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Abstract 

This thesis has two main contributions. The first contribution is the use of cooperative 

localization for decoupling the positional error of a moving robot from its environment. 

The second contribution is the development of efficient multi-robot exploration strategies 

for an unknown environment. 

The proposed method is designed to be robust in the face of arbitrarily large odometry 

errors or objects with poor reflectance characteristics. Central to the exploration strategy 

is a sensor (robot tracker) mounted on a robot that could track a second mobile robot 

and accurately report its relative position. Our exploration strategies use the robot tracker 

sensor to sweep areas of free spa ce between stationary and moving robots and to generate 

a graph-based description of the environment. This graph is used to guide the exploration 

process. Depending on the size of the environment relative to the range of the robot tracker, 

different spatial decompositions are used: a triangulation or a trapezoidal decomposition of 

the free space. Complete exploration without any overlaps 1S guaranteed as a result of the 

guidance provided by the dual graph of the spatial decomposition of the environment. 

The uncertainty in absolute robot positions and the resulting uncertainty in the map 

is reduced through the use of a probabilistic framework based on particle filtering (a Monte 

Carlo simulation technique). Particle filtering is a probabilistic sampling technique used 

to efficiently model complex probability distributions that cannot be effectively described 

using classical methods (such as Kalman filters). 

We present experimental results from two different implementations of the robot tracker 

sensor, in simulated and in real environments. The accuracy of the resulting map increases 

with the use of cooperative localization. Furthermore, the deterioration of the floor con­

ditions did not affect the quality of the map verifying the decoupling of positioning error 

from the environment. 



Résumé 

Cette thèse apporte essentiellement deux contribuitions. La première consiste en l'emploi 

de la méthode de localization coopérative, pour obtenir le découplage entre l'erreur de 

la position du robot en mouvement et ce de l'environnement. La deuxième comporte le 

développemnt de stratégies efficaces d'exploration multi-robot d'un environnement inconnu. 

La méthode proposée est conçue de manière à être robuste face à des erreurs odométriques 

arbitrairement grandes ou à des objets ayant de mauvaises caractéristiques de réfiectance. 

L'élément central de la stratégie d'exploration est un senseur (suiveur de robot) monté sur 

un robot qui puisse repérer un deuxième robot mobile et mesurer sa position avec précision. 

Notre stratégie d'exploration utilise le senseur pour balayer les régions d'espace vide en­

tre le robot stationnaire et le robot mobile, avec quoi on obtient un graphe qui décrit 

l'environnement. Ce graphe est utilisé pour guider la procédure d'exploration. En fonc­

tion de la taille de l'environnement par rapport au champ du suiveur de robot, différentes 

décompositions spatiales sont utilisées: soit une triangulation, soit une décomposition 

trapézoïdale de l'espace vide. Une exploration complète et sans recouvrements est garantie 

par le guidage fourni par le graphe dual de la décomposition spatiale de l'environnement. 

L'incertitude dans la position absolue des robots et l'incertitude résultante dans la 

cartographie sont réduites par l'utilisation d'une méthode probabilistique basée sur le fil­

trage de particules (une technique de simulation Monte Carlo). Le filtrage de particules 

est une technique d'échantillonnage probabilistique utilisée pour modéliser efficacement des 

distributions de probabilités complexes qui ne peuvent pas être décrites efficacement par les 

méthodes classiques (tel que les filtres de Kalman). 

Nous présentons des résultats expérimentaux provenant de deux suiveurs de robot 

différents, dans des environnements réels et simulés. La précision de la cartographie obtenue 

augmente avec l'utilisation et la localisation coopérative. De plus, la détérioration de l'état 



RÉSUMÉ 

du sol n'a pas affecté la qualité de la cartographie, confirmant le découplage entre l'erreur 

de position et l'environnement. 
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CHAPTER 1 

1. Motivation 

Introd uction 

1 am told there are people who do not care for maps, and find it hard 

to believe. The names, the shapes ... the courses of the roads and 

rivers . .. are an inexhaustible fund of interest for any man with eyes 

to see or two pence worth of imagination to understand with ... 

- Attributed to Robert louis Stevenson in Treasure Island, 1883. 

In mobile robotics there are three fundamental problems. The first problem can be 

described by the simple question "Where am 1'1" and refers to establishing the pose l of 

the robot in a global frame of reference; commonly caUed the localization problem. The 

second problem is expressed by the question "How do l go from point A to point B '1" and 

is called the path planning problem [92]. Finally the third problem can be encapsulated 

by the question "What does the world look like'1" commonly referred to as mapping. The 

localization problem is critical because an error in the estimated position would surely result 

into erroneous or even hazardous behavior, such as moving to the wrong place, collisions, 

performing a task at the wrong location. Clearly the first and third problems are interrelated 

because when an accurate description (map) of the environment exists then the robot can 

localize itself by matching its observations to the world model; also, if the robot knows its 

pose with high accuracy, then the observed features of the world can be combined seamlessly 

into a map. The pro cess of trying to solve both problems at the same time lS known as 

lThe pose of the robot is defined in 2D as the triplet < x, y, e > where x and y are the coordinates of the 
robot on the plane and e its orientation. 



1.1 MOTIVATION 

Simultaneous Localization And Mapping (SLAM) or Concurrent Localization and Mapping 

(CLM). 

FIGURE 1.1. Two robots exploring the environment employing cooperative localization. 

This thesis deals with the construction of accurate metrÏc maps of an unknown environ­

ment by a team of mobile robots. By using multiple mobile robots (like the ones in Figure 

1.1) we can achieve a high level of accuracy and robustness. The robots are equipped with 

different sensors that allow them to coUect measurements describing both the environment 

and the robot pose; these measurements are invariably corrupted by noise. The main con­

tribution of this thesis is a methodology for reducing the uncertainty introduced by noise 

and for recording the pose of the moving robots and the position of obstacles as accurately 

as possible. In order to achieve this goal the mobile robots must cooperate closely with 

each other (Figure 1.1). 

U ncertainty is a central issue lU perception for mobile robots. During exploration 

there are two different sources of uncertainty. First, there is uncertainty in the pose of the 

robot. Second, the sensors used to model the free and occupied space of the environment 

return measurements that are corrupted by noise. In particular, the pose of the robot can 

be estimated either by dead reckoning2 or by using external reference points, but either 

estimation approach is corrupted by noise. 

,2To paraphrase Dunlap and Shufeldt, dead reckoning is a simple mathematical procedure for determining 
the present location of a vehide by advancing sorne previous position through known course and velo city 
information over a given length of time [54, 16, 4'7]. 
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1.2 THE RELEVANCE OF MAPS 

This thesis provides algorithms that would guide a group of mobile robots (equipped 

with noisy sens ors ) to construct an accurate (up to a certain bound) representation of 

the environment. Central to this thesis lS the use of a new sensor (which we refer to 

as the Robot Tracker) with the dual purpose of localization and mapping. At any time, 

one of the robots remains stationary while the other robot is moving. The stationary 

robot acts as an artificial landmark in order for the moving robot to measure its pose 

with respect to it. Therefore, a detectable landmark in the form of the other robot is 

provided without any modification of the environment. We caU this approach, based on 

the use of the robot tracker, Cooperative Localization. We first developed this concept in 

1997 [132] and coined this term in 1998 [139], which has more recently been taken up by 

other authors [144, 172, 9, 59, 64, Hn, 108, 58, 182]. A related system was developed by 

Kurazume et al. in 1994 [89, 88, 87]. Moreover, when one robot is moving and maintaining 

an uninterrupted line of visual contact with the stationary robot, it effectively maps the area 

swept by the Hne of visual contact. As the two robots move through the environment, they 

map areas of free space using the fact that they are constantly able to see each other. Our 

sensing strategy is sufficiently robust to cope with environments that may have uneven or 

slippery terrains, or whose surface reflectance properties are not weIl suited to conventional 

sensors. 

2. The relevance of maps 

Across human history, the exploration of new areas is accompanied by the construction 

of representations (maps) that describe them. The act of mapping goes back to 2000-

3000 B.C. in Mesopotamia. The earliest known map, found near Kirkuk (modern Iraq), 

dates to 2400-2200 B.C. [22]. Around the same time, in China nine copper or bronze 

vases were made bearing representations of the nine provinces under the Hsia dynasty [6]. 

Strabo's works "Geography" (around 25 B.e.) and Claudius Ptolemy's "Syntaxis" (around 

90-168 A.D.) [129, 128], both from Alexandria, remained the most important cartographie 

guides in the western world for the next 1500 years. The creation of maps flourished with 

the exploration of the world, especially in the last 500 years. Maps have been used for 

exploration of new areas, navigation in unknown waters, searching for shipwrecks, even 

for fun [126]. From crude signs on a piece of stone to detailed topographical maps and 
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three dimensional models of areas, it was a long journey. Among different cÏvilizations 

different modelsjrepresentations were used: interweaved branches representing sea routes 

in Marshall Islands, Micronesia; carved wooden charts mapping the coast Hne of Greenland 

(by the Inuit); clay tables in Mesopotamiai bronze or copper vases showing mountains, 

rivers and local products in Chinai up to the more common paper or cloth maps and the 

globes representing geographical, political, economical and cultural data [6]. 

The ability to build an internaI representation of the environment is critical to most 

intelligent organisms. Experiments suggest multiple systems for internal representations 

both in humans and in animals. In mammals, experiments have shown that areas in the 

hippocampus are directly related to spatial relationships, and certain locations trigger con­

sistent responses of particular brain cens [119, 118, 120]. The existence of a cognitive map 

in the brain that spatially corresponds to the environment has been shown in experiments in 

rodents, in which dilation of the environment results in stretching the pattern of the neural 

responses in the hippocampus [115]. Even though there is some criticÏsm [11] of the im­

portance and uniqueness of the cognitive maps in the brain, it is generaUy accepted that an 

internaI model exists that corresponds to landmarks and to dead reckoning estimates [62]. 

Studies in human perception of places suggest that at an early stage a rough model is built 

with a 2~D sketch [109] as input and then this model is used to construct higher abstract 

models necessaryfor tasks that need spatial orientation [180]. Experiments with artificial 

neural networks confirm the raIe of an internaI representation (cognitive map) in the tasks 

of navigation and perception [146]. 

In robotics, building and/or using an internaI model of the environment (a map), is as 

we saw earlier, one of the main problems in the field. It lS nearly impossible for a robot to 

operate in an environment if it does not have a model to guide its actions. One approach for 

robot operation is to construct a minimal architecture that would react to the environment 

and operate under a small set of assumptions [21, 70]. Such an approach do es not require 

an explicit internaI representation of the environment, but is unfortunately rather limited in 

the tasks it could perform (e.g., learn that a specifie route is blocked, compute optimal path, 

etc.). Another approach in mobile robotics lS to provide the robot with a complete map of 

the environment at the beginning of operation. Unfortunately, in most applications accurate 

maps do not exist and, in the few places that such maps (such as blueprints) exist and are 
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error free 3, they are usually in a format that is not easily transferable to the mobile robot. 

Furthermore, over time, even accurate maps became obsolete. Thus, it is not surprising 

that the need for a mobile robot to construct a accurate map of an unknown world as it 

moves through it became apparent in the early stages of mobile robotics. The first attempts 

were purely theoretical and performed well in an idealized environment with no uncertaintYi 

however, when these methods were transferred to the real world, they displayed the same 

shortcomings as the early mapping attempts of the human explorers. 

FIGURE 1.2. The map of North America by Jansson c. 1625 A.D. Note that Cali­
fornia is an island and the north-western part is void of details. 

When someone observes a map constructed by medieval cartographers (see for example 

Figure 1.2) two things are apparent: first, certain areas are mapped accurately and in great 

detail while others stay blank (sometimes filled with drawings ofvarious interesting figures). 

Second, although the map may be topologically (Le. qualitatively) correct, the distances 

between places are wrong. Both observations are easily explained by the methods that 

were used to construct the maps. Each map was usuaHy compiled by one cartographer who 

had access to a limited number of locations, and had an approximate knowledge for the 

distances and the angles between these locations. The task of constructing a general map 

was only assisted by the ability to observe in the sky a set of common landmarks that could 

3 Architectural blueprints are rarely error free. 

5 



1.2 THE RELEVANCE OF MAPS 

provide (with a small error) a common frame ofreference [129, 128]. When surveying was 

developed, teams of people were able to map the world accurately, establishing complete 

models for vast areas. 

In mobile robotics, when the area to be mapped is small the performance of simple 

algorithms is satisfactory, but when the robots have to traverse larger areas, the estimates 

of their position invariably become corrupted by the odometry error they accumulate. Thus, 

a single mobile agent can construct relatively accurate models of hs immediate vicinity, but 

when it tries to place them in a general frame of reference the relationship among different 

locations and the distances among them are badly miscalculated. When multiple agents are 

sent out to explore independently, the task for combining the partial maps lnto a common 

reference becomes nearly impossible. The proposed methodology in this thesis addresses 

the above problems and provides a solution using intelligent cooperation among multiple 

mobile agents. 

FIGURE 1.3. The system consists of two stations mounted on tripods. One tripod 
is positioned on a fixed location and acts as a reference point. The second tripod is 
on wheels and carries two sensors, one localization sens or that is able to infer the 
position of the moving tripod relative to the reference point and a laser range finder 
that is used in order to map the distance to various objects (walls, corners, etc.). 
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1.3 CONTRIBUTIONS OF THE WORK 

To exemplify the relevance of our approach, a surveying company called LaserCad4 

that constructs CAD models of buildings using aspects of Cooperative Localization in their 

approach (see Figure 1.3 for the system in action in McGill University). In particular they 

deploy two stations (manually), one stays fixed providing a landmark (equivalent to our 

stationary robot) and the second station is moved around and used to collect measurements 

with a laser range finder. After an area is surveyed they keep the station with the laser 

range finder fixed and they move the previously stationary station to a new position in or der 

to provide a new landmark. In contrast to our approach they do not use both stations to 

collect measurements in the environment and they do not use the !ine of visual contact to 

sweep / map the space. 

3. Contributions of the Work 

The primary contribution of this thesis is the cooperative localization which enables the 

robots to map the free space and to decouple the positional error from the environment. It 

lS the first time when the ability of two (or more) robots to observe each other is exploited 

in or der to infer about the occupancy of the space between them. Another important 

contribution is the adaptation of a general probabilistic framework (in the form of a Monte­

Carlo simulation) for the reduction of uncertainty both in the pose estimation and the 

resulting map in the multi-robot paradigm. 

A non-comprehensive list of the contributions reported in this thesis follows: 

1. The concept of Cooperative Localization [132, 136, 135, 137]. 

2. The concept of mapping free space by "sweeping" the line of visual contact [132, 

136, 135, 137]. 

3. The development of an exploration algorithm (based on the triangulation of free 

space) for mapping areas of bounded size [132, 135, 137]. 

4. The development of an exploration algorithm (based on the trapezoidal decomposi­

tion of free space) for mapping unbounded areas. [132, 136, 137]. 

5. The proof of the optimal motion strategy for covering free unbounded space (in the 

asymptotic case) [137]. 

4Please refer to http://www.lasercad.qc.ca/for more information. 
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1.4 EXPLORATION WITH THE ROBOT TRAC KER 

6. The adaptation, development and analysis of a general probabilistic framework (in 

the form of a Monte-Carlo simulation) for the reduction of uncertainty both in the 

pose estimation and the resulting map for a multi-robot case. 

7. The development and construction of an accurate robot tracker sensor [140, 138]. 

8. The introduction of a new methodology in the multi-robot field for estimating the 

bounds of the accumulated uncertainty based on the statistical properties of the 

robot tracker sensor and the number of robots [140, 138]. 

9. Experimental results indicating feasibility and performance of our approach in sim­

ulation and in the laboratory. 

10. The development of a new strategy for accurately mapping a spatially varying prop­

erty of interest over an unknown (possibly hazardous) environment [134, 133]. 

11. Development of software (more than 20K Hnes of code in C++) to execute the 

proposed algorithms. 

4. Exploration with the Robot Tracker 

FIGURE 1.4. Area covered when one robot (light grey-green) moves and the other 
one is stationary. 

As mentioned earlier, the use of a novel sensing modality (the robot tracker) allows the 

robots to map large areas of open space with limited uncertainty. Our mapping strategy 

exploits standard sensing technology in a novel way. Different sensors have been used in 

order to realize the robot tracker; an early implementation employed a camera on the ob­

serving robot and a spiral pattern target on the observed robot and provided an inexpensive 
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1.5 COOPERATIVE LOCALIZATION 

solution; higher accuracy is achieved with the current implementation of a laser range finder 

and a three plane target (see Chapter 6 Sections 2 and 3 for details). The main ide a in the 

exploration strategy is as follows. The two robots maintain an uninterrupted Hne of visual 

contact between them. When the .. moving robot proceeds along a trajectory, the line of 

visual contact sweeps a wedge defined by the Hnes connecting the stationary robot position 

to the initial and final positions of the moving robot (see Figure 1.4) and the trajectory of 

the moving robot. If an obstacle obstructs the Hne of visual contact, the moving robot back­

tracks and then proceeds to map around the interfering obstacle. This permits the robots 

to measure objects with refiectance properties that would be unmanageable with traditional 

sensors (like laser range finders). The order in which the robots move and exchange roles 

is determined by the environment (see the two algorithms in Chapter 3 and Chapter 4). 

5. Cooperative Localization 

Since sensing is being used to correct pose estimation errors, the determining source of 

error in the localization of the robots is the inaccuracy of the "robot tracker" sensor that 

is used to updatejcorrect the position of the moving robot relative to the position of the 

stationary one. Therefore, if the two robots start with one stationary robot in an initial 

position Xstat(O) then the moving robot could localize itself with respect to that position, 

(see Figure 1.1). Note that, in practice, information from both sensing and odometry is 

combined using a probabilistic methodology. 

There are three potential sources of information for the localization of the moving robot. 

First, the odometry measurements Xodom(t) provide a base estimate of the moving robot's 

position (with high uncertainty ao). Second, the different objects in the environment, when 

sensed from different positions, could provide updates to the robot position [107, 167]. 

Finally, the robot tracker provides pose measurements Xtrack(t) relative to the position of 

the stationary robot Xstat(t). Our approach utilizes the information from aU three sources. 

In practice, over large scale environments, the position of (movable) objects changes over 

time and they cannot provide safe position updates. On the other hand, the estimate of the 

robot tracker is infiuenced only by the uncertainty in the position of the stationary robot 

as plus the error of the tracker measurement Xtrack(t). The accumulation of uncertainty in 

the position of the stationary robot depends only on the number of role exchanges the two 
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robots had. Consequently, over large open spaces, where the odometry error grows without 

bound, the moving robot could always make reference to a stationary landmark (a role that 

is played by the second robot). Under certain assumptions regarding the noise functions 

we can optimally combine two information sources by weighting them as a function of their 

standard deviations. This is, in fact, the essence of the Kalman filter (an optimal estimator 

under appropriate conditions) [63, 19]. 

6. Thesis Outline 

Chapter 2, which follows immediately, presents the relevant work and sets the frame­

work in which our work is situated. The next two chapters contain two deterministic explo­

ration algorithms for large areas; Chapter 3 presents the triangulation exploration algorithm 

for bounded areas and Chapter 4 introduces the exploration algorithm (trapezoidation) for 

unbounded are as based on the trapezoidal decomposition. Probabilistic reasoning and our 

approach to uncertainty reduction is presented in Chapter 5. Practical aspects of our work 

such as technical specification of the robot tracker sensor, calibration procedures, and pro­

gramming methodology are described in Chapter 6. Chapter 7 presents experimental results 

both from laboratory experiments and from simulations. The results collected in the real 

world validate our approach, while simulated environments are used in order to examine in 

depth different aspects of our methodology. A different application of our methodology of 

cooperative localization is presented in Chapter 8. The visual map construction algorithm 

lS used to examine the effectiveness of cooperative localization with very promising results. 

Finally, Chapter 9 presents conclusions and areas for future research. Appendix A con­

tains the optimality pro of of the trapezoidation algorithm with respect to distance traveled. 

Appendix B presents a study of the odometry error properties of the robots in our labora­

tory together with a comprehensive noise model and Appendix C contains a discussion on 

different resampling algorithms for the particle filter employed for uncertainty reduction. 
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CHAPTER 2 

Background 

In this chapter we examine relevant background for our work. It is worth noting that 

the subjects of localization and mapping cover a large fraction of the research in mobile 

robotics thus making a comprehensive survey of an the available work outside the scope 

of this thesis. Furthermore, a non comprehensive reference list [171, 47, 16] of work on 

multi-robot systems contains more than four hundred references. We present relevant work 

on exploration and mapping in Section 1, then a brief overview on estimation theory is 

presented in Section 2. Section 3 discusses the work on odometric error estimation and 

dead reckoning, and Section 4 presents an overview on localization. Section 5 examines 

relevant work on multi-robot systems. Finally, Section 6 contains basic definitions from 

computational geometry relevant to this thesis. 

1. Mapping 

Mapping via exploration is a fundamental problem in mobile robotics. The different ap­

proaches to mapping can be broadly divided into two categories: theoretical approaches that 

assume idealized robots and environments without uncertainty, and practical approaches 

that contend with issues of a real environment, often at the expense of theoretical rigor. 

The theoretical approaches provide lower bounds for the exploration problem while the 

practical approaches pro duce algorithms that operate in environments under uncertainty. 

Many algorithms have been proposed that explore the interior of a polygon or a collection 

of polygons under the assumption of perfect sensing and dead reckoning: the resulting map 

consists of a collection of linked Hnes. Representative of the above approach is the family 



2.1 MAPPING 

of bug algorithms [105, 104]. Each obstacle in the environment is explored in turn by the 

mobile agent that circumnavigates it and then the agent moves to the next closest unex­

plored obstacle, the algorithm guarantees convergence. Other techniques [131, 121], also 

assume a polygonal world, which the robot maps by traversing the visibility graph ensuring 

every part of the polygon is visited. At the same geometric level of abstraction (a polyg­

onal world) Choset proposed the use of Voronoi diagrams as a guide for an exploration 

strategy that navigated through the environment keeping a maximum distance from the 

obstacles [33, 31]. 

At a higher level of abstraction graph models for the world have been used for studying 

the task of exploration given minimal information for the environment. An abstract robot 

can travel across a graph by traversing edges and inquiring only about local information 

of the current vertex, such as the degree of the vertex or the existence of a marker on 

the current vertex. The robot can also carry the marker from one vertex to another. 

Algorithms exist for the exploration of a graph like world with a single abstract robot 

equipped with one marker [49, 48]. Extensions to the previous algorithms have been 

proposed where the robot has no marking ability and it relies only on the structure of the 

graph for the map construction [44, 45, 141]. In geometric worlds idealized models are 

used that deal with the world at a purely topologicallevel [40, 85]. The resulting map is a 

graph where the vertices denote locations deemed to be more significant than average (such 

as corners, corridor intersections, etc). Using an automaton Pierce and Kuipers developed 

a learning algorithm that could learn not only the environment but an abstract model of 

its sensorimotor system [125]. Topological maps can be learned even with little available 

information [148J. 

Taking into account sensor uncertainty leads to a different approach to mapping. Sev­

erai approaches centered on the exploration of an unknown world using a single sens or such 

as vision, sonar or a laser range finder [20, 55, 10, 177, 90]. Subsequently, data from dif­

ferent sens ors were fused into a map in order to improve the efficiency and the accuracy of 

the map [46, 3, 175, 23]. Thrun et al. proposed an approach combining an occupancy grid 

with a topological map in order to construct a reliable map for a mobile robot exploring an 

office like environment. This approach is based computationally on a Partially Observable 

Markov Model [167, 166]. Thrun et al. extended their work to creating three dimensional 
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2.2 ESTIMATION THEORY 

maps [99] and to multi-robot mapping [165]. Durant-Whyte et al. pioneered the application 

of Kalman fiUers and target-tracking methods to the problem of robot localization [95] and 

introduced the methodology ofsimultaneous localization and mapping [179,41]. Leonard 

et al. also have worked on mapping especially with out-door mobile robots and amphibian 

robots [94, 93, 96]. Mapping unstructured environments presents new challenges [116], 

especially for fast-moving, car-like vehicles [82]. One of the problems during mapping is 

the constant drift during the exploration that distorts the map [69]. 

Different forms of mapping have been proposed by Choset et al., such as covering 

the environment optimally using the Boustrophedon Cellular Decomposition [32, 2, 1], 

with multiple robots [91], and also using the extended Voronoi diagram in mapping [30]. 

Furthermore research in mapping [7, 84, 147] includes the construction ofvisual maps [16], 

mapping in domestic environments [183], coverage in rectilinear environments [25] and in 

extreme conditions [164]. 

2. Estimation Theory 

During the exploration of the unknown environment, the robots maintain a set of 

hypotheses with regard to their position and the position of the different objects around 

them. The input for updating these beHefs comes from the various sensors the robots poses. 

An " optimal estimator" [63] can be employed in order for the mobile robots to update their 

beliefs as accurately as possible. More precisely, the position of an obstacle observed in the 

past can be updated every time more data become available (a pro cess called smoothing). 

Moreover, after an action, the estimate of the pose of the robot can be updated based on 

the data collected up to that point in time (a pro cess called filtering). 

Kalman filtering [63, 19, 114] is a standard approach for reducing the error, in a least 

squares sense, in measurements from different sources. In particular, in mo,bile robotics, 

Smith, Self and Cheeseman provided a framework for estimating the statistical properties 

of the error in robot positioning given different sets of sensor data [159, 160]. A variation 

is based on Extended Kalman filtering (EKF), where a nonlinear model of the motion and 

measurement equations is used [95, 35]. Roumeliotis et al. successfully employed Extended 

Kalman Filter in a variety of tasks such as localization and multi-robot mapping [143, 142, 

144]. Kurazume et al. proposed the use of multiple robots, equipped with a sophisticated 
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laser range finder, in order to localize, using sorne of them as movable landmarks [89, 88, 

87]. The team of mobile robots uses a swarm behavior, using each other for localization. 

The fact that two robots could see each other was not used to infer that the space between 

them was empty. 

One approach that has gained popularity lately faIls under the category of Monte 

Carlo Simulation (see Doucet et al. [43] for an overview) and is known under different 

names in different fields. The technique we use was introduced as particle filtering by 

Gordon et al. [66] for tracking a moving target. In mobile robotics particle filtering has 

been applied successfully by different groups for single robots [37, 38, 80, 173], or for 

multiple robots [39], during navigation for online localization and for localization with a 

uniform prior (solving the kidnaped robot problem) [168], but also during exploration and 

mapping [79]. In vision this technique was introduced under the name of condensation [77] 

and particle filtering [14] for the estimation of optical fiow in image sequences [78] and for 

tracking multiple moving objects in video sequences [106, 163]. 

3. Dead Reckoning 

Dead reckoning is the procedure of modeling the pose (position and heading) of a 

robot by updating an ongoing pose estimate through sorne internaI measures of velo city, 

acceleration and time [17, 47]. In most mobile robots this is achieved with the use of 

optical encoders on the wheels and is called odometric estimation. The estimate of the pose 

of the robot is usually corrupted with errors resulting from conditions such as: unequal 

wheel diameters, misalignment of wheels, finite encoder resolution (both space and time), 

wheel-slippage, travel over uneven surfaces [17]. The pro cess of correcting the pose estimate 

is referred to as localization. 

Borenstein and Fend in numerous studies present an analysis of the mechanicaljkinematic 

causes of odometry error. Furthermore, they proposes a standard test (UMBtest) for the 

estimation of systematic error [18]. Chong and Kleeman [29] use the UMBtest for the 

elimination of systematic error and then calculate analytically the Covariance matrix for 

an extended Kalman Filter. Moon et al. [116] studied the effect of speed and accelera­

tion in the kinematics of differentiaI-drive robot, and proposed a method for maintaining 

a straight Une trajectory. Roy et al [145] proposed an online calibration using external 
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2.5 MULTIPLE ROBOTS 

sensing in order to estimate the systematic error as a separate component for rotation and 

for translation. 

4. Localization 

There are two major approaches to localization of a mobile robot based on whether the 

full structure of the environment is used. For both approaches a variety of sensing method­

ologies can be used including computational vision, sonar or laser range finding [41].The 

first approach lS to use landmarks in the environment in order to localize frequently and 

thus reduce the odometry error [11]. A common technique lS to select a collection of land­

marks in known positions and inform the robot beforehand [61,91, 65]. Another technique 

is to let the robot select its own landmarks according to a set of criteria that optimize its 

ability to localize, and then use those landmarks to correct its position [12]. The second 

approach to localization is to perform a mat ching of the sensor data collected at the current 

location to an existing model of the environment. Sonar and laser range fin der data have 

been matched to geometrical models [95, 100, 101, 118, 101, 111], and images have been 

matched to higher order configuration space models [5, 53] in order tO extract the position 

of the robot. Borenstein suggested a two-part robot that would more accurately measure 

Hs position by moving one part at a time [15]. Also, Markov models have been used in 

or der to describe the state of the robots during navigation [83]. 

The existence of clearly identifiable landmarks is an optimistic assumption for an un­

known environment. Even in man-made environments, the cost of maintaining labels in 

prearranged positions may be prohibitive. Moreover, in large-scale explorations the robot 

may have to travel a large distance (larger than its sensor range) before being able to locate 

a distinct landmark. 

5. Multiple robots 

The advantages of collaborative behavior have been examined extensively in the context 

of biological systems [110, 124]. In the field of robotics, research on multi-robot systems 

is gaining popularity because the multi-robot approach provides distinct advantages over 

a single robot such as scalability, robustness and speed. On the other hand it increases 

the complexity of the system by adding more parameters into the problem space. Basic 
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2.5 MULTIPLE ROBOTS 

geometric formations of the robots such as Hnes and/or circles of robots have been studied 

for ideal robots [162, 4] and for real robots under physical constraints [181], as well as 

simple tasks such as box pushing [112, 42], forming a transportation line [174, 60] or 

moving in a convoy [50]. The behavior of a group of autonomous robots and the dynamics 

developed differ according to the communication model among them and what is usually 

called the sociology of the group. There are different levels of communication that reflect 

the level of cooperation between the agents [51], while sometimes the robots are even tied 

together [72, 73]. The behavior of the robots could range from a master-slaves relation, to 

full cooperation to complete indifference [28, 86, 71, 110, 111]. 

In the context of terrain coverage in particular, Balch and Arkin were among the 

first to quantitatively evaluate the utility of inter-robot communication [8]. Mataric was 

another pioneer in considering the utility of inter-robot communication and teamwork in 

space coverage [113]. Dudek, Jenkin, Milios and Wilkes proposed a multi-robot mapping 

strategy akin to that proposed here, but they only considered certain theoretical aspects of 

the approach as it applied to very large groups of robots. Several authors have also surveyed 

a range of possible approaches for collaborative robot interactions [26, 51, 47]. 

Exploration using multiple robots is characterized by techniques that avoid tightly co­

ordinated behavior [8, 130, 34]. In earlier work multiple robots used each other ta localize 

when the lack of landmarks made it otherwise impossible [51]. Until recently (and subse­

quent ta publications [132, 139]) the use of localization among the group members using 

each robot's neighbors to correct the pose estimate during mapping in order ta remove 

uncertainty from the resulting map has not been considered. The term cooperative local­

ization has been used by a number of authors lately [143, 172, 9, 59, 64, 161, 108, 58, 

182, 74, 13]. In particular, Fox et al. [59] presented sorne work on multi-robot mapping in 

which two robots exchange information opportunistically, when and ifthey met. Grabowski 

et al. used ateam of cooperating miniature robots for exploration [67]. More organized 

approaches to multi-robot mapping have been proposed by Dellaert [36], Parker [123] and 

Simmons [158J. 
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2.6 GEOMETRY OVERVIEW 

P, 

InternaI Diagonal 

Polygon Boundary 

Obstacle 

FIGURE 2.1. A polygonal environment with reflex verticesjcorners and one obsta­
cle. With dashed Hnes are marked internaI diagonals that form a triangulation. 

6. Geometry Overview -

The environment is modeled as a simple polygon with holes [121, 122J, the surround­

ing wans are represented as the polygon edges and any obstacles inside are represented as 

holes. In practice, a non-polygonal environment can always be described using a polygonal 

approximation. Such an approximation can be readily computed so that it is either con­

servative in the sense that the interior of the approximated free space is assured to be free, 

or it can be designed to be accurate in a least-squared sense, so that for a given number of 

vertices in the approximation the discrepancy between the polygonal model and the actual 

environment is minimized [15, 56J. 

The main terms used in the next two chapters are : 

Interior of the Polygon: The free space of the environment where the robots ex­

plore. In Figure 2.1 the light blue shaded area. 

Polygon Vertex: The corner where two wans meet. 

Reflex Vertex: A Polygon Vertex with its internaI angle (the angle in the interior of 

the polygon) strictly greater than 180 degrees. See Figure 2.1 for examples. 

InternaI Diagonal: A line segment connecting two non-consecutive polygon vertices 

completely contained in the interior of the polygon. Dark blue dashed line in Figure 

2.1. 
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2.6 GEOMETRY OVERVIEW 

P, 

Internal Rays 

Polygon Boundary 

Obstacle 

FIGURE 2.2. A polygonal environment with reflex verticesjcorners and one obsta­
cle. With dashed Hnes are marked internaI rays that form a trapezoidal decompo­
sition of the interior of the polygon. 

Triangulation: The decomposition of the inside of the polygon into triangles. A 

triangulation of a simple polygon consists of n-2 triangles or n-3 non-intersecting 

diagonals where n is the number of vertices in the simple polygon. 

Trapezoïdal decomposition: The decomposition of the inside of the polygon into 

trapezoids and triangles by rays; each ray starts at a corner and an rays are parallel 

to each other. See Figure 2.2 for an example. 
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CHAPTER 3 

Exploration within Sensor Range (Triangulation) 

In the previous chapters we introduced the idea of mapping free space by sweeping the line 

of visual contact that connects two robots (Chapter 1) and presented relevant background 

(Chapter 2). In this chapter we are going to discuss a new algorithm for mapping the 

interior of an environment systematically (i.e. for performing complete exploration of a 

bounded environment without exploring any areas more than once). This algorithm works 

under the assumption that the two robots can maintain visual contact and effectively track 

each other across any open space in the environment. Our algorithm is based on a polygonal 

approximation of the environment and the two robots map the interior of the polygon (see 

Chapter 2 section 6) that represents the free space. Both robots use a traditional range 

finder in or der to detect and circumnavigate obstacles during exploration. In addition, each 

robot has a robot tracker sensor that is used to detect interfering obstacles when the Hne 

of visual contact is interrupted. The exploration strategy is based on a triangulation of the 

free space. 

1. Outline of the triangulation algorithm 

The exploration algorithm is based on the following idea. At any single time one robot 

is positioned at a vertex (corner) of the environment operating as a landmark, while the 

other robot moves along the perimeter of the environment maintaining visual contact with 

the stationary robot (see Figure 3.1). More precisely, as the moving robot follows one wall 

of the environment, it "sweeps" the line of visual contact across the triangle defined by the 

corner where the stationary robot 1S positioned and the two ends of the wall. Thus, the 



3.1 OUTLINE OF THE TRIANGULATION ALGORITHM 

robot establishes the position of the wall and the occupancy status of the swept free space 

inside the triangle. The two robots progressively map the environment by dividing it into 

triangles of free space, thus constructing a triangulation of the environment. Both robots 

run the same exploration algorithm, taking turns between (a) moving, thus mapping the 

free space, and (b) being stationary, thus providing a fixed localization reference for the 

moving robot 1. First, a few definitions are presented (in addition to the ones in Chapter 2 

section 6), then the major operations of the algorithm are discussed; finally, an outline of 

the exploration algorithm is presented. 

Map: A set of triangles residing entirely within the polygon, which coyer completely 

the interior of the environment (polygon) without overlaps (Triangulation). 

U nfinished Triangle: A triangle that is not completely mapped; in other words, one 

of the wall sides is not fully explored (one end-point not mapped yet). 

Dual Graph: A graph (V, E) such that every vertex Vi E V corresponds to a triangle 

Ti, and an edge eij E E between two vertices Vi, Vj exists iff their triangles Ti, Tj 

share an internaI diagonal. 

InternaI Triangle: A triangle constructed by three internaI diagonais of the polygon. 

The corresponding Dual Graph Vertex has degree three. 

Open Edge: An edge in the dual graph that connects a mapped triangle with an 

Unfinished Triangle. 

Degree of a triangle: The degree of the corresponding vertex in the dual graph, 

equal to the number of triangle sides that are internaI diagonals of the polygon. 

Steiner Point: A point that is not part of the input set of points. In our case a 

pseudo vertex that introduces an extra internaI triangle in the triangulation. 

As mentioned earlier the basic operation lS the mapping of a triangle of free space as the 

moving robot travels along one (or two) sides of each triangle. After the triangle is mapped 

it is included in the map and the corresponding node lS added to the dual graph. InternaI 

diagonals that separate fully mapped triangles from unexplored (or partially explored) areas 

(unfinished triangles) correspond to open edges in the dual gmphi these open edges guide 

the next step of the exploration (which triangle to map next). The exploration continues 

as long as there are areas of free space to be mapped and the Hne of visual contact between 

lIn the following we assume no three vertices are collinear. If this was the case, it would involve a minor 
but tedious change to the algorithm. 
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3.1 OUTLINE OF THE TRIANGULATION ALGORITHM 

the robots is uninterrupted. Adjacent mapped triangles form a chain of nodes in the dual 

graph which ends either in an infernal triangle (where there is a bifurcation and the graph 

spUts into two paths), or in a triangle with degree one (where two of its sides are wans, as 

in the top 1eft triangle in Figure 3.2d). The above two cases represent the end of a depth 

first search branch of the dual graph. 

There are two instances in which the moving robot stops exploring and a decision is 

made. One instance when the exploration halts is when a triangle with only one internaI 

diagonal (where the corresponding node in the dual graph has degree one) is fully mapped. 

In that case, the two robots search the dual graph, select the closest open edge, travel to the 

two ends of the corresponding diagonal, and resume the exploration. 

The second instance when the exploration stops is when the Hne of visual contact is 

interrupted. There are four distinct cases where the Hne of visual contact is interrupted (see 

Figures 3.1a,b,3.2a,c). In these cases the moving robot cannot continue Hs previous course 

and it has to make a decision where to move next in order to maintain visual contact with 

the stationary robot. 

(a) (h) 

FIGURE 3.1. Thick line represent walls, dashed Hnes represent unexplored wans, 
grey area is explored free space, dashed Hnes inside the grey are internaI diagonals. 
The stationary robot is red, the moving robot is green, and the red circles connected 
by arrows at the center of the triangles represent the dual graph. Line of Visual 
Contact interrupted: (a) Case 1: The stationary robot is at a non-reflex vertex and 
the moving robot encounters a reflex vertex that would interrupt the !ine of visual 
contact (b) Case 2: Occluding Vertex between the two robots. 

Case 1: The stationary robot is located at a non-reflex vertex while the moving robot 

reaches a reflex vertex. If the moving robot continues to follow the next wall then 

the Hne of visual contact is interrupted (see Figure 3.1a). In this case the two robots 
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3.1 OUTLINE OF THE TRIANGULATION ALGORITHM 

, , , , , , 
1 
\ 
\ 

(a) (b) 

(c) (d) 

FIGURE 3.2. Same notation as in Figure 3.1. Line of Visual Contact interrupted: 
(a) Case 3: Both robots are placed at reflex vertex such that any further exploration 
would break the line of visual contact (b) The moving robot explores perpendicular 
to the diagonal that connects the two reflects vertices. At the first wall found 
a Steiner point is introduced and an internaI triangle is created. Cc) Case 4: 
Occluding Edge next ta the stationary robot.(d) One branch of the dual graph is 
completely mapped, the robots would proceed to the nearest open edge of the dual 
graph. 

simply switch roIes, the moving robot sends a signal to the stationary robot to start 

exploring and then becomes stationary and the stationary robot (which was waiting, 

see Aigorithm 3) continues the exploration. 

Case 2: During the mapping of a triangle a reflex vertex located between the two 

robots interrupts the line of visual contact (see Figure 3.lb). First, the partiaHy 

mapped triangle is stored as an unfinished triangle. Then, the moving robot travels 

towards the stationary robot until the reflex vertex is encountered and mapped. 

Consequently, an internal triangle is constructed defined by the reflex vertex and 
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3.1 OUTLINE OF THE TRIANGULATION ALGORITHM 

the first internat diagonal of the unfinished triangle (see Figure 3.lb, Algorithm 2). 

The internaI triangle is connected with three triangles the previous fully mapped 

triangle, and two unfinished triangles located at the two sides of the reflex vertex 

(see Figure 3.lb). 

Case 3: Both robots are Iocated next to reflex corners and any motion along the 

unexplored walls would result in a break of the line of visual contact (see Figure 

3.2a). In this case, the moving robot explores in a direction perpendicular to the 

internal diagonal between the two reflex vertices until a wall is encountered (see 

Figure 3.2b). A Steiner point is introduced and an internaI triangle lS created from 

the Steiner point and the two reflex vertices. Two unfinished triangles are attached 

to it on the two sides of the Steiner point (see Aigorithm 2). Then the exploration 

continues in the unfinished triangle that lS doser to the robots 2. 

Case 4: During the exploration an ocduding edge interrupts the line of visual contact 

(see Figure 3.2c). This is a sub-case of the occlu ding reflex vertex case where the 

stationary robot is placed next to the edge adjacent to the ocduding vertex. It 

is treated differently in order to eliminate redundant traveling. The two robots 

exchange roles and the previously stationary robot receives a command to explore 

only up to the occlu ding reflex vertex and add the triangle to the map. Then the 

two robots exchange roles again and continue the exploration. 

These four cases cover aH possible configurations of interruptions in the Hne of visual 

contact. A formaI description of the algorithm lS presented in Algorithm 1 and an outline 

of the wall following strategy is presented next. 

2The introduction of the Steiner point increases the number of triangles by one. In practice it is only necessary 
in the case where a reflex vertex interrupts the hne of sight before the moving robot has encountered a vertex 
on the top wall (see Figure 3.2b). If a corner is encountered by the moving robot on the wall where the 
Steiner point was placed then the corner of the internai triangle that was at the Steiner point is moved to 
that corner and the Steiner point is erased. 
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whHe Dual Graph contains Open Edges do 

while (No Occlusion) AND (Dual Graph has Open Edges) do 

Assign closest Open Edge to U nfinished Triangle 

Explore U nfinished triangle 

end while{Occlusion has occurred Or branch of Dual Graph is completed} 

if Occlusion is of Case 1 then { One Robot at reflex vertex, Fig. 3. ia} 

SIGNAL(OtherRobot,Continue){Exchange raIe wi th the other Robot.} 

WAIT { see Algorithm 3} 

else if Occlusion is of Case 2 then 

{ Occluding Vertex between Robots, Fig. 3.ib} 

Mark current position as a temporary Polygon Vertex 

repeat 

Go Towards the Stationary Robot 

until Occluding Polygon Vertex Encountered 

Map the Occluding Polygon Vertex 

CreatelnternalTriangleO { see Algorithm 2} 

else if Occlusion is of Case 3 then 

{Bath Robots at Reflex Vertices, Fig. 3.2a,b} 

while New Polygon Vertex Not Found do 

Explore perpendicular to the Hne of visual contact 

end while 

Map Steiner point as a Polygon Vertex 

CreatelnternalTriangleO {see Algori thm 2} 

else if Occlusion is of Case 4 then {Occluding Edge, Fig. 3. 2c} 

SIGN AL( OtherRobot,ExploreOccludingEdge) 

WAIT {see Algorithm 3} 

end if 

if Current branch of Dual Graph ends then {see Fig. 3. 2d} 

Traverse the Dual Graph towards the closest Open Edge 

end if 

end while{The Map is complete} 

Algorithm 1: Triangulation Aigorithm; procedures are noted as underlined text, com-

ments are inside curly brackets "{comment}". 24 



procedure CreatelnternalTriangieO 
Create an InternaI Triangle with two Open Edges 
Add node to the Dual Graph 
Connect the Unfinished Triangle to the InternaI Triangle 
via the first Open Edge 

Continue the exploration following the second Open Edge 

Algorithm 2: Create InternaI Triangle 

procedure WaitO 
repeat 

Check Condition from Signal 
untH Condition is set 
if Condition=ExploreOccludingEdge then 

Map the Occluding Edge up to the next corner 
Create Triangle containing the occluding edge 
Add Triangle to the Map. 
SIGNAL(OtherRobot,Continue) 
WAITO 

end if 
Aigorithm 3: Wait 

2. Wall Following 

3.2 WALL FOLLOWING 

When the line of sight between the two robots is uninterrupted the moving robot 

explores the environment one triangle at a time by following the close st wall from one corner 

(end point) to the other. In our implementation of the algorithm the robots follow the walls 

at a distance of sixt Y centimeters using a sonar range finder sensor in or der to sense the 

wall. Lines are fitted to the sonar points, using the MacKenzie-Dudek algorithm [52, 101], 

and then the newly sensed Hnes are merged with the existing map. 

An outline of the mapping procedure follows. If the closest wall is the same (see Figure 

2a, robots drawn with dashed Hnes represent past positions) and the robot has not moved 

past its end (the robots position projects inside the line segment of the wall) then continue 

exploring the same wall. If a new wall is detected at distance d closer than sixt Y centimeters 

(see Figure 2b) then a non-reflex corner lS reached and the old wall is fully mapped. The 

intersection point of the old closest wall with the new closest wall is calculated and then it 

is used to mark the second end point of the old wall and the first end point of the new wall. 

Finally, the robot continues the exploration of the new wall by moving away from the first 
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FIGURE 3.3. lllustration of the wall following. (a) The closest wall is the same 
and the robot has not reached the wall's end: continue forward at 60cm from the 
wall. (b) A new wall is discovered which is closer than the previous one: reached 
non-reflex vertex; map the corner and continue the exploration of the new wall. (c) 
The closest wall ended and the robot has moved past the end of the closest wall: it 
is a reflex corner; proceed as in sub-figure (d). (d) Map the reflex corner by moving 
around the end-point of the old closest wall. Move by intervals of () at a distance 
less than 60cm and more than 30cm from the end-point. Robots drawn with dashed 
lines represent past positions. 
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end point, again at a distance of sixt Y centimeters. If the closest wall is the same but the 

robot has moved past the end of it (see Figure 2c) then this indicates that the robot has 

reached a reflex vertex. In order to map the reflex corner the following procedure lS used 

(see Figure 2d). The robot moves in a circulaI" path at a distance 0 from the end point 

of the closest wall until it finds a new closest wall. The circular motion is done in steps 

defined by an angle a, see Figure 2d (in the current implementation a = 15° and 0 = 45cm). 

Then the intersection point between the old and the new closest waHs is calculated. The 

old closest wall becomes fully mapped and then, if the reflex vertex does not interrupt the 

Hne of visual contact between the two robots, the moving robot continues the exploration 

by mapping the new closest wall. Otherwise the Hne of visual contact is interrupted and 

the robots follow Algorithm 1. 

3. Complexity Analysis 

In order to analyze the complexity of the exploration we need to distinguish between two 

qualitatively different stages of exploration, the local and the global exploration phases. The 

strategy used during the local exploration phase governs the coverage of individual triangles, 

while the strategy used during the global exploration phase determines the sequence in 

which these triangles are visited by using the dual graph. As noted earlier, the exploration 

strategy is guided by the dual graph of the triangulation and the two robots visit every 

triangle in a depth first traversaI, thus passing through each triangle at most twice (the 

first time exploring, the second time moving through towards the unmapped parts of the 

environment). Therefore, the complexity of the global exploration is the complexity of a 

depth first traversaI of the dual graph (of size O(N) where N is the number of vertices in 

the polygonal environment). The complexity of local exploration, i.e. the mapping of a 

single triangle, is proportional to the distance traveled by the moving robot which is the 

length of the wall mapped. Therefore, the totallength traveled during the mapping phase 

lS equal to the perimeter of the envÏronment. In the next section we are going to illustrate 

the previously described algorithms using a simple environment. 
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$RobotRI 
4tRobot H2 
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(c) 

(e) 

(b) 

(d) 

FIGURE 3.4. Two robots (Rl,R2 ) are exploring a simple environment. Only one 
branch of the dual graph is explored, the remaining areas marked as U. Robot R 2 

explores first. 
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3.5 MORE THAN TWO ROBOTS 

4. Illustrative Example 

In this section we present the triangulation exploration algorithm on the simple envi­

ronment that appears in Figure 3.4. The two robots start at the upper left wall, Figure 

3.4a, and they are noted RI in green and R2 in red. First the robot R2 explores two walls 

(see Figure 3.4b) reaching a reflex corner: the mapped area is shaded blue. The two robots 

exchange roles and robot RI starts the exploration (see Figure 3.4c). After a single triangle 

robot RI reaches a reflex corner and the two robots again exchange roles. During the explo­

ration of the next triangle by robot R2 a reflex vertex interrupts the Hne of visual contact 

and robot R2 proceeds to map the reflex vertex, create an internai triangle and continue the 

exploration on the left branch of the dual graph. The area that was not mapped is marked 

by U. After mapping three more triangles robot R2 is forced to stop and exchange roles 

with robot RI. Figure 3.4d illustrates the mapping by robot RI. The line of visual contact 

is interrupted and an internaI triangle is created. The robot RI continues the exploration of 

the right branch of the dual graph up to the point that the two robots meet and the branch 

of the dual graph is fully explored. Finally, Figure 3.4e presents the triangulation up ta 

this point; the two internaI triangle have created two bifurcations on the dual graph and 

in each case only one branch is mapped. The two robots move next through the explored 

areas to the closest opening that leads to an unexplored space (marked as U) on the map, 

and from there they resume the exploration. 

5. More than two robots 

An immediate extension of the triangulation algorithm can be obtained by the addition 

of more robots. The robots form a chain, where the first and the last robot play the roles 

of the two robots of the previously described algorithm and the other robots (in between) 

act as relays. If the range of the robot tracker sens or is R then the use of N robots extends 

the sensor range to (N - l)R. Figure 3.5 illustrates the above idea. Robot RI is stationary 

and robot R4 is following the wall (Figure 3.5a presents an initial configuration). Next 

the exploring robot (R4) is moving along the wall (Figure 3.5b). Note that robots drawn 

with dashed lines represent past positions. In Figures 3.5c,d the robots R3 and R2 move 

respectively to form a !ine again. With the addition of more robots the range of the robot 

tracker sensor could be extended in order to map larger environments. 
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3.5 MORE THAN TWO ROBOTS 

In this chapter we discussed an algorithm for exploring an unknown environment that is 

bounded by the range of the sensor. If the environment is larger than the range of the robot 

tracker sensor then this algorithm can not be used. Thus a different exploration algorithm 

lS proposed based on the trapezoidal decomposition of the environment, as described in the 

next chapter. 

Ca) (b) 

c;p ...... (?, ... -._.(!)-.-.~ 
R, V 

:T .. cs:) R, 

/T.. . .... 
·· ... ~i 

Cc) (d) 

FIGURE 3.5. Triangulation with four robots (a) AH robots are aligned, RI is sta­
tionary and robot R4 is following the wall. (b) Robot R4 moves along the wall. (c) 
Robot R3 aligns itself with RI and R4. (d) R2 moves into line. Robots drawn with 
dashed lines represent past positions. 
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CHAPTER 4 

Exploration Beyond Sensor Range 

(Trapezoidation) 

1. Introduction 

... In that Empire, the craft of Cartography attained such Perfection 

that the Map of a Single province covered the space of an entire City, 

and the Map of the Empire itself an entire Province. In the course 

of Time, these Extensive maps were found somehow wanting, and so 

the College of Cartographers evolved a Map of the Empire that was 

of the same Scale as the Empire and that coincided with it point for 

point. 

-From Travels of Praiseworthy Men (1658) by J.A. Suarez Miranda 

in Jorge Luis Borges's "Of Exactitude in Science" A Universal History 

of Infamy (1972). 

In the previous chapter we presented an algorithm for exploring an unknown environ­

ment in which the range of the robot tracker sensor is long enough to reach across it. In 

this chapter we are going to examine an exploration strategy for mapping beyond the range 

of the sensor. In environments consisting of large areas of open space (eg. warehouses, 

docking areas, open fields) it is quite common for the robots to be unable to foUow a wall 

or to detect any landmarks because the environment is larger than the range of the sensors. 

In such environments the moving robot uses the stationary robot as a portable marker for 

relocalizing and mapping. We present different motion strategies for the complete mapping 



4.2 TOP-DOWN DESCRlPTION OF THE ALGORITHM 

of the environment. The core idea of the algorithm is the mapping of an area of free space 

by one moving robot while the other robot is stationary. The purpose of the algorithm 

described below is to determine the sequence in which the free areas are explored, without 

duplication and ensuring fun coverage of the free space. In a bottom up description of the 

algorithm there are the following steps. One robot moves and sweeps the line of visual 

contact across the free space, thus mapping a single region of free space. Then the two 

robots exchange roles in order to explore a chain of free-space areas which forms a stripe; a 

series of stripes are connected together to form a trapezoid. After several iterations of these 

two steps the entire collection of the trapezoids provides the trapezoidal decomposition of 

the entire free space - a complete spatial decomposition of the interior of the environment. 

2. Top-Down description of the Algorithm 

The proposed algorithm is based on the trapezoidal spatial decomposition of a poly­

gon [122, 127]. A top down description of this algorithm is illustrated in Figure 4.1a-d. 

More spedfically, the two robots explore the world using a trapezoid decomposition of 

the free space as their guide, as can be seen in Figure 4.1a. Each trapezoid is mapped 

completely before the two robots proceed to map the next one. The order in which the 

trapezoids are mapped is given by a depth-first traversaI of the embedded dual graph (see 

Figure 4.1b). Every trapezoid corresponds to a vertex in the graph; vertices correspond­

ing to adjacent trapezoids are connected with an edge in the graph. Therefore, after one 

trapezoid is mapped the two robots proceed to map the trapezoid that corresponds to the 

adjacent node in the dual graph. The sensing range of the robot tracker provides a limit 

on the space that can be explored at any single time, before the two robots have to switch 

roles. Thus, if a trapezoid is larger than the range of the robot tracker, then it lS broken 

down into stripes with a width that depends on the sensing range R (see Figure 4.1c). 

The exploration of a single stripe can be accomplished using various motion strategies. 

At the top of Figure 4.1d, two different motion strategies are displayed. The first motion 

strategy (Strategy A) lS quite intuitive. In each exchange, one of the robots moves on a 

straight line (dotted Hne in figure 4.1d) sweeping (and hence mapping) a triangular region. 

When the distance between the two robots reaches the robot tracker sensor range the two 

robots exchange roles. The second motion strategy (Strategy B) is proven optimal (see 
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4.3 COMPLEXITY ANALYSIS 

Appendix A) with respect to the area covered over distance traveled. In each exchange, 

one of the robots traverses the two chords shown as dashed Hnes in figure 4.1d, sweeping a 

diamond shaped area. The moving robot travels across the first chord and at an angle () /2 

changes heading and follows the second chord (see Figure 4.1d). 

As we discussed above Strategy A is simpler and requîres a smaHer number of direction 

changes, but unfortunately, the width of the stripe (d) produced lS suboptimal (d < R), 

and thus a larger number of stripes lS needed in order to coyer the same area. Strategy B is 

optimal in terms of path traveled over area covered (see Appendix A) because at any single 

time the width of the stripe covered (d) lS the maximum possible (d = R). At the bottom 

of Figure 4.1d, the mapping of free space is presented over a single exchange. Angle () lS 

an input parameter that can be chosen to minimize a cost function as a function of (). In 

the case of reflex corners of the polygonal boundary of the large open spacè being mapped, 

one trapezoid splits into two new trapezoids, and the two agents decide which branch of 

the embedded graph to follow. 

When a sequence of explored regions are linked to each other as the exploration pro­

gresses, different types of stripes are created. In the case of the coverage of a triangular 

area, the two robots travel in paraUel lines separated by d, and the stripe mapped has the 

same width d (see Figure 4.1d, Motion Strategy A). In the case where each robot covers a 

diamond area, the trajectory of each robot would be a zig-zag line creating a stripe with 

width R, equal to the sensing range of the robot tracker (see Figure 4.1d, Motion Strategy 

B). A sequence of stripes connected together (lengthwise) map a single trapezoid (see Figure 

4.1c). At the end of each stripe the two robots follow the walls and reposition themselves 

ta explore the next stripe. 

3. Complexity Analysis 

Similar to the triangulation algorithm (see Chapter 3), in arder to analyze the com­

plexity of the exploration we need to distinguish between two qualitatively different stages 

of exploration, the local and the global exploration phases. The local exploration strategy 

guides the path traveled for the mapping of a convex segment of free space defined by 
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4.3 COMPLEXITY ANALYSIS 

Trapezoidation 

(a) (b) 

Exploration of a stripe: IWo different motion strategies. 

Motion Stralegy A 
.----------------------------o---------:----------";"oi'.------------------«1---------

"""R . rl .' 

Motion Strategy B 

·····-··:;········· .. :···~···-r·~··">····~··· .. ····,.···· .. ·/ ... .., .... ,. ..... 

/\ ......... ..... Mapping of Free Space at a single exchange 

Strategy A: 

Strategy B: -------------

Sensing Range: R 

(c) (d) 

FIGURE 4.1. A top down description of the Trapezoidation algorithm. (a) The 
environment is divided into trapezoids. (b) The order in which the trapezoids are 
mapped is given by a traversaI of the Dual Graph. (c) Each trapezoid is further 
divided into stripes with a width proportional to the sensing range R. (d) Each 
stripe is covered by areas of free space one next to the other. Each area of free 
space is explored by the motion of a single robot. Different motion strategies can 
be used, and the size of the area is controlled by the angle (}. 

the exploration algorithm (a triangle, or a trapezoid 1). The global exploration strategy 

determines the order in which these areas are explored. 

lThe trapezoidal decomposition divides the interior of a polygon into trapezoids and triangles. 
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4.3 COMPLEXITY ANALYSIS 

3.1. Complexity of Global Exploration. As noted earlier, the exploration strat­

egy is guided by the dual graph of the trapezoidal decomposition used. More specifically, 

the two robots explore one trapezoid at a time and then proceed to map the next trapezoid 

by following the dual graph in a depth first traversaI. Every trapezoid is vlsited at most 

twice, the first time when it ls being mapped and the second time when the two robots pass 

through in a shortest path traversaI to move to the next unexplored area. In general the 

complexity is proportional to the number of edges of the polygon, the size of the environ­

ment, and the range of the tracking sensor (which determines how many stripes are created 

in each trapezoid). 

3.2. Complexity of the exploration over a single exchange. In contrast to 

the triangulation algorithm where the robots move along the walls, when the trapezoidation 

algorithm is used, the moving robot couId foUow different trajectories as long as it stays 

inside the sensing range of the stationary robots. Alternative motion strategies present 

certain advantages and disadvantages. More precisely, there are different factors that affect 

the cast of the exploration depending on the configuration of the different robots. In terms 

of cost we consider the distance traveled, the number of rotations and the number of role 

exchanges between the two robots. Moreover aH of the above can be translated into time 

cost on how long it would take for the exploration. More precisely, every time the two robots 

exchange roles, the moving robot uses the stationary one ta correct its position and then the 

stationary one starts exploring. Each of these operations introduces a time delay, therefore 

the number of exchanges increases the cost. In addition, every time one of the robots has 

to change directions the rotation adds to the total cost. Finally, the total path traveled 

has ta be taken into consideration. For the two different motion strategies (diamond area 

covered, and triangular area covered) examined earlier, the total mechanical effort can be 

computed as shown in Table 4.1. The co st is calculated for the exploration of a rectangle 

X by Y, when the robot tracker sensor range is R. 

3.2.1. Cast Analysis. The factors that affect the cost of the exploration are: the 

number of exchanges, the total path traveled and the number of rotations. For a specifie 

set of robots the cost of the above factors can be determined beforehand. Specifically, 

the total cast of the exploration can be computed as the weighted sum of: the total path 

traveled (Po) multiplied by the cost of path traveled (Cp in sec/m), the total number of 
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4.3 COMPLEXITY ANALYSIS 

Covering Triangle Area Diamond Area 

Path length Pe 2Y + XY 2 2Y + XY 2 
R cos! R cos ~ 

4 

# of exchanges Eo XY 2 XY 1 -w sin 0 -W sinf 
2 

# of turns Re 2~ 2Y 2 XY R+~ Rcos"2 Slll '2 

TABLE 4.1. Analytlcal compleXlty of two dlfferent path curves. 

exchanges (Ee) multiplied by the cost for an exchange (Ce in sec/exchange), and the total 

number of rotations (Re) multiplied by the cost of rotation (Cr in sec/rotation). The 

factors (Cp, Ce, Cr) can be estimated before the exploration, while the sensing range (R) 

of the robot tracker is known. Equations 4.1 and 4.2 provide the total cost Ctotal(e) as a 

function of angle e for the exploration, using diamond area and triangular area covering 

respectively (as shown in Figure 4.1d), of a rectangle X x Y as a function of (), using the 

cost estimates and the analytical results from table 4.1. The optimal () for the exploration 

lS the one that minimizes Ctotal (0). 

Ctotal,diamond(e) = CpPe + CeEe + CrRe = 

= Cp (2Y + ;!~f) + (Ze:nY~) + creer + R;~~ ~) 
4 2 2 

(4.1) 

Ctotal,triangle(e) = CpPe + CeEe + CrRe = 

= Cp(2Y + ;!~~) + Ce(J~i;e) + Cre(R~~f) 
2 2 

(4.2) 

For one of our robots, a Nomad 200, the cost factors, for a typical experimental ar­

rangement are: Cp = 4.1 sec/m, Ce = 7 sec/exchange, Cr = 4.65 sec/rad. The optimal 

angle e is 1800
, for the diamond area motion strategy. For the same costs the optimal angle 

() is 900 for the triangular area motion strategy. As expected the total cost lS lower for the 

motion strategy that covers the diamond area than that which covers a single triangular 

area. 
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4.4 MORE THAN TWO ROBOTS 

4. More than two robots 

The above strategies could be extended by the addition of more robots. By forming a 

chain of robots that "sweeps" through the free space the range of the tracker is multiplied 

by the number of robots, thus covering a much larger area in a single sweep. In addition, 

every robot could estimate its pose with respect to more than one stationary robot, therefore 

gaining higher precision in its measurements. Two motion strategies are proposed for groups 

of more than two robots with respective advantages. Using the first motion strategy, only 

one robot moves during the exploration while the stationary ones that are still visible are 

used as landmarks. This method ensures minimum uncertainty accumulation as, at any 

given time, the moving robot would correct its odometry error with respect to more than 

one landmark. Using the second motion strategy, the robots divide into two teams and 

they interchange roles: while the first team is moving the second team works as a set of 

landmarks. This method explores an environment in less time but fewer robots are available 

as landmarks. 

4.1. Motion Strategies. As mentioned earlier an immediate extension of the 

trapezoidation algorithm can be obtained by the addition of more robots. When the two 

robots sweep one stripe of width d, then by adding an extra robot we could double the 

area swept per step of the algorithm. In the original algorithm, every robot has only one 

device to track the other robots; in this case a scheduling algorithm should be applied to 

determine the order in which the robots are moving. If we add a second traddng device, 

one robot could track robots on both sides, allowing a parallel coyer of double the area at 

the same time. 

In the exaniple of Figure 4.2a we use five robots (Ro ... R4) that are positioned in 

two lines at time To. First the robots Ro, R2, R4 move forward, tracked by RI and R3 

accordingly, mapping the four triangles as free space (time Tl), then bath Ro, R 2 track RI, 

which moves forward (time T2 ); while R2, R4 track R3, which moves forward (time T2). 

Then it is time for the other column of robots (Ro, R2' R4) to advance marking more area 

as free space (time T3)' The tracking is marked with the dotted Hnes of sight. The same 

pattern is followed as the two columns alternatively advance, marking a stripe of free space 

much wider than that possible with only two robots. 
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4.4 MORE THAN TWO ROBOTS 

• Robot 

Line of sight 

-----'JIIoo- Robot movement 

Ca) 

• Robot 

--liio- Robot movement 

(b) 

FIGURE 4.2. (a) Exploration of a stripe with 5 robots. The robots move at time 
Tl,T2 ,T3 , and T 4 . (b) Exploration of a stripe with 3 robots, covering space in 
diamond areas. The robot move at time Tl -T 19. 

The second part of the algorithm concerning the exploration strategy for the whole 

space and the order in which the trapezoids should be explored lS identical to the previous 

algorithm where only two robots were used. 2 

2There is a possible speedup by splitting up the group in order to explore different parts in critical points, 
but that would in the end spread the robots too thin. 
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4.4 MORE THAN TWO ROBOTS 

Moving only one robot at a time can also be easily extended to multiple robots. The 

robots start exploration aligned with each other in a straight Hne, at distance R from each 

other, where R is the tracker sensor range. The first robot and the last robot in the Hne act 

out the algorithm for two robots, while the role of the other robots is simply to provide a 

communication path between them. As such, the first robot in the Hne remains stationary, 

and the rest of the robots are moving such that the distance between two robots is never 

more than R. The width of the explored stripe is (n - 1 )R, where n is the number of robots. 

A pictorial representation of this strategy can be seen in Figure 4.2b, the robots Ro and R2 

sweep a stripe using the diamond pattern and the Robot RI stays between them. 

In this chapter an algorithm for mapping areas beyond the range of the robot tracker 

sensor was discussed. Together with the previous chapter they provide an approach to 

mapping the free space by sweeping the line of visual contact. In practice, the robot 

tracker sensor, as weIl as any other sensor used, suffers from noise. In the next chapter we 

propose a probabilistic framework for dealing with the uncertainty jnoise that corrupts the 

measurements. 
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CHAPTER 5 

Uncertainty Reduction 

ln theory, there is no difference between theory and practice. 

ln practice, there is. 

-Attributed to Yogi Berra and Jan L.A. van de Snepscheut. 

In the two previous chapters we described two deterministic algorithms for the methodi­

cal exploration of an unknown environment by a team of autonomous mobile robots. During 

exploration the robots collect information from various sources (sonar sensors, odometers, 

robot-tracker sensors, etc), information that is always corrupted by noise. In order to cope 

with the effects of the noise we adopt a Bayesian probabilistic framework that integrates 

information over time and takes into account multiple, competing hypotheses in order to 

pro duce a map with higher accuracy. 

The following subjects are presented in this chapter. Section 1 provides an outline 

of the Bayesian framework used in the rest of the chapter. Section 2 contains a detailed 

description of the Monte-Carlo Simulation method (particle filtering) we used in order to 

implement the Bayesian framework. 

1. Bayesian Reasoning 

The Bayesian approach provides a general framework for the estimation of the state of 

our system (the current pose of all robots) in the form of a probability distribution function 

(pd/), based on aH the available information. 



5.1 BAYESIAN REASONING 

For the linear-Gaussian estimation problem1 the required pdf remains Gaussian and 

the Kalman fiUer provides a provably optimal solution [81, 19, 142]. the non-linear 

Gaussian case the Extended Kalman Filter (EKF) has been successfully used by linearizing 

the control equations [159, HW]. For non-linear, non-Gaussian models two difficulties 

must be resolved: how to represent a general pdf using finite computer storage and how to 

perform the integrations involved in updating the pdf when new data are acquired. During 

the exploration the uncertainty build-up in the pose estimate of each robot translates into 

uncertainty in the resulting map. In order to improve the accuracy of the map the pose 

of the robot has to be estimated at discrete time steps. This is an instance of the discrete 

time estimation problem and can be formulated in state-space notation (see also Gordon et 

al. [66]). 

The i th robot pose at time t = k lS represented by the state vector x% = [x%'Y1, â1]T, 
xi. E ~2 x SI. Each robot takes action (at) and its pose evolves according to Equation 

5.1. 2 

(5.1) 

where, fa is the system transition function that models how action a probabilisticaHy 

modifies the pose of the robot and how it is affected by the noise Vk. The actual transfer 

function fa is not analytically available; instead, a simulation (as described in Appendix B 

Section 4) that models the effect of noise and provides an approximation fa ~ fa is used. 

After each action lS performed the robot acquires one (or more) sensor readings. Every 

sensor measurement available at time t = k is included in a sensor data vector noted as zi. 
These measurements are related to the state vector via the observation equation 5.2. 

(5.2) 

where gk is the measurement function and Uk is the noise model. 

lWhere the noise probability distribution functions are Gaussian and the model of the system is linear. 
2The superscript "i" that indicates the robot to which we refer is dropped for clarity of presentation for the 
rest of the discussion. 
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5.1 BAYESIAN REASONING 

It is assumed that the initial pd! P(xo) is known and that the available information at 

time t = k is the set of measurements and the set of actions up to that time. In order for 

the robot to decide the next action it needs to know its current pose or, sinee knowledge of 

the true pose is not feasible due to noisy measurements, at least the pd! of Us pose given 

the previous actions and observations (P(xklxo, aj, Zj : j = 1 ... k)). This can be achieved 

recursively, by first predicting the prior probability of Xk from the previous pose Xk-l 

(presuming it is available) and the action taken ak (see Equation 5.3) and then updating 

using the latest sensor data Zk in order to obtain the posterior distribution of the pose Xk 

of the moving robot given aIl available information. 

P(xklxo,ak, aj,zj ) = !P(xklak,Xk-l)P(Xk-llxo, aj,zj )dXk-l (5.3) 
"'--v-" "'--v-" 

j=l...k-l j=l...k-l 

Note that the P(xklak,Xk-l) can be derived by the system model (Equation 5.1), the 

known characteristics of the noise Vk-l and the P(Xk-llxo, aj, Zj : j = 1 ... k - 1), which is 

the posterior of x at time t = k - 1. 

When new sensory information becomes available we can use Bayes rule in order to 

update the pd! of the moving robot with the latest observations (Equation 5.4). The con­

ditional probability of the sensor measurement Zk given the pose Xk from which it was 

obtained can be estimated by the sensing function gk and the noise model Vk' Finally the 

normalizing denominator can be obtained through Equation 5.5. 

(5.4) 

(5.5) 

Many different methods can be used in order to estimate the pd! of the moving robot, 

an overview of which is given in Chapter 2 Sections 4 & 2. In our work we applied a Monte 

Carlo simulation technique called particle filtering which is described next. 
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5.2 PARTICLE FILTER 

2. Particle FHter 

The main objective of partide filtering is to "track" a variable of interest as it evolves 

over time, typically with a non-Gaussian and potentially multi-modal pdf. The basis of the 

method is to construct a sample-based representation of the entire pdf. A series of actions 

are taken, each one modifying the state of the variable of interest aecording to sorne model. 

Moreover at certain times an observation arrives that constrains the state of the variable of 

interest at that time. 

Multiple copies (particles) of the variable of interest are used, each one associated with 

a weight that signifies the quality of that specifie partide. An estimate of the variable of 

interest is obtained by the weighted sum of all the particles. The particle filter algorithm is 

recursive in nature and operates in two phases: prediction and update. After eaeh action, 

each partide lS modified according to the existing model (prediction stage), including the 

addition of random noise in order to simulate the effect of noise on the variable of interest. 

Then, each particle's weight is re-evaluated based on the latest sensory information available 

(update stage). At times the particles with (infinitesimally) small weights are eliminated, a 

pro cess called resampling. 

More formally, the variable of interest (in our case the pose of the moving robot x k = 

[xk, yk, iJkjT) at time t = k is represented as a set of M samples (the "particles") (Sf = 

[xj,wjl : j = 1 ... M), where the index j denotes the particle and not the robot, each 

partide consisting of a copy of the variable of interest and a weight (wj) that defines the 

contribution of this particle to the overall estimate of the variable. 

If at time t = k we know the pdf of the system at the previous instant (time t = k - 1) 

then we model the effect of the action to obtain a prior ofthe pdf at time t = k (prediction). 

In other words, the prediction phase uses a model in order to simulate the effect an action 

has on the set of particles with the appropriate noise added. The update phase uses the 

information obtained from sensing to update the particle weights in order to accurately 

describe the moving robot's pdf. Algorithm 4 presents a formaI description of the particle 

filter algorithm and the next two subsections discuss the details of prediction and update. 

Given a particle distribution, we often need to take actions based on the robot pose. 

Three different methods of evaluation have been used in or der to obtain an estimate of the 

pose. First, the weighted me an (Pest = L~l WjXj) can be used; second, the best particle 
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5.2 PARTICLE FILTER 

Require: A set of Particles for Robot i at time 0: Sr = [Xj, Wj : j = 1 ... M). 
W=Wj:j = 1 ... M 
while (Exploring) do 

k = k + 1; 
if (ESS(W) < f3 * M) then {Particle Population Depleted (Equation 5.10)} 

Index=Resample(W) ; 
SI:; = SI:; (Index)' l l , 

end if 
for (j = 1 to M) do {Prediction after action a} 

xJ+l = j(xj, a) 
end for 
s=SenseO 
for (j = 1 to M) do {Update the weights} 
W~+l = w k * W(s x~+l) 

J J ' J 
end for 
for (j = 1 to M) do {Normalize the weights} 

k+l 
k+ 1 _ --,,--,w.,..,ZL-· ....."..,...., 

W· - =, M k+l 
J I:j =l wj 

end for 
end while 
{ESS is the Effective Sample Size, see Equation 5.10} 

Algorithm 4: Particle Filter Algorithm; procedures are noted as underlined text, Com­
ments are inside curly brackets "{comment}" .. 

(the Pj such that Wj = max(wk) : k = 1 ... M) and, third, the weighted mean in a small 

window around the best particle (also called robust mean) can be used. Each method has 

its advantages and disadvantages: the weighted mean fails when faced with multi-modal 

distributions, while the best particle introduces a discretization error. The best method is 

the robust mean but it is also the most computationally expensive. 

2.1. Prediction. In order to predict the probability distribution of the pose of 

the moving robot after a motion we need to have a model of the effect of noise on the 

resulting pose. Many different approaches have been used (see Borenstein et al. [16, 18] 

for an overview), most of which use an additive Gaussian noise model for the motion. Any 

arbitrary motion [..6.x, ..6.y]T can be performed as a rotation followed by a translation (a 

piecewise linearisation, see Figure 5.1). The robot 's initial pose is [x, y, ÔJT. First the robot 

rotates by /jÔ = ôk-ê, where êk = arctan(..6.y/ ..6.x) to face the destination position, and then 
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it translates forward by distance p = J !:J..x2 + !:J..y2 3. If the starting pose lS [x, y, ê]T, the 

resulting pose [x', yi, êk]T is given in Equation 5.6. Consequently, the noise model is applied 

separately ta each of the two types of motion because they are assumed independent. 

t=k 

y' ..... . 

lJ.y t=k-l 

y ....... 

IJ.x x' 

FIGURE 5.1. Arbitrary motion [.6.x, .6.y]T ofrobot Ri, At time t = k - l the pose 
is [x, y, êV, after the motion at time t = k the pose is [Xl, yi, êkV. The robot first 
rotates to orientation êk and then translates by Pk. 

(5.6) 

2.1.1. Rotation. When the robot performs a relative rotation by oÔ the noise from 

the odometry error is modeled as a Gaussian with mean (Mrot ) experimentally established 

(see appendix B) and sigma proportional to oê. More formally, if at time t = k the robot 

has an orientation êk then after the rotation (time t = k + 1) the orientation of the robot 

is given by Equation 5.7. Therefore, to model the rotation of oê, the orientation Ôj of each 

particle j is updated by adding 8ê plus a random number drawn from a normal distribution 

with mean M rot and standard deviation arotoÔ (N(Mrot , arotoê), where arot is in degrees 

per 360°). 

3In our experimental setup the Nomadic Technologies Superscout II robots used are controlled by the same 
rules. 
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(5.7) 

2.1.2. Translation. Modeling the forward translation is more complicated 4. There 

are two different sources of error, the first related to the actual distance traveled and the 

second related to changes in orientation during the forward translation. During the transla­

tion the orientation of the robot changes constantly resulting in a deviation from the desired 

direction of the translation; such effect is caUed drift and we model it by adding a smaU 

amount of noise to the orientation of the robot before and after each step. As weIl, if the 

intended distance is p, the actual distance traveled is given by p plus sorne noise following 

a Gaussian distribution. Experimental results provide the expected value and the standard 

deviation for the drift and pure translation. Because it is very difficult to analytically model 

the continuous process, a simulation is used that discretizes the motion to K steps, where K 

is chosen to be low enough for computational efficiency but high enough in order to describe 

the effect of noise in forward translation. If [O"translation, O"drijt] are experimentally obtained 

values per distance traveled then at each step of the simulation the standard deviation used 

is given in Equation 5.8. Aigorithm 5 provides a formaI description of the prediction phase 

of a set of particles S for a forward translation by distance p. 

O"trs = O"translation VK 
O"drjt = O"drijtV'f: 

(5.8) 

Figure 5.2 presents a graphical illustration of the effect of the two noise parameters 

(O"trs,O"drjt) in the predictive model. In both cases the robot makes a single forward motion 

of lOOcm (upper left sub-plot), 200cm (upper right sub-plot), 300cm (lower left sub-plot), 

and 400cm (lower right sub-plot). In Figure 5.2a the uncertainty in the distance traveled is 

the dominant uncertainty and thus the particles spread a lot more in the direction of the 

motion. In contrast, in Figure 5.2b, where the drift noise dominates, the particles spread in 

a circular pattern. Appendix B contains a detailed experimental study of these parameters 

using the Nomadic Technologies Superscout II mobile platform. 

4For a detailed description of the model please refer to appendix B sections 3,4.2. 

46 



Input: Set of M Particles::S; Translation distance::p 
'p - L· 
U - K' 
for (j = 1 to M) do { For each parti cIe } 

for (k = 1 to K) do { At each of K steps} 
Etrs =rand~(Mtrs * 15p, atrs * 15p); 
Edrjt =rand~(Mdrft * 8p, adrjt * 8p); 

êli] = êlil + Edr ft; 
x[j] = xli] + (fJp + Etrs * cos (êliD; 
y[j] = y[j] + (15p + Etrs * sin (ê[j]); 
Edrft =rand~(Mdrft * 15P,(Ydr!t * 8p); 
ê[j] = ê[j] + Edr!t; 

end for 
S'[j] = [x[j],y[j]'Ôli]]T; 

end for 
Return(S') 

5.2 PARTICLE FILTER 

Algorithm 5: Forward Translation with Noise; rand~(M, (Y) is a pseudo-random num­
ber generator drawing samples from a Normal distribution with mean M and standard 
deviation (Y; procedures are noted as underlined text, Comments are inside curly brackets 
"{ comment}". The variables Mtrs and Mdrjt represent the mean error and are experimen­
tally derived. 

2.2. Resampling. One of the problems that appear with the use of particle filters 

is the depletion of the population after a few Iterations. Most of the particles have drifted 

far enough for their weight to become too smaU to contribute to the pd! of the moving 

robot 5. If we consider the current set of particles S k = {xf, wf} : k = 1 ... M as a discrete 

representation of the pd! of the moving robot-pose, a new representation S~ = {x'f, w'f} : 
k = 1. .. M is needed such that xf = x'~ for k, l in [1, M] and weights (w'f = IjM) that 

represent the same pdf. 

Liu et al. [98] refer to two different measures that estimate the number of near-zero­

weight particles: one is the coefficient of variation cvl (see Equation 5.9) and the second is 

the effective sample size ESSt (see Equation 5.10). 

(5.9) 

5For most practical implementations the weights become zero due to rounding off. 
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FIGURE 5.2. The effect of (J'trs, (J'drft for the forward translation: (a) (J'trs 

5em/m,(J'drft = P/m (b) (J'trs = lem/m, (J'drft = 5°/m. 

M 
ESSt = 2 

1+ CVt 
(5.10) 

When the effective sample size drops below a certain threshold, usually a percentage 

of the number of particles M, then the particle population is resampled, eliminating (prob­

abilistically) the ones with smaU weights and duplicating the ones with higher weights. 

Different methods have been proposed for resampling; three of the most common ones 

are discussed in Appendix C. In every case the input is an array of the weights of the 

particles and the output lS an array of indices of which particles are going to propagate 

forward. The requirement is that the pd! reconstmcted by the resampled population is 

very close to the one before the resampling. Experimental tests showed no noticeable 

improvements over the simple select with replacement scheme. In Select with Replacement 

each particle is selected to continue with a probability equal to its weight. We used the 

approach of Carpenter et al. [27] that mns in linear time in the number of particles (see 

Appendix C for a description of the algorithm). 

Figure 5.3 presents two examples of complex motions and illustrates the performance of 

the prediction stage of the particle filter. In figure 5.3a, the robot moves forward three times, 
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FIGURE 5.3. (a) Large trajectory, the uncertainty build up is represented by the 
spread of the particle cloud. (b) Series of forward translations and 3600 rotations 
performed in our laboratory. The connected curved Hne represent the uncorrected 
odometer values (captured accurately by the cloud of particles), and the bottom 
line represents the actual trajectory. 

rotates ninety degrees, then translates forward three more times, after which it rotates again 

by ninety degrees and translates forward five times. As can be seen the uncertainty grows 

unbounded. Sub-figure 5.3b presents experimental validation of our predictive model. In 

this case the predictive model was guided by a set of motion commands that were used in 

an experiment in our laboratory (for the full description of this experiment please refer to 

chapter 8). In short, the experiment consisted of forward translations, each one followed 

by four rotations by ninety degrees (in order to sense the environment in four different 

directions). The connected circles in sub-figure 5.3b represent the uncorrected odometer 

values. In fact, the actual trajectory of the robot was kept in a straight Hne but the 

odometry estimates did deviate due to noise. The predictive model was constructed using 

the noise statistical parameters collected in our laboratory (see Appendix B). The predicted 

cloud of particles can be seen around the recorded values following the trajectory with high 

accuracy. 
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5.2 PARTICLE FILTER 

2.3. Update. After an action (the motion of one of the robots) the robot tracker 

sensor is employed in arder ta estimate the pose of the moving robot 6. The calculations 

are dependent on the configuration of the robot tracker employed. The next two sections 

present the update of the weights of the particles of the moving robot for the laserjtarget 

robot tracker combinat ion for two different cases. First we derive the update equations 

when the laser range finder is mounted on the stationary robot (subsection 2.3.1); second 

for when the laser range finder is mounted on the moving robot and the target is mounted 

on the stationary robot (subsection 2.3.2). 

Observing Robot-Laser 
(Stationary) 

A 

S 

Observed Robot-Target / 
(Moving) / 

( 

A 

tVw 
/ ........ ~ ... - --~h. 

dx=xmx s 

dY=Ym-Ys 

p =Vdx2+dy2 

êw=atan2(dy,dx)= ê+ Ils 
A A A 
tVw=atan2(-dy,-dx)= $+ Sm 

A A 
Tracker Retums: < p, 8, $> 

FIGURE 5.4. The stationary robot with the robot tracker sensor observes the mov­
ing robot that carries the target. 

2.3.1. Pose Estimation, stationary robot observing moving robot. If the pose of the 

stationary robot Xs = [x s, Ys, Ôs]T (with laser range finder) and the pose of the moving robot 

X m = [xm, Ym, ÔmV (with target) are known, then the robot tracker sensor measurement 

li:; = [p, ê, JV can be calculated by Equation 5.11: 

6 Additional sources of information (e.g. consistency of sensed parts of the environment with the map up to 
this point) can also be used during the update stage. 
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[
pl [ Jdx2 + dy2 ] 

z = ~ = atan2(dyjdx) - ês ~ 

<P atan2( -dyj - dx) - am 

(5.11) 

where dx = X m - Xs and dy = Ym - Ys. 

If the known information is the pose of the stationary robot (xs ) (with the laser range 

finder) and the robot tracker measurement is (z = [p, ê, ~V) then the estimate of the pose 

of the moving (target) robot (xmest (k + 1)) is given in Equation 5.12: 

(5.12) 

The Equations 5.11 and 5.12 are equivalent. Consequently, the above equations can 

be used in or der to calculate the weight of each particle of the moving robot, assuming 

a Gaussian error model for each component of the sensor data (p, ê, ~), in two difIerent 

ways. First, let the i th particle at time k be X~i = [xmi , Ymi' êmiV. Then if the pose of 

the stationary robot is known X s = [x s, Ys, ês]T the estimated tracker measurement Zi for 

particle i is given in Equation 5.13: 

[

Pi] [ Jdx; + dY7 ] 
Zi = ~i. = atan2(dYi, dXi)- ê

SA 

<Pt atan2( -dYt, -dxd - ami 

(5.13) 

where dXi = x m; - Xs and dYi = Ymi - Ys· 

The weight for particle i then is proportional to the probability of x~~l given Xs and 

Zi (see Equation 5.14). As can be seen in Equation 5.13 the value of ~i is afIected by the 

complete pose of particle i (both position and orientation). Therefore the error in position 

(xmi , YmJ is used twice. In Equation 5.14 the constants (lp, (lé, (l~ are the presumed standard 

deviation orthe robot trackers measurement noise and they signify the confidence with which 

we weight each measurement. 
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FIGURE 5.5. The contribution of each measurement of the robot tracker in the 
weighting pd! of the moving robot. 

(5.14) 

Figure 5.5 illustrates the spatial variation of Equation 5.14. In particular the spatial 

variation of the contribution of each component (p, ê,~) to the weighting function is pre­

sented in the first three sub-plots, and the spatial variation of the weighting function is 

presented on the lower right sub-plot. For clarity of presentation, the pose of the observing 

robot is set at Xs = [0,0, ojT and the pose of the moving robot at X m = [100, 100, 45jT , 

and using Equation 5.11 the tracker measurement z = [P, ê, ~jT is calculated. Then the 

spatial variation of the different terms of the product in Equation 5.14 is plotted keeping 

the moving robots orientation at the correct value (45°). 

Experimental results have shown that the accuracy of the position of the robot ls 

(almost) fixed (independent of the distance at which the observed robot lS seen). Unfortu­

nately, the tracker measurements are in polar coordinates and thus for a fixed error in the 
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angle (â) the longer the distance (p) the higher the error. In practice, it is necessary to 

ca1culate Gê as a function of p: 

(5.15) 

If the a{j is kept at a fixed value then the weighting function is spread out, as can be 

seen in the upper right sub-plot in Figure 5.6, and the prediction is less accurate. Figure 5.6 

presents the spatial variation of the weighting fun ct ion for the same condition as in Figure 

5.6, except aê is not scaled. 
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FIGURE 5.6. The contribution of each measurement of the robot tracker in the 
weighting pd! of the moving robot. In contrast to Figure 5.5 the aê is not calculated 
to be proportion al to distance between the two robots. 

An alternative weighting function is to use the difference in Cartesian coordinates and 

the orientation estimate in order ta weight the particle X~i given X s and Zi (see Equation 

5.16). 
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(5.16) 

The second approach is ta use Equation 5.12 and weight every particle depending on 

how far it is from the estimated pose of the moving robot (see Equation 5.17). Where 

if Xmest (k + 1) = [xmestl Ymestl Ômestl is the estimate pose and X~i = [xmn Ymi' Ôm;Y is 

the "ith" particle then di = J(xmest - xmJ2 + (Ymest - YmiF. The disadvantage of this 

approach is that (Jd, (JiJ do not represent the sensor's noise model. 

1 -Cdq2 1 -Cêmest -êm;J2 
P(x~Hlxs, z) = e 2ad e 2aJ 

, V21r(J d V21r(J iJ 
(5.17) 

During the estimation of the weight the pose of the stationary robot Xs is used. As the 

actual pose is not known, different estimates Xs can be employed. The following options 

have been considered: 

® The best particle (the one with maximum weight): 

® Weighted Mean: 

M 

Xs = LxjWj 
j=l 

® Use every particle of the stationary robot (O(n2 )): 

P( k+ll ) _ ",n P( kHI j ) x mi X S1 Z - LJj=l xm; x s ' Z 

® Robust Mean: Select only the particles that are less than E from the particle with 

maximum weight. The advantage of this method is that it selects the mode of the 

distribution and reduces the discretization error (which occurs when only a single 

particle is used). 

K 

x = "\:"' xjw' . Ixi - xmaxi < E s ~sJ· s s -
j=l 
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FIGURE 5.7. Observation. 

2.3.2. Pose Estimation} moving robot observing stationary robot. This time the 
A T 

stationary robot has the target. If the poses of the two robots (xs = [xs, Ys, es] and 

Xm = [xm, Ym, ÔmV) are known then the robot tracker sensor measurement (z = [p, Ô, ~V) 

can be calculated by Equation 5.18 (exactly as in the previous case Equation 5.11). 

[
pI [ y'dx2 + dy2 1 
~ = atan2(dy, dx) - Ô

mA 

<p atan2( -dy, -dx) - es 

(5.18) 

where dx = Xs - X m and dy = Ys - Ym "7. 

If the pose of the stationary robot (xs ) (carrying the target) and the robot tracker 

measurement (z = [P, Ô, ~V) are known then the estimate of the pose of the moving (carrying 

the laser) robot (xm) is given in Equation 5.19. 

[

XS + P * cos (~+ ~s)1 
Ys + P * sin (<p + es) 

1(" + ~ + Ôs - Ô 

(5.19) 

7Note that dx,dy are different from Equation 5.11. 
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Applying the same methodology as in the previous section the weight update functions 

are identical with the ones in Equations 5.14, 5.16, 5.17. 
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FIGURE 5.8. (a) Prediction of the first step. (b) Update using the robot tracker. (c) 
Prediction of the second step. (d) Update using the robot tracker. 

120 

Figure 5.8 presents an illustration of the above described process over two iterations. 

The first column present the prediction phase and the second column the update phase. 

The moving robot starts at position [0,0], and the stationary robot is located at [0,100]. 

At figure 5.8a the moving robot moves by [100cm,100cm] and the particles form a cloud of 

approximately 20cm in radius. Figure 5.8b presents the update phase based on the tracker 

sensor measurement (darker color represents higher weights). At the second step the robot 
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moves by [lOOcm,-lOOcm] and figure 5.Sc presents the cloud of particles. It is worth noting 

that the particles with higher weights (darker grey) have spread out. Finally, figure 5.8d 

presents the second update phase where again the particles closer to the sensed pose have 

higher weights. 
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CHAPTER 6 

Robot Tracker Implementation 

1. Introduction 

As we saw in the previous chapters, central to our approach is the role of the robot 

tracker sensor, which serves the dual role of estimating the pose of the moving robot and 

of detecting obstacles between the two robots. This chapter is independent of the rest of 

the thesis and discusses the implementation details for the construction of two different 

robot tracker sensors. Section 2 presents the implementation details for the construction 

of a vision-based robot tracker sensor together with an analysis of its accuracy. Section 3 

discusses an improved robot tracker sensor based on a laser range finder and a geometric 

target. The laser sensor calibration and the target calibration are discussed in this section 

together with an error analysis. 

2. Visual Tracker 

A variety of sensing technologies could be used for the robot tracker. Our first imple­

mentation of the robot tracker sensor was based on visual observation of a helical target 

pattern on the other robot [50]. One robot is equipped with a camera that allows it to 

observe its partner. The other robot lS marked with a special pattern for pose estimation, 

Several possible designs for the pattern are possible, but they should satisfy two key 

requirements: the pattern should be robustly detectable and it should aUow the distance 

and orientation of the robot carrying it ta be estimated. In this particular implementation, 

the first part of the pattern is a series of horizontal circles that project into an almost linear 

pattern in the image. This allows the robot to be easily discriminated from background 
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objects: the particular ratio of distances between the circles (bj a in Figure tl.lc) is extremely 

unlikely to occur in the background by chance. Thus, the presence of the robot lS established 

by a set of Hnes (curves) with the appropriate length-to-width ratio, and the appropriate 

inter-Hne ratios. The second component of the pattern lS a helix that wraps once around 

the robot. The elevation of the center ofthe helix, relative to the surrounding bands (cjb in 

Figure tl.lc), allows the relative orientation of the robot to be inferred (see Figure 6.2a, 6.1). 

In practice, this allows the robot's pose to be inferred with an accuracy of a few centimeters 

in position and 3 to 5 degrees in heading. 

••••• •• u ~1flli'$; ... 

(a) (b) (c) 

FIGURE 6.1. Robot Tracker: (a) The raw image of the moving robot as observed 
by the robot tracker. (b) The helical and cylindrical pattern detected in the image. 
(c) The distances estimated from the helix. 

By mounting the observing camera above (or below) the striped pattern of the other 

robot, the distance from one robot to the other can be inferred from the height of the stripe 

pattern in the image, due to perspective projection (scaling of the pattern could also be 

used). The difference in height between the observing camera and the target can be selected 

to provide the desired tradeoff between range of operation and accuracy. One advantage of 

the helical target for orientation estimation is that it functions correctly even at very large 

distances, although with reduced accuracy, of course 1. 

2.1. Tracker Evaluation. The accuracy ofthe visual tracker is shown in Table 6.1. 

While the relationship between the appearance of the target and the actual distance can be 

computed analytically, this would presuppose an accurate knowledge of the camera param­

eters. In order to relax this requirement, as weIl as to accommodate potential deviations 

lNote that constraints due to specifie task (such as mine sweeping) can sometime introduce additional 
constraints on the maximum inter-robot separation or optimal sensor geometry. 
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FIGURE 6.2. (a) The visual robot tracker system with the camera mounted on one 
robot and the helical target pattern mounted on the second robot. (b) Calibration 
data for the distance estimation relating observed image position to actual distances. 

400 

from our ideal camera model, we use experimental calibration data to relate observed tar­

get positions with actual ranges. Calibration data relating the projected image and the 

distance estimates is shown in Figure 6.2b. It is possible to estimate distances between 

roughly 180 and 450 cm with the camera configuration used in this experiment, although 

accuracy degrades with increasing distance (due to decreased image resolution) [137]. 

Distance Accuracy 1.5cmjpixel 
Orientation Accuracy 1.3° 

TABLE 6.1. Accuracy of simple visu al tracker 

3. Laser Tracker 

The current implementation uses a laser range finder on the observing robot and a 

target with a distinct three dimensional pattern mounted on the observed robot. We 

implemented a robot tracker using a time of fiight laser range finder (AccuRange 4000 from 

Acuity Researeh Ine.) mounted on the observing robot and a three plane target mounted 

on the observable robot (see Figure 6.4). The target was developed for this work in order 
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Â­
View6 

V 
View2 

(b) 

View3 
"Y""" 

Observed Robot 

~View4 

FIGURE 6.3. (a)The two robots: the observed robot with white target on the left 
and the observing robot with the laser range finder on the right. (b) Top view of 
the observed robot 6 canonical views that are qualitative different depending on the 
position of the observing robot. 

to permit accurate and robust estimation of position and orientation using the AccuRange 

line scanner. The target can be seen in Figure 6.4a (the robot on the left) while the robot 

on the right carries the laser sensor. 

The target used consists of three vertical planes that fan out of the center at 100°, 120° 

and 140° angles. Figure 6.4b shows a top view of the target: as can be seen, from any 

point around the robot at least two planes are always visible. The different combinat ions 

(in Figure 6.4b) are numbered as View 1 to View 6. The intersection of the laser stripe 

with the target gives rise to at least two Une segments in 3D. The laser range finder takes 

a dense laser scan (4096 points), and the laser points are filtered and only those near the 

last known location of the observed robot are kept. During the next step lines are fitted 

using the MacKenzie-Dudek algorithm [52, 101] and Hnes segments that do not match the 

length and/or the appropriate angles of the planes are discarded. From the remaining lines, 

at most three, the two longest are selected and their intersection point and their orientation 

is calculated 2. 

2The probability of two straight Hnes of length 25cm- meeting at an angle of 1400 plus or minus two degrees 
is extremely low. 
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FIGURE 6.4. Top view of the observing/observed robots. For illustration purposes 

we examine the case where the two planes meet at a 140°, view 3 and view 6. (a) 

View 3140 degrees angle between the two target lines; the observing robot and the 

intersection point are on opposite sides of the Hne that passes between the two end 

points of the target. (b) View 6 Same angle (140 degrees) but the observing robot 

and the intersection point are in the same side. 

The view numbering is done to efficiently estimate the view observed, first the angle 

between the two lines is calculated (one of 100°,120° or 140°) and the view is given a number 

1-3 accordingly. Then the si de of robot from where the two Hnes are seen lS determined (if 

they form a convex or concave corner relative to the observing robot). This is achieved by 

calculating whether the intersection point of the two Hnes falls on the same side (see Figure 

6.4b) or the opposite sides (see Figure 6.4a) of the line that passes through the end-points of 

the two target Hnes. If a convex corner is detected (observing robot and intersection point 

at the same si de ) then the view number is increased by three (see the numbering at Figure 

6. 3b ) . The detected target data consist of a quadruple T = [Xt, Yt, Btll t'lt2 J containing the 

center of the target ([Xt, Yt]) and the orientations of the two planes ([etl' Bt2 ]). In case of 

failure (Le, large odometry error) then an the laser points are considered, Hnes are fitted 

again and the above described process lS repeated. 

3.1. Laser Sensor Accuracy. As noted earlier the laser sensor returns a dense 

scan of 4096 points over 360 degrees (one point per 0.0879 degree) up to 15m distance. Table 

6.2 shows the uncertainty in cm and degrees for different size landmarks observed 100 times 

at a distance of 300cm. The standard deviation of the measurements is reported together 

with the maximum difference in the measurements. Two walls were used as the landmark 
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providing similar measurements with the target; the intersection point of the two walls and 

the average orientation of the two walls was measured. The distance of the landmark from 

the observing robot is reported together with the angle at which the landmark is seen (the 

polar coordinates of the landmark to the robot) and also the orientation of the two waUs. 

H can be seen that the larger the landmark the more consistent are the observations, but 

even for a land mark as smaU as the target the accuracy is high. 

Length of Landmark 25cm 30cm 50cm 100 cm 150cm 200cm 

Distance (cm) Max Diff. 0.4175 0.3416 0.3765 0.1946 0.2057 0.1602 
Distance (cm) STD 0.1042 0.0751 0.0784 0.0521 0.0432 0.0333 

Angle Max Diff. 0.0529° 0.0399° 0.0245° 0.0213° 0.0289° 0.0290° 
Angle STD 0.0084° 0.0075° 0.0046° 0.0037° 0.0066° 0.0055° 

Orientation Max Diff. 1.0420° 1.0240° 0.3530° 0.1450° 0.1140° 0.0940° 
Orientation STD 0.2124° 0.1582° 0.0768° 0.0316° 0.0269° 0.0205° 

TABLE 6.2. Maximum Difference and standard deviation of observing different 
sized landmarks. Distance is measured in centimeters and the angles in degrees. 

3.2. Laser Sensor Calibration. The laser sensor returns data points (Pz) in co or­

dinates in the sensor's frame ofreference (LC). Naturally, the robot-mounted sensor returns 

readings with respect to the robot base. We proceed by transforming these measurements 

into a common global reference frame (WC). The transformation from the laser frame of 

reference to the global frame of reference consists of two stages: first from the laser sens or 

coordinate system to a coordinate system located at the robot and then from the robot's 

coordinate system to the world coordinate system. More formally, Pw = MwrMrlPl, where 

Pw is a point in WC, Pl is a point in LC, both points are expressed in 2D homogeneous 

coordinates, Mwr is the transformation matrix from the robot coordinate frame to the world 

coordinate frame, and Mrl is the transformation matrix from the laser coordinate frame to 

the robot-centered coordinate frame (see Equation 6.1). Matrix M wr expresses the trans­

formation based on the pose of the robot (Probot = [xr, Yr, tqT) in world coordinat es and 

varies with the motion of the robot. The matrix Mrl expresses the transformation based on 
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the distance and the orientation of the laser sensor coordinate system relative to the co or­

dinate system of the robot (x, y, 0). As the laser sensor is securely mounted on the robot 

the values x, y, () are constant. In order to calibrate the laser sensor to return values in the 

world coordinate frame, the values of x, y, () should be estimated. We use an environment 

with known geometry (see Figure 6.5) and we estimate these values in two stages: first we 

estimate the difference in the orientation a, and then the displacement x, y. The numerical 

results are obtained for a Superscout robot from Nomadic Technologies, Inc (see Figure 

6.5). 

FIGURE 6.5. An environment with four walls. 

(:~ ) [cos (8,) - sin(ar ) 
x, 1 [C05(8) 

- sin(O) 

:](~) = sin(Or) cos (Or ) Yr sin(O) cos(e) (6.1) 

0 0 1 0 0 
'--v--" , ... ri' 'V' '''--v--'' 

Pw M wr MTl Pl 
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Orientation (e) calibration: The robot detects the same landmarks from two 

different positions. For ease of calculation we set the pose of the robot to be the same as 

the origin of the world coordinate system (Pl = [xr,Yr,orJT = [O,O,O]T). The intersection 

of two wans (in laser coordinat es Al = [Ax!, AyJT) is calculated, then the robot translates 

by a distance D along the x-axis moving to the pose P2 (P2 = [D,O,O]T) 3, and the 

same landmark (intersection of the same two wans) is detected (BI = [Bxll ByJT). 4 The 

world coordinates of the observed landmark should be the same before and after the motion 

(Aw = Bw) and from Equation 6.1 we could estimate the orientation (see Equation 6.2) 5. 

[

CoS(O) 

sin( e) 

° 

[

COS (0) 

sin(O) 

° 

[

cos(o) 

sin(O) 

o 

- sin(O) 

cos( 0) 

o 

- sin(O) 

cos(O) 

o 

(6.2) 

After repeating the above described experiment n times we collect a set of landmarks 

and distances traveled [A~l' Atl' B~l' Btl' Di]: i = 1 ... n. From the data and Equation 6.2 

we use a least squares fit for Equation 6.3. A different approach lS to analytically calculate 

3The poses Pl, P2 of the robot are expressed as a triplet (x, y, 8) while the detected landmarks are in 2d 
homogeneous coordinates. 
4During the translation the robot speed is kept low in order to achieve reliable odometry measures. 
5 As can be seen the unknowns x, y are canceled out and we have two equation with two unknowns (although 
they are not independent) [cos(B),sin(B)]. 
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[cos(O), sin(O)]T for each data point (see Equation 6.4) and then take the mean values. Both 

methods were used for robustness. 

(A~l - B;l) (-Atl + Bbl) Dl 

(A~l - Bbl) (A~l - B;l) 0 

(A;l - Bil ) (-A~l + B~l) D 2 

(A~l - B~l) (A;l - B;) [C08(Ol] ~ 0 (6.3) 
sin(O) 
~ 

(A~l - B~l) (-A~l + B~) X Dn 

(A~l - B~l) (A~l - B~l) 0 
" '" " ~ 

A b 

[C08(0)] ~ [ DIA.,-B.,) ] 
(A"l-B"'I )2+(Ayl -Byl )2 (6.4) 

sin( 0) D(-Ayl+Byl ) 
(A"'l-Bxl )2+(Ay1 -By1 )2 

Enor Estimation altar Tranalaiion (al! ciala) 
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FIGURE 6.6. Error estimation after translation (a) Using an the data. (b) Without 
any outliers. 

Two different ways to measure the quality of the data are used. First, from the solution 

of the inverse problem (X = A -lb) we can estimate the residual (r = A . X - b see 

Equation 6.3) which provides a measure of the quality of the data (the residual can be 
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seen in Figure 6.6 as a soUd line). Second, the difference between the distance traveled and 

the displacement of the observed landmark (in Le) provides a measure of consistency in 

the data (as can be seen in Figure 6.6 as a dashed Hne). It is worth noting that the two 

measures eliminate the same outliers from the data. Both methods were used in order to 

estimate the orientation (B) of the Laser Coordinate system relative to the Robot Coordinate 

system: analytical calculations and a least square estimation. Table 6.3 presents the values 

of [cos (B), sin( B)] calculated with the two methods using aU data (no outliers removed). 

Table 6.4 presents the results after the removal of outliers. 

cJ = cos(e) 1 sJ = sin(B) 1 F = arctan(sJ je]) 1 cos(F) 1 sin(F) 
Analytical Calculations (With outliers) 

Mean -0.7428 1 -0.6710 1 -137.9019 1 -0.7419 1 -0.6704 
STD 0.0149 1 0.0044 1 0.7208 1 0.0084 1 0.0093 

Least Square Calculation (With outliers) 
-0.7471 

1 
-0.6712 1 -138.0637 1 -0.7439 1 -0.6683 

TABLE 6.3. Orientation estimation with two different methods (analytical and least 
squares estimation). For the analytical calculation the mean value and the standard 
deviation is reported. The estimates contain aU data collected (no outliers removed). 

cf = cos(B) 1 sf = sin(B) 1 F = arctan(sf jc!) 1 cos(F) 1 sin(F) 
Analytical Calculations (No outliers) 

Mean -0.7478 1 -0.6692 1 -138.1733 1-0.7451 1-0.6668 
STD 0.0116 1 0.0056 1 0.6656 1 0.0077 1 0.0087 

Least Square Calculation (No outliers) 
-0.7473 1 -0.6699 1 -138.1240 1 -0.7446 i -0.6675 

TABLE 6.4. The same as Table 6.3 but with the outliers removed. 

With an error margin of two tenths of a degree the orientation of the Laser Coordinate 

system with respect to the robot is () = -138.1240. 

Displacement (x, y): Following the same methodology as in the orientation estima­

tion we use the rotation of the robot in order to estimate the other two unknowns x, y in 

Equation 6.1. The pose of the robot again is set at the origin. The robot detects three 

landmarks (in laser coordinates Al, Cl, El, see Figure 6.7a and Figure 6.5), then the ro­

bot ls rotated by an angle er , and the same landmarks are detected again (BI, Dl, FL see 

Figure 6.7b). Given a pair of landmarks A = Al - BI and C = Cl - Dl (each landmark 
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observed from two different angles) we can calculate the robot orientation Or (see Equation 

6.6). Consequently, given an estimate for [cos(B), sin(O)] = [cf, sfl = [-0.7446, -0.6675] 

and Equation 6.1, we get Equation 6.5 for the first landmark A = Al - BI (same Equation 

for the other two landmarks C = Cl - Dl and E = El - FI)' 

(a) (b) 

FIGURE 6.7. The four walls providing three landmarks. (a) Before the rotation. 
(h) After the rotation. 

[
cf -sf x] [AXZ] [c~s(or) - sin(Or) xr] [Cf -sf x] [BXZ] sf cf y AyZ = sm(Or) cos(Br) Yr sf cf y ByZ 

0011 0 0 1001 l 

(6.5) 

From the cosine law 6 we can calculate the rotation of the robot Or using a pair of 

landmarks. For example, using the landmarks A and C we get Equation 6.6. 

() (Ax - Cx)(Bx - Dx) + (Ay - Cy)(By - Dy) 
cos r = (Bx _ DX)2 + (By _ Dy)2 

. e (Ay - Cy)(Bx - Dx) + (Ax - Cx)(By - Dy) 
sm r = (Bx _ DX)2 + (By - Dy)2 

(6.6) 

6Mathematica was used for solving and simplifying the equations. 
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Using the two of the three landmarks at a time ([A, C), [A,E] , [C,E]), we get a 

robust estimate of the rotation of the robot. Figure 6.8 presents the distribution of the 

estimates (top sub-plot), as well as the difference between the estimates of the rotation 

(using landmarks) and the odometry estimate (bottom sub-plot). More precisely, the top 

sub-plot presents the standard deviation of the orientation estimates from the landmarks (in 

"+") and the difference between the maximum and the minimum values (in "*"). The lower 

sub-plot presents the difference of the odometry estimate of the orientation from the mean 

of the orientation estimates from the landmarks (in "x"). The odometry-based orientation 

differs from the landmark-based estimates as expected due to odometry error. 

ê STD of the three Robot Orientations as estimatsd by the three Landmarks 
.g O.35r---,.-----,----,----,----,-----,.---,---, 
l!l 
~ ;§ 0.3 

15 0.25 
.<> 
o 

OC 0.2 

~ 0.15 
.§ . 
m 0.1 - ... : ... * "* .. :* . . ~ . . * .. * 
~ 005; -+ +T:!+ ·r; T:;~! . 
~ ~LO---~60~---~~-----~20---~0~f~·-~20---~40----6~O---J80 

Rotation by angle (in degrees) 

Error between the Odometer reported Robot Orientation and the estîmated one 
1.4 

1.2 

FIGURE 6.8. Error in the odometry based orientation estimate versus landmark 
based orientation estimates. Top sub-plot presents the standard deviation of the 
three estimates of the orientation using three pairs of landmarks( "+") and the 
maximum difference ("*"). Bottom sub-plot presents the difference between the 
mean estimate of orientation based on the landmarks and the orientation reported 
frorn odometry. 

Using the mean orientation estimate of the three landmarks we proceed to estimate the 

dis placement [x, y] of the origin of the Laser Coordinate system with respect to the center 

of the robot. An analytical solution and a least squares estimation of the empirical data 

provide the same results up to millimeter accuracy. For the least squares formulation, let 

cos(t'Jr ) = cfr and sin(t'Jr ) = sfr, using Equation 6.5 we get Equation 6.7: 
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Laast Square Solution for X 
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FIGURE 6.9. Iterative least squares calculation of the X (top sub-plot) and Y (bot­
tom sub-plot) by removing one outlier at the time. The accuracy in bath cases is 
better than one millimeter. 

-sfr 

cfr 

o 

[

cfr. (cf· BXI - sf· BYI + x) - sfr· (sf . BXI + cf· BYl + y) + xr] 
sfr· (cf· BXl - sf . BYI + x) + c:r. (sf . BXl + cf . BYl + y) + Yr Ç:::? 

[

cf, AXI - sf . AYI + X - cfr . cf . B,q + cfr . sf . BYI - cfr . x + sfr . sf . BXI + sfr . cf· BYl + sfr . y - Xr lJ [00] 
sf . A"'l + cf . AYl + Y - sfr . cf . Bx, + sfr . sf . BYl - sfr . x - cfr . sf . BXI - cfr . cf . By, - cfr . y - Yr 

{=? 

[

1- cfr 

-sfr 
sfr ] [xl 

1- cfr y [ 

cf( -Ax , + cfr . Bx, - sfr . B yl ) + sf(Ay! - cfr . By! - sfr . B,"I) + Xr ] 

cf(-AYI +sfr·B,"1 +cfr·By,)+sf(-Ax1 -sfr'By! +cfr·Bx1)+Yr 

An analytical solution is given in Equation 6.8. 

(6.7) 
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1 X (cm) 1 y (cm) 
Analytical Calculations (AH data) 

Mean 1 -6.1631 1 -5.7632 
Std 1 0.6304 1 0.8801 

Least Square Calculation (AH data) 
1 -6.1586 1 -5.7934 

TABLE 6.5. Estimated values for x and y (the position of the laser in robot coor­
dinates) using an analytical solution and a least squares solution. 

Table 6.5 shows both the analytical results and the least squares solution using aU 

the data. Figure 6.9 shows how the least squares solution changes after the removal of the 

worst fit each time. The top sub-plot presents the solution for x versus the number of points 

removed and the bottom sub-plot presents the solution for x. As can be seen from Table 

6.5 and Figure 6.9, the results are stable with an accuracy of a millimeter. 

For the current position of the laser mounted on top of the observing robot the final 

estimates are: x = -6.15cm, y = -5.65cm, e = -138.1240°. 

3.3. Target Calibration. The next step in the calibration of the robot tracker 

sensor lS the estimation of the relation between the target location and the observed robot 

reference. As we saw in the beginning of Section 3 the laser detects (at least) two planes 

from any generic direction around the robot. The intersection of the two planes provides 

a fixed point (the center of the target [Xt, Yt]); the angle between the two planes identifies 

which view (see Figure 6.3b); and the orientation of each plane is fixed relative to the 

orientation ofthe robot. For example, Figure 6.12a presents a top view of the target as can 

be seen from a position such that the two planes that are visible present a non-reflex corner, 

and the angle is 1400 (View 3). The raw robot tracker sensor measurement is a quadruple 

T = [Xt, Yt, Otll f.lt2 J containing the center of the target ([Xt, Yt]) and the orientation of the 

two planes ([Otll Ot2])' The pose of the robot (Pr = [xr, Yr, Or]) is given by Equation 6.9, 
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where d is the distance between the center of the target and the center of the robot. The 

angles CPI and CP2 are the angles between the planes of the target and the line (d) that 

connects the center of the target to the center of the robot. Finally, the angles 8fh and 

002 are the angles between the planes of the target and the orientation of the robot. In 

conclusion, the calibration of the target requîres that we estimate the above mentioned five 

parameters [d, CPl, CP2, 8fh, 15612] for every view of the target. We divide the estimation into 

two independent steps, the estimation of the orientation parameters ([15611,8612]), and the 

estimation of the robot-center parameters ([d, CPl, CP2]). 

(6.9) 

It is worth noting the following about the pose of the robot: by moving the robot 

forward it is possible to establish the orientation of the robot Or unambiguously because 

the forward motion is performed along the orientation of the robot. The center of the 

robot though ([xr, Yr]) can be defined in many different ways. The geometrical center of 

the robot is one option, the center of rotation is another, and the point where the sonar 

sensors intersect could also be an option. U nfortunately, in order to properly correct the 

odometry error, the pose of the robot should use the center of rotation, which in turn is not 

a fixed point as the robot is unable to perform pure rotations. The problem we encountered 

was that we had to define a center for the robot that was changing for different amounts 

of rotations. In other words, during any rotation the center of the robot lS displaced by 

a smaU amount. We tried to reduce the lateral motion of the robot by maintaining small 

speedjacceleration and by keeping the rotation smaU during the calibration. Nonetheless, 

this method was used only for calibrating one view of the target. 

3.3.1. Estimation of relative orientation ([15611 ,1502]): As can be seen in Figure 

6.11 an ideal forward translation of the robot has the following properties: the orientation 

of the robot remains constant 7 Or = O~ (see Figure 6.11), the orientation of the Hne 

defined by the centers of the target ([Xt, Yt], [X~, Y~]) before and after the translation and the 

7For translations of small distances and for small speed the drift is negligible. 
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Observed Robot 

Observing Rooot 

View3 
;;?'" 

FIGURE 6.10. The robot is observed from View 3: relation between the detected 
target (T = [Xt, Yt, Bt l>Bt2 ]) and the pose of the robot (Pr = [Xr, Yr, Br]) . 
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FIGURE 6.11. The observed robot translates along its heading (specified by Br) by 
a distance d, the center of the target translates also along the same heading (Br) by 
the same distance d. 

orientation of the Hne defined by the centers of the robot (([xr, Yr], [x~, Y~]) before and after 

the translation are equal with the orientation ofthe robot Br (in WC), and the orientations of 

the two planes of the target are unchanged (eh = B~l ,(lt2 = B~2). Therefore, even though the 

center of the robot ([Xt, Yt]) is still unknown, the orientation er can be estimated directly by 

the two centers of the target ([Xt, Yt], [x~, Y~]) (see Equation 6.10). The parameters [6Bl , 682] 

are given by Equation 6.11. 

arctan(y~ - Yt!x~ - Xt) (6.10) 

(6.11) 
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Ca) (b) 

FIGURE 6.12. (a) The robot rotates around its center (R) by an angle e, the fixed 
target rotates accordingly (from A to B). The solid Hnes starting from A represent 
the target before the rotation and the dashed Hnes starting from B represent the 
target after the rotation. (b) Two possible centers (R,R') on the opposite sides of 
AB Hne. 

3.3.2. Estimation of displacement ([d, <h, cP2J): As mentioned above the center 

of the robot lS not uniquely defined. In sorne cases the estimated parameters are of the 

same order of magnitude as the error in the measurements. The following procedure was 

followed: the parameters for the calculation of the center of the robot were estimated for 

one view, then the observed robot was stationary and the observing robot was moved in 

two consecutive positions in order to sense two different views of the target (one view for 

which the robot center is estimated and a new view). Then the parameters for the second 

view are estimated. 

Figure 6.12a shows the robot and the target before a rotation (A = [Ax, AyJ: center of 

target, the two planes drawn in soUd Hnes) and after a rotation by e (B = [Bx , By]: center 

of target, the two planes drawn in dashed Hnes); a second rotation would introduce a third 

point (C = [Cx, Cyl: center of target). The robot rotates around a point R = [Xr, YrJ and 

the target is detected after two rotations of the robot that carries the target, therefore the 

target is sensed three times. The three points A,B,C define one circle (see Equation 6.12 for 

the center of the circle); moreover, every two points and the rotation angle (as estimated 

by the change in orientation of the two target planes) give two symmetrical solutions for a 
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different cirde (see Figure 6.12b and Equations 6.13,6.14 for the center of the cirde). The 

two points and one angle define two centers (R,R' in Figure 6.12b), one on each side of line 

that connects the two points (A,B in Figure 6.12b). From the two solutions (Equations 

6.13,6.14) we select the one that is consistent with the three point circle. 

~ ( Ay + By - (1 + cos(8)h/(Ax - Bx)2 csc (8)2) (6.13) 

R~ 
1 ( (Ay - By)(l - cos (8)h/(Ax - Bx)2 CSC (8)2) 
2" Ax + Bx - Ax - Bx 

(6.14) 

We repeat the double rotation experiment several times and keep only the measure­

ments where the radius of the four circles (one from the three points and three circle by 

combining every two points) are consistent. From each experiment the center of the robot 

is estimated as [Xr , YrJ and the parameters [d, (h, 1>2] are calculated using Equation 6.15. 

(6.15) 

The orientation estimation of the target is always do ne using the mean value of the 

two planes for better accuracy. Table 6.6 presents the estimates of the [d, 1>1, 1>2, Jfh, 682] 

parameters by moving the observed robot. 
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View d <Pl <P2 bBI bB2 
1 N/M N/M N/M 176.9034 77.9354 
2 N/M N/M N/M 296.6401 176.3852 
3 1.8252 81.6194 301.8621 77.3893 297.6944 
4 N/M N/M N/M N/M N/M 
5 N/M N/M N/M N/M N/M 
6 N/M N/M N/M 77.3648 298.5089 

TABLE 6.6. The estimated five parameters for the target calibration. Moving the 
observed robot (N/M: Not Measured). 

In order to calibrate an faces of the target the two robots were placed in an enclosure 

formed by a set of nine walls larger than one meter each. The robot with the target was 

kept stationary while the robot equipped with the laser range finder was moved in a circular 

trajectory around the target robot and at a distance of one meter. After each motion the 

walls were used in order to localize (see Section 4). The moving robot took 36 steps around 

the stationary one, each step approximately 17.3cm. After each step the pose of the moving 

robot was corrected and then the target was detected ten times (in order to measure the 

repeatability of the experiment). Table 6.7 presents the values for the five parameters for 

every view of the target. The laser data and the trajectory of the moving observing robot 

can be seen in Figure 6.13. Figure 6.14 presents the mean estimate of the intersection point 

from each position. Figure 6.15 presents a closer view of the mean value together with an 

uncertainty ellipse drawn at one standard deviation of the data. 

View d <Pl <P2 bBI M)2 
1 5.9520 187.2810 89.2976 175.7135 77.7302 
2 5.5150 277.0460 157.3268 296.5156 176.7964 
3 1.8224 80.7237 301.5761 76.7238 297.5762 
4 3.2858 130.7391 32.5019 176.2607 78.0235 
5 3.9434 333.8887 213.9336 296.7751 176.8200 
6 6.7692 81.5267 300.4969 77.0238 295.9940 

TABLE 6.7. The estimated five parameters for the target calibration. The calcula­
tions are aIl relative to face 3 and present average values. 

The previous experiment was repeated one more time with the observing robot moving 

on a circle of radius 120cm from the stationary robot, in intervals of ten degrees (around 

the circle) , and 10 measurements were collected from each position. The intersection points 
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FIGURE 6.13. The trajectory ofthe observing robot with the laser range finder and 
the detected laser points. In the center stands the observed robot which is visible 
only in the form of the three lines of the target. Enough walls existed around the 
two robots in order to provide adequate landmarks during the calibration process. 

of the targets are shown in Figure 6.16 together with the mean estimated position of the 

robot. Figure 6.17 presents a doser view. 

View cl CPl CP2 Mh MJ2 

1 3.1218 187.9969 88.8799 177.0988 77.9818 

2 3.3148 270.5552 150.9222 297.4960 177.8630 

3 1.8634 77.0882 295.7289 78.4453 297.0860 

4 2.4131 146.8717 49.4735 177.1362 79.7380 

5 2.2933 311.8284 192.5956 296.6677 177.4349 

6 2.5814 75.4404 293.8753 79.7157 298.1506 

TABLE 6.8. The estimated five parameters for the target calibration. Measuring 

the geometry of the body of the observed robot. 
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The intersection points of the Terget and the estimated Robot Pose 
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FIGURE 6.14. The Robot Pose is estimated based on data from the face 3 (the 
ellipse indicates the uncertainty of the robot pose estimation. The intersection 
points for the different faces are displayed as follows: face 1 as "+", face 2 as "1>", 
face 3 as "*", face 4 as "x", face 5 as "6", face 6 as "0". 

Finally, one more calibration experiment is described, where the five parameters were 

estimated based on the frame of the robot. Table 6.8 contains the values of the five pa­

rameters estimated using the chassis of the robot. In this case the geometric center of the 

frame of the robot and the orientation of the front plate of the robot were used. 

4. Laser' Sensor based Localization 

Every time the laser robot tracker is used a large number of laser points are collected 

(between 3000-4000). Since the same features are often observed repeatedly, the robot's 

motion as weB as the environment layout can be estimated. The problem of localizing 

from laser data has been investigated by several researchers (see [68, 101, 100, 103, 102]). 

In order to assist us in the calibration of the target the following method was used for 

localizing the observing moving robot using the laser data. First the Hnes are fitted using 

the MacKenzie-Dudek algorithm [52, 101]; the first time laser data are collected every Une 
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The intersection points of the Target 
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FIGURE 6.15. Zoom at the intersection points of the Target (from Figure 6.14); the 
ellipse around each point represents the uncertainty over ten measurements. 

The intersection points of the target and the estimated Robot Pose (trom 12Ocm) 
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FIGURE 6.16. The Robot Pose is estimated based on the calibration table of Table 
6.7 (the ellipse indicates the uncertainty of the robot pose estimation. The inter­
section points for the different faces are displayed as follows: face 1 as "+", face 2 
as "1>", face 3 as "*", face 4 as "x", face 5 as "6", fàce 6 as "0". 
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The intersection points of the targe! and the estimated Robot Pose (from 120cm) 
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FIGURE 6.17. Zoom at the intersection points of the Target (from Figure 6.16). 
Ten measurements were collected from each position. . 

that is more than one meter is saved as a landmark. After every motion a new set of laser 

data is collected and new Hnes are fitted then the new Hnes are matched with the saved 

landmarks; in particular only Hnes that differ less than 10 degrees and intersect or their end 

points are doser than 20cm from each other are selected see Figure 6.18a. When we finish 

selecting the mat ching Hnes the error is calculated. First the angular error is calculated and 

a weighted mean estimate is used (e) (the length of the Hnes is used as a weight where longer 

Hnes contribute more). The new Hnes are rotated around the position of the observing robot 

by the calculated mean angle as in Figure 6.18b. Finally the displacement for each pair of 

Hnes (dXil dYi) is computed and the weighted mean [dx, dy] is used to correct the robot pose. 

The mean is given by dx = L, dXiWi, dy = L, dYiWi, where Wi is the weight proportional to 

the length of the ith line pair. The pose of the moving robot is corrected as in Equation 

6.16. 
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Two alternative robot tracker sensors based on different sensing modalities were de­

scribed in this chapter. The first robot tracker is vision-based and is more robust over 

uneven terrain. The accuracy of the pose estimation deteriorates over distance. The second 

robot tracker is based on a laser range finder, it has higher accuracy than the vision-based 

one and the accuracy of pose estimation is constant over a longer range. The laser based 

tracker requires fiat fioors in order to function. In the next chapter we present experimental 

results from the application of these robot tracker sensors in exploration and mapping. 
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CHAPTER 7 

Experimental Results 

Don't believe the results of experiments until they're confirmed by 

theory. 

-Attributed to Arthur Eddington. 

In the Chapters 3 and 4 we discussed two exploration strategies for mapping the free 

space of an unknown environment with the use of a novel sensor: the roboi iracker. Fur­

thermore, in Chapter 5 we presented a probabilistic framework for reducing the uncertainty 

that accumulates due to sensor noise during the exploration. Finally in the previous chap­

ter (Chapter 6) we presented the construction of two different robot tracker sensors and 

discussed their operational parameters (range of sensing, accuracy, etc.). In this chapter 

we present the results from a series of experiments using the two different robot tracker 

sensors and also using different robots. Experiments with the real robots allow us to vali­

date our exploration strategies but also to examine the strength and weaknesses of different 

sensorjrobot combinations. Simulated experiments provide results from more complicated 

environments and also for the effect of different noise parameters and different robot con­

figurations that were not available in our laboratory. 

1. Trapezoidation Algorithm 

As we saw in Chapter 4 the trapezoidation algorithm lS used to map areas that extend 

beyond the range of the robot tracker sensor. In the available space for experiments it 

was not possible to find an area that extended to a few times the sensor range (5-6m for 

the visual robot tracker and lO-14m for the laser robot tracker sensor). Therefore the 
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FIGURE 7.1. Exploration of one stripe (120 exchanges). The results are from a 
single mu. 

majority of the experiments were do ne in simulation. In addition the motion strategies of 

trapezoidation algorithm were used in simulated multi-robot experiments for determining 

the trade-offs between the number of robots and the type of robot tracker sensor used. 

1.1. Simulation Results. In order to estimate the improvement in position estima-

tion when the two robots collaborate, a series of experiments were performed in simulation. 

The two robots explored a single stripe of the environment, exchanging roles 120 times. 

Odometry error estimates gathered during experiments with an RWI robot were used to 

parameterize the error model in dead reckoning. The accuracy of the helix vision tracker 

was used to model the accuracy and the range of the robot tracker. The same path was 

traveled twice, and the error in positioning was measured. The first time no cooperation 

took place between the two robots, while the second time every time the two robots ex­

changed roles they corrected their position estimates. In the case of no cooperation the 

two robots are following the same trajectory as before but without correcting their position 

estimate. 

From the results shown in figures 7.1(a,b), it is clear that the cooperative exploration 

strategy improves performance substantially over the non-cooperative strategy. It is worth 

pointing out that in this experiment no systematic error was included in the model, such as 

would occur on an inclined Ho or where with every translation a smaU amount of slippage 
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FIGURE 7.2. (a) Path of the moving robot as estimated by the visual tracker. 
Measurements taken in different positions validate the accuracy with precision of 
roughly 2cm. (b) The desired path of the moving robot. Although the robot can 
be driven along this path using open-loop control, dead reckoning error leads to a 
substantial discrepancy. (c) The error in positioning from the odometry estimations. 

would occur. It is clear that the cooperation of the two robots helps to maintain reduced 

localization error and improves mapping robustness. 

1.2. Laboratory. Due to space constrains we performed an experiment in our 

laboratory using a motion pattern similar ta the one traveled by the two robots using only 

one robot while the other one was stationary. 

In arder to measure the accuracy of the map, a few locations along the path were 

selected and the position of the robot was estimated relative ta the stationary camera. The 

accuracy of the positions estimated by the camera-based tracker was betweeh 1.0 and 2.3 

cm. As can be seen in Figure 7.2a,b the inaccuracy is largely due ta rotational error and 

thus it is more evident near the sides of the rectangle. Figure 7.2c presents the absolute 

odometry error as it accumulates over the distance traveled by the robot. 

2. Triangulation Algo:rithm 

The triangulation algorithm presented in Chapter 3 lS used to map areas that are 

bounded by the range limit of the robot tracker sensor. Experiments conducted first in 

simulation and then in different locales in our building allowed us ta verify the performance 

84 



(a) 

7.2 TRIANGULATION ALGORITHM 

RobodfUmon VII 
R~/$Itm .. 19~9.DJ.~5 
Build:Jun 11999 

'njom/().t/on 

(b) 

FIGURE 7.3. The paths of the two robots after the completion of the exploration. 

of our approach. In the next section we present experimental results from two typical 

environments. 

2.1. Simulation. Extensive experiments have been conducted using the robotic 

simulation package RoboDaemon. The simulations allowed us to specify difIerent parame­

ters such as odometry error, robot-tracker uncertaintyand the complexity of the explored 

environments. Figure 7.3 presents two typical environments used in the simulations (ap­

proximate area 144 m2 ) and the path the two robots followed. Figures 7.4 and 7.5 present 

the exploration of two model environments; these examples illustrate difIerent aspects of the 

triangulation algorithm. Figures 7.4 (a-i) present snapshots of the exploration as perceived 

by Robot 0 and Robot 1, and the resulting map at different instances of the exploration. 

The two robots exchange roles when the Hne of visual contact lS interrupted. In the first 

row an early phase of the exploration is presented. The two robots have exchanged roles 

twice and Robot 0 explores five new triangles. Consequently, in the second row Robot 1 

is exploring again (Figure 7.4d), then the two robots exchange roles and Robot 0 explores 

three additional triangles. The third row illustrates the final stages of the exploration where 

Robot 1 explores the final parts of the environment using Robot 0 as a reference. 

In Figure 7.4, in the last row, the early phase of the exploration is presented, using pure 

odometry for positioning. The dashed Hne depicts the real path of the robot and the soUd 
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FIGURE 7.4. First three rows: Exploring an unknown environment, figures b and 
e illustrate the trajectory of Robot o. Figures a,c,d,f,g,h illustrate the trajectory 
of Robot 1. Finally the third column ( Figures c,f,i) presents the map up to that 
point. Last row: Close-up on the build up of the uncertainty when only odometry 
was used. The solid Hne is the odometry based estimation of the robots while the 
dashed line is the real position of the robots (see text Section 7.1.1). 

86 



7.2 TRIANGULATION ALGORITHM 

line the odometry based paths. In smaU worlds- and/or duttered environments multiple 

observations of the same object could be used in order to correct the positioning of the 

moving robot. As can be seen in Figure 7.4(j,k), the accumulation of uncertainty causes 

the map ta be distorted although local consistency is maintained. These distortions could 

lead over time to a map that is not even topologically sound. 

The results from the exploration of a different environment are presented in Figure 7.5 

depicted as a sequence of snapshots at successive times. The presence of reflex vertices 

that interrupt the Hne of visual contact introduce internaI triangles and therefore branches 

in the dual graph making the exploration more complicated. The results are presented in 

three columns. The first column depicts the trajectory of Robot 0 and the environment 

as perceived by that robot. The second column depicts the trajectory of Robot 1 and its 

perception of the world. Finally, the third column presents the constructed map up to that 

point in the exploration. The light grey disk represents the position of the stationary robot 

and the black disk the location of the moving robot in the figures of the moving robot. 

Over the interval spanned by the images in the first row, Robot 1 is stationary (after 

mapping two triangle), while Robot 0 is mapping the right branch of the first bifurcation . 

. The tine of visual contact was broken by a reflex vertex; thus, a internal triangle was built 

(node with degree 3), and two branches were started. Each branch consists of one open 

triangle with a gateway to unexplored space. In the second row, Robot 0 is stationary (after 

adding two more nodes in the embedded graph and Robot 1 is mapping the second ocduding 

vertex. Again an internaI triangle is created (node with degree 3), and Robot 1 lS mapping 

the left branch of the bifurcation. In row three the environment is mapped for the area 

that corresponds to the branch being explored, with the last triangle having two waUs and 

one internal diagonal (node with degree 1). Figure 7.5i presents the map up to that point 

where the last wall (not fully explored yet) lS marked with a thiner Hne. Then the two 

robots proceed to the closest gate (following a depth first traversaI of the embedded graph). 

Row four demonstrates the exploration of Robot 0 of the final branch (right) of the second 

bifurcation, while Robot 1 is stationary at the second ocduding vertex. Finally, the fifth 

row illustrates the final step of the exploration. Robot 0 is stationary at the first ocduding 

vertex encountered, while Robot 1 maps the final triangle. In Figure 7.50 the completed 

87 



7.2 TRIANGULATION ALGORITHM 

map is shown. The dual graph lS presented in the figures of the third row superimposed on 

the metric map. 

2.2. Exploration with the two Superscout robots. A series of experiments 

were performed in different locations in our building (McConnell Engineering Building, 

McGill University) with a pair of Superscout robots from Nomadic Technologies, Inc. The 

robots use a differential drive and are equipped with a ring of 16 sonar transducers. In 

addition one of them (Robot 0 in our experiments) has a laser range finder from Accurange 

(see Chapter 6 Section 3 for details) mounted on top, while the second robot (Robot 1 

in our experiments) has a three plane target. The combination laser range finderjtarget 

implements the robot tracker sens or (please refer to Chapter 6 for more information on 

the sensor). The control software was mn remotely on a 1GHz pentium 4 with 512Mb of 

RAM and the communication was done over radio-ethernet. The two robots are powered by 

two 12V j20Ah and can operate autonomously for 3-4 hours. The software controlling the 

robots consisted of two components, the RoboDaemon RDll control software that provided 

an interface with the robots and my exploration program developed in C++ that is guiding 

the exploration and interpreting the data. 

2.2.1. Exploration of two laboratories. A complex environment was created inside 

two adjacent rooms in the Centre for Intelligent Machines; Figure 7.6 presents pictures of 

this environment from different views during the exploration. The two robots started at the 

lower left side, inside the mobile robotics laboratory (as can be seen in Figure 7.6a); after 

mapping the inside of one laboratory they passed through a narrow corridor (see Figure 

7.6b,c) to the outer laboratory (see Figure 7.6d). 

Figure 7.7 presents the progress of the triangulation algorithm as the two robots pro­

ceeded to explore the free space. Initially the two robots move to the closest wall and 

proceed to opposite end-points of the wall (see Figure 7.7a). The path of Robot OlS marked 

in red and the path of Robot 1 is marked black. Robot 1 explores a single triangle (Figure 

7.7b), after which it encounters a reflex vertex that interrupts the line ofvisual contact and 

exchanges roles with Robot 0 (see Figure 7.7c). Robot 0 starts exploring and maps the inside 

of the lab (see Figures 7.7d,e,f,g,h and 7.6a). During the exploration Robot 0 encounters 

two reflex corners (see Figures 7.7e,h) but the line ofvisual contact is maintained and Robot 

o continues the exploration. In Figure 7.6b Robot 0 can be seen entering the corridor that 
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FIGURE 7.5. Exploring an unknown environment with two oecluding ver-
Hees: The first column illustrates the trajectory of Robot O. (a,d,g,j,m). The second 
column illustrates the trajectory of Robot 1 (b,e,h,k,n). Finally the third column 
presents the map up to that point (c,f,i,l,o). (See text Section 7.1.1). 

89 



7.2 TRIANGULATION ALGORITHM 

Ca) (h) 

(c) (d) 

FIGURE 7.6. Exploration inside two adjacent labs at the fourth floor of our building 
(a) Beginning of the exploration Robot 1 is stationary at a reflex corner and Robot 0 
explores a wall across from it. (b) Robot 0 has mapped inside of the lab and moves 
along the corridor towards the exit. (c) Robot 1 starts exploring coming through 
the corridor. Robot 0 is positioned at a reflex corner. (d) The last part of the 
exploration, Robot 1 (on the right) is mapping the wall across from Robot 0 that is 
placed at a reflex corner and provides corrections for Robot's 1 pose estimation. 

connects the two labs; the resulting map ls presented in Figures 7.7(h,i). A reflex corner 

is encountered and Robot 0 stops the exploration because the line of visual contact ls in­

terrupted. The two robots exchange roles; Robot 1 passes through the corridor (see Figure 

7.6c and 7.7j) and cornes out to the second labo Finally with Robot 0 position at the reflex 

corner Robot 1 maps the outer lab (see Figures 7.7(k,1,m,n) and 7.6d). Figure 7.70 presents 

the final map with the complete triangulation of free space; the two robots are positioned 

next to each other. 

The laser sensor data were recorded during the exploration of Robot O. In order to 

demonstrate the performance of cooperative localization the laser range finder was used 

only as part of the robot tracker sensOf; thus the map produced from the triangulation 

algorithm is constructed solely by the sonar sensor data calculated using the corrected 

poses of the two robots. To further validate our approach we fused the recorded laser data 
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FIGURE 7.7. The exploration of the two laboratories. Red Hnes are the walls, bIue 
dashed lines are diagonals, green dotted Hnes are gates to unexplored space. 
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FIGURE 7.8. (a) The laser data collected during the exploration. (b) Scan match 
applied to the laser data and their position corrected using Stephen Gutmann's 
scanstudio. (c) The triangulation map produced using only the sonar for mapping. 
The trajectory of Robot 0 is marked in magenta and the trajectory of Robot 1 is 
marked black. The wans are displayed in red and their lengths (in cm) is marked 
next to them. The internal diagonals that define the triangulation are marked as 
blue dashed lines. 
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using scan mat ching with Stephen Guttman's scanstudio software that performs localization 

of a single robot using the scan mat ching algorithm by Lu and Milios [68, Un]. Figure 7.8a 

presents the laser points collected and Figure 7.8b presents the same data after the scan 

matching. Note the detected target that marks the trajectory of Robot 1. Because the laser 

range finder senses on the horizontal plane (when the robot is not tilted) in fiat terrains 

would map aH the obstacles at the height it senses. As can be seen from the laser data 

in Figure 7.8a,b the sensor from different positions scans at different planes (because the 

fioor is uneven and the robot tilts). Thus the top wall of the corridor is not fully mapped 

(see section 4 for further discussion). Finally, Figure 7.8c presents the map created by the 

triangulation algorithm. As can be seen the maps of Figures 7.8b and c are very similar. 

The sonar data used for wall following were collected during the exploration. Figure 

7.9 presents the sonar points drawn in bIue; the Ieft column presents the data gathered by 

Robot 0 while the right column presents the data gathered by Robot 1. The trajectories 

of the two robots are marked in red, and the positions from where the sonar scans were 

taken are marked with "*". During the exploration the robots follow the walls at distance 

of 60cm (Figure 7.9a,b presents the only the sonar points detected in less than 65cm). In 

order to filter out most of the noisy data any sonar point further than 120cm was rejected. 

Figure 7.9c,d presents the data actually used during the exploration. As we discussed 

earlier (Chapter 3 section 2) the sonar points are fit into Hne segments and then the Hnes 

are merged together; as can be seen in Figure 7.9c,d the sonar data filtered at 120cm are 

aligned with the walls. Figures 7.ge,f and 7.9g,h present the sonar scans filtered at 250cm 

and 400cm. The data are very noisy and if the robots believed the occupancy of space 

from them navigation would be impossible. It is worth noting sorne straight Unes formed 

inside open space (see Figure 7.9g). They correspond to small anomalies on the fioor at the 

borders of the tUes in our laboratory (see Figure 7.6 for the appearance of the fioors). As 

can be seen in Figures 7.9a-d there lS virtuaHy no distortion of the data; this lS due to our 

cooperative localization approach which maintains an accurate position. 

The positional error is maintained low throughout the exploration by the use of co­

operative localization. The motion commands given to the robot were recorded and used 

ta guide the prediction phase of a particle filter with the noise parameters recorded in our 

laboratory using the two robots. Figure 7.10 presents the positional uncertainty growth 
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FIGURE 7.9. Sonar data collected from Robot 0 (on the left) and Robot 1 (on the 
right), filtered at different ranges: (a,b) 65cm; (c,d) 120cm; (e,f) 250cm; (g,h) 
400cm. The sonar points are marked blue and the path of the robot is marked red. 
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(a) Ch) 

FIGURE 7.10. (a)The odometry uncertainty growth during the trajectory of Robot 
O. (b) The odometry uncertainty growth during the trajectory of Robot 1. 

Cooperative Localization (+) "s Molion Commands (') (Robol 0) 
Cooperative localization (+) vs Motion Commands (*) (Robot 1) 

300 

(a) (h) 

FIGURE 7.11. (a)The cooperative localization estimates (*) versus the trajectory 
resulting from the motion commands (+) given to Robot 0 during the exploration. 
(b) The same for Robot 1. 

over the whole trajectory - the left figure is for Robot 0 and the right for Robot 1. As can 

be seen the highest regions follow the intended path but over time the uncertainty spreads 

out. 

Figure 7.11 presents the pose ~stimates during the exploration when cooperative local­

ization was used (marked as green "+") together with the position of the robot estimated 

using the recorded motion commands (marked as blue "*"); the map of the environment is 

drawn in red. The Ieft figure presents the trajectory of Robot 0 and the right figure presents 

the trajectory of Robot 1. Even though the actual trajectory of each robot was kept in a 
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FIGURE 7.12. Ca) The prediction phase of the particles for the trajectory of Robot 
O. (h) The update phase of the particles for the trajectory of Robot O. (c),(d) 
Prediction and update phases for Robot 1. 

straight !ine and closely corresponds with the cooperative localization estimates, the mo­

tion commands show a systematic drift (masked as blue "*,, in Figure 7.11). The observed 

drift corresponds to the odometry error during the exploration. In other words, the motion 

commands drove the robot on the blue trajectory but because of odometric error the actual 

trajectory is marked in green. 

The robot tracker sens or estimates were combined with the odometer estimates using a 

particle filter. As we saw in Chapter 5 the particle filter operates in two phases, prediction 

and update:, first the particles are moved in order to predict what the pose of the moving 

robot would be and then their weights are updated using the current sensor measurements. 

Figure 7.12 presents the spatial distribution of the particles for the prediction phase (Figure 
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Manual Map Absolute Error 

588em 577.5cm O.5em 

305em 296.5cm 8.5em 

9gem 96.0em 3.0em 

lO2em 102.6em O.6em 

410em 403.1em 6.gem 

9gem 114.4em 15.4em 

41gem 419.7em O.7em 

17gem 178.0em l.Oem 

341em 333.4em 7.6em 

545em 548.0em 3.0em 

343em 343.5em O.5em 

241em 249.gem 8.gem 

432em 427.gem 4.1em 

168em 173.0em 5.0em 
TABLE 7.1. The length of the walls measured wlth tape andfrom the triangula­
tion map (first two eolumns) together with the error. See Figure 2.2.1c for the 
correspondenee between walls and lengths. 

7.12a,c) and for the update phase (Figure 7.12b,d). The top row corresponds to Robot 0 

and the bot tom row to Robot 1. The spread of the distribution in maintained narrow by 

the frequent updates. 

The resulting map of the exploration can be seen in Figure 7.8c. The trajectory of 

Robot 0 is marked in magenta and the trajectory of Robot 1 is marked black. The wans are 

displayed in red and their lengths (in cm) is marked next to them. The internaI diagonals 

that define the triangulation are marked as blue dashed Hnes. Moreover the lengths of 

the walls were measured manually (by measuring tape) and the results are presented in 

table 7.1 together with the estimated length from the triangulation map and the difference 
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(a) (h) 

(c) (d) 

FIGURE 7.13. Exploration at the sixth floor of our building (a) Robot 0 maps a 
reflex corner. (b) Robot 0 follows a wall (c) Robot 0 reached a reflex corner that 
interrupts line of sight. (d) Robot 1 starts exploring after a raIes exchange. 

between the two measurements. The mean error was 4.6cm per wall, the perimeter of the 

environment mapped was measured to 42.7lm white the perimeter of the resulting map was 

42.63m. The angle of the two wans of the upper right corner was measured to 98° and the 

map estimate is 97°. 

2.2.2. Exploration of the 6th floor McConnell Eng. Building. We explored a different 

environment in the hallways of the 6th Hoor McConnell Eng. Building in McGill University. 

Figure 7.13 presents pictures ofthis area from different views. The area explored was larger 

and the only modifications done were to coyer the openings of the elevators. The two robots 

started at the back of the corridor facing the camera in Figure 7.13a. It was very narrow 

as can be seen in Figure 7.14a where Robot 0 (in red) positioned itself on the to left corner 

and Robot 1 (in black) started exploring clockwise from the lower left corner. 
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FIGURE 7.14. The exploration hallways in the 6th flOOf. Red Hnes are the walls, 
blue dashed lines are diagonals, green dotted Hnes are gates to unexplored space. 

Figure 7.14 presents the exploration process through the resulting triangulation. Robot 

1 explores first and maps one triangle before it encounters a reflex vertex and thus exchange 

roles with Robot 0 (Figure 7.14b). Robot 0 start exploring and two reflex vertices are mapped 

(Figures 7.14c,f, see also 7.13a for a picture of Robot 0 at the second reflex corner). As these 

vertices do not interrupt the line of visual contact Robot 0 continues the exploration (Figure 
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FIGURE 7.15. Sonar data collected from Robot 0 (on the 1eft) and Robot 1 (on 
the right), filtered at different ranges: (a,b) 65cm; (c,d) 120cm; (e,f) 250cm; (g,h) 
400cm. The sonar points are marked blue and the trajectory for the robot is marked 
red. 
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~"":"~ 
Ca) (b) 

FIGURE 7.16. (a) The laser data collected during the exploration. (b) Scan match 
applied to the laser data and their position corrected using Stephen Gutmann's 
scanstudio. 

7.13b) mapping in total five triangles (see Figures 7.14b-f for the sequence of exploration. 

As can be seen in Figure 7.13c Robot 0 reached a reflex corner that interrupts the line of 

visual contact and the two robots exchange roles. Robot 1 proceeds to map the opposite 

side of the open area in front of the elevators (see Figure 7.13d). The distance across the 

open area was approximately 8m and the laser barely detected the target by scanning the 

lower part of it. Robot 1 then proceeded to map the rest of the space (see Figure 7.14g-k). 

The sonar data again were recorded and are presented in Figure 7.15 (in the same 

format as in Figure 7.9). It is worth noting that there is less noise, the main reason for 

this being the smoothness of the floor (lack of tiles). But in general the sonar sens or is not 

reliable for more than 2m. Part of the limitation cornes from the height at which the sonar 

transducers are located on the robot. The laser data were also recorded and are presented 

using the Scanstudio: Figure 7.16a shows the raw measurements and Figure 7.16b shows 

the data after successful scan matching. The results are similar to the triangulation map 

obtained which is presented in Figure 7.17. As can be seen there is not much difference 

between the raw and the scan matched laser data because the pose of the robot is maintained 

through cooperative localization. 

The motion commands were used again to estimate the trajectory of the robots (marked 

as blue "*") and compared with the pose estimates from cooperative localization (marked as 
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FIGURE 7 .17. The triangulation map produced using only the sonar for mapping. 
The trajectory of Robot 0 is marked in magenta and the trajectory of Robot 1 is 
marked black. The walls are displayed in .red and their lengths (in cm) is marked 
next to them. The internaI diagonals that define the triangulation are marked as 
blue dashed lines. 
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FIGURE 7.18. (a) The cooperative localization estimates (*) versus the trajectory 
resulting from the motion commands (+) given to Robot 0 during the exploration. 
(b) The same for Robot 1. 

green "+") in Figure 7.18a,b, for Robot 0 and Robot 1 respectively. The walls are presented 

in red. Again the drift due to odometry error lS clearly detectable. 

Figure 7.19 present the distribution of particles during the prediction phase 7.19a,c and 

the update phase 7.19b,d. Robot 0 is presented on the top row and Robot 1 on the bottomi 

the walls are drawn in red. As can be seen during the prediction phase the particles spread 

and then during the update phase they create a peak; this also can be seen at the z axes 

of the graphs, for prediction the highest value is 0.08 and for update is 0.3; these numbers 

102 



7.2 TRIANGULATION ALGORITHM 

G.OS 

,." 
,.'" 

,,'" 

",,- , 

PredictiDn Phase: Robot 0 

'" 

(a) 

Prediction Phase Rooot 1 

(c) 

015

l 
"~ 
"'~ ,J 
'" 

Updale Ph .... Robol 0 

(b) 

Update Phase Robo! 1 

(d) 

FIGURE 7.19. (a) The prediction phase of the particles for the trajectory of Robot O. 
(b) The update phase of the particles for the trajectory of Robot o. (c),(d) Prediction 
and update phases for Robot 1. The wans of the environment are indicated in red. 

represent the confidence of the estimation. In general though the particle distribution is 

kept concentrated by the frequent updates with the estimates of the robot tracker sensor. 

A second experiment was recorded on the 6th floor with a smaU modification in the 

environment: two additional walls were used forming a reflex corner in front of the elevators. 

Figure 7.20 presents the exploration sequence. The new corner is mapped in Figure 7.20h. 

The two robots started in similar positions as in the previous experiments and they proceed 

to map the environment, Robot 1 moving first (Figures 7.20a,b). Then Robot 0 maps the 

top part of the environments (Figure 7.20c-i). Robot 1 then proceeds counter clockwise and 

completes the exploration (see Figures 7.20j-o). 
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~-

(a) . (b) Cc) 

(d) Ce) (f) 
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FIGURE 7.20. The exploration of the 6th floor with a small modification. Red 
Hnes are the walls, blue dashed Hnes are diagonals, green dotted Hnes are gates to 
unexplored space. 
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l l 

'. 

Ca) (b) 

FIGURE 7.21. (a) The laser data collected during the exploration. (b) Scan match 
applied to the laser data and their position corrected using Stephen Gutmann's 
scanstudio. (c) The triangulation map produced using only the sonar for mapping. 

FIGURE 7.22. The triangulation map produced using only the sonar for mapping. 
The trajectory of Robot 0 is marked in magenta and the trajectory of Robot 1 is 
marked black. The walls are displayed in red and their lengths (in cm) is marked 
next to them. The internaI diagonals that define the triangulation are marked as 
blue dashed lines. 

The recorded laser data can be seen in Figure 7.21a,b; note the target detected along 

the trajectory of Robot 1. The resulting map is presented in Figure 7.22, the numbers 

represent the estimated length of the wans and they agree again up to a few centimeters 

with the measured length of the walls (as in the map of the two laboratories). 

2.2.3. Experiments with the Visual Robot Tracker. In addition to the experiments 

with the laser robot tracker sensor the visual robot tracker was used in a small environment. 
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Preliminary exploration tests were carried out in our laboratory in workspaces of area 

roughly 16 m2 . This comparatively small test-bed allowed us to control various factors such 

as inhomogeneities in the terrain as a function of trajectory and obtain ground truth data. 

Using this test-bed we compared the time, accuracy, and robustness of different exploration 

strategies. In our experimental arrangement the role of the stationary robot is played by 

a tripod mounted camera at the same height as Nomad 200 from Nomadics Technologies, 

Inc. The camera was plaçed next to the first wall. This allowed us to more reliably and 

repeatably verify ground truth. It is worth noting that our strategy works equally weIl with 

homogeneous robots and with heterogeneous robots, ego one robot has a camera the other 

robot has the pattern. 

A laser pointer pointing straight down to the Roor has been placed on top of the moving 

robot in order to accurately mark its current position on the Roor. This setup allowed us 

ta measure the displacement from the initial position after the complet ion of the tour. 

Figure 7.23b shows the actual path of the moving robot, the odometry-based estimate 

of position, and the tracker-based estimate. The final displacement from pure odometry 

estimates is approximately 15cm with an orientation error of 15°. The tracker estimate has 

approximately 1.3cm error. This corroborates our assumption that joint exploration and 

localization using a "tracker" can lead to much more robust modeling than odometry alone. 

3. More than two robots 

In this section we discuss the benefits of cooperative localization for a team of mobile 

robots. Furthermore, we consider the effects of different robot tracker sens ors on the accu­

racy of localization for a moving robot using only the information from the rest of the robots 

(as opposed to observations of the environment). This approach results in an open loop 

estimate (with respect ta the entire team) of the moving robot's pose without dependence 

on information from the environment. The experimental results aUows us to examine the ef­

fectiveness of cooperative localization and estimate upper bounds on the error accumulation 

for different sensing modalities. 

3.1. Cooperative LocaHzation. Several different sensors have been employed for 

the estimation of the pose of one robot with respect to another robot. We restrict our 

attention to robot tracker sensors which return information in the frame of reference of the 
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FIGURE 7.23. (a) The average error during the exploration of 50 triangles (over 100 
experiments) without and with cooperative localization. (b)The path of the robot 
after the completion of the exploration. The outside solid tine marks the position 
of the walls the moving robot followed. The actual path of the robot is the solid 
Hne, the odometry based estimate of position is the dotted line, while the tracker 
estimate is the dashed-dotted Hne. 

observing robot (Le they estimate pose parameters relative to the robot making the obser­

vation). Consequently, for "two-dimenslonal robots" in a two dimensional environment, or 

for robots whose pose can be approximated as a combination of 2D position and an orienta­

tion, we can express the pose using three measurements; for ease of reference we represent 

them by the triplet T = [p ljJ al, where p lS the distance between the two robots, ljJ is the 

angle at which the observing robot sees the observed robot relative to the heading of the 

observing robot, and () lS the heading of the observed robot as measured by the observing 

robot relative to the heading of the observing robot. If the stationary robot lS equipped 

with the Robot Tracker, where X m = [xm , Ym, amV lS the pose of the moving robot and 

X s = [x s , Ys, ()sV lS the pose of the stationary robot then equation 7.1 returns the sensor 

output T: 

[ 

...j dx2 + dy2 1 Where : 

= atan2(dy, dx) - ()s ,dx = X m - X s 

atan2( -dy, -dx) - am dy = Ym - Ys 

(7.1) 
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In order to estimate the probability distribution function (pd/) of the pose of the moving 

robot i at time t (P(XD) we employa particle fiUer (Monte Carlo simulation approach: see 

[80, 37, 98]). The weights of the particles (Wt) at time tare updated using a Gaussian 

distribution (see equation 7.2 where [pi, (Ji, CPi]T has been calculated as in equation 7.1 but 

using the pose of particle "i" (XmJ instead of the moving robot pose (Xm)). 

(7.2) 

3.2. Sensing ModaHties. As noted above, several simple sensing configurations 

for a robot tracker are available. For example, simple schemes using a camera allow one 

robot to observe the other and provide different kinds of positional constraint such as the 

distance between two robots and the relative orientations. Moreover the group size affects 

the accuracy of the localization. 

In the next part we present the effect the group size has on the accuracy of the local­

ization for different sensors. The experimental arrangement of the robots is simulated and 

is consistent across aH the sensing configurations. The robots st art in a single Une and they 

move abreast one at a time, first in ascending order and then in descending order for a set 

number of exchanges. The selected robot moves for 5 steps and after each step cooperative 

localization is employed and the pose of the moving robot is estimated. Each step is a 

forward translation by lOOcm. Figure 7.24a presents a group of three robots, after the first 

robot has finished the five steps and the second robot performs the fifth step. 

3.2.1. Range Only. One simple tracking method is to return the relative distance 

between the robots. Such a method has been employed by [67] in the millibots project 

where an ultra-sound wave was used in order to recover the relative distance. In order to 

recover the position of one moving robot in the frame of reference of another at least two 

stationary robots (not collinear with the moving one) are needed thus the minimum size of 

the group using this scheme is three robots. 

Estimating the distance between two robots is very robust and relatively easy. In 

experimental simulations, the distance between every pair of robots was estimated and 

Gaussian, zero mean, noise was added with a p = 2cm regardless the distance between the 

two robots. Figure 7.24b presents the mean error per unit distance traveled for aH robots, 
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FIGURE 7.24. (a) Estimation of the pose of robot R2 using only the distance from 
robot RI (dl) and from robot R3 (d3). (b) Average error in position estimation 
using the distance between the robots only (3,4 and 10 robots; bars indicate standard 
deviation) . 
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FIGURE 7.25. Average error in position estimation using the orientation of the 
moving robot is seen by the stationary ones. 

averaged over 20 trials. As can be seen in Figure 7.24b with five robots, the positional 

accuracy is acceptable with an error of 20cm after 40m traveled; for ten robots the accuracy 

of the localization is very good. 

3.2.2. Azimuth (Angle) Only. Several robotic systems employ an omnidirectional 

vision sensor that reports the angle at which another robot is seen. This is also consistent 

with information available from several types of observing systems based on pan-tilt units. 

In such cases orientation at which the moving robot is seen can be recovered with high 

accuracy. We performed a series of trials using only the angle at which one robot is observed, 

with groups of robots of different sizes. As can be seen in Figure 7.25 the accuracy of the 

109 



7.3 MORE THAN TWO ROBOTS 

localization do es not improve as the group size increases. This is not surprising because 

smaH errors in the estimated orientation of the stationary robots scale non-linearly with the 

distance. Thus after a few exchanges the error in the pose estimation is dominated by the 

error in the orientation of the stationary robots. 

To illustrate the implementation of the particle iUter, we present the probability dis­

tribution function (pd!) of the pose of the moving robot after one step (see Figure 7.26). 

The robot group size is three and it is the middle robot R2 that moves. The predicted pd! 

after a forward step (using odometry information only) can be seen in the Figure 7.26a the 

next two Figures 7.26 and 7.26c present the pd! updated using the orientation at which the 

moving robot is seen by a stationary one (first by robot RI then by robot R3); finally, the 

Figure 7.26d presents the final pd! which combines the information from odometry and the 

observations from the two stationary robots. Clearly the uncertainty of the robot 's position 

is reduced with additional observations. 

3.2.3. Position Only. Another common approach is to use the position of one robot 

computed in the frame of reference of another (relative position). This scheme has been 

employed with two robots (see [24]) in order to reduce the uncertainty. The range and 

azimuth information ([p, e)) is combined in order to improve the pose estimation. As can be 

seen in Figure 7.27a even with three robots the error in pose estimation is relatively smaH 

(average error 30cm for 40m distance traveled per robot, or 0.75%). In our experiments the 

distance between the two robots was estimated and, as ab ove , zero-mean Gaussian noise 

was added both to distance and to orientation with 0' p = 2cm and 0'8 = 0.50 respectively. 

The experiment was repeated twenty times and the average error in position is shown in 

Figure 7.27b for groups of robots of size 3,5,10 and 40. 

3.2.4. Full Pose. Some robot tracker sensors provide accurate information for aU 

three parameters [p, e,~] and they can be used to accurate estimate the full pose of the 

moving robots (see [8'7, 13'7]). In the experimental setup the robot tracker sensor was 

characterized by Gaussian, zero mean, noise with 0' = [2cm, 0.50 ,10
]. By using the full 

equation 7.2 we weighted the pd! of the pose of the moving robot and performed a series 

of experiments for 3, 5 and 10 robots; very low positional error was observed (see Figure 

7.28). 
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(a) (b) 

(c) (d) 

FIGURE 7.26. The pdfofthe moving robot (R2) at different phases ofits estimation: 
(a) prediction usîng odometry only; (b) usîng the orientation from stationary robot 
RI; (c) using the orientation from stationary robot R3; (d) final pdf. 
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FIGURE 7.27. Average error in position estimation using both the distance between 
the robots and the orientation the moving robot lS seen by the stationary ones. (a) 
Average error in positioning of the team of robots one trial (3,5 and 10 robots). (b) 
Average error in position estimation over twenty trials (3,5, 10 and 40 robots). 
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Mean Errar in Position Estlma.tion (Full Pose) 
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FIGURE 7.28. Average error in position estimation using full pose [p, (), 4>]. 

1 # of Robots 1 3 5 10 

Range only (p) 38.80cm 21.63cm 8.13cm 
Azimuth only (e) 27.06cm 32.20cm 33.72cm 
Position only (p, 0) 34.25cm 21. 79cm 7.50cm 
Full Pose 28.73cm 16.71cm 6.05cm 
(p, e, r/J) . . 

TABLE 7.2. The mean error lU posItion estlmatlOn after 40m travel over 20 trials . 

3.2.5. Summarizing. In the previous sections we examined the effect of the size 

of the team of robots and the sensing paradigm on cooperative localization; a synopsis 

of the results can be seen in Table 7.2. AIso, preliminary results from experiments with 

varying odometry error have shown that cooperative localization lS robust even with 10-20% 

odometryerrors. 

4. Discussion 

The experiments performed with the real robots made clear the fact that different 

sensors have different strengths and weaknesses. The sonar sens or is very noisy even at the 

range of two meters, it was able however to robustly detect obstacles of different heights 

in close range. Therefore, the sonar sensor 18 very useful for obstacle avoidance and wall 

following in close range. On the contrary, the laser range finder has higher accuracy but is 

limited on one plane only; smaU variations on the floor inclination changed the height at 

which the laser was scanning by as much as 25cm. The laser sensor was valuable as part 

of the robot tracker sens or but it was not possible to utilize it at its full range because 

of the floor inclination. During an experiment on the 7th floor of our building the target 
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mounted on the robot was not detected even at a distance of 7m. Moreover, the laser range 

finder would miss any obstacle above or below the scanning plane and thus it can not be 

used for navigation. Extending the robot tracker in such a way that the scanning plane 

would be controlled (e.g. by using a pan and tilt unit) is necessary for any use in real 

world applications. One other limitation of the crurent implementation of the triangulation 

algorithm is the mapping of small walls, in particular when the robot goes around a reflex 

corner; the length of the adjacent wans should be minimum 50cm. 

The experimental results verify the improvement in the map accuracy. Areas of 13m 

by 5m and 1200m by 9m were mapped completely, with mean error less than 5cm. The 

perimeters of the environments mapped were of the order of 42-44 meters. These results 

demonstrate the practical feasibility of the algorithms used, and illustrate some of the per­

formance characteristics we predicted. In the next chapter we present the use of cooperative 

localization in order ta assist in the mapping of the spatial distribution of a property of 

interest over an unknown environment, a process akin ta coverage. A heterogeneous team 

of robots is used. 
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CHAPTER 8 

Collaborative Exploration for Visual Map 

Construction 

1. Introduction 

There is nothing more practical than a good theory. 

-Author unknown. 

In the previous chapters we examine the use of cooperative localization together with 

mapping by sweeping the Une of visual contact. In this chapter we are going to apply 

cooperative localization in a different mapping application. In particular, we discuss how 

to map a property of interest over an unknown environment. A significant issue faced 

by many map-building schemes is the management and estimation of positional (or pose) 

errors as the robot collects observations from the environment. That is, as the robots 

collect successive measurements from different poses, the certainty of their pose estimates 

decreases with each new measurement. In sorne cases where the observation lies on a 

high-dimensional manifold, correlation between dimensions allows for globally consistent 

alignment of the observations via an expectation-maximization or iterative optimization 

approach to correcting the observation poses [103, 169]. However, it is often the case that 

either there is insufficient geometric constraint in the observations to pro duce confident 

pose estimates even post hoc, or that the computational co st of making the appropriate 

inferences is infeasible. Uncertainty modeling methods such as Kalman filtering can reduce 

the severity of the problem, but certainly do not eliminate it. 



8.1 INTRODUCTION 

FIGURE 8.1. Collaborative explorers 

This chapter addresses the problem of establishing accurate pose estimates in the con­

text of robotic mapping. The pose estimates can be used to collect accurately localized 

measurements in their own right, or as a precursor to a system that builds a map. The 

robot collecting measurements for the map operates in concert with a second robot that 

acts as an active observer. In our cooperative localization scheme, this second robot tracks 

the motions of the first as it collects data and pravides it with the information required ta 

prevent odometric error from accumulating. We can view the robots are being "connected" 

bya virtual tether which lS estabHshed between the two robots and which enables the task 

of mapping to be accomplished without significant error and independent of the ground 

surface conditions and the quality of the odometry estimate. In particular, the property of 

interest we map is the visual appearance and the utility of visual landmarks as developed 

by Robert Sim [154]. In principle, more than one of these active observers could be used 

simultaneously, although this is not elaborated in this thesis. Beyond presenting the details 

of the approach and its implementation, this chapter provides a quantitative evaluation 

validating the effectiveness of this methodology. 

The remainder of this chapter lS structured as follows: Section 2 discusses the general 

framework in which our approach applies. We then discuss a particular application of our 
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approach to the task of visuallandmark learning in Section 3 and experimental results are 

presented in Section 4. 

2. Motivation 

(a) (b) 

FIGURE 8.2. Mapping: (a) Continuous function such as: Radiation, Visu al ap­
pearance, Elevation, Magnetic field, Temperature, etc. (b) Discrete function such 
as: Mine detection, Lost objects, Holes, Electrical outlets, etc. 

The work presented here is motivated by the need to use a mobile robot in order to ac­

curately map a spatially varying property of an unknown (possibly hazardous) environment. 

Such a property cou Id be a continuo us function (see Figure 8.2a) over the accessible area 

such as radiation, temperature, magnetic field variation, elevation or visual appearance, 

or the property could be a discrete function (see Figure 8.2b) such as presence of mines, 

lost objects, holes/anomalies on the ground, or electrical outlets. In most cases the sensor 

used to map arbitrary properties such as those noted above is not suit able for the accurate 

localization of the exploring robot - for example, a radiation meter cannot readily be used 

to accurately recover the pose of the exploring robot. Therefore, the self-localization ability 

of a single robot on the basis of the measurement of the continuous function of interest 

is poor without the assistance of additional sensory apparatus. Furthermore, the ground 

surface quality may be uneven, resulting in wheel slippage, and rendering the odometry sen­

sors unreliable. Our approach employs cooperative localization as described in the previous 

116 



8.3 APPLICATION: LANDMARK LEARNING 

chapt ers in order ta recover the pose of the exploring robot with high accuracy, independent 

of the ground surface properties and the reliability of the odometry sensors. 

Another motivation for using more than one mobile robot is that several applications 

require the exploration or inspection of hazardous environments with an attendant risk ta 

the robot doing the work. Such applications include but are not limited ta: de-mining 

rural areas, inspecting nuclear facilities or markingjmapping of chemical spills. In arder 

ta improve robustness or reduce the potential cast in such a scenario we can deploy a 

team of heterogeneous robots consisting of a "base" robot which is equipped with the main 

computer, a communication module and the robot tracker sensor, and a team of lower-cost 

"exploring" robots that are equipped with only the mapping sensor (and the target for the 

robot tracker). In particular, our scheme obviates the need for accurate odometry on the 

exploring robots. The base robot is always located at a safe area keeping visual and radio 

contact with the exploring robots. If any of the exploring robots are destroyed the expense 

is limited, and the mission can continue with the surviving robots. 

3. Application: Landmark Learning 

In this section we demonstrate the effectiveness of our approach as it applies ta the 

problem of learning visual landmarks which are useful for the task of pose estimation of a 

single robot equipped with a camera based on visual observations of the environment. The 

trackers described in the Chapter 6 &ctions 2,3 can be employed ta properly register the 

landmark observations on the map, Le. ta provide "ground truth" positions while the robot 

explores the visual environment. We employ the landmark learning framework developed by 

Sim and Dudek and described in [53, 151] and [149], which tracks the set of points output 

by an arbitrary model of visual attention and attempts ta construct a representation of the 

landmark as a function of the pose of the robot. Such a representation can then be later 

exploited for the task of estimating the pose of the robot from detected visual landmarks 

in the absence of a second robot or a tracker. 1 . 

IThe work on visuallandmarks is used as a test-bed in order to validate the cooperative localization approach 
introduced in this thesis. A brief overview has been included here for completeness sake. For a detailed 
description of the visuallandmarks based localization please refer to [154, 155, 152, 153, 151, 149, 150, 
151, 156] and to http://www.cim.mcgill.carsimra. 
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images sampling pose space 

• Candidate 
Landmarks 

Tracked Landmarks 

Attributes 

FIGURE 8.3. The off-Hne training method. Images (large rectangles) are coUected 
sampling the pose space. Landmarks are extracted from the images and matched 
across the samples. The tracked landmarks are parameterized as a function of pose 
and saved for future pose estimation. Figure courtesy of R. Sim. 

The learning method is depicted in Figure 8.3 and operates as follows (refer to the cited 

work for further details): 

(i) Exploration: One robot tracks the other as it collects images sampling a range of 

poses in the environment. The pose at which each image is taken is recorded as the 

estimate given by the tracker. 

(ii) Detection: Landmark candidates are extracted from each image using a model of 

visual attention. Landmark candidates are rectangular image regions that satisfy a 

visual attention criterion. 

(Hi) Matching: Tracked landmarks are extracted by tracking visually similar candidate 

landmarks over the configuration space. 

(iv) Parameterization: The tracked landmarks are parameterized on the basis of a 

set of computed landmark attributes (for example, position in the image, intensity 

distribution, edge distribution, etc), and then measured in terms of their a priori 

utility for pose estimation. 
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(v) The set of sufficiently useful tracked landmarks lS stored for future retrieval. 

0.8 

0.6 

0.4 

0.2 

a 
a 

y Coordinat. (cm) 

Observation likelihood as a funcoon of pose. 

a 

600 300 
X Coordinate (cm) 

FIGURE 8.4. The likelihood of an observation as a function of pose. Figure courtesy 
of R. Sim. 

For the purposes of our experiments, the visual landmarks are initially selected from 

a subset of the training images using an attention operator that responds to local maxima 

of edge density in the image. The selected landmark candidates are then tracked over the 

remaining images along the robot's trajectory by maximizing correlation with the local 

appearance of the initially detected landmark. The set of matches to a given candidate 

constitute a tracked landmark, and is stored for parameterization and evaluation. 

The parameterization of each landmark feature li is accomplished by employing a radial 

basis function regularization framework to model the observation generating function 

(8.1) 

where z is a low dimensional vector-valued representation of the landmark attributes and q 

is the pose of the robot. In other words, Fi(-) lS the function that predicts the attributes of 

the landmark as a function of the pose of the robot. Furthermore, the landmark is evaluated 

for its utility by computing the covariance C of a randomly sampled subset of leave-one-out 

cross-validation residuals over the training set. 
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The parameterization of each landmark affords a maximum likelihood prediction of an 

observation, given an a priori pose estimate q, as weH as a measure of the uncertainty (C) 

of that prediction. As such, the landmark models are useful for the task of probabilistic 

robot localization. That is, we can construct a likelihood function p(zjq) which allows us to 

measure the likelihood of an observation 2'1, assuming knowledge of the robot's pose q. Such 

a likelihood function can be employed in a Bayesian framework to infer the probability 

distribution of q given the observation 2'1: 

( j ) 
_ p(zjq)p(q) 

p q z - p(z) (8.2) 

where p(q) represents the prior information about q and p(z) is a constant relative to the 

independent variable q. Several such probability distributions can be generated- one for 

each observed landmark- and can be combined to obtain a full posterior pose distribution. 

Note that this framework is more generic than a Kalman filter in that it allows for a multi­

modal representation of the pose likelihood. 

When the robot requires a pose estimate without the aid of the tracker, it can obtain 

a camera image and locate the learned landmarks in the image using the predictive model. 

The differences in appearance and position between the prediction and the observation of 

each landmark are combined to compute the likelihood of the observation in the Bayesian 

framework. This pro cess is illustrated in Figure 8.5. The maximum a priori pose estimate 

can be recovered by gradient ascent over the observation likelihood as a function of pose. 

An example likelihood function is plotted at a coarse scale in Figure 8.4. Note that the pose 

likelihood is a useful measure of confidence in the final estimate allowing for the rejection 

of out lier pose estimates on the basis of a user-defined threshold. 

As noted, the pattern of landmarks observed and computed over the environment during 

the mapping stage can be used for accurate single-robot pose estimation. 

4. Experimental Results: 

Construction of Landmark-based Visual Maps 

In this section we present the results of deploying the tracking method for the task 

of landmark learning. Our environment consisted of a laboratory partitioned into two 

"rooms" by room dividers, with an open doorway connecting them. The first two pictures 
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FIGURE 8.5. Pose estimation based on learned visuallandmarks. Landmarks (small 
squares) are extracted from the current camera observation and matched to the 
previously learned tracked landmarks. Each match generates a pose estimate, which 
are filtered and combined to generate a final pose estimate. Figure courtesy of R. 
Sim. 

in Figure 8.6 are the robot's-eye-view of the two rooms, and the third picture presents the 

top view of the fioor plan. At the outset, one robot remained stationary while the other 

used a seed-spreader exploration procedure [104] across the fioor, taking image samples at 

40cm intervals. When the robot had completed the first room, it moved beyond the door 

and the stationary robot followed it to the threshold, where it remained stationary while 

tracking the exploratory robot as it continued its exploration of the second room. 

4.1. Experiment 1: a) Odometry versus tracking: The trajectory of the ex-

ploratory robot was defined at the outset by a user. However, as the robot explored, 

accumulated error in odometry resulted in the robot straying from the desired path. The 

tracking estimate of the stationary robot was provided to the moving robot in order to 

correct this accumulated erroI. During the exploration the pose of the robot was corrected 

based on the observations of the robot tracker. During the experiment the pure odometry 

estimates were kept for comparisons. Figure 8.7 plots the uncorrected odometric trajectory 

(plotted as 'x') and the actual trajectory of the robot, as measured by the tracker (plotted 
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FIGURE 8.6. Views of the two "rooms" as seen by the robot, and the Hoor plan of 
the two "rooms". 
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FIGURE 8.7. Odometric (x) vs Tracker-corrected (0) trajectories of the robot. 

as '0'). For the sake of clarity, the odometric error was reset to zero between the first and 

second rooms. Figure 8.8 presents the accumulated odometric error in the second room 

versus total distance traveled (after it was reset to zero) 

b) Tracking versus vision-based pose estimation: Once image samples were obtained 

using the tracker estimates as ground truth position estimates, it was possible ta apply our 

landmark learning framework ta the image samples in order ta learn a mapping between 

appearance-based landmarks and the pose of the robot. Figure 8.9 shows the discrepancies 

between the pose estimates from the tracker (marked as circles) and the landmark-based 

vision pose estimator (marked as x's) in Room 2. At each position, the two 2-D projections 
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FIGURE 8.8. Odometric error versus distance traveled. 
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FIGURE 8.9. Tracker estimates (0) vs Vision-based estimates (x) for training images. 

of the alternative pose estimates are joined by a Hne. While the tracker is clearly more 

accurate, the quality of the landmark-based pose estimates is sufficient for situations where 

only one robot is present. 
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FIGURE 8.10. Tracker estimates (0) vs Image-based estimates (x) for a set of 21 
random positions. 

Our final stage of this experiment involved navigating the robot to a series of random 

positions and acquiring image- and tracker-based pose estimates, which are plotted together 

in Figure 8.10. This final experiment illustrates the use of a multi-sensor estimator in 

removing outliers. Assuming that the tracker-based position is correct, the mean error in 

the image-based estimate was 33cm, a large part of which can be attributed to the two 

significant outliers from nearly the same position. 

4.2. Experiment 2. A second experiment was performed where the two robots 

explored a single large room. At the outset, one robot remained stationary while the other 

used a seed-spreader exploration procedure [104J across the Hoor, taking image samples at 

25cm intervals, and in four orthogonal viewing directions, two of which are illustrated in 

Figure 8.11. 

As before, the trajectory of the exploratory robot was defined at the outset by a user. 

However, as the robot explored, accumulated error in odometry resulted in the robot stray­

ing from the desired path. The differential drive configuration of the exploratory robot, 

coupled with frequent rotations to capture the four viewing directions led to a rapid, and 

somewhat systematic degradation in dead reckoning, as illustrated in Figure 8.12a, where 
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FIGURE 8.11. Opposing views of the lab as seen by the exploring robot. 

the uncorrected odometric trajectory is plotted as a dash-dotted Hne, and the actual tra­

jectory of the robot, as observed by the tracker, is plotted as a solid Hne. The accumulated 

odometric error is plotted versus total distance traveled in Figure 8.12b. 

TrajJlctœy of the Mapplng Robot (9Oild: Trecker, dash-dot: Odom&tar) Errol' in PosltlonvlIl Distanca Travela<! 

300 

200 

~ fi 
11 Il, 1 \ 
1\ ft i \ 
il .li 1 \ ! \ 

fi i! l' Il!! I~ 
l, i i 'I ,Iii 1 \ 

500 

.~ 0 

~ 400 I! ! i, ! i ! \ 1 \ ! \ 

~ ii il Il 1 i i ! \1 i, 1,1 '\ i g 300 j 1 ! i l, Ji l,Iv '1\ l ' 
> 

-200 

-300 

W ! i ! i 1 i 

t 

JI! i 1 \,1 \Ii \J{lj '\ l,II 
200 JI! \ R i J \ ' 

1 il! \!\! ,1 \ 1 
; \ \ ! \! Vi; 

1oo! v \! \i \) 

~~L-__ ~'00~~_~~-_~lOO~~--~'00~~2~OO--~'OO~~4~OO--~500 
X-axis 

) V V \ 

o 1000 2000 3000 4000 5000 5000 7000 
Distance Traveled 

(a) (b) 

FIGURE 8.12. In this experiment the robot took pi ct ures in four orientation; the 
higher number of rotations increased non-linearly the odometric error. Ca) Odo­
metric (denoted by dash-dotted line) vs Tracker-corrected (denoted by a solid Hne) 
trajectories of the robot. (b) Odometric error versus distance traveled. 

8000 

Once image samples were obtained using the tracker estimates as ground truth position 

estimates, it was possible to apply our landmark learning framework ta the image samples 

in arder to learn a mapping between appearance-based landmarks and the pose of the 

robot. Training was applied separately ta each of the four viewing directions, developing 
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a set of tracked landmark observations. Again the final stage of our experiment involved 

navigating the robot to a series of 93 random positions and acquiring images along the 

four orthogonal viewing directions. Image- and tracker-based maximum likelihood pose 

estimates were then generated for one of the viewing directions, and outliers removed on 

the basis of a likelihood threshold. Of the 93 observations, 4 estimates were rejected. In 

general, these outliers corresponded to observations where the robot was very dose to the 

wall it was facing. One would expect that an observation from a different viewing direction 

would return an estimate with higher confidence. We have omitted this application for the 

sake of brevity. 

The remaining 89 image-based estimates of high confidence are plotted with their as­

sociated tracker-based estimates in Figure 8.13. Assuming that the tracker-based position 

is correct, the mean error in the image-based estimate was 17cm, (7.7cm in the x direction 

vs 15cm in the y direction). The larger error in the y direction corresponds to the fact that 

the camera was pointed parallel to the positive y axis, and changes in observations due to 

forward motion are not as pronounced as changes due to side-to-side motion. The smallest 

absolute error was 0.49cm, which is insignificant compared to the "ground truth" error, and 

the largest error was 76cm. Note that most of the larger errors occur for large values of 

y. This is due to the fact that the camera was dosest to the wall it was facing at these 

positions y, and as has been mentioned, tracking scene features over 25cm pose intervals 

became difficult. 

4.2.1. Random Walk. Figure 8.14 presents a random walk of the exploring robot 

through the mapped environment. The robot starts at an random location (marked as a 

"*,, ), initially the odometry estimate is set to the value of the robot tracker estimate at 

that starting position, the pose estimate from the vision based system is approximately 

30cm to the right of the robot tracker estimate. The robot took seven random steps and 

the three estimated trajectories are presented in Figure 8.14. First the odometer estimate 

(marked as triangles connected with a dashed line) is plotted; second, the robot tracker 

estimate (marked as "+" connected by a soUd Hne), and third the visual pose estimator 

results (marked as "0" connected with a dash-dotted Hne). The robot tracker estimate 

provides a close approximation to ground truth at the end of the random walk the disparity 

between the robot tracker and the visual pose estimator is 17.5cm and between the robot 
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FIGURE 8.13. Tracker estimates (0) vs Image-based estimates (x) for a set of 93 
random positions. 
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FIGURE 8.14. The trajectory of the moving robot based on odometry estimates 
(triangles connected with a dashed line), the robot tracker cooperative localization 
C+' connected with a solid line) and the image based localization ('0' connected 
with a dash-dotted line). 

tracker and the odometer is 68cm. The much higher disparity is a result of an increase in 

the accumulated error in orientation. 
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In this chapter we presented a method for the automatic mapping of an arbitrary envi­

ronment which utilizes cooperative localization in or der to maintain a virtual tether between 

two robots as one explores the environment and the other tracks its pose. Furthermore, we 

validated the utility of a set of learned landmarks localization when the second robot 

cannot be deployed. This demonstrates conclusively that the cooperative localization ap­

proach provides more accurate pose estimates, and hence a more accurate appearance-based 

map, than could be achieved with the robots operating independently. 

The particular map we pro duce, an appearance based representation of the environ­

ment, allows a single robot to accurately estimate its position on subsequent visits to the 

same area. While such single-robot pose estimates are not as accurate as when two robots 

are used, their accuracy lS substantially ameliorated by the fact that two robots were used 

in the initial mapping stage. The use of an appearance-based model obviates most de­

pendences on the particular geometry of the local environment. Further conclusions and 

extensions to the work presented in this and the previous chapters are discussed in the next 

chapter. 
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CHAPTER 9 

Conclusions 

. .. Ithaca has given you the beautiful voyage. 

Without her you would have never set out on the road . 

. .. Wise as you have become, with 50 much experience, 

you must already have understood what Ithacas mean. 

-From the poem Ithaca by C. Cavafis 1911 

In this thesis, we have deseribed a new solution to the exploration and navigation 

problem based on the use of cooperating robots. We have deseribed alternative approaches 

depending on the size of the environment relative to the range of the robot traeker sens or 

we employ. 

Our approach is particularly suited in environments where robot positioning and ob­

stacle deteetion might be diffieult using traditional methods. In faet, sueh diffieulties are 

likely to arise in many real-world environments. Our approach is based on exploiting a 

line-of-sight constraint between two (or more) robots to achieve exploration with reduced 

odometric error. This approaeh can also cope with obstacles with hard-to-sense refleetance 

characteristics. Different algorithms were proposed depending on the seale of the environ­

ment. Where the environment is smaU enough so that the robots can see each other from 

any two points on its boundary that have clear Hne of sight between them (Le. they are 

never unable to see one another simply because they are too far away), then the triangula­

tion algorithm is applied. If the environment is larger than the range of the robot tracker 
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sensor then the trapezoidation algorithm lS used 1, Moreover, a robot tracker sensor was 

employed to monitor the moving robot and judiciously correct its pose when uncertainty 

became to big. 

A probabilistic framework was developed in order ta estimate the uncertainty build up 

during the exploration. Monte Carlo simulation in the form of particle filtering was used to 

model the complex odometry error behaviour and the impact of the robot tracker sensor. 

The robot tracker was used in an "as needed" basis when the uncertainty was above a 

certain bound. 

The most important contribution of this thesis is dual. First the ability of the robots 

to see each other lS used in a systematic manner to explorejmap the free space in the 

environment independently from the reflectance properties of the obstacles. It lS the first 

time when the ability of two (or more) robots to observe each other is exploited in order 

to infer about the occupancy of the space between them. Second, the use of cooperative 

localization decouples the odometry error from the environmental conditions such as the 

quality of the floor and the visibility of the abjects (which in an unknown environment 

cannot be predicted). 

A series of experiments were conducted in order to validate our approach. An accurate 

model for odometry error accumulation was developed and validated through experiments 

using different robots (the Nomad 200 and the Superscout II from Nomadic Technologies 

Inc, and the RWI B12 from the Real World Interface) navigating over different surfaces 

(tUes, carpet, concrete, etc.) Finally, a large number of experiments were conducted in 

simulation using different world models. During the simulation experiments different types 

of odometry error were used and the number of robots was varied from two to forty. 

In the multi-robot paradigm we proposed a new methodology for estîmating the bounds 

of the accumulated uncertainty based on the statistical properties of the robot tracker sens or 

used and the number of robots. 

Finally the methodology of cooperative localization was applied in a different multi-robot 

exploration application. More specifically, the problem of accurately mapping a spatially 

varying property of an unknown (possibly hazardous) environment, and in particular cre­

ating a map of visual appearance (as defined by a set of visual landmar ks), was addressed. 

l An open issue is how to automatically detect such situations efficiently during exploration and switch 
strategies, or switch back-and-forth between strategies based on local properties of the environment, 
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Furthermore, we validate the utility of a set of learned landmarks for localization when 

the second robot cannot be deployed. This demonstrates conclusively that the cooperative 

localization approach provides more accurate pose estimates than single robot, and hence 

a more accurate appearance-based map, than could be achieved with the robots operating 

independently. 

1. Future Work 

The problem of autonomous exploration and mapping of unknown environments ap­

pears in numerous applications and covers a wide variety of environments. In this thesis, 

we presented two algorithms for the complete exploration of unknown environments by a 

team of mobile robots. We looked at large environments which were assumed to be fiat, 

the mobile robots were wheeled indoor models, and the resulting map was of the form of a 

spatial decomposition of a simple polygon with holes. Extensions to our work are discussed 

below. 

@ During the exploration the mobile agents collect information from different sources. 

This information is corrupted by noise and the greedy algorithms proposed in this 

thesis build only an incremental map over time. The incremental nature of the 

map synthesis, like other EM algorithms, do es not assure a probabilistically optimal 

path. After every motionjsensing operation the following data are available for 

the robot: the motion command (~X, ~Y) executed, the new position from the 

odometry estimates {Xodom, Yodom, eodom}T, the tracker estimate < p, e, <p > relative 

to the stationary robot, and the sensor data L:: Lx,y,e. 2 These data are stored 

and at the complet ion of the exploration they construct a constraint network for 

the environment and the path travelled by the mobile robots team. An off-Hne 

optimization algorithm can be applied in order to construct a map that is optimal 

over the above set of constraints [101]. 

@ Both the triangulation and the trapezoidation algorithm assume that the robots 

operate inside a polygonal world. Although a polygonal approximation is always 

possible (see Chapter 2 Section 6) it will increase the computational complexity of 

the algorithm. An extension of the triangulation algorithm for curved environments 

2a set of line segments relative to the robots pose. 
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appears feasible from preliminary research. Future work should include the devel­

opment of wall following strategies for curved environments and the derivation of a 

completeness pro of for the exploration algorithm. 

e One of the main assumptions in the current work is that the mobile robots operate 

on a level environment and a 2D map of the world is enough. This assuption is 

a reasonable approximation for most indoors environments and for wheeled robots. 

Two major extensions are proposed as future areas of research. 

- The collaborative exploration philosophy could be extended to explore uneven 

terains such as outdoors or on another planet using a team of rovers or even 

legged robots. A polyhedral terrain approximation of such an environment 

(2.5D) can be used. The pose of the robot is extended to position in 3D 

{ x, y, z} and orientation of roll, pitch, yaw {e,~, 'lj; }. In this case a more 

elaborate tracking device is needed. 

- Furthermore, the extension to aerial mapping from f1.ying robots or underwater 

exploration should be addressed, together with cooperating teams of grounded 

and f1.ying vehicles. 

@ In certain environments the odometry estimates are so poor that they are useless. 

In such situations cooperative localization could be used in order to update the pose 

estimate of a mobile robot after an action. For example legged robots moving over 

debris are unable to maintain any sort of reliable dead reckoning. 

Preliminary experiments performed in an open area where the robots were manually 

moved to different position showed that cooperative localization could provide a 

basic localization scheme in existing systems. 

@ The motion strategies proposed in our work are deterministic. Preliminary experi­

ments showed that a randomized motion strategy can sometimes outperform a de­

terministic one. While this bears further examination it seems likely that for teams 

of more than two or three robots randomized formation control may provide an 

appealing alternative to deterministic methods. 

III In Chapter 8 we presented a method for the automatic mapping of an arbitrary en­

vironment which utilizes cooperative localization in order to maintain a virtual tether 
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between two robots as one explores the environment and the other tracks its pose. 

The experimental results collected demonstrated conclusively that the virtual tether 

provides more accurate pose estimates, and hence a more accurate appearance-based 

map, than could be achieved with the robots operating independently. It would ap­

pear that these advantages become even more profound if more than two robots 

are used for position estimation and mapping. In the particular algorithmic scheme 

presented the use of many more robots would be an issue, but it seems likely that 

several feasible solutions can be formulated. 

fi> In this thesis we employed a particle filter in order estimate the pose of a pair 

of robots during collaborative exploration. Further extensions of the particle filter 

approach could include more elaborate particle resampling methods that dynamically 

trade off efficiency for potential robustness. By estimating the parameters of the 

particle cloud, it seems possible to vary the model complexity on an as-needed basis. 

Further work involves the introduction of an additional weighting function based on 

other sensory input, such as the sensor used for wall following. 

2. Final Words 

The main problem addressed in this thesis (Simultaneous Localization and Mapping) 

is central to the field of Mobile Robotics. Our approach takes advantage of a multi-robot 

system in order to robustly explore an unknown environment. While the research of multi­

robot systems lS still at its early stages, many researchers are applying coUaborative methods 

in order to overcome the limitations of single robot systems. The results produced by this 

thesis fit in this ongoing effort. 
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APPENDIX A 

Proof of Optimal Coverage 

In this Appendix we present the optimality proof of the trapezoidation algorithm with 

respect to the distance traveled. Every time one robot is moving it covers a small area of 

free space, by alternating roles the two robots coyer aU of free space. Therefore, the total 

area covered is the sum of the areas covered in each move every single exchange minus the 

overlapping covered area. This is equivalent with a tiling problem where every small area 

covered by the motion of one robot represents a tHe, and the objective is to coyer the free 

space with tiles without leaving any space uncovered. We present an optimal tiling of the 

space, under certain assumptions. 

Assumptions Every tHe can be contained in a wedge of radius R and angle (J. 

We consider only tilings defined by the line of sight, between the two robots, sweeping 

across the space. One end of the line is fixed (the position of the stationary robot) and the 

other follows the trajectory of the second robot. The length of the Hne of sight is bounded 

by the sensing range R. The sweep of the Hne and the bounding circle define a wedge inside 

which a tHe lS placed. 

1. Proof 

Lemma 1: A tiling in which no tHe with an angle more than 1800 lS used can replace 

any arbitrary tiling, without increasing the complexity (number of Wes). 

Proof: If a tHe with an angle more than 1800 is used then at least another tile with 

an angle less than 1800 is necessary to coyer the remaining free area. The combinat ion of 

the two (or more) tiles is equivalent (in terms of complexity) to two (or more) Wes of angle 



A.l PROOF 

FIGURE A.1. Equivalence among two pairs of tiles. 

1800 or less (as in Figure A.1). The number of exchanges stays the same and the total path 

traveled is 21T' R for a 1T' R2 area. 

Lemma 2: When two tiles are connected along the curved portion of their wedges, 

the most efficient curve (in terms of path length) is the common chard they share. 

A 

FIGURE A.2. Short est path along the arc connections. 

Proof:Given two tUes (eg. PIAB and P2AB, see Figure A.2), the short est distance 

between A and B is given by the straight Hne connecting A and B. If the two robots travel 

in a a different path (other than a straight line) then the length of the path traveled would 

be larger than AB. 

Lemma 3: When the robots exchange roles they produce tiles (areas of free space) 

that are connected along the rays that specify the boundaries of the wedges (see Figure 

A.3). 

Proof: Let two robots explore a series of areas of free space by exchanging roles. 

Without loss of generality, let robot number one move inside the corresponding wedges as 

it covers the paths, AC, CE, EG, GI while robot number two moves across BD, DF, FH. 
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FIGURE A.3. Sequence of adjacent tiles. Dark Hnes define the wedges and each 
wedge is defined by three letters. Dashed lines define the sensor range boundary. 

That happens because after the motion of one robot and the mapping of free space the two 

robots have to exchange roles and the other robot would continue mapping the free space 

starting from the common line of sight. Therefore each two neighboring tiles (such as ACB, 

BDC) are going to be connected along the common ray jline_oLsight (BC) that connects 

them when they exchange roles. 

Lemma 4: Assume a sequence of N tiles (a stripe) connected as in Lemma 3 with 

angles ei(l :; i :; N) for each wedge. There exist an angle e' such that: a sequence of N 

tUes aH with the same angle e' will coyer an equal or larger area for the same length or less 

of the path traveled. 

Pro of: The total length of the path traveled for the two stripes is a sum of the sub­

paths pOi and pOl and is given in Equation A.l: 

N N 
LpOi=LPO' 
i=l i=l 

which is equivalent ta (A.1) 

We are going ta prove that the sum of the areas covered with different angles is smaller 

or equal ta the area covered by the same angle (see Equation A.2). 
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N N 

LABi :::; LAo1 
{:? 

i=l i=l 

(A.2) 

N (}. N e' 
'Ç"" R 2 sin..3:. < 'Ç"" R 2 sin -
~ 2 -~ 2 
i=l i=l 

Removing the constant terms from both sides Equation A.1 and Equation A.2 became: 

Given N angles rh : i = 1, N. If 

Then 

N e. (}' 
LSin 4

2 

= Nsin"4 
i=l 

N e. N e' 
'Ç"" sin..3:. < 'Ç"" sin -
~ 2 -~ 2 
i=l i=l 

@ For N=2, we solve equation A.3 for e' (N=2): 

. el . e2 2' e' sm 4 + sm 4 = sm "4 {:? 

e' sin !!l. + sin f!.2. 
sin- = 4 4 

4 2 

(A.3) 

(A.4) 

(A.5) 

For any pair (Ol, (2) where Oi E [0,1r] then L\.A = 2 sin.!f - (sin Bi + sin ~) 2:: 0 (see 

the graph of L\.A in Figure A.4). 

As L\.A 2:: 0 then 

. th . (h 2' e' sm- +sm- < sm-
22- 2 

Q.E.D. for N=2. 

@ For N > 2 we examine two cases, nrst N = 2K and then the general case. 

- For N = 2K : 

(A.6) 
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0.35 

200 

o 0 

FIGURE A.4. Graph of ..6.A for 0 ~ ai ~ 1800
, ..6.A ;::: 0 for any pair of angles 

Let the angles be in pairs of (lhi-l,(}2i : 1 ~ i ::; (N/2) = 2K-1). Then for 

every pair ((}2i-l, (hi) calculate the angle ei : 1 ::; i ::; 2K -1 as in the case for 

N=2 (Equation A.7). 

e' sin 02i-1 + sin f!.2.i 
sin 2 = 4 4 

4 2 
(A.7) 

From Equation A.6: 

2K 2K - 1 

I: . (h I: (' (hi-l . (J2i) 
Sln- = Sln-- +sm- < 

2 '2 2-
i=l i=l 

(A.8) 
2K-1 2K-l 

(J' (/ I: 2 sin ~ = 2 I: sin ~ 
i=l i=l 

Therefore: 

2K 2K-l 1 

I: . (Ji 2 I: . (Ji sm- < 8m-
2 - 2 

i=l i=l 

(A.9) 
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Now we have M = 2K - 1 angles (eD. Repeat the calculations for the e~ angles 

finding M' = 2K-2 angles ((Jn. Solving for pairs of angles ((J;i-l' (J;i : l ~ i ~ 

(N/4) = 2K-2). Calculate from Equation A.lO an the angles (Ji' : l ~ i ~ 2K-2 

(J~I . 82' " 1 . (}~, sm--- +sm-= 
sin -'L = 4 4 

4 2 

From Equation A.6: 

2K - 1 2K-2 
(J' (J' . (J' L sin d = L (sin 2;-1 + sin ~i) ~ 

i=l i=l 

2K-2 2K-2 
(JII (J" L 2 sin t = 2 L sin-'L 

. . 2 
2=1 ~=1 

From Equation A.8 and Equation A.Il 

2K 2K-l 2K-2 
(J. (J' (J!' 

~ sin -..: < 2 ~ sin -2:. < 2 x 2 ~ sin-'L 
~ 2 - ~ 2 - ~ 2 
i=l i=l i=l 

(A.lO) 

(A. Il) 

(A.12) 

Repeating the previous steps K times. For (J(K) that satisfies Equation A.12 

Equation A.14 lS true. 

2K (J. 2K - 1 (JI 2K-2 (J" (J(K) 

L sin ; ~ 2 L sin ; ~ 4 L sin t ~ ... ~ N sin -2-
i=l i=l i=l 

Q.E.D. For any N in the form: N = 2K 

- For N i= 2K: 

(A.13) 

(A.14) 
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A.l PROOF 

Let KEN such that 2K :; N :; 2K+l. Then for the ei : 1 :; i :; N solve 

Equation A.15 for the ()'. And we want to prove that the inequality in Equation 

A.16 is true. 

~ . ()i N' ()' 
L..!sm"'4 = sm"'4 
i=l 

N (). N ()' 
~sin~ < ~sin-
L..! 2-L..! 2 
i=l i=l 

(A.15) 

(A.16) 

Consequently, by adding in both sides of Equation A.15 (M sin ~) where M = 

(2 K +1 - N), Equation A.15 becomes Equation A.17. 

(A.17) 

Now the number of terms in each side of Equation A.15, lS 2K+l and from 

Equation A.14 we get: 

~ . ()i M' ()' (N M)' B' L..! sm 2' + sm 2' :; + sm 2' {::} 
i=l 

LN . Bi N' ()' 
Sln- < 8m-

2 - 2 
i=l 

(A.18) 

Theorem 1: For any tiling, and with optimality criterion the shortest path for a given 

number of exchanges, the optimal We is the union of two isosceles triangles (equal edges 

are R), with the angle of the two equal edges equal to B/2 , where () the wedge angle (see 

Figure A.5). 

Proof: From lemma 3 and for the same angle () for every wedge, the wedges are going 

to be arranged into stripes as in Figure A.3. Moreover given a constant number of Wes the 

angle () is set. When one stripe is positioned next to its neighbor, there must be complete 
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FIGURE A.5. Positioning of the wedge stripes. 

A.l PROOF 

coverage, with minimum overlap. The optimal positioning of the wedges is displayed in 

Figure A.6, such that the curves are complement each other. From lemma 2, the optimal 

path is that given in Figure A.5, by connecting with straight Hnes the overlapped areas. 

FIGURE A.6. Optimal tiling. 

Q.E.D. 
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APPENDIX B 

Odometry Error Study 

1. Introduction 

In this Appendix we consider the measurement of odometric uncertainty for a mobile 

robot. The primary emphasis is to experimentally estimate the rate of odometry error 

buildup in a small differentiaI-drive research robot, and to model itsbehavior probabilis­

tically. Although the use of Kalman filters and related techniques are common place for 

robotic systems, it is not uncommon for mobile robotics practitioners to merely make ed­

ucated guesses not only for the rate of error accumulation for their robots, but also for 

the error model itself. While there are a few notable papers that rigorously consider er­

ror measurement for mobile robots [16, 18, 116], the most common error model used in 

practice is an unrealistic univariate two-dimensional Gaussian. Furthermore, in simulated 

environments very crude odometry error models are used, if the error lS modeled at aIl. 

Our goal was to develop a more realistic odometry error model that would refiect 

(at least partially) the complexity of the robot 's locomotion. Such a model is used to 

describe faithfully the probability distribution function of the robot's pose after an arbitrary 

motion. The odometry error study presented here in combinat ion with the proposed model 

provides a practical framework for the Implementation of realistic odometry error in different 

simulation packages. Our primary experimental data lS obtained from a differentiaI-drive 

robot, although we believe the proposed probabilistic model applies to other types of drive 

mechanism and we have tested it informally on synchro-drive systems as weIl. The odometry 

error is detected using a calibrated laser range finder. 



B.2 ODOMETRY STUDY OF A DIFFERENTIAL DRIVE ROBOT 

FIGURE B.1. Measuring the odometry error on carpet. 

2. Odometry Study of a DifferentiaI Drive Robot 

As a baseline we consider the odometry error accrued under various conditions by a 

commercial differentiaI-drive robot, the Nomadic Technologies Superscout II. This robot 

uses two wheels to provide differential drive and odometry feedback with a third rear­

mounted castor wheel for balance. Without 10ss of generality any arbitrary motion by 

/:::;'X, /:::;'Y can be achieved by combining a rotation that points the robot towards the target 

location, followed by a translation that moves the robot to the target location. Therefore 

we divided the observations into rotational errors and translational errors. 

2.1. Rotation. Empirical knowledge suggests that the largest factor in odome-

try error is the rotational error1 . In order to measure the rotational error we placed the 

robot inside a "C"-shaped enclosure consisting of four walls (see Figure B.1,B.2a). The 

intersections of the four wans provide three geometric landmarks detectable both in world 

lWhile we make this observation empirically, it follows naturally from the kinematics of the robot and a 
simple model for uncertainty in wheel velo city. 
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~~."'." .. '.'.'. . .' .,' ~:;:;:)<. "" , . • 

(a) (b) 

FIGURE B.2. The four walls providing three landmarks. (a) Before the rotation. 
(b) After the rotation. 

coordinat es and "raw" laser coordinates (see Chapter 6 section 3.2). Moreover, the orien­

tations of the four wans in world coordinates should change by the amount of the robot's 

rotation. To estimate the error, the three landmarks are detected then the robot rotates 

and the three landmarks are detected again (see Figure B.2b). The three landmarks in 

laser coordinates provide three estimates for the rotation and the orientations of the four 

wans provide four more estimates. The seven estimates are kept only if they aH agree up 

to 0.2 degree. We proceed to measure the rotational error for different motion parameters 

(rotation angle, speed, acceleration) and on different surfaces. 

First, we measured the error in rotation for different rotation and translation speeds 

and for different angles. Figures B.3,B.4 present the error measurements relative to the 

odometer estimate (Figure B.3) and relative to the intended pose (Figure B.4); for every 

speedjangle we gather twenty samples. It is worth noting that they are concentrated (smaU 

standard deviation) around a non zero mean value. Moreover from Figures B.3,B.4 it is 

clear that a systematic error occurs that biases the error by the direction of the rotation 

(negative rotation have positive mean error). As it was expected the smaU rotations provide 
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Errer in Rotation from Odometar (for three diffarent speeds) 

FIGURE B.3. Error in rotation relative to the odometer for different angles and for 
different speeds ("0" speed 10, "x" speed 50, "+" speed 90, lines connect the mean 
values). 

negligible error. Surprisingly though, the higher speed produced less odometry error ("+" 

in the figures). 

The effect of different surfaces on the rotational error was studied next. Four different 

surfaces were tested for a rotation of -900 and fort Y samples were collected each time. The 

two types of carpets follow more closely a normal distribution than the other two surfaces. 

This is due to the fact that the surface is smooth contrary to the tHe f.l.oor that contains 

bumps. The friction between the wheels of the robot and the f.l.oor (or the carpet) was 

relatively similar. On the contrary the plastic surface provided less friction thus significantly 

increasing the rotational error. 

From Figure B.6 we see that the error from the intended rotation is much larger. Even 

though the odometer reported a pose different than the intended one, the control software 

of the robot stopped the rotation. For applications that require precise positioning, this 

extra error should be taken into account. 
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Error in Rotation fram Intended Angle (for three diffarent speeds) 

-1. 

-2'----'---'-----'-----'--------'---'---'----'---'-------' 
-50 -40 -30 -20 -10 0 10 20 30 40 50 

Rotation angle (in degree5) 

FIGURE B.4. Error in rotation relative to the intended pose for different angles and 
for different speeds (as in Figure B.3) 

From the results described above we can deduce that a study of the odometry error of 

the particular mobile robot used is essential in order to model the systematic error that oc­

curs during rotations. A zero mean Gaussian representation would require an unnecessarily 

large standard deviation forcing us to consider poses of the robot that are in fact unlikely. 

3. Translation 

The same setup used for the estimation of the rotational error lS used also for the 

translation. The same enclosure was used (see Figure B.I). The robot was moved forward 

by a distance D over different surfaces and with different speeds. After every translation 

the robot was translated back (by -D) and the pose of the robot was reset to the origin 

(Pr = [xr, Yr, BrV = [0,0, OV)· Figure B.7 presents the error accumulated after an intended 

translation of 100cm. The robot was moved 165 times over different areas of our lab (tiled 

Hoor). The first three sub-plots present a histogram of the error along the X and Y axis 

and for the orientation e. The fourth sub-plot present the spatial distribution of the robot 

poses for an the motions. 

Table B.l illustrates the effect of speed in the accumulation of odometry error for three 

different speeds (20, 60, 100) during the translation of 100cm along the x-axis. There is a 
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FIGURE B.5. Error distribution from the odometry measurement for different sur­
faces (rotation of 90°). 

Speed 20 60 100 
M (J M (J M (J 

X -1.843 0.372 -1.850 0.363 -2.266 0.526 
Y -0.863 0.317 -0.977 0.491 -1.041 0.491 
e 0.587 0.215 0.760 0.366 0.107 0.314 

TABLE B.l. Mean error and Standard DevlatlOn along the X,Y-axlS (in cm) and 
orientation e (in degrees) after the translation of 100cm for three different speeds. 

significant increase when the higher speed was used, especially in the systematic error as it 

manifests in the mean error along the axis of translation. The observations are consistent 

with the work presented by Moon et al. [116] where higher acceleration gives reduced orien­

tation error. As can be seen in Table B.1 the high acceleration results in smaU orientation 

error but higher error along the direction of the translation. 

The measurement of odometry error over different surfaces is presented next. Figure 

B.8 presents the results for a translation of 120cm on a plastic surface. The same behavior 

as with the rotation manifests during the translation, with the error in the distance traveled 

(X-axis) much higher than the error on carpet or tile fioor. Figure B.9 presents the results 

for the translation on carpet. 
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FIGURE B.6. Error distribution from the intended pose for different surfaces (ro­
tation of 900

). 

The statistical properties of the odometry error collected above enable us to create a 

realistic error model for the type of robot used. Furthermore, the odometry error measure­

ments could be utilized in the construction of realistic simulation experiments. 

4. Odometry Error Modeling 

In the past little attention has been paid to the modeling of odometry error. The 

computingpower was not enough to permit a precise modeling forcing early researchers to 

a simple Gaussian pd! around the final position of the moving robot as the most general 

error model. With the computing power currently available, even on board autonomous 

robots, more elaborate techniques such as condensation (a Monte-Carlo simulation method) 

and multiple Gaussians are used in order to track the accumulation of uncertainty during 

motion. In many cases, however, the error model is still based on a single random variable 

drawn from a normal distribution. 

There are many sources of error that contribute to the accumulation of uncertainty 

d uring motion such as w hee1 slippage, difference in the diameters of the w heels and anomalies 

167 



BA ODOMETRY ERROR MODELING 

Histogram of error in X Histogram of error in Y 

25 20 

15 

10 

o 
-1 0 1 2 -2 -1 0 1 2 

Errorin cm (E=0,0924 0'=0,7906) Error in cm (E=0.3422 0'=0.6201 ) 

Histogram of error in e Position of the Robot 

20 

15 >- 0 

10 
-1 t 

5 

0 -2 
-1 -0.5 0 0.5 85 90 95 100 105 

Error in degrees (E=0.0601 0'=0.3075) X 

FIGURE B.7. Error distribution after translation of lOOcm. THe floor, 165 samples. 

of the Ho or 2. Without loss of generaiity any arbitrary motion by b,.X, b,.Y can be achieved 

by combining a rotation that points the robot towards the target location, followed by a 

translation that moves the robot to the target location. 

For modeling purposes the odometry error could be divided into rotationai error 3 and 

translational error. These errors can be modeled statistically by random variables drawn 

from three Gaussians with zero mean and O'rot, O'tranSl O'drift standard deviations. The first 

Gaussian models the error accumulated during pure rotations of the robot. The other two 

Gaussians model the error that occurs during a forward translation of the robot and affects 

the complete pose of the moving robot. It is worth noting that an additionai source of error 

couid be added that would represent bumps on the Hoor and smaU collisions by adding 

some "salt and pepper" noise. 

4.1. Rotation. As we saw in Chapter 5 section 2.1.1 the noise model for rotational 

is straight forward described by the general equation B.l. 

2For a more detailed study please refer to Borenstein [Hi, 57]. 
3For simplicity's sake it is assumed that only the orientation of the moving robot is affected. 
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FIGURE B.S. Error distribution after translation of 120cm. Plastic surface, 43 samples. 

(B.1) 

4.2. Translation. Modeling the translation of the robot is more difficult because 

the noise model is more complex. During a translation by a distance R towards the orien­

tation the robot two kinds of uncertainty accumulate: first, the distance the robot traveled 

is given by R plus an error. Second, the orientation of the robot constantly changes adding 

the equivalent of a Brownian type of noise to the final position. While for the real robot the 

drift is a continuous pro cess that affects the complete trajectory of the translation during 

simulations, but more important during the modeling of uncertainty, a discretization of the 

pro cess is required. The simplest approximation 4 of the above process is to model the 

translation as a partial rotation followed by a translation followed by a second rotation 

(Fig. B.1O). The reason for this is that the robot would deviate from the trajectory, hence 

the initial rotation by a smaU angle, and also the final orientation of the robot is corrupted 

by sorne noise, hence the second rotation. 

4It is the most commonly used. 
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FIGURE B.9. Error distribution after translation of 120cm. Carpet surface, 43 samples. 

Orientation: For a single translation modeled as one step the orientation of the robot 

at the beginning would be Bi and at the end the orientation is Bi+l = Bi + EOI + E02' where 

EOI and Eoz are the amount of the two rotations that occur before and after the translation 

(see Fig. B.1O). From experimental data we couid have an estimate about the standard 

deviation of the orientation as a function of the distance traveled (a drift in degrees per meter 

traveled). The standard deviation of the orientation after one translation can be calculated 

in terms of the characteristics of the noise EOj' j = 1,2, and if E01 = E02 = EOj then the 

standard deviation of the noise fOj is calculated in the equation B.2. 

FIGURE B.lO. One step in translation. 
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A AT 
E{BHIBi+1} where 

BHl - E{BHÜ = Bi + fel + fe2 - Bi 

a~i+l E{(fel + f(2)(fel + f(2)T} 

E{(fel)2} + E{(feJ2} + 

E{(felfe2)} = 0 Uncorrelated, and 

E{(fel)2} = E{(feJ2} = a; Therefore 

(B.2) 

More realistically, the translation could be modeled as a series of N equal steps of RI N 

length each, then the pose of the robot after step i would be: Xi = (Xi, Yi, Bi)T and the 

trajectory could be modeled as: Xo, Xl' .. xn. Figure RIO illustrates one step from Xi to 

Xi+!' If the translation was performed in one step only then the drift could be modeled as 

a small rotation before the translation and a small rotation after the translation. Equation 

B.3 expresses the above described process, ft:..p is the noise added in the distance traveled 

and fel' fez is the noise added in the orientation of the robot due to drift. The number 

of steps N used to model the uncertainty should not change the resulting distribution of 

the robot position. The statistical properties of the distribution of the robot Pose are 

estabHshed experimentally. 

(

Xi + (~p + ft:..p) cos (Bi + fel)) 

Yi + (~p + ft:..p) sin (Bi + fel) 

Bi + fel + fe2 

(B.3) 
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Orientation: At the end of step i the orientation of the robot is rh = {h-l + ni where 

ni is the noise accumulated during that step. We assume the noise ni to be zero mean 

Gaussian and as we saw earlier the result of the addition of two Gaussians (see equation 
N 

B.2). Therefore after the Nth step the orientation of the robot lS ON = 00 + L ni. And 

the statistical properties of the distribution are : 

N 

E{Oo} + LE{ni} where 
i=l 

N 

L E { ni} = ° zero mean noise {::? 

i=l 

a~ = E{ÔNÔ'};,} where ÔN = ON - E{ON} = ON - Ol {::? 

N N 

E{(ON - lh)(ON - Olf} = E{(L nd(L nif} 
i=l i=l 

i=l 

(BA) 

(B.5) 

(B.6) 

(B.7) 

(B.8) 

E{(nl + ... + nN)(nl + ... + nN)T} (B.9) 
N 

L E{n~} + E{nl (n2 + ... nN )T} + E{n2(nl + n3 .. · + nN f} + ... (B.I0) 
i=l 

N j<>i 
= LE{nn becauseE{ni( L (nj)f} = ° Uncorrelated {::? (B.11) 

i=l j=l:N 

a~ NaT {::? aN = JN ai {::? adriftP = -.IN astep ~ {::? (B.12) 

a step a drift * -.IN (B.13) 

In conclusion, for a given set of uncertainty parameters, defined as < atrans, adrift >, 

the noise (Eb.p, E01' E02 ) that should be added during the modeling of odometry error is given 

in equation B.14, where N(O, 1) is a random number drawn from a Gaussian distribution 

with zero mean and sigma equal to one. 
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FIGURE B.Il. The standard deviations of 30000 particles as they move along the 
x axis for 100cm using different number of steps each time. The experiment is 
repeated 100 times. 

(B.14) 

U sing the above model we run experiments for different number of steps using multiple 

samples. It is worth noting that a change in the number of steps affects only the distribution 

of the points along the direction normal to the direction of the translation and only for small 

number of steps. As the number of steps increases the standard deviation of the samples 

along the direction perpendicular to the direction of the translation converges. Figure 

B.11 presents the standard deviation of 10000 particles along the X-axis, Y-axis and the 

orientation after they moved along the X-axis for 300cm, for different number of steps. 

The standard deviations along the axis of motion and for the orientation is constant for aU 

practical purposes. 
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APPENDIX C 

Resampling Methods 

In this Appendix three methods of resampling are described together with some variations 

that help improve the performance. In every case the input is an array 1 of the weights 

of the partic1es (normalized to sum up to one) and the output is an array of indices that 

indicate which partic1es are going to propagate forward. The premise of an algorithm is 

that particles with high weights are going to be duplicated while the particles with small 

(or zero) weights an~ going to be eliminated. 

1. Select with Replacement 

The simplest method of resampling is to select each partic1e with a probability equal to 

its weight. In order to do that efficiently, first the cumulative sum of the particle weights are 

calculated, and then N sorted random numbers (sorting is O(nlog(n)) uniformly distributed 

in [0, 1] are selected. Finally, the number of the sorted random numbers that appear in each 

interval of the cumulative sum represents the number of copies of this particular particle 

which are going to be propagated forward to the next stage. Intuitively, if a particle has a 

small weight, the equivalent cumulative sum interval is small and therefore, there is only a 

small chance that any of the random numbers would appear in it; in contrast, if the weight 

is large then many random numbers are going to be found in it and thus, many duplicates of 

that particle are going to survive. Aigorithm 6 presents a formaI description of the "select 

with replacement" algorithm. 

IThe arrays st art at 1. 



C.2 LINEAR TIME RESAMPLING 

Input: double W[N] 
Require: L:~1 Wi = l 

Q = cumsum(W); { calculate the running totals Qj = L:{=o Wl} 
t = rand(N+l); {t is an array of N+i random numbers.} 
T = sort(t); {Sort them (O(nlogn) time)} 
T(N+l) = 1; i=l; j=l; {Arrays start at i} 
while (i :::; N) do 

if T[i] < Q[j] then 
Index[i]=j; 
i=i+l; 

else 
j=j+l; 

end if 
end while 
Return(Index) 

Algorithm 6: Select with Replacement Resampling Algorithm; functions are noted as 
underlined text, Comments are inside curly brackets "Ü". 

2. Linear time Resampling 

Input: double W[N] 
Require: L:~1 W i = l 

Q = cumsum(W)j {calculate the running totals Qj = L:{=o Wi} 
t = -log(rand(N+l)); 

T = cumsum(t); {calculate the running totals Tj = L:{=o tz} 
TN = TjT(N+l);{normalize T to TN;} 
i=1; j=1; {Arrays start at i} 
while (i :::; N) do 

if T[i] < Q[j] then 
Index[i]=j; 
i=i+1; 

else 
j=j+1; 

end if 
end while 
Return(Index) 

Algorithm 7: Linear Time Resampling Algorithm; functions are noted as underlined text, 
Comments are inside curly brackets "Ü". 

Carpenter et al. [27] proposed a linear time algorithm for resampling from a set of 

particles. It is based on a manipulation of the random number sequence in order to achieve 

a new sorted random number sequence in linear time. Using the cumulative sum of the 
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negative logarithm of N random numbers uniformly distributed in [0, 1], a new sequence 

of N sorted random number uniformly distributed in [0,1] is created. The final step lS 

the same as in the previous algorithm where the particles are selected with a probability 

proportional to their weights. Algorithm 7 presents a formaI description of the "select with 

replacement" algorithm. 

3. ResampHng by Liu et al. 

Instead of using directly the weights (w j) of the particles in order to decide w hich ones 

are going to be propagated forward, another number aj can be used, usually a function of 

the particles weights (aj = f(wj)). A generic choice is the the square root (f(Wj) = ..jWj). 

Then the new weights (aj) are normalized so they sum up to the number of particles N 

('2.:1:1 ai = N). Then each particle is examined separately, and, if its weight (aj) is greater 

or equal to one, k copies of it are propagated forward (k = lajJ); otherwise, the particle 

"survives" with probability equal to aj. One drawback of this approach is that the number 

of particles after resampling is not N anymore as the choice of how many particles survive 

is stochastic 2. 

4. Variations on ResampHng 

Two main variations at the resampling stage have been proposed: corrective resampling 

and keeping a small percentage of particles from the old distribution. 

4.1. Corrective ResampHng. Jensfelt et al. [19] suggested a modification to the 

traditional SIR fiIter that "boosts" the contribution of the sensing versus the contribution 

of the predictive model. The particle population is "injected" during the update phase with 

a small number of particles created directly from the sens or data independently of where 

the rest of the particles are located. 

4.2. Maintaining the variance of the distribution. Contrasting to the previ-

ous approach is the method of maintaining a small percent age of the particle population 

independently of their weights. More precisely during the resampling stage a small number 

of particles selected uniformly from the particle population are being propagated forward 

given a small weight. The intuition behind this approach is to maintain the coverage of the 

2Stochastic is a process that is random but it follows certain distributions. 
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Input: double W[N] 
for (j = 1 to N) do {Update the weights} 

aU] = JW[j] 
end for 
sum = 0; 
for (j = 1 to N) do { calculateI:~:l ai} 

sum = sum + a[i]; 
end for 
for (j = 1 to N) do {Narmalize the weights Ca) ta SUffi up ta N} 

ab] =N* ~ sum 
end for 
i=l; 
for (j = 1 to N) do {For each particle} 

if (a[j] 2: 1) then {Accept the ones with bigger weights} 
for (l = 1 to la[j]J ) do {Add lajJ copies of the lh Particle} 

Index[i]=j; 
i = i + 1; 

end for 
else 

R =rand(1); 
if a[j] 2: R then {Accept the particle with probability aj} 

Index[i]=j; 
i = i + 1; 

end if 
end if 

end for 
Return(Index) 

Algorithm 8: Resampling Algorithm; functions are noted as underlined text, Comments 
are inside curly brackets "Ü"· 

predictive model in the particle population without affecting the accuracy of the localiza­

tion. 
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