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Abstract

Kinematic design and performance evaluation of serial-type robotic manipulators
is the main focus of this thesis with due attention being paid to redundant ma-
nipulators. The thesis provides a review of the existing contributions made to the
subject, identifying those areas that can be advanced in depth or breadth and mak-
ing theoretical contributions to some of these areas. The design, manufacturing and
commissioning of a full-scale representative example of a redundant manipulator de-
signed for kinematic isotropy is also discussed. Although various theoretical methods
of analysis and characterization of the kinematic performance have been reported in
the past two decades, the kinematic architecture of industrial manipulators has not
changed very much. The design requirements for these manipulators, have been
mostly driven by issues such as kinematic simplicity and mechanical constructibility.
These criteria have thus led to the existence of a particular class of manipulators
whose axes are either parallel or perpendicular, i.e., orthogonal manipulators.

It is believed that, in order to fully exploit the redundancy of the new generation
of industrial manipulators, it is advantageous to consider general architectures. If
improved kinematic performance can be achieved by examining novel manipulator ar-
chitectures, then it becomes necessary to explore new design requirements. The aim
of this thesis is to contribute to the above-mentioned exploration. In Chapter 2, the
singularity and workspace of regional structures (i.e., three-axis manipulators) are
discussed. Regional structures forming the positioning part of most industrial manip-

ulators, they have been regarded as representatives of nonredundant manipulators.
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Chapter 3 contains a detailed review of the proposed measures of dexterity together
with an extensive discussion on the invariance properties of these indices. Chapter
4 is devoted to the investigation of the condition numbers of matrices in general,
and of the Jacobian matrix of the robotic manipulators in particular. In Chapter 5,
the isotropic design of redundant manipulators is discussed in detail whereby several
isotropic seven-axis designs are introduced. Anthropomorphic requirements are also
included where, it is shown that seven- and eight-axis manipulators cannot possess
isotropy and anthropomorphism simultaneously. Optimum postures of hyperredun-
dant manipulators are then investigated and finally, singularity distributions in the
workspace of isotropic manipulators are compared to those of their nonisotropic coun-
terparts. In Chapter 6, kinematic performance of serial manipulators is discussed
from a geometric point of view. A novel measure of conditioning based on an index
of isotropy, defined elsewhere, is examined in detail, and several interesting features
of this measure are provided. With the aid of this measure, explicit expressions for
the determination of the characteristic length, and the characteristic point are de-
rived. In Chapter 7, the kinematic and mechanical design of a full-scale seven-axis
isotropic manipulator called REDIESTRO 1 are introduced. REDIESTRO 1 was
designed, manufactured and commissioned during the course of this thesis at the

McGill Centre for Intelligent Machines (CIM) of McGill University.
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Résumé

La conception et I’évaluation cinématiques de |'opération de manipulateurs ¢ chaine
cinématique ouverte simple sont les principaux sujets abordés dans cette these, avec
une attention particuliére portée aux manipulateurs redondants. Cette thése com-
porte un apercu des contributions déja apportées a ce domaine, identifie les sujets
ou de nouvelles avancées peuvent étre faites, et apporte des contributions sur le
plan théorique a certains d’entre eux. Finalement, la conception, la fabrication et
la mise en opération d’'un exemple grandeur nature d’'un manipulateur redondant
congu avec une cinématique isotrope sont décrites. Bien que plusieurs méthodes
théoriques d’analyse et de caractérisation de la performance cinématique aient été
proposées depuis deux décennies, 1’architecture cinématique des manipulateurs in-
dustriels disponibles n'a pas beaucoup changé. En effet, les contraintes de conception
ont davantage été liées a la stmplicité cinématique et a la réalisation mécanique de ces
manipulateurs. Ces conditions ont donc mené a l'existence d’'une classe particuliére
de manipulateurs dont les axes sont paralleles ou perpendiculaires, c.-a-d., des ma-
nipulateurs orthogonauz. Il est affirmé que, pour exploiter pleinement la redondance
de la nouvelle génération de manipulateurs industriels, il est avantageux de porter
attention a l'architecture générale. Si une performance accrue peut-étre obtenue
en utilisant des architectures différentes, il devient alors nécessaire de considérer de
nouveaux critéres de conception.

Dans le Chapitre 2, les singularités et I'espace de travail des manipulateurs & trois
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axes sont examinés. Dans la plupart des cas, les trois premiers axes des manipula-
teurs industriels a poignet découplé servent a résoudre le probléme du positionnement
de 'organe terminal. Ces trois premiers axes peuvent donc étre considérés comme
exemples représentatifs de la classe des manipulateurs non-redondants. Le Chapitre
3 contient une revue détaillée des mesures de dextérité proposées ainsi qu’'une dis-
cussion sur les propriétés invariantes de ces indices. Le Chapitre 4 fait I'étude du
facteur de conditionnement des matrices en général, et de la matrice jacobienne
des manipulateurs robotique en particulier. Dans le Chapitre 5, la conception de
manipulateurs redondants isotropes est étudiée en détail et plusieurs exemples de
robots isotropes a sept axes sont proposés. Des contraintes anthropomorphiques sont
également incluses et il est montré que des manipulateurs a sept ou huit axes ne
peuvent pas étre isotropes et anthropomorphes simultanément. Ensuite, la pos-
ture optimale des manipulateurs hyper-redondants est étudiée et finalement, la dis-
tribution des singularités dans l'espace de travail des manipulateurs isotropes est
comparée a celle de manipulateurs non-isotropes. Dans le Chapitre 6, la perfor-
mance cinématique des manipulateurs a chaine ouverte simple est étudiée d’un point
de vue géométrique. Une nouvelle mesure du conditionnement basée sur un indice
d’isotropie, défini ailleurs, est examinée en détail et plusieurs propriétés intéressantes
de cette mesure sont présentées. Entre autre, cette mesure permet d’introduire les
notions de longueur et de point caracteristiques. Dans le Chapitre 7, la conception
cinématique et mécanique d’un manipulateur isotrope grandeur nature a sept axes
nommé REDIESTRO 1 est présentée. REDIESTRO 1 a été congu, construit et
mis en opération dans le cadre de cette thése au Centre McGill pour les Machines

Intelligentes (CIM) a I'Université McGill.
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Claim of Originality

The author claims the originality of the main ideas and research results presented in

this thesis, the following being the most significant:

w

The characterization of the Cartesian and the joint space singularities of
regional structures are presented, with the aid of the concept of non-
minimal realizations of transfer functions of single-input/single-output
(SISO) linear dynamical systems. The uniqueness domains of the for-
ward kinematic maps are also discussed, and algebraic expressions that

define these subregions of the manipulator joint-space are derived'.

A CAD-based technique is introduced for the development of the three-

dimensional graphical renderings of the Cartesian workspace.

With the aid of a theorem, it is shown that the class of special regional

structures cannot change solution branches without crossing singularities.

. Within the realm of kinematic design, comparison of singular- vs. nonsin-
gular-posture-changing manipulators is discussed, whereby it is shown
that the ability of a manipulator to change solution branch without cross-

ing singularities is not necessarily an advantageous feature.

. A detailed discussion on the inwvariance properties of different dezterity

measures is provided.

I'This methodology was independently proposed by Tsai et al., (1993) and Ranjbaran et al.,

(1994).
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6. With the aid of a theorem, the necessary and sufficient conditions for the

isotropy of a general rectangular matrix is presented.
7. Isotropic design of redundant manipulators is discussed in detail:

~ It is shown that isotropic seven-axis manipulators exist?.

— While incorporating other kinematic issues such as anthropomor-
phism, it is concluded that full isotropy and anthropomorphism can-
not coexist for seven- and eight-axes manipulators, the latter require-
ments leading to pseudoredundancy. An illustrative example of a
nine-axes robot that possesses both of the foregoing features is pro-

vided.

8. The optimum posture design of hyperredundant manipulators for isotropy
is examined through an example of a 30-axis planar manipulator. It
is shown that the isotropic configuration of this manipulator—to some
extent—resembles a familiar posture of a cobra in an attack configura-

tion.

9. A framework for the qualitative comparison of redundant manipulators
is constructed. This framework is then utilized to compare isotropic and
nonisotropic manipulators in the sense of the distribution of the singular-
ities in their respective joint spaces. It is observed that the joint-space
singularity distribution of isotropic architectures are better behaved than

those associated with comparable nonisotropic designs.
10. A novel measure of conditioning for general matrices is introduced:

~ It is shown that this measure is a linear approximation of the nor-
malized Frobenius-norm condition number, and, for quasiisotropic

matrices, it provides a very close prediction of the condition number.

2Independently, Klein and Miklos (1991) also provided examples of such designs using a different
approach
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— For both rectangular, and square matrices, upper and lower bounds in
terms of the F-norm and the 2-norm condition numbers are obtained

for the proposed measure.

11. Based on this measure of conditioning, an index of manipulator condition-
ing is devised that is highly suited for the intended task of manipulator

design.

12. Based on the differentiation of this index with respect to the normalizing
length and the operation point of the end-effector, a preferred scale factor

and a preferred operation point of the end-effector are obtained.

13. A full-scale seven-axis isotropic manipulator called REDIESTRO 1 was
designed, manufactured and commissioned by the research work con-

ducted under the scope of this thesis.

The above contributions have been reported partially in (Angeles et al., 1992), (Ran-
jbaran et al., 1992), (Tandirci et al., 1992), (Gonzdlez—Palacios et al., 1993), and
(Ranjbaran et al., 1994; 1995; 1996).
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Chapter 1

Introduction

1.1 Motivation

The mechanical performance of robotic manipulators has been the focus of extensive
research work in the past two decades. Almost all of these efforts have focused on
the kinematic performance or motion-transmission capabilities of mechanical manip-
ulators and mechanisms at large. The kinetostatic duality has allowed researchers
to quantify both motion- and force-transmission capabilities with a common merit
figure called the kinetostatic performance indez (IFToMM. 1991). The earliest con-
siderations of the kinetostatic performance of mechanisms can be traced back to
concepts such as the indices of merits, mechanical advantage, pressure angle, trans-
mission angle or angular velocity ratio, (Shigley and Uicker, 1995). Dexterity and
kinetostatic analyses of robotic manipulators is in a sense a generalization of these
simple concepts in more complex settings.

Dexterity is defined by Webster as “readiness and grace in physical activity; esp: skill
and ease in using the hands”. This definition has thus been extended to characterize
the kinematic performance of robotic manipulators, while concepts such as service
angle, derterous workspace, derterity measures, manipulability indez, kinematic dis-

tortion, and measure of isotropy, among others, have been proposed.
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Notions such as readiness, ease, or comfort induce familiar senses in human percep-
tion. Extending these notions for characterization of the performance of mechanical
devices, however, does not seem as immediate. Examples from natural articulated
bodies can be found that to some extent validate the aforementioned extension. Con-
sidering the architecture of our limbs, the ratio between the length of the humerus
(upper arm) to that of the radius (forearm) falls within the range of 70 to 80%.
As a classical example, Leonardo Da Vinci being interested on the ratio of several
parts of our limbs provided extensive anthropomorphic data, Fig. 1.1 (O’Malley and
Saunders, 1983). Leonardo reported a value of five-sevenths or 71.4%, for the radio-

humerus ratio. On the other hand, while performing manual tasks that require our
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Figure 1.1: Leonardo’s anthropomorphic data (O'Malley and Saunders, 1983)

highest dexterity, or similarly, while attaining comfortable configurations, the angle
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Optimum Link Ratio:

i, 3

] = = = 0.707
1

Optimum Cionfiguration:
for any 8,
6, = 135°

Figure 1.2: Optimum kinematic design of a 2-axis planar manipulator

made between our upper arm and our forearm tends to be an acute angle within 30
to 60 degrees. It is interesting to note that while designing planar two degrees of
freedom fingers, Salisbury and Craig (1982) proposed the optimum solution shown
in Fig. 1.2. The optimality criterion for this design is based on the condition number
of the Jacobian matrix associated with the instantaneous kinematics of the manipu-
lator. The link-length ratio for this optimum two-axis manipulator (as discussed in
Chapter 4) is found to be v/2/2 = 0.7071, which is not very different from Leonardo’s
radio-humerus ratio of 71.4%. Moreover, the optimum configuration of the mech-
anism is achieved when 8, = 45°, i.e., the mid-range of 30° to 60°. Although this
analogy is an interesting link from our familiar senses of comfort and dexterity to the
characterization of the performance of mechanical manipulators, it is by no means
intended here to over emphasize this similarity, for the evolution of the living artic-
ulated architectures lends itself to a spectrum of complex phenomena from different
fields of science of which kinematics can only be one.

Motivated by these arguments, and by the curiosity for the existence of other natural
analogies, we considered the shape of a cobra in its familiar ready-to-attack configu-
ration. The closest candidate from mechanical manipulators to stand the comparison

is the class of hyper-redundant or snake-like manipulators. As discussed in detail in
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Chapter 5, an optimum configuration of a 30-jointed hyper-redundant planar manip-
ulator based on the same optimality criterion of kinematic dexterity plus additional
smoothness requirements gives rise to a solution illustrated in Fig. 1.3 (see Chapter 3

for details).

-1

Figure 1.3: A 30-axis planar manipulator at an optimum configuration

The characterization of the performance of serial-type robotic manipulators in the
sense of kinematic dexterity is the main focus of this thesis. This characterization is
aimed at providing a review of the existing contributions made to subject, identifying
those areas that can be advanced in depth or breath, making theoretical contribu-
tions to some of these areas, and, finally, to implementing a full-scale representative

example of a manipulator designed for dexterity, specifically for kinematic isotropy.

1.2 General Background

Throughout the thesis several references are made to the notions of manipulator
architecture, manipulator posture, end-effector (EE) pose, and kinematic design. The

definition of these concepts, as used in the thesis, are provided below:
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Figure 1.4: An n-revolute jointed manipulator.

e Manipulator Architecture and Manipulator Posture (Angeles, 1997):
An n-axis manipulator has n joint variables, which are grouped in the n-
dimensional vector 8, regardless of whether the joints are revolute or prismatic.
and 3n constant parameters that define the relative position and orientation
of the two joint-axes attached to a link. The latter define architecture of the
manipulator, while the former determine its configuration or posture. Fig.1.4

illustrates an n-axis revolute-jointed manipulator.

For the sake of completeness the definition of the Denavit and Hartenberg (DH) pa-

rameters (Denavit and Hartenberg, 1955) are provided next, as illustrated in Fig. 1.5.

Links are numbered 0, 1, ..., n, the i¢th pair being defined as that coupling the
(i — 1)st with the ith link, with link 0 being the fixed base. The end-effector (EE) is

attached to the nth link, whose operation point is denoted by P. Next, a coordinate
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0, \X‘-

Figure 1.5: Denavit and Hartenberg parameters representation

frame is defined with origin O; and axes X, Y;, Z;, which is attached to the (i —
1)st link, for i = 1,..., n + 1. Furthermore, Z; is the axis of the ith pair, X is
defined as the common perpendicular to Z;_, and Z;, directed from the former to
the latter. Moreover, the distance between Z; and Z;., is defined as a;, which is, thus,
nonnegative. The Z;-coordinate of the intersection O of Z; with X, is denoted by
b;, its absolute value being the distance between X; and X;,;. The twist angle a;, is
the angle between Z; and Z;., and is measured about the positive direction of X;,;.
Finally, 6; is the angle between X; and X;,; and is measured about the positive
direction of Z;.
Having specified the four parameters defining each link-frame and its connection to
the neighbouring ones, the position and orientation of the two consecutive frames i
and ¢ + 1 expressed in frame 7 are determined from the position vector a; and the
rotation matrix Q; as shown below:
cosf; —sinb; cosa; sinf; sing; a; cosb;
Qi = |sin#; cosh; cosa; — cosb; sina; a; = | a; siné; (1.1)

0 sin q; Cos o b;
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e End-Effector Pose: The position and orientation of the coordinate frame

attached to the last link of the manipulator in the Cartesian space.
e Kinematic Design: Selection of the manipulator architecture.

e Configuration Design: Selection of the manipulator posture.

1.3 Literature Survey

1.3.1 Singularity and Workspace Analyses

Workspace and singularity analyses of robotic manipulators have been the focus of
intense work in the past decade. The determination of the workspace of a general
n-axis manipulator in its space of Cartesian coordinates is a formidable task, for it
amounts to representing a hypersurface embedded in a six-dimensional space, studies
so far having focused only on three-axis manipulators for either positioning (regional
structures), e.g. (Spanos and Kohli, 1985), or orienting tasks. e.g. {Angeles, 1988:
Lin and Tsai, 1991). Since a wrist-partitioned manipulator (most of the industrial
manipulators in use today are wrist-partitioned) is the concatenation of a three-axis
arm, i.e., the regional structure, and a spherical wrist that is attached to the terminal
link of the arm, the workspace analysis of such manipulators can be performed by
considering the positioning and orienting singularities separately.

All of the contributions made in this regard are oriented along two main tracks.

a) Determination of the workspace boundaries in the Cartesian space associated
with the location of the end-effector (EE), (Spanos and Kohli, 1985; Hsu and Kohli,
1987a, 1987b; Smith, 1990; Smith and Lipkin, 1993; Ranjbaran et al., 1992). Among
these contributions, only a few works include explicit algebraic expressions defining
the workspace boundaries. Kohli and Hsu (1987a and b), for example, give an
extensive categorization of different types of regional structures, and expressions for

some examples. Also, in Ranjbaran et al. (1992), a general expression defining the
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singularities of the quartic closure polynomial that relates the Cartesian coordinates
of the end-effector to one of the joint angles is derived. Smith and Lipkin (1993)
obtained expressions for the foregoing surfaces through the use of conic sections. In
general these expressions are of a high degree in the Cartesian coordinates of the EE.
They are convenient, however, in that they can be used to trace the intersection of the
workspace boundaries and any arbitrary plane cutting it. Recently, Ceccarelli (1994a,
1995, and 1996) extended the analysis and synthesis of the workspace boundaries of
serial manipulators to four-, five-, and N-axis architectures, while employving toroidal
geometries and the resulting envelopes when rotating a toroidal surface about a given
axis.

b) Singularity analysis of the kinematic maps in the joint space using invariants
of the Jacobian matrix (Borrel and Liégeois, 1986; Oblak and Kohli, 1988; Burdick,
1988; Pai and Leu, 1989; 1992; Tsai et al., 1993; Burdick, 1991; 1992; 1995; Wenger,
1992; 1996). Most of these works approach the problem by deriving a condition on the
singularity of the associated Jacobian matrix. Since this matrix is an explicit function
of the joint coordinates, the aforementioned condition is usually derived in the joint-
coordinate space. In recent years, the behaviour of the direct kinematic maps and
their singularities have been discussed with powerful tools of differential topology,
e.g., Burdick (1995). The direct kinematics of the manipulators are thus regarded as
smooth manifold mappings from the joint space to the Cartesian space. Furthermore,
in Pai and Leu (1989; 1992), the concepts of genericity and non-genericity of general
maps between smooth manifolds are applied to the direct kinematic maps of robotic
manipulators, and thus, the notions of generic and non-generic manipulators are
introduced. A more detailed investigation of genericity of the kinematic maps for
three-, six-, and seven-degree-of-freedom manipulators are given in Tsai et al. (1993),
where a closed form genericity test for the regional structures is derived.

As suggested by Burdick (1991), regions free of singularities in the joint space,

called the c-sheets according to Burdick, or aspects according to Borrel and Liégeois
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(1986), do not partition this space into the uniqueness domain of the kinematic maps.
In other words, it is possible to find two inverse kinematic solutions for the same
end-effector pose that lie in the same aspect. This enables the manipulator to change
solution branch or posture without passing through singularities.

Wenger (1992) first introduced a method for obtaining the separating surfaces in
an aspect that indeed divide the corresponding aspect into sub-regions where the
kinematic map is one-to-one and onto (bijection). This gave rise to the definitions of
characteristic surfaces and basic components. The characterization of the singular-
ities of generic regional structures based on homotopy classes are further discussed

in Wenger (1996).

1.3.2 Kinematic Performance

As one of the first efforts to measure the kinematic performance of manipulators,
Vinogradov et al. (1971) proposed the service angle, as the range of joint angles
allowing the end-effector to reach a specified point in space. Roth (1975) analyzed
the performance of manipulators in terms of their constitutive geometries, and in-
troduced the notions of approach angle, working space, or zones of operation, and
coupling between position and orientation of the end-effector. Throughout the decade
that followed, most of the research effort in the performance analysis of manipulators
focused on the analysis and evaluation of the reachable and dezterous workspaces of
serial-type manipulators, e.g., Kumar and Waldron (1981), Gupta and Roth (1982),
Lee and Yang (1983), Tsai and Soni (1981), Tsai and Soni (1983), and Yang and Lai
(1985).

Salisbury and Craig (1982) introduced the condition number of the Jacobian ma-
trix J, x(J) as a measure of the kinetostatic performance of a manipulator. Later
on, the manipulability index p(J) was defined, as a measure of the kinetostatic per-

formance by Yoshikawa, as the square root of the determinant of the product of
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the Jacobian by its transpose (Yoshikawa, 1985). During the past ten years, dif-
ferent local and global dexterity measures for the kinematic design and analysis of
manipulators have been proposed. Klein and Blaho (1987) related the kinematic
performance to the minimum singular value ,,;, of the Jacobian as a measure of
the distance to singularities. The optimum kinematic design of 6R manipulators
with given manipulator-lengths, for work-volume and well-connectedness of this vol-
ume was discussed by Paden and Sastry (1988). The notion of work-volume used
by Paden and Sastry is intermediate between those of the reachable and deztrous
workspaces. It is based on the translation-invariant volume form on the group of
all rigid body motions SE(3), i.e., it is equivalent to the volume of the image of
the underlying joint space under its forward kinematic map. In Angeles and Lopez-
Cajun (1988, 1993), a dexterity measure based on the reciprocal of the condition
number was proposed, while Gosselin and Angeles (1991), proposed a global dexter-
ity measure by integrating the variation of the reciprocal of the condition number
throughout the workspace. Kinematic dexterity and workspace volume of robotic
manipulators were discussed by Park (1991) and by Park and Brockett (1994) using
harmonic mapping theory to introduce the notion of kinematic distortion as a means
of quantifying dexterity. The workspace volume considered in the latter reference is
based on Paden and Sastry’s translation-invariant volume form on SE(3). Motion
capabilities of rigid bodies attached to the end-effector of serial manipulators were
quantified using the Euclidean group of rigid-body motions and its semi-Riemannian
structures by Basavaraj and Duffy (1993). With the aid of the weighted distribution
of the end-effector pose over the workspace, while employing probabilistic models,
Singh and Rastegar (1995) discussed the global motion capabilities or the velocity-
transmission characteristics of manipulators. While discussing the optimal synthesis
of the three-axis manipulators, Ceccarelli (1994b) employed the sequential quadratic
programming technique for optimizing the manipulator architecture based on the

notion of minimum size encumbrance while satisfying constraints on the workspace
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volume.

The kinetostatic performance of tendon-driven manipulators have been discussed by
Ou and Tsai (1993;1994). In these papers the effects of pulley size and routings on
the kinetostatic performance of the manipulators are discussed whereby the notion
of isotropic transmission characteristics is defined.

Recently, while analyzing hybrid motion-and-force control strategies, Goldenberg
(1996) proposed a kinematic optimality condition for manipulators that enhances
the force-and-motion couplings. This criterion simply reflects the ability of a manip-
ulator to take on a posture at which the product of the associated Jacobian matrix
by its transpose becomes a scalar multiple of the identity matrix. Although in the
context of hybrid control the latter condition was found rather novel, in kinematic
analysis and optimum kinematic design, however, this criterion has been referred to
as the kinematic isotropy for a quite a few years. The effects of actuation-schemes of
manipulators are discussed in Maton and Roth (1996). In this paper it is shown that
whether the actuators are placed on the base or locally on the corresponding link.
the kinematic performance of the manipulator is affected. Based on this observation
a methodology is introduced for determining the optimal placement of the actua-
tors, while concluding that placing the actuators on the base is more advantageous
in terms of kinematic dexterity.

The sensitivity and robustness of the redundancy resolution schemes are also dis-
cussed in Arenson (1997), where different types of error amplifications that present
themselves in the Cartesian-space tracking capabilities of the redundant manipula-
tors are investigated through numerical examples. Moreover, a theoretical framework
is introduced in Angeles et al. (1996), where the overall sensitivity of the posture
of redundant manipulators with respect to the Cartesian-space trajectory changes is
divided into two parts, namely, a primary and a secondary sensitivities. It is shown

in this reference that the primary sensitivity that has to do with the architectural
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design of the manipulator is a function of the condition number of the Jacobian ma-
trix divided by the norm of the said matrix, while the secondary matrix that has to
do with the type of secondary task augmented to the primary task of following the

desired trajectory, is always equal to the identity.

1.3.3 Kinematic Design

In the design of industrial serial-type manipulators only a few simplifying kinematic
criteria have been considered. For nonredundant manipulators, the kinematic design
has been mainly oriented towards achieving kinematic solvability and manufacturing
feasibility. These criteria, in turn, have led to the existence of a particular class of
manipulators whose axes are either parallel or perpendicular. i.e., orthogonal ma-
nipulators. Here, we mean by orthogonal a manipulator whose consecutive axes
make angles that are multiples of 90°; for example, manipulators with spherical
wrists (Pieper, 1968), or with planar two-revolute sub-chains pertain to this class.
Moreover, a general classification of manipulators with simple inverse kinematics is
reported in Mavroidis and Roth (1992). The associated simple inverse kinematics
has been formulated by exploiting the special features, like orthogonality, of the
kinematic structures of these robots. With the advent of fast and general inverse
kinematics algorithms developed in the last ten years, the need for simple kinematic
structures is less critical. On the other hand, parallelism and orthogonality of the
axes can give rise to undesirable singularities. These singularities are manifested, for
example in the rate control and kinematic calibration of these manipulators (Hayati,
1985; Bennett et al., 1992). Serving the two foregoing objectives excludes a major
class of manipulators with general architectures. By exploring general manipulator
architectures, one can not only improve the numerical conditioning of the manipula-
tor kinetostatic maps, but also take into consideration other critical issues pertinent
to the design and realization of the overall robotic system. Some researchers have

emphasized the methodologies for the design of redundant manipulators for specific
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tasks or classes of tasks. In this regard, the framework of task-based design for re-

configurable modular manipulators has been introduced (Kim and Khosla, 1992a-c).

1.4 Thesis Overview

The thesis consists of seven chapters, as per the summary given given below:

1.4.1 Chapter 2: Singularity and Workspace Analyses

Two novel methods for the analysis and characterization of the singularities of se-
rial manipulators are presented. The numerical examples provided are three-axis
revolute-jointed manipulators, regional structures. First, the workspace boundaries
are determined directly in the Cartesian space by resorting to the concept of non-
minimal realizations of transfer functions of single-input/single-output (SISO) linear
dynamical systems.

The characterization of the manipulator singularities both in the joint space and in
the Cartesian space is also discussed, with the aim of determining the uniqueness
domain of the forward kinematic maps. Here, by uniqueness domain we mean all
subsets of the joint space over which the forward kinematic map is a diffeomorphism,
i.e., where for each end-effector pose there is a unique inverse kinematic solution. We
present an algebraic expression that defines all of the separating surfaces of the joint
space for general regional structures. Furthermore, the kinematic design of regional
structures in relation to singular- vs. nonsingular-posture changing architectures are
discussed. A comparison of the two foregoing types of regional structures in terms

of trajectory following capabilities are also discussed.
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1.4.2 Chapter 3: Measuring Manipulator Dexterity

The kinematic dexterity of robotic manipulators is discussed and comparisons are
made among different measures proposed in the past. Since the centrepiece of al-
most all performance measures are based on the manipulator Jacobian matrix, some
features of this matrix, as applied to kinematic dexterity and workspace analysis, are
discussed as well. With the aid of illustrative examples, the effects of the numerical
conditioning of a matrix on the amount of error magnification upon solving an asso-
ciated linear system of equations is discussed. Furthermore, the invariance properties
of dexterity measures with respect to the physical units and base-and-end-effector

coordinate frames is also discussed in detail.

1.4.3 Chapter 4: Condition Number as a Measure of Kine-

tostatic Performance

A review of some of the theoretical aspects of the theory of condition in general is
included. The condition number of the Jacobian matrix as applied to manipulator
dexterity assessments will then be discussed, where the two related issues of charac-
terizing distance to singularities and sensitivity of linear systems to perturbations are
given due attention. The notion of isotropic transformations and isotropic manipu-
lators will also be reviewed, followed by a geometric interpretation of isotropy. In the
last three sections of the chapter, the isotropic design of nonredundant manipulators

is discussed, and some of the contributions of the thesis are introduced.

1.4.4 Chapter 5: Isotropic Design of Redundant Manipula-

tors

The kinematic design of redundant manipulators is addressed in this chapter, the

focus being the optimization of the kinematic conditioning of the manipulators of
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interest. It is shown in this chapter that isotropic seven-axis manipulators are pos-
sible, and structural considerations pertaining to the design of such manipulators
are then discussed, while providing several illustrative examples. Kinematic isotropy
is then combined with anthropomorphic considerations to serve the overall design
requirements. It will be shown that, in principle, isotropy and anthropomorphism
for seven-axis designs cannot coexist. This becomes apparent as the incorporation
of anthropomorphic criteria leads to architectures whose redundancies are rather
limited in the sense that the overall mobility of the arm is severely impaired if one
of the joints is locked. In this regard the notion of pseudoredundancy is discussed
extensively. A nine-axis isotropic design is then discussed in an attempt to combine
isotropy and anthropomorphism. The isotropic design of hyperredundant planar ma-
nipulators is then discussed, whereby a 30-axis example of such designs is studied.
Finally, comparative studies between isotropic and nonisotropic manipulators in the

sense of workspace singularity distributions are conducted.

1.4.5 Chapter 6: A Geometric Analysis of Kinematic Isotropy

The kinematic conditioning and dexterity of general revolute-jointed manipulators
are discussed from a geometric point of view. A novel measure of conditioning for
general matrices is introduced. It is shown that this measure is a linear approxi-
mation to the normalized-Frobenius norm condition number and, for quasiisotropic
matrices, it provides a very close prediction of the condition number. For both rect-
angular and square matrices, upper and lower bounds are obtained for this measure
in terms of the F-norm and the 2-norm condition numbers. Based on this measure
of conditioning, an index of manipulator conditioning is devised that is highly suited
for the intended task of manipulator design. Moreover, this performance index is
substantially less expensive to compute than other measures of kinematic condition-
ing, and is amenable to differentiation. Based on the differentiation of this index

with respect to the normalizing length and the operation point of the end-effector,
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a natural scale factor and characteristic point of the end-effector are obtained. In
this regard, the notions of manipulator layout, layout conditioning, layout length and
layout centre, for any serial-type robotic manipulators, are introduced. Furthermore,
the characteristic layout of manipulators is discussed followed by the definition of

the manipulator characteristic length and characteristic point.

1.4.6 Chapter 7: REDIESTRO 1

An overview of the design and manufacturing of a redundant seven-axis manipulator
with an isotropic architecture for six-dimensional Cartesian tasks is presented. This
manipulator, called REDIESTRO 1, was designed, manufactured and commissioned
during the course of this research at the McGill Centre for Intelligent Machines. Since
its completion in 1994, REDIESTRO 1 has been serving as an experimental device
for several robotics-related projects both internally in the Department of Mechanical
Engineering of McGill University and in collaboration with external research groups.
The base-line kinematic design of REDIESTRO 1 stems from the results discussed in
Chapter 5. The design, methodology, kinematic design and mechanical design of the

manipulator are reviewed and mechanical specifications of the robot are outlined.

1.4.7 Chapter 8: Concluding Remarks

A summary of the thesis is provided here, while highlighting its main contributions.
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Chapter 2

Singularity and Workspace
Analyses

2.1 Introduction

While characterizing the performance of robotic manipulators, workspace boundaries
and singularities are of primary importance. An immense amount of research work
has been reported in the past two decades, giving rise to many different concepts. ap-
proaches and techniques for the analysis of manipulator singularities and workspace.
In this chapter two novel methods for the analysis and characterization of the singu-
larities of serial manipulators are introduced. In Section 2 we deal with the represen-
tation of the workspace boundaries directly in the Cartesian space by resorting to the
concept of nonminimal realizations of transfer functions of single-input/single-output
(SISO) linear dynamical systems (Ranjbaran et al., 1992).

In Section 3, the characterization of the manipulator singularities both in the joint
and the Cartesian spaces is discussed with the aim of determining the uniqueness
domain of the forward kinematic maps. Here, by uniqueness domain we mean all
subsets of the joint space over which the forward kinematic map is a diffeomorphism,

i.e., where for each end-effector position there is a unique inverse kinematic solution.
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We introduce an algebraic expression that defines all the separating surfaces of the
joint space for general regional structures. It is believed that this resuit was presented
for the first time in Tsai et al. (1993) and, independently, in Ranjbaran and Angeles
(1994).

In Section 4, the kinematic design of regional structures in relation to singular- vs.
nonsingular posture-changing architectures are discussed. A comparison of the two
foregoing types of regional structures in terms of the trajectory-following capabilities

are also discussed.

2.2 Cartesian-Space Singularity Analysis and Trans-
fer Function Realization

The singularities of a manipulator can be characterized both in the joint and in
the Cartesian spaces. While joint-space singularities can be readily obtained by
determining the singularities of the Jacobian matrix, the Cartesian space counterpart
requires analysis of the inverse kinematic functions and the way they map subsets
of the Cartesian space into disjoined regions in the joint space. Tsai et al. (1993)
provide a complete review of the recent developments of the singularity analysis of

general manipulators.

2.2.1 Formulation

Kohli and Spanos (1985a, b) showed that singularity manifolds in the Cartesian space
can be obtained by equating the discriminant of the inverse kinematic polynomial to
zero. Moreover, Kohli and Hsu (1987) showed that a Jacobian singularity occurs if
and only if at least two solutions of the inverse kinematics are equal. In this section
we propose an alternative method for determining the singularity surfaces in the
Cartesian space of the manipulator, where the inverse kinematic polynomial admits

multiple roots. The proposed technique can be applied to general manipulators; if
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the input-output polynomial of the manipulator is available to illustrate this method,
we will apply it to three-axis positioning manipulators or regional structures.

For a general 3-R manipulator, the closure polynomial is quartic (Takano, 1985).
Moreover, the coefficients of this polynomial are functions of the Denavit-Hartenberg
(DH) parameters (Denavit and Hartenberg, 1955) and the Cartesian coordinates of
the EE. We aim at finding the boundaries of the workspace of 3-R manipulators by
relating the characteristic polynomial P;(t) (Angeles, 1997) with its derivative with

respect to t = tan#f3/2, P;(t), where
Py(t) = at* + bt3 +ct? + dt + e (2.1)

The coefficients of Py(f) are all functions of the manipulator architecture and the
Cartesian coordinates of the endpoint of its third link, the inverse kinematics solu-
tions {t;}{ being found by zeroing the foregoing polynomial. Moreover, it can be
shown that, at points where at least two branches of the manipulator meet, both
Py(t) and P;(t) vanish. Therefore, it is required to obtain a relationship between the
coefficients of Py(t) that would guarantee that both P;(¢) and Pj(t) have at least one
common root. A well-established method already exists for determining the afore-
mentioned condition, namely dialytic elimination (Salmon, 1964). An alternative
method is introduced here, that relies on the concepts of controllability and observ-
ability in the framework of transfer-function realizations of linear systems (Kailath,
1980).

Let T(s) be the transfer function of a single-input/single-output (SISO) linear sys-

tem, i.e.,

1V(S)

T() = 5Gs)

(2.2)

where N(s) and D(s) are polynomials of degrees d and n, respectively, with n < d,

and D(s) monic, i.e., with leading coefficient equal to unity. A realization of T'(s) is
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a triad {A, b, ¢} where A is a d X d matrix and b and c are d-dimensional vectors

such that the linear dynamical system given below has the transfer function 7'(s):

x = Ax + bu (2.3)

y=clx (2.4)

In egs. (2.3) and (2.4), x is the d-dimensional vector of state variables, while u and y
are scalars denoting the single input and the single output of the system, respectively.

Moreover, the transfer function of the above realization is
T(s) =cf(s1—A)"'b (2.3)

where 1 is the d x d identity matrix.

Associated with any dynamical system represented through the state-space equa-
tions of the form given above are the two important notions of observability and
controllability. These concepts are extensively discussed in the specialized literature,
e.g., (Kailath, 1980; Chen, 1984). Before recalling the formal mathematical defini-
tions of the observability and controllability of a dynamical system, a brief physical
interpretation of these concepts is in order. The evolution of the internal states of
a dynamical system as a function of the control inputs to the system is governed
by the physical characteristics of the system and our particular realization of its
input/output behaviour. Depending on the inherent features of the realization at
hand, i.e., the operator A and the vector b, one may or may not be able to control
the system in such a way that, in a time interval, the internal states evolve from
their initial values of x, to take on the desired value of x;. As explained in Chen
(1984), roughly speaking, controllability studies the possibility of steering the state x
from the input u. If we are able to steer the states to a desired point through the
actions of the control inputs, then, our realization of the dynamical system is said

to be controllable; otherwise it is said to be uncontrollable.
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Furthermore, based on the inherent properties of the realization of the dynamical
system that relate its inputs to the corresponding outputs, we may or may not be
able to determine the internal states of the system based on our knowledge of its
input/output behaviour. An observable realization of a dynamical system is one
that allows such an inference. If the estimation of the internal states from the
input/output properties of the system is not possible, then the realization is said to
be unobservable. In other words, observability studies the possibility of estimating
the states from the output (Chen, 1984).

Next, the formal definitions of the observability and controllability are restated
from Kailath (1980): The realization (2.3) and (2.4) is controllable if its d x d con-

trollability matrix C, defined below, is nonsingular:

C

[b Ab --- A"-lb] (2.6)

Likewise, the said realization is observable if its d x d observability matriz O is

nonsingular, with O defined as

C T )
cTA

0= (2.7)
CTAn—l

Furthermore, the above realization is minimnal if it is both controllable and observ-
able. The necessary and sufficient condition for T'(s) to be minimal is that D(s)
and N(s) do not contain any common factor. In other words, if we derive a con-
trollable realization for T'(s), then it is necessary and sufficient for that realization
to be minimal that its observability matrix be of full rank. Hence, if a controllable
(observable) realization is not observable (controllable), then it is not minimal, and
D(s) and N(s) share at least one common root. A physical interpretation of the
notion of minimal realization can be thought of as having simultaneous observability
and controllability with the least possible number of sensors expressing the state of

the system and actuators driving it.
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The concept of minimal realization that in effect determines whether T'(s) is irre-
ducible or reducible is now applied to the closure polynomial and its derivative with

respect to its argument. Hence, if a # 0, let

D(s) = Puls) =s4+és3+532+Ei~s+E (2.8)
a a a a a
and
N(s) = 1dh(s) _ 453 + 3—b52 + e + d (2.9)
a ds a a a

Then, the transfer function 7'(s) takes on the form

(2.10)

T(s) = 453 + (3bs® + 2cs + d)/a
T st (bs3+cs?+ds+e)/a’

A controllable realization for this transfer function can be obtained as (Kailath, 1980)

0 1 0 0
0 0 1 0
A= (2.11a)
0 0 0 1
| —e/a —d/a —c/a -—b/a]
b=[0 0 0 1]%, c¢=[d/a 2c/a 3b/a 4]. (2.11b)

Thus, for the problem at hand, in order to obtain the workspace boundaries, it will
be sufficient to make our controllable realization unobservable. Below we expand the

determinant of the observability matrix O of the realization of eq. (2.11):

det(O) = (d’c?b? — 4ec®b? — 4d3b® + 18edch’ — 27e%b* — 4d’cPa + 16ecia +
18d*chba — 80edc?ba — 6ed?ba + 144e’ch’a — 27d*a® +
14ded®ca® — 128e%c?a® — 192e’dba’® + 256€a®)/a® (2.12)

The right-hand side of eq. (2.12) being a polynomial function of the Denavit-Hartenberg

(DH) parameters and of the z, ¥y and z coordinates of the endpoint, when equated
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Figure 2.1: DH parameters and skeleton rendering for Example 2.1

to zero, the equation thus resulting defines the boundaries of the workspace of the
manipulator under study. By utilizing Mathematica, it was observed that this poly-
nomial is of a maximum degree in r and y, namely, 32, while it is of 16th degree in
z. However, for given values of z and y, it was observed that z admits no more than
four real values.

Next, we resort to a CAD-based method of constructing the workspace boundaries
that result in three-dimensional renderings of the overall workspace. In doing so. we
will take advantage of the symmetric nature of the workspace boundaries about the
first joint axis. If, in eq.(2.12) expressed in the Cartesian space, the y coordinate
is set equal to zero and the contour of the remaining equation is drawn in the X-Z
plane, we will obtain the intersection of the manipulator workspace with the X-Z
plane. In order to obtain the overall workspace boundaries, it is then sufficient to

rotate the said intersection about the first axis.

2.2.2 Numerical Examples

For Example 2.1 we choose a 3-R manipulator formed with the first three links
of the C-3 arm, an isotropic 4-axis manipulator designed at the McGill Centre for
Intelligent Machines (CIM). The DH parameters and the skeleton rendering for this
manipulator are shown in Fig. 2.1.

The overall workspace boundaries, for the Examples 2.1 is shown in Fig. 2.3.
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Link a; bi a;
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Figure 2.2: DH parameters and skeleton rendering for Example 2.2

In Example 2.2, an isotropic (for the definition of isotropic manipulators see (Chap-
ters 3 and 4) 3-axes manipulator whose DH parameters and its skeleton rendering
are shown in Fig. 2.2, is employed.

In Figure 2.4, the overall three-dimensional workspace boundaries of the isotropic

3-axes manipulator in the Cartesian space is illustrated.

Figure 2.3: Overall workspace boundary of Example 2.1
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Figure 2.4: Overall workspace boundary of Example 2.2

2.3 Joint Space Singularities

For the first time, Borel and Liégeois (1986), introduced the notion of aspects as
maximal singularity-free regions in the manipulator joint space. They argued that in
each aspect A; of the manipulator joint space, there is at most one inverse kinematic
solution for a given end-effector pose. Although this is indeed the case for most
industrial manipulators that possess simplifying architectures, it is by no means
valid for general-architecture manipulators. For example, Burdick (1992) introduced
a three-revolute joint manipulator, Example 2.3, whose solution branches could be
connected pairwise in the joint space without crossing any singularity surface. The
architecture of this manipulator is given in Fig. 2.5.

Furthermore, the notion of configuration-space sheets, or c-sheets, identical to that
of Borel and Liégeois’, aspects, was proposed by Burdick in the foregoing reference.
Specifically a c-sheet is a maximal singularity-free region of the joint space, the image

of each c-sheet under the forward kinematics being termed a workspace-sheet or a
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Figure 2.5: DH parameters and skeleton rendering for Example 2.3 (Burdick, 1992)

w-sheet. Depending on the number of inverse kinematic solutions, the c-sheets map
on top of each other and form the w-sheets of the workspace. Burdick conducted
extensive analyses of the c-sheets and the w-sheets with the aid of tools of differential
topology. He showed that in one c-sheet, there can be more than one inverse solution
for some points of the Cartesian space. Figures 2.6 and 2.7 depict the joint-space
and the Cartesian space singularities for the latter example. Shown in Fig. 2.6 are
the four inverse kinematic solutions numbered 1 to 4. These are the corresponding
inverse kinematic solutions to the Cartesian point P illustrated in Fig. 2.7.

At the time, the observation that some regional structures are indeed able to change
solution branch without becoming singular was found rather surprising by many re-
searchers in the field. Wenger (1992) proposed the notion of characteristic surfaces
as separating surfaces that divide the joint space into disjoint regions that map dif-
feomorphically into the Cartesian workspace. In (Wenger, 1992) these regions of the
joint space were termed the basic components, and an iterative method was proposed
to determine the characteristic surfaces. Other contributions to this issue followed
through the works of Tsai et al. (1993), and Ranjbaran and Angeles (1994). The last
two papers employed the closure equations of the manipulators to obtain algebraic
expressions that define the subregions of the joint space that map diffeomorphically

into their Cartesian counterparts. Despite the growing amount of research efforts on
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Figure 2.6: Joint space singularities for Example 2.3

singularity analysis in general, there has not been a concrete design-oriented char-
acterization of the abilities of manipulators to change solution branch continuation
with or without passing through singularities. In the following sections we will dis-
cuss this important issue in more detail, but first some preliminary definitions and
tools are in order.

It is recalled that the joint space J of an n-revolute manipulator can be represented
by an n-torus (T™), or an n-cube whose sides are identified. Since the singularities of
a manipulator are independent of the first joint angle 8;, we can represent the joint
space of a regional structure (3-revolute manipulator) conveniently by a square whose
sides are identified, while 6, and 65 represent the horizontal and the vertical sides of
the square. Furthermore, the Cartesian workspace of a 3-R manipulator is in R 3,
but, due to the symmetric nature of the workspace about the vertical axis, usually
the z axis, for any value of ,, the boundaries of the workspace of the manipulator

in the Cartesian space can also be represented by a square with its sides being either
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Figure 2.7: Cartesian space singularities for Example 2.3
the z and the z axes, or the y and the z axes. Let I" denote the set of joint variables
that make the Jacobian matrix J singular,
F={ve € J | A =det(J) =0}

Let, moreover, the forward kinematic map of the manipulator be denoted by the

vector function f,

f: 7-R?
or,
f1(61,62,03) = = (2.13)
f2(61,62,03) = y (2.14)
f3(02,63) — = (2.15)

while noting that f3 is independent of 8,. Hence, the workspace boundaries in the
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Cartesian space, denoted by W, will be
W = £ (T)

For a regional structure an alternative form for the determinant of the Jacobian
matrix J is introduced here that is linear in the harmonic functions of sums and
differences of the joint angles 6, and 63. If the manipulator is parametrized (Fig.1.3)
using the DH notation, then one can obtain the following relation for the determinant

of the Jacobian matrix that is obviously independent of 6,

A = m cos by + m, cos b3 + my cos (0 + 03) + my cos(fy — 63) + mscos (6, + 203) +
mg cos(fy — 2603) + n, sin @y + nysin b + nasin (263) + ng sin (62 + 03) +

Ns sin (92 - 93) + ng sin (02 + 293) + ng sin (02 - 203) (216)

where m; and n; are constant coefficients that are functions of the architecture of
the given manipulator (functions of the DH parameters). The simplified expressions
for these coefficients are given in Appendix A. Representing the determinant of the
Jacobian matrix in the foregoing form is more convenient than the usual expression
containing the trigonometric products. In Fig. 2.8, the set of joint-space singularities
[ and its image in the Cartesian space W that comprise the workspace boundaries
are shown for the manipulator introduced by Wenger (1992), and whose architecture
is given in Fig.2.9.

In Fig. 2.8, the four inverse kinematic solutions in the joint space are shown and
numbered 1-4, while the corresponding Cartesian configuration is denoted by P. It
is apparent that the joint space J is divided into two disjoint regions only, and not
four (since the top and bottom as well as the two sides of the square are identified.
This is sometimes called a flat torus). Hence, as can be seen in Fig. 2.8, the two
solutions numbered 1 and 3 fall in one c-sheet, while solutions 2 and 4 fall in the
second c-sheet. Hence, this manipulator can indeed change its solution branch from
solution number 1 to solution number 3 without crossing the solid lines that represent

the Jacobian singularities I.



=

Chapter 2. Singularity and Workspace Analyses

30

JOINT SPACE

3 N
Nt

-

[ ]ad

]
'S
]
©w
]
[N
|
-
(=)
-
N
©w
[P N

JOINT SPACE

at /\» L
2 Q1 \
l J@

6:1 ¢ _[' / ]2

-1 /[ Q

-3 e

I ISR

-

JOINT SPACE @ L

S .

P3 | g
¢ 0

J .

(b)

r
CARTESIAN SPACE
: W

" CARTESIAN SPACE -

Figure 2.8: Mapping of the joint space into the Cartesian space for Example 2.4
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Figure 2.9: DH parameters and skeleton rendering for Example 2.4 (Wenger. 1992)
Next, with the aid of a simple example, we will shed some light on the root of
the misconception mentioned before, i.e., why some regional structures can change
solution branch without becoming singular. First, some fundamental definitions as
well as the inverse function theorem are recalled:
e A map g is said to be of class CP (p > 1), if all its pth-order partial derivatives
exist and are continuous.
e A map g is a C? diffeomorphism if g is bijective (one-to-one and onto) and
both g and ¢g~! are of class CP.
e A map g is said to be regular at a point of its domain if the Jacobian matrix
of g at that point is of full rank.
e Inverse Function Theorem (Berger and Gostiaux, 1988): Let & and V be
open subsets of Banach spaces £ and F, and g be a C” map from U to V. If g
is regular at a point ¢, € U, then there exists an open neighbourhood &’ C U
of g, such that the restriction of g to i’ is a CP diffeomorphism from U’ to
g(t)
A Simple Example
Consider the map f: R* xIR — R?, defined by
T
- f(p.0) = (z,y) = (p cos b, p sin §)
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where,IR* =R - {0}. It is evident that the map f is regular (nonsingular) evervwhere
in its domain, since detJ = p # 0. But f is not a diffeomorphism on all of R * xR,
i.e., there are multiple points of R * xR that are mapped into the same point of R 2,
which is due to the periodicity of f in . That is, any two points (p,8) and (p,0+27)
are mapped into the same point (p,0). However, the restriction of f to R *x]0.2 7|

is a diffeomorphism, and thus, an invertible mapping with its inverse given by

Hzy) = (0,0) = 1Y
f~Yz.y) = (p,0) = (y/7* + ¢ tan g

Extending the foregoing argument for general nonlinear maps is extremely complex.
The first attempt towards answering this question for the manipulator forward kine-
matics is due to Wenger (1992), where an iterative technique is used to trace the
pre-images of the Cartesian space singularities of the forward kinematics. In this
regard the characteristic surfaces S, of an aspect .A; with the boundary A4;, were

defined by Wenger as the set of the pre-image in A; of A e,

Se(A) = fTHFA)) N A (2.17)

Moreover, in (Wenger, 1992), disjoint subsets of an aspect in which the forward
kinematic map is one-to-one and onto is termed the basic components.

A brief outline of the technique used by Wenger is explained below:

1. Denote by A the set of all points in the joint space where the Jacobian

matrix is singular.

2. Find the image of A in the Cartesian space under the action of the forward
kinematic map and denote it by W. This set of points defines all of the
workspace boundaries of the manipulator as well as internal separating
surfaces in the Cartesian space.

3. Find the pre-images of the points of W, by solving the inverse kinematic
problem, and obtain four sets of points in the joint space. These sets then

divide the joint space into four disjoint regions.
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This method, that requires tracing each singular point of f from the joint space
into the Cartesian space and back into the joint-space, is not amenable to symbolic
manipulations and requires solving the forward and inverse kinematics numerous
times. A contribution of this chapter is an algebraic expression that defines the
internal separating surfaces explicitly. For 3R manipulators this method was reported
by Ranjbaran and Angeles (1994), while the same technique in a more elaborate
setting for general manipulators was discussed independently by Tsai et al. (1993).
In the latter paper the internal separating surfaces are called pseudo singularity
manifolds and the basic components are termed joint-space patches.

From eq. (2.17), it is apparent that the collection of the Jacobian singularities I,
the boundaries of the aspects .A;, and the internal separating surfaces, pseudo-
singularities, are preimages of the workspace boundaries in the manipulator Carte-
sian space. The internal separating surfaces as well as the boundaries of the aspects
in the manipulator joint space are the points that render the discriminant of the
manipulator closure equation zero. The quartic characteristic polynomial Py(t) that
relates the set of DH parameters and the set of Cartesian coordinates of the EE to

one of the joint angles, i.e., ¢t = tan 63/2 is once again recalled see eq. (2.1):

Pit)=at* +bt* +ct® +dt +e (2.18)
with
a =4a?B® + ' D? — 4a3u3¢? (2.19a)
b=16a2FB +4u}ED (2.19b)
¢ =8a?BA + 2u3DC + 16a3F? + 4u2E? — 8a242¢° (2.19¢)
d=16a?FA+ 4 EC (2.19d)
e = 4a?A + p2C? — 4a’ple?, (2.19¢)
where,

§2EI2+y2
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and

A =1by +b3As + byAaA3 — Ay(2 = by) — bapaps
B = by + b3Ag + by roAz — A(z — b1) + bapaps
C=a+al+b2+b2+b—a -~ (z2-b)°

+ 2byb3Ag + 2bobs Ap A3 + 2b3by A3 + 2a0a3 — 2b2bypo s
D=al+a2+b +b3+b2—a?—€ —(z—b)°
+ 202633 + 2baby A Az + 2b3b4 A3 — 2aqa3 + 2b2b4po i3

E = 2a3bypuy + 20264113, F = agpz

We can now proceed to investigate the singularities of Py(t), by searching for points
where P,(¢) has repeated roots (its discriminant vanishes). In the previous Section
an expression in terms of the coefficients of the quartic polynomial was obtained by
employing the concepts of nonminimal realizations of transfer functions. Here we use
an alternative expression for these singularities which is more compact. As shown in
Neumark (1965), the condition for a quartic to have repeated roots is of the following

form,

h(z,y,z) = (2¢® + 27ad® + 27b%e — Ybed — T2ace)? — 4(c® — 3bd + 12ae)?
=0 (2.20)

[t has to be mentioned that if the right hand side of the foregoing equation is ex-
panded, the same relation as given by eq. (2.12) will be obtained.

Any point in the Cartesian space of the manipulator that satisfies the foregoing
relation must lie on either the workspace boundaries where two solution branches
meet, or on the internal separating surfaces that divide the workspace into subregions
with different degrees of accessibility, i.e., subregions with different numbers of inverse
kinematic solutions.

In order to find the preimage of these surfaces in the joint space, it is noted that the

coefficients a to e given by egs. (2.19) are independent of the z and y coordinates of
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the end-effector, and are functions of the manipulator parameters as well as the z
coordinates of the EE only. Also, the z coordinate of the end-effector is determined
by 6, and 0; only, as 6, produces a rigid body rotation of the manipulator about the
first axis. It is not difficult to show that £2 appearing in eq. (2.19) is not affected by
6, either. Hence, all the points that satisfy eq. (2.20) can be brought back into the

joint space by simply substituting for £2 and z in terms of 6, and 8;. If we let

E2 = f[2(02,03) + f22(62103) (2'21)
zZ = f3(92,93) (222)

then, eq. (2.20) can be rewritten as a function of the DH parameters as well as of 8,

and 64, i.e.,

ho(Ba,83) = (2¢3 + 2Tagd3 + 27 b} eg — Ybgcods — T2agcoep)? —

4 (Cg —3bydyg + 12 agea)3 =0 (2.23)

where, ag, bg, cg, dg, and ey are all functions of 8, and #; only. The contours of this
equation can be plotted in the plane of the second and the third joint variables.
It can then be observed that the joint space is divided into four disjoint regions.
In order to show the applicability of this technique, the numerical examples of the
previous section are reexamined.

The complete joint-space singularities of Example 2.3 are illustrated in Fig.2.10,
where it is observed that the joint space is now divided into four disjoint regions
and each solution branch is contained in one region, or basic components, according
to Wenger (1992). For Examples 2.4, similar results are obtained and shown in
Fig. 2.11.

Another interesting example of a 3R manipulator with general geometry is that
given by Example 2.5, with its DH parameters given in Fig.2.12. This architecture

corresponds to the class of nongeneric manipulators, i.e., those manipulators whose
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Figure 2.10: Uniqueness domains for Example 2.3

singularities in the joint space form smooth manifolds (Pai and Leu, 1989; 1992).
Although most nongeneric manipulators cannot change posture without becoming
singular (Burdick, 1992; 1995), the foregoing example is an exception. It satisfies the
nongenericity condition of 3R manipulators proposed by Pai and Leu (1989; 1992),
while it admits only two c-sheets. Burdick (1992) conjectured the existence of such
regional structures.

The uniqueness domain for the foregoing example is shown in Fig.2.13, where it is
apparent that the two c-sheets contain two inverse kinematic solutions and thus the
manipulator at hand is a nonsingular posture-changing, albeit nongeneric, manipu-
lator.

Another interesting class is that of special manipulators with simplifying geometries.
For example, consider the regional structure of the Puma 560 manipulator, as given
in Fig.2.14

It turns out that for this regional structure A(z,y, z), and thus, hy(8,, 63), as given
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Figure 2.11: Uniqueness domains for Example 2.4

by eq. (2.23), identically vanish, the Jacobian singularity surfaces then dividing the
joint space into disjoint uniqueness domains with unique inverse kinematic solutions
in each region (Fig2.15).

In fact, for all special manipulators, eq. (2.20) is identically satisfied, and thus we

have the following proposition:

Proposition 2.1 A regional structure cannot change solution branch without becom-
ing singular iff the associated DH parameters of the manipulator identically satisfy

eq. (2.20) throughout the entire workspace.
Before proving the foregoing proposition three facts are recalled:

Fact 1 Special manipulators are those whose characteristic polynomials reduce to

quadratic polynomials (Tsai et al., 1994)

Fact 2 Each c-sheet of a special manipulator contains one and only one inverse

kinematic solution branch (Tsai et al., 1994).
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Link a; b; o
1 0.7576 1.5 70.703°
2 1.636 { —0.1498 | —33.810°
3 1.123 | 0.17049 | 88.386°

!\J
(W]

Figure 2.12: DH parameters and skeleton rendering for Example :

Fact 3 Identically vanishing of the discriminant of a quartic polynomial Pj(¢),
amounts to the existence of two double roots and a factorizing of Py(t) of

the following form (Neumark, 1965):

Pi(t) = a(? + 2, + g)2 (2.24)
2a b

Proof:

Necessary: If for a given regional structure, h(z, y, z) and, thus hy(8,, 83) as defined
in eq. (2.20) is identically zero, then from Facts 1 and 3 follows that the manipulator
is spectal. Moreover, from Fact 2 follows that in every c-sheet of the manipulator
there must be only one inverse kinematic solution associated with a given Cartesian
configuration. Hence, the manipulator cannot change posture without crossing the
boundary of a c-sheet i.e., without crossing a singularity surface.

Sufficient: If the manipulator cannot change solution branch without crossing sin-
gularities, then, in each c-sheet there is only one inverse kinematic solution for a
given Cartesian configuration; hence, from Fact 2, the manipulator has to be special,
and, from Fact 1, the inverse kinematic solution must reduce to a quadratic equation.
This, in turn, is equivalent to the identically vanishing of A(z,y, z), and thus, of the

identically vanishing of hg(6,, 63).




b

Chapter 2. Singularity and Workspace Analyses 39
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Figure 2.13: Uniqueness domains for Example 2.5

The same CAD-based technique as discussed in Section 2.2.2 is used now to obtain
complete 3-dimensional renderings of the Cartesian workspaces for Examples 2.3 to

2.6, as shown in Figs. 2.16 to 2.19.

2.4 Kinematic Design and Singularity Distribu-
tion

Despite the significant amount of work and interest devoted to the characterization
of the singularity and workspace analysis of regional structures, particularly with the
wave ot the recent attention to those manipulators that can change solution branch
continuation without crossing singularities, there seems to be a fundamental question
remaining unanswered, namely for the kinematic designer, are there any merits in
making the manipulator a nonsingular posture-changing one at the expense of losing

stmplifying architectures?
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Link a; b,‘ Q;
1 00 | 0.0 | —90°
2 1432|149} 0.0°
3 1432| 00 | —90°

Figure 2.14: DH parameters and skeleton rendering for Example 2.6

It is a well known fact that the Jacobian singularities are undesirable while invert-
ing the kinematics, that is, when controlling the motion of the end-effector at the
Cartesian level while commanding controller actions at the joint-space level. These
singularities, however, do not hinder the direct joint space control of the manipula-
tor motions. Although a change in the posture from one solution branch to another
can be beneficial in order to satisfy additional requirements, this posture-change in
general cannot be a part of the Cartesian task that the manipulator is executing.
Should a change of posture become necessary, the segment of the task being per-
formed would have to come to a stop, the manipulator should then reconfigure itself
to the new branch and then the execution of the next segment of the task would
resume. Therefore, if branch-switching is not to be considered as an integral part
of the assigned task, the controller can readily perform the change from one posture
to another at the joint-space level, where Jacobian singularities do not prevent the
control.

The foregoing argument suggests that despite the recent research enthusiasms to-
wards designing nonsingular posture-changing manipulators, not much of an advan-
tage is gained while doing so. On the contrary, as will be shown presently, these
manipulators can pose kinematic disadvantages over their singular posture-changing
counterparts. For the sake of comparison, let us consider the two regional struc-

tures of Examples 2.3 and 2.6 that depict, respectively, a nonsingular- and a singular
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Figure 2.15: Uniqueness domains for Example 2.6

posture-changing manipulator. To make the comparison more precise, the two ma-
nipulators are normalized with respect to their maximum reach, thus attaining the
same stretch. The Cartesian workspace boundaries and internal singularities of the
two normalized manipulators in their Cartesian XZ planes are shown in Figs. 2.20
and 2.21, respectively. Identical Cartesian straight-line trajectories are also shown
in both figures connecting points P and @ with position vectors p = [0.3,0.0, —0.4]7
and q = [0.7,0.0,0.4]7, respectively.

The line PQ is then parametrized by a path parameter s such that the points r(s)

along PQ, for s € (0, 1) are obtained from
r(s)=qs+(1—-s)p, s€{0,1)

The inverse kinematics of the two manipulators for the above trajectory are then
solved with the four solution-branch continuations for the second joint variable 6,
of the two manipulators shown in Figs. 2.22 and 2.23, respectively. It can be seen

from Fig. 2.23 that any one of the four solution branches A; to A4 can be chosen
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Figure 2.16: Workspace boundaries for Example 2.3

Figure 2.17: Workspace boundaries for Example 2.4
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Figure 2.18: Workspace boundaries for Example 2.5

Figure 2.19: Workspace boundaries for Example 2.6
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Figure 2.20: Normalized Workspace boundaries in X Z plane for Example 2.3
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Figure 2.21: Normalized Workspace boundaries in X Z plane for Example 2.6
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Non-Singular Posture Changing Manipulator
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Figure 2.22: Inverse kinematics for Example 2.3 (nonsingular posture-changing)

and continuously followed from P to ) without any interruptions. Now. considering

Fig. 2.22 for the nonsingular posture-changing manipulator, a much more limited

situation is observed. The PQ interval is divided into three segments, namely, PR,

RT and T'Q. At the start of the trajectory only two solution branches .4; and A, are

available with A, ending at T while 4, can continue to the end of the trajectory at

(. Solution branches Aj; and A, begin from R, where the associated Jacobian matrix

of the manipulator is singular, as these two solution branches meet. Continuation Aj

fails to complete the desired trajectory and ends at T, while .4; passes through Q.

Hence, for achieving a continuous solution-branch from P to @ the manipulator is left

with only one choice, namely A,, a disadvantage that nonsingular posture-changing

nature of the manipulator can circumvent.
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Singular Posture Changing Manipulator
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Figure 2.23: Inverse kinematics for Example 2.6 (singular posture-changing)

2.5 Conclusions

In the first part of the Chapter, singularities and workspaces of regional structures
were discussed. A novel method of determining the Cartesian workspace boundaries
of these structures was introduced. This technique that in effect determines the
resolvent of the characteristic polvnomial of the manipulator and its derivative, is
based on nonminimal realization of transfer functions associated with single-input-
single-output linear dynamical systems. A CAD-based scheme was also presented
for three dimensional renderings of the overall Cartesian workspaces.

In the second part of the Chapter, singular and nonsingular posture-changing manip-
ulators were discussed. First, a review of the major contributions on the subject was
given. A method for determining algebraic expressions that divide the joint space
into disjoint regions that contain only one inverse kinematic solution for a given
Cartesian pose were provided. Finally, a critical discussion on the issue of singular-

versus nonsingular posture-changing manipulators was provided that should be of
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interest to the kinematic designer. It was shown that designing a manipulator in
such a way that it can change solution-branch without crossing any singularity does
not necessarily lead to a better manipulator. Unless the designer is able to push
the internal separating surfaces of the workspace outward close to the workspace
boundaries, chances are that the manipulator will be in a much worse situation as
compared to its singular posture-changing counterpart with a comparable workspace

volume.
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Chapter 3

Measuring Manipulator Dexterity

3.1 Introduction

In this chapter kinematic dezterity of robotic manipulators is discussed and compar-
isons are made between the different measures proposed so far. Since the centrepiece
of almost all performance measures is the manipulator Jacobian matrix, some fea-
tures of this matrix as applied to kinematic dexterity and workspace analysis are
discussed as well. With regard to the kinetostatic performance of robotic manip-
ulators, extensive research work has been published in the past two decades. A
summary of these works is provided in Chapter 1, and a more elaborate discussion
of some of these works that are relevant to this thesis will follow.

Dexterity or gracefulness of a mechanical hand is mainly attributed to its abilities
to position and orient its end-effector comfortably in different directions (kinematic
dexterity} while being able to apply forces and moments on the environment through
its end-effector equally well in all directions (static dexterity). Kinematic and statics
being dual to each other, most often the notion of kinetostatics (IFToMM, 1990) is
used to quantify both kinematic and static performances.

The basis of the definition of kinetostatic dexterity in this thesis is on the following

statement: A manipulator loses kinetostatic dexterity as the contribution of the



<

Chapter 3. Measuring Manipulator Dexterity 30

motion and forces produced by one or more kinematic pair to the end-effector motion
and forces is impaired due to the relative spatial placement of the joint axes. Hence,
measuring dexterity amounts to assessing how comfortably and how accurately the
end-effector motions and the contact forces at the Cartesian space of the manipulator
can be achieved by commanding joint space motions/forces. This, in turn, boils
down to the accuracy and robustness with which the relations between joint and
Cartesian variables of the manipulator can be inverted. Local Cartesian- and joint-
space motions and forces of the manipulator are related through the linear mapping

produced by the Jacobian matrix associated with the manipulator, as reviewed below.

3.1.1 Variable Transformations in Kinematics

When dealing with motion transmission capabilities, the local behaviour of the ma-

nipulator is determined through the following linear transformation:
Jg=t (3.1)

For an n-axis manipulator working in an m-dimensional task space, J is the m x n
Jacobian matrix, mapping the n-dimensional vector of joint velocities q into the m-
dimensional vector of Cartesian velocities t. When the manipulator is used for both
positioning and orienting tasks in the three dimensional Cartesian space, t is the

twist vector of the operation point of the end-effector (EE) which is defined as:

[

with v being the linear velocity vector of the operation point of the end-effector and
w the angular velocity vector of the EE.

In order to command a desired twist to the manipulator, it is required that vector q
of eq. (3.1) be determined. For nonredundant manipulators, the foregoing system of

equations can be inverted if J is non-singular, thus obtaining

q=J""t (3.2)
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For redundant manipulators where, the linear system of eq. (3.1) is underdetermined,

the general solution to the inverse problem is given by
q=Jt+1-J"1¢ (3.3)
where J' represents the generalized inverse of the Jacobian matrix J defined by
JH=JT(JJT)!

and ¢ is an arbitrary vector in R" that defines a secondary task to be satisfied in
addition to the primary task of achieving the desired twist t. The first term of
eq. (3.3) represents the minimum norm solution of the underdetermined linear sys-
tem given by eq. (3.1), while the second term represents the homogeneous solution to
eq. (3.1). This term, (1 — Jt J) ¢, corresponds to the internal motion, or self-motion,
of the manipulator, that gives rise to no end-effector motion. From egs. (3.2) and
(3.3), it is apparent that solving the instantaneous kinematics of the manipulator
amounts to inverting either J or the matrix product (JJ7). In doing so, the nu-
merical conditioning of the Jacobian matrix becomes important. Furthermore, it
is the numerical conditioning of a linear transformation that determines how much
magnification (distortion) will result when the vectors from the domain of the trans-
formation are mapped into its range. In the sense of a manipulator being able to
move its end-effector equally well in all directions, the characterization of the amount
of distortion (maximum and minimum magnifications) that J' produces on the space
of twists of the end-effector while mapping it into the space of the joint rates becomes

important.

3.1.2 Variable Transformations in Statics

When dealing with static force transmission capabilities of the manipulator the sit-
uation is the converse of the kinematic motion transmission capabilities mentioned

above, i.e.,

JTw=r (3.4)
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where the transpose of the Jacobian matrix maps the wrench w applied at the
end-effector onto the vector of joint torques 7. Here, the six-dimensional wrench

l is defined as

i

where f is the resultant external force acting at the operation point of the end-effector

w represented in azis coordinates,

and n is the resultant external moment sustained by the EE, while 7 is the vector
of joint torques. In this situation, given any desired wrench to be balanced by the
manipulator, the resulting joint torque vector T is readily determined and no matrix
inversion is needed. However, if it is required to determine the wrench acting on the
end-effector from joint-torque information provided by torque sensors at the joints,

that is stored in the vector 7, then, for nonredundant manipulators we have
w=JTr (3.3)

while, for redundant manipulators, the foregoing equation takes on the form
w=JIN)'Jr (3.6)

In the sense of the ability to determine the wrench applied at the end-effector by
the environment in different directions, the concern is the distortion (maximum and
minimum magnification) that J7 produces as it maps the space of wrenches to that

of joint torques.

3.2 Jacobian Matrix

From the foregoing sections it is apparent that the Jacobian matrix of serial-type ma-
nipulators plays an important role in quantifying kinematic and static performances.

Hence, a short account of the Jacobian matrix is given next.

lin an alternative ray-coordinates representation of the twist the locations of forces and moments
are interchanged
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3.2.1 Jacobian Formulation

The Jacobian matrix of a general n-revolute manipulator takes on the form (Whitney,

1972)

€1 €2 €n -
J= (3.7)
€; XTI} € XTIy -+ €ep XTIp

where e; is the unit vector parallel to the axis of the ith revolute joint and r; is
the vector directed from any point on the same axis to the operation point P of the
end-effector, as shown in Fig. 3.1. Furthermore, the ith column of J comprises the
normalized Plicker coordinates of the ith axis of the manipulator (Hunt, 1978). It
is worth mentioning that the entries of the Jacobian matrix are not dimensionally
homogeneous. This is apparent as the associated Jacobian J maps the vector of joint
rates with homogeneous units of frequency to the vector of Cartesian velocities with
mixed units of frequency and wvelocity. This feature will be discussed further in the

forthcoming sections.

3.2.2 Jacobian Evaluation

A compact method of evaluating vectors e; and r; comprising the entries of the
Jacobian matrix is given next (Angeles, 1997). According to the DH notation, the
position and orientation of the (¢ + 1)st coordinate frame attached to the ith link
with respect to the ith coordinate frame attached to the (i — 1)st link is given by Q;
and a; respectively. Expressed in the ith coordinate frame, these items take on the

forms

cosf; —sinb; cosa; siné; sinaq; a; cos 6;
Q; = |sinf; cosf; cosa; —cosb;sing; a;, = | a; siné; (3.8)
0 sin o COS ; b;
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Figure 3.1: The basic notations for the Jacobian matrix

If the first joint axis of the manipulator is placed along the positive Z axis of the

base frame of reference, then it can be shown that,
er=[0 0 1T =27

e =Q, 2z

e3=Q, Q2

en=Q1 Q2 Qn12

the foregoing unit vectors thus being expressed in the base coordinate frame. If
the frame of reference is taken as the first coordinate frame attached to the base of
the robot, then the position vectors r;, with ¢ = 1,---,n are determined from the

following relations:

r.=P,_1a,
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Tn_1 = Pn-2 an-1 + Qn—l In

r;=Pia; +Qyr3
rr=Poa,; +Q;r;

where,

P,=Q,Q:Q3---Q; i=1.2,--'n
Py = 1343

When dealing with the Jacobian matrix, the partial derivatives of the entries of
this matrix with respect to the entries of the vector of joint variables @ are often
needed. One example of this situation is when resolving the inverse kinematics at

the acceleration level, where J is needed. We can write
. n.a8J .
J=) —6;
2 25,
Hence, the partial derivatives of the entries of J with respect to 8 are needed to
determine J. A similar situation arises when formulating an optimization problem
whereby a Jacobian based performance measure is minimized, and thus, the partial

derivatives of the entries of J with respect to the joint variables are needed.

Two very useful relations needed for determining these derivatives are given below:

aej e; X ej if'l', < _]

00; 0 otherwise
and

6 rj e; X r]‘ lf 7 S ]

9b; e; x r; otherwise

3.3 Dexterity Measures

In this section, some of the main measures of conditioning and dexterity of robotic

manipulators are reviewed, and comparisons between these measures are made.



]

(]

Chapter 3. Measuring Manipulator Dexterity 36

3.3.1 Condition Number

Salisbury and Craig (1982) introduced the 2-norm condition number of the Jacobian

matrix as a measure of the kinetostatic performance of manipulators, i.e.,

K(J) = Zmes (3.9)

Omin

where, opmar and onm, are the maximum and the minimum singular values of J.
respectively. This measure was employed for an optimum design of planar positioning
manipulators used for multi-fingered hands. As mentioned in Section (3.2.1), the
Jacobian matrix is dimensionally inhomogeneous, and thus its singular values are
also of mixed units. This makes the comparison of these numbers meaningless; in
turn, this makes the condition number of the Jacobian matrix dependent on the
units being used. In the following sections this feature of the condition number will
be discussed in more detail; however, in a general sense, condition number quantifies
the sensitivity of the Jacobian transformation with respect to directions. A detailed
treatment of the condition number as applied to manipulator dexterity will also be
discussed in the next chapter. Furthermore, the condition number of the Jacobian
matrix depends on the location of the operation point of the end-effector whose
motion is of interest. This is in contrast with some other measures to be discussed

presently.

3.3.2 Manipulability

Manipulability ;(J) was defined as a measure of the kinetostatic performance by
Yoshikawa (1985) as the square root of the determinant of the product of the Jacobian

by its transpose, i.e.,

p = /det (JJIT) (3.10)
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[t can be shown that y is in fact the product of the m singular values of the m x n

Jacobian matrix for an n-axis manipulator, i.e,
L=0109 " 0Op

As shown in Angeles et al. (1992), u as defined above is independent of the location
of the operation point. Although there seems to be some disagreements among
researchers on this feature as an advantage or a disadvantage, in this thesis, the
aforementioned insensitivity of performance measure with respect to the location
of the end-effector is considered as a disadvantage. In the following chapters a
detailed discussion of the invariance features of the measure of dexterity is provided.
Furthermore, it is a well-known fact that the determinant of a matrix can only
be used to identify a singular matrix, and near-singularity and ill-conditioning of
a matrix cannot necessarily be captured by the determinant. These facts are best

illustrated with the aid of the following examples:

e for a square (m x m) matrix A, and a scalar s, we have
det (s A) = s™ det A

it is obvious that for the same matrix A, the determinant can arbitrarily be-

come large or small through scaling of the matrix by s.

e In the sense of kinematic inversion, and the accuracy and robustness with
respect to errors, the following interesting example is provided (Tarantola,

1987). The solution of the following linear system

- - -

10 7 8 7 I [32.0]
7 5 6 5 ) 23.0
8§ 6 10 9 z3 B 33.0

L7 5 9 10] |z4] | 31.0
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is )

T | 1.0]
Zy 1.0
T3 N 1.0
[ T4 | | 1.0
while, with slightly perturbed data, namely,
(10 7 8 77 [z] [32.1]
7 3 6 5 2 229
8 6 10 9 I3 - 33.1
| 7 5 9 10] [z4] 1 30.9 |

the solution of the same system is

[T, 9.2
Iy —12.6
I3 - 4.5

| Ty | | —1.1 ]

If the determinant were used to monitor the conditioning of the matrix above.
this result would have seemed quite surprising since the determinant of this

matrix is not too small; it is in fact equal to unity.

3.3.3 Minimum Singular Value

By comparing the condition number and the manipulability index, Klein and Blaho
(1987) argued that the minimum singular value of J that appears in both of the
aforementioned measures can be regarded as a faithful measure of accuracy and
dexterity by its own right. It was argued that since the minimum singular value
Omin is more dominant near the singularities, it plays a more critical role when
quantifying manipulator performance. It was further argued that op,;, forms the
2-norm of the pseudo-inverse part of eq. (3.3) and can be used as an upper bound on

required joint velocities, i.e.,

lall < (1/omm) [It]]
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It can be shown that o,;, is the minimum magnification that J can produce while
mapping q to the twist of the end-effector. The minimum singular value is also
dependent on the location of the operation point of the end-effector. Although opin
can be regarded as an important performance measure for monitoring the behaviour
of the redundancy resolution schemes and rate controls, it will not be as applicable
to the optimum kinematic design and global performance quantifications, since by
itself omin(= [|[J~!||) does not quantify distance to singularity; neither does it carry

information about the maximum magnification that J can produce.

3.3.4 The Kinematic Conditioning Index

Based on the condition number of the manipulator Jacobian matrix, a global mea-
sure of dexterity called the kinematic conditioning indez, or KCI, was introduced by
Angeles and Lépez-Cajin (1988, 1993). They argue that a conditioning measure
should be unique and configuration independent; therefore, they proposed to find

the minimum over all manipulator configurations of the condition number, i.e..
Km = moin k(J)

where 0 represents the set of joint variables that affect x. The kinematic conditioning
index KCI is thus defined as,
1
KCI = 100 %

Km
the KCI ranging between 0% and 100%, as the condition number ranges from in-
finity (singularities of the Jacobian) to its minimum value of unity (isotropy of the
Jacobian). As shown in the following sections, since the reciprocal of the (p-norm)
condition number of a matrix measures the p-norm distance of the matrix from the

closest set of singular matrices, KCI, is in fact, a percentage of such a distance.
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3.3.5 The Global Conditioning Index

A global performance index for optimization of manipulator architectures was pro-
posed in Gosselin and Angeles (1991). This measure, called the Global Conditioning
Index (GCI) is defined as the mean value of the variations of the reciprocal of the

condition number throughout the workspace, i.e.,

_Iw(R)dwW
GCI =2k

where k is the condition number, W the manipulator workspace, and dW the volume
element on W. In the aforementioned reference, the GCI was used for the globally
optimum design of a two-axis planar manipulator. It is quite interesting to note
that the optimal solution for global conditioning turned out to be the one found
by Salisbury and Craig (1982) while locally optimizing the condition number. The
equivalence of the local and global conditioning for the planar two-axis manipulator
was shown in Gosselin and Angeles by directly carrying out the double integration
in the joint space of the robot. Extending this technique to the spatial case is a
formidable task, but it should be used to investigate whether this appealing feature

extends to spatial manipulators as well or not.

3.3.6 Physical Workspace

Motion capabilities of rigid bodies attached to the end-effector of serial manipula-
tors were quantified using the Euclidean group of rigid-body motions and its semi-
Riemannian structures by Basavaraj and Duffy (1993). In this reference, the measure
derived is called the physical workspace of the manipulator, while emphasis has been
placed on the invariance of this measure with respect to the location of the fixed
and moving frames, type and number of joints, and the scaling of the manipulator.
It can be shown that this volume form is the square root of the determinant of the
product J J7, where, J is the Jacobian matrix of the manipulator with its last link

excluded.
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3.3.7 Kinematic Distortion

Park and Brockett (1994) made use of the left-invariant metric of SE(3) to quantify

the amount of distortion that the forward kinematic map
f:N-o>W

produces while mapping the joint space A into the manipulator workspace W. Using
the left-invariance nature of that metric, this dexterity measure is invariant with
respect to base-coordinate changes, but it does depend on the end-effector coordinate
changes. The integral of the distortion measure over the entire workspace produces
an indication of how distorted or “non-flat”, the workspace of the robot is, but it

does not quantify local dexterity. The distortion density is defined as
1
d(f) = Etr(JT GJH™Y
while the global kinematic distortion is defined as

D(f) = [, d(f) 2
(3.11)

with H and G defined as the Riemannian metrics on A and W. respectively. More-
over, 2y is the volume element in A induced from its metric H. Clearly, d(f) being
a function of J only, and not of J~!, it does not quantify the local invertibility of J,

and thus, neither does d(f) quantify the local dexterity of the manipulator at hand.

3.4 Invariance Properties of Dexterity Measures

The issue of the invariance properties of the dexterity measures has been the subject
of numerous research papers, e.g., Paden and Sastry (1988), Li (1990}, Dotty et al.
(1992), Basavaraj and Duffy (1993), and Park and Brockett (1994).

These research works are mainly concerned with invariance of dexterity measures

with respect to units, the base and the moving coordinate frames.
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3.4.1 Invariance with Respect to Physical Units

It is usually required that a performance measure that is used for comparison of
different systems be independent of the physical units used. For example, the per-
formance of a robot should not change if one switches from the SI to the Imperial
System of units. The entries of the Jacobian matrix having mixed dimensions, the set
of singular values of J are also of mixed units. In order to overcome this inhomogene-
ity, normalizing lengths have been introduced to make the Jacobian dimensionally
homogeneous, e.g., (Angeles and Léopez-Cajin 1988; 1993). This is achieved by di-
viding the last three rows of the matrix by a characteristic length associated with
the manipulator. If we denote this normalizing length by L then the normalized

Jacobian matrix—hereafter denoted by J—takes on the form,

e; e, N e,

(]
il

1 1 1 (3.12)
Zel X Iy 7.€2 XTg =-- Zen X I'p

There has been some discussion and criticism on the choice of this characteristic
length, its physical interpretations and its invariance with respect to coordinate
frames in the literature, e.g. (Dotty et al., 1992). In the following chapters we
will provide a normalizing length that has a geometrical interpretation. and that is

unique for a given manipulator and independent of the choice of coordinate frame.

3.4.2 Invariance with Respect to the Base and Moving Co-

ordinate Frames

The invariance of a physically meaningful performance measure on the choice of the
base coordinate frame is imperative and all of the proposed measures conform with
this requirement. What is not immediate is the dependence of a dexterity measure on
the choice of the moving coordinate frame attached to the end-effector. As discussed
by Park and Brockett (1994), the underlying common ground for invariance features

of dexterity measures lies in that the group of rigid-body motions, SE(3), does not
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possess a bi-invariant (or translation-invariant) induced Riemannian metric, while it
does admit a left translation-invariant Riemannian metric as well as a bi-invariant
volume form.

Paden and Sastry (1988) argue that a measure of work-volume that is based on the bi-
invariant volume form of SE(3) should be considered to quantify the performance of
manipulators, since such a measure does not depend on the size of the hand attached
to the robot. They argued that such a measure will be useful in designing general-
purpose manipulators, disregarding the size or shape of the end-effector needed for
specific tasks. The same volume form is used for introducing the physical workspace
by Basavaraj and Duffy (1993)2.

In comparing condition number, the manipulability, and the minimum singular value,
Li (1990) argued that the condition number and the minimum singular value of
the Jacobian matrix depend on the size of the hand, i.e., the location of the op-
eration point P, of the end-effector. By operation point it is meant a point of the
end-effector on which the Jacobian definition is based®. Furthermore, as a proponent
of translation-invariant dexterity measures, Li argues that, if the dexterity measure
used is not translation-invariant, then there will exist preferred robot postures by
this measure, for different end-effector points; this, he maintains, is inconsistent and
undesirable. It is then concluded that, since the Jacobian determinant is indepen-
dent of the location of the operation point, the determinant-based manipulability
index u is preferred over the condition number, while measuring the performance of
a robotic arm.

The kinematic distortion introduced by Park and Brockett (1994) is also based on the
left-invariant metric, and thus, is invariant with respect to base-coordinate changes,
but it does depend on end-effector coordinate changes.

Based on these views, it seems that there is a subtle but fundamental disagreement

2The authors were apparently not aware of the extensive work of Paden and Sastry in 1988, in
using the volume form of SE(3).

3The operation point P defined here is not to be confused with the operating point that was
used in Li (1990) to denote the posture of the robot specified by its set of joint variables.
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among researchers in defining manipulator dexterity. On the one hand, for exam-
ple, Paden and Sastry (1988), Basavaraj and Duffy (1993), and Li (1990) believe
that the end-effector of a robot should be excluded while analyzing the kinetostatic
performance of the manipulator. More specifically, they argue that a faithful per-
formance measure for the manipulator should be insensitive to the location of any
operation point of the end-effector. On the other hand, approaches such as those of
Park and Brockett (1994), Singh and Rastegar (1995), Tandirci et al. (1992), regard
the end-effector as an integral element of the manipulator, because it is with the use
of this device that any manipulator task is performed. In other words, if the size of
the end-effector can affect the dexterity, why exclude its effects in the analysis and
design?

In summary, there currently exist two views on how manipulator dexterity should

be defined, namely,

(a) Manipulator performance should be quantified without considering either the

end-effector or any of its points.

(b) The operation point, or a preferred point of the end-effector whose motion is
of interest, should be regarded as an intrinsic element of the manipulator, and

thus, its effects on dexterity of the arm should be considered.
As a means of combining these two approaches, one can ask the questions below:

e Is there a preferred point of the end-effector, in measuring manipulator dexter-
ity and accuracy, that could be used to relate joint rates with the end-effector

twist?

In this thesis, both (b) and the above question are addressed by introducing a method
of determining a preferred point of the end-effector with respect to which the Jaco-
bian matrix is optimally conditioned. Also introduced in this thesis is a method for
determining a preferred posture of the manipulator that is useful for task-placement

or manipulator-placement (Chapter 6).
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Figure 3.2: Planar 3R manipulator for positioning-and-orienting tasks

3.4.3 Illustrative Examples

The effects of the location of the operation point on the dexterity and reachability
of robotic manipulators are further examined through three simple examples: First,
let us consider planar manipulators for positioning-and-orienting tasks, Fig. 3.2. In
Fig. 3.3, two manipulators are shown, together with their corresponding reachable,
dextrous, and physical workspaces. Precise definitions of reachable and dextrous
workspaces are available in Paden and Sastry (1988), while the physical workspace is
discussed in Basavaraj and Duffy (1993). If the end-effector is not considered as an
intrinsic element of the manipulator, then the two manipulators shown in Figs. 3.3a
and 3.3b are to be considered identical. That is, in the sense of the operation-point-
invariant workspace measure such as the physical workspace, denoted by Wp, the
two manipulators are one and the same. However, in the sense of reachable and
dextrous workspaces, denoted by Wp and Wk, they are quite different. Although
the invariance of Wp in the group of planar motions is a theoretically attractive
feature, for any practical application of the two robots shown in Figs. 3.2, changing
the end-effector size has a direct effect on both the dexterity and the reachability of
the manipulator. If this effect is not considered at the design stage, it will have to be
taken into account when a task is planned, or when an end-effector is to be designed

for the task.
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Reachable workspace (W, )

Dexterous Workspace (m)
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Figure 3.3: Reachable, dextrous and physical workspaces of a manipulator with two
different end-effectors

Figure 3.4: Comparison of identical manipulators in the sense of invariant volume
measures

As a second example, let us compare the two manipulators A and B shown in Fig. 3.4.
Once again, these manipulators are equivalent in the sense of invariant volume mea-
sures. However, if the anchor point O of the robot as well as point P, at which the
robot is to perform a positioning and orienting task, are given by the task, then it is
apparent that the two robots A and B behave very differently for this application.
Indeed, manipulator A is at a relatively dextrous posture, while manipulator B is at
its clumsiest configuration possible, where neither accuracy nor dexterity is within
reach.

As a third example, consider the natural motor activities of human beings. From

every day experience we can appreciate that, as we interact with our environment
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by means of tools of different sizes and shapes, we learn how to manipulate each of
these objects in a rather comfortable (preferred) posture. We know how to adjust our
postures if we are forced to play ping-pong with a racket whose handle is unusually
long, or, if we are to draw or write with a long pencil, holding it from the far end.
Despite the ability of making the foregoing adjustments, one will play a very different
ping-pong game with the long racket, from one with a normal-size racket. Likewise,
the quality of the hand-writing achieved with a long pencil will be significantly
influenced by the location at which we hold the pencil.

As will be shown in Chapter 6, a manipulator has a uniquely defined preferred
point of operation at which it achieves maximum dexterity. By characterizing robot
performance as its dexterity with respect to this preferred point, one obtains an
intrinsic measure of manipulator performance that is independent of the actual hand
geometry. In contrast to translation-invariant measures, this intrinsic performance
measure also quantifies the “distance” of a robot from critical points, and tells the
designer where to place the tool in order to attain an optimum performance. Thus,
it is believed that this kind of performance measure is more practical for robot work-
cell design than those measures in which the aforementioned influences are filtered

out.

3.5 Conclusions

In this chapter, a detailed review of the proposed dexterity measures for robot manip-
ulators was provided. Basic properties of some of these measures were discussed, and
comparisons were made. Particular attention was given to the invariance properties
of these measures with respect to physical units and with respect to the base and
moving coordinates frames of the manipulator. Although invariance with respect to
physical units, and base-coordinate frames are well agreed upon by all contributors
to the subject, there seems to be two opposing views on the requirement of the in-

variance of the dexterity measures with respect to the reference point (the operation
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point) of the end-effector. With the aid of several examples it was proposed that a
faithful measure of kinetostatic dexterity should take advantage of the effects of the

operation point.
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Chapter 4

Condition Number as a Measure

of Kinetostatic Performance

4.1 Introduction

Having established the main features of different dexterity measures in the previous
Chapter, the attention of the thesis will be focused on the condition number of
the manipulator Jacobian matrix in this chapter. The condition number of the
Jacobian matrix, as applied to manipulator dexterity assessments, is discussed in
detail. The notion of isotropic transformations and isotropic manipulators will also
be reviewed. Geometric interpretations of isotropy of linear transformations will
then be provided. In the last three sections of the Chapter, the isotropic design
of nonredundant manipulators is discussed, where some of the contributions of the
thesis are discussed, namely a geometric interpretation of the isotropy of 2-R planar
manipulators. It will also be shown that although the Frobenius-norm condition
number is a smooth function of the joint variables, the two-norm condition number

is not smooth at the isotropic point.
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4.2 Condition Numbers

Almost all of the measures of dexterity share the same common ground: losing
dexterity and approaching a singularity (of the Jacobian matrix) are closely related
phenomena. To quantify the dexterity in this context—recalling that the Jacobian
matrix associated with the manipulator is the linear transformation mapping the
vector of joint rates into the twist of the end-effector—we primarily have to monitor

how far the Jacobian matrix is from a singularity.

4.2.1 Condition Number and Distance to Singularity

One of the most important features of the condition number of linear transformations
is that it quantifies distance to the closest singularities. Strictly speaking, the p-norm
condition number of an n x n matrix A, or, k, (A), measures the relative p-norm

distance from A to the set of singular matrices (Golub and Van Loan, 1989), i.e,

L El
(&)~ E Al

subject to: det(A+E)=0

Once again, the distance from a matrix to the set of singularities cannot be captured
by its determinant. as shown by the following two examples taken from (Golub and

Van Loan, 1989): The matrix B,, defined by

(1 —1 .- =1
0 1 eee =1

B, = e R ™" (4.1)
LO 1 A —1_

belongs to the unimodular groups, i.e., its determinant is identity , whereas kK (B,) =

n2"!. Also, for

D, = diag(107},---,107!) e R™*" (4.2)
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we have, k,(D,) = 1, although det(D,) = 10™". Hence, it is concluded that the
condition number of the Jacobian matrix is the best suited tool for measuring the
distance of the manipulator configuration (locally represented by its Jacobian matrix)

to the closest singular configuration.

4.2.2 Condition Number and Sensitivity of Linear Systems

to Perturbations

Besides characterizing distance to singularities, the condition number of a matrix
defines bounds on the error magnifications while solving linear systems of equations.
In fact, the basic definition of the condition number has naturally evolved while
analyzing the sensitivity of linear systems (Golub and Van Loan, 1989; Watkins,

1991).
e Square Matrices: (nonredundant manipulators)

For nonredundant manipulators, if q is the exact solution of the non-singular instan-
taneous kinematics equation

Jg=t
then, for a perturbed system,
(J+46J)(q+dq) = (t + dt), (4.3)

[t can be shown that the relative error in the solution, ||6q||/||q||, due to relative

errors ||0J||/||J)| and ||6t||/|lt|| in the data, is bounded by the following inequality

lsall _ o 631 Ut
Tar < "D CEr et

with O(e?) denoting higher order error terms.

+0(e?) (4.4)

e Underdetermined Systems: (instantaneous kinematics of redundant manipula-

tors)
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In this case, we have J € R ™*" with m < n. Assuming that J is of full rank, and 4J
is the perturbation of J, with t being the perturbation of t, then the relative errors

in J and t are denoted by,

€5 = HJ‘I—J” € = ﬂdti”, (4.3)

respectively. Now, if
¢ = max{ez. €} < Omaz(J)

Then,

% < Ko(3)(eg min {2,n — m + 1} + &) + O(€) (4.6)
2

¢ Overdetermined Systems: (statics of redundant manipulators)

The static variable transformation for redundant manipulators that leads to an over-

determined system of equations is first recalled:
JTw=r

In this situation, JT € R™™, + € R", and w € R™. In general. the foregoing
equation does not have any exact solution, however, there is always one approximate
solution in the least squares sense. It has been shown (Golub and Van Loan, 1989)

that if the data are perturbed such that
(IJT +637) (w + 6w) = (T + 67)

then the perturbed least-square solution to the foregoing equation verifies the fol-

lowing inequality

lowll _ ,  2%2(3)

w cos(6)

+ tan(6) k2(J)} + O(€) (4.7)

where 8, (with 0 < 8 < 7/2), is the angle made between the vector of data = and
the range of J¥. Furthermore, we have

IIJJllz, “5T||2} < Jmaz
“J”2 ”1'”2 Omin

€ = max {



e

Chapter 4. Condition Number as a Measure of Kinetostatic Performance 73

and .
sin (6) = 19" wo — 7if2
(glP

with wy, the least-square solution being defined as,

#1

Wy = (JJT)_! Jr

An interesting observation on the foregoing characterization of the sensitivity of
the detemined, underdetermined and overdetermined systems of linear equations is
the fact that, for zero-residual cases, i.e., the determined and the underdetermined
systems, the sensitivity is linear in x5(J), whereas for the nonzero-residual problems
such as the overdetermined system, the sensitiviety is a function of the square of the
condition number.

In the context of manipulator kinetostatic, the foregoing sensitivity analysis is re-
flected through the sensitivity and robustness with respect to which the the kinematic
and static relations are resolved. Numerical examples that underline the aforemen-
tioned sensitivity and robustness while resolving the redundancy of positioning ma-
nipulators are examined in Arenson (1997). Furthermore, a theoretical investigation
of the sensitivity of redundant manipulators postures with respect to changes in the
Cartesian trajectories is discussed in Angeles et al. (1996), where the overall sensi-
tivity is shown to be independent of the particular secondary tasks that are usually
augmented to the main desired task and is only a function of the condition number
of the associated Jacobian matrix devided by the norm of this matrix.

Having identified manipulator dexterity and accuracy with the condition number of
J, we have, on the one hand, ill-conditioning and singularities of J and, on the other
hand, well-conditioning and isotropy of J. It is recalled that isotropic matrices are
those whose condition numbers attain the minimum value of unity.

A discussion of the theory of condition associated with general transformations is
given by Rice (1966), while the condition number of matrices is discussed in detail in
the specialised literature, e.g., in Golub and Van Loan (1989). For square matrices

A e R™™, we have:
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rp(A) = [|All A7, (4.8)

Clearly, « is norm-dependent, but, any two condition numbers x,(-) and x3(-) on

R ™*™  are equivalent in that constants ¢; and ¢, can be found for which

cika(A) € k3(A) S c2ka(A) AER™™

4.3 Matrix Norms

In this section some of the basic definitions and properties of matrix norms are
reviewed (Golub and Van Loan, 1989; Watkins, 1991; Householder, 1964). A matrix
norm || - || is a function that assigns to each of its matrix argument (-) a real number
called the norm of the matrix, with the following three properties: For all A, B €

R™" and  €R,

(i) ||A[ > 0,ifA # 0 (4.92)
(i) |la Al =|a] Al (4.9b)
(7i5) J|A + B < [|A]l +|IB]| (4.9¢c)

Any real-valued matrix function satisfying the foregoing three properties is consid-
ered a matrix norm. A fourth property, called the consistency property, which is a
generalization of the Cauchy-Schwartz inequality for matrices (Householder, 1964},

is also defined, i.e.,

|lAB| < [A[lIBI (4.10)

Not all matrix norms are consistent; however, the F-norm (the matrix Euclidean
norm) is a consistent norm. As explained in Householder (1964), the notion of
consistency stems from the relations between the matrix norms and vector norms.
That is, if any matrix norm |[A]| and any vector norm ||x|| satisfy the following
inequality

A x|| < [JA]] flxl]
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then the two norms are said to be consistent. For example, the vector Euclidean norm

and the matrix Euclidean norm (also called the Frobenius norm}) are consistent.

e The Frobenius norm | - || is defined by:

Al = ytr(A AT) = Z:: (4.11)

where tr(-) is the trace of its matrix argument. Moreover, in general. not any matrix

||[V]3

norm qualifies as an upper bound for the matrix when regarded as a linear trans-
formation (Householder, 1964). The Frobenius norm of a matrix, as defined above,
is one such example. Although the least upper bound of the m x m identity trans-
formation is equal to one, i.e., lub(Ixm) = 1, from the foregoing definition of the
Frobenius norm follows that ||Inxm||. = m?. In this thesis a normalized form of the
Frobenius norm will be used so that the norm of the identity matrices will be the
identity, regardless of their dimensions. This is achieved at the expense of violating

the consistency property of the Frobenius-norm.

e The normalized-Frobenius norm || - ||, is defined by:
1
lAll, = ME tr(A AT) (4.12)

with £ = min {m, n}. Hence,
Al = k72 ]|A[l, (4.13)

As shown presently, the normalized F-norm is no longer a consistent norm. This is
demonstrated by proving the following inequality, which is indeed the reverse of the

consistency inequality given by (4.10) with B being replaced by A7:
T
A AT, > Al AT = A%
Let

u=[e a - an)] €R™ and v=[11 --- 1]TeR™
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then, from the Cauchy-Schwartz inequality for the Euclidean norms of vectors, we
have

u’ v < [luf}[|v]]

or

(ay+ax+---an) S\/m(a%+a§+---a$n)

Now, if a; is considered to be the ith eigenvalue of the matrix product A A7, then

the foregoing inequality can be rewritten as

tr(A AT) < ktr[(A AT)2),

ar

% tr(A AT) < ,/ % tr[(A AT)?]
hence,

AN = Al |AT], < |AAT], (4.14)

which is the reverse of the consistency property, thereby proving that the F-norm is
not a consistent norm.
The foregoing inequality will be employed in Chapter 6 when a novel measure of

conditioning is introduced.
e Every vector p-norm on R" can be used to define a matrix norm on R ™*" by,

— rmax 1A%l
A% = 22 T,

the geometric interpretation of ||A[j, thus defined is that it characterizes the maxi-
mum magnification that the matrix A will produce when mapping a vector x € R"
to its image y € R™. Moreover, for square matrices A € R™*", we have

1
Alle = =
P lA

O The one-norm, defined for p = 1, is

m
Al = max 3 ey
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O The infinity-norm, defined for p = oo, is in turn,

1<i<m

n
|Allo = max 3" |ay |
j=1

e Some of the important properties of matrix norms are

1ALl < All, < ValAll (4.15)

1 n -
= 1Al < A1, < /2 Al (4.15b)
H}?;Xl aij | < [[A]l < vmn max | ai; | (4.15¢)
%HAMW < 1All; < VAllAlle (4.15d)

= lAll < 1Al < VAATL (4.15¢)

4.4 Matrix Condition Numbers

From eq. (4.8), which is the basic definition of the matrix condition number. the
2-norm and the F-norm condition numbers, k3 and k¢ for m x m square matrices,

take on the forms

Ka(A) = Z’:‘: = ’;:“: (4.16)
and
kr(A) = /tr(A AT) tr{(A AT)]-! (4.17)

Omaez aRd Onin being, respectively, the maximum and the minimum singular val-
ues of A, Amsz and A, being the maximum and minimum eigenvalues of AAT

respectively. From the definition of the normalized-Frobenius norm, it follows that

Ko (A) = % Vtr(A AT) tr[(A AT)]! (4.18)

Hence,
Ke = VMK, (4.19)

For a rectangular matrix A € R™*" we can rewrite eq. (4.8) as,
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x(A) = Al [fAT]] (4.20)

where, A' is any appropriate generalized inverse of A. It will be shown presently
that using the generalized inverse, eq. (4.18) can be applied to general rectangular

matrices as well as to square matrices.

e overdetermined systems: A € R™*™ with m < n,

ko (A) = [|A]l (AT A)~ AT,

K (A) = \/%tr(AAT) %tr[(AT A)"'ATA(ATA)]

1
K, = ;ﬁ'(A AT) tr[(A AT)"Y] (4.21)
which is the same expression as that of eq. (4.18) given for square matrices.
e underdetermined systems: m < n,

K. (A) = ||A|l AT (A AT)7,

K, (A) = \/ %tr(A AT) %cr[AT(A AT)-1 (A AT)-1 A]

Kp = %\/tr(A AT)tr[(A AT)-1) (4.22)

The foregoing equation is also the same as eq. (4.18) given for square matrices.

Some other useful properties of condition numbers in general are:

k(A) = k(A™!), independent of the norm used (4.23a)
k(A) = k(AT), for F- or 2-norms (4.23b)
keo(A) = k1 (AT) (4.23¢)
k(A AT) = K2(A) (4.23d)
k. (A AT) < k%(A), consistency of |-, (4.23e)

k.(AAT) > rcf,_(A), inconsistency of || - ||, (4.23f)
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The proofs for the identities (4.23a) to (4.23¢) can be found in specialized literature,
e.g., Golub and Van Loan (1989).

4.5 Kinematic Isotropy

In the foregoing sections we argued that the condition number of a matrix x(A),
with A € R™*", is a useful measure for quantifying distance to singularity and errcr
magnifications in solving overdetermined (m > n), determined (m = n), and under-
determined (m < n) linear systems associated with A. In this section the concept
of isotropy as applied to general real matrices; the notion of kinematic isotropy of
manipulators is discussed as well. Having reviewed important features of isotropic

matrices, we will then discuss kinematic isotropy and isotropic manipulators.

4.5.1 Matrix Isotropy

First the concept of isotropy for matrices is recalled. Isotropic matrices are those
with a minimum condition number of unity. On the one hand, as A becomes ill-
conditioned, its distance to singularity, defined as 1/«(A) approaches zero, while
the error magnification factor <(A) approaches infinity. On the other hand, as A
approaches isotropy, its distance to singularity approaches a maximum value of one,
while the error magnification approaches its minimum value of zero. It is apparent

that as A approaches a singularity, its minimum singular value o,,;, vanishes, i.e.,

Omin(A) 50 = ky(A) =00 (4.24)

Omin(A) = Omaz(A) = Ky(A) o1

Hence, for the 2-norm condition number to become one, all singular values of A must

become identical. Furthermore, recalling eq.(4.18), the normalized Frobenius norm




Chapter 4. Condition Number as a Measure of Kinetostatic Performance 80

condition number is of the form

kp(A) = i— V(A AT) (A AT) ] (4.25)

Denoting by {o;}* the ordered set of singular values of A, with oy = o, and

Om = Omaz, W€ have

tr(AAT)=0[+0'2+~--+am

1 1 1
tr[(AAT)‘l]:. ;+0—+"'+0_—
1 2 m

from the foregoing equations following that

o1(A) >0 = kz(A)—>

gi(A) 2 0#0 (Vi=1,2,---m), = kg(A)—o1

where o is the common singular value of A. Thus, for A to become isotropic its m
singular values should be identical, or, equivalently, the m eigenvalues of the product
A AT should be identical. From the foregoing basic definition of isotropic matrices.

the following theorem can be stated:
Theorem 4.1

The full-rank matrix A € R™*" (m < n) is isotropic if and only if A AT =51,
where o is the common singular value of A, and 1 is the m x m identity matrix.
Proof: The matrix product A A7 € R ™*™ being symmetric, it can be diagonalized

in the form

AAT=QAQT

with A = diag (A}, A2, - -- Am), and Q orthogonal. From the isotropy of A, it follows
that A\; = Ay =--- A, = A, and hence,

AAT=Q(1)QT =)11=01
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where the orthogonality of Q, and the definition of singular value were used.
Let
AAT =0%1=11

Since the matrix product A AT is diagonal, its diagonal entries are its m eigenvalues,

ie.,
A, 0 - 0]
N1 0 A --- 0
|0 0 Am |
Hence, \y =A==, =)

q.ed

Corollary 1: From the foregoing Theorem, it follows that the rows of the
product A AT are mutually perpendicular, and have the same Euclidean norm

which is equal to o, the common singular value of A.

Corollary 2: If A is square and of full rank, then the isotropy condition can

be equally written as

ATA =01 (4.26)

thereby making both columns and rows of of A mutually perpendicular. Equa-
tion (4.26) can be obtained directly from the main isotropy condition given

above, i.e.,
AAT =721
A.T — 0,2 A—l
ATA=0¢2A"1A =421
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Figure 4.1: Geometrical interpretation of isotropy

4.5.2 Geometric Interpretations

The linear transformation A € R ™*" maps vectors x from its domain i.e.. R" into
vectors y in its range R™. Depending on the numerical conditioning of A and
the orientation of the vector x being mapped, x can undergo various degrees of
distortion. However, if A is isotropic, then no distortion would result, since A maps
a unit sphere into another unit sphere either of a smaller or larger radius. This is
best illustrated by examining the mapping induced by a square and positive-definite
2 x 2 matrix A.

y=Ax

Applying the polar decomposition to A, we have

A=RS
Thus,
y=Rz
z=Sx
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where R is orthogonal and S is symmetric and positive-semidefinite. The mapping
induced by A is now characterized by first mapping the unit circle under S into an
ellipse. This distortion is followed by the mapping of the orthogonal matrix R that
does not produce any distortion and only rotates the ellipse into its final position. It
is apparent that the larger the ratio between the two positive eigenvalues of S, the
higher the eccentricity of the ellipse. However, when A is isotropic. it induces the
most uniform magnification and the shape of the unit circle is not affected (Fig 4.1).
The same geometrical interpretation can be extended to rectangular matrices as well.

For instance, if A € R™*", then one can apply the QR factorizing (Strang, 1988) to

SN

where Q € R ™*™ is orthogonal, U € R"*" is upper triangular and 0 is the (m—n)xn

A and obtain

zero matrix. Now, the same argument can be applied to the square matrix U.
Another interesting feature of an isotropic matrix is that its generalized inverse can

be determined by one single scalar inversion, e.g.,

1
0-2
Afz(ATA)-‘AT=UizAT if m>n

AT=AT(AAT) ' = AT if m<n

4.6 Isotropic Manipulators

Having discussed the notion of isotropic matrices in general, the concepts of kineto-

static isotropy and isotropic manipulators are now discussed.
Definition 4.1

Kinetostatic Isotropy is defined as the ability of a manipulator to produce mo-

tions and forces with an accuracy that is insensitive to the direction in which these
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motions and forces are applied. In our motor activities, we regard those postures as
most “comfortable” when our motion-and-force transmission abilities are direction-

independent.
Definition 4.2

Isotropic Manipulators are those whose normalized Jacobian matriz is isotropic

in at least one point in their workspace.

Fact 1: Not all manipulators are isotropic; in fact, most manipulators are not isotropic.

Fact 2: An isotropic n-R serial-type manipulator has at least a circle of isotropic con-
figurations in its joint space. This follows from the fact that the rotation of
the first joint of the manipulator, which results in a rigid-body rotation of the

whole arm, would rotate the isotropic point through a whole circle!

Fact 3: The kinematic isotropy of a manipulator is the result of a particular choice of

the set of DH parameters defining the manipulator architecture.

Fact 4: A manipulator that cannot attain an isotropic posture is called nonisotropic.

4.7 Isotropic Design of Manipulators

The optimum kinematic design of serial-type nonredundant manipulators for isotropy
is discussed in this section, while the design of redundant manipulators for kine-
matic isotropy is the subject of the following three Chapters. For both redundant
and nonredundant manipulator designs, two main design strategies can be outlined,
namely, Jacobian synthesis (Gonzédlez—Palacios, 1993), and Non-linear optimization.
In Jacobian synthesis, first an isotropic matrix of appropriate dimension and struc-
ture is constructed from which the set of DH parameters is then extracted (Klein

and Miklos, 1991). Nonlinear optimisations and solving sets of nonlinear equations

"Here we are assuming ideal joints with no physical limits
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can also be used to obtain the set of DH parameters. In this chapter, a simple
example of the isotropic design of planar 2-R manipulators is introduced using the
direct differentiation of the condition number. Although this problem was solved
as the first example of an isotropic manipulator by Salisbury and Craig (1982), its
inclusion here is meant to provide some additional algebraic and geometric insights.
In the following chapters nonlinear optimization is used to provide isotropic designs
of redundant manipulators.

To this end, the isotropy condition for the Jacobian matrix of a general n-axis ma-
nipulator, as per Theorem 4.1, is recalled, while denoting the 3 x n upper block of J

by E, and its 3 x n lower block by S, i.e.,

€ XTI} € Xrqy -+ €, XTI,

(4.27)

If the normalized Jacobian matrix J is introduced the isotropy condition takes on
the form
— T EET —,‘:E ST
R =o’1 (4.28)
tSE" ;5SS
Thus, isotropic design amounts to determining the constant and the variable sets of

DH parameters in such a way that the foregoing condition is satisfied.

4.7.1 A Simple Example

In this subsection the isotropic design of planar two-axis manipulators is discussed
through directly differentiating the condition number of the Jacobian matrix. Since
the condition number is a complicated function of the entries of its matrix argument,
for general matrices this method is not feasible. However, since geometric insight can
be gained through direct differentiation of the condition number, this simple example
is discussed here. Some new contributions that are byproducts of this exercise are

also introduced.
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The Jacobian matrix of the general 2-R manipulator shown in Fig. 4.2 takes on the

form

—lisi—bs - s
J— 1 S1 2812 2312 (4.29)
licy+lcpp lrc12

where {; and §; are, respectively, the ith link length, and the ith joint variable, while
¢ =cosb;, s; =sinffori = 1,2, ¢ = cos (0, +0,), and s;5 = sin (6, + 6,). It can

be shown that
T=tr(JIT) =1} + 203 +21, 1, cos b, (4.30)
and

6 =det (JJIT) = 22 sin%6, (4.31)

Figure 4.2: Planar 2-axes manipulator

Moreover, the inverse of J is readily determined, as

1 [ c12 Iy s12

J7l=
det(J) _tl cp ~— 12 Ci12 —l[ S1 — 1‘2 S12

(4.32)
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with det (J) = {, I, sin 6, = v/4, and

12 -2 -1,y cos@
(J JT)—I — E 2 1 162 2 (4.33)
4 —12—1lycosby 12 +12+211cos8,
Hence,
12+212+211 lo cos b, tr(JJT) T
¢ Ty-17 _ 4 2 _ =T "
(@37 BT sin’6, det(337) ~ 3 (4.34)
Thus,
1 tr2(JJ7) T2
2 = — T -1 — % 5
K@) = eI (@I = p e = (4.35)
noting that both tr (JJ7) and det (JJ7) are positive, we obtain
tr (JJ7T) T
kelJ) = = 4.36
P = S VaeaiT o (4.3
The isotropy of J requires that xz(J) =1, or
r=2V6 (4.37)

Substituting egs. (4.30) and (4.31) in the foregoing equation yields the expression
shown below:

lf +2[§ +2[1 lg COSHQ - 2[1 12 sinﬂg =0
With the usual half-angle substitution (¢ = tan6,/2) for cosf, and sinf, in the
foregoing equation, a quadratic equation in ¢, is obtained, namely,

(B+28 -2 L) -4l lhta+ (3 +28+20 1) =0 (4.38)

with its two roots being given by

, 2k —(2 - 23)?
2T P 2228 - 2111,

Therefore, the only possibility for the existence of a real solution is

L V2
2 =20 or SEE=—2-



P

Chapter 4. Condition Number as a Measure of Kinetostatic Performance 88

Hence, the isotropy of J is attained at
to = tan62/2 = \/§+ 1

or

37
g = +—
2 i4

where * denotes isotropy. We conclude that, up to a scale factor s, there exist only
one isotropic planar manipulator for positioning tasks. This solution is, in fact. that
found by Salisbury and Craig (1982).

Next, it is shown that sz thus defined is smooth everywhere, its derivative vanishing
only at the isotropic configuration 85. By differentiating both sides of eq. (4.35) with

respect to 8,, while recalling that § = det (JJ7) and 7 = tr (JJ7), we obtain

dkp d 72 861 —471%8
_ _ T 1.39
28F 2. = 26,45 16 62 (4.39)

The foregoing derivative exists for all nonsingular configurations (4 # 0). This

derivative is evaluated at 6 next, while noting from egs. (4.30) and (4.31) that

d
r(@;)=1, and 7= d0T=, =20, l,sinf} = +1 (4.40)
2 |,.
and
* 1 ! dé . = e 1
8(63) = T and ¢4 = a0, = 20212 sinf; cosf; = + 5 (4.41)

g

Next we will show that unlike the smooth behaviour of the F-norm condition number
around isotropy, the 2-norm condition number does not exhibit the same smoothness
at the isotropic point. To this end, the characteristic polynomial of the 2 by 2 matrix

JJT can be written as

M —7A+46=0 (4.42)

where, as before, 7 = tr (JJ7), § = det (JJ7), and X is an eigenvalue of JJ7. More-
over, since J J7 is positive-definite, for all nonsingular configurations, the foregoing

quadratic equation always admits two real and positive roots, namely,
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e = %(T +VE=18), and Ay, = %(r Y~y (4.43)

At the isotropic configuration 6, = 63, k2 = 1, and the two eigenvalues are iden-
tical. Thus, the condition for the existence of repeated roots for the characteristic

polynomial is examined, i.e.,

2 ~46=0
thus

r=2V6

which is the same condition as that obtained before for kg = 1, with the repeated

eigenvalues being,

Ao = /\ma:r:(gg) = ’\min(gg) =

After some simplifications, x5(J) takes on the form

T+VTe—4)4
25

The variation of Kk, and x with respect to 8, in its entire domain is shown in Fig. 4.3,

(4.44)

ko (J) =

while in Fig. 4.4, the latter quantities are plotted around one of the isotropic config-
urations, namely, 85 = 37"' From these figures, it is apparent that, although, g is
smooth at the isotropic point, x5 is not. A proof of this result is provided in Ap-
pendix B. The significance of this observation may be recognized while implementing

the optimization methods used for both analysis and design of isotropic manipulator.

4.8 Algebraic and Geometric Discussions

As a byproduct, we can obtain an interesting relationship between xz(J) and k»(J)

Ky = Kp+kE—1

for 2 x 2 matrices, namely,
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Figure 4.3: Variations of the 2-norm and Frobenious-norm condition numbers for 2R
planar manipulator

The geometric interpretations of 7, d, and the isotropy condition for planar 2R ma-
nipulators are discussed next. Using egs. (4.30) and (4.31), and referring to Fig. 4.2,

the relationships below follow:

T=tr(JIT) =13 + 2085+ 20 1y cosy =12 + 12 (4.43)
§ =det (JIT) =212 sin? 0, = 4 A® (4.46)
where r is the distance from the origin to the end-effector, and A is the area of the

triangle O, O, O; formed by the manipulator. Moreover, we recall that both kz and

K2, gave rise to the same isotropy condition, i.e.,

r=2V3
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Figure 4.4: Variations of the 2-norm and Frobenious-norm condition numbers for 2R
planar manipulator around the isotropic point

This condition can be rewritten as shown below:

2, 12
s _ T+l
Trmsz 4 —.‘1
or,
2
Tems _ 4
A

By examining the foregoing condition, as well as eqs. (4.36) and (4.44), a geometric
interpretation of the isotropy condition for this simple example is observed, namely,
to achieve isotropy it is required to decrease the rms value of the aforementioned
distances from the operation point to the two joint axis while increasing the area
occupied by the triangle formed by the manipulator. This, in turn, means that, at

the isotropic configuration, the square of the rms value of the distances from the
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end-effector to the axes of the manipulator scaled by the area of the triangle formed
by these axes in the plane of the manipulator is equal to the identity. For this simple
example it also turns out that the operation point of the EE is equidistant from the

two axes.

4.9 Conclusions

The condition numbers of matrices were reviewed in detail. Since the condition
number is norm-dependent, some of the important features of matrix norms were
also discussed. As applied to kinetostatic performance, the condition number of the
Jacobian matrix was argued to be a useful tool as it both quantifies the distance to
the set of singularities of the Jacobian (i.e., poor dexterity, and ill-conditioning) and
characterizes the robustness of the kinematic inversion with respect to manufacturing
and sensing errors. [sotropic manipulators were then defined as those whose Jacobian
matrices can attain a minimum condition number of unity. A necessary and sufficient
condition for isotropic designs was provided, while highlighting some algebraic and
geometric interpretations of isotropy. A categorization of different kinematic designs
of manipulator was proposed, namely, Jacobian synthesis and nonlinear optimization.
The simple problem of isotropic design of planar 2-R manipulators was revisited using
the direct differentiation of the condition numbers. In doing so, additional geometric
and algebraic insights were obtained; it was shown that the 2-norm condition number
is not a smooth function of the set of joint variables. Although this was proven only

for 2 x 2 matrices,this is a feature of any m x n matrices.
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Chapter 5

Isotropic Designs of Redundant

Manipulators

5.1 Introduction

The kinematic design of redundant manipulators is addressed in this chapter. As
explained in Chapter 4, two main design methodologies can be emploved for the
kinematic design of manipulators. As discussed in Chapter 1, the kinematic structure
of a serial manipulator is represented by the set of Denavit and Hartenberg (DH)
parameters. This set can be considered as the union of a set F which contains all the
parameters of the manipulator that do not change with the manipulator configuration
and the set Q that contains the joint variables that define the configuration of a given

manipulator, i.e.,

P=FuUQ
with
F= {al’ag"“aﬂnb?""bn:alya27"'an}
QE {(12:"’aQn}

with n being the number of a and b of the manipulator. It should be noted that
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the first joint variable ¢, as well as the first joint offset distance b, are absent in the
foregoing sets. This is because these two parameters produce rigid-body motions
of the manipulator as a whole. In other words, any choice of these two parameters
can always be accommodated by the rotation and translation of the base coordinate
frame of the manipulator. Furthermore, referring to Section (3.2.2), it is apparent
that neither the unit vector e; nor the vector r; for i = 1,2, - -n, depend on the last
offset angle a,. Hence any function of the Jacobian matrix including its condition
number will be independent of a,,. The geometric explanation for this feature is once
again the independence of any intrinsic kinematic property of the manipulator on
the orientation of the moving frame attached to the end-effector. The total number
of design parameters k that includes the entries of both F and Q is thus given by
the relation

k=4n~3

For example, the number of parameters required for the kinematic design of a seven-
axis manipulator is 25. [t will be shown here that isotropic seven-axis manipulators
are possible, and structural considerations pertaining to the design of such manipu-
lators will then be discussed while providing several illustrative examples. Kinematic
isotropy and anthropomorphism will then be combined to serve as an augmented set
of design requirements. It will be shown that in principle, isotropy and anthropo-
morphism for seven-axis designs cannot coexist, as the incorporation of the latter
requirements leads to pseudoredundant architectures that can loose more than one
degree of freedom if the motion of one of their joints is lost. A nine-axis isotropic
design will then be introduced in an attempt to combine isotropy and anthropomor-
phism. The isotropic design of hyperredundant planar manipulators will then be
discussed, whereby a 30-axis example of such designs will be introduced. Finally,
comparative studies between isotropic and nonisotropic manipulators in the sense of

workspace singularity distributions will be conducted.
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5.2 Isotropic Design of Seven-Axis Manipulators

We adopt here the condition number of the Jacobian matrix discussed in Chapters 3
and 4 as the main criterion for the design of redundant manipulators. It will be
shown that since the design problem at hand reduces to an underdetermined system
of m nonlinear equations in n unknowns, with m < n, there is in general an infinity
of solutions for isotropic seven-axis robots. Additional design requirements can thus
be incorporated to reduce the dimension of the solution set, while achieving other
functional considerations. Recall that the normalized 6 x 7 Jacobian matrix of a

seven-axis manipulator takes on the form

= € €2 €7 E -
J= =1, (5.1)
1 1 1 =
Eelxrl Zegxrg Ee7xr7 LS

while the isotropy condition, as given by eq. (4.28), is expressed by
- EET lEST 1 O
337 = L = g? (5.2)
%S ET #S ST O 1
with 1 and O, respectively, denoting the 3 x 3 identity and the zero matrices. The

foregoing main relation gives rise to three matrix equations, i.e.,

EET =01 (5.3a)
EST=0 (5.3b)
é SST =4%1 (5.3¢c)

The foregoing matrix equations amount to 21 independent scalar equations to be
satisfied by 25 elements of P plus the two parameters L and o. However, as will
become apparent presently, the last two parameters can be determined explicitly

from egs. (5.3). Indeed, upon equating the trace of both sides of eq. (5.3a), we obtain

tr(EET) = tr(}_e; ) = 302
1
On the other hand,
tr(d_e;el) =Y efe;=n
1 1
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where we used the normality of vectors {e;}}. Therefore,

o =\/n/3 (5.4)

This means that the common singular value of the Jacobian matrix of an isotropic
manipulator at the isotropic configuration is a function only of the number n of
degrees of freedom of the manipulator. Moreover, by equating the trace of both

sides of eq. (D.3C)’ we have

On the other hand,

n

tr[i(ei x 1;) (& x 1;)T] = Z(ei x ;)7 (e; X ;) = z": lle: x ri|?

1

Hence,
_ X lle x rylf?

n

L? (5.3)
As shown below, the terms ||e; X r;||, with ¢ = 1,2, .- n, appearing in the right-hand
side of the foregoing equation are, in fact, the distances from the operation point P

to the n joint axes. Referring to Fig 5.1 the following vector equation can be verified
r; + d,‘ = (I',‘ . e,-)e,-
or
d;-di = [|dil|* = (ri - 1) = (r: - &)

Thus,

l|d,-[|2 = (e; xr;) - (& x 1) =||e; x I‘i“2

A second interesting geometrical attribute of kinematic isotropy for both positioning
and orienting tasks stems from the condition on vanishing of the off-diagonal blocks

in eq. (5.3b), namely, E ST = 0. This condition gives rise to the following result.
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Figure 5.1: Projection of the operation point onto the 7th axis

Theorem 5.1

Let O! be the foot of the perpendicular to the kth axis A; from the operation point P
(Fig.5.1). The operation point of an isotropic manipulator, in its isotropic posture,

is the centroid of the set { O] }T.

Proof: From the condition given by eq. (5.3b) i.e., EST = O, we have that

n
Ze,— (e,- X l',')T =0

1
If we take the axial vector (Leigh, 1968) of the two sides of the foregoing matrix

equation, we obtain
n
deix(eixr)=0
1
which can be rewritten as
n
z E?I’,‘ =0
1

where E; is the cross-product matrix of e;. Moreover, Ef is expanded as

E12 = —(1 —e,-eT)

and hence, the foregoing equation leads to

> (1-eel)r;=0
1
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But matrix e,-eiT maps r; into the transverse component of r; along e,, i.e., along A,.

That is, (1 — e;eT) r; denotes the vector connecting O! with P.

q. e.d.

5.3 Methodology

Two main approaches are followed in using the set of isotropy conditions, namely,
the system of 21 nonlinear equations for the 25 unknowns derived above. The first
approach is based on the optimization of a cost function over the 25 unknown pa-
rameters subject to the isotropy conditions. In the second approach, the number of
design variables will be reduced to 21 upon assigning four of the 25 unknown pa-
rameters based on functional conditions, thereby deriving a system of 21 nonlinear

equations in 21 unknowns.

5.3.1 The Kinematic Optimization Approach

The first approach is based on determining the design variables by optimizing a
cost function that penalizes the violation of egs. (5.3). The first candidate for the
cost function is apparently the condition number itself. However, because of the
complexity of the evaluation of the condition number, not to speak of its gradient,
other cost functions should be considered. To this end, an objective function z is
defined as the distance of a design, given by the 25-dimensional vector x of design
variables, to isotropy, the distance being defined in terms of the Frobenius norm. We

thus define a matrix M as
M=1JT - o211 (5.6)

Matrix M is thus a measure of how different the Jacobian matrix is from an isotropic

matrix. Hence, we have an unconstrained optimization problem, namely,

z= Tr(MMT) - min (5.7)
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However, a solution for x may very well include a link length a; that is negative.
Since a; is defined as a positive quantity that represents the distance between two
consecutive axes, it seems that one needs to add constraints to the foregoing problem,
in order to limit the search domain of {a;}} to positive values only. Instead of doing
so, however, if any of the resulting a; turns out to be negative, its absolute value can
be used while making the simple adjustments of the other parameters such that the
relative position and orientation of the two consecutive joint axes remains unchanged.

We do this using Algorithm 5.1.

Algorithm 5.1 :
Fork=1,---,n—1, do

if ag < O, then7

Qg Iakf
Q-1 + |ag—1]
E?k «— Hk -7

Oy Oy —
endif
Enddo
For k =n, do
if a, < 0, then,
Qn = |an]
Q-1  |aq_i]
6, —0,—7
endif
Enddo
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Link ¢ Qa; b; ai(deg) 9,- (deg)
1 0.1154 0 104.6285 | 180.0000
2 1.5704 | -0.0483 | -86.3539 | 40.1118
3 0.1756 | 1.0226 | 60.6524 | 30.5779
4 1.0499 | -0.7054 | 108.6141 | -105.7290
b} 0.9094 | -0.0104 | -110.1435 | -69.0636
6 0.0053 | -0.0614 | -107.3289 | 146.9810
7 0.4810 | 0.8844 0 33.5665

L=0702 k=10

Table 5.1: DH parameters for the fully isotropic architecture: Design 1

Numerical Examples: Design 1

As an illustrative example for the approach discussed above, the Matlab function
fmins was used for solving the foregoing minimization problem. The objective func-
tion was chosen to be norm of the 21-dimensional vector function f(x), with x con-
taining 25 entries of the set P plus the characteristic length L, and the 21 components
of f(x) being the 21 distinct scalar components of matrix M defined in eq. (5.6). The
results obtained for this design are given in Table 5.1.

These DH parameters produce a configuration whose Jacobian matrix is isotropic,
with its singular values being identical and equal to /7/3. For this isotropic design,
eq. (5.5) yields the same value for L as the one obtained with fmins (Table 5.1).
Furthermore, Fig. 5.2 depicts a 3-dimensional rendering of this manipulator in its

isotropic posture.

5.3.2 Kinematic Design via Nonlinear-Equation Solving

The second approach for solving our design problem is by means of functional con-
straints. For functional reasons, some of the entries of the set x can be fixed a priori,
thus reducing the dimension of the design space. By preassigning five unknowns,
a determined system of nonlinear equations can be obtained whose solutions are

computed numerically.



>¢

Chapter 5. Isotropic Designs of Redundant Manipulators 101

Figure 5.2: Fully isotropic seven-axis manipulator: Design 1

Numerical Example: Design 2

As an illustrative example for the second approach, the number of design variables
was reduced to 21 as explained next. From a structural viewpoint, it is advantageous
to concentrate as much mass of the arm as possible close to the manipulator base.
This would enhance the dynamic performance and the structural rigidity of the ma-
nipulator. It is thus attempted to obtain an alternative design by preassigning values
to five of the components of x, thus obtaining o system of 21 nonlinear equations
in 21 unknowns. Moreover, we set a;,as,as,b, and by all equal to zero, which is
intended to bring the first three moving axes, and hence, their motors, close to the
first, fixed, axis. Elimination of these five parameters from the design vector x results
in a system of 21 nonlinear equations in 21 unknowns, which can be solved numer-

ically. The subroutine fsolve of Matlab, that is based on Newton-Raphson method,
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Link z a; bi a,-(deg) 6,(deg)

1 0 0 -62.7126 0

2 0.0239 0 -11.0926 | 35.0924
3 0 0.1760 | 106.6820 | 62.7137
4 2.2620 0 72.8709 | 117.7082
S 0 -1.8796 | 55.8331 | -24.6355
6 0.0738 | 3.2468 | 62.8430 | -2.3164
7 1.2060 | -1.4819 0 225.4504

L=10444 k=10

Table 5.2: DH parameters for the fully isotropic architecture: Design 2

was employed for solving the said system of nonlinear equations. The results ob-
tained for this design are given in Table 5.2, while the corresponding manipulator in
its isotropic configuration is shown in Fig. 5.3. The associated Jacobian matrix for
this configuration can be shown to have a condition number of unity. Similar to the
previous example, eq. (3.3) results in the same value for L as the one obtained with
fsolve. The DH parameters of this example (Design 2}, serves as a baseline design
for the final kinematic design of REDIESTRO 1, as discussed in Chapter 7.

From Fig. 5.3 it can be observed that, by having the first four joints concentrated
very close to the manipulator base, the mass of the corresponding links and actuators

will be less imposing on the power requirements.

5.3.3 Anthropomorphic Considerations

Anthropomorphic manipulators are those that resemble the human upper limbs.
This often requires compact articulations with zero offset distances and intersecting
axes. For example, concatenations of three concurrent joint axes forming parts of
our limbs are observed, e.g., in the shoulder and the wrist articulations of our upper
limbs. In order to aim for anthropomorphism during the kinematic design process, it
is thus necessary to set some of the DH parameters equal to zero in such a way that
the aforementioned concurrency is achieved. As depicted in Fig. 5.4, in order to have

the origins of the two consecutive revolute joints R; and R, coincide, it is required
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Figure 5.3: Fully isotropic seven-axis manipulator: Design 2

to assign a; = b;;, = 0. Furthermore, if the orthogonality of the intersecting joint
axes is also required, a third condition, a; = 90°, would have to be incorporated. For

a seven-axis robot, three anthropomorphic architectures are considered here, namely,

(A) 3R-3R-R
(B) 3R-R-3R
(C) 3R-2R-2R

The first two architectures of the foregoing set have two triads of coinciding revolute
joints, each triad being consecutively concurrent, the last one having one set of
three coinciding joints as well as two sets of two coincident ones. It is apparent
that anthropomorphic requirements thus deigned can be achieved at the expense of
the overall mobility of the manipulators and to some extent at the expense of the
kinematic dexterity. In fact, the existence of any two three-R modules in a seven-axis
design gives rise to an architecture that is termed here pseudoredundant. The reason

for this terminology becomes clear through a simple example. If the fourth revolute
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Figure 5.4: Consecutive ith and i + 1st revolute joints

joint of the 3R-R-3R design is locked, one would expect to be left with a six-axis
manipulator having a full mobility of six degrees of freedom. It is apparent that this
is not the case, for the operation point is constrained to lie in a sphere centred at
the shoulder, and of radius equal to the distance between the shoulder and the wrist
centres.

The anthropomorphic conditions proposed above give rise to the following design

requirements:

Numerical Example: Design A, 3R-3R-R
For this case one must have

0.1262:0, a4=b5=0

a; =b3=0, as=0bs=
Having preassigned values to the eight foregoing design parameters, one is left
with a pseudoredundant manipulator, with only 18 nonzero design variables to sat-
isfy 21 equations, thereby obtaining an overdetermined system of nonlinear equa-
tions. Since, in general, one cannot expect a solution to exist for this overde-

termined system, it is concluded that isotropic manipulators with two 3R mod-

ules cannot exist. By preassigning zero values to eight of the design variables,
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namely, a;,as,aq, as, be, b3, bs, and bg, a nonlinear optimization problem is formu-
lated. The aforementioned subroutine fmins was used to find the least-square ap-
proximation of this nonlinear overdetermined system. The solution obtained is given
in Table 5.3, while the corresponding Jacobian matrix has a condition number of

1.3845. Figure 5.5 shows a 3-dimensional rendering of this design. It can be seen

Link z a; b; a;(deg) 6;(deg)
1 0 0 -77.8800 0
2 0 0 -80.1659 | 259.9013
3 1.5045 0 35.4774 3.6829
4 0 1.7420 | 95.4346 | -108.8578
5 0 0 -93.0426 | -87.9244
6 2.0629 0 188.9605 | -101.4668
7 1.3420 | 0.0089 0 -145.6447

L =1.0002 k=1.3845

Table 5.3: DH parameters for Design (A), 3R-3R-R

that this solution, as compared to the previous alternatives, has a closer resemblance
to the human arm architecture than the previous fully isotropic examples. Obviously,
this is achieved through a trade-off by a small increase in the magnitude of the con-
dition number and an impairment on the overall redundancy of the arm. Therefore,
this manipulator is not isotropic. Notice that the CI of this manipulator is 72.4%.
For this example, since J is not isotropic, we cannot expect to obtain L by means of

eq.(3.3).

Numerical Example: Design B, 3R-R-3R

For the isotropic design of the second pseudoredundant architecture, i.e., a 3R-R-3R

architecture, it is required to have
a1=b2=0, a5=b5=0
02=b3=0, 06=b7=0

The DH parameters for Design B is illustrated in Table 5.3.3, while the rendering of

this anthropomorphic, but nonisotropic architecture, is given in Fig. 5.6.
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Figure 5.5: Quasi-isotropic anthropomorphic architecture: Design (A), 3R-3R-R

Numerical Example: Design C, 3R-2R-2R
Finally, for the design of the 3R-2R-2R architecture, the set of DH parameters should
satisfy the conditions given below:

a1=b2=0, a4=b5=0

a2=b3=0, 05=b7=0

The DH parameters for this design are given in Table 5.3.3, while its graphical

rendering is illustrated in Fig. 5.7.
Numerical Example: Design D, Nine-axis fully isotropic anthropomorphic
manipulator

For the sake of completeness, the kinematic design of a fully isotropic anthropomor-

phic manipulator is discussed next. From the foregoing discussions it is apparent
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Link 7 a; b; a;(deg) 8;(deg)
1 0 0 68.4246 0
2 0 0 -77.6089 | -81.247
3 1.3353 0 132.0783 | 30.5267
4 1.2304 | 0.0977 | -120.0623 | -105.2396
d 0 -0.1854 | 93.5111 80.4914
6 0 0 -84.3166 | -82.1153
7 0.6798 | 0.6575 0 63.0681
L =1.1658 k =1.4432

Table 5.4: DH parameters for Design (B), 3R-R-3R

Link ¢ a; b; a;(deg) | 6;(deg)
1 0 0 -67.2917 0
2 0 0 133.6988 | -2.4689
3 1.4323 0 159.6295 | 161.9426
4 0 -0.4111 | -93.3292 | 33.1595
3 1.4440 0 -90.9870 | 137.8626
6 0 1.1185 | 80.8763 | 32.3106
7 1.1380 0 0 -150.4670

L =0.8706 x =1.4623

Table 5.53: DH parameters for Design (C), 3R-2R-2R

that isotropy and anthropomorphism cannot be achieved simultaneously for seven-
axis robots, since the latter requirements often lead to pseudoredundancy. It is thus
required to increase the number of degrees of freedom of the robot. In order to obtain
such a design it is required to have at least 21 unknowns to satisfy the 21 isotropy
conditions on the Jacobian matrix. If an eight-axis robot is considered, the number

of design variables will be:

k=32 (total number of DH parameters)
-3 (bl ) 611 a7)
— 12 (condition for the three 3R modules)

=17 < 21.

Therefore, eight-axis manipulators with three 3R modules do not possess enough

number of design variables either. A nine-axis manipulator with three modules of
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Figure 5.6: Quasi-isotropic anthropomorphic architecture: Design (B), 3R-R-3R

three concurrent axes is examined next. The number of design parameters & for this

class of manipulators is:

k =36 (total number of DH parameters)
-3 (bls ola O!'()
— 12 (condition for the three 3R modules)

=21

Having established 21 unknowns, the design problem can now be formulated as a
set of nonlinear equations. The results obtained from fsolve are given in Table 5.6,

while the graphical rendering of this manipulator is presented in Fig 5.8.

5.4 Hyperredundancy and Isotropy

The notion of hyperredundant manipulators has been used for those manipulators

with a significant number of degrees of redundancy (Chirikjian and Burdick, 1993,
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Figure 5.7: Quasi-isotropic anthropomorphic architecture: Design (C), 3R-2R-2R

1994). In this section, kinematic isotropy, as applied to hyperredundant planar
(snake-like) architectures, is discussed. It will be shown that the isotropic posture
of these manipulators indeed resembles to some extent the familiar shape of a cobra
in an attack pose. Although the shape of comfortable/dextrous configurations at-
tained by living articulated bodies is the outcome of complex natural interactions,
and it is by no means intended here to overemphasize kinetostatic dexterity as a
determining factor in shaping these configurations, it is interesting to note that by
aiming at optimum kinetostatic postures (i.e., isotropy), such familiar configurations

are obtained.

5.4.1 Formulation

The schematic drawing of a typical hyper-redundant planar manipulator for both
positioning and orienting is shown in Fig 5.9. The forward kinematics of this ma-

nipulator takes on the form

¢=60+0,+---+6, (5.11a)
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Link ¢ a; b; a;(deg) | 6i(deg)
1 0 0 59.3517 0
2 0 0 90.0 90.0
3 0.7559 0 -90.0 60.6483
4 0 -0.3478 | 120.6483 90.0
5 0 0 -90.0 90.0
6 0.7559 0 90.0 60.6483
7 0 0.3478 | -120.6483 | 90.0
8 0 0 90.0 90.0
9 0.4804 0 0 65.941

L =0.3397 « = 1.00000

Table 5.6: Fully-isotropic anthropomorphic nine-axis manipulator: Design D, 3R-
3R-3R

Ir=a c0591 + as cos (91 +92) +---+4+a, cos (01 +02 + gn) (511[))

y=a;sinf, +aysin (6, +65)+---+a, sin(0y + 0> +---6,) (5.11¢)

where ¢ is the orientation of the last link, with z and y being the Cartesian co-
ordinates of the operation point, attached to the last link. If the manipulator is
considered for positioning tasks only, the forward kinematics reduces to the last two
of the foregoing three equations (egs.5.11b, and 5.11c). The instantaneous forward

kinematics of hyper-redundant manipulators is of the from shown below,
Jo=x (5.12)

where, in general J, the (3 x n) Jacobian matrix associated with the manipulator

takes on the form

1 1 .- 1
J=|~(s1+s12 -+ 512.0) —(s12°°-+S12.0) - —S12.m (5.13)
(ci+cri2 -+ Cra.m) (12" +cCr2.m) -+ Cizom

with @, the n-dimensional vector of joint rates, defined as

L)
Ih

—
E'Jl
[a—
-

~—
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Figure 5.8: Fully-isotropic anthropomorphic nine-axis manipulator. Design D. 3R-
3R-3R

with X, the three-dimensional vector of Cartesian velocities of the end-effector being

defined, in turn, as

¢
X=\{z (5.15)
Y
In the foregoing equations it was assumed that a; = ay--- = a, = 1, with,

sy =sinf,, ¢ =cosb,

S12 =sin (0, + 6}, c12 = cos (6, + 6,)

S12..5 = sin (91 + 92 <o+ 9]'), C12...; = COS (01 + 02 . 9_7)

The link lengths of the manipulator having been chosen a priori, isotropic architecture
design will have no relevance for this manipulator; however, it is desired to obtain

an optimum configuration of the manipulator in the sense of kinematic isotropy.
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Hence, the problem reduces to minimizing the condition number of the Jacobian
matrix over the set of joint variables 0. After formulating an optimization problem
similar to those of the previous sections, it becomes apparent that possibly due to
the large number of trigonometric sums and products involved, the convergence of
the problem to an optimal solution is not adequate. However, by performing some
simple algebraic manipulations on the definition of the Jacobian matrix, and reducing
the number of the said sums and products, the convergence of the problem can be
significantly improved. These simplifications are explained next. Equation (5.12)

can be rewritten as

JUU'6=x (5.16)

with the nonsingular permutation matrix U and its inverse U~! being defined as,

1 0 0 0 --- 0] 1 0 0 O 0
-1 1 0 O 0 1100 0
0 -1t 1 0 0 1 110 0
U= , Ul= (5.17)
0 0 -1 1 0 1 1 11 0
0o 0 0 0 --- 1] (11111 --- 1]
respectively. Now the modified version of eq. (5.12), takes on the form
Ja=x (5.18)
with
0 0 0 1
Ja =J U-l = |—8 —S812 —S8123 - —S812...n (519)
Ci C12 Cizz -  Ci2.n
and L . )
a;y [ 6,
vy 6, + 6,

a= |63 | =U"10=]| 6, +6 + b (5.20)

-dn- -él+é2"'+én4
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A geometric interpretation of the foregoing algebraic manipulation is that the Jaco-
bian matrix of the system of equations expressed by (5.12) maps the vector of relative
joint rates @ to the Cartesian velocity vector %, while J, appearing in eq. (5.18) trans-
forms the vector of absolute joint rates @, to x. The ith relative joint rate ; is defined
as the angular displacement of the ith link with respect to the (i — 1)st link, with 0
denoting the base. The ith absolute joint rate, ¢&; = 3} g;. is, in turn, defined as the
angular displacement of the ith link with respect to the base. Once the absolute joint
rates are obtained from the reduced system, the relative joint rates can be readily

determined using the equation given below:
6=U"la.

Another interpretation of the absolute joint variables used here was recently con-
sidered by Maton and Roth (1996), while relating the schemes of actuation to the
kinematic performance of planar manipulators. By the schemes of actuation it is
meant the way in which each joint is driven, that is, whether locally by an actua-
tor attached directly to the link, or remotely by placing the actuator on the base.
The absolute angles mentioned before are in fact the joint variables associated with
the case of all actuators being installed at the base while assuming identical trans-
mission ratios. Maton and Roth showed that for a 2-R planar manipulator accurate
positioning—particularly at larger manipulator reaches—the ground-based actuation
is preferred over the manipulator with locally-driven joints. During the numerical
optimization of the example given below, this conclusion was clearly observed.

Further simplification of the Jacobian matrix can be achieved if positioning manip-
ulators are considered only. Although the Jacobian is reduced to that of positioning
tasks only, it is still possible to achieve a desired orientation for the last link at the
isotropic configuration. This is possible since the number of optimization parameters
at hand is quite large, and also because the orientation ¢ of the last link is simply

the nth absolute joint coordinate. Having reduced the system to that of positioning
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Figure 5.9: Hyper-redundant planar manipulators

tasks only, one obtains

—1 —8 —S812 —S123 - —S8i12.n _
J.=JU ' = (5.21)
1 C12 C123 o0 €12
Hence, the isotropy condition on J, takes on a very simple form, i.e.,
- Yt sin? o — Y "sin a; cos oy o2 0
J.J; = ] = R (5.22)
— Y Tcosa; sina; > 7 cos? 0 o?

whereby, the common singular value of J, is readily determined by equating the

trace of both sides of eq. (5.22), i.e.,

5.4.2 Numerical Example: 30-Axis Planar Manipulator

As a representative example for the isotropic configuring of hyperredundant manip-
ulators, a planar 30-dof robot for positioning tasks is considered. The minimization
routine fmins is once again used to find one optimum solution * at which the con-

dition number of the Jacobian matrix is unity, and where the additional constraints
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listed below are also satisfied. All of the required scalar objective functions are
grouped together as entries of a vector z whose Euclidean norm is minimized using

the Nelder and Mead search technique implemented by fmins, i.e.,
0" = rnein(zTWz) (5.23)

with W being a weighting matrix of the appropriate dimension.

Objectives

e Condition number minimization:

z; = k(J,) = min

e It is required that at any configuration, the first two links remain horizontal.

ie.,

Zp =60; - min

23 = 6, — min

e At an isotropic configuration it is required that the last link also remains hor-

izontal, i.e.,

n
z4=¢ =) 06; > min
1

e As the last constraint, it is required that the norm of the vector of joint variables
0 at an isotropic configuration be a minimum. This additional constraint
results in a smoother shape of the manipulator at the isotropic configuration.
An alternative but computationally more intensive way of ensuring a smooth
shape is to minimize the second difference between the value of each joint : to
that of : + 1. This condition which is in some sense a measure of the curvature

of the manipulator, was also studied, but it was decided that the computational
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burden that it creates outweighs the improved smoothness of the manipulator

backbone. Hence, the last additional constraint was chosen to be

25 = ||6)] — min

The vector z containing the scalar objective functions of eq. (5.23) takes on the form,
2,

22
Z= |23

24

L <5

The initial guess for the joint-variable vector was chosen to be a set of verv small
random numbers. These were small values for each joint just enough to bring the Ja-
cobian out of the singularity of the configuration at which all joint variables are zero.
The evolution of the shape of the manipulator during the optimization procedure is
shown in Fig.35.10, a graphical rendering of this 30-axis manipulator at an isotropic
posture being illustrated in Fig.5.11. The condition number of the Jacobian matrix
at this configuration is equal to unity, and, as can bee seen, the joint coordinates are

such that the manipulator has a very smooth shape.

5.5 Kinematic Isotropy and Singularity Distribu-
tion

In this Section a comparative analysis of isotropic versus nonisotropic manipulators is
made. The basis of the comparison is the distribution of the set of singularities of the
manipulators throughout the joint-space. In general, comparing two manipulators for
any functional purpose is not a clear task. The framework in which a fair comparison
can find meaning should thus be laid down first. The main objective of this section
is to provide a framework for the comparison of redundant manipulators in the sense

of kinematic dexterity and singularity distributions.
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Snake-Like Hyperredundant Manipulator: Isotropic Design
m ~ . .
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Figure 5.10: Condition number minimization of a snake-like manipulator

As explained in the previous chapters, the reciprocal of the p-norm condition num-
ber of the Jacobian matrix J represents the p-norm distance from J to the sets of
singular matrices. Hence, in an absolute sense, isotropic matrices lie farthest from
their singularities. This feature by itself is quite attractive; however, one may pose
the question of how the variation of the condition number and, thus, the kinematic
dexterity of an isotropic manipulator behaves throughout the entire workspace. or
throughout the joint-space. Alternatively, although an isotropic manipulator at the
isotropic configuration attains the largest possible distance to the singularities of
J, the mean-value of the variations of the condition number is compared to that
of a nonisotropic manipulator. Obviously, the first issue to be addressed before at-
tempting to answer the foregoing question is how two manipulators can be compared
without comparing apples and oranges. Some of the factors considered here while

comparing two manipulators are listed below:
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Figure 5.11: Graphical rendering of a 30-axis isotropic manipulator
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Linki| a;.y m | b m | o;_(deg) | 6;(deg)
1 0.0 0 0.0 6,
2 -0.12319 0 -90.0 0,
3 0.10795 | 0.05461 90.0 05
4 -0.07938 0 -90.0 64
b} 0.07938 | 0.05461 90.0 s
6 -0.0492 0 -90.0 Os
7 0.0492 0 90.0 0;

Table 5.7: DH parameters of the Robotics Research K1207 Manipulator

(a) Identical degrees of freedom.
(b) Compatibility in the size of the manipulators.

(c) Compatibility in the configuration of the manipulators.

To satisfy requirement (a) given above, as a representative example, a redundant
seven-axis and isotropic manipulator is compared with a seven-axis redundant, but
nonisotropic manipulator. The isotropic manipulator used for this example is the
manipulator introduced in Section 5.2 and whose DH parameters are given in Ta-
ble 5.2 (Design no. 2, illustrated in Fig. 5.3). The nonisotropic manipulator to be
compared against the isotropic one is the Robotics Research K1207 (Farrell et al.,
1990; Seraji et al., 1993). The DH parameters of this manipulator as given in the
foregoing references, are shown in Table 3.5.

As mentioned in Section 5.3, the a; parameters are defined as link lengths and should
be allowed to take on positive values only. Hence, the equivalent set of DH parameters
that does not contain negative link lengths is first evaluated. Moreover, in order to
satisfy the size-compatibility condition (b), it is required to normalize the link-lengths
and offsets of the two manipulators. To this end a normalizing length that is intrinsic
to the manipulators should be employed. The characteristic length L, as defined in
Section 5.3, is used, and the link lengths a; as well as the link offsets b; are divided by
L. Although, other choices for this normalizing length exist such as, the mazimum

reach, or the largest link-length of the manipulator, the characteristic length is used




(28]

Chapter 5. Isotropic Designs of Redundant Manipulators 120
Linki| a; m b m | ai(deg) | 8;(deg)
1 0.12319 0 90.0 6,
2 0.10795 0 90.0 43.2274
3 0.07938 | 0.05461 90.0 179.9416
4 0.07938 0 90.0 50.1589
b) 0.0492 | 0.05461 90.0 180.0129
6 0.0492 0.0 90.0 19.5556
7 0.0 0.01778 90.0 0.2436
L =0.2554108 m Kmin = 1.7004

Table 5.8: DH parameters of the Robotics Research K1207 Manipulator (with posi-
tive link-lengths)

because it also minimizes the condition number. The characteristic length of K1207-
RR was found to be 0.2554108 m. In order to satisfy requirement (c) mentioned
above, the minimization routines discussed before were used to obtain a configuration
of the two manipulators at which the condition number of the associated Jacobian
matrix is a minimum. The modified set of DH parameters according to the convention
employed in this thesis for the K1207 manipulator at its optimum configuration,
together with the associated characteristic length, are given in Table 5.8.

The graphical skeleton rendering of K1207 at its optimally-conditioned configuration
where the condition number of the Jacobian matrix attains a minimum of 1.7004.
is shown in Fig. 5.12. It is interesting to note that although K1207 is not designed
for kinematic isotropy, its minimum condition number is not very far from unity;
however, as will be shown presently, even such a small deviation from isotropy results
in a relatively significant difference on its singularity distribution.

Having established the three compatibility requirements, the reciprocal of the condi-
tion numbers of the two manipulators are then minimized starting from their respec-
tive optimal-dexterity configurations towards their closest singularities. The same
minimization routine fmins is used for both cases, while the intermediate variations
of the reciprocal of the condition number is recorded. As the two manipulators move
away from their optimum configurations towards their nearest singularity, the condi-

tion number is plotted against the number of iterations toward singularity (Fig. 5.13).
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Figure 5.12: Skeleton-rendering of the Robotics Research K1207 manipulator at its
optimum-dexterity configuration
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Figure 5.13: Comparison of isotropic and nonisotropic manipulators
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Figure 5.14: Comparison of isotropic and nonisotropic manipulators

It can be seen from Fig. 5.13 that the variation of the condition number for the
isotropic manipulator stays flat for a larger number of iterations when compared to
the nonisotropic arm. The same pattern was observed while repeating this compar-
ison for other nonisotropic or quasiisotropic manipulators discussed in this chapter.
As a second representative example, the anthropomorphic 3R-3R-R manipulator of
Fig. 5.5 and Table 5.3 was compared with the isotropic arm introduced as Design
No. 2. The results of this comparison are shown in Fig. 5.14. The condition number
of the nonisotropic design used in the second example at its optimum-dexterity con-
figuration is only 1.3845; however, a dramatic change in the variation of the condition

number as compared to that of the isotropic arm can be observed in Fig. 5.14.
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5.6 Conclusions

The emphasis of this Chapter was mainly on the application of kinetostatic per-
formance indices in the design of seven-axis, revolute-coupled manipulators. Three
different optimum solution approached were studied: first, a nonlinear minimization
problem was solved, which, in effect, rendered the Jacobian matrix fully isotropic;
next, it was argued that, despite the fully isotropic nature of the first solution, some
of its structural features could be improved. This led to preassigning some of the
parameters defining the structure of the manipulator, which in turn resulted in a
system of 21 nonlinear equations in 21 unknowns. As a second approach, the DH pa-
rameters of an isotropic manipulator were then obtained by solving the said system of
nonlinear equations. In order to make the manipulator structure anthropomorphic,
further constraints were imposed, which led to three alternative designs, namely,
3R-3R-R, 3R-R-3R, and 3R-2R-2R. First, it was argued that the existence of two
3-R modules in the architecture of seven-axis designs leads to pseudoredundancy.
Hence, it was shown that isotropy and anthropomorphism for seven-axis and eight-
axis manipulators cannot coexist. An example of a nine-axis fully isotropic design
was obtained.

[sotropic configuration design of hyperredundant planar manipulators was then dis-
cussed, where a method of simplifying the computational requirement of the opti-
mization problem at hand was provided. The isotropic configuration of a 30-axis
planar robot in the presence of additional functional requirements was determined.
This design led to a familiar configuration that to some extent resembles the config-
uration of a cobra in an attack posture.

In the last part of the chapter, a comparative analysis of the effects of kinematic
isotropy on the distribution of the joint-space singularities was included. Within
the framework of this analysis, isotropic and nonisotropic designs were compared.
The results of these comparisons provided a graphical confirmation for the role of

kinematic isotropy on the nature of the joint-space singularities.
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Chapter 6

A Geometric Analysis of

Kinematic Isotropy

6.1 Introduction

In this Chapter, the kinematic conditioning and dexterity of general revolute-jointed
manipulators are discussed from a geometric point of view. Furthermore, based on
a previously reported measure of isotropy (Kim and Khosla, 1991), a novel measure
of conditioning for general matrices is introduced. It is shown that this measure is a
linear approximation to the normalized Frobenius-norm (F-norm) condition number:
for quasiisotropic matrices, it provides a very close prediction of the condition num-
ber. For both rectangular and square matrices, upper and lower bounds are obtained
for this measure in terms of the F-norm and the 2-norm condition numbers. Based
on this measure of conditioning, a measure of manipulator conditioning is devised
that is highly suited for the intended task of manipulator design. Moreover, this
performance index is substantially less expensive to compute than other measures of
kinematic conditioning; is amenable to optimization using gradient methods, rather
than with purely direct-search methods, which are much costlier. Based on a gra-

dient technique for the minimization of this index with respect to the normalizing
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length and the operation point of the end-effector, a preferred normalizing length and
a preferred operation point of the end-effector are obtained. In this regard the no-
tions of manipuletor layout, layout conditioning, layout length and layout centre for
any serial-type robotic manipulators are introduced. Furthermore, the characteristic
layout of manipulators are discussed followed by discussions on the characteristic
length and the characteristic point. Several illustrative examples are provided for
determining the optimum layout of both redundant and nonredundant industrial

manipulators.

6.2 A Novel Kinematic Performance Measure

In this section, a novel measure of conditioning, denoted by & . for general square and
rectangular matrices, is derived. Based on this conditioning measure, a performance
measure called the layout conditioning is then introduced. This measure is signifi-
cantly less complex to compute as compared to any usual p-norm or F-norm condition
numbers. The characterization of this measure and a comparison of its predictions
with the 2-norm and the F-norm condition numbers are discussed. Moreover, it is
shown that this measure of conditioning is bounded from below by the normalized F-
norm condition number and by the mth power of the 2-norm condition number from
above, with m being the dimension of the task space of the manipulator (e.g., m =6
for the most general tasks). A significantly reduced complexity of the proposed mea-
sure allows the use of symbolic computations, thereby gaining more geometric insight

into characterizing the kinematic performance of serial manipulators.

6.2.1 Derivations

An estimate of the reciprocal of the condition number, based on the geometric and

algebraic means of the singular values of the matrix, was introduced by Kim and
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Khosla (1991) as

1
A= (6.1)
where
;= tr(AAT) ol +oi+---+02 (6.2)

m|det (AAT)]%  m (oo} --- o2)=
Motivated by the foregoing heuristic definition of K, an expression that for quasi-
isotropic matrices! represents an approximation of the condition number is intro-
duced. In fact, it will be shown that this index arises naturally while determining
the first-order approximation of the F-norm condition number of A. In order to de-
rive an estimate of the condition number of a general m x n matrix A, with m < n,

the definition of K, is recalled,
1 -
ni = Wtr(B) tr(B™!) (6.3)
with B = AAT. From the Cayley-Hamilton theorem, we have
-1
B != ol B™!'+CB™ 4+ -+ CB" "+t Cri 1) (6.4)

where 1,, is the m x m identity matrix, and {C;}] is the set of coefficients of the
characteristic polynomial P,(A) of B. These coefficients are given by (Finkbeiner,

1966):
C[ = —tr(B)
Cz = —%[Cl tI'(B) + tr(Bz)]

Cs = —%[Cz tr(B) + C, tr(B?) + tr(B%)]

1

Cm = =—[Crn-1 tx(B) + Cnz tr(B?) + Crn3tr(B?) + - C14r(B™ ") + tr(B™)]

Furthermore, it is known that,

Com = (—=1)™ det(B) (6.5)

la matrix is called quasiisotropic if its condition number is O(1)
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Equating the trace of both sides of eq.(6.4) yields

tr(B~!) = —C_—l(tr(B’"‘[)+C1 tr(B™ ) 4+ - -+ C, tr(B™ ") - --+m Cm_1) (6.6)

Now, if a real positive number A, approximates the set of eigenvalues {/\i}'l", of B,

up to the first order, namely,
/\i=/\0+5/\i, 4 << 1, z=1,2,m (67)

then, the expressions below are readily verified:

tr(B) =m A, +¢ (6.8)
trf(B) = m* L MY (m A\, + ke) + O(?) (6.9)
tr(BF) = M"Y (m A, + ke) + O(e?) (6.10)

where
€= i 0A;.
Using these identities, the expressions folr:EC'i}'lu can be obtained as shown below
Ci=—-(mA, +¢€) (6.11)
Cy, = %/\o(m —1)(mA, + 2¢) +0(62)
1

C; = —EAg(m— 1) (m—2)(mA, +3¢) + O(e?)

_1\k

Cr = ( /:!) A= T—n—(;”i'_-k-)' (M, + ke€) + O()

Cmy = (=1)""1\m~2 [mA,+ (m—1)¢ + O(€®)
Cm=(=1)"detB = (=1)™A™" (X, + €) + O(¢°) (6.12)

Substituting for {C;}  from the foregoing equations in eq.(6.6) and simplifving up

to the first order results in

mA,+(m~—1)e m(m~1) m(m-1)(m—-2)
N Oot LTMmtF T 3! o
cm(m—1)(m—-2)---(m—k—1)

k!

tr(B™!) =

+(-1) + -+ (=1)"" ' m] + O(€?)
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By adding and subtracting (—1)™ to the terms enclosed in square brackets in the

right-hand side of the foregoing equation, it follows that

- _77"/\0'{"("1—1)C = L _{_1\m 2
tr(B~!) = LW [20: B; — (—=1)"] + O(¢%) (6.13)

where, {B;}§' are the binomial coefficients for an expansion of the form (.X — 1)™;

hence,
Z B,‘ =0
1=0
Therefore,
1y MA+(m—1)e ) ,
tr(B™') = o O 6] + O(e”) (6.14)
or

m™ 2 A2 [m A, + (m — 1) ¢
mm-2 \m-1 (), + ¢)

tr(B™) = + O(e?) (6.15)

Furthermore, by making use of egs. (6.8), and (6.12), the foregoing expression can

be written as
tr™~1(B)
m™=2 det (B)

Finally, by substituting the foregoing expression in eq.(6.3), while neglecting the

tr(B~!) = +O(e?) (6.16)

higher-order terms O(e?), the first-order approximation of the F-norm condition
number denoted by &, is obtained as

tr™(B)

Ke = m =~ KFf. (6.1()

Hence, it turns out that the proposed first-order estimate, henceforth called the
conditioning measure is, in fact, the square root of the mth power of the reciprocal
of the measure proposed in Kim and Khosla (1991), i.e.,

tr®(AAT)

2 (A) =
Re(A) = et (AAT)

= g™ (6.18)

From eq.(6.18), it is apparent that & = Fcf,/ ™ and, as shown in the numerical example

below, &¥/™ predicts k more accurately than &.
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6.2.2 Features of &,

The conditioning measure £, obtained above can be regarded as an estimate of the
condition number for general matrices (Ranjbaran et al., 1996). In this section several
useful features of %,, as applied to kinematic dexterity, are highlighted, that make

this index an attractive alternative for the characterization of kinematic dexterity.

Comparison of £, vs. the 2-Norm and the F-Norm Condition Numbers

Comparisons of «;, kr, K and £, are shown in Figs. 6.1 and 6.2 for a planar 3R
manipulator, with [; =, =1, 3 = \/5/3, as functions of the second joint variable
#,, while the comparison of the reciprocal of these numbers is plotted in Fig. 6.3.
From the three foregoing diagrams it is clear that &, follows k, more closely. At lower
condition numbers, the difference may not seem significant; however, by examining
this difference near the singular posture, a substantial improvement is gained by
using k.. For example, at 8, = 179.95°, where the 2-norm condition number &, is
about 2000, and the Frobenius-norm condition number xf is 808, the two estimates
are £ = 99.3, and £, = 989.4. This shows an improvement of an order of magnitude
if £ is used. It should be apparent that, for larger values of m, the improvement will
be even more significant. Henceforth, we will make use of K. throughout the rest of
this chapter. It has to be emphasized that the isotropic design of manipulators can
now be conducted by using <, instead of other complex measures such as k,. This is
possible, since £, attains a minimum of unity at the isotropic configuration, similar
to other condition numbers.

The foregoing numerical characterizations are more rigorously underlined next, where
it is shown that the conditioning measure &, (J) is bounded by s from below and by
kq' from above. The proof for m x m matrices that was first reported in Ranjbaran

et al., (1996), is provided first, followed by the proof for general m x n matrices.




’,‘v‘r‘

Chapter 6. A Geometric Analysis of Kinematic Isotropy 131

4]

»
()]

H

w
[

W

n
o

N

'y
"

Condition numbers for the 3R manipulator

-—

osf g ]
]
70 80 90 100 110 120 130 140 150 160 170
0> (Deg.)
Figure 6.1: Comparison of the condition numbers
Theorem 6.1

The conditioning measure of an m x m matrix, £ .(B) is bounded by the normalized
Frobenius norm from below and by the mth power of the 2-norm condition number
from above, i.e,
ke(B) < & (B) < x7(B) (6.19)
Proof:
e Lower bound:

In order to prove the existence of the lower bound in the foregoing statement for
square matrices, we recall Richter’'s Theorem (Householder, 1964; Mirsky, 1956),
stating that the Frobenius norm of the adjoint of any m x m matrix A verifies the

inequality given below:
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Figure 6.2: Comparison of the condition numbers near singular posture

lladj(B)|l, < m=(m=2/2 | B||m! (6.20)

with equality if and only if m < 2 or if B is isotropic. If B is nonsingular, one can
divide both sides of the foregoing inequality by | det(B)|. Furthermore, if those two
sides are multiplied by ||B||,, the following relation is obtained:

IBIF

-1 <
1Bl 1B~ < =) qerd) |

(6.21)

Now, substituting for ||-||r in the foregoing inequality from the inequality of eq.(4.19)

results in

(6.22)

vm™ BT
2 B Y. < =
vm?||Bfj, [IB™'][, < m(m=272 | det(B) |
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Reciprocals of the Condition numbers for the 3R manipulator
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Figure 6.3: Comparison of the reciprocal of the condition numbers

or
B, B4, < ——olE__ (6.23)
det(B BT)
Hence, _
_ tr™ (B BT)
- Ly . = e < L&

the lower bound for &, thus turning out to be the normalized Frobenius-norm condi-

tion number, with equality holding only when B is isotropic or when m = 2. Hence,
k#(B) < &, (B) (6.25)

e Upper bound:
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In order to obtain an upper bound for K., a theorem relating the harmonic, arith-
metic and geometric means for a set of m positive real numbers is first recalled
(Mitrinovic, 1970). Let 0 < a; < a2,---,< Gm, and define the harmonic mean
H(a), the arithmetic mean A(a), and the geometric mean G(a) of these numbers,

respectively, as

m
= 2
H{a) £+£+___+$ (6.26a)
Afg) = BF % * m (6.26b)
m
G(a) = (ara2 -+~ am)™ (6.26c)
Then,
a; < H(a) < G(a) < A(a) £ am (6.27)

Now, if {a;}* is the set of eigenvalues of the matrix product B B, with ,/a; being the
corresponding singular value of B, then {1/a;}T is the set of eigenvalues of (B BT)~1.
Hence, by making use of inequality (6.27) and its inverse, one can extract the two
inequalities given below

tr(B B7) 1 1

Qm > ———, — > (6.28)
m a; ~ [det(BBT)]=
Therefore,
T
am > tr(BB') (6.29)

a; ~ m[det(BBT)|=
Recalling the definition of the 2-norm condition number as the ratio of the largest

singular value of A to its smallest one, the foregoing inequality takes on the form

\l tr(B BT)
Ko Z 1
m [det(B BT)|=

=K

(6.30)

3|

The upper and the lower bounds of &, are thus obtained as given by inequalities

(6.25) and (6.30), namely,
£p(B) < £.(B) < k3'(B) (6.31)

q.ed



>4

Chapter 6. A Geometric Analysis of Kinematic Isotropy 135

e Rectangular Matrices A € R ™*":

The proof of the foregoing theorem for the existence of the upper bound can im-
mediately be extended to rectangular matrices since no reference was made to any
features of square matrices. Hence, the upper bound as given above applies directly
to rectangular matrices as well. With the following theorem, it will also be shown
that the same lower bound can be obtained for . First, it is noted that a smaller
lower bound may be obtained immediately, as shown below.

Let B = A AT and rewrite the relation given by eq.(6.25) for the square matrix B

as
T tr™ [(A AT)?]
k.(B)=k . (AA") <L v det (A AT) (6.32)
next, we recall inequality (4.14), i.e.,
k(AAT) > k. (A) K, (AT) = k2 (A) (6.33)

Making use of the foregoing relation, the inequality (6.32) can be rewritten as

tr?™ (A A7)
2(A) <
we(A) < \}mm det?(A A7)

or

tr™ (A AT)
me(A) < \J m% det(A A7)

1 tr™ (A A7)
=K. (A) <
m% we(A) < \Jmm det(A AT)

which provides a smaller lower bound for .. After performing extensive numerical

Hence,

tests and comparisons between k. (A) and K. (A), it became apparent that the same
lower bound as obtained for square matrices should exist for rectangular matrices as

well. The theorem below is indeed a validation of this numerical observation.
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Theorem 6.2

The conditioning measure of the full-rank m x n matrix, denoted by &, (A) is bounded
by the normalized Frobenius norm from below and by the mth power of the 2-norm

condition number from above, i.e,

kp(A) <K (A) < KT(A) (6.34)
Proof:
e Lower bound:
We start with an inequality concerning the elementary symmetric functions Si of a

set of positive numbers 4 = {a,,a, - --a,} (Hardy et al., 1934; Mirsky, 1956), where

Si=a;+a+---any (6.35)
Sy=aja,+ajaz+ - Qn_1 8y (6.36)
(6.37)

Sm_1=a203" Qm +a1Q3°* A+ ---+81 Q2" Qp_ (6.38)
Sm=ayay - -an (6.39)

Then, as shown in the aforementioned references the inequality given below can be

derived:
Sm—l < m—(m—'l} ng—l)
that is,

203" Qm +01G3- " Am + -4+ Q1 Ay Ay < m~ ™2 (a1+a2+---+am)("‘_”

Dividing both sides of the foregoing inequality by nonzero S, the following inequal-

ity is obtained,

L+i+--.+i<m—(m—2) (al+ag+---+am)(m—1)
o @ Gm ayas--- Qny

(6.40)

Now, let a; be the ith eigenvalue of the matrix product A A7. Hence, the foregoing
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inequality takes on the form

trm-D(A AT)
m(m-2) det (A AT)

tr[(AAT)7'] <

Multiplying both sides of the foregoing inequality by -5 tr(A A7) and making use

m2
of eq.(4.18) one can obtain the result shown below:

tr?(A A7)

1
2 _ Ty-1 Ty < _ 72 _
K= — 2t:r[(AA )T Jtr(AAY) < — det (A A) R (6.41)
Hence, the same lower bound is now obtained for &, i.e.,
Ky, < Kg (6.42)

e Upper bound:
Provided already for the proof of the upper bound given in Theorem 6.1.

q.e.d

In terms of the set of eigenvalues of the matrix product A A7, i.e.. {a;}?, and the
ordering of the minimum, maximum, and the three different types of means of this
set explained before, eqgs. (6.26), one can observe an interesting comparison given
below.

Knowing that
a, < H(a) < G(a) < A(a) < am

we have
Ky = (‘;—’:‘)% (6.43)
Ke=m [;((Z))] (6.44)
e = (1! (6.45)
Ry = [;EZ;F (6.46)

We thus, conclude that <r being a function of the trace and the determinant only, K¢

can be considered as a useful tool for both design and control of serial-type robotic
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manipulators. For control purposes, at lower condition numbers, %, can be used
directly, while, at high condition numbers, say around m™, (Fc,,,)ﬁ can be employed
instead. Furthermore, it can be readily shown that, at the isotropic configuration,
where all singular values of A are identical, k. attains a minimum value of unity,
similar to other definitions of the condition number.

Having discussed the merits of 5.(A), one can proceed and exploit its simple form
and derive geometrical insights into manipulator kinematic dexterity. First, we will

need the definitions given below:

Definition 6.1 A layout £ of a manipulator is a set of lines {A;}}, with line A,
1

representing the azis of the ith revolute joint of the given manipulator (Fig. 6.4).

Figure 6.4: Axis-layout of a serial manipulator

Remark 1: Only the relative layout of the axes is important. A layout is thus fully

specified by the set {6;}7, for a given manipulator architecture.
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Definition 6.2 The operation point P of the manipulator is the point of the last
link of the manipulator whose linear velocity is of interest, the Jacobian matriz being

evaluated with respect to P. This point has the position vector p.

Definition 6.3 For a given layout L, the rms value of the distances {d;}} from all

azes to the operation point P is called the layout length L.

Definition 6.4 Let J be the Jacobian matrix of a given manipulator with a given

posture of layout £. The layout normal Jacobian J is defined as

_ E e R €,
J= . =1, . (6.47)
EES Eel Xry ... Een X Tp

Definition 6.5 For a given manipulator, at a given posture of layout L, the layout

conditioning k, = &, (J) is defined as

(6.48)

Remark 2: k, = x,.(02,--+.6n, L., D)
Remark 3: The layout length L, minimizes the [ayout conditioning x, of any layout

L (see Section 6.3.1.

Definition 6.6 The point P; with respect to which the layout conditioning k., is a

minimum ts the layout centre.

Definition 6.7 The characteristic layout of a manipulator, L., is the manipulator

layout at which k. is a minimum.

Definition 6.8 The characteristic length L. of a manipulator, is the layout length

determined at the characteristic layout.
Remark 4: L. = L.(0,,---,6,)

Definition 6.9 The characteristic point P, of a manipulator is the layout centre

associated with the characteristic layout.
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6.3 Determination of the Layout Length and the

Layout Centre

6.3.1 Layout Length

As discussed in Chapters 3—-5, when considering the overall Jacobian matrix for both
positioning and orienting tasks, normalizing the last three rows of J is essential, for
the singular values of J have different units and, thus, cannot be compared. Although
scaling the manipulator Jacobian is a relatively new idea in the context of robotics,
on the one hand, it lends itself to a broader notion of equilzbration and scaling in
the context of numerical analysis of linear systems, (e.g., Glob and Van Loan, 1989;
Kahan, 1966). As discussed in Kahan (1966), a systematic approach to defining
the scaling factors that render the matrix well conditioned is an open question. In
this chapter, we show that for any nonsingular manipulator Jacobian matrix, explicit
formulas for L can be obtained that minimize F,(j ) and &, (J). On the other hand.
within the framework of the group of rigid body motions SE(3). one can define the

Riemannian metric G, on the manipulator workspace, as (Park and Brockett. 1994)
— D 1 L 1

Minimizing «,.

In this section we resort to directly minimizing h:"; as a function of the layout length
L., for any given set of joint variables 8, and for a given location of the operation

point P of the end-effector. Let
K2 = Ltr(“_&) tr(A71)
F m?

where

A

jjT=[ EET ﬁEST]

T
LLCS ET Z‘-{SS




| )]

Chapter 6. A Geometric Analysis of Kinematic Isotropy 141

with E and S defined in eq.(5.1). The condition for a stationary value of x . in terms

of Lg is

Ok otr(A) . _, _ Otr(A71)
= - A)— = 49
3L, L. tr(A™") + tr(A) 3L, 0 (6.49)
Moreover,
- = = 1
tr(A) = tr(JJ7) = tr(EET) + 77 tr(S sT) (6.50)
c
In order to obtain tr{(J J7)~!], matrix A~! is block-partitioned in the form
_ - B B
Al=F3inr=| " ”} (6.51)
B?l B??

explicit expressions for the foregoing blocks being available in the literature (House-
holder, 1964); Thus,
tr{(F 7)Y = tr(Byy) + tr(Bg) (6.52)

Moreover, the diagonal blocks of A~! are

B, =[EET -EST(SST)"!'SET|™! (6.53)
1

By, = [L—zssT - -L% SET(EET)'EST]! (6.54)
C C

Hence,

tr(3I) ' =t [EET — EST (SST)"'SET|™!
+ —Lthr[S ST - SET(EET)'EST]™! (6.55)
c
Substituting eqgs.{(6.35) and (6.50), into eq.{6.49) leads to a unique solution for the
fourth power of the layout length L., namely,
« _ tr(SST)tr[EET —ES”(SS")"!SE’]!

= 6.56
£ tw(EET) tr[SST — SET (EET)-1ES7]-! (6.36)

Furthermore, recalling that tr(SST) = 37 |lex x ril%, and that tr(EE”) = n, it
follows that

Y7 e x re? tr EET — EST (SST)-' SE”]"!

Li=
ntr[SST - SET (EET)-1EST]-!

(6.57)
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L., as given above, minimizes the normalized F-norm condition number . of any
nonsingular posture of the manipulator. which, in turn, leads to a unique expression
for the layout length itself, under the condition that this length be real and positive.
The manipulator characteristic length L, is, then, defined as that L. that is evaluated
at the characteristic layout. The presence of four matrix inversions in the foregoing
expression should not be considered as a deterrent, since, at the characteristic layout,
all these matrices are best conditioned.

Furthermore, if the manipulator at hand is isotropic, then the expression given
by eq.(6.37) becomes that given by eq.(5.5). This can be shown by noting that,
at the isotropic posture, EST = O, tr(EET)"! = 1/tr(EE”), and tr(SS7)"! =
1/tr(SST), with O denoting the 3 x 3 zero matrix.

As shown below, if the layout conditioning % is minimized instead of ., then the

same expression for the layout length of isotropic manipulators will be obtained.
Minimizing &,
Here it will be shown how the conditioning measure &, is used to derive an expres-

sion for the layout length of both isotropic and nonisotropic general manipulators.

Rewriting the isotropy condition for the normalized Jacobian matrix as

- Y erel Ly ner(er x )7
ro | e PSR 1=t (638)
T 21 ex(er x re)' gz 27(er x re)(ex X ry)
we obtain
T
det(JIT) = deté%) (6.59)
c
and
o n 1 n
tr(JI7) = er(D exef) + I tr[)_(ex x rx)(ex x rx)7] (6.60)
1 1
TIT T llex x rill?
tr(JJ' ) =n+ (6.61)

L%




b

Chapter 6. A Geometric Analysis of Kinematic Isotropy 143

Hence,

L _ [PL3 + 7 llew x ml

FT 66 L2 det(JJT) (6.62)

Next, in order to find L so as to minimize &, the derivative a;;i; /313 is equated to
zero, which yields an expression for L? as shown below:

2T e x relf?
n

L? (6.63)

which is the same as the characteristic length L for an isotropic n-axis manipulator
for positioning and orienting tasks obtained in Chapter 4, and is equal to the rms
value of the distances of the operation point to the joint axes. The merits of the
layout length, as defined above, go beyond the realm of dimensional consistency, for
it can be used as a very useful normalizing tool when comparing manipulators for

dexterity and workspace volume in the process of optimum kinematic design.

6.3.2 Layout Centre

In this section we derive an expression for the position vector of the layout centre P,
of the end-effector at which «x, associated with the layout of the manipulator attains
a minimum value when compared with any other point of the end-effector.

First, the Jacobian transfer formula (Angeles et al., 1992) relating the Jacobian
matrix Jp associated with point P, to the Jacobian matrix Jy associated with a

point O, of the end-effector, is recalled:

Jp=TUopJo

1; O
Uop =
-P 13

where 13 and O are the 3 x 3 identity and zero matrices, respectively. Moreover,

with matrix Upp defined as

P is the cross-product matrix of vector p, directed from O to P, that is, given any
vector q, we have,

Pq=pxq (6.64)
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It is required to minimize x, over the set of points of the end-effector, of position

vector p, and for a given nonsingular manipulator axis-layout denoted by 6, namely,

mgn K. (07 LC: pp)

where,
e (35 I5)]
Jp) = —
we(Tp) \J m™ det (Jp J5)
Moreover,
- - - EET LES -PE)T
Jp3} =UopJoIoUbp=| o L | (6.63)
;(S-PE)E" ;(S-PE)(S-PE)
where S is evaluated with respect to point O. Clearly,
det (JpJT) = det (Jo IT) (6.66)

which means that any determinant-based measure is insensitive to a change of the
operation point. Thus, in light of eq.(6.66), the optimality condition for «, in terms
of p, reduces to that of tr™[(Jp J%)], i.e.,

au|(3p IE)]

op =0

which leads to the optimality condition for the distortion density of the forward
kinematics, as discussed in Park and Brockett (1994), i.e..
3tr(jp j’ll:;)
ap

With the aid of eq.(6.65), the foregoing condition can be expressed as

du(JpJf) _ 2 ou(PEST) 1 u(PEETPT) (6.68)
op - L% dp L% 9p - .

It turns out that the optimality condition for the layout center is independent of the

=0 (6.67)

choice of normalizing length L. In order to further expand the latter expression, two
identities whose derivations are given, respectively, in Appendix C, and in Angeles
(1997), are introduced next. Let A and B be 3 x 3 matrices, with B skew-symmetric:

then,
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tr(B ABT) = b” btr(A) — %bT (A+AT)b (6.69a)
tr(BA) = 2b7 vect(AT) = —2b7 vect(A) (6.69b)

where

b = vect(B) = —vect(BT)

and the operator vect(-) represents the azial vector of its matrix argument, as defined
in Leigh (1968). The axial vector of any 3 x 3 matrix B has the following property
1
2

where, B is the skew-symmetric part of the Cartesian decomposition of any matrix B.

[vect(B)] x a=Ba=-(B-B7)a

If additionally, B denotes the corresponding symmetric part, then we have (Leigh,
1968)
B=B+B

with
BE%(B—{-BT), B s%(B—BT)
Now, if the right-hand side terms in eq.(6.68) are expanded, while making use of the

identities given above, we have
otr(P EST)

5o = 2 vect(SET) (6.70)

and

otr(PEETPT)

p =2p,tr(EET) —2EET p,

=2[tr(EET)1; - EET]p,
=2(nl; ~EET)p, (6.71)
Finally, by substituting the two foregoing equations into eq.(6.68), we can solve for

the position vector p, of the layout center P, that minimizes £, for any nonsingular

layout of the manipulator, namely,

p, =2(EET —n1) ' vect(ES7) (6.72)
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The manipulator characteristic point P, is then obtained by evaluating the layout
center p, at the characteristic layout. Hence, using the DH notation while expressing

vector p, in the (n — 1)st coordinate frame attached to the {n — 1)st link, we have

o a, cosf,
Pc=|py| = | ansind, (6.73)
p: ba

thus,
an = /p+p? (6.74a)
b, = p; (6.74b)
8, = arctan (?) (6.74c)

6.4 Determination of the Characteristic Layout

Having obtained explicit expressions for the layout length L., and the layout center
Pc, the optimization problem for determining the characteristic layout defined by

the set of joint variables 8. is formulated as

{&“ﬁ}ll k. ({6:}37", On. L¢, Pc) (6.75)
But
Lc= \/2? ”e"nx rll (6.76a)
pe = 2(EET — nI;) ! vect(EST) (6.76b)
#. = arctan (I;_:) (6.76¢)

Therefore, the characteristic layout turns out to be only a function of 6, to 6, _1, i.e.,
min x,({6:}37') = 6. (6.77)

{8:}371
In light of the foregoing formulation, it is apparent that the dimension of the vector

of design variables is reduced from n + 2 to n — 2, and that these variables are now
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of the same nature, i.e., all are joint variables. Moreover, at each iteration with the
current set of joint variables both L. and p. are explicitly evaluated. Hence, at the
last iteration, when the final solution 6. is obtained for the characteristic layout,
the associated layout length and the layout centre will become the manipulator
characteristic length L. and the manipulator characteristic point p., respectively.
The latter quantities are indeed intrinsic to the manipulator and do not depend on
the physical shape of the end-effector, although they should be taken into account

when designing end-effectors.

6.5 Examples

In this section the manipulator characteristic length L., the manipulator character-
istic point p., and the characteristic layout @, of some six-axis manipulators as well

as a redundant seven-axis manipulator are determined.

6.5.1 Nonredundant Manipulators

Here we examine industrial manipulators such as the Yaskawa Aid 810, the Puma
560, the Fanuc Arc Mate, the Asea IRB 6/2, as well as an isotropic six-axis research
manipulator. The optimization toolbox of Matlab was once again used to implement
the minimization problem given by (6.75), and eqgs. (6.76).

As the first example, the six-axis isotropic manipulator called DIESTRO, whose com-
plete design is discussed in (Williams, Angeles, and Bulca, 1993) shown in Fig. 6.5,
is considered.

As discussed in the latter reference, DIESTRO being isotropic, admits a set of
isotropic postures or characteristic layouts that are represented by,

]T

6.=-[60, # -7 ® -m 2=

Next, for the sake of comparison, it is assumed that the DH parameters of this

manipulator are given without the knowledge that they correspond to an isotropic
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Figure 6.5: DIESTRO: A six-axis isotropic manipulator

manipulator, and thus, we aim at finding the characteristic layout as well as the asso-
ciated manipulator characteristic point p. and the manipulator characteristic length
L.. Starting with several randomly generated initial guesses for the design param-
eters {6}5, the algorithm mentioned before consistently converged to the isotropic
posture. One of these examples is summarized in Table 6.1.

Next, the characteristic layout of four nonisotropic industrial manipulators, together
with their corresponding manipulator characteristic points and lengths are deter-
mined. The numerical results of these examples are summarized in Table 6.1, which,
interestingly, shows that the dexterity based on the condition number as defined

here, of industrial manipulators can be substantially enhanced by a proper choice of
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02 83 04 95 95 Lc Qg bs (%
Manipulator || (deg) | (deg) | (deg) | (deg) | (deg) | (mm) | (mm) | (mm)

DIESTRO 90.0 -90.0 90.0 -90.0 180.0 | 100.0 | 100.0 100.0 1.000

Yaskawa -93.45 | -24.18 | 181.46 | -117.0 | -8.68 | 410.09 | 367.94 | -443.18 | 1.0663

Puma 560 -76.0 25.30 | -23.80 | 69.13 | -2.97 | 223.76 | 154.22 | -229.3 | 1.0633

Fanuc 88.33 | -28.32 | -42.03 | 61.63 | -21.48 | 559.46 | 518.92 | -587.20 | 1.0737

Asea IRB -268.23 | 204.34 | -20.74 | 61.76 | -170.91 | 283.2 | 561.0 | 308.13 | 1.0739

Table 6.1: Numerical results

the operation point.
Furthermore, the graphical renderings of these manipulators with both their original
end-effectors and their end-effectors modified based on the location of the associ-

ated manipulator characteristic points at their characteristic layout, are shown in

Figs. 6.6-6.9.

@ )

Figure 6.6: Yaskawa Aid 810 at the characteristic layout: (a) Full rendering with
original end-effector, (b) skeleton rendering with modified end-effector
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Figure 6.7: Puma-560 at the characteristic layout: (a) Full rendering with original
end-effector, (b) skeleton rendering with the characteristic point

6.5.2 A Redundant Industrial Manipulator

In order to demonstrate the effectiveness of the technique presented in this chapter for
redundant manipulators, an industrial redundant? manipulator is examined here. For
this purpose, we consider the dextrous seven-axis Sarcos manipulator manufactured
by Sarcos Research Corporation (Jacobsen et al., 1990; Smith et al., 1992). The DH
parameters of this anthropomorphic arm with two 3R modules are given in Table 6.2,

while a drawing depicting its architecture is shown in Fig. 6.10.

Optimum posture design with the original operation point

The last link length a7 = 0.21 m, as given in Table 6.2, defines the location of the
operation point of the end-effector. Using this operation point, the characteristic

layout of the arm is then determined by minimizing the condition number over the

2According to the arguments presented in Chapter 5, this manipulator is considered pseudore-
dundant, because, by locking one of its joints, say the elbow joint, the manipulator will lose more
than one degree of freedom.
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(a) (b)
Figure 6.8: Fanuc Arc Mate at the characteristic layout: (a) Full rendering with

original end-effector, (b) skeleton rendering with the characteristic point

set of joint variables {0}]. With the aid of fmins, the optimum joint variable vector
0., defining the characteristic layout of the arm, and the characteristic length L. of

the manipulator are obtained after 825 iterations as shown below:

6. =16, —90.043° 80.773° ~105.461° 89.975° —89.861° —37.845°],
L.=0.1815 m
(6.78)

Linki [e; m | b; m | ¢; (deg) | 6;

1 0.0 0.0 90.0 6,
0.0 0.0 -90.0 6,
0.0 | 0.355 90.0 63
0.0 0.0 -90.0 8,
0.0 } 0.230 90.0 Os
0.0 0.0 -90.0 Bs
021 | 0.0 0.0 6+

~ D U N

Table 6.2: DH parameters for the Sarcos manipulator




=

Chapter 6. A Geometric Analysis of Kinematic Isotropy 152

@ - )

Figure 6.9: Asea IRB 6/2 at the characteristic layout: (a) skeleton rendering with
original manipulator, (b) skeleton rendering with the characteristic point

At this configuration we have &k, = 1.2430, x, = 1.0733, and k, = 1.5867,. The
foregoing minimum value of the 2-norm condition number—which is in the same
range as the optimum condition numbers obtained for the three pseudoredundant
manipulators introduced in Chapter 5—corresponds to a Conditioning Index (CI)
of 63%. If the optimization of the dexterity of the manipulator had been included
as part of the kinematic design requirements determining the architecture of the
manipulator at hand, a higher CI for the manipulator could have been obtained,

which will become apparent in the remaining of this section.

Optimum posture design while modifying the operation point

Next, the characteristic layout specified by the set {6.}3, as well as the manipulator
characteristic length L., and its characteristic point p, are determined by egs. (6.76).

That is, a new location of the operation point is sought, in order to improve the layout
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Figure 6.10: Seven-axis Dextrous SRC Arm (Sarcos Research Corporation, 1993)

conditioning of the arm, namely,

0.=[6, 96.979° 0.006° —115.829° 0.0° 75.029°]T.
L.=0.1626 m

p. =[-0.0987 0.0 -0.1395]" m

Hence, the last link length, offset and joint variable are readily determined from

egs. (6.74), i.e.,

a; = 0.0987 m
b7 = —0.1395 m
67 = 180.0°

For the minimization of &, fmins was once again used and the results were obtained
after 413 iterations. The layout conditioning kK, normalized F-norm condition num-

ber « ., and the 2-norm condition number of the Jacobian matrix at the characteristic
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layout were found to be K, = 1.1251, k., = 1.0390, and &, = 1.4295, with a Con-
dition Index (CI) of 70%. The skeleton rendering of this manipulator with its new

end-effector is shown in Fig. 6.113.

Figure 6.11: Skeleton rendering of Sarcos arm at the characteristic layout

For the sake of comparison from a computational point of view, the foregoing re-
sults are compared with an alternative formulation where all the nine unknowns are
grouped into a vector of design variables and found directly through the optimization
of the condition number. Using fmins, after 2189 iterations the results shown below

were obtained:

0. =[6, -64.074° 76.232° —121.198° 14.490° 44.651° —238.648°]T,

3Note that the first joint axis of the manipulator in the real setup makes an angle of 45° with
the vertical axis; the default direction for the first joint under RVS is vertical.
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L.=0.1744 m
p. =[1.6542 1.0932 1.3301]"7 m

The layout conditioning K., normalized F-norm condition number ., and the 2-
norm condition number of the Jacobian matrix for this layout were found to be
Ky = 1.3301, k. = 1.0932, and k, = 1.6542, with a Condition Index (CI) of about
60%.

It is interesting to note that, by directly minimizing the condition number over the
set of nine mixed variables mentioned above, as compared to the method presented
earlier in this chapter where &, is minimized over the set of five joint variables {6;}3
only, a much slower convergence, with more than five times the number of iterations,
occurs. Moreover, computationally, each iteration of the former method where the
2-norm condition number needs to be evaluated is significantly more expensive than
the latter, which only needs the computations of the trace and the determinant. It
should also be noted that, once again, the pseudoredundancy of this anthropomorphic

design leads to a non-isotropic design, i.e., isotropy is not possible.

6.6 Conclusions

Motivated by a measure of isotropy introduced by Kim and Khosla (1991). an al-
ternative dexterity measure %, was devised. This measure is significantly simpler
to evaluate than any other condition number-based indices. Moreover, this measure
is a function of the trace and the determinant of the matrix at hand, thus allow-
ing for its symbolic differentiation. It was shown that x, arises naturally when a
linear approximation of the normalized Frobenius-norm condition number & is de-
termined. The upper and lower bounds of £, were obtained for both square and
rectangular matrices. The lower bound was found to be the normalized Frobenius-
norm while the upper bound the mth power of the 2-norm condition number. The

kinematic dexterity of serial manipulators was then discussed based on the notions
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of manipulator layout L, layout length L, layout conditioning k., = K, and layout
center P;. By directly minimizing k. over the set of all normalizing lengths of the
Jacobian matrix, an explicit expression for the layout length was derived. Similarly,
an explicit expression for the position vector of the operation point of the last link
that renders x, a minimum was obtained. The characteristic layout of the manipu-
lator was defined as a layout whose conditioning x, is a minimum. The concepts of
manipulator characteristic length and characteristic point were then defined as the
layout length and centre evaluated at the characteristic layout. Numerical examples
of some industrial manipulators were chosen to illustrate the significance of these
concepts. Significant improvements on the number of iterations and convergence of
the optimization problem were achieved when compared with the minimization of

condition numbers that makes no use of the layout length and layout centre.
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Chapter 7

REDIESTRO 1

7.1 Introduction

In this chapter an overview of the design and manufacturing of a redundant seven-
axis manipulator with an isotropic architecture for six-dimensional Cartesian tasks is
reported. This manipulator, which is named REDIESTRO 1 (REDundant. Isotropi-
cally Enhanced, Seven-Turning-pair RObot) was designed, manufactured and imple-
mented at the McGill Centre for Intelligent Machines (Ranjbaran et al., 1995). Since
its completion in 1994, REDIESTRO 1 has been serving as an experimental platform
for several robotics-related projects both internally in the department of Mechanical
Engineering of McGill University and in collaboration with external research groups,
(Seyfferth and Angeles, 1995; Canadair DSD, 1994, 1997; Shadpey et al., 1996).

REDIESTRO 1 is currently located at the Robotics Laboratories of the Department
of Electrical and Computer Engineering of Concordia University, where it is being
used for the STEAR-5 Phase III' Project conducted by Bombardier Inc., Canadair
Defence Systems Division (DSD), and the two universities, Concordia and McGill, as
contracted by the Canadian Space Agency. In phase II of STEAR-5, REDIESTRO 1

was used to implement Trajectory Planning and Object Avoidance (TPOA) schemes

IStrategic TEchnologies in Automation and Robotics
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developed for redundant manipulators. During phase III of the same project. cur-
rently under way, hybrid position-and-force and impedance control techniques are
being successfully applied to REDIESTRO 1 for tasks such as surface cleaning and
insertion and removal of mating objects such as Orbital Replacement Units (ORU)

type objects.

7.2 Design Methodology

The kinematic design of nonredundant manipulators, has been mainly oriented to-
wards achieving kinematic solvability and manufacturing feasibility. These criteria.
in turn, have led to the existence of a particular class of manipulators whose axes
are either parallel or perpendicular, i.e., orthogonal manipulators. Here. we mean by
orthogonal a manipulator whose consecutive axes make angles that are multiples of
90°; for example, most industrial manipulators with spherical wrists; or with planar
two-revolute subchains are of the aforementioned type. A general classification of
manipulators with simple inverse kinematics is reported in (Mavroidis and Roth,
1992). The associated simple inverse kinematics has been formulated by exploiting
special features, like orthogonality, of the kinematic structures of these robots. With
the advent of fast and general inverse kinematics algorithms developed in the last
ten years, however, the need for simple kinematic structures is less dominant. On
the other hand, parallelism and orthogonality of the axes can give rise to undesirable
singularities. These singularities are manifested, for example in the rate control and
kinematic calibration of these manipulators (Hayati, 1982; Bennett et al., 1992),
Serving the two foregoing objectives excludes a major class of manipulators with
general architectures. By exploring general manipulator architectures, one cannot
only improve the numerical conditioning of the manipulator kinetostatic maps, but
also take into consideration other critical issues pertinent to the design and realization
of the overall robotic systems.

For the case of redundant manipulators, general design criteria have been proposed.
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For example, Hollerbach (1985) outlined the following features as guidelines for the

design of these manipulators:

e Elimination of internal singularities;
e Optimization of workspace;

e Kinematic simplicity;

e Mechanical constructibility

It is apparent that the foregoing criteria highlight critical issues for the design of gen-
eral redundant manipulators. Some researchers have emphasized methodologies for
the design of redundant manipulators for specific tasks or classes of tasks. In this re-
gard, the framework of task-based design for reconfigurable modular manipulators has
been introduced (Kim and Khosla, 1991, 1992a—c). In the design of REDIESTRO 1,
we have been mainly concerned with kinematic conditioning and isotropy. Thus, the
main issue determining the architecture of REDIESTRO 1, defined by its Denavit-
Hartenberg (DH) parameters, was the optimization of its kinematic conditioning.
In Chapter 3, the kinematic design of redundant manipulators for isotropy was dis-
cussed in detail. It was shown that this criterion led not to one set of DH parameters,
but rather to a manifold of these sets, which allowed the incorporation of further re-
quirements. In addition to the design criteria listed above, issues such as maximum
reach, structural behaviour, link-motor collision considerations, and functionality
properties were considered. These requirements, in turn, allowed the determination
of the link shapes and the selection of actuators. In the following sections, the overall
strategy based on the integration of different aspects and stages of the design process
is discussed and heuristic design rules are provided.

The major design activities undertaken from the start of the project to the prepara-

tion of the shop drawings of REDIESTRO 1 are listed below:

1. Kinematic design
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2. Preliminary mechanical design
3. Detailed mechanical design

4. Three-dimensional rendering and animation

(S]]

. Redundancy resolution and kinematic simulation

Items 1-4 will be discussed in detail presently, while item 5 has been the main con-
tribution of Concordia University to the realization of the REDIESTRO 1 work-cell.
The activities mentioned above have been integrated into a hierarchical framework
that consists of three different iterative loops at different levels. The flow diagram
shown in Fig. 7.1 depicts these activities and the corresponding loops.

The innermost loop consists of the kinematic design and skeleton rendering of the
resulting architectures. Numerical optimization techniques were utilized for the kine-
matic design, whereby a set of different isotropic seven-axes manipulators was ob-
tained. Three-dimensional visualization of the corresponding models in the form
of simple skeleton renderings were then analyzed and additional structural require-
ments were imposed to narrow down the selection set. As a result of this loop, a
first candidate was chosen and the corresponding normalized HD parameters were
identified.

The second loop includes the kinematic and preliminary mechanical design. At this
stage, based on the requirements on the volume of the workspace and maximum
reach, the candidate manipulator was scaled,. A preliminary mechanical analysis
based on required performance characteristics of the manipulator was then performed
and the actuators were selected. Furthermore, a preliminary layout of the links and
placement of the actuators was also outlined. Functionality of the design and actua-
tor placements required further constraints on the DH parameters. This demand was
achieved by imposing additional constraints on the kinematic optimization schemes,

whereby the final scaled DH parameters were determined.

The final design loop consists of the detailed mechanical design, detailed three-dimensional
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renderings and animation. In this loop, with the given DH parameters and actua-
tor specifications, the detailed mechanical design of the links was performed. Issues
such as workspace requirements, ranges of motion of each joint and collision of the
link-actuator subassemblies were set forth as final design requirements. These issues
were analyzed using detailed three-dimensional renderings of the assembled manip-
ulator and thus, the required modifications on the shape and geometry of the link

subassemblies were made.

7.3 Kinematic Design

The methods of isotropic design discussed in Chapter 5, were employed as the kine-
matic design tool. The first candidate design emerging from the first design loop is
the second isotropic design introduced in Chapter 5, Design 2. Recall that the addi-
tional design requirements set out for Design 2 were mainly to concentrate as much
of the manipulator mass as possible close to the first axis. The skeleton rendering of

this design is once again shown in Figure 7.2 for quick reference.

7.4 Preliminary Mechanical Design

At this level, primarily an overall kinematic performance for the manipulator is
specified, actuators are selected, and a rudimentary design of the manipulator is
performed. Any final minor modifications or refinements of the kinematic architec-

ture are made at this stage.

1. Scaling of the manipulator:

First, It is necessary to bring the candidate architecture into its full-scale di-
mensions. To do this it is required that the manipulator should have a reach
of 1.0 m when all joint angles are zero. Based on this vardstick, the candidate

manipulator is scaled as given in Table 7.1.
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Figure 7.1: Flow Diagram of the Design Methodology




[ ]

’.413‘

Chapter 7. REDIESTRO 1

163

Table 7.1: Scaled parameters of the candidate manipulator

Link i | a; (mm) | b; (mm) | a; (deg) | 8; (deg)
i 0 0 -62.71 0
2 6.7 0 -11.10 35.10
3 0 49.4 106.68 62.71
4 634.4 0 72.87 117.71
5 0 -527.1 55.83 -24.63
6 20.7 910.6 62.84 -2.32
7 338.2 -415.6 0 225.45

Characteristic Length = 292.921 mm
Reach at Zero Configuration = 1000 mm
Maximum Reach = 1866.05 mm

Link axis No. 1 3 4 3 6 7

Nominal payload distance m 1.0 106 1.06 1.04 0.33 0.52 0.34
Max. joint velocity s~! 1.0 08 08 08 165 165 1.65
Time to travel 90° s 157 1.96 196 196 095 095 0.95
Payload linear velocity m/s 1.0 08 085 0.83 0.87 086 0.36
Min. average ang. acc. s~2 981 7.40 6.94 6.60 11.10 10.38 14.41
Average payload g-factor g 1.0 08 0.75 070 060 055 0.30
Max. acceleration time s 01 0.1 0.11 0.12 0.15 0.16 0.11
Drive output speed rpm 95 764 764 T7.65 15.7 157 15.7

Table 7.2: Design specifications for angular velocities and accelerations

2. Preliminary performance specifications:

The overall preliminary design specifications for velocities and accelerations

of different links are given in Table 7.2. Based on these requirements, the

preliminary selection of the actuators was made.

For all seven drives, DC

servo-motors equipped with harmonic drives, incremental encoders and electro-

magnetic brakes were selected.

3. Preliminary design of the link subassemblies:

At this stage a rudimentary layout of the link shapes and actuator placement

are made, and the conceptual design of the corresponding subassemblies is com-

pleted. It was observed that, although, keeping the first four of the actuators
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Figure 7.2: Fully isotropic seven-axis manipulator: first candidate manipulator

close to the first axis is advantageous from the point of view of dynamic per-
formance, installation of the four units at a close vicinity proved to be difficult.
In particular, since the joint axes 2 and 3 of the candidate manipulator almost
intersect at about 11° (Fig. 7.2), one possible solution was the use of a differ-
ential gear transmission between actuators 2 and 3. The preliminary design of
the candidate manipulator with the differential gear that was implemented for

this purpose is shown in Fig. 7.3.

Before leaving the last iterative design loop, it was decided that, by modifying the
kinematic structure of the manipulator, the differential gearing system be eliminated.
In order to do this, the link length a; was preassigned a minimum value that could
enclose two of the selected actuators. In turn, one of the constraints, namely b, = 0.

was relaxed from the numerical formulation of the kinematic design. The outcome
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Figure 7.3: Completed preliminary design of the candidate manipulator

of this final modification was our final design, whose three-dimensional skeleton ren-
dering is shown in Fig. 7.4, and whose scaled DH parameters are given in Table 7.3.
It is apparent that the first four joints are divided into two separate groups of two
joints, that still lie as close as possible to the first axis. This completed the itera-
tive kinematic and overall mechanical design loops, thereby completely defining the

architecture of REDIESTRO 1.

7.5 Detailed Mechanical Design

Having completed the preliminary kinematic and mechanical designs of REDIESTRO
the detailed mechanical design of the link subassemblies was undertaken. The exact
shape of each link, together with the location of the corresponding actuators along
each joint axis formed the last design loop, as shown at the bottom of the design

flow diagram of Fig.7.1. Hence, as another outcome of this loop, the offset distance
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Link 7 | @; (mm) | §; (mm) | o; (deg) | 6; (deg) | dos(mm) | ¢ (deg)
1 0 0 -58.31 0 952.29 0.0
2 231.13 -22.91 |-20.0289 | -11.01 | -114.043 0.0
3 0 36.93 105.26 91.94 -97.0 0.0
4 398.84 0 60.91 113.93 133.93 180.0
3 0 -471.59 59.88 -2.26 -10.9172 180.0
6 135.59 578.21 -75.47 150.25 | 267.6810 0.0
7 234.44 | -145.05 0 63.76 -128.55 180.0

Scale Factor = 0.1926
Characteristic Length = 220.6505 mm
I_,a; = 1000 mm
Reach at zero configuration = 1218 mm
Maximum Reach = 2190.9 mm

Table 7.3: Scaled parameters of REDIESTRO 1

from the origin of frame i along the ith joint axis to a reference point attached to the
actuator, denoted by I, should be determined. This motor-insertion offset distance is
denoted by do;. The location of the actuator reference point is taken as the centre of
the output shaft and level with the face mounting flange, as shown in Figures E.1 to
E.4. The orientation of the axis of the ith actuator inserted with respect to the ith
joint axis is also given (angle ¢;). This angle determines whether the output shaft
of the actuator inserted in the link points along the positive or the negative z-axis.

Furthermore, in this loop, with the aid of RVS, the Robotic Visualisation System
developed at CIM, a step-by-step design of each link-and-actuator assembly was com-
pleted, while monitoring many different issues, such as collisions among links and ac-
tuators, feasibility, constructibility, minimization of the moment arms as seen by the
previous actuator, etc. Figs. 7.5 and 7.6 are the RVS renderings of REDIESTRO 1 at
the isotropic and at the maximum-reach configurations, respectively. In Appendix D,
the three-dimensional CAD drawings of the robot and the link subassemblies are in-
cluded along with the detailed mechanical drawings of the each link. The electrome-
chanical specifications of the actuators are provided in Section E.1. As the design of
the manipulator was finalized, the detailed CAD drawings of the components were

made with the use of AutoCAD®. Furthermore, the solid modelling capabilities
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Figure 7.4: Skeleton rendering of REDIESTRO 1 at the isotropic configuration

of AutoCAD® were utilized to obtain the inertial parameters of each link, defined
in its local coordinate frame. By completing the detailed drawings for each link, a
three-dimensional solid model of the corresponding link-actuator subassembly was
then made, and the inertial parameters were estimated. Table 7.4 contains the iner-
tial parameters of the links, namely, the mass, mass-center location and moments of

inertia. Moreover, photographs of REDIESTRO 1 are shown in Fig. 7.7-a and -b.

7.6 Heuristic Design Rules

In this section, the heuristic design rules that were developed during the course of this

design are briefly outlined. To date, most robotic manipulators have been designed
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Figure 7.5: REDIESTRO 1 at the isotropic configuration

with conventional orthogonal architectures. By exploring other general architectures,
it is possible to design manipulators for particular or general applications, while con-
sidering several kinematic, static or functional design issues. It is concluded that the
Jacobian matrix can be used effectively to address design considerations such as syn-
thesis of the kinematic chain, numerical conditioning, singularities of the workspace,
extreme reach and workspace volume. Depending on the characteristics of the ma-
nipulator and tasks to be performed, priority can be placed on fulfilling one or more

of the foregoing demands. For the design of REDIESTRO 1, we are mainly concerned
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Figure 7.6: REDIESTRO 1 at the fully stretched configuration

with the kinematic conditioning of the kinetostatic transformations. In this regard,
we aimed at the design of an isotropic seven-revolute joint manipulator. Thus, the
highest design priority was given to the realization of an isotropic Jacobian matrix.
Other design considerations such as structural requirements, collision and functional-
ity of the link-actuator subassemblies, workspace, extreme reach of the manipulator,
and constructibility of the links are variables that were prioritized and satisfied ac-
cordingly. For instance, the second-priority task for the design of REDIESTRO 1
was concerned with structural considerations, namely, concentration of the first four
joints near the first axis to minimize the static and inertial loads imposed on the
proximal drives. It was concluded that predetermined lower and higher bounds had
to be placed on the distance between the second and third axes, i.e., on a,, in order
to best enclose the four proximal drive units, while keeping them in close proximity.

The location of each actuator along the corresponding joint axis was determined
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(a) (b)

Figure 7.7: Photographs of REDIESTRO 1: (a) Surface-cleaning setup, (b) Peg-in-
hole insertion and removal setup

from the considerations below:

e Minimization of the moment arm created with respect to the previous drive.

When two consecutive joint axes are nonparallel and nonintersecting, the static
(dynamic) load imposed by the first drive is affected by the moment arm (radii
of gyration), which is in turn affected by the location of the second actuator

along its joint axis.

e Creation of collision-free regions around the isotropic configuration.
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[ Parameters link1l [ link2 [ link3 | link4 | link5 | link6 | link7 |
Mass (kg) 17313 | 5.580 | 28.586 | 7.390 | 5.987 2.557 0.2
Center of | x: 4.8e-4 [ 0.1155 [-0.0011 | 0.3071 0.0 -0.0919 | 0.06345

Gravity y: -0.1607 { -0.0036 | -0.1176 | -0.0408 | -0.1326 | 0.03434 0.0
(m) z: -0.1186 | -0.0618 | -0.1170 | 0.0699 | -0.3209 | 0.49 -0.0034
Moments of [ x: 0.89926 | 0.02573 | 1.6620 | 0.09297 | 0.8284 [ 0.6541 | 0.000024
Inertia y: 0.31342 | 0.13223 | 0.7860 | 0.8881 | 0.7019 ( 0.6714 | 0.001136
(kg m?) z: 0.62745 ] 0.11099 | 0.9387 | 0.8753 | 0.1317 | 0.0374 | 0.001135
Products of | xy: -2.7e-5 [ -0.0045 | 0.0001 | -0.1203 | 0.00009 | -0.00839 0.0
Inertia | yz: 0.3689 | 0.0012 | 0.1221 | -0.0204 | 0.26852 | 0.04574 0.0
(kg m?) | zx: -1.2e-5 | -0.0404 | 0.0003 | 0.1411 | 0.00016 | -0.12596 0.0
Radii of x: 0.2279 | 0.0679 | 0.2411 | 0.1121 | 0.3719 | 0.5057 | 0.0110
Gyration | y: 0.1345 | 0.1539 | 0.1658 | 0.3466 | 0.3424 | 0.5124 | 0.0753
(m) z: 0.1904 | 0.1410 | 0.1812 | 0.3444 | 0.1483 | 0.1210 | 0.0753

Table 7.4: Inertial parameters of REDIESTRO 1 in its local frames

In order to exploit the inherent well-conditioning characteristics of an isotropic
manipulator, or to make use of the large singularity-free regions around the
isotropic configurations, it is essential to maximise the accessibility of the cor-
responding region from a structural viewpoint as well. This can be achieved
by minimizing the presence of structural obstacles within the region, and by
maximising the accessible positive and negative range of motion for each joint

about its corresponding isotropic point.

e Functionality and constructibility of the design.

Focusing strictly on the two previous items can result in link shapes and geome-
tries that are not feasible in terms of manufacturing processes and functionality.
Hence, in conjunction with the above-mentioned design issues, one has to take
into consideration constructibility by making reasonable compromises against

other critical aspects.
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7.7 Conclusions

In this Chapter an overview of the design, manufacturing and realization of a redun-
dant seven-axis isotropic manipulator, called REDIESTRO 1 (REDundant, Isotrop-
ically Enhanced, Seven-Turning-pair RObot), was given. Kinematic design tools
developed in the previous Chapters of the thesis were used to produce a family of
such designs. Further mechanical design specifications were introduced in order to
narrow down the selection set. The preliminary and detailed mechanical design of one
representative instance of this family was undertaken, and finally, heuristic design
rules were outlined. REDIESTRO 1 was designed, manufactured, and commissioned
at McGill’s Centre for Intelligent Machines. This manipulator has seven degrees of
freedom, its maximum reach is about 2.1909 meters. In the Cartesian workspace of
the manipulator, there exists a circle of radius 1.1528 meters centred on the first axis,
all of whose points correspond to isotropic postures of the manipulator, i.e., circle of
tsotropy. The robot is equipped with seven harmonic-drive units of actuation, each
containing a permanent-magnet DC motor, an incremental encoder, an electromag-
netic brake, and a harmonic drive gear-head. REDIESTRO 1 has been serving as a
useful redundant experimental robot on which several aspects of the current state of
the art in robotics are being tested. To name a few, characterization of the joint flex-
ibility and friction, kinematic and dynamic calibration, trajectory planning, object-
and self-collision avoidance, impedance control and hybrid position-and-force con-
trol for complex tasks such as surface cleaning and insertion and removal of mating

objects.
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Chapter 8

Concluding Remarks

8.1 Conclusions

Within the context of kinematic dexterity and singularities, both analysis and design
of manipulator architectures were discussed in detail in this thesis, with particular
attention being given to the kinematic design of redundant manipulators.

In Chapter 1, the workspace and singularities of regional structures were considered.
Regional structures or spatial three-axis architectures forming the positioning part of
most of the existing nonredundant industrial manipulators, they can be regarded as
representatives of the existing nonredundant designs. First, a review of the reported
contributions made to manipulator singularities was conducted. A novel method
for the determination of the Cartesian singularities of the forward kinematic map
was then introduced. This method, that determines the resolvent of two polyno-
mials, is based on the notion of nonminimal transfer-function realization for single-
input/single-output (SISO) linear dynamical systems, and can be applied to general
n-axis manipulators. Having determined the resolvent of the manipulator charac-
teristic polynomial and its derivative with respect to one of the joint variables, a
CAD-based methodology was then devised for the three-dimensional graphical ren-

derings of the Cartesian workspace boundaries. The second part of Chapter 1, is




’

Chapter 8. Concluding Remarks 174

devoted to the characterization of the joint-space uniqueness domains, i.e., subre-
gions of the manipulator joint-space that contain unique inverse kinematic solutions.
Algebraic expressions were provided that define the boundaries of the uniqueness
domains!. In this regard, singular- vs. nonsingular-posture changing-manipulators
were discussed, where, with the aid of a theorem, it is proven that special manipula-
tors cannot change solution branch without crossing singularities. Furthermore, in
confirming with the conjecture made by Burdick (1992), an example of a nongeneric
regional structure that can change solution branch without crossing singularities is
introduced. In the last section of Chapter 1, a critical evaluation of the merits
of nonsingular-posture-changing manipulators over their singular-posture-changing
counterparts is provided, while these two classes of regional structures are compared
as they follow a given Cartesian-space trajectory. It is thus concluded that, design-
ing regional structures for the ability of singularity-free solution-branching does not
necessarily lead to a better architecture.

The focus of Chapter 3 is on manipulator derterity measures. A review of the ex-
isting indices of merits for the characterization of kinematic performance of ma-
nipulators is provided. Invariance properties of these measures are then discussed
in detail, whereby the issue of the sensitivity of the performance measures to the
end-effector operation point is analyzed through different illustrative examples. De-
spite the search of some researchers for an operation-point-insensitive indez, as an
intrinsic, and thus faithful measure for quantifying kinematic performance, we main-
tain that, if a measure is capable of characterizing the effects of the size of the
end-effector and the location of the operation point on the overall manipulator dex-
terity, why should we deprive our performance characterization form this feature?
Moreover, it is believed in some circles that a measure that does depend on the
operation point can be rendered one that does not depend on the latter by simply

assigning zero values to the four DH parameters of the last link. In other words, an

lthe method introduced in this thesis is similar to the method proposed independently in (Tsai
et al., 1993)
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operation-point-sensitive measure is more general in its scope, since it encompasses
the range of applications of the operation-point-insensitive measures.

In Chapter 4 the condition numbers of general matrices are discussed in detail, where
particular attention is paid to two important features of these numbers as applied
to kinematic performance, namely, characterizing distance to singularities and sen-
sitivity of the associated linear systems, with respect to perturbations. Determined,
underdetermined and overdetermined linear systems of equations and their applica-
tions in the analysis of manipulator kinematic-performance are also reviewed. The
notions of matriz isotropy and kinematic isotropy are introduced through formal def-
initions. With the aid of a theorem, the necessary and sufficient conditions for the
isotropy of general rectangular matrices are provided. Geometric interpretations of
the isotropy of linear transformations are also provided. In the last section of Chap-
ter 4, isotropic manipulators are formally defined followed by a general description of
the techniques used in this thesis for the isotropic design of manipulators. Through
a simple illustrative example for the isotropic design of planar 2-R manipulators, it is
shown that optimizing the condition number amounts to simultaneously decreasing
the rms value of the distances from the end-effector operation point to the axes of
the manipulator, while increasing the area of the triangle formed by the two joints
and the operation point. As a byproduct of the foregoing simple example, it is also
shown that, the 2-norm condition number at the isotropic point is not a smooth
function of the joint variable 6,.

Chapter 5 is devoted to the isotropic design of redundant manipulators. First, the
isotropic design of seven-axis manipulators is discussed in detail, several examples
of such architectures being provided. It is shown that the isotropy condition for
seven-axis manipulators leads to an underdetermined system of nonlinear equations,
an infinity of architectures satisfying the said system thus being avaliable. Repre-
sentative examples from the solution set are obtained by formulating a nonlinear

optimization problem. Furthermore, a design methodology is introduced whereby
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additional functional design requirements are incorporated in order to narrow down
the design space, thus obtaining a determined system of nonlinear equations.

Next, anthropomorphic considerations are incorporated into the design methodology
mentioned above. It is shown that anthropomorhic designs can lead to pseudore-
dundancy of the architectures. It is then concluded that, in general, full isotropy
and anthropomorphism cannot coexist for seven- and eight-axis manipulators. An
illustrative example of a nine-axis architecture that possesses both of the foregoing
features is provided. Planar hyperredundant manipulators are considered next, the
optimum posturing of a 30-axis planar arm being calculated. It is first shown that if
the Jacobian matrix associated with hyperredundant manipulators is reformulated
as a function of the absolute—as opposed to the relative—joint variables, then the
isotropy condition takes on a very simple form. Additional design requirements for
the optimum posture design of this class of redundant manipulators are then out-
lined, namely, kinematic isotropy, smoothness of the manipulator posture, and the
orientation of the last link. The resulting optimum posture resembles a cobra in its
familiar ready-to-attack configuration. In the last section of Chapter 5, a compar-
ative analysis of isotropic, versus nonisotropic manipulators is made, the basis of
this comparison being on the distribution of the set of singularities of the manipu-
lators throughout their joint-space. In general, comparing two manipulators for any
functional purpose is not a well-defined task. The framework in which a fair compar-
ison can find meaning is first defined. The comparison of redundant manipulators
in the sense of kinematic dexterity and singularity distributions is then provided
through illustrative examples, where it is observed that the joint-space singularity
distribution of isotropic architectures are better behaved than those associated with
the comparable nonisotropic designs.

Some of the main contributions of the thesis are introduced in Chapter 6, where
the kinematic conditioning and dexterity of general revolute-jointed manipulators

are discussed from a geometric point of view. First, based on a previously reported
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measure of isotropy (Kim and Khosla, 1991), a novel measure of conditioning for
general matrices is introduced. It is shown that this measure is a linear approximation
to the normalized Frobenius-norm (F-norm) condition number; for quasiisotropic
matrices, this measure provides a very close prediction of the condition number.
For both rectangular and square matrices, upper and lower bounds are obtained
for this measure in terms of the F-norm and the 2-norm condition numbers. Based
on this measure of conditioning, a measure of manipulator conditioning is devised
that is highly suited for the intended task of manipulator design. Moreover, this
performance index is substantially less expensive to compute than other measures
of kinematic conditioning, and is amenable to optimization using gradient methods,
rather than with purely direct-search methods, which are much slower. Based on a
gradient technique for the minimization of this index with respect to the normalizing
length and the operation point of the end-effector, a preferred normalizing length
and a preferred operation point of the end-effector are obtained. In this regard, the
notions of manipulator layout, layout conditioning, layout length and layout centre for
any serial-type robotic manipulators are introduced. Furthermore, the characteristic
layout of manipulators are discussed followed by discussions on the characteristic
length and the characteristic point. Several illustrative examples are provided for
determining the optimum layout of both redundant and nonredundant industrial
manipulators.

In Chapter 7 an overview of the design and manufacturing of a redundant seven-axis
manipulator with an isotropic architecture is reported. This manipulator, which
is named REDIESTRO 1 (REDundant, Isotropically Enhanced, Seven-Turning-pair
RObot) was designed, manufactured and commissioned at the McGill Centre for In-
telligent Machines. Since its completion in 1994, REDIESTRO 1 has been serving
as an experimental platform for several robotics-related projects both internally in
the Department of Mechanical Engineering of McGill University and in collabora-

tion with external research groups. REDIESTRO 1 is currently being employed for
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the STEAR-5 Phase III2 Project conducted by Bombardier Inc., Canadair Defence
Systems Division (DSD), Concordia University and McGill University. In phase
IT of STEAR-5, REDIESTRO 1 was used to implement Trajectorv Planning and
Object Avoidance (TPOA) schemes developed for redundant manipulators. During
phase IIT of the same project, currently under way, hybrid position-and-force and
impedance control techniques are being successfully applied to REDIESTRO 1 for
tasks such as surface cleaning and insertion and removal of mating objects such as

Orbital Replacement Units (ORU) type of objects.

8.2 Suggestions for Further Research

During the development of the research work reported in this thesis, a number of

related research areas are identified that could form the basis for future work, namely.

1. To conduct a more elaborate investigation of the global isotropic design
versus the local methodology discussed in the thesis. Although the sin-
gularity distribution of the architectures that are designed for local dex-
terity were investigated in the thesis, it appeared to the author that the
issue of global-versus-local isotropic designs and their relationship can be
expanded upon in further detail. The equivalence of local, versus global
isotropic designs, was first reported in Gosselin and Angeles (1991), where
it was found that, for a planar two-axis example both coincide. It seems
that the extension of the aforementioned equivalence to general manipula-
tor architectures remains an open question. It is thus suggested to employ
the homotopy classes in order to investigate the relationship between local

and global design methodologies.

2. To investigate through experiments the role of the kinematic isotropy

of redundant manipulators in the framework of hybrid position-and-force

2Strategic TEchnologies in Automation and Robotics
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control strategies. The appearance of the isotropy condition in the said

framework was recently reported in (Goldenberg, 1996).

3. To device isotropy-based numerical procedures for the calibration of the
geometrical parameters of redundant manipulators. The numerical be-
haviour of most existing calibration methodologies is a crucial concern for
the successful implementations of these techniques. Moreover, in many of
the existing methodologies, the Jacobian matrix associated with the ma-
nipulator is needed. It is thus believed that, by establishing an isotropy-
based calibration procedure, one would indeed expect superior conver-

gence and accuracy from the underlying numerical procedures.
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Appendix A

Jacobian Determinant of the

3-axis Manipulators

The architecture-dependent coeeficients of the trigonometric functions appearing in

eq. (2.16), are given below:

my = 0.5a3byp1 s (A.1)
mg = —aiazbsAqpiipia

m3 = 0.3azp1pafaz(bs + bs) — ayby A ]
my = 0.3asp pafaz(by — b3) — ajbz A 3]
ms = 0.25a3ba 1 p2(1 + Xo)

me = 0.25a3ba s pa(1 — Ao)

ny = 0.5a2(asAap1 + a1 ALps)

no = —a)02a3441

n3 = —0.5a1a3 0, 13

ng = 0.5a3(a;a2 12 + b2b3[.llﬂ% - a%ul)
ns = 0.5a3(a1a2A 12 + babypi i3 + adpuy)

ng = 0.25a3[a; A 2 (1 + Ag) — agui (1 + Ag)]
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n7 = 0.25a3[ai A1 p2(1 — A2) + aapi (1 — X))
with
Ai =cosq;, f; =sing (A.2)

Moreover, detailed expressions for f(8s, 83) = £? and f,(02, #3) = z appearing in

eq. 2.20 are gven next,

€2 = (a1 + acy + ascacs + bapasa — azAy$ass)? (A.3)

+ (bapr + b3dapy + bcadi g — aaA 152 — Az Casy — azA AaCasy + Az pasa)?
and

(A4)

= bl + bg/\l + bg(Al/\z - Cg,ulllg) + as[L189 + azfi1€389 + a3(Cg/\2].l1 + /\1[1,2)33
with

¢c; =cosf;, s; =siné; (A.9)




b

>

Appendix B

On The Smoothness of the 2-Norm

Condition Number

We show here that the 2-norm condition number is not a smooth function at the
isotropic point. This characteristic is general and not limited to 2 x 2 matrices. By
means of the symbolic expressions obtained in Chapter 4, the proof can be provided
using the Jacobian matrix of a planar 2-R manipulator. It will be shown that x, is
not a smooth function of 8, at the isotropic configuration 83, by making apparent that
its derivative dk, / d 6, is undefined at ;. To this end, we differentiate eq. (4.44),

while making use of chain rule, i.e.,

dl‘Cf_) _ 3&:2 ' Bng ,
dral (aT ot 35‘5> (B.1)
82 9;
But, from egs. (4.40), and (4.41), we have,
T=2§=+1 (B.2)

Moreover, the terms involving partial derivatives in eq. (B.1) are obtained by differ-

entiating eq. (4.44), while making use of eq. (4.36), as,
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and
Bmg -1

1
56—*%'(——,-—'{%_1'*‘52)

Substituting the foregoing equations in eq. (B.1), yields

dnz_T'JKQ—\/gé’—-‘/é(E%—l)KQJ' (}35)

d, 26/ (k% — 1)

It can be readily verified that the foregoing expression evaluated at 67, is of an
indeterminate form, i.e, with #; = £37/4, we have 7 = 1, ¥ = %1, 6 = 1/4.
0' = +1/2, and ky = kg = 1, and thus, dk, /db, |,. takes on the form 0/0.

In order to shed more light on the behaviour c:Jf Ko, we will obtain the left and

the right derivatives of k, at 83, denoted respectively by

d—nz and drs

d6, d0,

((S9hs 63)~
We will next show that the indeterminacy of the derivative of «, is inherited from
that of the derivatives of the eigenvalues at the isotropic point. The derivative of x,

can be obtained directly using Apqaz and Apy,, ie., by differentiating eq. 4.16, i.e.,

dKQ _ 1 '

= — k2N B.
d92 2 Ko /\min (’\max n? ’\mm) ( 6)
or, once evaluated at 63, as
dk 1 1 '
Ef = Z (’\ma:r - ’\min)loa (B?)
2

Furthermore, A}, and AL, are determined from eq. (4.43) as,

N _T'm+TTI—2(5' and X' _T'M*TT'-FQJ'
- min —

maz 2/ =40 2/ =10

Both of the foregoing expressions evaluated at 6; will be of the indeterminate form

(B.8)

(0/0). Hence, we obtain the left and the right derivatives of Amqez and Anmi, at 65,
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respectively, from,

d)\ma.t IR T /\mau:(g; + h) - ’\ma..r(og)
6, i, ) (B9)
e3)*
Amaz| 1 Amas(05 + B) = Amaz(63)
93)~
and,
dAmin _ /\min(os + h) - /\min(gg)
o = lim, - (B.11)
(Coha
d/\mm 1 /\min (65 + h) - ’\min (95)
d 0, - hl_l.rcI)l— h (B.12)

03)~
In the foregoing expressions we have assumed that the limits exist. The evaluation
of these limits is rather tedious, and we will present only the detailed procedure
for obtaining the left and the right derivatives of Anq.,. One of the two isotropic
configurations, namely, 85 = 3 7/4, is considered, the second one following similarly.
Using egs. (4.30), (4.31), (4.40), (4.41), and the first of eq. (4.43) in conjunction with

egs. (B.9) and (B.10), and after some trigonometric simplifications we obtain

d Amaz . 1—(cosh+sinh) ) \ﬁ+sinh cosh — (cosh + sin h)
= lim + lim
do, h—0+ 2h h—0+ h
3+
d Amaz . 1—(cosh+sinh) ) \ﬁ+sinh cosh — (cosh + sinh)
= lim — lim
do, h—0- 2h h—0- h
(3~

Multiplying both numerator and denominator of the right hand-side of each of the

foregoing equations, respectively, by 1 + (cosh + sinh) and by the square root

V1 +sinh cosh + cos h + sin h, it follows that,

d Amaz — lim —sinh cosh lim | sinh cosh |
a0 . h—0*+ h (1 +sinh +cosh) r—0* h/1+sinh +cosh +sinh cosh
d’\ma.‘c . —sinh cosh s I sinh cosh |
= lim - + lim . :
d 62 i)~ h—0~ h (1 +sinh +cosh) k—0- h\/1+sinh+cosh+sinh cosh
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or,
d Amaz . .sinh —cosh . sinh cos h
= lim ) - + lim : :
dé, ey h—0+" h "(l+sinh+cosh) ha—0+ h ' \/1+sinh+cosh+sinhcosh
d Anaz . ,sinh —cosh ) sinh cos h
= 11m ( ) - — lim - -
a6, a0 h "(l+sinh+cosh) h—0-" h " /T+sinh+cosh+sinhcosh

Moreover, recalling that

I sinh_ | sxnh,_1
s R heo- R
we then have
mazx - 2
dA _TL+V? (B.13)
d b, 2
3+
dAmaz| =1 V2 (B.14)
d b, 2
(FF)-

This proves that k, is not a smooth function of 8, at the isotropic configuration.
as the left and the right derivatives of the function at that point are finite but not

equal.
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Appendix C

Derivation of the Identity Used for

the Determination of p,

The derivation of the identities used in Chapter 6 is included here, while determining

the position vector of the layout centre p.. It is required to prove the identity given

below:

tr(BABT) =bT btr(A) - %bT (A+AT)b

where

b = vect(B) = —vect(BT)

(C.1)

and the operator vect(-) represents the azial vector of its matrix argument, as defined

in Leigh (1968).

Let,
0 —b, b, ay a2
B=| b, 0 —b, and A = |as an
-b, b O asz a3
then
bz
b=|b,
b

a3
as3

Q33

(C.2)
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Now, expanding the matrix product appearing in the left-hand side of eq. (C.1), and

after some algebraic manipulations, we can obtain the relation given below:

tr(B A BT) = (b2 + b2 + b2) (a1) + aze + ass)
— bz by (a1 + ag)
= b b; (a13 + aa1)
— by b; (az3 + a3)

- (au bi. + Q9o b§ + (1%} bg) (C3)
It is apparent that the foregoing expression can be rewritten as
tr(BABT) =bTbtr(A) — %bT (A+AT)b

thus proving eq. (C.1).
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Mechanical Drawings of

REDIESTRO 1

D.1 Link Subassembly Drawings
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Ex
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Figure D.1: Base subassembly drawing

Figure D.2: Link 1 subassembly drawing
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Figure D.3: Link 2 subassembly drawing

Figure D.4: Link 3 subassembly drawing
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Figure D.5: Link 4 subassembly drawing

Figure D.6: Link 5 subassembly drawing
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Figure D.7: Link 6 subassembly drawing

Figure D.8: Link 7 subassembly drawing
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Figure D.9: Manipulator assembly drawing
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D.2 Detailed Drawings
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Figure D.24: Link 4, Motor 3 hub detailed drawing
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Figure D.28: Link 4, shoulder detailed drawing
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Figure D.30: Link 4, motor 4 bracket detailed drawing
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Appendix E

Electromechanical Specifications of

the Actuators

E.1 Actuators of REDIESTRO

In this Section the electromechanical specifications of the actuators of REDIESTRO 1
are recorded. In Section E.1.2, the mechanical drawings of each actuator unit is
provided, and in Section E.1.1 the electromechanical specification of each unit is

tabulated.

E.1.1 Electromechanical Specifications of the Actuators

The Actuators that are used for REDIESTRO 1 are from Harmonic Drive Systems
Inc., each including a DC-motor, harmonic drive, incremental encoder and electro-
magnetic brake. For the specification of each unit letter “B” stands for brakes, “E”
denoting encoder while “AL” stands for 5V line drive encoder. The number between
“E” and “AL" is the encoder resolution divided by 10. Moreover, “sp” stands for
special configuration. REDIESTRO 1 power transformer are also from Harmonic
Drive Systems Inc. Encoders are able to be used as quadrature, thus, allowing a

maximum resolution equal to four times the nominal pulse per revolution specidied
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for each unit, (Table E.2)

Remarks regarding the specification of the actuators:

e The mass of each unit given in Table E.2 is the mass of the DC motor plus

brackets.

the gear-head plus the encoder, while the mass of the brakes are included in

e The inertia given here is the sum of motor and harmonic drive gear-head con-

verted to the output side of the actuator. These are provided in the manufac-

turers’ catalogue in Kgf-cm sec?. To convert to Kg m?, multiply by 9.806/100.

e The torque constants are referred to the output side as well.

Model
Number

Serial
Number

RH-25-1507-BE-100AL-sp
RH-32-1212-BE-036AL-sp
RH-32-1212-BE-036AL-sp
RH-32-1212-BE-036AL-sp
RH-20-1903-BE-100AL-sp
RH-20-1903-BE-100AL-sp
RH-14-3002-BE-100AL-sp

104477
104480
104478
104479
104470
104471
104614

Table E.1: REDIESTRO 1, Actuators model

Model Joint | Gear | Encoder | Max. Rated | Mass Inertia
Number Red. | Res. Torque | Torque | (+Brake) | (Encoder)

P/rev Nm Nm Kg Kg m?
RH-25-1507 | 1 200 200 147 42 4.7 (6.2) | 9.3157+(0.0275)=9.3432
RH-32-1212 | 2 260 360 314 97 8.7 (11.5) | 50.7951+(0.0464)=50.8415
RH-32-1212 | 3 260 360 314 97 8.7 (11.5) | 50.7951+(0.0464)=50.8415
RH-32-1212 | 4 260 | 360 314 97 8.7 (11.5) | 50.7951+(0.0464)=50.8415
RH-20-1903 | 5 160 1000 78 17 3.1 (4.1) | 2.3534+(0.0176)=2.3710
RH-20-1903 | 6 160 1000 78 17 3.1 (4.1) | 2.3534+(0.0176)=2.3710
RH-14-3002 | 7 100 1000 19.6 5.9 0.78 0.0816+(0.005)=0.0866

Table E.2: REDIESTRO 1, Actuators mechanical specification

The Amplifiers that are used for REDIESTRO 1 are made by Copley Control Cor-

poration, with their specifications being provided in Table E.5.
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Model Number | Joint Torque Const. Max. Current
Nm/A (Load Side) | A
RH-25-1507 1 40/200=0.2 4.9
RH-32-1212 2,3 and 4 | 55/260=0.211 8.1
RH-20-1903 5and 6 32/160=0.2 3.1
RH-14-3002 7 5.76/100=0.0576 4.1

Table E.3: REDIESTRO 1, Actuators electrical specification

[ Joints | Model Number

1 PT1-10004
2,3 and 4 | PT1-10007
5 and 6 PT1-10002
7 PT1-03803

Table E.4: REDIESTRO 1, power transformer model

Model | Joint High Volt. | Output Peak Power Max. Cont.

Number Supply Voltage Output Current
VDC Vv A

303B 1 16 to 90 Vi —0.260, | £90V at £12A | 6

303B-1 [2,3and 4 | 16 to 90 Vi —0.260, | £90V at £12A [ 6

303B-1 | 5and 6 16 to 90 Vi —0.260, | £90V at £12A | 6

303 7 16 to 80 Vi —0.260, | £75V at £12A | 6

Table E.5: REDIESTRO 1, Amplifiers model and pecifications. Where V}, is high
voltage applied and {, is current into motor or load. -1 stands for high inductance
load.

".
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E.1.2 Actuator Drawings

The mechanical drawings of the actuators are given in Figs. E.1 to E.4.
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Figure E.1: Mechanical specification of Rh-32 (joints 2,3 and 4)
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Figure E.4: Mechanical specification of Rh-14 (joint 7)

>4



£,
FA Y
kD ///9\\ !
&
ve
%/q
e Jaa1, 5y il
EEEERE — 1 S © i m
S oll =l o - e |
w < — il Hll.u_____ WI._E m_ g
Q _— == = < °
20
—
A
A N
E N 4 A
AP N AR A\
LA 4 N vy N o \\\0/
P ,y%vA > ,m»\/v A N BN
WA “p RS
0/\//,// \\ &Vw.«




