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Abstract

Kinematic design and performance evaluation of seriaI-type robotic manipulators

is the main focus of this thesis with due attention being paid to redundant ma­

nipulators. The thesis provides a review of the existing contributions made to the

subject, identifying those areas that can be advanced in depth or breadth and rnak­

ing theoretical contributions to sorne of these areas. The design, manufacturing and

commissioning of a full-scale representative example of a redundant manipulator de­

signed for kinematic isotropy is also discussed. Although various theoretical methods

of analysis and characterization of the kinematic performance have been reported in

the past two decades, the kinematic architecture of industrial manipulators has not

changed very much. The design requirements for these manipulators, have been

mostly driven by issues such as kinematic simplicityand mechanical constructibility.

These criteria have thus led to the existence of a particular class of manipulators

whose axes are either parallel or perpendicular, i.e., orthogonal manipulators.

It is believed that, in order ta fully exploit the redundancy of the new generation

of industrial manipulators, it is advantageous to consider general architectures. If

improved kinematic performance can be achieved by examining novel manipulator ar­

chitectures, then it becomes necessary to explore new design requirements. The aim

of this thesis is to contribute to the above-mentioned exploration. In Chapter 2~ the

singularity and workspace of regional structures (Le., three-axis manipulators) are

discussed. Regional structures forming the positioning part of most industrial manip­

ulators, they have been regarded as representatives of nonredundant manipulators.
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Chapter 3 contains a detailed review of the proposed measures of dexterity together

with an extensive discussion on the invariance properties of these indices. Chapter

4 is devoted to the investigation of the condition numbers of matrices in general,

and of the Jacobian matrix of the robotie manipulators in particular. In Chapter 5,

the isotropie design of redundant manipulators is discussed in detail \vhereby several

isotropie seven-axis designs are introduced. Anthropomorphic requirements are also

included where, it is shown that seven- and eight-axis manipulators eannot possess

isotropy and anthropomorphism simultaneousIy. Optimum postures of hyperredun­

dant manipulators are then investigated and final1y, singularity distributions in the

workspaee of isotropie manipulators are compared to those of their nonisotropic coun­

terparts. In Chapter 6, kinematic performance of seriaI manipulators is discussed

from a geometric point of view. A novel measure of conditioning based on an index

of isotropy, defined elsewhere, is examined in detail, and several interesting features

of this measure are provided. With the aid of this measure, explicit expressions for

the determination of the characteristic length, and the characteristic point are de­

rived. In Chapter 7, the kinematic and mechanical design of a full-scale seven-a.\:is

isotropie manipulator cal1ed REDIESTRO 1 are introduced. REDIESTRO 1 was

designed, manufactured and commissioned during the course of this thesis at the

:YlcGill Centre for Intelligent Nlachines (CIlVI) of NIcGill University.
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Résumé

La conception et l'évaluation cinématiques de l'opération de manipulateurs à chaîne

cinématique ouverte simple sont les principaux sujets abordés dans cette thèse, avec

une attention particulière portée aux manipulateurs redondants. Cette thèse com­

porte un aperçu des contributions déjà apportées à ce domaine, identifie les sujets

où de nouvelles avancées peuvent être faites, et apporte des contributions sur le

plan théorique à certains d'entre eu.x. Finalement, la conception, la fabrication et

la mise en opération d'un exemple grandeur nature d'un manipulateur redondant

conçu avec une cinématique isotrope sont décrites. Bien que plusieurs méthodes

théoriques d ~analyse et de caractérisation de la performance cinématique aient été

proposées depuis deux décennies, l'architecture cinématique des manipulateurs in­

dustriels disponibles n'a pas beaucoup changé. En effet, les contraintes de conception

ont davantage été liées à la simplicité cinématique et à la réalisation mécanique de ces

manipulateurs. Ces conditions ont donc mené à l'existence d'une classe particulière

de manipulateurs dont les axes sont parallèles ou perpendiculaires, c.-à-d., des ma­

nipulateurs orthogonaux. II est affirmé que, pour exploiter pleinement la redondance

de la nouvelle génération de manipulateurs industriels, il est avantageux de porter

attention à l'architecture générale. Si une performance accrue peut-être obtenue

en utilisant des architectures différentes, il devient alors nécessaire de considérer de

nouveaux critères de conception.

Dans le Chapitre 2, les singularités et l'espace de travail des manipulateurs à trois
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l axes sont examinés. Dans la plupart des cas, les trois premiers axes des manipula­

teurs industriels à poignet découplé servent à résoudre le problème du positionnement

de l'organe terminal. Ces trois premiers axes peuvent donc être considérés comme

exemples représentatifs de la classe des manipulateurs non-redondants. Le Chapitre

3 contient une revue détaillée des mesures de dextérité proposées ainsi qu'une dis­

cussion sur les propriétés invariantes de ces indices. Le Chapitre 4 fait l'étude du

facteur de conditionnement des matrices en général, et de la matrice jacobienne

des manipulateurs robotique en particulier. Dans le Chapitre 5, la conception de

manipulateurs redondants isotropes est étudiée en détail et plusieurs exemples de

robots isotropes à sept axes sont proposés. Des contraintes anthropomorphiques sont

également incluses et il est montré que des manipulateurs à sept ou huit axes ne

peuvent pas être isotropes et anthropomorphes simultanément. Ensuite, la pos­

ture optimale des manipulateurs hyper-redondants est étudiée et finalement, la dis­

tribution des singularités dans l'espace de travail des manipulateurs isotropes est

comparée à celle de manipulateurs non-isotropes. Dans le Chapitre 6, la perfor­

mance cinématique des manipulateurs à chaîne ouverte simple est étudiée d'un point

de vue géométrique. Une nouvelle mesure du conditionnement basée sur un indice

d'isotropie, défini ailleurs, est examinée en détail et plusieurs propriétés intéressantes

de cette mesure sont présentées. Entre autre, cette mesure permet d'introduire les

notions de longueur et de point caracteristiques. Dans le Chapitre 7, la conception

cinématique et mécanique d'un manipulateur isotrope grandeur nature à sept axes

nommé REDIESTRü 1 est présentée. REDIESTRO 1 a été conçu, construit et

mis en opération dans le cadre de cette thèse au Centre NlcGill pour les Nlachines

Intelligentes (CIM) à l'Université McGill.
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Claim of Originality

The author daims the originality of the main ideas and research results presented in

this thesis, the following being the most significant:

1. The characterization of the Cartesian and the joint space singularities of

regional structures are presented, \Vith the aid of the concept of non­

minimal realizations of transfer functions of single-input/single-output

(8r80) linear dynamical systems. The uniqueness domains of the for­

ward kinematic maps are also discussed, and algebraic expressions that

define these subregions of the manipulator joint-space are derived 1.

2. A CAD-based technique is introduced for the development of the three­

dimensional graphical rpnderings of the Cartesian workspace.

3. 'Vith the aid of a theorem, it is shown that the dass of special regional

structures cannot change solution branches without crossing singularities.

4. Within the realm of kinematic design, comparison of singular- vs. nonsin­

gular-posture-changing manipulators is discussed, whereby it is shown

that the ability of a manipulator ta change solution branch without cross­

ing singularities is not necessarily an advantageous feature.

5. A detailed discussion on the invariance properties of different dexterity

measures is provided.

IThis methodology was independently proposed by Tsai et al., (1993) and Ranjbaran et al.,
(1994).
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i 6. With the aid of a theorem, the neeessary and suffieient conditions for the

isotropy of a general reetangular matrix is presented.

7. Isotropie design of redundant manipulators is diseussed in detail:

- 1t is shown that isotropie seven-axis manipulators exist2
•

- While ineorporating other kinematic issues sueh as anthropomor­

phism, it is concluded that full isotropy and anthropomorphism can­

not coexist for seven- and eight-axes manipulators, the latter require­

ments leading to pseudoredundancy. An illustrative example of a

nine-axes robot that possesses both of the foregoing features is pro­

vided.

8. The optimum posture design of hyperredundant manipulators for isotropy

is examined through an example of a 30-a..xis planar manipulator. 1t

is shawn that the isotropie configuration of this manipulator-to sorne

extent-resembles a familiar posture of a cobra in an attack configura­

tion.

9. A framework for the qualitative comparison of redundant manipulators

is constructed. This framework is then utilized to compare isotropie and

nonisotropic manipulators in the sense of the distribution of the singular­

ities in their respective joint spaees. 1t is observed that the joint-space

singularity distribution of isotropie architectures are better behaved than

those associated with comparable nonisotropic designs.

10. A novel measure of conditioning for general matrices is introduced:

1t is shawn that this measure is a linear approximation of the nor­

malized Frobenius-norm condition number, and, for quasiisotropic

matrices, it provides a very close prediction of the condition number.

2Independently, Klein and Miklos (1991) also provicled examples of such designs using a different
approach
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- For both rectangular, and square matrices, upper and lower bounds in

terms of the F-norm and the 2-norm condition numbers are obtained

for the proposed measure.

11. Based on this measure oi conditioning, an index of manipulator condition­

ing is devised that is highly suited for the intended task of manipulator

design.

12. Based on the differentiation of this index with respect to the normalizing

length and the operation point of the end-effector, a preferred scale factor

and a preferred operation point of the end-effector are obtained.

13. A full-scale seven-axis isotropie manipulator called REDIE8TRü 1 was

designed, manufactured and commissioned by the research work con­

ducted under the scope of this thesis.

The above contributions have been reported partially in (A.ngeles et al.~ 1992), (Ran­

jbaran et al., 1992), (Tandirci et al., 1992), (Gonzalez-Palacios et al.~ 1993), and

(Ranjbaran et al., 1994; 1995; 1996) .
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Chapter 1

Introduction

1.1 Motivation

The mechanical performance of robotic manipulators has been the focus of extensive

research work in the past two decades. Almost aIl of these efforts have focused on

the kinematic performance or motion-transmission capabilities of mechanical manip­

ulators and mechanisms at large. The kinetostatic duality has allowed researchers

to quantify both motion- and force-transmission capabilities with a cornmon merit

figure called the kinetostatic performance index (IFTo~INL 1991). The earliest con­

siderations of the kinetostatic performance of mechanisms can be traced back to

concepts such as the indices of merits, mechanical advantage, pressure angle, trans­

mission angle or angular velocity ratio, (Shigley and Uicker, 1995). Dexterity and

kinetostatic analyses of robotic manipulators is in a sense a generalization of these

simple concepts in more complex settings.

Dexterity is defined by Webster as "readiness and grace in physical activity; esp: skill

and ease in using the hands". This definition has thus been extended to characterize

the kinematic performance of robotic manipulators, while concepts such as service

angle, dexterous workspace, dexterity measures, manipulability index, kinematic dis­

tortion, and measure of isotropy, among others, have been proposed.
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Notions such as readiness, ease, or comfort induce familiar senses in human percep­

tion. Extending these notions for characterization of the performance of mechanical

devices, however, does not seem as immediate. Examples from natural articulated

bodies can be found that to sorne extent validate the aforementioned extension. Con-

sidering the architecture of our limbs, the ratio between the length of the humerus

(upper arm) to that of the radius (forearm) faIls within the range of 70 to 80%.

As a classical example, Leonardo Da Vinci being interested on the ratio of several

parts of our limbs provided extensive anthropomorphic data, Fig. 1.1 (O'wIalleyand

Saunders, 1983). Leonardo reported a value of five-sevenths or 71.4%, for the radio­

humerus ratio. On the other hand, while perforrning manual tasks that require our
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Figure 1.1: Leonardo's anthropomorphic data (O'NIalley and Saunders, 1983)

highest dexterity, or similarly, while attaining comfortable configurations, the angle
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Optimum Link Ratio:

~ = {";' = 0.707
LI 2

Optimum CionCiguration:

for any et
ez = 135

0

Figure 1.2: Optimum kinematic design of a 2-axis planar manipulator

made between our upper arm and our forearm tends to be an acute angle within 30

to 60 degrees. It is interesting to note that whiIe designing planar two degrees of

freedom fingers, Salisbury and Craig (1982) proposed the optimum solution shawn

in Fig. 1.2. The optimality criterion for this design is based on the condition number

of the Jacobian matri..x associated with the instantaneous kinematics of the manipu­

lator. The link-Iength ratio for this optimum two-axis manipulator (as discussed in

Chapter 4) is found ta be -/2/2 = 0.7071, which is not very different from Leonardo's

radio-humerus ratio of 71.4%. ~Ioreover, the optimum configuration of the mech­

anism is achieved when (J2 = 45°, i.e., the mid-range of 30° to 60°. Although this

analogy is an interesting link from our familiar senses of comfort and dexterity to the

characterization of the performance of mechanical manipulators, it is by no means

intended here to over emphasize this similarity, for the evolution of the living artic­

ulated architectures lends itself to a spectrum of complex phenomena from different

fields of science of which kinematics can only be one.

Nlotivated by these arguments, and by the curiosity for the existence of other natural

analogies, we considered the shape of a cobra in its familiar ready-to-attack configu­

ration. The cIosest candidate from mechanical manipulators to stand the comparison

is the class of hyper-redundant or snake-like manipulators. As discussed in detail in
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Chapter 5, an optimum configuration of a 30-jointed hyper-redundant planar manip­

ulator based on the same optimality criterion of kinematic dexterity plus additional

smoothness requirements gives rise to a solution illustrated in Fig. 1.3 (see Chapter 5

for details).

..........---[)
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\
\,
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Figure 1.3: A 3D-axis planar manipulator at an optimum configuration

The characterization of the performance of seriaI-type robotic manipulators in the

sense of kinematic dexterity is the main focus of this thesis. This characterization is

aimed at providing a review of the existing contributions made ta subject, identifying

those areas that can be advanced in depth or breath, making theoretical contribu­

tions ta sorne of these areas, and, final1y, ta implementing a full-scale representative

exarnple of a rnanipulator designed for dexterity, specifically for kinematic isotropy.

1.2 General Background

Throughout the thesis several references are made to the notions of manipulator

architecture, manipulator posture, end-effector (EE) pose, and kinematic design. The

definition of these concepts, as used in the thesis, are provided below:
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Figure 1.4: An n-revolute jointed manipulator.

5

• Manipulator Architecture and Manipulator Posture (Angeles, 1997):

An n-axis manipulator has n joint variables, which are grouped in the n­

dimensional vector 9, regardless of whether the joints are revolute or prismatic.

and 3n constant parameters that define the relative position and orientation

of the two joint-axes attached to a link. The latter define architecture of the

manipulator, while the former determine its configuration or posture. Fig. lA

illustrates an n-axis revolute-jointed manipulator.

For the sake of completeness the definition of the Oenavit and Hartenberg (OH) pa­

rameters (Denavit and Hartenberg, 1955) are provided next, as illustrated in Fig. 1.5.

Links are numbered 0, l, ... , n, the ith pair being defined as that coupling the

(i - l)st with the ith link, with link 0 being the fixed base. The end-effector (EE) is

attached to the nth link, whose operation point is denoted by P. Next, a coordinate
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Zt-l

Zt+t

Figure 1.5: Denavit and Hartenberg parameters representation

frame is defined with origin Oi and axes Xi, Yi, Zi' which is attached to the (i ­

l)st link, for i = 1, ... , n + 1. Furthermore, Zi is the axis of the ith pair, .'li is

defined as the common perpendicular to Zi-1 and Zi' directed from the former to

the latter. Nloreover, the distance between 2 i and 2 i+ 1 is defined as ai, which is, thus,

nonnegative. The Zi-coordinate of the intersection O~ of Zi \Vith "\i+1 is denoted by

bi , its absolute value being the distance between "'\~i and ,,-'li+1' The twist angle Qi, is

the angle between Zi and Zi+1 and is measured about the positive direction of "-\i+1'

Finally, (Ji is the angle between "Yi and '.-\i+1 and is measured about the positive

direction of Zi.

Having specified the four parameters defining each link-frame and its connection ta

the neighbouring ones, the position and orientation of the two consecutive frames i

and i + l expressed in frame i are determined from the position vector ~ and the

rotation matrL"{ Qi as shown below:

·r..
- sin Bi cos Qi

cos Bi cos Qi

sin (Ji sin Qi ]

- cos Bi sin Qi

cos Qi
[

ai C~S(Ji]
~ = ai sln(Ji

bi

(1.1 )



• End-Effector Pose: The position and orientation of the coordinate frame

attached to the last link of the manipulator in the Cartesian space.

l
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• Kinematic Design: Selection of the manipulator architecture.

• Configuration Design: Selection of the manipulator posture.

1.3 Literature Survey

1.3.1 Singularity and Workspace Analyses

vVorkspace and singularity analyses of robotic manipulators have been the focus of

intense work in the past decade. The determination of the workspace of a general

n-axis manipulator in its space of Cartesian coordinates is a formidable task, for it

amounts to representing a hypersurface embedded in a six-dimensional space, studies

so far having focused only on three-axis manipulators for either positioning (regional

structures), e.g. (Spanos and Kohli, 1985L or orienting tasks~ e.g. (Angeles. 1988:

Lin and Tsai, 1991). Since a wrist-partitioned manipulator (most of the industrial

manipulators in use today are wrist-partitioned) is the concatenation of a three-axis

arm, i.e., the regional structure, and a spherical wrist that is attached to the terminal

link of the arm, the workspace analysis of such manipulators can he performed by

considering the positioning and orienting singularities separately.

AlI of the contributions made in this regard are oriented along two main tracks.

a) Determination of the workspace boundaries in the Cartesian space associated

with the location of the end-effector (EE), (Spanos and Kohli, 1985; Hsu and Kohli,

1987a, 1987b; Smith, 1990; Smith and Lipkin, 1993; Ranjbaran et al., 1992). Among

these contributions, only a few works include explicit algebraic expressions defining

the workspace boundaries. Kohli and Hsu (1987a and b), for example, give an

extensive categorization of different types of regjonal structures, and expressions for

sorne examples. AIso, in Ranjbaran et al. (1992), a general expression defining the
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singularities of the quartic closure polynomial that relates the Cartesian coordinates

of the end-effector to one of the joint angles is derived. Smith and Lipkin (1993)

obtained expressions for the foregoing surfaces through the use of conie sections. In

general these expressions are of a high degree in the Cartesian coordinates of the EE.

They are convenient, however, in that they can be used to trace the intersection of the

workspace boundaries and any arbitrary plane cutting it. Recently, Ceccarelli (1994a.

1995, and 1996) extended the analysis and synthesis of the workspace boundaries of

seriaI manipulators to four-, five-, and N-a.xis architectures, while employing toroidal

geometries and the resulting envelopes when rotating a toroidal surface about a given

axis.

b) Singularity analysis of the kinematic maps in the joint space using invariants

of the Jacobian matrix (Borrel and Liégeois, 1986; Oblak and Kohli, 1988; Burdick,

1988; Pai and Leu, 1989; 1992; Tsai et al., 1993; Burdick, 1991; 1992; 1995; "Venger,

1992; 1996). NIost of these works approach the problem by deriving a condition on the

singularity of the associated J acobian matrbc. Since this matrix is an explicit function

of the joint coordinates, the aforementioned condition is usually derived in the joint­

coordinate space. In recent years, the behaviour of the direct kinematic maps and

their singularities have been discussed with powerful tools of differential topology,

e.g., Burdick (1995). The direct kinematics of the manipulators are thus regarded as

smooth manifold mappings from the joint space to the Cartesian space. Furthermore,

in Pai and Leu (1989; 1992), the concepts of genericity and non-genericity of general

maps between smooth manifolds are applied to the direct kinernatic maps of robotic

rnanipulators, and thus, the notions of generic and non-generic manipulators are

introduced. A more detailed investigation of genericity of the kinematic maps for

three-, six-, and seven-degree-of-freedom manipulators are given in Tsai et al. (1993),

where a closed form genericity test for the regional structures is derived.

As suggested by Burdick (1991), regions free of singularities in the joint space,

called the c-sheets according to Burdick, or aspects according to Borrel and Liégeois
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(1986), do not partition this space inta the uniqueness domain of the kinematic maps.

In other words, it is possible to find two inverse kinematic solutions for the same

end-effector pose that lie in the same aspect. This enables the manipulator to change

solution branch or posture without passing through singularities.

Wenger (1992) first introduced a method for obtaining the separating surfaces in

an aspect that indeed divide the corresponding aspect into sub-regions where the

kinematic map is one-to-one and onto (bijection). This gave rise to the definitions of

characteristic surfaces and basic components. The characterization of the singular­

ities of generic regional structures based on homotopy classes are further discussed

in Wenger (1996).

1.3.2 Kinematic Performance

As one of the first efforts to measure the kinematic performance of manipulators,

Vinogradov et al. (1971) proposed the service angle, as the range of joint angles

allowing the end-effector to reach a specified point in space. Roth (1975) analyzed

the performance of manipulators in terms of their constitutive geometries, and in­

troduced the notions of approach angle, working space, or zones of operation, and

coupling between position and orientation of the end-effector. Throughout the decade

that followed, most of the research effort in the performance analysis of manipulators

focused on the analysis and evaluation of the reachable and dexterous workspaces of

seriaI-type manipulators, e.g., Kumar and \Valdron (1981L Gupta and Roth (1982),

Lee and Yang (1983), Tsai and Soni (1981), Tsai and Soni (1983), and Yang and Lai

(1985).

Salisbury and Craig (1982) introduced the condition number of the Jacobian ma­

trbc J, ~(J) as a measure of the kinetostatic performance of a manipulator. Later

on, the manipulability index J.l(J) was defined, as a measure of the kinetostatic per­

formance by Yoshikawa, as the square root of the determinant of the product of
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the Jacobian by its transpose (Yoshikawa, 1985). During the past ten years~ dif­

ferent local and global dexterity measures for the kinematic design and analysis of

manipulators have been proposed. Klein and Blaho (1987) related the kinematic

performance to the minimum singular value G'min of the Jacobian as a measure of

the distance to singularities. The optimum kinematic design of 6R manipulators

with given manipulator-lengths, for work-volume and well-connectedness of this vol­

ume was discussed by Paden and Sastry (1988). The notion of work-volume used

by Paden and Sastry is intermediate between those of the reachable and dextrous

workspaces. It is based on the translation-invariant volume form on the group of

aH rigid body motions SE(3), i.e., it is equivalent to the volume of the image of

the underlying joint space under its forward kinematic map. In Angeles and Lopez­

Cajun (1988, 1993), a dexterity measure based on the reciprocal of the condition

number was proposed, while Gosselin and Angeles (1991), proposed a global dexter­

ity measure by integrating the variation of the reciprocal of the condition number

throughout the workspace. Kinematic dexterity and workspace volume of robotic

manipulators were discussed by Park (1991) and by Park and Brockett (1994) using

harmonie mapping theory to introduce the notion of kinematic distortion as a means

of quantifying dexterity. The workspace volume considered in the latter reference is

based on Paden and Sastry's translation-invariant volume form on SE(3). ~Iotion

capabilities of rigid bodies attached to the end-effector of seriaI manipulators were

quantified using the Euclidean group of rigid-body motions and its semi-Riemannian

structures by Basavaraj and Duffy (1993). "Vith the aid of the weighted distribution

of the end-effector pose over the workspace, while employing probabilistic models,

Singh and Rastegar (1995) discussed the global motion capabilities or the velocity­

transmission characteristics of manipulators. While discussing the optimal synthesis

of the three-axis manipulators, Ceccarel1i (1994b) employed the sequential quadratic

programming technique for optimizing the manipulator architecture based on the

notion of minimum size encumbranee while satisfying constraints on the workspace
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The kinetostatic performance of tendon-driven manipulators have been discussed by

Ou and Tsai (1993;1994). In these papers the effects of pulley size and routings on

the kinetostatic performance of the manipulators are discussed whereby the notion

of isotropie transmission eharaeteristies is defined.

Recently, while analyzing hybrid motion-and-foTce control strategies, Goldenberg

(1996) proposed a kinematic optimality condition for manipulators that enhances

the force-and-motion couplings. This criterion simply reflects the ability of a manip­

ulator to take on a posture at which the product of the associated Jacobian matrix

by its transpose becomes a scalar multiple of the identity matrix. Although in the

context of hybrid control the latter condition was found rather novel, in kinematic

analysis and optimum kinematic design, however, this criterion has been referred to

as the kinematie isotropy for a quite a few years. The effects of aetuation-sehemes of

manipulators are discussed in Nlaton and Roth (1996). In this paper it is shown that

whether the actuators are placed on the base or locally on the corresponding link.

the kinematic performance of the maniplliator is affected. Based on this observation

a methodology is introdllced for determining the optimal placement of the actua­

tors, while conc1uding that placing the actuators on the base is more advantageous

in terms of kinematic dexterity.

The sensitivity and robllstness of the redllndancy resol11tion schemes are also dis­

cussed in Arenson (1997), where different types of error amplifications that present

themselves in the Cartesian-space tracking capabilities of the redundant manipllla­

tors are investigated through numerical exarnples. Nloreover, a theoretical frarnework

is introduced in Angeles et al. (1996), where the overall sensitivity of the posture

of redundant manipulators with respect to the Cartesian-space trajectory changes is

divided into two parts, namely, a primary and a secondary sensitivities. It is shawn

in this reference that the primary sensitivity that has to do with the architectural



design of the manipulator is a function of the condition number of the Jacobian ma­

trix divided by the norm of the said matrLx, while the secondary matrL""{ that has to

do with the type of secondary task augmented to the primary task of following the

desired trajectory~ is always equai to the identity.

1
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1.3.3 Kinematic Design

In the design of inclustriai seriaI-type manipulators only a few simplifying kinematic

criteria have been considered. For nonredundant manipulators~ the kinematic design

has been mainly oriented towards achieving kinematic solvability and manufacturing

feasibility. These criteria, in turn, have led to the existence of a particular class of

manipulators whose axes are either parallel or perpendiculaL i.e., orthogonal ma­

nipulators. Here, we mean by orthogonal a manipulator whose consecutive axes

make angles that are multiples of 900
; for example, manipulators with spherical

wrists (Pieper, 1968), or with planar two-revolute sub-chains pertain to this class.

Nforeover, a general classification of manipulators with simple inverse kinematics is

reported in NIavroidis and Roth (1992). The associated simple inverse kinematics

has been formulated by exploiting the special features, like orthogonality, of the

kinematic structures of these robots. \-Vith the advent of fast and general inverse

kinematics algorithms developed in the last ten years, the need for simple kinematic

structures is Jess critical. On the other hand, parallelism and orthogonality of the

axes can give rise to undesirable singularities. These singularities are manifested~ for

example in the rate control and kinernatic calibration of these manipulators (Hayati,

1985; Bennett et al., 1992). Serving the two foregoing objectives excludes a major

class of manipulators with general architectures. By exploring general manipulator

architectures, one can not only irnprove the numerical conditioning of the manipula­

tor kinetostatic maps, but also take into consideration other critical issues pertinent

to the design and realization of the overall robotic system. Sorne researchers have

emphasized the methodologies for the design of redundant manipulators for specifie



tasks or classes of tasks. In this regard, the framework of task-based design for re­

configurable modular manipulators has been introduced (Kim and Khosla, 1992a-c).

1
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1.4 Thesis Overview

The thesis consists of seven chapters, as per the summary given given below:

1.4.1 Chapter 2: Singularity and Workspace Analyses

Two novel methods for the analysis and characterization of the singularities of se­

riaI manipulators are presented. The numerical examples provided are three-axis

revolute-jointed manipulators, regional structures. First, the workspace boundaries

are determined directly in the Cartesian space by resorting to the concept of non­

minimal realizations of transfer functions of single-input/single-output (8180) linear

dynamical systems.

The characterization of the manipulator singularities both in the joint space and in

the Cartesian space is also discussed, with the aim of determining the uniqueness

domain of the forward kinematic maps. Here, by uniqueness domain we mean aIl

subsets of the joint space over which the forward kinematic map is a diffeomorphism.

i.e., where for each end-effector pose there is a unique inverse kinematic solution. vVe

present an algebraic expression that defines aIl of the separating surfaces of the joint

space for general regional structures. Furthermore, the kinematic design of regional

structures in relation to singular- vs. nonsingular-posture changing architectures are

discussed. A comparison of the two foregoing types of regional structures in terms

of trajectory following capabilities are also discussed.
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1 ..4 .. 2 Chapter 3: Measuring Manipulator Dexterity
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The kinematic dexterity of robotie rnanipulators is discussed and comparisons are

made among different rneasures proposed in the pasto Since the centrepieee of al­

most aIl performance rneasures are based on the manipulator Jacobian matri.'X, sorne

features of this matrbc, as applied to kinematic dexterity and workspace analysis, are

discussed as weIl. With the aid of illustrative examples, the effects of the numerical

conditioning of a rnatri."{ on the amount of error magnification upon solving an asso­

ciated linear system of equations is discussed. Furthermore, the invariance properties

of dexterity rneasures with respect to the physical units and base-and-end-effeetor

eoordinate frames is also discussed in detail.

1.4.3 Chapter 4: Condition Number as a Measure of Kine­

tostatie Performance

A review of sorne of the theoretical aspects of the theory of condition in general is

included. The condition number of the Jacobian matrix as applied to manipulator

dexterity assessments will then be discussed, where the two related issues of charac­

terizing distance to singularities and sensitivity of linear systems to perturbations are

given due attention. The notion of isotropie transformations and isotropie rnanipu­

lators will aIso be reviewed, followed by a geometric interpretation of isotropy. In the

last three sections of the chapter, the isotropie design of nonredundant rnanipulators

is discussed, and sorne of the contributions of the thesis are introduced.

1 ..4 .. 4 Chapter 5: Isotropie Design of Redundant Manipula-

tors

The kinematic design of redundant manipulators is addressed in this chapter, the

focus being the optimization of the kinematic conditioning of the manipulators of



interest. It is shown in this chapter that isotropie seven-axis manipulators are pos­

sible, and structural considerations pertaining to the design of such manipulators

are then discussed, whiIe providing several illustrative examples. Kinematic isotropy

is then combined \Vith anthropomorphic considerations to serve the overall design

requirements. It will be shown that, in principle, isotropy and anthropomorphism

for seven-axis designs cannot coexist. This becomes apparent as the incorporation

of anthropomorphic criteria leads to architectures whose redundancies are rather

limited in the sense that the overall mobility of the arm is severely impaired if one

of the joints is locked. In this regard the notion of pseudoredundancy is discussed

extensively. A nine-axis isotropie design is then discussed in an attempt to combine

isotropy and anthropomorphism. The isotropie design of hyperredundant planar ma­

nipulators is then discussed, whereby a 3D-axis example of such designs is studied.

Finally, comparative studies between isotropie and nonisotropic manipulators in the

sense of workspace singularity distributions are conducted.

l
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1.4.5 Chapter 6: A Geometrie Analysis of Kinematic Isotropy

The kinematic conditioning and dexterity of general revolute-jointed manipulators

are discussed from a geometric point of view. A novel measure of conditioning for

general matrices is introduced. It is shown that this measure is a linear approxi­

mation to the normalized-Frobenius norm condition number and, for quasiisotropic

matrices, it provides a very close prediction of the condition number. For both rect­

angular and square matrices, upper and lower bounds are obtained for this measure

in terms of the F-norm and the 2-norm condition numbers. Based on this measure

of conditioning, an index of manipulator conditioning is devised that is highly suited

for the intended task of manipulator design. Moreover, this performance index is

substantially less expensive to compute than other measures of kinematic condition­

ing, and is amenable to differentiation. Based on the differentiation of this index

with respect to the normalizing length and the operation point of the end-effector,
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a natural scale factor and characteristic point of the end-effector are obtained. In

this regard~ the notions of manipulator layout, layout conditioning, layout length and

layout centre, for any seriaI-type robotic manipulators, are introduced. Furthermore,

the characteristie layout of manipulators is discussed followed by the definition of

the manipulator characteristic length and characteristic point.

1.4.6 Chapter 7: REDIESTRO 1

An overview of the design and manufacturing of a redundant seven-axis manipulator

with an isotropie architecture for sh:-dimensional Cartesian tasks is presented. This

manipulator, called REDIESTRü 1, was designed, manufactured and commissioned

during the course of this research at the McGill Centre for Intelligent NIachines. Since

its completion in 1994, REDIESTRü 1 has been serving as an experimental device

for several robotics-related projects bath internally in the Department of '\;Iechanical

Engineering of N1cGill University and in collaboration with external research groups.

The base-line kinematic design of REDIESTRü 1 stems from the results discussed in

Chapter 5. The design, methodology, kinematic design and mechanical design of the

manipulator are reviewed and mechanical specifications of the robot are outlined.

1.4.7 Chapter 8: Concluding Remarks

A summary of the thesis is provided here, \vhile highlighting its main contributions.



Chapter 2

Singularity and Workspace

Analyses

2.1 Introduction

\Vhile characterizing the performance of robotic manipulators, workspace boundaries

and singularities are of primary importance. An immense amount of research work

has been reported in the past two decades, giving rise to many different concepts. ap­

proaches and techniques for the analysis of manipulator singularities and workspace.

In this chapter two novei methods for the analysis and characterization of the singu­

Iarities of seriaI manipulators are introduced. In Section 2 we deal with the represen­

tation of the workspace boundaries directly in the Cartesian space by resorting to the

concept of nonminimal realizations of transfer functions of singie-input/singie-output

(5180) linear dynamical systems (Ranjbaran et al., 1992).

In Section 3, the characterization of the manipulator singularities both in the joint

and the Cartesian spaces is discussed with the aim of determining the uniqueness

domain of the forward kinematic maps. Here, by uniqueness domain we mean aIl

subsets of the joint space over which the forward kinematic map is a diffeomorphism,

i.e., where for each end-effector position there is a unique inverse kinematic solution.



We introduce an algebraic expression that defines aIl the separating surfaces of the

joint space for general regional structures. It is believed that this result was presented

for the tirst time in Tsai et al. (1993) and, independently, in Ranj baran and Angeles

1
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(1994).

In Section 4, the kinematic design of regional structures in relation to singular- vs.

nonsingular posture-changing architectures are discussed. A comparison of the two

foregoing types of regional structures in terms of the trajectory-following capabilities

are also discussed.

2.2 Cartesian-Space Singularity Analysis and Trans-

fer Function Realization

The singularities of a manipulator can be characterized both in the joint and in

the Cartesian spaces. While joint-space singularities can be readily obtained by

determining the singularities of the Jacobian matrix, the Cartesian space counterpart

requires analysis of the inverse kinematic functions and the way they map subsets

of the Cartesian space into disjoined regions in the joint space. Tsai et al. (1993)

provide a complete review of the recent developments of the singularity analysis of

general manipulators.

2.2.1 Formulation

Kohli and Spanos (1985a, b) showed that singularity manifolds in the Cartesian space

can be obtained by equating the discriminant of the inverse kinematic polynomial to

zero. lVloreover, Kohli and Hsu (1987) showed that a Jacobian singularity occurs if

and only if at least two solutions of the inverse kinematics are equal. In this section

we propose an alternative method for determining the singularity surfaces in the

Cartesian space of the manipulator, where the inverse kinematic polynomial admits

multiple roots. The proposed technique can be applied to general manipulators; if
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the input-output polynomial of the manipulator is available to illustrate this method~

we will apply it to three-axis positioning manipulators or regional structures.

For a general 3-R manipulator, the closure polynomial is quartic (Takano, 1985).

~1oreover, the coefficients of this polynomial are functions of the Denavit-Hartenberg

(DH) parameters (Denavit and Hartenberg, 1955) and the Cartesian coordinates of

the EE. vVe airn at finding the boundaries of the workspace of 3-R manipulators by

relating the characteristie polynomial P4 (t) (Angeles, 1997) with its derivative with

respect to t == tanfh/2, P~(t), where

(2.1)

The coefficients of P4(t) are aIl functions of the manipulator architecture and the

Cartesian coordinates of the endpoint of its third link, the inverse kinematics solu­

tions {ti}1being found by zeroing the foregoing polynomiaL ~roreover, it can be

shown that, at points where at least two branches of the manipulator meet, both

P4 (t) and P~(t) vanish. Therefore, it is required to obtain a relationship between the

coefficients of P4 (t) that would guarantee that both P4 (t) and Pl (t) have at least one

cornmon root. A well-established method already exists for determining the afore­

rnentioned condition, namely dialytic elimination (Salmon, 1964). An alternative

method is introduced here, that relies on the concepts of controllability and obsen..­

ability in the framework of transfer-function realizations of linear systems (Kailath,

1980).

Let T(s) be the transfer function of a single-input/single-output (Sr50) linear sys-

tem, i.e.,

T( ) = J.V(s)
S D(s)

(2.2)

TL, •

where N(s) and D(s) are polynomials of degrees d and n, respectively, with n < d,

and D(s) monie, i.e., \Vith leading coefficient equal to unity. A realization of T(s) is
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a triad {A, b! c} where A is a d x d matrbc and band c are d-dimensional vectors

such that the linear dynamical system given below has the transfer function T( s):

x=Ax+bu (2.3)

(2.4)

In eqs. (2.3) and (2.4), x is the d-dirnensional vector of state variabIes~ while u and y

are scalars denoting the single input and the single output of the system, respectively.

Nloreover, the transfer function of the above realization is

(2.5)

where 1 is the d x d identity matrix.

Associated with any dynamical system represented through the state-space equa­

tions of the form given above are the two important notions of observability and

controllability. These concepts are extensively discussed in the specialized literature!

e.g., (Kailath, 1980; Chen, 1984). Before recalling the formaI mathematical defini­

tions of the observability and controllability of a dynamical system, a brief physical

interpretation of these concepts is in arder. The evolution of the internaI states of

a dynamical system as a function of the control inputs to the system is governed

by the physical characteristics of the system and our particular realization of its

input/output behaviour. Depending on the inherent features of the realization at

hand, i.e., the operator A and the vector b, one may or may not be able to control

the system in such a way that, in a time interval, the internaI states evolve from

their initial values of X o ta take on the desired value of Xl' As explained in Chen

(1984), raughly speaking, controllability studies the possibility of steering the state X

fram the input u. If we are able to steer the states to a desired point through the

actions of the control inputs, then, our realization of the dynamical system is said

to be controllable; otherwise it is said to be uncontrollable.



Furthermore, based on the inherent properties of the realization of the dynarnicai

system that relate its inputs to the corresponding outputs, we may or may not be

able to determine the internal states of the system based on our knowledge of its

input/output behaviour. An observable realization of a dynamicaI system is one

that allows such an inference. If the estimation of the internaI states from the

1
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input/output properties of the system is not possible~ then the realization is said ta

be unobservable. In other words1 observability studies the possibility of estimating

the states from the output (Chen, 1984).

Next, the formai definitions of the observability and controllability are restated

from Kailath (1980): The realization (2.3) and (2.4) is controllable if its d x d con­

trollability matrix C, defined below, is nonsingular:

c = [b Ab (2.6)

Likewise, the said realization is observable if its d x d observability matrix 0 is

nonsingular, with 0 defined as

0= (2.7)

T.' .

•

Furthermore, the above realization is minimal if it is both controllable and observ­

able. The necessary and sufficient condition for T( s) to be minimal is that D(s)

and N(s) do not contain any cornmon factor. In other words, if we derive a con­

trollable realization for T (s), then it is necessary and sufficient for that realization

to be minimal that its observability matrix be of full rank. Hence, if a controllable

(observable) realization is not observable (controllable), then it is not minimal, and

D(s) and iVeS) share at least one common root. A physical interpretation of the

notion of minimal realization can be thought of as having simultaneous observability

and controllability with the least possible number of sensors expressing the state of

the system and actuators driving it .



The concept of minimal realization that in effect determines whether T( s) is irre­

ducible or reducible is now applied to the closure polynomial and its derivative with

respect to its argument. Hence, if a #- 0, let

l
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_ P4(S) 4 b 3 C 2 d e
D(s) = -- = s + -s + -s + -s +-

a a a a a

and

:'\T( ) _ 1dP4 (s) 3 3b 2 2c d
lv S = - = 4s + -s + -s + -

a ds a a a

Theo, the traosfer function T(s) takes on the form

22

(2.8)

(2.9)

(2.10)T(s) = 4s
3 + (3bs

2 + 2cs + d}/a .
S4 + (bs3 + cs2 + ds + e)/a

A controllable realization for this transfer function cao be obtained as (Kailath, 1980)

0 1 0 0

0 0 1 0
A=

0 0 0 1

-e/a -dia -cfa -b/a

b = [0 0 0 1 JT, C = [dia 2c/a 3b/a -l]T.

(2.11a)

(2.llb)

Thus, for the problern at hand, in arder ta obtain the workspace boundaries, it will

be sufficient to make our controllable realization unobservable. Below we expand the

determinant of the observability matrix 0 of the realization of eq. (2.11):

det(O) =(d2c2b2
- 4ec3b2

- 4d3b3 + 18edcb3 - 27e2b4 - 4d2c3a + 16ec4a +

18d3cba - 80edc2ba - 6ed2 b2a + 144e2cb2a - 27d4a2 +

(2.12)

.r
•

The right-hand side of eq. (2.12) being a polynomial function of the Denavit-Hartenberg

(DH) parameters and of the x, y and z coordinates of the endpoint, when equated
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1 _ 2..i:2 _5'y::3 2tr/3
~

9
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Figure 2.1: DH parameters and skeleton rendering for Example 2.1

ta zero, the equation thus resulting defines the boundaries of the workspace of the

manipulator under study. By utilizing j\-fathematica, it was observed that this poly­

nomial is of a maximum degree in x and y, namely, 32, while it is of 16th degree in

z. However, for given values of x and y, it was observed that z admits no more than

four real values.

Next, we resort to a CAD-based method of constructing the workspace boundaries

that result in three-dimensional renderings of the overall workspace. In doing so, we

will take advantage of the symmetric nature of the workspace boundaries about the

first joint axis. If, in eq. (2.12) expressed in the Cartesian space, the y coordinate

is set equal to zero and the contour of the remaining equation is drawn in the X-Z

plane, we will obtain the intersection of the manipulator workspace with the X-Z

plane. In order ta obtain the overall workspace boundaries, it is then sufficient to

rotate the said intersection about the first axis.

2.2.2 Numerical Examples

For Example 2.1 we ehoose a 3-R manipulator formed \Vith the first three links

of the C-3 arm, an isotropie 4-axis manipulator designed at the wlcGill Centre for

Intelligent Machines (CIwI). The DR parameters and the skeleton rendering for this

manipulator are shown in Fig.2.l.

The overaIl workspace boundaries, for the Examples 2.1 is shown in Fig. 2.3 .
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Link ai bi Qi

1 0.1 0.1 1r/2
2 0.1 0.1 -1r/2
3 0.1 0 1r/2
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Figure 2.2: DH parameters and skeleton rendering for Example 2.2

In Example 2.2, an isotropie (for the definition of isotropie manipulators see (Chap­

ters 3 and 4) 3-axes manipulator whose DR parameters and its skeleton rendering

are shown in Fig. 2.2, is employed.

In Figure 2.4, the overall three-dimensional workspaee boundaries of the isotropie

3-axes manipulator in the Cartesian space is illustrated.

z

x

Figure 2.3: Overall workspace boundary of Example 2.1
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x
c:::".y
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Figure 2.4: Overall workspace boundary of Example 2.2

2.3 Joint Space Singularities

For the first time, Borel and Liégeois (1986), introduced the notion of aspects as

maximal singularity-free regions in the manipulator joint space. They argued that in

each aspect ~ of the manipulator joint space, there is at most one inverse kinematic

solution for a given end-effector pose. Although this is indeed the case for most

industrial manipulators that possess simplifying architectures, it is by no means

valid for general-architecture manipulators. For example, Burdick (1992) introduced

a three-revolute joint manipulator, Example 2.3, whose solution branches could be

connected pairwise in the joint space without crossing any singularity surface. The

architecture of this manipulator is given in Fig. 2.5.

Furthermore, the notion of configuration-space sheets, or c-sheets, identical to that

of Borel and Liégeois', aspects, was proposed by Burdick in the foregoing reference.

Specifically a c-sheet is a maximal singularity-free region of the joint space, the image

of each c-sheet under the forward kinematics being termed a workspace-sheet or a
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Link ai bi a-l
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Figure 2.5: DH parameters and skeleton rendering for Example 2.3 (Burdick, 1992)

w-sheet. Depending on the number of inverse kinematic solutions, the c-sheets map

on top of each other and form the w-sheets of the workspace. Burdick conducted

extensive analyses of the c-sheets and the w-sheets with the aid of tools of differential

topology. He showed that in one c-sheet, there can be more than one inverse solution

for sorne points of the Cartesian space. Figures 2.6 and 2.7 depict the joint-space

and the Cartesian space singularities for the latter exarnple. Shown in Fig. 2.6 are

the four inverse kinematic solutions numbered 1 to 4. These are the corresponding

inverse kinematic solutions to the Cartesian point P illustrated in Fig. 2.7.

At the tirne, the observation that sorne regionaI structures are indeed able to change

solution branch without becoming singular was found rather surprising by many re­

searchers in the field. 'N~enger (1992) proposed the notion of characteristic surfaces

as separating surfaces that divide the joint space into disjoint regions that rnap dif­

feomorphically inta the Cartesian workspace. In (vVenger, 1992) these regions of the

joint space were termed the basic components, and an iterative method was proposed

to determine the characteristic surfaces. Other contributions to this issue followed

through the works of Tsai et al. (1993), and Ranjbaran and Angeles (1994). The last

two papers employed the c10sure equations of the manipu!ators to obtain algebraic

expressions that define the subregions of the joint space that map diffeomorphically

into their Cartesian counterparts. Despite the growing amount of research efforts on
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Figure 2.6: Joint space singularities for Exarnple 2.3

singularity analysis in general~ there has not been a concrete design-oriented char­

acterization of the abilities of manipulators to change solution brapch continuation

with or without passing through singularities. In the following sections we will dis­

cuss this important issue in more detail, but first sorne preliminary definitions and

tools are in order.

It is recalled that the joint space .:r of an n-revolute manipulator can be represented

by an n-torus (Tn), or an n-cube whose sicles are identified. Since the singularities of

a manipulator are independent of the first joint angle 81, we can represent the joint

space of a regional structure (3-revolute manipulator) conveniently by a square whose

sides are identified, while 82 and 83 represent the horizontal and the vertical sides of

the square. Furtherrnore, the Cartesian workspace of a 3-R rnanipulator is in IR 3,

but, due to the symmetric nature of the workspace about the vertical axis, usually

the z axis, for any value of 81, the boundaries of the workspace of the manipulator

in the Cartesian space can also be represented by a square with its sides being either
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Figure 2.7: Cartesian space singularities for Example 2.3

the x and the z a.."Xes, or the y and the z axes. Let f denote the set of joint variables

that make the Jacobian matrix J singular,

f={V8 E:r 1 ~=det(J)=O}

Let, moreover, the forward kinematic map of the manipulator be denoted by the

vector function f,

or,

while noting that /3 is independent of 81 , Hence, the workspace boundaries in the.,.'

/1 (81, fJ2 ,(}3) ~ x

/2(81 , fJ2 , 83 ) ~ Y

/3 ( 82 , ( 3 ) ~ z

(2.13)

(2.14)

(2.15 )



1
Chapter 2. Singularity and Workspace Analyses

Cartesian space, denoted by W, will he

w=f(r)
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For a regional structure an alternative form for the determinant of the Jacobian

matrix J is introduced here that is linear in the harmonie functions of sums and

differences of the joint angles 82 and (J3' If the manipulator is parametrized (Fig.1.5)

using the DH notation, then one can obtain the following relation for the determinant

of the Jacobian matrix that is obviously independent of (JI

~ = ml cos (J2 + m2 cos 83 + m3 cos ((J2 + (J3) + m4 cos(82 - ( 3 ) + ms cos (82 + 2(3 ) +

m6 COS((J2 - 2(3 ) + nI sin 82 + n2 sin 83 + n3 sin (283 ) + n4 sin (82 + (J3) +

(2.16)

r•

where mi and ni are constant coefficients that are functions of the architecture of

the given manipulator (functions of the DH parameters). The simplified expressions

for these coefficients are given in Appendix A. Representing the determinant of the

J acobian matri.x in the foregoing form is more convenient than the usuai expression

containing the trigonometric products. In Fig. 2.8, the set of joint-space singularities

rand its image in the Cartesian space W that comprise the workspace boundaries

are shown for the manipulator introduced by \Venger (1992), and whose architecture

is given in Fig. 2.9.

In Fig. 2.8, the four inverse kinematic solutions in the joint space are shown and

numbered 1-4, while the corresponding Cartesian configuration is denoted by P. It

is apparent that the joint space J is divided into two disjoint regions only, and not

four (since the top and bottom as weIl as the two sides of the square are identified.

This is sometimes called a flat toros). Hence, as can be seen in Fig. 2.8, the two

solutions numbered 1 and 3 faIl in one c-sheet, while solutions 2 and 4 faIl in the

second c-sheet. Hence, this manipulator can indeed change its solution branch from

solution number 1 to solution number 3 without crossing the solid Hnes that represent

the Jacobian singularities r .
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Figure 2.9: DH parameters and skeleton rendering for Example 2.4 ("Venger. 1992)

Next, with the aid of a simple example, we will shed sorne light on the root of

the misconception mentioned before, i.e., why sorne regional structures can change

solution branch without becoming singular. First, sorne fundamental definitions as

weIl as the inverse function theorem are recalled:

• A map 9 is said ta be of class CP (p ~ 1), if aIl its pth-order partial derivatives

exist and are continuous.

• A map 9 is a CP diffeomorphism if 9 is bijective (one-to-ane and onto) and

bath 9 and g-l are of class Cp.

• A map 9 is said to be regular at a point of its domain if the Jacobian matrix

of 9 at that point is of full rank.

• Inverse Function Theorem (Berger and Gostiau.x. 1988): Let U and V be

open subsets of Banach spaces E and F, and 9 be a CP map from U to V. If 9

is regular at a point qo EU, then there exists an open neighbourhood ut C U

of qo such that the restriction of g ta ut is a CP diffeomorphism from ut to

g(U')

A Simple Example

Consider the map f : R * x:IR --+ IR 2, defined by

f(p, 0) = (x, y) = (p cos 0, p sin B)



where,lR * =R- {a}. It is evident that the map fis regular (nansingular) everywhere

in its domain, since det J = p :j: O. But f is not a diffeomorphism on aIl ofR * x IR ~

Le., there are multiple points ofR • x R that are mapped into the same point ofR 2,

which is due to the periodicity of f in O. That is, any two points (p,O) and (p,O+21r)

are mapped inta the same point (p, 0). However, the restriction of f to JR • x la, 21r[

is a diffeomorphism, and thus, an invertible mapping with its inverse gjven by

.-
i
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Extending the foregoing argument for general nonlinear maps is extremely complex.

The first attempt towards answering this question for the manipulator forward kine­

maties is due to Wenger (1992), where an iterative technique is used to trace the

pre-images of the Cartesian space singularities of the forward kinematics. In this

regard the characteristic surfaces Sc of an aspect At with the boundary A, were

defined by Wenger as the set of the pre-image in ~ of Â, i.e.,

(2.17)

;'
"1 ....

NIoreover~ in ("Venger, 1992), disjoint subsets of an aspect ln which the forward

kinematic map is one-to-one and anto is termed the basic components.

:\. brief outline of the technique used by "Venger is explained below:

1. Denote by A the set of aIl points in the joint space where the Jacobian

matrix is singular.

2. Find the image of A in the Cartesian space under the action of the fonvard

kinematic map and denote it by W. This set of points defines aIl of the

workspace boundaries of the manipulator as weIl as internaI separating

surfaces in the Cartesian space.

3. Find the pre-images of the points of W, by solving the inverse kinematic

problem, and obtain four sets of points in the joint space. These sets then

divide the joint space into four disjoint regions.



This method, that requires tracing each singular point of f from the joint space

into the Cartesian space and back into the joint-space, is not amenable to symbolic

manipulations and requires solving the forward and inverse kinematics numerous

times. A contribution of this chapter is an algebraic expression that defines the

internaI separating surfaces explicitly. For 3R manipulators this method was reported

by Ranjbaran and Angeles (1994), while the same technique in a more elaborate

setting for general manipulators was discussed independently by Tsai et al. (1993).

In the latter paper the internaI separating surfaces are called pseudo singularity

manifolds and the basic components are termed joint-space patches.

From eq. (2.17), it is apparent that the collection of the Jacobian singularities f,

the boundaries of the aspects A, and the internaI separating surfaces, pseudo­

singularities, are preimages of the workspace boundaries in the manipulator Carte­

sian space. The internaI separating surfaces as well as the boundaries of the aspects

in the manipulator joint space are the points that render the discriminant of the

manipulator closure equation zero. The quartic characteristic polynomial Pol (t) that

relates the set of DH parameters and the set of Cartesian coordinates of the EE to

one of the joint angles, i.e., t =tan ()3/2 is once again recalled see eq. (2.1):

1
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P4(t) =at4 + bt3 + d 2 + dt + e (2.18)

with

a = 4aîB2 + J.lîD2
- 4aîJ.lîç2 (2.19a)

b = 16aîFB + 4J.lîED (2.19b)

c = BaiBA + 2J.lîDC + 16aîF2 + 4J.lIE2
- BaîJ.lIç2 (2.19c)

d = 16aIFA + 4J.lîEC (2.19d)

e = 4aîA + J.lIC2
- 4aîf..Lîç2, (2.1ge)

where,

:r
ç2 =x2 + y2..
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and

A = b2 + b3À2 + b4 À2À3 - À 1(z - bd - b4 J.L2J.L3

B = b2 + b3À2 + b4À2À3 - À1(z - bd + b4f..l2J.L3

C = a~ + a~ + b~ + b~ + b~ - ai - ç2 - (z - bd 2

+ 2b2 b3À2 + 2b2b4 À2 À3 + 2b3 b4 À3 + 2a2a3 - 2b2b4J.L2f..l3

D = a~ + a~ + b~ + b~ + b~ - aî - ç2 - (z - b1f
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We can now proceed to investigate the singularities of P4 (t), by searching for points

where P4 (t) has repeated roots (its discriminant vanishes). In the previous Section

an expression in terms of the coefficients of the quartic polynomial was obtained by

employing the concepts of nonminimai realizations of transfer functions. Here we use

an alternative expression for these singularities which is more compact. As shawn in

~eumark (1965), the condition for a quartic to have repeated roots is of the following

form,

h(x, y, z) == (2c3 + 27ad2 + 27b2 e - 9bcd - 72ace)2 - 4(c2
- 3bd + 12ae)3

=0 (2.20)

It has ta be mentioned that if the right hand side of the foregoing equation is ex­

panded, the same relation as given by eq. (2.12) will be obtained.

Any point in the Cartesian space of the manipulator that satisfies the foregoing

relation must lie on either the workspace boundaries where two solution branches

meet, or on the internaI separating surfaces that divide the workspace into subregions

with different degrees of accessibility, i.e., subregions with different numbers of inverse

kinematic solutions.

In order ta find the preimage of these surfaces in the joint space, it is noted that the

coefficients a to e given by eqs. (2.19) are independent of the x and y coordinates of



the end-effector~ and are functions of the manipulator parameters as weIl as the z

coordinates of the EE ooly. Also, the z coordinate of the end-effector is determined

by (h and 93 only, as (}l produces a rigid body rotation of the manipulator about the

first axis. It is not difficult to show that ç2 appearing in eq. (2.19) is not affected by

(h either. Hence, aIl the points that satisfy eq. (2.20) can be brought back into the

joint space by simply substituting for ç2 and z in terms of 92 and (}3. If we let

l
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E,2 =f~ «(}2' 03 ) + fi «(}2, (}3)

z =f3«(}2, (}3)
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(2.21)

(2.22)

then, eq. (2.20) can be rewritten as a function of the DH parameters as weIl as of (}2

and (}3, i.e.,

hO«(}2, (}3) =(2c; + 27ao d~ + 27 b~ eo - 9 bo C9 do - 72 ao Co eo)2 ­

4 (c~ - 3 bodo + 12 aOe() )3 = 0 (2.23)

where, ao, bo, Co, do, and eo are aU functions of (}2 and (}3 only. The contours of this

equation can he plotted in the plane of the second and the third joint variables.

It can then he observed that the joint space is divided inta four disjoint regions.

In order to show the applicability of this technique, the numerical examples of the

previous section are reexamined.

The complete joint-space singularities of Example 2.3 are illustrated in Fig.2.10,

where it is observed that the joint space is DOW divided inta four disjoint regions

and each solution branch is contained in one region, or basic componenls, according

to \Venger (1992). For Examples 2.4, similar results are abtained and shown in

Fig.2.1l.

Another interesting example of a 3R manipulator with general geometry is that

given by Example 2.5, with its DH parameters given in Fig. 2.12. This architecture

corresponds to the class of nongeneric manipulators, i.e., those manipulators whose
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Figure 2.10: Uniqueness domains for Example 2.3

singularities in the joint space form smooth manifolds (Pai and Leu~ 1989; 1992).

AIthough most nongeneric manipulators cannot change posture without becoming

singular (Burdick, 1992; 1995), the foregoing example is an exception. It satisfies the

nongenericity condition of 3R manipulators proposed by Pai and Leu (1989; 1992),

while it admits only two c-sheets. Burdick (1992) conjectured the existence of such

regional structures.

The uniqueness domain for the foregoing example is shown in Fig.2.13, where it is

apparent that the two c-sheets contain two inverse kinematic solutions and thus the

manipulator at hand is a nonsingular posture-changing, albeit nongeneric~ manipu­

lator.

Another interesting class is that of special manipulators with simplifying geometries.

For example, consider the regional structure of the Puma 560 manipulator, as given

in Fig. 2.14

It turns out that for this regional structure h(::L,y,z), and thus, h(J(B2 , ( 3 ), as given
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Figure 2.11: Uniqueness domains for Example 2.4

by eq. (2.23), identically vanish, the J acobian singularity surfaces then dividing the

joint space into disjoint uniqueness domains with unique inverse kinematic solutions

in each region (Fig2.15).

In fact, for aU special rnanipulators, eq. (2.20) is identically satisfied, and thus we

have the following proposition:

Proposition 2.1 A regional structure cannot change solution branch without becom­

ing sing'ular iff the associated DH parameters of the manipulator identically satisfy

eq. (2.20) throughout the entire workspace.

Before proving the foregoing proposition three facts are recalled:

Fact 1 Special manipulators are those whose characteristic polynomials reduce to

quadratic polynomials (Tsai et al., 1994)

Fact 2 Each c-sheet of a special manipulator contains one and only one inverse

kinematic solution branch (Tsai et al., 1994).
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Link ai bi Qi

1 0.7576 1.5 70.703°
2 1.636 -0.1498 -33.810°
3 1.123 0.17049 88.386°

----
----.~ .. ..-..~-

-----~.

---:,

Figure 2.12: DH parameters and skeleton rendering for Example 2.5

Fact 3 Identically vanishing of the discriminant of a quartic polynomial P4 (t),

amounts to the existence of two double roots and a factorizing of P4 (t) of

the following form (Neumark, 1965):

2 b d 2P4 (t)=a(t +-t+-)
2a b

(2.24)

-7.
•

Proof:

Necessary: If for a given regional structure, h(x, y, z) and, thus hS(f}2, ( 3 ) as defined

in eq. (2.20) is identically zero, then from Facts 1 and 3 follows that the manipulator

is special. ~Ioreover, from Fact 2 follows that in every c-sheet of the manipulator

there must be only one inverse kinematic solution associated with a given Cartesian

configuration. Hence, the manipulator cannot change posture without crossing the

boundary of a c-sheet i.e., without crossing a singularity surface.

Sufficient: If the manipulator cannat change solution branch without crossing sin­

gularities, then, in each c-sheet there is only one inverse kinematic solution for a

given Cartesian configuration; hence, from Fact 2, the manipulatar has ta be special,

and, from Fact 1, the inverse kinematic solution must reduce ta a quadratic equation.

This, in turn, is equivalent ta the identically vanishing of h(x, y, z), and thus, of the

identically vanishing of hS((}2' ( 3 ).

q.e.d
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Figure 2.13: Uniqueness domains for Example 2.5

The same CAD-based technique as discussed in Section 2.2.2 is used now to obtain

complete 3-dimensional renderings of the Cartesian workspaces for Examples 2.3 to

2.6, as shawn in Figs. 2.16 to 2.19.

2.4 Kinematic Design and Singularity Distribu-

tion

•

Despite the significant amount of work and interest devoted ta the characterization

of the singularity and workspace analysis of regional structures, particularly with the

wave ot the recent attention to those manipulators that can change solution branch

continuation without crossing singularities, there seems to be a fundamental question

remaining unanswered, namely for the kinematic designer, are there any merits in

making the manipulator a nonsingular posture-changing one at the expense of losing

simplifying architectures?
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Link ai bi ai

1 0.0 0.0 -900

2 4.32 1.49 0.00

3 4.32 0.0 -900

-to

Figure 2.14: DH parameters and skeleton rendering for Example 2.6

It is a weIl known fact that the J acobian singularities are undesirable while invert­

ing the kinematics, that is, when controlling the motion of the end-effector at the

Cartesian level while commanding controller actions at the joint-space level. These

singularities, however, do not hinder the direct joint space control of the manipula­

tOT motions. Although a change in the posture from one solution branch to another

can he heneficial in order ta satisfy additional requirements, this posture-change in

general cannat be a part of the Cartesian task that the manipulator is executing.

Should a change of posture become necessary, the segment of the task being per­

formed would have to come ta a stop, the manipulator should then reconfigure itself

to the new branch and then the execution of the next segment of the task would

resume. Therefore, if branch-switching is not ta be considered as an integral part

of the assigned task, the controller can readily perform the change from one posture

to another at the joint-space level, where Jacobian singularities do not prevent the

control.

The foregoing argument suggests that despite the recent research enthusiasms ta­

wards designing nonsingular posture-changing manipulators, not much of an advan­

tage is gained while doing so. On the contrary, as will be shawn presently, these

manipulators can pose kinematic disadvantages over their singular posture-changing

counterparts. For the sake of comparison, let us consider the two regionaI struc­

tures of Examples 2.3 and 2.6 that depict, respectively, a nonsingular- and a singular
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Figure 2.15: Uniqueness domains for Example 2.6

posture-changing manipulator. To make the comparison more precise~ the two ma­

nipulators are normalized with respect to their maximum reach, thus attaining the

same stretch. The Cartesian workspace boundaries and internaI singularities of the

two normalized manipulators in their Cartesian XZ planes are shown in Figs. 2.20

and 2.21, respectively. Identical Cartesian straight-line trajectories are also shown

in both figures connecting points P and Q with position vectors p = [0.3, O.O~ -O.4]T

and q = [0.7,0.0, O.4JT, respectiveIy.

The Hne PQ is then parametrized by a path parameter s such that the points r(s)

along PQ, for s E (O~ 1) are obtained from

r(s)=qs+(l-s)p, sE(O,l)

The inverse kinematics of the two manipulators for the above trajectory are then

solved with the four solution-branch continuations for the second joint variable ()2

of the two manipulators shown in Figs. 2.22 and 2.23, respectively. It can be seen

from Fig. 2.23 that any one of the four solution branches Al to A 4 can be chosen
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Figure 2.16: vVorkspace boundaries for Example 2.3
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y

Figure 2.17: Workspace boundaries for Example 2.4
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Figure 2.18: vVorkspace boundaries for Example 2.5

x y

Figure 2.19: vVorkspace boundaries for Example 2.6
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Figure 2.20: Normalized vVorkspace boundaries in .-'\Z plane for Example 2.3
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Figure 2.21: Normalized Workspace boundaries in X Z plane for Example 2.6
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Non -5ingufar Posture Changing Manipulalor
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Figure 2.22: Inverse kinematics for Example 2.3 (nonsingular posture-changing)
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and continuously followed from P to Q without any interruptions. 0Iow. considering

Fig. 2.22 for the nonsingular posture-changing manipulator~ a much more limited

situation is observed. The PQ interval is divided into three segments~ namely~ P R~

RT and TQ. At the start of the trajectory only two solution branches Al and A 2 are

available with Al ending at T while A 2 can continue to the end of the trajectory at

Q. Solution branches A 3 and At begin from R, where the associated Jacobian matrix

of the manipulator is singular, as these two solution branches meet. Continuation A 3

fails to complete the desired trajectory and ends at T, while At passes through Q.

Hence, for achieving a continuous solution-branch from P to Q the manipulator is left

with only one choice, namely A 2 , a disadvantage that nonsingular posture-changing

nature of the manipulator can circumvent.
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Figure 2.23: Inverse kinematics for Example 2.6 (singular posture-changing)

2.5 Conclusions

In the first part of the Chapter, singularities and workspaces of regional structures

\Vere discussed. A noveI method of determining the Cartesian workspace boundaries

of these structures was introduced. This technique that in effect determines the

resolvent of the characteristic polynomial of the manipulator and its derivative~ is

based on nonminimal realization of transfer functions associated with single-input­

single-output linear dynamical systems. A CAD-based scheme was aIso presented

for three dimensional renderings of the overall Cartesian workspaces.

In the second part of the Chapter, singular and nonsingular posture-changing manip­

ulators were discussed. First, a review of the major contributions on the subject was

given. A method for determining algebraic expressions that divide the joint space

ioto disjoint regions that contain only one inverse kinematic solution for a given

Cartesian pose were provided. Finally, a criticaI discussion on the issue of singular­

versus nonsingular posture-changing manipulators was provided that should be of



interest to the kinematic designer. It was shown that designing a maniplliator in

such a way that it can change sollltion-branch without crossing any singularity does

not necessarily lead to a better manipulator. Unless the designer is able to push

the internaI separating surfaces of the workspace outward close to the workspace

boundaries, chances are that the manipuIator will be in a much worse situation as

compared to its singular posture-changing counterpart with a comparable workspace

volume.

l
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Chapter 3

Measuring Manipulator Dexterity

3.1 Introduction

In this chapter kinematic dexterity of robotic manipulators is discussed and compar­

isons are made between the different measures proposed so far. Since the centrepiece

of almost aIl performance rneasures is the rnaniplilator Jacobian matri.x, sorne fea­

tures of this matrix as applied to kinematic dexterity and workspace analysis are

discussed as weIl. "Vith regard to the kinetostatic performance of robotic manip­

lliators, extensive research work has been published in the past two decades. A

summary of these works is provided in Chapter l, and a more elaborate discussion

of sorne of these works that are relevant to this thesis will follow.

Dexterity or gracefulness of a mechanical hand is mainly attributed to its abilities

to position and orient its end-effector comfortably in different directions (kinematic

dexterity) while being able to apply forces and moments on the environment through

its end-effector equally weIl in aIl directions (static dexterity). Kinematic and statics

being dual to each other, most often the notion of kinetostatics (IFToNI;\;I, 1990) is

llsed to quantify both kinematic and static performances.

The basis of the definition of kinetostatic dexterity in this thesis is on the following

statement: A manipulator loses kinetostatic dexterity as the contribution of the
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motion and forces produced by one or more kinematic pair ta the end-effector motion

and forces is impaired due to the relative spatial placement of the joint a..'Ces. Hence,

measuring dexterity amounts ta assessing how comforiablyand how accurately the

end-effector motions and the contact forces at the Cartesian space of the manipulator

can he achieved by commanding joint space motions/forces. This, in turn, boils

down to the accuracy and robustness with which the relations between joint and

Cartesian variables of the manipulator can be inverted. Local Cartesian- and joint­

space motions and forces of the manipulator are related through the linear mapping

produced by the Jacobian matrix associated with the manipulator, as reviewed below.

3.1.1 Variable Transformations in Kinematics

When dealing with motion transmission capabilities, the local behaviour of the ma­

nipulator is determined through the following linear transformation:

Jq =t (3.1 )

1

For an n-a.xis manipulator working in an m-dimensional task space, J is the m x n

Jacobian matrix, mapping the n-dimensional vector of joint velocities q into the m­

dimensionaI vector of Cartesian velocities t. \Vhen the manipulator is used for both

positioning and orienting tasks in the three dimensional Cartesian space, t is the

twist vector of the operation point of the end-effector (EE) which is defined as:

t = [:]

with v being the linear velocity vector of the operation point of the end-effector and

w the angular velocity vector of the EE.

In order ta command a desired twist to the manipulator, it is required that vector q

of eq. (3.1) be determined. For nonredundant manipulators, the foregoing system of

equations can be inverted if J is non-singular, thus obtaining

(3.2)
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For redundant manipulators where, the linear system of eq. (3.1) is underdeterrnined,

the general solution to the inverse problem is given by

(3.3)

li'
•

where Jt represents the generalized inverse of the J acobian matri.x J defined by

and C is an arbitrary vector in lR n that defines a secondary task to he satisfied in

addition to the primary task of achieving the desired twist t. The first term of

eq. (3.3) represents the minimum norm solution of the underdetermined linear sys­

tem given by eq. (3.1), while the second term represents the homogeneous solution ta

eq. (3.1). This term, (1- Jt J) C, corresponds to the internaI motion, or self-motion,

of the manipulator, that gives rise to no end-effector motion. From eqs. (3.2) and

(3.3), it is apparent that solving the instantaneous kinematics of the manipulator

amounts to inverting either J or the matrix product (J JT). In doing so, the nu­

merical conditioning of the Jacobian matrix becomes important. Furthermore, it

is the numerical conditioning of a linear transformation that determines how much

magnification (distortion) will result when the vectors from the domain of the trans­

formation are mapped into its range. In the sense of a manipulator being able to

move its end-effector equally weIl in aH directions, the characterization of the amount

of distortion (maximum and minimum magnifications) that Jf produces on the space

of twists of the end-effector while mapping it into the space of the joint rates becomes

important.

3.1.2 Variable Transformations in Statics

When dealing \Vith static force transmission capabilities of the manipulator the sit­

uation is the converse of the kinematic motion transmission capabilities mentioned

above, i.e.,

(3.4)
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where the transpose of the J acobian matrix maps the wrench w applied at the

end-effector onto the vector of joint torques T. Here, the sLx-dimensionai wrench

w represented in axis coordinates, l is defined as

where f is the resultant externai force acting at the operation point of the end-effector

and n is the resultant externai moment sustained by the EE, while T is the vector

of joint torques. In this situation, given any desired wrench ta be balanced by the

manipulator, the resuiting joint torque vector T is readily determined and no matrix

inversion is needed. However, if it is required to determine the wrench acting on the

end-effector from joint-torque information provided by torque sensors at the joints,

that is stored in the vector T, then, for nonredundant manipulators we have

(3.5)

whiIe, for redundant manipulators, the foregoing equation takes on the form

(3.6)

In the sense of the ability to determine the wrench applied at the end-effector by

the environment in different directions, the concern is the distortion (maximum and

minimum magnification) that JT produces as it maps the space of wrenches ta that

of joint torques.

3.2 Jacobian Matrix

From the foregoing sections it is apparent that the Jacobian matrix of seriaI-type ma­

nipulators plays an important role in quantifying kinematic and static performances.

Hence, a short account of the Jacobian matrix is given next.

1in an alternative ray-coordinates representation of the twist the locations of forces and moments
are interchanged
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3.2.1 Jacobian Formulation
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The Jacobian matri.x of a general n-revolute manipulator takes on the form (\Vhitney,

1972)

(3.7)

where ei is the unit vector parallel to the axis of the ith revolute joint and ri is

the vector directed from any point on the same axis to the operation point P of the

end-effector, as shown in Fig. 3.1. Furthermore, the ith column of J comprises the

normalized Plücker coordinates of the ith axis of the manipulator (Hunt, 1978). It

is worth mentioning that the entries of the Jacobian matrix are not dimensionally

homogeneous. This is apparent as the associated Jacobian J maps the vector of joint

rates with homogeneous units of frequency ta the vector of Cartesian velocities with

mixed units of frequency and velocity. This feature will be discussed further in the

forthcoming sections.

3.2.2 Jacobian Evaluation

A compact method of evaluating vectors ei and ri comprising the entries of the

Jacobian matrix is given next (Angeles, 1997). According to the DH notation, the

position and orientation of the (i + 1)st coardinate frame attached ta the ith link

with respect to the ith coordinate frame attached ta the (i - l)st link is given by Qi

and ~ respectively. Expressed in the ith coordinate frame, these items take on the

forms

[COS Bi - sin (Ji cos Q'i sin Bi sin ai ] [ai cos Bi]
Qi = Si~Bi cos Bi cos Qi - cos (Ji sin Qi a; = ai ~inBi (3.8)

r sin Qi cos Qi

."
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Figure 3.1: The basic notations for the Jacobian matrix
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If the first joint axis of the manipulator is placed along the positive Z axis of the

base frame of reference~ then it can be shown that~

el = [0 0 l]T = ZT

e2 = QI Z

e3 = Qi Q2 Z

the foregoing unit vectors thus being expressed in the base coordinate frame. If

the frame of reference is taken as the first coordinate frame attached to the base of

the robot, then the position vectors ri, with i = 1,···, n are determined from the

following relations:
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r2 = Pl a2 + Q2 r3

rI = Po al + QI r2

where,

Pi =QI Q2 Q3 ... Qi i = l~ 2, ... n

Po =1(3x3)
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vVhen dealing with the Jacobian matrix, the partial derivatives of the entries of

this matrix with respect to the entries of the vector of joint variables 9 are often

needed. One example of this situation is when resolving the inverse kinematics at

the acceleration level, where j is needed. We can write

. n aJ .
J = L -Oi

i=l aOi

Hence, the partial derivatives of the entries of J with respect to 9 are needed to

determine j. A similar situation arises when formulating an optimization problem

whereby a Jacobian based performance measure is minimized, and thus, the partial

derivatives of the entries of J \Vith respect to the joint variables are needed.

Two very useful relations needed for determining these derivatives are given below:

aej = { ei x ej if i < j

aOi 0 otherwise

and

ar j = { ei x r j if i ::; j

aOi ei x ri otherwise

3.3 Dexterity Measures

In this section, sorne of the main measures of conditioning and dexterity of robotic

manipulators are reviewed, and comparisons between these measures are made.
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Salisbury and Craig (1982) introduced the 2-norm condition number of the Jacobian

matrix as a measure of the kinetostatic performance of manipulators~ i.e.~

K(J) = rJ
max

rJmin
(3.9)

where, rJmax and amin are the maximum and the minimum singular values of J ~

respectively. This measure was employed for an optimum design of planar positioning

manipulators used for multi-fingered hands. As mentioned in Section (3.2.1), the

Jacobian matrix is dimensionally inhomogeneous, and thus its singular values are

also of mixed units. This makes the comparison of these numbers meaningless; in

turn, this makes the condition number of the Jacobian matrix depel1dent on the

units being used. In the following sections this feature of the condition number will

be discussed in more detail; however, in a general sense~ condition number quantifies

the sensitivity of the Jacobian transformation with respect to directions. A detailed

treatment of the condition number as applied to rnanipulator dexterity \vill also be

discussed in the next chapter. Furthermore, the condition number of the Jacobian

matrix depends on the location of the operation point of the end-effector whose

motion is of interest. This is in contrast \Vith sorne other measures to be discussed

presently.

3.3.2 Manipulability

Manipulability j.l(J) was defined as a measure of the kinetostatic performance by

Yoshikawa (1985) as the square root of the determinant of the product of the Jacobian

by its transpose, Le.,

(3.10)



It cao be shown that Il is in fact the product of the m singular values of them x n

Jacobian matrix for an n-axis manipulator, i.e,

1
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As shown in Angeles et al. (1992), Il as defined above is independent of the location

of the operation point. Although there seems to be sorne disagreements among

researchers on this feature as an advantage or a disadvantage, in this thesis, the

aforementioned insensitivity of performance rneasure with respect to the location

of the end-effector is considered as a disadvantage. In the fol1owing chapters a

detailed discussion of the invariance features of the measure of dexterity is provided.

Furthermore, it is a wel1-known fact that the determinant of a matrix can only

be used to identify a singular matrLx, and near-singularity and ill-conditioning of

a matrix cannot necessarily be captured by the determinant. These facts are best

illustrated with the aid of the fol1owing examples:

• for a square (m x m) matrLx A, and a scalar s. we have

det (s A) = sm det A

it is obvious that for the same matrix A, the determinant can arbitrarily be­

come large or smal1 through scaling of the matrix by s .

• In the sense of kinematic inversion, and the accuracy and robustness \Vith

respect to errors, the fol1owing interesting example is provided (Tarantola,

1987). The solution of the fol1owing linear system

10 7 8 7 Xl 32.0

7 5 6 5 X2 23.0
-

8 6 10 9 X3 33.0

7 5 9 10 X4 31.0

:r."
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Xl 1.0

X2 1.0
-

x3 1.0

X4 1.0

X3 33.1

X4 30.9

4.5

-1.1

9.2

-12.6

while~ with slightly perturbed data, namely,

Xl 32.1

X2 22.9

10 7 8 7

7 5 6 5

8 6 10 9

7 5 9 10

the solution of the same system is

Xl

X2
-

X3

X4

If the determinant were used to monitor the conditioning of the matrix above.

this result would have seemed quite surprising since the determinant of this

matrix is not too smalt; it is in fact equal to unity.

3.3.3 Minimum Singular Value

By comparing the condition number and the manipulability index~ Klein and Blaho

(1987) argued that the minimum singular value of J that appears in both of the

aforementioned measures can be regarded as a faithful measure of accuracy and

dexterity by its own right. 1t was argued that since the minimum singular value

amin is more dominant near the singularities, it plays a more critical role when

quantifying manipulator performance. It was further argued that amin forms the

2-norm of the pseudo-inverse part of eq. (3.3) and can be used as an upper bound on

required joint velocities, i.e.,



It can be shown that G'min is the minimum magnification that J can produce while

mapping q to the twist of the end-effector. The minimum singular value is also

dependent on the location of the operation point of the end-effector. Although G'min

can he regarded as an important performance measure for monitoring the behaviour

of the redundancy resolution schemes and rate controls~ it will not be as applicable

to the optimum kinematic design and global performance quantifications, since by

itself G'min(= IIJ-III) does not quantify distance to singularity; neither does it carry

information about the maximum magnification that J can produce.
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3.3.4 The Kinematic Conditioning Index

Based on the condition number of the manipulator Jacobian matrix, a global mea­

sure of dexterity called the kinematic conditioning index, or KeI, was introduced by

Angeles and Lapez-Cajun (1988, 1993). They argue that a conditioning measure

should be unique and configuration independent; therefore, they proposed to find

the minimum over aH manipulator configurations of the condition number, Le..

Km = min K(J)
(J

where (J represents the set of joint variables that affect K. The kinematic conditioning

index KCI is thus defined as,

KCI= 100%
Km

the KCI ranging between 0% and 100%, as the condition number ranges from in­

finity (singularities of the Jacobian) to its minimum value of unity (isotropy of the

Jacobian). As shown in the following sections, since the reciprocal of the (p-norm)

condition number of a matrix measures the p-norm distance of the matrix from the

closest set of singular matrices, KCI, is in fact, a percentage of such a distance.
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3.3.5 The Global Conditioning Index
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A global performance index for optimization of manipulator architectures was pro­

posed in Gosselin and Angeles (1991). This measure, called the Global Conditioning

Index (Gel) is defined as the mean value of the variations of the reciprocal of the

condition number throughout the workspace, Le.,

where /fi, is the condition number, W the manipulator workspace, and dW the volume

element on W. In the aforementioned reference, the GCI was used for the globally

optimum design of a two-axis planar manipulator. It is quite interesting to note

that the optimal solution for global conditioning turned out to be the one found

by Salisbury and Craig (1982) while locally optimizing the condition number. The

equivalence of the local and global conditioning for the planar two-axis ffiê.nipulator

was shown in Gosselin and Angeles by directly carrying out the double integration

in the joint space of the robot. Extending this technique to the spatial case is a

formidable task, but it should be used to investigate whether this appealing feature

extends to spatial manipulators as weIl or not.

3.3.6 Physical Workspace

Motion capabilities of rigid bodies attached ta the end-effector of seriaI manipula­

tors were quantified using the Euclidean group of rigid-body motions and its semi­

Riemannian structures by Basavaraj and Duffy (1993). In this reference, the measure

derived is called the physical workspace of the manipulator, while emphasis has been

placed on the invariance of this measure with respect to the location of the fixed

and moving frames, type and number of joints, and the scaling of the rnanipulator.

It can be shown that this volume form is the square root of the determinant of the

product J JT, where, J is the Jacobian matrix of the manipulator with its last link

excluded.
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Park and Brockett (1994) made use of the left-invariant metric of SE(3) ta quantify

the amount of distortion that the forward kinematic map

f:N--,.W

produces while mapping the joint space N into the manipulator workspace W. Using

the left-invariance nature of that metric, this dexterity measure is invariant with

respect to base-coordinate changes, but it does depend on the end-effector coordinate

changes. The integral of the distortion measure over the entire workspace produces

an indication of how distorted or "non-fiat", the workspace of the robot is, but it

does not quantify local dexterity. The distortion density is defined as

while the global kinematic distortion is defined as

D(f) = [ d(f) ilN

(3.11)

with H and G defined as the Riemannian metrics on N and W. respectively. ~Iore­

over, flN is the volume element in N induced from its metrie H. Clearly, d(f) being

a function of J only, and not of J- 1
, it does not quantif:y the local invertibility of J,

and thus, neither does d(f) quantify the local dexterity of the manipulator at hand.

3.4 Invariance Properties of Dexterity Measures

The issue of the invariance properties of the dexterity measures has been the subject

of numerous research papers, e.g., Paden and Sastry (1988), Li (1990), Dotty et al.

(1992), Basavaraj and Duffy (1993), and Park and Brockett (1994).

These research works are mainly concerned with invariance of dexterity measures

with respect to units, the base and the moving coordinate frames.
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It is usually required that a performance measure that is used for comparison of

different systems be independent of the physical units used. For example, the per­

formance of a robot should not change if one switches from the SI to the Imperial

System of units. The entries of the Jacobian matrix having mixed dimensions~ the set

of singular values of J are also of mL"Xed units. In order to overcome this inhomogene­

ity, normalizing lengths have been introduced to make the .Jacobian dimensionally

homogeneous, e.g., (Angeles and Lapez-Cajun 1988; 1993). This is achieved by di­

viding the last three rows of the matrix by a characteristic length associated \Vith

the manipulator. If we denote this normalizing length by L then the normalized

Jacobian matrix-hereafter denoted by J-takes on the form,

(3.12)

·1

There has been sorne discussion and criticism on the choice of this characteristic

length. its physical interpretations and its invariance with respect to coordinate

frames in the literature, e.g. (Dotty et aL, 1992). In the following chapters we

will provide a normalizing length that has a geometrical interpretation. and that is

unique for a given manipulator and independent of the choice of coordinate frame.

3.4.2 Invariance with Respect to the Base and Moving Co­

ordinate Frames

The invariance of a physically meaningful performance measure on the choice of the

base coordinate frame is imperative and aIl of the proposed measures conform with

this requirement. What is not immediate is the dependence of a dexterity measure on

the choice of the moving coordinate frame attached to the end-effector. As discussed

by Park and Brockett (1994), the underlying cornmon ground for invariance features

of dexterity measures lies in that the group of rigid-body motions, SE(3), does not



possess a bi-invariant (or translation-invariant) induced Riemannian metric, while it

does admit a left translation-invariant Riemannian metric as weIl as a bi-invariant

volume form.
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Paden and Sastry (1988) argue that a measure of work-volume that is based on the bi­

invariant volume form of SE(3) should be considered to quantify the performance of

manipulators~since such a measure does not depend on the size of the hand attached

to the robot. They argued that such a measure will be useful in designing general­

purpose manipulators, disregarding the size or shape of the end-effector needed for

specifie tasks. The same volume form is used for introducing the physical workspace

by Basavaraj and Duffy (1993)2.

In comparing condition number, the manipulability, and the minimum singular value,

Li (1990) argued that the condition number and the minimum singular value of

the Jacobian matrix depend on the size of the hand, Le., the location of the op­

eration point P, of the end-effector. By operation point it is meant a point of the

end-effector on which the Jacobian definition is based3 . Furthermore, as a proponent

of translation-invariant dexterity measures, Li argues that, if the dexterity measure

used is not translation-invariant, then there will exist preferred robot postures by

this measure, for different end-effector points; this, he maintains, is inconsistent and

undesirable. It is then concluded that, since the Jacobian determinant is indepen­

dent of the location of the operation point, the determinant-based manipulability

index J.l is preferred over the condition number, while measuring the performance of

a robotic arm.

The kinematic distortion introduced by Park and Brockett (1994) is also based on the

left-invariant metric, and thus, is invariant with respect to base-coordinate changes,

but it does depend on end-effector coordinate changes.

Based on these views, it seems that there is a subtle but fundamental disagreement

2The authors were apparently not aware of the extensive work of Paden and Sastry in 1988, in
using the volume form of SE(3).

3The operation point P defined here is not to be confused with the operating point th::tt was
used in Li (1990) ta denote the posture of the robot specified by its set of joint variables .
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among researchers in defining manipulator dexterity. On the one hand, for exam­

pIe, Paden and Sastry (1988), Basavaraj and Duffy (1993), and Li (1990) believe

that the end-effector of a robot should be excluded while analyzing the kinetostatic

performance of the manipulator. Nlore specifical1y, they argue that a faithful per­

formance measure for the rnanipulator should be insensitive to the location of any

operation point of the end-effector. On the other hand, approaches such as those of

Park and Brockett (1994), Singh and Rastegar (1995), Tandirci et al. (1992) ~ regard

the end-effector as an integral element of the manipulator, because it is \Vith the use

of this device that any rnanipulator task is performed. In other words, if the size of

the end-effector can affect the dexterity, why exclude its effects in the analysis and

design?

In summary, there currently exist two views on how manipulator dexterity should

be defined, namely,

(a) J\tlanipulator performance should be quantified without considering either the

end-effector or any of its points.

(h) The operation point, or a preferred point of the end-effector whose motion is

of interest, should be regarded as an intrinsic element of the manipulator, and

thus, its effects on dexterity of the arm should be considered.

:\.S a means of cornbining these two approaches, one can ask the questions below:

• Is there a preferred point of the end-effector, in measuring manipulator dexter­

ity and accuracy, that could be used to relate joint rates with the end-effector

twist?

In this thesis, both (h) and the above question are addressed by introducing a rnethod

of determining a preferred point of the end-effector with respect ta which the Jaco­

bian matrix is optimally conditioned. Aiso introduced in this thesis is a method for

determining a preferred posture of the manipulator that is useful for task-placement

or manipulator-placement (Chapter 6) .
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Figure 3.2: Planar 3R manipulator for positioning-and-orienting tasks

3.4.3 Illustrative Examples
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The effects of the location of the operation point on the dexterity and reachability

of robotic manipulators are further examined through three simple examples: First,

let us consider planar rnanipulators far positioning-and-orienting tasks, Fig. 3.2. In

Fig. 3.3, two manipulators are shown, together with their corresponding reachable,

dextrous, and physical workspaces. Precise definitions of reachable and dextrous

workspaces are available in Paden and Sastry (1988), while the physical workspace is

discussed in Basavaraj and Duffy (1993). If the end-effector is not considered as an

intrinsic element of the manipulator, then the two manipulators shown in Figs. 3.3a

and 3.3b are to be considered identical. That is, in the sense of the operation-point­

invariant workspace measure such as the physical workspace, denoted by W p , the

two manipulators are one and the same. However, in the sense of reachable and

dextrous workspaces, denoted by W D and W R , they are quite different. Although

the invariance of W p in the group of planar motions is a theoretically attractive

feature, for any practicaI application of the two robots shown in Figs. 3.2, changing

the end-effector size has a direct effect on both the dexterity and the reachability of

the manipulator. If this effect is not considered at the design stage, it will have to be

taken into account when a task is planned, or when an end-effector is to be designed

for the task.
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Figure 3.3: Reachable, dextrous and physical workspaces of a manipulator with two
different end-effectors

Figure 3.4: Comparison of identical manipulators in the sense of invariant volume
measures

As a second example, let us compare the two manipulators A and B shown in Fig. 3.4.

Once again, these manipulators are equivalent in the sense of invariant volume mea­

sures. However, if the anchor point 0 of the robot as weIl as point P, at which the

robot is to perform a positioning and orienting task, are given by the task, then it is

apparent that the two robots A and B behave very differently for this application.

Indeed, manipulator A is at a relatively dextrous posture, while manipulator B is at

its clumsiest configuration possible, where neither accuracy nor dexterity is within

reach.

As a third example, consider the natural motor activities of human beings. From

every day experience we can appreciate that, as we interact with our environment



by means of tools of different sizes and shapes, we learn how to manipulate each of

these objects in a rather com/oTtable (preferred) posture. vVe know how to adjust our

postures if we are forced to play ping-pong with a racket whose handle is unusually

long, or, if we are to draw or write with a long pendI, holding it from the far end.

Despite the ability of making the foregoing adjustments, one will play a very different

ping-pong game with the long racket, from one with a normai-size racket. Likewise,

the quality of the hand-writing achieved with a long pencii will be significantly

influenced by the location at which we hold the pencH.

As will be shown in Chapter 6, a manipulator has a uniquely defined preferred

point of operation at which it achieves maximum dexterity. By characterizing robot

performance as its dexterity with respect to this preferred point, one obtains an

intrinsic measure of manipulator performance that is independent of the actual hand

geometry. In contrast to translation-invariant measures, this intrinsic performance

measure also quantifies the "distance" of a robot from critical points, and tells the

designer where to place the tool in order to attain an optimum performance. Thus,

it is believed that this kind of performance measure is more practical for robot work­

cell design than those measures in which the aforementioned influences are filtered

out.
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3.5 Conclusions

In this chapter, a detailed review of the proposed dexterity measures for robot manip­

ulators was provided. Basic properties of sorne of these measures were discussed, and

comparisons were made. Particular attention was given to the invariance properties

of these measures with respect to physical units and with respect to the base and

moving coordinates frames of the manipulator. Although invariance with respect to

physical units, and base-coordinate frames are weIl agreed upon by aIl contributors

to the subject, there seems to be two opposing views on the requirement of the in­

variance of the dexterity measures with respect to the reference point (the operation



point) of the end-effector. With the aid of several examples it was proposed that a

faithful measure of kinetostatic dexterity should take advantage of the effects of the

operation point.

1
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Chapter 4

Condition N umber as a Measure

of Kinetostatic Performance

4.1 Introduction

Having established the main features of different dexterity rneasures in the previous

ChapterT the attention of the thesis will be focused on the condition number of

the rnanipulator Jacobian matrix in this chapter. The condition number of the

Jacobian matrb:, as applied to manipulator dexterity assessments~ is discussed in

detail. The notion of isotropie transformations and isotropie rnanipulators will aIso

be reviewed. Geometrie interpretations of isotropy of linear transformations will

then be provided. In the last three sections of the Chapter T the isotropie design

of nonredundant manipulators is discussed, where sorne of the contributions of the

thesis are discussed, namely a geometric interpretation of the isotropy of 2-R planar

manipulators. It will aIso be shown that although the Frobenius-norm condition

number is a smooth function of the joint variables, the two-norm condition number

is not smooth at the isotropie point.
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:\lmost aIl of the measures of dexterity share the same common ground: losing

dexterity and approaching a singularity (of the Jacobian matrLx) are closely related

phenomena. To quantify the dexterity in this context-recalling that the Jacobian

matrLx associated with the manipulator is the linear transformation mapping the

vector of joint rates into the twist of the end-effector-we primarily have to monitor

how far the Jacobian matrix is from a singularity.

4.2.1 Condition Number and Distance to Singularity

One of the most important features of the condition number of linear transformations

is that it quantifies distance to the closest singularities. Strictly speaking, the p-norm

condition number of an n x n matrix A, or, l'i-p (A), measures the relative p-norm

distance from A to the set of singular matrices (Golub and Van Loan, 1989), i.e,

1 . IIEllp
l'i-p(A) == min IIAllp

subject to: det (A + E) = 0

Once again, the distance from a matrix ta the set of singularities cannot be captured

by its determinant. as shown by the following two examples taken from (Golub and

Van Loan, 1989): The matrix B n defined by

1 -1 -1

o 1 -1

o 1 -1

E lR nxn (4.1)

belongs to the unimodular groups, Le., its determinant is identity , whereas l'i-oo(Bn) ==

n 2n - J • AIso, for

D n == diag(10- 1, ••• , 10-1) ER nxn (4.2)



we have, Kp(Dn ) = 1~ although det(Dn ) = 10-n . Hence, it is concluded that the

condition number of the Jacobian matrix is the best suited tool for measuring the

distance of the manipulator configuration (locally represented by its Jacobian matri.x)

to the closest singular configuration.
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4.2.2 Condition Number and Sensitivity of Linear Systems

to Perturbations

Besides characterizing distance to singularities, the condition number of a matrix

defines bounds on the error magnifications while solving linear systems of equations.

In fact, the basic definition of the condition number has naturally evolved while

analyzing the sensitivity of linear systems (Golub and Van Loan~ 1989; \Vatkins~

1991) .

• Square Nlatrices: (nonredundant manipulators)

For nonredundant manipulators~ if cl is the exact solution of the non-singular instan­

taneous kinematics equation

J4 = t

then~ for a perturbed system,

(J + 6J) (q + cSq) = (t + 6t), (4.3)

1t can be shown that the relative error in the solution, 116411/11411, due to relative

errors IIc5J/I/IIJII and lIc5t/l/lltll in the data, is bounded by the following inequality

1I c5411 < K(J) (II c5J II + II cSt /l) + O(€2)
11411 - /lJ/I IIt/l

with O(€2) denoting higher order error terms.

(4.4)

• Underdetermined Systems: (instantaneous kinematics of redundant manipula­

tors)
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In this case, we have J ER mxn with m ~ n. Assuming that J is of full rank, and tSJ

is the perturbation of J, with 6t being the perturbation of t~ then the relative errors

in J and t are denoted by,

respectively. ~ow, if

_ 118JII
EJ=T

II&tll
Et = --,

t
(4.5)

Theo,

(4.6)

• Overdetermined Systems: (statics of redundant manipulators)

The static variable transformation for redundant manipulators that leads to an over­

determined system of equations is first recalled:

In this situation, JT E R nxm, TER n, and w E IR m. In generaL the foregoing

equation does not have any exact solution, however, there is always one approximate

solution in the least squares sense. It has been shown (Golub and Van Loan, 1989)

that if the data are perturbed such that

then the perturbed least-square solution to the foregoing equation verifies the fol­

lowing inequality

116wll ~ E{ 2K2(J) + tan(O) x;2(J)} + O(E2 ) (4.7)
w cos(O) 2

where 0, (with 0 ~ () $ 1r/2), is the angle made between the vector of data T and

the range of JT. Furthermore, we have
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and

. (B) = IIJT
Wo - r/l2 -J. 1

SIn IITII
2

-r-

with Wo, the least-square solution being defined as,

;3

I

A.n interesting observation on the foregoing characterization of the sensitivity of

the detemined, underdetermined and overdetermined systems of linear equations is

the fact that, for zero-residual cases, i.e., the determined and the underdetermined

systems, the sensitivity is linear in "'2 (J), whereas for the nonzero-residual problems

such as the overdetermined system, the sensitiviety is a function of the square of the

condition number.

In the context of manipulator kinetostatic, the foregoing sensitivity analysis is re­

flected through the sensitivity and robustness \Vith respect to which the the kinematic

and static relations are resolved. Numerical examples that underline the aforemen­

tioned sensitivity and robustness while resolving the redundancy of positioning ma­

nipulators are examined in Arenson (1997). Furthermore, a theoretical investigation

of the sensitivity of redundant manipulators postures with respect to changes in the

Cartesian trajectories is discussed in Angeles et al. (1996), \Vhere the overall sensi­

tivity is shown to he independent of the particular secondary tasks that are usually

augmented to the main desired task and is only a function of the condition number

of the associated Jacobian matrix devided by the norm of this matrix.

Having identified manipulator dexterity and accuracy with the condition number of

J, we have, on the one hand, ill-conditioning and singularities of J and, on the other

hand, well-conditioning and isotropy of J. It is recalled that isotropie matrices are

those whose condition numbers attain the minimum value of unity.

A. discussion of the theory of condition associated with general transformations is

given by Rice (1966), while the condition number of matrices is discussed in detail in

the specialised literature, e.g., in Golub and Van Loan (1989). For square matrices

A E Il mxm, we have:
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(4.8)

Clearly, l'i. is norm-dependent, but, any two condition numbers l'i.Q (.) and Ka(') on

R mxm, are equivalent in that constants Cl and C2 can he found for which

4.3 Matrix Norms

In this section sorne of the basic definitions and properties of matri.x norms are

reviewed (Golub and Van Loan, 1989; Watkins, 1991; Householder, 1964). A matrix

norm /1·11 is a function that assigns to each of its matrix argument (.) a real nurnber

called the norm of the matrix, with the following three properties: For aIl A, B E

IR mxn, and Q ER,

(i) IIAII > 0, ifA =1= 0

(ii) lia Ali =1 Q: 1IIAII

(iii) liA + BII ~ IIAII + IIBII

(4.9a)

(4.9b)

(4.9c)

Any real-valued matrix function satisfying the foregoing three properties is consid­

ered a matrix norm. A fourth property, called the consistency property, \vhich is a

generalization of the Cauchy-Schwartz inequality for matrices (Householder, 1964),

is also defined, i.e.,

IIABII ~ IIAIIIIBII (4.10)

Not aIl matri.x norms are consistent; however, the F-norm (the matrix Euclidean

norm) is a consistent norm. As explained in Householder (1964), the notion of

consistency stems from the relations between the matrix norms and vector norms.

That is, if any matrix norm IlAli and any vector norm IIxll satisfy the following

inequality

liA xII ~ /IAllllxll
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then the two norms are said to be consistent. For example, the vector Euclidean norm

and the matrix Euclidean norm (also called the Frobenius norm) are consistent.

• The Frobenius norm " . IIF is defined by:

m n

2: La~j
i=1 j=1

(4.11)

where tr(·) is the trace of its matrLx argument. :\tIoreover, in generaL not any matrix

norm qualifies as an upper bound for the matrix when regarded as a linear trans­

formation (Householder, 1964). The Frobenius norm of a matrix, as defined above,

is one such example. Although the least upper bound of the m x m identity trans­

formation is equal to one, i.e., lub(Imxm ) = 1, from the foregoing definition of the

Frobenius norm follows that IIImxmll F = mt. In this thesis a normalized form of the

Frobenius norm will be used 50 that the norm of the identity matrices will be the

identity, regardless of their dimensions. This is achieved at the expense of violating

the consistency property of the Frobenius-norm.

• The normalized-Frobenius norm " ·11 F is defined by:

(4.12)

with k =min {m, n}. Hence,

(4.13)

As shown presently, the normalized F-norm is no longer a consistent norme This is

demonstrated by proving the following inequality, which is indeed the reverse of the

consistency inequality given by (4.10) with B being replaced by AT:

Let

l u =[al a2 . .. am]T E R m, and v =[1 1



then, from the Cauchy-Schwartz inequality for the EucIidean norms of vectors~ we

have
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or

(al + a2 + ... am) :S Jm (ai + a~ + ... a;rJ

Now, if ai is considered to be the ith eigenvalue of the matrix product A AT, then

the foregoing inequality can be re,vritten as

or

hence,

(4.14)

l

which is the reverse of the consistency property, thereby proving that the F-norm is

not a consistent norm.

The foregoing inequality will be employed in Chapter 6 when a novel measure of

conditioning is introduced.

• Every vector p-norm on R n can be used to define a matrix norm on lR mxn by,

the geometric interpretation of IIAlip thus defined is that it characterizes the ma..xi­

mum magnification that the matrix A will produce when mapping a vector x E lR n

ta its image y E R m. Nloreover, for square matrices A E lR nxn, we have

OThe one-norm, defined for p = l, is

m

IIAII I = m~ LI aij 1

I~)~n i=l



Chapter 4. Condition Number as a Measure of Kinetostatic Performance

OThe infinity-norm, defined for p = (x), is in turn,

• Sorne of the important properties of matri..,,<: norms are

4.4 Matrix Condition N umbers
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(4.15a)

(4.15b)

(4.15c)

(4.15d)

(4.15e)

From eq. (4.8), which is the basic definition of the matrix condition number. the

2-norm and the F-norm condition numbers, K2 and /î,F for m x m square matrices,

take on the forms

(4.16)

and

(4.17)

U max and O"min being, respectively, the maximum and the minimum singular val­

ues of A, Àmax and Àmin being the maximum and minimum eigenvalues of A AT,

respectively. From the definition of the normalized-Frobenius norm, it follows that

Hence,

K F = .;rn Kt:'

For a rectangular matrix A E IR. mXn we can rewrite eq. (4.8) as,

(4.18)

(4.19)
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(4.20)

where, At is any appropriate generalized inverse of A. It will he shown presentIy

that using the generalized inverse, eq. (4.18) can be applied to general rectangular

matrices as weil as to square matrices.

• overdetermined systems: A ER nxm with m ~ n,

teF(A) = II A II F /I(AT A)-l ATII F

te _(A) = 1~ tr (A AT) jr--1- t-r[-(A-T-A-)--l-A-T-A-(-A-T-A-)---l]
F Vm Vm

"'F = ~Jtr(A AT) tr[(A AT)-l]
m

(4.21)

which is the same expression as that of eq. (4.18) given for square matrices.

• underdetermined systems: m ~ n,

tet(A) = IIAll t /lAT (A AT)-lIlF

K -(A) = 1~tr(A AT) 1""-I-
t
-r [-A-T-(A-A-T-)--l-(-A-A-T-)--l-A-J

F Vm Vm

/'CF = ~Jtr(AAT)tr[(AAT)-l] (4.22)
m

The foregoing equation is also the same as eq. (4.18) given for square matrices.

Sorne other useful properties of condition nurnbers in general are:

K(A) = /'C(A-1), independent of the norm used (4.23a)

K(A) = K(AT
), for F- or 2-norms (4.23b)

Koo(A) = KI (AT) (4.23c)

/'C2(A AT) = K~(A) (4.23d)

KF(A AT) ~ K}(A), consistency of Il ·IIF (4.23e)

l Kt (A AT) 2:: K~ (A), inconsistency of II· II F (4.23f)



The proofs for the identities (4.23a) to (4.23e) can be found in specialized literature~

e.g., Golub and Van Loan (1989).

...
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4.5 Kinematic Isotropy

In the foregoing sections we argued that the condition number of a matrix l'L(A),

with A ER mxn, is a useful measure for quantifying distance to singularity and errer

magnifications in solving overdetermined (m > n), determined (m = n), and under­

determined (m < n) linear systems assoeiated with A. In this section the concept

of isotropy as applied to general real matrices; the notion of kinematic isotropy of

manipulators is discussed as weIl. Having reviewed important features of isotropie

matrices, we will then discuss kinematic isotropy and isotropie manipulators.

4.5.1 Matrix Isotropy

First the concept of isotropy for matrices is recalled. Isotropie matrices are those

with a minimum condition number of unity. On the one hand, as A becomes ill­

conditioned, its distance to singularity~ defined as 1/K(A) appraaches zero, while

the error magnificat ion factor ~(A) approaches infinity. On the other hand, as A

approaches isotropy, its distance ta singularity approaches a ma..ximum value of one,

while the error magnification approaches its minimum value of zero. It is apparent

that as A approaches a singularity, its minimum singular value CTmin vanishes, i.e.,

CTmin(A) ~ 0 ~ K2(A) ~ 00

CTmin(A) --)0 CTmax(A) => K2(A) ~ 1

(4.24)

Hence, for the 2-norm condition number to become one, aIl singular values of A must

become identical. Furthermore, recalling eq.(4.18), the normalized Frobenius norm
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condition number is of the fonn
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(4.25 )

Denoting by {O"i}r the ordered set of singuIar values of A, with al =O"min and

O"m =O"max, we have

tr(AAT
) = 0"1 + 0"2 + ... + O"m

TIl 1 1
tr[(AA )- J = - + - + ...+-

0"1 0"2 O"m

from the foregoing e({uations following that

al (A) ~ 0 :::} KF(A) -7 X)

ai(A) -+ Cf i= 0 ('ri i = l~ 2, ... m), :::} ~F(A) -+ 1

where Cf is the cornrnon singular value of A. Thus, for A to becorne isotropie its m

singular values should be identical, or, equivaIently, the m eigenvalues of the product

A AT should be identical. From the foregoing basic definition of isotropie matrices.

the fol1owing theorem can be stated:

Theorem 4.1

The full-rank matrix A ER mxn (m ~ n) is isotropie if and only if A AT = a 2 L

wbere a is the common singular "'alue of A, and 1 is the m x m identity matrix.

Proof: The matrix product A AT E lR mxm being symrnetric, it can be diagonalized

in the form

with A =diag (Ab A2 , ••• .ÀmL and Q orthogonal. From the isotropy of A, it fol1ows

that Al = A2 = ... Am = A, and hence,
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where the orthogonaIity of Q, and the definition of singular value were used.

Let
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Since the matrb: product A AT is diagonal, its diagonal entries are its m eigenvalues,

Le.,

À1=

Hence, À1 = À2 = ... = Àm = À

o o

q.e.d

Corollary 1: From the foregoing Theorem, it fo11ow5 that the rows of the

product A AT are mutually perpendicular, and have the sarne Euclidean norrn

which is equal to a, the cornmon singular value of A.

Corollary 2: If A is square and of full rank, then the isotropy condition can

be equally written as

AT A = 0-2 1 (4.26)

·r

thereby making both columns and rows of of A mutually perpendicular. Equa­

tion (4.26) can be obtained directly from the main isotropy condition given

above, i.e.,
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Figure 4.1: Geometrical interpretation of isotropy

4.5.2 Geometrie Interpretations

82

·r

The linear transformation A E IR. mxn maps vectors x from its domain i.e.. lR n into

vectors y in its range IR. m. Depending on the numerical conditioning of A and

the orientation of the veetor x being mapped, x can undergo various degrees of

distortion. However, if A is isotropie, then no distortion would result, sinee A maps

a unit sphere into another unit sphere either of a smaller or larger radius. This is

best illustrated by examining the mapping induced by a square and positive-definite

2 x 2 matrix A.

y=Ax

Applying the polar decomposition ta A, we have

A=RS

Thus,

y=Rz

z =Sx



where R is orthogonal and S is symmetric and positive-semidefinite. The mapping

induced by A is now characterized by first mapping the unit circle under S into an

ellipse. This distortion is followed by the mapping of the orthogonal matrLx R that

does not produce any distortion and only rotates the ellipse into its final position. It

is apparent that the larger the ratio bet\veen the two positive eigenvalues of S~ the

higher the eccentricity of the ellipse. However, when A is isotropie. it induees the

most uniform magnification and the shape of the unit circle is not affected (Fig 4.1).

The same geometrical interpretation can be extended to rectangular matrices as weIl.

For instance, if A E lR mxn, then one ean apply the QR factorizing (Strang, 1988) to

A and obtain

1
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A = Q [~]
where Q ER mxm is orthogonal, UER nxn is upper triangular and 0 is the (m-n) xn

zero matrLx. Now, the same argument can be applied to the square matrix U.

Another interesting feature of an isotropie matrix is tbat its generalized inverse can

be determined by one single sealar inversion, e.g.,

4.6 Isotropie Manipulators

Having discussed the notion of isotropie matrices in general, the concepts of kineto­

static isotropy and isotropie manipulators are now discussed.

Definition 4.1

Kinetostatic Isotropy is defined as the ability of a manipulator ta produce mo­

tions and forces with an accuracy that is insensitive to the direction in which these
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{-

motions and forces are applied. In our motor activities, we regard those postures as

most "comfortable" when our motion-and-force transmission abilities are direction-

independent.

Definition 4.2

Isotropie Manipulators are those whose normalized Jacobian matrix is isotropie

in at least one point in their workspaee.

Fact 1: Not aIl manipulators are isotropie; in fact, most manipulators are not isotropie.

Fact 2: An isotropie n-R seriaI-type manipulator has at least a circle of isotropie con­

figurations in its joint space. This fOllows from the fact that the rotation of

the first joint of the manipulator, which results in a rigid-body rotation of the

whole arm, would rotate the isotropie point through a whole circle1

Fact 3: The kinematic isotropy of a manipulator is the result of a particular choiee of

the set of DH parameters defining the manipulator architecture.

Fact 4: A manipulator that eannot attain an isotropie posture is called nonisotropic.

4.7 Isotropie Design of Manipulators

The optimum kinematic design of seriaI-type nonredundant manipulators for isotropy

is discussed in this section, whiIe the design of redundant manipulators for kine­

matie isotropy is the subjeet of the following three Chapters. For both redundant

and nonredundant manipulator designs, two main design strategies can he outlined,

namely, Jaeobian synthesis (Gonzalez-Palacios, 1993), and Non-linear optimization.

In Jacobian synthesis, first an isotropie matrix of appropriate dimension and struc­

ture is eonstructed from which the set of DH parameters is then extracted (Klein

and l'vIikIos, 1991). Nonlinear optimisations and solving sets of nonlinear equations

1Here we are assuming ideal joints with no physical limits



can also be used to obtain the set of DR parameters. In this chapter, a simple

example of the isotropie design of planar 2-R manipulators is introduced using the

direct differentiation of the condition number. Although this problem \Vas solved

as the first example of an isotropie manipulator by Salisbury and Craig (1982), its

inclusion here is meant ta provide sorne additionai aigebraic and geometric insights.

In the following chapters nonlinear optimization is used to provide isotropie designs

of redundant manipulators.

To this end, the isotropy condition for the Jacobian matrix of a general n-axis ma­

nipulator, as per Theorem 4.1, is recalled, while denoting the 3 x n upper block of J

by E, and its 3 x n lower block by S, Le.,

1
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(4.27)

If the normalized Jacobian matrix J is introduced the isotropy condition takes on

the form

[

EET
- -T
JJ =

i SET
(4.28)

Thus, isotropie design amounts to determining the constant and the variable sets of

DH parameters in such a way that the foregoing condition is satisfied.

4.1.1 A Simple Example

In this subsection the isotropie design of planar two-axis manipulators is discussed

through directIy differentiating the condition number of the Jacobian matrix. Since

the condition number is a complicated function of the entries of its matrix argument,

for generai matrices this method is not feasible. However, since geometric insight can

be gained through direct differentiation of the condition number, this simple example

is discussed here. Sorne new contributions that are byproducts of this exercise are

aiso introduced.
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The Jacohian matrLx of the general 2-R manipulator shawn in Fig. 4.2 takes on the

form

(4.29)

where li and (Ji are, respectively, the ith link length, and the ith joint variahle l while

Ci = cos fJi , Si =sin fJifor i = 1,2, C12 =cos (fJ1 + ()2), and 812 =sin (BI + fJ2 ). It can

he shawn that

(4.30)

and

(4.31 )

-x

Figure 4.2: Planar 2-axes rnanipulator

Moreover, the inverse of J is readily determined, as

(4.32)
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with det (J) = lll2 sin (J2 = V8, and

Hence,

Thus,
2 _ 1 T T -1] _ tr2(JJT) r 2

~F(J) = "4 tr(J J ) tr[(J J) - 4 det (JJT) - 48

noting that both tr (JJT) and det (JJT) are positive, we obtain

tr (JJT) T
KF(J) = 2 Vdet JJT = 2..;J

The isotropy of J requires that ~F(J) = 1! or

r=2V6
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(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

Substituting eqs. (4.30) and (4.31) in the foregoing equation yields the expression

shown below:

\Vith the usual half-angle substitution (t2 = tan (J2/2) for cos (J2 and sin 82 in the

foregoing equation, a quadratic equation in t2 is obtained, namely,

(4.38)

\Vith its two roots being given by

Therefore, the only possibility for the existence of a real solution is
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Hence, the isotropy of J is attained at

or

0* _ 31r
2 -±­

4

88

(4.39)

where * denotes isotropy. We conclude that, up to a scale factor s, there exist only

one isotropie planar manipulator for positioning tasks. This solution is, in facto that

found by Salisbury and Craig (1982).

Next, it is shown that "'F thus defined is smooth everywhere, its derivative vanishing

only at the isotropie configuration 0;. By differentiating both sides of eq. (4.35) with

respect to O2, while recalling that 6 = det (JJT) and T =tr (JJT), we obtain

_d Kt _ .3:....- (=-) _ 8 t5 T T' - 4 T
2 8'

2 K F d0
2

- d O
2

4 8 - 16 82

The foregoing derivative exists for aIl nonsingular configurations (6 # 0). This

derivative is evaluated at 0; next, while noting from eqs. (4.30) and (4.31) that

and

( ) ,dT 1 [. 0*T 0i = 1, and T =dO? = - 2 l [2 SIn 2 = ± 1
- 8-

(4.40)

(4.41)~(()*) 1 d~' - d 61 2[2 [2 . ()* ()* 1
u 2 = 4' an u = d (}2 = l 2 SIn 2 cos 2 = ± 2"

(J-

Next we will show that unlike the smooth behaviour of the F-norm condition number

around isotropy, the 2-norm condition number does not exhibit the same smoothness

at the isotropie point. To this end, the characteristic polynomial of the 2 by 2 matrix

JJT can be written as

(4.42)

·r
where, as before, T = tr (JJT), t5 = det (JJT), and À is an eigenvalue of J JT. ~'fore­

over, since J JT is positive-definite, for aIl nonsingular configurations, the foregoing

quadratic equation always admits two real and positive roots, namely,
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and
1

Àmin = -(T - JT2 - 46)
2

(4.43)

(4.44)

1

At the isotropie configuration f}2 = f}i, K2 = L and the two eigenvalues are iden­

tical. Thus, the condition for the existence of repeated roots for the characteristic

polynomial is examined, Le.,

thus

T=2V6

which is the same condition as that obtained before for l'CF = 1, with the repeated

eigenvalues being,

After sorne simplifications, /\'2 (J) takes on the form

K (l) = T + Jr2
- 4 <5

2 2.;6

The variation of "'2 and /\,t with respect ta f}2 in its entire domain is shawn in Fig. 4.3,

while in Fig. 4.4, the latter quantities are plotted around one of the isotropie config­

urations, namely, f}2 = 341t'. From these figures, it is apparent that, although, Kt is

smooth at the isotropie point, K2 is not. A proof of this result is provided in :\p­

pendix B. The signifieance of this observation may be recognized while implementing

the optimization methods used for both analysis and design of isotropie manipulator.

4.8 Aigebraic and Geometrie Discussions

As a byproduct, we ean obtain an interesting relationship between l'et(J) and /\'2(J)

for 2 x 2 matrices, namely,
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Figure 4.3: Variations of the 2-norm and Frobeniolls-norm condition nllmbers for 2R
planar maniplliator

The geometric interpretations of T, cS, and the isotropy condition for planar 2R ma­

nipulators are discussed next. Using eqs. (4.30) and (4.31), and referring to Fig. -1.2!

the relationships below follo\v:

T = t r (J J T) = li + 2 l~ + 2 II l2 cos ()2 = r2 + l~

cS = det (JJT) = li l~ sin2
()2 = 4.42

(-1.45)

(4.46)

where r is the distance from the origin ta the end-effector, and A is the area of the

triangle 0 1 0 2 0 3 formed by the manipulator. Nloreover, we recall that bath "'ft' and

K,2, gave rise to the same isotropy condition, Le.,

1 T=2V6



1
Chapter 4. Condition Number as a Measure of Kinetostatic Performance 91

5 1

1

4.5 1(
1

2 1

1

4 - - - -- lC F
1

/,
3.5 1,

C\I 1

~ 3 1

r,
2.5 " ,

"
"

1
"C
C " 1

co 2 " 1
"-

"- 1
LL ........ 1

~ 1.5 1
/

/

0.5

200150100
0"---------0--1.----------'-----------'
50

Figure 4.4: Variations of the 2-norm and Frobenious-norm condition numbers for 2R
planar manipulator around the isotropie point

This condition can be rewritten as shown below:

or,

!fT....
.~

2
Trms = 1
A

By examining the foregoing condition, as weIl as eqs. (4.36) and (4.44), a geometric

interpretation of the isotropy condition for this simple example is observed, namely,

to achieve isotropy it is required to decrease the rms value of the aforementioned

distances from the operation point to the two joint axis while increasing the area

occupied by the triangle formed by the manipulator. This, in turn, means that, at

the isotropie configuration, the square of the rms value of the distances from the
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1

end-effector to the axes of the manipulator scaled by the area of the triangle formed

by these axes in the plane of the manipulator is equal to the identity. For this simple

example it also turns out that the operation point of the EE is equidistant from the

two axes.

4.9 Conclusions

The condition numbers of matrices were reviewed in detail. Since the condition

number is norm-dependent, sorne of the important features of matrix norms were

also discussed. As applied to kinetostatic performance, the condition number of the

Jacobian matrix was argued ta be a useful tool as it both quantifies the distance to

the set of singularities of the Jacobian (Le., poor dexterity, and ill-conditioning) and

characterizes the robustness of the kinematic inversion with respect to manufacturing

and sensing errors. Isotropie manipulators were then defined as those whose Jacobian

matrices can attain a minimum condition number of unity. A necessary and sufficient

condition for isotropie designs was provided, while highlighting sorne algebraic and

geometric interpretations of isotropy. A categorization of different kinematic designs

of manipulator was proposed, narnely, Jacobian synthesis and nonlinear optimization.

The simple problem of isotropie design of planar 2-R manipulators was revisited using

the direct differentiation of the condition numbers. In doing so~ additional geometric

and algebraic insights were obtained; it was shown that the 2-norm condition number

is not a smooth function of the set of joint variables. Although this was proven only

for 2 x 2 matrices~ this is a feature of any m x n matrices.
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Chapter 5

Isotropie Designs of Redundant

Manipulators

5.1 Introduction

The kinematic design of redundant manipulators is addressed in this chapter. As

explained in Chapter 4, twa main design methodolagies can be empIoyed for the

kinematic design of manipulators. As discussed in Chapter l, the kinematic structure

of a seriaI manipulator is represented by the set of Denavit and Hartenberg (DH)

parameters. This set can be considered as the union of a set :F which contains aIl the

parameters of the manipulator that do not change with the manipulator configuration

and the set Q that contains the joint variables that define the configuration of a given

manipulator, i.e.,

P=:FuQ,

with

with n being the number of a and b of the manipulator. It should be noted that



the first joint variable qi as weIl as the first joint offset distance b1 are absent in the

foregoing sets. This is because these two parameters produce rigid-body motions

of the manipulator as a whole. In other words, any choice of these two parameters

can always be aecommodated by the rotation and translation of the base eoordinate

frame of the rnanipulator. Furthermore, referring to Section (3.2.2), it is apparent

that neither the unit vector ei nor the vector ri for i = 1,2, ... n, depend on the last

offset angle an. Hence any function of the Jacobian matri..x including its condition

number will be independent of On. The geometric explanation for this feature is once

again the independence of any intrinsic kinematic property of the manipulator on

the orientation of the moving frame attached to the end-effector. The total number

of design parameters k that includes the entries of both F and Q is thus gjven by

the relation
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1

k=4n-3

For example, the number of parameters required for the kinernatie design of a seven­

axis manipulator is 25. It will be shown here that isotropic seven-axis rnanipulators

are possible, and structural considerations pertaining to the design of such manipu­

lators will then be discussed whiIe providing several illustrative examples. Kinematie

isotropy and anthropomorphism will then be eombined to serve as an augmented set

of design requirements. It will be shawn that in principle, isotropy and anthropo­

morphism for seven-axis designs cannot coexist, as the incorporation of the latter

requirements leads to pseudoredundant architectures that can loose more than one

degree of freedom if the motion of one of their joints is lost. A nine-axis isotropie

design will then be introduced in an attempt to combine isotropy and anthropomor­

phism. The isotropie design of hyperredundant planar manipulators will then be

discussed, whereby a 3D-axis example of such designs will be introdueed. Finally,

comparative studies between isotropie and nonisotropic manipulators in the sense of

workspaee singularity distributions will be conducted.



Chapter 5. Isotropie Designs of Redundant Manipulators

1 5.2

95

Isotropie Design of Seven-Axis Manipulators

We adopt here the condition number of the Jacobian matrix discussed in Chapters 3

and 4 as the main criterion for the design of redundant manipulators. It will be

shown that since the design problem at hand reduces to an underdetermined system

ofm nonlinear equations in n unkno\Vns~ with m < n~ there is in general an infinity

of solutions for isotropie seven-axis robots. Additional design requirements can thus

be incorporated to reduce the dimension of the solution set, while achieving other

functional considerations. Recall that the normalized 6 x 7 Jacobian matri.x of a

seven-a..xis manipulator takes on the form

j = [ el
t el x ri

(5.1 )

while the isotropy condition, as given by eq. (4.28), is expressed by

j jT = [ EET tEST] = a 2 [1 0]
-LI S ET .l..S ST 0 1

[2

(5.2)

with 1 and 0, respectively, denoting the 3 x 3 identity and the zero matrices. The

foregoing main relation gÏves rise to three matrh: equations, i.e..

1 T ?-SS = a-lL2

(5.3a)

(5.3b)

(5.3e)

{

The foregoing matrix equations amount to 21 independent scalar equations to be

satisfied by 25 elements of P plus the two parameters L and a. However~ as will

become apparent presently, the last two parameters can be determined explicitly

from eqs. (5.3). Indeed, upon equating the trace of both sicles of eq. (S.3a), we obtain

n

tr(E ET) = tr(E ei eT) = 3 a 2

1

On the other hand,
n n

tr(L ei eT) = LeT ei = n
1 1
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where we used the normaIity of vectors {ei}ï. Therefore,

96

(5.4)

This means that the eommon singular value of the Jaeobian matrix of an isotropie

manipulator at the isotropie configuration is a function only of the number n of

degrees of freedom of the manipulator. NIoreover, by equating the trace of both

sides of eq. (5.3c), we have

On the other hand,

n n n

tr[L:(ei x ri) (ei x rdT
] = L(ei x ri)T (ei x rd = L Ilei x ril1 2

l l 1

Hence,

L 2 = L~ lI e i x rdl
2

n
(5.5)

T
..,

As shown belo\V, the terms Ilei x ri Il, with i = L 2, ... n, appearing in the right-hand

sicle of the foregoing equation are, in fact, the distances from the operation point P

to the n joint a..xes. Referring to Fig 5.1 the following vector equation can be verified

or

Thus,

A second interesting geometrical attribute of kinematic isotropy for both positioning

and orienting tasks stems from the condition on vanishing of the off-diagonal blocks

in eq. (5.3b), namely, EST = O. This condition gives rise to the following result.
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r·t

O,
t

Figure 5.1: Projection of the operation point onto the ith axis

Theorem 5.1

Let O~ he the foot of the perpendieular to the kth axis~ from the operation point P

(Fig. 5.1). The operation point of an isotropie manipulator, in its isotropie posture,

is the eentroid of the set { O~ }i.

Praof: From the condition given by eq. (5.3b) i.e., EST = 0, we have that

n

L ei (ei x r ilT = 0
1

If we take the ax:ial vector (Leigh, 1968) of the two sides of the foregoing matrix

equation, we obtain
n

L ei x (ei x rd = 0
1

which can be rewritten as
n

LE;ri = 0
1

where E i is the cross-product matrLx of ei. Nloreover, E; is expanded as

E~ = -(I-e·e!)1 1 1

and hence, the foregoing equation leads to

n

L(l - eief) ri = 0
1



But matrix eief maps ri into the transverse eomponent of ri along ei, i.e., along Ai.

That is, (1 - eief) ri denotes the vector eonnecting O~ with P.

1
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q. e. d.

5.3 Methodology

Two main approaches are followed in using the set of isotropy conditions, namely,

the system of 21 nonlinear equations for the 25 unknowns derived above. The first

approach is based on the optimization of a cast function over the 25 unknown pa­

rameters subject to the isotropy conditions. In the second approach, the number of

design variables will be reduced to 21 upon assigning four of the 25 unknown pa­

rameters based on functional conditions, thereby deriving a system of 21 nonlinear

equations in 21 unknowns.

5.3.1 The Kinematic Optimization Approach

The first approach is based on determining the design variables by optimizing a

cost function that penalizes the violation of eqs. (5.3). The first candidate for the

cost function is apparently the condition number itself. However, because of the

complexity of the evaluation of the condition number, not to speak of its gradient,

other cost functions should be considered. Ta this end, an objective function z is

defined as the distance of a design, given by the 25-dimensional vector x of design

variables, to isotropy, the distance being defined in terms of the Frobenius norm. We

thus define a matrix M as

(5.6)

NIatrix M is thus a measure of how different the Jacobian matrix is from an isotropie

matrix. Hence, we have an unconstrained optimization problem, namely,

min
x

(5.7)



However, a solution for x may very well include a link length ai that is negative.

Since ai is defined as a positive quantity that represents the distance between two

consecutive axes, it seems that one needs to add constraints to the foregoing problem~

in order to limit the search domain of {ai}f to positive values only. Instead of doing

so, however, if any of the resuiting ai turns out to be negative, its absolute value can

be used while making the simple adjustments of the other parameters such that the

relative position and orientation of the two consecutive joint a.xes remains unchanged.

vVe do this using Algorithm 5.1.

1
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Algorithm 5.1 :

For k = l,·", n - l, do

if ak < 0, then,

ak ~ lakl

Qk-l ~ IQk-ll

endif

Enddo

For k = n, do

if an < 0, then,

endif

Enddo

99
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Link i ai bi Qi (deg) (Ji (deg)
1 0.1154 0 104.6285 180.0000
2 1.5704 -0.0483 -86.3539 40.1118
3 0.1756 1.0226 60.6524 30.5779
4 1.0499 -0.7054 108.6141 -105.7290
;) 0.9094 -0.0104 -110.1435 -69.0636
6 0.0053 -0.0614 -107.3289 146.9810
7 0.4810 0.8844 0 33.5665

L = 0.7502 Yi. = 1.0

Table 5.1: DH parameters for the fully isotropie architecture: Design 1

Numerical Examples: Design 1
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As an illustrative example for the approaeh diseussed above, the Matlab funetion

fmins \Vas used for solving the foregoing minimization problem. The objective fune­

tion was chosen to be norm of the 21-dimensional vector function f(x), with x eOfi­

taining 25 entries of the set P plus the eharaeteristic length L, and the 21 eomponents

of f(x) being the 21 distinct sealar components of matrix M defined in eq. (5.6). The

results obtained for this design are given in Table 5.1.

These DH parameters produce a configuration whose Jacobian rnatri.x is isotropie,

with its singular values being identical and equal to /7/3. For this isotropie design,

eq. (5.5) yields the same value for L as the one obtained with fmins (Table 5.1).

Furthermore, Fig. 5.2 depicts a 3-dimensional rendering of this rnanipulator in its

isotropie posture.

5.3.2 Kinematic Design via Nonlinear-Equation Solving

The second approaeh for solving our design problem is by means of funetional eOfi­

straints. For funetionaI reasons, sorne of the entries of the set x can be fixed a priori,

thus reducing the dimension of the design space. By preassigning five unknowns,

a determined system of nonlinear equations can be obtained whose solutions are

computed numerieally.
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Figure 5.2: Fully isotropie seven-axis manipulatar: Design 1

N umerical Example: Design 2
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As an illustrative example for the second appraach~ the number of design variables

was reduced ta 21 as explained next. From a structural viewpoint~ it is advantageous

to concentrate as much mass of the arm as possible close to the manipulator base.

This would enhance the dynamic performance and the structural rigidity of the ma­

nipulator. ft is thus attempted to obtain an alternative design by preassigning values

to five of the components of x, thus obtaining ti, system of 21 nonlinear equations

in 21 unknowns. Nforeover, we set al, a3, as, b2 and b4 aIl equal to zero, which is

intended to bring the first three moving axes, and hence, their motors, close to the

first, fLxed, axis. Elimination of these five parameters from the design vector x results

in a system of 21 nonlinear equations in 21 unknowns, which can be solved numer­

icaIly. The subroutine fsolve of Matlab, that is based on Newton-Raphson method,
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Link i ai bi Q:i(deg) 8i (deg)
1 0 0 -62.7126 0
2 0.0239 0 -11.0926 35.0924
3 0 0.1760 106.6820 62.7137
4 2.2620 0 72.8709 117.7082
5 0 -1.8796 55.8331 -24.6355
6 0.0738 3.2468 62.8430 -2.3164
7 1.2060 -1.4819 0 225.4504

L = 1.0444 K. = 1.0

Table 5.2: DH parameters for the fully isotropie architecture: Design 2
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was employed for solving the said system of nonlinear equations. The results ob­

tained for this design are given in Table 5.2, while the corresponding manipulator in

its isotropie configuration is shown in Fig. 5.3. The associated .Jacobian matrix for

this configuration can be shown to have a condition number of unity. Similar to the

previous example, eq. (5.5) results in the same value for L as the one obtained with

fsolve. The DH parameters of this example (Design 2), serves as a baseline design

for the final kinematic design of REDIESTRO 1, as discussed in Chapter 7.

From Fig. 5.3 it can be observed that, by having the first four joints concentrated

very close to the manipulator base, the mass of the corresponding links and actuators

will be less imposing on the power requirements.

5.3.3 Anthropomorphic Considerations

Anthropomorphic manipulators are those that resemble the human upper lirnbs.

This often requires compact articulations with zero offset distances and intersecting

~"(es. For example, concatenations of three concurrent joint axes forming parts of

our lirnbs are observed, e.g., in the shoulder and the wrist articulations of our upper

limbs. In arder ta aim for anthropomorphism during the kinernatic design process, it

is thus necessary to set sorne of the DH pararneters equal to zero in such a way that

the aforementioned eoncurrency is achieved. As depicted in Fig. 5.4, in order ta have

the origins of the two consecutive revolute joints H-ï and ~+1 coincide, it is required
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Figure 5.3: Fully isotropie seven-axis manipulator: Design 2
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ta assign ai = bi+l = O. Furthermore, if the orthogonality of the intersecting joint

axes is also required, a third condition, ai = 90°! would have to be incorporated. For

a seven-axis robot, three anthropomorphic architectures are considered here, namely!

(A) 3R-3R-R

(B) 3R-R-3R

(C) 3R-2R-2R

The first two architectures of the foregoing set have two triads of coinciding revolute

joints, each triad being consecutively concurrent, the last one having one set of

three coinciding joints as well as two sets of two coïncident ones. l t is apparent

that anthropomorphic requirements thus deigned can be achieved at the expense of

the overall mobility of the manipulators and to sorne extent at the expense of the

kinematic dexterity. In fact, the existence of any two three-R modules in a seven-axis

design gives rise to an architecture that is termed here pseudoredundant. The reason

for this terminology becomes clear through a simple example. If the fourth revolute
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Figure 5.4: Consecutive ith and i + 1st revolute joints
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joint of the 3R-R-3R design is locked, one would expect to be left with a six-axis

manipulator having a full mobility of six degrees of freedom. It is apparent that this

is not the case, for the operation point is constrained to lie in a sphere centred at

the shoulder, and of radius equal to the distance between the shoulder and the wrist

centres.

The anthropomorphic conditions proposed above give rise to the following design

requirements:

Numerical Example: Design A, 3R-3R-R

For this case one must have

Having preassigned values to the eight foregoing design parameters, one is left

with a pseudoredundant manipulator, with only 18 nonzero design variables to sat­

isfy 21 equations, thereby obtaining an overdetermined system of nonlinear equa­

tians. Since, in general, one cannat expect a solution to exist for this overde­

termined system, it is concluded that isotropie manipulators with two 3R mod­

ules cannat exist. By preassigning zero values to eight of the design variables,



namely, aIl a2, a4, as, b2 , b3 , bs , and b6 , a nonlinear optimization problem is formu­

Iated. The aforementioned subroutine fmins was used to find the least-square ap­

proximation of this nonlinear overdetermined system. The solution obtained is given

in Table 5.3, while the corresponding Jacobian matrix has a condition number of

1.3845. Figure 5.5 shows a 3-dimensionaI rendering of this design. It can be seen

1
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Link i ai bi Qi(deg) Bi (deg)
1 0 0 -77.8800 0
2 a 0 -80.1659 259.9013
3 1.5045 0 55.4774 3.6829
4 0 1.7420 95.4346 -108.8578
5 a 0 -93.0426 -87.9244
6 2.0629 0 188.9605 -101.4668
7 1.3420 0.0089 0 -145.6447

L = 1.0002 "" = 1.3845
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Table 5.3: DH parameters for Design (A), 3R-3R-R

that this solution, as compared to the previous alternatives, has a doser resemblance

to the human arm architecture than the previaus fully isotropie examples. Obviously!

this is achieved through a trade-off by a small increase in the magnitude of the con­

dition number and an impairment on the overaIl redundancy of the arm. Therefore!

this manipulator is not isotropie. Notice that the CI of this manipulator is 72.4%.

For this example, since J is not isotropie, we cannat expect to obtain L by means of

eq.(5.5).

Numerical Example: Design B, 3R-R-3R

For the isotropie design of the second pseudoredundant architecture, i.e., a 3R-R-3R

architecture, it is required to have

The DH parameters for Design B is illustrated in Table 5.3.3, while the rendering of

this anthropomorphic, but nonisotropic architecture, is given in Fig. 5.6.
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•

Figure 5.5: Quasi-isotropie anthropomorphic architecture: Design (A)! 3R-3R-R

Numerical Example: Design C, 3R-2R-2R

Finally, for the design of the 3R-2R-2R architecture, the set of DH parameters should

satisfy the conditions given below:

al = b2 = 0, a4 = b5 = 0

a2 = b3 = 0, a6 = b7 = a

The DH parameters for this design are given in Table 5.3.3, while its graphical

rendering is illustrated in Fig. 5.7.

Numerieal Example: Design D, Nine-axis fully isotropie anthropomorphie

manipulator

For the sake of completeness, the kinematic design of a fully isotropie anthropomor­

phic manipulator is discussed next. From the foregoing discussions it is apparent
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Link i ai bi oi(deg) fli ( deg)
1 0 0 68.4246 0
2 0 0 -77.6089 -81.247
3 1.3353 0 132.0783 50.5267
4 1.2304 0.0977 -120.0623 -105.2396
5 0 -0.1854 93.5111 80.4914
6 0 0 -84.3166 -82.1153
7 0.6798 0.6575 0 63.0681

L = 1.1658 If, = 1.4432

Table 5.4: DH parameters for Design (B), 3R-R-3R

Link i a· bi oi(deg) (Ji (deg)1

1 0 0 -67.2917 0
2 0 0 133.6988 -2.4689
3 1.4323 0 159.6295 161.9426
4 0 -0.4111 -93.3292 53.1595
5 1.4440 0 -90.9870 137.8626
6 0 1.1185 80.8763 32.3106
7 1.1380 0 0 -150.4670

L = 0.8706 If, = 1.4623

Table 5.5: DH parameters for Design (C), 3R-2R-2R
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that isotropy and anthropomorphism cannat be achieved simultaneously for seven­

axis robots, since the latter requirements often lead to pseudoredundancy. It is thus

required ta increase the number of degrees of freedom of the robot. In arder ta obtain

such a design it is required ta have at least 21 unknowns ta satisfy the 21 isotropy

conditions on the Jacobian matrix. If an eight-axis robot is considered, the number

of design variables will be:

k = 32 (total number of DH parameters)

- 12 (condition for the three 3R modules)

= 17 < 21.

Therefore, eight-axis manipulators with three 3R modules do not possess enough

number of design variables either. A nine-axis manipulator \Vith three modules of
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Figure 5.6: Quasi-isotropie anthropomorphic architecture: Design (B), 3R-R-3R

three concurrent axes is examined next. The number of design parameters k for this

class of manipulators is:

k = 36 (total number of DH parameters)

- 12 (condition for the three 3R modules)

= 21

Having established 21 unknowns, the design problem can now he formulated as a

set of nonlinear equations. The results obtained from fsolve are given in Table 5.6,

while the graphical rendering of this manipulator is presented in Fig 5.8.

5.4 Hyperredundancy and Isotropy

The notion of hyperredundant manipulators has been used for those manipulators

with a significant number of degrees of redundancy (Chirikjian and Burdick, 1993,
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Figure 5.7: Quasi-isotropie anthropomorphie architecture: Design (C), 3R-2R-2R

1994). In this section, kinematic isotropy, as applied to hyperredundant planar

(snake-like) architectures, is discussed. It will he shown that the isotropie posture

of these manipulators indeed resembles to sorne extent the familiar shape of a cobra

in an attack pose. Although the shape of comfortable/dextrous configurations at­

tained by living articulated bodies is the outcome of complex natural interactions,

and it is by no means intended here to overemphasize kinetostatic dexterity as a

determining factor in shaping these configurations, it is interesting to note that by

aiming at optimum kinetostatic postures (i.e., isotropy), such familiar configurations

are obtained.

5.4.1 Formulation

The schematic drawing of a typical hyper-redundant planar manipulator for both

positioning and orienting is shawn in Fig 5.9. The forward kinematics of this ma­

nipulator takes on the form

·r (5.11a)
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Link i ai bi ai(deg) Bi (deg)
1 0 0 59.3517 0
2 0 0 90.0 90.0
3 0.7559 0 -90.0 60.6483
4 0 -0.3478 120.6483 90.0
5 0 0 -90.0 90.0
6 0.7559 0 90.0 60.6483
7 0 0.3478 -120.6483 90.0
8 0 0 90.0 90.0
9 0.4804 0 0 65.941

L = 0.3397 K. = 1.00000
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Table 5.6: Fully-isotropic anthropomorphic nine-axis manipulator: Design D~ 3R­
3R-3R

x = al cos BI + a2 cos (Ih + B2 ) + + an cos (BI + B2 + Bn )

y = al sin BI + a2 sin (BI + (2) + + an sin (81 + (}2 + Bn )

(5.llb)

(5.lle)

where dJ is the orientation of the last link, with x and y being the Cartesian co­

ordinates of the operation point, attaehed to the last Iink. If the manipulator is

considered for positioning tasks only, the forward kinematics reduces to the last two

of the foregoing three equations (eqs. 5.11b, and 5.11c). The instantaneous forward

kinematics of hyper-redundant manipulators is of the from shown below ~

J9=x (5.12)

where, in general J, the (3 x n) Jacobian matrix associated with the manipulator

takes on the form

J = [-(SI + SI2~" + SI2 n)

(Cl + Cl2 ••• + CI2 n)

1

-(S12 .•. + SI2 n)

(C12 •.. + C12 n)

(5.13)

with (J, the n-dimensional vector of joint rates, defined as

BI

9=
(J2

(5.14)

T
• On
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Figure 5.8: Fully-isotropic anthropomorphic nine-axis manipulator. Design D~ 3R­
3R-3R

with X, the three-dimensional vector of Cartesian velocities of the end-effector being

defined, in turn, as

(5.15)

·r

In the foregoing equations it was assumed that al = a2 .•• = an = l, with,

SI =sin (JI, Cl =cos 81

The link lengths of the manipulator having been chosen a priori, isotropie architecture

design will have no relevance for this manipulator; however, it is desired to obtain

an optimum configuration of the manipulator in the sense of kinematic isotropy.
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Renee, the problem reduces to minimizing the condition number of the Jacobian

matrix over the set of joint variables 9. After formulating an optimization problem

similar to those of the previous sections, it becomes apparent that possibly due to

the large number of trigonometric sums and products involved~ the convergence of

the problem to an optimal solution is not adequate. However, by performing sorne

simple algebraic manipulations on the definition of the J acobian matri."X, and reducing

the number of the said sums and products, the convergence of the problem can be

significantly improved. These simplifications are explained next. Equation (5.12)

can be rewritten as

(5.16)

with the nonsingular permutation matri."X U and its inverse U- 1 being defined as,

1 0 0 0 0 1 0 0 0 0

-1 1 0 0 0 1 1 0 0 0

0 ~1 1 0 0 1 1 1 0 0
U= U-1 = (5.17)

0 0 -1 1 0 1 1 1 1 0

o o o 0 1 1 111 1

l

respectively. Now the modified version of eq. (5.12), takes on the form

\Vith

[-:.
0 0

-s~ ...n ]J a = JU- l = -S12 -8123

Cl Cl2 C123 CI2···n

and
al BI

Q2 BI + B2

Ct= 0:3 =U-1 6= 81 + iÏ2 + 83

(5.18)

(5.19)

(5.20)
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A geometric interpretation of the foregoing algebraic manipulation is that the Jaco­

bian matrix of the system of equations expressed by (5.12) maps the vector of relative

joint rates il to the Cartesian velocity vector X, while J a appearing in eq. (5.18) trans­

forms the vector of absolute joint rates ila to x. The ith relative joint rate iJi is defined

as the angular displacement of theith link with respect to the (i - 1)st link, \Vith 0

denoting the base. The ith absolute joint rate, Qi = L~ Bi, is, in turn, defined as the

angular displacement of the ith link with respect to the base. Once the absolute joint

rates are obtained from the reduced system, the relative joint rates can be readily

determined using the equation given below:

il = U-1 Ct.

Another interpretation of the absolute joint variables used here \Vas recently con­

sidered by :Ylaton and Roth (1996), while relating the schemes of actuation to the

kinematic performance of planar manipulators. By the schemes of actuation it is

meant the way in which each joint is driven, that is, whether locally by an actua­

tor attached directly ta the link, or remotely by placing the actuator on the base.

The absolute angles mentioned before are in fact the joint variables associated with

the case of aIl actuators being installed at the base while assuming identical trans­

mission ratios. Nlatan and Roth showed that for a 2-R planar manipulator accurate

positioning-particularlyat larger manipulator reaches-the ground-based actuation

is preferred over the manipulator with locally-driven joints. During the numerical

optimization of the example given below, this conclusion \Vas clearly observed.

Further simplification of the Jacobian matrix can be achieved if positioning manip­

ulators are considered only. Although the Jacobian is reduced to that of positioning

tasks only, it is still possible to achieve a desired orientation for the last link at the

isotropie configuration. This is possible since the number of optimization parameters

at hand is quite large, and also because the orientation f/J of the last link is simply

the nth absolute joint coordinate. Having reduced the system to that of positioning
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Figure 5.9: Hyper-redundant planar rnanipulators

tasks only, one obtains
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C12 C123

(5.21)

Hence, the isotropy condition on J a takes on a very simple forrn~ i.e.,

(5.22)

{

whereby, the cornmon singular value of J a is readily determined by equating the

trace of both sides of eq. (5.22), i.e.,

5.4.2 Numerical Example: 30-Axis Planar Manipulator

As a representative example for the isotropie eonfiguring of hyperredundant manip­

ulators, a planar 3D-claf robot for positioning tasks is cansidered. The minirnization

routine fmins is once again used to find one optimum solution 8- at which the con­

dition number of the Jacobian rnatrix is unity, and where the additional constraints



listed below are also satisfied. AIl of the required scalar objective functions are

grouped together as entries of a vector z whose Euclidean norm is minimized using

the Nelder and Mead search technique implemented by fmins, i.e.,

l
Chapter 5. Isotropie Designs of Redundant Manipulators 115

(5.23)

with W being a weighting matrix of the appropriate dimension.

Objectives

• Condition number minimization:

• It is required that at any configuration, the first two links rernain horizontaL

i.e.,

• At an isotropie configuration it is required that the last link also remains hor-

izontal, i.e.,
n

Z4 = t/J = L (h ~ min
1

• As the last constraint, it is required that the norm of the vector of joint variables

8 at an isotropie configuration be a minirnum. This additional constraint

results in a smoother shape of the manipulator at the isotropie configuration.

An alternative but computationally more intensive way of ensuring a smooth

shape is to minirnize the second difference between the value of each joint i to

that of i + 1. This condition which is in sorne sense a measure of the curvatllre

of the maniplliator, was also studied, but it was decided that the cornputational
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burden that it creates outweighs the improved smoothness of the manipulator

backbone. Hence, the Iast additionaI constraint was chosen to be

Zs =11011 -4 min

The vector z containing the scalar objective functions of eq. (5.23) takes on the form!

Z = Z3

Zs

The initial guess for the joint-variable vector was chosen to be a set of very small

randoIn numbers. These were small values for each joint just enough to bring the Ja­

cobian out of the singularity of the configuration at which aIl joint variables are zero.

The evolution of the shape of the manipulator during the optimization procedure is

shown in Fig. 5.10, a graphical rendering of this 3D-axis manipulator at an isotropie

posture being illustrated in Fig.5.11. The condition number of the Jacobian matrix

at this configuration is equal to unity, and, as can bee seeu, the joint coordinates are

such that the manipulator has a very smooth shape.

5.5 Kinematic Isotropy and Singularity Distribu-

tion

In this Section a comparative analysis of isotropie versus nonisotropic manipulators is

made. The basis of the comparison is the distribution of the set of singularities of the

manipulators throughout the joint-space. In generaI! comparing two manipulators for

any functional purpose is not a clear task. The framework in which a fair comparison

can find meaning should thus be laid down first. The main objective of this section

is to provide a framework for the comparison of redundant manipulators in the sense

of kinematic dexterity and singularity distributions.
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Snake-Uke Hyperredundant Manipulator: Isotropie Design
30

25

Initial Configuration

-5
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Figure .5.10: Condition number minimization of a snake-like manipulator

As explained in the previous chapters, the reciprocaI of the p-norrn condition num­

ber of the Jacobian matrbc J represents the p-norm distance from J to the sets of

singular matrices. Hence, in an absolute sense, isotropie matrices lie farthest from

their singularities. This feature by itself is quite attractive; however, one may pose

the question of how the variation of the condition number and, thus, the kinematic

dexterity of an isotropie manipulator behaves throughout the entire workspaee~ or

throughout the joint-spaee. Alternatively, although an isotropie manipulator at the

isotropie configuration attains the largest possible distance to the singularities of

J, the mean-value of the variations of the condition number is compared to that

of a nonisotropic manipulator. Obviously, the first issue to be addressed before at­

tempting to answer the foregoing question is how two manipulators ean be cornpared

without comparing apples and oranges. Sorne of the factors considered here while

comparing two manipulators are listed below:
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Figure 5.11: Graphieal rendering of a 30-axis isotropie manipulator
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Link i ai-l m bi m Qi-r(deg) (Ji (deg)
1 0.0 0 0.0 (JI

2 -0.12319 0 -90.0 (J2
3 0.10795 0.05461 90.0 (J3
4 -0.07938 0 -90.0 (}4

v 0.07938 0.05461 90.0 (J5
6 -0.0492 0 -90.0 (}6

7 0.0492 0 90.0 (J-I

Table 5.7: DH parameters of the Robotics Research K1207 NlanipuIator

(a) IdenticaI degrees of freedom.

(b) Compatibility in the size of the manipuIators.

(c) Compatibility in the configuration of the manipulators.

119
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To satisfy requirement (a) given above, as a representative example, a redundant

seven-axis and isotropie manipuIator is compared with a seven-axis redundant, but

nonisotropic manipuIator. The isotropie manipulator used for this example is the

manipulator introduced in Section 5.2 and whose DH parameters are given in Ta­

ble 5.2 (Design no. 2, illustrated in Fig. 5.3). The nonisotropic manipuIator to be

compared against the isotropie one is the Robotics Research K1207 (Farrell et aL,

1990; Seraji et al., 1993). The DR parameters of this manipulator as given in the

foregoing references, are shown in Table 5.5.

As mentioned in Section 5.3, the ai parameters are defined as link lengths and shouId

he allowed to take on positive values only. Hence, the equivalent set of DH parameters

that does not contain negative link Iengths is first evaluated. :\Ioreover, in order to

satisfy the size-compatibility condition (b), it is required ta normalize the link-Iengths

and offsets of the two manipulators. To this end a normalizing length that is intrinsic

to the manipulators should be employed. The characteristic length L, as defined in

Section 5.3, is used, and the link lengths ai as weB as the link offsets bi are divided by

L. Although, ather choices for this normalizing length exist such as, the maximum

reach, or the largest link-Iength of the manipulator, the characteristic length is used
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Link i ai ID bi m Qi(deg) Bi (deg)
1 0.12319 0 90.0 B1

2 0.10795 0 90.0 43.2274
3 0.07938 0.05461 90.0 179.9416
4 0.07938 0 90.0 50.1589
5 0.0492 0.05461 90.0 180.0129
6 0.0492 0.0 90.0 19.5556
7 0.0 0.01778 90.0 0.2436

L = 0.2554108 m Kmin = 1.7004
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Table 5.8: DH parameters of the Robotics Research K1207 ~Ianipulator (with posi­
tive link-Iengths)

because it also minimizes the condition number. The characteristic length of K1207­

RR was found to be 0.2554108 m. In order to satisfy requirement (c) mentioned

above, the minimization routines discussed before were used to obtain a configuration

of the two manipulators at which the condition number of the associated Jacobian

matrix is a minimum. The modified set of DH parameters according to the convention

employed in this thesis for the K12D7 manipulator at its optimum configuration~

together with the associated characteristic length, are given in Table 5.8.

The graphical skeleton rendering of K12D7 at its optimally-conditioned configuration

where the condition number of the Jacobian matrix attains a minimum of 1.7004.

is shown in Fig. 5.12. It is interesting to note that although K1207 is not designed

for kinematic isotropy, its minimum condition number is not very far from unity;

however, as will be shown presently, even such a small deviation from isotropy results

in a relatively significant difference on its singularity distribution.

Having established the three compatibility requirements, the reciprocal of the condi­

tion numbers of the two manipulators are then minimized starting from their respec­

tive optimal-dexterity configurations towards their closest singularities. The same

minimization routine fmins is used for both cases, while the intermediate variations

of the reciprocal of the condition number is recorded. As the two manipulators move

away from their optimum configurations towards their nearest singularity, the condi­

tion number is plotted against the number of iterations toward singularity (Fig. 5.13).
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Figure 5.12: Skeleton-rendering of the Robotics Researeh K12D7 manipulator at its
optimum-dexterity configuration
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Figure 5.13: Comparison of isotropie and nonisotropic manipulators
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It can be seen from Fig. 5.13 that the variation of the condition number for the

isotropic rnanipulator stays fiat for a larger number of iterations when compared to

the nonisotropic arme The same pattern was observed while repeating this compar­

ison for other nonisotropic or quasiisotropie manipulators discussed in this chapter.

As a second representative example, the anthropomorphic 3R-3R-R manipulator of

Fig. 5.5 and Table 5.3 was eompared with the isotropie arm introduced as Design

No. 2. The results of this comparison are shown in Fig. 5.14. The condition number

of the nonisotropic design used in the second example at its optimum-dexterity con­

figuration is only 1.3845; however, a dramatic change in the variation of the condition

number as compared to that of the isotropie arm can be observed in Fig. 5.14.



Chapter 5. Isotropie Designs of Redundant Manipulators
•j
~ 5.6 Conclusions

123

l

The emphasis of this Chapter was mainly on the application of kinetostatic per­

formance indices in the design of seven-axis, revolute-coupled manipulators. Three

different optimum solution approached were studied: first, a nonlinear minimization

problem was soIved, which, in effect, rendered the Jacobian matrL"{ fully isotropie;

next, it was argued that, despite the fully isotropie nature of the first solution, sorne

of its structural features could be improved. This led to preassigning sorne of the

parameters defining the structure of the manipulator, which in turn resulted in a

system of 21 nonlinear equations in 21 unknowns. As a second approach, the DH pa­

rameters of an isotropie rnanipulator were then obtained by soIving the said system of

nonlinear equations. In order to make the manipulator structure anthropomorphic,

further constraints were imposed, which led to three alternative designs, namely,

3R-3R-R, 3R-R-3R, and 3R-2R-2R. First, it was argued that the existence of two

3-R modules in the architecture of seven-axis designs leads to pseudoredundancy.

Hence, it was shown that isotropy and anthropomorphism for seven-axis and eight­

axis manipulators cannot coexist. An example of a nine-axis fully isotropie design

was obtained.

Isotropie configuration design of hyperredundant planar manipulators \Vas then dis­

cussed, where a method of simplifying the computational requirement of the opti­

mization problem at hand was provided. The isotropie configuration of a 3D-axis

planar robot in the presence of additional functional requirernents was determined.

This design led to a familiar configuration that to sorne extent resernbles the config­

uration of a cobra in an attack posture.

In the last part of the chapter, a comparative analysis of the effects of kinematic

isotropy on the distribution of the joint-space singularities \Vas included. vVithin

the framework of this analysis, isotropie and nonisotropic designs were compared.

The results of these comparisons provided a graphieaI confirmation for the role of

kinematie isotropy on the nature of the joint-space singularities.
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Chapter 6

A Geometrie Analysis of

Kinematie Isotropy

6.1 Introduction

In this Chapter, the kinematic conditioning and dexterity of general revolute-jointed

manipulators are discussed from a geometric point of view. Furthermore, based on

a previously reported measure of isotropy (Kim and Khosla, 1991), a novel measure

of conditioning for generaI matrices is introduced. It is shown that this measure is a

linear approximation to the normalized Frobenius-norm (F-norm) condition number:

for quasiIsotropic matrices, it provides a very close prediction of the condition num­

ber. For both rectangular and square matrices, upper and lower bounds are obtained

for this measure in terms of the F-norm and the 2-norm condition numbers. Based

on this measure of conditioning, a measure of manipulator conditioning is devised

that is highly suited for the intended task of manipulator design. ~Ioreover, this

performance index is substantially less expensive to compute than other measures of

kinematic conditioning; is amenable ta optimization using gradient methods, rather

than \Vith purely direct-search methods, which are much costiier. Based on a gra­

dient technique for the minimizatian of this index with respect to the normalizing
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length and the operation point of the end-effector, a preferred normalizing length and

a preferred operation point of the end-effector are obtained. In this regard the na­

tions of manipulator iayout, layout conditioning, layout tength and tayout centre for

any seriaI-type robotic manipulators are introduced. Furthermore, the characteristic

layout of manipulators are discussed followed by discussions on the characteristic

length and the characteristic point. Severai illustrative examples are provided for

determining the optimum layout of both redundant and nonredundant industrial

manipulators.

6.2 A Novel Kinematic Performance Measure

In this section, a novei measure of conditioning, denoted by K, F for general square and

rectangular matrices, is derived. Based on this conditioning measure, a performance

measure called the tayaut conditioning is then introduced. This measure is signifi­

cantly Iess complex to compute as compared to any usual p-norm or F-norm condition

numbers. The characterization of this measure and a comparison of its predictions

with the 2-norm and the F-norm condition numbers are discussed. ~Ioreover, it is

shown that this measure of conditioning is bounded from below by the normalized F­

norm condition number and by the mth power of the 2-norm condition number from

above, with m being the dimension of the task space of the manipulator (e.g., m = 6

for the most generai tasks). A. significantly reduced complexity of the proposed mea­

sure allows the use of symbolic computations, thereby gaining more geometric insight

into characterizing the kinematic performance of seriaI manipulators.

6.2.1 Derivations

An estimate of the reciprocal of the condition number, based on the geometric and

aigebraic means of the singular values of the matrix, was introduced by Kim and
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Khosla (1991) as
1

~=­K

where
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(6.1)

- _ tr(AAT
) __ ar + ai + ... + a~

'" - (6.2)
- m [det (AAT

)]* m (a~ a~ ... a~)*

~Iotivated by the foregoing heuristic definition of K, an expression that for quasi-

isotropie matrices1 represents an approximation of the condition number is intro­

duced. In fact, it will be shown that this index arises naturally while determining

the first-order approximation of the P-norm condition number of A. In order to de­

rive an estirnate of the condition number of a general m x n matrix A~ with m :::; n~

the definition of K F is recalled,

1K? = -2 tr(B) tr(B- l
)

F m

with B =AAT
. From the Cayley-Hamilton theorem, we have

(6.3)

where lm is the m x m identity matrix, and {Ci} ~ is the set of coefficients of the

characteristic polynomial Pm(À) of B. These coefficients are given by (Finkbeiner,

1966):

Cl = -tr(B)

C2 =-~[Cl tr(B) + tr(B2
)]

1 [ 2 3 ]C3 =-3 C2 tr(B) + Cl tr(B ) + tr(B )

Furthermore, it is known that,

Cm = (_l)m det(B)

1a matrix is called quasiisotropic if its condition number is 0(1)

(6.5)
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Equating the trace of both sides of eq.(6.4) yields

-1
tr(B-1) = Cm (tr(Bm-I)+Cltr(Bm-2)+···+Crtr(Bm-r-1)+,·.+mCm_d (6.6)

Now, if a real positive number Ào approximates the set of eigenvalues {À i } ~, of B,

up to the first order, namely,

Ài = .-\0 + tS Ài , tS << l, i = 1, 2, ... m

then, the expressions below are readily verified:

tr(B) = mÀo + e

trk(B) = m k
-

1 .-\:-1 (m À o + k €) + 0(f2)

tr(Bk) = .-\:-1 (m'\o + k €) + 0(f2)

where

(6.7)

(6.8)

(6.9)

(6.10)

l

m

€ =2: tS'\i.
i=l

Csing these identities, the expressions for {Cd~ can be obtained as shown below

Cl = -Cm À o + f) (6.11)

1
C2 = 2! Ào(m -1) (m.-\0+2f) +0(f2

)

1
C3 = - 3! ,\~ (m - 1) (m - 2) (m'\o + 3 f) + 0(f2

)

Cm - l = (_l)m-r .-\;:-2 [m'\o + (m - 1) f] + 0(€2)

Cm = (_1)m det B = (_I)mÀ:-1 ('\0 + €) + 0(e2
) (6.12)

Substituting for {Ci}~ from the foregoing equations in eq.(6.6) and simplifying up

to the first order results in

(B- I ) _ m'\o + (m - 1) € [1_m(-m -1) _ m(m - 1)(m - 2) '"
tr - Ào('\o+€) m+ 2~ 3~ +

+ (_I)k m(m - l)(m - ~~ ... (m - k - 1) + ... + (_1)m-l ml + 0((2)



By adding and subtracting (_l)m to the terms enclosed in square brackets in the

right-hand sicle of the foregoing equation, it follows that

1
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(6.13)

where, {Bdo are the binomial coefficients for an expansion of the form (..Y - l)m:

hence,
m

L Bi =0
i=O

Therefore,

or

(B-1) = m-Ao+(m-l)€ O( 2)
tr -A

o
(À

o
+ €) + E

(6.14)

(6.16)

tr(B-1) = mm-2 -A~-2 [m Ào + (m - 1) E] + O(E2) (6.15)
mm-2 -A~-1 (.-\0 + €)

Furthermore, by making use of eqs. (6.8), and (6.12), the foregoing expression can

be writ ten as
trm - 1(B)

tr(B-
1

) = mm-2 det(B) +O(€2)

Finally, by substituting the foregoing expression in eq.(6.3), while neglecting the

higher-order terms O(f2), the first-orcler approximation of the F-norm condition

number denoted by K. F' is obtained as

K =F

trm(B)
mm det (B) ~ "'F'

(6.17)

(6.18)

1

Hence, it turns out that the proposed first-order estimate. henceforth callecl the

conditioning measure is, in fact, the square root of the mth power of the reciprocal

of the measure proposed in Kim and Khosla (1991), i.e.,

-2 _ trm(AAT
)

"'F(A) = mm det (AAT ) = km

From eq.(6.18), it is apparent that K = K;!m 1 and, as shawn in the numerical example

below, k;!m predicts /'i, more accurately than K..
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6.2.2 Features of K. F
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The conditioning measure K,F obtained above can be regarded as an estimate of the

condition number for general matrices (Ranjbaran et al., 1996). In this section several

useful features of KF , as applied to kinematic dexterity, are highlighted, that make

this index an attractive alternative for the characterization of kinematic dexterity.

Comparison of K. F vs. the 2-Norm and the F-Norm Condition Numbers

Comparisons of "'2, "'-F, K. and K,F are shown in Figs. 6.1 and 6.2 for a planar 3R

manipulator, with II = l2 = 1, [3 = .;3/3, as functions of the second joint variable

(}2, while the comparison of the reciprocal of these numbers is plotted in Fig. 6.3.

From the three foregoing diagrams it is clear that K. F follows "'-2 more closely. A.t lower

condition numbers, the difference may not seem significant; however, by examining

this difference near the singular posture, a substantial improvement is gained by

using K. F • For example, at (}2 = 179.95°, where the 2-norm condition number "'2 is

about 2000, and the Frobenius-norm condition number K-F is 808, the two estimates

are K. = 99.3, and K. F = 989.4. This shows an improvement of an order of magnitude

if K. F is used. It should be apparent that, for larger values of m, the improvement will

be even more significant. Henceforth, we will make use of K. F throughout the rest of

this chapter. It has to be emphasized that the isotropie design of manipulators can

now be conducted by using K,F instead of other complex measures such as K2' This is

possible, since K. F attains a minimum of unity at the isotropie configuration, similar

to other condition numbers.

The foregoing numerical characterizations are more rigorously underlined next, where

it is shawn that the conditioning measure K,F (J) is bounded by "'P from below and by

K 2 from above. The proof for m x m matrices that was first reported in Ranj baran

et al., (1996), is provided first, followed by the proof for general m x n matrices.
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Figure 6.1: Comparison of the condition numbers

Theorem 6.1

The condi tioning measure of an m x m matrix, K, F (B) is bounded by the normalized

Frobenius norm from belolvand by the mth power of the 2-norm condition number

from above, i.e,

(6.19)

Praof:

• Lower bound:

1

In order to prove the existence of the lower bound in the foregoing statement for

square matrices, we recall Richter's Theorem (Householder, 1964; NIirsky, 1956),

stating that the Frobenius norm of the adjoint of any m x m matrbc A verifies the

inequality given below:
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Figure 6.2: Comparison of the condition numbers near singular posture

(6.20)

with equality if and only if m ~ 2 or if B is isotropie. If B is nonsingular! one can

divide both sides of the foregoing inequality by 1clet(B) 1. Furthermore, if those two

sicles are multiplied by IIBIIF' the following relation is obtained:

(6.21)

Now, substituting for II·IIF in the foregoing inequality from the inequality of eq.(4.19)

results in

l
2 -1 Jmm II B I!;

..j:;;;j liB" F liB "F ~ m(m-2)/2 1det(B) 1
(6.22)
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Figure 6.3: Comparison of the reciprocal of the condition numbers

or

(6.23)

Hence,

(6.24)
trm (B BT)

mm det(B BT)

the lower bound for KF thus turning out to be the normalized Frobenius-norm condi-

tion number, with equality holding only when B is isotropie or when m = 2. Hence,

(6.25)

• Upper bound:



In order to obtain an upper bound for K. F , a theorem relating the harmonie, arith­

metic and geometrie means for a set of m positive real numbers is first reealled

(Mitrinovic, 1970). Let 0 < al < a2,···, < am, and define the harmonie mean

H(a), the arithmetic mean A(a), and the geometric mean G(a) of these numbers,

respeetively, as

1
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m
H(a) = 1 1 1-+-+ ... +-

al a2 am

A(a) = al + a2 + ... am
m

1
G(a) = (a 1 a2 ... am);n

Then,
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(6.26a)

(6.26b)

(6.26e)

(6.27)

Now, if {ai}i is the set of eigenvalues of the matrix product B B T , with va; being the

corresponding singular value of B, then {1/ai}i is the set of eigenvalues of (B B T ) -1 .

Hence, by making use of inequality (6.27) and its inverse, one can extract the two

inequalities given below

Therefore,

1 1- > ------:-
al - [det(B BT)]*

(6.28)

am tr(BBT )
- > 1 (6.29)
al - m [det(B BT)];n

Recalling the definition of the 2-norm condition number as the ratio of the largest

singuIar value of A to its smallest one, the foregoing inequality takes on the form

tr(B BT) -J..
1 =/"i;m

m [det(B BT)]m F

(6.30)

·r...

The upper and the lower bounds of KF are thus obtained as given by inequalities

(6.25) and (6.30), namely,

(6.31)

q.e.d



• Rectangular ~ratrices A ER mxn:

The proof of the foregoing theorem for the existence of the upper bound can im­

mediately be extended to rectangular matrices since no reference was made to any

features of square matrices. Hence, the upper bound as given above applies directly

to rectangular matrices as weIl. With the following theorem, it will also be shawn

that the same lawer bound can be obtained for K,F. First, it is noted that a smaller

lower bound may be obtained immediately, as shown below.

Let B = A AT and rewrite the relation given by eq.(6.25) for the square matrix B

1
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as
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trm [(A ATp]

mm det 2 (A AT)
(6.32)

next, we recall inequality (4.14), i.e.,

ylaking use of the foregoing relation, the inequality (6.32) cao be rewritten as

(6.33)

tr2m CA AT)

mm det2 (AAT
)

or
trm (AAT

)

mT det(AAT
)

Hence,

trm (AAT
)

mm det(AAT
)

which provides a smaller lower bound for KF • .After performing extensive numerical

tests and comparisons between KF(A) and KF(A), it became apparent that the same

lower bound as obtained for square matrices should exist for rectangular matrices as

weIl. The theorem below is indeed a validation of this numerical observation.
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Theorem 6.2

The candi tioning measure of the full-rank m x n matri.:Y:, denoted by KF (A) is bounded

by the normalized Frobenius norm from below and by the m th power of the 2-norm

condition number from above, i.e,

(6.34)

Praof:

• Lower bound:

We start with an inequality coneerning the elementary symmetric functions Sk of a

set of positive numbers A = {ab a2 ••. am} (Hardy et al., 1934; j\tIirsky, 1956), where

(6.35)

(6.36)

(6.37)

(6.38)

(6.39)

Theo, as shown in the aforementioned referenees the inequality given below ean be

derived:

S < -(m-2) S(m-l)
m-l _ m l

that is,

Dividing both sides of the foregoing inequality by nonzero Sm, the following inequal­

ity is obtained,

l 1 1 -(m-2) (al + a2 + ... + am)(m-l)
-+-+···+-<m
al a2 am - al a2 ... am

(6.40)

y
-1

Now, let ai be the ith eigenvalue of the matrix product AAT . Renee, the foregoing
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inequality takes on the form
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(6.41)

tr(m-l)(A AT)
tr[(AAT)-I] < ---~-~

- m(m-2) det (AAT )

~Iultiplying both sides of the foregoing inequality by ~2 tr(A AT) and making use

of eq.(4.18) one can obtain the resuit shown belo\v:

2 __1_ [(A AT)-l] (A AT) < trm(A AT) = ~2
"'F -m2 tr tr - mm det (A A) TlJ F

Hence, the same lower bound is now obtained for K,F' i.e.,

K. - < K,FF -

• Upper bound:

Provided already for the proof of the upper bound given in Theorem 6.1.

(6.42)

q.e.d

In terms of the set of eigenvalues of the matrix product A AT~ i.e.. {ai}r, and the

ordering of the minimum, maximum, and the three different types of means of this

set explained before, eqs. (6.26), one can observe an interesting comparison given

below.

Knowing that

al ~ H(a) < G(a) ~ A(a) ~ am

we have

(6.43)

(6.44)

(6.45)

(6.46)

;r
1.

•
We thus, conclude that KF being a function of the trace and the determinant only, KF

can be considered as a useful tool for both design and control of seriaI-type robotic
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manipulators. For control purposes, at lower condition numbers, KF can be used

directly, while, at high condition numbers, say around mm, (K F ) ~ can be employed

instead. Furthermore, it cao be readily shown that, at the isotropic configuration,

where aIl singuIar values of A are identicaI, KF attains a minimum value of unity,

similar to other definitions of the condition number.

Having discussed the merits of KF(A), one can proceed and exploit its simple form

and derive geometricaI insights into manipulator kinematic dexterity. First, we will

need the definitions given helow:

Definition 6.1 A layout L of a manipulator is a set of lines {Ai Fi, with line Ai

representing the axis of the ith revolute joint of the given manipulator (Fig. 6.4).

.;4, 1"2

~.
Hn.-r

en.-r~
p ~

Hn.
.;4 ...-r

e~7

An.

Figure 6.4: A.."<is-Iayout of a seriaI manipuIator

Remark 1: Ooly the relative layout of the axes is important. A layout is thus fully

specified by the set {8i}~, for a given manipuIator architecture.



Definition 6.2 The operation point P of the manipulator is the point of the last

link of the manipulator whose linear velocity is of interest, the Jacobian matrix being

evaluated with respect to P. This point has the position vector p.

1
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Definition 6.3 For a given layout L, the rms value of the distances {di}~ from ail

axes to the operation point P is called the layout length Le..

Definition 6.4 Let J be the Jacobian matrLy of a given manipulator with a given

posture of layout L. The layout normal Jacobian j is defined as

(6.47)

Definition 6.5 For a given manipulator, at a given posture of layout L, the layout

conditioning "'e = K-F(J) is defined as

- -T
mm clet (J J )

(6.48)

·r

Remark 2: l'i.e = "'e (fJ21 • •• 1 fJn , Le, p)

Remark 3: The layout length Le. minimizes the layout conditioning l'i.e of any layout

L (see Section 6.3.1.

Definition 6.6 The point Pc with respect to which the layout conditioning "'e zs a

minimum is the layout centre.

Definition 6.7 The characteristic layout of a manipulator, c'c, is the manipulator

layout at which "'c is a minimum.

Definition 6.8 The characteristic length Lc of a manipulator, is the layout length

determined at the characteristic layout.

Definition 6.9 The characteristic point Pc of a manipulator is the layout centre

associated with the characteristic layout.
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6.3 Determination of the Layout Length and the

Layont Centre

6.3.1 Layont Length

As discussed in Chapters 3-5, when considering the overall Jacobian matrix for both

positioning and orienting tasks, normalizing the last three rows of J is essential, for

the singular values of J have different units and, thus, cannot be cornpared. Although

scaling the manipulator Jacobian is a relatively new idea in the context of robotics,

on the one hand, it lends itself to a broader notion of equilibration and scaling in

the context of nurnerical analysis of linear systems, (e.g., Glob and Van Loan, 1989;

Kahan, 1966). As discussed in Kahan (1966), a systematic approach to defining

the scaling factors that render the matri.x weIl conditioned is an open question. In

this chapter, we show that for any nonsingular manipulator Jacobian matrix, explicit

formulas for Le. can be obtained that minimize KF(J) and K:F(J). On the other hand.

within the framework of the group of rigid body motions SE(3), one can define the

Riemannian metric G, on the manipulator workspace, as (Park and Brockett. 1994)

Minimizing K F

G =Diag[ 1 1 1 l
Le.

l
Le

In this section we resort to directly minimizing K~ as a function of the layout length

Le., for any given set of joint variables 8, and for a given location of the operation

point P of the end-effector. Let

2 1 - - l
K_ = -2tr(A) tr(A- )

F m

where
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with E and S defined in eq.(5.1). The condition for a stationary value of "'F in terms

of Le is
a",} = Btr(A) (A--1) (A) Btr(A-1) = 0
aL

p
- aLe tr + tr aLe.

yIoreover,

tr(Â) = tr(nT) = tr(EET) + ;~ tr(SST)

In order to obtain tr[(J JT)-l], matrix A -1 is block-partitioned in the form

(6.49)

(6.50)

(6.51)- 1 - -T 1 [B11 B12]A - = (J J )- =
B 21 B 22

explicit expressions for the foregoing blocks being availahle in the literature (House-

holder, 1964); Thus,

~Ioreover, the diagonal blocks of Â.-1 are

Bu =[EET - EST (S ST)-l S ETr 1

B = [-2.- S ST - _1 SET (E ET)-l E ST]-l
22 - L~ L~

Hence,

(6.52)

(6.53)

(6.54)

(6.55)

(6.56)

tr(.î jT)-l = tr [E ET - EST (S ST)-l S ET]-l

+ ;~ tr(SST -SET(EET)-lESTt l

Substituting eqs.(6.55) and (6.50), into eq.(6.49) leads to a unique solution for the

fourth power of the layout length Le, namely,

L
4

_ tr(S ST) tr [E ET - EST (S ST)-l S ET]-l

C. - tr(E ET) tr [S ST - SET (E ET )-l E ST]-l

Furthermore, recalling that tr(S ST) = L~ Ilek x rkll 2
, and that tr(E ET) = n, it

follows that

1 L4 _ L~ Ilek x rkl1 2 tr [E ET - EST (S ST)-l S ET]-l
C. - n tr [S ST - SET (E ET)-l E ST]-l

(6.57)



Le, as given above, minimizes the normalized F-norm condition number "'t of any

nonsingular posture of the manipulator. which, in tum~ leads to a unique expression

for the layout length itself, under the condition that this length he reaI and positive.

The manipulator characteristic length Le is, then, defined as that Le that is evaluated

at the characteristic layout. The presence of four matri.x inversions in the foregoing

expression should not be considered as a deterrent, since, at the characteristic layout~

aIl these matrices are best conditioned.

l
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Furthermore, if the manipulator at hand is isotropie, then the expression given

by eq.(6.57) becomes that given by eq.(5.5). This can be shown by noting that~

at the isotropie posture, EST = 0, tr(EET)-l = 1/tr(EET ), and tr(SST)-l =
1/tr(S ST), with 0 denoting the 3 x 3 zero matrix.

As shown below, if the layout conditioning KF is minimized instead of "'F' then the

same expression for the layout length of isotropie manipulators will be obtained.

Minimizing K. F

Here it will be shown how the conditioning measure KF is used to derive an expres­

sion for the layout length of both isotropie and nonisotropic general manipulators.

Rewriting the isotropy condition for the normalized Jacobian matrix as

(6.58)

we obtain

(6.59)

and

-1

(6.60)

(6.61)
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Henee,
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(6.62)

(6.63)

Next, in order to find Le. so as to minimize KF , the derivative 8il.;'/8L is equated to

zero, whieh yields an expression for L 2 as shown below:

L2 = L~ /Iek x rk/l 2

n

which is the same as the charaeteristie length L for an isotropie n-axis manipulator

for positioning and orienting tasks obtained in Chapter 4, and is equal to the rms

value of the distances of the operation point to the joint axes. The merits of the

layout length, as defined above, go beyond the realm of dimensional consistency, for

it ean be used as a very usefuI normalizing tool when comparing manipulators for

dexterity and workspace volume in the process of optimum kinematic design.

6.3.2 Layout Centre

In this section we derive an expression for the position vector of the layout eentre Pc.

of the end-effeetor at which lit:. associated with the layont of the manipulator attains

a minimum value when compared \Vith any other point of the end-effector.

First, the Jacobian transfer formula (A.ngeles et al., 1992) relating the Jacobian

matrLx Jp associated with point P, ta the Jacobian matrix Jo associated with a

point 0, of the end-effector, is reealled:

with matrix Uop defined as

U OP =[13 0]
-p 13

where 13 and 0 are the 3 x 3 identity and zero matrices, respectively. ~Ioreover,

P is the eross-prodnet matrix of vector p, directed from 0 to P, that is, given any

l
vector q, we have,

Pq=pxq (6.64)



It is required to minimize "'c. over the set of points of the end-effector! of position

vector P, and for a given nonsingular manipulator axis-Iayout denoted by (J, namely,

1
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where~

trm[(.Ï p .Ï~)J

mm det (Jp Ji:)

~Ioreover,

tEeS - PE)T ]

b(S - PE) (S - PE)T
(6.65)

where S is evaluated with respect to point Q. Clearly,

(6.66)

which means that any determinant-based measure is insensitive to a change of the

operation point. Thus, in light of eq.(6.66), the optimality condition for K.c. in terms

of Pp reduces to that of trm[(.Ï P .Ï~)L Le' 1

- -T
8trm [(Jp J p)J = 0

8p

which leads to the optimality condition for the distortion density of the forward

kinematics, as discussed in Park and Brockett (1994L Le.!

- -T
_8t_r_(J_P_J.....;;..p_) = 0

8p

With the aid of eq.(6.65), the foregoing condition can be expressed as

atr(jpj~) 2 8tr(PEST ) 1 8tr(PEET p T )

8p = L~ 8p - L~ 8p = a

(6.67)

(6.68)

It turns out that the optimality condition for the layout center is independent of the

choice of normalizing length Le. In order to further expand the latter expression, two

identities whose derivations are gjven, respectively, in A.ppendix C 1 and in Angeles

(1997), are introduced next. Let A and B be 3 x 3 matrices! with B skew-symmetric:

then,



Chapter 6. A Geometrie Analysis of Kinematic Isotropy

tr(BABT
) = bT b tr(A) - ~bT (A + AT) b

tr(B A) = 2 bT vect(AT) = -2 bT vect(A)

where

b =vect(B) = -vect(BT
)
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(6.69a)

(6.69b)

and the operator vect(·) represents the axial vector of its matrLx argument, as defined

in Leigh (1968). The axial vector of any 3 x 3 rnatrix B has the following property

1
[vect(B)] x a= Ba = 2(B - BT)a

where, 13 is the skew-symmetric part of the Cartesian decomposition of any matrix B.

If additionally, 13 denotes the corresponding syrnmetric part, then we have (Leigh~

1968)

\Vith
- 1 T
B =-(B+B ),

2
- 1 T
B =-(B - B )

2

Now, if the right-hand side terms in eq.(6.68) are expanded, while making use of the

identities given above, we have

and

8tr(P EST) 2 (S ET)8p = vect

8tr(P E ET pT) _ ? (E ET) _ 2 E ET8p - _ Pp tr Pp

= 2 [tr(E ET) 13 - E ET] Pp

= 2 (n 13 - E ET) Pp

(6.70)

(6.71)

l

Finally, by substituting the two foregoing equations into eq.(6.68), we can solve for

the position vector Pp of the layout center Pp that minimizes K.
F

for any nonsingular

layout of the manipulator, namely,

(6.72)
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The manipulator characteristic point Pc is then obtained by evaluating the layout

center Pc at the characteristic layout. Hence, using the DH notation while expressing

vector Pc in the (n - l)st coordinate frame attached ta the (n - l)st link! we have

[PX ] [ an cœ On ]
Pc = Py = an sinOn (6.73)

Pz bn

thus,

an = VPi + p; (6.74a)

bn =pz (6.74b)

On = arctan (::) (6.74c)

6.4 Determination of the Characteristic Layout

Having obtained explieit expressions for the layout length Le, and the layout center

Pc., the optimization problem for determining the charaeteristic layout defined by

the set of joint variables (Je is formulated as

Le =

But

n
Pc. = 2 (E ET - n 13)-1 vect(E ST)

On = arctan (PY)
Px

(6.75)

(6.76a)

(6.76b)

(6.76e)

Therefore, the characteristic layout turns out to be only a function of O2 to On-l, i.e.,

(6.77)

1
In light of the foregoing formulation, it is apparent that the dimension of the vector

of design variables is reduced from n + 2 to n - 2, and that these variables are now
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1

of the same nature, i.e., aIl are joint variables. Moreover, at eaeh iteration with the

eurrent set of joint variables both Le and Pc are explicitly evaluated. Hence, at the

last iteration, when the final solution (Je is obtained for the eharacteristic layout,

the associated layout length and the layout centre will beeome the manipulator

charaeteristic length Le and the manipulator characteristic point Pc, respectively.

The latter quantities are indeed intrinsic to the manipulator and do not depend on

the physical shape of the end-effector, although they should be taken into account

when designing end-efIectors.

6.5 Examples

In this section the manipulator charaeteristic length Le, the manipulator character­

istic point Pc, and the characteristie layout (Je of sorne six-axis manipulators as weIl

as a redundant seven-a'Xis manipulator are determined.

6.5.1 Nonredundant Manipulators

Here we examine industrial manipulators such as the Yaskawa Aid 810, the Puma

560, the Fanue Arc Nlate, the Asea IRB 6/2, as weIl as an isotropie six-a'Xis research

manipulator. The optimization toolbox of NIatlab was once again used to implement

the minimization problem given by (6.75), and eqs. (6.76).

As the first example, the six-axis isotropie manipulator called DIESTRO, whose com­

plete design is discussed in (Williams, Angeles, and Bulca, 1993) shown in Fig. 6.5,

is considered.

As Jiscussed in the latter reference, DIESTRO being isotropie, admits a set of

isotropie postures or charaeteristic layouts that are represented by,

Next, for the sake of comparison, it is assumed that the DH pararneters of this

manipulator are given without the knowledge that they correspond to an isotropie
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Figure 6.5: DIESTRO: A six-axis isotropie manipulator
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manipulator, and thus, we aim at finding the eharaeteristie layout as weB as the asso­

eiated manipulator eharaeteristic point Pc and the manipulator charaeteristic length

Le- Starting with several randomly generated initial guesses for the design param­

eters {(}}~, the algorithm mentioned before eonsistently eonverged to the isotropie

posture. One of these examples is summarized in Table 6.1.

Next, the eharacteristic layout of four nonisotropie industrial manipulators, together

with their corresponding manipulator characteristic points and lengths are deter­

mined. The numerical results of these examples are summarized in Table 6.1, which.

interestingly, shows that the dexterity based on the condition number as defined

here, of industrial manipulators can he substantially enhanced by a proper choice of
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O2 fh 04 8s 86 Le a6 b6 l'Ï.[;'

Manipulator (deg) (deg) (deg) (deg) (deg) (mm) (mm) (mm)
DIESTRO 90.0 -90.0 90.0 -90.0 180.0 100.0 100.0 100.0 1.000
Yaskawa -93.45 -24.18 181.46 -117.0 -8.68 410.09 367.94 -443.18 1.0663

Puma 560 -76.0 25.30 -23.80 69.13 -2.97 223.76 154.22 -229.3 1.0633
Fanuc 88.33 -28.32 -42.03 61.63 -21.48 559.46 518.92 -587.20 1.0737

Asea IRB -268.23 204.34 -20.74 61.76 -170.91 283.2 561.0 308.13 1.0739

Table 6.1: Numerical results

the operation point.

Furthermore, the graphical renderings of these manipuIators with both their original

end-effectors and their end-etfectors modified based on the location of the associ-

ated manipulator characteristic points at their characteristic layout, are shown in

Figs. 6.6-6.9.

Ca) Cb)

1

Figure 6.6: Yaskawa Aid 810 at the characteristic layout: Ca) Full rendering with
original end-effector, Cb) skeleton rendering with modified end-effector
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(a) (b)
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Figure 6.7: Puma-560 at the characteristic layout: (a) Full rendering with original
end-effector, (b) skeleton rendering with the characteristic point

6.5.2 A Redundant Industrial Manipulator

In order to demonstrate the effectiveness of the technique presented in this chapter for

redundant manipulators, an industrial redundant2 manipulator is examined here. For

this purpose, we consider the dextrous seven-axis Sarcos manipulator manufactured

by Sarcos Research Corporation (Jacobsen et aL, 1990; Smith et al., 1992). The DH

parameters of this anthropomorphic arm with two 3R modules are given in Table 6.2,

while a drawing depicting its architecture is shown in Fig. 6.10.

Optimum posture design with the original operation point

The last link length a7 = 0.21 m, as given in Table 6.2, defines the location of the

operation point of the end-effector. Using this operation point, the characteristic

layout of the arm is then determined by minimizing the condition number over the

2 Aecording to the arguments presented in Chapter 5, this manipulator is considered pseudore­
dundant , because, by loeking one of its joints, say the elbow joint, the manipulator williose more
than one degree of freedom.
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(a) (b)

t

Figure 6.8: Fanuc Arc Mate at the characteristic layout: (a) Full rendering with
original end-effector, (b) skeleton rendering with the characteristic point

set of joint variables {9}~. With the aid of fmins, the optimum joint variable vector

Be, defining the characteristic layout of the arm, and the characteristic length Le of

the manipulator are obtained after 825 iterations as shown below:

Be = [81 -90.0430 80.7730 -105.461 0 89.975 0 -89.861 0 -37.845° JT ,

Le = 0.1815 ID

(6.78)

Link i ai ID bi ID ai (deg) (Ji

1 0.0 0.0 90.0 (J1

2 0.0 0.0 -90.0 (J2

3 0.0 0.355 90.0 (}3

4 0.0 0.0 -90.0 (J4

5 0.0 0.230 90.0 (}s
6 0.0 0.0 -90.0 (}6

7 0.21 0.0 0.0 (}7

Table 6.2: DH parameters for the Sarcos manipulator
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(a) (b)

l

Figure 6.9: Asea IRB 6/2 at the characteristic layout: (a) skeleton rendering with
original manipulator, (b) skeleton rendering with the characteristic point

At this configuration we have K. F = 1.2430, K p = 1.0733, and 1'i.2 = 1.5867,. The

foregoing minimum value of the 2-norm condition number-which is in the same

range as the optimum condition numbers obtained for the three pseudoredundant

manipulators introduced in Chapter 5-corresponds to a Conditioning Index (CI)

of 63%. If the optimization of the dexterity of the manipulator had been included

as part of the kinematic design requirements determining the architecture of the

manipulator at hand, a higher cr for the manipulator could have been obtained,

which will become apparent in the remaining of this section.

Optimum posture design while modifying the operation point

Next, the characteristic layout specified by the set {9c}~, as weIl as the manipulator

characteristic length L c , and its characteristic point Pc, are determined by eqs. (6.76).

That is, a new location of the operation point is sought, in order to improve the layout
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l

Figure 6.10: Seven-axis Dextrous SRC Arm (Sarcos Research Corporation~ 1993)

conditioning of the arm, namely,

Be = [fh 96.979° 0.006° -115.829° 0.00 75.029° ]T •

Le = 0.1626 m

Pe = [-0.0987 0.0 -0.1595]T fi

Hence, the last link length, offset and joint variable are readily determined from

eqs.(6.74), i.e.,

a7 = 0.0987 m

b7 = -0.1595 m

rh = 180.00

For the minimization of KF' fmins was once again used and the results were obtained

after 413 iterations. The layout conditioning K,F' normalized F-norm condition nUffi­

ber "'F' and the 2-norm condition number of the Jacobian matrix at the characteristic
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1

layout were found to be KF = 1.1251 1 "'F = 1.0390, and K2 = 1.4295, with a Con­

dition Index (CI) of 70%. The skeleton rendering of this manipulator with its new

end-effector is shown in Fig. 6.113 .

Figure 6.11: Skeleton rendering of Sarcos arro at the characteristic layout

For the sake of comparison from a computational point of view, the foregoing re­

sults are compared \Vith an alternative formulation where aIl the nine unknowns are

grouped into a vector of design variables and found directly through the optimization

of the condition number. Using fmins, after 2189 iterations the results shawn below

\Vere obtained:

3Note that the first joint a."Cis of the manipulator in the reaI setup makes an angle of 45° with
the vertical axis; the default direction for the first joint under RVS is vertical.
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Le = 0.1744 m

Pc = [1.6542 1.0932 1.3301 ]T m
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l

The layout conditioning KF , normalized F-norm condition nurnber l'i. F , and the 2­

norrn condition number of the Jacobian matrbc for this layout were found to be

X:F = 1.3301, ""F = 1.0932, and 1'\,2 = 1.6542, with a Condition Index (CI) of about

60%.

It is interesting to note that, by directly minirnizing the condition nurnber over the

set of nine rnixed variables mentioned above, as compared to the method presented

earlier in this chapter where K
F

is minimized over the set of five joint variables {8i}~

only, a much slower convergence, with more than five tirnes the numher of iterations,

occurs. Nloreover, computationally, each iteration of the former method where the

2-norm condition number needs to be evaluated is significantly more expensive than

the latter, which only needs the computations of the trace and the determinant. It

should also be noted that, once again, the pseudoredundancy of this anthropomorphic

design leads to a non-isotropie design, i.e., isotropy is not possible.

6.6 Conclusions

~Iotivated by a measure of isotropy introduced by Kim and Khosla (1991L an al­

ternative dexterity measure K
F

was devised. This measure is significantly simpler

to evaluate than any other condition number-based indices. :Nloreover, this measure

is a function of the trace and the determinant of the matrix at hand, thus allow­

ing for its symholic differentiation. It was shown that PiF arises naturally when a

linear approximation of the normalized Frobenius-norm condition nurnber li F is de­

termined. The upper and lower bounds of KF were obtained for both square and

rectangular matrices. The lower bound was found to he the normalized Frobenius­

norm while the upper bound the mth power of the 2-norm condition number. The

kinematic dexterity of seriaI manipulators was then discussed based on the notions
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of manipulator layout L, layout length Le., layout conditioning "'e =KF , and layout

center Pe.- By directly minimizing '"F over the set of aIl normalizing lengths of the

Jacobian matrix, an explicit expression for the layout length was derived. Similarly,

an explicit expression for the position vector of the operation point of the last link

that renders "'F a minimum was obtained. The characteristic layout of the manipu­

lator was defined as a layout whose conditioning "'e is a minimum. The concepts of

manipulator characteristic length and characteristic point were then defined as the

layout length and centre evaluated at the characteristic layout. Numerical exarnples

of sorne industrial manipulators were chosen to illustrate the significance of these

concepts. Significant improvements on the number of iterations and convergence of

the optimization problem were achieved when compared with the minimization of

condition numbers that rnakes no use of the layout length and layout centre.
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Chapter 7

REDIESTRO 1

7.1 Introduction

In this chapter an overview of the design and manufacturing of a redundant seven­

a..'Cis manipulator with an isotropie architecture for sL'C-dimensional Cartesian tasks is

reported. This manipulator~ which is named REDIESTRO 1 (REDundant. Isotropi­

cally Enhanced~ Seven-Turning-pair RObot) was designed, manufactured and imple­

mented at the ~IcGill Centre for Intelligent NIachines (Ranjbaran et al.~ 1995). Since

its completion in 1994~ REDIESTRO 1 has been serving as an experimental platform

for several robotics-related projects both internally in the department of ~Iechanical

Engineering of NIcGill Gniversity and in collaboration with external research groups~

(Seyfferth and Angeles, 1995; Canadair DSD, 1994, 1997; Shadpey et al., 1996).

REDIESTRO 1 is currently located at the Robotics Laboratories of the Department

of Electrical and Computer Engineering of Concordia Vniversity~ where it is being

used for the STEAR-5 Phase IIP Project conducted by Bombardier Inc., Canadair

Defence Systems Division (DSD), and the two universities, Concordia and ~fcGill, as

contracted by the Canadian Space Agency. In phase II of STEAR-5, REDIESTRO 1

was used to implement Trajectory Planning and übject Avoidance (TPOA) schemes

l Strategie TEchnologies in Automation and Robotics



Chapter 7. REDIE5TRO 1 158

developed for redundant manipulators. During phase III of the same project. cur­

rently under way, hybrid position-and-force and impedance control techniques are

being successfully applied to REDIESTRü 1 for tasks such as surface cleaning and

insertion and removal of mating objects such as Orbital Replacement Units (ORU)

type objects.

7.2 Design Methodology

The kinematic design of nonredundant manipulators, has been mainly oriented ta­

wards achieving kinematic solvability and manufacturing feasibility. These criteria.

in turn, have led to the existence of a particular c1ass of manipulators whose axes

are either parallel or perpendicular, i.e., orthogonal manipulators. Here, we mean by

orthogonal a manipulator whose consecutive axes make angles that are multiples of

90°; for example, most industrial manipulators with spherical wrists; or with planar

two-revolute subchains are of the aforementioned type. A general classification of

manipulators with simple inverse kinematics is reported in (Nlavroidis and Roth,

1992). The associated simple inverse kinematics has been formulated by exploiting

special features, like orthogonality, of the kinematic structures of these robots. \Vith

the advent of fast and general inverse kinematics algorithms developed in the last

ten years, however, the need for simple kinematic structures is less dominant. On

the other hand, parallelism and orthogonality of the axes can give rise to undesirable

singularities. These singularities are manifested, for example in the rate control and

kinematic calibration of these manipulators (Hayati, 1982; Bennett et al., 1992),

Serving the two foregoing objectives exc1udes a major c1ass of manipulators with

general architectures. By exploring general manipulator architectures, one cannot

only improve the numerical conditioning of the manipulator kinetostatic maps, but

also take into consideration other critical issues pertinent to the design and realization

of the overall robotic systems.

For the case of redundant manipulators, general design criteria have been proposed.



For example~ Hollerbach (1985) outlined the following features as guidelines for the

design of these manipulators:
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• Elimination of internaI singularities;

• Optimization of workspace;

• Kinematic simplicity;

• wlechanical constructibility

It is apparent that the foregoing criteria highlight critical issues for the design of gen­

eTal redundant manipulators. Sorne researchers have emphasized methodologies for

the design of redundant manipulators for specifie tasks or classes of tasks. In this re­

gard, the framework of task-based design for reconfigurable modular manipulators has

been introduced (Kim and Khosla, 1991, 1992a-c). In the design of REDIESTRO 1,

we have been mainly concerned with kinematic conditioning and isotropy. Thus, the

main issue determining the architecture of REDIESTRO 1, defined by its Denavit­

Hartenberg (DH) parameters, was the optimization of its kinematic conditioning.

In Chapter 5, the kinematic design of redundant manipulators for isotropy was dis­

cussed in detail. It was shown that this criterion led not to one set of DH pararneters.

but rather to a manifold of these sets, which allowed the incorporation of further re­

quirements. In addition to the design criteria listed above, issues such as maximum

reach, structural behaviour, link-motor collision considerations, and functionality

properties were considered. These requirements, in turn, allowed the determination

of the link shapes and the selection of aetuators. In the following sections, the overall

strategy based on the integration of different aspects and stages of the design process

is discussed and heuristic design rules are provided.

The major design activities undertaken from the start of the project to the prepara­

tion of the shop drawings of REDIESTRO 1 are listed below:

1. Kinematic design
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2. Preliminary mechanical design

3. Detailed mechanical design

4. Three-dimensional rendering and animation

5. Redundancy resolution and kinematic simulation
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Items 1-4 will be discussed in detail presently, while item 5 has been the main con­

tribution of Concordia University to the realization of the REDIESTRO 1 work-cell.

The activities mentioned above have been integrated into a hierarchical framework

that consists of three different iterative loops at different levels. The flow diagram

shown in Fig. 7.1 depicts these activities and the corresponding loops.

The innermost loop consists of the kinematic design and skeleton rendering of the

resulting architectures. Numerical optimization techniques were utilized for the kine­

matie design, whereby a set of different isotropie seven-axes manipulators \Vas ob­

tained. Three-dimensional visualization of the corresponding models in the form

of simple skeleton renderings were then analyzed and additional structural require­

ments were imposed to narrow down the selection set. As a result of this loop, a

first candidate was chosen and the corresponding normalized HD parameters \Vere

identified.

The second loop includes the kinematic and preliminary mechanical design. .-\t this

stage, based on the requirements on the volume of the workspace and maximum

reach, the candidate manipulator was scaled,. A preliminary mechanical analysis

based on required performance eharacteristics of the manipulator was then performed

and the actuators were selected. Furthermore, a preliminary layout of the links and

placement of the actuators was also outlined. Funetionality of the design and actua­

tor placements required further eonstraints on the DH parameters. This demand \Vas

achieved by imposing additional constraints on the kinematic optimization schemes,

whereby the final scaled DH parameters were determined.

The final design loop consists of the detailed mechanical design, detailed three-dimensional
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renderings and animation. In this loop, with the given DH parameters and actua­

tor specifications, the detailed mechanical design of the links was performed. Issues

such as workspace requirements, ranges of motion of each joint and collision of the

link-actuator subassemblies were set forth as final design requirements. These issues

were analyzed using detailed three-dimensional renderings of the assembled manip­

ulator and thus, the required modifications on the shape and geometry of the link

subassemblies were made.

7.3 Kinematic Design

The methods of isotropie design discussed in Chapter 5, were employed as the kine­

matie design too!. The first candidate design emerging from the first design loop is

the second isotropie design introduced in Chapter 5, Design 2. Recall that the addi­

tionai design requirements set out for Design 2 were mainly to concentrate as much

of the manipulator mass as possible close ta the first axis. The skeleton rendering of

this design is once again sho\vn in Figure 7.2 for quick reference.

7.4 Preliminary Mechanical Design

At this level, primarily an overall kinematic performance for the manipulator is

specified, actuators are selected, and a rudimentary design of the manipulator is

performed. Any final minor modifications or refinements of the kinematic architec­

ture are made at this stage.

1. Scaling of the manipulator:

First, It is necessary to bring the candidate architecture into its fuIl-scale di­

mensions. To do this it is required that the manipulator should have a reach

of 1.0 m when aIl joint angles are zero. Based on this yardstick, the candidate

manipulator is scaled as given in Table 7.1.
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Link i ai (mm) bi (mm) Qi (deg) (Ji (deg)
1 0 0 -62.71 0
2 6.7 0 -11.10 35.10
3 0 49.4 106.68 62.71
4 634.4 0 72.87 117.71
5 0 -527.1 55.83 -24.63
6 20.7 910.6 62.84 -2.32
7 338.2 -415.6 0 225.45

Characteristic Length = 292.921 mm
Reach at Zero Configuration = 1000 mm

NIaximum Reach = 1866.05 mm

Table 7.1: Scaled parameters of the candidate manipulator
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Link axis No. 1 2 3 4 5 6 7
Nominal payload distance m 1.0 1.06 1.06 1.04 0.53 0.52 0.34
NIa"\:. joint velocity S-I 1.0 0.8 0.8 0.8 1.65 1.65 1.65
Time to travel 90° s 1.57 1.96 1.96 1.96 0.95 0.95 0.95
Payload linear velocity mis 1.0 0.85 0.85 0.83 0.87 0.86 0.56
Min. average ang. ace. S-2 9.81 7.40 6.94 6.60 11.10 10.38 14.41
Average payload g-factor g 1.0 0.8 0.75 0.70 0.60 0.55 0.50
j\Iax. acceleration time s 0.1 0.1 0.11 0.12 0.15 0.16 0.11

1Drive output speed rpm 9.55 7.64 7.64 7.65 15.7 15.7 15.7

Table 7.2: Design specifications for angular velocities and accelerations

2. Preliminary performance specifications:

The overall preliminary design specifications for velocities and accelerations

of different links are given in Table 7.2. Based on these requirements. the

preliminary selection of the actuators \Vas made. For aIl seven drives~ DC

servo-motors equipped \Vith harmonie drives, incremental encoders and electro­

magnetic brakes were selected.

3. Preliminary design of the link subassemblies:

At this stage a rudimentary layout of the link shapes and actuator placement

are made, and the conceptual design of the corresponding subassemblies is com­

pleted. It was observed that, although, keeping the first four of the actuators
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{

Figure 7.2: FuHy isotropie seven-axis manipulator: first candidate manipulator

close to the first axis is advantageous from the point of view of dynamic per­

formance, installation of the four units at a close vicinity proved to be difficult.

In particular, since the joint axes 2 and 3 of the candidate manipulator almost

intersect at about 110 (Fig. 7.2), one possible solution was the use of a differ­

ential gear transmission bet,veen actuators 2 and 3. The preliminary design of

the candidate manipulator with the differential gear that was implemented for

this purpose is shawn in Fig. 7.3.

Before leaving the Iast iterative design loop, it was decided that, by madifying the

kinematic structure of the manipulator, the differential gearing system be eliminated.

In order ta do this, the link length a2 was preassigned a minimum value that could

enclose two of the selected actuators. In turn, one of the canstraints, namely b2 = 0,

was relaxed from the numerical formulation of the kinematic design. The outcome
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Figure 7.3: Completed preliminary design of the candidate manipulator
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of this final modification was our final design, whose three-dimensional skeleton ren­

dering is shown in Fig. 7.4, and whose scaled DH parameters are given in Table 7.3.

It is apparent that the first four joints are divided into two separate groups of two

joints, that still lie as close as possible to the first axis. This completed the itera­

tive kinematic and overall mechanical design loops, thereby completely defining the

architecture of REDIESTRO 1.

7.5 Detailed Mechanical Design

Having completed the preliminary kinematic and mechanical designs ofREDIESTRO l,

the detailed mechanical design of the link subassemblies was undertaken. The exact

shape of each link, together with the location of the corresponding actuators along

each joint a..xis formed the last design loop, as shown at the bottom of the design

flow diagram of Fig. 7.1. Hence, as another outcome of this loop, the offset distance
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Link i ai (mm) bi (mm) Qi (deg) Bi (deg) dol(mm) 4J (deg)
1 0 0 -58.31 0 952.29 0.0
2 231.13 -22.91 -20.0289 -11.01 -114.043 0.0
3 0 36.93 105.26 91.94 -97.0 0.0
4 398.84 0 60.91 113.93 133.93 180.0
5 0 -471.59 59.88 -2.26 -10.9172 180.0
6 135.59 578.21 -75.47 150.25 267.6810 0.0
7 234.44 -145.05 0 63.76 -128.55 180.0

Scale Factor = 0.1926
Characteristic Length = 220.6505 mm

EI=l ai = 1000 mm
Reach at zero configuration = 1218 mm

NIaximum Reach = 2190.9 mm

Table 7.3: Scaled parameters of REDIESTRû 1
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from the origin of frame i along the ith joint axis to a reference point attached to the

actuator, denoted by I~ should be determined. This motor-insertion offset distance is

denoted by dOl. The location of the actuator reference point is taken as the centre of

the output shaft and level with the face mounting flange, as shown in Figures E.l to

E.4. The orientation of the ax:is of the ith actuator inserted with respect to the ith

joint axis is also given (angle tPi)' This angle determines whether the output shaft

of the actuator inserted in the link points along the positive or the negative z-a..""(is.

Furthermore, in this loop, with the aid of RVS, the Robotic Visualisation System

developed at CI~I, a step-by-step design of each link-and-actuator assembly was com­

pleted, while monitoring many different issues, such as collisions among links and ac­

tuators, feasibility, constructibility, minimization of the moment arms as seen by the

previous actuator, etc. Figs. 7.5 and 7.6 are the RVS renderings of REDIESTRü 1 at

the isotropie and at the maximum-reach configurations, respectively. In Appendix D,

the three-dimensional CAD drawings of the robot and the link subassemblies are in­

cluded along with the detailed mechanical drawings of the each link. The electrome­

chanical specifications of the actuators are provided in Section E.l. As the design of

the manipulator was finalized, the detailed CAD drawings of the components \Vere

made with the use of AutoCAD®. Furthermore, the soUd modelling capabilities
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Figure 7.4: Skeleton rendering of REDIESTRO l at the isotropie configuration

of AutoCAD® \Vere utilized to obtain the inertial parameters of each link, defined

in its local coordinate frame. By completing the detailed drawings for each link, a

three-dimensional solid model of the corresponding link-actuator subassembly \Vas

then made, and the inertiaI parameters \Vere estimated. Table 7.4 contains the iner­

tial parameters of the links, namely, the mass, mass-center location and moments of

inertia. iv!oreover, photagraphs of REDIESTRO l are shawn in Fig. 7.7-a and -b.

7.6 Heuristic Design Rules

In this section, the heuristic design rules that \Vere developed during the course of this

design are briefly outlined. Ta date, most robotic manipulators have been designed
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Figure 7.5: REDIESTRü 1 at the isotropie configuration
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with conventional orthogonal architectures. By exploring other general architectures~

it is possible ta design manipulators for particular or general applications, while con­

sidering several kinematic, static or functional design issues. It is concluded that the

Jacobian matrix can be used effectively to address design considerations such as syn­

thesis of the kinematic chain, numerical conditioning, singularities of the workspace~

extreme reach and workspace volume. Depending on the characteristics of the ma­

nipulator and tasks to be performed, priority can be placed on fulfilling one or more

of the foregoing demands. For the design of REDIESTRO 1, we are mainly concerned
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Figure 7.6: REDIESTRO 1 at the fully stretched configuration

169

with the kinematic conditioning of the kinetostatic transformations. In this regard,

we aimed at the design of an isotropie seven-revolute joint manipulator. Thus~ the

highest design priority was given to the realization of an isotropic Jacobian matrix.

Other design considerations such as structural requirements, collision and functional­

ity of the link-actuator subassemblies, workspace, extreme reach of the manipulator,

and constructibility of the links are variables that were prioritized and satisfied ac­

cordingly. For instance, the second-priority task for the design of REDIESTRO 1

was concerned with structural considerations, namely, concentration of the first four

joints near the first axis to minimize the static and inertial loads imposed on the

proximal drives. It was concluded that predetermined lower and higher bounds had

to he placed on the distance between the second and third a..xes, i.e., on a2, in order

to best enclose the four proximal drive units, while keeping them in close proximity.

The location of each actuator along the corresponding joint axis was determined
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(a)
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(b)

Figure 7.7: Photographs of REDIE8TRO 1: (a) Surface-cleaning setup, (b) Peg-in­
hole insertion and removal setup

from the considerations below:

• Nfinimization of the moment arm created with respect to the previous drive.

When two consecutive joint axes are nonparallel and nonintersecting, the static

(dynamie) load imposed by the first drive is affected by the moment arm (radii

of gyration), which is in turn affected by the location of the second actuator

along its joint axis.

• Creation of collision-free regions around the isotropie configuration.
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~ Parameters 1 link 1 1 link 2 1 link 3 1 link 4 1 link 5 1 link 6 1 link 7 ~

·r...

Mass (kg) 17.313 5.580 28.586 7.390 5.987 2.557 0.2
Center of x: 4.8e-4 0.1155 -0.0011 0.3071 0.0 -0.0919 0.06345
Gravity y: -0.1607 -0.0036 -0.1176 -0.0408 -0.1326 0.03434 0.0

(m) z: -0.1186 -0.0618 -0.1170 0.0699 -0.3209 0.49 -0.0034
wloments of x: 0.89926 0.02573 1.6620 0.09297 0.8284 0.6541 0.000024

Inertia y: 0.31342 0.13223 0.7860 0.8881 0.7019 0.6714 0.001136
(kg m2 ) z: 0.62745 0.11099 0.9387 0.8753 0.1317 0.0374 0.001135

Products of xy: -2.7e-5 -0.0045 0.0001 -0.1203 0.00009 -0.00839 0.0
Inertia yz: 0.3689 0.0012 0.1221 -0.0204 0.26852 0.04574 0.0
(kg m2 ) zx: -1.2e-5 -0.0404 0.0003 0.1411 0.00016 -0.12596 0.0
Radii of x: 0.2279 0.0679 0.2411 0.1121 0.3719 0.5057 0.0110

Gyration y: 0.1345 0.1539 0.1658 0.3466 0.3424 0.5124 0.0753
(m) z: 0.1904 0.1410 0.1812 0.3444 0.1483 0.1210 0.0753

Table 7.4: Inertial parameters of REDIESTRü 1 in its local frames

In order to exploit the inherent well-conditioning characteristics of an isotropie

manipulator, or to make use of the large singularity-free regions around the

isotropie configurations, it is essential to maximise the accessibility of the cor­

responding region from a structural viewpoint as weIl. This can be achieved

by minimizing the presence of structural obstacles within the region, and by

maximising the accessible positive and negative range of motion for each joint

about its corresponding isotropie point.

• Functionality and constructibility of the design.

Focusing strictly on the two previous items can result in link shapes and geome­

tries that are not feasible in terms of manufacturing processes and functionality.

Hence, in conjunction with the above-mentioned design issues~ one has to take

ioto consideration constructibility by making reasonable compromises against

other critical aspects.
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7.7 Conclusions

In this Chapter an overview of the design, manufacturing and realization of a redun­

dant seven-axis isotropic manipulator, called REDIESTRO 1 (REDundant, Isotrop­

icaIly Enhanced, Seven-Turning-pair RObot), was given. Kinematic design tooIs

developed in the previous Chapters of the thesis were used to produce a farnilyof

such designs. Further mechanical design specifications were introduced in order to

narrow down the selection set. The preliminary and detailed mechanicaI design of one

representative instance of this family was undertaken, and finally, heuristic design

rules were outlined. REDIESTRü 1 was designed, manufactured, and commissioned

at NlcGill's Centre for Intelligent ~Iaehines. This manipulator has seven degrees of

freedom, its maximum reach is about 2.1909 meters. In the Cartesian workspaee of

the manipulator, there exists a circle of radius 1.1528 meters centred on the first axis,

aIl of whose points correspond to isotropic postures of the manipulator, i.e., circle of

isotropy. The robot is equipped with seven harmonie-drive units of actuation, eaeh

containing a permanent-magnet DC motor, an incremental encoder, an electromag­

netic brake, and a harmonie drive gear-head. REDIESTRO 1 has been serving as a

useful redundant experimental robot on which several aspects of the eurrent state of

the art in robotics are being tested. Ta name a few, charaeterization of the joint flex­

ibility and friction, kinematic and dynarnic calibration, trajectory planning, object­

and self-collision avoidanee, impedance control and hybrid position-and-force con­

trol for complex tasks such as surface cleaning and insertion and removal of mating

objects.
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Chapter 8

Concluding Remarks

8.1 Conclusions

Within the context of kinematic dexterity and singularities, both analysis and design

of manipulator architectures were discussed in detail in this thesis, with particlliar

attention being given to the kinematic design of redundant maniplliators.

In Chapter 1, the workspace and singularities of regional structures were considered.

Regional structures or spatial three-a.xis architectures forming the positioning part of

most of the existing nonredundant industrial manipulators, they can be regarded as

representatives of the existing nonredundant designs. First, a review of the reported

contributions made to maniplliator singularities was condllcted. A novel method

for the determination of the Cartesian singularities of the forward kinematic map

was then introduced. This method, that determines the resolvent of two polyno­

mials, is based on the notion of nonminimal transfer-fllnction realization for single­

input/single-output (8180) linear dynamical systems, and can be applied to general

n-axis manipulators. Having determined the resolvent of the manipulator charac­

teristic polynomial and its derivative with respect to one of the joint variables, a

CAD-based methodology was then devised for the three-dimensional graphical ren­

derings of the Cartesian workspace boundaries. The second part of Chapter l, is



devoted to the characterization of the joint-space uniqueness domains, i.e., subre­

gions of the manipulator joint-space that contain unique inverse kinematic solutions.

Aigebraic expressions were provided that define the boundaries of the uniqueness

domains l . In this regard, singular- vs. nonsingular-posture changing-manipulators

were discussed, where, with the aid of a theorem, it is proven that special manipula­

tors cannot change solution branch without crossing singularities. Furthermore, in

confirming with the conjecture made by Burdick (1992), an example of a nongeneric

regionaI structure that can change solution branch without crossing singularities is

introduced. In the last section of Chapter 1, a critical evaluation of the merits

of nonsingular-posture-changing rnanipulators over their singular-posture-changing

counterparts is provided, while these two classes of regionaI structures are compared

as they follow a given Cartesian-space trajectory. It is thus concluded that, design­

ing regional structures for the ability of singularity-free solution-branching does not

necessarily lead to a better architecture.

The focus of Chapter 3 is on manipulator dexterity measures. A review of the ex­

isting indices of merits for the characterization of kinematic performance of ma­

nipulators is provided. Invariance properties of these measures are then discussed

in detail, whereby the issue of the sensitivity of the performance rneasures to the

end-effector operation point is analyzed through different illustrative examples. Oe­

spite the search of sorne researchers for an operation-point-insensitive index, as an

intrinsic, and thus faithfut measure for quantifying kinematic performance, we main­

tain that, if a measure is capable of characterizing the effects of the size of the

end-effector and the location of the operation point on the overall rnanipulator dex­

terity, why should we deprive our performance characterization form this feature?

wloreover, it is believed in sorne circles that a measure that does depend on the

operation point can be rendered one that does not depend on the latter by simply

assigning zero values to the four DH parameters of the last link. In other words, an

1
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1 the method introduced in this thesis is similar to the method proposed independently in (Tsai
et al., 1993)
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operation-point-sensitive measure is more general in its scope, since it encompasses

the range of applications of the operation-point-insensitive measures.

In Chapter 4 the condition numbers of general matrices are diseussed in detail, where

particular attention is paid to two important features of these numbers as applied

to kinematic performance, namely, characterizing distance to singularities and sen­

sitivity of the associated linear systems, with respect to perturbations. Determined,

underdetermined and overdetermined linear systems of equations and their applica­

tions in the analysis of manipulator kinematic-performance are also reviewed. The

notions of matrix isotropy and kinematic isotropy are introduced through formaI def­

initions. With the aid of a theorem, the necessary and sufficient conditions for the

isotropy of general rectangular matrices are provided. Geometrie interpretations of

the isotropy of linear transformations are also provided. In the last section of Chap­

ter 4, isotropie manipulators are formally defined followed by a general description of

the techniques used in this thesis for the isotropie design of manipulators. Through

a simple illustrative example for the isotropie design of planar 2-R manipulators, it is

shown that optimizing the condition number amounts to simultaneously decreasing

the rms value of the distances from the end-effector operation point to the axes of

the manipulator, while increasing the area of the triangle formed by the two joints

and the operation point. As a byproduct of the foregoing simple example, it is also

shown that, the 2-norm condition number at the isotropie point is not a smooth

function of the joint variable ()2'

Chapter 5 is devoted to the isotropie design of redundant manipulators. First, the

isotropie design of seven-axis manipulators is discussed in detail, several examples

of such architectures being provided. It is shown that the isotropy condition for

seven-axis manipulators leads to an underdetermined system of nonlinear equations,

an infinity of architectures satisfying the said system thus being avaliable. Repre­

sentative examples from the solution set are obtained by formulating a nonlinear

optimization problem. Furthermore, a design methodology is introduced whereby
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additional functional design requirements are incorporated in order to narrow down

the design space, thus obtaining a determined system of nonlinear equations.

~ext, anthropomorphic considerations are incorporated into the design methodology

mentioned above. It is shown that anthropomorhic designs can lead to pseudore­

dundancy of the architectures. It is then concluded that. in general, full isotropy

and anthropomorphism cannot coexist for seven- and eight-axis manipulators. An

illustrative example of a nine-axis architecture that possesses bath of the foregoing

features is provided. Planar hyperredundant manipulators are considered next~ the

optimum posturing of a 3D-axis planar arm being calculated. It is first shown that if

the Jacobian matrix associated with hyperredundant manipulators is reformulated

as a function of the absolute-as opposed to the relative-joint variables, then the

isotropy condition takes on a very simple form. Additional design requirements for

the optimum posture design of this class of redundant manipulators are then out­

lined~ namely, kinematic isotropy, srnoothness of the manipulator posture, and the

orientation of the last link. The resulting optimum posture resembles a cobra in its

familiar ready-to-attack configuration. In the last section of Chapter 5, a compar­

ative analysis of isotropie, versus nonisotropic manipulators is made, the basis of

this comparison being on the distribution of the set of singularities of the manipu­

lators throughout their joint-space. In general, comparing two manipulatars far any

functianal purpose is not a well-defined task. The framewark in which a fair compar­

ison can find meaning is first defined. The comparison of redundant manipulators

in the sense of kinematie dexterity and singularity distributions is then provided

through illustrative examples, where it is observed that the joint-space singularity

distribution of isotropie architectures are better behaved than those associated with

the comparable nonisotropie designs.

Sorne of the main contributions of the thesis are introduced in Chapter 6, where

the kinematic conditioning and dexterity of general revolute-jointed manipulators

are discussed from a geometric point of view. First, based on a previously reported
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measure of isotropy (Kim and Khosla, 1991), a novel measure of conditioning for

general matrices is introduced. It is shown that this measure is a linear approximation

to the normalized Frobenius-norm (F-norm) condition number; for quasiisotropic

matrices, this measure provides a very close prediction of the condition number.

For both rectangular and square matrices, upper and lower bounds are obtained

for this measure in terms of the F-norm and the 2-norm condition numbers. Based

on this measure of canditioning, a measure of manipulator conditioning is devised

that is highly suited for the intended task of manipuIatar design. ~Ioreover! this

performance index is substantially less expensive to compute than other measures

of kinematic conditioning, and is amenable to optimization using gradient methods!

rather than with purely direct-search methads, which are much slower. BaC5ed on a

gradient technique for the minimization of this index with respect to the normalizing

length and the operation point of the end-effector, a preferred normaIizing length

and a preferred operation point of the end-effector are obtained. In this regard, the

notions of manipulator layout, layout conditioning, layout length and layout centre far

any seriaI-type rabatie manipuIators are introduced. Furthermore, the characteristic

layout of manipulators are discussed followed by discussions on the characteristic

length and the characteristic point. Several illustrative examples are provided for

determining the optimum layout of both redundant and nonredundant industrial

manipulators.

In Chapter 7 an overview of the design and manufacturing of a redundant seven-axis

manipulator with an isotropie architecture is reported. This manipulator, which

is named REDIESTRO 1 (REDundant, Isotropically Enhanced, Seven-Turning-pair

RObot) was designed, manufactured and cornmissioned at the NIcGill Centre for In­

telligent lVIachines. Since its completion in 1994, REDIESTRO 1 has been serving

as an experimentaI platform for severaI robotics-related projects bath internally in

the Department of Mechanical Engineering of McGilI University and in collabora­

tion with external research groups. REDIESTRO 1 is currently being employed for
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the STEAR-S Phase III2 Project conducted by Bombardier Inc., Canadair Defence

Systems Division (DSD), Concordia University and :\tIcGill University. In phase

II of STEAR-5, REDIESTRO 1 \Vas used to implement Trajectory Planning and

Object Avoidance (TPOA) schemes developed for redundant manipulators. During

phase III of the same project, currently under way, hybrid position-and-force and

impedance control techniques are being successfully applied to REDIESTRO 1 for

tasks such as surface cleaning and insertion and removal of mating objects such as

Orbital Replacement Dnits (DRU) type of objects.

8.2 Suggestions for Further Research

During the development uf the research \Vork reported in this thesis, a number of

related research areas are identified that could form the basis for future work, namely.

1. Ta conduct a more elaborate investigation of the global isotropie design

versus the local methodology discussed in the thesis. Although the sin­

gularity distribution of the architectures that are designed for local dex­

terity \Vere investigated in the thesis, it appeared to the author that the

issue of global-versus-Iocal isotropic designs and their relationship can be

expanded upon in further detail. The equivalence of locaL versus global

isotropie designs, \Vas first reported in Gasselin and Angeles (1991), where

it \Vas found that, for a planar two-axis example both coincide. It seems

that the extension of the aforementioned equivalence to general manipula­

tor architectures remains an open question. 1t is thus suggested ta employ

the homotopy classes in order to investigate the relationship between local

and global design methodologies.

2. Ta investigate through experiments the raIe of the kinematic isotropy

of redundant manipulators in the framework of hybrid position-and-force

2Strategic TEchnologies in Automation and Robotics



control strategies. The appearance of the isotropy condition in the said

framework was recently reported in (Goldenberg, 1996).

1
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3. Ta device isotropy-based numerical procedures for the calibration of the

geometrical parameters of redundant manipulators. The numericaI be­

haviour of most existing calibration methodologies is a crucial concern for

the successful implementations of these techniques. yloreover, in many of

the existing methodologies, the Jacobian matrix associated with the ma­

nipulator is needed. ft is thus believed that, by establishing an isotropy­

based calibration procedure, one would indeed expect superior conver­

gence and accuracy from the underlying numerical procedures.
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Appendix A

Jacobian Determinant of the

3-axis Manipulators

The architecture-dependent coeeficients of the trigonometric functions appearing in

eq. (2.16), are given below:

m3 = O.5a3J.LIJ.L2[a2(b2 + b3) - aIb3ÀIJ.L~]

m4 = O.5a3J.tlJ.L2[a2(b2 - b3) - aIb3ÀIJ.L~]

ms = O.25a~b2J.LIJ.t2(1 + À2)

ms = O.25a~b2J.t1J.L2(1 - À2)

nI = O.5a~(a2À2J.Ll + aI ÀIJ.L2)

n4 = O.5a3(ala2 ÀIJ.L2 + b2b3J.LIJ.t~ - a~J.td

ns = O.5a3(aIa2 À IJ.L2 + b2b3J.LIJ.L~ + a~J.td

ns = O.25a~[aIÀIJ.L2(1 + À2) - a2J.LI(1 + À2)]

(A.1)
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\Vith
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(A.2)

Nloreover, detailed expressions for Il (82 , 83 ) =<2 and 12((}2, 83 ) =z appearing in

eq. 2.20 are gven next,

(:\.3)

and

(:\.4)

\Vith

(A.5)



.i\ppendix B

On The Smoothness of the 2-Norm

Condition N umber

vVe show here that the 2-norm condition number is not a smooth function at the

isotropie point. This characteristic is general and not limited to 2 x 2 matrices. By

means of the symbolic expressions obtained in Chapter 4, the proof can be provided

using the Jacobian matrix of a planar 2-R manipulator. 1t will be shown that /\'2 is

not a smooth function of B2 at the isotropie configuration B;, by making apparent that

its derivative d "'2/ d B2 is undefined at Bi. To this end, we differentiate eq. (-!.-l-!),

while making use of chain rule, i.e.,

d K21 = (a K2 T' + a"'2 6') 1

d ()2 aT 868; 8;
But, from eqs. (4.40), and (4.41), we have,

T' = 26' = ± 1

(B.1)

(B.2)

NIoreover, the terms involving partial derivatives in eq. (8.1) are obtained by differ­

entiating eq. (4.44), while making use of eq. (4.36), as,

8K2 _ "'2
ar - VK.}-1

(B.3)
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and
8K2 -1 1
88 = 26 (.j 2 + "2)

"'fi' - 1

Substituting the foregoing equations in eq. (B.IL yields

d "'2 T' 8 "'2 - .j88' - J8 (K} - 1) "'2 6'

d (}2 = 2 cS J8 (K} - 1)

198

(BA)

(B.5)

It can be readily verified that the foregoing expression evaluated at 82~ is of an

indeterminate form, i.e, with 82 = ±3rr/4, we have T = 1, T' = ±l, t5 = 1/4.

8' = ±1/2, and "'2 = "'t = 1, and thus, d K2 Id (}21
9

; takes on the form 0/0.

In order to shed more light on the behaviour of "'2, we will obtain the left and

the right derivatives of K2 at 8;, denoted respectively by

and

We will next show that the indeterminacy of the derivative of "'2 is inherited from

that of the derivatives of the eigenvalues at the isotropie point. The derivative of li"}.

can be obtained directIy using À max and Àmin , i.e., by differentiating eq. 4.16~ i.e.~

(B.6)

or, once evaluated at f)2' as

Furthermore, À~ax and À~in are determined from eq. (4.43) as,

(B.7)

T' . 'T2 - 4 t5 + T T' - 2 6'
À' = v

max ---2-V-;::::T:::;:2=-=4==8;----
, T' VT 2 - 4 t5 - T T' + 2 8'

and À . = -----;:::::::::::::==:::::;---
mm 2 VT 2 - 48

(B.8)

Bath of the foregoing expressions evaluated at 82 will be of the indeterminate form

(0/0). Hence, we obtain the Ieft and the right derivatives of À max and À min at 82,
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respectively, from,

1
. Àmax((Ji + h) - Àmax(Bi)

- lm
h-O+ h

and,
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(B.9)

(B. 10)

(B.11)

(B.12)

In the foregoing expressions we have assumed that the limits exist. The evaluation

of these limits is rather tedious, and we will present only the detailed procedure

for obtaining the left and the right derivatives of Àmax • One of the two isotropie

configurations, namely, Bi = 3 7f/ 4, is considered, the second one following similarly.

Using eqs. (4.30), (4.31), (4.40), (4.41), and the first of eq. (4.43) in conjunction \Vith

eqs. (B.9) and (B. 10), and after some trigonometric simplifications we obtain

d Àmax 1 . 1 - (cos h + sin h) . JI + sin h cos h - (cos h + sin h)
= hm + hm

d B2 h-O+ 2 h h-O+ h
(~)+

d Àmax 1 . 1 - (cos h + sin h) . JI + sin h cos h - (cos h + sin h)
= hm - hm

d (J2 h-O- 2 h h-O- h
(~)-

Nlultiplying both numerator and denominator of the right hand-side of each of the

foregoing equations, respectively, by 1 + (cos h + sin h) and by the square root

JI + sin h cos h + cos h + sin h, it follows that,

1
. - sin h cos h l' 1 sin h cos h 1

=lm +lm
h-O- h (1 + sin h + cos h) h-O- h VI + sin h + cos h + sin h cos h

d Àmax 1 1· - sin h cos h 1·= lm + lm
d B2 h-O+ h (1 + sin h + cos h) h-O+

(ar)+

dÀmaxl
dB2

(~)-

1 sinh cosh 1

h VI + sin h + cos h + sin h cos h
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or,
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_ Hm (sin h) - cos h + Hm (sin h) cos h
h-O+ h (1 + sin h + cos h) h-O+ h JI + sin h + cos h + sin h cos h

dÀmaxl
d (}2

<a,r>+

d Àmax 1 r sin h - cos h r sin h cos h
d (}2 == h~W- (-h-) (1 + sin h + cos h) - h!..If!- (-h-) JI + sin h + cos h + sin h cos h

(a.r>-

Nloreover, recalling that

1· sin h l' sin h 1lm -- == lm -- ==
h-O+ h h-O- h

we then have

-1 +J2
2

dÀmaxl
d (}2

('Jf>+

dÀmaxl == -1- J2
d (}2 2

(1f)-

(B.13)

(B.14)

This proves that 1'\.2 is not a srnooth function of (}2 at the isotropie configuration.

as the left and the right derivatives of the function at that point are fini te but not

equal.



Appendix C

Derivation of the Identity U sed for

the Determination of PL

The derivation of the identities used in Chapter 6 is included here, while determining

the position vector of the layout centre Pc. It is required to prove the identity given

below:

(C.I)

where

b == vect(B) = -vect(BT
)

and the operator vect(·) represents the axial vector of its matrix argument, as defined

in Leigh (1968).

Let,

B=[:'
-bz

b
y

]
[al! al2

al3 ]

0 -bx and A = au a22 a23

-by bx 0 a31 a32 a33

then

.r..
(C.2)
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Now t expanding the matrix product appearing in the left-hand side of eq. (C.I), and

after sorne algebraic manipulations, we can obtain the relation given below:

tr(B A B T ) = (b; + b; + b;) (au + a22 + a33)

- br by (a12 + a2r)

- br bz (a13 + a3r)

- by bz (a23 + a32)

- (au b; + a22 b~ + a33 b;)

It is apparent that the foregoing expression can be rewritten as

thus proving eq. (C.I).

(C.3)
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Figure D.I: Base subassembly drawing

Figure D.2: Link 1 subassembly drawing
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Figure D.3: Link 2 subassembly drawing

Figure D.4: Link 3 subassembly drawing
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Figure D.S: Link 4 subassembly drawing

Figure D.6: Link 5 subassembly drawing
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Figure D.7: Link 6 subassembly drawing

Figure D.8: Link 7 subassembly drawing

20ï
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Figure 0.9: Nlanipulator assembly drawing
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D.2 Detailed Drawings
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Figure D.14: Base-spacer-cap detailed drawing
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Figure D.34: Link 5, matar 6 bracket detaiIed drawing
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Appendix E

Electromechanical Specifications of

the Actuators

E.l Actuators of REDIESTRO

In this Section the electromechanical specifications of the actuators of REDIESTRO 1

are recorded. In Section E.1.2, the mechanical drawings of eaeh actuator unit is

provided, and in Section E.l.l the electromechanical specification of each unit is

tabulated.

E.l.l Electromechanical Specifications of the Actuators

The Actuators that are used for REDIESTRO lare from Harmonie Drive Systems

Inc., each including a De-motor, harmonie drive, incremental encoder and electro­

magnetic brake. For the specification of each unit letter "8" stands for brakes, "E~'

denoting encoder while "AL" stands for 5V line drive encoder. The number between

"'E" and "AL~' is the encoder resolution divided by 10. NIoreover, "'sp" stands for

special configuration. REDIESTRO 1 power transformer are also from Harmonie

Drive Systems Inc. Encoders are able to he used as quadrature, thus, allowing a

maximum resolution equal to four times the nominal pulse per revolution specidied
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for each unit, (Table E.2)

Remarks regarding the specification of the actuators:

243

• The mass of each unit given in Table E.2 is the mass of the DC motor plus

the gear-head plus the encoder, while the mass of the brakes are included in

brackets.

• The inertia given here is the sum of motor and harmonie drive gear-head con­

verted to the output side of the actuator. These are provided in the manufac­

turers' catalogue in Kgf-cm sec2
• To convert to Kg m2

, multiply by 9.806/100.

• The torque constants are referred to the output side as weIl.

1 Model
Number

1 Seriai 1
Number

l

RH-25-1507-BE-100AL-sp 104477
RH-32-1212-BE-036AL-sp 104480
RH-32-1212-BE-036AL-sp 104478
RH-32-1212-BE-036AL-sp 104479
RH-20-1903-BE-lOOAL-sp 104470
RH-20-1903-BE-1OOAL-sp 104471
RH-I4-3002-BE-100AL-sp 104614

Table E.1: REDIESTRü 1, Actuators model

NIodel Joint Gear Encoder Max. Rated NIass Inertia
='Iumber Red. Res. Torque Torque (+Brake) (Encoder)

Pirey Nm Nm Kg Kg m2

RH-25-1507 1 200 200 147 42 4.7 (6.2) 9.3157+(0.0275)=9.3432
RH-32-1212 2 260 360 314 97 8.7 (11.5) 50.7951+(0.0464) =50.8415
RH-32-1212 3 260 360 314 97 8.7 (11.5) 50.7951+(0.0464)=50.8415
RH-32-1212 4 260 360 314 97 8.7 (11.5) 50.7951+(0.0464)=50.8415
RH-20-1903 5 160 1000 78 17 3.1 (4.1) 2.3534+(0.0176)=2.3710
RH-20-1903 6 160 1000 78 17 3.1 (4.1) 2.3534+(0.0176)=2.3710
RH-14-3002 7 100 1000 19.6 5.9 0.78 0.0816+(0.005)=0.0866

Table E.2: REDIESTRO l, Actuators mechanical specification

The Amplifiers that are used for REDIESTRO 1 are made by Copley Control Cor­

poration, \Vith their specifications being provided in Table E.5.
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i\lIoclel Number Joint Torque Const. NIax. Current
Nm/A (Load Sicle) A

RH-25-1507 1 40/200=0.2 4.9
RH-32-1212 2,3 and 4 55/260=0.211 8.1
RH-20-1903 5 and 6 32/160=0.2 3.1
RH-14-3002 7 5.76/100=0.0576 4.1

Table E.3: REDIESTRO l, Actuators electrical specification
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1 Joints
1
2,3 and 4
5 and 6
7

1 Nlodel Number 1

PT1-10004
PT1-10007
PT1-10002
PT1-03803

Table E.4: REDIESTRO l, power transformer model

Model Joint High Volt. Output Peak Power ).:Ia.."{. Cont .
Number Supply Voltage Output Current

VDC V A
303B 1 16 ta 90 Vh - 0.26lo ±9DV at ±12A 6
303B-1 2,3 and 4 16 ta 90 Vh - 0.26lo ±90V at ±12A 6
303B-1 5 and 6 16 to 90 Vh - 0.26lo ±90V at ±12A 6
303 7 16 to 80 Vh - 0.26lo ±75V at ±12A 6

Table E.5: REDIESTRO 1, Amplifiers model and pecifications. Where t/h is high
voltage applied and lo is current into motor or load. -1 stands for high inductance
load.
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E.l.2 Actuator Drawings

The mechanical drawings of the actuators are given in Figs. E.l to EA.
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Figure E.l: Mechanical specification of Rh-32 (joints 2.3 and 4)
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