e —>• 0. D 

Remark 4.4. The proof of the theorem is based on the methods in [78, 42, 45 , 

20]. Since here we deal with the function class Q with a highly nonlinear growth con

dition on an unbounded domain, a localized semiconvex/semiconcave approximation 

technique is devised. The particular structure of the system dynamics also plays an 

important role in the proof of uniqueness, and in general it is more difficult to obtain 

uniqueness results under more general dynamics and the above fast growth condition. 

It is seen that the weak coupling feature of the dynamics of the state subprocess x is 

crucial for the above proof. When there exists an ai < 0 (see Assumption (H4.2)) , 

the estimate (4.54) would not be valid. • 

4.5. Control with State Constraints 

In this Section we consider the case when the state subprocess p is subject to 

constraints, i.e., the trajectory of each pi must be maintained to be in a certain 

range. We term this situation as optimization under hard constraints. In [66] the 
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4.5 CONTROL WITH STATE CONSTRAINTS 

author considered a deterministic model and obtained a constrained viscosity solution 

formulation for a first order HJB equation. Now due to the exogenous attenuation we 

come up with a second order HJB equation and we will develop a similar formulation. 

Suppose that u G U where U is a compact convex set in Rn, and p should satisfy 

px G [0, Pj], where Pi is the upper bound. For simplicity we take U = [—l,l]n and 

Pi = oo. For any fixed initial value p0 > 0 (i.e. each (p0)i > 0), define the admissible 

control set 

UPo — {u(-) | u is adapted to a(zs,s < t), and with probability 1 

(Pt(t) > 0 for all 0 < t < T) holds, and u(i) G U, EjQ
T\ut\

2ds < oo}. 

In this Section we consider the simple case of 

g(t,p,u) = u. 

Under the admissible control set UPo, we will use the notation of Section 4.2 for which 

the interpretation should be clear, and in the following we also use UPo with any initial 

time s <T. It is evident that UPo is a convex set. Under the norm || • || on C defined in 

Section 4.2, Up° is also closed. Indeed, if \\u^ —u\\ —> 0 as k —• oo, where u^ G UPo, 

one can show that u will also generate positive p trajectories with probability 1 with 

initial value po- So that u G Upo. As in the state unconstrained case, one can prove 

existence and uniqueness of the optimal control. Write 

go = [0,T) x R n x (0,oo)n , 

QT = [0,T) x R n x [0,oo)n, 

QT = [0,T] x R " x [0,oo)n. 

We consider the HJB equation 

V \t=T= 0, 
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4.5 CONTROL WITH STATE CONSTRAINTS 

where (t,z) = (t,x,p) G QT. 

Definition 4.4. v(t, z) G C(QT) is called a constrained viscosity solution to 

(4.58) if i) v \t=T— 0, and for any ip(t,z) G Cl,2(QT), whenever v — <p takes a local 

maximum at (t, z) G Q%, we have 

- ^ + s u p { - ^ } - i t r ( ^ G ^ ) - ^ < 0 , z G R 2 " (4.59) 
Ot ug[/ OZ Z oz 

at (t, z), and ii) for any ip(t, z) G Cl,2(QT), whenever v — ip takes a local minimum at 

(t, z) G Q T , in (4.59) we have an opposite inequality at (t, z). For short, we term the 

constrained viscosity solution v(t, z) G C(QT) as a viscosity subsolution on QT, and 

a viscosity supersolution on QT. • 

Remark 4.5. Conditions i) and ii) hold on Q^ and Q T , respectively. Here we 

give a heuristic interpretation on how the state constrains are captured by Condition 

ii). Suppose v — <p attains a minimum at (t,x,p), where v is the value function and 

satisfies equation (4.58) at (t,x,p) with classical derivatives, i.e., 

dv dTv 1 d2v 

In addition, we assume u is admissible w.r.t. (x,p). Here t G [0, T) and p lies on the 

boundary of [0, oo)n. By the necessary condition for a minimum, at (t,x,p), we have 

vt-<Pt> 0, vXi - spXl = 0, vXiXi - <pXiXi > 0, 1 < z < n, (4.61) 

where the first inequality becomes equality when t G (0, T). Since p is on the boundary 

of [0, T)n, we can find an index set / such that pt = 0 when z G / , and px > 0 when 

z G {1, • • • , n}\I. Again, by the minimum property at (t,x,p) we get 

vPi ~(pPl>0 for z G / , vPi -(pPi = Q for i G {1, • • • , n}\I, (4.62) 

at ( t ,x ,p) . Since we assume u is admissible w.r.t. (x,p), then we have Ui > 0 for 

z G / , and therefore by (4.62), at (t,x,p) 

(vp - ipp)
Tu > 0. (4.63) 
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4.5 CONTROL WITH STATE CONSTRAINTS 

Hence (4.61) and (4.63) lead to 

and therefore Condition ii) holds at (t,x,p). O 

L e m m a 4.4. For any initial pair (s0, x0,Po) with each (p0)i > 0, and any u EU, 

there exists u G UPo such that 

Pnifju - u\ds < 4e} = 1, (4.64) 

where with probability 1 and for all 1 < z < n, the constant £ > 0 satisfies 

sup ma,x{-pi(t,s0,p0,u), 0} <£, (4.65) 
t€[s0,T] 

and p(t, 50,po, u) denotes the value of p at t corresponding to initial condition (so,po) 

and control u. 

PROOF. We only need to modify each component Ui of u in the following way. 

Define rf = sQ, and for k > 1, 

rk = mi{t > rk~l, Pi(t,s0,Po,u) = 0}, (4.66) 

rk =T if Pi(t,Tk~l +£,pi(T
k-1 +£),u) > 0 for all t > rk~l +£, (4.67) 

Ui(t) = 1 on [Tk-\ rk~l + £), (4.68) 

Ui(t) = m(t) on [rk-1 + e, rk). (4.69) 

Then it is obvious that u G UPo. Suppose (4.64) is not true, and then there exist z 

and a set A0 with Pn(A°) > 0, such that on A0 

rT 

\ui -m\ds > 4e. (4.70) 
SO 

For any fixed u> G A0, if Tk° is the last stopping time defined by (4.66), then by (4.70) 

we can easily show that Pi(rko~l, s0,Po, u) < —2£, which is a contradiction. • 
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4.5 CONTROL WITH STATE CONSTRAINTS 

Using Lemma 4.4, we can further show that the value function v(t, z) is continuous 

on QT by a comparison method as in the unconstrained case [23]. The details are 

omitted here. The growth condition of Proposition 4.2 also holds in the constrained 

case. 

Proposit ion 4.4. The value function v is a constrained viscosity solution to the 

HJB equation (4.58). 

PROOF. We verify condition i) first. For an initial condition pair (s, z) with 

z G QT> and any « 6 [ / w e construct control u = u on [s, s + e] and u — 0 on 

(s + £,T}. We see that when £ is sufficiently small, u is in the admissible control set 

w.r.t. (s,z) since each pi G [0, oo). All the remaining part and the verification of 

condition ii) can be done as in Theorem 4.1. • 
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CHAPTER 5 

Linear Quadratic Optimization for 

Wireless Power Control 

5.1. Introduction 

In Chapters 2 and 3, subject to bounded admissible controls, the value function 

of the optimal control problem is described by viscosity solutions, and in general, 

it is not possible to get an analytic optimal control law. To obtain optimal power 

allocation explicitly utilizing information on the channel states and power levels, in 

this Chapter we adopt another approach. The following analysis will be based on the 

lognormal fading model (2.1) and the power control model (2.2). For convenience of 

reading, here we also write the vector system model. As in Section 2.5 of Chapter 

2, setting fa(x) = —ai(xi + bx),l < i < n, H = Diag (crj)"=1 and zT = (xT,pT), 

T/;T = (fT,uT), GT = (H,0nxn), we write 

dz = tpdt + Gdw, t > 0, (5.1) 

where all the variables are consistent with those in Chapter 2. 

In the cost function introduced below, the cost integrand takes a quadratic form 

in terms of the power p and the control u while the attenuation x is regarded as a 

random parameter subject to no control. For this reason, we shall term the power 

control of this Chapter as "linear quadratic optimization". 



5.1 INTRODUCTION 

In this quadratic cost based optimization framework, we impose no bound con

straint on the control input u and introduce a penalty term for u in the cost function. 

We write 

/ •OO n n 

E / e - ^{£ [e X l P2 - A*i(£ ef'Pj + v)]2 + uTRu}dt, (5.2) 
J° i=l j=l 

where R is a positive definite weight matrix, and the positive coefficients /z,, 1 < i< n, 

satisfy YH=ito < 1 0-e-> Assumption (H2.1) also holds throughout this Chapter). 

This cost function includes a discount factor p > 0 and an infinite horizon, which will 

lead to an elliptic partial differential equation system describing the value function. 

In the above integral, the first term is based on the SIR requirements and the second 

term is added to penalize abrupt change of powers since in practical systems there 

exist basic physical limits for power adjustment rate. Another fact is that in real 

systems the operating conditions of a mobile are only estimated approximately, and 

it is generally preferred to avoid very rapid power change and hence the power of users 

is adjusted in a cautious manner. In (5.2), the weight matrix R should be chosen 

in accordance with power change rate requirements. After subtracting the constant 

component from the integrand in (5.2) we get the cost function 

/•oo 

J(x, p, u) = E[ e-pt{pTC(xt)p + 2DT{xt)p + uT
tRut}dt\x, p], (5.3) 

Jo 

where C(xt), D(xt) are n x n positive definite matrix and n x l vector, respectively, 

which are determined from (5.2), and (x,p) denotes the initial state at t = 0. In 

this Chapter we adopt (5.3) as our cost function; also see [39, 35]. We remark 

that another possible way to approach the above power optimization problem is to 

modify the cost function (5.2) in a suitable form so that the power is adjusted to 

track an exogenous random signal based on stochastic pointwise optimum. Define 

the admissible control set 

U2 = {u\u adapted to a(xs,ps,s < t), and EfQ°°e~pt\ut\
2dt < oo}. 
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5.2 THE FINITE HORIZON CONTROL PROBLEM AND SOME AUXILIARY RESULTS 

As in Chapter 2, in this Chapter we also assume that the initial value of ps at s = 0 

is deterministic; then one simply has o(xs,p$, s < t) = o(xs, s < t). 

We define the value function associated with the the cost (5.3) as 

v(x,p) = inf J(x,p,u). (5.4) 
ueU2 

Notice that certain controls from U2 may result in an infinite cost due to the presence 

of the eXi process, 1 < z < n. However the optimal control problem is still well defined 

subject to the new admissible control set U2 and one can show the existence of an 

optimal control by standard approximation techniques [78]. 

We investigate the infinite horizon optimal control problem and its associated 

HJB equation. The merit of minimization of the infinite horizon cost is that the 

resulting optimal control law is in a steady state form and various suboptimal control 

laws can be constructed by an algebraic approach based on this HJB equation. In 

order to analyze the infinite horizon optimal cost by a discrete approximation tech

nique, we will also study the finite horizon cost case to obtain some auxiliary results 

in Section 5.2 below. 

In the cost (5.3), the weight matrix C(xt) is related to the unbounded random 

processes eXl, 1 < i < n. In Section 5.2, a certain truncation technique is used to 

deal with C(xt) and then obtain a structure for the optimal cost function in the finite 

horizon case. Section 5.2 is quite technical. The reader may skip the long sequence 

of lemmas and simply refer to the main result in Theorem 5.1 which will be used in 

Section 5.3. 

5.2. The Finite Horizon Control Problem and Some Auxiliary 

Results 

Subject to the system dynamics (5.1), for 0 < T < oo, we define the finite horizon 

version of the cost function (5.3) as 

JT(x,p,u) = E I e pt{$(xt,pt) + uT
tRut}dt\x,p 

Jo 
(5.5) 
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where <&(xt,pt) = pT
tC(xt)pt + 2DT(xt)pt and (x,p) denotes the initial state at t = 0. 

It is evident that 

${xt,Pt) + ? 7 2 ( £ t o f = Hxupt) + T/M > 0, (5.6) 
2̂ A 

Mi, _ 

i = l 

for all a;t,pt G Rn . For integer N > 0, we also define the truncated version of 

JT(x,p,u) as 

Jjt(x,p,u) = £ / e p t {$(x t , pt)l(|xt|<JV) + <-RuJdt |a ; ,p 
Jo 

(5.7) 

where l(|a:t|<jv) is the indicator function. In both (5.5) and (5.7), pt is generated by 

the control ut through the dynamics (5.1) on [0, T}. Define the admissible control set 

as U2 = {u\u adapted to a(xs,ps,s < t), and E f0 e~pt\ut\
2dt < oo}. Set vT(x,p) = 

miueUr JT(x,p, u). For developing discrete approximation schemes in below, we need 

to define a subset of IA2 as U2' = {u\u G U2 and is a stepwise random process 

specified by times t = ^ , 0 < i < 2k}. Write vT,k(x,p) — infueUr.k JT(x,p,u). We 

give the following lemmas. 

L e m m a 5 .1 . For a sequence of Rn-valued controls Uk G U2 , k = 1,2, • • •, assume 

there exists u^ G U2 such that l im^oo E f0 {u^ — u^dt = 0 and denote by pk the 

solution to dp = udt corresponding to u = Uk, k = 1, • • • , oo, and the same initial 

condition p\t=0. Then l im^oo E f0 \pk - Poo\2dt = 0, and \imk^00J'^(x,p,uk) = 

Jjj(x,p, WQO) where p stands for the initial value p|t=o-

PROOF. It is obvious that \pk — Poo It < J0 \uk — Uoolgds, which yields 

E \Pk - Poo\2dt < E ( / \uk -Uoolgdsfdt 
Jo Jo Jo 

pT pt pt pT pT 

<E I ds • \uk- Uoolldsdt < E / t / \uk - u^dsdt 
Jo Jo Jo Jo Jo 

T2 fT 

=—E \uk -lipids —» 0, as k —* oo. (5.8) 
2 Jo 
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To prove the last part of the lemma, by Schwartz inequality we have 

E 

= E 

\ \pT
kC(xt)pk + 2DT{xt)pk]l{M<N)dt- / [p00C(xt)p00 + 2L>T(a:t)p00]l(|:Ct|</v)a 

Jo Jo 

/ (Pk-Poo)TC(xt)pkl{lxt\<N)dt+ (pk - Poc)TC(xt)p00\\Xt\<N)dt 
Jo Jo 

+2 DT(xt)(pk-p00)l{iXt[<N)dt 
Jo 

<E \pk-Poo\2dt- E \C(xt)pk\
2l{lxtl<N)dt+ 

Jo L Jo 

El \C{xt)Poo\
2lilxtl<N)dt + E [ \D(xt)\%Xt\<N)dt (5.9) 

Jo Jo 

0, as k —> oo, (5.10) 

where (5.10) follows from the L2 convergence of uk, pk, k > 1, on [0, T) x Q, and 

boundedness of C(xt)l(\Xt\<N), D(xt)l(\Xt\<N) in (5.9). Similarly, we have 

r r 
E\ I uT

kRukdt — / u^Ruoodt] —> 0, as k —>• oo, (5.11) 
Jo Jo 

and therefore it follows from (5.10)-(5.11) that l im^oo Jji(x,p,uk) = JjJ(x,p,uOQ). • 

L e m m a 5.2. For Jj^(x,p,u) defined by (5.7), we have 

lim inf J%(x,p,u) — vT(x,p), 
IV—K - ' ^ 

for any x G Rn and p G Rn . 

JV^oo ueuJ 
(5.12) 

PROOF. We define 

pT 

JNtr,lx,p,u) = Jjj(x,p,u) +VnE[ e~ptl{\Xt\<N)dt\x\, 
Jo 

pT 

v*(x,p) = vT(x,p) + 77M / e~ptdt, 
Jo 
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where T?M = V2(YA=I to)2• Recalling (5.6) and the definition of Jjj(x,p,u), vT(x,p), 

for any (x,p) and N > 0, it is obvious that 

i n f
T

 JN,^(x,p,u) < v^(x,p), (5.13) 

and 

JNUfi,*(x>P>u) ^ JN2^(x,p,u), (5.14) 

for Â i < N2. We will show that 

lim inf Jl (x,p,u) = v^ (x,p), (5.15) 
"2 

for all x,p G Rn . We prove (5.15) by contradiction. If (5.15) is not true, then by 

(5.13)-(5.14), there exist a pair (x,p) and e > 0 such that 

inf
T

 JN,VM'P'U) < vnSx'P) ~ £' ( 5 - 1 6 ) 

for all N > 0. Then for each fixed N, there exists u^ G W^ such that 

JN<VJX,P,UN) < v^(x,p) - - , (5.17) 

which together with (5.7) implies sup^ E JQ \u^\2dt < oo; hence by well known results 

in functional analysis [79, 78], there exists a subsequence {u^^i — 1,2, •••} of 

{UN, N = 1, 2,3 • • • } such that uNi converges weakly to a limit u G U2. For simplicity 

in the following we still denote {u^} by {u^}. Furthermore, by Mazur's theorem 

[79], there exist Xik > 0, z~2T=i ^k = 1 such that 

pT °° 
lim E / | y Xlkux+k - z?|2dt = 0, (5.18) 
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Now by (5.18) and Lemma 5.1 it follows that 

oo 

JN,vM^P^) = „ i i m JN,VAX,p,yXlkUx+k) m N<i—>oo ' /M L—' 
fc=l 

oo 

- *Jm y2x*kJN,vAx,p,ul+k) (5.19) 
N<i-+oo *•—' ' /M 

k=l 

oo 

- ^ i i m y^^kJl+k^AxiPito+k) (5.20) 
N<i—>oo ' * ,M N<i—>oo • 

fc=l 

Here (5.19) is obtained by convexity with respect to (p,u) of the integrand in (5.7) 

and the linear dynamics dp = u; (5.20) follows by (5.14) and we get (5.21) from (5.17). 

On the other hand, by Lebesgue's monotone convergence theorem [64] we have 

Jl (x,p,u) T JT{x,p,u) +77M / e-ptdt, as Â  T oo, (5.22) 
Jo 

since [$(xt,pt) + V^(\xt\<N) T $(xt,Pt) + fy. a.e. on [0,T] x Q. Hence by (5.22) and 

(5.21), we have 

JT(x,p,u) = lim Jjj (x,p,u) ~V» e ptdt < vT(x,p) - -, (5.23) 
A T — O O " " JQ Z '0 

which is a contradiction. Thus we have proved that (5.15) holds, and therefore 

-T 

m inf Jlr(x,v,u) = lim inf \JZ„ (x,p,u) — n„E I 
N-

-.—z z 

<-T 

lim inf' JT
N(x,p,u) = lim inf [ j j (x,p,u) - n^E / e ptl{{xt{<N)dt] 

= i i m int^,r)u(X'P'W) ~ ^ / e_Ptrft 
W—oo w € w J 'M J Q 

= UJ. (x' P ) - % / e_pt^ = ^ ( ^ P) 

Jo 

and the lemma follows. • 
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lim E / \ut-u
k\2dt = 0. 

k-i°° Jo 

5.2 THE FINITE HORIZON CONTROL PROBLEM AND SOME AUXILIARY RESULTS 

Lemma 5.3. For any u G U2 there exists a sequence of stepwise random processes 

uk G U2'
k, k>l, such that 

[m E I 
k-

PROOF. This follows easily from the proof of Lemma 4.4 in [55], and in fact each 

uk can be chosen to be bounded by a deterministic constant. D 

Lemma 5.4. The finite horizon optimal cost function vT(x,p) can be represented 

in the form 

vT(x,p) — lim lim inf Jji(x,p,u). (5.24) 
AT—oo fc^oo u€U^k 

PROOF. By Lemma 5.2 it suffices to prove that 

lim inf J^(x,p,u) = inf J^(x,p,u), (5.25) 

for which the left hand side exists since U2 ' CW 2 ' and the sequence of optimal 

costs (relative to IA2' ) inf ^T,* Jjj(x,p,u), k > 1, monotonely decreases as k | oo. 

Since for all k, 

inf jjj(x,p,u) > inf jjj(x,p,u), 
ueu^'k 

it follows that 

lim inf jjj(x,p,u) > inf J^(x,p,u). (5.26) 
k^°° ueuj'k net/? 

Now we only need to prove an opposite inequality for (5.26). For any £ > 0, take 

u G U2 such that Jjj(x,p,u) < infuGWr Jjj(x,p,u) + | . By Lemmas 5.3 and 5.1 there 

exists a sufficiently large k0 and uk° G U^ ° such that \Jj^(x,p, uk°) — Jjj(x,p, u)\ < | . 

Then it follows that 

lim inf Jjj(x,p,u) < inf Jjj(x,p,u) < Jjj(x,p,uk°) 
k^°° ueuj'k ueu2

T'k° 

< JN(X,P,U) + - < inf JN(X,P,U) + — . 
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Since e > 0 is arbitrary, it follows that 

lim inf Jj!(x,p,u) < inf J„(x,p,u), (5-27) 
fc^oo u&/i'2

r'k ueuj 

which completes the proof. • 

Lemma 5.5. For any fixed pair N and k, v^k(x,p,u) = infueUr,k Jjj(x,p,u) is a 

quadratic form in terms of p with coefficients depending on x. 

PROOF. We decompose the cost function to get 

J%(x,p,u) 

2 f c - l , (' + })T 

=E £ / \plC(xt)ptl(\xt\<N) + 2D7'{xt)ptl(\xt\<N) + utRut]dt\x,p 
~Z JQ i=o u pr 

[5.28) 

where u G U2' . We minimize Jjj(x,p,u) backward by applying dynamic program

ming. The last term in the sum is given by 

s(2k - 1) = / \pT
tC(xt)ptl{\Xt\<N) + 2£>T(xt)ptl(|xt|<A0 + utRut]dt. (5.29) 

/ (2 1)T 
" T"E 2 ^ 

->k /nfc I \n-> 

Denote r0 = -—2ir—- m the above integral the initial condition for the state variable 

is (xro,pro). For t G [ro,T], ut = uro andp t = p r o +uro(t — ro). Then there exist Pi(-), 

F2(-), F3(-), F4{-) such that 

E[s{2k-l)\a(xt,pt,t<r0)] 

=PTr0Fl(Xr0)Pro + ^2' {Xr0)Pr0 + UT
rQF3(xro)uro + F4(xro)uro, (5.30) 

where the matrices Fx(xro) > 0 and F4(xro) > R. By dynamic programming we min

imize (5.30) and obtain the minimum as a quadratic function of pro with coefficients 

depending on xro. Repeating the above LQ minimization procedure in (5.28) and by 

induction we see that vrf (x,p,u) is a quadratic form in terms of p with coefficients 

depending on x. • 
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x Lemma 5.6. Suppose a sequence of continuous functions vk(x,p) mapping Rn 

Rn into R, k > 1, is represented as 

vk(x,p) = pTKk{x)p + 2pTSk{x) + qk(x), (5.31) 

where Kk(x) = KJ.(x), and in addition, there exists a finite limfc^007j/c(x,p) for all 

x,p G Rn. Then there exist A'00(x) = K^x), Soo(x), qoo{x), all continuous in x, such 

that (Kk(x),Sk(x),qk(x)) -> ( ^ ( x ) , 50o(x),g00(x)), as k -> oo. 

PROOF. We have 

In particular, 

lim vk(x,p) = lim \pTKk(x)p + 2pTSk{x) + qk(x)}. 
k—*oo k—>oo 

lim vk(x, 0) = lim gfc(x) = qoc(x), (5.32) 
k—>oo k—»oo 

which further implies that limfc^0O[pTA'fc(x)p + 2pr5,fc(x)] also exists and is finite for 

all (x,p). We take p = [0, • • • ,px, • • • , 0]T, then lim^oo Kkxi(x)p2 + 2SkiPi = finite. By 

taking p{ = 1, 2, respectively, we get limfc^oo Kkix(x)+2Skx = finite, limfc_0O 4Kkii(x) + 

ASki — finite. Then it follows easily that both limic_>00 Kkii(x) and lim^oo Ski(x) have 

finite values. Repeating this procedure for each entry of the matrices, we see that 

there exist KQO(x), Soo(x) such that 

lim Kk(x) = AToo(x), lim Sk(x) = S^x). 
k—>-oo k—>oo 

For any fixed x, using a similar argument as above, we can show that K^, 5^ , ôo 

are continuous at x. This completes the proof. D 

We conclude this Section with the following theorem concerning the structure of 

vT(x,p). 

Theorem 5.1. There exist KT(x),ST(x) and qT(x) of suitable dimension such 

that the finite horizon optimal cost vT(x,p) can be represented as 

vT(x,p) = pTKT(x)p + 2pTST(x) + qT(x), (5.33) 
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where KT(x) = (KT)T(x), and the superscript T is used to indicate the time horizon. 

PROOF. This follows from Lemmas 5.4, 5.5 and 5.6. D 

5.3. The Infinite Horizon Optimal Cost and the H J B Equation 

We proceed to analyze the infinite horizon optimal control problem formulated in 

Section 5.1; formally applying dynamic programming, we may write the HJB equation 

for the value function v defined by (5.4) as follows: 

0 = pv - fT^- - hv(p^GGT) + sup {-uT^ - uTRu} - pTC(x)p - 2DT(x)p, 
ox z dz1

 ueRn dp 

which gives 

= - Y, to(xx + k)-^ + - £ a2^-2 - -v;R-\ + pTC{x)p + 2D\x)p. 
2 = 1 l i=l l 

(5.34) 

Before v is determined as a classical solution to the HJB equation (5.34), we need 

some local Lipschitz estimates. To determine the range of x and p for the following 

comparison method, we define a subset of Rn x Rn by taking QB — {(x,p)\x,p G 

Rn and |x| < B, \p\ < B}, where the constant B > 0. 

Since —^z^^ito2 — v(x,p) < J(x,p,0), there exists a constant CB > 0 de

pending on QB such that sup/a,iP\egB |7j(x,p)| < CB- For each (x,p) G QB define the 

subset of the admissible control set U2 as U2 = {u G U2\J(x,p,u) < 2CB} and 

take the union U2^B = U(x,p)eQB^2 P • ^y explicitly substituting any initial condition 

(x,p) G QB into the integrand of J(x,p, •) and by basic bound estimates for the en

tries eXipx(t) and their products involved in plC(xt)pt, it can be further verified that 

there exists constants CB, CB such that 

|J(x,p,u) \ < Cl
B, \J(x,p,u) - J(x',p',u)\ < d2

B(\x - x'\ + \p-p'\), (5.35) 

where u G U2tB and (x,p), (x',p') G QB-
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On the other hand, for (x,p), (x',p') G QB we have 

\v(x,p) — v(x',p')\ < sup |J(x,p,u) — J(x',p',u)\. (5.36) 
ueu2,B 

Indeed, for any £ > 0 there exist u, v! G U2ts such that 

£ £ 

J(x,p, u) < v(x,p) + - J(x',p',u') < v(x',p') + - (5.37) 

Without loss of generality, we assume v(x,p) > v(x',p') and £ has been chosen suffi

ciently small such that v(x,p) — v(x',p') > e. Then it follows that 

\v(x,p) -v(x',p')\ < J{x,p,u) - J(x',p',u) + -

£ 

< J(x,p,u) - J(x',p,u) + -

£ 
< sup \J(x,p,u) - J(x',p',u)\ + -

ueu2,B
 z 

which leads to (5.36) since e > 0 can be arbitrarily small. 

Combining (5.36) and (5.35) we obtain the following proposition: 

Proposit ion 5.1. There exists a constant CB > 0 such that 

\v(x,p) - v(x',p')\ < CB{\x - x'\ + \p- p' |) , 

where (x,p), (x',p') €QB = {{x,p)\x,p G Rn , and |x| < B, \p\ < B}, B > 0. • 

Theorem 5.2. The value function v defined by (5.4) is a continuous function of 

(x,p) and can be written as 

v(x, p) = pTK(x)p + 2pTS(x) + q(x) (5.38) 

where K(x) = K(x)T, S(x) and q(x) are continuous functions of x, and are all of 

order 0(1 + YJl=i e2x')-

PROOF. The continuity of v follows from Proposition 5.1 since B can be taken 

as any positive constant. We approximate v(x,p) by a sequence of costs vT(x,p), 

T > 0, each of which is the optimal cost of the stochastic control problem with 
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the time horizon [0,T]. Applying a similar argument as in the proof of Lemma 5.2 

to the current case by extending the time horizon to infinite, it can be verified that 

v(x,p) = limr-,00 z;T(x,p) for all (x,p), and therefore (5.38) holds by Theorem 5.1 and 

Lemma 5.6. The upper bound for K(x), S(x), q(x) is obtained by a direct estimate 

of the growth rate of v. • 

T h e o r e m 5.3. The value function v is a classical solution to the HJB equation 

(5.34), i.e., J^-, J^%, §z-, 1 <i <n, exist and are continuous on R2n. 

PROOF. By a vanishing viscosity technique [23, 78] one can show that the value 

function v is a generalized solution to (5.34) in terms of weak derivatives with respect 

to (x,p). By Theorem 5.2, we see that |^ exists and is continuous. Now (5.34) can be 

looked at as a partial differential equation parametrized by p. Then one can further 

show by use of smooth test functions of the form ipx(x)ip2(p) with compact support 

that v is a generalized solution with respect to x for each fixed p. 

By Proposition 5.1 one can verify that K(x), S(x) satisfy a local Lipschitz condi

tion, and hence for each fixed p, the term typ(x) = — \v^R~lvp + pTC(x)p + 2DT(x)p 

in (5.34) also satisfies a local Lipschitz condition w.r.t. x. 

For each fixed p, (5.34) can be written as follows: 

-pV-yai(xl + b i ) ^ + l J 2 a 2 ^ + *p(x) = 0. (5.39) 
dxi 2^-f l dxi 

2 = 1 2 = 1 

Since (5.39) is uniformly elliptic and \I/P is locally Lipschitz continuous w.r.t. x, the 

generalized solution v (w.r.t. x) has the first and second order classical derivatives 

with respect to x [25], i.e., J^;, J^%, 1 < i < n, exist and are continuous. Hence v 

has all the classical derivatives appearing in the HJB equation (5.34). D 
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5.3.1. Associated PDE's and the Control Law. By Theorems 5.2 and 

5.3, we have 

pTpK(x)p + 2pTpS(x) + pq(x) 

=fT(x)^\pTK(x)p + 2pTS(x) + q(x)\ 

+ \tr{GG^\pTK(x)p + 2pTS(x) + q(x)}} 

- [K(x)p + S)TR-l[K(x)p + S] + pTC(x)p + 2DT(x)p. 

This gives 

pTpK(x)p + 2pTpS(x) + pq(x) 

fc=l 2 = 1 

k=l K k=l K k=l K 

- pTKR~lKp - STR~lS - 2pTKR~1S. 

Hence we get the partial differential equation system 

fc=l K k=l K 

PS=\±4^ + ±ni-t-KR-'S + D, (5.4!) 
k = l fc=l 

2 

k=l K 

where we shall refer to (5.40) as the Riccati equation of the system. Finally the 

optimal control law is given by 

u = [ux, ••• , un]
T = -R~l[K(x)p + S{x)], (5.43) 
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where p denotes the power vector. This gives the control law for all users. From the 

above it is seen that the optimal control is determined as a feedback which uses the 

measurement of the current power and attenuation processes. 

5.3.2. Simulations. In the numerical experiments below, we study two dif

ferent systems with the same cost function. Each system includes two users and the 

channel dynamics of both systems are given by 

System A: dxi — — 4(xx + 0.3)dt + 0.3dwx, i — 1,2, 

and 

{ dxx = - 4 ( x i + 0.3)dt + 0.3dwx, 

dx2 = -3 .5(x 2 + 0.2)dt + 0.2dw2. 

In the quadratic type cost function (5.3), the discount factor p — 0.5, the weight, 

matrix R = 0.03I2, and (5.3) is derived from (5.2) where p,x = p,2 = 0.4,77 = 0.25. In 

the simulation the time step size is 0.05. We use a similar difference scheme as in the 

bounded control case of Chapter 3 to compute the value function approximately and 

the control law is determined by a quadratic type minimization based calculation, i.e. 

. , Tdv TT^ . 
u = argmm \u ——\- u Ru\. 

dp 

Figures 5.1 and 5.2 correspond to system A and system B, respectively, where 

Xi,Pi,qi,i = 1,2, denote the attenuation, the controlled power, and the static point-

wise optimum obtained from (2.10), respectively. Figures 5.1 (b) and 5.2 (b) indicate 

the control inputs corresponding to Figures 5.1 (a) and 5.2 (a), respectively. 

For system A, as shown by Figure 5.1, whenever the two users have significantly 

different initial powers there is an initial convergence of the power levels to a common 

level and then subsequent approximately equal behavior which converges toward a 

steady level. In the long term, the two controlled power trajectories are very close to 

each other; this happens because the two mobiles have i.i.d. channel dynamics. For 

system B, after a fast adjustment, the powers of two mobiles will be maintained at 
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stable levels and the power trajectories of the first user will generally stay above that 

of the second user due to the asymmetry of the channel dynamics of the two users, 

which is different from the case of system A. 

From Figures 5.1 (b) and 5.2 (b) it is seen that in contrast to their initial behavior, 

after both powers settle down in a small neighborhood of the optimum, at each step 

only a minor effort is required for each mobile to adjust its power, which also differs 

from the bounded control case in Chapter 3 where the power adjustment takes the 

form of bang-bang controls. 

(a) pi(0) = 0, p2(0) = 0.65 (b) ux and u2 

FIGURE 5.1. Simulation for system A 

6 a s 9 

(a)pi(0) = 0, p2(0) = 0.1 (b)wiand7i2 

FIGURE 5.2. Simulation for system B 

5.4. The Classical Solution and its Small Noise Approxima

tion 

In this section we address the important issue of the computability of solutions to 

the equations in Section 5.3.1. In general, constructing a control law by solving the 
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partial differential equation systems in the high dimensional case is a formidable or 

even impossible task. For a significant number of users, an analysis of local expansions 

of solutions around a steady state attenuation value x is useful in the small noise case 

because the attenuation trajectory x(t) will be expected to spend a disproportionate 

amount of time in a small neighborhood of x. In this way it is possible to construct 

suboptimal controller with ideal performance but at significantly reduced complexity. 

For simplicity we make the Symmetry Assumption: all the users have i.i.d. 

channel dynamics with a; = a, bx = b, Oi = a and 7* = 7, R = rln. We use 

K(x) — (A'ij(x))" -=1 to denote the solution of the Riccati equation (5.40) and write 

^TdKl3(x) 1 d2KXJ(x) 

dx +2[ ] dx2 KXJ(x) = Ay(x) + (x - * ) T — ^ + - ( x - x)T ^ >(x - x) + o(\x - x|2) 

... ^, , ^ „, _ > 
L2j \-"j ' 2 V ; v 

A „ ,_s . , -sT ^(1) ,-s , 1 / = \ T ^ ( 2 ) M / - s ^ , , _,2^ = Ktl(-X) + (x - i r ^ ' W + -(x - Z W W ( x - *) + o(|x - n% (5.44) 

where x = (6, • • • , b)T is the steady state mean of the attenuation vector. 

5.4.1. Complexity of the Local Expansion of the Matrix K(x). In the 

following we will show that in the symmetric case, when n grows the complexity of the 

local polynomial approximation does not increase with the dimension, i.e., the total 

number of distinct entries of the three coefficient matrices in (5.44) does not increase 

with n. To this end, we first show an important property of the entries of the Riccati 

matrix K(x). For the ordered integers / = (1, 2, • • • , n), let / = (zi, z2, • • • , in) be an 

arbitrary permutation of / . For 1 < j < n, suppose j is the s(j)-th element in the 

row / . 

Proposi t ion 5.2. Under the Symmetry Assumption, for the Riccati matrix K(x), 

we have 

Kij(xx, x2, • • • ,xn) = Ks(i)s(j)(Xi1,Xi2,--- ,Xin). (5.45) 

PROOF. By the symmetry assumption on the channel dynamics and the cost 

function, we have 

TJ(XI,X2 , ••• ,xn,px,p2,--- ,pn) = v(xil,xi2,--- ,xln,ph,pi2,--- ,pin). (5.46) 
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Using Theorem 5.2 and comparing the coefficients of the quadratic terms of p, we get 

the above relation (5.45). D 

Using Proposition 5.2 repeatedly, we can verify that the computation of each Kij 

and its first, second order partial derivatives at x = (b, • • • , b)T can be reduced to 

Kxx, Kx2 and their derivatives at x. In fact, these first and second order derivatives 

at x can be represented by 13 variables. Here we list all the distinct entries in the 

three matrices of (5.44) as follows: 

K K dKu dKn (PKn &Ku d2Kxx d2Kxx 

axi dx2 dxx
z dx2

l dxxdx2 dx2dx3 

dKu^dK^ dKu d2KX2 d2Kx2 d2Kx2 = d2Kx2 

dxx dx2 ' 5x3 ' 9x3
2 ' dxxdx2 dxx

2 dx2
2 

d2KX2 _ d2Kx2 d2Kx2 

dxxdx3 dx2dx3' dx3dx4 

where all the quantities are computed at x = (b,- • • ,b)T. Here we verify the last 

identity. In fact, by (5.45) and the transpose symmetry of K, i.e., K(x) — KT(x), we 

have 

d2K„ .. 1 

dx2dx3 

= lim — [#12(xi, x2 + £, x3 + £, x4, • • •) - KX2(xx, x2, x3 + e, x4, • • •) 
e^O £z 

-KX2(xx,x2 + £,X3,X4, • • • ) + KX2(xx,x2,X3,X4, • • • )] 

1 

e—0 £1 

-KX2(XX + f f , X 2 , X 3 , X 4 , - - - ) + A: i 2 (Xi ,X 2 ,X3 ,X4, • • • ) ] 

1̂2 

x 

= lim—[i^12(a:i + £,x2,x3 + £,x4, • • •) - Kx2(xx,x2,x3 + £,x4, 

d2K, 

dxxdx3 

where x = (x"i, • • • , x n ) r = (b, • • • , b)T. The remarkable feature of limited complexity 

for K(x) as well as its first and second order derivatives at x is potentially useful to 

obtain simple and efficient local approximation for A^(x) by determining the above 

15 unknowns. 

83 



5.4 THE CLASSICAL SOLUTION AND ITS SMALL NOISE APPROXIMATION 

5.4.2. T h e Approximating Equation System. We write the Riccati equa

tion (5.40) in terms of its components to obtain 

PKl3(x) = £ £ ^ M + y f k ^ M _ y l
Kxk(x)Kk3(x) + Cl3(x). (5.47) 

k k k k k 

And using (5.44) we write the system of approximate equations (up to second order) 

pKXJ(x) + p(x - xYKl?(x) + P-(x - xYK^(x)(x - x) 
r2 

k k 

~ £ \\ K^) + (* - *YKlk&) + \(* - ^)TKT{x)(x - x)]-
r 

'Wf~\ , l(„ = \ T 1 / ( 2 ) | [A%(x) + (x - * ) T A ^ ( x ) + - ( x - z ) T A ^ (*")(* - x)] 

1 

2 

'(2) / = \ 1^(2) / = 

+ C ^ x ) + (x - x)Tq,.(x) + - ( x - xYC^(x)(x - x), (5.48) 

where K\- k(x), K\. L.Ax) are the k-th diagonal entry and the A>th row of the matrix 

K\j (x), respectively, and K^k(x) is the fc-th entry of K\.-. (x). Notice that in writing 

the equation (5.48) only the first three terms in (5.44) are formally substituted into 

(5.47) and the higher order terms are neglected. When the higher order terms are 

taken into account, additional terms of the order l^-ZQ- | and |^-.£Q. | will appear in 

equations (5.50) and (5.51) below, respectively, where K\. and K\, denote the third 

and fourth order mixing partial derivatives of KX](x) at x assuming their existence. 

Here in order to avoid an infinitely coupled equation system we omit the additional 

terms but maintain sufficiently close approximation to the exact solution since we are 

considering the small noise case. 

However we write an exact equation corresponding to the zero order term since 

it has more weight in the suboptimal control law when the state stays in a small 

neighborhood of x. Grouping terms with zero power of (x — x) in (5.48), we obtain 
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the equation system 

pKij{x) = y £ 4 -1 (50 - £ l-Klk(x)Kk3(x) + Ct3(x), (5.49) 
k k 

or equivalently, in the matrix form 

pK(x) = °^( t r { ^ 2 ) ( x ) } ) ^ = 1 - l-K(x)K(x) + C(x), 

which takes the form of a perturbed algebraic Riccati equation. By (5.48) we also 

have 

(x - x)rpK$\x) = (x-xY(- aK$l(x))n
k=i 

~ X > - *)r\\ K\x
k\x)Kk3(x) + Kik(x)K$(x) ] + (x - xYC'l3(x), 

which gives 

(p + a)K^(x) = -1- y[ K\l
k\x)Kk3(x) + Kik(x)Kkf(x) } + C[3(x). (5.50) 

k 

Finally, by inspecting the second order terms in (5.48) we get 

(P- + a ) 4 2 ) ( x ) = " ^ £ [ Kxk(x)K{
k
2
3\x) + K[l){x)Kk3(x) } 

k 

- ; £ 4 % ) [ < ( ^ ] T ^ q ; ( x ) . (5.5i) 
r 

k 

It would be of interest to investigate the procedure to solve the above equation system 

numerically, which is an important step toward implementing the suboptimal control 

law in a simple and efficient manner. We will design the numerical procedure to solve 

the equation system (5.49)-(5.51) below. 

5.4.3. A Recursive Algorithm. In this part we design a recursive algo

rithm to solve the equation system (5.49)-(5.51). To achieve good numerical stability 

and convergence for the recursive algorithm the coupled polynomial equations are 
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rewritten. First, we write (5.50) in the following form: 

[p + a + —^-]K\3\x) 

= - \ £ [ ^k\x)Kk3(x) + Klk(x)K{
k
l
3
](x) ] + C[3(x), (5.52) 

and (5.51) is written as 

k^i,j 

-\Y.Kllk\^Kk3]^)\T + \c'^)- (5-53) 

where Ku and Ajj are computed at x. Denote 

Aij = p + a+ " " ' " J J , 5 y = ^ + a + i t J - P , u, , - , tfij•. - - -+- a -\ — 

Assuming Ai3 ^ 0 and Bi3 ^ 0, from (5.52)-(5.53) we write 

4 1 } ( ^ ) = -ZT- £ [ K\l)(x)Kk3(x) + Klk(x)K[
k
l
3\x) } + - J - C ^ x ) 

J kf^i,3 J 

= Vl3{K,K^), (5.54) 

t J k^ij 

- ^-£41)(^)K )(^)r + ^-q;(x) ^ ( A ^ U ^ , (5.55) 

where A''1), A^(2^ denote the sequence of Ki3-, (x), Ki3 (X), 1 < i, j < n, with any 

predetermined order, respectively. For (5.49) we assume a unique positive definite 

solution K exists for A^2' varying in a certain range and we indicate the dependence 

by 

AT = A(A-(2)). (5.56) 

To approximate the solution to the equation system (5.49)-(5.51), we first set 

the initial condition K0, KQ ,KQ where the subscript is used to indicate the time 
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instant, and then we update the solution by the following scheme: 

Kt+X = A(Af } ) , 

( 4 - V i = *y(tfm,tf t
(1)), l<i,j<n, 

<2h - ( I ) (2)s 
(Kl;')t+i = ^3(Kt+x,K^\,Kn, 1 < hj < n, 

(5.57) 

(5.58) 

(5.59) 

where t > 0. 

To illustrate the efficiency of the recursive algorithm we apply (5.57)-(5.59) to 

system A of Section 5.3.2 with the same cost function as specified in Section 5.3.2. 

Since the two mobiles have i.i.d. dynamics, we adopt a certain symmetry with the 

initialization of the algorithm. Specifically, we take K0 = ^2x2 and all the first and 

second order derivatives of K take the initial condition of zero matrices or vectors of 

suitable dimension. Figure 5.3 below demonstrates the asymptotic behavior of the 

iteration of (5.57)-(5.59) from step 2 to step 20. Interpretation of the entries in the 

plot can be found in Section 5.4.2. 

- JfW (2) _ ^ ( 2 ) FIGURE 5.3. At = ATi2(t), Bt = K^t), Ct = K^t), Dt = K\%x(t) 

Remark 5.1. For this two dimensional example, it is worth mentioning an im

portant feature for the operators on the right hand side of (5.58) and (5.59). To begin 

with, by removing the leading term on the right hand side of (5.49) we get a usual 

Riccati equation for which we obtain a so-called nominal solution K. Let Kt denote 

the following composite vector 

K<"^[ir<!'T(t),A<r(t),Kg'Tw,JfS,T(*)r. 
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We replace A^+i by its nominal value K in (5.58). Now (5.58) can be written as 

-(I ( i ) KY+\ = *!AT + *2, (5.60) 

where \I>i G R 8 x 8 is determined by K and ^ 2 € R8 is a constant vector depending on 

K and C'(x). For systems A and the associated cost function we can verify that the 

absolute value of each eigenvalue of \I>i is less than 0.37 and hence \I>i is stable. We 

can also verify a similar stabilizing property for the map (5.59) when Kt+X is replaced 

by its nominal value K. • 

We write the results of the recursion in the following compact form where the 

determination of each block is evident. 

K = 
0.070945 -0.050494 

-0.050494 0.070945 

Kg K 

( i ) 
12 

(1) 
22 

K(2} K[2) 

-"•11 ^ 1 2 

/ v 2 1 ""-22 

0.054577 -0.019913 

-0.007263 -0.019913 

-0.019913 -0.007263 

-0.019913 0.054573 

0.067471 -0.004126 -0.007098 -0.010009 

-0.004126 -0.004070 -0.022420 -0.007098 

-0.007098 -0.022420 -0.004070 -0.004126 

-0.010009 -0.007098 -0.004126 0.067471 

(5.61) 

(5.62) 

[5.63) 

(2) (2) 

Notice that the resulting matrices Kl2 and A21 are not symmetric. This is not 

unusual since the equations (5.49)-(5.51) are obtained by a certain approximation 

technique (with a noise level o2 = 0.09) and it may not provide tight approximation 

to certain entries in the second order Taylor coefficient matrices for K(x) in (5.44). 

With K, K^\ K^ given by (5.61)-(5.63), applying the local expansion method of 

Section 5.4.2 to the equation (5.41) we can also determine the approximate values of 

the associated coefficients S(x), S^(x), S^2\x), the computation of which is simple 
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since they are described by a set of linear equations. We have 

5 = 
-0.012523 

-0.012523 
[Si" s<"] 

-0.000485 -0.001771 

-0.001771 -0.000485 

7(2) c ( 2 ) [S?> S?>] = 
0.000834 -0.000209 -0.000438 -0.001290 

-0.001290 -0.000438 -0.000209 0.000834 

Now we substitute the local second order approximation of K(x) and S(x) into 

the controller (5.43) to get a nearly optimal controller. The following Figure 5.4 is the 

simulation of this local expansion based controller for system A in Section 5.3.2. The 

variables Xj (power attenuation), pi (controlled power), <& (static pointwise optimum) 

in Figure 5.4 (a) are specified in the same way as in Section 5.3.2. Figure 5.4 (b) 

demonstrates the control inputs of two mobiles. In Figures 5.4 and 5.1, the basic 

behaviour of the power adjustment is quite similar and in both cases the powers of 

the two users will gradually be brought to certain stable level. 

* * • > • * - < ! < 

(a)pi(0) = 0, p2(0) =0.2 (b)7j iandu 2 

FIGURE 5.4. Simulation for system A using the nearly optimal control law 

5.4.4. The Single User Case. In this part we consider the very simple 

example of n = 1. This corresponds to the case of a single mobile in service under 

the effect of a fading channel and the background noise. However we mention that 

the solution is useful to construct nearly optimal control laws in systems with large 

populations where a particular mobile M is singled out for analysis and the scaled 

interference generated from all the other users can be approximated by a deterministic 
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quantity due to the effect of the law of large numbers. For n = 1, we have 

C(x) = (1 - p)2e~2b, C'(x) = 2(1 - p)2e~2b, C"(x) = 4(1 - p)2e~2b, 

and the equations (5.49)-(5.51) reduce to 

pk'=^-K^--K2 + C, (5.64) 
2 r 

(p + a)Kw = --KKw + C, (5.65) 
r 

(£ + a)A"(2) = -\KKm _ 1 A : ( I ) ^ ( I ) + l-C", (5.66) 
2 r r 2 

where C, C and C" take their values at x. In the following we seek a solution for 

the small noise case satisfying K > 0. 

Proposition 5.3. There exists CTQ > 0 such that for any finite a2 < a\ the 

equation system (5.64)-(5.66) has a solution (K, K ,K ) and K > 0. 

PROOF. Rewriting the system (5.64)-(5.66) yields 

K = -Wry+M^i+zc) k Go{Kmi (5 67) 

We introduce four constants 

A a A c 
Cl = — ; — , C2 = 

Co 

p + a p + 2a 

A - r p + y/r2p2 + 2r(a2c2 + 2C) 
2 

_ A . r rC" - 2c\ 
c2 = mi —-; , 

o<s<G0(c2) r(p + 2a) + 2s 

and a convex compact subset of R3 denoted by 

K = {(x0, xx,x2) : 0 < Xi < Ci, z = 0,1 and c2 < x2 < c2}. (5.70) 
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Set o"o = sup{cr2 : o2c2 + 2C > 0}. Then for any o2 < a^, the square root in (5.67) 

is always no less than rp for c2 < K^ < c2. We define the continuous map Gon/C 

such that 

G(K, A™, K^) = ( G0(K^), GX(K), G2(K, A(1>) ). (5.71) 

Then it is readily verified that G(K.) C /C and therefore, by Brouwer's fixed point 

theorem G has a fixed point (K,K ,K ) . From (5.67) it is seen that K > 0. 

Thus we have proved that the system (5.64)-(5.66) has a solution (K, K ,K ) and 

A > 0. • 

We proceed to consider the local approximation of S(x) in Section 5.3.1. We 

write 

S(x) = S(x) + Sw(x)(x - x) + -5 (2 )(x)(x - x)2 + o(\x - x\2). 
ZJ 

Then similar to the treatment for A^(x), from (5.41) we obtain a system of algebraic 

equations 

( P + - ) S - ^ = D, (5.72) 
r Z 

A(1) K~ 
-S + (a + p+-)Sw = D', (5.73) 

K 
r r 
(2) T ^ 1 

S + K—SM + (P: + a + ^)S^ = l-D", 
2r r v2 2r 2 

where D = D' = D" = -pjq(\ - p)e~b. 

(5.74) 

Example 5.1. For n = 1, a = 2, b = 0.3, a2 = 0.01, p = 0.6, rj = 0.25, p = 

0.5, r = 0.1, we have 

(K, A ( 1 ) ,Z ( 2 )) = ( 0.072120, 0.044547, 0.052429 ), 

(S,~SW,~Si2)) = ( -0.036412, -0.008763, -0.003362 ). 

• 
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Example 5.2. For n = 1, a = 2, b = 0.4, a2 = 0.01, p = 0.6, 77 = 0.25, p = 

15, r = 0.1, we have 

(K, A ( 1 ) ,X ( 2 )) = ( 0.063525, 0.038134, 0.044794 ), 

(5, 5 (1 ) , 5(2)) = ( -0.035443, -0.008517, -0.003475). 

D 

Remark 5.2. For x = (xx,x2, x3) 6 R3, we define ||x|| = max^ |XJ|. By examining 

the upper bounds for | - ^ | on K, j = 0,1, 2, z = 1,2,3, where /C and 6? are defined 

by (5.70) and (5.71), we can show that in Examples 5.1 and 5.2, the map G is a 

contraction on K under the norm || • ||. In this case the unique solution of (5.64)-

(5.66) can be approximated iteratively. • 

By substituting the local second order polynomial approximation of K(x) and 

S(x) into the feedback control (5.43), the suboptimal control law for the single user 

is determined as 

u = --[K + KW(x + b) + W2\x + b)2}p 
r Z 

--[S + S{1\x + b) + ls{2\x + b)2]. 
r Z 

(5.75) 

u 
(0) _ _K 

From (5.75) we write the 0-th order approximation of the optimal control law as 

p— f, for which the steady state power is p°° = — = . On other other hand, 

we determine the nominal power level p by setting exp — p(exp + 77) = 0, and define 

the relative error between p°° and p by Err(p°°,p) = |p . For Examples 5.1 and 

5.2, we have 

Example 

1 

2 

P°° 

0.504881 

0.557938 

P 

0.506197 

0.559434 

Err(p°°,p) 

< 0.3% 

< 0.3% 

The following is the simulation of the suboptimal control law given by (5.75). The 

pointwise optimum q is determined by setting ?
x
e (t) = p for each t > 0. Figure 5.5 
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demonstrates the dynamic behavior of the system in Example 5.1 with two different 

initial powers. 

' - / V . - i . , ^ , „ V ' J . U : J > - , 

- q: pointwise optimum 
— p: suboptimal power 
— x: attenuation 

^VvAv\Ay/AyVyv /^^ 2'yA/^r^r^^^^ 

q pointwise opbmum 
- p. subopbmal power 
- x attenuation 

20 25 30 

(a): p(0) = 0 (b):p(0) = 0.8 

FIGURE 5.5. Left (a) and Right (b): The trajectories of attenuation x, power 
p and control u with initial power 0 and 0.8, respectively 

5.5. Application of the Single User Based Design to Systems 

with Large Populations 

In this section we study the power control problem in a large population context. 

In this case the Quality of Service (QoS) measure needs to be suitably scaled. For 

instance, in (2.7), to insure solvability of the static problem (i.e., there exists at least 

one positive power vector satisfying (2.5)), one can diminish pi toward 0 as n —• oo. 

However, here we shall not follow this scaling. The QoS measure of this Section is 

based on the SIR of users after matched filtering in CDMA systems. Specifically we 

seek to have 

Pi Pi 

YT&i friPj + V E"=i PjiPj + V 
Hi, 1 < i < n, 

in some sense, where the received power % = eXipi, and (33i = (s js ; ) 2 , j ^ z, i is 

the crosscorrelation between the signature sequences s3,sx of length ns for users j,i, 
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respectively. Following [72, 74, 80], we make the standard assumption that — —> 

a > 0, as n —> oo. By appropriately choosing random signature sequences of length 

n s , one can get j33i ~ ^- [72, 80], and hence (33i ~ ^. Here for simplicity we take 

Pji = ~ = Pn-

Hence we write the following static nominal equation 

n 

ex>px = px((3n y ex'p3 + r]), (5.76) 

j = i 

which is equivalent to 

n 

eXipx = px[ex'px + (1 - px)(f3n y ex>p3 + 77)]. 
J = I 

We set rj(x,p) — (3n E ? = 1 eXjPj + r) and term rj(x,p) as the network interference index. 

Notice that under mild conditions on the distribution of x*, Pi, 1 < 1 < n, rj(x,p) 

has a small variance compared to its mean, and thus can be approximated by a 

deterministic constant at each fixed time instant. In particular, when most users in 

the system are in stable working conditions, for analysis of a small group of newly 

admitted users the variation of the network interference index with respect to time 

is negligible. 

The above analysis suggests we write an individual cost function for the z-th 

mobile 
poo 

JX = E \ e~pt{ [ex>Pi - pi(ex*pi + (1 - px)v)}2 + ru2 }dt. (5.77) 
Jo 

In this setup the z-th mobile is singled out from the large population to deal with an 

interference generated by all other mobiles and the true background noise. In essense, 

the z-th user is treated as the only user of a "virtual system" with an "equivalent time-

varying background noise intensity". Then on a time interval [kT, (k + 1)T), T > 0, 

k = 0,1,2, •••, the control law Uj of the z-th user is determined by (5.75) using 

(1 — Pi)rj as a time-varying parameter for the equivalent background noise intensity. 

In the implementation, 77 is replaced by its measurement at t = kT and updated at 
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t = (k + 1)T. We construct the control law of the z-th mobile as 

1 1 

ux = - -[K + K{1\xx + bx) + -K(2)(xi + bx)
2]Pl 

I ZJ 

(1 ~ to)Vo^ . -^(l), . , x . !-e(2)/ . , s2i ,r ~Qs 
[S + S (xx + bi) + -S {Xi + biY\, (5.78) 

where (S, S , S ) is the solution of (5.72)-(5.74) corresponding to the constant rj, 

and 7)0 = rj(x,p)(kT) for t € [kT, (k + 1)T). Compared to (5.75), the second term in 

(5.78) contains the factor ^ ~^i>Ti° since in the present case the original 77 is replaced 

by (1 — px)rjo in (5.77) and (S, S , S ) depends on 77 linearly as indicated by 

(5.72)-(5.74) . Here (K, 7? (1), ~K{2)) is independent of 77. 

Notice that the control law (5.77) is partially decentralized since for each user it 

depends only on its own state and the network interference index rj to be measured 

by the base station. In fact, 77 is the sum of the scaled total received power and the 

background noise intensity. 

Remark 5.3. Assuming all the users start from zero power, an initial increase of 

powers of all users leads to a higher network interference index, which in turn requires 

a further increase of individual powers. This gives rise to the question whether there 

would be an unlimited growth of individual powers. To a large extent, this question is 

related to stability of the power updating scheme. In fact, by examining the 0-th order 

approximate control law induced from (5.78) we see that under very mild conditions 

on the coefficients the corresponding network interference index has a stable behavior 

after successive iterations of powers along the steady state x. • 

5.5.1. Simulation Examples . The following simulation shown in Figure 5.6 

is for a system of 140 users. For all users we take px = 0.6 in (5.78). Parameters for 

each half (i.e., 70 ) of the users are as specified in Examples 5.1 and 5.2, respectively. 

User 1 has an initial power 0. The initial powers of other users are distributed in a 

small neighborhood of 0.2. 

For this simulation we label the users specified in Examples 5.1 and 5.2, re

spectively, by 1-70 (Population 1) and 71-140 (Population 2), respectively. We take 
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5.5 APPLICATION OF SINGLE USER BASED DESIGN TO LARGE SYSTEMS 

n — 140 and use the attenuation, power and control variables x, p, u E Rn to de

scribe all users. Here we give an informal stability analysis for the individual cost 

based control law (5.78) for which we write the so-called nominal equation as follows: 

u. 
K{ (1 - px)Si 1 v ^ _b . 

= Pt~- — ( - V e blPi + ri), 
r77 n 

(5.79) 
£=1 

where 1 < z < 70 for Population 1 and 71 < z < 140 for Population 2. For instance, 

if user z is in Population 1 (i.e., 1 < z < 70) then all the parameters in (5.79) are 

determined from Example 5.1; similarly for Population 2 in Example 5.2. We further 

write the nominal equation for the closed-loop power adjustment as 

dp 
dt 

u = Axp + A2, (5.80) 

where Ax e Rn x n , A2 e Rn are easily determined by (5.79) and Ai can be written in 

the form 

. . . a \ ( a + 5x •• 

Ai 

a a 

a a + 6X a 

(3 P + S2 

a 

V 0 0 0 0 + S2 J 
nxn 

where n = 140, a = 0.003083, 0 = 0.002715, Sx = -0.7212 and 52 = -0.6352. The 

eigenvalues of Ai are given by 

A 3 = A4 = • • • = A71 = 8X, 

^72 = -^73 = • • • = A140 = S2, 

and Ai, A2 are the two roots of 

r7Z n A2 - [77(a + 0) + Sx+ 62}X + [-{aS2 + 0SX) + 6X62] = 0 
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from which we take 

Ai = -0.6800, A2 = -0.2705. 

It is seen that all Aj, 1 < z < 140, lie in the left half plane with a strictly positive 

stability margin. This fact reveals the stabilizing feature of the power adjustment 

scheme (5.78) in the small noise situation. 

Left top: power, control and attenuation of 
user 1 
Left bottom: initial and final powers of the 
population 
Right top: network interference index rj and 
scaled SIR = e ~pi for user 1. The reference 
level for the scaled SIR is 0.6 

FIGURE 5.6. The power adjustment of user 1 and the behaviour of the 
population with the single user based control law 

It is shown by Left bottom in Figure 5.6 that at t = 45, the powers of the 140 

users stay in small neighbourhoods of two different levels due to different long-term 

means of the attenuations for the two groups (i.e., Populations 1 and 2) of users. 

5.5.2. Investigation of Population Behaviour in Large Systems. As 

indicated by the above numerical example, under a large population condition the 

network interference index exhibits a largely deterministic behavior in its evolution 

with respect to time (see Right top in Figure 5.6); this fact suggests the feasibility of 

modelling the system's evolution by a certain deterministic dynamics and associated 

initial conditions. This may potentially lead to completely decentralized control laws 
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since each mobile uses only its own state and a deterministic process (subject to the 

aggregated influence of the individuals) to determine its control input. 

Concerning power control, the important issues of large populations, decentral

ization, and the nature of the associated control laws will be addressed in Chapter 

7. Also within the context of large population systems, we will investigate a class 

of large-scale linear models in Chapter 6 and develop the general methodology for 

analyzing decentralized control and for studying individual-mass behaviour. 

Although in Chapter 6 the structure of the large-scale cost-coupled linear qua

dratic Gaussian (LQG) systems is inspired by that of the power control problem, it is 

of interest in its own right. In this linear context, we shall develop both the central

ized optimal control, and more importantly, a decentralized game theoretic solution 

with an individual playing against the mass of other players. In turn, the solution 

for the large-scale linear systems will serve as a paradigm for approaching the large 

population power control problem in Chapter 7. 

5.6. Adaptation with Unknown Parameters in Channel Dy

namics 

We rewrite the lognormal fading channel model of Section 2.4 as follows: 

dxi = —ai(xi + bx)dt + Oidwi, 1 < i. < n. (5.81) 

In this model, the channel variation is characterized by the parameters a* > 0, b{ > 

0, ai > 0. For practical implementations, ax,bi,Gi may not be known a priori, but 

Xi can be measured, for instance, with the aid of pilot signals [18, 60]. In CDMA 

systems, the power of users is updated with a period close to 1 millisecond (for 

instance, by 800Hz [71]) while the time scale of lognormal fading is much larger. 

Hence the channel may be regarded as varying in a very slow rate. In such a case 

one expects to have estimation of the channel state at high accuracy. In the following 

analysis, we shall assume perfect knowlege on the channel state xx. 
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Consider an estimation algorithm for â  and bi via the measurement of Xj. For 

the z-th mobile, the parameters are estimated by the least squares algorithm where 

a,i(t), bi(t) denote the estimate of ai,bi at t > 0, respectively. Define 

1 " 
bi(t) = - - / xx(s)ds, t>0, (5.82) 

* Jo 

dPi = -Pi(xx + bi)(xx + bi)Pidt, t>0, (5.83) 

ddi = -Pi(xi + \)[dxx + a,i(xi +\)dt], t > 0, (5.84) 

where the initial conditions are given by 6j(0), Px(0) > 0, aj(O), respectively. The 

estimates are strongly consistent as stated by the following proposition. 

Proposit ion 5.4. The estimates bi(t) and a;(r) converge to the true parameters 

with probability one as t —> oo, i.e., 

lim bi(t) = bi, a.s. (5.85) 
t—*oo 

lim a,i(t) = di, a.s. (5.86) 
t—HX 

with initial conditions 6j(0), aj(O), Pi(0) > 0. 

PROOF. Since <2j > 0, <7j > 0, it follows that Xi is an ergodic diffusion process 

satisfying 

1 /"* 
lim - / Xi(s)ds = lim Ex{(t) = —bi a.s. 
t—>oo t Jo t—t-oo 

and (5.85) follows. Write a, = a j — a*, bi = bt — bi and z/j = Xj + 6j. It is easy to verify 

that 

ddi = —Pi(xi + bi)[dxi + a,i(xi + bi)dt] 

= -Pxa,iy2dt - afiiPiyidt - OiPiyidwi, (5.87) 

dp-1 = y2dt. (5.88) 
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By (5.88) it follows that 

\-tP-l(t)--tj\xt + bx)
2dS\ 

= |ip-1(0) + ^ f (bx-bx)
2ds--+ f (xx + bx)(bx-bx)dt\ 

1 £ Jo t Jo 

<\pr\0) + \ ftfds + 2(j J\xi + bx)
2ds)H-t J* bids)*. (5.89) 

Since lim^oo | fQ (xi + bx)
2ds = lim^oo E[xx(t) — Exi(t)}2 a.s. by ergodicity of X;, and 

limt^oo j JQ b2ds = 0 a.s., it follows that 

lim -P~\t) = lim E[xx(t) - Exi(t)}2 > 0, a.s. (5.90) 
t—>oo t t—*oo 

By (5.87) and (5.88) we obtain 

dP~la2 = -a2y2dt - 2albx
rdxyidt + o2Pxy

2dt - 2o^axyxdwi. (5.91) 

Applying the technique in [15], from (5.91) we get 

p-\t)^t) - p-\^a2m 

= - a^yfds + / G2Piy2dt -2 alZiaiyidt -2 a^axyidwi 
Jo Jo Jo Jo 

= - f^y'ds + 0(\ogPr\t)) + O ( [ J ^ « W • [f^ds]*) 

+ o({J*a>y?ds)k2+ey a.s. (5.92) 

where 0 < £ < \. From (5.92) it follows that 

J^yfds < 0(\ogP-\t)) + O {[f\ds}\ • [J\2y2ds]^ + O ^(j\2y2ds)^ , 

which yields 

/ tfyfds = 0(\ogt) + 0{[ b2ds), a.s. 
Jo Jo 
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Since bx(t) —>• 0, a.s., as t —> oo, it follows that 

/ afyfds = o(t) a.s. (5.93) 
Jo 

By (5.90), (5.92) and (5.93), we get lim t^0Oa i(t) = 0, a.s., and (5.86) follows. • 

The estimation of o2 is more complicated than that of ax and bi. In the following 

we employ a discrete time prediction error term to construct the empirical variance. 

We first take a sampling step h > 0 to discretize (5.81) to write 

-{k+l)h 

<kh 

p(K+i)n 

xx[(k + l)h] + bx = e-aih[xx(kh) + bt] +ai e-a>[{k+1)h-s]dwi(s), k>0. 
Jkh 

(5.94) 

Setting Ai = e~^h and ut(kh) = fk
{k

h
+l)h e'^+^'^dw^s), (5.94) can be written in 

the form 

xx[(k + l)h] + bi = Ai[xi(kh) + bx] + a^kh). 

It is easy to verify that Voi(ui(kh)) = x~\^lh = T,Vi. Denote A\(kh) = e^
{kh^h, 

1 n—l 2 

a2(nh) = ^ - yfx^k + l^ + Hk^-MkhYx^k^ + kikh)]) . (5.95) 
nZVi{kn) fc=0

 v 

It is straightforward to show that (5.95) can be written in a recursive form. We have 

the following proposition: 

Proposition 5.5. For o2(nh),n > 1, defined by (5.95), we have 

lim d2(nh) = o2, a.s. (5.96) 
n—*oo 

where o2 > 0 is determined by (5.81). 

PROOF. For notational brevity, in the following proof we write Xi(kh), Ax, b{, 

Ai(kh), %(kh), Ui(kh) as x{(k), A, b, A(k), &(fc), u(k), respectively. Setting A(k) = 
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Ai(kh) - A{ and b(k) = l)i(kh) - bx, we have 

n - l 

Xi[(k + l)h] +%(kh) - Ai{kh)[xi(kh) + bi(kh)]) 
k=0 

n-l ^ n-l n-X 

= y[A(k)Xx(k)}2 + y[Ab - A(k)b(k) - i(k)\2
 + ya

2v2(k) 
k=0 k=Q k=0 

™-l _ n - l 

+ 2y[A(k)xx(k)}[A(k)b(k) + b(k) - Ab) + 2y[-A(k)xl(k)][axu(k)} 
k=0 k=o 

n-l 

+ 2 y[Ab - A(k)b(k) - b(k)][oxu(k)} = Sx + S2 + S3 + SX2 + SX3 + S23. (5.97) 
fc=0 

Since A(k) -> A, l(k) -> b a.s., as k -»• oo, and YJtZl x\(k) = 0(n) a.s., it follows 

that 

| 5 i |+ |521+ |5i21 = o(n), a.s. (5.98) 

On the other hand, by the estimates in [54], we have 

SX3 = 0(s\+£), S23 = 0(S\+E), a.s. 

for any 0 < £ < \, and therefore, 

\SX3\ + \S23\=o(n), a.s. (5.99) 

By (5.97)-(5.99), it follows that 

1 n—l 

lim a2(nh) = lim — y o2v2(k) = a2, a.s. (5.100) 
n^°° n^°° nEu.(kn) ^ 

which completes the proof. • 

It is also possible to apply certain well known discrete time parameter estimation 

algorithms (see, e.g., [14]) to (5.94) for estimating ai and bi. 

The estimation algorithm given above will potentially remove certain obstacles 

in applying the stochastic control framework developed in this Chapter as well as in 
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Chapters 2-3 to power adjustment with unknown channel parameters. Notably, using 

the above algorithm one can obtain an adaptive version of the suboptimal control law 

of Section 5.5 in a straightforward way, and the adaptive control law is derived by 

solving (5.64)-(5.66) and (5.72)-(5.74) when the parameters ai,bi,Oi are replaced by 

their on-line estimates. 
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C H A P T E R 6 

LQG Optimization for Large-Scale 

Cost-Coupled Systems 

6.1. Introduction 

In this Chapter, we investigate optimization of large-scale linear quadratic Gauss

ian (LQG) control systems. We intend to develop implementationally simple control 

scheme for such large-scale systems. At the present stage, the system dynamics under 

consideration are not in their most general form; instead, the dynamics proposed are 

those for describing the dynamical behaviour of many agents (also to be equivalently 

called individuals or players) evolving in a similar manner. Roughly speaking, these 

agents have independent dynamics when state regulation is not included. The opti

mization of such systems is based on quadratic costs including two cases: the global 

cost and the individual cost. 

To facilitate our exposition, the global cost based optimization shall be termed 

as the (centralize) optimal control and the individual cost based optimization shall be 

called the dynamic LQG game (solution), or simply LQG game (solution). 

For the LQG system we first examine the optimal control problem and analyze 

the resulting algebraic Riccati equation as well as the feedback control. 

Subsequently, we turn to the LQG game; in this part we analyze the resulting 

£-Nash equilibrium properties for the control law. In this case, each agent is weakly 



6.1 INTRODUCTION 

coupled with the other agents in the sense that it is only connected to the other 

agents through its cost function. We view this to be the characteristic property of a 

class of problems we call cost coupled (distributed) control problems. The connection 

to economic problems is immediately evident. 

Due to the particular structure of the individual cost, the mass formed by all other 

agents imposes its impact on a given agent as a nearly deterministic quantity; for any 

known mass influence, any given individual will seek its best way to respond to the 

mass so that its cost is minimized. In a practical situation, the mass influence cannot 

be assumed known a priori; this, however, does not present any difficulty for applying 

the individual-mass interplay methodology. In this noncooperative game setup, by 

assuming that all agents are at the same level of rationality and adopting basically 

the same mode of reasoning for any presumed known mass behaviour, one can find 

the natural response of all individuals, which in turn determine a corresponding mass 

behaviour. Thus a meaningful solution to the underlying problem is to find a fixed 

point for this procedure, i.e., find a mass behaviour so that the optimal response in a 

certain sense will exactly generate the aforementioned mass behaviour. We note that 

this LQG control problem is closely related to the stochastic power control problem. 

The framework presented in this part is particularly suitable for optimization of large-

scale systems where individuals in the system seek to optimize for their own return 

and where, moreover, it is more difficult to achieve global optimality through close 

coordination between all agents. The general methodology of noncooperative games 

provides a feasible methodology for building simple optimization rules which under 

appropriate conditions can lead to stable population behaviour. 

At the end of this Chapter we give a general analysis comparing the centralized 

cost based optimal control with the individual cost based (decentralized) control. 
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6.2 DYNAMICALLY INDEPENDENT AND COST-COUPLED SYSTEMS 

6.2. Dynamically Independent and Cost-Coupled Systems 

Suppose in a linear stochastic system, the state evolution of each of the n indi

viduals or agents is described by 

dzx — (azi + bux)dt + adwi, 1 < i < n, t>0, (6.1) 

where {wi, 1 < i < n} denotes n independent standard scalar Wiener processes. The 

initial state zx(0) are mutually independent and are also independent of {wi} 1 < z < 

n} . In addition, i^z^O)!2 < oo and b ^ 0. For a given individual in the system, apart 

from the control input, its state is not subject to direct influence from the other 

individuals. In the following we will investigate the behaviour of the agents when 

they interact with each other through coupling costs. Thus we term this class of 

models as dynamically independent and cost-coupled systems. Concerning the costs, 

we will consider two scenarios, i.e., a global cost function and individual costs. 

In the first scenario, i.e., the centralized optimal control problem, the n individ

uals interact with each other through a global cost function 

n 

J = J(ux,vx;u2,v2;--- ;un,vn) = y Jx(ux, vt) 
i=l 

poo ,l 

= E y e-pt[(zt - vt)
2 + ru2]dt; (6.2) 

Jo i=i 

and in particular we set in the cost-coupled case Vi = l{^Yl7
k^izk + v)- Here we 

assume p, r, 7,77 > 0. 

In the second scenario, i.e., the dynamic LQG game problem, each agent is as

signed a cost function J* defined as above, and we study the large system behaviour 

in the dynamic noncooperative game framework. 

In the rest of this Section we give a production planning example for illustration 

of the cost Ji in (6.2), and we will derive a link term v? which is different from but 

closely resembles vx = 7 ^ Y^l^i zk+v)- Most of the analysis in this Chapter is related 
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6.2 DYNAMICALLY INDEPENDENT AND COST-COUPLED SYSTEMS 

to the case with the link term vt = ^(^ Y^.+x- Zk + n); and we reserve the phrase "cost-

coupled case" only for this vx. The methodology of this Chapter can be applied to 

the production planning example without difficulty. 

We stress that throughout this Chapter z, is described by the dynamics (6.1). 

6.2.1. A Product ion Planning Example. The example below is motivated 

by the work of Basar and Ho [9] where a quadratic nonzero-sum game was considered 

for a static duopoly model. In their work it was assumed that the price of the 

commodity decreases linearly as the overall production level of the two firms increases. 

We will study here a dynamic model consisting of many players. 

Consider n firms Fj, 1 < z < n, supplying the same product to the market. First, 

let Xi be the production level of firm Fi and suppose xx is subject to adjustment by 

the following model: 

dxi = Uidt + odwi, t>0, (6.3) 

which is a special form of (6.1). Here W; denotes the action of increasing or decreasing 

the production level X{, and odwi denotes uncertainty in the change of X;. 

Second, by generalizing the afhne linear price model of [9] to the case of many 

players, we assume the price of the product is given by 

1 n 

= V-l(-J2x^> (6-4) P n 
i = i 

where rj, 7 > 0. In (6.4) the overall production level Y%=x
 xi *s scaled by the factor -

instead of a straight summation. A justification for doing so is that we are modelling 

an expanding market in which an increasing number of firms are allowed to compete 

together to serve an increasing number of consumers in large geographical areas. 

So - Y^=i xi *s a reasonable choice to measure the average production level in an 

expanding market. Following [9], 7 may be intepreted as the "slope of the demand 

curve". 
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6.3 THE GLOBAL COST BASED OPTIMAL CONTROL 

Third, we assume that the firm Fi adjusts its production level X; by referring to 

the current price of the product. When the price goes up, if the firm increases X; too 

rapidly, it may creat excessive inventory load. In the case of a price drop, if the firm 

overly decreases Xj, it may face high risk of supply shortage in the near future. Hence 

it is critical to have an appropriate planning for the production level in order to be 

in a better position with respect to profit-making. In the following we take a mild 

adjustment rate for the production level by seeking 

1 n 

x I ^ p = ^ - 7 ( - V 4 (6-5) n *—' 
i=l 

where (3 > 0 is a constant. Based on (6.5) we write a penalty term 

{xx ~0[rj-i{-y xx)}}2 t (Xl - v°)2. (6.6) 
n 

1 = 1 

On the other hand, in the adjustment of Xi the control Ui corresponds to actions of 

shutting down or restarting production lines, or even the construction of new ones. 

Each of these actions will incurr certain costs to the firm; for simplicty we denote the 

instantaneous cost of the adjustment by ru2, where r > 0. We now write the infinite 

horizon discounted cost for the firm Fi as follows: 

poo 

Jx(to,v°) = E / e~pt[(xi - v°)2 + ru2]dt (6.7) 

Jo 

where p > 0 and we use the supscript in Jf to indicate that the associated dynamics 

is (6.3). Here obviously v° = • • • = v°n. Notice that v°{ = 0[rj - 7 ^ £"= i xt)] and 

vi = 7 (1 Y^kjki zk + v) share the common feature of taking an average over a mass. 

In this production planning example, each firm has its individual dynamics and 

all the firms interact with each other through the market and their cost function. 

6.3. The Global Cost Based Optimal Control 

Assuming complete information for the system state, we determine the optimal 

control law minimizing the cost function (6.2) with v{ = 7 ( ^ X ^ i 2 f c + 7?)> subject 
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6.3 THE GLOBAL COST BASED OPTIMAL CONTROL 

to the dynamics (6.1). Writing the optimal cost v associated with (6.2) in the form 

v(z) — zTPz + 2sTz + so, and invoking the standard results of LQG control (see, e.g., 

[52, 10, 11]), we have 

b2 

2 ( a - ^ ) P - - P 2 + Q = 0, 
2 r 

k2 n fn - 1 2 st-, 
ps = as Ps + ( 7 77 - 777)11, 

r n 

(6.8) 

,ir 
b2 

2^2 ps0 = sTs + a trP + 717 77 
r 

where Q, P £ R n x n . Q is seen to have the form below 

(6.9) 

/ 

Q 

a 0 
(3 a 

0 
0 

a 

\ 

(6.10) 

where a = 1 + (n
 2 , 0 = 

\ 0 0 ••• « y 

.2^ _|_ [n- )f w]1[c\i results in P taking the form 

/ 

P = 

p q 

q p 

\ 

(6.11) 

The eigenvalues of Q are give by Ai = a + (n — 1)0 = [1 — ^ ]2 , A2 = A3 = 

. . . = An = a — / ? = ( 1 + 2 ) 2 . In the following we consider two cases. 

Case 1: 7 > 0 is chosen such that Ai > 0. Then clearly Q > 0 (i.e., strictly 

positive definite) and the pair [(a—f ) / n , Q*] is observable, so that the Riccati equation 

(6.8) has a unique solution P > 0. 

Case 2: 7 > 0 is chosen such that Ai = 0. In this case the solution P to (6.8) 

is only positive semidefinite. Indeed, using an orthogonal transform T such that 
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6.3 THE GLOBAL COST BASED OPTIMAL CONTROL 

TTQT = Diag(At) = AQ, from (6.8) we obtain 

2(a - ^)TTPT - -(TTPT)2 + AQ = 0, 
2 r 

Obviously, to the above equation there exists a unique positive semidefinite solution 

TTPT of rank n — 1. So that there exists a unique positve semidefinite solution P of 

rank n — 1 to the equation (6.8). 

Substituting P into (6.8) and denoting a = a — 2,b=-jf, we get the following 

equations 

2ap-b2[p2 + (n-l)q2} + a = 0, (6.12) 

2aq-b2[2pq+(n-2)q2]+P = 0, (6.13) 

which further give 

b2(p-q)2-2a(p-q)-(a-0) = 0. (6.14) 

Under the positive semidefinite condition of P (including both case 1 and 2), solving 

(6.12)-(6.14) yields 

a+y/a2 + a2(a-0) \fa2 + b2(a - 0) + nb2(3 - ^a2 + b2(a - (3) 
P= =2 1 =2 ' (6-15) 

a nb 

J a2 + b2(a-0) + nb20 - J a2 + b2(a- 0) 
q=- T2 (6.16) 

nb 

Sumarizing the above analysis we state the following proposition: 

Proposi t ion 6.1. There exists a unique solution P > 0 to (6.8), where Q is 

defined by (6.10), and P is given by (6.11), (6.15), (6.16). If Ai = [1 - {-~^]2 > 0, 

then P > 0; if Xx = 0, P > 0 is of rank n - l . • 

6.3.1. The Optimal Control and its Asymptot ic Properties: the Indi

vidual and the Collective. By well known results in LQG optimal control, the 
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6.4 THE LINEAR TRACKING PROBLEM 

feedback control for the z-th player is determined as 

b b b b ^ b 
Ui = —(Pz)i sx = —pzx - -q) zk Si. 

k^i 

For large n, we have the expressions 

(6.17) 

p(n) = 

sx(n) = 

a+ \/a2 + b2 

+ o(l), q(n) 

-2 
a2 + ( l - 7 ) 2 6 - \]a2 + b 

nb 
+ o(~), 

n 

777(7 - 1) 

2 ^ a2 + (1 l?b2 

- fo( l ) , i = 1 ,2 , - - ,n, 

where we use p(n), q(n), and sx(n) to indicate their explicit dependence on n. 

The main feature of the control Ui is characterized by the first two terms in the 

far right side of (6.17). The first term —-pzi contains information on the state of 

the z-th individual itself. Noticing the asymptotic property of q, in the second term 

— bq /~2kjLi zk an averaging takes place. This averaged quantity measures the collective 

effect of all the other agents. 

Assuming the initial state z | t = 0 is always 0, then the limit average cost incurred 

by each agent is given as 

lim — 
n—»oo n 

lim 
s0(n) 2 2 

TV 
n—*oo n 

1 - 5 ( 7 - 1 ) 
T 2 X 

(f + V^ + U - T W 
+ 

r2^ 
o2(a+ ya2 + b 

pV 

(6.18) 

6.4. The Linear Tracking Problem 

In this Chapter, one of our main interests is in the large population behaviour 

when each agent pursues its optimization strategy based on its individual cost. With 

the above particular set of individual costs associated with the population, the essence 

of an individual's participation in the play is to adjust its state process so that it can 

follow the average effect of the mass in a certain sense. We seek to develop simplified 

control strategies; in doing so, a major step in our analysis will be to construct a 
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6.4 THE LINEAR TRACKING PROBLEM 

certain deterministic approximation of the average effect which a given player receives 

from the mass. 

To begin with, for large n, assume z*_t- = j(^ Y^k^Zk + rf) in Section 6.2 is ap

proximated by a deterministic continuous function z*(t). Now assuming z* is known, 

we construct the individual cost for the z-th player as follows: 

poo 

Ji(ui, z*) = E e-pt{[Zl - z*(t)}2 + ru2}ds, (6.19) 
Jo 

which can be regarded as the z-th component of the global cost (6.2) with vx(t) — z*(t). 

We note that for large n, it is reasonable to use a single z*(t) to approximate all 

zlj, 1 < i < n. By use of such a deterministic function we have a natural splitting of 

the centralized cost such that the z-th player's cost is isolated from direct interaction 

with the other players. 

Before we develop the approximation technique for individual cost based opti

mization problems, we first examine a general tracking problem where we consider 

bounded z*. For the tracking problem itself, the boundedness condition on z* can 

be relaxed, but we shall not do so since the results obtained here is sufficient for the 

individual mass behaviour analysis in the following Sections of this Chapter. 

In the following for two functions <px(t), tp2(t) > 0, both defined on [0, oo), <px(t) = 

o((p2(t)) means lim^oo ^ j = 0, and ipx(t) = 0(1) means supt>0 \<p(t)\ < oo. 

Let n be the positive solution to the algebraic Riccati equation 

b2 

pU = 2aU n 2 + 1. (6.20) 
r 

It is well known that a — ^ — 2 < 0 , or equivalently, — a + ^ + ^ > 0 . Denote 

b2 b2 

/31 = - a + - n , 02 = -a+-U + p. (6.21) 
r r 

It is obvious that 02 > 0 since - a + ^ I 1 + f > 0 . 

We have the following proposition. 
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6.4 THE LINEAR TRACKING PROBLEM 

Proposi t ion 6.2. Suppose i) the initial condition zx\i=o has finite second order 

moment, z* <E C6[0,oo) = {x <E C[0,oo), sup ( e [ 0 o o ) \x(t)\ < oo}; ii) II > 0 is the 

solution to the Riccati equation (6.20) and j3x = -a + yll > 0; and iii) s € Cb[0, oo) 

is determined by the following differential equation 

ps = ^ + as--Ils-z*, (6.22) 
dt r 

Then Ui = — b(U.Zi + s) is an optimal control minimizing Ji(ui, z*), for all Ui adapted 

to a(wi(r),r < t). D 

Before proving the proposition, we first have a brief discussion about the as

sumptions introduced above. For minimization of Ji, the admissible control set can 

be taken as Ui = {ux\ui adapted to a(wi(r),r < t), and J0°°e_pf(z2 + u2)dt < oo}, 

where the process z, is subject to the control Mj. In fact, Ui is nonempty due to con

trollability of (6.1); Condition i) ensures that Ji has a finite minimum with respect 

to Ui adapted to o(wi(s),s < i), and this minimum is attained in Ui. Condition ii) 

is needed in a technical step of the proof to establish an auxiliary equality; it means 

that the resulting closed-loop system has a stable pole. Condition ii) will also be used 

later for asymptotic analysis in the large population game context. In Condition iii) 

instead of an initial condition s\t=o, only a boundedness condition for s is specified. 

It turns out this boundedness condition can uniquely determine s on [0, oo). This 

point will be illustrated after the proof of the proposition. 

Proof of Proposit ion 6.2. The proof will be done following an algebraic ap

proach as in [10], but in the current infinite horizon case, we need to estimate the 

growth rate of the stochastic processes involved. First we define the auxiliary process 

y with initial condition z/0 = Zi\t=o as follows: 

dy = {ay + b[—(Uy + s)]}dt + dw{. (6.23) 

For any Ui £UX, the resulting state evolution of zx is described by 

dzi — (azi + bux)dt + odwi. 
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6.4 THE LINEAR TRACKING PROBLEM 

Denote Ui = —b(Uzi + s) + u and zt — y = z. Then it is obvious 

b2 

dz=(a U)zdt + budt, z\t=o = 0. (6.24) 
r 

Since E f0°° e~pt[z2 + u2]dt < oo, it follows that 

poo 

E / e~pttfdt < oo. (6.25) 
Jo 

Now the cost Ji(ui: z*) can be written as 

poo L2 

Jx(ux,z*)=E e-pt[(y - z*)2 + -(Uy + s)2]dt (^ Ix) 
Jo r 

pOO L 

+ E / e-pt[? + r(u - -Ul)2]dt (= 72) 

pOO L 

+ 2 £ ; / e-pt[z'(zy-z*)-6(nzy + 5)(77--n2 r)]^ (= 273). (6.26) 
Jo r 

For T > 0, using Ito's formula and taking expectation we get 

Ee-pTz(Uy + s){T) = E f e-pt{-p7(Uy + s) + [(a - —U)z + bu](Uy + s) 
Jo r 

L 2 L2 7,2 

+ z[U(a U)y Us + (p-a + —R> + z*]}dt (6.27) 
r r r 

fT 

= E e-ptK(z,u,y,s,z*)dt. (6.28) 
./O 

It can be verified that Ey2 = 0(1) by Condition ii); and moreover, since (3X > 0 it 

follows that 

Ez?< f e-2Mt-T)b2Eu2
Tdr< f b2Eu2

Tdr = f' b^e^Eu^dT = o(ept), 
Jo Jo Jo 

where we get the estimate o(ept) by the fact (6.25), and therefore Ee~p7"z(Yiy + 

s)(T) —> 0, as T —»• oo. Taking limit on both sides of (6.27) gives 

poo 

E I e~ptK(z, u, y, s, z*)dt = 0. (6.29) 
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6.4 THE LINEAR TRACKING PROBLEM 

Denoting the integrand in I3 of (6.26) as 7(z, u, y, s, z*), then it is straightforward to 

verify that 7(z, u, y, s, z*) + K(z, u, y, s, z*) is identical to zero, and consequently, 

Mm, z*) = h +12. (6.30) 

Taking into account the initial condition and dynamics of z, it follows that Ui = 

— ̂ (Hzi + s) minimizes Ji and the proof is complete. D 

The optimal cost for the deterministic tracking problem is gived as follows. 

Proposit ion 6.3. Assume Assumptions i)—iii) in Proposition 6.2 hold and q £ 

Cb[0, oo) is a solution to the equation 

pq=^--s2
 + (z*)2 + *2n, (6.31) 

dt r 

Then the cost for the optimal control Ui = —b(Ilzi + s) is given by Jx(ui,z*) = 

n £ z 2 ( 0 ) + 2s(0)Ezx(0) + q(0), where Zj(0) is the initial state. 

PROOF. First, we write the closed-loop system for the control Ui as 

b2 b2 

dzx = [(a U)zi s2]dt + odwx. (6.32) 

For any T > 0, by (6.32) and Ito's formula it follows that 

E [ d[e-pt(Uz2 + 2szl + q)} 
Jo 

=E f (-p)e-pt(Uz2 + 2szx + q)dt + E f e~pt^dt 
Jo Jo 

where 

(6.33) 

A b2 b2 b2 

$ =2nzJ(a n)zi s2] + Uo2 + 2zx(ps - as + —Us + z*) 
r r r 

+ 2s[(a - -U)zx - -s2} + [pq + -s2 - (z*)2 - o2U]. 
r r r 

Then it can be verified that 

b2 

-p(Uz2 + 2szi + q) + $ = -(z{ - z*)2 - -(Uzx + s)2 (6.34) 
r 
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By (6.33) and (6.34) it follows that 

poo ,2 

J(ui, z*) = E [(zi - z*)2 + -(Uzi + s)2]dt 
Jo r 

= - E lim / d[e~pt(Uz2 + 2szx + q)] = UEz2(Q) + 2s(0)Ezx{0) + q(0) (6.35) 
T^°°7o 

since limT^oo Ee~pT(Uz2 + 2sz; + q)(T) = 0 by the growth condition of Ez2, s and 

q. This completes the proof. D 

Now we show how s can be uniquely determined subject to the boundedness 

condition specified in Proposition 6.2, i.e., z*(t) = C&[0, oo), s(t) — Cb[0, oo). With 

an initial condition So and recalling (6.22), s can be expressed as 

s(t) = soe
02t + eP2t f e-p2Tz*(r)dT. (6.36) 

Jo 

Since 02 > 0, the integral J0°° e~f32Tz*(r)dr exists and is finite. We take initial condi

tion s0 — — JQ00 e_/32Tz*(r)dr, so that 

e - A V ( r ) d r G a [ 0 , o o ) ) 

and any other initial condition will yield a solution which is not in the set Cf,[0, oo) 

and is excluded for our problem. 

6.5. Competitive Behaviour and Mass Behaviour 

We now return to the system (6.1) when each agent is assigned an individual 

cost Ji(ui, vx) which is the z-th component of J defined by (6.2). As a first step, after 

applying the optimal tracking control law 

b, 
ux = —(Uzi + s), (6.37) 

with respect to a deterministic function z*, where n and s are determined by (6.20) 

and (6.22), the closed loop for the z-th player is 

b2 b2 

dzi = (a U)zidt sdt + odwx. (6.38) 
r r / 
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6.5 COMPETITIVE BEHAVIOUR AND MASS BEHAVIOUR 

Denoting ~Zi(t) = Ezi(t) and taking expectation on both sides of (6.38) yields 

dz b2 b2 

^ = (a - - I I ) * - -s, (6.39) 
dt r r 

where the initial condition is ~zx\t=o = Ezi(0). 

We further define the population average of means (simply called population 

mean) as z = ^ /~2^=x ̂ j> then it is clear that z satisfies the same equation as z~i, i.e., 

fc b2 b2 

— = (a--Tl)z--s, (6.40) 
dt r r 

where the initial condition is given by z| t=o = - Y^=x Ezi(0). 

Here one naturally comes up with the important questions how the deterministic 

process z* is chosen when it is applied to system (6.1) to approximate the influence 

of all other players on the given player, and in what way it captures the dynamic 

behaviour of the collection of many individuals. Since we wish to have z*(t) « z*_z = 

l(n Z^k=a zk + v), f° r large n it is reasonable to express z* in terms of the population 

mean z as 

z*(t) = 1(z(t) + rj), (6.41) 

whenever an equality for all time t is possible. We note that z* defined above is 

used to approximate z* = l(^ YJl^x
 zk + v) i n the context of a fixed large n. As n 

increases, accuracy of this approximation is expected to improve. Subject to such an 

equality constraint, a dynamic interaction is built up between the individual and the 

mass. Specifically, based on the population mean z a tracking level z* is determined 

by the rule (6.41) which is then used to compute the individual control law; in turn 

the individual control will lead to a corresponding mass behaviour. In the following 

we will address certain stability issues associated with such interactions. 
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6.5 COMPETITIVE BEHAVIOUR AND MASS BEHAVIOUR 

Combining (6.22), (6.40) and (6.41) together and setting the derivatives as zero, 

we write a set of steady state equations as follows 

(6.42) 

Example 6.1. a = 1, b = 1, o = 0.3, p = 0.5, 7 = 0.6, r = 0.1, 77 = 0.25. We get 

n = 0.4, ( I M ) z^ , Soo) = (0.333333,0.35, -0 .1) . 

D 

We make the following key assumptions: 

(H6.1) 0X > 0, and ^ < 1, where M = ^ , and (3X,(32 are defined by (6.21). • 

(H6.2) 2j(0), 1 < z < n, are mutually independent and Ez2(0) < C for C indepen

dent of n. • 

Notice that the condition 0X > 0 has been used in Proposition 6.2. It can be 

verified that (H6.1) holds for Example 6.1. Under Assumption (H6.1) , (6.42) is a 

nonsingular linear equation and has a unique solution (zoo, z^ , SQO). 

Eliminating s in (6.40) by (6.22) and (6.41), we get the equation for the population 

mean 

%-la-$m,+ *f *»«*» + !%. (,43) 

For bounded z on [0, 00), the integral in (6.43) is well defined since (32 > 0. 

Theorem 6.1. Under Assumption (H6.1) , the integral-differential equation (6.43) 

subject to any initial condition Zo and the terminal condition lim t^00z(/;) = z ^ ad

mits a unique solution. 

PROOF. By (6.42) we have 

, & 2 s _ 627Zoo b2
1V . fc2 b2 , x 

(a - - n Zoo + — ^ + —Jr1 = (a - -U zTO - - S o o = 0. 6.44 
r r\32 rf32 r r 
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Taking z = z - Zoo we rewrite (6.43) in the equivalent form 

dt r r Jt r r(32 T02 
roo 

= -0xz + M I eMt-T)z(r)dT. (6.45) eMt-r)-

't 
h 2 . 

where (3X = -a + yU, (32 = -a + yU + p, M = ^ and z(t) satisfies the terminal 

condition Hindoo ^(c) = 0. 

We write z = e_/3 l tz and use a change of variable to obtain from (6.45) 

d~ f°° 
-f = M e^+02){t-T)z(r)dT, (6.46) 

where z;(t) satisfies the growth condition z(t) = o(e/3lt). It is easily seen that the 

initial condition is z(0) = z(0) — Zoo- We write (6.46) in the equivalent form of a 

double integral equation 

pt poo 

z(t) = 2(0) + M I j ei/3l+(32){s-T)z(T)dTds. (6.47) 

For analyzing existence and uniqueness of the solution to (6.47) we introduce the func

tion class C — {x E C[0, oo), limt^ooe_/3l*a:(i) = 0}, and set ||x|| = supt€[0iOO) e_ / 3 l t |x(i) | . 

Then it is straightforward to verify that under the norm || • ||, C is a Banach space. 

Define the map 

pt poo 

F(x) = 2(0) - Zoo + M / / e(01+02){s-T)x(T)dTds, (6.48) 

for x 6 C. It is obvious F(x) G C[0, oo) for x € C. We verify that we also have 

limt^oo e~l3ltF(x) = 0. For any fixed e > 0 and x e C, there exists T > 0 such that 

119 



6.5 COMPETITIVE BEHAVIOUR AND MASS BEHAVIOUR 

e-0lt\x(t)\ < £ for all t > T. We denote c = sup t e [ 0 o o ) e~Plt\x(t)\. For t>T,we have 

/

t poo 

/ e^+W-^xWdrdsl le 
'0 Js 

rT roo rt roo pi poo pt poo 
= \e~^ / e^+(3^s-T)x(r)dTds + e-^ / e ( / 3 l + ^ ) ( s - T ) x(r )drds | 

JO ^s JT JS 
pT poo pt poo 

<e-^ / e^+^e-^e-^lx^drds + e-^1 / / e ^ + ^ ^ e e ^ d r d s 
Jo Js J T JS 

pT poo pt poo 

<e~^ / e{0l+fi2)se-02TcdTds + e-0lt / e^+W'-^ee^drds 
Jo Js JT JS 

< £ £ ^ 2 ^ + - £ - ( 1 - e*<T-*>). (6.49) 
P i P 2 P1P2 

It follows from (6.48)-(6.49) that for sufficiently large t we have e~0lt\F(x)\ < | g j . 

Since £ > 0 is arbitrary, we have lim t_00 e~PltF(x) = 0 and hence F(x) G C. Next we 

establish a contractive property for F. For xx,x2 G C, we have 

pt poo 

\e-^[F(xx) - F(x2)}\ = Mle^ 1 * / / e^+02){s-T)[xx(r) - x2(r)]dTds\ 

pt poo 

=M\e~0lt / e{^+02){s-T)e^Te-^T[xx(T)-x2(T)]drds\ 

pt poo 

<M\\xx - x2\\ • e~^ / / e^+02)[s-T)e^Tdrds 

M / l - e - / 3 l t ) | | x i - x 2 | | , (6.50) 
0X02 

and therefore 

M 
| | F ( x i ) - F ( x 2 ) | | < - T - r | | x i - x 2 | | . (6.51) 

P1P2 

Since -Mr < 1, F is a contraction on C so that (6.48) has a unique solution in 

C. Hence the integral-differential equation (6.43) has a unique solution satisfying 

limt_>oo^(*) = ^00 • This completes the proof. • 

6.5.1. A n Analytic Solution to the Equation System. We sketch com

puting analytic expressions for z and s as follows: The calculation will first be stated 

in terms of z and s, where z(t) = ~z(i) — z ^ and \s(i) = s(t) — s^. 
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Taking differentiation on both sides of (6.45) gives 

d2z d'z r°° 
= -0i-r+ 02M / em~T)z(T)dT - Mz(t) 

dt Jt dt2 

which combined again with (6.45) yields 

g - p f + ("-AA>*~=°- (6.52) 

The characteristic equation of (6.52) is A2 — pA + (M — 0X02) with two distinct egein-

values: 

p - y/p2 + 4(0X02 - M) ^ p + V P 2 + 4(0X02 - M) ^ n 
Ax — < U, A2 — > U. 

Recalling the growth condition for z (i.e., we are interested only in bounded z) and 

hence for 1, we have 

z = J(0)eAlt = (z(0) - z^e^, (6.53) 

and it is readily verified that z is a solution to (6.45). 

On the other hand, from (6.22) and (6.41) we get 

ds 
-n = 02s + jz. (6.54) 
dt 

Assuming initial condition s~(0) = s(0) — Soo, we obtain 

s(t) = s~(0)ep2t + ep2t [ e-^2T
7[z(0) - z^e^dr 

Jo 
poo 

= s(0)e/32t + eP2t I e-A r7[z(0) - z^e^dr 
Jo 

/

oo 

e"/32T7[z(0) - 2oo]eAlTdr (6.55) 

Setting the initial condition in (6.55) as 

poo 

s(0) = - / e-/?2T
7[z(0) - Zoo]eAirdr, 

Jo 
(6.56) 
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we get 

s(t) = —L-(zoo-z(0))e^. (6.57) 
P2 — M 

Notice that any initial condition s| t=0 other than (6.56) yields s and s with a growth 

rate of e02t which is excluded here. 

We summarize the above calculation to get the following proposition: 

Proposition 6.4. If (H6.1) holds, the unique asymptotically convergent solution 

(z, s) determined by (6.22), (6.40) and (6.41), is given by 

^ ) = 200 + (z(0)-z0 0)eA l t , 

s(t) = Soo + a
 1

 x (̂ oo - z(0))eXlt, 
P2 — M 

where 02 = -a + TU + p, and A: =
 pWp2^2~^ < 0. D 

6.5.2. The Decentralized £-Nash Equilibrium. In the current context we 

give the definition of Nash equilibrium. 

Definition 6.1. [6] A set of controls uk G Uk, 1 < k < n, for n players where 

Uk is a specified class of measurable functions of the state processes zx(-), • • • , zn(-), 

such that the resulting vk is adapted to some subfiltration of the underlying Brownian 

motion, is called a Nash equilibrium with respect to the costs Jk{uk,vk), 1 < k < n, 

if for any fixed 1 < z < n, we have 

Ji(Ui,Vi(uX,--- ,Ui-X,Ui+X • • • ,Un)) < Ji(u'i,Vi(Ui,--- ,Ui_X,Ui+X,- •• ,un)), 

when any alternative control u\ € Ui is applied by the z-th player. • 

Definition 6.2. A set of controls uk G Uk, 1 < k < n, for n players is called an 

£-Nash equilibrium with respect to the costs Jk, 1 < k < n, if there exists £ > 0 such 

that for any fixed 1 < z < n, we have 

Ji(Ui,Vi(uX,--- ,Ui-X,Ui+X--- ,Un)) < J i (z i - ,7J i (zZi , - •• , W j _ i , U i + 1 , - - - ,un)) +£, 
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when any alternative control u\ G Uk is applied by the z-th player. • 

In the following we use Jx(ui,Vi(ux, • • • ,Ui-X,--- ,ui+x,--- ,un)) to denote the 

individual cost with respect to the coupled reference trajectory ^ = 7(^ Y^Jl^i zk(uk) + 

-q) for the z-th player when player k applies control uk, 1 < k < n, and n is the 

population size. Let 

Ji(Ui,Vi(u°ir-- , u ? _ i , u ? + i " - >Wn)) 

A f°° 1 U 

=E / e-pt{[zx(ux) - 7 ( - £ zk(u°k) + T7)]2 + ru2}dt, (6.58) 

where 2fc(zz°) = Zkfa^z*, zk)). Here we use u° to denote the optimal tracking based 

control law for the z-th player, i.e., 

u°i=--(Uzi + s), (6.59) 
r 

where s and the associated z* are derived from (6.22), (6.40) and (6.41). In particular, 

Jiiu^Viiu0!,--- , W ? _ i , W ? + i " - ,U°n)) = Ji(M t,7Ji(w°, ••• , U ? _ i , W ? + l - " ' U n ) ) L , = u ° -

Notice that the initial condition of z is take as ^ £Zfc=i ^zfc(0), which further 

induces the initial condition of z*(t) = ~i(z(t) + rf). 

Denote o\ = supj<i<n7i'[zj(0) - Ezi(0)]2, a0 > 0. In the case all Zj(0) become 

deterministic, we simply have OQ — 0. 

Lemma 6.1. Under (H6.1)- (H6.2) , for z* determined by (6.22), (6.40) and 

(6.41), we have 

r°° 1 n rr2 -L /T2 1 

Jo nf^ n n2 

where the state zk(u°k) of player k, k ^ i, is generated by the optimal tracking based 

control law u\ given by (6.59) for the fc-th player. 
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PROOF. By equations (6.39), (6.40) and their initial conditions z"j|f=0 = Ezi(0), 

z\t=o = £ E L i Ezi(0), it follows that 

1 n 1 n 1 n 

z* ~ 7(~ Y\ zk + V) = 7(~ Y] Ezk + 77) - 7 ( - V zk + 77) 
k^i k=l k^i 

n 

^1-Ezl-
1-y(zk-Ezk), (6.60) 

n n ^—' 
k+i 

where we simply write zk(u
Q

k) as zk. Writing zn<i = £ X)L^(zfc ~ Ezk), we have 

n 

dznti = -(3xzndt + - y dwk, t > 0. (6.61) 
7Z *-^ 

k^i 

By directly solving (6.61) and recalling Assumptions (H6.1)-(H6.2), it follows that 

there exists a constant Cx independent of z and n such that sup t>0 Ez^^t) < Cx •
a
 n

a° 

and moreover, sup t>0 |7?Zj(£)| < Cx. Consequently, from (6.60) we get 

r2 I JI 

^•-7(;E*+')i!=°(^+^ (6-62) 

k^i 

and the lemma follows. D 

Theorem 6.2. Under (H6.1)-(H6.2), we have 

|4(«?,7(-I>(t*2) + rD) - Ji(u°,z*)\ = 0(^±=p + h (6.63) 
71 f—•' V n n 

where Jx(u^,z*) is the individual cost with respect to z*, and zt° is given by (6.59). D 

The proof is postponed until after Theorem 6.3. 

Theorem 6.3. Under (H6.1)-(H6.2), the set of controls u\, 1 < 1\ < n, for the 

n players is an e-Nash equilibrium with respect to the costs Ji(ui, 7(^ Y^k+i zk{uk) + 
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v)), 1 < i < n, with e = 0 ( 2 ^= a 4- £), i.e., for any z, we have 

•*(«?' 7(^ E **("2) + r?)) - 0 ( ^ + h (6.64) 
n k+i v « « 

< inf J ^ , 7 ( i V zfc(u°) + 77)) (6.65) 
u; 77 L—' 

n 
k+x 

where u\ is the optimal tracking based control law given by (6.59) for the A;-th player, 

and Ui is any alternative control which depends on (t, zx, • • • , zn). 

PROOF. The inequality (6.66) is obviously true. We prove the inequality (6.65). 

For any full state dependent Ui satisfying 

-, n .. n 

Jx(Ul, 7 ( - E **("*) + *))< •*(«?. 7(- E Zk^k) + V)) (6-67) 
77 *—' n z—' 

k^i k^i 

we can find a fixed constant C independent of n such that 

1 n 

J%(ux,-f(-y Zk(u°k) + 7])) 77, 
k^i 

(6.68) 
poo -1 n 

=E / e-*{[zi(ui)->y(-52zk{u0
k) + v)]2 + ru*}dt<C. 

Jo n k^i 

Here and hereafter in the proof, (zi(ui), ux), (zk(u°k), u°k),k ^ i, denote the correspond

ing state-control pairs. For notational brevity in the following we omit the associated 

control in ZJ(ZZJ), zk(u°k), k ^ i and simply write z i ; zk without causing confusion. 

Since all zk,k ^ i, are fixed after the control u°k is selected, for (ux,zx) satisfying 

(6.68) there exists C > 0 independent of n such that 

poo poo 

E / e~ptz2dt <C, E e-pt(zx - z*(t))2dt < C. (6.69) 
Jo Jo 
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On the other hand we have 

pOO -l n 

E / e-pt{[zx - 7 ( - E *k(u°k) + n)]2 + ru2}dt 
Jo n k+i 

poo -t n 

=E / e-*{[{Zi - z*) + (z* - 7 ( - E zk + V))]2 + m2}dt 

pOO pOO 1 n 

=E / e-pt[(zx - z*)2 + ru2}dt + E / e~pt[z* - 7 ( - Tzk + rj)]2dt 
Jo Jo n Tr* 

pOO i n 

+ 2E / e~pi(zx - z*)[z* - 7 ( - V zk + rj)]dt = Ix + I2 + I3. (6.70) 

Then we have 

Ix = J(ul,z*)>Jx(u
G

i,z*) 

/2 = O(£l±fo + J_} (672) 
n T?/ 

where (6.71) follows from Theorem 6.2 and (6.72) follows from Lemma 6.1. Moreover 

pOO -I n 

|73|<2 / e-pt[E(zx-z*)2}HE[z*-l(-Tzk + v)?V2dt 

pOO poo -1 n 

<2[ e-ptE(zx-z*)2dt}12{ e - ^ - ^ - y z k + rjtfdt}1* 
Jo Jo n u ^ 

= 0 ( ^ = 0 ( ^ + 1 ) = 0 ( ^ + 1). (6,3, 

Hence it follows from the above estimates that there exists c > 0 such that 

ji(Ux,7(1 E**(«*)+*))* J ^ > ^ E Z k « ) + 1 ) ) - c ( ^ r + -)> (674) 
n k^i n k^i v ^ n 

where c is independent of a2 and n. This completes the proof. • 
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In other words, when all the players k = 1,---i - l,i + 1,-• • ,n, retain their 

decentralized controls u°k and the z-th player is allowed to use a full state based 

control Ui, it can reduce its cost at most by 0(q^L + ±). 

Proof of Theorem 6.2. Similar to (6.70) we have 

Mu°M±-J2Zk(u°k) + v)) 
ft 

k^i 
poo -I n 

=E / e-pt{[Zl(u°) - 7 ( - E z^u°k) + v)? + r(u°)2}dt 
Jo n k^i 

poo -. n 

=E / e-pt{[(zx(u°) - z*) + (z* - 7 ( - E **(«*) + V))}2 + r(tz°)2}d* 

poo •• n 

=J,(zz°, z*) + E e~pt[z* - 7 ( - E z^u°k) + V)?dt 
Jo n k?i 

poo •. n 

+ 2E / e - ^ ( z t ( z z ° ) - z * ) [ z * - 7 ( - E ^ ( ^ ) + ^ ) ] ^ Jo n T~f. 
k^i 

=ji(uiz*) + r2 + r3. (6.75) 

Finally, similar to (6.72) and (6.73), we have 

UJ + SI-CX^tp + i), (6.76) 
y/n n ' 

and this completes the proof. • 

6.5.3. The Virtual Agent, Policy Iteration and Attraction to Mass Be

haviour. In this subsection we investigate certain asymptotic properties on the 

interaction between the individual and the mass, and the formulation shall be inter

preted in the large population limit (i.e., an infinite population) context. 

Assume each agent is assigned a cost according to (6.19), i.e., 

poo 

Ji(m, z*) = E e-pt{[Zi - z*(t)}2 + ru2}ds, i > 1. (6.77) 
Jo 
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We now introduce a virtual central agent (or simply virtual agent) (VA) to represent 

the mass effect and use the function z* to describe the behaviour of the virtual agent. 

Here the virtual agent acts as a passive player in the game in the sense that it does 

not have the freedom to change z* by its own will. Instead, after each selection of 

the individual control laws, a new z* will be induced as specified below; subsequently, 

the individual shall consider its optimal policy to respond to this new z*. Thus, the 

interplay between a given individual and the virtual agent may be described in terms 

of a series of asynchronous plays. In the following policy iteration analysis, we take 

the virtual agent as a passive leader and the individual agents as active followers. 

Suppose that there is a priori z*^ G C{,[0, oo) = {x G C[0, oo), sup te[0oo) \x(t)\ < 

oo}, k > 0; then by Proposition 6.2 the optimal control for the z-th agent with respect 

to z*^ is given as 

u(k+i) = _b{Uzi + s{k+i)) ( 6 J 8 ) 

r 

where 

Jcik+V ti1 

(fc-fl) = dS + as{k+x) _ ^(k+l) _ z*(k)^ s ( f c + l ) ( t ) € a [ 0 ) ^y {Q79) 

dt r 

The unique solution s(fc+1' G C{,[0, oo) to (6.79) can be represented by the map 

s(fc+i) _ _ed2t e-02Tz*{k)(r)dT. (6.80) 

Subsequently, by the control law u\ the corresponding population mean is 

described by 

^ - ^ = (a- -n)*<*+1> - - 5 < f c + 1 \ (6.81) 
dt v r ' r v ; 

where the inital condition is z(fc+1^|t=o = ^o f° r all k, and z0 is the initial value of the 

population mean. (6.81) shall be interpreted as the limiting version of (6.40) in the 

infinite population case. 
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Then the virtual agent's state z* corresponding to u\ is determined as 

z*(k+i) = 7(^(fc+i) + ^ ( 6 - 8 2 ) 

which is a recursive version of (6.41). From (6.81)-(6.82) we have 

d~*(k+l) ~U2 
-— = -0lZ«k+V - 2Ls(fc+D + pan. (6.83) 

dt r 

Combining (6.80) and (6.83) gives 

rfz*(/,'+1) 

= -/?iz*(fc+1) + -P-e™ re-^
Tz*{k)(T)dT + pllV, 

T Jt 
(6.84) 

dt 

where the initial condition is z*^1"1 = ZQ for all k. In addition, ZQ = 7(zo + 77). 

For x G Cb[0, 00), define the norm ||x||& = sup ter0oo) |z(i)|-

We now suppose Assumption (H6.1) holds; then (3X > 0. Obviously, for any 

z*(k) g Cb[0,oo) there exists a unique solution z*'fc+1^ to (6.84) which is also in 

C&[0,oo). From (6.84) we induce a map £0 '• Cb[0,00) —> C&[0, 00) such that the 

unique solution can be represented by 

z*(k+l) A CQZ*{k)_ ( 6 _ g 5 ) 

Theorem 6.4. If (H6.1) holds, the map £ 0 is a contraction on Cb[0,oo). 

PROOF. We take z*{k),y*{k) G C6[0,oo) and set 

z*(k+i) = CQZ*(k) ^ ^ 

y*(k+i) = Coy*(k) ^ 8 ? j 

Denote Ai = z*(fc+1) - y*(k+1\ A0 = z*(fc) - y*{k). We have 

^ = - A A i + ^ 2 t [°° e-^A0(r)dT (6.88) 
dt r Jt 
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Since Ai | 4 = 0 = z*(fc+1)| t=0 - y*{k+1)\t=o = zo - 4 = 0, it follows that 

|Ai( t) | = | j * e-Mt-a)!^^* f r c - A r A o ( r ) < i r ] ds\ 

< ^ | | A 0 | | 6 fe-M-W ( He-^dr) ds < ^ - | | A 0 | | 6 , (6.89) 
r Jo \Js ) r0i02 

so that 

l | A i | | 6 < - ^ - | | A o | | 6 (6.90) 
r0i02 

where JQ-*- < 1 by Assumption (H6.1) , and therefore Co is a contraction. • 

By the asynchronous updation of the individual strategies against the virtual 

agent, we induce the mass behaviour by a sequence of functions z*^ = CQZ*^'1"1 — 

CQZ*^. We have the proposition. 

Proposit ion 6.5. Under (H6.1) , limfc_0O z*^ = z* where z* is determined by 

(6.22), (6.40) and (6.41). 

PROOF. This follows from Theorem 6.4. • 

The above proposition reveals certain stability and attraction feature of the evo

lution of the individual and mass behaviour. 

6.6. A Cost Gap between the Centralized Optimal Control 

and Decentralized Tracking 

As shown by the analysis in the foregoing Sections of this Chapter, for the un

derlying large population system the global cost based optimal control (6.17) and the 

individual cost based control (tracking) (6.59) have very different nature, which may 

be further illustrated by means of the resulting costs and the state trajectories in the 

two cases. 

For a comparison of the costs associated with the two different methods, we 

assume the initial state z,(0) of all agents is 0 in the two cases. Let n be the cardinality 

of the population. We scale the global optimal cost (with 0 intial state for all players) 
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A 
v(0) = inf J|2l=0,i<i<n = i n f ( E L i ^)U(o)=o,i<i<n in Section 6.3 by n to get vn(0) 
v(0) 
- ^ , and set v(0) = limn_>Oo7-;n(0). Here TJ(O) may be intepretated as the optimal cost 

incurred per agent with identically 0 intial state. By (6.18), we have 

77(0) = 
2 2 

TV 
T2 

1 -
b ( 7 - i; 

T 2 X 

(f + V
/a2 + (l-7)2^)2J 

+ 

T 2 , 
o2(a+ ya2 + b 

(6.91) 

We now consider the case of the LQG game. In the large population limit, when 

each agent applies the optimal tracking based control law zz° = — b(Uzi + s), let Vi(0) 

be the resulting individual cost, where again we assume the initial state is 0 for all 

agents. Write i w ( 0 ) = Vi(0) for any i since all agents have 0 initial state. 

With s and z* determined from Proposition 6.4, one can get from (6.31) a solution 

q G C;,[0, oo) if and only if the initial condition is given by 

q(0) = {(p2
2-b

2)- + 
2b2

1 

P ( p - A i ) / V / ? i + A2 
(J^-M+ * &\J- < a i \ \ J f Soo (p-2Xx)0

21 (0X + X2)
21 

+ 
Uo2 

(6.92) 

and it is clear zw(0) = q(0) by Proposition 6.3. 

By the fact II = ~-

(6.91) and (6.92) that 

By the fact II = a+vjf+b" and sc Pifer̂  ^ given by (6.42), we derive from 
/3i/32-6 7 

K 0 ) - z w ( 0 ) | = O ( 7
2 ) . 

The gap between 17(0) and Vind(0) is demonstrated in Figure 6.1. 

. 

-

Limrt of Centralized coat p*r mQmr,\. Iirr\ (\//n) 1 
— Optim*l>tv Qmp | 

- — - • ^ ^ 

_ - -

FIGURE 6.1. Top: Individual tracking based cost Vind(0); Middle: Scaled 
global cost T7(0); Bottom: The cost gap \v(0) — find(0)|. 
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We have the following observations: If each agent applies the global cost based 

optimal control (6.17), all of them will be in a better situation compared to the 

case of everyone applying the optimal tracking based control law (6.59). However 

this universal well-being requires a strong coordination between all the agents, and 

greedy attempts from individuals easily destroy the global optimality. This means 

that when all agents are applying the global cost based control law, any individual 

player should be restrained from taking advantage of the other agents' presumably 

fixed control strategies by selfishly moving to a new strategy for reducing its own 

cost. In contrast, the individual cost based control is robust under greedy individual 

strategies as indicated by its e-Nash equilibrium property. 

Subsequently, we examine the state trajectories of the two control designs. 

Suppose in a large population system S, the dynamics for the agents is given 

by: a — b — l,a — 0.05, p = 0.5,7 — 0.6, r = 0.1,77 = 0.25. The population 

mean \Y™=xEzi{$$) = 0.1 (this will be used to set the initial condition z | i = 0 = 

\ £ I = i £*i(0) = 0.1 for the mass). 

Figure 6.2 shows the behaviour of two agents, labelled by 1 and 2. Both agents 

1 and 2 are sampled from the above system S and apply the tracking control law 

(6.59). Both agents have different initial conditions but eventually their trajectories 

merge together. 

rajeetory tor player 2 

FIGURE 6.2. Trajectories of players 1 and 2 

Now we analyze the optimal control. Recalling (6.17), in the global cost based 

control law (i.e., the centralized information optimal control law) the 7-th agent's 
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control is 

b b A b 
Pzi - -q^Zk - -Si, (6.93) 

or * ~* nr 
u. 

r 
k^i 

where p, q and Si depend on n which is the population cardinality. We analyze the 

asymptotic behaviour of the closed-loop system as n —»• oo. Set z~n = - J27=i Zi-> an<^ 

^n = £ YJi=i(zi — Ezi). Then we have 

n 

dzn = [a — b p(n) — b q(n)Yzndt H— V^ dw{. (6.94) 
77 ^—' 

i = i 

We assume that in the increasing population context the initial state of all agents is 

deterministic and limn^oo \ YTX=X ^(0) has a finite limit. Then using (6.94) it is easy 

to verify that for any T > 0 

sup \zn(t)\ = sup \zn - Ezn\ —•* 0, (6.95) 
0<t<T 0<t<T 

p 
as n —> oo, where —-> means convergence in probability. 

Thus in the control of agent 1, with (6.95) in mind we approximate ^ X ^ i Zk by 

the limit z = linin^oo zn which satisfies 

* ! = ( £ - ^ + ( l - 7 ) t f ) S fr^-D (6.96) 

f + \Ja2 + (1 - 7)262 

Here (6.96) is derived from the closed-loop equtation for z%, 1 < i < n, by first 

summing over Zi to write the equation for X^"=i zi an<^ then taking linin^oo - ^ I L i 2*-

We combine (6.93) with (6.96) and take a large population limit with the n 

agent based optimal control law to write the closed-loop dynamics for player 1 in the 

following form. 

dzx = ( | - \]a2 + b2)zxdt + \\la2 + b2 - V/a2 + ( l - 7 ) V zdt 

b 777(1 — 7) , 
+ / / v = + °dwx. (6.97) 

f + Va2 + (1 - 7)
262 
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Figure 6.3 compares typical trajectories for two control laws, where the lower 

state trajectory is generated by the dynamics (6.97). It is seen that when the large 

population limit version of the global cost based optimal control law (6.93) is applied, 

the resulting state trajectory is generally below the one generated from the optimal 

tracking based control law (6.59). 

FIGURE 6.3. Trajectories of player 1 generated by two control laws 
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C H A P T E R 7 

Individual and Mass Behaviour in Large 

Population Wireless Systems: Centralized 

and Nash Equilibrium Solutions 

7.1. Introduction 

In Chapters 2, 3 and 5, we have analyzed power control for lognormal fading 

channels by a stochastic control approach. This leads to determining the control 

law of the users by dynamic programming equations, i.e., HJB equations. To obtain 

implementable control laws, we developed approximation techniques and numerical 

methods for computing various suboptimal versions of the control law. However, for 

systems with large populations, there exists the basic limitation of computational 

complexity associated with this approach. Hence it is desirable to develop new tech

niques for obtaining simplified yet efficient control laws. 

Based on the work in the previous Chapters, in this Chapter we make an attempt 

at analyzing the properties of systems operating in large population conditions. The 

system includes the lognormal fading channel and a rate based uplink power control 

model associated with each user. Our interest is in investigating the feasibility of 

localized or decentralized control under fading channels since this would potentially 

reduce the system complexity for practical implementation of the control laws. We 
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analyze the effect of large population sizes on the controller structure. As a first step, 

we examine the structure of the optimal control law. The feedback control is affine in 

the system power with a random gain matrix (called the Riccati matrix) which carries 

the channel information. Under the assumptions of i.i.d. channel dynamics and equal 

Quality of Service (QoS) requirements, it turns out that the Riccati matrix exhibits 

a certain symmetry; furthermore, the power adjustment rate for any given individual 

mobile is determined by its own channel state, power level and an average of the 

impact of all other mobiles. Intuitively, when the population size is big, the network 

interference should exhibit a statistically stable behaviour whereby the impact of a 

single specific mobile becomes negligible. Based on the above facts, it is possible to 

develop a system configuration for network optimization which is less complex than 

the full state system. 

In reality, for a system as complex as a large-scale mobile communication network, 

a centralized optimization approach may face fundamental limitation in implementa

tion since it generally requires efficient coordination and huge amount of information 

exchange between different parts of the system. Hence, in contrast to the highly com

plex centralized optimal control, in the next step we consider simplified but efficient 

control design utilizing new optimization criteria. For the control determination of 

a fixed individual user, we group the effect of all other users into a single term and 

consider its approximation. This is reasonable due to the particular structure of the 

cost function reflecting the QoS measurement. By this means we can capture the 

interaction between the behaviour of any single user and the statistical behaviour of 

the overall system. 

Subsequently we introduce the individual cost based optimization approach to 

the power control problem and give a game theoretic formulation. Concerning game 

theoretic approach for power control of lognormal fading channels, some initial inves

tigation was presented in [34, 37]. In practical systems, it is important to implement 

control strategy in a decentralized manner, i.e., each mobile user adjusts its power 

based on its local information concerning the network. This can significantly reduce 
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information exchange efforts among users and base stations and thus reduce system 

running costs. And based on these aspects, it makes sense to place emphasis on de

centralized games. The interested reader is referred to [58, 77, 70, 21] and references 

therein for the game theoretic approach to rate allocation, power control, and other 

network service allocation for various static models on wired or wireless networks. 

The method developed for the LQG problem in Chapter 6, combined with some 

reasonable hypotheses, enables us in the power control problem to get an approxima

tion for the collective effect of all the other individuals on a given individual mobile. 

The procedure has connections with the single user based control design in Section 

5.5, Chapter 5 (also see [40, 41]) where we appropriately scaled the total interference 

generated by all the other mobiles and treated this scaled quantity as a slowly time-

varying process. In this Chapter, a particular form of the loss function is used which 

leads to a separation of the control law into a sum of two terms where the first term 

involves the given individual's channel and power state, and the second is a function 

of the its channel attenuation and time. Here the time dependence of the second term 

reflects the average effect of all other individuals, particularly during the transient 

phase of the power adjustment. In this framework, due to the specific decentralized 

information structure for individual's power adjustment, we may feel free to call the 

resulting control by distributed control. 

We emphasize that the above state aggregation technique leads to highly localized 

control configurations in contrast to the full state based optimal control. Specifically, 

the control of of a particular individual mobile can be formulated in terms of its own 

channel dynamics, its own state, the aggregated system dynamics and the average of 

the interference the mobile receives from a mass or collective representing all other 

users. 

7.2. The Problem Statement 

In this Section we reformulate the stochastic power control problem in the large 

population context. Let Xj(r), 1 < i < n, denote the attenuation (expressed in dBs 
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and scaled to the natural logarithm basis) at the instant t of the power of the 7-th 

mobile of a network and let ai(t) — eXi(t) denote the actual attenuation. The power 

attenuation dynamics of n mobile users are given by 

dxi ——ai(xi + bi)dt + Oidwi, 1 < i < n, t>0, (7.1) 

where {wi, 1 < i < n} are n independent standard Wiener processes, and the initial 

states Xi(0), 1 < i < n are mutually independent Gaussian random variables which 

are also independent of the Wiener processes. In (7.1) a* > 0, bi > 0, Oi > 0, 

1 < i < n. 

As in Chapter 5, We model the step-wise adjustments [62] of the transmitted 

power pi (i.e., the uplink power control for the 7-th mobile) by the so-called rate 

adjustment model 

dpi — Uidt, 1 < i < n. (7.2) 

W e w r i t e x = [xx,--- ,xn]
T, p= \px,--- ,pn]

T, u = [ux,--- ,un]
T. 

In a CDMA context, the signal to interference ratio (SIR) for the users achieved 

after matched filtering is given by 

Ti = ^ .f' , 1 < * < n, (7.3) 
l^k^i 0k,iPk + V 

where % denotes the received power at the based station for user i, Pk,i = (slsi)2, 

k 7̂  i, is the crosscorrelation between the (normalized) signature sequences s^, Si of 

users k, i, respectively, and 77 is the constant background noise intensity. We denote 

the dimension (i.e., the spreading gain) of Sj by ns. In the uplink, these signature 

sequences are assumed being not strictly orthogonal to each other. 

Following [72, 74, 80], we consider the mobile system in the context of a large 

number of users and make the standard assumption that £ L - ^ a > 0 a s n — > 

00, i.e., the signature length ns increases in proportion to the system population, 

which is necessary in order to suppress the inter-user interference (i.e., reduce the 

crosscorrelation) such that the system can accommodate an increasing number of 

users. Here a is called the number of users per degree of freedom. By appropriately 
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choosing random signature sequences of length ns, one can have 0k,i ~ ^~ [72, 80], 

and hence (3k,i ~ ^- For simplicity, here we take 0k>i = £ for all 1 < k ^ i < n. 

Moreover, we wish T̂  to be staying around a target SIR level 7» £ (0,1), i.e., 

T, = P \ « 7 i > 1 < 7 < n . (7.4) 

under the condition of lognormal fading we have px = eXtpx, 1 < i < n, where the 

power attenuation Xi is described by (7.1). 

Following Chapter 5 and taking into account the SIR requirement (7.4), we in

troduce the following modified loss function: 

poo n i n 

E / ^ ( E ^ - 7 t(- E eXkPk+^)]2+uTRu)dt- (7-5) 
^° i=l U k^i 

where p > 0 is the discount factor and R is a positive definite weight matrix, and 

77 > 0 is the constant system background noise intensity. For simplicity we take a 

diagonal weight matrix R = Diag(rj)"=1 > 0. In the above integral, the first term 

is based on the SIR requirements (7.4) and the second term is added to penalize 

abrupt change of powers since in practical systems there are basic limits for power 

adjustment rate. In practice, avoiding rapid change of power levels has more to do 

with caution in an environment where channel characteristics are estimated and are 

possibly time-varying. After subtracting the constant component from the integrand 

in (7.5) we get the cost function to be employed: 

poo 

J(u) = E e-pt\pTC(x)p + 2DT(x)p + uTRu]dt, (7.6) 

Jo 

where C(x), D(x) are nxn positive definite matrix, n x 1 vector, respectively, which 

are determined from (7.5). 

To facilitate further analysis, we set fi(x) = —ai(xi + bi), 1 < i < n, H = 

Diag (ax)ti and zT = (xT,pT), T/>T = (fT,uT), GT = (H,0nxn). We write (7.1) and 

(7.2) in the vector form 

dz = ipdt + Gdw, t > 0, (7.7) 
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We take the admissible control set 

U = {u\u is adapted to o(xs,ps,s < t), and Ef0°°e~pt\ut\2dt < oo}. 

Assume that p has a deterministic initial value p(0) at s = 0; then clearly a(xs,ps, s < 

t) = a(x0,ws,s < t). Let $(x,p, u) = pTC(x)p+2DT(x)p+uTRu. The cost associated 

with (7.7) and a control u is J(x,p,u) = E[j^ e~pt$(xt,pt, ut)dt\xt=0 = x,pt=o = p], 

where (x,p) is taken as the initial state; further we set the value function v(x,p) = 

iniu€UJ(x,p,u). 

7.3. The Value Function and HJB Equation 

In this Section we restate some of the results in Section 5.3, Chapter 5 in the 

current large population context. We write the HJB equation for the value function 

v as follows: 

pv = fTp + hr(p^GGT) + inf {uT^ + uTRu} + pTC(x)p + 2DT(x)p, 
OX 2 OZl uGRn Op 

= -f>(xJ + 60|^]>>2|^ (7-8) 
i=l l i = l 

Proposition 7.1. The value function v is a classical solution to the HJB equation 

(7.8) and can be written as 

v(x, p) = pTK(x)p + 2pTS(x) + q(x) (7.9) 

where K(x) = KT(x), S(x), q(x) are continuous in x, and are all of order 0(1 + 

We note that elliptic HJB equations such as (7.8) may admit multiple classical 

solutions when there is no boundary condition. In general, additional growth condi

tions are required in order to determine the value function by the HJB equation. See 

[24] for a general discussion. 
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Substituting (7.9) into the HJB equation (7.8) and comparing powers of p, we 

obtain the partial differential equation system 

'*=5£^f£+i>i£-**-'*+c. (7-io> 
fc=l "- fc=l 

es=lt°tB+£f^-KR-is+D- (7-n> 2 f ^ Kdxk
2 ^ dxk 

fc=l K k=l K 

J f c = l K 

where we shall refer to (7.10) as the Riccati equation of the system. Finally the 

optimal control law for the n users is given by 

TX = [ux, • • • , un]
T = -R~1[K(x)p + S(x)], (7.13) 

and for user i the control is 

1 1 n 1 
ux = Ku(x)pi y Kik(x)pk Si(x). (7.14) 

ft fi *-^ fi 
1 l k+i l 

It is seen from (7.14) that for user i, the control mainly relies on its own current power 

level and a weighted sum of other users' powers. Since all the coefficients involved 

in this individual control law depend on the attenuations of all users, this optimal 

control law in highly centralized. A practical implementation of the optimal control 

law systems with large populations is unfeasible due to its high complexity concerning 

channel conditions. To simplify our analysis, we make the following assumptions: 

(H7.1) All users have i.i.d. dynamics, i.e., a* = a, bi = b, ^ = a, 1 < i < n. D 

(H7.2) All users have equal QoS requirements, i.e., 7J = 7, 1 < i < n, and in 

addition, R = rln. • 

To analyze the control law in a large population situation, we first consider the case 

of a static channel, i.e., o~i = a = 0, a* = a = 0 for all i, and assume 0 < 7 < 1; 

denote the corresponding constant solution to (7.10) by K°. Using the method of 

Section 6.3, it can be verified that Kx\ = 0(1) , as n —> 00, and Kfk — O(-), for i ^ k, 
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as n —> oo. It is an interesting issue to estimate the magnitude of Klx(x) and Kik(x), 

i ^ k, in the general case with a > 0, o > 0. 

If the magnitude of all Kik(x),i ^ k, is significantly smaller than that of Kix(x) 

in a certain sense, the randomness associated with the second term in (7.14) should 

be small due to the scaling effect of Kxk(x),i / k, and hence the actual interference 

from all the other users to a given user is in the form of an averaged effect. 

7.4. Game Theoretic Approach and State Aggregation 

In this Section we assume that (H7.1)- (H7.2) hold. The notation used in this 

Section is consistent with that in Sections 7.2-7.3, and some notion of Sections 6.2-6.4 

will be extended to the power control context. The e-Nash equilibrium can also be 

defined here in an obvious way. 

We will generalize the method of Chapter 6 to the current nonlinear case by 

a heuristic argument. Specifically, under certain assumptions we approximate the 

power control problem for large population systems by a tracking problem with an 

exogenous random process associated with each player. We set the individual cost 

for the 7-th player with respect to the mass as 

-. n »oo i n 

Jx(ux,1(-yex*pk + v))= / e-pt{[e^Px-1(-ye^pk + v)]2 + fu2}dt, (7.15) 

i.e., the 7-th component in the centralized cost function (7.5) in Section 7.2. We also 

define the 7-th individual cost with respect to a deterministic process z* as 

poo 

Jx(ux, z*) = / e-pt{[e^px - z*(t)}2 + ru2}dt, (7.16) 
Jo 

A where z*(t) G Cb[0, oo) = {x\x € C[0,oo), and sup t 6[0oo) \x(t)\ < oo}. When the 

individual cost Ji(ui, z*) is applied, assuming sufficient differentiability of the optimal 
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cost function we can write the equation system 

^•) = T 0 - ^ + t>f-^2 + ̂  < 7 1 7 > 
ds o~ d s ds 1 

ps(t, Xi) = — + — - — - a(xx + b)- Ks - z*ex\ (7.18) 
dt 2 oxi1 oxi r 

We assume K(xx) = 0(1 + e2Xl), and s(t,xx) = 0(1 + eXl) uniformly with respect to 

t. Here K(xx) is a function of a single variable in contrast to the centralized optimal 

control case. By an argument using the verification theorem one can show that the 

control law minimizing (7.16) for the i-th user is determined as 

ux = —[K(xi)pi + s(t,Xi)], (7.19) 
r 

and hence we have the closed-loop equation for px in the form 

dpx = uxdt = —[K(xi)pi + s(t, Xi)]dt. (7.20) 
r 

As in the linear quadratic case analyzed in Section 6.4, here we also have the issue 

of determining the function z* which is to be tracked by individual players. With the 

original SIR based cost function (7.15) in mind, we consider taking 

1 n 

z*~l(-YeXk
Pk + v), (7-21) 

for large n. To further simplify our analysis, in addition to independence between any 

pair of processes Xi,Xk,i ^ k, we assume that each xx has initial condition Xj| t=0 such 

that Xi is a stationary Gaussian process. We also assume that powers of all mobile 

users have identical deterministic initial conditions po- The generalization to more 

general initial conditions for the attenuations and powers will present no technical 

difficulty. For large n, the scaled sum in (7.21) may be approximated by the the mean 

of a single term under mild conditions for Pi(t), i > 1. Thus we write 

z*{t) = j(Eex% + ri)i (7.22) 
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where the right hand side depends only on time t and the initial power p0 after the 

feedback is determined by (7.19) for all individuals. We make the Hypothesis: 

(H7.3) The equation system (7.17), (7.18) and (7.22) has a solution (K(xi), s(xx),z*(t)) 

where z* 6 Cb[0,oo), K 6 C2(R), S G C^2{R+ x R); in addition K(x{) = 

0 ( 1 + e2xi), and s(t, x,i) = 0 ( 1 + eXr) uniformly with respect to t. D 

Proposi t ion 7.2. Under (H7.3) , the control law determined by (7.19) is an 

e-Nash equilibrium for the costs (7.15) subject to full information for individual con

trols, where £ = O(-y^). 

PROOF. The proof is similar to that of Theorem 6.3 and the details are omitted 

here. • 

It is of significant interest to study the dynamic behaviour of z*. A possible 

approach is to introduce a controlled Fokker-Planck equation for the joint distribution 

or density of (xi,px) and then describe z* in terms of the Fokker-Planck equation. The 

challenging issue of existence of a solution to the resulting equation system will be 

investigated in future work. 

7.5. Concluding Remarks 

In this Chapter we have investigated stochastic power control subject to lognormal 

fading in a large population context. Two different methods are considered: the global 

cost based centralized information control and the individual cost based decentralized 

control. 

In general, the global cost based approach emphasizes a certain coordination be

tween individuals to achieve global optimality; in this approach for large population 

systems, assuming that the feedback gain satisfies a certain condition on its mag

nitude, the information used by a given individual exhibits a certain separation in 

that its control law mainly depends its own channel-power condition and another 

quantity reflecting the average effect of the collective of other users which is close to 
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a deterministic process (for a large population). It should be noted that in this cen

tralized framework, each individual does not make direct efforts to optimize against 

this roughly deterministic process, which differs from the dynamic game theoretic 

scenario. 

On the other hand, noticing the scaling nature involved in the cost function, 

we consider approximation and splitting of the global cost function which naturally 

induces individual costs. This leads to a game theoretic framework. In such an 

individual cost based optimization framework, there is also a roughly deterministic 

process generated by the mass or collective. In contrast to the global cost case, here 

each individual determines its control law by optimizing against the mass. Thus there 

is an intrinsic clash of interest between different users. But individual and the mass 

can still reach a certain stable behaviour under certain conditions. 
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Future Research 

Suggested Research on Adaptation with Channel Dynamics 

• In the current stochastic control framework for the power adjustment, it is 

assumed that the dynamics for lognormal fading are known. In a more re

alistic setup, one may assume that the parameters of the fading channel are 

unknown and consider adaptive implementation of the control. In practice 

when the channel attenuation is measured, for instance, by means of pilot 

signals, one can identify the parameters of the fading channel model by well 

established identification algorithms for linear stochastic models as shown 

in Chapter 5. Then the estimated parameters may be combined with the 

stochastic control approach to give adaptive versions of the control laws. 

• An even more challenging issue is to develop a stochastic adaptive control 

scheme for power adjustment by assuming that only indirect measurements 

for the channel state are available. 

Relaxation of the Dynamics Assumption in the LQG Game 

• In the large-scale LQG game of Chapter 6, all agents essentially have the 

same dynamics which is a strong assumption. A possible generalization is 
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to consider randomized coefficients in the dynamic which can be described 

by a certain distribution. 

Suggested Research on Modelling Mass Behaviour 

• To solve the large population power control problem in Chapter 7, a cru

cial step is to develop an efficient modelling methodology for the mass 

behaviour. For any given agent in the system, it is useful to further inves

tigate the evolution of the joint distribution of its own state and the mass 

subject to any fixed control law. 

Indiscipline of Sub-Population 

• We have solved the large-scale LQG problem in the noncooperative game 

theoretic context where a state aggregation technique is applied to construct 

e-Nash equilibria. In this setup, each agent has the task to determine 

the behaviour of other individuals and estimate the mass influence it may 

receives. Thus the feasibility of the resulting localized strategy relies heavily 

on certain universal rationality of the population. 

• In further generalization of the state aggregation technique it is appealing 

to consider tolerating misbehaviour of a sub-population. In reality, it is 

possibly for some agents to take irrational actions due to their own way of 

reasoning or because of receiving unreliable information from the system. 

We term this situation as indiscipline of sub-population. 

• Important issues concerning indiscipline of sub-population include what is a 

tolerable size of this sub-population with misbehaviour and to what extent 

they are allowed to act on their own will. The two aspects may be related 

to each other. 

147 



CHAPTER 8. FUTURE RESEARCH 

Systems with Varying Populations 

• In the methodology proposed for power control in this thesis, the population 

size is assumed to be constant. In a real system, over time new users 

will join the user population while others may leave upon completion of 

their service. Taken into account this fact, we may model the population 

variation by a birth-death process, i.e., the population is modelled as a 

jumping Markov process. The main issue then would be to design localized 

control configuration allowing population variation. 
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