
Latency-aware structured pruning of pretrained

transformer-based models

Alexander Hoffman, Department of Electrical and Computer Engineering

McGill University, Montreal

February, 2022

A thesis submitted to McGill University in partial fulfillment of the

requirements of the degree of

Master of Science Electrical Engineering

©Alexander Hoffman, February 19 2022

Abstract

The Transformer neural network architecture has grown popular in the field of natural

language processing in recent years. However, these large networks remain difficult to

deploy on edge devices where memory and compute resources are limited. Standard

neural network compression techniques such as pruning and quantization can improve

latency, but they are typically guided by hardware-independent metrics such as model

size and number of floating point operations. These general statistics leave room for

further latency optimization.

We propose Latency-Aware Pruned Neural Architecture Search (LAP-NAS) to en-

able latency-aware pruning for Transformer-based models on a target device. LAP-NAS

prunes the model, then performs an efficient architecture search using pruning metrics

and layer-wise latency measurements to reduce latency while maintaining accuracy. This

technique combines the simplicity and speed of iterative pruning with the design space

exploration of multi-objective neural architecture search. Linking these two techniques

enables latency-aware optimization while keeping training time orders of magnitude

lower than comparable compression methods. Our results show that LAP-NAS improves

the latency of a pruned DistilBERT-base neural network by 2.3% while improving accu-

racy by 0.4% on a subset of the General Language Understanding Evaluation (GLUE)

tasks. Our qualitative results promise even better speedup given more accurate latency

modeling techniques.

i

Résumé

L’architecture de réseau neuronal Transformer s’est développée populaire dans le do-

main de traitement du langage naturel ces dernières années. Cependant, ces grands

réseaux demeurent difficiles à déployer sur des appareils périphériques où les ressources

de mémoire et de calcul sont limitées. Les techniques standard de compression de réseaux

neuronaux telles que l’élagage et la quantification peuvent améliorer la latence, mais

elles sont généralement guidées par des métriques indépendantes du matériel numérique

comme la taille du modèle et le nombre d’opérations en virgule flottante. Ces statistiques

générales laissent une marge potentielle pour une optimisation supplémentaire de la la-

tence.

Nous proposons Latency-Aware Pruned Neural Architecture Search (LAP-NAS) pour per-

mettre un élagage sensible à la latence pour les modèles basés sur Transformer sur un

appareil cible. Le LAP-NAS élague le modèle, puis effectue une recherche d’architecture

efficace à l’aide de métriques d’élagage et de mesures de latence par couche pour réduire

la latence tout en maintenant la précision. Cette technique combine la simplicité et la

rapidité de l’élagage itératif avec l’exploration de l’espace de conception du recherche

automatique d’architecture neuronale multi-objectifs. La liaison de ces deux techniques

permet une optimisation tenant compte de la latence tout en maintenant des ordres de

grandeur de temps d’entraı̂nement inférieurs à ceux des méthodes de compression com-

parables. Nos résultats montrent que LAP-NAS améliore la latence d’un réseau de neu-

rones à base de DistilBERT élagué de 2,3% tout en améliorant la précision de 0,4% sur un

sous-ensemble des tâches General Language Understanding Evaluation (GLUE). Nos résultats

ii

qualitatifs promettent une meilleure accélération grâce à des techniques de modélisation

de latence plus précises.

iii

Acknowledgements

I would like to thank my supervisors Prof. James Clark and Prof. Warren Gross for

their support and guidance throughout my Master’s degree. I never failed to discover a

new point of view or potential solution to a problem after a conversation with them. In

addition, I would like to emphasize my appreciation for Prof. Brett Meyer’s help in con-

cluding my research and translating my ideas into academic writing. Thank you as well

to Maryam Ziaeefard for her ideas and encouragement in our weekly online meetings in

my early days of research.

I am grateful for the socially-distanced support of my labmates in the CIM lab and the

McGill Edge Intelligence Lab throughout the pandemic, online board games and all.

I also express my endless gratitude to my family and friends for their unwavering

support throughout my studies.

iv

Table of Contents

Abstract . i

Résumé . ii

Acknowledgements . iv

List of Figures . vii

List of Tables . ix

1 Introduction 1

2 Literature Review of Neural Network Compression 5

2.1 Hardware-Agnostic Methods . 5

2.1.1 Pruning . 5

2.1.2 NAS . 8

2.1.3 Quantization . 10

2.1.4 Efficient Architectures . 10

2.2 Hardware-Aware Methods . 11

2.2.1 Hardware-aware Modeling and Optimization 11

2.2.2 Pruning . 13

2.2.3 NAS . 14

2.3 DNN Performance Evaluation . 15

2.3.1 Hardware-agnostic Evaluation . 15

2.3.2 Hardware-aware Evaluation . 16

2.4 Conclusion . 17

v

3 Methods 18

3.1 Optimization Problem . 19

3.2 Structured Pruning . 20

3.2.1 First Order Taylor Series Importance Metric 23

3.2.2 Iterative Pruning . 26

3.2.3 Code Implementation . 26

3.3 Latency Optimization . 27

3.3.1 Pruned Neural Architecture Search 28

3.3.2 Latency-aware Pruning . 29

3.4 Latency Modeling . 31

3.4.1 layer-wise Latency Model . 31

3.4.2 Latency Measurement Technique . 32

3.4.3 Latency Lookup Table . 33

4 Experiments 37

4.1 Experimental Setup . 37

4.2 Experiment Descriptions . 38

4.2.1 LAP-NAS Latency Optimization . 38

4.2.2 Evaluating Latency Lookup Table . 39

5 Results 40

5.1 LAP-NAS Latency Optimization . 40

5.1.1 LAP-NAS Runtime Comparison . 41

5.1.2 Latency-Aware Pruning . 44

5.2 Latency Lookup Table Evaluation . 45

5.3 Survey of Inference Platforms . 47

5.4 Discussion . 49

6 Conclusions 51

vi

List of Figures

3.1 LAP-NAS Overview. 19

3.2 An encoder layer of the Transformer architecture [45] [46]. 22

3.3 Visualized multi-head self-attention operation of the encoder layer in the

Transformer architecture [47]. 23

3.4 Latency measurements of a single BERT layer. Nvidia Jetson Xavier NX

GPU. Top: FP32, Bottom: FP16. 35

3.5 BERT layer latency vs. Number of active self-attention heads, Nvidia Jetson

Xavier NX GPU. Top: FP32, Bottom: FP16. 36

5.1 Expected vs measured latency change when randomly pruning 10 full-

precision DistilBERT models (FP32) on Xavier NX. 46

5.2 Expected vs measured latency change when randomly pruning 10 full-

precision DistilBERT models (FP16) on Xavier NX. 46

5.3 Change in latency after optimizing the widths of a randomly pruned net-

work. Pairs of bars which are closer together show accuracy in the latency

LUT. 47

5.4 BERT layer latency vs. FFN widths on Nvidia GTX Titan GPU. 48

5.5 BERT layer latency vs. FFN widths on Intel E5-2683 v4 Broadwell @ 2.1Ghz

with 16 threads in use. 49

5.6 Model widths before and after evolutionary architecture search. 50

vii

List of Tables

3.1 Latency reduction on DistilBERT FP32 model with structured pruning of

self-attention heads and FFN neurons. 21

3.2 Accuracy of BERT-base model when jointly pruned and fine-tuned on the

SST-2 dataset at a sparsity of 90% in the FFN layer alone. 23

3.3 Standard deviation of measured latency vs. measurement technique. Statis-

tics computed over 100 inference latency measurements. Relative deviation

calculated using mean measured latency of 3.2 ms. 33

3.4 GEMM function calls for FP16 BERT layer inference with FFN layer pruned

to 1024 and 1028. 34

5.1 LAP-NAS and Iterative Pruning results for accuracy and lookup table pre-

dicted latency on selected GLUE tasks. ∆% shows average improvement

of LAP-NAS over Iterative Pruning (IP). 42

5.2 LAP-NAS and Iterative Pruning on-device latency on selected GLUE tasks

for models from Table 5.1. ∆% shows average improvement of LAP-NAS

over Iterative Pruning (IP). 42

5.3 Average GLUE performance and on-device latency for each method under

test. LA signifies method using latency-aware iterative pruning. 43

5.4 Training time in GPU hours of LAP-NAS for each of the selected GLUE

Tasks on Nvidia V100 GPUs. Models were trained with distributed train-

ing across two GPUs. HAT numbers predicted based on reported results

their reported results and the increased complexity of BERT training [1]. . . 43

viii

5.5 Pruned model results selected GLUE tasks with latency-aware pruning in-

stead of the baseline iterative pruning approach. Bold percentages empha-

size an improvement over the baseline. 45

ix

List of Algorithms

1 LAP-NAS Iterative Pruning Training Step . 25

2 LAP-NAS Iterative Pruning . 27

3 Latency-Aware Pruned NAS . 30

4 Latency-Aware Iterative Pruning . 31

x

Chapter 1

Introduction

Subject Overview

Deep neural networks (DNNs) have revolutionized machine learning tasks in domains

such as computer vision and natural language processing (NLP). However, state of the

art networks have scaled quickly with GPU performance and cloud computing, which

has left low power devices at the edge too weak to process them with adequate latency.

As advances in compute efficiency slow, researchers have pivoted focus from developing

the highest accuracy models to the models which deliver the best tradeoff between ac-

curacy and a cost metric such as model size, memory accesses, or FLOPs [1]. A parallel

field of research is DNN compression, which aims to make edge AI applications a reality

by reducing the computational complexity of neural networks. Rather than designing

new efficient architectures and training from scratch, DNN compression methods reduce

the size of a trained network with techniques such as pruning, quantization, knowledge

distillation, or neural architecture search (NAS).

The field of DNN compression can be further divided into hardware-agnostic and

hardware-aware methods. While the methods for modifying networks generally remain

the same across the two fields, the search process for the optimal compressed network

differs. The objective function for a hardware-agnostic compression method uses metrics

1

such as Floating point Operations (FLOPs) or model size to characterize the efficiency

of the network. These metrics are defined by the network itself rather than any specific

use case involving a device and operating system. When implementing neural networks

in real applications, these hardware-agnostic metrics deliver mixed results in identifying

models that perform best. For a device with extremely limited on-device storage, model

size may be the best metric to optimize. If the model’s weights did not fit into the target

device’s storage, then the model would be unusable. Even for a more complex objective

like inference latency, the size of the model could serve as an effective optimization ob-

jective if device throughput is limited by memory access time. Yet there is clear evidence

that in many cases these objectives fail to deliver optimal models for metrics which ML

practitioners truly care about [2].

Hardware-aware optimization methods consider the full hardware and software stack

to optimize a model for an observable metric such as latency, power, or energy. Several

previous works have demonstrated that observed inference latency does not always cor-

respond to the number of operations or the number of weights in a network [2] [3] [4].

Furthermore, seemingly inconsequential design choices such as the activation function

can have significant impact on latency while having almost no effect on FLOPs or model

size [5].

Hardware-aware methods have mainly been applied using NAS. Given a set of net-

work building blocks and their associated HW-aware costs, NAS methods can search for

a network with the best tradeoff between accuracy and cost[6][4]. While this method may

result in the most optimal architecture for a given dataset and target device, it requires

training several candidate networks or a single supernet in order to generate trained

weights for the optimal architecture. This additional training time is problematic for

problems with very large datasets and ML practitioners with small budgets. Transformer-

based natural language processing (NLP) models such as BERT [7] exemplify this prob-

lem. These models are trained on massive datasets built by mining text from the internet,

which results in significant environmental and financial costs [1].

2

Motivation

This work attempts to fill gaps in the HW-Aware compression literature. Specifically,

there is a lack of work applying HW-Aware optimization to BERT-based models for NLP

tasks, and a lack of efficient HW-Aware compression methods. Compressing BERT-based

models is a valuable line of research because they offer state-of-the-art performance on

NLP tasks but are not yet widely adopted on edge devices due to their cumbersome size

and runtime. Tailoring these models to specific devices could further improve the latency

and make them more useful outside of the datacenter.

Proposed Method

Our method makes use of structured pruning to compress a BERT-based deep neural

network. Structured pruning [8] is one simple and effective way to reduce model size

and FLOPs. Hardware-agnostic iterative pruning algorithms [9] assign a sparsity to each

layer of the network and prune until that sparsity is met, which does not directly optimize

for a platform-specific metric like latency.

We propose Latency Aware Pruned Neural Architecture Search (LAP-NAS), a novel

technique that considers latency during pruning. First, we construct latency lookup ta-

bles for a single BERT layer by pruning the two building blocks of BERT: the feed forward

network (FFN) and multi-head self-attention layer. Next, we apply iterative structured

pruning and fine-tuning to a pretrained model until reaching a target sparsity for both

the FFN and self-attention blocks. At this point, the layer dimensions (# FFN neurons, #

heads) are unoptimized for the target device. LAP-NAS then performs an efficient archi-

tecture search using pruning metrics and layer-wise latency measurements to discover a

more optimal model architecture. This step makes relatively small changes to each layer’s

dimensions, but can enable large changes in latency where fine-grained architecture op-

timizations are needed. We use a genetic algorithm to perform the architecture search

with the objective of minimizing latency while maintaining an adequate number of im-

3

portant model parameters to preserve accuracy. As a result, we reduce the latency of a

BERT-based model by up to 2.8% compared to iterative pruning alone.

Contribution

Our contributions are as follows:

• We design and demonstrate a latency-aware NAS method which optimizes a pruned

BERT model’s FFN and self-attention layer dimensions to minimize latency while

maintaining accuracy

• With our LAP-NAS method we return up to 2.8% faster latency when compared to

an iterative pruning baseline, without further accuracy degradation

• We present a latency-aware iterative pruning method to monotonically reduce model

latency while reducing model size and demonstrate its utility by comparing to the

iterative pruning baseline

We evaluate our method using two pretrained BERT-based models on five GLUE tasks

and the Nvidia Jetson Xavier NX low power GPU.

4

Chapter 2

Literature Review of Neural Network

Compression

Previous works in neural network compression generally fall under the categories of

pruning, knowledge distillation, neural architecture search, and quantization. These

methods are applied with either hardware-agnostic or hardware-aware optimization to

guide the compression process. The final section of this chapter focuses on evaluation

methods for determining neural network performance.

2.1 Hardware-Agnostic Methods

Hardware-agnostic compression methods use objectives such as FLOPs or model size to

characterize the efficiency of the network. These methods function without consideration

of the hardware platform where the model will perform its task.

2.1.1 Pruning

Pruning is a method that reduces the number of parameters in a neural network. There

are two general forms of pruning, i.e. Elementwise and Structured, which will be dis-

cussed further in the following subsections.

5

Elementwise Pruning

Elementwise pruning removes individual weights within the network according to an im-

portance metric. Considering individual weights allows for more flexibility in network

architecture at the expense of added overhead during inference for sparse matrix oper-

ations and storage. Custom hardware can offset some of the overhead costs by natively

supporting sparse matrix storage and multiplication at the hardware level. Heuristics for

selecting weights are diverse, but generally aim to quantify how much a weight affects

the accuracy of the network in order to enable pruning of the least important weights.

Han et al. [9] propose pruning weights of the lowest magnitude within each layer. Fran-

kle et al. [10] also perform magnitude pruning, but at a global scale, which allows varying

levels of sparsity at different layers. Gradient-based approaches include Taylor Pruning

[11], movement pruning [12], and L0 regularization [13]. These methods approximate the

loss function with a first order Taylor polynomial, then rank weights according to their

impact on this loss function.

With models trained via transfer learning, pruning can occur during the pretrain-

ing or fine-tuning phase of training. Several studies have attempted to compress a pre-

trained BERT model while fine-tuning on a downstream task such as question answering

or sentence classification. Gordon et al. [14] study the effects of pruning BERT before

fine-tuning and conclude that BERT’s prunability does not improve when pruning on a

downstream task, compared to pruning during pretraining. The work of Sanh et al. [12]

contradicts this conclusion by pruning weights during fine tuning according to their rel-

ative importance on the downstream task. They find that the magnitude of weights does

not change very much during the fine-tuning, so using magnitude pruning is ill-suited

to take the task into account. Instead, they prune weights whose magnitudes decrease

during fine-tuning, which intuitively captures the weights relevance to the task. Their

results outperform magnitude pruning.

6

Structured Pruning

Structured pruning removes weights in groups for the benefit of making weight storage

and access more efficient. The main drawback is that pruning is far less precise, making

it difficult to only remove unimportant weights. In the computer vision domain, entire

feature maps are often pruned [11].

In the NLP domain, previous work on structured pruning has mainly targeted the

self-attention heads. These works identify redundancies in the self attention blocks but

do not address model FLOPs or latency very well because they ignore the FFN layers.

Voita et al. [15] apply L0 regularization at the level of attention heads to induce sparsity

and prune them. They prune a majority of heads with little loss in translation quality

and show that the most important heads have clear linguistic roles while many heads

have no clear role and are easily pruned. Michel et al. Michel et al. [16] also experiment

with removing attention heads and find that pruning up to 40% of BERT heads results

in no drop in performance. Wang et al. [17] propose a method for structured pruning of

any weight matrix in the Transformer by performing low rank factorization and pruning

individual columns of the matrices (neuron pruning). They are able to reach 65% sparsity

on RoBERTa while only losing an average of 1% accuracy on several GLUE tasks after

fine tuning. They achieve only 1.5x speedup at 80% sparsity of Transformer-XL, partially

because matrix multiplication only contributes 40% of latency during inference.

Previous works have also pruned structures beyond the self-attention heads. Fan et

al. [18] introduce LayerDrop, which stochastically removes layers during training as a

regularization technique, then prunes them away at inference time. They found that their

pruned models outperform models trained from scratch with the same final depth. Mc-

Carley et al. [19] apply structured pruning to a BERT model that is already fine-tuned on

two question-answering tasks. Their method prunes attention heads, feed-forward net-

work (FFN) neurons, and embedding dimensions. They begin with a fine-tuned bert-base

model pretrained on SQUAD 2.0 and train their pruning gate variables for one epoch on

the same dataset while holding weight parameters constant. The best sparsifying algo-

7

rithm was L0 regularization of the gate variables [13]. Given a 5 point F1 accuracy loss

threshold, the algorithm was able to prune 48% of attention heads or 70% of FFN acti-

vations, but could not prune entire dimensions from the embedding throughout the full

network because of the varying dependencies in each layer. The results also show that

the early and late layers of the network were most prunable. To test how transferable the

pruned network is, they experiment with training the network on the Natural Questions

dataset after pruning, and observe promising results which suggest the pruned network

removes redundancies which are not needed in similar datasets.

SchuBERT [20] uses structured pruning and sparsity-inducing regularization to learn

optimal layer dimensions of BERT on the pretraining text corpus. The method can prune

the hidden layer width, number of attention heads, FFN width, and key-query matrix

columns. Each of these dimensions is independent between layers, so the pruning algo-

rithm simply seeks to minimize training loss and number of network parameters. The

pruning parameters mask activations, which corresponds to masking columns of preced-

ing weights and rows of following weights.

2.1.2 NAS

Inspired by the great success of AutoML in model optimization, neural architecture search

(NAS) is introduced to design model architectures automatically. NAS is expected to re-

duce the effort of human experts in neural architecture design. The most accurate math-

ematical solution to NAS is to train each of the candidates within the search space from

scratch to convergence, and compare their performance. However, when the search space

is large, this kind of solution is impractical because of the high training cost. NAS meth-

ods offer design spaces and search algorithms to find optimal architectures without train-

ing for an unacceptable amount of time.

8

Problem description of NAS

Neural architecture search (NAS) offers another method for reducing the size and com-

putation complexity of deep neural networks. There are several popular methods for

finding an optimal architecture for a given dataset, such as differentiable architecture

search [21], reinforcement learning [22], and evolutionary search [4]. The design spaces

also vary in their use of weight sharing [23] [6] or repeated network cells [21]. Most

NAS works have focused on CNN design spaces, but the search methods have also been

applied to architectures such as recurrent neural networks and Transformers. Methods

also vary from designing individual cells which are repeated to form a network [21], or

learning optimal hyperparameters for each layer in the network [6]. The NAS problem is

also often formulated as a multi-objective optimization problem with both accuracy and

a hardware-related metric such as latency or energy. Hardware-aware NAS methods are

described in section 2.2.3.

Pruning as NAS

Several studies have equated pruning to neural architecture search. Frankle et al. [10] pro-

posed the Lottery Ticket Hypothesis, which claims that certain neural connections com-

bined with their initialized weights can achieve comparable accuracy to the unpruned

network. In contrast, Liu et al. [24] and Gale et al. [25] find that the pruned architecture

alone is responsible for the network accuracy regardless of weight initialization, which

reframes pruning as a form of architecture search. The aforementioned methods both

studied convolutional neural networks, although Frankle et al. [10] used smaller datasets

and lower learning rates, which altered their results. Pruning can be a less costly alterna-

tive to NAS for a model like BERT because pruning starts from a pretrained model.

9

2.1.3 Quantization

Quantization seeks to reduce the size and computational cost of a model by reducing the

bit width of weights and activations. Quantization is well studied in the vision domain,

but not as much in NLP. Shen et al. [26] propose a group-wise quantization scheme using

second order Hessian information with the ability to mix precision across layers. The idea

is that weight matrices with higher hessian eigenvectors are more sensitive to quantiza-

tion, so they do not quantize those layers to ultra-low precision. They employ group-wise

quantization by splitting each layer’s weights into 128 subgroups, which are each quan-

tized independently according to their range of values. The results show that quantizing

down to as low as 2 bits in some parts of the network is possible without losing signifi-

cant accuracy. They also show that the embedding layer is more sensitive to quantization.

Zafrir et al. [27] quantize all weights and activations to 8 bits for a 4x reduction in model

size and compatibility with 8 bit instructions on supported hardware. They train with

quantization aware training and the straight-through estimator to allow for gradients to

pass through the fake quantizer.

2.1.4 Efficient Architectures

Another method for improving NLP model performance on edge devices is to design

more efficient architectures. Lan et al. [28] propose AlBERT, which reduces the memory

footprint of BERT by sharing weights across layers and factorizing the embedding ma-

trix. While sharing weights across all layers does not significantly reduce latency, it does

reduce memory overhead, which would reduce energy use on edge devices. More im-

portantly, the reduced footprint of the model permits larger batch sizes or a larger model

during training. They decompose the large input embedding layer into two smaller ma-

trixes at the beginning of the network to further reduce model size. SqueezeBERT [29]

replaces the position-wise fully connected layers and parts of the self attention layers

with 1D group convolutions, which significantly reduces latency on mobile devices. The

10

paper also provides a detailed breakdown of latency in the BERT model. Wu et al. [30]

propose a long-short range attention module, which uses convolution to handle the lo-

cal syntactic relationships, and traditional self-attention to handle the long range ones.

The authors show that the self-attention block focuses on long-range relationships when

placed in parallel with a convolution which is restricted to short-range relationships.

2.2 Hardware-Aware Methods

2.2.1 Hardware-aware Modeling and Optimization

Hardware-aware optimization differs from conventional methods in the choice of objec-

tive function. Rather than using a generic hardware metric such as FLOPs or model size,

hardware-aware methods optimize device-specific metrics like latency, throughput, en-

ergy consumption, or operating cost. Model size can accurately represent the memory

footprint of a model, but FLOPs has been shown to poorly predict latency on real hard-

ware [2][3][31]. Sparse networks exemplify this observation due to the inability of parallel

hardware to speed up sparse matrix operations despite a reduction in FLOPs.

Predicting Hardware-Dependent Metrics

Optimizing device-specific metrics requires a model which can predict the metrics given

a neural network, or a method for rapidly evaluating the metrics with the hardware in

the loop.

Analytical methods offer calculations of DNN energy consumption and latency given

detailed knowledge about the device under test. Simulators such as Accelergy [32] and

Paleo [33] consider the processing element architecture, memory hierarchy, and technol-

ogy node of a chip in order to predict energy or latency for a given DNN. These methods

require no training data to learn a model, but they may struggle to model the effects of

the entire software stack for a particular use case.

11

NeuralPower [34] predicts CNN inference latency and power consumption by using

sparse polynomial regression. In contrast to analytical methods, NeuralPower trains a

performance model by sampling CNN layers of different dimensions and measuring the

corresponding power and latency. The use of real data improves the quality of the power

and latency estimation over Paleo, but requires physical testing of the hardware.

More recent approaches also treat the target device as a black box. Stamoulis et al. [6]

sample each possible layer configuration, test the latency on the hardware, and store each

value in a lookup table. Since each individual layer has a small number of hyperparame-

ter configurations, the process is fast and relies on collected data rather than a regression

model. They smooth the discrete architecture choices with a sigmoid function to make

the lookup table differentiable for optimization purposes. Cai et al. [35] [4] follows this

strategy for their hardware-aware NAS method as well. Both methods assume that the

sum of predicted layer-wise latencies accurately predicts overall model latency.

Hardware-aware Optimization

Maximizing DNN performance while minimizing latency is a multi-objective optimiza-

tion problem. Given more than one objective, it is common to present multiple solutions

along the pareto curve which optimize the trade-off in objectives. Alternatively, one can

set a fixed constraint on one objective and optimize the other.

Stamoulis et al. [6] use stochastic gradient descent (SGD) to optimize both neural

network weights and architecture parameters during training. The loss function is a

weighted sum of cross entropy loss and the predicted latency. Minimizing the loss func-

tion results in an efficient and accurate model, with the trade-off controlled by the ratio

of the loss terms.

Cai et al. [4] use an accuracy prediction and latency prediction model to rapidly evalu-

ate potential DNN architectures. The fast evaluation of architectures allows the algorithm

to use evolutionary search to find pareto-optimal solutions. Their method requires a large

12

one-time cost of training a supernet and evaluating its subnets to train an accuracy pre-

dictor. Searching for hardware-specific architectures comes at very little cost afterwards.

HyperPower [36] uses Bayesian optimization to search for DNN architectures subject

to power and memory constraints. Using a power model, the algorithm samples potential

DNN architectures and trains them to convergence to test for accuracy. Each pair of archi-

tecture and test accuracy is added to a Gaussian process model which predicts accuracy

given an architecture. Hyperpower samples architectures with the highest likelihood of

lying on the pareto curve, and updates the model after each sampled architecture to fo-

cus sampling on more promising architectures. This method is costly because it requires

training many models from scratch to convergence.

2.2.2 Pruning

Hardware-aware pruning methods consider a device-specific information when choosing

which weights to remove from a model. Lu et al. [37] propose to group weights accord-

ing to the SIMD parallelism of the target processor. The groups of pruned weights can

be more efficiently stored, and the sparse matrix operations more efficiently computed

when the weights remain in SIMD-sized groupd. This method was most effective for low

parallelism hardware such as a microcontroller and a CPU.

Turner et al. [38] propose a latency-aware pruning technique which uses knowledge

distillation to train the lightweight network. First, they profile the target hardware to

discover the staircase pattern of latency vs. number of channels in a CNN layer. Next,

they prune a model to the desired latency, and modify the channel widths in each layer to

match the nearest optimal widths found in the latency model. This modification allows

the model to increase width where it makes little impact to latency, and reduce width

when it greatly improves latency. Another paper [39] from the research group gives an

analysis of neural network latency on mobile GPUs. The work shows how small varia-

tions in CNN channel dimensions can cause latency variations of +/- 50% due to kernel

optimizations in the deep learning stack.

13

Netadapt [40] uses device latency as a target while shrinking a CNN. At each pruning

iteration, the prunes each layer individually to the desired latency threshold and evalu-

ates the new network. It then prunes the layer which maintained the highest accuracy

and leaves the others untouched. The iterative layer-wise pruning approach makes it

possible to prune all layers of the network according to their sensitivities to network ac-

curacy, while also considering the desired model latency. Yang et al. [41] proposed a

similar method, but uses inference energy as the objective. They order layers according

to their energy consumption at inference time and first prune layers which consume the

most energy.

2.2.3 NAS

Single Path NAS [6] addresses the problem of efficient hardware-aware neural architec-

ture search. The authors’ approach shares weights across architectures by using a ”Single-

Path” search space. Their search space spans each layer of the network and consists

of superkernels, from which the NAS algorithm attempts to find the optimal subset of

weights for accuracy and latency. The latency loss function is differentiable with respect

to architecture parameters, so the architecture is co-optimized along with model weights

during training. The hardware latency model considers each DNN layer independently,

and shows that summing the latency of each layer is a reasonable approximation for the

latency of the full network. Single-Path NAS achieves similar accuracy to comparable

multi-path methods such as ProxylessNAS [35] when training on the ImageNet dataset

with mobile latency constraints, but only uses 4% of the training time, which is faster than

any comparable method.

Cai et al. [4] perform neural architecture search (NAS) for multiple hardware plat-

forms with low training cost. Their method shrinks a deep neural network (DNN) in the

depth, width, resolution, and kernel size dimensions to produce more efficient networks

without retraining. By sharing weights across network scales and training across these

scales, the learned weights for the smaller networks do not degrade the accuracy of the

14

larger network, which is a major concern for methods that alter network architecture dur-

ing training. The paper also proposes a hardware-aware evolutionary search method for

finding an optimal network architecture according to real performance constraints. They

develop an accuracy predictor, and a latency lookup table to quickly guide their search.

Their method results in state-of-the-art latency and accuracy on ImageNet [42] in the mo-

bile setting in 2020, with high initial training cost that does not scale with the number of

devices under test. The progressive shrinking method could prove useful in developing

models that are resilient to architecture alterations for various hardware platforms.

Wang et al. [43] propose a NAS method for Transformers which uses a single-path

supertransformer from which they derive smaller networks similar to the supernets of

Cai et al. [4] and Stamoulis et al. [6]. They use latency and accuracy prediction models

to efficiently sample architectures for an evolutionary search algorithm which seeks to

optimize latency and accuracy on a specific hardware platform. They expand the archi-

tecture space by allowing encoder-decoder attention to access lower levels of the encoder

instead of limiting access to the encoder output layer. The algorithm uniformly samples

subnetworks during training of the supertransformer.

2.3 DNN Performance Evaluation

Deep neural network performance is characterized with a variety of metrics, both hardware-

agnostic and hardware-aware. This section focuses on metrics related to speed and effi-

ciency rather on task-specific metrics like accuracy or F1 score.

2.3.1 Hardware-agnostic Evaluation

Model Size

Model size is a measure of the memory footprint of the parameters of a network. It is

a function of the number of parameters and their precision, where a FP32 model would

15

be four times the size of an int8 model. At runtime, the model may require much larger

memory footprint due to the size of the activations, but model size ignores this fact and in-

stead focuses on the footprint of the model parameters alone. For devices with extremely

limited memory, the model size can have a high impact on latency

FLOPs

FLoating point OPerations (FLOPs) is the number of operations required to perform in-

ference with a model using floating point weights and activations. A floating point oper-

ation is an arithmetic operation with floating point precision operands, typically 32 bits

in the case of deep neural networks. FLOPs can serve as an excellent proxy for latency

in some cases, particularly where a neural network operation throughput is limited by

computation bandwidth rather than memory bandwidth [44].

2.3.2 Hardware-aware Evaluation

Throughput

Throughput is the number of inferences per second. It is most relevant for cloud hardware

with large batch sizes. This metric is equivalent to the inverse of latency when the batch

size is one.

Latency

Latency is the amount of time it takes to perform inference. It is most applicable to edge

devices where real-time results are required, so a batch size of one is appropriate.

Energy and Power

For battery-powered devices, the energy consumed by one inference is a useful metric. It

is difficult to measure the impact of software on instantaneous power at any given time,

but the average power is simpler to derive as P = energy/latency.

16

Hardware cost

Hardware cost is the cost of manufacturing a device and maintaining it’s operation. Fac-

tors include the fab process and die size for the silicon. Hardware systems in the cloud

have additional costs related to power delivery, cooling, and electricity usage.

2.4 Conclusion

DNN model compression is a well studied topic, yet it offers several research directions

which remain unexplored. Compression of the heavily overparameterized BERT model

is an active area of research. There is no fundamental consensus of which individual

compression methods, or combination of methods, is optimal for reducing model size

and inference time on Transformer-based models.

17

Chapter 3

Methods

This work proposes LAP-NAS, a model compression algorithm which applies several

techniques from the deep learning and hardware modeling fields to minimize on-device

latency of BERT-based deep neural networks via structured pruning. We describe each

technique in the following sections to enable full reproducibility of our results and to

share the techniques for future work. Our work combines pruning metrics, latency mod-

eling, and multi-objective optimization to solve the proposed problem. First we describe

in mathematical terms the optimization problem. Next, we explain the first order taylor

approximation importance metric and iterative pruning algorithm used in our work. In

addition, we explain how our genetic algorithm search method integrates pruning and

latency modeling to enable latency minimization while preserving accuracy. Finally, we

outline our layer-wise latency modeling method for pruned BERT-based networks.

An overview of the LAP-NAS algorithm is shown in Figure 3.1. In short, we use struc-

tured pruning to remove self-attention heads and feed forward network neurons from

each layer in the BERT model until reaching a target sparsity. Next, we apply the latency-

aware architecture search method over the pruneable model parameters to discover an

architecture which runs faster on a target device without sacrificing accuracy.

18

Figure 3.1: LAP-NAS Overview.

3.1 Optimization Problem

Optimization of a neural network with multiple objectives introduces significant chal-

lenges. When there is a single objective being optimized, one can compare any two solu-

tions and decide which is better by simply comparing the magnitude of the objective for

each solution. With multiple objectives, we may find solutions which are better in some

aspects while worse in others, and it no longer becomes clear which solution is superior.

There exists a set of solutions, the pareto front, which contains all dominant solutions

where one cannot improve a single objective without worsening another. In this work,

we constrain the search space according to a fixed sparsity budget, from which we aim

to find the pruned network with minimal latency without degrading accuracy. Therefore

we search for only one solution along the pareto front.

Our optimization problem is shown in Equation (3.1). We minimize the latency L(W)

of the pruned model with pruned weights W subject to the constraint that accuracy on the

19

test dataset Dtest does not drop below its starting value. We aim to preserve the starting

accuracy of the pruned model accstart(Dtest).

min
W

L(W) s.t. acc(Dtest|W) ≥ accstart(Dtest) (3.1)

Accuracy on the test set is not available during training, so we approximate acc(Dtest|W)

with the training loss L on training set Dtrain. The pruned model latency on the target de-

vice must also be approximated during training with L̂(W), which gives us the practical

objective in Equation (3.2).

min
W

L̂(W) s.t. L(Dtrain|W) ≤ Lstart (3.2)

3.2 Structured Pruning

To compress the pretrained Transformer-based model, we choose to use structured prun-

ing. We rank structures of weights from the multi-head self-attention and feedforward

network (FFN) sublayers of each BERT layer with a first order data dependent impor-

tance metric. The choice of structured pruning as a compression method rests on the

following requirements for LAP-NAS:

1. Low cost: The compression method must not require retraining with the pretraining

dataset

2. Flexible: The method must work for a variety of mobile hardware platforms

The requirement of low cost for a pretrained model makes it difficult to add parame-

ters or change operators in the network, because the modified network would need sig-

nificant retraining with the original dataset to overcome the drastic changes. Therefore,

we limit the architecture search space to all pruned subnetworks within the pretrained

model. While this search space is still extremely large, we can quickly evaluate the sub-

20

networks by simply removing weights and fine tuning the network with the downstream

task dataset.

Structured pruning enables speedup on a variety of target devices, because it reduces

both model size and FLOPs at inference time without requiring any changes to the run-

time in use. The degree of speedup seen on the Nvidia Xavier NX with structured pruning

of Distilbert-base is shown in Table 3.1.

Table 3.1: Latency reduction on DistilBERT FP32 model with structured pruning of self-

attention heads and FFN neurons.

Sparsity Latency Improvement
10% 6%
30% 23%
50% 38%
70% 55%
90% 65%

The choice of which elements to prune from BERT is guided by our goals and the

design of BERT. Due to the residual connections within BERT layers, the hidden dimen-

sion h is constrained to remain constant throughout the original BERT layer. In our de-

sign, we maintain this rule in order to prevent the insertion of extra operations to realign

the pruned activations at each residual connection. Our conclusion is to prune the in-

ner dimension of the feed forward network and the individual heads of the multi-head

self-attention layer. Previous work has investigated pruning more parameters, but only

during the pretraining step [20]. Figure 3.2 shows the architecture of a single BERT layer.

When pruning the inner dimension of the FFN layer (df), we remove rows of weights

from the first fully connected (FC) layer and the columns from the second FC layer. When

pruning attention heads, we remove each of the weight matrices Q,K,V associated with

that head, as well as the corresponding columns of the output linear layer after self-

attention which returns the multi-head outputs to the hidden dimension. The effect of

pruning one of n heads is to remove 1
n

of the parameters and FLOPs from multi-head

self-attention layer. Figure 3.3 shows the multi-head self-attention operation, where each

21

Figure 3.2: An encoder layer of the Transformer architecture [45] [46].

row of Q,K,V matrices belongs to one head. Pruning the head removes those matrices

and the corresponding weights from WO.

Multiple structured pruning methods were explored to choose the best for this work.

The simplest method explored was magnitude pruning, which ranks groups of weights

by the L2 norm of their weight values. While this method works well for unstructured

pruning [48] we observe far worse performance with large structure sizes compared to

data-dependent approaches. The work of Sanh et al. [12] showed that L0 regularization

and first order Taylor approximation approaches worked well when pruning BERT dur-

ing fine-tuning. We also observed promising results with the first order Taylor approxi-

mation importance metric. A positive demonstration of the pruning method is shown in

Table 3.2.

22

Figure 3.3: Visualized multi-head self-attention operation of the encoder layer in the

Transformer architecture [47].

Table 3.2: Accuracy of BERT-base model when jointly pruned and fine-tuned on the SST-2

dataset at a sparsity of 90% in the FFN layer alone.

Pruning Method SST-2 Accuracy
Random 0.87
Taylor 0.91

3.2.1 First Order Taylor Series Importance Metric

We use structured pruning to reduce the latency of the BERT model. We rank weight

structures with the first order Taylor approximation importance metric and prune those

structures with the least importance.

The self-attention and feed forward network sublayers contribute a majority of la-

tency in the BERT model [49], so we choose to prune from these parts of the network. The

weights pruned are not tied to other weights via residual connections, further simplify-

ing the approach. While only pruning self-attention heads and feed forward network

neurons, we observe an inference latency reduction of 65% on the Nvidia Jetson Xavier

NX GPU platform by pruning 90% of weights in these two layers, as shown in Table 3.1.

We use iterative pruning to progressively reduce sparsity and fine-tune the network until

a target sparsity budget is reached [9].

23

We choose the first order Taylor expansion-based metric to measure parameter im-

portance and globally rank parameters across layers [11]. Previous works [50] [19] have

already applied this metric to BERT models to remove the self-attention heads and FFN

neurons. The intuition behind this metric is that we wish to prune weights which have

a small effect on the model output when removed. Therefore, we aim to minimize the

change in loss with respect to removing a weight. A first order approximation of this

change in loss with respect to weight magnitude performs well in practice, and is easily

calculated with gradient information backpropagated during training. Note that LAP-

NAS is compatible with any importance metric which can rank parameters across all

layers of the model, but we choose the Taylor approximation method because we observe

strong pruning results.

Equation (3.3) derives the importance of dff FFN neurons with m inputs to the feed-

forward network and a bias term vector b accumulating to pre-activation sum u. Impor-

tance is defined as I(wk
l) for the weights of neuron k in layer l. Importance approximates

the absolute change in loss | ∆L | when removing a group of weights, where a larger

change corresponds to higher sensitivity to pruning. Importance is accumulated during

the training, making use of the entire training set. For each training batch the backpropa-

gated gradients are used to update the importance scores, as shown in Algorithm 1. The

normalization of importance from each layer allows for a global ranking of parameters in

the network [11]. Equation (3.4) shows the L2 normalization of the importance within a

layer.

24

I(wl) =| ∆L(wl = 0) |

=| L − (L − ∂L
∂ul

ul) |

=| ∂L
∂z
z |

=
m∑
i=1

| ∂L
∂z

∂z

∂wi

z |

=
m∑
i=1

| ∂L
∂wi

wi | + |
∂L
∂b
b |

(3.3)

Inorm(wl) =
I(wl)

‖I(wl)‖2
(3.4)

Algorithm 1: LAP-NAS Iterative Pruning Training Step
for batch in train dataset do

Perform inference, compute loss, backpropagate gradients
for layer l in model do

Update head importance
Update FFN neuron importance

end
Update model weights with Adam Optimizer
Zero gradients

end

Calculating the importance for FFN layers and multi-head self-attention layers is fairly

similar. As shown above, for the FFN neurons we perform a weighted sum of gradients

flowing through the neuron’s connected weights at both the input and output of the neu-

ron. For the heads, we simply sum the absolute value of the gradient propagated through

a binary mask layer applied to the output of each head, as in [16]. The formulation is

shown in Equation (3.5), where ξh is the mask variable for head h. Note that this for-

mulation is mathematically equivalent to the neuron importance equations (3.3) [16]. The

gradient in the equation measures the change in loss with respect to the binary mask vari-

able ξh. A large gradient suggests that the self-attention head’s output has a large effect

on the model’s output and is therefore important to model performance. A small gradi-

25

ent suggests that the head can be removed from the model with minimal impact on the

model output by zeroing the binary mask.

Ih = Ex∼X

∣∣∣∣∂L(x)

∂ξh

∣∣∣∣ (3.5)

3.2.2 Iterative Pruning

LAP-NAS uses iterative pruning to gradually reduce model sparsity with a small degra-

dation in accuracy. Our iterative pruning algorithm is adopted from Han et al [51] which

showed that alternating between pruning and fine-tuning a model enables higher levels

of sparsity than pruning in one shot and fine-tuning.

The sparsity schedule controls how much to prune between fine-tuning iterations.

This work uses a cubic sparsity decay schedule adopted from Zhu and Gupta [52]. While

they continuously prune parameters during training, we alternate between pruning and

fine tuning. Algorithm 2 shows our iterative pruning procedure. For each step in the

pruning schedule, we independently prune the FFN parameters and the self-attention

heads. When pruning one of these sublayers, we rank all of the accumulated importance

scores of active parameters groups in the model, then prune the least important param-

eters until we reach the step’s scheduled sparsity. After pruning both the FFN and self-

attention sublayers we fine-tune the network for two epochs, repeating until we complete

all pruning iterations.

After the model has been pruned to the final sparsity sf , the model is ready for the

latency-aware optimization step described in section 3.3.1

3.2.3 Code Implementation

We implemented pruning by writing modified BERT-based models in Pytorch and fine-

tuning them with a modified training script. Our pruneable models are derived from

models found in the Hugging Face Transformers library [53], an open source Python li-

26

Algorithm 2: LAP-NAS Iterative Pruning
Input = [pretrained BERT-based Model]
Output= [Pruned model at sparsity sf]
for i in [0,1..,n] do

si = sf + (1− sf)
(
1− i

n

)3
for Sublayer in (heads, FFN) do

ki = bn parameters ∗ sic
num to prune = ki − ki−1

Get ki−1 importance scores I of active parameters from each layer
sort I
Prune num to prune lowest scoring parameters

end
Fine-tune 2 epochs

end

brary for machine learning with Pytorch and Tensorflow. It’s model zoo provides the

pretrained BERT-base and DistilBERT-base models used in our experiments. Our im-

plementation of structured pruning involves introducing mask layers in the FFN and

multihead self-attention layers. During inference, the activations of these layers are each

multiplied by a mask variable, where a mask value of 0 effectively removes the preceding

weights from the network and a value of 1 retains them. For the FFN layer, we insert a

mask of length equal to the inner dimension dff . For the Bert-base model dff is 3072, a

factor of four times greater than the model’s hidden dimension of 768. The Hugging Face

model already has a head mask layer implemented for inference, so we use that mask to

prune the heads of the multi-head self-attention layer. The gradients through this mask

are also used to calculate head importance scores.

3.3 Latency Optimization

Structured pruning alone is a hardware-agnostic tool for DNN compression. In this sec-

tion we present the latency-aware architecture search aspect of LAP-NAS. The search

method optimizes a model after pruning to a desired sparsity. We also present an al-

27

ternative latency-aware pruning method, which introduces latency information into the

iterative pruning algorithm to avoid the search process altogether.

3.3.1 Pruned Neural Architecture Search

We apply neural architecture search (NAS) to maximize accuracy while keeping pruned

model latency under a threshold. LAP-NAS applies this search after pruning to optimize

layer dimensions within a limited search space starting from the pruned model dimen-

sions. This design space consists of models reachable by pruning/unpruning the model

by a limited amount. The candidate architectures are evaluated using a custom fitness

function drawn from pruning importance metrics and latency lookup tables. By search-

ing for a model architecture with minimal latency and enforcing an accuracy budget, we

can efficiently optimize the pruned model for latency on the target device.

Starting from a pruned model, we initialize a NAS search space consisting of all

pruned architectures in the model’s neighborhood. For each layer in the network, we con-

sider candidate dimensions within +/- 64 FFN neurons and +/- 2 attention heads from

the pruned model. The design space has a granularity of two neurons and one attention

head. Evaluating this large design space of 512 ∗ 6512 ≈ 1030 candidates for the 12-layer

BERT model by training each one would be computationally infeasible. To speed up the

search process, we construct a fitness function which uses the pruning importance metrics

as a proxy for model accuracy, Eq. (3.6). For each target architecture in the search space,

we determine the which parameters must be pruned or unpruned from the network. We

then add the importance of unpruned parameters and subtract the importance of pruned

parameters to generate a change in importance ∆I for the target architecture. To com-

pute the change in latency when pruning to the candidate architecture, ∆L, we sum the

expected change in latency for each layer. We then add a penalty for architectures with

∆I < 0, as we expect them to degrade accuracy.

We use a genetic algorithm [54] to search for the best architecture. This algorithm

initializes a set of candidate solutions and iteratively improves the population quality

28

with an evolution-inspired procedure. First, all candidates are evaluated using a fitness

function. Next, the strongest solutions are chosen as parents for new solutions. The new

solutions are generated by mixing characteristics of two parents with a crossover opera-

tion, followed by randomly perturbing the resulting offspring with a mutation operation.

Finally, the new candidates are evaluated and we return the population back to its orig-

inal size by removing the weakest solutions. The algorithm repeats until its strongest

solution converges or until reaching the maximum number of generations.

Our genetic algorithm optimizes the dimensions of each layer in the model. Each

candidate architecture (chromosome) consists of the number of attention heads and the

number of FFN neurons for each layer (genes). The 12 layer BERT model therefore has

24 genes to optimize. We setup the genetic algorithm with population size 100, mutation

probability 0.1, elite ratio 0.01, crossover probability 0.5, and a convergence threshold of

30 generations without improvement.

The LAP-NAS search algorithm is shown in Algorithm 3.

∆L =
l∑
LUT (candidate)− LUT (model)

penalty =

 0 ∆I ≥ 0

1− 1000 ∗∆I ∆I < 0

f = ∆L+ penalty

(3.6)

3.3.2 Latency-aware Pruning

The standard LAP-NAS algorithm in this work does not use latency information during

the initial pruning phase. This leaves the architecture search method with a potentially

ill-suited initial architecture for latency optimization. In response to this problem, we

propose a latency-aware pruning technique to encourage the model to prune only where

it improves the predicted on-device latency. This simple method ensures monotonic la-

tency reduction throughout pruning despite potential noise and abormalities in the la-

29

Algorithm 3: Latency-Aware Pruned NAS
Input = [Fine-tuned, pruned BERT-based model, Latency LUT]
Output = [Latency-Optimized model]
Collect latencies, parameter importance
for layer in network do

for search space in (heads,FFN) do
for dim in search space do

Compute ∆latency
Compute ∆I

end
end

end
for search space in (heads,FFN) do

Initialize population of architectures
while not converged do

update population of pruned architectures
end

end

tency lookup tables which could cause a model with higher sparsity to have a higher

latency.

This method prunes as many weights at a time as is needed to reduce the latency

of a layer. In the standard algorithm, we globally rank parameters by importance from

each layer in the network and prune the least important ones until reaching a desired

sparsity. The latency-aware pruning method takes several iterations to reach the target

sparsity. For each layer l, we determine the number of parameters pl that must be pruned

in order to reach the next lowest latency in the latency lookup table. Then we average

the importance of each group of pl parameters and prune the group with lowest average

importance, repeating until the desired sparsity is reached.

For example, if a BERT FFN layer has 10 active heads, and the LUT shows an increase

in latency when pruning to 9 heads, but a decrease in latency when pruning to 8 heads,

the pruning algorithm will propose to prune 2 heads from that layer. It will then compare

the average importance of head 9 and 10 of the layer to the importance of heads in other

layers to determine where to prune next.

30

Algorithm 4: Latency-Aware Iterative Pruning
Input = [pretrained BERT-based Model]
Output= [Pruned model at sparsity sf]
for i in [0,1..,n] do

si = sf + (1− sf)
(
1− i

n

)3
for Sublayer in (heads, FFN) do

while s(Wsublayer) ≤ si do
for layer in model do

Find next sublayer dimension dnext which lowers latency
p = d - dnext

Average importance of p least important parameters in sublayer
end
Prune from layer with lowest average importance

end
end
Fine-tune 2 epochs

end

3.4 Latency Modeling

3.4.1 layer-wise Latency Model

Optimizing a model for on-device latency requires knowledge of the relationship between

model architecture and latency on the target device. We gather this knowledge by gener-

ating lookup tables of layer latency with respect to the number of attention heads or FFN

neurons in the model.

The latency of a deep neural network can be characterized analytically via study of the

operations in the network or empirically via direct measurements. Latency depends on all

elements of the hardware/software stack and does not always scale linearly with FLOPs

[3]. These elements include the device, math kernels (e.g. CUDNN, MKL), model graph

optimization (e.g. Torch JIT, TensorRT), deep learning libraries (Tensorflow, PyTorch),

and model architecture. Accurately modeling all of these elements is difficult due to the

depth of the software stack. Therefore, we choose to directly measure latency and treat

the HW/SW stack as a black box.

31

Directly measuring latency of every possible pruned BERT architecture would be in-

feasible given a pruned search space of up to 307212 ∗1212 ≈ 1055 architectures BERT-base.

Assuming that network latency can be approximated by the sum of individual layer la-

tencies greatly reduces the space of layer architectures which must be measured to a more

manageable 3072 ∗ 12 = 36864, for model with 3072 FFN neurons and 12 attention heads.

This assumption has been employed in previous HW-NAS work [6] [35]. Further sepa-

rating the FFN and multi-head self-attention sublayers reduces the space of architectures

to measure down to just 3084. We outline the derivation of model latency from layer-

wise measurements in Equation (3.7), where the latency of a model with pruned weights

W is computed by summing over each layer’s pruned latency. The pruned latency for a

layer is computed by subtracting the speedup obtained from pruning the FFN sublayer

LUTFFN(WFFN) and the self-attention sublayer LUTHeads(WHeads) from the unpruned layer

latency LUTW∗ . Our lookup tables measure latency of an entire BERT layer, with respect

to the number of FFN neurons or number of active self-attention heads in the layer.

L̂(W) =
n∑

l=1

LUTW∗ −∆LFFN Pruned −∆LHeads Pruned

∆LFFN Pruned = LUTW∗ − LUTFFN(WFFN)

∆LHeads Pruned = LUTW∗ − LUTHeads(WHeads)

(3.7)

3.4.2 Latency Measurement Technique

We measure a layer’s latency by isolating it from the rest of the BERT model and initial-

izing it with the dimensions under test. A latency figure is obtained by feeding random

data as the input to the layer and computing the output. We time 100 inference iterations

of the layer and store the mean in our lookup table. To improve measurement consis-

tency, the board is warmed up with 30 seconds of inference prior to data collection. We

synchronize data between GPU and CPU at the end of each inference and use a batch size

of one. If high variance is seen during the 100 inferences, the measurement is repeated,

which helps remove outliers from the measurement process. We find that warming up

32

Table 3.3: Standard deviation of measured latency vs. measurement technique. Statistics

computed over 100 inference latency measurements. Relative deviation calculated using

mean measured latency of 3.2 ms.

Method Latency Std. Dev. (ms) Relative Std. Dev. (%)
No Warmup 2.5 78.1

30 sec Warmup 0.04 0.0125
30 sec Warmup + Max Clk 0.02 0.00625

the board before measuring latencies reduces variance, leading to a more reliable latency

measurement. Setting the board to its maximum clock speed and fan setting also allows

for more consistent results, as shown in Table 3.3. We do not measure latency of the input

embedding or classifier layers because our pruning algorithm does not alter them.

3.4.3 Latency Lookup Table

In general, latency has a linear relationship with the number of neurons in a FFN layer, as

shown in Figure 3.4 for the full precision layer on Nvidia Jetson Xavier NX GPU. How-

ever, there are layer dimensions for which latency changes non-linearly in a staircase

pattern. For the 16-bit floating point quantized BERT layer on the same hardware, we

observe an oscillating latency pattern with large variation every four neurons pruned,

shown in Figure 3.4. To uncover the cause of the variation, we trace the CUDA function

calls of the forward pass for each BERT layer and record the top 4 most called CUDA

general matrix multiply (GEMM) functions in Table 3.4. The tracing revealed that de-

spite differing in FFN width by only 4 neurons, the lower latency architecture of dimen-

sion 1024 made use of far more GEMM ldg8 CUDA function calls, which interweave 8

multiply-accumulate operations while loading data from global memory.

33

Table 3.4: GEMM function calls for FP16 BERT layer inference with FFN layer pruned to

1024 and 1028.

dff=1024
Function Name Time (%) Time (ms) Calls

volta fp16 s884gemm fp16 256x64 ldg8 f2f tn 34.505112 8.159971 120
volta fp16 s884gemm fp16 64x64 ldg8 f2f tn 13.127884 3.104559 30

volta fp16 s884gemm fp16 128x64 ldg8 f2f tn 8.02185 1.897054 30
volta fp16 s884gemm fp16 64x64 ldg8 f2f nn 5.307518 1.255153 60

dff=1028
Function Name Time(%) Time (ms) Calls

volta fp16 sgemm fp16 128x64 tn 24.579553 8.558379 30
volta fp16 s884gemm fp16 256x64 ldg8 f2f tn 22.977374 8.000515 120

volta fp16 sgemm fp16 32x128 tn 22.008518 7.663168 30
volta fp16 s884gemm fp16 64x64 ldg8 f2f nn 3.607457 1.256084 60

34

Figure 3.4: Latency measurements of a single BERT layer. Nvidia Jetson Xavier NX GPU.

Top: FP32, Bottom: FP16. 35

Figure 3.5: BERT layer latency vs. Number of active self-attention heads, Nvidia Jetson

Xavier NX GPU. Top: FP32, Bottom: FP16. 36

Chapter 4

Experiments

We conducted a series of experiments to evaluate how well LAP-NAS improves latency

over iterative pruning without any latency optimization. To support reproducibility of

our results, we explain our experimental procedures, hyperparameters, and hardware

configuration. First, we apply LAP-NAS to pruned models and record the latency and

accuracy of the fine-tuned models to observe the utility of the NAS method in minimiz-

ing latency. Next, we evaluate the accuracy of the BERT latency lookup tables to deter-

mine whether it is useful as a proxy for on-device latency during NAS. In addition, we

observe whether the optimized model dimensions line up with visually identifiable opti-

mal dimensions along the lookup table latency curves to give a qualitative review of our

method. Finally, we explore pruned BERT latencies and pruning importance scores with

experiments performed during development of our final methods.

4.1 Experimental Setup

Model Settings We prune BERT-base [7] and DistilBERT-base [55], sourced from the Hug-

gingface transformers model zoo [56]. Models are optimized for inference with Torch-

Script [57]. These two model architectures are identical to each other except that Distil-

BERT does not use token type id inputs and has only six layers rather than 12. We use

37

a learning rate of 3e-05 with a linear learning rate decay from the start of training to fin-

ish. We warm up the learning rate for one epoch and apply linear learning rate decay

for the duration of pruning and fine-tuning. The models are trained with the AdamW

optimizer with an epsilon of 1e-8. Although we tried applying learning rate rewinding

[58] between pruning steps to reduce accuracy degradation during pruning, we found it

to have a negative effect on fine-tuned performance.

Datasets We evaluate our model on a subset of the GLUE [59] tasks including CoLA

[60], SST-2 [61], QNLI [59], QQP [62], and MRPC [63]. The variety of dataset size and task

types present in the subset form a representative set of the GLUE tasks while keeping

computation costs reasonable.

Hardware and Software Our experiments measure latency on the Nvidia Jetson Xavier

NX development board, which has a six core ARMv8.2 64-bit CPU, 8GB memory, and

384-core Nvidia Volta GPU. We run inference using the full CPU and GPU with locked

maximum clock speed and a board power limit of 15W. The board was used with Nvidia

Jetpack 4.4.1 and the python packages torch 1.7.0 and transformers 3.2.0.

Pruning We use the cubic pruning sparsity schedule from [12] to set the pruning

threshold at each iteration. We prune the model four times, each followed by two epochs

of fine-tuning. This pruned model is then used for the baseline iterative pruning experi-

ment and the LAP-NAS experiment For the iterative pruning results, we further fine-tune

this pruned model for six epochs. For LAP-NAS results, we apply our NAS algorithm to

the pruned model before fine-tuning for six epochs.

4.2 Experiment Descriptions

4.2.1 LAP-NAS Latency Optimization

In this experiment we minimize latency of the pruned model while aiming to maintain

accuracy. First we prune the FFN and self attention sub layers to a global sparsity of

60% with iterative pruning. Next, we apply LAP-NAS to optimize the widths of all FFN

38

layers, then all self-attention layers of the same model. Following optimization we report

the accuracy of the model on the GLUE task and the latency of the pruned model. Latency

is presented using either the estimate of the lookup table or by directly measuring the

pruned model on the device.

4.2.2 Evaluating Latency Lookup Table

In order to validate our use of a layer-wise latency lookup table, we perform several ex-

periments comparing measured and predicted model latency on the Nvidia Jetson Xavier

NX GPU. Our algorithm requires a good measure of relative latency of pruned models,

so we construct experiments which measure how well the LUT predicts the difference in

latency between two models. Previous works simply measure the accuracy of the latency

model to determine its utility, but in our case we do not need absolute accuracy when

searching for the fastest model from a limited set of models.

39

Chapter 5

Results

We present the latency and accuracy of our LAP-NAS pruned models in this section.

In addition, the run time of the optimization algorithm is compared to previous work,

and the latency lookup table is evaluated independently of LAP-NAS. Finally, we share

latency lookup tables for diverse hardware platforms and discuss how our results con-

tribute to the field. Our algorithm manages to improve model latency up to 2.3% when

measured on the target device and a more promising 18.5% when using the latency LUT’s

predicted value.

5.1 LAP-NAS Latency Optimization

The goal of LAP-NAS is to minimize latency while maintaining accuracy of the pruned

model. To measure its ability, we compare the LAP-NAS optimized model to its itera-

tively pruned baseline model in terms of LUT optimized latency, measured on-device la-

tency, and accuracy. The baseline model has 60% of its attention heads and FFN neurons

pruned using the Taylor Series importance metric. We apply LAP-NAS to this pruned

model, and fine-tune both the original pruned model and the LAP-NAS optimized model

before evaluating for accuracy.

40

Table 5.1 shows that LAP-NAS improves DistilBERT-base latency while also maintain-

ing or improving accuracy. Latency (ms) values in Table 5.1 are drawn from the latency

lookup table with respective bit precision. These are the latencies that the LAP-NAS algo-

rithm believes it has reached when optimizing the model, but which rely on the simplify-

ing assumptions made in generating the LUT. Using these latency calculations, LAP-NAS

reduces latency by 18.5% and 2.3% on DistilBERT-base at 16 bit and 32 bit floating point

precision, respectively. Accuracy results are less consistent, with the 16 bit experiments

slightly improving accuracy and the 32 bit experiments slightly degrading accuracy. With

the BERT-base model, we observe similar results, with a 14.1% and 2.2% latency reduction

for the 16 and 32 bit models. The advantage to the FP16 optimization case is made clear

by the latency measurements of Figure 3.4. The FP16 BERT layer exhibits large variations

in latency with small changes in model dimensions, making it an ideal target for latency-

aware optimization techniques. In contrast, the FP32 BERT layer exhibits a far more linear

relationship between model dimensions and latency, so the difference between an optimal

and sub-optimal architecture is smaller.

Table 5.2 shows the measured latency on the Nvidia Jetson Xavier NX board for each

of the pruned models from Table 5.1. Here the results are less impressive, with LAP-NAS

averaging a 0.8% latency improvement across all models.

5.1.1 LAP-NAS Runtime Comparison

One principal feature of our method is its relative speed compared to other NAS methods.

Our task-specific compression method fine-tunes the model for a total of 14 epochs, with

a NAS step which takes on the order of 10 seconds to complete. A comparable hardware-

aware NAS method, HAT [43], optimizes the Transformer architecture [45] for translation

tasks. This paradigm does not make use of a pretrained model, which makes it hard

to directly compare the training time, but we can measure their training time relative to

training the model from scratch without their NAS approach. They train an uninitialized

supernet architecture on a translation task for 40-50K steps. They then perform a genetic

41

Table 5.1: LAP-NAS and Iterative Pruning results for accuracy and lookup table pre-

dicted latency on selected GLUE tasks. ∆% shows average improvement of LAP-NAS

over Iterative Pruning (IP).

DistilBERT-base

Bits Method CoLA SST-2 MRPC QNLI QQP Avg Avg ∆ %
Lat Mcc Lat Acc Lat Acc Lat AccF1 Lat Acc Lat Acc Lat

16 IP 8.1 48.3 8.02 89.8 8.1 82.6 8.43 85.9 11.7 86.1 8.3 79.0
LAPNAS 6.96 50.7 7.00 90.1 6.83 83.7 6.48 86.6 11.3 85.8 6.8 80.0 18.5

32 IP 11.32 48.3 11.62 89.8 11.71 82.6 11.48 85.8 11.7 86.1 11.6 79.2
LAPNAS 11.36 45.0 11.45 89.3 11.29 82.8 11.25 85.0 11.3 85.8 11.3 78.1 2.3

BERT-base

16 IP 15.50 52.4 16.3 91.3 16.47 87.8 17.08 90.2 15.86 88.9 16.2 82.1
LAPNAS 14 52.9 14.06 91.4 14.02 87.6 13.84 89.7 13.87 89.0 14.0 82.1 14.1

32 IP 23.22 52.4 23.38 91.3 23.23 87.8 23.26 90.2 23.4 88.9 23.3 82.1
LAPNAS 22.75 53.0 22.72 91.6 22.76 87.4 22.83 88.6 22.91 89.0 22.8 81.9 2.2

Table 5.2: LAP-NAS and Iterative Pruning on-device latency on selected GLUE tasks

for models from Table 5.1. ∆% shows average improvement of LAP-NAS over Iterative

Pruning (IP).

DistilBERT-base
Bits Method CoLA SST-2 MRPC QNLI QQP Avg Avg ∆ %

16 IP 8.23 8.43 8.26 8.19 8.79 8.38
LAPNAS 8.15 8.38 8.24 8.09 8.06 8.18 2.3

32 IP 10 10.31 9.82 9.77 9.97 9.97
LAPNAS 9.99 10.2 9.97 9.85 10.07 10.02 -0.4

BERT-base

16 IP 17.53 17.41 19.04 17.86 17.87 17.942
LAPNAS 17.56 17.61 17.76 17.77 17.78 17.70 1.4

32 IP 19.96 19.75 20.27 19.93 20.1 20.00
LAPNAS 19.87 19.88 20.24 19.7 20.27 19.99 0.0

search to choose an architecture for a specific device. Finally, they fine tune the chosen

network to maximize performance. Their total training time is 0.9-2x the training time of

the Transformer model, depending on the translation task.

Applying the HAT method to the GLUE tasks would require pretraining a supernet

on the masked language modeling task, then fine tuning the chosen architecture on each

downstream GLUE task. Training the BERT model following the original authors’ method

42

Table 5.3: Average GLUE performance and on-device latency for each method under test.

LA signifies method using latency-aware iterative pruning.

DistilBERT-base

Bits Method Avg % Improvement
Lat Acc Lat Acc

16

IP 8.38 79.0 0.0 0.0
LAPNAS 8.18 80.0 2.3 1.3

IP-LA 8.62 78.0 -2.9 -1.2
LAPNAS-LA 8.63 78.4 -3.0 -0.7

32

IP 9.97 79.2 0.0 0.0
LAPNAS 10.02 78.1 -0.4 -1.3

IP-LA 10.24 79.3 -2.6 0.2
LAPNAS-LA 10.08 78.5 -1.1 -0.9

BERT-base

16

IP 17.94 82.1 0.0 0.0
LAPNAS 17.70 82.1 1.4 0.0

IP-LA 17.44 81.6 2.8 -0.6
LAPNAS-LA 17.45 80.9 2.8 -1.5

32

IP 20.00 82.1 0.0 0.0
LAPNAS 19.99 81.9 0.0 -0.2

IP-LA 20.37 81.8 -1.8 -0.4
LAPNAS-LA 19.89 81.7 1.0 -1.0

Table 5.4: Training time in GPU hours of LAP-NAS for each of the selected GLUE Tasks

on Nvidia V100 GPUs. Models were trained with distributed training across two GPUs.

HAT numbers predicted based on reported results their reported results and the increased

complexity of BERT training [1].

GPU hrs per task
Method Model CoLA SST-2 MRPC QNLI QQP total

LAP-NAS BERT .4 2.11 .2 3.5 11.1 17.3
HAT BERT n/a n/a n/a n/a n/a 5000

requires 5000 GPU hours. Therefore, we expect the supernet training time for pretraining

of BERT to be at least 5000 hours. Table 5.4 shows a comparison of the runtime for our

method compared to the predicted runtime for HAT.

43

5.1.2 Latency-Aware Pruning

LAP-NAS makes no use of the latency information during the initial pruning phase, but

integrating this information into the training phase could improve performance. To test

this uncertainty, we train using our latency-aware pruning method (see Chapter 3.3.2)

with and without NAS to see if a faster model can be pruned at the same sparsity.

Table 5.5 presents the latency-aware pruned and latency-aware pruned + NAS results.

We compare these models to the baseline iterative pruning models in the rightmost col-

umn. In addition, we compare on-device measured latency in Table 5.3. We observe that

the latency-aware pruning method provides an even larger latency improvement than the

latency-unaware LAP-NAS method. For FP16 inference the LUT latency is improved by

27% over the iterative pruning baseline with DistilBERT-base and 25% with BERT-base.

Interestingly, the latency-aware pruning method appears to reach these numbers even

without any architecture search step. However, the FP32 results are largely the same with

and without latency-aware pruning.

Unfortunately, the optimized models do not provide a speedup on par with the predic-

tions of the lookup table. Instead we see inconsistent latency improvements and degra-

dation near 0 across all models under test.

44

Table 5.5: Pruned model results selected GLUE tasks with latency-aware pruning instead

of the baseline iterative pruning approach. Bold percentages emphasize an improvement

over the baseline.

DistilBERT-base

Bits Method CoLA SST-2 MRPC QNLI QQP Avg % Imp.
Lat Mcc Lat Acc Lat Acc Lat AccF1 Lat Acc Lat Acc Lat Acc

16 IP 6.03 42.2 6.01 88.9 6.02 86.2 6.00 85.8 6.06 87.1 6.02 78.0 27 -1
LAPNAS 6.03 46.2 6.03 88.2 6.04 85.1 6.01 85.3 6.07 87.5 6.03 78.4 27 -1

32 IP 11.42 48.6 11.53 89.9 11.61 84.7 11.37 86.2 11.38 87.3 11.46 79.3 1 0
LAPNAS 11.32 46.1 11.34 89.8 11.24 83.2 11.30 86.1 11.33 87.2 11.30 78.5 2 -1

BERT-base

16 IP 12.07 50.9 12.08 91.1 12.06 87.6 12.07 89.8 12.08 88.7 12.07 81.6 26 -1
LAPNAS 12.10 52.3 12.15 89.1 12.14 85.2 12.14 89.4 12.10 88.5 12.13 80.9 25 -1

32 IP 23.04 52.5 22.85 91.5 23.13 85.7 22.94 90.4 23.19 89.1 23.03 81.8 1 0
LAPNAS 22.59 51.9 22.61 91.5 22.63 86.9 22.71 89.3 22.73 88.8 22.65 81.7 3 -1

5.2 Latency Lookup Table Evaluation

Our method for optimizing model architecture from the latency lookup table (LUT) relies

on the assumption that the latency of each pruned layer is independent. To evaluate this

assumption, we initialize a model with random layer dimensions and prune from a single

randomly selected BERT layer. If our layer-wise latency assumption is correct, we expect

to see an equal change in latency predicted from the lookup table and measured from the

full model after pruning. The results in Figure 5.1 show that the assumption holds some

value, but is not universally valid. We report a mean squared percent error between the

predicted and measured latency change of 64%, which is not a very compelling result.

The Spearman rank correlation coefficient of the changes in latency is 0.50, showing that

if we were to rank the choices of pruning based on the lookup table, our ranking would

still correlate positively with the measured ranking of those pruning choices. LAP-NAS

aims to compare pruned model dimensions according to their relative latencies, so if we

can still choose the best architecture with the LUT then we can accept a relatively high

error in the magnitude of the latency improvement.

45

Figure 5.1: Expected vs measured latency change when randomly pruning 10 full-

precision DistilBERT models (FP32) on Xavier NX.

Figure 5.2: Expected vs measured latency change when randomly pruning 10 full-

precision DistilBERT models (FP16) on Xavier NX.

46

Figure 5.3: Change in latency after optimizing the widths of a randomly pruned network.

Pairs of bars which are closer together show accuracy in the latency LUT.

We perform further experiments to observe whether the latency improvement from

optimizing widths according to the layer-wise LUT corresponds to a latency improve-

ment when measuring latency of the entire model. In this experiment, we randomly

initialize 10 models, and apply LAP-NAS with a goal of minimizing latency while main-

taining the number of parameters in the network. We plot the change in latency after NAS

predicted by the LUT and the observed change in Figure 5.3. We also report a spearman

rank correlation coefficient of 0.87 for the 20 measured models, which shows that there is

high correlation between the ranking of models by the lookup table and the actual latency

measurement.

5.3 Survey of Inference Platforms

While we only report LAP-NAS results on only the Nvidia Xavier NX with two software

configurations, we have also measured BERT layer latencies on several other configura-

tions which we present to provide insight into how latency scales with layer dimensions

47

Figure 5.4: BERT layer latency vs. FFN widths on Nvidia GTX Titan GPU.

on different platforms. We specifically report layer latencies on an Intel Xeon CPU (Figure

5.4) and Nvidia GTX Titan GPU (Figure 5.5).

In general, we observe linear scaling between layer width and latency for the FFN

layer. For the head layers, as shown in Figure 3.5, the relationship is not a linear one

in either precision. While one would expect nonlinear latency scaling to offer a good

use case for latency-aware NAS, the head latencies vary so little that even an optimally

pruned layer does not achieve a large latency improvement relative to the improvement

from removing FFN neurons.

On both the Intel Xeon CPU and the Nvidia GTX Titan GPU, we observe a roughly

linear scaling of latency and FFN layer width. These hardware platforms do not offer

a good use case for latency-aware NAS via pruning, because sparsity serves as a good

proxy metric for latency. In these cases, iterative pruning is sufficient to reach the best ex-

pected latency gains. While previous works [39] [64] observed steep staircase patterns in

their latency lookup tables when pruning CNNs, we did not observe the same magnitude

of steps with BERT models. Our attempt to replicate the results of [39] were unsuccessful

despite using the same hardware and CNN architecture as well. This observation sup-

ports our choice to use a search-based pruning method which is not tailored to a specific

latency lookup table pattern.

48

Figure 5.5: BERT layer latency vs. FFN widths on Intel E5-2683 v4 Broadwell @ 2.1Ghz

with 16 threads in use.

5.4 Discussion

The reported results show somewhat disappointing performance when latency is mea-

sured on the target device. In order to understand why such a gap exists between the

latency lookup table values and the measured latencies, we analyze our results another

way. The quality of the LAP-NAS compression scheme can also be assessed with manual

inspection of layer widths before and after pruning. We refer the reader to Figure 5.6,

which shows how optimized widths align with the latency lookup table used for opti-

mization. This analysis provides a sanity check of the neural architecture search method

alone by eliminating error from the latency measurements.

Figure 5.6 plots the number of active FFN neurons before the NAS optimization (Green)

and after (Blue). Given the LAP-NAS goal of minimizing latency and maintaining accu-

racy, we expect optimized widths to converge where there is an optimal tradeoff between

model size and latency. The optimal tradeoffs occur after pruning across the steep drops

in latency seen at widths of∼ 2300,∼ 2700. At these widths, further pruning of a layer re-

turns a modest latency improvement while unpruning the layer results in a sharp increase

in latency.

49

Figure 5.6: Model widths before and after evolutionary architecture search.

We observe that the LAP-NAS optimized widths cluster around the optimal widths.

The two unoptimized layer widths that sat close to a steep drop in latency were pruned

to the bottom of the drop, as we would expect to see. This qualitative result supports

the numbers in Figure 5.1, which show that the LAP-NAS algorithm returns consider-

able LUT latency improvements over the baseline pruning method. However, when we

measure the latency of the pruned model to verify the improvements predicted by the

lookup table, the benefit of the NAS step appear quite small. Therefore, we conclude that

LAP-NAS is an effective optimization method, but further work is needed in develop-

ing accurate latency modeling methods to close the gap between expected and measured

performance. This flaw can also be framed as an issue with the search method, since it

requires a fast latency model to complete its search. A more efficient NAS method could

potentially have avoided the use of the simplistic lookup table latency model.

50

Chapter 6

Conclusions

This work presents Latency-Aware Pruned Neural Architecture Search (LAP-NAS), a

latency-aware DNN compression method for BERT-based models. Our methodology

demonstrates how structured pruning and NAS can be applied in sequential fashion to

optimize for accuracy early in the compression process and latency later on when it is

most useful. The experimental results demonstrate that LAP-NAS can effectively opti-

mize a model given two simple latency lookup tables in a relatively short amount of time.

However, the latency lookup table itself presents a significant bottleneck to the realized

performance on a target device.

LAP-NAS represents a novel approach to a unique problem in the field of hardware-

aware model compression. To the best of our knowledge, there are no previous works

which perform NAS to prune a model using a combination of latency metrics and prun-

ing metrics. Our choice to combine these metrics was motivated by the observation that

latency and model dimensions do not always have a linear relationship, so pruning to

a sparsity may not result in an optimal trade-off between latency and accuracy. In situa-

tions where this observation is true, our algorithm obtains a latency improvement of up to

27% without a loss of accuracy. However, in our experiments we were not able to confirm

these advantageous latency patterns and were left with latency improvements of 1-2%,

making the latency-aware aspect of our pruning method less valuable. We also observed

51

that a small search space around a pruned model is sufficient to enable latency improve-

ments via pruning, which allowed our algorithm to be compatible with a simple and fast

iterative pruning algorithm. Our NAS-free approach, which integrates latency-awareness

into the pruning process, is even faster and provides a similar level of performance with-

out additional hyperparameters.

The speed of our compression algorithm is also notable in comparison to previous

works. We enable fast latency optimization by relying on simple lookup tables and im-

portance metrics which add negligible run time to existing iterative pruning methods.

Our method optimized our selected GLUE tasks in 17 hours, while competing latency-

aware methods would have taken thousands of hours. Making compression methods

lightweight makes them far more accessible to researchers hoping to apply them in their

own work.

The latency modeling aspect of this work remains as the main challenge to improving

the latency minimization capabilities of LAP-NAS. When predicting the difference in la-

tency between two models, the latency model offered a relatively poor 64% mean squared

error. In addition, the ability of the latency model to accurately rank networks by latency

did not fully meet expectations with a Spearman rank correlation of 0.5. The precision and

accuracy of the latency prediction method contributed to the large difference in expected

and measured latency improvement of LAP-NAS.

This work opens several avenues of future research. The principal challenge is to

enable better improvements in on-device latency. One avenue is to improve layer-wise

latency measurement techniques to make the layer-wise model more accurate in predict-

ing pruned model latency. Another would be to modify LAP-NAS to consider a much

smaller design space, so a more accurate latency measurement method could be applied

without prohibitive cost. In the more general area of latency-aware DNN optimization,

LAP-NAS could be modified to prune smaller weight structures, such as blocks. It could

also adopt a different compression method entirely by applying decomposition or mixed

precision quantization to the model layers.

52

In conclusion, this work proposes a novel compression method with promising exper-

imental results and clear areas of concern for future work.

53

Bibliography

[1] Emma Strubell, Ananya Ganesh, and Andrew McCallum. “Energy and Policy Con-

siderations for Deep Learning in NLP”. In: CoRR abs/1906.02243 (2019). arXiv:

1906.02243. URL: http://arxiv.org/abs/1906.02243.

[2] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer. “How to Evaluate

Deep Neural Network Processors: TOPS/W (Alone) Considered Harmful”. In: IEEE

Solid-State Circuits Magazine 12.3 (2020), pp. 28–41.

[3] Jack Turner, José Cano, Valentim Radu, Elliot J. Crowley, Michaep O’Boyle, and

Amos Storkey. “Characterising Across-Stack Optimisations for Deep Convolutional

Neural Networks”. In: 2018 IEEE International Symposium on Workload Characteriza-

tion (IISWC). 2018, pp. 101–110. DOI: 10.1109/IISWC.2018.8573503.

[4] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once-for-All:

Train One Network and Specialize it for Efficient Deployment. 2019. arXiv: 1908.09791

[cs.LG].

[5] Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny

Zhou. MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices. 2020.

arXiv: 2004.02984 [cs.CL].

[6] Dimitrios Stamoulis, Ruizhou Ding, Di Wang, Dimitrios Lymberopoulos, Bodhi

Priyantha, Jie Liu, and Diana Marculescu. “Single-Path NAS: Designing Hardware-

Efficient ConvNets in less than 4 Hours”. In: CoRR abs/1904.02877 (2019). arXiv:

1904.02877. URL: http://arxiv.org/abs/1904.02877.

54

https://arxiv.org/abs/1906.02243
http://arxiv.org/abs/1906.02243
https://doi.org/10.1109/IISWC.2018.8573503
https://arxiv.org/abs/1908.09791
https://arxiv.org/abs/1908.09791
https://arxiv.org/abs/2004.02984
https://arxiv.org/abs/1904.02877
http://arxiv.org/abs/1904.02877

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. “BERT: Pre-

training of Deep Bidirectional Transformers for Language Understanding”. In: CoRR

abs/1810.04805 (2018). arXiv: 1810.04805. URL: http://arxiv.org/abs/

1810.04805.

[8] Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. “Structured Pruning of Deep

Convolutional Neural Networks”. In: CoRR abs/1512.08571 (2015). arXiv: 1512.

08571. URL: http://arxiv.org/abs/1512.08571.

[9] Song Han, Jeff Pool, John Tran, and William J. Dally. “Learning both Weights and

Connections for Efficient Neural Networks”. In: CoRR abs/1506.02626 (2015). arXiv:

1506.02626. URL: http://arxiv.org/abs/1506.02626.

[10] Jonathan Frankle and Michael Carbin. “The Lottery Ticket Hypothesis: Training

Pruned Neural Networks”. In: CoRR abs/1803.03635 (2018). arXiv: 1803.03635.

URL: http://arxiv.org/abs/1803.03635.

[11] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Prun-

ing Convolutional Neural Networks for Resource Efficient Inference. 2017. arXiv: 1611.

06440 [cs.LG].

[12] Victor Sanh, Thomas Wolf, and Alexander M. Rush. Movement Pruning: Adaptive

Sparsity by Fine-Tuning. 2020. arXiv: 2005.07683 [cs.CL].

[13] Christos Louizos, Max Welling, and Diederik P. Kingma. Learning Sparse Neural Net-

works through L0 Regularization. 2018. arXiv: 1712.01312 [stat.ML].

[14] Mitchell A. Gordon, Kevin Duh, and Nicholas Andrews. Compressing BERT: Study-

ing the Effects of Weight Pruning on Transfer Learning. 2020. arXiv: 2002 . 08307

[cs.CL].

[15] Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. “Analyz-

ing Multi-Head Self-Attention: Specialized Heads Do the Heavy Lifting, the Rest

Can Be Pruned”. In: CoRR abs/1905.09418 (2019). arXiv: 1905.09418. URL: http:

//arxiv.org/abs/1905.09418.

55

https://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1512.08571
https://arxiv.org/abs/1512.08571
http://arxiv.org/abs/1512.08571
https://arxiv.org/abs/1506.02626
http://arxiv.org/abs/1506.02626
https://arxiv.org/abs/1803.03635
http://arxiv.org/abs/1803.03635
https://arxiv.org/abs/1611.06440
https://arxiv.org/abs/1611.06440
https://arxiv.org/abs/2005.07683
https://arxiv.org/abs/1712.01312
https://arxiv.org/abs/2002.08307
https://arxiv.org/abs/2002.08307
https://arxiv.org/abs/1905.09418
http://arxiv.org/abs/1905.09418
http://arxiv.org/abs/1905.09418

[16] Paul Michel, Omer Levy, and Graham Neubig. “Are Sixteen Heads Really Better

than One?” In: CoRR abs/1905.10650 (2019). arXiv: 1905.10650. URL: http://

arxiv.org/abs/1905.10650.

[17] Ziheng Wang, Jeremy Wohlwend, and Tao Lei. Structured Pruning of Large Language

Models. 2019. arXiv: 1910.04732 [cs.CL].

[18] Angela Fan, Edouard Grave, and Armand Joulin. Reducing Transformer Depth on

Demand with Structured Dropout. 2019. arXiv: 1909.11556 [cs.LG].

[19] J. S. McCarley, Rishav Chakravarti, and Avirup Sil. Structured Pruning of a BERT-

based Question Answering Model. 2020. arXiv: 1910.06360 [cs.CL].

[20] Ashish Khetan and Zohar Karnin. schuBERT: Optimizing Elements of BERT. 2020.

arXiv: 2005.06628 [cs.CL].

[21] Hanxiao Liu, Karen Simonyan, and Yiming Yang. “DARTS: Differentiable Archi-

tecture Search”. In: CoRR abs/1806.09055 (2018). arXiv: 1806.09055. URL: http:

//arxiv.org/abs/1806.09055.

[22] Barret Zoph and Quoc V. Le. “Neural Architecture Search with Reinforcement Learn-

ing”. In: CoRR abs/1611.01578 (2016). arXiv: 1611.01578. URL: http://arxiv.

org/abs/1611.01578.

[23] Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. Efficient Neural

Architecture Search via Parameter Sharing. 2018. arXiv: 1802.03268 [cs.LG].

[24] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. “Rethink-

ing the Value of Network Pruning”. In: CoRR abs/1810.05270 (2018). arXiv: 1810.

05270. URL: http://arxiv.org/abs/1810.05270.

[25] Trevor Gale, Erich Elsen, and Sara Hooker. “The State of Sparsity in Deep Neural

Networks”. In: CoRR abs/1902.09574 (2019). arXiv: 1902.09574. URL: http://

arxiv.org/abs/1902.09574.

56

https://arxiv.org/abs/1905.10650
http://arxiv.org/abs/1905.10650
http://arxiv.org/abs/1905.10650
https://arxiv.org/abs/1910.04732
https://arxiv.org/abs/1909.11556
https://arxiv.org/abs/1910.06360
https://arxiv.org/abs/2005.06628
https://arxiv.org/abs/1806.09055
http://arxiv.org/abs/1806.09055
http://arxiv.org/abs/1806.09055
https://arxiv.org/abs/1611.01578
http://arxiv.org/abs/1611.01578
http://arxiv.org/abs/1611.01578
https://arxiv.org/abs/1802.03268
https://arxiv.org/abs/1810.05270
https://arxiv.org/abs/1810.05270
http://arxiv.org/abs/1810.05270
https://arxiv.org/abs/1902.09574
http://arxiv.org/abs/1902.09574
http://arxiv.org/abs/1902.09574

[26] Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao, Amir Gholami, Michael

W. Mahoney, and Kurt Keutzer. Q-BERT: Hessian Based Ultra Low Precision Quanti-

zation of BERT. 2019. arXiv: 1909.05840 [cs.CL].

[27] Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe Wasserblat. Q8BERT: Quantized

8Bit BERT. 2019. arXiv: 1910.06188 [cs.CL].

[28] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma,

and Radu Soricut. ALBERT: A Lite BERT for Self-supervised Learning of Language Rep-

resentations. 2020. arXiv: 1909.11942 [cs.CL].

[29] Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer. Squeeze-

BERT: What can computer vision teach NLP about efficient neural networks? 2020. arXiv:

2006.11316 [cs.CL].

[30] Zhanghao Wu, Zhijian Liu, Ji Lin, Yujun Lin, and Song Han. Lite Transformer with

Long-Short Range Attention. 2020. arXiv: 2004.11886 [cs.CL].

[31] Xiaoliang Dai, Peizhao Zhang, Bichen Wu, Hongxu Yin, Fei Sun, Yanghan Wang,

Marat Dukhan, Yunqing Hu, Yiming Wu, Yangqing Jia, Peter Vajda, Matt Uytten-

daele, and Niraj K. Jha. ChamNet: Towards Efficient Network Design through Platform-

Aware Model Adaptation. 2018. arXiv: 1812.08934 [cs.CV].

[32] Y. N. Wu, J. S. Emer, and V. Sze. “Accelergy: An Architecture-Level Energy Estima-

tion Methodology for Accelerator Designs”. In: 2019 IEEE/ACM International Con-

ference on Computer-Aided Design (ICCAD). 2019, pp. 1–8.

[33] Hang Qi, E. R. Sparks, and Ameet Talwalkar. “Paleo: A Performance Model for

Deep Neural Networks”. In: ICLR. 2017.

[34] Ermao Cai, Da-Cheng Juan, Dimitrios Stamoulis, and Diana Marculescu. NeuralPower:

Predict and Deploy Energy-Efficient Convolutional Neural Networks. 2017. arXiv: 1710.

05420 [cs.LG].

57

https://arxiv.org/abs/1909.05840
https://arxiv.org/abs/1910.06188
https://arxiv.org/abs/1909.11942
https://arxiv.org/abs/2006.11316
https://arxiv.org/abs/2004.11886
https://arxiv.org/abs/1812.08934
https://arxiv.org/abs/1710.05420
https://arxiv.org/abs/1710.05420

[35] Han Cai, Ligeng Zhu, and Song Han. “ProxylessNAS: Direct Neural Architecture

Search on Target Task and Hardware”. In: CoRR abs/1812.00332 (2018). arXiv: 1812.

00332. URL: http://arxiv.org/abs/1812.00332.

[36] Dimitrios Stamoulis, Ermao Cai, Da-Cheng Juan, and Diana Marculescu. “Hyper-

Power: Power- and Memory-Constrained Hyper-Parameter Optimization for Neu-

ral Networks”. In: CoRR abs/1712.02446 (2017). arXiv: 1712.02446. URL: http:

//arxiv.org/abs/1712.02446.

[37] Jiecao Yu, Andrew Lukefahr, David Palframan, Ganesh Dasika, Reetuparna Das,

and Scott Mahlke. “Scalpel: Customizing DNN pruning to the underlying hardware

parallelism”. In: 2017 ACM/IEEE 44th Annual International Symposium on Computer

Architecture (ISCA). 2017, pp. 548–560.

[38] Jack Turner, Elliot Crowley, Valentin Radu, José Cano, Amos Storkey, and Michael

O’Boyle. “Distilling with Performance Enhanced Students”. In: ArXiv abs/1810.10460

(2018).

[39] Valentin Radu, Kuba Kaszyk, Yuan Wen, Jack Turner, José Cano, Elliot J. Crowley,

Bjorn Franke, Amos Storkey, and Michael O’Boyle. “Performance Aware Convo-

lutional Neural Network Channel Pruning for Embedded GPUs”. In: 2019 IEEE

International Symposium on Workload Characterization (IISWC). 2019, pp. 24–34.

[40] Tien-Ju Yang, Andrew Howard, Bo Chen, Xiao Zhang, Alec Go, Mark Sandler, Vivi-

enne Sze, and Hartwig Adam. “NetAdapt: Platform-Aware Neural Network Adap-

tation for Mobile Applications”. In: Proceedings of the European Conference on Com-

puter Vision (ECCV). 2018.

[41] Tien-Ju Yang, Yu-Hsin Chen, and Vivienne Sze. Designing Energy-Efficient Convo-

lutional Neural Networks using Energy-Aware Pruning. 2017. arXiv: 1611 . 05128

[cs.CV].

[42] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. “ImageNet: A

Large-Scale Hierarchical Image Database”. In: CVPR09. 2009.

58

https://arxiv.org/abs/1812.00332
https://arxiv.org/abs/1812.00332
http://arxiv.org/abs/1812.00332
https://arxiv.org/abs/1712.02446
http://arxiv.org/abs/1712.02446
http://arxiv.org/abs/1712.02446
https://arxiv.org/abs/1611.05128
https://arxiv.org/abs/1611.05128

[43] Hanrui Wang, Zhanghao Wu, Zhijian Liu, Han Cai, Ligeng Zhu, Chuang Gan, and

Song Han. HAT: Hardware-Aware Transformers for Efficient Natural Language Process-

ing. 2020. arXiv: 2005.14187 [cs.CL].

[44] Xiaohu Tang, Shihao Han, Li Lyna Zhang, Ting Cao, and Yunxin Liu. “To Bridge

Neural Network Design and Real-World Performance: A Behaviour Study for Neu-

ral Networks”. In: Proceedings of Machine Learning and Systems. Ed. by A. Smola, A.

Dimakis, and I. Stoica. Vol. 3. 2021, pp. 21–37. URL: https://proceedings.

mlsys.org/paper/2021/file/02522a2b2726fb0a03bb19f2d8d9524d-

Paper.pdf.

[45] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan

N. Gomez, Lukasz Kaiser, and Illia Polosukhin. “Attention Is All You Need”. In:

CoRR abs/1706.03762 (2017). arXiv: 1706.03762. URL: http://arxiv.org/

abs/1706.03762.

[46] Sachin Mehta, Marjan Ghazvininejad, Srinivasan Iyer, Luke Zettlemoyer, and Han-

naneh Hajishirzi. “DeLighT: Very Deep and Light-weight Transformer”. In: CoRR

abs/2008.00623 (2020). arXiv: 2008.00623. URL: https://arxiv.org/abs/

2008.00623.

[47] Jay Alammar. The Illustrated Transformer. https://jalammar.github.io/illustrated-transformer,

June 2018.

[48] Trevor Gale, Erich Elsen, and Sara Hooker. “The State of Sparsity in Deep Neural

Networks”. In: CoRR abs/1902.09574 (2019). arXiv: 1902.09574. URL: http://

arxiv.org/abs/1902.09574.

[49] Prakhar Ganesh, Yao Chen, Xin Lou, Mohammad Ali Khan, Yin Yang, Deming

Chen, Marianne Winslett, Hassan Sajjad, and Preslav Nakov. Compressing Large-

Scale Transformer-Based Models: A Case Study on BERT. 2020. arXiv: 2002.11985

[cs.LG].

59

https://arxiv.org/abs/2005.14187
https://proceedings.mlsys.org/paper/2021/file/02522a2b2726fb0a03bb19f2d8d9524d-Paper.pdf
https://proceedings.mlsys.org/paper/2021/file/02522a2b2726fb0a03bb19f2d8d9524d-Paper.pdf
https://proceedings.mlsys.org/paper/2021/file/02522a2b2726fb0a03bb19f2d8d9524d-Paper.pdf
https://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2008.00623
https://arxiv.org/abs/2008.00623
https://arxiv.org/abs/2008.00623
https://arxiv.org/abs/1902.09574
http://arxiv.org/abs/1902.09574
http://arxiv.org/abs/1902.09574
https://arxiv.org/abs/2002.11985
https://arxiv.org/abs/2002.11985

[50] Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, and Qun Liu. DynaBERT:

Dynamic BERT with Adaptive Width and Depth. 2020. arXiv: 2004.04037 [cs.CL].

[51] Song Han, Huizi Mao, and William J. Dally. “Deep Compression: Compressing

Deep Neural Network with Pruning, Trained Quantization and Huffman Coding”.

In: 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto

Rico, May 2-4, 2016, Conference Track Proceedings. Ed. by Yoshua Bengio and Yann Le-

Cun. 2016. URL: http://arxiv.org/abs/1510.00149.

[52] Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of prun-

ing for model compression. 2017. arXiv: 1710.01878 [stat.ML].

[53] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,

Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davi-

son, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen

Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexan-

der M. Rush. “Transformers: State-of-the-Art Natural Language Processing”. In:

Proceedings of the 2020 Conference on Empirical Methods in Natural Language Process-

ing: System Demonstrations. Online: Association for Computational Linguistics, Oct.

2020, pp. 38–45. URL: https://www.aclweb.org/anthology/2020.emnlp-

demos.6.

[54] Kim F. Man, Kit Sang Tang, and Sam Kwong. “Genetic algorithms: concepts and

applications [in engineering design]”. In: IEEE Transactions on Industrial Electronics

43.5 (1996), pp. 519–534. DOI: 10.1109/41.538609.

[55] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. DistilBERT, a

distilled version of BERT: smaller, faster, cheaper and lighter. 2020. arXiv: 1910.01108

[cs.CL].

[56] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,

Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, and Jamie

Brew. “HuggingFace’s Transformers: State-of-the-art Natural Language Process-

60

https://arxiv.org/abs/2004.04037
http://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1710.01878
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://doi.org/10.1109/41.538609
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1910.01108

ing”. In: CoRR abs/1910.03771 (2019). eprint: 1910.03771. URL: http://arxiv.

org/abs/1910.03771.

[57] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-

maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Te-

jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-

tala. “PyTorch: An Imperative Style, High-Performance Deep Learning Library”. In:

Advances in Neural Information Processing Systems 32. Ed. by H. Wallach, H. Larochelle,

A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett. Curran Associates, Inc.,

2019, pp. 8024–8035. URL: http : / / papers . neurips . cc / paper / 9015 -

pytorch-an-imperative-style-high-performance-deep-learning-

library.pdf.

[58] Alex Renda, Jonathan Frankle, and Michael Carbin. “Comparing Rewinding and

Fine-tuning in Neural Network Pruning”. In: CoRR abs/2003.02389 (2020). arXiv:

2003.02389. URL: https://arxiv.org/abs/2003.02389.

[59] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R.

Bowman. GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language

Understanding. 2019. arXiv: 1804.07461 [cs.CL].

[60] Alex Warstadt, Amanpreet Singh, and Samuel R. Bowman. Neural Network Accept-

ability Judgments. 2019. arXiv: 1805.12471 [cs.CL].

[61] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning,

Andrew Ng, and Christopher Potts. “Recursive Deep Models for Semantic Com-

positionality Over a Sentiment Treebank”. In: Proceedings of the 2013 Conference on

Empirical Methods in Natural Language Processing. Seattle, Washington, USA: Asso-

ciation for Computational Linguistics, Oct. 2013, pp. 1631–1642. URL: https://

aclanthology.org/D13-1170.

[62] Kaggle.com. Quora Question Pairs — Kaggle. Online, Apr. 2017.

61

1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://arxiv.org/abs/2003.02389
https://arxiv.org/abs/2003.02389
https://arxiv.org/abs/1804.07461
https://arxiv.org/abs/1805.12471
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170

[63] William B. Dolan and Chris Brockett. “Automatically Constructing a Corpus of Sen-

tential Paraphrases”. In: Proceedings of the Third International Workshop on Paraphras-

ing (IWP2005). 2005. URL: https://aclanthology.org/I05-5002.

[64] Fuxun Yu, Zirui Xu, Tong Shen, Dimitrios Stamoulis, Longfei Shangguan, Di Wang,

Rishi Madhok, Chunshui Zhao, Xin Li, Nikolaos Karianakis, Dimitrios Lymberopou-

los, Ang Li, Chenchen Liu, Yiran Chen, and Xiang Chen. “Towards Latency-aware

DNN Optimization with GPU Runtime Analysis and Tail Effect Elimination”. In:

CoRR abs/2011.03897 (2020). arXiv: 2011.03897. URL: https://arxiv.org/

abs/2011.03897.

62

https://aclanthology.org/I05-5002
https://arxiv.org/abs/2011.03897
https://arxiv.org/abs/2011.03897
https://arxiv.org/abs/2011.03897

	Abstract
	Résumé
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Literature Review of Neural Network Compression
	Hardware-Agnostic Methods
	Pruning
	NAS
	Quantization
	Efficient Architectures

	Hardware-Aware Methods
	Hardware-aware Modeling and Optimization
	Pruning
	NAS

	DNN Performance Evaluation
	Hardware-agnostic Evaluation
	Hardware-aware Evaluation

	Conclusion

	Methods
	Optimization Problem
	Structured Pruning
	First Order Taylor Series Importance Metric
	Iterative Pruning
	Code Implementation

	Latency Optimization
	Pruned Neural Architecture Search
	Latency-aware Pruning

	Latency Modeling
	layer-wise Latency Model
	Latency Measurement Technique
	Latency Lookup Table

	Experiments
	Experimental Setup
	Experiment Descriptions
	LAP-NAS Latency Optimization
	Evaluating Latency Lookup Table

	Results
	LAP-NAS Latency Optimization
	LAP-NAS Runtime Comparison
	Latency-Aware Pruning

	Latency Lookup Table Evaluation
	Survey of Inference Platforms
	Discussion

	Conclusions

