
·+. Nalional Library
of Canada

Bibliothèque nationale
du Canada

Acquisitions and Direction des acquisitions et
Bibliographie Services Branch des services bibliographiques

395 Wclli~ton Streel 395. rue Wellington
Ol1awa. OntarIO Ol1awa (Onlano)
K1A ON4 K1A ON4

NOTICE

o... MIt Mv.... '.'I",,,,,,~,,

AVIS

"

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Sorne pages may have indistinct
print especially if the original
pages were typed with a pOOl'
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c. C-30, and
subsequent amendments.

Canada

La qualité de cette microforme
dépend grandement de la qualité
de la thèse soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S'il manque des pages, veuillez
communiquer avec l'université
qui a conféré le grade.

La qualité d'impression de
certaines pages peut laisser à .
désirer, surtout si les pages
originales ont été
dactylographiées à l'aide d'un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, même partielle,
de cette m!croforme est soumise

. à la Loi canadienne sur le droit
d'auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

•
A USER-FRlENDLy SOFTWARE INTERFACE

FOR THE
LIQUID METAL CLEANLINESS ANALYZER

(LiMCA)

by

Tudor Draganovici

A Thesis Sub'llitted to the Faculty ofGraduate Studies anâ Research

in Partial Fulfillment of the Requirements for the Degree of

Master ofEngineering

Department ofMining and Metallurgical Engineering

McGill University

Montréal, Canada

Ci December 1994

1+. National Ubrary
of Canada

Bibliothèque nationale
du Canada

Acquisitions and Direction des acquisitions el
Bibliographie Services Branch des services bibliographiques

395 Wellington Street 395. rue Wellington
Onawa. Onrario Ollawa (Ontario)
K'A ON4 K'A ON4

THE AUTHOR HAS GRANTED AN
IRREVOCABLE NON-EXCLUSiVE
LICENCE ALLOWING THE NATIONAL
LffiRARY OF CANADA 1'0
REPRODUCE, LOAN, DISTRmUTE OR
SELL COPIES OF mSIHER THESIS BY
ANY MEANS AND IN ANY FORM OR
FORMAT, MAKING l'mS THESIS
AVAILABLE 1'0 INTERESTED
PERSONS.

THE AUTHOR RETAINS OWNERSHIP
OF THE COPYRIGHT IN mSIHER
THESIS. NEITHER THE THESIS NOR
SUBSTANTIAL EXTRACTS FROM Il'
MAY BE PRINTED OR OTHERWISE
REPRODUCED WITHOUT mSIHER
PERMISSION.

L'AUTEUR A ACCORDE UNE LICENCE
IRREVOCABLE ET NON EXCLUSIVE
PERMETTANT A LA BffiLIOTHEQUE
NATIONALE DU CANADA DE
REPRODUIRE, PRETER, DISTRmUER
OU VENDRE DES COPIES DE SA
THESE DE QUELQUE MANIERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLAIRES DE
CETTE THESE A LA DISPOSITION DES
PERSONNE INTERESSEES.

L'AUTEUR CONSERVE LA PROPRIETE
DU DROIT D'AUTEUR QUI PROTEGE
SA THESE. NI LA THESE NI DES
EXTRAITS SUBSTANTIELS DE CELLE­
CI NE DOIVENT ETRE IMPRIMES OU
AUTREMENT REPRODUITS SANS SON
AUTORISATION.

ISBN 0-612-05447-0

Canadrl

• ABSTRACT

The development of high quality metal products requires "clean" liquid metals as

the base materials. For a large number of applications there is a need to quantify the

c1eanliness of the liquid metals in the sense that the number and size of inclusions have to

be controlled to be below sorne acceptable limits. The demand for quality helped the

development of measuring systems that can count the number and size distribution of

inclusion. One of the devices, called LiMCA aJquid Metal Cleanliness Analyzer), was

developed at McGiII University and has been successfully used in the aluminum industry

for a number ofyears.

The LiMCA apparatus is based on the Electric Sensing Zone principle. By

maintaining a constant current through a small orifice through which liquid metal passes,

non-conductive particles passing through the orifice temporarily increase the electrical

resistance of the orifice, therefore increasing the electric potential. The signal processing

component of the LiMCA system detects the voltage transients, translates them into

particle sizes, and counts them based on their sizes or stores the transients in certain time

increments.

The current LiMCA system uses analog electronic components to implement the

signal processing part and describes a transient only by its height or its time of occurrence.

This implementation has limited the further development of the system for applications

where the particle size distribution and particle occurrence must be counted concurrently.

Digital Signal Processing (DSP) technology has been successfully applied to

upgrade the LiMCA system. With this technology, the DSP-based LiMCA system is able

to describe each LiMCA transient by a group of seven parameters and to classifY it into a

certain category with the help of these parameters. Moreover, it counts the classified

peaks based on their height (pulse Height Analysis) and their time of occurrence (Multi­

Channel Scan) concurrently for data acquisition.

A conceptually new software was designed to accommodate the DSP-based

LiMCA and the Object Oriented Programming technique was used to develop the

Graphical User Interface which constitutes the framework of the overall host interface.

•
il

RÉSUMÉ

Le développement de produits métalliques de haute qualité requière, Ù la base, ,ks

métaux liquides propres. Pour de plus en plus d'applications, la propreté du mélal liquide

doit être évaluée et le nombre et la taille des inclusions doivent être contrôlés en dela de

valeurs acceptables. Ces besoins ont motivé le développement de techniques de mesure

du nombre et de la taille des inclusions. L'appareil LiMCA (Liquid Metal Clcanliness

Analyzer), développé à l'Université McGill et utilisé avec succès dans l'industrie de

l'aluminium depuis quelques années, est une de ces méthodes.

Le fonctionnement du LiMCA est basé sur le principe de la Zone Électrique

Sensible. Un courant électrique est maintenu à travers un orifice au bas d'un tube

submergé dans un bain de métal liquide. Le métal liquide est aspiré à l'intérieur du tube et

lorsqu'une inclusion non conductrice passe à travers l'orifice, elle augmente, pour un bref

instant, la résistance électrique de l'orifice. Un système de traitement de signal détecte et

mesure les transients, les convert en taille de particule, et les compte en fonction de leur

taille ou, accumule les comptes par intervalle de temps.

Le système de traitement de signal du LiMCA actuel est constitué de modules

d'électronique analogue. Il ne peut décrire les transients que par leur amplitude et par le

temps auquel ils surviennent. Cette restriction freine le développement de l'appareillnge

LiMCA pour des applieations où différents types de transients existent et doivent être

classifié avant d'être traité.

Un nouveau système de traitement numérique des signaux a été conçu et mis en

marche avec succès. Avec cette technologie, chaque transient est décrit par un groupe de

sept paramètres. L'analyse de ces paramètres permet de classifier le transient. De plus, les

distributions temporelles (Multi-Channel Scaling) et de taille des transients classifiés (Pulse

Height Analysis) peuvent être obtenu simultanément.

La technique de programmation orientée objet a été utilisé pour développer

l'interface usager et l'interface avec la carte de traitements numériques des signaux du

nouveau logiciel LiMCA.

•
iii

ACKNOWLEDGMENTS

This work was carried out under the supervision of Prof G. Carayannis and Prof

R.LL. Guthrie. The author is greatly indebted to them for t!Jeir encouragement, academic

and financial support during the course of my studies.

Special thanks to Prof G. Carayannis for his valuable knowledge of computer

technology and programming techniques that the author learned from him and applied into

this work.

The author would also Iike to transmit his gratitude to Mr. F. Dallaire, McGiII's

Metals Processing Laboratory manager, for his cooperation in LiMCA experimenting and

data processing and for his comments on the thesis.

Special thanks to Mr. X. Shi, a good fiiend and a valuable colleague of mine, for

his daily collaboration and discussions during the progress of the present work.

Last but not least, 1 would Iike to thank my future wife, Daniela, for her constant

and devoted support during the period that the author spent at McGiII University.

•

•

i\'

TABLE OF CONTENTS

1. INTRODUCTION 1

1.1. General considerations 1

1.2 LiMCA's principle of operation 2

1.2.1 Electric Sensing Zone principle 2

1.2.2 LiMCA Sensor ·1

1.2.3 First Generation, Analog LiMCA System 5

1.2.4 (Real) LiMCA Voltage Transients 8

1.3 Motivation and scope of present work............ 10

Chapter 2: GRAPffiCAL USER INTERFACE DESIGN CONSIDERATIONS 14

2.1 Digital versus Analog Signal Processing Implementation 14

2.2 DSP System General Outlook \6

2.2.1 DSP Specifications for the LiMCA system 16

2.2.2 DSP-board Hardware Configuration 19

2.3 DSP Processes and Output 21

2.3.1 DSP Real-time Software 22

2.3.2 Peak Parameters in the DSP-based LiMCA 24

2.3.3 DSP-host PC Interface 25

2.4 Principles ofGraphical User Interface Design 28

2.4.1 What makes a good design 30

2.4.2 The design methodology 31

Chapter 3: GRAPffiCAL USER INTERFACE IMPLEMENTATION 33

3.1 Software development environment 34

3.1.1 Object-oriented programming technique 34

3.1.2 MetaWINDOW 37

3.1.3 object-Menu 40

3.2 Software architecture 42

3.3 The front layer software (GUI) 45

3.4 Software Design & Implementation 47

3.5 Compilation & linkage 55

Chapter 4: RESULTS AND CONCLUSIONS 60

REFERENCES 68

APPENDIX A: DECODING PEAK PARAMETERS FROM

DSP FORMAT INTO HOST FORMAT.. 71

•

•

v

APPENDIX B: LIST OF MODULES FOR THE LiMCA

GRAPHICAL USER INTERFACE 73

APPENDIX C: THE CONSTRUCTOR AND INTERFACE FUNCTIONS

FOR THE CLASS SetupForrnDialog 74

APPENDIX D: LINE EDITOR CLASSES 81

APPENDIX E: CLASS DEFINITIONS FOR DIALOG BOXES 85

APPENDIX F: SOURCE CODE LISTING OF THE MAIN PROGRAM 88

•

•

vi

LIST OF FIGURES

1.1 ESZ Principle 3

1.2 LiMCA Sensor 5

1.3 Analog LiMCA system 6

lA LiMCA data analysis procedures 7

1.5 A typical Normal r,ulse (NP) 9

1.6 A typical ~aseline ,Iump (BJ) 9

1.7 A typical Negative Baseline ,Iump (NBJ) 9

1.8 A Multiple r,ulse (MF) 10

1.9 From LiMCA signais to process parameters 12

2.1 (a) Analog vs. (h) Digital Signal Processing 15

2.2 DSP-based LiMCA System 17

2.3 Digital Signal Processing Hardware 20

2.4 DSP & host PC tasks 21

2.5 DSP real-time software structure 23

2.6 Peak Parameters: (a) positive peak, (b) negative peak 25

2.7 DSP56001 Functional Signal Groups 26

2.8 DSP-56 Block Diagram 27

2 9 C .. ')8. omputer-user mteractlon _

2.10 Bringing in the designer 29

2.11 Complete information f10w 29

3.1 Topology of Applications using Object-Based and Object-Orientcd

Programming Languages 35

3.2 Conceptual view of the event tree 4 1

3.3 The Gill structure 43

3.4 The inheritance concept design of a window 45

3.5 The hierarchical structure of the setup window 46

3.6 User Interface Structure - 1 48

3.7 User Interface Structure - 2 49

3.8 User Interface Structure - 3 50

3.9 User Interface Structure - 4 50

3.10 User Interface Structure - 5 51

3.11 Format ofan input field 53

3.12 Compilation and linkage processes 56

•

•

4.1

4.2
4.3

4.4

4.5

4.6

4.7
4.8

4.9

vii

Usage of the DSP CPU 60

Using a previous test as starting point for a new one 61

Using templates to start a new test 62
r. 6?Jontmumg an acquISItion _

Initiating the "Setup" for a new tcst.. 63

Activated "Probe Setup" dialog box 64

Real-time display - Calibration signal... 65

Real-time display window - Aluminum test.. 65

An example of the "Analysis" window 66

•

•

•

1. INTRODUCTION

1.1. General considerations

The presence of inclusions (i.e. foreign, undesirable partic1es) in melals can be
detrimental to the properties of the final products. The continuously increasing demand

for high quality, requires that metal c1eanliness be monitored and described quanlilalivcly.
For sorne products (such as beverage cans, turbine blades, aerospace parts, elc.), bolh the

number and the size distributions of inclusions present in the metal have to be eonlrolled
and kept below certain acceptable limits. Several inclusion measuring methods have been
proposed [Pitcher and Young 69, Bauxman et al. 76, Siemensen 81, Levy 81, Baies and

Hunter 81, Mansfield 82] but most of them are on~line techniques lhal require

considerable amounts of labor and time.

A novel on-line method, known by the acronym LiMCA (Liquid 1\'lctal Çleanliness

Analyzer) was developed at McGill University by researchers Doutre and Guthrie [Doutre

84]. This measuring technique has been successfully uscd for quality control in the
aluminum industry by A1can. It is worth mentioning that BOMEM Inc. Ims nlrendy

started, with the approval of A1can, producing and selling LiMCA machines for use in the
aluminum industry. However the commercial LiMCA system doesn't have lhe llexibility

to provide detailed information as required by researchers.

The fact that LiMCA is an on-line method gives it the potential to be used 10r the

development of a process control system. At McGill signilicant amount of rcscarch Ims

been carried out to veritY the application of LiMCA to other metals and alloys, such as

zinc, magnesium, copper, steel, etc. [Kuyucak 89, Kuyucak and Guthrie 89, Lee 91]. In

addition to the uses of LiMCA to liquid-metal quality monitoring and control, thcre is a

quite powerful trend to use LiMCA as a research tool in the studies of metallurgical

processes. For example, in the study of ceramic foam filters for liquid nluminum,

measurements were done to determine the concentration of inclusions upstream and

downstream with LiMCA [Tian et al 92]. LiMCA was also used in the research on the

kinetics ofremoval of Ca and Na from AI and AI-I\\'l%Mg by chlorination [Kulunk 92].

In the investigation ofpowder injection processes, an Aqueous Particie Sensor, which is a

water version of the LiMCA system based on the same operating principle, wns used

[Yamanoglu 92].

Several researchers and industrial engineers have expressed strong expectations

on the future applications of LiMCA in the studies of metallurgical processes and in

particular in understanding and optimizing such processes. In general, a typical

metallurgical process involves the interactions and reactions among liquid metal, solid

inclusions and injection agents of different types, gas bubbles, and liquid inclusions. The

metallurgists studying these processes would receive a great deal of help by knowing the

size distributions and frequencies of occurrence of different types of inclusions at a certain

location and a certain time.

The demand for such a tool for use in controlling and studying the metallurgical

processes motivated our LiMCA research projec!. The final goal is to develop a system

that can tell, to sorne extent, the operator what happened and what is happening inside the

Iiquid metal in various processes. The work described in this thesis involves mainly the

work related to the graphical user interface of LiMCA, but parts of the digital signal

processing system that was developed in parallel will also be described. In the subsequent

sections ofthis chapter, an introduction to the LiMCA system and its operational principle

are presented.

•
Introduction 2

1.2 LiMCA's principle of operation
The LiMCA principle of operation is the one used in the Coulter counter, an

instrument originally developed to count blood cells suspended in a conductive fluid

[Coulter 56]. By maintaining a constant current through a small orifice through which

Iiquid metal passes, non-conductive partic1es passing through the orifice temporarily

change (increase) the electrical resistance of the Electrical Sensing Zone (ESZ), which

therefore result in transient changes in the electric potentia\.

1.:U Electric Sensing Zone principle

The LiMCA technique is based on the Electric Sensing Zone (ESZ) principle.

Inside a Iiquid conducting media, an electrically insulating wall is installed to separate the

media in two parts. A long cylindrical orifice is opened on the wall and through this

orifice Iiquid metal can flow between the two parts. A constant DC voltage is applied

across the orifice thus a steady electric field is formed in the conduction media and an

overall voltage drop can be detected across the orifice. Because of the geometric

confinement, the electric field is intensified inside the orifice making it very sensitive to the

change ofthe homogeneity of the media inside the orifice. This change can be detected by

measuring the voltage drop across the orifice, which we call the Electric Sensing Zone

(ESZ). A non-conductive particle suspended in the flow otT the liquid through tlle oritiœ

will inevitably increase the overall resistance of the ESZ and cause a voltage transicnt

across it. The shape and magnitude of the transient are related to the characteristic$ of the

partic1e as weil as to other factors.

In Figure 1.1, a cross-section of a cytindrical orifice, together with a partidc

passing through it, is iIlustrated. The following assumptions are used:

1. The inclusions are spherical;

2. The inclusions are non-conductive;

3. The orifice is cylindrical with diameter D and length L (L»D);

4. Only one inclusion passes through the orifice at a given time;

S. The current density within the ESZ is constant.

Based on these, a simplified relationship between the voltage change !J.V and the

•

•

Introduction

VI

I·...---L

V2

3

Vl-V2= baseline

ESZ Principle
l,',•

tO

Figure 1.1

tl t2
Time

t3 14

volume of the particle was given by DeBlois and Bean [DeBlois and Bean 70] and is used
as a fundamental equation to predict the size of the particle !Tom the voltage change

(Equation 1.1).•
Introduction

8R = 1 4 pd
3

x f(dlO)
nD4

4

(1.1)

where 1

P
d

D

and f(dID)

is the electric current;
is the electrical resistivity of the melt (0.25 Q·!!m for Iiquid Aluminum);

is the diameter ofa spherica! inclusion;

is the diameter ofa cylindrical orifice;

can be expressed as:

f(dlO) = 1

1-0.8(d/D)3
(1.2)

•

1.2.2 LiMCA Sensor
The design ofan ESZ based sensor for liquid aluminum is shown in Figure 1.2. Il

is designed to have an orifice ofa certain shape and to capture the voltage change due to

the passage ofa particle through the ESZ. Il consists oftwo electrodes and an electrically

insulated vessel having a small orifice at its side wall, near its bottom. The tube is made of

Kimax glass. and the electrodes are made of steel. One electrode is positioned inside and

the other outside the vessel, faeing the orifice. Note that a number of variations of this

design have been used in several experimental setup procedures designed for use both in

aluminum and in other melts. During operation, the sensor is submerged in the melt,

vacuum is applied inside the vessel to maintain a constant f10w of metal through the

orifice. A constant DC current (typically 60 A) passes between the two electrodes.

During the normal operation ofthe LiMCA, Iiquid metal is drawn into, or pumped

out of, the vessel through the orifice. In general, inclusion particles suspended in the melt

have conductivity much greater than that of the melt itself. When such a particle passes

through the orifice, it displaces an equal volume of metal and thus causes a temporary

change (increase) in the overall resistance of the ESZ. Since the electric current through

the orifice is constant, tbis resistance change is detected as a voltage transient across the

two electrodes. The shape and the height of the voltage transient are related to the shape,

size. resistivil';, velocity and trajectory of the particle within the ESZ, as weil as to ,he
metal f10w across the orifice.

•

•

Introduction

insulating vessel
+

Figure 1.2 UMCA Sensor

{\ _transient

J C' -
electrodes

5

•

1.2.3 Fint Generation, Anatog LiMCA System
The first generation LiMCA system, which was designed in the carly 80's, 15

shown schematica1ly in Figure 1.3. This system consists of four parts: the sensor, the
power supplYt the pressure and vacuum system, the signal conditioning system and an
analog signal processing system. A battery is used as a power supply and providcs the
required constant current. Avacuum cylinder connected to a vacuum pump and a cylinder
containing argon gas under pressure, are used to build the vacuum/pressure system.

The magnitude of the voltage transients that the system must detect is in the
microvolt range. The transients are superimposed on a DC offset, which for aluminum is
about 0.12 volts. This DC component corresponds to the constant voltage drap acrass

the orifice when no inclusion is present. The signal conditioning stage eliminates this DC

offset, filters out high frcquency noise, perfonns bandwidth reduction, and amplifies the

signal ta millivolt level for further processing. To increase the sensitivity to small pulses,

the signal is passed through a logarithmic amplifier.

Further processing is canied out by an analog signal processing system, built from

commercially available unÎts. Bere, a pulse sampler (model TN-1246, from Tracor

Northem) is used ta dctcct and measure the height of the transients and feed their

magnitudes to a multi-channel analyzer (model TN-7200, from Tracor Northem). The

latter has two modes of operation, one called PHA (pulse Height Analysis) generating a

size distribution and the other MCS (Multi-Channel Scaling) generating a time distribution

Power Supply

•
Introduction 6

Amplifier

Host
Computer

r····························..·_·················
1
1 SiglJal COIlditiolJillg
1
1
!
J
1
1
1

.
1
J Log Amplifier
1"..................... _
! :
1 1::1 :
1 li: ~ Pulse Sampler :
1 ,~,S i
1~ ~ i
1~~ ~ 1
1 I:~'" Multi-cltalmel i
1~ ~ Anal ter i
1 !1........................... ._ :

size

voltage

--•

Rs

Sensor

melt

S

PRESSURE
IVACUUM

Figure 1.3 Analog LiMCA system

•

•

ofthe transients (Figure lA).

In the PRA mode, transients are classified according to their magnitudes. The

voltage distribution is converted to an inclusion size distribution, using Equations 1.1 anù

1.2. Together with the volume of metal sampled. it can be used to calculatc measures

directly related to metal cleanliness. such as the number of inclusions pel' kilogram or

metal. the number of inclusions of given size ranges per kilogram of mctal, the volume

ratio of inclusions to metal. etc. One parameter called N20 is used extensively in the

aluminum industry. It is defined as the number of inclusions whose diameter is largcr than

20 Ilm per unit mass of Iiquid metal. N20 is the main output parameter of the industrial

LiMCA system used to define metal cleanliness and is obtained by assuming that ail

transients detected are related to particles and that the fluid flow through the orilice is

constant [Dallaire 90].

LiMCA data analysis procedures

•

•

Introduction

Figure 1.4

partiele slze tlme Increment

7

In the second mode of operation (MCS), the multi-channel analyzer counts the

transients that are c1etected within a certain time increment. The MCS mode gives the

time distribution of inclusions at the location of the LiMCA sensor. Such information

becomes more and more interesting to metallurgists for the study and control of certain

metallurgical processes, such as, for example, the chlorination and the alloying process of

aluminum [Kulunk 92]. Both operation modes are data analysis procedures and are

iIIustrated in Figure 1.4.

A portable mM-pC computer is used to acquire and process the data obtained by

the Multi-Channel Analyzer (MCA). The MCA and the PC are connected through a seriaI

RS-232 communication link. The data transfer allows for direct storage into DOS files in

an ASCII format, Iimiting as much as possible human intervention. The time and date of

file creation are always stored as file attributes. A BASIC program has been written to

implement two specifie functions:

1. Transfer data from the MCA to DOS files in an mM-pC;

2. Data collection assistance to the operator of a LiMCA experiment.

Although this two-step procedure works weIl and was used successfully for a long

period, one can notice that after the data acquisition process is finished, the ASCII file

obtained h•.s to be further processed (i.e. in a spreadsheet) in order to be able to represent

the data in a useful way for the human operator. Another aspect that has to be taken into

account is related to the new trend in the user interfaces community, that is offering to the

human operator a graphical windows-type representation of the respective topic.

•
Introduction 8

1.2.4 (Real) LiMCA Voltage Transients

In this section the different types oftransients that are observed using the LiMCA

system will be examined. A typical LiMCA signal, as measured in liquid aluminum, is

presented in Figure 1.5.

In normal operation this type of signal appears the most frequent and is generated

by the passage of an inclusion through the ESZ. This is the reason why we cali such a

signal a Normal ~ulse (NP).

Other types of transients, having different characteristics than normal pulses, have

been detected in different tests. In normal operating conditions, these new transients do

not appear as often as the Normal Pulses. Such transients are shown in Figures 1.6 and

1.7 and are called Baseline lump (Bl) and Negative Baseline lump (NBJ) respectively

[Dallaire 90).

-500L..-~1--_-.a__......_--"'-_.......
o 2 4 6 8 /0

lime (ms)
Figure 1.7 A typicallS,egative Raseline lump (NBJ)

Introduction 9

600• 500 ~

~400 ~

--s. 300 -
~
~ 200 1-

~
100 l-

D
)

\
-100

. -; . .
0 0.5 1 1.5 2 2.5 3 3.5 4

time (ms)
Figure 1.5 A typical Normal ~ulse (NP)

1000

800

s:-
~ 600

• ~
!::a
'1 400
~

200

0
0 0.5 1 1.5 2 2.5 3 3.5 4

lime (ms)

Figure 1.6 A typical Baseline lump (BJ)
100

0

~ -100
~
Et -200

~ -300

•

Their characteristics include a steep starting edge and an exponential trailing edge,

restoring the baseline. The width (or time duration) of a BJ or a NBJ is usually several

times greater than that of a NP, having the same magnitude. The most valid physical

explanation for the appearance of such peaks is that they represent the response of the

high pass filter (see Figure 1.3) to step changes in the resistance of the ESZ. Several

physical phenomena at the ESZ can result in such a step change in resistance: partial

obstruction of the orifice, expansion or reduction of the orifice. Also, a long cylindrical

inclusion passing through the orifice in its longitudinal direction would give rise to this

type of transient.

On rare occasions, when several particles pass through the orifice at the same time,

•
Introduction 10

600 ,-.---------------,

500 -

~400 ­

-! 300 ­
t,

,;§ 200 ­
~

43.53

100 !-

or=3\;;::::::==~J-100 o 0.5 1 1.5 2 2.5
lime (ms)

Figure 1.8 A Multiple fulse (MP)

transients having more than one peak are detected. Such a signal, called Multiple F.ulse

(MP), is shown in Figure 1.8. Here, two inclusions were prese~t in the ESZ at the same

time.

In addition to the signal types mentioned above, two more have been identified.

They are known as the Baseline Fluctuation (BF) and the Negative Baseline Fluctuation

(NBF). The exact time domain shapes ofthese two types of signais vary. The appearance

of such transienls Indicates oscillations of the baseline (i.e. the magnitude of the DC

component) and consequently signais improper system operation.

1.3 Motivation and scope of present work

In the first generation LiMCA system, ail transients, having magnitudes higher than

a certain noise threshold are detected, their heights are measured and converted inlo the

sizes of the corresponding inclusion particles. However, ITom our previous discussion it is

evident that only NP type transients correspond to particles. BJ type trnnsients may b~

related to particles but in most cases, they indicate other ESZ phenomena, such as redllced

metal flow, partial blockage of the orifice, orifice size change, etc. Therefore it is

important to develop a LiMCA system that can discriminate and classify the dilferent types

oftransients. The first objective is to upgrade the first generation LiMCA so that dil1èrent

types oftransients can be differentiated and processed differently.

The first generation LiMCA system (Figure 1.3) uses general pllrpose analog

signal processing equipment (e.g. pulse sampler, multi-channel analyzer, oscilloscope). Il

detects only positive peaks and uses only one peak description parameter, the peak height.

This hardware architecture does not provide the flexibility required to achieve lhe

differentiation and classification mentioned before. As a result, the design of a sollware

based LiMCA system using DSP (Digital Signal Processing) technology was considered.

The tirst stage of development is to use DSP technology to elaborate a second

generation LiMCA system, which is functionally equivalent to the first generation onc.

This stage is necessary in order to ensure compatibility between the two systems and also

to facilitate the validation of the new one. The second stage involves the development of

the required code so thr.t the new system can automatically identify the different types of

transients. The tinal goal is to integrate into the system a higher level of reasoning that

can process the classified transients, and using knowledge about the metallurgical process,

arrange each inclusion into one of a number of expected classes (based on composition,

shape, state, etc.), and to develop a sensor that can be used, not only for quality, but also

for process control.

lt is c1ear iTom the previous paragraph that the DSP technology cannot do the

whole job by itself. The overall task of the system inc1udes real-time signal processing and

high-Ievel signal analysis. The real-time signal processing requires a high computational

speed and for the high-Ievel signal analysis advanced algorithms must be developed and

implemented. Because of the different requirements of the two computational aspects, a

multi-processor system is an ideal hardware environment. A DSP processor is the

processor "responsible" for real-time signal processing and an mM compatible personal

computer aets as a host providing an interface for the human operator, communicating

with the DSP processor, and executing the signal analysis. Therefore, two levcls of

•
Introduction 11

software must be deve10ped at the same time: the DSP software nmning at the DSP level

and the host interface software.
The development of the DSP-based JJMCA can be divided into several tasks. In

terms of signal processing, we identifY five tasks: the peak sampling process, the peak
description process, the peak classification process, the extraction of size, shape and
volume information of inclusion particles, and last, the development of an intelligent
system which uses the information extracted from the NPs and the frequency of

occurrence orthe other types oftransients together with the knowledge about the specifie

metallurgical processes and makes intelligent suggestions to the operator. Figure 1.9

•
Introduction 12

FROM LiMC4 SIGNAL TO PROCESS PARAMETERS

rs
process

dpI para"':!!:

dp2:" 1:::

LiMGi. Signal Sigllal -.- •- Analysis • Perception •Signal
- -

~ ~li' 14•
Xllowledge of

Metallurgical process

•
Figure 1.9 From LiMCA signais to process parameters

•

shows this process which is conceptually divided into the signal analysis part, that

generates a description of the detected transients and labels them into associated types,

and the signal perception part, which identifies the detected particles.

The tasks for the hast interface software cannot be easily defined because of the

complicated nature of the desired objective. One must take into account severa! facts: the
signal processing algorithm is not immediately available, the performance of the DSP

interface has to he tested, another types of algorithm and parameters have to he available

for research purposes. Regarding the LiMCA operation, there are many parameters ta

handle and different configurations to be tested. To start the development of this

software, one has to consider a good software frame that can be easily reconligured.

upgraded, and easy to operate.

A graphical user interface based on the Object Oriented Progralllllling technique

should first be developed as the framework of the overall host interface. This should

accommodate ail the computational tasks and the host-DSP operation.

This thesis is concerned with the first stages ofdevelopment of the ncw DSP-bnsed

LiMCA system focusing on the user interface part of the software. The user interlilcc is

designed to be a friendly and useful tool for the LiMCA users especially in a rescnrch

environment.

In the subsequent chapters, the hardware and softwar~ of the DSP-bascd LiIVICA

will be discussed. Following this, the graphical user interface will be presentcd and linnl\y.

the conclusions of my research work and suggestions for future devclopments arc

included.

•

•

Introduction 13

• Chapter 2: GRAPHICAL USER INTERFACE DESIGN
CONSIDERATIONS

Before explaining the Graphical User Interface, the complete program including

the DSP process, which provides the real-time data, and the host analysis process, which

represents the data at the host level, are presented. The host tasks are implemented as

part of the Graphical User Interface and in order to understand the design and

implementation, the DSP hardware and software need to be discussed.

In this chapter, a brief introduction to Digital Signal Processing (DSP) and a

comparison between the digital and analog signal processing implementations are given,

followed by a description of the new DSP-based LiMCA system (Section 2.2). In the

second part ofthis chapter (Section 2.4), the principles ofGraphical User Interfaces (GUI)

are discussed. Their application in this particular LiMCA implementation are presented in

the next chapter.

2.1 Digital versus Analog Signal Processing Implementation

Signal processing is concemed with the representation, transformation, and

manipulation ofsignais and of the information they contain. For example, we may wish to

separate IWo or more signaIs that have somehow been superimposed or to enhance sorne

component or parameter ofa signal mode!.

Digital signal processors (often called DSPs) are microprocessors with specialized

architectures and instruction sets, designed to perform weil in digital signal processing­

intensive applications. There are more applications for DSP today than ever before, and

this trend is projected to continue. DSP chips are replacing many analog solutions with

improvements in cost, performance, and reliability. Designs with fixed features and preset

parameters are being redesigned with DSP chips for flexibility and future upgradeability.

These advantages do not come for free; the design cycle for DSP is a new and unfamiliar

process for most engineers. Additionally, DSP a1gorithms bear no resemblance to the

analog circuits they replace. After the a1gorithm is fully defined and fine-tuned, it must be

implemented in DSP assembly-Ianguage code to run quickly. Once the DSP code is

written, in order to test it, one has to run the code on the specific hardware to correct ail

the problems. To make this process easier, a number of DSP development boards were

developed. The advantage of using such boards plugged into a computer is obvious: no

custom hardware needs to be designed yet, thus saving development cost. The typical

development board has the general-purpose circuitry on-board to coyer most DSP

GUI Design Considerations 15

.I\';'/' fi'st domai» (i
g
»;:»~rn:~;'

r.4 Ana/ogSignal l~ ~
Ana/Dg- Processing El:Tnt-~~ ADe ..
I»p",- ~

signal in sectmd da",ai"

u:
(a)

Digital Signal
Processing

(b)
(a) Analog vs. (b) Digital Signal Processing

ADe

Figure 2.1

signal in first doma;n

Ana/Dg

Input

designs, such as static RAM, analog to digital and digital to analog convcrters, anù otlll:r

types of circuits. To assist in DSP code development, debugger monitor sonWllr~ is

inc1uded with many boards.

The differences between the two implementations are ilIustrated in Figure 2. 1. ln

the analog implementation (Figure 2.1 (a», the original signal is processed by dedicated

analog circuits or systems built from commerciatly available electronic deviccs. Then the

output of the analog signal processing module can be displayed on a monitor and savel!

(e.g. on the hard-disk of a computer).

In the DSP implementation) the original signal is first digitized by an llnalog to

digital converter (ADe). Then the digital signal processing software is executcl! nt the

DSP-board level. As mentioned before, this board is controlled by programs nmning on

the DSP. These programs are developed and updatcd in agreement \Vith the signal

processing tasks. The DSP board is typically supervised by a host computer that rcccivcs

the results of the digital signal processing through a communication Iink.

The major advantage ofdigital over analog signal processing is flexibility. Anallter

point is the fact that the DSP-based implementation is software-based. Thus, it is casier to

reconfigure the system to adapt to new conditions and parameters. Complcx algorithms

can be integrated into the DSP programs to improve the overall performance of signal•

•

processing. Such improvements are difficult to accomplish with a dedicated analog signal

processing circuit.

In addition to the advantages related to flexibility and cost, the most important

aspect in the LiMCA application is related to the parameters that describe a peak. The

analog signal processing system of the first generation LiMCA (Figure 1.3) describes

LiMCA peaks with only one parameter in either PHA mode or MCS mode (see Section

1.2.3). In the PHA mode, the peaks are measured by the magnitude and height of the

peaks is used by the PHA module to find the associated PHA channel. In the MCS mode,

the peaks are labeled with time and accumulated within certain time intervals represented

by MCS channels. As mentioned earlier in Section 1.2.4, different types of peaks can be

observed in LiMCA operations. Each of them is a result of different ESZ phenomena.

For better understanding of these phenomena and for a correct interpretation of the

LiMCA signal, the types of peaks should first be c1assified into different categories.

Furthermore, from Section 1.2.2, the shape ofa peak cames the shape information of the

inclusion. Thus, the description of a peak should also include the shape parameters. The

real-time classification method was not available and is one of the major parts of this

research work. The multi-parameter peak description and uncertain method of peak

classification causes the complexity of the signal processing of the LiMCA system.

To summarize, it is not practical to design and implement a signal analysis system

using an analog signal processing method and a DSP-based approach is the more

attractive option.

•
GUI Design Considerations 16

2.2 DSP System General Outlook

The block diagram of the DSP-based LiMCA system is shown in Figure 2.2. By

comparing to the first generation LiMCA system shown in Figure 1.3, one can notice that

in the analog components such as the log amplifier, pulse sampler and multi-channel

analyzer, are replaced with a digital signal processor.

The DSP processor is plugged into a PC host computer that is used to interface

down to the DSP processor and up to the operator through a recently developed graphical

user interface.

2.2.1 DSP Specifications for the L1MCA system

Most DSP processors share sorne basic common features, designed to support

high-performance, repetitive, numerically-intensive tasks. The most often cited among

those features is the ability to perform a multiply-and-accumulate operation (often called a

•
GUI Design Considerations

Power Suppl)'

17

Digital Siglla/
Processor

§h 1

a~
sue

l~
vo/tage ----....:...-----,

lIost
Computer

~k S;glla/ COlldit;m,it'g

~' ~t

Sellsor

melt

S

PRESSURE
lVACUUM...

•
Figure 2.2 bSt-~based LiMCA System

•

I1MACll
) in a single instruction cycle. The multiply-and-accumulate operation is useful in

algorithms that involve computing a dot-product, such as digital filters.
A second feature shared by DSP processors is the ability to complete several

accesses to memory in a single instruction cycle. This allows the processor to fctch an
instruction while simultaneously fetching operands for the previous instruction, and/or
storing the result of the previous instruction to memory. In general, 5uch single-cyclc
multiple memory accesses are subject to many restrictions. Typically, atl but one of the
memory locations accessed must reside on-chip, and multiple memory accesses can only
take place with certain instructions.

To provide simultaneous acc~ss to multiple memory locations, DSP proccssors
provide multiple on-chip buses, multi-ported on-chip memories, and in sorne cases

multiple independent memory spaces. To a1low arithmetic processing to proceed at the
maximum speed possible, DSP processors incorporate a dedicated address generation unit.

Once the appropriate addressing registers have been configured, the address generation
unit operates in the background, forming the addresses required for operand accesses in

paralle1 with the execution ofarithmetic instructions.
In the case of the LiMCA system, sorne analysis of the signaIs has been done in

order to establish the key parameters to be taken into account when choosing the DSP
processor. Based on the signal processing tasks discussed in Section 1.2.3 and on the
frequency analysis of the signaIs (see [Shi 94]), the most important DSP parameters were

determined:
• Number ofbits for analog-to-digital conversion

The number of bits used to present an analog value after an analog-to-digital

conversion provides the resolution of the digital presentation of the analog signal.

Presently 16 bit analog-to-digital converters (ADC) are common and appropriate for most
applications. The absolute quantization error is less or equal to Xm 12B, where Xm is the

full analog input range and B is the bit length of the analog-to-digital converter

[Oppenheim and Schafer 89]. The relative quantization error is thus within 1I2B. For
16-bit ADC, the relative quantization error is 0.0000153 at maximum and produces a

Signal-to-Noise ratio of96 dB, wmch is much mgher than that of the LiMCA signal of 36

dB [Sm 94].

• Sampling frequency
The sarnpling frequency of the ADC is determined according to the frequency

components of the analog signal. In the case of a Normal Pulse, the frequency range is

from 0 to 14 kHz. According to the Nyquist Sampling Theorem [Oppenheim and Schafer

89], the sampling frequency must exceed two times the maximum frequency of the signal.

Consequently, the minimum sampling frequency is 28 kHz. Considering the other LiMCA

peaks (i.e. baseline jumps and normal pulses), the frequency range is from 0 kHz to

approximately 18 kHz. Therefore, the minimum sampling frequency to avoid aliasing for

LiMCA peaks is 36 kHz. To ensure the accuracy of the signal processing, some over­

sarnpling is also desired. As a result, a sarnpling frequency of50 kHz is used.

• Input channels
As discussed in Section 1.3, measurements of two locations need to be compared

in real-time. To cope with this type of application, the new LiMCA signal processing

system must be designed to have two processing units being able to work simultaneously.

Therefore, only DSP cmps with two input channels are considered.

• Computational speed

•
GUI Design Considerations 18

The speed of the system is evaluated by the clock lTequency of the DSP processor

to be used. The required computational speed is considered according to the overnll real­

time signal processing task and the parameters discussed above. As discussed in Section

lA, the overall task for LiMCA signal processing includes peak sampling, peak

description, and peak classification processes. Also, referring to Figure 2.1, one can

notice that a generic process, the analog-to-digital conversion, is always needed for digital

signal processing. Considering a sampling lTequency of 50 kHz, there are only 20 ~l

seconds available for these processes. Therefore the DSP board must be fast enough to

guarantee that the processes can be finished within this time in order to process LiMCA

signais in real-time.

The clock frequency can be estimated by using the maximum number of clock

cycles for the ADC process mu1tiplied by the sampling frequency plus the maximum

number of clock cycles needed for the l'est of the data processing tasks multiplied by the

peak frequency.

The peak frequency in the worst case is 2000 peaks pel' second. This occurs when

aIl detected peaks are Normal Pulses, closely following one another. The result of the

calculation shows that the computational speed of the DSP processor must be faster than

12 MIPS (Million Instructions Pel' Second) and the clock frequency of the processor must

exceed 24 MHz [Shi 94].

In summary, the essential requirements for the DSP board include two input ADC

channels with 16 bit resolution, up to 50 kHz sampling frequency, and a system clock

faster than 24 MHz.

•
GUI Design Considerations 19

2.2.2 nSl-board ltardware Connguratlon

Considering the above specifications, a OSP-56 coprocessor board for IBM PC

type computers ftom Ariel Corporation, was chosen as tlle real-time DSP engine. Figure

2.3 shows the hardware configuration of the system.

A 50 MHz 80486·based computer is used as a host. The DSP·56 is based on the

Motorola 56001 processor that runs at 27 MHz with an instruction cycle equal to 74.1

nanoseconds. The memory of the processor is organized in three 64 Kx24-bit sections,

each with separate address and data buses. One section is used for program memory and

the other two for data (X and Y data memory).

The DSP~board has two 16-bit ADCs (Analog~to-Digital Converter) and two 16­

bit DACs (Digital-to~Analog Converter) channels. The sampling rate of the ADe is

selectable from 16 choices ranging from 2 kHz to 100 kHz in the so-called 16-bit stereo

mode. In this mode, signais from two LiMCA sensors can be acquired and precessed

concurrently. A high speed mono ADe mode with sampling rates up to 400 kHz is also

available. An on-board SCSI (Small Computer System Interface) bus is also available.

This can be used te connect a hard-disk sa that data can be saved in real~time and then

used off~line.

The DSP~S6 also has one input/output bit that we use ta interrupt the host

computer whenever the real~time DSP process needs the attention of the host. The analog

signal trom the signal conditioning stage is connected to the ADC for real~time processing.

A digital tape recorder (Model RD-lOIT. trom TEAC) can also be used to record the

•
GUI Design Considerations 20

Digital Recorder
ADe SCSi

SCSi

Hard Drive

c;:J
.........................•.~

DSP-56
Co-proeessor

Signal from

Condttlonlng

•

•

lbM-l'c 486

Host Computer

Host bus
Figure 2.3 Digital Signal Processing Hardware

a
ë...a
1::••

•
GUI Design Considerations

signais for later off-Iine analysis.

21

2.3 DSP Processes and Output
The software for the DSP LiMCA has been developed based on the hardware

described in the previous chapter. Il inc1udes the real-time DSP software, a host PC-OSP-

1

DSP
level

Host PC
level

DSP tasks:

- AID conversion
- Peak-sampling
- Peak description
- Real-time data transfer

Host PC - DSP interface tasks :

- DSP process downloading & control
- Receiving the peak data from the DSP

--
GUItasks:

- System setup
- Data acquisition
- Data analysis
- Calibration

~ ;:..

'0; ~

Operator

Figure 2.4 nsl' & hast l'C t8sks

based interface and 8 Qraphical :User Interface (GUI). The real-time signal processing is

perfonned by the DSP software, wlûch has been implemented using the Motorola DSP

56000 assembly language running in the DSP-56 coprocessor. The host PC-DSP interface

provides the communication link between the host PC and the DSP board and downloads

the DSP code and the configuration parameters from the host to the DSP. During the

execution of the DSP program, the real-time data are uploaded !Tom the DSP board to the

host PC through the PC-DSP interface.

The Graphical User Interface enables the LiMCA operators to control the

instrument and provides a friendly environment with well-organized windows containing

input fields, dialog boxes and graphical displays. At the same time, it performs ail the host

level computation tasks and controls the DSP processes through the host-DSP interface.

The tasks at both the DSP and the host level are listed in Figure 2.4.

The host PC-DSP interface and the GUI were written in the C++ language and

compiled with the Borland 3.0 C++ compiler. Two commercial software packages,

object-Menu !Tom Island Systems and MetaWindow !Tom Metagraphics Software

Corporation, were a1so used to implement the two interfaces.

A description of the DSP real-time software and of the host PC-DSP interface will

be given in the next sections. Since this is not within the scope of the work described in

this thesis, details conceming this part of the software are not presented here and can be

found in [Shi 94]. The GUI is discussed in the next chapter.

•
GUI Design Considerations 22

2.3.1 DSP Real·time Software

The software developed at the DSP level is organized as a number of independent

tasks. Each task is designed as a filter, reading data from an input buffer and writing new

data into an output buffer. Figure 2.5 shows these tasks together with the corresponding

data flow paths. A small executive program was developed to manage their execution.

During system initialization, the executive receives a number of parameters from the host

and starts the execution ofthe different DSP tasks.

Note that Figure 2.5 shows a one-channel system. The analog signal !Tom the

signal conditioning stage is digitized by the ADC. An !nterrupt S-ervice Routine (ISR) is

invoked which reads the output of the ADC and writes the data into a circular buffer. The

circular buffer is processed by the Peak Sampling Process that detects the presence of

peaks and transfers peak data to the "sampled peak buffer". A digital tilter can be invoked

before the peak sampling process to elirninate "known" noise, for example from an

induction fumace near by. The "sampled peak buffer" is processed by the Peak

Description Process which store~ its output into the "peak buffer".

The Pulse Height Analysis Process computes and modifies this information. The
results are transferred ta the host PC through the 24-hit Host Port. At the host level, an
ISR is invoked ta read the data from the Host Port and transfer them to the Peak
Classification Task.

These processes were first distributed hetween the DSP-56 eoproeessor and the
hast computer, and then coded separately. The scope of this static task allocation is ta
take full advantage of the pipeline architecture of the DSP and ta maximize its utilization.
The pipeline architecture refers to instruction pipelining which allows overlapping of
instruction execution sa that the fetch-decode-execute cycles of a given instruction oecur
concurrently with the fetch-decode-execute cycles of the next and previous instructions.
Specifically, while an instruction is executed. the next instruction ta be executcd is
decoded, and the instruction ta follow the one heing decoded is fetched from the program
memory. Pipelining is normally transparent to the user. Time is "wasted" when the DSP
coprocessor board communicates with the host. Due ta the above explained pipeline
architecture orthe Motorola DSP 56001 processor and the OSP-56 board, two types of
operations are the most time consuming: control transfer instructions and instructions thnt
perform data transfers between the DSP-56 and the host PC. The majority of the data
transferred are peak description parameters. Therefore. the total number of parameters
used for peak description has ta he minimized in arder ta minimize the data transferred.

O 1
p- process

process data buffeT lSR - illterrupt scn'icl! rolltillt.!
- real·time data putl,
....... t![f-line data /lutl'

Figure 2.5 DSP real-time software structure

•

•

•

GUI Design Considerations

~ADe buffeT sampied peak
bufJer

peak sampling

realtime..
data trans/er

peak
ISR classificatitm

23

The peak sampling and the peak description tasks perform most of the data reduction and

must therefore be programmed at the DSP level.

In the initial prototype of the DSP-based LiMCA system, the peak classification

process was implemented at the host computer level. This decision was influenced by the

fact that the system was being developed for a research environment and will he used in

different melts and under different working conditions. By prograrnming the peak

classification at the host PC level, it is easier to adapt the software to handle different

situations.

•
GUI Design Considerations 24

1

2.3.2 Peak Parameters in the DSP-based LiMCA

From Figure 2.5, one can observe that the peak sampling process gets data from

the "circular buffer", detects the presence of a transient and writes its output to the

"sampled peak buffer". In general, a LiMCA peak can be positive, negative or a

combination of the two (e.g. a Normal Pulse) as discussed in Section 1.2.4. The peaks

can have different widths and different starting and trailing slopes.

This process compares the incoming data with two noise thresholds, filtering out

small baseline oscillations. The thresholds depend on the noise levels at the site of the

measurements and on the size of the smallest peak that must be detected. If a data point is

higher than the high noise threshold or lower than the low noise threshold (Figure 2.6), the

presence of a peak is detected and the Peak Description Process is activated. Using this

algorithm, a normal pulse can sometimes be detected as two peaks, a positive peak and a

negative undershoot. This happens when the magnitude of the positive peak is so big that

its undershoot falls under the lower noise threshold. The undershoot can be easily

distinguished because it follows closely a Normal Pulse.

The Peak Description Process analyzes data from the "sampled peak buffer" and

generates a six parameter description of each pulse. These include three shape and three

time parameters (Figure 2.6). The shape parameters are the peak heighl, the peak slarling
s/ope and the peak ending s/ope, and the time parameters are the peak slart lime, the peak
elld lime and the lime al Ihe peak's maximllm or millimllm poilll, for positive and negative

peaks respectively. The width of the peak is not given explicitly but can be calculated by

subtracting the start time from the end time.

Following the peak description process, the ~ulse Height Analysis (PRA) process

takes the height of a positive peak, calculates the PRA channel that corresponds to that

height and returns the PRA channel index.

GUI Design Considerations

time

noise band
!.

25

.---7----------
time_3Cmax

NOISE"I

o

NOISELO

•

(a)

'. slope_aCend
\

pk_width

time_aCmax noise band
1

\ :
- Pk_;t~- " -pk_;; .\: - - -

Ume

slope_aCstart

(b)

NOISE"I
o

NOISELO
pk_max•

Figure 2.6 leak larameters: (a) positive peak,

(b) negative 'peak

ln total, six peak description parameters and a PHA channel number are processed.

These seven parameters are encoded in order to decrease the number of data to be

transferred and therefore increase the communication speed. Each peak is tinal1y

represented by a group of 16 bytes and a real-lime data transfer process transfers the
encoded data to the host PC. On the PC's side, a real-lime OSP-PC interface receives and

saves the data in memory.

•
2.3.3 nSp-host PC lnterface

As mentioned before the OSP-host PC interface receives the encoded data from

the DSP board and saves them into the PC's memory. In order to explain the operation of

the intii:face, a brierdescription ofthe DSP56001 processor and DSP-56 board is needed.

•
GUI Design Considerations 26

ADDRESS
DATA

DUS
CONTROL

UOSTDATA
DUS

AIM1J
DO-DZJ

PS
jj§

RD
WB
X/Y

BRIiiT
ïTG'BS

IIOST COl'\'TROL
, tA ,

~~~~~m~~

PORTB

-< u
t2 ~
2 DSP56001 ~

RXD}TXD SCI
SCIX

seo}SCI

SC2 SSI
SCK
SRD
STD

•

•

Figure 2.7 DSPS6001 Functions) Signa) Groups

The functional signal groups of the DSP56001 chip are represented in Figure 2.7 and the
DSP-56 board block diagram is shawn in Figure 2.8 [Ariel 89].

Port B is a dual-purpose 1/0 port that can be used as 1) )5 general-purpose pins
individually configurable as either inputs or outputs or as 2) an 8-bit bi-directional host
interface (HIF) (Figure 2.7). In LiMCA operation, port B is configured as a host interface
and provides a convenient connection ta another processor.

The host interface is a byte-wide, full-duplex, paraltel port that can be connected
directly to the data bus ofa host processor. The host processor may be any of a number
of industry-standard microcomputers or MPUs, or another DSP. The DSPS6001 host
interface has an 8-bit bi-directional data bus, 110-117, and seven dedicated controtUnes,
HAO, HAl, HA2, lIR/W, BEN, HREQ, and RACk, to control data transfers.

The hast interface appears as a memory-mapped peripherat occupying eight bytes
in the host-processor address space. Separate transmit and receive data registers are
double butl'ered ta allow the D8P56001 and host processor to efficiently transfer data at
high speeds. Host processor communication via the hast interface is accomplished using
standard, data move instructions and addressing modes.

Port B is used as the real-time data passage between the host PC and DSP
processes. Figure 2.8 is a block diagram ofthe DSP-S6 hardware. The main subsystems



inc1ude: the DSP56001 processor, extemal data RAM, extemal program RAM, Analog

IlO, SCSI Port, DSPnet Port, Auxiliary IlO.

The host interface is asynchronous and consists of two banks of registers - one

accessible to the host processor and a second accessible to the DS? The maximum data

transfer rate at the host interface level is 8 Mbytesls. There is also a difference op. how the

data are represented on the two sides of the host interface. On the DS? side the datn

•
GUI Design Considerations 27

T

1 1 1

1 IlAddress 1
Decoding

~
External DSPnet

~
RAM Port

oS! ~ 1
lPortA ~I- 11DATA BUS 1

L ={]::'0
SSI t= 56ADCI6ADCa~ SCSI

~~
W°rtç SCI PCM56 DAC Port

== 0.1" 2X Analog IN
WortB Header

Host Port
2X Ana(og OU

Il Il Aux

~1 Buffer 1 110 Digital
110

Til IFrom Host PC
IIni·directional
bi·directional

Figure 2.8 nSp-56 Block Uiagram

word is 24 bits long and is mapped into three 8-bit 1/0 ports on the PC.

One peak is characterized by seven parameters as discussed in Section 2.3.2 and

these parameters are encoded at the DSP level into 16 bytes. At the host PC level, a small

program called PkParmConvert was written to acquire the encoded data and to decode

the 16 bytes peak description into peak parameters (Appendix A).

One will notice that the data transfer rate and the amount of data transferred are

factors affecting the communication between the DSP and the host PC. Another element

that cannot be neglected is the maximum number of peaks that must be detected within a

certain time period, i.e. 2000 peaksls in the worst case. Considering the fact that each

peak is represented by 16 bytes, 32 Kbytes of data are to be transferred per second.

Therefore, efforts must be made to manage sueh a busy communication.



To be able to handle and to process all the data received from the DSP board, a

higher level control program nmning at the host PC level has been developed. This

program serves three purposes: one is to interface the PC with the DSP board, the second

is to perform computational tasks, such as data calculation, manipulation, conversion,

scaling, etc., and finally, the third purpose is to provide a user interface for the human

operator. Because of the complex nature of the overall task, a fiiendly graphical user

interface was conceived. In the nex! section, the design principles of graphical user

interfaces will be presented.

•
GUI Design Considerations 28

•

•

2.4 Principles of Graphical User Interface Design

User interfaces are those parts of computing systems that allow the person using

the computer to access the services offered. In other words, without user interfaces

computers would be useless [Thimbleby 90].

The simplest view of human-computer interaction is shown in Figure 2.9. The

arrow represents the user interface. The user interface is an information channel that

conveys information bctween user and computer.

...1-----...

Computer

tJser
Figure 2.9 Computer-user interaction

From our perspective, however. Figure 2.9 is deficient because it omits the

designer. Figure 2.10 rectifies this problem. First the designer implements a computer

system (generally a software system. but sometimes the designer will be in a position to

choose, if not influence. hardware aspects of the system): dûs is generally the result of

intense work. Then the user interacts with the system, perhaps very intensely, over a

much longer period. Although the interactions are represented with identical arrows, they

represent very different styles ofinteraction.



GUI Design Considerations 29

• •... .. ..

Designer Computer
User

Figure 2.10 Bringing in the designer

•

The infonnation flowing through the user interface is not sufficient ta use the

computer. There are infonnation flows in addition to those shawn that cnnble the user ta

operate. For instance) over the years, the user has acquired information abolit how the

world and things in it operate and sorne of that knowledge must be drawn upon to use a

computer. More specifically) the user will have infonnation about the tasks he wants ta

undertake in conjunction with the computer system: these tasks will not be fully

Figure 2.11 Complete information Dow

Task

.. ..

~........••••••

1••,.,.
Participation •••.•••••

in design

Computer

Task
description

•
'\'"

" " '." .••••• •-t••••
i•:•••:••\ ...................•...•.•....•.~.............••..............•



represented in just the information flowing through the user interface, so a more realistic
information-flow diagram is shown in Figure 2.11.

In typical industrial usage situations, cost shapes many judgments i.e., a lower cost

solution may be preferred even if there is sorne sacrifice in reliability. Operator training

time is expensive, so ease oflearning is important. The tradeoffs for speed of performance
and error rates are decided by the total cost over the system's lifetime [Shneiderman 92].

•
GUI Design Considerations 30

2.4.1 What makes a good design
Principles of design are hard to articulate: the more you state and use, the more

exceptions there seem to be. Nevertheless, many user tasks or operations follow the same
sorts of basic behaviors and can be modeled in similar fashions. The art and science of

interface design depends largely on making the transactions with computers as transparent

as possible in order to minimize the burden on the user.

Although there is no recipe for a good design, this section tries to present the

underlying principles of design that are applicable to most interactive systems. These
underlying principles of interface design, derived heuristically from experience, should be

validated and refined:
• Strive for cOllsistellcy. Consistent sequences ofactions should be required in

similar situations; identical terminology should be used in prompts, menus, and

help screens; and consistent commands should be employed throughout.
• Enable freqllent IIsers to lise shortcllts. As the frequency ofuse increases, so do

the user's desire to reduce the number of interactions and to increase the pace of

interaction.
• Offer informative feedback. For every operator action, there should be sorne

system feedbaek.
• Design dialogs to yield c/osllre. Sequences ofactions should be organized into

groups with a beginning, middle, and end.
• Offer simple error hand/ing. As much as possible, the system should be

designed so the user cannot make a serious error. Ifan error is made, the system

should deteet the error and offer simple, comprehensible mechanisms for handling

the error.
• Permit eœy reversai ofactions. As much as possible, actions should be

reversible. This feature relieves anxiety, since the user knows that errors can be

undone.

• Support illtemal center ofcontrol. Experienced operators strongly desire the

sense that they are in charge and that the system responds to their actions.



• Reduce short-term memory Joad. The limitation of human information

processing in short-term memory requires that displays be kept sihlple.

These underlying principles must be interpreted, retined, and extended for each

environment.

•
GUI Design Considerations 31

2.4.2 The design methodology

The tirst step in designing an interface is to decide what the interface must

accomplish. A1though at tirst this statement may seem overused, poor requirement

detinitions have marked numerous user-interface design projects at an early stage.

Understanding user requirements can be accomplished in part by studying how the

problem under consideration is currently solved. Another successful approach is for the

designer to learn how to perform the tasks in question. The objective is to ullderstand

what prospective users currently do, and, more important, why they do it [Foley et al. 90].

When the requirements have been worked out, a top-down design is next

completed by working through the four design levels: eonccptual, functional, sequcncing,

and binding. The explanation for top·down design of user-interfaces is that it is best to

work out global design issues before dealing with detailed, low-Ievel issues.

The conceptual design is developed tirs!' and consists of the detinition of the

principal application concepts that must be mastered by the user, and is hence also called

the user's modeJ of the application. The conceptual design typically detines abjects,
properties of objects, reJatiol/ships between objects, and operatiol/s on objects. In a

simple tex! edito,r, for example, the objects are characters, lines, and files, a property of a

file is its name, files are sequences oflines, lines are sequences of characters, operation,; on

lines are Insert, Delete, Print, etc.

The functional design focuses on the commands and what they do. Functional

design defines meanings, but not the sequence of actions or the devices with which the

actions are conducted. Attention must be paid to the information each command requires,

to the effects of each command, to the new or moditied information presented to the user

when the command is invoked, and to possible error conditions.

The sequencing and binding designs, which together detine the form of the

interface, are best developed together as a whole, rather than separately. The design

involves first selecting an appropriate set of dialog styles, and then applying these styles to

the specifie functionality.

The whole design process is greatly helped by interleaving design with user­

interface prototyping. A user-interface prototype is a quickly created version of sorne or

ail ofthe final interface, often with very Iimited functionality.



As mentioned in Section 2.3, the newly developed DSP-based LiMCA system has

a complex nature and to ease the task of an operator the principles referred to above were

used to design the user interface. Next chapter will be entirely dedi('ated to the

presentation of the Graphical User Interface.

•
GUI Design Considerations 32



• Chapter 3: GRAPHICAL USER INTERFACE
IMPLEMENTATION

This chapter is dedicated entirely to the description of the Graphical User interlilce
designed for the DSP-based LiMCA developed at McGill University.

As mentioned in Section 2.3.3, a higher level control program running on the PC

has been developed in order to interface down to the DSP board, to perform some
computational tasks, such as data calculation, manipulation, conversion, scaling, etc., and

to provide a user interface for the human operator. A friendly graphical user interface \Vus

developed to satis!)' the complexity ofthe tasks listed above.
The operation of the LiMCA system involves four major steps: input of

measurement-dependent parameters, system calibration, data acquisition and data analysis.

Successful data acquisition and analysis depends on the correct selection of the

parameters, which include operational parameters and physical properties of the meta!. A
large number of parameters need to be controlled or changed in order for the system to

adapt to different operational conditions and different media. This parameter initialization

introduces a big burden on the operator. To overcome ail these inconveniences, u
Graphical User Interface (GUI) is required. The objective of the GUI is to provide an

"easy-to-navigate" environment. It offers very weil organized windows with input fields,

dialog boxes and graphical displays. For the multitude of parameters that are used, it is

equally important that certain input range limitations and format controls to be applied to

the input fields. In some cases, different fields need to be automatically disabled or

enabled. Furthermore, unit selection and conversion are attached to each input field.

Different templates and previous configurations can also be selected and retrieved. Ali of

the above feetures facilitate the operation and help prevent input errors.

Dueto the complex nature of a GUI, the design and implementation of such an

interface is left to specialized programmers. Recent advances in software packages and

programming methodologies made this job casier. For example, the Object Oriented

:erograrnming (OOP) technique made major contributions to the field of graphical user

interface design.

As previously mentioned two commercial software packages, object-Menu from

Island Systems and MetaWindow from Metagraphics Software Corporation, both based

on the OOP technique, were used to implement the GUI. Borland C++ (version 3.0)

software package was used as the basic compiler. During the development of the GUI,



we also adopted the OOP technique to implement the rest of the package, using the novel
concepts specifie to the OOP technique.•
GUI Implementation 34

3.1 Software development environment
This section presents the environment in which the Gill was developed, and more

specilically, the object-oriented programming technique and the software packages that
were used as tools.

3.1.1 Object-oriented programming technique
There are five main kinds of programming styles, here listed together with the

kinds ofabstractions they use:
• Procedure-oriented A1gorithms
• Object-oriented Classes and objects
• Logic-oriented Goals, expressed in predicate calculus

• Rule-oriented If-then rules
• Constraint-oriented Invariant relationships

There is no single programming style that is best for ail kinds of applications. For
example, rule-oriented programming would be best for the design of a knowledge based
system. The object-oriented style is best suited to the broadest set of applications, which
includes industrial-strength software in which complexity is the dominant issue. By using
object-oriented design, one creates software that is flexible to change and is written with
economy of expression. In our design a greater level of confidence in the correctness of

our software is achieved through an intelligent separation ofits state space.

Figure 3.1 iIIustrates the topology of recent1y developed OOP languages as
Smalltalk, Object Pascal, C++, CLOS, and Ada. The physical building blocks in these

languages are the modules, which represent a logical collection of classes and objects
instead ofsubprograms, as in earlier languages (e.g. FORTRAN). To state)t another way,
"If procedures and functions are verbs and pieces ofdata are nouns, a procedure-oriented
program is organized around the verbs while an object-oriented program is organized
around nouns" [Booch 91]. For this reason, the physical structure of an objeet-oriented
application appears as a graph, not as a tree, which is typical of a1gorithmically oriented

languages. Additionally, there is Iittle or no global data. Instead, data and operations are
united in such a way that the fundamental logical buildings blocks of the system are no

longer a1gorithms, but classes and objects.



•

•

GUI Implementation

Figure 3.1 Topology of Applications using Object­

Based and Object-Oriented Programmillg

Languages

35

•

Object-oriented programming is a method of implementation in which programs
are organized as cooperative collections of objects, eaeh of which represents an instance

of sorne class, and whose classes are aU members of a hierarchy of classes united via

inheritance relationships. In such programs, classes are generally viewed as slatie,

whereas abjects typically have a much more dynamic nature.
There are three important parts in this definition: object-oriented programming (1)

uses abjects, not algorithms, as its logical building blacks; (2) eaeh abject is an instance of

sorne class; and (3) classes are related ta one another via inheritance relationships.
ln the object-oriented context, the coneeptual framework is the ohject mode/.

There are four major elements ofthis model:

• Abstraction
• Encapsulation

• Modutarlty
• Hierarchy

Abstraction denotes the essential eharaeteristies of an abject that distinguish it
from all other kinds of abjects and thus provide crisply defined conceptual boundaries,



relative to the perspective of the viewer. An abstraction focuses on the outside view of an
object, and thus serves to separate an object's essential behavior !Tom its implementation.

Abstraction and encapsulation are complementary concepts: abstraction focuses
uron the outside view of an object and encapsulation prevents clients from seeing ils
inside view, where the behavior of the abstraction is implemented. In this manner,
encapsulation provides explicit barriers among different abstractions. In practice, each

class must have two parts: an interface and an implementation. The interface of a c1ass
captures only its outside view, encompassing our abstraction of the behavior common to

aIl instances of the c1ass. The implementation of a c1ass comprises the representation of

the abstraction as weIl as the mechanisms that achieve the desired behavior. To
summarize, encapsulation is the process of hiding aIl the details of an object that do not

contribute to its essential characteristics.
Modularity is the property of a system that has been decomposed into a set of

coupled modules. Modules in C++ are nothing more than separately compiled files. The
traditional practice in the C/C++ community is to place module interfaces in files named

with a .h suffix; these are called header files. Module implementations are placed in

source code files distinguished by a .cpp suffix. Dependencies among files can then be

asserted using the #include preprocessor directive. This approach is one ofconvention; it

is neither required nor enforced by the language itself.

The concept of modularity is important in the LiMCA implementation because of

two reasons: (1) since modules serve as the elementary and indivisible units ofsoftware

that can be reused across applications, a developer might choose to

package classes and objects into modules in a way that makes their reuse

convenient;

(2) many compilers generate object code in segments, one for each module.

This places practicallimits on the size ofindividual modules.

A set ofabstractions often forms a hierarchy, and by identifYing these hierarchies in

our design, the understanding ofthe problem is greatly simplified. Thus a hierarchy can be

defined as a ranking or ordering ofabstractions.

Inheritance is the most important "kind or' hierarchy and it is an essential element
of object-oriented systems. Basically, inheritance defines a relationship among classes,

wherein one class shares the structure or behavior defined in others. Inheritance thus

represents a hierarchy of abstractions, in which a subc1ass inherits !Tom one or more

superclasses. TypicaIly, a subclass enlarges or redefines the existing structure and

behavior ofits superclasses.

•

1

GUI Implementation 36



Different programming languages trade off suppon for encapsulation and

inheritance in different ways, but C++ offers the greatest flexibility. Specifically, the

interface of a class may have three pans: privale, which declare members that are visible

only to the class itself, prolecled, which declare members that are visible only to the class

and its subclasses, and public, which are visible to ail.

1 mentioned several times the terms object and class. Therefore, a short

description ofthis terms is necessary.

One can informally define an object as a tangible entity that exhibits some well­

defined behavior. From our perspective, an object is any of the following: a tangible

and/or visible thing, something that may be understood intellectually, and something

towards which thought or action is directed. Sorne objects may have crisp conceptllal

boundaries, yet represent intangible events or processes. Other objects may be tangible,

yet have fuzzy physical boundaries. One can conclude that an object has state, behaviollr,

and identity, and that the structure and behavior of similar objects are defined in their

common class.

The concepts of a class and an object are tightly interconnected, for one cannot

talk about an object without reference to its class. However, there are important

differences between the two terms. Whereas an object is a concrete entity that exists in

time and space, a class represents only an abstraction. A class is a set of abstract objects

that share a common structure and a common behavior. A single object is simply an

instance of a class. Whereas an individual object is a concrete entity that performs some

role in the overall system, the class captures the structure and behavior common to ail

related objects.

As mentioned earlier, the interface of a class can be divided into public, protected,

and private parts. The C++ language does the best job among object-oriented languages

in allowing a developer to make explicit distinctions among these dilTerent pans of a

class's interface.

Programming using objects is fundamentally different than the models embraced by

the more traditional methods of structured programming. The use of the object model

leads us to construct well-structured complex systems.

•
GUI Implementation 37

3.1.2 MetaWINDOW

MetaWINDOW is a professional graphics programming toolkit that integrates a

comprehensive set of drawing routines and dynamic runtime support for a broad array of

graphics devices into a highly unified graphics development system. MetaWINDOW



inc1udes a powerful set of drawing functions and an expanded set of advanced utilities for

developing multi-window desktop applications.
MetaWINDOWs graphics facilities are suited for ail PC-based graphics

applications. Between the features not found in other graphics systems, one can mention:
• Opell illterface: gives the user direct access to allievels of the graphics system.

This open architecture improves performance using less memory, thus making the code

more efficient.
• Virtual bitmaps: in addition to the default screen bitmap, the user can also define

any number ofoff-screen "virtual bitmaps". Virtual bitmaps can be ofany size and located
in local memory, EMS memory, XMS memory or disk-cached virtual memory buffers.

• Optimizillg graphies executive: the executive system links only those functions

and drawing attributes used by the program. In addition, the executive dynamically loads

and links graphies drivers at runtime, keeping code size to a minimum.
• Efficiellt evellt-drivell illterface: MetaWINDOW inc1udes an enhanced event

driven user-interface that ensures that time critical user services, such as mouse/cursor
tracking, keyboard, function key and mouse button input selections, are processed as

asynchronous priorities automatically by the MetaWINDOW system. These built-in

services eliminate the need for time dependent "polling" loops within the application

program, and insure that operator inputs are serviced even if the application is performing

extended calculations or 1/0 processing.
• Mllitiple ports alld willdows: the open interface design is very weil suited for

multi-window applications. Using the "port" structures, one can create multiple graphies

windows, where each window is treated as a separate and independent display screen.
• Object select tests: MetaWINDOW includes an advanced set of object select

functions that allow the user to find if a user input selection is "in", "on" or "outside" a
particular graphies object.

There are severa! basic items needed for a MetaWINDOW-based program. This

consists of:

1) An "include" statement for MetaWINDOW header files.

A program must contain an "include" statement referencing a master

MetaWINDOW header file, METAWNbo. The master header file in tum references

severa! other key MetaWINDOW header files: METCONST - Graphic structures and

constants, METPORTS - Bitmap and port data structure definitions, METEXTRN ­
Function cali prototypes, and METFONTS • Font file data structure.

The MetaWlNDOW header files define the basic data structures, constant and
function prototypes the user needs to use.

•

1

GUI Implementation 38



2) MetaWINDOW initialization.

Before starting the drawing calls, the user must first initiatize the MetaWINDOW

system, and then switch the display hardware to graphics mode. The InitGrllIJhicsO

procedure initializes the MetaWINDOW system, and graphics procedures for a particular

video adapter and display mode.

3) Switclùng to graphics mode.

The InitGraphicsO function initiatizes only the MetaWINDOW software system.

It does not touch the display hardware or switch the screen into graphies mode.

Procedure SetDisplayO is called to physieally switch the graphics adaptor hardware

between graphics and teX! modes.

4) Drawing objects to the screen.

Once in graphies mode, objects such as tines, rectangles, ovals, text and other

graphies can be drawn to the sereen. An X,Y Cartesian coordinate system is used to

reference positions on the display screen. The "global" (0,0) origin of the coordinate

system is typically located in the upper-left corner of the screen, with positive X values

increasing to the right, and positive Y values increasing downward towards the botlom of

the screen.

5) Switclùng back to teX! mode.

As mentioned above, procedure SetDisplayO is called to switch between modes.

6) Terminating MetaWINDOW.

One must tell MetaWINDOW when to terminate the program (the Graphies

subsystem is left at a known state when the program terminates). This is performed using

the StopGraphlcsO function cali. Calling StopGraphlcsO at the end of the program is

important, because MetaWINDOW links internally the system at a very low level and

needs to detach itselfprior to exiting the program.

One ofthe important features of the MetaWINDOW software package is the event

system. the event system ensures that operator input and tracking actions are serviced

immediately and represents the backbone of a modern graphical user interface. It allows

cursor tracking, keyboard input, and mouse button selections to proceed even when the

application program is processing actions. These operator "events" are stored into a

circular "event-queue" buffer for servicing sequentially by the application program.

the event queue operates similar to a keyboard type-ahead bulfer. When a

program operation completes, control is passed back to the main event loop which checks

to sec ifthere is another event to process. Ifan event is posted, the program dispatches to

the appropriate funetion to handle the event.

•

1

GUI Implementation 39



With event driven applications, a main event (oop retrieves messages stored in the

event queue, and executes the appropriate function to process the input action. If no
events are pending, the application can optionally perform background processing while it

waits for the next commando Time consuming functions, such as saving data files or
processing screen updates, can be relegated as background operations. In addition to
operator input events for mouse and keyboard actions, function StareEventO can be used
to send "program events" through the event queue.

•
GUI Implementation 40

1

3.1.3 abject-Menu

The object-Menu package is a comprehensive, object-oriented GUI toolkit. Its

library elements provide a state-of-the-art graphical user interface that can be integrated
into any C++ application. object-Menu takes advalltage of the capabilities of C++ to
provide extensive functionality in a compact format. Sorne of the features of t~i,; software
package are:

• EVeIlt drive1l: complete event system handles menu and window events as weil as

user delinable events to facilitate creation ofa multi-tasking system.
• Mail system: messages can be sent trom one event (window, menu, user delined

event, etc.) to another to enable an interaction between system elements.
• Object-oriellted imp/eme1ltatio1l a1ld lisage: object-Menu is fully object-oriented

and takes full advantage ofOOP. The use ofextensible classes means that menu

types can be inherited and enhanced to provide a high degree ofcontrol to a C++
user, without modifYing the sources.

Components of the object-Menu package include windows, menus, dialogue

boxes, data entry and tex! edit and display blocks. Special features of object-Menu
components are as follows:

-Menus

Menu orientation can be horizontal or vertical. Menus can be attached and aligned

or "popped up". Menus can include buttons, check marks, and user delined icons.
-Windows

A complete window system is maintained to deal with window events and

overlapping windows. The underlying windows can be restored quickly with
minimal memory utilization and without regenerating the image.

• SeroU bars

Various seroU modes can be set to allow scrolling at finer levels ofresolution and

the seroU architecture facilitates several advanced scrolling mechanisms.

• Data Entry



The edit capability combined with picture strings create powerful data cntry

functionality that can be used for application input. The data entry field can be

mixed with different font styles, sizes or colors ta create a custom look. Data
entry elements can be easily mixed with other elements in a dialog box.
• Dialog Boxes

Combinations ofall menu and data entry elements ~an be mixed in a dialog box to

logically group input selections.

As mentioned earlier in this chapter, object-Menu includes an event manager lor

dealing with ail input events and real-time tasks. There are two distinct event systems.

The primary event system deals with ail input event handling. The user-task event system

provides means for running real-time background tasks such as for example, a task ta poli

a communication channel.

The event system passes user input to the appropriate event handler (menu,

window, or other) for processing. Each event runs independently of the rest of the

system. An omEventQueue represents one cycle or group of events. The cntirt syslem

is made up of several omEventQueue1s organized in a tree-like structure. The mClhod

functions of an omEventQueue coordinate the passing of control bctwccn

omEventQueuels and to each individual event handler.

•

•

GUI Implementation 41

•

omEvc

Figure 3.2 CODceptual view of the event tree



As described above and illustrated in Figure 3.2, several omEventQueue's are

combined in a tree structure to create a complete representation of ail events in the

system. At the highest level there is the main event queue organized as a loop of several

events. Each event can point to two additional event queues: a subList and an innerList.

Normally only one of the two pointers will be used for a particular event. The subList

points to a queue that runs a submenu. This queue will always contain only one event.

The innerList points to a queue of attached elements. For example, the inner

elements of a dialog box or a window are in its innerList. Since each component of the

innerList is an event and can point to an attached innerList, a tree structure of ail the event

queues is formed.

The concept of an innerList is central to the event tree structure in the object­

Menu system. Each of the items in a dialog box or window type element is placed on the

omEvent Queue pointed to by the innerList of the item. Both the parent item and the

innerList items have their own event handlers. When the parent event handler determines

that the current input is intended for one of its innerList elements, it indicates to the event

manager that control should be passed to its innerList. This causes the omEventQueue of

the innerList to run independentiy of the rest ofthe system.

The heart of the event system is the individual event handler. The event handler is

a virtual function called heyUser. The job of the heyUser is to perform the appropriate

action based on the input and then retum a status code to the queue manager to indicate if

this event should remain active. The heyUser is only called if the event is active and

enabled. Note that when an input activates an event, that input will always be passed first

to the heyUser before Il new input is solicited from the input queue.

After presenting the environment in which our software was created, the next part

will describe the architecture and the features of the DSP-LiMCA software.

•
GUI Implementation 42

3.2 Software architecture
The GUI is structured in three "Iayers": the top one is a group of windows that

provide ditrerent input fields, a real-time graphie display and an analysis display. The

second layer includes ail the background computational tasks (such as parameters setup,

file management, unit conversion, axis scaling, peak classification, peak parameter

decoding, PRA, MeS, calibration, etc). The third layer is the DSP-host PC interface and

contains silch routines as the DSP driver d.:>wn-Ioading process, the DSP command down­

loading process, the real-time data transfer, the DSP memory read and write, and the

expanded memory manager. As one can notice in Figure 3.3, the middle layer performs



most of the calculations for the LiMCA processes and has bilateral communicution with

the front and bottom layer. The algorithms that rcalize LiMCA processing urc

implemented in this layer by separate modules. Object oricnted programming techniques

were used to make these modules encapsulated, reusable and efficient.

For the bottom layer. the main concem is the speed of communication. Therefore,

most of the modules in this layer are interrupt service routines which ensure the time or

response. Also, the number of the levels of function caUs and switch commnnds is limitcd.

In~line assembly language is used because it can be precisely timed and propcr timing is

needed in a real~time application. In this layer the computations arc minimizcd and mosl

•
GUI Implementation 43

Middle Layer:
Computatlonal Tasks

DSP

The GUI structureFigure 3.3

Bottom Layer:
host PC~DSP interface

Operator

t<==>
•

•



of the data processing tasks is left for the middle layer. The main data link between this

layer and the middle layer is the expanded memory. Therefore, an expanded memory
managing module is also implemented in this layer. AIl the above measures help the host

PC to catch up with the high speed DSP process preventing an eventual DSP overflow.

The implementation ofthe first layer software will be discussed later.
To implement the GUI, the data involved in the whole process must first be

analyzed and structured. The background tasks must also be coded in parallel with the

front windows.
The input parameters have been organized into several groups:

1. Gel/eralparame/ers: test name, test directory, test location, test number,
acquisition number, test date, test time, and data file names (setup data file,

acquisition data file, MCA data file, calibration data file). These are the

parameters describing the general information about a test.
2. Physicalproper/ies: medium type (water or metal), medium, density,

resistivity, and discharge coefficient ofmedium. AIl the physical properties

about the medium to be tested are inc1uded in this group.

3. Tes/ cOl/ditiol/s are Iisted in this group as: sensor type, orifice diameter, ESZ
current, differential pressure, immersion depth, and working temperature.

4. DSP parame/ers: channel model (mono or stereo), channel, sampling

frequency, high noise level, and low noise level. These parameters are used to
configure the DSP process.

5. O/herparame/ers: test mode (pHA or MCS), acquisition time, MCS time

increment, MCS number of scan, minimum size to be detected, number of

MCA channels, number ofsize ranges to display, and size ranges to be

displayed.

AIl the input parameters are saved in a Setup class in memory when the program is

running and also saved on the hard-disk in a group offiles. These files are managed by the

user interface and are invisible to the operator. In tbis way the operator can access and

modii)' the data only through the user interface. The rules and restrictions imposed on

each field by the interface guarantee the correct data format and input range. Also the.~e

files can a1ways be retrieved for purposes ofanalysis.

The peak description pararneters are uploaded from the DSP board to the host PC

through an interrupt driven mechanism. At the host PC level, these pararneters are first

directly saved in expanded memory in real-time. Between the real-time data transfer

cycles, the peak pl!rameters are decoded, processed, displayed, and saved in the

acquisition data file inside the hidden file structure.

•

•

GUI Implementation 44



The source code of the LiMCA software is structured in multiple modules. A list

ofthese modules can be found in Appendix B. Each module contains a group of functions

and classes. The global variables, class definitions, and constants are defined in the hender

(.h) files and the module irnplementations are located in files named with a .cpp suffix,

required by the Borland C++ compiler.

The modular structure is dictated by the size of the source code, that is the

variables cannot be compiIed because they exceed the capacity of the compiler. In order

to compile several source files, each of which may need to pass through preproccssors,

assemblers, and compilers, a Makefile was used. For details on the compilation and

linkage processes, see Section 3.5.

•
GUI Implementation 45

3.3 The front layer software (GUI)

Window Title

Figure 3.4 The inheritance concept design of a window

dial box

inhcritcd
dialog box

~f"texwfloat

basic
editor

basic menu

basic dialog box

1horhontal menu

•

•



GUI Implementation 46

•

The front layer contains three major windows: the setup window, the real-time

display window and the analysis window. Each includes a selection of sub-menus

(horizontal, vertical, and button menus), dialog boxes, graphie display windows, and data

display windows. The basic design ofa window for the GUI is iIIustrated in Figure 3.4.

The basic building blocks of a complex window (i.e. the "inherited window" in

Figure 3.4) are the basic classes such as the basic menu classes, the basic editor classes,

the basic window classes, the basic dialog box classes, and other inherited classes. Ali the

basic classes were available with the commercial software packages. The inherited classes

Sctup Medium Setup Pl'ohe Setup
- - - -

~
- - - -
~ ~

Setup
On·Une Analysis Quit

....- .....
acquire

...... .. _110."-L button" ~ii -,. r- -me"u
Setup - 1 II

~ - DSPSetup 1ïmeSetupStart
New - - - --- - - --
Test •Continue
Test Template

~ Template SelectionPrevious

1 Name
1 ....,. ......

'Iest Selection Acquisition 2 ..." ..... r---.
Selection 3 ..."......

Test Location No. Date 4 ..........
1 ---. . ••••• ilI ••••............".. 1 .................
Z ................ Z ••• ,!t••••••••••
3 ...........,... 3 ................
4 •..•..........• 4 ..................

Le&end:

El 0 0

The hierarchical structure of the setup window•
window

Figure 3.5

lIori:.ontal men" vertical menu dia/og box



were built subsequently. Once an inherited class had been defined, it was trented ns a

basic class which could be reused without repeated coding. Using the class inheritnnce

technique, our own window objects were inherited from a number of other inherited

classes and basic classes, and were thus built up efficiently.

Figure 3.5 demonstrates the hierarchical structure of the setup window. This

window is inherited from a basic window class, several levels of horizontal menu classes,

vertical menu classes, and several dialog box classes. These menu and dialog classes arc

themselves inherited from basic menu classes and basic dialog box classes. In particular,

one can notice that the setup dialog box and its four "child" dialog boxes became the basic

classes in the construction of two other dialog boxes. They are the "Template selection"

and the "Acquisition selection" dialog boxes. One can also notice that the "Test selection"

dialog box, which is the parent dialog box of the "Acquisition" dialog box, is itself the

child object of two vertical menus. In this way, the addition of new objects, the

modification and the maintenance of present objects, are easy to carry out. The el1àrt 10

add new applications based on previously written classes is minimized because of the

reusability and portability of these classes. Therefore, this programming methodology

suits on-going projects, in which frequent improvements cannot be avoided.

•
GUI Implementation 47

3.4 Software Design & Implementation

The new DSP-based LiMCA is completely different conceptually than the previolls

LiMCA generation and for this reason an entirely rebuilt interface was needed. This goal

was achieved by analyzing the description of the user's actions from the user's point of

view and combining it with the characteristics ofuse based on real work situations.

At the start ofthe design process, a general structure for the interface was decided,

based on the previous experience with the LiMCA system. This structure was designed

during severa! group meetings and was improved by taking into account the feedback

from the users of the firSt versions of tlte newly designed interface. Two important user

requirements needed to be met: tirst the system has to be configurable, i.e. ail the

parameters of the LiMCA system must be initialized appropriately, and second a real-time

display is needed to show graphically the different distributions important to a

meta!lurgist.

Due to the fact that this DSP-based LiMCA system was built for research

purposes, different materia! configurations have to be available for the researcher. This is

one of the lldvantages of our system compared with the commercially available LiMCA

version built by BOMEM Inc. Another benetit consists in the fact that the system is



•
GUI Implementation 48

UMCA MetalIYVater W1ndow

"Real·llme W1ndow"

"Quit" fUnctJon

1

"Analyse"
dlalog box

"Analyse"
vertical menu

Principal
horizontal menu

1 t
!
!
1
i
!
i
i
i
i
1. .

t._._ 4 ••••••••••••••••••••••••••••••••••l

"Start" tunctlon

"On-Une-Acqulre"

~
"5etup"

vertical menu

Figure 3.6 User Interface Structure - 1

•

•

1I0pentl to future developments. that is the object-oriented software is flexible and enables
the addition ofnew features without changing the previously written code.

The structure of the user interface is presented in Figures 3.6 through 3.10. Ali
these figures are related to each other in the sense that the description starts with Figure
3.6 and continues in a tree-like structure. Figure 3.6 illustrates the root of the tree, the
other ones being the branches ofthe tree.

Figure 3.6 represents the starting point in the user interface. The first objective in

the design was a simple start sereen. The LiMCA Meta1lWater Window provides the
Principal Horizontal Menu through which the user can perfonn the setup of the system in

order to start the operation. Through the Principal horizontal menu the user has different
choices: start :l~4\1iring data. analyze data already acquired or quit the prugram.

The "0n-Line-Acquire" gives the possibility to input the parameters needed for the
experiment or to 5tart the acquisition and. in this way. to see the actual distribution in the
real-lime window. In order to start the acquisition, the user can choose in the IlSetup tl

vertical menu betweeo starting a "New test tl and continuing a test (see Figure 3.7). The
item "Continue test tl was incorporated because there is a strong possibility that the

operator needs to stop a test. In this way. the respective test can be continued from the
point it was stopped. If"Continue test" is selected. the "Test Selectiontl dialog box cornes



•
GUI Implementation

"Setup"

vertical menu

"Newtestll

dlalog box

~L.-..--

"Continue test"

dlalog box

1

49

'"Templates" "Previous" .....u...... "Test Selection"

dlalog box dlalog box dlalog box
_____1 -,

Template1 Template2

"Setup Ferm"
dlalog box

Template n

Figure 3.7 User Interface Structure - 2

up on the screen and the operator can select one of the previously started tests that have
been saved into memory.

If a "New" test is picked from the "Setup" vertical menu, the operator can select
between using one of the several available templates or using a previous test. The

templates contain default values for dilferent types of media and can be used as a point of
departure in the respective test. The "Previous" acquisition feature was included to enable
the operator to reuse sorne ofthe elements ofprevious tests and, in this way, to save time
and to eliminate the possibility ofdata entry eITors.

No matter what selection is made from the "Setup" vertical menu, the user ends up
in the "Setup Form" dialog box which is iIIustrated in Figure 3.8. This dialog box is the

central point of the software and provides the user with the means of selecting and
inputting fields for ail the parameters of the LiMCA system. Because of its importance,
and to enforce the statements made in Section 3.1.1, the implementation of the "Setup

Form" dialog box will be presented next as a representative example for the whole

software package.



The length of the software makes impossible to present it entirely. but by
examining this iIIustrative part and by considering that aIl the other defined classes are

similar. one should understand the application quite clearly.•
GUI Implementation 50

"Setup Form"
dlalcg box

"Localon"Group Parameter Selection
Buttan Menu

Me~-lu-m-------pr!-be--_I:l-----T"""ILe
Setup Setup Setup Setup

"Owell
tlme"

"Number
of scans"

"MOde
selecl" tlme"n

PHA MCS

''''Ype'' "Orifice "ESZ "Pressure""lmmerslon
dlameler" currenl" depth"

"Denslty" "Temperature" "Peak "Ch 1
"DI h anne "Sampllng"Element" "Reslstlvlty" sc arge classifier" "
coefficient" "Channel B rate"

A"

•
Figure 3.8 User Interface Structure - 3

"Tesl Selection"

dlalcg box

1 1
1

1
Telt Tesl Test

1 2 n

1 1 1
"Acquisition Selection" "Acquisition SelecUan" "Acquisition Selection"

dlal,box dlalcg box dlalo~ox
\ 1

1 1 1 1 L'. 1 ( 1 1 ( ( l
Acq Acq Acq A.?'~ Acq Acq Acq Acq Acq

1 2 n 1" 2 n 1 2 n

• Figure 3,9

"Setup Form"
dlalog box

User Interface Structure - 4



51

ao ox

l
"X-axis Scallng"

electlon" "> CUrsor buttan menu "Cursor Mo

Position"
"Channel"

buttonmenu

"Analyse"

dl 1 b

butto monu

"Mode S vernent"

GUI Implementation

•

« »

Move Cursor

v V
min max

y
Tcxt Edltor

uV-axis Scallng"

Text Edltor

"< Cursor

Position"

''Total

Count"

Draw Dlagram

Display DlsplayPyCS

Figure 3.10 User Interface Structure - 5

Before describing the structure of the "Setup Formll dialog box) il is worthwhile
mentioning that Figure 3.9 10gic~lIy follows Figure 3.7 and Figure 3.10 succceds Figure
3.6. Figure 3.9 summarizes the UTest Selection" procedure and Figure 3.10 dcscrib~s the

"Analyse" dialog box which enables the user to observe the distribution that constitutcs
the final result of the experiment. As one can notice in Figure 3.10) the user has the

possibility to change the scating and the mode selection, ta move a cursor across the

diagram and to monitor different useful values on the text editors.
To implement a class) one has first to define it and then the interface functions

have to be implemented. The way the program is organized is the following: the
deflnitions are given in the files with a .H suffix and the implementations in the files with a

.CPP suffix.
The definition of the class called SetupFormDialog is given in the header

module M3 .H. The header file contains the declaration of the class SetupForrnDialog

as a derived class of the base class omDialog. omDialog is a dialog box c1ass

contained in the object-Menu commercial package. A dialog box is a collection of menu
objects that are automaticaIly aligned and enabled to interact as a unit. This means that

the event handler treats the diaIog box as a single selectable entity until the user enters il.

•

•



At that point, it is said to be "focused" and each of the dialog's components can be

individually se1ected and ruu.

//part of the header file rn3.h

class SetupForrnDialog : public ornDialog (

public:

rnyMetalDialog *rnd;

rnyProbeDialog *pd;

rnyDSPDialog *dd;

rnyTirneDialog *td;

ornLabel *11, *12, *12a, *13, *13a, *14, *14a, *15;

rnyTextEditor *te1, *te5;

ornButtonMenu *bm, *ok;

//constructor

SetupForrnDia1og( void );

ornBoolean doModalExit{ void );

) ;

The c1ass SetupForrnDialog is declared as a public member of the base c1ass

and inherits ail the members of the base c1ass ornDialog. Public specifies that the public

components of c1ass ornDialog remain public when regarded as components of c1ass

SetupForrnDia1og. The derived c1ass SetupForrnDialog is similar to its base

c1ass ornDialog , but has additional function components beyond those of the base class

and sorne SetupForrnDialog member functions differ ITom those ofthe base c1ass.

After the definition of the class, a number of variables are defined as public

members of the c1ass. These public members can be viewed as two groups. One is a

group of pointers to several other dialog boxes. These pointers link the "child" dialog

boxes like described in Figure 3.5. These dialog boxes are rnyMetalDialog,

rnyprobeDialog, rnyDSPDia1og, and rnyTirneDialog and provide input fields

c1assified as in Section 3.2. The other group also contains pointers, but these ones are for

input and display fields inside the principal dialog box (se(; Figure 3.5). These fields

correspond to the labels used for titles and subtitles, to the text editors used to input

certain data, and to the button menus used to access the other dialog boxes and to confirrn

that the setup window is correctly completed. After the definition of the pointers, the

constructor of the c1ass and an interface function are defined.

The constructor and interface functions for the class SetupForrnDialog are

included in the file Ml. CPP whichis attached in Appendix C. The constructor has to

carry out five tasks to complete the construction of the class. The first task refers to the

•

•

GUI Implementation 52



input fields, then memory has to be allocated for the four "child" dialog boxes. The next
task consists in defining a button menu, Iinking each button to the "child" dialog boxes.

and putting them in the local event queue. A suitable exit function has to be implemented
and this represents the fourth task and, finally, ail these processes have to be included in II

last event queue.
The structure of the input fields is represented in Figure 3.11. The format \Vas

chosen in this way because of the nature of the parameters. Some fields require text input.
sorne decimal numbers or integer numbers. The value of sorne parameters is dependent on

•
GUI Implementation

1 Label 1 1 Text Editor

1 1 IDecimal Editod 1 1Label Unit
)oPtional

1 1 Ilnteger Editor 1Label 1 Unit 1
Figure 3.11 Format of an Input field

S3

•

the chosen unit. This is the reason why three types of editors had to be implemented as

basic construction e1ements for input fields. Moreover, a pull-down vertical menu with

seroll bar was implemented for the units option to provide the user with the possibility of

selecting the units with which he is familiar.
Three classes, myTextEditor, myDecimalEditor, and mylntEditor,

were implemented in the module Ml •CPP to respond to the above mentioned purposes.

AIl these classes are built based on the omLineEditor class provided in the objectMenu

software package. This Une editor class can be used to allow the user to enter any textual

infonnation and can also be used as a data entry editor for use in a simple or complex

multiple field fonn. The definitions and the body of the three classes are given in

AppendixD.
In the source code, the fields are numbered from 1 to n. Letter l is used to

represent a label, te to represent a text editor, de to represent a decimal editor, and ie

to represent an integer editor. Rence for example te3 means the pointer pointing to the

object that represents a text editor ofthe third field ofthe dialog box.

The second task consisted in allocating memory for the four "chiId" dialog boxes.
These dialog boxes are defined in the header file M3. H and this part is included in

Appendix E. As one can notice in Appendix C, memory is now allocated for each of the

four dialog boxes: medium, probe, DSP, and time. The pointers used for each dialog box



are designated respectively by the names md, pd, dd, and td. The new operator offers

dynamic storage allocation, similar but superior to the standard library function malloe.

new tries to create an object of type myMetalDialog (or myProbeDialog, or

myDSPDialog, or myTimeDialog) by allocating sizeof (myMetalDialog)

bytes in the heap. The storage duration of the new object is from the point of creation

until the operator delete kills it by deallocating its memory, or unti! the end of the

program. If successful, new retums a pointer to the new object. A null pointer indicates

a failure (such as insuflicient or fragmented heap memory).

The third task included the definition of a button menu called bm and allocating

memory in the same way as above. A button menu is an array of menu items. The default

array configuration is one row for as many columns as there are items, but any

row/column combination can be specified. A four-button menu has been chosen for our

application in a two rows two columns configuration. The four buttons are called

respectively "Medium_setup", "Probe_setup", "DSP_setup", and "Time_setup" and can be

selected either by clicking the mouse on them or by using a hotkey, i.e. by pressing the key

ALT and the one of the letters M, P, D, or T.

After implementing the button menu which enables the user to set the parameters

through the "child" dialog boxes, another two buttons were programmed to offer a

convenient method for accepting or discarding the information introduced by the operator.

These two buttons are labeled "OK" and "CANCEL". By pressing or clicking with the

mouse on the "OK" button, the respective form is accepted. The "CANCEL" button

brings the user back to the beginning of the form and the enables him to star! ail the

process again.

Finally, the last task was to Iink ail the labels, editors, and button menus into an

event queue. In order to place this event queue as an event in a parent queue, a pointer to

this whole queue should be retumed to the parent queue. Thus the parent queue can

access and manage the local event queue. In our case the "Setup Form" dialog box is used

by two other dialog boxes as in Figure 3.5. These two dialog boxes are "Template

Selection" and "Acquisition Selection". These dialog boxes are treated by "Setup Form"

dialog box as parent event queues and the pointer to it is retumed to the parent queue by

"this" when the construction of the object is completed.

In this way different levels of event. queues are constructed and the Iink between

levels are pointers. Each of the pointers is initiated by its constructor and returned

through the "this" pointer.

The whole program is a group of queues Iike the one presented above Iinked

together in a structure but at different levels. The top level is a queue called the "root

•

1

GUI Implementation 54



queue" which in our case is a principal window with horizontal and vertical mcnus as

presented in Figures 3.4 and 3.6. The source code of the main program is includcd in

AppendixF.

This software, when started, constructs ail of the event qucucs until thc top, and

each event queue is constructed in the same way as the example prescnted hcrc (thc sllme

process applied for ail the queues). The construction process starts trom the bollom Icvcl

of the Medium, Probe, DSP, and Time dialog boxes, ail the way up to the principal

window and this window is pointed by the omMEQ pointer which is specilically dclincd

by objectMenu as a pointer to the root queue. After the construction of the event queues,

the program enters in a stage of execution in which each event can be activated in

response of the operator's choices. The activated or focused event can "travel" around the

queue structure constructed in the lirst stage.

As mentioned in Sections 3.1.1 and 3.2, the source code is organized in multiplc

modules. AIl the global variables, prototypes, and constants are delined in the header files

and the source code was split between nine *. CPP files. To compile and Iink ail the

header and source files along with objectMenu, MetaWINDOW, and Borland C++

libraries is a process that requires many steps. Therefore, il is worthwhile to prcsent the

procedure of compilation and linkage. The main utility used is the MAKE utility provided

in the Borland C++ compiler.

•
GUI Implementation 55

•

3.5 Compilation & linkage
MAKE is provided with a description of how the source and object files of the

program are processed to produce the finished product. MAKE looks at that description

and at the date stamps on the files, then does what's necessary to create an up-to-date

version. Ouring this process, MAKE invokes the compiler, the Iinker, and the utilities, but

it never does more than is necessary to update the finished program.

MAKE keeps the program up-to-date by performing the following tasks:

• Reads a special file (called a makefile with the name Imc.mak). This file tells MAKE

which .OBJ and Iibrary files have to be linked in order to create the executable file, and

which source and header files have to be compiled to create each .OBI file.

• Checks the time and date of each .OBJ file against the time and date of the source and
,,'

header files it depends on. If any of these is later than th~ .OBI file, MAKE knows that

the file has been modified and that the source file must be recompiled.

• Calls the compiler to recompile the source file .



• Once ail the .OBI file dependencies have been checked, checks the date and time of each

ofthe .OBI files against the date and time ofthe executable file.
• Ifany ofthe .OBI files is later than the .EXE, caUs the linker to recreate the .EXE file.

The process of obtaining the executable program is represented in Figure 3.12.

The source code is first written as a text file or as several modules. The source code is

compiled with the Borland C++ compiler and the corresponding abject files are obtained.

After this stage, the linkage process follows and consists in combining the object files with

the different libraries used, in the present case the Barland C++, the METAWINDOW,

and the object MENU Iibraries. In this way, the executable program is obtained.

•
GUI Implementation 56

Textfiles

METAWINDOW
LlBRARY

abject MENU
LlBRARY

BORLAND C++
LlBRARY

Object files

BORLANDC++

COllER

•
LINKER

Figure 3.12

Executable program

Compilation and linkage processes

•

As mentioned earlier, a makefile was used ta build the executable program. This

file is listed below:

#FILE: Imc.mak -- makefile to build Imcgui.exe

# section 1

OBJS = mO. obj ml. obj m2 .obj m3 .obj m4 .obj mS. obj m6 .obj

m7 .obj mS. obj



OBJS2 = ml.obj m2.obj m3.obj m4.obj m5.obj m6.obj m7.ob:i
m8.obj
DIR = g:\apps\borlandc\bin\\
HS ~ mO.h ml.h m2.h m3.h m4.h m5.h m6.h m7.h
CFLAGS=-f287 -k- -N -ml -DMETAVER4=1 -c
# Section 2
all: lmcdspl.LOD $ (OBJS) mO.EXE
lmcdspl.LOD : lmcdspl.ASM

c:\dsp56\bin\asm56000 -A -Blmcdspl.LOD -OS,SO,CRE -i,

lmcdspl
mO.OBJ : mO.CPP $(HS)

$(DIR)bcc $ (CFLAGS) mO.cpp
ml.OBJ : ml.CPP $(HS)

$ (DIR)bcc $ (CFLAGS) ml.cpp
m2.0BJ : m2.CPP $(HS)

$(DIR)bcc $ (CFLAGS) m2.cpp
m3.0BJ : m3.CPP $(HS)

$(DIR)bcc $ (CFLAGS) m3.cpp
m4.obj : m4.cpp $(HS)

$ (DIR)bcc $ (CFLAGS) m4.cpp
m5.obj : m5.cpp $(HS)

$ (DIR) bec $ (CFLAGS) m5.cpp

m6.obj : m6.cpp $(HS)
$ (DIR)bcc $ (CFLAGS) m6.cpp

m7.obj : m7.cpp $(HS)
$(DIR)bcc $ (CFLAGS) m7.cpp

m8.obj : m8.cpp $(HS)
$ (DIR)bcc $ (CFLAGS) m8.cpp

mO.EXE : $ (OBJS)
bec -f287 -k- -N -ml -y mO.obj -Yo $ (OBJS2) m4.lib -Yo­

m2.lib mY.lib
The makefile is structured in two sections: section 1 gathers the macro definitions

that will be used throughout this file and section 2 represents the sequence of compiling

and linking ofbath the DSP software and the graphical user interface.

In section l, OBIS and OBIS2 are defined and represent the abject files for ail the

modules used for the graphical user interface. The only dilference between OBIS and

•

•

GUI Implementation 57



58GUI Implementation

-k

-N

this option lets the user define the current version of

METAWINDOW (in this case, version 4 is set to true).

this option compiles and assembles the named .CPP and .ASM files, but does

not execute a Hnk commando

Section 2 starts with the Hne al!: Imcdspl.LOD $ (OBJS) mO.EXE

which represents ail the targets we want the make utility to update and this appears in the

command Hne make -f lmc .mak aIl > lmc err. txt. This command Hne is

used to execute the makefile Imc.mak with the targets specified in all and the output

redirected to a file called lmc err. txt, file used for debugging purposes. The files

included in the al! line consist of the compiled DSP driver ,the object files (mO - rr.8),

and the final result, the file mO.exe. The lmcdspl. LOD file represents the outcome of

the compilation of the file Imcdspl.ASM using the DSP 56000 macro assembler. For

details related to the DSP driver, please see [Shi 94].

The following Hnes of the makefile show the procedure for obtaining each object

file from the respective source code text file. For example, the MO object file is the target

-c

OBJS2 is that OBJS2 does not contain the abject file of the main (mO.obj) because in the

linking stage olle has ta excJude the main. In the same section, the DIR macro definition

contains the path where the system can find the compiler and the linker (with the name

bcc.exe). Another macro definition, HS, contains the collection of the header files and

finally, CFLAGS is a macro definition for ail the options used ta customize the

compilation and linkage processes. The parameters used for the present compilation are:

-1287 this option tells the compiler ta generate floating-point operations using inline

80287 (or higher) instructions rather than using calls ta 80287 emulation

library routines.

this option generates a standard stack frame, which is useful when us1ng a

debugger ta trace back through the stack of called subroutines.

this option generates stack overflow logic at the entry of each function, which

causes a stack overflow message ta appear when a stack overflow is detected.

This is costly in terms ofboth program size and speed but is provided as an

option because stack overflows can be very difficult to detect.

this option tells the compiler to compile using the large memory mode!. When

a module is compiled, the resulting code for that module cannot be greater

than 64 K, since it must ail fit inside one code segment. Because the initial

modules were too big to fit into one (64K) code segment, one must break them

up into different source code files, compile each file separately, then Iink them

together.

-DMETAVER4=1

-ml

•

•



GUI Implementation -1\
~;I

file which is obtained ITom the MO. CPP file and the header files MO. H-M7 • H. The

makefile checks if any of these files is updated and, if this is the case, activates the

command-Iine compiler -.vith the selected options CFLAGS.

The last three lines show the target file as being mO. exe, built by linking the

object files taking into account the specified options and combining them with the

available Iibraries.

The executable mO •exe is the result of compilation and linkage of ail the source

code files and, in the nelet chapter, different screens of this software will be prcscnted as

results of the work.



• Chapter 4: RESULTS AND CONCLUSIONS

The new LiMCA software was tested while doing many experiments for both
water and aluminum. The degree ofutilization orthe DSP coprocessor board can give us

an idea of the potential for future development such as implementing the Peak
Classification Task at the DSP level and developing code to use DAC channels for process
control. Figure 4.1 shows the degree ofutilization mentioned above.

The calculation of the usage by ail the processes in this figure was based upon the

•
enen
CI)

ë
a.

idle (51%)

data transter (1%)

peak description (9%)

peak sampling (24%)

o 10 20 30 40 50 6~ 70 80 90 100
%

•

Figure 4.1 Usage of the DSP CPU

worst case which was mentioned in Section 2.2; 1. The assumptions are that the DSP real­

time software is working in the two-channel mode and that the ADe sampling rate is set

to 50 kHz to avoid aliasing of the input signal. Considering these assumptions and the

worst operating conditions, i.e. 2000 peaks per second, the DSP processor is used 49% of

its capacity.
As for the host-DSP interface, the same experiments perfonned in water and

aluminum showed that there were no detrimental delays introduced to the DSP process by

the GUI. For the amount of data to be transferred from the DSP to the host, the interface

has not reached its full capacity. The high efficiency of the interface is attributed to the



Results and conclusions 61

1

•

successful memory management and synchronjzation between the background and front

functions.

The following figures are sorne of the screens of the graphical user interface,

presented here in order to show how the user can navigate through this interface. Bascd

on the tree structure presented in Section 3.4, one can follow the screcns that arc shawn

below and that were captured from the computer1s monitor.

Figure 4.2 presents the "LiMCA MetallWater Window" which is the opcning

window of the u~er interface. Inside this window, the "Principal horizontal menu"

containing three items can be seen. The HOn-Line-Acquire" item was sclected and fi

vertical menu composed oftwo items, "Setup" and "Start\ cornes up. Ailer "Setup" \Vas

chosen, the user can select between starting a "New test" or to "Continue tesC'. In the

case presented in Figure 4.2, a "New testIl was selected and another vertical menu cornes

up containing two items: "Templates" and nprevious". In Figure 4.2, the "Previous"

selection was made and another box containing test titles and locations comes up. This

list enables the user ta select one of the previous tests as the starting point in a "New test".

Figure 4.3 shows the same principal window but now the beginning of a "New

test" is selected from the "Tcmplate" list. As one can notice, the user can choose bctwccn

three available templates: "NEW", "Waterll
, and "Aluminum". The IIWaterll and

"A1uminumu templates contain commonly used parameters that the operator will sec as

• Figure 4.2 Using a previous test as starting point for a new one



soon as he chooses the respective template. The "NEW" item gives the possibility to save

another template than the two specified. This new template is saved into memory and

added in the uTemplate Choicesudialog box that can be seen in Figure 4.3 .•

•

Results and conclusions 62

•

Figure 4.3 tIsing temlltates to start Cl new test

Figure 4.4 Continuing an acquisition



Results and conclusions 63

Another feature ofthe user interface is that the operator can browse previous lests
and acquisitions as presented in Figure 4.4. The user can choose one of the previous tests,
and a dialog box containing a Iist of acquisitions corresponding to the respective test
cornes on the sereen. The operator does not have to input anything in the editing fields

Figure 4.! lnitlating the USetuptt for a new test

because these fields are automatically updated and helshe can start a new acquisition using

previous clements.
Figures 4.5 and 4.6 show a sample of the setup window. In Figure 4.5, the active

dialog box is the "Setup Fonn" dialog box which contains general information (i.e. title,

acquisition number, date, location, etc.) about the test that will be performed. The user is
allowed to type different information about the experiment, information that is saved and

will distinguish the respective test. There are also four buttons which enable aecess to the
four "childll dialog boxes which are necessary for inputting or adjusting the different

parameters orthe experiment.
'.

In Figure 4.6, one of the "child1t dialog boxes of the "Setup lt box, t'Probe Sctupll

dialog box, is activated by clicking one of the four buttons inside the IISetup" dialog box.
It contains difFerent fields that can be edited by the operator, but also som~ of the values

are directly edited by the software itself. These values are loaded in the sôftware for sorne



of the templates in use at tbis moment. Also) one can notice that for most of the input
fields) unit conversion pop-up dialog boxes are attached. In each ofthese) the desired unit
of measurement is selected using a seroll bar and the corresponding value is automatically
calculated and displayed in the associated field. Several choices of units were given.
standard SI as weil as industry used units.

Figure 4.7 shows the calibration signal used to tune the LiMCA apparatus before
any experiment is started. This calibration signal is displayed in the real-time display
window which has a graphical display area and a data display area.

Figure 4.8 demonstrates the real-time window for an aluminum test. In the case
presentedt the inclusion counts per PRA channel are displayed in real-time. Finally) Figure
4.9 shows a sample of the analysis window. It appears also as two areas: one for
graphical display, the other for data display. Several buttons and one line cursor are
available for data analysis. One should mention that in Figures 4.8 and 4.9 different types
of peaks are counted and displayed in different colors. These cannot be seen in the given
representation. The counts for normal pulses are labeled with NP and the baseJine jumps
withBJ.

•

•

•

Results and conclusions

~. iill'''i~ (Ii oi< ~. '" .~:f.:.::'; ".'. ;; ~. ~' ~ ~ ~.

(------------~~~

!, ~~s:TI~~::~{Ff0f~;fi~~}};~T;:.~iJi?;;.~~1tÎ~~~f~i~t:~V:?;~~~f;.~~î;.~i:f~~~k{W~~Wf.1~
;,F,.,..~~,h'~»N. ~...

{:..~~~I,>~\.;.;;.-. :t

·~,;;""';~,~\~~\iI~~~~:1}[~~~~~i~'~;;~~I~11
f." ". 1 ~~~~~'~\\;h.,).. ' ..L':j'..~~>.\: (~ ~ ~lI" HHL"".j,u~l»t - ~ ~;~.w~~~~f:1:j~:.~~~~%~P~l·P
: " .. a .' -#~ • ~< "~ ~· .. ·l·~ ~.~ :~..:. .:.~ ~t~,. •• ~,";:"_.~~! ~.~ "';:~~"" , t1.cl~L,.{~~I~~~'1~:d
: . .. ).... ""v-.:.· " ~ .. ' '~"':."'" ...... ~ ...... ~ ~ .. ,;oI~_~~f""W"""4_.~~ w ....~"""t~:-•• ~, ...~ ~"11{_ ..":"{>•• ~~'l, ""'-~"fi""'«'.,,~.......~~~".!~:::::~ .!it<.\~"J\
: ~~ 3. ~ { 5~' .; r 10. ~ r ."'! ~,:- ';. ~ ":'~.~''(~~';' J;.," \~ ~ ~ ~ ... ~ 'l2~ • -l:)4)"Ji~«J 1H():;;l""':'",~ ~ a1f ,~«~«~:.:'~~)~:;;:@~.~~": .i

i"i>,~ '. '"~. fi";;;;,,î~'~;'~ij~~~~~~~f~~~~;~J~IJ~~ml'!i
...............~ ,,' , ~ .' ~ •• .:Y .:\H ;-\~\ù~.\f '"..<; "t~.. I ~.". " ", ~<~~.-\~ ~-t''': ('1" ·:·~l:'·t ~f;'.!'· (

':J~::'~·~7':.:'·~::::,===·i.i.::·'?f~~i.1ZCt~;~~~0~?(:r:~~r':~~;\!1,,[
Figure 4.6 Activated "Probe Setup" dialog box

64



1

Results and conclusions

] '2511

'.'c
J" 2eII. ..

c••. ·

<1
"01511.•','

:':",.' .

:c'':.:::·:· .':.. ~...
:.. :.
'. t.'.. "

65

•

Figure 4.7

:,:;:y.'..

:~ii
'.':151
:.1a/?::;: .

;·~.i.i~··:·:.

'~,fi~·'

Figure 4.8

Real-time display - Calibration signal

Real-time display window - Aluminum test



Conclusions

A DSP-based LiMCA system has been implemented to replace the first generation
LiMCA system, which is built using the analog signal processing technique. The DSP
re11-time software) the host-OSP interface and the GUI have been implemented and
tested. AlI these software parts are adequate to support the worst case of LiMCA
operation. The application of DSP hardware and software provides a software-based
signal processing system. The system is software controlled, cost effective. and easier to
adapt to different situations.

Object-oriented programming is applied in the implementation ofthe graphieal user
interface. Because ofthe reusability ofthe code. class inheritance. and data encapsulation,
this programming technique is very weil suited to the system's development for whieh
frequent modifications and improvements have to be done as the project is continuing.

This system allows us to continue the investigation into the possibility of
discriminating the types of inclusions in liquid metals based on the Electric Sensing Zone
principle. To enhance the performance of the OSP LiMCA system, sorne improvements
are projected:

• The implementation of a sharp notch tilter is needed to eliminate frequency

components that interfere with the LiMCA signal. These components are due to the

•

•

•

Results and conclusions

1 ••
•••• ••,.
t
•
•
c
•
••,

8:11.· 8... aS.' :li". a7. :1•• ·:19. .....
,.·c......: ............

Figure 4.9 An eJ:ample of the"Analysis tt window

66



Results and conclusions 67

electrical noises generated by other equipment used in an industrial enviromnent where the

experiments take place. The filter can be built upon a fast low-price OS? board and ean

communicate with the DS?-56 board through its network port.
• Although the peak description parameters are saved, the sampled LiMCA peaks

also have to be saved for research purposes. Another OS? process has to be designed and

implemented to transfer the sampled peak through the host-OS? interface into a fast hard

drive using the SCSI (Small Computer System Interface) of the OS?-56 hardware.
• A compression algorithm and its implementation should be considered lo

decrease the size of the files containing the sampled peaks and the peak description

parameters.
• A table-driven peak classification algorithm can be implemented according to the

characteristics of the peaks given by the peak description parameters. Further studies

have to be conducted conceming the peak classification algorithm, especially on the

classification of the Multiple Pulses. Finally, the classification algorithm has to be

embedded in the DSP software. This part of the future work is important because the

peak classification makes possible the elimination of false counts and the automation of the

orifice conditioning.
• A software LiMCA signal simulator is needed to study the high pass filter elTect

and to compensate the magnitude attenuation ofthe LiMCA peaks.



•

•

REFERENCES

[Ariel 89] Ariel Corporation, User's Mall/lal for the DSP-56 DSP Coprocessor Boardfor

PC Compatibles, Ariel Corporation, 1989
[Bates and Hutter 81] D.A. Bates and L.C.Cutter, "An Evaluation of Aluminium Filtering

Systems using a Vacuum Filtration Sampling Deviee", Light Metals, The
Metallurgical Society ofAIME, pp. 707-721, 1981.

[Bau"man et al. 76] K. BaUlonan, J.D. Bornand, G.a. Leconte, "Impact of
Purification Methods on Inclusions and Melt Loss", Light Metals, The

Metallurgical society ofAIME, pp. 191-207, 1976.
[Booch 91] G. Booch, "Object Oriented Design With Applications", The

BenjaminlCummings Publi~hing Company, 1991.
[Carayannis et al. 92] G. Carayannis, F. Dallaire, X. Shi, R.I.L. Guthrie, "Towards

Intelligent Detection ofIncIusions in Liquid Metals", Proc. Int. Symposium on
Artificial Intelligence in Materials Processing Operations, 31st CIM Conf. of

Metallurgists, Edmonton (Alberta), pp. 227-244, Aug. 1992.
[Coulter 56] W. H. Coulter, "High Speed Automatie Blood Cell Counter and Cell Size

Analyzer", Proc. ofthe National Electronic Conj, pp. 1034-1042, Chicago (IL),

1956.
[Dallaire 90] F. Dallaire, "Eleetrie Sensing Zone Signal Behaviour in Liquid Aluminum",

Master's 1nesis, Dept. ofMining & Metallurgical Eng., McGilI University, 1990.

[DeBlois and Bean 70] R.W. DeBlois, C.P. Bean, "Counting and Sizing Submicron

Particles by the Resistive Pulse Technique", The Review ofScielltific Instruments,

Vol. 41, No. 7, pp. 909-915,1970.

[Doutre 84] DA Doutre, "The Development and Application ofa Rapid Method of

Evaluating Molten Metal Cleanliness", Ph.D. Thesis, Dept. ofMining &

Metallurgieal Eng., McGiII University, 1984.

[Foleyet al. 90] J.O. Foley, A. van Dam, S.K. Feiner, J.F. Hughes, "Computer Graphies,

Principles and Practice", Addison-Wesley Publishing Company, 1990.

[Kulunk 92] B. Kulunk, "Kinetics ofRemoval ofCalcium and Sodium by Chlorination

from Aluminum and Aluminum-IWT"10 Magnesium Alloys", Ph.D Thesis, Dept. of

Mining & Metallurgieal Eng., McGilI University, 1992.

[Kuyucak 89] S. Kuyueak, "On the Direct Measurement ofInelusions in Molten Metals",
Ph.D. Thesis, Dept. ofMining & Metallurgieal Eng., McGilI University, 1989.



[Kuyucak and Guthrie 89] S. Kuyucak, R.LL. Guthrie, "On the Measurement of

Inclusions in Copper-Based Melts", Cali. Met. Quart., Vol. 27, pp. 41-48. 1989.

[Laurel 90] B. Laurel, "The Art ofHuman-Computer Interface Design", Addison-Wesley

Publishing Company, 1990.

[Lee 91] H.C. Lee, "On the Development ofa Batch Type Inclusion Sensor in Liquid

Steel", Ph.D. Thesis, Dept. ofMining and Metallurgical Eng., McGill University,

1991.

[Levy 81] S.A. Levy, "Applications of the Union Carbide Particulate Tester", Ligh/

Metals, The Metallurgicai Society ofAIME, pp. 723-733, 1981.

[Mansfield 82] T.L. Mansfield, "U1trasonic Techno10gy for Measuring Molten

Aluminium Quality", Light Metals, The Metallurgicai Society of AIME, pp. 969­

980, 1982.

[Motorola 89] Motorola, DSP56000lDSP56001 Digital Sigl/al Proce.\·sor User's

Malll/al, 1989

[Motorola 92] Motorola, "24-Bit General Purpose Digital Signal Processor". M%/'()!a

Semicollductor Tee/mical Data, Rev.3, 1992

[object-Menu 92] Island Systems, object-Mel/u- The professiona! Graphica! User

Interface toolkitfor C++, Island Systems, 1992.

[Oppenheim and Schafer 89] A.V. Oppenheim, R.W. Schafer, Discrete-lil/le Signa!

Processing, Prentice-HaIl, 1989.

[pitcher and Young 69] D.E. Pitcher, "Methods ofan Apparatus for Testing Molten

Metal", U.S. Patent, 3,444,726, May 20,1969.

[Shi 94] X. Shi, "Upgrading Liquid Metal Cleanliness Analyzer (LiMCA) with Digital

Signal Processing (DSP) Technology", MEI/g. Thesis, Depl. ofMining &

Metallurgicai Eng., McGiII University, 1994.

[Shneiderman 92] B. Shneiderman, "Designing the User Interface, Strategies for Effective

Human-Computer Interaction", 2nd Edition, Addison-Wesley Publishing

Company, 1992.

[Siemensen 81] C.J. Siemensen, "Sedimentation Analysis ofinclusions in Aluminium and

Magnesium", Met. Trans. B., Vol. 12B, pp. 733-743, 1981.

[Thibault et al. 89] J.-F. Thibault, A. Boisset, F. Dallaire, G. Carayannis, "Pattern

Recognition Techniques for Metal Quality Control", Cal/adial/ COI/f. 0/1 E!eclrica!

alldComputer Engineering, Montréal (Québec), pp. 771-774, September 1989.

[Thimbleby 90] H. Thimbleby, "User Interface Design", Addison-Wesley Publishing

Company, 1990.

•

•

References 69



[Tian et al. 92] C. Tian, F. Dallaire, R.LL. Guthrie, "Inclusion Removal from A1uminum

Melts through Filtration", Proc. Advances in Production and Fabrication ofLight

Metals andMetal Matrix Composites, 31 st CIM Conf. ofMetallurgists, Edmonton

(Alberta), pp. 153-161, Aug. 1992.

[Yamanoglu 92] G. Yamanoglu, "Characterization of Submerged Powder Injection into

Water Using an In-Iining Particle Detection System", Master's Thesis, Dept. of

Mining & Metallurgicai Eng., McGiIl University, 1992.

•

•

•

References 70



•

•

APPENDIX A: DECODING PEAK PARAMETERS
FROM DSP FORMAT INTO HOST FORMAT

M6.CPP

//-----------------------------------------------------
//convert peak data from DSP format to HOST format

void PkParmConvert( PK STRUCT *orig_pk, PK STRUCT1 *peak)
{

unsigned long base_count;
base_count=(unsigned long)orig_pk->start_time_hi*65536L

+(unsigned long)orig_pk->start_time_lo;
peak->start_time=(float)base_count/WorkingSetup.SFreq;
peak->start_slope=orig_pk->start_slope;
peak->max_time=(float) (base_count+(unsigned

long)orig_pk->max_time)/ WorkingSetup.SFreq;
peak->height=orig_pk->height;
peak->width=(float)orig-pk->end_time*1000.0 /

WorkingSetup.SFreq;
peak->end_slope=orig_pk->end_slope;
peak->cha_num=orig_pk->cha_num;
}

M6.H

typedef struct PK_PARM { //data structure for ~aw peak
//parameters

unsigned stilrt_time_hi; / /high 16 bit of start time
unsigned start_time_lo; //low 16 bit of start time

int start_slope;
int max_time; //time at max

int height;
int end_time; //time at end



int end_slope;

int cha num; //PHA channel number, + for channel A,

//- for channel B

1 PK_STRUCT, *PK_STRUCT_PTR;

•
Appendix A 72

int height;

float max time;

float width;

int end_slope;

•

•

typedef struct PK_PARMl //data structure for

//converted parameters

float start_time; //start time in second

int start slope; //identical to the one in PK PARM

//struct

//time at max in second

//identical to the one in PK PARM

//struct

//peak width in ms

//identical to the one in PK PARM

//struct

int cha_num; //identical to the one in PK PARM

//struct

PK_STRUCT1, *PK STRUCT1_PTR;



MO.H
Ml.H

Ml.H

M3.H

M4.H
MS.H

M6.H
M7.H

APPENDIX B: LIST OF MODULES FOR THE LiMCA
GRAPHICAL USER INTERFACE

Header file for unit delinitions.

Header file for unit structure.
Header file for LiMCA setup.

Class definitions header file for our own derived classes.
The prototypes of the LiMCA setup functions.

Class definitions header file for the setup parameters and Il1cthod
functions.

Header file for different parameters definitions.

Header file used to integrate MetaWINDOW and objcct-Mcnu.

MO.CPP

Ml.CPP

Ml.CPP
M3.CPP

M4.CPP

MS.CPP

M6.CPP

M7.CPP

MS.CPP

Main program.

Class functions.

Functions for LiMCA setup.
Class function body of the DSP loader.

Global functions for the DSP loader.
Low-level interface functions for the DSP proccss.

Real-time functions.

Functions for the EMS management.

Functions for LiMCA setup.



•

•

APPENDIX C: THE CONSTRUCTOR AND INTERFACE
FUNCTIONS FOR THE CLASS

SetupFormDialog

MI.CPP:

//ml.cpp: body of the class SetupFormDialog

//------------------ for Class SetupFormDialog -------

SetupFormDialog::SetupFormDialog( void) :omDialog (0,0)

int label_font = 9;
int input_font = 9;
int input_color = YELLOW;
int input_back_color = CYAN;
omDressUpTypes input_dress = RIDGE;
int menu_font = 9;
int input_str_len = 24;
int label_str_len = 20;
int title_color =RED;
int title_font = 20;
char *init_str = "111111111111111111111111";
char *pic_str = " ";
char 5[25];

//-------some general info input fields----------------

//Field 1: test title
strcpy( s, "Test Title: ");
TextLengthInc( s, label_str_len, ALIGN RIGHT );
Il = new omLabel( 5 );

Il -> usedNew = TRUE;
Il -> menuFont.omSetFont( label font );

tel = new myTextEditor( init str );
tel -> usedNew = TRUE;



Appendix C 75

tel -> inputFont = input font;
tel -> inputFontColor = input_color;
tel -> dress = input_dress;
tel -> setPicture( pic_str );

IIField 2: acquisition number
strcpy( s, "Acquisition number: ");
TextLengthlnc( s, label_str_len, ALIGN RIGHT l;
12 = new ornLabel( s l;

12 -> usedNew = TRUE;
12 -> rnenuFont.ornSetFont( label font );

itoa(WorkingSetup.AcqNo, s, 10);
TextLengthlnc( s, input_str_len, ALIGN CENTER l;

12a = (ornLabel *) new ornLabel( s );
12a -> usedNew = TRUE;
12a -> rnenuFont.ornSetFont( input font, l, input_color l;

12a -> bkColor = input_back_color;

IIField 3: date
Il 'Date (rnrn/dd/yy): ' will be a label

Iithe current date is always

strcpy(s, "Date (rnrn/dd/yy): ");
TextLengthlnc( s, label_str_len, ALIGN RIGHT );

13 = new ornLabel( s );
13 -> usedNew = TRUE;
13 -> rnenuFont.ornSetFont( label font );

_strdate( s);
TextLengthlnc( s, input_str_le~, ALIGN CENTER l;

l3a = (ornLabel *) new ornLabel( s );
l3a -> usedNew = TRUE;
l3a -> rnenuFont.ornSetFont( input_font, l, input_color l;

l3a ->bkColor = input_back_color;

IIField 4: Urne



•
Appendix C

strcpy(s, "Time (hh/mm/ss): " );
TextLengthlnc( s, label_str_len, ALIGN RIGHT );
14 = new omLabel( s );
14 -> usedNew = TRUE;
14 -> menuFont.omSetFont( label font );

76

strtime(s);
TextLengthlnc( s, input_str_len, ALIGN CENTER );
14a = (omLabel *) new omLabel( s );
14a -> usedNew = TRUE;
14a -> menuFont.omSetFont( input_font, 1, input_color );
14a -> bkColor = input_back_color;

//Field 5: test location
strcpy(s, "Location: ");
TextLengthlnc( s, label_str_len, ALIGN RIGHT );
15 = new omLabel( s );
15 -> usedNew = TRUE;
15 -> menllFont.omSetFont ( label font);

te5
te5

te5
te5
te5

te5

= new myTextEditor( init_str );
-> usedNew = TRUE;

-> inputFont = innut font;. -
-> inputFontColor = input_color;
-> dress = input_dress;
-> setPicture( pic_str );

•

//--------------- Medium dialog ------------------

md = (myMetalDialog* ) new myMetalDialog;
md -> usedNew = TRUE;

md -> setTitleBkColor (input_back_color);
md -> setTitleFont( menu_font, title_color, title_font);

//------------------ probe dlal~g ------------



Appendix C 77

pd = (myProbeDialog* new myProbeDialog;
pd -> usedNew = TRUE;
pd -> setTitleBkColor (input_back_color);
pd -> setTitleFont( menu_font, title_color, title_font);

II--------------------DSP nia log ----------------

dd = new myDSPDialog;
dd -> usedNew = TRUE;
dd -> setTitleBkColor (input_back_color);
dd -> setTitleFont( menu_font, title_color, title font);

11----------------- Time dia log ---------------

td = new myTimeDialog;
td -> usedNew = TRUE;
td -> setTitleBkColor (input_back color);
td -> setTitleFont( menu_font, title_color, title_fontl;

11-------- Button Menu ta access the above four dialogs---

bm = (omButtonMenu*) new omButtonMenu( 4,

buttons ' ",

0,0, Il upper left corner
0, 0, Il no menu hot-key
2,2) ; Il 2 rows x 2 cols

Iltotal

md) + *Ilid

pd) + *pd
dd) + *dd
td) + *td;

bm -> usedNew = TRUE;
bm -> setMenuFont(menu_font, l, input_color);

*bm + LITERAL HOTKEYS
+ "-Medium_setup" + LU1(PassXY2dMedium,
+ "-Probe_setup" + LU2(PassXY2dProbe,
+ "-DSP_setup" + LU3(PassXY2dDSP,
+ "-Time_setup" + LU4(PassXY2dTime,



•
Appendix C

bm -> setHotkey(O, K2_F2);
this button menu

78

//sets F2 as a hotkey for

•

/**** this is OK/Cancel buttons inside Real-time Display
******/

ok = ( omButtonMenu* ) new omButtonMenu ( 2, 0,0,0,0,1,2 );

*ok + LITERAL HOTKEYS
+ tf_OK"

+ "-CANCEL" + ResumedSetupForm
+ AUTO_BUTTONUP + IS_RADIO + IS_GROUP;

ok -> m[Ol .exitType = o~10DAL_EXIT;

ok -> eventType = omGROUP;

*this + WITH_TITLE("Setup")

+ *11 + *tel
- *12 + *12a
- *13 + *13a
- *14 + '14a

- *15 + *te5
- *bm + ALIGN BOTTOM + ALIGN MIDDLEH
- *ok + ALIGN BOTTOM + ALIGN MIDDLEH + IS_MODAL;

omBoolean SetupFormDialog::doModalExit( void)

int i;

char s(26),sl[12),num[10);
//field 1: test title

if( Status.NewTest Il Status.NewTemplate
strcpy(WorkingSetup.TestName, dSetupForm -> tel ->

getFie1d( 1 ) );

//field 5: test locatio~·

strcpy( WorkingSetup.Location, dS~tupForm -> teS ->
getField( 1 ) );



Appendix C

}

if( Status.NewTemplate )
i = ornReply( "Do you want to save this template?",

WorkingSetup.TestName, -1,
n .... yes", "-No");

if( !i )

AppendTemplatelndx( );

79

dTemplates ->vrns -> enableltem( TotalTemplates - 1 );
strcpy(s, SetupTemplate[ TotalTemplates- 1] . Nç.me );
TextLengthlnc( s, 24, ALIGN_CENTER );
dTemplates -> vrns -> newText( TotalTemplates -1, 5);

}

else {
TotalTemplates--;
}

}

else if( Status.NewTest ) {
i = ornReply( "Do you want to save this setup?",

WorkingSetup.TestName, -l,
If-Yes", II_Non);

if( li) (

AppendTestlndx( WorkingSetup.TestName,

WorkingSetup.Location );
AppendAcqlndx( "NULL" );

SaveSetup ( Tests [ ActiveTest ). TestDir, Acqs [

ActiveAcq ).SetupFile,
SETUP_ID, ActiveTe~t, ActiveAcq );

Status.NewTestSaved = TRUE;
}

}

else (
i = ornReply( "Do you want to save this setup?",

WorkingSetup.TestName, -l,
"-Yes", "-No");



•
Appendix C

if( !i) (

if( Acqs[ ActiveAcq l.AcqFileFlag ) {
AppendAcqIndx( "NULL" );
dPrevious -> vmsq -> enableItem( ActiveAcq);

strcpy(s, "Acquisition" );
itoa( Acqs[ ActiveAcq ] .AcqNo, num, la );

strcat ( s, " ");
strcat(s, num);
TextLengthInc( s, 15, ALIGN_CENTER );
strcpy( 51, Acqs[ ActiveAcq ] .Date );
TextLengthInc( 51, la, ALIGN_CENTER );
strcat( s, 51);
dPrevious -> vmsq -> newText( ActiveAcq, 5);

80

•

SaveSetup ( Tests [ ActiveTest ]. TestDir, Acqs [

ActiveAcq ] .SetupFile,
5ETUP_ID, ActiveTest, ActiveAcq );

}

}

5tatus.NewTemplate = FAL5E;
5tatus.NewTest = FAL5E;
return FAL5E;
}



APPENDIX D: UNE EDITOR CLASSES

M3.H:

Il FILE: M3. H

Ilclass definitions for our own derived class
Ilfor lmc GUI

11-------------- CLASS myDecimalEditor --------------­
class myDecimalEditor: public omLineEditor

public:

myDecimalEditor( char *any line,
omLineEditor( any_line, maxlen

omBoolean interceptFunction();

} ;

int maxlen=-l ):

(1; Il constructor

11-------------- CLASS myTextEditor -----------------­
class myTextEditor: public omLineEditor

public:

myTextEditor( char *any_line, int maxlen=-l ):
omLineEditor( any_line, maxlen ) (1; Il constructor

omBoolean interceptFunction(};

} ;



•
Appendix D

11----------------- CLASS mylntEditor ----------------­
class mylntEditor: public omLineEditor

public:

mylntEditor( char *any line, int maxlen=-l ):
omLineEditor( any_line, maxlen ) II; Il constructor

omBoolean interceptFunction();

1;

from mI.cpp

11---------- for cla&s myDecimalEditor ------------­
omBoolean myDecimalEctitor::interceptFunction( void)

int i,j=O;
char *dot_ptr;
char 5[25];

82

if (omU. anyKbd) Il if keyboard hit ...

Ilintercept "Enter".

•

if (omU.ch1 == 13)
i = 0;

while(theString[i] != '\0')

if(theString[i] > 48) j++;
i++;

1

if (j == 0) (

omDisplayMessage (" Input error

2500, Ilde1ëly
500, 285, Il x & y

BLAC~, Iitextcolor
YELLOW); /Ibackcolor

return FALSE;

",



Appendix D S3

1
if( (strehr( theString, '+') != NULL) Il

(strehr( theString, '-'l != NULL) )
omDisplayMessage("Input format error",O);
return FALSE;

1
if ( (dot_ptr = strehr ( theString, '.' )) != NULL )

if( strehr( dot ptr + 1, '.') != NULL)
omDisplayMessage("Input format error",O);
return FALSE;

1
for(j=i=O; theString[i) !='\O'; i++)
if( theString[i) != ' ') s[j++] =

theString[i);
s[j] ='\0';
TextLengthlne( s, 24, ALIGN CENTER );
setField ( 1,5);

return FALSE;
)

1
return FALSE;
)

11---------- for elass myTextEditor ---------------­
ornBoolean myTextEditor::intereeptFunetion( void) {

ehar 5[25];

int i;

if (omU. anyKbd) { Il if keyboard hit ...

if (omU:th1 == 13) (
strepy ( S, theString );

stringWords( 5 );

Ilintereept "Enter".



•

•
1

Appendix D

TextLengthlnc( s, 24, ALIGN CENTER );
setField( l,s);
return FALSE;

return FALSE;

//------------- for class mylntEditor -----------------­
omBoolean mylntEditor::interceptFunction() {

int i, j = 0;

char s[25];

if (omU. anyKbd)
if (omU.chl == 13)

for(i=O; theString[i] !='\O'; i++)
if( theString[i] l= , , ) {

s[j++] = theString[i];
}

}

s[j] = '\0';

TextLengthlnc( s, 24, ALIGN_CENTER );
setField ( l, s} ;
return FALSE;

}

return FALSE;

84



APPENDIX E: CLASS DEFINITIONS FOR
DIALOG BOXES

M3.H:

IIFILE: M3.H

Ilclass definitions for our own derived class
Iifor lrnc UGI

II-------------Class rnyMetalDialog ---------------------­
class rnyMetalDialog:public ornDialog

public:
ornLabel *11, *12, *13, *14, *14a, *15;
ornVertMenuScroll *vmsl, *vms2, *vms3;
ornScrollMenuDlg *srndl, *srnd2, *srnd3;
ornComboBox *cbl, *cb2, *cb3;
rnyTextEditor *tel;
rnyDecirnalEditor *de2, *de3, *de4, *de5;
omButtonMenu *ok;
struct Value v2,v3,v4,v5;

Ilconstructor
rnyMetalDialog( void l;
omBoolean doModalExit( void );

1;

/I-----------Class rnyProbeDialog --------------------­
class rnyProbeDialog:public ornDialog

public:
ornLabel *11, *12, *13, *13a, *14, *15;
ornVertMenuScroll *vms2, *vms4, *vms5;
ornScrol1MenuD1g *srnd2, *srnd4, *srnd5;

ornComboBox *cb2, *cb4, *cb5;
rnyTextEditor *te1;



•
Appendix E

myDecimalEditor *de2, *de3, *de4, *deS;
omButtonMenu *ok;
struct Value v2,v3,v4,vS;

//constructor
myProbeDialog( void l;
omBoolean doModalExit{ void l;

1;

//------------Class myDSPDialog --------------------­
class myDSPDialog:public omDialog

public:
omLabel *11, *lla, *12, *12a, *13, *13a, *14, *14a;

omVertMenuScroll *vms4;
omScrollMenuDlg *smd4;
omComboBox *cb4;
int n2, n3, n4;
omButtonMenu *ok, *bt2, *bt3;

//constructor
myDSPDialog{ void 1;
omBoolean doModalExit( void l;

1;

//-----------Class myTimeDialog ---------------------­
class myTimeDialog:public omDialog

public:
omHorizMenu *hml;
omLabel *12, *13, *14;
myDecimalEditor *de2, *de3;

mylntEditor *ie4;
omVertMenuScroll *vms2, *vms3;

ornScrollMenuDlg *srnd2, *srnd3;

ornComboBox *cb2, *cb3;

int nl, n4;

86



•
Appcndix E

struct Value v2,v3;

omButtonMenu *ok;

//constructor

myTimeDialog( void l;

omBoolean doModalExit( void );

} ;

87



• APPENDIX F: SOURCE CODE LISTING
OF THE MAIN PROGRAM

IIMO.CPP

#include "om.h"
#include "metaver3.h"

#include "mO.h u

#include "ml.hu

#include "m3.h u

#include "m2.h"

#include "m5.h"
#include "m4.h"
#include "mG.h"
#include l m7.h"

#define MAX METAL MEDIUMS 15- -

Iimeta fonts

char *TestIndxFile = "testindx.ind";
int LoadTestInfo = FALSE;
int LoadAcqInfo = FALSE;

#define MAX TESTS
directories

20 Iimaximum nu~ber of test

struct TestInfo Tests[MAX_TESTSl;

int TotalTests = 0; Iitotal number of tests
int ActiveTest = 0; /Ithe active test of the tests

#define MAX_ACQS 30

char* AcqIndBase = lACqs";



•
Appendix F

struct AcqInfo Acqs[MAX_ACQS];

int TotalAcqs = 0; Iitotal number of acquisitions
int ActiveAcq = 0; Iithe active acquisition

II#ifdef NETDRIVE
char* WorkingDir ~"G:\\GROUPS\\LIMCA\\NEWDRIVE";

II#else
Il char* WorkingDir ="C:\\TEST";

II#endif

char *TemplateIndxFile = "template.ind";
Setup WorkingSetup;
struct MetalMediumStruct MetalMedium[ MAX_METAL_MEDIUMS J;
char *MetalMediumList = "mmedium.lst";
int TotalMetalMediums;
int TotalTemplates;

SetupFormDialog *dSetupForm;
SetupTemplateDlg *dTemplates;
SetupPreviousDlg *dPrevious;
AnalyseDlg *Adialog;
omRect *MessageBox;

89

•

struct SetupTemplateStruct SetupTemplate[ MAX TEMPLATES + 1

J ;
struct StatusStruct Status;

int far *pha npcount, *pha_bjcount;
char far *pha_cha_st;
int far *mcs_npcount, *mcs_bjcount;
Iiglobal flags
int DSPLoad = FALSE;



•
Appendix F

11------------------------------------------------------­
11-------------- MAIN --------------------------------".-­
11-----------------------------------------------------.-

90

extern
extern

unsigned
unsigned

_stklen=40000, Il increase stack
ovrbuffer = 4800, Il 75K overlay buffer

For Borland C++, no effect for

size_int = sizeof( int )
size_char = sizeof( char

#include "owmain.h"
"WinMain"
#ifndef DOSX286

_ovrInitEms(0,0,16) ,II
Microsoft C++

#endif
EMS_init ( ),
unsigned long
unsigned long

Iisubstitute for "main" or

* CI·\AN_NUM,

) * CHAN_NUM,

•

if«pha_npcount=(int*)farmalloc(size_int))==NULL)
printf ("memory error\n");

exit (0);
}

if«pha_bjcount=(int*)farmalloc(size_int))==NULL)

printf ("memory error\n");
exit(O);
}

if«pha_cha_st=(char*)farmalloc(size char))==NULL)
printf ("memory error\n");

exit(O);
}

if«mcs_npcount=(int*)farmalloc(size_int))==NULL)

printf ("memory error\n");

exit (0) ;
}

if«mcs_bjcount=(int*)farmalloc(size_int))==NULL)

printf ("memory error\n");

exit(O);



•
Appendix F 91

int i;
for (i=O;i<CHAN_NUM;i++)
pha_cha_st[i] = (char) pha_npcount[il = pha_bjcount[i]

= 0;

omPrefs.winMainMenu = FALSE;
omPrefs.scrollDressType = BEVELOUT;
strcpy(omFontTable[l] .fileName, "extsys16.fnt");
strcpy(omFontTable[2] .fileName, "extsys24.fnt");

int back color = CYAN;
int title_font = 20 ;
int title_culor = RED;
int font_number = la;

int medium_type;
int menu_font = 9;

//initialize status flages
Status.NewTest = FALSE;
Status.NewTemplate = FALSE;

continuous test
Status.NewTestSaved = FALSE;
Status.NoData = TRUE;
Status.SetupDone = FALSE;

//default status is

•

InitScratchSetup( &WorkingSetup, METAL );

LoadTestlnfo = LoadTestlndx();

MessageBox = new ornRect;
dSetupForm = new SetupFormDialog;
dSetupForm -> usedNew = TRUE;
dSetupForm -> setTitleBkColor (back_color);



•
Appendix F

dSetupForm -> setTitleFont( font_number, title_color,
tiUe_font) ;

dTemplates = new SetupTemplateDlg( dSetupForm );
dTemplates -> usedNew = TRUE;
dTemplates -> setTitleBkColor (back_color);
dTemplates -> setTitleFont( font_number, title_color,

tiUe_font) ;

dPrevious = new SetupPreviousDlg( dSetupForm );
dPrevious -> usedNew = TRUE;
dPrevious -> setTitleBkColor (back_color);
dPrevious -> setTitleFont( font_number, title_color,

tiUe_font) ;

92

11****************************************.*** ••• ***.***k~*~

*
//the vertical menu from New test

omVertMenu vmNew(2);
vmNew.setMenuFont(menu_font, l, BLUE);

vmNew + LITERAL HOTKEYS
+ "-Templates" + LUI (PassXY2dTernp, dTemplates)

+ *dTemplates
+ "-Previous" + LU2(PassXY2dPrevious, dPrevious)

+ *dPrevious;

//****w**********************************************

//the vertical menu from "Setup"
11***************************************************

omVertMenu vmSetup(2);
vmSetup.setMenuFont(menu_font, l, BLUE);

vmSetup + LITERAL_HOTKEYS
+ "-Newl test" + NewTestFlag + vmNew

+ "-Continuel test" + NewTestFlag
+ LU3(PassXY2dPrevious, dPrevious) + *dPrevious;



•
Appendix F

11****************************************************

Il the principal window follows:
11****************************************************

ornRect winRect (0, 0, 640, 480);
omWindow w(winRect, OIuNO_PARENT, "LiMCA Metal/Water

Window");
w.freezeSize (150, 150);

11*****************************************************

IIReal-time display window
11*****************************************************

93

omRect winRectRt ( w.innerBox.xmin, w.innerBox.ymin + 30,
w.innerBox.xmax, w.innerBox.ymax);

RealTimeW w_rt(winRectRt, &w ,"Real-time Display");
w_rt.bkColor = DARKGRAY;
w_rt.changeMinimizelcon( "Real-Time Window" );

If****************************************************

Iithe vertical menu under "On Line Acquire":
1;****************************************************

omVertMenu vrnOnLine (2);
vrnOnLine.setMenuFont(menu_font, l, BLUE);
vrnOnLine + LITERAL HOTKEYS

+ "~Setup" + vrnSetup
+ "S-tart" + LU1( test, &w_rt);

Adialog = new AnalyseDlg(&w,lOO,50 );
Adialog -> usedNew = TRUE;

ornHorizMenu *Principalhm = new OrnHorizMenu(3);
Principalhm -> usedNew = TRUE;
Principalhm -> setMenuFont(menu_font, l, BLUE);

omVertMenu Mode(l);
Mode + LITERAL HOTKEYS



•
Appendix F

+ "-View" + LUI (PassXY2AnaIyseDIg, &\v) + *Adialog;

*Principalhm + LITERAL_HOTKEYS
+ "-On-Line-Acquire" + vmOnLine
+ "-Analyse" + LU2 (PaintClientArea, &\v) + Node
+ "-Quit" + QuitToDos;

w + *Principalhm ~ omTL
+ w_rt;

*omMEQ + w;

9-t

1

omMEQ->run () ;

stopGraphics();
return 0;

}

Il END main

Il run the event queue




