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Abstract I

ABSTRACT

Modeling gravity recovery of platinum group minerals (PGMs) in the grinding
circuit is based on three components: Ore characterization of gravity recoverable
platinum group minerals (GRPGM), their behavior in grinding mills and hydrocyclones,
and the performance of the gravity recovery units. This thesis focuses on the first two

components.

A laboratory methodology to characterize gravity-recoverable platinum group
minerals (GRPGMs) in an ore with four incremental liberation and recovery stages was
developed. It was applied to quantify GRPGM content of four ore samples from
Canada. To measure the behavior of GRPGMs in the grinding circuit, a methodology to
characterize the already liberated (or available) GRPGMs in the circuit streams was
developed. The availability of GRPGM in streams, such as ball mill discharge, was
used to model the behavior of the GRPGMs in the ball mills and hydrocyclones.
Combining with the potential GRPGM in an ore, they can be used for design and/or

optimization of platinum group mineral recovery circuit.

The GRPGM content measured by this methodology varied from 5 to 81%
depending on the ore. The GRPGM size distribution varied from fine (most GRPGM
below 37 pum) to coarse (significant content above 212 um). The stage size-by-size
recovery and the total GRPGM content indicate that the methodology can quantify the
GRPGM content of ores.

Based on the measurement of the availability of GRPGM in process streams, the
behavior of PGMs in ball mills and hydrocyclones is characterized in terms of the less

common cumulative selection functions and conventional classification efficiency



Abstract II

curves. Mineralogical analysis indicates that sperrylite (PtAs;) is the dominant
platinum mineral at the Clarabelle mill. Its classification efficiency is similar to that of
gold, despite its lower density, while grinding rate is significantly higher than gold.
The cumulative selection function of platinum and palladium is 1.3 times higher than

the ore for size classes above 212 um and 50 to 70% of the ore below 212 um.

As a result, sperrylite accumulates in finer sizes than native gold in the grinding
circuitt. The cumulative selection function of the platinum group minerals was
calculated for the Clarabelle grinding circuit based on the survey data and the GRPGM

contents in the ball mill discharge, cyclone underflow, and overflow.

The methodology of characterizing the content of GRPGMs in an ore also offers
a way to concentrate the minerals for mineralogical study. The use of secondary
electron microscopy (SEM), variable pressure SEM and QEM*SEM for qualitative
analysis of platinum group mineral mineralogy is presented and discussed. Most of the
GRPGMs recovered are well liberated. Qualitative mineralogical analysis of the

GRPGM and its associations in ore samples are also discussed.



Résumé I

Résumé

La modélisation et la prédiction de la séparation gravimétrique des minéraux du
groupe du platine sont basées sur trois séries de données : la caractérisation des minerais
contenant des minéraux du groupe du platine séparables par gravit¢ (GRPGM), la
description de leur comportement dans les broyeurs et hydrocyclones et la performance
des unités de séparation. Cette thése s’attache aux deux premiéres séries de données,
celles-ci représentant les aspects fondamentaux pour la modélisation et la prédiction de

la séparation des minéraux du groupe du platine par gravité.

Une méthodologie de laboratoire, basée sur quatre étapes de libération et de
séparation, a été développée pour caractériser les CRPGM. Elle a été appliquée pour
qualifier la proportion de CRPGM dans quatre échantillons de la région de Sudbury
(Canada). Une autre méthodologie, visant & quantifier le comportement des CRPGMs
dans les broyeurs et hydrocyclones a été développée de fagon a caractériser les CRPGM
déja libérés (ou accessibles) dans les courants d’eaux du circuit de broyage.
L’accessibilité des CRPGMs dans les courants, comme a la sortie du broyeur a boulets,
ou dans les courants supérieurs ou inférieurs des hydrocyclones, a été utilisée pour
décrire le comportement des CRGPMs dans les broyeurs et hydrocyclones. Combiné a
la teneur potentielle de¢ CRPMG dans un minerai, il peuvent étre utilisés pour la
justification du design et/ou I’optimisation du circuit de séparation des minéraux du

groupe du platine.

La teneur en CRPGM obtenue par cette méthode varie de 5 a 81% d’un minerai
a un autre. La distribution granulométrique varie également de fine (la plupart des
GRPGM sont en dessous de 37 pm) a grossiére (proportion significative sous 212um).

L’analyse de chaque tranche granulométrique séparée et ’analyse totale des CRPGM
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indiquent que cette méthodologie est fiable pour la quantification des CRPGM des

différents minerais contenant des minéraux du groupe du platine.

Basée sur la mesure de la disponibilit¢ des CRPGM dans les courants, le
comportement des PGMs dans les broyeurs a boulets et hydrocyclones est caractérisé en
terme de fonctions de sélection cumulatives, cette derniére étant moins utilisée, et de
courbes de classification d’efficacité. L’analyse minéralogique indique que la sperrylite
(PtAs;) est le minéral dominant du groupe du platine dans le concentrateur de
Clarabelle. Sa courbe de classification d’efficacité est trés similaire a celle de I’or, bien
que sa densité soit moindre. Sa vitesse de broyage est significativement plus élevée que
celle de ’or. De plus, la fonction de sélection cumulative pour les minéraux du groupe
du platine a été calculée pour le circuit de broyage de Clarabelle en se basant sur les
données de contrdle et sur les proportions de GRPGM a la sortie des broyeurs a boulets,

. au niveau des courants inférieurs et sup€rieurs des cyclones.

La méthodologie visant & caractériser la proportion des CRPGMs dans un
minerai peut aussi €tre utilisée avec efficacité pour concentrer les minéraux du groupe
du platine lors d’études minéralogiques. L’utilisation du microscope électronique a
balayage (SEM), du SEM a pression variable (VP) et du QEM*SEM pour I’analyse
quantitative des minéraux du groupe du platine est présentée et discutée. La plupart des
GRPGMs séparés sont bien libérés. L’analyse qualitative des GRPGM et de leurs

associations pour les échantillons de minerais est présentée et discutée.
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CHAPTER 1 Introduction 1

CHAPTER ONE

INTRODUCTION

1.1 Background, Treatment Options and Statement of Problems

The six Platinum Group Elements (PGEs); ruthenium (Ru), rhodium (Rh),
palladium (Pd), osmium (Os), iridium (Ir) and platinum (Pt) can be classified into two
groups on the basis of specific gravity compared to gold (19.3). The elements less
denser than gold are ruthenium, rhodium, and palladium with specific gravity ranging
from 12.0 to 12.4. The elements denser than gold are osmium, iridium, and platinum
with specific gravity in the range 21 to 22.5. The major PGE reserves and production is
in South African, with Russia in second place and Canada third. South Africa’s
production centers on the Bushveld Complex, where the ores are primarily mined for
the recovery of platinum group elements (PGEs). In Canada, PGEs are mainly by-
products of nickel-copper extraction, primarily from the Sudbury area deposits (Cabri,
1981). There is one PGE mine in Canada, North American Palladium’s Lac des Iles

operation in Ontario.

Various data (such as mineralogical, chromite content, grade of PGEs, and
sulphur content) are used to classify PGE ores. The world’s PGE deposits can be
classified into three types. Firstly, where platinum group minerals (PGMs) are the
major economic product, e.g. the Bushveld (South Africa) and Stillwater complexes
(Montana, USA). Secondly, copper-nickel dominant ores, with PGMs as by-products,
e.g. Sudbury and Noril’sk (Russia). Thirdly, placer deposits, such as those in the Urals



CHAPTER 1 Introduction 2

(Russia) and Colombia. In the latter type, the PGMs have been derived from the
weathering of a PGE-bearing host rock and subsequently concentrated and re-deposited

by sedimentary mechanisms.

Treatment methods for recovering platinum group minerals from PGE ores
depend on the type of mineralization. Those amenable to gravity separation contain
high-density platinum-group minerals with a coarse grain size suitable for gravity
recovery techniques (Cabri, 1981a). Ores in this category include magmatic Dunite or
Alaskan-type deposits, and alluvial, eluvial and fossil placer deposits. With recent
equipment and technology developments in gravity recovery, more deposits can be
classified into this category. Ores amenable to flotation contain PGMs occurring in
sulphides or as deposits at the grain boundary between sulphides and silicates (Cabri,
1981). Most PGEs occur either as discrete minerals or as solid solution in major
sulphides, such as the Bushveld and Stillwater deposits. Another category is ores where
PGEs are by-products of Ni-Cu recovery. These ores are processed by methods

determined by the nickel and copper minerals.

PGM recovery poses a unique challenge. Unlike gold and major base metals,
whose target element is found in a limited number of minerals, there are one hundred
and nine PGM species recognized by the International Mineralogical Association
(IMA), including sulphides (e.g. braggite, (Pt, Pd)S), tellurides (e.g. maslovite, PtBiTe),
antimonides (e.g. sudburyite, PdSb), arsenides (e.g. sperrylite, PtAs,), alloys (e.g.
ferroplatinum alloy) and native species (i.e., native Pt nuggets). Several are
economically significant. Apart from the multitude of PGMs, their associations are also
diverse. The three main base metal minerals associated with PGMs are pyrrhotite,
chalcopyrite, and pentlandite, such as in the South African Merensky Reef deposit. The
UG-2 Reef contains low concentrations of copper- and nickel-bearing sulphides and a

large amount of chromite (FeCr,O,). In the Stillwater J-M Reef ore body (U.S.A.), the

principal sulphide minerals are chalcopyrite, CuFeS,, and pentlandite, (Ni, Fe)yS;.



CHAPTER 1 Introduction 3

Most platinum minerals are associated with the copper sulphides and palladium with the
nickel sulphides. The ore contains less than 1% quartz but significant amounts of talc
and serpentine, both of which show natural floatability, making their rejection

problematic. Platinum was long known to exist in the arsenide form (sperrylite, PtAs,)

in the nickel-copper sulphides of the Sudbury area (Cabri, 1981).

Pentlandite and chalcopyrite are generally well recovered (depending on their
particle size and degree of liberation), as therefore are any PGE:s in their lattice (i.e., in
solid solution) or present in PGM blebs. Platinum group elements present as blebs or in
solid solution in pyrrhotite may or may not be recovered. For example, in the Sudbury
basin, pyrrhotite is now largely rejected to minimize sulphur dioxide removal costs.
The Sudbury pyrrhotites contain significant amounts of nickel (anywhere from 0.4 to
0.8%) and accounts for most of the nickel losses in the Clarabelle and Strathcona mill
tailings. The very low concentration of PGMs, their fine size distribution, the difficulty
of detection and identification, and difficulty in sampling are typical problems when

carrying out studies on PGMs.

In a summary, the range of minerals present, their relative densities, shape,
particle size, and associations present a challenge to the metallurgist in designing and
optimizing the extraction process (Hochreiter et al., 1985). The various ore types (end
members) of typical ore deposits, each with their own metallurgical response, heighten

this challenge (Hochreiter et al., 1985).
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Table 1-1 Some PGM mineral properties (Cabri, 1981 and 2003)

size nuggets.

Name Ideal General Appearance Density Hardness
3
Formula (g/em’) (mohs)
(calculated)
Borovskite Pd;SbTe Isolated grains up to 0.2 mm included in 8.25 N/A
pyrrhotite and chalcopyrite
Braggite (Pt, Pd)S Fractured grains up to 8 mm long 9.36 5
Cooperite PtS Euhedral to anhedral micrometer to 1.5 10.10 4t04.5
mm grains
Froodite PdBi, Grains up to about 1 mm 11.62 Brittle
Geversite PtSb, As small drop like inclusion 10.91 4.5-5
Insizwaite PtBi, As small rounded grains up to 120 pm 12.86-13.59 5
Isoferroplatinum Pt;Fe In placer deposits occurs as various size 18.23 N/A
nuggets, usually containing chromite and
many other mineral inclusion, varying
from flakes to nugget size
Maslovite PtBiTe Grain up to 0.120 mm in size 11.23 4-5
Merenskyite PdTe, As minute grains, intimately intergrown 8.30 3.5-4
with other PGM, or as single-phase
inclusions
Michenerite PdBiTe Grains from 0.0001 to 2 mm 9.81 4-4.5
Moncheite PtTe, Crystals up to 1 mm and minute grains 10.24 3.5
Palladoarsenide Pd,As Long and irregular grains 10.59 4.5
Sperrylite PtAs, Micrometer to centimeter size crystals 10.8 6-7
and rounded grains Brittle
Stillwaterite PdgAs, Grains up to 0.12mm by 0.265 mm 10.95 4.5-5
Sudburyite PdSHh Elongated inclusions up to 55 pm by 120 941 4-4.5
pum
Tetraferroplatinum | PtFe Irregular grains, rims on other Pt-Fe 15.81 N/A
grains
Vysotskite PdsS As intergrowths and lensoid inclusions in 6.74 N/A
other sulphides
Palladium Pd Commonly as loose grains, sometimes 12.0 4.5-5
with a radial fibrous texture
Platinum Pt In placer deposits, it occurs as various 19.1 4-4.5

The PGM species with their theoretical formula are listed in Table 1-1, although

composition may vary. The general appearance is based on where the individual PGM

was first reported. The density and hardness listed are critical factors as regard gravity

recovery, grinding and classification behavior.

There has been renewed interest in the use of gravity concentration to recover

PGMs due to their economic importance and the new/improved gravity concentration

devices becoming available commercially (Cole and Ferron, 2002, Kozyrev et al.,

2003). Flash flotation is also attractive because of the ability to quickly lower
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circulating load of PGMs at relatively low installation cost (Laplante et al., 2002).
However, there is no method to quantify the gravity recoverable content for design,
optimization or simulation purpose. To justify if a gravity method is economical for
recovering PGMs, it is desirable to predict or determine how much Gravity
Recoverable Platinum Group Minerals (GRPGMs) is present in an ore (or stream). The
concept of GRPGMs is analogous to gravity recoverable gold (GRG). As a working
definition, it refers to the portion of PGMs in an ore or stream that can be recovered by
gravity at a low yield (<1%). It includes PGMs that are totally liberated, as well as
PGMs in particles not totally liberated but of such density that they report to the gravity
concentrate. Conversely, it excludes liberated PGMs that are too fine to respond to

gravity recovery or are present as blebs or in solid solution in other minerals.

1.2 Thesis Objectives

Much work has been done on the flotation recovery of PGMs from primary ores
(Cole and Ferron, 2002). Concerted efforts have been made to evaluate the mineralogy
of PGMs and to use gravity separation to improve associated recovery in the processing
of nickel-copper ores. This is desirable for Sudbury area ores where PGEs are produced
as by-products, for example, the platinum recovery at the Clarabelle mill ranges
between 75 and 85%. A significant source of platinum losses is fine discrete sperrylite
particles, which very likely originates from coarser liberated particles. Similar losses
likely occur at the other Sudbury area Cu-Ni mill, Strathcona. Outside Canada, PGE
producers have recognized this loss of fines problem and have attempted to address
using either flash flotation or gravity recovery, in some cases with significant success
(Cole and Ferron, 2002). However, a formal methodology or protocol to determine the
best approach to be able to estimate projected recovery from circulating loads in
grinding circuits and potential gains in net overall recoveries is still lacking in the PGM
industry. This thesis will endeavor to fill this gap by adapting a similar protocol

developed at McGill University for gravity recoverable gold (GRG) (Laplante et al.,
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1993; Woodcock and Laplante, 1993; Xiao, 2001). The proposed protocol would
answer questions such as “how much of each PGM is available for gravity
recovery/flash flotation and at which grind size is it liberated?”, “what is the probability
that a PGM particle not recovered will be presented again to gravity recovery or flash
flotation, having ‘survived’ in grinding and cycloning?”, and “how much will a given

unit recover a specific PGM in a specific size class?”

Figure 1-1 shows that the GRG protocol for prediction of gold recovery is based
on three components, ore characteristics, behavior in grinding and classification units,
and recovery unit performance. The proposed GRPGMs protocol will be based on the
GRG protocol; because the PGMs are unique and different from gold minerals, some

refinements can be expected.

Ore Characterization

Predicting
Gold Recovery

Recovery Unit
Performance

Grinding kinetics,
Classification

Figure 1-1: GRG Protocol for the Gold Recovery Prediction
(Laplante et al., 2004)

The rationale for the transfer of the GRG protocol to GRPGMs is based on the
similar specific gravity range of many platinum group minerals (between 10 and 22) to
that of gold (between 16 and 19). However, as the PGMs tend to report to finer size
classes (Xiao and Laplante, 2003), the GRG protocol will require modification. The
modified procedure adds a fourth Knelson Concentrator stage at a higher rotation

velocity to the standard GRG protocol. It is also shown that the characterization of the
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gravity recoverable platinum group minerals procedure provides an effective

preconcentration method for sample preparation for PGM mineralogical studies.

The above suggests that the overall objective will be achieved by pursuing the
three components. This thesis focuses on the first two. Firstly, ore characterization is
adapted to PGMs, which requires a more intense recovery effort than gold, because of
lower specific gravity of the PGMs, and the use of automated mineralogical analysis to
quantify the occurrence of various PGMs in the gravity recoverable fraction, as PGM
mineralogy is far more complex than gold (Cabri, 1988; Sizgoric, 1985). The
occurrence and liberation analysis of platinum group minerals is performed with SEM,
variable pressure SEM (VP-SEM) and quantitative evaluation of materials SEM
(QEM*SEM) on the gravity concentrates. The results will be present and discussed in
Chapter five. Secondly, the already liberated GRPGMs in a stream will be
characterized, and then the behavior of PGMs in ball mills and cyclones will be
quantified by using the cumulative selection function and classification partition curve
combined for the first time in this type of analysis. The third component, recovery unit
performance, ideally would require pilot testing of semi-continuous centrifugal

concentrator or flash flotation units; this will not be addressed in this thesis.

1.3 Thesis Structure

This thesis consists of seven chapters. Chapter one (this chapter) introduces the
background to the program. Treatment methods for platinum group mineral deposits are
outlined, as well as the statement of the problem. The objectives of the study and thesis

structure are also presented.

Chapter two presents a review of PGM mineralogy and recovery methods, the
latter both at bench and industrial scale. The existing GRG characterization protocol is

also presented in this chapter.
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Chapter three introduces the GRPGM test design. The importance and effect of
adding the fourth stage with a high-rotation speed 3-inch Knelson Concentrator are
discussed. The results of four ore sample characterization tests are presented, followed

by detailed discussion, comparison, and conclusions.

Chapter four introduces characterization of the behavior of PGMs in grinding
circuits. The cumulative selection function and classification efficiency curves for
platinum minerals from the Clarabelle grinding circuit are presented and discussed. The
behavior of other platinum group metals, such as palladium and ruthenium, is touched

on. The behavior of gold and platinum is contrasted.

Chapter five introduces the mineralogy component, based on SEM, VP*SEM
and QEM*SEM test work. The platinum group minerals species and associations for
some ore samples are presented. Most importantly, liberation analysis of some

platinum group minerals for a Strathcona ore sample is performed using QEM*SEM.

General conclusions, claims to original work and suggestions for future research

are presented in Chapters six and seven, respectively.
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CHAPTER TWO

LITERATURE SURVEY AND THEORY

2.1 Introduction

Recovering platinum group minerals (PGMs) in grinding circuits by gravity
faces several challenges. The first comes from the complex mineralogy of PGMs, a
combination of low grade, a plethora of mineral species and fine size distribution. The
mineralogy is reviewed here. The low ore grades almost invariably necessitate
upgrading and the approaches are presented. To end there is a section describing

typical flowsheets for PGM recovery.

To model the gravity recovery of PGMs in a grinding circuit, three tasks must be
completed: characterizing the gravity recoverable platinum group minerals (GRPGMs),
their behavior in the grinding mills and hydrocyclones, and their recovery in the gravity
concentrator device (Laplante et al, 2004). The approach can be adapted from the
approach used for the gold recovery by gravity. The review is divided into three
sections: (a) applied/process mineralogy and PGM recovery methods, (b) laboratory
methods of characterizing PGMs, and (c) GRG methodology (since it is intended to
adapt to PGMs).
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2.2 Process Mineralogy and PGM Recovery Methods

There is a relationship between ore mineralogy and metallurgical performance
(Petruk and Hughson, 1977; Henley, 1983; Cabri, 1992; Petruk, 1995; Lotter et al.,
2002). Not only does mineralogy play a critical role in choosing the recovery method

but it also dictates the process flow sheet and plant optimization.

Henley (1983) defines process mineralogy as an integration of mineral processing
and mineralogy. In his review, a flow sheet starting from ore body exploration through
to optimization of plant operation was proposed. A flow sheet was developed based on
mineralogical information, laboratory, and pilot plant testing. After commissioning, an
optimization program was followed. The program extended from samples of drill core
to samples taken from the operating plant. Petruk (2000) defines applied mineralogy as
the application of mineralogical information to understand and solve problems
encountered during processing of ores and concentrates. It involves characterizing
minerals and interpreting the data with respect to mineral processing. When processing
problems are due to the mineralogical characteristics of the ore and/or process products,

mineralogical data should be generated to solve the problem(s).

Each platinum-group element ores should be treated using a recovery method
based on the mineralogical features. The following briefly discusses several ore types:
those amenable to gravity separation, those amenable to flotation, and those where
platinum-group elements are by-products of base metal sulphide recovery. Most of the
information is drawn from the special volume “Platinum-Group Elements: Mineralogy,

Geology, Recovery” edited by Cabri (1981).
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2.2.1 Ores Amenable to Gravity Recovery

2.2.1.1 Alaska-type deposit mineralogy and recovery method

The mineralogical features of importance for ores amenable to gravity
separation are that the platinum-group elements occur in minerals of high density, that
they are free liberated, and that the grain size distribution falls in the region where
gravity techniques can be applied successfully (Cabri, 1981a). Ores in this category
include magmatic Dunite or Alaskan-type deposits, and alluvial, eluvial and fossil
placer deposits. With the development of new centrifuge gravity equipment, more

deposits can be classified into this category.

Mineralogy: Primary PGE deposits in Alaska-type ultramafic rocks were found
first in the Nizhnii-Tagil district of the Ural Mountains in 1890 (Mertie, 1969). The
principal PGMs are Pt-Fe alloys, mostly isoferroplatinum (Pt;Fe) and to a lesser extent
platiniridium (Ir, Pt), according to Razin (1976). This type of deposit also includes the
rare PGMs: osmiridium (Ir, Os), iridosmine (Os, Ir), cooperite (PtS), tulameenite
(Pt;FeCu), laurite (RuS,) tetraferroplatinum (PtFe) and irarasite (IrAsS). Most of the
Pt-Fe alloy grains in the Gusevogorskiy deposit are smaller than 0.1 mm; however,

grains as large as 3 mm occur sporadically (Begizov et al., 1975).

Recovery method: A typical route is to grind to minus 0.2 mm then subject to
magnetic separation followed by tabling (SK-1 concentration tables). The table

concentrate is processed again to produce a gravity concentrate in a hydroseparator.

Prior to start of the 20™ century, all PGEs were obtained from alluvial deposits.

The PGEs occur in these deposits as alloys, usually Pt-rich, in the form of loose grains



CHAPTER 2 Literature survey and theory 12

and nuggets. There are virtually no published data on the recovery of PGEs from placer

mining due to lack of mineralogical data.

2.2.1.2 Norilsk deposit mineralogy and recovery method

The Norilsk Mining Company is one of the largest PGE producers in the world.
According to a typical economic classification, Norilsk deposits belong to a group of
sulphide copper-nickel ores with associated PGE mineralization (Blagodatin, et al.,
2000). The deposit is subdivided into three groups, massive (rich) ore, disseminated ore
occurring in host rock, and stringer-disseminated ore occurring in intrusive host rock
(Kozyrev, et al., 2003). Another classification method is adopted by Blagodatin et al.,
(2000): dividing the ores into two groups, one copper-nickel sulphide ores, and another
platinum with associated non-ferrous and rare metals, including all kinds of

disseminated ores.

Mineralogy: The PGEs in major sulphides (pyrrhotite, pentlandite, and
chalcopyrite) and PGE occurrence in many varieties of disseminated ore have been
studied at the Research Center of Norilsk Company. The bulk of platinum (90% plus)
is in the minerals cooperite (PtS), Pt-Fe alloys, sperrylite (PtAs,), and Pd-rustenbergite
(Pt, Pd);Sn, while minor quantities are dissolved in pyrrhotite, with a maximum
concentration of 0.8 ppm. As for palladium, 27% is in discrete mineral form. The
PGEs are largely hosted in pyrrhotite, which comprises up to 4.0% of the ore. The
+250 pum size fraction contains occasional grains of platinum minerals, whereas size
fractions 50-250 um, appear to be most enriched in these minerals. Palladium minerals

occur as fine grains (- SOpm).

Recovery method: The nature of PGE occurrence in the ores dictates the use of
modern high-performance techniques of gravity separation to produce high recovery

into high-grade PGE concentrates. This makes it possible to process PGE gravity
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concentrates directly, avoiding by-product production from copper and nickel

concentrates (Blagodatin et al., 2000).

At Norilsk, Knelson Concentrators are widely used; their installation points
were selected on the basis of a mineralogical investigation of concentrate products
obtained by flotation. From the size analysis of flotation concentrate and tailings, it was
found that the bulk of the platinum and palladium mineral grains in the concentrates
were below 70 pm, the highest distribution being in the 30-40 um size fraction with no
grains found above 300 pm. In the tailings, no PGM grains were coarser than 100 um
in the non-magnetic fraction and the highest distribution was in the 20-30 pm size
fraction. In the magnetic fraction, a significant amount of Pt- and Pd-bearing grains
reported to the 100-200 um size fraction. Such size behavior indicates that flotation
cannot completely recover the PGMs and over-grinding may occur. Therefore, the
company decided that the gravity separator should be installed after the first grinding

stage, thus removing the bulk of PGE minerals from the flotation circuit.

Since June 1998, in both the grinding and tailings reprocessing circuits, Knelson
Concentrators (KS-SD 48) have been used. Recoveries of 50-60% Pt, 10-13% Pd, and
17-20% Au are achieved with 400-500 g/t total PGE content in concentrates. These
results were obtained from ore assaying 1.1-1.3 g/t Pt, 3.4-4.6 g/t Pd, and 0.16-0.2 g/t
Au. The positive results prompted the company to install two additional 48-inch KCs
with a modified bowl profile. This resulted in the total PGE content increasing to 1000
g/t, and recovery increasing by 25% (Blagodatin et al., 2000).
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2.2.2 Ores Amenable to Flotation Recovery

Flotation might be the most common method to recover PGEs. As is now well
known, PGMs often occur in base metal sulphides, often along the grain boundary
between sulphides and silicates (Cabri, 1981). Most PGEs occur either as discrete

minerals or as solid solution in major sulphides.

In those magmatic deposits where platinum-group elements are intimately
associated with the base metal sulphides, flotation is used as the first and often sole
recovery process. Although high recovery, usually between 80 and 95%, can be

obtained, the concentrate grade is generally quite low, and further upgrading is required.

2.2.2.1 Merensky Reef

Mineralogy: Extensive mineralogical studies have shown that seven PGMs are
important in the Merensky Reef although variations occur in different areas and ore
types (Vermaak and Hendriks, 1976, Brynard et al.,, 1976, Schwellus et al., 1976).
Three of the PGMs are sulphides: braggite (Pt,Pd)S, cooperite, PtS, laurite, RuS,; one is
a Pt-Fe alloy, one an arsenide (sperrylite, PtAs;) and two are tellurides (moncheite,
PtTe;, kotulskite PdTe). The presence and relatively large fraction of platinum minerals
and sulphides is unique to this type of deposit which divides into two groups, a silicate

ore, and a chromite ore.

The principal sulphide minerals are pyrrhotite, pentlandite and chalcopyrite, in
order of decreasing abundance (Vermaak and Hendriks, 1976; Brynard et al., 1976).
Minor sulphides include cubanite, mackinawite and pyrite, the latter being more

abundant in the chromite-rich bands (Brynard et al., 1976).
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The majority of the PGMs occur as idiomorphic inclusions (braggite, cooperite,
sperrylite and laurite). A Pt-Fe alloy, especially in those areas where it is an important
PGE carrier, commonly occurs as fine intergrowths with base metal sulphides (BMS)
or, more rarely, with cooperite (Vermaak and Hendriks, 1976). These authors also
pointed out that most PGMs occur at the BMS-gangue contact in the silicate ore,
whereas in the chromite ore the PGMs occur mostly in the BMS or in the gangue. The
exception to this is braggite, which shows a strong preference for pentlandite. The
sperrylite, braggite and cooperite occur “fairly coarse” with moncheite being “much

smaller” (Brynard et al., 1976).

Recovery method: Although the basic process used for the Merensky and UG-2
ore is the same, mineralogical features dictate the many subtle differences in each flow
sheet. Conventional comminution, including crushing, rod milling, and ball milling or
semi-autogenous (SAG) milling, is used for the Merensky ore, while UG-2 ore is not
amenable to autogenous milling. The grinding product is classified in hydrocyclones
for both ores. Other differences include preconcentration methods, such as the corduroy
strake, James table and flash flotation, used for the Merensky ore which shows PGM
enrichment in the cyclone underflow. The UG-2 ore is not as amenable to
preconcentration because a finer grind is needed to liberate the much finer PGMs and

the chromite present can lead to poor gravity separation.

For the Merensky and UG-2 ores, the separation process is a bulk sulphide
flotation that recovers sulphide PGMs. Flotation takes place at natural pH (7.5 to 9)
with a xanthate collector such as isobutyl xanthate or n-propyl xanthate. Some mines
also add another collector, usually Cyanamid 3477 (a dithiophosphate), which is mixed
with the xanthate at a ratio of up 7:3. Copper sulphate is added as an activator. The
flotation circuit for Merensky ore usually consists of a rougher stage and two cleaner

stages in a closed-circuit. To depress the talc, a depressent such as Dextrin or
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Carboxymethyl cellulose (CMC) is added to the rougher and cleaner stages. The

flotation of the UG-2 ore is similar in general to that of the Merensky ore.

The Northam Merensky concentrator was designed to treat 270 t/h run-of-mine
(ROM) ore. The SAG mill discharge is fed to a ball mill operated in a closed circuit.
Flash flotation is utilized on the cyclone underflow. The flash flotation cell recovers
over 60% of the PGEs. The cyclone overflow goes to flotation after conditioning.
Primary flotation is undertaken in a single rougher/scavenger flotation bank. The
concentrate of the first cell in the rougher bank is collected as part of the final
concentrate. The remaining rougher concentrate is processed through the cleaning
circuit (no regrinding) that consists of three column cells operating in series. The
cleaner concentrates are the main final concentrates. The cleaner tail is recycled back to
the head of the scavenger circuit. The scavenger concentrate can be routed to the head
of the rougher bank or to the cleaner circuit. No regrinding is performed on the

scavenger concentrate (Cole and Ferron, 2002).

2.2.2.2 The Stillwater Complex, Montana

The Stillwater ore body is referred to as the J-M Reef and is nearly 50 kilometer
in length. The PGE mineralization is associated with disseminated base-metal sulphide
(BMS) minerals that range from fine- to coarse-grained aggregates that are moulded

around and are interstitial to the cumulus or earlier formed silicates.

Mineralogy: Zientek et al. (2002) report that the PGMs include the following
palladium, platinum and ruthenium sulphides; Pt and Pd tellurides and arsenides; and
Pt-Fe, Pt-Pd-Sn, Pd-Pb, Pd-Hg, Au-Pt-Pd and Rh-Pt alloys. The dominant PGMs are
braggite, cooperite, moncheite, vysotskite and isoferroplatinum. Platinum occurs
largely as discrete PGMs: 67% as sulphide mineral (braggite, cooperite); 25% as metal

alloy (isoferroplatinum); and 8% as telluride (moncheite). Palladium largely occurs in
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solid solution in pentlandite; 15% of the palladium occurs in other sulphide minerals
(vysotskite, braggite, and cooperite) and 5% is associated with telluride minerals
(moncheite). There are some rare PGMs such as rustenbergite (Pd;Sn), and
hollingworthite (RhAsS). The grain size of the PGMs is variable, ranging from micron-
size to grains with one side about 200 um. Of the main PGMs, braggite and vysotskite

are the coarsest grained; the Pt-Fe alloy is finer.

The principal sulphide minerals are chalcopyrite (CuFeS;) and pentlandite
((Ni,Fe)oSg). Most of the platinum minerals are associated with the copper sulphides
and the palladium with the nickel sulphides (Thurman et al., 1994). The ore contains
approximately 3.5 times more palladium than platinum. Small amounts of gold and
rhodium along with the copper and nickel are also found. The ore contains less than 1%
free silica, but significant amounts of MgO bearing minerals such as talc and serpentine.

The ore is basic with a natural pH of approximately 9.0 (Thurman et al., 1994).

Recovery method: Thurman et al. (1994) and Turk (2001) provide a detailed

summary of operations and reagent scheme at the Stillwater Nye concentrator.

A SAG mill / ball mill grinding circuit with hydrocyclones for classification is
used for feed preparation. A flash flotation cell is used in the cyclone underflow to
produce a final grade concentrate. The cyclone overflow is fed to primary flotation
which comprises three stages: rougher flotation, middling flotation and scavenger
flotation. There is a regrind stage between the rougher and middling flotation circuit.
The middling flotation concentrate is recycled to the head of the rougher circuit while
the scavenger flotation concentrate feeds the middling flotation circuit. Cleaning is
achieved in three stages operating in a counter-current configuration. The concentrate
from the first stage of the first cleaner bypasses the second stage of cleaning and feeds

the third cleaner. The tailings from the first part of the first cleaner are reground prior
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to further cleaning. The cleaner circuit tails recycle to the feed of the rougher flotation

circuit.

Thurman et al. (1994) reported that the reagent scheme is 40.8 g/ton of
potassium amyl xanthate and 36.3 g/ton of dithiophosphate and 408 g/ton of
Carboxymethyl cellulose (CMC) used for talc depression. The frother MIBC is added
for conditioning warrant. Sodium hydrosulfide (NaHS) is added as a sulfidizer and pH

is controlled with sulphuric acid.

A bulk sulfide concentrate is produced averaging 1860 — 2170 g/ton of Pt + Pd
from ore averaging 24.8 g/ton. Initially the concentrator operated at 500 tpd. But
capacity has been steadily increased since the 1987 start-up; concentrator throughput for

1994 was around 1050 tpd, and was 3000 tpd in 2001.

The overall platinum recovery after the flash flotation cell installation improved
by 1.5% (Thurman et al., 1994), pushing total Pt recovery to 95%. This improvement in
recovery is due to the reduction in over grinding of the Pt minerals. However, because
of the extremely short retention time in the flash cell (2-5 min.), Pd recoveries were not

affected.

2.2.2.3 Lac des Iles Ore

North American Palladium's Lac des Iles mine began commercial production in
December 1993. It has since commissioned a new 15,000 ton per day milling and
flotation circuit. The open-pit mine and milling operation is one of only two primary
platinum group element producers in North America. The mill treats an ore containing
2g/t palladium (and 0.3 g/t total platinum, gold and rhodium) producing a concentrate
assaying 250g/t palladium, at a recovery of roughly 75% (Martin et al., 2003).
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Mineralogy: The major sulphide minerals are pentlandite, pyrite, chalcopyrite
and pyrrhotite. Galena, magnetite and sphalerite are common minor minerals. Cabri
and Laflamme (1979), on the basis of the sample they studied, reported that the
principal PGMs are braggite-series minerals (braggite, (Pt, Pd)S, and vysotskite, PdS),
kotulskite, PdTe, isomertiete, Pd;;(As, Sb)s, merenskyite, PdTe,, sperrylite PtAs,,
moncheite, PtTe;; minor PGMs include stillwaterite, PdgAs;, and palladoarsenide,
Pd,As. Dunning (1979) reported that vysotskite is the most abundant PGM in the “Roby

zone”, where it frequently occurs with nickel minerals, especially pentlandite.

Mineralogical studies were performed on five mill feed samples taken at
different times during 2002 (Martin et al., 2003). Sample assays ranged from 1.56 g/t to
3.0 g/t Pd+Pt. Using a LEO440 QEMScan system, a total of 444 individual PGM grains
comprising twelve distinct PGM species were identified. These were dominated by
tellurides, with lesser amounts of arsenides/antimonides, sulphides and alloys. Martin
et al. (2003) also reported that the kotulskite-telluropalladinite (Pd(Te,Bi)-PdgTes)
comprised roughly two-thirds of the PGMs grain population. Palladoarsenide (Pd,;As)
was the next most abundant PGM species, comprising 20% of the PGMs. Ten other
PGM species were observed. PGM particle size ranged from less than 1 um to 16 pm
(equivalent circle diameter). Some 45% of the PGMs occurred as liberated grains, or
inclusions within and attachments to sulphides. The remainder occurred as fine

inclusions within, and attachments to silicate minerals.

Recovery method: Flotation is the method for recovering the PGMs in Lac des
Iles due to their fine size distribution. One SAG mill feeds two ball mills at a rate of
15,000 ton per day. A portion of the SAG mill feed is crushed to —25 mm to increase
throughput. Flotation comprises two banks of roughers and scavengers for primary
flotation. The rougher concentrate is reground and cleaned in a single stage column.
The rougher cleaner tail joins the scavenger concentrate and is reground in three

vertimills. Cleaner flotation comprises two stages of cleaning with mechanical cells,
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and a third stage using flotation columns, the column tails being scavenged using a bank
of mechanical cells. The flotation reagent system consists of amyl xanthate collector,
dithiophosphate promoter, MIBC frother and a polymeric talc depressant, usually a

form of carboxy methylcellulose.

The expected feed grade to the plant is 2 g/t Pd with a targeted recovery in
excess of 80%. However, it is reported that the recovery is around 75% due to

problems in the grinding circuit and other factors (Martin et al., 2003).
2.2.3 Cu-Ni Sulphide Deposits with By-Product PGEs

The by-product PGEs from Sudbury Cu-Ni ores were the principal source of
PGE:s prior to the discovery and subsequent exploration of the PGE-dominant Merensky
Reef deposits. The production of Merensky Reef and, later, the Cu-Ni deposits of the
Norilsk area reduced Sudbury’s share of world PGE production. However, by-product
PGEs from Cu-Ni sulphide deposits are still an important source. The Sudbury area and

Norilsk-Talnakh area ores will now be discussed.

2.2.3.1 Sudbury Area, Ontario

Mineralogy: Although several researchers have studied the mineralogy of the
Sudbury ores, published data are sparse on the PGE content. The principal sulphides
are pyrrhotite, chalcopyrite and pentlandite; several other minerals, such as cobaltite,
pyrite, millerite, cubanite, galena, sphalerite and magnetite, occur in minor and variable

quantities.

Michenerite, PdBiTe, is the principal palladium mineral and sperrylite, PtAs,, is
by far the most common platinum mineral for deposits of the South Range (Cabri,

1981). Moncheite, PtTe,, is the principal platinum mineral in deposits with essentially
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no sperrylite (Levack West). Froodite, PdBi,, insizwaite, PtBi,, and sudburyite, PdSb,
are less common. There are also some rare PGMs. According to Cabri (1981), the
PGMs occur mainly as small inclusions, usually less than about 150 um, but millimeter-
size grains of sperrylite are present. Recent studies by Xiao and Laplante (2003b)
confirmed the presence of well-liberated sperrylite below 150 um that is well liberated
in Clarabelle mill feed. Although sperrylite characteristically occurs as monocrystalline
inclusions or coarse grains, the other PGMs are present more frequently as complex

multimineralic intergrowths, often with Bi and Ag tellurides.

Cabri and Laflamme (1976) made a detailed investigation of 150-300 pm sink
fractions of hydroseparation. They found that although some PGMs are liberated in this
size class, especially sperrylite, the majority of PGMs are still locked. About 5-15% of
the michenerite, moncheite, sperrylite and sudburyite grains found in the 150-300 um

sink fraction occurred as inclusions in pyrrhotite or magnetite.

They concluded that the PGE values might be accounted for by discrete PGMs
and PGEs in solid solution in arsenides and sulpharsenides. They felt that PGE in
arsenides and sulpharsenides, if present, would be important in view of the large
tonnages involved, but that conclusive evidence was still required. Detailed
mineralogical studies of a second-stage milled sample and metal balance calculations
showed that, for the particular sample studied, from 1-4.5% Pt, 22.3-23.3% Pd and
31.2-41.2% Rh are present as solid solutions in cobaltite and gersdorffite (Cabri, 1981).

Cabri (1981) reported that 66% of the sperrylite found in a mill tailing was
either liberated or attached to sulpharsenides. Because the sperrylite is the principal Pt
mineral in South Range ores and its close textural association with sulpharsenides
requires that both be recovered, he suggested that it was worth investigating the

flotation characteristics of sperrylite.
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2.2.3.2 Massive Ore in The Norilsk-Talnakh Area of U.S.S.R.

According to Kozyrev et al. (2003), this massive deposit is identified as a
Kharaelakh orebody, which occurs at the base of a layered intrusion and contains more
than 70 vol.% sulphides. The orebody is divided into three groups, namely: pyrrhotite
ore, cubanite ore, and chalcopyrite ore. Pyrrhotite ores include pyrrhotite, chalcopyrite-
pyrrhotite and cubanite-chalcopyrite-pyrrhotite varieties, and make up 85 vol.% of the
Kharaelakh orebody. The cubanite and chalcopyrite ores each make up only 7 to 8
vol.% of the orebody.

Mineralogy: Variability in chemical composition of the ore is manifest in the
gradual increase of PGE content from 2.3 to 11.9 ppm up to 20.2 to 111.7 ppm
(Kozyrev et al., 2003). The pyrrhotite ore has few PGMs in the -90 pm size fractions.
These include isoferroplatinum (IFP), sperrylite, cooperite, rustenbergite, Kotulskite,
merenskyite and native gold. The dominant PGM is IFP, which constitutes 99 wt % of
the total PGM assemblage (Kozyrev et al., 2003).

Kozyrev (2000) also characterized mineralogy of PGMs in the feed and
concentrates of the chalcopyrite-pyrrhotite and cubanite-chalcopyrite ores. It was found
that the chalcopyrite-pyrrhotite ore contains 26 PGM species. Palladium minerals are
dominant (16 species), Pt constitutes nine minerals while Rh occurs in only one species.
Most of the PGMs occur in the —45 pm size fraction (67 to 91 wt %) of the primary ore
as well as of the process products. The 45-90 pm size fraction of the nickel concentrate

contains 66 wt% of the PGMs. PGMs have not been detected in the tailings.

The major PGMs are amenable to flotation: sperrylite and cooperite report to the

copper concentrate (70% and 90%, respectively) and in the nickel concentrate (29% and
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8%); stibiopalladinite favors the nickel concentrate (74%) and the pyrrhotite concentrate

hosts 70% of isoferroplatinum.

Kozyrev (2000) reported that the cubanite-chalcopyrite-pyrrhotite ore contain
most PGMs in the 20-45 um size fraction (42 to 84 wt%). Twenty-nine PGMs have

been identified and these include 18 Pd species and 11 Pt species.
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Copper flotation
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Figure 2-1 Selective Flotation Flow Sheet for Massive Ore

It was reported (Kozyrev, 2000) that the major PGMs in the flotation feed are
cooperite (28 wt%), atokite-rustenburgite (24 wt%) and sperrylite (20 wt%); copper
concentrate has sperrylite (42%), cooperite (24 wt%) and isoferroplatinum (14 wt%);
nickel concentrate contains cooperite (36 wt%), sperrylite (15 wt%), atokite-

rustenburgite (23 wt%) and sobolevskite (11 wt%); the pyrrhotite concentrate has
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isoferroplatinum (41 wt%) and cooperite (20 wt%) while the tailings have atokite-
rustenburgite (54 wt %) and sperrylite (17 wt%). Most of the major PGMs grains in the
concentrate are liberated while some occur as complex intergrowths with each other,

with sulphides and with silicates.

Recovery method: the massive ores, ground to 85% passing 45 pum, are
processed by selective flotation (Figure 2-1) to produce copper, nickel and pyrrhotite
concentrates and tailings. In copper flotation, pine oil is used as a frothing agent and
butyl dithiophosphate as collector; in nickel flotation, T-80 serves as the frother,
potassium butyl xanthate as the collector with sodium dimethyl dithiocarbamate as a

depressant, NaHSOj3 as a modifier with CaO used to regulate alkalinity.

2.2.3.3 Disseminated Ore in The Norilsk-Talnakh Area of U.S.S.R.

Three varieties of disseminated ores have been distinguished: (1) pyrrhotite ore,
the most abundant, (2) cubanite, and (3) chalcopyrite ores. The major sulphide minerals
in the pyrrhotite ore are pyrrhotite, chalcopyrite, and pentlandite. Major sulphide
minerals in the cubanite ore are cubanite, chalcopyrite, pyrrhotite and pentlandite;
minor sulphides include mackinawite, sphalerite, and galena. The chalcopyrite ore
includes the following major sulphides: chalcopyrite, pentlandite, pyrrhotite and

cubanite with some minor sulphide minerals.

With new technology developed in the past decade, gravity-flotation techniques
have been developed to increase the PGM recovery, such as recovering PGMs from
concentrates, as well as scavenging from the Norilsk mill tailing (Kozyrev et al., 2003).
The Knelson Concentrator has been used by Kozyrev (2002) to study the PGM

distribution in the Norilsk mill gravity products. These include:
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1) Gravity concentrate of the 12 in Knelson concentrator (laboratory-scale

test);

2) Feed of the 48 in. Knelson concentrator;

3) Gravity concentrate of the 48 in Knelson concentrator; and

4) Gravity concentrate of the 20 in Knelson concentrator (processed

concentrate of the 48 in. Knelson concentrator).

Table 2-1. PGM distribution (vol.%) by size fraction in disseminated ore, Norilsk I

orebody (Kozyrev 2002)
Size Fraction | Conc. of the | Feed of the | Conc. of the Conc. Of the
(um) 12-inch KC | 48-inch KC | 48-inch KC 20-inch KC
+250 6.7
-250+90 7.8 18.6 34.8
-90+45 40.8 29.5 254
+74 0.2
-74+45 32.1
-45+20 67.7 50.9 45.0 38.6
-20 0.5 0.2 1.2

Mineralogy: Kozyrev (2002) reported that twenty-six PGM species plus alloys

of gold and silver have been found in the gravity concentrates of the 12-inch Knelson

concentrator and include 19 Pd minerals, 6 Pt minerals and a Rh mineral. Most of

PGMs recovered is in minus 45 um and 45-75 pm size fractions. In the latter size

fraction, the most abundant (80 wt%) platinum minerals are isoferroplatinum,

rustenbergite, and sperrylite; in the former, Pd species of the atokite-rustenburgite series

dominate, with a two-fold decrease in Pt-Fe alloy content.

Most PGM grains and
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intergrowths (90%) in concentrates are liberated while the rest (10%) are attached to

sulphides. The PGMs distribution is shown in Table 2-1.

Table 2-1 shows that PGMs in the feed of 48-inch KC are mainly distributed in
the 45-90 um and 20-45 pm size fraction, 41 vol.% and 51 vol.%, respectively. Thirty-
nine PGM species, including twenty-six Pd minerals, twelve Pt minerals and one Rh
mineral, have been found. The major PGMs include atokite (28%), sperrylite (16%)
and isoferroplatinum (11%) plus other minor PGMs. The main platinum carriers are
isoferroplatinum, atokite, sperrylite and tetraferroplatinum; palladium minerals
comprise mostly atokite and to a lesser degree, paolovite and taimyrite. Most of the
major PGM grains are free while the rest occur as intergrowths with other PGMs, Au-

Ag alloys, sulphides and silicates.

The PGMs in the concentrates of a 48-inch Knelson concentrator are mainly
distributed in the 90-250 pm (25%), 45-90 um (29%), and 20-45 pm (45%) fractions.
A total of twenty-eight PGM species, plus Au and Ag minerals, has been found. The
major PGMs include isoferroplatinum (41%), tetraferroplatinum (18%) and atokite
(15%) plus (3 to 9%) sperrylite, rustenbergite and taimyrite. More than half of the Pt is
contained in isoferroplatinum, as well as tetraferroplatinum, sperrylite and

rustenburgite.

The major PGMs consist of isoferroplatinum (35%), tetraferroplatinum (20%)
and atokite (20%) plus minor sperrylite, rustenburgite and taimyrite (3 to 9%). Based
on the information provided, it is clear that the main Pt and Pd carriers in this product
are much the same as those in the 48-inch Knelson product. Table 2-1 suggests that the
recovery of PGMs below 20 um is negligible. It is unclear whether this is because the
KC failed to recover these species or their concentration in the circuit was low, which

appears likely.



CHAPTER 2 Literature survey and theory 27

Recovery method: In practice, disseminated ores are preconcentrated by gravity
methods and are then processed by selective bulk flotation (Figure 2-2). Some of the
discrete PGMs are skimmed off by gravity in the grinding circuit. The fineness of
grinding is about 55% minus 74 pm. Gravity concentration uses Knelson Concentrators
of various capacities to separate the noble-metal minerals. Bulk flotation produces a
concentrate that undergoes further grinding to further liberate the minerals. Cleaning
stages are used to produce higher-grade concentrates, which are processed further into
copper and nickel concentrates. For flotation, potassium butyl xanthate and sodium
butyl dithiophosphate serve as collectors, T-80 as a frother and CaO as a pH regulator

and depressant.

Ore Gravity conc.
—>
Ball mill

KC
SD-48

h v )
RougherUi~ 7 Tail
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» Final Conc.

Figure 2-2 Norilsk Flow Sheet for Processing the Disseminated Ore
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2.3 Laboratory Methods for Characterizing PGMs

Although applied mineralogy is now a well-established discipline, there is a
distinct problem when characterizing PGMs in an ore, which stems from their low grade
(often less than 1-2 g/t) and fine size distribution. Finding PGMs in a polished section
may be compared to finding a needle in a haystack (Cabri, 1981). Fortunately, this
problem can be reduced using pre-concentration techniques such as gravity. These

methods will be reviewed.

Zhou and Zhang (1975) gave a detailed account of their comminution and
separation techniques for a PGM-bearing chromite ore. Their method involved a large
sample size of 1060 kg. The original sample was processed as follows: coarse,
medium, and fine crushing; splitting out a 1000-kg sample for grinding and sieving
(grinding was used to liberate enough minerals for subsequent concentration), with the
balance split further for chemical analyses and back up. The final product, reported to
contain only 5% unliberated PGMs, was distributed as follows: 37% +150 pm, 17% -
150+106 pm, 4.2% -106+100 pm, 2.8% -100 +74 um, and 39% -74 um. The sized
samples were processed with a high frequency superpanner (320-800 vibration/min).
The first concentrates were considered to be PGM concentrates. The second
concentrates and middlings were ground further and the superpanner used to recover
more PGMs. The superpanner concentrates were combined with the first concentrate.
Chromite concentrates, middling, and tailings were also obtained from this operation.
They reported a 50% recovery of PGMs with the superpanner, increasing to more than
70% for high-grade feeds. The PGMs and chromite concentrates were subjected to
magnetic separation, first with a weak field to remove strongly magnetic minerals
(including some PGE-alloys) and subsequently with increasing field. Finally, a selective
dissolution and heavy liquid fractionation were used for further separation to obtain the

final PGM and chromite concentrates.
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The reported recovery was only 50% (up to 70% for some higher grade ores).
The size distribution of PGMSs, and some information about source of PGMs was lost
due to the selective dissolution process for assaying (this procedure was also extremely

time consuming).

Cabri and Laflamme (1976) and Cabri (1981) developed a different mineral
separation technique using heavy media elutriation to separate small samples (less than
500 g) of unconsolidated rock or mill samples. They tested this new recovery method
on sized synthetic samples of sperrylite mixed with purified and sized pyrrhotite,
chalcopyrite and pentlandite. They reported excellent recoveries down to about 53 um,

but recoveries fell off steeply in fractions in finer fraction.

The inability to recover sperrylite below 53 pm, as well as the relatively small

masses processed, must be considered handicaps for this approach.

Williamson and Savage (1965) reported a recovery method suited for low grade
PGEs in placer ores. The Witwatersrand Au-U fossil placers contain small quantities of
by-product PGEs, and the PGMs are considerably finer than those of usual placers,
partly due to the grinding of the ore to 80% less than 74 um (Feather, 1976, Reimer,
1992). Williamson and Savage (1965) therefore used flotation rather than gravity
recovery, on 11.3 kg (25-1b) lots of gravity concentrates. Final cleaning operations
were carried out in an 800-g Fagergren cell. Feather (1976) reported that twenty-two
PGM species were found in this deposit; 80% by weight were Ir-Os-Ru alloys and
sperrylite and isoferroplatinum made up 15-20%. Williamson and Savage (1965)
reported that the flotation of Ir-Os-Ru alloys is pH-sensitive, with an optimal pH of 1.5
to 3.5. Their recovery in PGEs was reported to be close to 100%, as determined by
adding known quantities of irradiated “osmiridium”. The final pyrite-rich flotation
concentrate was still too large (2-4% of original weight) for their purposes, so they used

pyrometallurgical techniques to remove the pyrite.
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Knauf and Kozyrev (2002) used a Knelson Concentrator to study the mineralogy
of Cu-Ni ores (both the ore fed to the KC and the tailings). They reported that when a
primary ore sample of about 40 kg with a top size of 0.5 mm was fed to the KC, 80 g of

concentrate was obtained.

Samples of primary ore and KC tailings were investigated. They were screened
first to size fraction (SF) of 250-90 um, 90-37 um and —37 pm, and each sample was
separated using a hydroseparator. Six heavy concentrates (HC) were obtained.
Microprobe analysis by size fraction was prepared from the HC. The PGMs were

identified and their volumetric area abundance in the polished section estimated.

They concluded that PGM grains are effectively extracted: grains larger than 70
um were extracted completely, the grains within a size of 30-70 um were extracted
partially and that grains smaller than 30 pm were lost. They also concluded that the
distribution of the PGMs by grain size yields all necessary information for the choice of
processing flowsheet for PGM recovery. They argued that pre-concentration was
helpful for mineralogical investigation and that mineralogical data were among the most
important factors to determine the processing route. Their approach yielded significant
upgrading ratios, which would contribute to more reliable mineralogical examination.

However, the partial PGM recovery below 75 pum and total lack of recovery below 30

um remain handicaps.

2.4 GRG Methodology

The GRG methodology is reviewed as it will be adapted to the GRPGM case for
some PGMs of specific gravity close to gold. One of the objectives of the GRG
methodology is to model gold recovery in grinding circuits for purpose of prediction or

optimization.
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2.4.1 GRG Ore Characterization

The GRG content in ore samples is characterized using a three-stage progressive
liberation and recovery protocol (Laplante et al., 1994). To date, this protocol has been
applied to over 180 ore samples at McGill University alone with results varying from a
GRG content of 3% to 97%. A prominent centrifuge unit manufacturer also now uses
the method systematically. Examination of GRG concentrates using an automated SEM
technique, the Mineral Liberation Analyzer (MLA), has shown that below 75 um, gold
particles recovered in stage 1 of the test were well liberated (Guerney, Laplante and
O’Leary, 2003). Particles above 150 pm for stage 1 can have various degrees of
liberation, but average liberation is high (more than 90% of the gold by weight is
present in particles of more than 90% gold in gold-silver alloy). Concentrates from
stages 2 and 3 were also found to have a high degree of liberation. Figure 2-3 shows
three typical GRG contents (coarse, intermediate, fine GRG) as a function of particle

sizes.
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Figure 2-3 Cumulative GRG Contents as a Function of Particle Sizes (Xiao, 2002)
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2.4.2 GRG Behaviour in Grinding and Classification Units
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Figure 2-4 The Selection Function of Gold and Ore from Banisi

The behavior of gold and GRG in grinding mills and hydrocyclones has been

studied by Banisi (1991), both at bench scale and in the grinding circuit of the Golden

Giant Mine. No other study of gold grinding kinetics at full-scale has been completed

since, partly because such studies must be completed in the presence of abundant coarse

gold in the absence of gravity recovery units, a combination that is now rarely

encountered. Figure 2-4 describes the grinding kinetics of gold and ore (Banisi et al.,

1991; Laplante et al., 1994): the relative gold over ore grinding rate ranges from 1: 6 at

fine size to 1: 20 at coarse size. In other words, gold grinds much slower than the ore.
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Figure 2-5 Typical Partition Curve for Gangue, Gold and GRG

In the case of cyclone partition curves, a number of studies have been performed

(Laplante, Liu and Cauchon, 1990; Banisi, Laplante and Marois, 1991; Laplante and
Shu, 1992; Putz, Laplante and Ladouceur, 1993; Woodcock and Laplante, 1994).

Figure 2-5 shows typical results of partition curve of gold, GRG and ore.

As a rule of thumb, the GRG partition curve has a lower sharpness of separation

(0.8 to 1.1), according to the Plitt’s model (1976), with a corrected dsq which is from 8

to 10 times lower than that of ore (Laplante et al., 1996).

2.4.3. GRG Recovery

Recoveries for gravity and flash flotation units also have been characterized by a

number of researchers (Putz et al., 1993; Laplante et al., 2002). Figures 2-6a and 2-6b

show gold recoveries as a function of particle size for the Knelson Concentrator and
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flash flotation cell, respectively. They show that the two units complement each other

over a wide range of particle sizes.
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Figure 2-6a and b. Gold Recovery in a Flash Flotation Cell (a) and GRG

Recovery in a Knelson Concentrator 20XD (b) (a: six different sampling tests under similar

operating conditions; b: Knelson operated at either 60 or 120 G at fluidization flows of 35 to 80

USgpm, as per first and second numbers in legend)

2.4.4 Modeling GRG Recovery

Once the data corresponding to the three corners of Figure 1-1 (see chapter 1)
have been generated, they can be incorporated into a model that predicts how much
GRG will build-up in the circulating load and how much of each size class will be
recovered (Laplante, 1996). When the primary gravity unit processes a bleed of the ball

mill discharge, recovery is equal to:
D=PR*[[-BC(I-PR)] '*F Equation 1

where D is a column matrix of the GRG flow rate into the concentrate for each size
class, P is the diagonal matrix for primary recovery and R gold room recovery, B is a

grinding matrix and C the classification matrix, and F is the column matrix for GRG in
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the feed. Because Equation 1 requires manipulation of 11 x 11 matrices, Xiao (2001)
developed a simplified approach using multi-linear regressions to predict the gold
recovery. The model has been used for designing gravity recovery flowsheets in
grinding circuits. It also can be used to predict and optimize the gold recovery in the
grinding circuit by providing the size distribution of GRG content and CGR

classification partition curve.

Recovering PGMs is expected to be more challenging than for gold, as many
PGMs have a specific gravity that is significantly lower than that of gold, and the

mineral are brittle rather than malleable.
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CHAPTER THREE

CHARACTERIZING THE GRAVITY
RECOVERABLE PLATINUM GROUP MINERALS

3.1 Introduction

The renewed interest in the use of gravity concentration in recovering PGMs is
due to the more efficient gravity concentration devices now on the market (Cole and
Ferron, 2002; Kozyrev et al., 2003). Application to recovery of PGMs introduces the
need to characterize gravity recoverable platinum group minerals (GRPGMs). GRPGM,
by analogy with gravity recoverable gold (GRG), refers to the portion of platinum group
minerals in an ore or stream that can be recovered by gravity at a low yield (<1%). It
includes PGMs that are totally liberated, as well as locked PGMs in particles with
density such that they report to the gravity concentrates. These species typically have a
specific gravity greater than that of the densest sulphides (e.g. galena, 7.5). Conversely,
they exclude any very fine, completely liberated PGMs that are not recovered into
concentrate on account of their fine size. Also excluded are discrete blebs of PGMs, as

well as PGEs in solid solution in carriers such as copper or nickel sulphides.

The interest in GRPGMs is three-fold. Firstly, can the gravity recoverable
PGMs of an ore be quantified? Can PGMs be upgraded using a protocol similar to the
GRG protocol for mineralogical study in optical or scanning electron microscope?

Secondly, for a number of PGMs, is their density high enough that they recover to
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cyclone underflow and accumulate in the circulating load?  Thirdly, is this
accumulation in the circulating load sufficient to achieve significant gravity recoveries

by processing part of or the entire circulating load?

Information on GRPGMs in an ore or process stream can be used for different
purposes: if gravity concentration is practised, the GRPGM data can be used to optimize
the circuit. If gravity concentration is not practiced, the amount of GRPGMs and the
size distribution can be used as factors to estimate whether a gravity concentration

circuit should be installed.

The behavior of PGMs has never been specifically studied, as methods for
isolating PGMs, reviewed in the previous chapter, are either ineffective or too unwieldy
to make the process practical. The application of the GRG protocol to PGMs may make

these studies possible.

Ore mineralogy plays a critical role in flowsheet design and plant optimization
(Cabri, 1981; Henley, 1983; Lotter et al., 2002). Information on the mode of
occurrence, grain size distribution, and liberation of the PGMs obtained by
mineralogical analysis provides useful starting data. However, there is a problem
finding PGMs in a polished section without preconcentration. This problem might be

solved or reduced with a GRPGMs test protocol.

Thus, not only the mineralogy of the ore but also the behavior of PGMs in the
grinding circuit and their potential response to gravity or flash flotation is critical to
circuit design and optimization. Characterizing the gravity recoverable platinum group
minerals of an ore, investigating their behavior in grinding and classification and
analyzing the mineralogical features are the most important parts of this thesis. This
chapter focuses on characterizing GRPGMs. The next chapter focuses on their behavior

in grinding and classification.
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3.2. Gravity Recoverable Platinum Group Minerals Test Design

The GRG standard test was developed at the beginning of the 1990s (Woodcock
and Laplante, 1993) and has been used to characterize over 140 ore samples to date. All
results are presented in a sized basis, from minus 20 pm up to 850 um. The GRG test is
most effective when the specific gravity of the gold-bearing mineral is between 16 and
19 (Laplante et al., 1996; Laplante and Dunne, 2002). Since some PGMs have specific
gravities close to that of gold-bearing minerals (Table 3-1), the three-stage GRG
procedure would seem adaptable to characterize GRPGMs. The test needed
modification to account for the fact that most PGMs tend to report to finer size classes
(Cabri, 1981; Thurman, 1994; Xiao and Laplante, 2003) and have a lower specific
gravity than native gold. The modified procedure includes the standard GRG protocol,
but a fourth stage is added at a higher rotating velocity on the Knelson Concentrator to
try to recover the fine GRPGMs. Figure 3-1 shows the procedure designed to

characterize the gravity recoverable platinum minerals.

Table 3-1: The Density of PGMs and Gold-bearing Minerals

Category Mineral Name Formula Density (g/cm’)

Cooperite PtS 10.10
Sperrylite PtAs, 10.6

PGMs Maslovite PtBiTe 11.23
Isoferroplatinum Pt;Fe 18.23

Stillwaterite Pd;As; 10.95
Native gold Au 19.3

Gold and Gold- Electrum Au, Ag 15-19.3
Bearing Minerals Auricupride CusAu, 11.5
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Figure 3-1 Procedure for Measuring GRPGMs Content with a KC-MD3

The GRPGM test is a protocol to progressively liberate and recover PGMs at
increasingly finer grinds using a 3-in Knelson Concentrator (KC MD3). In the first
three stages, the tailing of the first stage once ground finer becomes the feed to the

second, and the tailing of the second once ground finer the feed of the third. However,
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for stage 4, all the tailing from stage 3 is directly (i.e., without grinding) fed to the
higher rotating velocity KC-MD3 to recover the fine GRPGMs.

The coarser concentrates from stage one (i.e., +600, +425-600, +300-425, and
4+212-300 and +150-212 pm size classes) are upgraded further using a hydrosizer.
Some of the products and concentrates from stage 1 to 3 are used to make a polished

section for mineralogical analysis (details in Chapter 5).

3.3 Results and Discussion

Four ore samples from various areas in Canada were processed with the
procedure outlined in the previous section (except the sample from Raglan) to
characterize the content of GRPGMs, namely, gravity recoverable platinum (GRPt)
and/or gravity recoverable palladium (GRPd).

3.3.1 Raglan Ore Sample

Summary: A sample of ore from Raglan mill feed, Québec, was characterized
for gravity recoverable platinum group minerals (GRPGMs) content using the standard
GRG test (i.e., without the fourth stage added). In this case, gravity recoverable
platinum (GRPt) and gravity recoverable Palladium (GRPd) were quantified. The
sample, assaying approximately 0.77 g/t of Pt, contained a small amount, 5.1%, or
0.039 g/t gravity recoverable platinum (GRPt). The assay of 1.97 g/t of Pd contained
only 2.7% gravity recoverable palladium (GRPd). At 100% -850 um (Fso of 580 um),
only 0.9% of the Pt was recovered and 0.4% of the Pd; GRPt content increased to 3% at
a Fgo of 205 pm, GRPd 1.7%. At a final grind of 79% -75 pm, GRPt and GRPd

increased to 5.1% and 2.7%, respectively.

Figure 3-2 presents the size distribution of the feed to the three stages, with
corresponding Fgo of 580, 205 and 78 um. Feed masses of 54.49, 26.27 and 24.16 kg
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were used for the three stages, respectively. Feed rate decreased with decreasing feed
size, from 1050 g/min for stage 1 to 280 g/min for stage 3. Fluidization flow rate
decreased from 7.2 L/min for stage 1 to 5.5 L/min for stage 3. Sized concentrates (from

25 to 600 pm) and 600-g samples of the tails were assayed for Pt and Pd content.
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Figure 3-2 Size Distribution of the Feed to Three Stages

3.3.1.1 Stage 1 to 3

Metallurgical balances of Pt and Pd across the hydrosizer for the five coarsest
size classes of stage 1 concentrate showed that the upgrading ratio varied from 1.0 to
2.0 for Platinum and 2.1 to 3.5 for Palladium (see on Appendix 1). Although the
upgrading ratio of Palladium is higher than for Platinum, it is reasonable to believe that
there is no significant difference in specific gravity between the Pd and Pt carriers and
the gangue in the same size class. The causes of low recovery of Pt and Pd in this

sample is discussed in more detail in the discussion section.

Stage 1: The concentrate mass in each size class below 150 um was assayed,

while above 150 pum the calculated heads from the hydrosizer tests were used.
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Appendix 1 shows the metallurgical balance of stage 1 for Pt and Pd, i.e., the first

recovery attempt. Because of the high feed rate, and coarse nature of the feed, this first

stage is normally aimed at recovering the intermediated to coarsest size of Pt and Pd.

The Pt recovery of 0.96%, and Pd recovery of 0.43% are exceptionally low. The feed,
at 0.69 g/t Pt and 1.81 g/t Pd, is upgraded to 4.1 g/t Pt and 4.9 g/t Pd, respectively.

Platinum does show some modest recovery between 25 and 106 pm, 3 to 7%, whereas

palladium shows no recovery other than “background noise” (i.e., recoveries below 1%

for all size classes).
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Figure 3-3 Pt, Pd Assays of the Tailing of Stages 1, 2 and 3

Size-by-size data are normally informative, both for the concentrate and tailing

fractions. The tailing assays of stage 1 (Figure 3-3) show some consistency: They

increase slowly with decreasing particle size, especially below 106 pum.

Concentrate grade shows a different behaviour for Pt and Pd. Whereas Pd

grades are slightly upgraded over the full size range, Pt upgrading, which is clearly

more significant, takes place predominantly below 106 um. Head grade increases with

decreasing particle size below 53 pum for Pt, whereas the increase is over the full size

range for Pd.
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Stage 2: Slightly less than half of the tailing of stage 1, once ground to 49%
passing 75 pm, was fed to the Knelson for stage 2. The feed rate and size distribution
were more conducive to Pt and Pd recovery than stage 1. Nevertheless stage 2 returned
a recovery of 2.1% for Pt and 1.4% for Pd. The concentrate grade is 4.4 g/t for Pt and

7.2 g/t for Pd, as shown in Appendix 1. These recoveries are still considered very low.

The tailing fraction assays increase with decreasing particle size over the full
range for Pd, and below 75 pum for Pt. Figure 3-3 shows that Pd grades for the same
size classes are generally below those of stage 1, despite the very modest recoveries of

stage 2.

Concentrate grade increases with decreasing particle size down to the minus 25
um size fraction for Pt and the 25-37 pum fraction for Pd. Below 53 pm, the grade of Pt
increases sharply from 2-6 g/t to 20-58 g/t. The concentrate grade of Pd increasing with
decreasing particle size does not show the same trend as Pt does. Platinum recovery is
between 1 and 2% above 75um and then increases to 5-8% between 53 pm and 25 pm.
It again drops to 1.4% for the finest size class. The reason is that it is either too fine or
not dense enough for effective recovery with the Knelson, or is still unliberated.
Palladium recovery decreases with decreasing particle size, down to a very low 0.1%
for the finest size class. The Pd assay of the minus 25 pum tailing fraction, 3.1 g/t, is
almost the same as that of the feed. The KC is clearly ineffective in recovering Pd in

the finest size class, -25 pm.

The calculated head grade, 0.78 g/t Pt, 1.92 g/t Pd, is in reasonable agreement
with the measured tails grade of stage 1, 0.68 g/t of Pt and 1.8 g/t of Pd.

Stage 3: This stage returned a recovery of 2.2% for Platinum as shown in

Appendix 1- Raglan mass balance, and only 0.98% for Palladium, at a grind of 79% -75
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um. The calculated head, 0.75 g/t of Pt and 1.94 g/t of Pd, is in good agreement with
that of the tailing of stage 2, 0.77 g/t of Pt and 1.92 g/t of Pd. Upgrading for Pt from
stage 1 to 3 remains almost the same, from around 0.7 g/t in the feed to 4.4 g/t in the

concentrate.

Tailing assays show the same trend as stages 1 and 2, but at a lower grade for
both Pt and Pd. The lower tailing grade of stage 3, clearly noticeable in Figure 3-3,
cannot be explained by the very low recoveries of all stages, but rather by a shift in size

distribution to higher-grade finer classes from stage 1 to stage 3.

Concentrate grade of Pd increases steadily from the coarsest to the minus 25 pm
size class (typical of stage 3 for gold). Recovery is highest for the 75-106 pm fraction,
4.6%. It drops significantly for the minus 25 pm fraction, to a value of 0.2%. The
concentrate grade of Pt also reaches a maximum of 36.8 g/t in the —25 pum size fraction.

The maximum recovery appears between 25 pm and 53 pm, 4.2-4.5%.

3.3.1.2 Overall Results

The overall test results present a total GRPt content of 5.1% in a 0.77 g/t feed
and GRPd content of 2.7% in a 1.97g/t feed (see Appendix 1- Raglan mass balance).

Another way of representing recovery is as follows: out of 0.77 g/t of platinum
in the feed, 0.007 g/t was recovered in stage 1, another 0.016 g/t in stage 2, and 0.016
g/t in stage 3. A total of 0.039 g/t, or 94.9% of the Platinum in the ore, reported to the
gravity tailing. Out of 1.97 g/t of palladium in the feed, 0.008 g/t was recovered in
stage 1, 0.026 g/t in stage 2, and 0.019 g/t in stage 3. A total of 97.3% of palladium in
the ore reported to the gravity tailing.



‘ CHAPTER 3 Characterizing the gravity recoverable platinum group minerals 45

Overall results can be presented graphically. Figure 3-4 cumulates platinum
recovery in two ways. First, platinum is cumulated as percent retained from the
coarsest (+850 um) size class to the finest. The Pt in the finest class (i.e. —25 pm) is
assumed to be coarser than 15 um, but only for the purposes of showing total recovery.
Second, platinum is cumulated from stage 1 to stage 3. Thus, the third curve (for stage
3, triangles) cumulates to the total GRG content, 5.1%. The curve is obviously at a low
level, but with a shape similar to that of gold ores with a fine GRG component. This

fine Pt/Pd component must have a relatively high SG to be recovered.
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Figure 3-4 Cumulative GRPt Content (100%: total platinum in the ore)

To reveal better the size distribution effect, the data of Figure 3-4 are plotted in
Figure 3-5 relative to the total amount of GRPt in the ore, rather than the total amount

of Platinum. All size classes below 75 um contribute to the GRPt and the absence of

GRPt of coarse size (+106 um) and low head grade makes it a poor gravity application.
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Figure 3-5 Normalized Cumulative GRPt Content (100%: total GRPt in the ore)

. 3.3.1.3 Discussion and Conclusions

Discussion: Concentrate assaying appears to be quite reliable, the differences
between the calculated tailing grade and the head grade of the following stage being
small. The head grade of platinum, 0.77 g/t, is in line with the quoted assay for Raglan
ore, 0.8g/t (Lotter et al., 2002). The head grade of palladium, 1.8g/t, is slightly lower
than the typical value, 1.97g/t. Uncertainty due to sampling, assaying and in the tests

does not affect the general findings of the test.

Figure 3-6 shows platinum recovery in each size class for all three stages. The
trends are consistent, which adds confidence to the reliability of the test. It is clear from
the stage 1 curve that this first stage did not recover much of the GRPt above 106 um,
but the GRPt recovery increased below 75 pm with the highest recovery in the 37-53
um size fraction. With further grinding, more Pt was liberated and recovered in stages

‘ 2 and 3, which is shown at the higher right end of Figure 3-6. This figure also shows
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that stages 2 and 3 recovered more GRPt in the finer size classes. This is consistent
with the observation that more liberated Pt was found in the finest size class

concentrates, such as the minus 25um fraction.
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Figure 3-6 Stage Recoveries of Platinum per Size Class

Figure 3-7 shows that stage recoveries for palladium display different trends
than those of platinum. Stage 1 is flat which indicates that the lower recovery of all size
class might be due to the lower content of coarse Pd, the lower degree of liberation and
the finer palladium particles distributed in the Raglan ore sample. Stages 2 and 3 show
a strong recovery in the middle size class, from 53 pum to 212 um, but the recovery
drops progressively below 53 um. This is unusual for a typical GRG test, and suggests
a relatively low SG for the palladium-bearing minerals that report to the concentrate is

the coarser fractions.
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Figure 3-7.  Stage Recoveries of Palladium per Size Class

. Based on the test, the low grade of Pt and Pd content, the fine size distribution
and the small density difference between Pt and Pd carriers and gangue make the

Raglan ore a poor candidate for gravity recovery.

Flash flotation could be an interesting alternative based on the fine size
distribution of Pt and Pd. But it would have to be justified on the basis of other factors,
notably the benefit to copper and nickel recovery. As the Cu- and Ni-minerals are
believed to carry most of the Pt and Pd, whatever effect flash flotation has on copper

and nickel recovery would also benefit Pt and Pd recovery.

Conclusions: The GRPt and GRPd content of a Raglan mill feed sample
assaying 0.77 g/t of Pt and 1.97g/t of Pd were found to be 5.1%, 2.7%, respectively.
The very low contents in gravity recoverable platinum and palladium bearing minerals

make the Raglan ore a poor candidate for gravity recovery (Xiao and Laplante 2003a).
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3.3.2 Strathcona Ore Sample

Summary: A sample of ore from Strathcona mill feed, Ontario, was
characterized for its gravity recoverable platinum (GRPt) and palladium (GRPd)
contents using the four-stage procedure shown in Figure 3-1. The sample, assaying
0.44 g/t Pt and 0.58 g/t Pd, contained 53% GRPt and 44% GRPd. At 100% -850 um (
Fgo 530 um), 16% of the platinum and 17% of the palladium were recovered; GRPt and
GRPd contents increased to 38% and 32%, respectively, at Fgy 175 um, to reach 53%
and 44% at a final grind of 80% -75 um. GRPt and GRPd were present in all size
classes below 600 pm (i.e., 67% of the GRPt and 72% of GRPd were finer than 106
um). The gravity recoverable gold (GRG) content of 70% was also characterized.
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Figure 3-8 Size Distribution of the Feed to the Four Stages

Figure 3-8 presents the size distribution of the feed of the four stages, with Fgos
of 530, 175 and 78 pm (the same for stages 3 and 4), respectively. The size distribution

of stage 4 is slightly coarser than that of stage 3 due to the small loss of some fines
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during the handling of stage-3 tails (i.e., siphoning the slurry). Feed masses of 75.39,
27.51 and 25.17 kg were used for the three stages, respectively. The fourth stage used a
feed mass of 22.04 kg. Feed rate decreased with decreasing feed size, from 1160 g/min
for stage 1 to 296 g/min for stage 3, and 355 g/min for stage 4. Fluidization flow rate
also decreased from 7.4 L/min for stage 1 to 5.5 L/min for stage 3 (stage 4: 6.1 L/min).
Sized concentrates (from 20 to 600 um) and 600-g samples of the tails were assayed for

platinum and palladium contents at Falconbridge Limited Research Center.

3.3.2.1 Results for stages 1 to 4

Stage 1: Metallurgical balances of the hydrosizing of the five coarsest size
classes of stage 1 concentrates for platinum and palladium are shown in Appendix 2,
respectively. The upgrading ratio varied from 2.6 for the 300-425 um fraction to 7.1
(7.3) for the 600-850 pm fraction. The coarsest size class displays the highest
upgrading ratio for both platinum and palladium. In each size class, the upgrading ratio
is similar for platinum and palladium. Recoveries are high for all size classes above
212 pm for platinum. For the coarsest size class (600-850 um), the concentrate grade of
platinum is so high (800 times of the ore feed grade) that contamination or faulty
assaying is suspected. As a result, the Knelson concentrate grade for this size class was

set at 1 g/t (this correction will be discussed later).

Metallurgical balance of stages 1 to 4 for platinum and palladium is shown in
Appendix 2. The first stage, processing at high feed rate and coarse size distribution, is
aimed at recovering mostly the coarsest platinum and palladium minerals or minerals of
intermediate particle size that liberate easily. The recoveries of both platinum and
palladium are 17 per cent. The feed, at 0.43 g/t platinum and 0.59 g/t palladium, is
upgraded to 56 g/t Pt and 79 g/t Pd.
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Generally, concentrate grades of both platinum and palladium increase
progressively with decreasing particle size down to the 38-53 pm size fraction. For
gold, the increase is normally down to the 20-25 pum fraction. The difference is in all

likelihood linked to the lower SG of the Pt-bearing and Pd-bearing mineral(s).

Size-by-size recoveries for both platinum and palladium follow the same pattern
(Figure 3-9), recovery generally increases as particle size decreases, with a maximum of
47% at 106-150 pm for platinum and 45% at 75-106 um for palladium, then the
recoveries drop significantly, which results in a very low recovery below 20 pum, less

than 1% for palladium.
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Figure 3-9 Platinum and Palladium Size-by-size Recoveries for Stage 1

Platinum and palladium recoveries in Figure 3-9 are sufficiently similar that it
suggests they are in fact contained in the same mineral(s). The mineralogical analysis
in Chapter 5 indicates that michenerite (Pd, Pt)(Bi, Te),, maslovite (Pt, Pd) (Bi, Te), are

Pt and Pd carries in the Knelson Concentrates.
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Stage 2: The tailing of stage 1 was first split, then a sub-sample of 27.51 kg was
ground to 54% passing 75 pm, and fed to the Knelson to recover the liberated PGMs.
Stage 2 returned a recovery of 24% platinum, yielding a tailing grade of 0.26 g/t, and a
concentrate grade of 20 g/t. Stage 2 also recovers 14% palladium, with tailing grade of
0.42 g/t and concentrate of 17 g/t (more details are given in Appendix 2). Concentrate
grades increase with decreasing particle size down to the 20-25 pm size fraction for
both platinum and palladium. Both platinum and palladium follow almost the same
trend, as shown in Figure 3-10: recovery increases with decreasing particle size, up to
maximum at the 38-53 um size fraction, then drops, although there is a “hump” at the
20-25 um size fraction. The palladium recovery curve is lower than that of platinum
possibly due to the lower density of palladium minerals or their lower degree of
liberation. Platinum or palladium minerals below 20 um are either too fine for effective
recovery with the Knelson, which explains the drop in recovery. The calculated head
grade, 0.34 g/t platinum, is in good agreement with the measured tails grade of stage 1,
0.35 g/t. The calculated palladium head grade, 0.49 g/t, is equal to the measured tails
grade of stage 1.
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Figure 3-10 Platinum and Palladium Size-by-size Recoveries for Stage 2
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Stage 3: This stage returned a 15% platinum and 9% palladium recovery at a
grind of 80% -75 um, the usual grinding target in the GRG test. Figure 3-11 is a
comparison of stage recoveries for platinum and palladium. The maximum recoveries
for both platinum and palladium are in the 20-25 um size fraction. The recovery drops
to a minimum at the finest size class. Figure 3-11 also shows that both platinum and
palladium recoveries follow a similar trend with, on average, less palladium being
recovered. The calculated head, 0.29 g/t platinum and 0.43 g/t palladium, is in very
good agreement with that of the tailing of stage 2, 0.26 g/t Pt and 0.42 g/t Pd.
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Figure 3-11 Platinum and Palladium Size-by-size Recoveries for Stage 3

Concentrate grade increases steadily from the coarsest size class to the minus 20
um size class (typical of stage 3 for gold (Laplante et al., 2002)). The highest grade of

80 g/t platinum and 84 g/t palladium occurs in the same size class.

Stage 4: The fourth stage was performed on the tailing of stage 3 using the
variable speed KC-MD 3, without regrinding, but at a higher rotation speed
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corresponding to 115 G, and a fluidization flow of 6.0 L/min. The feed rate, 355 g/min,
was slightly higher than that of stage 3.
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Figure 3-12 Platinum and Palladium Size-by-size Recoveries for Stage 4

This stage had a 26% platinum recovery, upgrading a 0.18 g/t feed (compared to
0.22 g/t in stage 3 tails) into a 9.8 g/t concentrate. Palladium recovery was 12%
(Appendix 2). Figure 3-12 compares recoveries size-by-size. There is not much
recovered above 25 pm. The recovery of palladium in the 37-53 um size fraction is
slightly higher than that of platinum, the opposite being observed for the 25-37 um
fraction but the difference are not material. The maximum recovery for both platinum

and palladium is in the 20-25 pm size fraction.

3.3.2.2 Overall Results

The fourth stage added 8.3% to overall platinum recovery (i.e., GRPt content),
over 73% of it being below 25 pm. Overall GRPt reaches 53%. There is a small
change for the overall head grade between the three-stage and four-stage overall results.
It also added an additional 7.7% to overall palladium recovery, over 77% of it below 25
pm. Overall GRPd stands at 44%. However, the calculated head grade drops from

‘ 0.595 g/t to 0.576 g/t due to some assay error on the final tailing.
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Figures 3-13A and 3-13B cumulate platinum and palladium recovery size-by-
size and stage-by-stage. The fourth curve (for stage 4, crosses) cumulates to the total
GRPt content of 53% and GRPd content of 44%. As shown in these two figures, there
is some coarse GRPt and GRPd above 150 um. More platinum was recovered than

palladium in stage 2.
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Figure 3-13A Cumulative GRPt Content (100%: total platinum in the ore)
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3.3.2.3 Discussion and Conclusions

Discussion: Concentrate assaying appears reliable except for the hydrosizer
concentrate of the coarsest size class in stage 1 for platinum, which assays very high
(49.3 g/t) compared to the assay of the next size class (2.6 g/t) or that of palladium for
the same size class. It was rejected as unreliable and the corresponding grade of the
Knelson concentrate was set to a conservative 1 g/t. This correction causes a small drop

of 1.5% in total GRPt content.

Tailing assaying shows variation in stage 1 for both platinum and palladium.

Other stages follow a stable trend.

As discussed in stage recovery curves, both platinum and palladium recoveries
have a different maximum, which moves to finer size as the test progresses and the feed
becomes finer. The trends are remarkably consistent, which adds confidence to the

reliability of the data.

Table 3-2 Comparison of the tailing grade and the feed grade of next stage

Pt grade (g/t) Pd grade (g/t)
Feed Tail Feed Tail
Stage 1 0.42 0.35 0.59 0.49
Stage 2 0.34 0.26 049 % 0.42
Stage 3 0.29 v 025 0.43 » 0.39
Stage 4 025 % 0.21 037 <« 0.33

As shown in Table 3-2, the tailing grade of the first three stages is in good
agreement with the head grade of next stage for both platinum and palladium. This also

confirms the reliability to the test and assaying data.
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The test results indicate a degree of liberation for the main Pt minerals and Pd
minerals, which needs to be confirmed by quantitative mineralogical analysis. (see
Chapter 5). Despite some difficulties associated with the recovery of a lower SG and
brittle mineral (compared to gold), the potential for gravity recovery at Strathcona is
attractive, the GRPt content being above 50%; another GRPd, at 44%, being the highest
of all samples tested. The content of gravity recoverable gold is slightly above the
average, 70%, which will add credits for the gravity recovery of precious metals in this

ore.

Conclusions: The GRPt content of the Strathcona mill feed sample assaying
0.44 g/t was found to be 53% or 0.23 g/t. The bulk of the GRPt is found below 600 pm,
over 70% being finer than 106 pm. The GRPd content was found to be 44% or 0.25 g/t
out of a total palladium content of 0.58 g/t. It is the highest content among the four
samples tested. The Strathcona ore shows promising for recovery of Platinum
and Palladium by gravity. Further investigations, such as the liberation and behavior in

the grinding circuit of platinum and palladium are justified.

3.3.3 Nickel Rim South Ore Sample

Summary: A 24.7 kg drill core sample from Ni Rim South (Footwall deposit)
was characterized for its gravity recoverable platinum (GRPt) and palladium (GRPd)
content. In terms of Platinum, the sample, assaying 3.7 g/t Pt, contained 42%, or 1.5 g/t
GRPt. At 100% -850 um, 8% of the platinum was recovered; GRPt content increased
to 22% with further grinding to 62% -75 um, to reach 42% at final grind of 84%. GRPt
was finer than 106 pm. In terms of Palladium, the same sample, assayed 3.9 g/t Pd, and
contained 42% GRPd (the same amount of GRPt), or 1.6 g/t GRPd. At 100% -850 um,
9.5% of the palladium was recovered; GRPd content increased to 24% at grind of 62% -
75 um, to reach 42% at final grind of 84%. The GRPd also was finer than 106 um.
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3.3.3.1 Results for stages 1 to 4

Stage 1: A concentrate of 86 g was obtained for this stage. Metallurgical
balances of Pt and Pd of the hydrosizing of the five coarsest size classes of stage 1
concentrate are shown in Appendix 3. The upgrading ratio varied from 2.1 to 4.4 for
platinum, and 2.2 to 4.5 for palladium. The trend for the upgrading ratio is similar for
both platinum and palladium with the highest upgrading in the 150-212 pm size
fraction. Upgrading ratios are lower than typically observed for gold. It is reasonable
to assume that the lower upgrading is due to either the lower difference in specific
gravity between the Pd and Pt carriers and the gangue, or the absence of liberated Pt and

Pd minerals above 150 um.

The first stage recovery of Pt, 8% and of Pd, 9%, is relatively low (i.e.,
compared to GRG test). The feed, at 3.7 g/t platinum and 4.0 g/t palladium, is upgraded
to 84 g/t platinum and 105 g/t palladium, respectively. The poor recovery of both
platinum and palladium can be attributed to the poor performance (ca. 0.5 to 1.8%
recovery) of the four coarsest size classes, which carry 43% of Pt and 42% of Pd in the
feed. The highest platinum recovery of 41% is in size fraction 38-53 pum, which also

gives the highest palladium recovery (45%).
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Figure 3-14 Pt and Pd Assays of Tailing of Stages 1, 2, 3 and 4
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The tailing assays for platinum of stage 1 (Figure 3-14) show some consistency.
They increase slowly with decreasing particle sizes, especially down to 75 pm. Below
75 um the tailing assays for platinum increase sharply and reach a maximum of 5.2 g/t
at the finest size fraction. The same trend is evident for the palladium tailing assay
below 75 um; above 75 um the grade varies around 2 to 3 g/t. (Note that for the tailing
assay data missing due to insufficient mass, the geomean grade of adjacent size classes
was taken, or the grade of the next size class when the assay of the coarsest size class

was missing.)

Concentrate grade also shows the same behaviour for Pt and Pd. Both
progressively increase with decreasing size class down to 38-53 um. For gold, the
increase is normally down to the 20-25 um size fraction. The difference is in all
likelihood linked to the SG of the Pt-bearing and Pd-bearing mineral(s). The grade,
consequently, decreases below 38 pm. Palladium upgrading is clearly more significant

than Pt upgrading.

Both platinum and palladium head grade increases with decreasing size class
down to 38-53 pm with a maximum of 7-8 g/t and the grade decreases to around 5.1-5.3

g/t at the finest size fraction.

Stage 2: All the tailing of stage 1, once ground to 62% passing 75 um, was fed
to the Knelson for stage 2 recovery (although the target fineness was 55% passing 75
pm, it is easy to pass the target due to the ore’s brittleness). This stage yielded a
concentrate of 112.6 g and a recovery of 15.6% for Pt and 16.5% for Pd. The
concentrate grade is 98.5 g/t for Pt and 108.6 g/t for Pd, as shown in Appendix 3.

The tailing fraction assays vary around 2 g/t with decreasing particle size above
75 um for both Pt and Pd. Figures 3-14A and B show that Pt and Pd grades for the

same size classes are generally below those of stage 1, and remain almost the same
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trend. The grade of finest size fraction is still high, 4.2 g/t and 4.8 g/t for platinum and

palladium, respectively.

Concentrate grade increases with decreasing particle size down to the 20-25 pm
size fraction for both Pt and Pd with the highest grade in the 20-25 pm size fraction.
Both Pt and Pd recoveries increase with decreasing particle size down to 38-53 um.
The maximum recoveries, around 53 to 55%, are also in the 38-53 pum size fraction.
The recoveries decrease to 3.2-3.7% in the finest size class, minus 20 um. The possible
reason is that it is either too fine or not dense enough for effective recovery with the
Knelson. The KC’s inability in recovering Pt and Pd in the finest size class, where 40
to 44% of the platinum and palladium report, is the main reason for the lower recoveries

in stage 2.

The calculated head grade of 3.3 g/t Pt is in good agreement with the measured
tails grade of stage 1, 3.4 g/t of Pt. The calculated head grade of 3.5 g/t Pd is also close
to the measured tails grade of stage 1, 3.7 g/t of Pd.

Stage 3: A concentrate of 83.2 g was obtained for this stage. It returned a
recovery of 11.7% for platinum, and 10.9% for palladium, at a grind of 84% -75 um.
The calculated head, 2.8 g/t of Pt and 3.0 g/t of Pd, is in excellent agreement with that
of the tailing of stage 2, 2.8 g/t of Pt and 2.9 g/t of Pd. Upgrading is to 74 g/t for both
Pt and Pd.

Tailing assays show the tailing grade increases slowly with increasing size
above 38 um; below 38 um, it increases quickly up to a maximum at the finest size
fraction. The tailing grade is at a lower level for both Pt and Pd compared to stages 1

and 2.
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Concentrate grade of both Pt and Pd increases steadily from the coarsest to the
minus 20 pm size class (typical of stage 3 for gold). Recoveries are highest for the 20-
25 um fraction, 46.6% for Pt and 45.5% for Pd. The recoveries drop significantly for
the minus 20 um fraction, to a value of 5.8% for Pt and 4.8% for Pd, where the highest
Pt and Pd distribution in the feed, 62% and 67% respectively, occurs.

Stage 4: The fourth stage was performed on the tailing of stage 3, without
regrinding. A concentrate of 128.8 g was obtained. Appendix 3 shows that stage 4
returned a recovery of 16.1% for platinum and 14.5% for palladium. The calculated
head grades, 2.5 g/t of Pt and 2.6 g/t of Pd, are in good agreement with those of the
tailing of stage 3, 2.5 g/t of Pt and 2.7 g/t of Pd. Upgrading is from 2.6 g/t to 53.4 g/t
for Pt and 2.6 g/t to 49.8 g/t for Pd.

Tailing assays show the same trend as stages 3 above 53 um; below 53 a lower
grade for both Pt and Pd shows the effectiveness of the recovery of variable speed
Knelson Concentrator (Figures 3-14A and B). The tailing grade of the finest fraction
(minus 20 um) hardly drops at all, indicating that even a higher rotating velocity does

not yield significant recoveries below 20 pm.

Concentrate grade of both Pt and Pd increases steadily from the coarsest size
fraction to the minus 20 pm size fraction. Recoveries increase with decreasing particle
size for both Pt and Pd, with the highest in the 20-25 um size fraction, at 55% for Pt and
46% for Pd. Although recoveries drop for the finest size fraction, they are higher than

those of the previous three stages at the same size fraction.

3.3.3.2 Overall Results

Tables in Appendix 3 show the overall test results, a total GRPt content of
42.3% in a 3.9 g/t feed and GRPd 42.1% in a 3.7 g/t feed. Note that the overall head
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grade increases from 3.58 g/t to 3.65 g/t for platinum (the head grade for palladium is

almost unchanged) as a result of an accumulation of errors in tailing assays.

Figures 3-15 and 3-16 cumulate platinum and palladium recoveries in the same
way for the previous examples. The total GRPt content of 42.1% and GRPd content of

42.3%, are shown clearly in these two figures (the cross line curves), respectively.
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Figure 3-15 Cumulative GRPt Content (100%: total GRPt in the ore)
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Comparing the GRPt and GRPd response as a function of particle size shows
that, first, both the GRPt and GRPd are finely distributed, 92-93% being finer than 106
pm at final grinding. Second, their behavior is similar. A possible explanation is that
the Pt-bearing minerals and Pd-bearing minerals are closely associated. They may also
have similar specific gravities, although the difference between the SG of the main

platinum-bearing mineral in the sample, maslovite, 11.5 g/ecm®, and the main palladium-

bearing mineral, michenerite, 9.5 g/cm3 , suggests a different behaviour.

3.3.3.3 Discussion and Conclusions

Discussion: Although some tailing assays are missing, they do not affect the test
reliability. The feed grade of stage 2 is in good agreement with the tailing grade of

stage 1, as is the feed grade of stage 3 in good agreement with the tailing grade of stage

4.

Concentrate assaying appears to have been reliable, and the trends in the

different stages are clear for both platinum and palladium.
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Figure 3-17 Size-by-size Recoveries of Platinum from Stage 1 to 4
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Figures 3-17 and 3-18 show platinum and palladium recovery in each size class
for all four stages. These trends are remarkably consistent, which adds confidence to
the reliability of the test. It is clear from the stage 1 curve that the first stage did not
recover most of the GRPt and GRPd above 106 um, but the recoveries increased below

106 um. With further grinding, more Pt and Pd were liberated and recovered in stages 2
and 3.
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Figure 3-18 Size-by-size Recoveries of Palladium from Stage 1 to 4

Figure 3-17 shows that stage recoveries for platinum display the same trends as
those of palladium which were shown in Figure 3-18. The highest recoveries both
appear at the 38-53 pum size fraction and there is little GRPt or GRPd recovered above
106 pm. Stage 2 recoveries for both platinum and palladium are almost the same. The
maximum recoveries also are in the 38-53 um size fraction (for gold typically the
maximum recoveries move from coarser to finer size fractions when moving from stage
1 to stage 3). The highest recoveries in stages 3 and 4 occur at the 20-25 pum size
fraction. Below 20 pum, stage 4 yields the highest recovery, much higher than stage 3,

but nevertheless much lower than that of the 20-25 pum fraction.
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In summary, both Figures 3-17 and 3-18 show that the recovery is largely
confined between 20 and 106 pm. Platinum and palladium recoveries from stage 1 to

stage 4 show similar trends.

The proposed flowsheet to process the Nickel Rim South ore includes at least
two grinding stages followed by a possible regrind at very fine size (Laplante et al.,
2002). Thus there are three possible locations for flash flotation and gravity with Pggs of

220 pm, 105 pm and 25 pm.

Within the first grinding loop, it is expected that some density-induced
recirculation of PGMs would take place. It would, however, be limited, on account of
the relatively fine size of the individual PGM phases. In this first loop, flash flotation
could be considered. Gravity processing of the flotation concentrate would be justified

only if further cleaning were necessary because some of the Pt and Pd could be lost.

Within the second grinding loop, flash flotation should definitely be
contemplated, as undoubtedly there would be a significant build-up of PGMs. The
relatively fineness of the circulating load would obviate the need for screening ahead of
gravity recovery, which may now also be a viable option. Gravity recovery should also
be envisaged to treat this second flash flotation concentrate, which would likely require

upgrading.

The third grinding loop calls for very fine grinding and classification, where it is
unlikely that gravity recovery can play a significant role. Flash flotation could be used,
and would probably be performed in conventional mechanical cells, given the fineness

of the circulating load.

Conclusions: The GRPt and GRPd contents of a Ni Rim South ore sample
assaying 3.7 g/t of Pt and 3.9 g/t of Pd were the same, 42%. Over 92% of the GRPt and
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GRPd contents are finer than 106 um. The recovery trends and the grade trends of
concentrate and tailing for both platinum and palladium appear almost the same from

stage 1 to stage 4.

The results indicate that there will be a slight buildup of Pt and Pd in the primary
grinding circulating load, and a more substantial one in the secondary grinding
circulating load (Xiao and Laplante 2003). For both the use of flash flotation and/or

gravity should be evaluated.

3.3.4 Clarabelle Ore Sample

Summary: A sample of ore from Clarabelle mill feed, Ontario, was
characterized for its gravity recoverable platinum (GRPt) content. The sample,
assaying 0.7 g/t Pt, contained 81%, or 0.55 g/t GRPt. At 100% -850 um (Fgo 530 pm),
44% of the platinum was recovered; GRPt content increased to 65% at Fgo 150 um, to
reach 81% at a final grind of 82% -75 um. GRPt was finer than 600 um, and was
present in all size classes tested below 600 um, with 23% of the Pt present as gravity

recoverable Pt between 150 and 600 pm.

3.3.4.1 Results for stage 1 to 4

Stage 1: Metallurgical balances of the hydrosizing of the five coarsest size
classes of stage 1 concentrate are shown in Appendix 4. The upgrading ratio varied
from 6.9 for the 300-425 pm fraction to 8.8 for the 212-300 um fraction. The coarsest
size class did not display any upgrading. Recoveries were high for all size classes
above 212 um, except for the coarsest size class. There is very little GRPt above 600
um, but the proportion increases dramatically with decreasing size below 600 um. The
grade of the concentrates below 600 um is high, approximately 1000 to 2000 times that

of the ore.
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The first stage platinum recovery of 39% is above the average for the other three
ore samples tested (Raglan, Strathcona, and Nickel Rim South). The feed, at 0.76 g/t, is
upgraded to 163 g/t in slightly more than 0.1% of the feed weight (but much of this

mass was subsequently rejected in the hydrosizing step).
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Figure 3-19 Platinum Assay of the Tailing of Stages 1, 2, 3 and 4

The tailing assays (Figure 3-19) show some noise (which is also usual for gold

in stage 1 of GRG test) at intermediate and coarse size, with an increase at fine size.

Recovery follows a pattern as a function of particle size, with a maximum of
78% at 75-106 um, with significant drop below this size, which results in a very low
recovery below 20 um, only 1%. Head grade varies erratically with particle size, which

is due to the low grades.

Stage 2: Slightly less than half of the tailing of stage 1, once ground to 60%

passing 75 pm, was fed to the Knelson for stage 2. This returned a recovery of 34%,
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yielding a tailing grade of 0.29 g/t, and a concentrate grade of 32 g/t, as shown in Tables
in Appendix 4. This is close to the average performance for all the tests done for stage

2.

The tailing fraction assays are not as noisy as those of stage 1, although the

sensitivity of the analysis, +0.10 g/t, causes some oscillation in the assays.

Concentrate grade increases with decreasing particle size down to the 20-25 pm
size fraction. Below 150 pm and above 20 pum, recovery is in the 39 to 67% range.
Platinum minerals below 20 um are either too fine for effective recovery with the
Knelson or still unliberated, which explains the drop in recovery. The calculated head

grade, 0.43 g/t, is in good agreement with the measured tails grade of stage 1, 0.46 g/t.

Stage 3: This stage returned a 24% platinum recovery at a grind of 82% -75 um,
close to the usual target of 80% passing 75 um. The calculated head, 0.28 g/t, is in
good agreement with that of the tailing of stage 2, 0.29 g/t. Upgrading for stage 3 is
fair, from 0.28 g/t in the feed to 15 g/t in the concentrate.

Tailing assays show the same trend as stages 1 and 2, but at a lower grade; in

fact, the only assay substantially higher than the others is in the minus 20 pum fraction.

Concentrate grade increases steadily from the coarsest to the minus 20 pum size
class (typical of stage 3 for gold of the GRG test). Recovery is the highest for the 20-25
pum fraction, 67%. It drops significantly for the minus 20 um fraction, to a value of

13%, which is the highest of the three stages for this size fraction.

Stage 4: The fourth recovery stage was performed on the tailing of stage 3,
without regrinding. The feed rate was similar to that of stage 3, 300 g/min. This stage
returned a 26% platinum recovery, upgrading a 0.18 g/t feed (compared to 0.22 g/t in
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stage 3 tails) into a 9.8 g/t concentrate. Tailing grade is relatively independent of
particle size at 0.1 g/t, except for the minus 20 um fraction, in which Pt grade increases
to 0.2 g/t. Concentrate grade increases with decreasing particle size, as does recovery,
down to the 20-25 um fraction. The minus 25 pm fraction contributes 75% of the
additional recovery, a clear indication that the finer sperrylite (the dominant Pt-mineral,

see Chapter 5) is more difficult to recover than native gold at the same particle size.

3.3.4.2 Overall Results

Tables in Appendix 4 show that the fourth stage added 6.5% to overall platinum
recovery, more than half of it below 20 um. Overall GRPt stands at 81%. Note that the
overall head grade dropped from 0.72 to 0.68 g/t as a result of normal errors in tailing

assays, which are around 0.10 g/t
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Figure 3-20 Cumulative GRPt Content (100%: total platinum in the ore)

Figure 3-20 cumulates platinum recovery in the same way as for the previous

. three ores tested. First, platinum is cumulated as percent retained from the coarsest
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(+850 um) size class to the finest. The platinum in the finest class (i.e., =20 pm) is
assumed to be coarser than 15 pm, but only for the purposes of showing total recovery
(43.5% for stage 1). Second, platinum is cumulated from stage 1 to stage 4. Thus, the

fourth curve (for stage 4, crosses) cumulates to the total GRPt content, 81%.

Figure 3-20 is similar to most such figures for typical gold ores, except for the
plateau at 15 to 37 um of stage 1 (at approx. 42% recovery), which is caused by the

“low” density of sperrylite (compared to that of native gold).

3.3.4.3 Discussion and Conclusions

Discussion: Concentrate assaying again appears reliable, but tailing grades were
too low for accurate assaying. This is particularly apparent for the third stage. It can be
concluded that the relative GRPt content is in error by 2 or 3% because of normal
experimental limitations. The content in g/t (0.55 g/t) is unaffected by the lack of

accuracy in tailing assays.
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Figure 3-21 Stage Recoveries per Size Class
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Figure 3-21 shows platinum recovery in each size class for all four stages. Each
stage has a different maximum, which moves to finer size as the test progresses and the
feed becomes finer. The trends are remarkably consistent, which adds confidence to the

reliability of the data.

Test results show an exceptional degree of liberation for the main Pt-bearer,
identified as sperrylite (see Chapter 5). The response of Pt to the test would support
this, but identifies the natural size distribution as being coarser than what was thought

previously.

If sperrylite had the same grinding and classification behavior as gold, direct
gravity recovery from the cyclone underflow would be appropriate. The circulating
load of sperrylite in the grinding circuit would also be high relative to the total solids.
However, the lower SG of sperrylite and its brittleness compared to gold, as well as the
relatively coarse grind size used at Clarabelle, would make gravity recovery, at best,
difficult. This will be confirmed in a forthcoming sampling campaign at the mill. It
may be that flash flotation will be more effective. This must be tested at pilot scale
before any definitive conclusion can be drawn. A research project/or propose needs to

address these issues in the future.

Despite some of the difficulties associated with the recovery of a lower SG and
brittle mineral (again using gold as the standard), the potential at Clarabelle is attractive
because the GRPt content is relatively high with respect to current PGM recovery.
Other precious metals are also likely to benefit from the approach (particularly if flash
flotation is used), as the same test yielded a gravity-recoverable gold content of 44%,
and a palladium content of 35%. The poorest performer was silver, which had a gravity
recoverable content of only 6%, despite a head grade of 7 g/t (hence most of the silver is

clearly not present as the native metal).
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Conclusions: The GRPt content of the Clarabelle mill feed sample assaying
0.68 g/t was found to be 81% or 0.55 g/t. The GRPt is found below 600 um. Although
the GRPt was not examined for mineral liberation, it is likely that any liberation
problem would only be found just below 600 um. By 300 um, the GRPt recovered
should be well liberated (Xiao and Laplante 2003b).

The amount of GRPt and its size distribution suggest that recovery from the
grinding circuit (cyclone underflow) should be attempted. Two options, gravity

recovery or flash flotation followed by gravity recovery, should be investigated.

3.3.4.4 Comparing All the Ores Tested

As the database grows, it is helpful at this point to compare results. The head
grades of these four ores for both Platinum and Palladium are various. Figure 3-22
indicates that the highest Platinum and Palladium head grade is from Ni Rim South ore.

There is no correlation between the head grade and the GRPGM contents.
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Figure 3-22 Comparison of Head Grade of Platinum and Palladium
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The GRPt content, 81%, is the highest among the four ore sample tested.
However, the GRPd content, 35% is between the highest and the lowest among the ore

samples.

The first test on a sample from Raglan had yielded a GRPt content of only 5%
and GRPd 3%. The second test on a sample from Strathcona Mill had yielded an
average GRPt content of 53% and GRPd of 44%. The third test on a sample from Ni
Rim South deposit in Sudbury area had yielded the same of amount of GRPt and GRPd
content, 42%. For the Clarabelle ore, the GRPt content, 81%, is the highest among the
four ore sample tested. However, the GRPd content, 35% is between the highest and the

lowest among the ore samples as shown in Figure 3-23.
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Figure 3-23 Comparison of GRPt or GRPd content in Different Ore Samples
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CHAPTER FOUR

CHARACTERIZATION OF THE BEHAVIOR OF
PLATINUM GROUP MINERALS IN THE
GRINDING CIRCUIT

4.1 Introduction

Analysis of the behavior of PGMs (e.g. breakage and classification behavior) in
grinding circuits should be based either on fully liberated PGMs or near-liberated PGMs
(i.e., what has been defined as GRPGMs in Chapter one). Of interest are the GRPGMs
that are already liberated, rather than those that could eventually be liberated. Thus, the
GRPGM protocol could be applied to circuit stream samples. The information
generated will be used for characterizing the behavior of GRPGMs in the grinding
circuit. The already liberated GRPGMs in the grinding circuit should be measured first

to determine their behavior in grinding and classification units.

As is well-known, gold particle breakage, classification, and liberation
deportment in a grinding circuit are strongly influenced by gold’s malleability and
specific gravity. The high malleability reduces grinding rates. Banisi (1991) found that
the selection function of silica was more than four times that of gold in a laboratory ball
mill and that gold ground six to twenty times slower than the associated gangue at the
Golden Giant Mine. For gold (or GRG) classification, the data available to generate
cyclone classification curves show that typically over 95% of the GRG reports to the

cyclone underflow (Laplante, Liu and Cauchon, 1989; Banisi, Laplante and Marois,
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1991; Laplante and Shu, 1992; Putz, Laplante and Ladoucer, 1993; Woodcock, 1994;
Noaparast, 1997). Whether the behavior of PGMs in grinding circuit is likely to be
different from the other components as is the case with gold (due to differences in
density and ductility) has never been investigated. The purpose of characterization of
PGM behavior is to understand the breakage behavior (e.g. cumulative selection

function), the classification behavior, and the impact of circulating load.

The grinding and classification behavior of PGMs in the Clarabelle grinding
circuit was investigated using data from two surveys. The content of the GRPGMs in
the various streams (ball mill discharge, cyclone overflow, cyclone underflow, etc.) was
characterized first. The size-by-size information from these two surveys was mass
balanced for PGMs, GRPGMs and gold. Then grinding kinetics and classification
curves were generated. The concept of cumulative selection function (Ramirez and
Finch, 1980; Finch and Ramirez, 1981; Laplante, Finch and del-Villar, 1987) is used to
describe the breakage behavior of platinum minerals (mainly sperrylite at the Clarabelle

mine).

4.2 Methodology

Characterizing the content of GRPGMs in a stream includes measuring how
much of the GRPGMs are already liberated (rather than the potential GRPGM content
as for the ore). Unlike the GRG protocol, in which samples are processed only once to
measure the content of GRG, the GRPGM protocol includes a second or scavenger step.

The sampling, lab measurement and analysis protocol is now presented.

To measure the GRPGM content in streams, representative samples (usually
between 10 and 30 kg) are extracted and processed with a laboratory semi-continuous
centrifuge unit operated to maximize gravity recovery. For this work, a Knelson

Concentrator with a 3-inch nominal diameter bowel (KC MD3) was used. As only
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GRPGMs that are already liberated are of importance, no grinding is used, and each
sample is usually processed only once to simplify the procedure and minimize the risk
of recovering non-GRPGMs. Since many PGMs have a slightly lower specific gravity
than gold minerals (e. g., sperrylite has a s. g. of 10.6), a variable rotation speed KC
MD?3 is used to process the tails from the standard Knelson concentrator operation to
recover GRPGMs in the finer size classes. This second stage is necessary for GRPGMs

due to their relative lower specific gravity.

Two sampling surveys, each two hours in duration, at the Clarabelle mill were
completed on November 6, 2002. The six sample points are marked in the following
flowsheet, Figure 4-1. All samples were weighed wet, filtered and shipped to McGill.
The samples were dried and prepared to measure the content of GRPGMs (as well as

GRG for the purpose of comparison).
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Figure 4-1. Sampling Diagram of the Clarabelle Mill Grinding Circuit
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Samples were first screened to collect the plus 850 pm fraction; the minus 850
um fraction, weighting between 9.5 and 42 kg, was processed with the standard KC MD
3 operated at 60 G, fed at 800 to 890 g/min with a fluidization water flow of 7 L/min.
All the concentrate was screened from 600 pm to 20 um; two 300 g samples of the
tailing stream were wet screened at 20 pm and the oversize dry screened from 600 um
to 20 pum. The bulk of the tailing product was dried and screened at 300 um and the
undersize, approximately 8 to 10 kg, was processed with the variable speed KC MD 3,
this time at a theoretical acceleration of 115 G, a dry feed rate around 628 g/min and
fluidization water flow 6 L/min. The concentrate product and two 300 g sub-samples of
the tailing product were processed as in the first recovery step. The various size
fractions were analyzed for gold, silver and the six platinum group elements at the Inco
Metals Laboratory in Sudbury. Figure 4-2 shows the flowsheet for measuring the
GRPGM content of these streams.

Stream Sample 12 kg

Screen
-850 pm

+850 pm

Standard KC MD3

sampling for assays
Conc.
Screen Tailings
Size-by-size assay

Screen

+300 pm

v

Conc.
Size-by-size assay Tails

Figure 4-2. Laboratory Flow Sheet for Measuring GRPGM Content of Streams
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4.3 Results of Characterizing GRPGMs of Streams in Clarabelle Mill

The sampling survey results, GRPGM content characterized by using the
standard and variable speed KC-MD3, are presented below.

4.3.1 The Sampling Results

Table 4-1 shows the sampling survey results.

Table 4-1. Sampling points, weight and screen results for each stream in
Clarabelle Grinding circuit

No (| Sampling Location Dry Mass | Solid (%) +850 pm mass -850 pm mass
(kg) (kg) (%) | (kg) (%)
1 Ball Mill Discharge
(BMD Survey #1) 42.81 75.02 1.6 3.74 41.21 96.26
2 Ball Mill Discharge
’ (BMD Survey #2) 32.5 76.99 | 152 | 468 | 30.98 | 9532
3 SAG Mill Screen Undersize
(SAG u/s Survey #1) 30.21 59.48 6.60 21.85 23.61 78.15
4 SAG Mill Screen Undersize
(SAG ws Survey #2) 19.57 62.22 5.09 26.01 14.48 73.99
5 Cyclone Overflow
(COF Survey #1) 11.13 37.29 0.01 0.09 11.12 99.91
6 Cyclone Overflow
(COF Survey #2) 12.09 41.37 0.01 0.08 12.08 99.92
7 Rod Mill Discharge
(RMD Survey #2) 24.3 61.95 5.50 22.63 18.80 77.37

8 Primary Fines Survey #1
22.4 41.85 10.9 48.66 11.5 51.34

9 Primary Fines Survey #2
16.56 52.43 7.14 43.12 9.42 56.88

10 | Cyclone Underflow

(CUF Survey #1) 30.01 73.74 3146 | 1053 | 26.85 | 89.47
11 | Cyclone Underflow
(CUF Survey #2) 43.15 78.73 650 | 1506 | 36.65 | 84.94

Rod mill discharge was surveyed only once due to a shut down before the
second survey. The solid % of ball mill discharge, SAG mill screen undersize and

. cyclone overflow are in the range from 60 to 77%. The ball mill discharge is finer than
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the cyclone underflow and the finest stream is the cyclone overflow, about 100%
passing 850 um. The coarsest stream is the primary fine stream, about 51-56% passing
850 um. As mentioned, the fractions of plus 850 um, ranging from 0.01 to 10 kg, were
not processed with KC MD3.

4.3.2 Standard Knelson Concentrator Test Results

The following discusses the results on the ball mill discharge (BMD) sample.

Other stream test results are summarized at the end of the section.

The Knelson concentrates (about 100 g) were first screened from 600 um to 20
um. Then the five coarser size class fractions (+600, -600+425, -425+300, -300+212,
and -212+150 pum) were further upgraded with a hydrosizer. The metallurgical
balances of the hydrosizing results are shown in Appendix 5. The enrichment ratio
varied from 0.4 for the +606um size fraction to 17.2 for the 150-212 um size fraction.
Of the five coarser size classes, the highest calculated head grade of platinum, 137.44
g/t (4.4 oz/st), is in the 150-212 pum fraction, which also has the highest enrichment
ratio. The grade of platinum and enrichment ratio of +600 um and 300-425 pm
fractions suggest that there is little gravity recoverable platinum in these two size
classes. However, the remaining three size classes are anticipated to contain some
gravity recoverable platinum, especially in the 150-212 um size fraction due to the

higher upgrading ratio.

It also can be concluded that there is little GRPt in the coarsest size class of ball
mill discharge stream, particularly above 300 pum. The concentrate mass in each size
class was assayed below 150 pm; above 150 um, the calculated heads of the hydrosizer

tests were used.

Appendix 5 shows the metallurgical balance of the first recovery attempt with

the standard Knelson Concentrator. In order to maximize Pt recovery, the feed rate was
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set around 850 g/min, compared to the higher feed rate of 1200 g/min, which is standard
for the GRG test, stage 1. This operation is aimed at recovering the well-liberated
platinum minerals in medium to coarse size classes. The recovery of 66.7% at a
fineness of 27.8% —75 um is high for Pt recovery, it is higher than the first stage
recovery (39%) at the fineness of 25.1% -75 um for Clarabelle feed ore, which was
shown in Chapter Three. The recovery difference between the ore (feed) and ball mill
discharge also indicates that the platinum minerals were liberated inside the mill and
converted into gravity recoverable minerals. The ball mill discharge sample is upgraded
to 203 g/t (6.5 oz/st) from a 2.5 g/t (0.08 oz/st) feed grade in slightly more than 0.8% of
the feed weight.
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Figure 4-3 Standard KC MD3 Concentrate and Tailing Pt Grade

Figure 4-3 shows the grade distribution for the Knelson concentrate and tailing
as a function of particle size. The tailing assays are very consistent as shown by the
relatively smooth curve. The grade of Pt increases progressively with decreasing
particle size down to the 38-53 um fraction. The grade decreases significantly at the

finer size classes. This suggests that platinum minerals below 38 um are either absent
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or not recovered by the KC MD3. The latter possibility is one reason the variable speed

Knelson Concentrator is used to scavenge the tailing.

Concentrate grade is low above 212 um. It starts to increase from 212 um down
to +53-75 um fraction. For gold the increase is often down to the 20-25 pm fraction
(Laplante et al., 1994). However, for Pt the concentrate grade decreases in the finer size

classes. This indicates that it is difficult to recover the finer platinum minerals.

Platinum recovery as a function of particle size is shown in Figure 4-4. The
recovery increases with increasing particle size up to the 75-106 um fraction. The
maximum size recovery of ca. 88% appears in the 75-106 pm fraction. The recovery

(3

dip at 106-150 um size class appears due to “noise” in concentrate grade data (see
Figure 4-3 of the concentrate grade for size class 106-150 pm). The recovery of 150-
212 pum fraction is again high, nearly 80%. However, the recovery drops sharply in
212-300 um fraction, to around 10%. The recovery of two coarse size classes (+300-
425 pm, +600 um) is below 10%. The recovery of the coarse fraction, 425-600 pm,

jumps to 50%, which is believed to be a “nugget” effect.

Figure 4-4 shows that the recovery from size class 38-53 um to 150-212 pm is
high. The data in Appendix 5 indicate that 56 % of GRPt is recovered below 150 pm.
It also shows that there is not too much gravity recoverable Pt in the coarse size classes
(e.g. plus 150 pm). The recoveries below 38 pm size class drop significantly,
particularly below 20 pm. The poor recoveries correspond to the low concentrate grade
in these finer size classes which indicates that it is either difficult to recover the fine

platinum or not much platinum is in the finest size class.
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Figure 4-4. Pt recovery as a Function of Particle Size for Standard KC MD3 Operation

4.3.3 Variable Speed Knelson Concentrator Test Results

The metallurgical balances are in Appendix 5. They show that this scavenging
step yielded a 56% platinum recovery, upgrading a 0.94 g/t (0.03 oz/st) feed (which is
close to the 0.83 g/t (0.027 oz/st) standard KC MD3 tails, bearing in mind that oversize

(plus 300 um) material has been removed) into a 46.88 g/t (1.5 o0z/st) concentrate.

Figure 4-5 shows the Pt grade of feed, concentrate and tail in the variable speed
KC MD3 test. The feed grade of Platinum is obtained by back calculating from the
grade of concentrate and tails. It shows that the Pt feed grade is higher at the fine to
intermediate particle size, below 75 um, with a maximum between 20 and 53 pm.
Above 75 pm, concentrate grade is low because most coarser GRPt was already

recovered in the standard KC MD3 operation (stage 1).
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Figure 4-5. Platinum Grades of Feed, Concentrate and Tail of Variable Speed

KC Operation

Tailing grade increases slowly with decreasing particle size, being highest, 0.94

g/t (0.03 oz/st), below 20 um.

The concentrate grade vs. size trends in a similar fashion to the feed grade. The

grade increases with decreasing size down to the 20-25 um, the grades remaining in the

“plateau” of 250 to 280 g/t (8-9 oz/st) in size classes 20-25 pum, 25-38 pum, and 38-53

um, then decreasing slightly in the finest size class, 20 pm. The grade difference

between the coarser size classes (e. g. 150-212 um) and finer size classes (e. g. 25-38

This also indicates that there is less GRPGM left in the coarse

um) is significant.

fraction and the variable speed KC can effectively recover the PGMs in the finer size

fraction.
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Figure 4-6 Platinum Recovery of Variable Speed Knelson Concentrator as Function of

Particle Size

The platinum recovery as a function of particle size is shown in Figure 4-6. It

shows good recovery, 81 to 86%, in the finer size classes, 20-25 pm, 25-38 um and 38-

53 um. Although the recovery decreases below 20 pm, it still reaches 30%. It is worth

noting that the “plateau” makes it evident that finer platinum minerals have been

recovered in this step. About 98% GRPt is recovered below 150 um size class.

4.3.4 Overall Results

Figure 4-7 shows the overall platinum recovery as a function of particle size. As

shown in Figure 4-7, platinum recovery is the highest in the finer size classes from 20-

25 um to 150-212 um. Recovery in the coarser size classes is both lower and erratic.
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Figure 4-7 Overall Platinum Recovery as a Function of Particle Size of BMD Stream

‘ Overall results can also be shown cumulatively. Figure 4-8 cumulates platinum
recovery in two ways. First, platinum is cumulated as percent retained from the
coarsest (+600 um) size class to the finest. The platinum in the finest class (i.e., —20
um) is assumed coarser than 15 pm in stage 1 for the purpose of showing total recovery,
63.4%, in Figure 4-7. Second, platinum is cumulated from standard KC MD3 operation
(here called stage 1) to variable KC MD?3 operation (stage 2 or scavenger step). Thus,
the second curve cumulates to the total GRPt content, 83.3%. Figure 4-8a also shows
that the variable speed KC MD3 recovers a significant amount of platinum in the finer

size fractions from 15 pm to 53 pm.

Figure 4-8b shows the GRG cumulative recovery in the same way as Figure 4-
8a for the purpose of comparison with platinum. It indicates that more gold is
recovered in coarser size fractions than is the case for platinum and there is not much

fine gold recovered in stage 2.
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Appendix 5 shows the overall metallurgical balance for stage 1 and 2. There is a
small difference in recoveries between the individual and combined calculation, as the

+300 pm fraction of the tailing of stage 1 has been removed from the feed of stage 2.

The same protocol was applied to the other five streams, namely SAG undersize,
primary fines, cyclone underflow, cyclone overflow, and rod mill discharge. The
results of grades and gravity recoverable platinum mineral content of all streams for

both surveys are included in Table 4-2.

The availability of GRPGMs in all five streams of the two surveys (except the
rod mill discharge of the first survey) was measured and compared. Results are similar,
with the exception of the cyclone overflow, which has a lower grade in survey 2. There
is a clear upgrading ratio in the circulating load streams (the cyclone underflow and ball
mill discharge), but there is also a slight upgrading in the primary fines. The platinum
grade of the cyclone underflow is greater than that of the ball mill discharge for the two
surveys. The ball mill discharge sample is probably more reliable due to surging in the

cyclones.

Table 4-2 Summary of the two Surveys

First Survey Second Survey
Stream Pt Grade, (g/t) | % GRPt | Pt Grade, (g/t) | % GRPt
SAG U/S 0.73 42.5 0.69 50.2
Primary Fine 1.55 58.9 1.31 56.4
Cyclone Underflow 2.57 77.6 2.29 80.1
Ball Mill Dis. 2.06 82.6 2.03 83.1
Cyclone Overflow 0.67 46.6 0.45 41.1
Rod Mill Dis. N/A N/A 0.42 51.5
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The GRPt content of the two circulating loads (cyclone underflow and ball mill
discharge) is of similar order of magnitude to that of the feed ore (81% GRPt of
Clarabelle ore in Chapter 3). Their size distribution, however, are much finer, as shown

in the following Figure 4-9.

100 0.25
90 i . —B-—PfinesR_
i —e— BMDR
80 - —a—Pfinesa|] 020 -
70 , —¥=— BMDG ]
g 60 ] 015 3‘
g 50 | B e R ] g
3 2 E (3]
X 40 ; o 010 &
20 [ ] 0.05
10 i \
o L ” ; 1 0.00
10 100 1000

Particle Size, um

Figure 4-9. Size-by-Size GRPt Data for the Primary Fines and Ball Mill Discharge
(Legend: PfinesR—Primary Fines Recovery, BMDR-Ball Mill Discharge Recovery,
PfinesG-Primary Fines Grade, BMDG- Ball Mill Discharge Grade)

Figure 4-9 shows typical results for two streams of the first survey, the primary
fines, which is not part of the circulating load, and the ball mill discharge. The
differences between the two streams at first are not apparent. The primary fines assay,
1.41 g/t (0.045 oz/st), is about twice the overall head grade, whereas the ball mill
discharge assay, 1.88 g/t Pt (0.06 oz/st), is about three times the overall head grade.
Both have a high gravity-recoverable platinum content, although that of the ball mill
discharge is erratic above 100 um, but clearly higher below 100 pm. It is the platinum

grade below 100 pm that distinguishes the two streams, as platinum, most of which is
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gravity recoverable, builds up significantly in the circulating load to grades in excess of
6 g/t (0.20 oz/st). It is this platinum that should be targeted for recovery. The recovery
data and grade also indicate that the platinum minerals are gradually build up inside the

ball mill.

The results of both surveys show that the gravity recoverable platinum and the
head grade are close for each stream. It is reasonable to conclude that the survey results

are an accurate reflection of the process.

The approach to characterization of the already liberated gravity recoverable
platinum in a stream applied here shows it is an effective way to quantify the content of
GRPGMs in a stream. The first stage, using standard speed Knelson concentrator, is
used primarily for recovering the intermediate and coarse size fraction platinum group
minerals. The second stage, using higher speed Knelson concentrator, is used to
recover the more finely distributed platinum group minerals. This second step is
important because the platinum group minerals usually occur in the finer size classes
(Cabri, 1981), which the standard speed Knelson concentrator has difficulty recovering.
The second stage contributes more platinum recovery than for gold based on Figures 4-

8 (a) and (b).

4.4 Classification Behavior of PGMs in the Grinding Circuit of Clarabelle Mill

The classification behaviour is described using the hydrocyclone classification
efficiency curve, which is defined as the percentage of solid, element, or GRPGMs from

the feed recovered to the cyclone underflow in each size class.

To start, the size distribution of the cyclone underflow and overflow was
obtained by screen analysis. Second, the concentrate and tail of each stream obtained by

operating the laboratory Knelson Concentrator MD-3 were sent to assay for gold,
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platinum and palladium. Next, the size-by-size data for each stream was mass balanced
(using the software NORBAL developed by Noranda) to generate size distributions for
gold, platinum and palladium, as well as the GRG, GRPt, and GRPd. Finally, the

classification efficiency was calculated for the various components.

Table 4-3 Screen size analysis results for the five streams

Size class SAG Primary Ball mill Cyclone Cyclone
(um) Discharge fine discharge | underflow | overflow
+850 21.69 48.65 3.25 11.02 0.01

600 3.23 6.52 1.62 2.76 0.01
425 5.39 9.3 3.85 5.64 0.29
300 6.29 8.85 7.57 93 1.31
212 8.26 8.18 14.43 15.6 4.81
150 7.5 5.1 16.6 16.44 7.87
106 7.93 3.63 17.02 15.68 11.69
75 6.74 2,23 10.12 8.11 12.45
53 7.46 2.08 7.85 5.21 15.02
37 5.79 1.4 4.87 2.7 11.98
20 7.3 1.43 4.99 2.8 13.48
Pan 12.42 2.63 7.83 4.74 21.08
Total 100 100 100 100 100

Table 4-3 shows the size-by-size analysis mass balanced results for the five
streams of SAG mill discharge, primary fines, ball mill discharge, cyclone underflow,

and overflow.

The gold, platinum, and palladium assay results in each size class for the five
streams are shown in Appendix 6. Table 4-4 shows the size-by-size results of the GRG,

GRPt, and GRPd in the cyclone underflow and overflow.

The classtification efficiency results for the total solids, elements, GRG and
GRPGMs are listed in Table 4-5. The classification efficiency of ore is estimated by

using the size distribution and cyclone underflow and overflow flowrates measured
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during the sampling period. As for the platinum, palladium and gold classification

efficiency, the assay for each size class was used in the calculation (Appendix 7).

Table 4-4 Size-by-size results of GRG, GRPt, and GRPd

Size class Cyclone Underflow Cyclone Overflow
(um) GRG GRPt GRPd GRG GRPt GRPd
999 337 1.46 70.51 100 100 100
714 3.37 1.46 70.51 100 100 100
505 70.62 2.18 63.99 100 100 100
357 18.29 1.65 81.87 4.33 530 6.22
252 40.58 11.24 59.13 5.86 11.69 25.41
178 34.42 19.54 91.63 9.56 7.48 59.41
126 75.16 36.33 72.30 13.18 10.94 24.41

89 85.70 60.35 91.41 29.26 23.68 49.43
63 93.08 78.10 89.09 58.84 28.65 57.90
44 94.59 86.36 87.86 67.72 45.64 44.89
27 87.83 79.20 75.27 90.52 78.27 75.58
15 26.86 16.52 29.48 26.86 18.43 18.75

The classification curves of the total solid, gold and platinum for the first survey

are shown in Figure 4-10. It shows that the classification curve of platinum is similar to

that of gold. At the coarser size classes (e.g. above 53 um), the classification curve of

gold and platinum almost overlap. Slightly more platinum reported to the cyclone

underflow than gold between the size class of 25-37 um and 53 -75 pums, whereas the

partition of palladium is slightly below that of gold. It is suggested that the flakey shape

of gold particles is a hindrance to effective classification, resulting in a cyclone

behaviour that is similar to that of platinum minerals of much lower density. The

classifications of gold and platinum minerals, it is proposed, are similar in the

Clarabelle mill due to the trade-off between specific gravity and particle shape.
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Table 4-5 Calculated classification efficiency for survey No. 1
Size Class Classification Efficiency (Yoreported to the cyclone underflow)
(pm) Solids Pt Pd Au GRPt GRPd GRG
999 99.97 99.98 99.97 99.93 99.40 98.10 99.90
714 99.88 99.92 99.89 99.73 97.64 92.83 99.62
505 98.30 99.03 98.04 97.97 98.64 93.50 96.86
357 95.46 98.75 97.40 99.44 99.70 92.09 99.96
252 90.58 97.19 96.51 99.33 99.58 96.37 99.71
178 86.10 98.41 94.89 97.44 99.55 97.98 98.33
126 79.90 94 .89 94.21 95.75 99.06 98.18 98.52
89 65.88 96.33 92.83 97.48 98.72 97.06 98.62
63 50.70 95.59 87.95 94.78 97.16 95.22 96.55
44 40.05 90.54 80.97 80.77 93.04 88.95 89.15
27 38.11 87.18 69.22 74.75 86.84 69.47 74.67
. 15 40.00 42.77 40.00 47.82 42.77 37.40 59.04
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Figure 4-10. Classification Curves of Total Solids, Pt, Pd and Au for the First

Sampling Survey #1 in the Clarabelle Mine
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The classification curves for the GRG, GRPt and GRPd are shown in the Figure
4-11. They follow a similar trend as for the elements. The classification points for the

coarsest size classes show some noise due to the small sample size.
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‘ Figure 4-11. Classification Efficiency curves of Total Solids, GRPt, GRPd and GRG
for the First Sampling Survey #1 in the Clarabelle Mill
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Figure 4-12. Classification Efficiency Curves of Total Solids, Pt, Pd and Au for
the Second Sampling Survey #2 in the Clarabelle Mill
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Figure 4-13. Classification Efficiency Curves of Total Solids, GRPt, GRPd and GRG

for the Second Sampling Survey in the Clarabelle Mill

The classification efficiency curves almost overlap for GRPt, GRPd and GRG

above the 75 pm size class. The differences appear at the finest size classes (i.e., minus

25 pm). The explanation could be related to shape having more impact in the finer size

classes although this was not pursued.

Although the second survey results (Figures 4-12 and 4-13) have more variation

compared to the first survey results, they confirm the classification behavior.

4.5 Grinding Behavior of the PGMs

Figures 4-14 and 4-15 show the selection functions (specific rate of breakages)

estimated from the first and second survey, respectively (see Table 4-6 for the

breakage function used). The two surveys show similar trends. The selection function

for the ore is roughly log-linear. That of the coarsest size class, the plus 850 um, is
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slightly misleading, since this size class spans many Tyler intervals. The selection
function of platinum is calculated twice (Pt(1), Pt(2)), using two breakage function
(which has yet to be measured), shown in Table 4-6. The selection function of
platinum (which is largely that of sperrylite) is similar to that of the ore above 212
um, presumably because the liberated sperrylite is expected to be brittle, much like
the ore. Below 212 um, the selection function of platinum is lower than that of the
ore. The reason for this is unclear, but Figure 4-15 shows that the second survey
returns similar results. It is known that in grinding circuits where the sulphide content
is significant (which is the case of the ores in the Sudbury basin), the finer size classes

are enriched in the denser, softer sulphides.

Table 4-6 Breakage Function Used to Calculate the Platinum Selection Functions

by b by bs, b by bs; by, bios b1
‘ Pt(1) | 0.4804 [0.2173(0.1066]0.058110.0355}0.0239|0.0173{0.0130|0.0101| 0.0079
Pt(2) | 0.6054 {0.1901(0.0759|0.0397]0.0251(0.0174]0.0125]0.0091]0.0066| 0.0049

In Sudbury, the dominant sulphide is pyrrhotite. This suggests that pyrrhotite

has a higher specific breakage rate than sperrylite.
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Figure 4-14. Selection Function of Various Species at Clarabelle Mill for the First
Survey. (Pt (1) and (2) are calculated using the breakage functions shown in Table 4-6;

Au (Banisi) is based on the selection function of ore and the ratios proposed by Banisi

‘ et al., 1991)

In Figure 4-14, the behaviour of gold is of particular interest. First, it is noticed
that its selection function above 600 um is indistinguishable from that of the ore,
presumably because it is not present as liberated particles (which is what the GRG test
on the ore indicates). Liberation takes place below 600 pwm and the selection function of

gold then assumes values that are in good agreement with those observed by Banisi et

al. (1991).
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Figure 4-15. Selection Function of Ore and Platinum at Clarabelle Mill for the Second

Survey (Pt (1) and (2) are calculated using the breakage functions shown in Table 4-6)

‘ Rather than calculating a selection function from an assumed (or measured)
breakage function, Ramirez and Finch (1980), Finch and Ramirez (1981), Laplante,
Finch and del-Villar (1987) established that a simple cumulative size selection function,
kx, with plug flow transport is adequate for modeling closed circuit ball mills. The
cumulative selection function is a selection function for the cumulative mass of particles
coarser than a given size, x, and replaces the breakage function and the selection
function. Previous workers (Furuya et. al., 1971; Finch and Ramirez, 1981; Laplante,
Finch and del-Villar,1987) had shown that the plug flow assumption is adequate to
describe material transport in closed-circuit mills because of the dominating influence
of the circulating load. Therefore, the cumulative selection function with plug flow

model was used to simulate the behaviors of ore and ore components in the Clarabelle

grinding circuit.

Using a cumulative selection function with plug flow transport, the grinding

model is simplified to:
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Wi = Wxo) * exp(-ke* 1) Equation 4-1

where Wy and Wy are cumulative mass fraction coarser than size x after grinding
times of t and 0, respectively, and ky is the cumulative selection function for material

coarser than x, and t is the retention time.
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Figure 4-16 Cumulative Selection Function Curves for Survey #1.

Transposing equation 4-1 above, the cumulative selection function ky for each
size X can be calculated, then the cumulative selection function as a function of particle
size can be constructed. Figure 4-16 shows the cumulative selection function curves for
survey #1. To remind, the cumulative selection function indicates the breakage rate for
the cumulative size classes above the quoted size. For example, the cumulative

. selection function above 600 um for ore is 1.04 (it has no unit because the residence
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time distribution was made dimensionless), which means that the breakage rate for
particles above 600 um is 1.04. The finer the particles the lower the cumulative
selection function. The reason is the finer particles breaking more slowly. Therefore, the
cumulative selection function decreases as the particle size decreases (as does the

discrete size selection function).

Figure 4-16 shows that the cumulative selection function of all size classes for
gold is lower than for the ore. However, the trend in cumulative selection function for
platinum and palladium appears to be different. They are higher above 212 pm and
lower below 212 pm compared to ore, which is consistent with the selection function
curves shown in Figures 4-14 and 15. The cumulative selection functions of platinum
and palladium are 1.3 times higher than the ore at size classes above 212 um and are 50
to 70% of the ore’s cumulative selection function below 212 um. The cumulative
selection function of gold for all size classes is lower than the ore at Clarabelle Mill due

to the known slow grinding kinetics of gold.
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CHAPTER FIVE

MINERALOGICAL ANALYSIS OF GRPGMS

5.1 Introduction

The occurrence and distribution of PGEs (platinum group elements) in an ore is
directly related to the type of ore (Vermaak, 2005). Usually, PGE deposits can be
divided into two categories: one is the deposits containing discrete platinum group
minerals and other is that the PGMs are hosted within other minerals. The latter
category generally includes the so-called “invisible” portion of the PGE distribution
(Oberthur et al., 2002a). The reasons are probably PGEs are present in submicroscopic

particles or they occur as a dilute solid-solution.

The examination of the PGMs and the associations qualitatively and/or
quantitatively is of importance in order to understand the behavior of PGMs in the
grinding circuit and recovery unit. Mineralogical analysis here is used to identify the
occurrence and distribution of PGEs (platinum group elements) in the gravity

concentrates, as well as the associations.

Maximum recovery at a sellable grade is a constant target of producers.
Knowledge of ore characteristics that affect metal recoveries help in achieving this goal.
Early determination of whether the PGMs were in sulphides or alloys and whether there
is a presence or absence of bismuth, tellurium or arsenic-bearing PGMs will guide the

flowsheet design and the method to recover PGMs. PGMs grain size can vary from as
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small 1 to 2 um in UG2 ore from the Bushveld complex to 200 um for some ores from
the JM reef at the Stillwater mine in Montana and greater than 400 pm for some ores
from the Sudbury area. As indicated previously, small high specific gravity PGMs
particles might behave similarly to large low specific gravity silicate minerals when
cycloning is used for classification. This behaviour can lead to recirculation and over-
grinding of the PGMs. Identification of the range of PGM grain size can help predict
whether or not this problem is likely to occur. Determination of the host (associated)
minerals of PGMs and the location of PGM species (intra- vs. inter-grain boundary)
normally is critical to analyze to the PGMs liberation. Pyrrhotite can contain PGEs in
solid solution or as discrete PGMs locked within pyrrhotite grains (Freeman, 2003).
Some copper-nickel ores from the Sudbury, Norilsk, and Raglan districts contain
significant pyrrhotite, which needs to be depressed or rejected from the paymetal
concentrates. This results in the loss of high unit-value PGMs if the PGMs were locked
with the pyrrhotite. The identification of this relationship between PGEs and pyrrhotite

can reduce the loss of PGMs during the flotation stage.

To obtain the mineralogical information, a representative sample needs to be
available. As noted in Chapter two, various concentrating methods have been used to
enrich the PGMs for the mineralogical analysis. The concentration method is especially
important for PGMs because they are usually low grade and finely disseminated. In this
thests, the method developed to characterize GRPGMs, is considered an effective way
to concentrate the PGMs for mineralogical analysis. All samples for mineralogical

analysis were obtained by using the GRPGMs protocol.

This Chapter presents the general mineralogy of PGMs and their associations, as
well as the tools used for analyzing their mineralogy. The detailed mineralogical

analysis results for the GRPGMs of Raglan, Strathcona and Clarabelle are presented.
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5.2 Mineralogy of the GRPGMs and Theirs Associations

5.2.1 Platinum Group Minerals

Unlike gold and major base metals, which are formed a fairly small number of
minerals, there were one hundred and nine PGM species recognized by the International
Mineralogical Association (IMA) by 2002, ranging from sulphides (i.e. braggite,
(Pt,Pd)S) to tellurides (i.e. maslovite, PtBiTe), antimonides (i.e. sudburyite, PdSb) to
arsenides (i.e. sperrylite, PtAs;), and alloys (i.e. ferroplatinum alloy) to native species
(i.e. native Pt nuggets). Generally, PGMs can be grouped into metals, intermetallic
compounds and alloys, notably with Sn, Fe, Pb, Hg, Cu and Ni. The remaining PGMs
are formed with Bi, Te, As, Sb and S (Vermaak, 2005). The most common Pt minerals
include Braggite (Pt, Pd)S, Cooperite (PtS), Isoferroplatinum (Pt;Fe), Monchetite
(PtTe;), and Sperrylite (PtAs;). According to Cabri (1994), sperrylite is the most
common PGM worldwide, and it can be found in every type of geological environment.
However, the grain size and grade of sperrylite might vary locally and regionally. The
most common Pd minerals include Kotulskite (PdTe), Merenskyite (PdTe;,),
Michenerite (PdBiTe), Cabriite (Pd;SnCu), Vysotskite (PdS), and Sudburyite (PdSb)

etc.

Generally, PGMs formed with sulphides, arsenides and alloys can be recovered by
gravity, as concluded in a report from the Anglo Platinum Research Center (2002).
However, PGMs formed with tellurides and oxides can not be recovered by gravity due

to the low density and fine grain size distribution.
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5.2.2 Associations of Platinum Group Minerals

Apart from the multitude of PGMs, their associations are also diverse. PGMs are
usually associated with sulphides, oxides, silicates, sulpharsenides, arsenides and
tellurides. The three main sulphide minerals associated with PGMs are pentlandite,
chalcopyrite, and pyrrhotite. Pentlandite from Stillwater contains between 8.6% and
12.1% Pd (Cabri, 1992). Reported maximum levels of Pd in Pentlandite in (ppmw)
(ppmw refers to parts per million by weight) are: J-M reef (46000), Lac des Iles (6500)
and Merensky reef (1164) (Cabri, 1992). Strirny et al., (2000) reported that pentlandite
contained 2236 ppmw from the Hartley Mine in the Great Dyke. Lidsay et al., (1998)
reported that the mean Pt content of pentlandite is around 10-13 ppmw and 8.5 ppmw
from the Merensky reef and the Hartley Mine, respectively. This might indicate that the
pentlandite is mainly a Pd carrier. Usually, Platinum minerals are associated with
chalcopyrite. Considerable quantities of PGEs can be associated with pyrrhotite in solid
solution. Cabri (1988) reported a maximum of 47 ppmw Pd in pyrrhotite from the J-M
reef. It is postulated that a significant portion of minute PGMs occurs interstitially in
silicates (Sizgoric, 1984). Platinum was long known to exist in the arsenide form

(sperrylite, PtAs,) in nickel-copper sulfides in the Sudbury area.

Pentlandite and chalcopyrite are usually readily recovered (depending on particle
size and degree of liberation), as are any associated PGEs (i.e. in solid solution or as
blebs). PGEs present as blebs or in solid solution in pyrrhotite may or may not be
recovered. For example, in milling the Sudbury ores, pyrrhotite is now largely rejected
to minimize smelting costs. The pyrrhotite contains significant amounts of nickel
(anywhere from 0.4 to 0.8%) and accounts for most of the nickel losses in the

Clarabelle and Strathcona mill tailings.
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The extremely low concentration of PGMs, their fine size distribution, the
difficulty in their detection and identification, and sample representativity are typical
problems when carrying out a mineralogical study on PGMs. The range of minerals
presented, their relative densities, shape, particle size, and associations present a
challenge to the metallurgist in designing and optimizing the extraction process
(Hochreiter et al, 1985). The various ore types (end members) of typical ore bodies

each with its own metallurgical response heighten the challenge.

5.3 Techniques for Analyzing the Mineralogy of GRPGMs

Several techniques of determining mineralogical characteristics have been
developed in the last three decades. The optical microscope can be used to identify
many minerals, to observe mineral textures, and to determine mineral quantities by
point counting. X-ray diffraction (XRD) is used to identify minerals with a high degree
of certainty, and to qualitatively determine mineral content in powdered materials.
Development of the electron microprobe (EMP) represented a significant advance in
applied mineralogy. Not only can it be used to determine the major, minor, and trace
content of minerals in polished sections, but it can also keep the integrity of the mineral
grain. The developments of SEM together with the energy dispersive X-ray analyzer
(EDX) has enable the mineralogist to nearly instantly identify mineral grains based on
backscattered electron images. The development of VP-SEM makes it easy to do the
analysis without the need to coat polished sections. With the applications in the mining
industry, the following instruments are widely available to the mineralogical department
in major mining houses: Scanning electron microscope equipped with an energy
dispersive X-ray analyzer (SEM/EDX) or wavelength dispersive X-ray analyzer
(SEM/WDX), Variable-Pressure (or Low-vacuum) scanning electron microscope (VP-
SEM), electron probe micro-analyzer (EPMA), X-ray diffraction (XRD), quantitative
evaluating material by scanning electron microscope (QEM*SEM), and the mineral

liberation analyzer (MLA).
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Variable Pressure scanning electron microscopy is one of the latest developments
in electron beam techniques. It retains most of the performance advantages of a
conventional SEM, but removes the high vacuum constraint on the sample environment.
Wet, oily, dirty, insulated samples may be examined in their natural state without
modification or preparation. It is easy to operate and results can be obtained quickly.
The technique can stabilize insulator material sample surface potential close to ground
potential during imaging even when high beam voltages, up to 20 kV or more, are
émployed (Farley and Shah, 1988). The basic difference between the conventional SEM
and VP-SEM is the pressure in the specimen chamber. For conventional SEM (the
column and specimen chamber share the same vacuum) it amounts to 107 Pa and for

VP-SEM it can be as low as 10” Pa and as high as 10? Pa (Danilatos, 1991).

The conventional SEM has been used to characterize the polished sample of
concentrates while the VP-SEM was used to characterize powder of finer sized
concentrates. In order to perform X-ray analysis in the VP-SEM, a high vacuum (107

Pa) was employed to reduce the so-called “skirt effects” (Robertson et al., 2004).

The conventional SEM, VP-SEM and QEM*SEM developed by CSIRO and the
Mineral Liberation Analysis (MLA) developed at the Julius Krusttschnitt Mineral
research center are briefly introduced in this thesis because they were used to

characterize the mineralogy of GRPGMs from three ores.

5.3.1 Scanning Electron Microscope with Energy Dispersive X-ray Analyzer

The scanning electron microscope (SEM) is one of the most versatile and widely
used tools of modern science as it allows the study of both the morphology and
composition of materials. Equipped with an energy dispersive X-ray analyzer (EDX), it
is used in applied/process mineralogy to analyse polished or thin sections of samples, as

well as unmounted pieces of material (Petruk, 2000). By scanning an electron probe
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across a specimen, high-resolution images of a specimen, with great depth of field, over
a range of magnifications, can be obtained. From a combination of back scattered
electron intensities and the identities of most minerals and the size and the relationships

among mineral grains can be obtained.

The SEM functions as its optical counterparts except that it uses a focused beam
of electrons to “image” the specimen. The gun on the top of SEM column produces an
electron beam under high vacuum. The beam, which is confined and focused by
apertures and magnetic lenses, is either scanned over the entire sample, or is focused on
a spot. The sample, which is coated to prevent surface charging, interact with the
electron beam and to produce backscattered electrons (BSE), secondary electrons (SE),
X-rays and other signals. The SEM is generally equipped with BSE, SE and EDX

detectors.

Backscattered electrons are the incident electrons which are scattered
“backward” 180 degree when colliding with an atom in the specimen. The production
of BSE varies directly with the mineral’s average atomic number. This differential
production rate causes higher average atomic number minerals to appear brighter than
lower average atomic number ones. For example, most silicate minerals have low
average atomic number and appear dark grey in BSE image. In contrast, some PGMs,
i.e. sperrylite (PtAs;), michenerite (PdBiTe), maslovite (PtBiTe) have a higher average
atomic number and appear in light shades in the BSE image. These features can be
used to search for PGMs minerals in the BSE images. The shades of grey between
minerals can be either enhanced or reduced by changing the operating conditions on the

SEM.

Secondary electrons are ionized electrons which are ejected form the atom with
a low energy (5e¢V) when an incident electron strikes an atom. Due to their low energy,

only secondary electrons that are near the surface can exit the sample and be examined.
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The SE images can reveal topography of a particle and display details of surface
features. The SE image is not as useful as the BSE image for revealing mineral type.
The SE image can be produced at a much lower current and voltage than is required for

the BSE image.

Characteristic X-rays are caused by the de-energization of the specimen atoms
after secondary electrons are produced. Since an electron was emitted from the atom
during the secondary electron process, a lower energy shell now has a vacancy. A
higher energy electron can “fall” into the lower energy shell, filling the vacancy. As the
electron “fall”, it emits an X-ray of characteristic energy that is unique to the element
from which it originated. These signals are detected with the EDX detector. By

combining the resulting element information the mineral can be identified.

5.3.2 Variable Pressure SEM

Variable Pressure scanning electron microscopy (VP-SEM) is one of the latest
developments in electron bean microscopy. It retains most of the features of a
conventional SEM, but removes the high vacuum constraint on the sample environment.
Therefore, wet, oily, dirty, insulated samples may be examined in their natural state
without extensive modification or preparation. This high-pressure (low-vacuum)
technique can stabilize the insulator sample surface potential close to ground potential
during imaging even when high beam voltages up to 20 kV or more are employed
(Farley and Shah, 1988). In summary, the basic difference between the conventional
SEM and the variable pressure SEM is the pressure in the specimen chamber. For
conventional SEM the vacuum is 10™ Pa (the column and specimen chamber share the
same vacuum) and for VP-SEM it can be as low as 10> Pa and as high as 10° Pa

(Danilatos, 1991).
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When the primary electron beam passes through the gaseous medium of the
specimen chamber, collisions of the electrons with atoms and molecules of the gas
occur. As a result of these collisions, the electrons lose a portion of their energy and
can change the direction of propagation. A portion of the scattered electrons, the so-
called “skirt”, does not contribute to the image signal. It produces only the background
(noise) in the image. The other portion of the electrons of the primary beam, which
does not scatter strikes on the specimen at a spot. This portion of electrons creates a
useful image signal with sufficient resolution. The air in the sample chamber is ionized
by the primary electron beam, conducting electricity sufficiently to allow the electrons
absorbed by the sample to leak through the air to a ground contract, so that no coating is

needed, even at high accelerating voltages (Maocrieff et, al., 1978).

The same signals as those in the conventional SEM can be detected in the
variable pressure SEM. Of interest in mineral processing studies, wet sample can be
analyzed so that a slurry sample obtained from a process stream can be analyzed within
a very short time after it is collected. The low-vacuum SEM system can easily change

the pressure and accelerating voltage settings to obtain good contrast BSE images.

Robinson (1998) pointed out that the low-vacuum SEM is as fast and as easy to
use as an optical microscope for an experienced mineralogist. However, the
conventional SEM requires a coating, such as carbon, gold and platinum, on the surface
of polished section, which is not always possible or desirable (Farley and Shah, 1991).
If a PGMs mineral is under study, then it can be only coated with carbon. A coating is

not required when using the low-vacuum SEM.



CHAPTER 5 Mineralogical Analysis of GRPGMs 109

In practice, to ensure that the number of primary beam electrons “lost” due to
collisions with the molecules of gases is low, the working distance must be optimized;

usually it is set to 15 mm.

5.3.3 Quantitative Evaluation of Minerals by Scanning Electron Microscope

(QEM*SEM)

The names QEM*SEM or QEMScan are usually exchangeable. The
QEM*SEM was developed by CSIRO in Australia to provide an automatic, off-line,
size-by-size and particle-by-particle mineralogical analysis of metallurgical products
and exploration samples. It is used widely in mineral processing to analyze ores and
mill products to obtain quantitative information about the distribution of minerals in

plant and test products.

The system uses a combination of backscattered electron (BSE) images to create
an image of a sample reflecting atomic composition, and EDX analysis to provide
elemental analysis. The mineral type and composition is obtained by combining with
the BSE and EDX database in the computer system. The electron gun is steered within
the image frame to scan each particle and to obtain X-ray counts for up to 16 elements
at designated pixel points within the particle. The system uses four EDX detectors.
The X-ray counts for each element at each pixel position are compared to a reference
file to identify the mineral. Each identified point is recorded in a file and displayed on
the CRT screen by a false color which represents the mineral. Calculations, e.g.
liberation, are performed automatically, and no further image analysis is performed
(Pignolet-Brandom and Reid, 1988; Reid and Pignolet-Brandom, 1988). The
QEM*SEM has three basic modes of operation:
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1) Point scan, this is the most basic mode of QEMScan operation, and is similar to
a mineralogical point count. EDX analyses are performed on a grid pattern with
equidistant points. Only modal abundance information can be determined from

this image.

2) Line scan, the scan grid is set up so that points are closely spaced in the X

direction and widely spaced in the Y direction.

3) Areas scan, points are closely spaced in both X and Y directions, this mode is
used to determine grind size for liberation in feed samples, diluents in

concentrates and losses in tailing samples.

QEMScan is highly automated to ensure reliable and repeatable results. It is
’ gradually being accepted in many operations. The system is much more expensive than
the conventional SEM and VP-SEM.

5.3.4 Mineral Liberation Analyzer

The Mineral Liberation Analyzer was developed for the same reasons as the
QEM*SEM to provide an automatic, off-line, size-by-size quantitative mineralogy and
liberation data for the purpose of assessing an ore body, improving plant performance,

and maintaining the quality of product.

Like the QEM*SEM, the system is equipped with backscatter electron imaging
and EDX systems, which combined with the MLA software provide high speed and
high-resolution BSE imaging, EDX analysis and image analysis which result in accurate
mineral identification for particles ranging from 2 to 600 pum. The system takes

advantage of the capability of SEM to provide consistent grey-levels for each mineral in
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BSE image of a sample. The software “segments” the image into minerals, taking into
account cracks, other surface imperfections and “edge effect” around particles. The

Xrays are used to confirm the identity of each mineral.

The measurement system is capable of measuring up to 14 samples overnight.
Image analysis occurs partly off-line and produces a database of mineralogical results
and a set of colored mineral maps. When performing liberation analysis, the quantitative
mineralogical information, such as the mineral distribution as volume and weight
percent, calculated elemental assay, and particle size distribution, can be easily
obtained. When performing a rare phase search, such as for gold or a platinum group
mineral, each occurrence, to less than 1 mm in size, is imaged at high-resolution and the

associated minerals identified.

Most minerals can be identified from the BSE signal. However, for minerals
with similar BSE levels, the EDX is employed. The X-ray spectra of these minerals are
stored with the BSE data for off-line image segmentation. In all cases, once subsequent
image processing is complete, the SEM can be driven back to view any desired particles
by mouse click in order to check mineral identification or to obtain a photographic

record of the original particle of interest.

5.4 Results

The Objective of the mineralogical work is to determine the PGM species and

mineral associations present in each of the sample analyzed.

The following is the GRPGM mineralogical information for the various samples

measured by SEM, VP-SEM and QEM*SEM.
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5.4.1 Amalysis of GRPGMs firom the Raglan Ore with SIEM

The GRPGM content of the Raglan ore is low and most is finely distributed. A
sub-sample concentrate (stage 2) of the minus 25 um size class was mounted, polished
and searched in backscattered electron mode using a conventional SEM to detect the
PGMs. PGMs usually appear as bright objects under this mode due to their high atomic
number. Once bright particles were found they were analyzed using the system. Figure
5-1 shows the backscattered images of one PGM particle (A) and some other high

atomic number particles.

2U ¢ 55 N - Py

Figure S-1 Backscattered Electron Image of Concentrates of Raglan Ore Sample

The backscattered electron image of particle A was obtained with 30 kV
accelerating voltage and 750x magnification (in the original screen image). Qualitative
analysis shows that particle A contains mainly Pt and Te (according to peak height of
X-ray spectrum) with Bi and Fe. Analyzing different spots of particle A, similar X-ray
spectrum (Figure 5-2) was obtained which means that particle A is probably a single

phase. Based on the BSE image, this particle is considered to be liberated.
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Figure 5-2 Backscattered Electron Image and X-ray Spectra for Particle A

Particles B, C and D in Figure 5-1 were also analyzed using EDX (Figure 5-3).
The spectra show that these particles mainly contain Fe, Ni and S elements, the main
constituents of pentlandite, which is the dominant nickel mineral in the Raglan ore. The
image of particles B, C, and D is darker than that of particles A is due to their lower

atomic number.

Some particles consisting of Fe and S were also found in these size classes

(presumably pyrrhotite).
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Figure 5-3 The X-ray Spectrum of Particle B, C and D

Figure 5-4 Backscattered Electron Image of Particle E (minus 25 pum)

Another PGM particle, E, of the same size class as particle A was found with a

30 kV accelerating voltage and 2700x magnification, shown in Figure 5-4. Particle E
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contains Pt, Bi, Te and Fe (C appears here also because of carbon coating, O because of
a hole in the section). The particle E contains mostly Pt, Bi and Te, the same
components found in the mineral Moncheite (Pt; o1(Te; 96 Bioo3)). Analyzing different

spots of particle B confirms its homogeneity.

Based on analysis of the 37-53 pm size class (stage 2 concentrate) polished
section, five liberated particles containing Au and/or Pd were found. No particles
containing Pt were found in this size class. Most of the darker particles were either
pyrrhotite or pyrite. It was difficult to find any liberated PGM particles above 106 pm

due to the fine-grained nature of Raglan ore.

The microscopy results show the low Pt and Pd content and the fine size
distribution. Combined with the small density difference between Pt and Pd carriers and
gangue, indicates that the ore will likely be unresponsive to gravity recovery. The
mineralogical information helps explain the low GRPt and GRPd content measured by
the GRPGM methodology in Chapter 3.

Flash flotation could be an interesting alternative to gravity separation based on
the fine size distribution of Pt and Pd, but again it would have to be justified on the
basis of other factors, presumably the benefit to copper and nickel recovery. As these
latter minerals are believed to carry most of the Pt and Pd, whatever effect flash

flotation has on copper and nickel minerals would also benefit Pt and Pd recovery.

In conclusion, the low content and finely distributed gravity recoverable
platinum and palladium minerals make the Raglan ore a poor candidate for gravity

recovery.



. CHAPTER 5 Mineralogical Analysis of GRPGMs 116

5.4.2 Analysis of GRPGMs from the Clarabelle Ore with SEM and VP-SEM

Twenty particles in the +600 pm fraction Knelson concentrate of a Clarabelle
ore sample were attached directly to carbon tape and examined with the JOEL 840A
conventional SEM without polishing. No PGMs (sperrylite) particles were found, most
particles being pyrite (FeS,), pyrrhotite (Fe|«S), Pentlandite (Fe, Ni)oS,.

Sixteen particles from concentrates of the 425-600 pm size fraction were also
checked: one sperrylite particle was found. Figure 5-5 and 5-6 show the BSE image
and X-ray spectrum, respectively, as can be seen, the sperrylite particle is brighter than
other nearby particles because of its higher average atomic number. This sperrylite
particle seems nearly fully liberated with minor other associated minerals (B). Another
phenomenon has been observed: when using the tweezers to place the particles onto the

. carbon tape, there are several small brighter particles around the sperrylite particle,
which was also found to be sperrylite. It confirms that that the sperrylite is brittle
(Cabri, 1981a).

“COMP 25.0kV' x80 ~100um ———

Figure 5-5 BSE Image of Sperrylite Particle in 425 —600 um Size Fraction
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The right side image of Figure 5-5 shows the sperrylite particle under higher

magnification. It seems to be associated with other minerals, identified as B.

D:\LaplanteyXiao\2003-01-24\Inco image #6-3.spc

Label A: Inco sample, BSE bright, Spot #5, 25keV
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Figure 5-6 X-ray Analysis Spectrum of Spot A and B on Sperrylite Particle

Several spots on this particle were examined with EDX analysis. This confirms
that spot A consists of elements As and Pt, as expected with sperrylite. Spot B consists

of Oxygen (O), silicon (Si) and iron (Fe) elements.

In the 150-212 pum size fraction examined with a conventional SEM, two

sperrylite particles were found, as shown in Figure 5-7.


file://D:/Laplante/Xiao/2003-01-24/lnco
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Figure 5-7 BSE images of Two Sperrylite Particles in the Concentrate of the 150 —212
um Size Fraction

The sperrylite particle in the left image seems well liberated. The layer structure

. is obvious. The sperrylite particle in the right image seems to be also well liberated
while the upper part contains some iron (shadow). All of the above BSE images were

obtained at 25 kV and “COMP” mode of SEM. The liberated sperrylite particles found

in the coarse size range support why high GRPt content in the Clarabelle ore sample

was obtained.

The concentrate and tailings from magnetic separation of the 38-53 pum size
fraction Knelson concentrate of the Clarabelle ore sample were examined with VP-SEM
at 20 kV and “COMP” mode in high vacuum environment (almost the same as that of
conventional SEM). Several sperrylite particles were found in the non-magnetic
fraction; Figure 5-8 shows two sperrylite particles found. The structure and tin white

color are obvious. Both particles appear to be well liberated.



CHAPTER § Mineralogical Analysis of GRPGMs 119

g — >

Figure 5-8 Two BSE Images (VP-SEM) of Sperrylite Particles in 38-53 um Size
Fraction Obtained from Non-magnetic of Knelson Concentrate of Clarabelle Ore

0.0kvY %900 5

Figure 5-9 A Well Liberated Unidentified PdBiTe Particle in Same Fraction as in
Figure 5-8

In the same fraction, an unidentified PbBiTe particle is shown in Figure 5-9,

with a small attached gangue particle. Its spectrum is shown in Figure 5-10.
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Figure 5-10 Spectrum of the Particie of PdBiTe.

Many liberated sperrylite particles were found in different size classes. Figure
5-11 shows two well-liberated sperrylite particles in the size class of 75-106 um with

the layered and tin white surface.

Figure 5-11 Two Well-liberated Sperrylite Particles in the Size Class 75-106 um
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Figure 5-12 Two Well-liberated Sperrylite With Similar Surface Structure in the Size
Class 53-75 um

Figure 5-12 shows two sperrylite particles in the size class 53—75 um presenting

‘ the tin white and smooth surface. It is well liberated and occurs as a single phase.

Sulfide and GRPGM Mineralogy:

The Clarabelle ore typically contains 1.1% Cu mainly as Chalcopyrite CuFeS;
and 1.2% Ni mainly as pentlandite (Fe, Ni)ySg (Kerr, et al., 2003). Pentlandite is the
most important Ni-bearing minerals in the Clarabelle ore sample. It was found in the
gravity concentrates along with chalcopyrite and pyrrhotite (Fe;.«S). The latter being the
most abundant sulfide mineral in the Clarabelle ore (up to 25%). Many pyrrhotite
particles were found in the gravity concentrates by the VP-SEM. A small amount of
nickel substitutes for iron in the pyrrhotite lattice. The nickel in solid solution in
pyrrhotite typically represents 10% or more of the nickel in the ore (Kerr, et al., 2003).
The two major polymorphs of pyrrhotite are hexagonal and monoclinic pyrrhotite, both
of which are found in the sample. The dominant form of pyrrhotite in the sample is

monoclinic pyrrhotite which is strongly magnetic.
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The major platinum group minerals found in the GRPGM concentrates are
sperrylite (PtAs2) and to a lesser extent Maslovite (Pt, Pd)(BiTe)2 and michenerite (Pd,
Pt)(BiTe)2. The sperrylite is very brittle. There are a lot of small sperrylite particles
broken from the sperrylite particle when using twisters to put the particle on the tap as
can be seen from the Figure 5-5. Sperrylite starts to liberate at very coarse size, 425-
600 pm, this is one of reasons that the content of GRPt is high in the Clarabelle ore.
Well-liberated sperrylite particles were also found across the size range from 600 pum to

20 pm.

Several electrum (Au,Ag) particles were found in the size class 53-75 pm. One

native Tungsten (W) and Tin (Sn) particles were found in this size class also.

5.4.3 Analysis of GRPGMs from the Strathcona Ore with QEM*SEM

Four size fractions of concentrate of stage 2 from the GRPGM test on Strathcona
ore sample including +150um, +106pm, +75um and +25um were measured with
QEM*SEM at the Xstrata Process Support (XPS) (Kormos and Whittaker, 2005). All
PGM, precious metal (PM), Te and Bi or Sn species are either liberated or occur as
multiphase particles with other PGM/PM species. None were locked with either
silicateor oxide minerals. The following PGM, PM, Te, Bi and Sn species in Table 5-1
have been identified within these concentrates. (No PGM, PM, Te, Bi, or Sn minerals

were identified within the +150 size fraction.)

Four concentrates sample of stage 2 were prepared at McGill and forwarded to
XPS for qualitative mineralogical evaluation. The coarsest size fraction for the
mineralogical investigation (+150 pum) was upgraded with an additional processing
stage in a Hydrosizer. The remaining three finer size fractions were not subjected to this

final separation process.
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Table 5-1 PGMs and other minerals detected by QEM*SEM from the Strathcona Ore

Mineral Formula Size Fraction Occurs as Occurs as
Liberated Multiphase
Particles Particles
Michenerite (Pd,Pt)(Bi,Te), | +106, +75 v v
Maslovite (Pt,Pd)(Bi,Te), | +106, +75 v
Froodite PdBi, +106, +75, +25 v v
Insizwaite PtBi, +106, +75, +25 v
Niggliite PtSn +75, +25 v
PtPdSnBiTe unidentified +75, +25 4
Hessite Ag,Te +106, +75, +25 v v
Electrum (Ag,Au) +75 v
Acanthite Ag,S +75 v
Tellurobismuthite Bi,Tes +75 v v
Native Bi Bi +75, +25 v
Native Sn Sn +75, +25 v
Parkerite NizBi,S, +106, +75 v v
Altaite PbTe +75 v v

Sample mass was limited for this study, and most of it was reserved for
chemical assay. Normally, mineralogical evaluation at PGM grades averaging 300ppm
would require many polished sections per size fraction. Because of the lack of sample,

the PGM information presented is qualitative only.

Samples were mounted and polished using the QEM*SEM standard sample
preparation procedure. Sections were measured using a Species Indentification Program
(SIP) designed for Sudbury ores. Additional PGM species were added to the SIP for this
project. The Cameca SX100 Electron Microprobe was used to confirm the identification

of a Native Sn particle.
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5.4.3.1 Modal Mineralogy

Figure 5-13 shows a small amount of PGMs in the size classes of +106 pm, +75
um, and +25 pm. This is because of the low platinum and palladium grade in stage 2
concentrate (20 g/t and 17 g/t, respectively). The other minerals include pentlandite,
chalcopyrite/cubanite, pyrrhotite, pyrite, silicates, and oxides. Results show a
significant difference between the +150 pm size fraction and the three finer fractions.
Magnetite (oxide category), with an SG of 5.3, dominates the +150 size fraction,
whereas silicates (average SG 2.8) dominate the finer fractions. The overall SG in the
+150 pum fraction is higher than in the finer fractions because of this magnetite/silicate
distribution. This difference is likely due to the additional processing step taken on the

+150 um fraction.

Modal Mineralogy Strathcona Gravity Concentrates

100%
0% + a Cther
80% @ Oxides
70% Slicates
60% m CGalena
50% Pyrite
40% Byrrhotite
30% 0 Chalcopyrite/Cubanite
20% & Rentlandite
10% B Fave
0%
+150 +106 +75 +25
Size Fraction (um)

Figure 5-13 Summary of the Modal Mineralogy of the Four Size Fractions.

Trends in the distribution of sulphides were noted. Chalcopyrite (SG 4.2) grades
increase in the fine fractions, whilst pentlandite (SG 4.8) grades decrease. Magnetite

‘ (SG 5.3) also decreases at the finer size fractions.
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Galena, (SG 7.6), occurs in trace amounts within Sudbury ores but has been
concentrated in the three coarsest fractions to grades that vary between 2.3% and 3.6%.
Pyrrhotite, does not show any pattern in terms of distribution. The two samples

containing the highest grades of pyrrhotite are +150pm and +25um (Kormos and

Whittaker, 2005).
5.4.3.2 PGM, PM, Bi and Te Mineralogy

A total of 33 particles in the three size fractions, +106pm, +75pm and +25um
have been identified as PGM, PM or Bi/Te/Sn bearing. No PGM minerals were
identified in the coarse +150 size fraction. Assay information suggests that PGMs are
present in the +150um fraction, but insufficient to locate and identify the PGM

particles.

‘ Distribution of PGIVI, PM and Bi, Te Minerals
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Figure 5-14 Distribution of PGM, PM and Bi, Te Minerals

Figure 5-14 summarises the PGMs, PMs, and Bi-, Te- and Sn-bearing minerals

identified in the samples.
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Figure 5-14 does not take liberation or locking into account. Therefore in the
case where more than one species occurs in a particle, each mineral is counted in the
above representation. Comments on liberation and mineral association are made in the

following paragraph.

A wide variety of mineral species have been identified. The PGM suite is
dominated by bismuthides and tellurides. These include Michenerite, Maslovite,
Insizwaite, and Froodite. A number of species, including Niggliite and an unidentified
PtPdSnBiTe, contain tin. Silver occurs as Electrum, Hessite and Acanthite. Gold occurs
in Electrum which is present in two varieties — one with an almost even split of silver
and gold, the other dominated by gold. Finally Native Bi and Sn have also been
identified. Native Sn has not been found to date in other Sudbury samples analyzed at

FTC; however, native Sn was found in the Clarabelle ore (CVRD Inco) sample.

5.4.3.3 Locking and Mineral Associations of PGM’s, PM’s, and Bi, Te, Sn minerals

All photomicrographs (backscatter electron images) are presented at the end of
this section. In the +106um size fraction, all PGM/PM particles identified were locked
with either other PGM/PMs or with PGM and sulphides.

The +75pum size fraction contained the highest concentration of PGM/PMs.
More liberation is noted in this size fraction. Of the 6 Michenerite grains identified, 3
are liberated particles. Of the 6 Froodite grains identified, 4 are liberated particles. Both
electrum particles identified are liberated. One out of two Tellurobismuthite particles, a
Native Sn particle and 4 out of 5 Parkerite particles are also liberated. Where locking
occurs, other PGM/PM associations are common. Particles containing Hessite-
Maslovite-Insizwaite-Acanthite-Altaite, Hessite-Froodite-linsizwaite-Acanthite-
Chalcopyrite, Froodite-Michenerite-Hessite-, and Michenerite-Insizwaite-

Tellurobismuthite are examples of the complex multiphase particles identified.
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Froodite is the most common PGM identified in the +25um size fraction, and
five out of seven are liberated. Niggliite, Hessite and Native Sn are also present as
liberated grains in this size fraction. Some complex multiphase particles were also

identified including Froodite-Insizwaite-Niggliite and Froodite-Niggliite-Chalcopyrite.

The following Figures show the backscatter electron images of PGMs of the size

fraction 106-150 pm.

Figure 5-15 Michenerite ((Pd,Pt)(Bi,Te),) -Pentlandite Grain

Figure 5-15 shows a particle of Michenerite (Pd,Pt)(Bi,Te),) associated with the
gangue mineral of pentlandite. The particle has two phases and at least 80% liberation

in term of the surface area.
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Figure 5-16 Insizwaite (PtBi,)-Hessite (Ag,Te)-Chalcopyrite Grain
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Figure 5-17 Multiphase PGM including grains of Froodite (PdBi,), Maslovite
((Pt,Pd)(Bi,Te),), and Insizwaite (PtBi,). Hessite (Ag;Te), in the dark shade of grey is

commonly associated with PGM minerals.
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Figure 5-18 Multiphase PGM locked with sulphides. PGMs include Froodite (PdBi,),
Maslovite((Pt,Pd)(Bi,Te),), and Insizwaite (PtBi,)

The following pictures show the backscatter electron images of the size

fraction 75-106um.
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Figure 5-19 Two Multiphase PGM Particles.
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Figure 5-19 shows that the top particle contains Froodite ((PdB1iy), Insizwaite
(PtBi2), locked with Hessite (Ag,Te), Acanthite (Ag,S) and Chalcopyrite. The lower
particle contains an unidentified PGM with Pt, Pd, Sn, Bi and Te as well as Native Bi,
Atlaite (PbTe) and Cubanite. Both particles are approx. 75 um in length.

Figure 5-21 Liberated Michenerite ((Pd,Pt)(Bi,Te),) Grain
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Figure 5-22 Multiphase Particle Containing Froodite (PdBi,), Michenerite
((Pd,Pt)(Bi,Te),) and Hessite (Ag,Te).
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Figure 5-23 Liberated Michenerite ((Pd,Pt)(Bi,Te),) Grain
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Figure 5-24 Three Phase Particle Containing Michenerite ((Pd,Pt)(Bi,Te),), Niggliite
(PtSn) and Sphalerite.

Figure 5-25 Native Sn with Small Grain of Chalcopyrite (Darker Grey) at Lower Edge
of Particle
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The following pictures show the backscatter electron images of the size fraction

25-38um.

@ Figure 5-26 Multiphase PGM Containing Froodite (PdBi2), Niggliite (PtSn) and
Insizwaite (PtBi2)

Figure S-27 Liberated Grain of Froodite (PdBi,), Approximately 40 pm in Length.
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Figure 5-29 Liberated Niggliite (PtSn) Particle
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Figure 5-30 Two Phase Particle with Unidentified PtSnTe Mineral, with Small

Inclusions of Native Bi

5.4 Conclusions

No liberated GRPGM particles were found above 106 pum for Raglan ore
sample. However, those GRPGM particles found in the size class below 53 pm were
well liberated. Mineralogical examination indicated that one of the reasons for the low

GRPt is due to the fine size distribution of PGMs.

The major platinum group minerals in the GRPGM of Clarabelle ore are
sperrylite and to a less extent maslovite, michenerite. Sperrylite particles start to liberate
at 425 um and are well liberated below this size. This is the reason the GRPt content is

high for the Clarabelle ore.

The major platinum group minerals in the GRPGM of Strathcona ore sample
include froodite, michenerite, maslovite, Insizwaite and Niggliite. Most of these
GRPGM particles were locked above 106 um with other PGMs and/or sulphide. Most
. of them are well liberated below 53 pum.
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CHAPTER SIX

CONCLUSIONS AND CONTRIBUTIONS

6.1 Gravity Recoverable Platinum Group Mineral Methodology (GRPGM) for

Ores and Stream Samples

The investigations and tests concluded that the GRG protocol for prediction and
modeling of GRG in the grinding circuit could be applied to discrete platinum group
minerals, or gravity recoverable platinum group minerals. The methodology is effective
to quantify the gravity recoverable platinum group mineral content of a sample. The
quantity of the gravity recoverable platinum group minerals can be quantified, which
can be used to justify whether gravity separation is an option for recovering the PGMs.

The methodology was applied to four ore samples.

e The amount of gravity recoverable platinum (GRPt) and palladium
(GRPd) in a sample of Raglan ore is low, 5.1% and 2.7%, respectively,

using the three recovery stage protocol.

e The ore sample from the Clarabelle mill contains 82% gravity
recoverable platinum (GRPt), and is a promising candidate for a gravity

recovery method in the grinding circuit.
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e The amount of gravity recoverable platinum (GRPt) and palladium
(GRPd) of the Ni Rim South ore sample (Falconbridge) are the same,
42%. Over 92% of the gravity recoverable platinum group minerals are

finer than 106 um.

e The ore sample from Strathcona mill contains 53% GRPt and 44%
GRPd. The GRPd content is the highest among the tested ore samples.
The potential for recovering precious metals from the Strathcona ore is

attractive (53% GRPt, 44% GRPd and the extra 70% GRG).

The fourth stage with the variable speed Knelson Concentrator was able to
recover the fine distributed PGMs. However, the contribution to the GRPGM content is

moderate.

The two-stage GRPGM protocol for stream samples can be used to characterize
the already liberated gravity recoverable platinum group minerals. The second stage for
streams is shown to be warranted: Significant recovery of platinum minerals can be
achieved in the second stage (more significant than for gold). This also holds true but
to a lesser extent for other PGEs. This stems from the relatively coarse size distribution
used for stage 1, generally intermediate between the size distribution of stage 1 and 2

for the ore GRPGM methodology.

6.2 Behavior of Gravity Recoverable Platinum Group Minerals

The classification efficiency curves of platinum and palladium are shifted to
finer size than that of the total solids for the Clarabelle case. This results from the high
density and results in platinum and palladium preferentially reporting to the cyclone

underflow which means a build up in the circulating load in the grinding circuit. This is
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evident by the higher Pt and Pd grades in ball mill discharge and cyclone underflow

compared to the other streams.

The classification efficiency curve of platinum is similar to that of gold. Above
53 um, the classification efficiency curves of platinum overlap, whereas more fine
platinum (below 53 pm) reports to the cyclone underflow than gold. It is that the
lamellar shape of gold particles counters the high density effect, resulting in a cyclone

behavior for gold that is similar to that of platinum minerals of lower density.

Sperrylite is the dominant PGM in the Clarabelle ore. It is brittle and easily
broken. The selection function of platinum is a little higher than that of the total solids
above 212 um, presumably because the sperrylite is liberated at coarser size fractions.

Below 212 um, the selection function of platinum is lower than that of the total solids.

A case is made for using the cumulative selection function. The cumulative
selection function of all size classes for gold is lower than the total solids in each
corresponding size class for the Clarabelle case. The cumulative selection function of
platinum and palladium is 1.3 times higher than the total solids for size classes above

212 pm and 50 to 70% of the total solids below 212 pm.

Sperrylite (the dominant platinum mineral for Clarabelle ore) classification
efficiency curve is similar to that of gold, despite its lower density. Its grinding kinetics
is significant higher than for gold. As a result, sperrylite accumulates in finer sizes than

native gold, but can be recovered by gravity due to its high gravity recoverable content.



CHAPTER 6 Conclusions and Contributions 139

6.3 Gravity Recoverable Platinum Group Mineral Mineralogy

The SEM, VP-SEM and QEM*SEM instruments were used to analyze the
gravity recoverable PGMs qualitatively. The purpose is to better understand the PGEs
distribution between discrete PGMs (gravity recoverable) for the three ore samples from
the Sudbury area and the ore sample from Raglan. It is easier to obtain mineralogical
information from the VP-SEM compared to the SEM. Mineralogical information, such
as the degree of liberation, the associated minerals and the size distribution can be

obtained using the QEM*SEM although the procedure is more involved and expensive.

The dominant GRPGM particles of the Raglan ore sample contain the elements
Pt, Bi and Te, suggesting the mineral Moncheite (Pt ;(Te; 96 Biggs)). The GRPGM
particles are finely distributed and well liberated. The low content and fine distribution

make the Raglan ore a poor candidate for gravity recovery.

The major platinum group minerals found in the GRPGM Knelson concentrates
from the Clarabelle ore sample are Sperrylite (PtAs;) and to a lesser extent Maslovite
(Pt, Pd)(BiTe), and Michenerite (Pd, Pt)(BiTe),. The coarsest sperrylite particle was in
the size class 425-600 um and was well liberated. Sperrylite particles were also found
in the fine size classes. Several electrum (Au, Ag) particles were found at the finer size
class 53-75 um. One native Tungsten and Tin particle were also found in the same size

class.

All GRPGM, precious metal (PM), Te and Bi or Sn species are either liberated
or occur as multiphase particles with other PGM/PM species for the ore sample from
Strathcona mill. None were locked with silicate or oxide minerals. All GRPGM
particles identified in the +106pum size fraction were locked with either other PGM or

with PGM and sulfides. The +75um size fraction contained the highest concentration
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of GRPGMs. Higher degree of liberation is noted in this size fraction compared to the
+106pm size fraction. Froodite is the most common PGM identified in the +25um size

fraction, and five out of seven Froodite containing particles were well liberated.

6.4 Contributions to Knowledge

The contributions of this research to platinum group mineral recovery are:

o The GRPGM methodology developed can quantify the content of gravity
recoverable platinum group minerals of ores and streams. It can also be
used to concentrate the platinum group minerals for mineralogical

analysis.

e The fourth stage added to the GRPGM methodology for ore
characterization and the second stage added for the stream GRPGM
measurement protocol is different from the GRG protocol. Their

contributions to the recoveries of are significant.

e The description of platinum group mineral behavior in cyclones using
the classification efficiency curves and ball mills using the less common
cumulative selection function establishes the foundation for modeling the

gravity recovery of platinum group minerals in a grinding circuit.



CHAPTER 7 Future Works 141

CHAPTER SEVEN

FUTURE WORK

The modified GRPGM protocol for ore samples has yet to be fully evaluated.
The contribution of the fourth stage is modest for the ore sample from the Clarabelle
Mill. Further investigations could be carried out to verify the usefulness of this fourth
stage. One investigation is to use higher speed to replace the standard speed Knelson
Concentrator in the fourth stage. The reason is that the particle size is fine for the
tailings of stage 3. Another investigation is to grind the tailings from stage 3 then
process it by the standard or higher speed Knelson concentrator. The purpose is to
ascertain if more PGMs can be liberated and recovered. With these investigations, the
usefulness of the fourth stage could be assessed. It should be noted, however, this will
yield GRPGM particles that will be difficult to recover by gravity in practice (easier by
flash flotation?), not only because of their behavior in gravity recovery units, but also
because they are less likely to report to (i.e., concentrate) in the cyclone underflow

stream.

In order to use the “triangle” simulation engines as shown in Figure 1-1, the
third corner, recovery unit performance, needs to be established. The database of the
recovery unit performance of GRPGMs, either by gravity or flash flotation, is simply
insufficient at this stage. One solution is to begin building a database for existing
applications. A second solution is to use piloting at potential sites to generate data that

can be used in the simulation.
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The breakage function of the sperrylite is worthy of investigation. A certain
amount of well-liberated sperrylite particles could be used in the lab to measure its
breakage function. Knowledge of the breakage function is fundamental for interpreting

the behavior of the PGMs in the grinding circuit.

The shape effect of PGM particles (compared to the shape of gold) on the
classification behavior is critical to understanding the behavior of some minerals. An
initial investigation of tungsten with different shapes (irregular vs. spherical) shows that
their cycloning behavior is very different. Figure 7-1 shows the different shapes of the
tungsten of the size class of minus 38 um size class and Figure 7-2 shows the results of

the Warman cyclosizer at the same operating conditions.

Figure 7-1 Irregular and Spherical Shape of Tungsten



. CHAPTER 7 Future Works 143

X 100 -
g
= 80
& 60 -
x
_“2’ 40
% 20 —a—lrregular ||
£ —e- Spherical
3 o . I
0.0 10.0 20.0 30.0
effective separation size, pym

Figure 7-2 Cumulative Retaining of Different Shape Tungsten

. Figure 7-2 shows that more spherical shape tungsten was retained while some of
the irregular shape tungsten particles can easily reach the overflow of the final cyclone
in the Warman cyclosizer. The Warman cyclosizer could be used as a start-point to

investigate the shape effect on hydrocyclone performance.
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Appendix 1-Raglan Metallurgical Balance, Upgrading the Five Coarsest for Pt

Size, ym| Product (Mass (g)| Mass Grade Unit |Rec. (%)|Enrichment
(%) (gft)
+600 |Conc. 2.06 10.72 0.6 6.43 10.7 1.0
Tailing 17.15 89.28 0.6 53.57 89.3
Total 19.21] 100.00 0.6 60 100.0
425-600 |Conc. 2.03 10.24 1.8 18.44 20.4 2.0
Tailing 17.79 89.76 0.8 71.81 79.6
Total 19.82| 100.00 0.9 90.24 100.0
300-425 |Conc. 2.25 14.35 1.1 15.78 20.8 1.5
Tailing 13.43 85.65 0.7 59.96 79.2
Total 15.68| 100.00 0.8 75.74 100.0
212-300 |Conc. 1.76 14.55 0.7 10.18 14.5 1.0
Tailing 10.34 85.45 0.7 59.82 85.5
Total 12.1] 100.00 0.7 70 100.0
150-212 [Conc. 0.77 9.63 1.9 17.81 13.2 1.4
Tailing 7.23 90.38 1.3] 117.49 86.8
Total 8.00| 100.00 1.4] 135.29 100.0

Appendix 1-Raglan Metallurgical Balance, Upgrading the Five Coarsest for Pd

Size, ym| Product |Mass (g) |Mass (%)| Grade Unit |Rec. (%)| Enrichment
(9/t)
+600 |Conc. 2.06 10.72 7.8 83.64 36.9 3.4
Tailing 17.15 89.28 1.6] 142.84 63.1
Total 19.21] 100.00 2.3 226.49 100.0
425-600 |Conc. 2.03 10.24 11.3[ 115.74 35.9 3.5
Tailing 17.79 89.76 2.3| 206.44 64.1
Total 19.82] 100.00 3.2 32218 100.0
300-425 [Conc. 2.25 14.35 12.7{ 182.24 41.5 2.9
Tailing 13.43 85.65 3.0] 256.95 58.5
Total 15.68] 100.00 4.4{ 439.19] 100.0
212-300 [Conc. 1.76 14.55 12.6] 183.27 30.2 2.1
Tailing 10.34] - 85.45 5.0 423.00 69.8
Total 12.1] 100.00 6.1 606.27 100.0
150-212 |Conc. 0.77 9.63 11.9] 114.54 20.7 2.2
Tailing 7.23 90.38 4.9 438.32 79.3
Total 8.00] 100.00 5.5 552.86] 100.0
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Appendix 1-Raglan Table 1

Metallurgical Balance of Stage 1

CONCENTRATE TAILS FEED
Size Weight % Grade Rec. Weight % Grade Rec. Weight % Grade Dist'n
(um) ® Weight | (g/t) (%) (® Weight | (g/t) (Y0) ® Weight | (g/t) (%0)
850 0.00 0.00 0.0 0.00 0 0.00 0.00 0.00 0 0.00 0.00 0.00
600 19.21 2213 0.6 0.27 9587 17.62 0.45 99.73 9606 17.63 0.45 11.52
425 19.82 22.83 0.9 0.32 9366 17.22 0.60 99.68 9385 17.22 0.60 15.01
300 15.68 18.06 0.8 0.29 6385 11.74 0.65 99.71 6401 11.75 0.65 11.08
212 12.10 13.94 0.7 0.21 5721 10.52 0.70 99.79 5733 10.52 0.70 10.69
150 8.00 9.21 14  0.39 3977 7.31 0.70 99.61 3985 7.31 0.70 7.44
106 4.21 4.85 1.4  0.27 3313 6.09 0.65 99.73 3317 6.09 0.65 5.75
75 2.85 3.28 14 290 2270 4.17 0.60 97.10 2273 4.17 0.62 3.73
53 217 2.50 33 4.57 2510 4.61 0.60 95.43 2512 4.61 0.63 4.20
37 1.28 1.47 74 711 1762 3.24 0.70 92.89 1764 3.24 0.75 3.54
25 0.68 0.78 84 4.04 1587 2.92 0.85 95.96 1588 2.91 0.89 3.74
15 0.82 0.94 35 0.33 7926 14.57 1.10 99.67| 7927 14.55 1.10 23.29
Total 86.82 100.00 4.1 0.96 54403  100.00 0.68 99.04 54490 100.00 0.69 100.00
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Appendix 4 Clarabelle Table 1A

Metallurgical Balance of Platinum for Stage 1

CONCENTRATE TAILS FEED
Size Weight % Grade Rec. Weight % Grade Rec. Weight % Grade Dist'n
(um) ® Weight | (g/t) (%) (8 Weight | (g/t) (%) ® Weight | (g/t) (%)
850 0.00 0.00 0.0 0.00 0 0.00 0.00 0.00 0 0.00 0.00 0.00
600 15.52 14.92 5 477 7854 13.71 0.20 95.23 7870 13.71 0.21 3.80
425 18.39 17.67 80 21.77 8865 15.47 0.60 78.23 8883 15.48 0.77 15.68
300 18.28 17.57 101 28.38 6637 11.58 0.70 7162 6655 11.59 0.97 14.96
212 16.24 15.61 152 55.97 6465 11.28 0.30 44.03 6481 11.29 0.68 10.16
150 11.58 11.13 208 54.56 5019 8.76 040 4544 5030 8.76 0.88 10.19
106 7.93 7.62 323 57.91 4654 8.12 0.40 42.09 4661 8.12 0.95 10.20
75 5.6 5.38 438 78.19 3421 5.97 020 21.81 3426 5.97 0.92 7.23
53 4.2 4.04 408 51.38 4055 7.08 0.40 48.62 4059 7.07 0.82 7.69
37 3.29 3.16 438 50.03 2878 5.02 0.50 49.97 2882 5.02 1.00 6.64
25 1.53 1.47 286 23.74 2343 4.09 0.60 76.26 2344 4.08 0.79 4.25
20 0.61 0.59 147  8.48 968 1.69 1.00 91.562 969 1.69 1.09 2.44
10 0.88 0.85 34 1.02 4138 7.22 0.70 98.98 4139 7.21 0.71 6.75
Total 104.05 100.00 163 39.21 57296  100.00 0.46 60.79 57400 100.00 0.76  100.00
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Appendix 4 Clarabelle Table 1B

Metallurgical Balance of Palladium for Stage 1

CONCENTRATE TAILS FEED
Size Weight % Grade Rec. Weight % Grade Rec. Weight % Grade Dist'n
(pm) (2 Weight | (g/t) (%) ® Weight | (g/t) (%) (® Weight | (g/t) (%)
850 0.00 0.00 0.0 0.00 0 0.00 0.00 0.00 0 0.00 0.00 0.00
600 15.52 14.92 0.2 0.06f 7854.20 13.71 0.50 99.94 7870 13.71 0.50 10.49
425 18.39 17.67 22 0.66/ 8864.95 15.47 0.70 99.34 8883 15.48 0.70 16.67
300 18.28 17.57 8.3 3.68 6637.03 11.58 0.60 96.32 6655 11.59 0.62 11.03
212 16.24 15.61 27 12.05] 6464.67 11.28 0.50 87.95 6481 11.29 0.57 9.81
150 11.58 11.13 46 15.01)| 5018.67 8.76 0.60 84.99 5030 8.76 0.70 9.46
106 7.93 7.62 88 23.07| 4653.51 8.12 0.50 76.93 4661 8.12 0.65 8.07
75 5.60 5.38 144 44.00f 3420.76 5.97 0.30 56.00 3426 5.97 0.53 4.89
53 420 4.04 153 24.07| 4054.66 7.08 0.50 75.93 4059 7.07 0.66 7.13
37 3.29 3.16 161 26.90| 2878.38 5.02 0.50 73.10 2882 5.02 0.68 5.25
25 1.53 1.47 88 6.67|] 234282 4.09 0.80 93.33 2344 4.08 0.86 5.36
20 0.61 0.59 41 3.57| 967.90 1.69 0.70 96.43 969 1.69 0.73 1.88
10 0.88 0.85 13 0.31] 4138.40 7.22 0.90 99.69 4139 7.21 0.90 9.97
Total 104.05 100.00 39 10.72 57296  100.00 0.58 89.28 57400 100.00 0.65 100.00
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Appendix 4 Clarabelle Table 2 B

Metallurgical Balance of Palladium for Stage 2

CONCENTRATE TAILS FEED
Size Weight % Grade Rec. | Weight % Grade Rec. Weight % Grade Dist'n
(nm) ® Weight | (g/t) (%) (® Weight | (g/t) (%) (® Weight | (g/t) (%)
300 15.19 12.97 09 11.63 346 1.34 0.30 88.37 361 1.39 0.33 0.95
212 26.96 23.02 1.7 14.58 1343 5.18 0.20 85.42 1370 5.26 0.23 2.53
150 23.75 20.27 3.0 13.89 2208 8.52 0.20 86.11 2232 8.57 0.23 413
106 18.26 15.59 5.0 8.20 3408 13.15 0.30 91.80 3427 13.16 0.33 8.98
75 12.52 10.69 Ao.: 17.98 2885 11.13 0.20 82.02 2897 11.13 0.24 5.67
53 8.66 7.39 211 21.23 3389 13.08 0.20 78.77 3398 13.05 0.25 6.94
37 5.84 4.99 451 30.65 2980 11.50 0.20 69.35 2986 11.47| 0.29 6.93
25 3.03 2.59 716 20.72 2767 10.68 0.30 79.28 2770 10.64 0.38 8.44
20 1.47 1.25 88.0 28.40 815 3.15 0.40 71.60 817 3.14 0.56 3.67
10 1.46 1.25 49.0 1.11 5771 22.27 1.10 98.89 5773 22.18 1.1 51.76
Total 117.14  100.00 10.4 9.77 25913  100.00 043 90.23 26030 100.00 0.48 100.00
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Primary fine --- Standard KC Operation Mass Balance

CONCENTRATE TAILS FEED
Size | Mass Mass Grade (Pt oo | Mass Mass Grade (Pt o | Mass Mass Grade (Pt Au Dist'n
wm) | (@ (%)  omsy RC®| (g () ozt FPHREE] g ) omsh %
600] 17.64 15.54 0.03 0.66 1413 12.64 0.0522 99.34 1430 12.67 0.052 14.50
425) 22.36 19.70 0.50 25.68 2023 18.10 0.0160 74.32 2045 18.12 0.021 8.53
300} 25.73 22.66 1.71 60.55 1918 17.16 0.0149 39.45 1943 17.22 0.037 14.17
212} 17.17 15.12 3.24 57.00 1780 15.93 0.024 43.00 1797 15.92 0.054 19.08
150} 13.03 11.48 3.81 84.05 1109 9.92 0.008 15.95 1122 9.94 0.0563 11.54
106 6.91 6.09 6.22 81.37 790 7.07 0.012 18.63 797 7.06 0.066 10.32
75 4.55 4.01 8.57 83.09 485 4.34 0.016 16.91 490 4.34 0.096 9.17
53 272 2.40 6.86 73.49 456 4.08 0.015 26.51 459 4.07 0.055 4.96
38 1.67 1.47 3.96 50.66 305 273 0.021 49.34 307 2.72 0.042 2.55
25 0.87 0.77 1.95 23.42 205 1.84 0.027 76.58 206 1.83 0.035 1.41
20 0.26 0.23 0.58 3.39 107 0.96 0.041 96.61 107 0.95 0.042 0.89
-20 0.61 0.54 0.19 0.79 583 5.22 0.025 99.21 584 5.17 0.025 2.88
Total | 113.52 100.00 2.379 52.78] 11174 100.00 0.022 47.22] 11288 100.00 0.045 100.00
Primary fine --- Variable Speed KC Operation Mass Balance
CONCENTRATE TAILS FEED
Size | Mass Mass Grade (Pt o | Mass Mass Grade (Pt o | Mass Mass Grade (Pt Au Dist'n
em) | (@ (%) ozist) FtRec%| - %)  ozist) FLReC®| o) (%) ozist) %
212) 28.14 22.97 0.021 233 1053 2287 0.0237 97.67| 1080.85 22.88 0.024 30.34
150] 35.05 28.61 0.011 4.46 947  20.58 0.0084 95.54] 982.23 20.79 0.008 9.93
106} 22.12 18.06 0.039 10.04 671 14.59 0.0116 89.96] 693.56 14.68 0.012 10.28
751 15.30 12.49 0.192 40.91 425 9.23 0.0100 59.09] 440.19 9.32 0.016 8.56
53 8.90 7.26 0.379 52.97 423 9.18 0.0071 47.03] 431.45 9.13 0.015 7.58
38 5.78 472 0.843 75.71 299 6.51 0.0052 2429] 305.20 6.46 0.021 7.66
25 3.98 3.25 1.321 83.58 229 4.98 0.0045 16.42] 233.05 4.93 0.027 7.48
20 1.30 1.06 2.059 81.21 79 1.72 0.0078 18.79 80.60 1.71 0.041 3.92
-20 1.94 1.58 1.882 30.51 476 10.34 0.0175 69.49] 477.87 10.11 0.025 14.24
Total | 122.51 100.00 0.201 29.28 4602 100.00 0.0129 70.72 4725 100.00 0.018 100.00
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Assays of size fraction of each stream for survey #1

SAG U/S Primary Fines
Pt Pd Au Pt Pd Au
Size (um) oz/st oz/st oz/st oz/st oz/st oz/st

600 0.009 0.014 0.006 0.052 0.023 0.015
425 0.014 0.012 0.006 0.021 0.032 0.007
300 0.023 0.016 0.006 0.037 0.032 0.008
212 0.013 0.015 0.006 0.043 0.036 0.014
150 0.034 0.022 0.015 0.055 0.035 0.013
106 0.012 0.021 0.006 0.068 0.048 0.011
75 0.028 0.028 0.013 0.096 0.064 0.015

53 0.021 0.022 0.007 0.07 0.046 0.009

37 0.019 0.017 0.005 0.046 0.03 0.008

25 0.02 0.024 0.007 0.033 0.04 0.009

20 0.022 0.024 0.006 0.035 0.042 0.014
PAN 0.022 0.034 0.008 0.026 0.044 0.011
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Assays of size fraction of each stream for survey #1 (Continued)

Cylone Underflow Ball Mill Discharge Cylone Overflow
Pt Pd Au Pt Pd Au Pt Pd Au
Size (um)  oz/st oz/st oz/st oz/st oz/st oz/st oz/st oz/st oz/st

600 0.005 0.016 0.011 0.006 0.007 0.004 0.006 0.012 0.022
425 0.036 0.015 0.058 0.015 0.012 0.132 0.009 0.015 0.073
300 0.02 0.018 0.056 0.01 0.015 0.194 0.004 0.009 0.007
212 0.026 0.022 0.077 0.015 0.023 0.076 0.005 0.008 0.005
150 0.047 0.028 0.078 0.062 0.029 0.154 0.006 0.01 0.013
106 0.058 0.045 0.125 0.034 0.037 0.048 0.009 0.011 0.009
75 0.194 0.107 0.115 0.211 0.101 0.182 0.015 0.016 0.007
53 0.308 0.173 0.123 0.215 0.098 0.072 0.014 0.02 0.006
37 0.324 0.1 0.043 0.22 0.074 0.03 0.024 0.022 0.007
25 0.154 0.107 0.034 0.106 0.069 0.028 0.008 0.005 0.002
20 0.087 0.071 0.027 0.075 0.061 0.017 0.04 0.045 0.01
PAN 0.036 0.043 0.011 0.042 0.048 0.01 0.031 0.043 0.008
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Assays of size fraction of each stream for survey #2

SAG U/S Primary Fines Rod Mill Discharge
Pt Pd Au Pt Pd Au Pt Pd Au
Size (ur  oz/st oz/st oz/st oz/st oz/st oz/st oz/st oz/st oz/st
600 0.007 0.01 0.003 0.019 0.031 0.002 0.008 0.008 0.003
425 0.006 0.015 0.01 0.03 0.04 0.003 0.006 0.007 0.003
300 0.023 0.015 0.006 0.028 0.041 0.004 0.009 0.009 0.145
212 0.012 0.017 0.003 0.032 0.04 0.004 0.011 0.009 0.009
150 0.016 0.016 0.009 0.051 0.041 0.011 0.018 0.009 0.007
106 0.018 0.016 0.007 0.061 0.047 0.014 0.014 0.009 0.008
75 0.024 0.021 0.008 0.061 0.06 0.014 0.015 0.01 0.009
53 0.016 0.019 0.006 0.057 0.052 0.008 0.008 0.01 0.004
37 0.023 0.021 0.007 0.052 0.005 0.01 0.015 0.013 0.008
25 0.02 0.019 0.007 0.032 0.039 0.009 0.018 0.013 0.007
20 0.023 0.023 0.007 0.039 0.047 0.011 0.015 0.015 0.006
Pan 0.017 0.023 0.007 0.031 0.042 0.01 0.013 0.018 0.007
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Assays of size fraction of each stream for survey #2 (Continued)

Cylone Underflow Ball Mill Discharge Cylone Overflow
Pt Pd Au Pt Pd Au Pt Pd Au
Size (umr  oz/st oz/st oz/st oz/st oz/st oz/st oz/st oz/st oz/st
600 0.006 0.012 0.045 0.009 0.028 0.058 0.006 0.012 0.022
425 0.006 0.008 0.049 0.008 0.011 0.018 0.009 0.015 0.073
300 0.018 0.013 0.098 0.017 0.013 0.066 0.004 0.009 0.007
212 0.012 0.016 0.109 0.022 0.012 0.187 0.007 0.009 0.007
150 0.065 0.023 0.124 0.043 0.019 0.132 0.006 0.009 0.01
106 0.07 0.036 0.21 0.055 0.028 0.165 0.006 0.009 0.007
75 0.132 0.057 0.285 0.153 0.054 0.194 0.005 0.009 0.005
53 0.161 0.07 0.087 0.101 0.038 0.073 0.006 0.011 0.005
37 0.502 0.148 0.159 0.301 0.087 0.081 0.01 0.012 0.022
25 0.161 0.075 0.043 0.085 0.042 0.025 0.018 0.016 0.006
20 0.087 0.051 0.021 0.063 0.035 0.018 0.017 0.017 0.006
Pan 0.028 0.03 0.011 0.027 0.029 0.007 0.028 0.026 0.009
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