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Key Points: 11 

• Long-term AERI measurements disclose distinctive DLR trends, demonstrating the 12 
advantages of the spectral data for climate monitoring. 13 

• The changes in clear/cloudy sky fractions offset DLR changes caused by warming 14 
and increases in greenhouse gases. 15 

• The radiance trend uncertainty mainly results from the natural variability, which 16 
emphasizes the need to continue the measurements.   17 
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Abstract 18 
Downwelling longwave radiation (DLR) is an important part of the surface energy budget. 19 
Spectral trends in the DLR provide insight into the radiative drivers of climate change. In this 20 
research, we process and analyze a 23-year downwelling longwave radiance record measured 21 
by the Atmospheric Emitted Radiance Interferometers (AERI) at the Southern Great Plains 22 
(SGP) site of the Atmospheric Radiation Program. Two AERIs were deployed at SGP with 23 
an overlapping observation period of about 10 years, which allows us to examine the 24 
consistency and accuracy of the measurements and to characterize discrepancies between 25 
them due to undetected instrumentation errors. Using the 23-year record, we analyze the all-26 
sky radiance trends in DLR, which reflects the associated surface warming trend at SGP 27 
during this same period and also the complex changes in meteorological conditions. For 28 
instance, the observed radiance in the CO2 absorption band follows closely the near-surface 29 
air temperature variations. The changes in the sky fraction of clear-sky and thick cloudy-sky 30 
scenes offset the radiance changes in the window band. Our analysis shows that the radiance 31 
trend uncertainty in the DLR record to date mainly results from the climate internal 32 
variability rather than the measurement error, which highlights the importance of continuing 33 
the DLR spectral measurements to unambiguously detect and attribute climate change. 34 

1 Introduction 35 
Longwave radiation is a key component of the atmospheric energy budget that drives 36 

climate change. At the top of the atmosphere (TOA), the outgoing longwave radiation (OLR), 37 
as well as its spectrally resolved radiance, is monitored by satellites with global coverage and 38 
long-term records (e.g., Liebmann & Smith, 1996; Stephens et al., 2012). This allows us to 39 
study the changes in OLR and to test climate models (e.g., Harries et al., 2001; Huang & 40 
Ramaswamy, 2009; Huang, Ramaswamy, Huang, et al., 2007; Huang, Ramaswamy, & 41 
Soden, 2007; Wielicki et al., 2002). Despite the continuous spatiotemporal coverage of OLR 42 
spectra, the compensating effects of greenhouse gas opacity and temperature warming make 43 
it difficult to detect climate change (Huang & Ramaswamy, 2009). 44 

Downwelling longwave radiation (DLR) emitted by the atmosphere is one key 45 
component in the surface energy budget (Stephens et al., 2012; Trenberth et al., 2009). 46 
Compared to the radiation budget at the TOA, the surface radiation budget is more uncertain 47 
and DLR is a main contributor to the uncertainty (Trenberth et al., 2009; Wild et al., 2012). 48 
This is largely due to the lack of global and long-term observations of DLR. DLR 49 
observations, especially spectrally resolved radiance, have been limited to specific locations. 50 
Despite the limited records, it has been demonstrated that DLR measurements are useful for 51 
understanding the surface energy balance and testing the climate models. For example, Lubin 52 
(1994) explained the super greenhouse effect using the observed DLR spectra over equatorial 53 
oceans; Feldman et al. (2015) used the DLR spectra to measure CO2 radiative forcing at the 54 
Southern Great Plains (SGP) and the North Slope Alaska sites; Shupe and Intrieri (2004), 55 
Kapsch et al. (2016), Huang et al. (2019), Sokolowsky et al. (2020) and a number of others 56 
diagnosed the DLR variability in relation to sea ice, clouds and other climate changes in polar 57 
regions. 58 

Climate change is driven by changes in energy balance. This leads us to an 59 
overarching question regarding the surface energy balance: can climate change be detected 60 
and understood by monitoring the DLR spectrum? One advantage of the DLR, compared to 61 
the OLR, is that the compensating effects mentioned earlier vanishes. In the DLR, the 62 
greenhouse gas opacity and temperature warming effects reinforce each other to increase 63 
DLR. This makes DLR a potentially advantageous means for monitoring climate change 64 
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(Huang, 2013). The signals from different meteorological variables such as temperature, 65 
greenhouse gases and clouds imprint different spectral signatures. This allows for a spectral 66 
fingerprinting of their changes (Huang et al., 2010). At the SGP site, the fifth generation 67 
European Centre for Medium-Range Weather Forecasts atmospheric reanalysis dataset, 68 
ERA5 (Hersbach et al., 2020), shows that there has been a significant warming in surface air 69 
temperature with a magnitude of  ~0.045 K/year between 1996 and 2018 (Figure 1). Can this 70 
warming be detected from the DLR spectral records? 71 

 72 
Figure 1. Warming trend at SGP. Shown here is the ERA5 monthly mean 2-meter air 73 
temperature time series at the SGP site (average of nine 0.25°x0.25° resolution grid boxes 74 
centered at: 97.5° W and 36.5° N) between 1996 and 2018. The anomaly is defined with 75 
respect to multi-year monthly mean of each calendar month. 76 

We have two primary objectives in this paper. First, we are interested in constructing 77 
a long-term monthly DLR spectral record based on the 23 years of measurements by the 78 
Atmospheric Emitted Radiance Interferometers (AERIs) installed at the SGP site of the 79 
Atmospheric Radiation Measurement (ARM) program of the U.S. Department of Energy. 80 
Two AERI instruments have been deployed at this site and have rendered 10 years of 81 
overlapping observations but with different sampling strategies (e.g., 3 min sky average every 82 
8 minutes vs multiple 20-s sky average observations every 4 minutes). We will examine the 83 
accuracy and consistency of the measurements and validate them against synthetic spectra 84 
simulated from collocated atmospheric measurements using a benchmark radiation model. 85 
Second, we will show the analysis of the long-term DLR spectral trends measured by the two 86 
AERIs for the period of 1996-2018. We are interested in whether the radiance trends are in 87 
concert with the warming temperature trend (Figure 1). This work will also verify the trends 88 
documented by Gero and Turner (2011) using the early years of the DLR record and analyze 89 
the contributions from different sky conditions.  90 
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2 Data and Methods 91 

2.1 AERI data processing 92 
The AERI is a Fourier transform spectrometer that measures the DLR radiance 93 

emitted from the atmosphere with good accuracy at high temporal and spectral resolution 94 
(Knuteson et al., 2004a, 2004b). The measurements cover the spectral range between 520 and 95 
3020 cm-1 with a resolution of 0.5 cm-1. Two high-emissivity blackbodies, a hot blackbody 96 
with a fixed temperature at around 60 degrees Celsius and another blackbody at ambient 97 
temperature (Knuteson et al., 2004a), are used for radiometric calibration based on the 98 
method of Revercomb et al. (1988). The long-term annual mean DLR spectra and the 99 
standard deviation of DLR spectra for different sky types (classification method explained 100 
later) at SGP site are shown in Figure 2. The main difference in DLR between different sky 101 
types is primarily in the window portion of the spectrum (between 800 – 1200 cm-1) shown in 102 
Figure 2a. The standard deviation of thick cloudy-sky DLR is found to be the smallest among 103 
all the different sky types in the window band (Figure 2b), which indicates small variability 104 
of the radiating temperature of the thick clouds. We focus on the mid-infrared spectral range 105 
from 520 to 1800 cm-1 in this paper.   106 

 107 
Figure 2. (a) Annual mean AERI spectra for different sky types at SGP. (b) Standard 108 
deviation of monthly mean AERI spectra for different sky types at SGP.  (RU: Radiance 109 
Units; 1 RU = 1 mW/(m2 sr cm-1))  110 

The two AERIs deployed at SGP have different observational periods and different 111 
sampling frequencies. AERI-01 operated from July 1995 to March 2014, while AERI-C1 has 112 
operated from February 2004 to present. C1 is the current name of the Central Facility 113 
location of SGP site which is used to be called E14, e.g. in Gero and Turner (2011). The two 114 
AERIs were deployed virtually side-by-side (within 5 meters of each other). Given their field 115 
of view (FOV) of 1.3 degrees, both instruments view essentially the same portion of the sky. 116 



manuscript submitted to JGR: Atmospheres 
 
The overlapping observations make it possible to test the accuracy and consistency of the 117 
measurements. However, the two instruments differ with respect to their sampling frequency. 118 
AERI-01 measures one DLR spectrum approximately every 8 minutes; its measurement cycle 119 
includes a 200-second sky-dwell period (Knuteson et al., 2004b) and the rest of the cycle is 120 
used for viewing the blackbodies for calibration. AERI-C1 uses a rapid mode with a ~20-121 
second sampling cycles (Turner et al., 2006). Such differences in the measurements 122 
necessitate appropriate procedures to homogenize the data from the two AERIs for inter-123 
comparisons and trend analyses.  124 

 125 
Figure 3. Data processing flowchart. Yellow and purple squares represent AERI-01 and 126 
AERI-C1 DLR data respectively. Blue squares represent important data processing steps. 127 
Pink squares represent radiative transfer model simulations. (see texts for the details)  128 

Figure 3 shows the flowchart of AERI data processing adopted in this paper. First, 129 
rigorous quality control is performed on the data to retain reliable observations. During the 130 
long history of observations at the SGP site, many factors have caused errors including: the 131 
contamination of the scene mirror, malfunction of the interferometer, the failure of the 132 
detector temperature sensor, and so on. We first discard all the erroneous data based on the 133 
AERI quality control reports from the ARM program 134 
(https://adc.arm.gov/discovery/#/results/instrument_class_code::aeri). In addition, similar to 135 
the quality control method described in Turner and Gero (2011),  the hatch status and the sky 136 
view radiance variability are also implemented.  137 
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After the Quality Control step, we average the AERI-C1 spectra over 8-min intervals, 138 
to be consistent with the AERI-01 sampling period. Then, in the Sky Classification step, we 139 
apply a machine learning algorithm (detailed below) to classify the sky types (clear, thin and 140 
thick clouds) based on the 8-min mean radiance spectra. Next, we take hourly averages of the 141 
radiance data and verify proper diurnal sampling in each month to ensure no missing data for 142 
any 24-hour period. Then the monthly mean spectra are obtained by averaging the 24-hourly 143 
spectra of each day during the given month. Monthly means are discarded when the count of 144 
hourly spectra is below 400 (~55%).  145 

Some channels in the center of CO2 absorption band (around 667 cm-1) and water 146 
vapor absorption band (1300 – 1800 cm-1) in which the near-surface atmosphere is so opaque 147 
that the channels are essentially uncalibrated are discarded based on the criterion that the 148 
gaseous optical depth for a 1-meter layer of atmosphere at the surface is above 0.5 in the 149 
Optical Depth Screening step. Finally, the monthly anomaly spectra are obtained by 150 
subtracting the long-term monthly spectra of each calendar month (which effectively removes 151 
the seasonal cycle). The results are illustrated in Figure 4. The long-term trends in the DLR 152 
spectra are analyzed based on the monthly anomaly spectra with the help of synthetic clear-153 
sky DLR to differentiate the measurements of the two AERIs during the overlapping period 154 
using the method detailed in Appendix A.  155 

 156 
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 157 
Figure 4. Monthly anomaly of AERI-observed DLR spectra and hourly spectra count in each 158 
month. 159 

In most months, the number of hourly mean spectra is larger than 700 (Figure 4c), 160 
which means the instruments operated for >95% of the time. The strongest monthly DLR 161 
anomalies are seen in the window band (800 – 1200 cm-1). The pattern of the DLR radiance 162 
anomalies in the overlapping observational period is very similar between AERI-01 and 163 
AERI-C1. 164 

2.2 Sky classification 165 
Clouds strongly influence the DLR flux and spectra, especially in the atmospheric 166 

window (800 – 1200 cm-1). In order to identify the causes of the DLR trends, we separate the 167 
clear-sky spectra from the cloudy ones and to examine their trends separately.  168 
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A sky classification model is developed using a machine learning method, the k-169 
nearest neighbor (k-NN) algorithm(Cunningham & Delany, 2020). The 8-min AERI-01 and 170 
AERI-C1 data between March 1, 2011 to July 31, 2012 are used to train the k-NN model. We 171 
use the same inputs and truth data from Raman Lidar as in Turner and Gero (2011). The k-172 
NN classification achieves an accuracy of 94.8%. This algorithm determines the sky to be 173 
clear or cloudy, while the cloudy sky is then further classified to be thin-cloud when the 70-174 
minute averaged 985 cm-1 brightness temperature is lower than 250K; otherwise, it is 175 
classified to be thick-cloud. We also tried a classical backpropagation gradient-descent 176 
classification algorithm as used by Turner and Gero (2011), which achieves an accuracy of 177 
90%. The resulting trends are not sensitive to the classification method chosen. The results 178 
presented below are based on the k-NN algorithm. 179 

Based on the classification of the thin-cloud and thick-cloud, the thick-cloud emitting 180 
temperature range is smaller than that for thin-cloud and clear-sky, primarily because thick-181 
clouds are opaque clouds relatively close to the surface while thin-cloud may be either 182 
partially cloudy scenes or clouds higher in the troposphere.  This is why the thick-cloud 183 
classification has the smallest standard deviation of DLR among all three different sky 184 
conditions. 185 

2.3 Homogenization 186 
During the overlapping observational period, discrepancies larger than the 187 

documented AERI absolute calibration uncertainty (Knuteson et al., 2004a) were noticed 188 
between the monthly mean spectra observed by AERI-01 and AERI-C1. Large radiance 189 
discrepancies occur especially in the window band and are found to mainly come from clear-190 
sky scenes (see Figure B1 and discussions in Appendix B). This suggests that the 191 
discrepancies likely result from calibration(Rowe, Neshyba, Cox, et al., 2011; Rowe, 192 
Neshyba, & Walden, 2011) and other undetected errors. In order to avoid discarding 193 
meaningful data in the trend analysis, we simulate the clear-sky DLR spectra using a 194 
radiation model from the collocated atmospheric measurements and use the synthetic spectra 195 
as a reference to assign proper weights in combining the data of AERI-01 and AERI-C1, 196 
based on the findings of previous radiance closure studies (e.g., Turner et al., 2004) that 197 
demonstrated high accuracy in such synthetic spectra. 198 

The radiation model used here is the Line-by-Line Radiative Transfer Model 199 
(LBLRTM v12.9) (Clough et al., 2005). To synthesize the clear sky DLR spectra at SGP, we 200 
use the temperature and water vapor profiles from the ARM Balloon-Borne Sounding System 201 
(https://www.arm.gov/capabilities/instruments/sonde). The water vapor mixing ratio profiles 202 
derived from radiosonde are scaled with a height-independent factor to match the precipitable 203 
water vapor determined by the microwave radiometer at SGP site. This approach has been 204 
used to compensate the dry-bias issue found in the radiosonde water vapor data (Holdridge, 205 
2020; Revercomb et al., 2003; Turner et al., 2003; Wang et al., 2002). CO2 and CH4 206 
concentration profiles are obtained from the CarbonTracker website 207 
(http://carbontracker.noaa.gov, Jacobson et al., 2020; Peters et al., 2007). O3 concentration 208 
profiles are adjusted from NASA’s Modern-Era Retrospective analysis for Research and 209 
Applications, Version 2 (MERRA-2, Gelaro et al., 2017) ozone product to get a better 210 
radiative closure with AERI observed DLR (see more details in Appendix B). We use a 200-211 
level input profile for the LBLRTM simulations. The first and second levels are at 0m and 212 
10m above ground level respectively. The depth of each subsequent layer is increased by 2% 213 
relative to the previous one.  214 
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As radiosonde observations of near-surface layers are essential to the DLR spectra, 215 
the AERI data are selected to match the radiosonde launch time. We keep the spectra whose 216 
observation time is within 10 minutes of the radiosonde launch time. For each month, about 217 
70 clear sky downwelling longwave spectra are simulated on average. The absolute radiance 218 
biases (𝑅!"#$) are determined as the monthly mean radiance differences between the synthetic 219 
and observed DLR spectra.  220 

During the overlapping observational period, the monthly mean DLR is combined 221 
from AERI-01 and AERI-C1 observed DLR according to Equation (1) and Equation (2) by 222 
assigning a ratio	𝑟, which represents the proximity of the AERIs observed DLR spectra to the 223 
synthetic DLR spectra. In Equation (2), 𝑅%&'()*+ and 𝑅%&'(),+ represent the observed AERI-224 
01 and AERI-C1 monthly mean DLR respectively.  225 

𝑟 =
𝑅!"#$(%&'()*+	)/0/'12)
𝑅!"#$(%&'(),+	)/0/'12)

(1) 226 

𝑅 = 𝑅%&'()*+ ×
1

1 + 𝑟
+ 𝑅%&'(),+ ×

𝑟
1 + 𝑟

(2) 227 

2.4 Trend detection 228 
A weighted linear regression method is applied to detecting the DLR radiance trends. 229 

We develop our weighted linear regression model based on the regression model developed 230 
by Tiao et al. (1990) and Weatherhead et al. (1998).  231 

This model determines the radiance trend, 𝜔,, in each AERI channel as: 232 

𝜔, =
- 𝑊4/𝑡 − 𝑡2𝑦4⋆

1
46+

1 − 𝜙
12 - 𝑊4(𝑡 − 𝑡)7

1
46+

(3) 233 

In Equation (3), 𝑇 represents the total number of months. 𝜙 is the autocorrelation in 234 
the noise of the time series considering a first-order autoregressive (AR1) process, and 𝑦4⋆ 235 
represents the transformed radiance anomalies (see Figure A1) after removing the effect of 236 
the AR1 process (see details in Appendix A). 𝑊4 represents the weights which is determined 237 
as the intra-month variability of the all-sky observed DLR, shown in Equation (4): 238 

𝑊4 =
𝑁4
𝜎47

(4) 239 

where 𝑁4 and 𝜎47 represent the number and variance of hourly observations in each month. 240 
Large variability of DLR radiance results in smaller weights. We use the same weights for all 241 
sky types.  242 

Along with the magnitude of the trend it is also important to determine the associated 243 
uncertainty, 𝜎89 , which is shown in Equation (5). Here, we mainly account for two sources of 244 
uncertainty. First, there is the uncertainty arising from the internal climate variability. This is 245 
measured by the term in Equation (5) associated with 𝜎: and 𝜙. Second, there is the 246 
uncertainty arising from instrumentation errors measured by the term in Equation (5) 247 
associated with 𝜎;. We assume that two sources of uncertainty are independent of each other. 248 
The derivation of Equation (5) is given in Appendix A.  249 

𝜎89 =
12:- 𝑊4

7(𝑡 − 𝑡)71
46+

- 𝑊4(𝑡 − 𝑡)7
1
46+

;𝜎:7
1 + 𝜙
1 − 𝜙 + 𝜎;

7 (5) 250 
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The derived 𝜎89  in Equation (5) is referred to as the standard error of the trend 251 
magnitude. It is used to test whether the trends deviate significantly from 0 at the 95% 252 
significance level. A trend is considered to be significant at the 95% significance level if the 253 
trend magnitude is roughly larger than 2𝜎89 . In following figures, the uncertainty envelope 254 
corresponds to the 95% confidence interval.  255 

3 Results 256 

3.1 All-sky radiance trends 257 
The homogenized downwelling longwave radiance records have been constructed, 258 

based on monthly averaged AERI-01 data from 1996 to 2013 and AERI-C1 data from 2004 259 
to 2018. In total, we have 23 years of DLR data at SGP for analysis.  260 

It can be inferred from the monthly anomalies shown in Figure 4 that the DLR 261 
radiance trends depend on the analysis period as the anomalies do not show monotonic 262 
changes over this 23-year period. It is noticeable that AERI-01 data (Figure 4a) show 263 
decreasing trends in window-band (800-1200 cm-1) DLR, which is consistent with the 264 
negative trends detected in Gero and Turner (2011). Including AERI-C1 data (Figure 4b) 265 
affords a longer DLR spectral record; the latest few years are especially characterized by 266 
warm anomalies. 267 

 268 
Figure 5. The all-sky radiance trends. Each dot represents the trend at a different AERI 269 
channel and the trends in reds pass the 95% significance test while the grey ones do not. The 270 
shading in the figure is the 95% confidence interval.  271 

The long-term all-sky radiance trends over the period of 1996-2018 are shown in 272 
Figure 5. The all-sky DLR trends have different features in different spectral bands. In the 273 
CO2 absorption band centered around 667 cm-1, the trends are generally positive (increasing) 274 
and are statistically significant in the wings but not at the center. In the window band (800-275 
1200 cm-1), there are no statistically significant trends. In the water vapor absorption band  276 
(1300-1800 cm-1), similar to the CO2 absorption band, the radiance trends are generally 277 
positive and statically significant.  278 

DLR radiance in different AERI channels are controlled by different meteorological 279 
variables. To illustrate this point, Figure 6a shows the correlation coefficients between the 280 
deseasonalized and detrended monthly anomalies in the radiance (brightness temperature) 281 
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spectra from the two AERIs and surface air temperature from ERA5. Note that AERI-01 and 282 
AERI-C1 have different observational periods, which can cause the correlation coefficients 283 
difference between AERI-01 and AERI-C1 especially in the window band. In the center of 284 
the CO2 absorption band (667 cm-1) and channels corresponding to strong H2O absorption 285 
lines, the correlation coefficient is close to one, indicating that the variance in the radiance in 286 
these channels is primarily controlled by the surface air temperature. This is because the 287 
atmospheric absorption is strongly saturated in these channels and thus they are less sensitive 288 
to variations in the concentrations of the gases themselves. In comparison, at the wings of the 289 
CO2 band and the weaker H2O absorption lines, the atmospheric absorption is not saturated 290 
so that variability in DLR radiance is subject to the variation in the temperature and gas 291 
concentration, meaning that the trends both in temperature and gas concentrations drive the 292 
radiance to increase, which explains the stronger and statistically more significant trend 293 
signals in these channels, as seen in Figure 5.  294 

 295 
Figure 6. (a)The correlation coefficient between the AERI observed brightness temperature 296 
spectra and near surface air temperature from ERA5. (b-e) The time series of the 297 
deseasonalized brightness temperature and near surface air temperature in four AERI 298 
channels. In each title, the values in the brackets are the correlation coefficients between near 299 
surface air temperature from ERA5 and observed brightness temperature by AERI-01 and 300 
AERI-C1 respectively.  301 

In Figure 6, the time series of the brightness temperature in four selected AERI 302 
channels: a CO2 channel at 655.72 cm-1, a window channel at 887.63 cm-1, a O3 channel at 303 
1023.60 cm-1, and a H2O channel at 1447.89 cm-1 (Figure 6b to 6e) are displayed. There is 304 
good consistency between the AERI-01 and AERI-C1 observed brightness temperature in all 305 
four channels. The all-sky brightness temperature at the CO2 channel follows closely with the 306 
surface air temperature from ERA5 (Figure 6b). The near-surface warming of 0.045 K/year 307 
(Figure 1) is equivalent to 0.071 RU/year at this channel, which is close to the observed all-308 
sky radiance trend of ~0.072 RU/year (averaged trend between nearby 5 channels).  In the 309 
H2O channel, the brightness temperature measured by the AERIs also follows the near 310 
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surface air temperature (Figure 6e) but not as close as the CO2 channel (Figure 6b). In 311 
contrast, the brightness temperature anomalies in the window and O3 channels have larger 312 
fluctuations than that at the CO2 and H2O channels and are evidently decoupled from the near 313 
surface air temperature (Figure 6c and 6d). 314 

That the radiance trend is reinforced by the warming and opacity effects in the weak 315 
absorption channels leads to benefits of using these AERI measurements in climate change 316 
detection.  Assuming the trend magnitude and uncertainty determined from the 23-year 317 
records hold unchanged into future, the years to detect a significant trend, 𝑛⋆,  at 90% 318 
significance level is: 319 

𝑛⋆ ≈
3.3𝜎89
|𝜔,| × 23	𝑦𝑒𝑎𝑟𝑠 (6) 320 

where 𝜔, is the 23-year trend determined by Equation (3) and 𝜎89  is the trend 321 
uncertainty determined by Equation (5). Based on this equation, approximately 30 years are 322 
needed to detect a significant trend in the 2-meter air temperature from the ERA5 data shown 323 
in Figure 1. In comparison, Figure 7 shows earlier detectability of the radiance trends in weak 324 
absorption channels, such as in the wings of the CO2 band and in the weak absorption 325 
channels in the H2O vibration-rotational band. We can conclude that it is advantageous to 326 
monitor the DLR radiance in these channels for climate change detection.  327 

 328 
Figure 7. Trend detectability. (a) Time to detect (T2D) radiance trends at 90% significance 329 
level in different AERI channels; in comparison, the T2D for the 2-meter temperature from 330 
the ERA5 reanalysis is about 30 years. (b) The T2D (color-coded), in relation to atmospheric 331 
absorption strength, measured by the optical depth of a 1-meter-thick atmospheric layer near 332 
the surface. The horizontal line marks optical depth of 0.5.   333 

Trend detection in the radiance record is determined by comparing the trend signal to 334 
the uncertainties arising from different causes. Here, based on Equation (5), we account for 335 
uncertainties arising from climate internal variability (𝜎:) and also instrumentation error (𝜎;) 336 
(Figure 5). The overall uncertainty is notably large in the window band for the all-sky 337 
condition (Figure 5) or for different sky conditions (Figure 9), which impedes the detection of 338 
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any significant radiance trends in this especially variable spectral band. The analysis of the 339 
respective parameters in Appendix A (see Figure A2) indicates the climate internal variability 340 
dominates the instrumentation error when shaping the overall uncertainty envelope in Figure 341 
5. It is found that the influence of the autoregressive process also does not strongly influence 342 
the trend uncertainty, as evident by the small value of 𝜙, especially in the window band. We 343 
conclude that the trend uncertainty mainly arises from the internal climate variability. 344 

3.2 Trends in different cloud conditions 345 
The results presented in the previous subsection demonstrate that the radiance trends 346 

in the window band are different from the greenhouse gas absorption bands; the window 347 
band also is prone to high levels of uncertainty due to the marked variability of the signal that 348 
ranges from small values in clear sky conditions to large values when opaque low-altitude 349 
clouds are overhead. Given the fact that clouds are a significant factor that influences this 350 
band (see Figure 2), we analyze the radiance trends under different cloud conditions in this 351 
subsection.   352 

The fraction of time that each sky conditions occur in one month (referred as ‘sky 353 
fractions’) based on the hourly spectra are shown in Figure 8. First, there is a good agreement 354 
between AERI-01 and AERI-C1 in the sky fraction monthly time series, with correlation 355 
coefficients of 0.94, 0.89, and 0.94 for clear-sky, thin cloudy-sky, and thick cloudy-sky, 356 
respectively. The clear-sky fraction between June 1996 and May 2010 from our classification 357 
is around 42% which is comparable to what was found by Turner and Gero (2011).  358 

The clear-sky fraction increases at a rate of 0.17±0.09 % per year, while the thick 359 
cloudy-sky fraction decreases at a rate of -0.18±0.09 % per year. There is no significant trend 360 
for thin cloudy-sky fraction. The reason why the sky fraction trends for different sky 361 
conditions are different warrant further investigation in future work.  362 

 363 
Figure 8. The monthly sky fractions of different sky conditions, categorized based on 8-364 
minute mean spectra at SGP site. The overlapping observational period is between the two 365 
vertical thick black lines. 366 
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Trends in DLR radiance for different sky types based on the k-NN classifier are 367 
shown in Figure 9. In the window band, the clear-sky and thin cloudy-sky trends are positive, 368 
while the thick cloudy-sky trends are negative; however, none of those trends is statistically 369 
significant from zero. In the spectral regions outside the window band, the trends for different 370 
sky types are generally positive and have the same features as the all-sky scene.  371 

 372 
Figure 9. The trends in DLR radiance for different sky types at SGP site. Each dot represents 373 
the trend at a different AERI channel and the trends in red pass the 95% significance test 374 
while the grey ones do not. The shading in the figure is the 95% confidence interval.  375 

The all-sky DLR trends is caused by changes in both sky fraction and radiance of 376 
each sky type. We use equation (7) to separate the contributions from these factors, in which 377 
𝑅#<< represents the all-sky radiance, 𝑓" and 𝑅" represent the sky fraction and mean radiance 378 
for different sky types.  379 

𝑑𝑅#<<
𝑑𝑡

=G
𝑑𝑓"
𝑑𝑡

𝑅" +G
𝑑𝑅"
𝑑𝑡

𝑓" 	+ 	𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 (7) 380 

The results of decomposed trends based on Equation (7) are shown in Figure 10. The 381 
small residual term (purple line in Figure 10a), which comes from the nonlinear effects, 382 
suggests that the overall all-sky radiance trends can be well explained by Equation (7). In the 383 
window band, the overall radiance trends are a result of the compensation between the sky 384 
fraction change (orange line in Figure 10a) and the radiance change (yellow line in Figure 385 
10a). While in the CO2 absorption band (centered at 677 cm-1) and H2O absorption band 386 
(1300 – 1800 cm-1), the overall radiance trends are caused by radiance change which is due 387 
almost entirely to the increases in the near-surface temperature because the atmosphere is 388 
already too opaque to reflect any gas concentration changes. 389 

The overall radiance trends caused by sky fraction changes (orange line in Figure 10a) 390 
are a result of the compensation between changes in the clear-sky (blue line in Figure 10b) 391 
and the thick cloudy-sky fraction (yellow line in Figure 10b). In the CO2 absorption band 392 
(centered at 677 cm-1) and H2O absorption band (1300 – 1800 cm-1), there is a perfect 393 
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compensation resulting in almost no trends. In the window band, the negative trends are 394 
mainly caused by the thick cloudy-sky fraction change.  395 

In the window band (800 -1200 cm-1), the overall radiance trends caused by radiance 396 
change (yellow line in Figure 10a) result from the compensation between positive clear-sky 397 
and thin cloudy-sky radiance change trends and negative thick-cloudy sky radiance change 398 
trends. While in the CO2 absorption band (centered at 677 cm-1) and H2O absorption band 399 
(1300 – 1800 cm-1), the radiance changes for the three sky types all contribute similarly to the 400 
overall radiance trends caused by radiance change.  401 

 402 
Figure 10. The all-sky DLR trends decomposed to the contributions from the sky fraction 403 
and radiance changes of different sky types.  (a) The blue line represents the calculated all-404 
sky DLR trends which is the same as that from Figure 5. Orange and yellow lines represent 405 
the contribution from sky fraction change and radiance change determined using equation (7) 406 
respectively. The purple line is the residual term from Equation (7); (b) The all-sky DLR 407 
trends caused by sky fraction change. The blue, orange, and yellow lines represent the 408 
contributions from clear-sky, thin cloudy-sky, and thick cloudy-sky fraction changes 409 
respectively; (c)The all-sky DLR trends caused by radiance change. The blue, orange, and 410 
yellow lines represent the contributions from clear-sky, thin cloudy-sky, and thick cloudy-sky 411 
radiance changes respectively. 412 

4 Discussion and Conclusions 413 
In this study, a long-term record of DLR at SGP site have been constructed for 414 

analyzing the DLR trends, based on a weighted linear regression method which considers 415 
both natural climate variability and measurement error. Compared to previous studies, our 416 
analysis is based on a longer DLR record combined from the two AERIs at the SGP site and 417 
makes use of synthetic DLR data in validating and differentiating the AERI measurements 418 
over their overlapping observational period. In addition, we quantitatively decompose the 419 
overall radiance trends due to the contributions from sky fraction change and radiance 420 
change.  421 
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The trends in DLR in different spectral ranges have different features. The trends are 422 
generally positive in the CO2 and H2O absorption bands, while no statistically significant 423 
trends are detected in the window band (Figure 5). We find that in the centers of the CO2 and 424 
H2O absorption bands, the radiance are controlled by the near-surface air temperature (Figure 425 
6) because of the strong saturated atmospheric absorption. The sensitivity of DLR to near-426 
surface air temperature indicates the potential of DLR to monitor climate change. In the 427 
wings of these absorption bands, both the near surface atmospheric warming and the increase 428 
of the abundance of these trace gases contribute to the radiance trends (Feldman et al., 2015), 429 
which makes climate trend signal more readily detectable, as hypothesized by Huang (2013). 430 
In the window band, the radiance are decoupled from the near surface air temperature (Figure 431 
6) because of the impact of sky-fraction changes of different scenes (clear and cloudy-skies). 432 

We find that the sky fraction change and the radiance change led to compensating 433 
effects on the DLR trends. This compensation results in weakly (statistically insignificant) 434 
negative radiance trends in the window band (Figure 10). In contrast, the radiance trends are 435 
dominated by the radiance change in the CO2 and H2O absorption bands, which are similar in 436 
all three sky types.  437 

The influences of both climate natural variability and measurement error are 438 
considered when determining the uncertainty of the trend magnitude (Equation (5), Figure 439 
A2). We find that for all the sky types, the majority of the uncertainty comes from the natural 440 
variability. This underlines the necessity of continuous DLR measurements to ascertain the 441 
DLR trends, especially in the mid-infrared window (Figure 5).  442 

The two AERIs at the SGP site provide us an excellent opportunity to test the 443 
accuracy and consistency of the instruments. The discrepancies between the two AERIs in 444 
the overlapping periods may have come from calibration error and other undetected 445 
instrumentation errors. In this study, we use synthetic data to differentiate and combine the 446 
two AERIs’ observations. Further investigation is required to understand the origin of the 447 
discrepancies and therefore to assure the measurement accuracy.  448 

This paper has focused on the detection, as opposed to attribution, of the DLR trends. 449 
In the clear-sky case, atmospheric temperature and radiative gas concentration changes 450 
(primarily in water vapor) are likely the main contributors to the DLR radiance changes. As 451 
for the cloudy-sky case, changes in both the atmospheric states and cloud properties may 452 
contribute to the DLR radiance changes. Future work is warranted to understand and 453 
quantitatively attribute the DLR trends disclosed in this paper to different meteorological 454 
variables.  455 
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Appendix A: Trend Detection 470 

We first summarize the linear trend model and trend estimation from Tiao et al. 471 
(1990) and Weatherhead et al. (1998) in A.1 and A.2. We adopt the same notation in their 472 
papers. Then we add the measurement error term to the trend detection in A.3 following Tiao 473 
et al. (1990).   474 

A.1 Basic linear trend modeling 475 
In order to detect the linear trend, we first construct a simple model that describes the 476 

monthly mean radiance 𝑌4 as: 477 

𝑌4 = 𝜇 + 𝑆4 + 𝜔𝑋4 + 𝑁4 , 𝑡 = 1,⋯ , 𝑇 (𝐴1) 478 

where 𝜇 is a constant term,	𝑆4 represents the seasonal component, 𝜔 is the trend magnitude to 479 
be determined, 𝑋4 =

4
+7

 represents time measured in the units of year, 𝑁4 represents the 480 
unexplained portion of the data, i.e. the noise, and 𝑇 represents the length of data set in 481 
months. 482 

The seasonal component 𝑆4 is determined by taking long-term average of each 483 
calendar month. This component is subsequently removed from the monthly mean. 484 

𝑦4 = 𝑌4 	− 	𝑆4 = 𝜇 + 𝜔𝑋4 + 𝑁4 , 𝑡 = 1,⋯ , 𝑇 (𝐴2) 485 

The noise 𝑁4 is assumed to be autoregressive of the order of 1 (AR1): 486 

𝑁4 = 𝜙𝑁4)+ + 𝜖4 (𝐴3) 487 

where 𝜖4 are the random white noise with zero mean and common variance 𝜎=7, 488 
𝜖4~𝑊(0, 𝜎=7). The autocorrelations in the noise come from various natural factors. 𝜙 is 489 
determined as the autocorrelation coefficient of the AR1 process after removing from 𝑦4 a 490 
linear trend component obtained by regressing 𝑦4 to time using a simple weighted linear least 491 
squares method (i.e., neglecting the AR1). The all-sky 𝜙 is shown in Figure A2a.  492 

The variance of the noise 𝑁4 can also be determined from the detrended 𝑦4 time 493 
series: 494 

𝜎:7 = 𝐶𝑜𝑣(𝑁4 , 𝑁4) = 𝐶𝑜𝑣(𝜙𝑁4)+ + 𝜖4 , 𝜙𝑁4)+ + 𝜖4)
= 𝜙7𝐶𝑜𝑣(𝑁4)+, 𝑁4)+) + 𝐶𝑜𝑣(𝜖4 , 𝜖4)

= 𝜙7𝜎:7 + 𝜎=7
(𝐴4) 495 

Thus, 496 

𝜎:7 =
𝜎=7

1 − 𝜙7
(𝐴5) 497 

A.2 Trend estimation with weights 498 

Given 𝜙, to obtain the trend estimation, we consider a transformed model: 499 
𝑦4⋆ = 𝑦4 − 𝜙𝑦4)+

= 𝜇(1 − 𝜙) + 𝜔(𝑋4 − 𝜙𝑋4)+) + 𝜖4

= 𝜇(1 − 𝜙) + 𝜔 Y
𝑡 − 𝜙(𝑡 − 1)

12
Z + 𝜖4

= 𝜇(1 − 𝜙) +
𝜔𝜙
12

+
𝜔(1 − 𝜙)𝑡

12
+ 𝜖4

= 𝜇⋆ + 𝜔𝑡⋆ + 𝜖4

(𝐴6) 500 
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where 𝜇⋆ = 𝜇(1 − 𝜙) + 8>

+7
 and 𝑡⋆ = (+)>)4

+7
. Thus, in the transformed model, there is no 501 

more noise term 𝑁4. 502 

The transformed DLR radiance 𝑦4⋆ is shown in Figure A1. 503 

 504 
Figure A1. Transformed monthly anomaly of AERI-observed radiance based on Equation 505 
(A6).  506 

According to the weighted least square estimation: 507 

𝜔, =
G 𝑊4/𝑡⋆ − 𝑡⋆2𝑦4⋆

1

46+

G 𝑊4(𝑡⋆ − 𝑡⋆)7
1

46+

	=
- 𝑊4/𝑡 − 𝑡2𝑦4⋆

1
46+

1 − 𝜙
12 - 𝑊4(𝑡 − 𝑡)7

1
46+

	 (𝐴7) 508 
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where 𝑊4 represents the weights determined according to Equation (4), 𝑦4⋆[[[[ =
∑ @!A!⋆#
!$%
∑ @!#
!$%

, 𝑡⋆\ =509 
∑ @!4⋆#
!$%
∑ @!#
!$%

, and 𝑡̅ = ∑ @!4#
!$%
∑ @!#
!$%

. 510 

The variance of the estimated 𝜔: 511 

𝜎89 7 = 𝑉𝑎𝑟(𝜔,) = 𝑉𝑎𝑟 _
- 𝑊4/𝑡 − 𝑡2𝑦4⋆

1
46+

1 − 𝜙
12 - 𝑊4(𝑡 − 𝑡)7

1
46+

` =
𝑉𝑎𝑟 a- 𝑊4/𝑡 − 𝑡2𝑦4⋆

1
46+ b

(1 − 𝜙12 )7 a- 𝑊4(𝑡 − 𝑡)7
1
46+ b

7512 

=
𝑉𝑎𝑟 a- 𝑊4/𝑡 − 𝑡2𝜖4

1
46+ b

(1 − 𝜙12 )7 a- 𝑊4(𝑡 − 𝑡)7
1
46+ b

7 =
- [𝑉𝑎𝑟[𝑊4/𝑡 − 𝑡2𝜖4]]

1
46+

(1 − 𝜙12 )7 a- 𝑊4(𝑡 − 𝑡)7
1
46+ b

7513 

=
𝑉𝑎𝑟(ϵ4)- 𝑊4

7(𝑡 − 𝑡)71
46+

(1 − 𝜙12 )7 a- 𝑊4(𝑡 − 𝑡)7
1
46+ b

7 =
𝜎=7- 𝑊4

7(𝑡 − 𝑡)71
46+

(1 − 𝜙12 )7 a- 𝑊4(𝑡 − 𝑡)7
1
46+ b

7 				(𝐴8) 514 

𝜎89 =
𝜎=

1 − 𝜙
12

:- 𝑊4
7(𝑡 − 𝑡)71

46+

- 𝑊4(𝑡 − 𝑡)7
1
46+

= 𝜎:𝑔(𝑇, 𝜙,𝑊) (𝐴9) 515 

𝑔(𝑇, 𝜙,𝑊) = ;
1 + 𝜙
1 − 𝜙

12:- 𝑊4
7(𝑡 − 𝑡)71

46+

- 𝑊4(𝑡 − 𝑡)7
1
46+

(𝐴10) 516 

Thus, 517 

𝜎89 = 𝜎:;
1 + 𝜙
1 − 𝜙

12:- 𝑊4
7(𝑡 − 𝑡)71

46+

- 𝑊4(𝑡 − 𝑡)7
1
46+

	 (𝐴11) 518 

    From equation (A11), we conclude that the trend uncertainty is affected by the 519 
length of the available data, the natural variability in the data, the autocorrelation of the data 520 
and the weights. 521 

A.3 Effect of measurement error 522 

When we consider the instrumentation errors 𝑒4 in the measurements, Equation A2 523 
becomes: 524 

𝑦4 = 𝜇 + 𝜔𝑋4 + 𝑁4 + 𝑒4 , 𝑡 = 1,⋯ , 𝑇 (𝐴12) 525 

𝑒4 is considered to be white noise with zero mean and common variance 𝜎;7, 526 
𝑒4~𝑊(0, 𝜎;7), and independent of 𝑁4 because 𝑁4 originates from unobserved or unsuspected 527 
atmospheric factors, while 𝑒4 comes from the instrument itself. 528 

In this case, the variance of noise comes from two parts: 529 

𝜎7 = 𝜎:7 + 𝜎;7 (𝐴13) 530 
    Similar to the derivation in Equation (A9), the variance of the estimated trend 531 

magnitude is: 532 
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𝜎89 7 = 𝜎:7𝑔7(𝑇, 𝜙,𝑊) + 𝜎;7𝑔7(𝑇, 0,𝑊)

= 𝜎:7
1 + 𝜙
1 − 𝜙

144- 𝑊4
7(𝑡 − 𝑡)71

46+

a- 𝑊4(𝑡 − 𝑡)7
1
46+ b

7 + 𝜎;7
144- 𝑊4

7(𝑡 − 𝑡)71
46+

a- 𝑊4(𝑡 − 𝑡)7
1
46+ b

7

= i𝜎:7
1 + 𝜙
1 − 𝜙

+ 𝜎;7j
144- 𝑊4

7(𝑡 − 𝑡)71
46+

a- 𝑊4(𝑡 − 𝑡)7
1
46+ b

7

(𝐴14) 533 

    The uncertainty of the all-sky radiance trend magnitude caused by the natural 534 
variability and the measurement error are shown in Figure A2b.  535 

 536 
Figure A2. Parameters concerning the radiance trends. (a) The all-sky autocorrelation 537 
coefficient considering AR1 process; (b) All-sky DLR trend uncertainty decomposition based 538 
on Equation (A14). The blue line represents the total all-sky trend magnitude uncertainty. 539 
The orange and yellow lines represent the all-sky trend magnitude uncertainty arising from 540 
climate natural variability and measurement error respectively. 541 

A.4 Time to detect the trend 542 

The trend detection 𝜔 is judged to be real or significantly different from zero at the 543 
5% level if |𝜔,| > 2𝜎89 . 𝜔, is approximately normally distributed, so 𝑧 = 89)8

B&'
 follows a 544 

standard normal distribution. 545 

𝑃𝑟(|𝜔,| > 2𝜎89 ) = 𝑃𝑟 i𝑧 > 2 −
𝜔
𝜎89
j (𝐴15) 546 

To detect a real trend of specified magnitude |𝜔|, with probability of 90%: 2 − 8
B&'
<547 

−1.3 ⇒ 𝜔 > 3.3𝜎89 . 548 

Thus, the number of years 𝑛⋆ of data required to detect the trend 𝜔, which is 549 
determined based on 23-year data: 550 
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𝑛⋆ ≈
3.3𝜎89
|𝜔,| × 23	𝑦𝑒𝑎𝑟𝑠 (𝐴16) 551 

 552 
Appendix B: Homogenization of the two AERI records 553 

B.1 Comparison between the two AERIs 554 
During the overlapping observation period, the all sky monthly mean radiance 555 

difference between AERI-01 and AERI-C1 is shown in Figure B1. Since these two 556 
instruments have different sampling frequency, the AERI-C1 spectra are averaged to match 557 
the sampling of AERI-01 spectra before the comparison. From Figure B1a, there are 558 
noticeable discrepancies between the AERI-01 and AERI-C1 observations. Because of the 559 
different sampling frequency, the two AERIs have random errors of different amplitudes 560 
(Turner et al., 2006). However, we find that removing the random errors using the principal 561 
component analysis following Turner et al. (2006) has little impact on the discrepancies (not 562 
shown). We find that in more than 20% of the AERI channels in the spectral range from 700 563 
to 1300 cm-1 and for more than 12% of the overlapping observational months, the radiance 564 
difference between two AERIs is larger than the documented absolute calibration uncertainty 565 
(Knuteson et al., 2004a).  566 

For AERI-C1 data stream, multiple instruments were used. All these transitions can 567 
be seen in Figure B1a subtly or obviously. First, the transition from AERI-04 to AERI-05 568 
happened in September 2009, which is subtly visible and is labelled by the green star in 569 
Figure B1a. Next, in March 2010, the instrument changed from AERI-05 to AERI-06, which 570 
is labelled by the green triangle in Figure B1a. Then, the transition from AERI-06 to AERI-571 
106 happened in March 2011, which is very obviously visible and is labelled by the green 572 
square in Figure B1a. AERI-106 operated until July 2013 and was being replaced by AERI-573 
108 until present. It’s interesting that the radiance differences between all of these “AERI-574 
C1” instruments and the AERI-01 have unique spectral signatures. 575 
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 576 
Figure B1. (a) The monthly mean DLR difference between AERI-C1 and AERI-01 (AERI-577 
C1 – AERI-01). The green symbols mean the time of AERI-C1 instrument transition; (b) 578 
Number of 8-min spectra for each month (the counts are identical after AERI-C1 spectra are 579 
resampled to match AERI-01).  580 

When separating the measured spectra to different sky types, we find that the 581 
prominent difference between the two AERIs in the window band mainly comes from 582 
relatively clear sky conditions. Figure B2 shows the monthly mean radiance difference for 583 
different sky types in October 2006 as an example. Here the DLR radiance at 985 cm-1 is 584 
used to classify the sky to be relatively clear (<40 RU) or relatively cloudy (>40 RU). We 585 
chose 40 RU based on the threshold that Turner and Gero (2011) used to classify cloudy sky 586 
to be thin or thick clouds scenes.   587 
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 588 
Figure B2. The monthly mean DLR difference between AERI-C1 and AERI-01 (AERI-C1 – 589 
AERI-01) for different sky conditions in October 2006 590 

We examined various instrumental parameters recorded with AERI measurements, 591 
including calibration blackbody temperatures, instrument responsivity, and so on, but found 592 
that no instrumental parameter can indicate the radiance difference between the two AERIs. 593 

B.2 Clear-sky LBLRTM simulations 594 
Since the differences between two AERIs mainly come from relatively clear sky 595 

scenes, we use clear sky synthetic spectra simulated from LBLRTM as a metric to distinguish 596 
their relative accuracies. Here we use the classical backpropagation gradient-descent 597 
classification algorithm mentioned in Subsection 2.2 to select clear-sky spectra. To make sure 598 
the sky chosen is clear, we set the algorithm threshold to be 0.8, which means the possibility 599 
of the sky to be clear is at least 0.8.  600 

After matching all datasets including radiosonde dataset and gas concentrations 601 
datasets at SGP mentioned in the Method section to select atmospheric profiles, clear sky 602 
synthetic spectra are obtained during the overlapping observational period. For each month, 603 
about 70 downwelling longwave spectra are simulated on average. The LBLRTM simulation 604 
is validated based on the test in Feldman et al. (2015). We chose the same time slices selected 605 
in Feldman et al. (2015)  to simulate the DLR spectrum and we can achieve similar radiative 606 
closures between observation and simulation. 607 
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 608 
Figure B3.  The clear sky monthly mean difference between AERI observations and 609 
LBLRTM simulations in October 2006.  610 

We originally used the ozone concentration profile from the Modern-Era 611 
Retrospective analysis for Research and Applications Version 2 (MERRA-2, Gelaro et al., 612 
2017) in simulating the synthetic spectra. A relatively poorer radiance closure between AERI 613 
observations and LBLRTM simulations was found in the ozone absorption band near 1040 614 
cm-1(not shown). By comparing to in situ measurements at SGP (available only at limited 615 
times), we find that this is due to poor representation of the local ozone concentration in the 616 
MERRA-2 dataset. To address this issue, we vertically scale the ozone profile uniformly to 617 
achieve an improved radiance closure in the ozone band as exemplified by Figure B3 (AERI-618 
C1 line), although this has little impact on the all-sky radiance trend detected in Figure 5.  619 

As exemplified in Figure B3, we find that AERI-C1 generally in better agreement 620 
with LBLRTM simulations than AERI-01 especially in the window band. The radiance 621 
difference in each channel is used to weight the spectra of AERI-01 and AERI-C1, according 622 
to Equation (2), to form an integrated record of monthly mean DLR radiance spectra.  623 
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