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ABSTRACT

In this thesis we study domain-wall geometries in which the AdS isometries are
weakly broken and the renormalization group flows of their field theory duals. First,
we introduce the AdS/CFT correspondence and review the computation of CFTd cor-
relation functions from AdSd+1 gravity. We then show how to compute renormalized
correlation functions from the bulk, introduce domain-wall geometries as the bulk
duals of field theories with broken conformal invariance and demonstrate the holo-
graphic realization of conformal anomalies. Finally, we present a new approximation
scheme that is useful for computing the on-shell action in an effective description
of AdS domain-wall geometries (or equivalently, the dilaton effective action of the
dual field theory). This framework is general in principle but is particularly suited
to the case that the AdS isometries are weakly broken, corresponding to a ‘slow flow’
interpolating between AdS asymptotic regions. We demonstrate the utility of this
approximation scheme with two applications. First, we compute the dilaton effective
action for a flow driven by a weakly relevant operator from the dual bulk effective
theory, and show that it reproduces the correct form of the RG-improved two point
function. Secondly, we compute the gravitational on-shell action in a generalized
‘slow-flow’ setup in four dimensions, and show that upon Wick rotation we recover
the inflationary power spectrum and spectral index of curvature perturbations at
horizon-crossing to second-order in slow-roll.
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ABRÉGÉ

Dans cette thèse, nous étudions les géométries ‘mur-de-domaine’ dans lesquelles
les isométries de l’éspace-temps anti-de Sitter sont faiblement cassées et aussi le flux
du groupe de renormalisation de leurs théories des champs doubles. Tout d’abord,
nous introduisons la correspondance AdS/CFT et révisons la dérivation des fonc-
tions de corrélation dans la théorie conforme des champs de la gravité dans l’éspace
anti-de Sitter. Nous montrons ensuite comment calculer les fonctions de corrélation
renormalisées des théories de la gravité de l’espace-temps AdS; nous introduisons
les géométries mur-de-domaine qui sont les doubles des théories des champs avec
la symétrie conforme cassée; et nous démontrons la réalisation holographique des
anomalies conformes. Enfin, nous présentons un nouveau schéma d’approximation
qui est utile pour évaluer l’action gravitationnelle avec la solution des équations du
mouvement dans une description effective des géométries ‘mur-de-domaine’ (ou de
manière équivalente, l’action effective du dilaton de la théorie des champs double).
En principe cette méthode est générale, mais elle est particulièrement adaptée au
cas que les isométries de l’espace-temps AdS sont faiblement cassées, correspondant
à un ‘flux lent’ qui interpole entre les géométries AdS asymptotiques. Nous démon-
trons l’utilité de ce schéma d’approximation avec deux applications. Premièrement,
nous calculons l’action effective du dilaton pour un flux du groupe de renormalisa-
tion causé par un opérateur faiblement-essentiel de la théorie effective gravitation-
nelle, et montrons qu’il reproduit la forme correcte de la fonction de correlation à
deux points ‘RG-amélioré.’ Deuxièmement, nous évaluons l’action gravitationnelle
avec une solution des équations du mouvmement dans une configuration général-
isée ‘flux lent’ en quatre dimensions, et montrons que lors de la rotation Wick nous
récupérons le spectre de puissance et l’indice spectral des perturbations de courbure
de l’inflation cosmique après le passage de l’horizon cosmologique au deuxième ordre
dans le schéma d’approximation ‘flux lent.’

v



TABLE OF CONTENTS

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ABRÉGÉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Holography for dummies: a utilitarian’s guide to AdS/CFT . . . . . . . . 4

2.1 The geometry of (asymptotically) anti-de Sitter space . . . . . . . 5
2.2 The wave equation in AdS . . . . . . . . . . . . . . . . . . . . . . 8
2.3 CFT correlation functions from gravity . . . . . . . . . . . . . . . 10

2.3.1 A tale of two propagators . . . . . . . . . . . . . . . . . . . 10
2.3.2 2- and 3-point functions . . . . . . . . . . . . . . . . . . . . 12
2.3.3 Witten diagrams and a final bit of lore explained . . . . . . 15

3 How to renormalize holographically . . . . . . . . . . . . . . . . . . . . . 18

3.1 Holographic renormalization via counterterms . . . . . . . . . . . 19
3.1.1 General formalism . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.2 Concrete example: massive scalar . . . . . . . . . . . . . . 22

3.2 RG flows & domain-wall geometries . . . . . . . . . . . . . . . . . 28
3.2.1 The superpotential method . . . . . . . . . . . . . . . . . . 32

3.3 The Hamilton-Jacobi formalism . . . . . . . . . . . . . . . . . . . 33
3.4 The holographic conformal anomaly . . . . . . . . . . . . . . . . . 41

4 Holographic renormalization group flows in the adiabatic limit . . . . . . 46

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 The general setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.1 Boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.2 Bulk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 A generalized adiabatic approximation scheme . . . . . . . . . . . 55

vi



4.3.1 Imposing boundary conditions . . . . . . . . . . . . . . . . 59
4.4 Application 1: holographic RG-improved two-point functions in

weakly-relevant flows . . . . . . . . . . . . . . . . . . . . . . . . 60
4.4.1 Review of the field theory setup and results . . . . . . . . . 60
4.4.2 The bulk setup: slow-roll backgrounds in Einstein-scalar

theories . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4.3 Setting up the adiabatic scheme . . . . . . . . . . . . . . . 65
4.4.4 The on-shell action . . . . . . . . . . . . . . . . . . . . . . 66
4.4.5 Reading off beta functions and anomalous dimensions . . . 68

4.5 Application 2: reproducing the inflationary power spectrum . . . . 71
4.5.1 The on-shell action . . . . . . . . . . . . . . . . . . . . . . 71
4.5.2 The power spectrum . . . . . . . . . . . . . . . . . . . . . . 73

Appendix A: Computations of c̃1 for bulk duals of weakly-relevant flows . . . . 75

Appendix B: The dilaton effective action for weakly relevant flows . . . . . . . 80

Appendix C: Computations of c̃(k,l)i in slow-roll inflation . . . . . . . . . . . . 83

Appendix D: Leading corrections due to running speed of sound . . . . . . . . 86

5 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

vii



Chapter 1
Introduction

The quantization of gravity is one of the most daunting problems in modern
theoretical physics — a systematic treatment of the quantum theory of gravity re-
mains elusive. However, a quantum theory of gravity is required to understand its
place in a unified description of the fundamental interactions; to provide a top-down
understanding of cosmology rooted in fundamental physics, as the physics of the very
early universe is sensitive to scales well beyond where classical general relativity is
known to break down; and to make sense of the fact that black holes seem to obey
the laws of thermodynamics.

In dimensions greater than two, the naive quantization of the classical theory
of general relativity is obstructed by the fact that it is non-renormalizable by simple
power-counting. At the Planck-scale, the theory is strongly coupled and so diver-
gences that appear in the usual Feynman diagram expansion of scattering matrix
elements require an infinite number of counterterms to tame, so the usual devices of
quantum field theory are of no use. To see this, consider for concreteness the case of
four dimensions. Expanding the metric around flat space

gμν = ημν +
1

MPl
hμν , (1.1)

and applying the rules of effective field theory to general relativity, one arrives at the
following form for the effective gravitational action [1]

S ∼
∫

d4x

[
(∂h)2 +

1

MPl
h(∂h)2 + . . .+

1

M2
s

(
(∂2h)2 +

1

MPl
h(∂2h)2 + . . .

)]
(1.2)

where the first term corresponds to the usual Einstein-Hilbert term and the second
comes from higher-derivative terms such as R2 which become important at some
scale Ms ≤ MPl. It is clear that at energies of order the Planck mass (or smaller,
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depending on the value of Ms), loop diagrams become more important than tree-level
diagrams. In the ultraviolet (UV), one must include the infinite cascade of higher
derivative curvature terms, leading to an infinite number of free parameters and a
loss of predictive power. One proposed UV completion of general relativity is string
theory, where the new UV degrees of freedom are made up of vibrational modes of
fundamental open and closed strings and divergences are tamed by smoothing out
interactions over the two-dimensional worldsheet of the strings. However, this comes
at the cost of additional fields in the spectrum and the requirement of additional
compact dimensions. As a result, a complete understanding of string theory evades
us.

In negatively curved spacetimes, the anti-de Sitter space/conformal field theory
(AdS/CFT) correspondence [2, 3, 4] in its strongest form offers a non-perturbative
‘definition’ of quantum gravity in terms of a conformal field theory defined on the
boundary of the spacetime. Furthermore, the correspondence provides a novel strat-
egy for the study of strongly-coupled conformal field theories via classical super-
gravity in asymptotically AdS spacetimes. We review the central components of the
AdS/CFT correspondence, including the derivation of CFTd correlation functions
from AdSd+1 gravity, in chapter 2 of this thesis. This strategy can even be extended
to study field theories that break conformal invariance explicitly (by the addition
of a relevant operator deformation to the action) or spontaneously (by an operator
acquiring a non-trivial vacuum expectation value), in which case the gravitational
dual is a so-called domain-wall solution. There is a sense in which radial evolution
in these geometries is dual to the renormalization group flow of the boundary field
theory, as will be discussed in chapter 3. In this thesis we study a general effec-
tive bulk theory [5] describing the universal features of holographic renormalization
group flows, with particular attention paid to the case where the AdS isometries
corresponding to dilatations in the boundary theory are weakly broken.

This thesis is organized as follows. Chapters 2 and 3 are aimed at providing
evidence for the lore that plagues the gauge/gravity duality literature, often making
use of toy models to provide concrete realizations and simplified explanations of the
physical mechanisms behind the lore. Chapter 2 provides a cursory introduction
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to the AdS/CFT correspondence. In particular, we review the geometry of anti-de
Sitter space in section 2.1, then briefly discuss the Klein-Gordon equation in AdSd+1

in section 2.2 in order to demonstrate the relationship between the masses of bulk
scalar fields and the scaling dimensions of the dual field theory operators. In sec-
tion 2.3 we review the derivation of CFTd correlation functions from AdSd+1 gravity;
we introduce the bulk-to-bulk and bulk-to-boundary propagators, then provide the
canonical derivation of CFTd 2- and 3-point functions, and discuss the derivation of
arbitrary n-point functions via Witten diagrams. In chapter 3 we provide an intro-
duction to the program of holographic renormalization. In section 3.1 we show how
to obtain renormalized CFTd correlation functions by the introduction of covariant
local counterterms. In section 3.2 we show how to move beyond conformal invariance
and discuss RG flows holographically by introducing domain-wall geometries. In sec-
tion 3.3 we show that the first-order form for the domain-wall equations of motion
follows from the Hamilton-Jacobi equation for the gravity-scalar system, which in
turn implies the Callan-Symanzik equation for renormalized correlation functions in
the boundary theory. Finally, in section 3.4 we review the holographic derivation of
the conformal anomaly. In chapter 4 we describe a new approximation scheme use-
ful for computing renormalized field theory correlation functions from domain-wall
geometries which weakly break the AdS isometries.
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Chapter 2
Holography for dummies: a utilitarian’s guide to AdS/CFT

In this chapter we provide a lightning review of the most basic elements of the
AdS/CFT correspondence, with particular emphasis on those most relevant to the
understanding of holographic renormalization group flows. We make no attempt to
provide a comprehensive review of the correspondence,1 and lean heavily on several
canonical papers and existing reviews of the subject [6, 7, 3, 4, 8, 9].

The AdS/CFT correspondence as put forward by Maldacena [2] provides an ex-
plicit realization of the ‘holographic principle’ first imagined by ’t Hooft and Susskind.
Taking inspiration from the universal observation that the entropy of a black hole
scales with its area rather than its volume, the holographic principle dictates that
the entirety of the physics of a bulk gravitational theory is in some way captured
by the boundary of the spacetime. The original duality proposed by Maldacena was
the equivalence of N = 4 supersymmetric SU(N) Yang-Mills theory in 3 + 1 di-
mensions and type IIB string theory on AdS5 × S5, and was observed by taking the
near-horizon limit of a stack of N D3-branes.

However, gauge/gravity duality is expected to hold more generally — that is,
quantum gravity in anti-de Sitter space (AdSd+1) (perhaps times some compact man-
ifold) is believed to be dynamically equivalent to a conformally-invariant quantum
field theory (CFTd) defined on the boundary of the bulk spacetime. The statement
of the duality is that the CFT partition function is equal to the generating functional
of the bulk gravitational theory — schematically

Zgrav[φ̄] =

∫
Φ|∂M∼φ̄

[DΦ · · · ]e−Sgrav[Φ,...] = 〈e−
∫
∂M dd�xφ̄O(�x)〉 = ZCFT[φ̄], (2.1)

1 As the literature is in no need of any more of these.

4



where φ̄ characterizes the near-boundary behaviour of the bulk field Φ and, we will
see, acts as a source for an operator O in the dual field theory. One should then be
able to match correlation functions on both sides of the correspondence.

On its face, this is an absurd assertion. Further, the gauge/gravity correspon-
dence is a strong/weak duality, so in principle one can perform tractable computa-
tions entirely on one side of the duality and infer conclusions about the other. Naively
it seems bizarre that vanilla quantum field theories are secretly higher dimensional
string theories in disguise, and that computations in classical gravity could teach us
about otherwise intractable strongly-coupled field theories.

One clue about the emergence of the extra dimension in the bulk is the fact
that, as a consequence of spacetime locality, the renormalization group equation for
running of a field theory coupling is local in the RG scale μ [7]

μ
dg(μ)

dμ
= β(g(μ)). (2.2)

That is, one only needs to know the coupling at some scale μ to determine its evolu-
tion as a function of scale. The renormalization group then suggests a relationship
between the emergent dimension in the bulk and the RG scale of the boundary field
theory. In this thesis we study much simpler instances of gauge/gravity duality than
the one involved in the original Maldacena conjecture — including those with bro-
ken AdS isometries in the bulk corresponding to broken conformal invariance in the
boundary field theory — in an attempt to make this relationship more precise.
2.1 The geometry of (asymptotically) anti-de Sitter space

Anti-de Sitter space in d + 1 dimensions is a maximally-symmetric solution to
Einstein’s equations with negative cosmological constant Λ = −d(d−1)

L2
AdS

. It is otherwise
known as the Lorentzian version of hyperbolic space H

d+1, and can be thought of as
a hyperboloid embedded in R

d,2

−X2
0 −X2

d+1 +X2
1 + . . .+X2

d = −L2
Ads. (2.3)
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In this formulation, it is clear that the symmetry group of AdSd+1 is SO(d, 2) —
precisely the conformal group in d-dimensional Minkowski space.2 One can introduce
global coordinates by parameterizing the embedding coordinates in the following way

X0 = LAdS cosh ρ cos τ

Xd+1 = LAdS cosh ρ sin τ

Xi = LAdS sinh ρ Ωi, (2.4)

where
∑d

i=1 Ω
2
i = 1 and LAdS is the ‘AdS length,’ leading to the following line ele-

ment3

ds2 = L2
AdS

(− cosh2 ρ dτ 2 + dρ2 + sinh2 ρ dΩ2
d−1

)
. (2.5)

By introducing the coordinate θ ∈ [0, π/2) through sinh ρ = tan θ, the metric
becomes

ds2 =
L2

AdS

cos2 θ
(−dτ 2 + dθ2 + sin2 θ dΩ2

d−1), (2.6)

and it is manifest that AdSd+1 is conformally equivalent to half of an Einstein static
universe (R × Sd), for which θ ∈ [0, π]. Crucially, we see that the boundary (ap-
proached as θ → π/2) of the conformal compactification of AdSd+1 is equivalent to
the conformal compactification of Minkowski space in one less dimension. Indeed,
we define a spacetime to be asymptotically AdS (AAdS) if it admits a conformally
compact Einstein metric.

By now it should be clear that there are some curious features of general rela-
tivity in AdSd+1. It is often said that one can think of anti-de Sitter space as a box.4

2 There is a subtlety in the case of d = 2, where the asymptotic symmetry group
of AdS3 is enlarged to two copies of the Virasoro algebra [10], corresponding to the
infinite-dimensional conformal group in two dimensions.

3 In order to preserve a sensible causal structure and avoid closed timelike curves,
one works with the manifold’s covering space where τ is not periodically identified.

4 Thanks to Alex Maloney for repeatedly emphasizing this point.
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Indeed, the curvature of the spacetime acts like an effective negative potential for
massive observers, such that massive geodesics are bounded away from the boundary
of the spacetime. Furthermore, the introduction of the AdS length LAdS as a scale
inherent to the spacetime means that anti-de Sitter space provides a natural arena
for the realization of the holographic principle as imagined by ’t Hooft and Susskind.
It is straightforward to show that in a fixed-τ slice of the global coordinates (2.5) the
volume inside a near-boundary cutoff region ρ ≤ ρ0 scales as the area of that region,
that is

lim
ρ0→∞

V (ρ0)

A(ρ0)
=

LAdS

2d−2(d− 1)
< ∞. (2.7)

We conclude this section by introducing yet another set of coordinates that will
prove especially useful in this thesis. The Poincaré coordinates (z > 0, (t, xi) ∈
R

d−1,1) are defined through the embedding coordinates

X0 =
z

2

(
1 +

L2
AdS + 
x2 − t2

z2

)

Xd+1 =
LAdSt

z

Xd =
z

2

(
1 +

L2
AdS − 
x2 + t2

z2

)

Xi =
LAdSx

i

z
(i ∈ {1, . . . , d− 1}), (2.8)

and cover one half of the hyperboloid (2.3). The line element in these coordinates is
given by

ds2 =
L2

AdS

z2
(
dz2 − dt2 + d
x2

)
=

L2
AdS

z2
(dz2 + dxνdxν), (2.9)

such that the boundary of the spacetime is approached as z → 0. These coordinates
make manifest the invariance under d-dimensional Poincaré transformations of the
boundary coordinates xμ and transformations (z, t, xi) → λ(z, t, xi) (λ > 0) corre-
sponding to dilatations of the conformal symmetry group of the boundary. It is easy
to check that the metric (2.9) also enjoys the discrete isometry of inversion

z → L2
AdS

z

z2 + xμxμ

, xμ → L2
AdS

xμ

z2 + xνxν

. (2.10)
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This fact will prove quite convenient when we compute CFTd correlation functions
via AdSd+1 gravity.
2.2 The wave equation in AdS

We consider the following toy model of a scalar field φ in a Euclidean AdSd+1

background, with action

S =
1

8πGN

∫
dzddx

√
g

(
1

2
gab∂aφ∂bφ+

1

2
m2φ2

)
, (2.11)

leading to the usual Klein-Gordon equation of motion(
1√
g
∂a(

√
ggab∂bφ)−m2

)
φ = 0. (2.12)

Fourier transforming all but the radial coordinate (that is, setting φ(z, x) =
∫

ddk
(2π)d

eik·xφk(z)),
leads to the following differential equation for the Fourier coefficients

(
z2∂2

z − (d− 1)z∂z − (m2L2
AdS + k2z2)

)
φk(z) = 0. (2.13)

The two independent solutions to this equation are distinguished by their asymptotic
behaviour as z → 0,

φ → φ(−)zΔ− + φ(+)z
Δ+ (2.14)

where Δ± are the solutions to

Δ(Δ− d) = m2L2
AdS → Δ± =

d

2
±

√
d2

4
+m2L2

AdS. (2.15)

The solutions corresponding to Δ+ and Δ− are often referred to as the ‘nor-
malizable’ and ‘non-normalizable’ modes respectively; indeed it is straightforward
to check that the action (2.11) evaluated on a solution with asymptotic behaviour
φ ∼ zΔ is only finite for Δ ≥ d

2
. However, scalar fields with negative mass-squared

are allowed so long as the mass satisfies the ‘Breitenlohner-Freedman’ (BF) bound

8



[11, 12]: m2L2
AdS ≥ −d2

4
.5 In fact, integrating the original action (2.11) by parts,

one finds a boundary term that is finite for Δ ≤ d
2
. In removing this boundary term,

one changes the original action by a term that leaves the equations of motion intact.
In this case, solutions with asymptotic behaviour φ ∼ zΔ are normalizable for

Δ ≥ d− 2

2
. (2.16)

Note that this is exactly the unitarity bound for the dimension of a scalar operator
in quantum field theory!

Indeed, the correspondence (2.1) implies that the bulk scalar φ is dual to a
scalar primary operator O of dimension Δ in the spectrum of the dual conformal field
theory. In d dimensions, such operators transform under conformal transformations6


x → 
x′(
x), gab(
x) → g′ab(
x
′) = Ω(
x)gab(
x) (2.17)

as

O(
x) → O′(
x′) =

∣∣∣∣∂
x′∂
x

∣∣∣∣
−Δ/d

O(
x) (2.18)

where the Jacobian of the transformation is related to the scale factor via
∣∣∂�x′
∂�x

∣∣ =
Ω−d/2. For d−2

2
≤ Δ < d

2
we identify φ(+) as the source for the dual operator, φ(−)

as the source for dual operators of dimension Δ > d
2
. From here onwards, unless

otherwise stated we will assume Δ > d
2
; we refer to Δ as the dimension of the dual

operator and φ̄ as the source, so that φ → φ̄zd−Δ as z → 0. These elements of the
operator-field correspondence will be elucidated further in the following section.

5 One can think of this in the following way: the curvature of the spacetime
contributes a potential such that a scalar field of mass m in AdS behaves like a
scalar field in flat space with mass-squared m2 + d2

4L2
AdS

.

6 Here gab is the metric of the dual conformal field theory.
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2.3 CFT correlation functions from gravity
2.3.1 A tale of two propagators

We are now in a position to present a comprehensible derivation of CFTd 2- and
3-point functions from AdSd+1 gravity. It will be convenient to change conventions
slightly so that the Euclidean Poincaré metric is given by

ds2 =
L2

AdS

x2
0

(dx2
0 + d
x2), (2.19)

where 
x ∈ R
d. We seek a Green function that allows us to write the bulk field φ(x)

in terms of its boundary value φ(x) → φ̄(
x)xd−Δ
0 , that is

φ(x) =

∫
∂M

ddyKΔ(x, 
y)φ̄(
y). (2.20)

Obviously, such a bulk-to-boundary propagator must satisfy the Klein-Gordon equa-
tion (

�x −m2
)
KΔ(x, 
y) = 0, (2.21)

and reduce to a delta-function on the boundary

lim
x0→0

KΔ(x, 
y)

xd−Δ
0

= δd(
x− 
y). (2.22)

Witten’s insight [3] was to apply inversion invariance (2.10). We begin by solving
for K ′

Δ with delta-function support at the boundary point P : x0 → ∞. Since both
the boundary conditions and the metric are invariant under translations of 
x, we
know that K ′

Δ is a function of x0 only, and so the solution to (2.21) that vanishes at
the boundary x0 = 0 is given by K ′

Δ(x0) = c′xΔ
0 for some constant c′. The inversion

(2.10) maps the point P to the origin, and takes K ′
Δ to

K ′
Δ → KΔ(x, 0) = c

(
x0

x2
0 + |
x|2

)Δ

, (2.23)

for some other constant c. By integrating KΔ

xd−Δ
0

over the boundary, it is easy to
check that the bulk-to-boundary propagator indeed has delta-function support on
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the boundary, with c = cΔ = Γ(Δ)

π
d
2 Γ(Δ− d

2
)
. By translation-invariance, the full bulk-to-

boundary propagator is then given by

KΔ(x, 
y) = cΔ

(
x0

x2
0 + |
x− 
y|2

)Δ

, (2.24)

so that the solution to the homogeneous Klein-Gordon equation has the form

φ(0)(x, 
y) = cΔ

∫
∂M

ddy

(
x0

x2
0 + |
x− 
y|2

)Δ

φ̄(
y). (2.25)

In the presence of interactions in the bulk, one must solve the sourced Klein-
Gordon equation, that is (

�x −m2
)
φ(x) = J(x), (2.26)

where, for instance, for an interaction of the form λ
3
φ3, J(x) = λφ2. One can solve

(2.26) by employing a bulk-to-bulk propagator GΔ(x, y), where

(
�x −m2

)
GΔ(x, y) =

δd+1(x− y)√
g

, (2.27)

via
φ(x) =

∫
M

dd+1y
√
gGΔ(x, y)J(y). (2.28)

Clearly GΔ must respect the symmetries of anti-de Sitter space, and indeed the
solution for GΔ is given by a hypergeometric function of the ‘chordal distance’ ξ,

GΔ(x, y) =
cΔ

2Δ(2Δ− d)
ξΔ2F1

(
Δ

2
,
Δ+ 1

2
;Δ− d

2
+ 1; ξ2

)

ξ(x, y) =
2x0y0

x2
0 + y20 + |
x− 
y|2 , (2.29)

where 2F1 is a hypergeometric function. Furthermore, as one would expect, the
boundary limit of the bulk-to-bulk propagator reproduces the bulk-to-boundary
propagator

KΔ(x, 
y) = lim
y0→0

2Δ− d

yΔ0
GΔ(x, y). (2.30)

11



This allows us to organize our solution for the bulk field as a perturbative expansion
in the interaction parameter. In the case of a λ

3
φ3 interaction, this yields

φ(x) = φ(0)(x) + λ

∫
dd+1y

√
gGΔ(x, y)φ(0)(y)

2 +O(λ2). (2.31)

This should be very familiar from standard field theory, and indeed will lead to
a diagrammatic perturbation theory analogous to Feynman diagrams in flat-space
quantum field theory.
2.3.2 2- and 3-point functions

Approximating the gravitational partition function by the leading classical sad-
dle

Zgrav|φ→φ̄xd−Δ
0

≈ e−Sgrav[φ̄], (2.32)

where Sgrav is the action evaluated on a solution to the supergravity equations of
motion (2.31), the correspondence (2.1) dictates that the on-shell action Sgrav is the
generating functional for connected correlation functions of the dual operator O(x)

in the boundary conformal field theory; that is

Sgrav[φ̄] = W [φ̄] = − log〈e−
∫
dd�xφ̄O(�x)〉CFT. (2.33)

Equivalently, one may think of the boundary values of the bulk fields as sources
for dual primary operators in the boundary CFT. In particular, this implies that
the two-point function of the dual operator should be given simply in terms of the
on-shell gravitational action by

〈O(
x)O(
y)〉 = − δ2Sgrav[φ̄]

δφ̄(
x)δφ̄(
y)

∣∣∣∣
φ̄=0

. (2.34)

So we simply plug the solution (2.31) into the action and take derivatives with respect
to the source — in this way we can obtain any boundary n-point function. Now,
by construction, the bulk solution satisfies the equations of motion, so the action

12



reduces to a boundary term, and we obtain

Sgrav[φ̄] = − 1

2κ

∫
ddx

√
gg00φ(x)∂0φ(x)

∣∣∣∣
x0=ε

, (2.35)

where x0 = ε is a regulator surface and κ = 8πGN . The cutoff surface is necessary
to regularize the divergence coming from the infinite volume of spacetime; we will
see that it plays the role of a UV regulator in the dual field-theory. Plugging in the
solution to the Klein-Gordon equation, this reduces to

Sgrav[φ̄] = −Ld−1
AdS

2κ

∫
ddy

∫
ddwφ̄(
y)φ̄(
w)

(∫
ddx

KΔ(x, 
y)x0∂0KΔ(x, 
w)

xd
0

∣∣∣∣
x0=ε

)

≡ −Ld−1
AdS

2κ

∫
ddy

∫
ddwφ̄(
y)φ̄(
w)G2,ε(
y, 
w). (2.36)

Let us first consider the case where |
x− 
y| > 0. Making use of the known form
of the bulk-to-boundary propagator (2.24), it is then easy to see that the boundary
two-point function is given by

〈O(
x)O(
y)〉 = 1

κ
Ld−1

AdSG2,ε(
x, 
y)

=
1

κ
Ld−1

AdS

∫
ddz

1

zd0

(
zd−Δ0 δd(
z − 
x) + . . .

)(
(d−Δ)zd−Δ0 δd(
z − 
y) +

ΔcΔz
Δ
0

|
z − 
y|2Δ + . . .

)∣∣∣∣
z0=ε

=
Ld−1

AdSΔcΔ
κ|
x− 
y|2Δ +O(ε2). (2.37)

This is precisely the form, entirely fixed by conformal symmetry, of a two-point
function of a CFT primary operator of dimension Δ! This corroborates our intuition
about the operator-field correspondence. However, when |
x − 
y| → 0 there is a
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subtlety. In this case we have7

〈O(
x)O(
y)〉 = 1

κ
Ld−1

AdS

(
(d−Δ)εd−2Δδd(
x− 
y) +

cΔΔ

|
x− 
y|2Δ + . . .

)
. (2.38)

While the second term represents the familiar power-law divergence of the two-point
function at vanishing separation and we have suppressed terms that vanish as ε → 0,
the first term diverges as ε → 0 and is called a divergent contact term. Such terms
are scheme-dependent and must be cancelled by the addition of covariant boundary
counterterms to the action; they leave the equations of motion and finite-separation
two-point function invariant. This is the program of holographic renormalization and
will be discussed in more detail in chapter 3.

In fact, there are some subtleties with the position-space derivation of the two-
point function in AdS with a cutoff; the propagators are determined by the symme-
tries of AdS (in particular, recall that invariance under inversion was used to derive
KΔ), however the cutoff spacetime does not inherit all the symmetries of AdS. This
causes the result (2.37) to differ from what we will obtain via holographic renor-
malization (or would have gotten by finding the exact solution to the equations of
motion in momentum space and treating the ε → 0 limit carefully as is done in [13]
see also [8, 6]) by a factor of Δ

2Δ−d .
To illustrate how to compute CFT n-point functions from a bulk theory with

interactions, consider a theory of three scalars {φ1, φ2, φ3} in AdSd+1 with interaction
term λφ1φ2φ3 dual to scalar operators O1,O2,O3 of conformal dimensions Δ1,Δ2 and
Δ3 respectively. In this case, the relevant functional derivative of the on-shell action

7 We note that we could have reached the same conclusion with regards to bound-
ary divergences in the form of contact terms by working in momentum space and
Fourier transforming back to position space; a careful treatment is given in [13].
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yields

〈O1(
x)O2(
y)O3(
z)〉 = δ3Sgrav[φ̄]

δφ̄1(x)δφ̄2(y)δφ̄3(z)

∣∣∣∣
φ̄=0

=
λ

κ

∫
dd+1w

√
gKΔ1(w, 
x)KΔ2(w, 
y)KΔ3(w, 
z) +O(λ2)

=
λLd+1

AdSc3
κ|
x− 
y|Δ1+Δ2−Δ3 |
y − 
z|Δ2+Δ3−Δ1 |
z − 
x|Δ3+Δ1−Δ2

+O(λ2).

(2.39)

This has precisely the form of a three-point function of primary operators of dimen-
sions Δ1, Δ2 and Δ3 in a conformal field theory; like the two-point function, the form
of the three-point function is also determined up to a constant by conformal symme-
try. Here, c3 is a constant that can be computed using simple symmetry arguments
and by performing integrals over Feynman parameters [13, 8]

c3 =
1

2πd

Γ
(
Δ1+Δ2−Δ3

2

)
Γ
(
Δ2+Δ3−Δ1

2

)
Γ
(
Δ3+Δ1−Δ2

2

)
Γ
(
Δ1+Δ2+Δ3−d

2

)
Γ(Δ1 − d

2
)Γ(Δ2 − d

2
)Γ(Δ3 − d

2
)

. (2.40)

2.3.3 Witten diagrams and a final bit of lore explained
The examples given above of the computation of the 2- and 3-point functions

were meant to illustrate the general approach one takes to compute correlation func-
tions of operators in the dual conformal field theory from gravity in anti-de Sitter
space. Evaluating the on-shell action Sgrav[φ̄] using the perturbative solution to
the supergravity equations of motion analogous to (2.31) and expanding in powers
of φ̄ leads to a diagrammatic framework for the computation of CFT correlation
functions. The rules for drawing the relevant Witten diagrams and evaluating CFT
n-point functions are the following:

• Draw a disc with n insertions on the boundary. These boundary points {
x1, . . . , 
xn}
are the locations of the dual CFT operators in R

d.
• Connect the boundary insertions with all the possible vertices consistent with

the bulk interactions as in flat-space field theory Feynman diagrams.
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• Each line connecting a boundary point with a bulk vertex is accompanied by
a bulk-to-boundary propagator KΔ, where Δ is the dimension of the operator
inserted on the boundary.

• Each bulk line connecting vertices is accompanied by a bulk-to-bulk propagator
GΔ, where Δ is the dimension of the operator dual to the bulk field being
exchanged.

• Each bulk vertex is accompanied by the coupling constant and combinatorial
factor as dictated by the corresponding bulk interaction as in Feynman dia-
grams.

• Integrate all bulk vertices over AdSd+1 as
∫
dd+1x

√
g(x).

It is often said that the coefficient of the subleading (‘normalizable’) solution for
φ(x) as x0 → 0 gives the one-point function of the dual operator O in the presence of
the source. Here we review evidence for this claim, due to [14]. The near boundary
behaviour of φ is given by

φ(x) → xd−Δ
0 (φ̄(
x) +O(x2

0)) + xΔ
0 (F (
x) +O(x2

0)). (2.41)

The claim is that

〈O(
x)〉φ̄ = 〈O(
x)e−
∫
ddzφ̄O(z)〉CFT = −(2Δ− d)F (
x). (2.42)

Note that knowledge of the one-point function circumvents the need for the on-shell
action; by taking appropriate functional derivatives of 〈O(
x)〉φ̄ with respect to the
source φ̄, one obtains all higher-point functions of O. The one-point function of the
operator O(
x) in the presence of the source φ̄ is given by the sum over all Witten
diagrams where a bulk-to-boundary propagator KΔ connects the boundary point 
x

to the rest of the diagram with all sources placed on the boundary and integrated
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over:8

〈O(
x)〉φ̄ = −
∫

ddyφ̄(
y)〈O(
x)O(
y)〉CFT +
1

2

∫
ddyφ̄(
y)

∫
ddzφ̄(
z)〈O(
x)O(
y)O(
z)〉CFT + . . .

≡ −
∫

dd+1y
√
gKΔ(y, 
x)J (y), (2.43)

where J (y) captures the sum of such diagrams. Similarly, the classical bulk field
is given by a sum over the exact same diagrams, except one replaces the bulk-to-
boundary propagator with a bulk-to-bulk propagator GΔ ending at the location of the
bulk field. So, making use of the relationship between the two kinds of propagators
(2.30), we find

lim
x0→0

φ(x)

xΔ
0

= lim
x0→0

1

xΔ
0

∫
dd+1y

√
gGΔ(x, y)J (y)

=
1

2Δ− d

∫
dd+1y

√
gKΔ(y, 
x)J (y)

= − 1

2Δ− d
〈O(
x)〉φ̄, (2.44)

as advertised. Note that in the expression above, we must be careful to take x0 → 0

away from the source insertions implicit on the right-hand side.

8 In what follows we have suppressed all factors of LAdS.
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Chapter 3
How to renormalize holographically

We have seen in the previous chapter that in computing CFTd n-point functions
from AdSd+1 gravity, one generally encounters short-distance divergences that must
be regulated; as in standard quantum field theory, one must understand how to
renormalize the theory. A general feature of the gauge/gravity correspondence is
the relationship between ultraviolet (UV) divergences in the boundary field theory
and infrared (IR) divergences in the bulk gravitational theory [15]. In fact, we have
already seen an example of this; in computing the CFT two-point function, the
near-boundary regulator surface x0 = ε ended up playing the role of a short-distance
regulator in the boundary field theory. In general, in computing correlation functions
holographically

〈O(x1) . . .O(xn)〉 = (−1)n−1
δnSgrav[φ̄]

δφ̄(x1) · · · δφ̄(xn)
, (3.1)

both sides of the dictionary require regularization; field theory correlation functions
suffer from short-distance divergences, and the right-hand side also diverges due to
the infinite volume of spacetime. In field theory, the IR physics has no bearing on
the cancellation of UV divergences; furthermore, if the structure of the counterterms
used to render correlation functions UV-finite respects some symmetry of the action,
then the Ward identity corresponding to that symmetry is non-anomalous. In the
bulk theory, this lends the intuition that a near-boundary analysis should determine
holographic Ward identities and would therefore be sensitive to anomalies. As in field
theory, we will cancel the IR divergences in the bulk via covariant counterterms.

In this chapter we show how to obtain renormalized field theory correlation
functions by regularizing the IR divergences in the bulk gravity theory. This program
was actually initiated in a holographic computation of the field theory Weyl anomaly
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[16] (a computation we review in §3.4), and was further developed and systematized
in [17, 18, 19]. Useful lecture notes are collected in [20, 8], which we follow closely
here. Later on, we will introduce the dual geometries of field theories obtained by
deformation of a CFT that admits a gravitational dual. We’ll see that radial evolution
in these spacetimes is related to the renormalization group flow of the boundary
theory; in particular, the Hamilton-Jacobi equation for the gravity-scalar system
will lead to the Callan-Symanzik equation for renormalized boundary correlation
functions.
3.1 Holographic renormalization via counterterms
3.1.1 General formalism

We begin by recalling that an asymptotically anti-de Sitter spacetime admits a
conformally compact Einstein metric. In this case, we can take the defining function
(that is, the conformal factor relating the AAdS line element to that of the Einstein
static universe) to be the radial coordinate, so that the AAdS line element can be
written as

ds2 =
L2

AdS

x2
0

(dx2
0 + gij(x)dx

idxj), (3.2)

where from the above definition and a theorem from differential geometry due to
Fefferman and Graham [21], gij is smooth as we approach the boundary x0 → 0

gij(x) = g(0)ij(
x) + x0g(1)ij(
x) + x2
0g(2)ij(
x) + . . . (3.3)

Solving the Einstein equations order-by-order in x0 fixes the higher g(k) in terms of
g(0), and it is straightforward to see that all g(n) vanish for n odd up to O(xd

0). For
this reason it is convenient to introduce the coordinate ρ = x2

0 so that the metric has
the form

ds2 = L2
AdS

(
dρ2

4ρ2
+

1

ρ
gij(ρ, 
x)dx

idxj

)
gij(ρ, 
x) = g(0) + ρg(2) + . . .+ ρ

d
2 g(d) + h(d)ρ

d
2 log ρ+ . . . , (3.4)

where h(d) only appears in even dimensions and is related to the variation of the
conformal anomaly. In a near-boundary-analysis, ρ/L2

AdS is to be thought of as a
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small parameter that is taken to zero. Such metrics are asymptotically AdS in the
sense that the curvature satisfies

Rμνρσ[g] = gμρgνσ − gμσgνρ +O(ρ). (3.5)

In fact, the Einstein equations determine {g(2), . . . , g(d−2), h(d)} in terms of g(0), but
only determine the trace and divergence of g(d).

Following [20], we designate all bulk fields as F(ρ, 
x). The field’s equations
of motion are second-order in ρ, and so there are two independent solutions with
asymptotic behaviour as ρ → 0 of ρm and ρm+n — we have seen this explicitly in the
case of a massive scalar in AdS in section 2.2 (where m = d−Δ

2
and n = Δ− d

2
). The

bulk field behaves asymptotically as

F(ρ, 
x) = ρm
(
f(0)(
x) + ρf(2)(
x) + . . .+ ρn(f(2n)(
x) + f̃(2n)(
x) log ρ) + . . .

)
, (3.6)

where the logarithmic term is only present if n is integral. We have seen that the
coefficient of the leading behaviour as ρ → 0, f(0), is to be thought of as the source for
the dual operator on the boundary, while f(2n) is related to the one-point function
of the dual operator in the presence of the source 〈O〉f(0) . Furthermore, the bulk
equations of motion determine {f(2), f(4), . . . , f(2n−2)} in terms of f(0), leaving f(2n)

undetermined.1 We will also see that f̃(2n) is related to conformal anomalies in the
boundary theory.

We define the regularized on-shell action by restricting the region of integration
to ρ ∈ [ε,∞), evaluating boundary terms on the regulator slice ρ = ε. As we’ve seen,
a finite number of terms will diverge as we remove the cutoff ε → 0, so the on-shell

1 This is to be expected, given that f(2n) is the coefficient of the leading asymptotic
behaviour of a solution independent from that whose leading behaviour is given by
f(0).
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action can be written as

Sreg,ε[f(0)] =

∫
ddx

√
g(0)

[
ε−ν

(
a(0) + εa(2) + . . .− εν log εa(2ν)

)
+O(ε0)

)
]

∣∣∣∣
ρ=ε

, (3.7)

where ν is some positive number that characterizes the leading divergence and the
{a(k)} can be determined in terms of f(0). From this the counterterm action can
immediately be defined to subtract the divergent terms in Sreg,ε; to do so in terms
of the bulk fields requires that we solve for the source in terms of the bulk field
from (3.6). The renormalized on-shell action is then defined as the finite part of the
regularized action as ε is sent to zero:

Sren[f(0)] = lim
ε→0

(
Sreg,ε[f(0)] + Sct,ε[F(ε, 
x)]

)
. (3.8)

We then define the renormalized one-point function in the presence of the source
f(0) of the operator O dual to the bulk field F in the obvious way

〈O(
x)〉f(0) =
1√
g(0)

δSren[f(0)]

δf(0)(
x)
. (3.9)

Note that we do not take the source to zero after taking the derivative. Equivalently,
we can functionally differentiate the subtracted action with respect to the value of
the bulk-field evaluated at the regulator slice and then take ε → 0

〈O(
x)〉f(0) = lim
ε→0

(
εm−

d
2
Ld

AdS√
γ

δ(Sreg,ε[f(0)] + Sct,ε[F(ε, 
x)])

δF(ε, 
x)

)
, (3.10)

where γij = L2
AdS

gij(ε,�x)

ε
is the induced metric on the regulator surface. As our earlier

intuition suggests, 〈O(
x)〉f(0) is indeed related to the coefficient f(2n). In particular,

〈O(
x)〉f(0) = αOf(2n) + FO(f(0)), (3.11)

where αO is some theory-dependent coefficient and FO is some local, scheme-dependent
function of the source f(0).

Once one obtains the renormalized one-point functions, it is straightforward
to establish the holographic Ward identities. We are particularly interested in the
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renormalized stress-tensor one-point function

〈T (
x)ij〉g(0) =
2√
g(0)

δSren

δgij(0)

= lim
ε→0

(
Ld−2

AdS

ε
d
2
−1 Tij[γ]

)
, (3.12)

where Tij[γ] is the stress tensor on the regulator slice ρ = ε. A computation in exact
analogy with the one performed above yields

〈T (
x)ij〉g(0) = αTg(d)ij + FT (g(0)ij). (3.13)

Since the Einstein equations determine the trace and divergence of g(d)ij, this is
enough to establish holographic Ward identities.
3.1.2 Concrete example: massive scalar

For the moment we provide an explicit example of the formalism described above
in the case of a massive scalar in AdS. Recall that AdS corresponds to g(0)ij = δij,
g(k)ij = 0 ∀ k > 0; this choice of coordinates for AdS is referred to as Fefferman-
Graham coordinates. We’ve seen that the bulk equations of motion in this case can
be solved by an ansatz of the form

φ(ρ, 
x) = ρ
d−Δ
2

(
φ(0)(
x) + ρφ(2)(
x) + . . .+ ρΔ−

d
2φ(2Δ−d)(
x) + . . .

)
≡ ρ

d−Δ
2 ϕ(ρ, 
x). (3.14)

The idea is to plug this ansatz into the equations of motion and then solve for φ(n)

recursively, leading to a formula in terms of φ(0) and derivatives. The equation of
motion then reads

{
m2 −Δ(Δ− d)− ρ [�0 + 2(d− 2Δ + 2)∂ρ]− 4ρ2∂2

ρ

}
ϕ(ρ, 
x) = 0, (3.15)

where �0 is just the usual Laplacian on the boundary, ie. δij∂i∂j. Setting ρ to
zero just yields the usual relationship between m2 and Δ. Solving the Klein-Gordon
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equation at O(ρ) requires

φ(2)(
x) =
1

2Δ− d− 2
�0φ(0). (3.16)

Continuing in this fashion and requiring that the coefficient at O(ρn−1) vanishes leads
to

φ(2n) =
1

2n(2Δ− d− 2n)
�0φ(2n−2)

=
Γ(2Δ− d

2
− n)

22nn!Γ(2Δ− d
2
)
(�0)

nφ(0). (3.17)

Obviously, we must be careful if Δ = d
2
+ k, where k ∈ Z. In this case, one must

take care to include a logarithmic term in the asymptotic expansion (3.14), that is

ϕ(ρ, 
x) = φ(0)(
x) + ρφ(2)(
x) + . . .+ ρkφ(2k)(φ(2k) + ψ(2k) log ρ) + . . . (3.18)

In this case, φ(2k) = φ(2Δ−d) is no longer determined by the equations of motion. It
is straightforward to show that ψ(2k) is determined in terms of the source as

ψ(2k) = − 1

4k
�0φ(2k−2)

= − 1

2kk!(k − 1)!
�k

0φ(0). (3.19)

We now evaluate the on-shell action using this asymptotic solution to the equa-
tions of motion, again evaluating the boundary term on a regulator surface ρ = ε:

Sreg = − 1

2κ

∫
ddx

√
ggρρφ∂ρφ

∣∣∣∣
ρ=ε

= −Ld−1
AdS

κ

∫
ddx ε

d
2
−Δ

(
d−Δ

2
ϕ2 + εϕ∂ρϕ

)∣∣∣∣
ρ=ε

≡ Ld−1
AdS

κ

∫
ddx ε

d
2
−Δ

(
a(0) + εa(2) + . . .− εΔ−

d
2 log ε a(2Δ−d) + . . .

)
, (3.20)

where the a(k) are local functions of φ(0) that are easily computable from the asymp-
totic form of the bulk scalar (3.14) and the order-by-order solutions to the equations
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of motion (3.17). We find

a(0) = −d−Δ

2
φ2
(0)

a(2) = −(d−Δ+ 1)φ(0)φ(2) = − d−Δ+ 1

2(d−Δ− 2)
φ(0)�0φ(0)

. . .

a(2Δ−d) =
d

2
φ(0)ψ(2Δ−d) = − d

22k+1Γ(k + 1)Γ(k)
φ(0)(�0)

kφ(0), (3.21)

recalling that we have set Δ = d
2
+ k. Obviously, the action diverges as ε → 0,

so we must add diffeomorphism-invariant counterterms to renormalize the action.
Doing so requires that we invert the series (3.14), that is, solve for the source φ(0)

in terms of the bulk field (since this is the object that transforms as a scalar under
bulk diffeomorphisms) and its derivatives on the regulator surface. To second order
in ε, we find (for Δ �= d

2
+ 1)

φ(0)(
x) =
1

ε
d−Δ
2

(
φ(ε, 
x)− 1

2(d−Δ− 2)
�γφ(ε, 
x)

)

φ(2)(
x) =
1

ε
d−Δ−2

2

1

2(d−Δ− 2)
�γφ(ε, 
x)

. . . , (3.22)

where �γ = γij∂i∂j is the Laplacian on the regulator surface. We then construct the
counterterm action in order to subtract the divergent terms in the regulated action,
that is

Sct =
L−1AdS

κ

∫
ddx

√
γ

(
d−Δ

2
φ(ε, 
x)2 +

1

2(d−Δ− 2)
φ(ε, 
x)�γφ(ε, 
x) + . . .

)
.

(3.23)
Obviously, if Δ ∈ (d

2
, d
2
+ 1), then the two terms included above are the only ones

required to renormalize the action — otherwise one must include higher derivative
terms corresponding to the solutions for the higher-order {φ(n)} which we have im-
plicitly suppressed above. Furthermore, if Δ = d

2
+ k, k ∈ Z, then the coefficient of

the φ(�γ)
kφ term will be proportional to log ε. Note that we are always free to add
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counterterms that are finite as ε → 0 — this corresponds to the scheme dependence
of the finite part of correlation functions in the boundary field theory. We will not
discuss the issue of scheme-dependence in any further detail here.

It is straightforward to show that the part of the regularized action that is finite
as ε → 0 is given by

Sreg,finite = −Ld−1
AdSd

2κ

∫
ddx φ(0)(
x)φ(2Δ−d)(
x). (3.24)

Meanwhile, the finite part of the counterterm action is easily seen to be

Sct,finite =
Ld−1

AdS

κ
(d−Δ)

∫
ddx φ(0)(
x)φ(2Δ−d)(
x). (3.25)

We can then make use of the fact that the solution to the exact free equations of
motion using the bulk-to-boundary propagator (2.25) allows us to write φ(2Δ−d) in
terms of φ(0) as

φ(2Δ−d) = lim
x0→0

φ(x)

xΔ
0

= cΔ

∫
ddy

φ(0)(
y)

|
x− 
y|2Δ . (3.26)

This allows us to write the renormalized on-shell action as

Sren = κLd−1
AdScΔ

(
d

2
−Δ

)∫
ddx

∫
ddy

φ(0)(
x)φ(0)(
y)

|
x− 
y|2Δ + . . . , (3.27)

where the omitted terms are scheme-dependent and can be cancelled upon the ad-
dition of additional finite counterterms. Of course, this leads to the correct form of
the CFT two-point function

〈O(
x)O(
y)〉φ(0)
=

κLd−1
AdS(2Δ− d)cΔ
|
x− 
y|2Δ . (3.28)

Furthermore, the form of the renormalized action confirms the suspicion that the
renormalized one-point function is given (up to a constant) by the coefficient of the
asymptotic falloff of the normalizable solution in the bulk via (3.9)

〈O(
x)〉φ(0)
= −Ld−1

AdS

κ
(2Δ− d)φ(2Δ−d) + FO(φ(0)), (3.29)
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where FO is a local, scheme-dependent function of the source φ(0). In the case that
Δ − d

2
∈ Z there will also be a term in the one-point function proportional to the

coefficient of the logarithmic term ψ(2Δ−d); however we’ve seen that the equations
of motion allow us to relate ψ(2Δ−d) in terms of φ(0), so it can be absorbed into the
definition of FO. Indeed, by adding a term of the form

δSct,finite ∝ − 1

22k−1Γ(k)2

∫
ddxφ(0)(�0)

kφ(0) = −
∫

ddx
√
γAmatter (3.30)

where Amatter is the matter conformal anomaly, we cancel the contribution of ψ(2Δ−d)
to the one-point function.

We note that in the presence of interactions, one can solve for φ(2Δ−d) perturba-
tively in the interaction strength, making use of the relation GΔ(x, y) =

xΔ
0

2Δ−dKΔ(y0, 
x−

y) +O(xΔ+2

0 ). One can thereby determine all higher n-point functions as

〈O(
x1) · · · O(
xn)〉φ(0)
= (−1)n

Ld−1
AdS(2Δ− d)

κ

δn−1φ(2Δ−d)(
x1)

δφ(0)(
x2) · · · δφ(0)(
xn)
. (3.31)

Finally, we point out that the fact that φ(ρ, 
x) is a scalar under bulk diffeo-
morphisms requires a particular transformation of the coefficients φ(k) under the RG
transformation ρ → λ2ρ′, 
x → λ
x′. We find

φ′(0)(
x
′) = λd−Δφ(0)(λ
x

′)

· · ·
ψ′(2Δ−d)(
x

′) = λΔψ(2Δ−d)(λ
x′)

φ′(2Δ−d)(
x
′) = λΔ

(
φ(2Δ−d)(λ
x′) + log μ2ψ(2Δ−d)(λ�x′)

)
. (3.32)

In particular, this implies that the source φ(0) transforms exactly as the coupling
constant of an operator of dimension Δ should, that is

λ
∂

∂λ
φ(0)(λ
x

′) = (Δ− d)φ(0)(λ
x
′). (3.33)

We’ve seen that φ(0) plays the role of a source or coupling for an operator in the
boundary field theory — indeed, the above equation, determined by a near-boundary
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analysis, has precisely the form of the leading term of a renormalization group equa-
tion describing the scale dependence of a coupling of an operator of dimension Δ.
This is an idea that will be made more precise in §3.3. Furthermore, the one-point
function, which serves to generate all higher n-point functions, transforms almost
trivially

〈O(
x′)〉′φ(0)
= λΔ

(
〈O(λ
x′)〉φ(0)

− (2Δ− d) log μ2ψ(2Δ−d)
)
. (3.34)

We’ve seen that we can cancel terms proportional to ψ(2Δ−d) in the one-point function
by adding counterterms proportional to the matter conformal anomaly to the bulk
action. So we see that the one-point function (and thereby all higher n-point func-
tions) transforms trivially under RG transformations (as dictated by the dimension
Δ of the operator O), up to the existence of a conformal anomaly.

The variation of the renormalized on-shell action follows from its definition

δSren[g(0)ij, φ(0)] =

∫
ddx

√
g(0)

(
1

2
〈Tij(
x)〉g(0)δg(0)ij + 〈O(
x)〉φ(0)

δφ(0)

)
. (3.35)

Under diffeomorphisms of the d transverse coordinates, the sources transform as

δgij(0) = −(∇iξj +∇jξi), δφ(0) = ξi∇iφ(0), (3.36)

while under diffeomorphisms corresponding to boundary Weyl transformations2 they
transform as

δgij(0) = −2σgij(0), δφ(0) = (Δ− d)σφ(0). (3.37)

We’ve seen that in general (in even dimensions), the counterterms that render the on-
shell action finite are generically anomalous under boundary Weyl transformations.
Substitution of these variations into the variation of the renormalized action yields
the following Ward identities for the covariant divergence and trace of the boundary

2 These are known as Penrose-Brown-Henneaux diffeomorphisms and will be dis-
cussed in more detail in section 3.4.
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stress tensor

∇i〈Tij(
x)〉g(0) = −〈O(
x)〉φ(0)
∇jφ(0)(
x)

〈T i
i (
x)〉g(0) = (Δ− d)φ(0)(
x)〈O(
x)〉φ(0)

+A, (3.38)

where we’ve denoted by A the conformal anomaly.
3.2 RG flows & domain-wall geometries

So far we’ve worked in exact anti-de Sitter space and have understood how to
compute conformal field theory correlation functions holographically. Here, following
[8], we will see that a similar method will aid in the computation of correlation
functions in quantum field theories obtained by deformation of a CFT that admits
a holographic dual. We begin by considering the following toy model of Euclidean
gravity interacting with a bulk scalar φ

S =

∫
dd+1x

√
g

[
−1

4
R +

1

2
gμν∂μφ∂νφ+ V (φ)

]
, (3.39)

where we have set κ = 2 so that φ carries no dimension and V (φ) has local extrema
at φi satisfying V (φi) < 0. The equations of motion read

1√
g
∂μ (

√
ggμν∂νφ) = V ′(φ)

2

{
∂μφ∂νφ− gμν

[
1

2
gρσ∂ρφ∂σφ+ V (φ)

]}
= Rμν − 1

2
Rgμν . (3.40)

Note that for each extremum of the potential there is a trivial solution, that is

Rμν − 1

2
Rgμν = −2gμνV (φi). (3.41)

In fact, these are identical to Einstein’s equations for pure gravity in anti-de Sitter
space with

Λi = 4V (φi) = −d(d− 1)

L2
i

, (3.42)

where Li is the AdS length. That is to say, the ‘critical points’ of exact AdSd+1 with
AdS length Li are solutions of this toy model.
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Of course, in order to study the gravitational dual of RG flows, we will need to
find less trivial solutions to the equations of motion. We will work in the following
background

ds2 = dr2 + e2A(r)δijdx
idxj. (3.43)

This domain-wall geometry, divided into a ‘radial’ coordinate r ∈ (−∞,∞) and
transverse coordinates 
x ∈ R

d, is the most general configuration with (manifest!)
d-dimensional Poincaré symmetry. A direct consequence of the Einstein equations is
the following fact about the function A(r):

Ä(r) =
2

d− 1
(T i

i − T r
r ) = − 2

d− 1
φ̇2, (3.44)

where a dot denotes a radial derivative. In particular, this implies that Ä(r) < 0;
in fact, this is a consequence of the null-energy theorem and will turn out to have
important consequences. The full equations of motion are given by

Ȧ2 =
2

d(d− 1)
(φ̇2 − 2V (φ))

φ̈+ dȦφ̇ = V ′(φ), (3.45)

from which one can obtain (3.44). In exact AdS (ie. at a critical point φ = φi) the
above equations give

Ȧ2 = Li
−2 (3.46)

so that A(r) = ± r
Li

+ c for some constant c that we will take to be zero without loss
of generality. This is then equivalent to the description of AdSd+1 in the Poincaré
patch under the change of variables x0 = Lie

− r
Li . In this section we will be interested

in solutions to the bulk equations of motion that interpolate between two asymptotic
critical regions; that is, the spacetime is asymptotically AdS with AdS length L1 as
r → ∞ (near the boundary) and flows to another asymptotically AdS region with
AdS length L2 as r → −∞ (corresponding to the Poincaré horizon).
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Now, near a critical point, we are free to approximate the potential in the
following way

V (φ) = V (φi) +
1

2

m2
i

L2
i

ϕ2 +O(ϕ3), (3.47)

where mi is defined in the obvious way and ϕ = φ − φi. Recall from e.g. chapter 2
that in AdS/CFT, we view the asymptotic boundary value of the bulk scalar as a
source for the dual operator O. We then expect the following asymptotic behaviour
for the fluctuation ϕ(r, 
x)

ϕ(r, 
x) →e(Δ−d)r/Liϕ̄(
x)

=e(Δ−d)r/Li(φ(0) + ϕ(0)(
x)), (3.48)

where m2
iL

2
i = Δ(Δ− d) and in the last line we have separated the boundary contri-

butions of the domain-wall profile φ(0) from the fluctuation. We can then make use
of the AdS/CFT dictionary to compute correlation functions of O in the usual way,
taking functional derivatives of the on-shell action Sgrav[φ(0) + ϕ(0)] with respect to
ϕ(0)(
x) and then setting ϕ(0) = 0. However, the key difference is that now one thinks
of the CFT action as being deformed by the term φ(0)

∫
ddxO(
x); φ(0) is not set to

zero after taking the functional derivatives.
There are three classes of deformations, characterized by the value of m2

iL
2
i . For

m2
iL

2
i ∈ (−d2

4
, 0), Δ < d and so the operator O represents a relevant deformation of a

UV CFT; such a deformation triggers a renormalization group flow to some different
theory in the IR. For m2

i = 0, Δ = d and the deformation is classically marginal, so
that any deviation from conformal invariance is only visible at the quantum level.
Finally, for m2

iL
2
i > 0, Δ > d so that the dual operator is irrelevant ; that is, its

effects become invisible at long distances as one flows to a CFT in the IR.
In what follows we consider interpolating flows, for which the geometry has two

asymptotically AdS regions; the the bulk scalar approaches a local maximum φ1 of
the potential near the boundary and and a local minimum φ2 in the deep interior.
The non-linear equations of motion (3.45) are in generally very difficult to solve
exactly, so we will instead proceed under the approximation of linearized theory;
the assumption being that there exists a solution to the full equations of motion
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that asymptotes to the linearized solutions near the critical points. The linearized
equations of motion for ϕ are given by

L2
i ϕ̈+ dLiϕ̇−m2ϕ = 0 (3.49)

with solution
ϕ(r, 
x) = ϕ

(−)
i (
x)e(Δi−d)r/Li + ϕ

(+)
i e−Δir/Li . (3.50)

In general one might have expected that we could linearize the scale factor Ȧ =

L−1i + f(r), however it turns out that the equations of motion demand f ∼ O(ϕ2),
so f is absent in the linearized theory. In what follows we will assume Δi >

d
2
. The

assumption of linearization dictates that near the boundary, the exact solution to
the full nonlinear equations of motion can be approximated as follows

φ(r, 
x) → φ1 + ϕ
(−)
1 (
x)e(Δ1−d)r/L1 + ϕ

(+)
1 e−Δ1r/L1 . (3.51)

Indeed, we see that consistency of the solution requires Δ1 < d (consistent with
m2

1L
2
1 < 0 representing a local maximum of the potential), and so the dual field theory

is to be interpreted as a UV CFT perturbed by a relevant operator deformation.
However, in the finely tuned case that ϕ(−)

1 = 0, the leading falloff as one approaches
the boundary r → ∞ is ϕ ∼ ϕ

(+)
2 e−Δ1r/L1 . As we have seen previously, in this case

the dual description is a UV CFT deformed by an operator that develops a nontrivial
vacuum expectation value; 〈O〉 ∼ (2Δ1 − d)ϕ

(+)
1 . In this case it is the vacuum that

spontaneously breaks conformal invariance. In the deep interior, we assume the full
solution is well-approximated by

φ(r, 
x) → φ2 + ϕ
(−)
2 (
x)e(Δ2−d)r/L2 + ϕ

(+)
2 e−Δ2r/L2 . (3.52)

Now, since the critical point φ2 is associated with a minimum of the potential (ie.
m2

2L
2
2 > 0), then Δ2 > d; furthermore, regularity in the deep interior requires

ϕ
(+)
2 = 0. Therefore, the dimension of the dual operator as the deep interior of the

asymptotically AdS space is approached is characteristic of an irrelevant operator;
the dual description in the deep interior is that of an IR fixed point.
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We previously observed that a very general feature of domain-wall geometries is
that away from a critical point, Ä < 0. In fact, this implies the following inequality
between the AdS lengths of the asymptotic regions

L−11 < L−12 . (3.53)

From the form of the potential at the critical points (3.42) it then follows that

V (φ2) < V (φ1). (3.54)

That is to say, one always flows to a deeper well of the potential; as a result, we
conclude that the RG flows dual to Poincaré-invariant domain walls interpolating
between asymptotically AdS geometries are in a sense irreversible. We will revisit
this when discussing the holographic derivation of the conformal anomaly in section
3.4.
3.2.1 The superpotential method

Here we review a method that has proven extremely useful for extracting exact
solutions from the full nonlinear domain-wall equations of motion (3.45). Taking
inspiration from the BPS condition for supersymmetric domain wall solutions in
supergravity, we consider a function W (φ) — the superpotential — determined in
terms of the potential V (φ) through the following differential equation

1

2
(W ′(φ))2 − d

d− 1
W 2(φ) = V (φ). (3.55)

Taking for simplicity a homogeneous scalar profile φ = φ(r), the action (3.39) can
be written simply in terms of the superpotential as

S =

∫
ddxdr edA

(
−d

4
(d− 1)

(
Ȧ+

2

d− 1
W

)2

+
1

2
(φ̇−W ′(φ))2

)

+

∫
ddxdr

d

dr

[
edA(Ȧ+W )

]
. (3.56)
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Now suppose W (φ) satisfies the following first-order equations

φ̇(r, 
x) = W ′(φ)

Ȧ(r) = − 2

d− 1
W (φ). (3.57)

In this case the action reduces to a surface term and is proportional to the difference
of the values of the superpotential at the critical points

S ∝ d− 3

d− 1
edA(r)W (φ)

∣∣∣∣
r=r1

r=r2

. (3.58)

Remarkably, it turns out that any solution to these first-order equations then consti-
tutes a solution to the full second-order nonlinear equations of motion (3.45). Fur-
thermore, it is easily seen that any critical point of W (φ) is also a critical point of
V (φ); however, the converse does not hold. This method even generalizes to the case

of multiple bulk scalars, in which case one just replaces (W ′(φ))2 → ∑
i

(
dW ({φj})

dφi

)2

and the first equation in (3.57) separates into an equation for each bulk scalar
φ̇i(r, 
x) = dW ({φj})

dφi . In fact, it is possible for the first-order flow equations to repro-
duce the physics of the full second-order equations of motion because the flow equa-
tions arise as the Hamilton-Jacobi equations for the gravity-scalar system [22, 23].
3.3 The Hamilton-Jacobi formalism

Here we follow [22, 23] and show that the first-order equations that govern
holographic RG flows in fact follow from the Hamilton-Jacobi (HJ) equation as the
Hamiltonian constraint for gravity in its canonical form. This is an explicit realiza-
tion of the relationship between the classical evolution equations for the bulk fields
and the renormalization group (RG) equations that the boundary couplings must
obey. In fact, we will show that the first-order flow equations for the bulk on-shell
action (themselves a consequence of the Hamilton-Jacobi equation) can be cast as
the Callan-Symanzik equations for boundary correlation functions. This supports
the AdS/CFT lore that the bulk on-shell action is the quantum effective action for
the boundary field theory.
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Let us briefly review Hamilton-Jacobi theory. Given a classical action

S[x1, x2] =

∫ x(t2)=x2

x(t1)=x1

dt L[q, q̇], (3.59)

we consider perturbing the boundary condition x2 → x2 + δx2, inducing a corre-
sponding change in the solution to the equations of motion

q0(t) → q0(t) + δq0(t). (3.60)

The variation of the action then yields

δS =

∫ t2

t1

(
δq0

∂L
∂q

+ δq̇0
∂L
∂q̇

)

=

∫ t2

t1

δq0

(
∂L
∂q

− ∂

∂t

∂L
∂q̇

)
+ δq0

∂L
∂q̇

∣∣∣∣
t2

t1

= δx2p(t2). (3.61)

So an x2 derivative of the action yields the conjugate momentum p(t2). This imme-
diately yields the Hamilton-Jacobi equation, namely

H

(
{qi},

{
∂S

∂qj

})
= −∂S

∂t
, (3.62)

where H is the Hamiltonian of the system.
In particular this applies to gravity in its canonical form. We are always free to

write the metric as

ds2 = N2dr2 + gab(r, 
x)(dx
a +Nadr)(dxb +N bdr), (3.63)

where N and Na are the lapse and shift functions respectively. From this point
forward we will work in a gauge where Na = 0 and N = 1, however the equations of
motions for N and Na must still be imposed as the Hamiltonian and diffeomorphism
constraints, respectively. Treating r as the analogue of time in standard Hamilton-
Jacobi theory, the Hamilton-Jacobi equations will describe radial flows (generated by
the ADM Hamiltonian) in AAdSd+1, which we expect to be dual to renormalization
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group flows in CFTd. The role of the action in the above discussion with be played
by the supergravity on-shell action S[φ(0), g(0)], evaluated on solutions to the classical
equations of motion on a fixed-r slice near the boundary with boundary data φ(0) and
g(0). The Hamilton-Jacobi equation will be realized by the Hamiltonian constraint.

For concreteness, we now specialize to d = 4. We consider gravity minimally
coupled to bulk scalars in the (five-dimensional) Einstein frame, with Lagrangian

L[φ, g] = 1

2
GIJ∂

aφI∂aφ
J + V (φ) +R, (3.64)

where GIJ is a metric in field space. The Hamiltonian and diffeomorphism constraints
read

H = 0 =

(
πabπab − 1

3
πa
aπ

b
b

)
+

1

2
πIG

IJπJ + L[φ, g]

0 = ∇aπab + πI∇bφ
I . (3.65)

The conjugate momenta πI and πab are defined in the usual way

πI =
1√
g

δS

δφI
, πab =

1√
g

δS

δgab
. (3.66)

The diffeomorphism constraint yields the usual invariance of the on-shell action un-
der four-dimensional diffeomorphisms. However, the Hamiltonian constraint is non-
trivial and yields the Hamilton-Jacobi equation:

1√
g

[
1

3

(
gab

δS

δgab

)2

− gacgbd
δS

δgab
δS

δgcd
− 1

2
GIJ δS

δφI

δS

δφJ

]
=

√
gL[φ, g]. (3.67)

This should be thought of as a differential equation determining the form of the
on-shell action. With a solution to the HJ in hand, the usual Hamiltonian equations
of motion tell us how to compute radial derivatives of the fields

φ̇I = GIJπJ , ġab = −2πab +
2

3
πc
cgab. (3.68)
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We’ve seen very explicitly in §3.1 that to compute correlation functions in
AdS/CFT, one must evaluate the gravitational on-shell action at a cutoff surface and
add covariant counterterms to remove divergences that arise as the cutoff is taken to
the boundary. The counterterms are local expressions in terms of the sources, and
so we decompose the on-shell action as

S[φ, g] = Sloc[φ, g] + Γ[φ, g]. (3.69)

Γ is to be thought of as the generating functional in the boundary field theory; we’ve
seen this differs from the on-shell action by local, divergent counterterms. We choose
to parameterize the local part of the action as

Sloc[φ, g] =

∫
ddx

√
g

(
U(φ) + Φ(φ)R +

1

2
MIJ∂

aφI∂aφ
J

)
, (3.70)

where U,Φ and MIJ are taken to be local functions of the sources, as in §3.1. The
generating functional Γ then contains all higher derivative and non-local terms. The
idea is to insert the decomposition (3.69) into the HJ equation and require that the
terms of different scaling degree individually vanish. With this goal in mind, we
separate terms in Sloc and L by their scaling dimension

S
(0)
loc =

∫
d4x

√
gU(φ), L(0) =

√
gV (φ)

S
(2)
loc =

∫
d4x

√
g

(
Φ(φ)R +

1

2
MIJ∂

aφI∂aφ
J

)
, L(2) =

√
g

(
R +

1

2
GIJ∂

aφI∂aφ
J

)
.

(3.71)

The HJ equation (3.67) can then be written compactly as

{S, S} = L(0) + L(2), (3.72)

where the bracket {S, S} is defined as

{S, S} =
1√
g

[
1

3

(
gab

δS

δgab

)2

− gacgbd
δS

δgab
δS

δgcd
− 1

2
GIJ δS

δφI

δS

δφJ

]
. (3.73)
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Separating the HJ equation into terms of different scaling degree, we get the decom-
position

{S(0)
loc , S

(0)
loc} = L(0)

2{S(0)
loc , S

(2)
loc} = L(2)

2{S(0)
loc ,Γ}+ {S(2)

loc , S
(2)
loc} = 0. (3.74)

Let us examine the first term in (3.74). After some algebra, it becomes

V (φ) =
1

3
U2(φ)− 1

2
GIJ∂IU∂JU. (3.75)

Up to an overall constant, this is in fact exactly (3.55) - so it is in fact the Hamilton-
Jacobi equation that allows us to write the potential in terms of a ‘superpotential,’
thereby reducing the second order equations of motion to first-order flow equations.
The solutions to the equations of motion (3.57) are then equivalent to

φ̇I = GIJ∂JU, ġab = −1

3
U(φ)gab. (3.76)

These equations of motion can easily be solved by an ansatz of the form

gab = a2ĝab, (3.77)

where ĝ is some fiducial metric that does not depend on the radial coordinate and a

must satisfy

ȧ = −1

6
U(φ)a. (3.78)

Since a encodes all scale-dependence of the metric, we now replace all radial deriva-
tives with a derivatives. In this way, we may define ‘beta functions’

βI(φ) = − 6

U(φ)
GIJ∂JU(φ), (3.79)

describing the evolution of the bulk scalars with scale as

a
d

da
φI = βI(φ). (3.80)
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Near the boundary, the beta functions behave asymptotically as

βI(φ) → (ΔI − 4)φI , (3.81)

where ΔI encodes the asymptotic falloff of the bulk scalars φI → e−r(ΔI−4)φ̄I and φ̄I

is the source for the dual operator OI .3 Note that this is precisely the asymptotic
scale dependence we observed earlier in (3.33).

The question then becomes what kinds of potentials can be written in the form
(3.75). Taking GIJ = δIJ for simplicity of exposition, we expand the bulk potential
near one of its critical points4

V (φ) = 12− 1

2
mIφ

IφI + gIJKφ
IφJφK + . . . (3.82)

Taking a similar ansatz for the expansion of the 4d ‘local superpotential’ U(φ) near
the same critical point

U(φ) = 6 +
1

2
λIφ

IφI + λIJKφ
IφJφK , (3.83)

leads to the following form of the beta functions

βI(φ) = (ΔI − 4)φI − cIJKφ
JφK , (3.84)

where we’ve defined
ΔI = 4− λI , cIJK = 3λIJK . (3.85)

Recalling that ΔI parameterizes the scaling dimension of the operator dual to the
boundary value of φI , we see that λI can be thought of as the ‘deviation from

3 For simplicity we have set LAdS = 1 in this section.

4 Note the relative factor of −4 between the R term and the potential in the
Lagrangian of this section compared to the previous section.
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marginality’ of the operator OI ; for λI positive, the operator is a relevant deforma-
tion. Indeed, plugging the expansions of V and U into the constraint equation (3.75)
yields

m2
I = λI(λI − 4)

gIJK = λIJK (4− λI − λJ − λK) . (3.86)

The first equation represents the usual relationship between bulk field masses and
dual operator dimensions, as well as the BF bound m2

I ≥ −4 [11, 12] required
for stability of the bulk solution; the second represents a relationship between the
OPE coefficient cIJK that characterizes the quadratic term in the beta function
and the cubic term gIJK in the bulk potential. But what terms in U does the HJ
equation constrain? Perturbing the 4d potential, we find that the relationship (3.75)
is preserved only for perturbations that satisfy

2

3
UδU − (∂IU)(∂IδU) = 0 → (4 + βI∂I)δU = 0. (3.87)

That is to say, terms in U with total scaling dimension 4 are unconstrained by the
HJ equation. As we’ve seen in section 3.1, these are exactly the terms that remain
finite when we send the cutoff to the boundary. Finally, while we will not use them
here, we note that the second equation in (3.74) leads to constraints relating the
(divergent!) local terms {Φ,MIJ} in S

(2)
loc to the parameters (in particular, the beta

functions) describing the RG flow of the couplings of the boundary theory.
As should be familiar by now from the discussion in the previous two chapters, it

is the effective action Γ — obtained from the supergravity on-shell action on a near-
boundary cutoff surface after the subtraction of divergent local counterterms — that
contains information about CFT correlation functions. In fact, the Callan-Symanzik
equation for the scale-dependence of these correlation functions can be derived from
the final equation in (3.74). One finds

1√
g

(
2gab

δ

δgab
− βI δ

δφI

)
Γ[φ, g] = (Terms with four derivatives). (3.88)
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The Callan-Symanzik equation is obtained from this functional differentiation with
respect to the fields φI(x), after which the fields are set to their background values (ie.
the couplings in the field theory); furthermore, we take gab = a2(
x)δab, integrate, and
replace the integrated functional derivatives with the appropriate ordinary derivatives
with respect to a and φI . Applying this procedure to the previous equation results
in the Callan-Symanzik equation
(
a
∂

∂a
+ βI∂I

)
〈OI1(
x1) · · · OIn(
xn)〉+

n∑
i=1

γJi
Ii
〈OI1(
x1) · · · OJi(
xi) · · · OIn(
xn)〉 = 0,

(3.89)
where the ‘anomalous dimensions’ are defined through5

γJ
I = ∇Iβ

J . (3.90)

The result (3.89) represents the Callan-Symanzik equation for correlation func-
tions of bare operators, derived from an effective action Γ defined on a cutoff surface
which has yet to be taken to the boundary. To recover the Callan-Symanzik equation
for the renormalized correlation functions, one must define the renormalized metric
and couplings via

gab = ε−2gRab, φI = φI(φr, ε), (3.91)

so that the boundary is approached as ε → 0. The bare couplings are related
to the renormalized couplings via integration of the beta functions, along with an
appropriate renormalization condition

βI(φ) = −ε
∂φI

∂ε
, φI(φr, ε = 1) = φr. (3.92)

We’ve seen in the discussion of holographic renormalization that Sloc will generically
diverge as we take ε → 0 (for instance, U is quartically divergent while M and Φ

are quadratically divergent, while Γ will generally contain a logarithmic divergence

5 The derivatives ∇I are covariant derivatives compatible with the metric GIJ .
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in even d). Taming these divergences by the addition of local counterterms gives
the renormalized effective action, and it is through functional differentiation of the
analogue of (3.88) for the renormalized effective action that one obtains the Callan-
Symanzik equations for the renormalized operators

OR
I = OJ

∂φJ

∂φI
R

. (3.93)

3.4 The holographic conformal anomaly
One of the earliest checks of the AdS/CFT correspondence was the holographic

computation of the conformal anomaly, due originally to Henningson and Skenderis
[16]; we’ll see that this is intimately related to the observation made in section 3.2.1
about the irreversibility of domain-wall flows. The lecture notes [8] and textbook [9]
both contain illuminating expositions of this derivation and will be followed here.

The setup is very similar to the discussion in section (3.1.2), except we consider
pure gravity in AAdSd+1

S = − 1

2κ

∫
dd+1x

√
g

(
R(d+1) +

d(d− 1)

L2
AdS

)
− 1

κ

∫
ddx

√
γK

∣∣∣∣
ρ=ε

, (3.94)

where K is the trace of the extrinsic curvature and the last term is required for
the well-posedness of the variational principle. Recall the form of the AAdSd+1 line
element

L2
AdS

(
dρ2

4ρ2
+

1

ρ
gij(ρ, 
x)dx

idxj

)
, (3.95)

along with the Fefferman-Graham expansion (3.3) for gij

gij(ρ, 
x) = g(0)ij(
x) + ρg(2)ij(
x) + . . .+ ρd/2 log ρ h(d)ij + . . . , (3.96)

where the logarithmic term appears only for even d. As is familiar from the discus-
sion in section (3.1.2), the coefficient g(k) can be computed by solving the Einstein
equations order by order in ρ. For instance, in d > 2 one finds

g(2)ij =
L2

AdS

d− 2

(
Rij − 1

2(d− 1)
Rg(0)ij

)
, (3.97)
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where all curvature invariants are built out of the boundary metric g(0). Proceeding
as in §3.1 and evaluating the on-shell action at the surface ρ = ε leads to

Sreg,ε = − 1

2κ

∫
ddx

√
g(0)ε

− d
2

(
a(0) + εa(2) + . . .− ε

d
2 log εa(d)

)∣∣∣∣
ρ=ε

+O(ε0), (3.98)

where the a(k) are determined in terms of the boundary metric g(0) and there is no
logarithm for d odd. For instance, the first few are given by [17]

a(0) =
2(d− 1)

LAdS

a(2) = − LAdS

(d− 2)
R

a(4) =
L3

AdS

(d− 4)(d− 2)2

(
RijRij − d

4(d− 1)
R2

)
. (3.99)

As before, these divergent contributions are cancelled by the addition of covariant
counterterms to the on-shell action. For instance, it is clear that adding a term
proportional to

∫
ddx

√
γ will cancel the divergence due to the leading term a(0).

In quantum field theory, a conformal anomaly is signalled by a Weyl trans-
formation of the metric leading to a non-vanishing trace of the stress tensor. To
demonstrate this property from the bulk, we seek a (d + 1)-dimensional diffeomor-
phism that scales the boundary metric. The required diffeomorphism is called the
Penrose-Brown-Henneaux (PBH) transformation [10] and is given by

ρ → ρ′(1 + 2σ(
x′)), xi → x′i + ai(ρ, 
x). (3.100)

We demand that the line element (3.95) transforms covariantly under this diffeomor-
phism, ie. gρρ and gρj are left invariant. This requires

ai(
x) =
L2

AdS

2

∫ ρ

0

dρ′gij(ρ′, 
x)∂jσ(
x), (3.101)

and induces the following transformation in gij:

gij → g′ij = gij − 2σ(
x)(1− ρ∂ρ)gij +∇iaj(
x) +∇jai(
x). (3.102)
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As the boundary is approached, ai, ρ∂ρgij → 0 so that indeed we recover the correct
Weyl scaling of the boundary metric

g(0)ij → g′(0)ij = (1− 2σ(
x))g(0)ij (3.103)

as claimed in (3.37). While the original action (3.94) and the ensuing equations
of motion are invariant under bulk diffeomorphisms, the counterterms required to
render the on-shell action finite spoil the invariance under the PBH diffeomorphisms
corresponding to Weyl transformations on the boundary. This is of course a signal
of the conformal anomaly in the boundary field theory.

For concreteness we now specialize to the case of d = 4. In this case, one can
show that the covariant counterterms needed to cancel the divergences arising in
(3.98) are given by [17, 8]

Sct,ε[g(0)] =
1

κ

∫
ddx

√
γ

(
3

L2
AdS

− R[γ]

4
− L2

AdS log ε

16
(Rij[γ]Rij[γ]− 1

3
R2[γ])

)∣∣∣∣
ρ=ε

.

(3.104)
Here, all curvature invariants are formed out of the induced metric at ρ = ε, so that
the first two terms are power-law divergent and the last is logarithmically divergent
as ε → 0. We are interested in computing the trace of the stress tensor

〈T i
i (
x)〉g(0) = gij(0)〈Tij(
x)〉g(0) = −δSren[g(0)]

δσ
= − lim

ε→0

δ(Sreg,ε[g(0)] + Sct,ε[g(0)])

δσ
,

(3.105)
where we’ve used that near the boundary, δg(0)ij = −2g(0)ijδσ. Now, by construction,
all terms in Sreg,ε are invariant under the combined change in coordinates and redef-
inition of the regulator surface via δε = 2εδσ. It is straightforward to see that the
first two terms in the counterterm action (3.104) are also invariant under the Weyl
transformation; however, the logarithmic term spoils the invariance, as δ log ε = 2δσ.
Thus we find the following as the holographic conformal anomaly

〈T i
i (
x)〉g(0) =

L3
AdS

8κ

(
RijRij − R3

3

)
. (3.106)
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In fact, in the original formulation of AdS/CFT, it turns out that one can see that
this agrees exactly with the anomaly of the boundary supersymmetric Yang-Mills
theory in the N → ∞ limit, upon noticing that G

(5)
N =

G
(10)
N

vol(S5)
=

πL3
AdS

2N2 . Note that in
odd d there is no logarithmic term in the regularized on-shell action; correspondingly,
there is no need for a logarithmic counterterm and thus no conformal anomaly as
one would expect from field theory. Furthermore, the general form of the conformal
anomaly in four dimensions is given by

〈T i
i (
x)〉 = cW ijklWijkl + aEijklEijkl + . . . , (3.107)

where W is the Weyl tensor, E2 is the Euler density and we have neglected overall
variations of local terms. In the special case that c = a, then the anomaly has the
form

〈T i
i (
x)〉 =

a

8π2
(RijRij − 1

3
R2). (3.108)

The computation of the holographic anomaly would then imply that the four-dimensional
field theories dual to gravity in AAdS5 have a = c =

π2L3
AdS
κ

.
This procedure can obviously be extended to compute the anomalies of the field

theories dual to the endpoints of the holographic renormalization group flows dis-
cussed in §3.2. As in that section, we consider domain wall geometries interpolating
between an asymptotically AdS5 region near the boundary with length L1 and an-
other asymptotically AdS5 region in the deep interior with length L2.6 It is clear
that the anomalies at the critical points are given by

a1 =
π2L3

1

κ
, a2 =

π2L3
2

κ
. (3.109)

6 For the sake of getting the coefficients correct we specialize to d = 4 here, but it
should be clear that the following discussion generalizes to arbitrary d. Indeed, for
arbitrary even d is straightforward to see that the conformal anomaly is proportional
to Ld−1

AdS.
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From this, one can construct an ‘anomaly function’ a(r) that extends into the bulk
via

a(r) =
π2

κ

(
1

Ȧ(r)

)3

ȧ(r) =
−3π2

κ

(
Ä(r)

Ȧ(r)4

)
. (3.110)

This function satisfies all the necessary conditions of an anomaly- or ‘c-function’ as
originally proposed by Zamolodchikov [24] in the proof that all RG flows in two-
dimensions are irreversible, making precise the notion that RG flow corresponds to
integrating out massive degrees of freedom. That is:

• It takes the values of the anomaly coefficients at the critical points.
• It monotonically decreases along the RG flow of the dual field theory; recall

that a very general property of the domain-wall system was Ä ≤ 0.
• Furthermore, for flows satisfying the simplified first-order equations of motion

(3.57), a(r) is only stationary at the critical points (since in this case Ä = 0 →
W ′(φ) = 0).

Following the proof that such a function exists in two-dimensional quantum field
theories [24] (interpolating between the central charges of the CFTs at the fixed
points of the flow), the analogous theorem in four-dimensions — the a-theorem, a
proposal of Cardy’s [25] in which the anomaly functional interpolates between the
values of the a anomaly in (3.107) — went unproven for ∼ 25 years, until the heroic
work of Komargodski and Schwimmer [26, 27]. In these works it was analyticity
and unitarity of the scattering amplitudes of the conformal compensator field that
proved the a-theorem. However, we see that for field theories whose RG flow is dual
to a domain wall geometry, the proof is trivial! Furthermore, as mentioned before,
this construction extends trivially to higher even d, implying the a-theorem for field
theories in arbitrary even dimensions with gravitational duals.

This concludes the literature review section of the thesis; we now proceed to the
presentation of original research.
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Chapter 4
Holographic renormalization group flows in the adiabatic limit

Scott Collier, Alexander Maloney, Gim Seng Ng, Abhishek Pathak
Abstract

We follow [5] in studying the dilaton effective action induced by RG flows be-
tween holographic conformal fixed points. In doing so, we present a new approxima-
tion scheme that is useful for computing the on-shell action in an effective description
of AdS domain-wall geometries (or equivalently, the dilaton effective action of the
dual field theory). This framework is particularly useful in the case that the AdS
isometries are weakly broken, corresponding to a ‘slow flow’ interpolating between
AdS asymptotic regions. We demonstrate the utility of this approximation scheme
with two applications. First, we compute the dilaton effective action for a flow
driven by a weakly relevant operator from the dual bulk effective theory, and show
that it reproduces the correct form of the RG-improved two point function. Sec-
ondly, we compute the gravitational on-shell action in a generalized ‘slow-flow’ setup
in four dimensions, and show that upon Wick rotation we recover the inflationary
power spectrum and spectral index of curvature perturbations at horizon-crossing to
second-order in slow-roll.
4.1 Introduction

It is useful to think of (renormalizable) quantum field theories in terms of renor-
malization group (RG) flows between conformal fixed points. The high energy physics
can be characterized by a UV conformal field theory (CFT) plus some relevant opera-
tor deformations {O} with couplings {φ(0)}. These perturbations typically break the
conformal symmetry of the high energy theory, triggering a renormalization group
flow to some different theory in the IR. However, by promoting the couplings to fields
with nontrivial spacetime dependence and demanding a particular transformation of
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the couplings under scale transformations, one can restore the conformal symme-
try. This is done by promoting all mass scales upon which couplings depend to
spacetime-dependent functions M → Me−τ(x); conformal symmetry then places con-
straints [26, 27, 28] on the effective action for the field τ(x).1 Particular terms in the
dilaton action can be uniquely determined by the matching of conformal anomalies
in the IR and the UV; this is how the a-theorem was proven in four dimensions.

The construction of a function that decreases monotonically across RG flows in
two and four dimensions naturally leads to the question of whether one can similarly
show that RG flows in arbitrary dimensions are irreversible. However, it has been
shown that the generalization of the Komargodski-Schwimmer construction [26] to 6
and 8 dimensions is in fact nontrivial [28, 29]. Holography provides a useful frame-
work in which to study RG flows [22, 30, 18, 19, 31, 32, 33, 34, 35], often via the bulk
dual of a relevant operator deformation of a UV CFT. Indeed, there are holographic
arguments related to entanglement entropy [36, 37] for the generalization of the a-
theorem to arbitrary dimensions; in even boundary dimensions it is the coefficient
of the ‘a-type’ anomaly that flows, while in odd dimensions it is expected that the
finite part of the free energy on Sd decreases along RG trajectories [38, 39, 40, 41].

In this note we take a bottom-up approach to the study of holographic renor-
malization group flows by making use of the general holographic effective field theory
constructed by [5] for π, the Goldstone boson for the broken spacetime symmetry cor-
responding to boundary dilatations. This effective field theory is described in terms
of a general bulk action designed to capture the universal properties of holographic
RG flows; the free parameters of this theory capture the space of different quantum
field theories. This effective framework for holographic RG flows took inspiration
and borrowed heavily from the effective field theory of inflation [42, 43], the general
effective theory of broken de Sitter time translations.

1 Variously known in the literature as the spurion or conformal compensator field
in the case of explicit breaking of conformal symmetry, or the dilaton in the case of
spontaneous breaking.
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By solving the bulk equations of motion for the Goldstone boson π, one can
determine universal properties of the dilaton effective action. In [5], the effective
field theory was used to holographically obtain the two-dimensional dilaton effective
action as well as the corresponding UV and IR conformal anomalies in full generality.
In higher dimensions, computations were only tractable in a ‘slow-flow’ limit —
analogous to slow-roll inflation — corresponding to extremely thick domain wall
geometries interpolating between AdS regions of radius LUV near the boundary and
LIR in the deep interior. In particular, in such a setup where the spacetime symmetry
is appropriately softly broken, one is free to neglect mixing with AdS gravity. In this
paper we study this regime in more detail.

We start by specifying a bulk metric which is close to AdSd+1 everywhere. As
a result of breaking the SO(d + 1, 1) symmetry the bulk now contains a scalar ex-
citation: the goldstone boson π. Having deformed the AdS background, we write
down the lowest derivative terms in the action for the the goldstone boson in terms
of the deformations from AdSd+1 (characterized by geometric quantities analogous
to slow-roll parameters familiar from inflation).

Furthermore, for the class of theories of interest, since all geometric quantities
can be expanded in some small parameters (characterizing the deviation from exact
AdS), we will present an adiabatic approximation scheme to solve the Goldstone’s
equations of motion as a perturbative series. This allows us to compute the on-shell
boundary action for π. In principle, we have a series representation for the solution,
which if solved to all-orders, gives the exact result. We shall see how this works in
the example of slow-flow geometries dual to weakly relevant flows, and will show how
one can resum all terms to obtain the RG-improved two point function as computed
in conformal perturbation theory. In a more general setup, however, this adiabatic
scheme provides the solution as a perturbative series in parameters encoding the
deviation from AdS. We believe that our setup is useful to illustrate various aspects
and results of holographic RG flows in a concrete and computationally tractable
context.

This paper is organized as follows. In section 4.2.1 we review the formalism of
restoring conformal invariance via the background dilaton field and the constraints
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of conformal symmetry. In section 4.2.2 we describe the class of bulk theories we
are interested in, including a review of the effective field theory of holographic RG
flows as presented in [5], as well as a discussion of the demixing limit. In section
4.3 we present the adiabatic approximation scheme we use to solve the Goldstone
boson’s equation of motion; in the demixing limit, we give a formal exact solution
for the coefficients describing the mixing between the ‘instantaneous AdS’ solutions
in the bulk, which is useful in practice when the spacetime is nearly AdS every-
where. In section 4.4 we provide the first application of our approximation scheme,
and compute the dilaton effective action for a weakly-relevant flow holographically;
in particular, the Goldstone boson’s on-shell action reproduces the RG-improved
two-point function as derived via conformal perturbation theory. In section 4.5 we
compute the on-shell action in a generalized slow-flow approximation in four dimen-
sions; upon Wick rotation, we recover the usual inflationary power spectrum and
spectral index to second-order in slow-roll. In an appendix we show how to extend
this computation to the case with a running speed of sound. We work in Euclidean
signature throughout this paper.
4.2 The general setup
4.2.1 Boundary

Here we briefly review the background dilaton formalism for renormalization
group flows triggered by explicitly broken conformal symmetry. The basic idea is to
introduce the background dilaton field to treat such flows as if they were triggered by
a spontaneous breaking of conformal symmetry. Conformal symmetry is generically
broken both by the existence of trace anomalies (in curved even-dimensional space)
and due to the deformation by the relevant operators. However, one can eliminate
the latter by allowing the couplings of the relevant operators to transform under Weyl
transformations. To do this, one replaces every mass scale in the theory (upon which
couplings depend either explicitly or implicitly, ie. as a cutoff) by M → Me−τ(x),
and then demands that the dilaton τ(x) transforms nonlinearly realizes invariance
under Weyl transformations. Under Weyl transformations, the background metric
transforms as

gμν → e2σ(x)gμν , (4.1)
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while the dilaton shifts in such a way as to restore conformal symmetry

τ(x) → τ(x)− σ(x). (4.2)

It should be clear that to linear order, the dilaton always appears in the Lagrangian
by coupling to the trace of the stress tensor

∫
ddx

√
gτ(x)T μ

μ (x).
The effective action is then rendered invariant under the combined Weyl trans-

formation and shift of the dilaton — up to the trace anomaly of the UV CFT, which
should be reproduced by the Weyl variation of the effective action. Much can be
learned by studying the dilaton effective action in the infrared, after integrating out
massive degrees of freedom. By construction, the (possibly anomalous) conformal
symmetry of the UV theory has been restored by the introduction of the dilaton, so
the low-energy theory should reproduce the UV anomaly. The conformal field the-
ory that governs the IR physics will contribute to the anomaly, but generically with
different coefficients than the UV CFT; as a result, the dilaton functional must trans-
form precisely to compensate for the difference between the UV and IR anomalies
under Weyl transformations.

The effective action should inherit the symmetries of the UV theory; that is,
it should be diff×Weyl invariant. Clearly, the ‘dressed’ metric ĝμν = e−2τgμν is
invariant under Weyl transformations, so the effective action should be built out of
curvature invariants of ĝμν plus a term (the Wess-Zumino term) whose Weyl variation
reproduces the difference between the UV and IR anomalies. The Wess-Zumino term
results in a d-derivative action for the dilaton that persists even after the background
metric is taken to be flat. The coefficient of this term is universally determined by
the difference between the UV and IR anomalies and thus is blind to the details of
the flow. This is the observation that led to proofs of the monotonicity of RG flows in
2 and 4 dimensions in [26, 27]. However, there are obstacles to the naive extension of
the proof to higher dimensions. For instance, in d = 6 the relevant dilaton four-point
scattering matrix element vanishes in the forward-scattering limit [29]; in d = 8 there
is a contribution to the 8-derivative action from the Weyl-invariants that does not
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vanish on shell and thus contaminates the anomaly flow [28]. One might then ask
how the dilaton is realized holographically — this is answered in the next section.
4.2.2 Bulk

We consider the class of spacetimes that interpolate between AdSd+1 near the
boundary and another AdSd+1 in the deep interior and preserve ISO(d−1, 1) isome-
try. For example, in Einstein-Scalar theory such a domain wall spacetime corresponds
to a background scalar profile which interpolates between a maximum and minimum
of a potential. However the effective field theory framework in which we work does
not rely on the specifics of how this spacetime is realized. We work in the semiclas-
sical N = ∞ limit. We consider the case where the boundary field theory lives in
flat Euclidean space and the bulk metric has the usual domain wall form

ds2 = dr2 + a2(r)δijdx
idxj. (4.3)

The statement that the geometry interpolates between asymptotic AdS regions is
the statement that

lim
r→rUV

a(r) = er/LUV , lim
r→−∞

a(r) = er/LIR , (4.4)

where rUV is a near-boundary regulator surface. We define the ‘Hubble function’ H(r)

and slow-flow parameters in analogy with the corresponding variables in cosmology

H(r) =
ȧ

a
, ε = − Ḣ

H2
, η =

ε̇

Hε
, κ =

η̇

Hη
, (4.5)

where the dot denotes a radial derivative. Note that in exact AdS

H(r) = L−1AdS, ε, η, κ = 0. (4.6)

Given such a spacetime we will study the two point function of a field propagat-
ing on this geometry. The procedure applies for the two point function of any field,
all we need is the linearized equation of motion. However for concreteness we will
focus on the two point function of the scalar fluctuation associated with the broken
AdS isometry. The construction of the action for the Goldstone boson is familiar
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from the construction of the effective field theory of single-field inflation in [42]. The
action for the Goldstone boson is constructed via the ‘Stuckelberg trick’ [42]: π is
introduced as the Goldstone boson for the diffeomorphism LAdS∂r +xi∂i

2 broken by
the nontrivial radial dependence of bulk fields and the background metric to restore
the full bulk diff invariance. The bulk action is then made up of terms that are
invariant under spatial diffeomorphisms as well as under nonlinearly-realized radial
diffs: r → r+ ξr(x, r), π → π− ξr(x, r). Performing a broken radial diff, one obtains
the most general action for the Goldstone boson.

It was shown in [5] that to leading order in the derivative expansion3 , the bulk
action is made up of contributions from a gravitational sector, a matter sector, and
a counterterm sector

Sπ =Sgrav + Sm + Sct

Sm =
∞∑
n=0

1

n!

∫
drddx

√
gMn(r + π(r, 
x))

[
∂(r + π(r, 
x))

∂xa

∂(r + π(r, 
x))

∂xb
gab(r, 
x)

]
,

(4.7)

where the {Mn} are non-universal, QFT-dependent parameters. We note that the
case where the matter sector consists of a single scalar field with a potential cor-
responds to setting Mn = 0, n ≥ 2. However, for the purposes of computing the
quadratic part of the on-shell action, one need only know M2, which turns out to
be related to the speed of sound in cosmological models after Wick rotation. We
describe this scenario in detail in appendix D. We take the gravitational action to

2 Since the broken AdS scale symmetry non-linearly realized by the Goldstone
mode π induces a Weyl transformation in the boundary theory, the boundary value
of the Goldstone boson is indeed related to the dilaton.

3 In particular, here we are neglecting terms involving derivatives of the extrinsic
curvature.

52



be Einstein gravity

Sgrav = −Md−1
Pl,d+1

2

∫
r≥rUV

drddx
√
gR(d+1) − Md−1

Pl,d+1

∫
ddx

√
γK

∣∣∣∣
r=rUV

, (4.8)

where γ is the induced metric on the regulator surface r = rUV, K is the trace of
the extrinsic curvature and the last term is the Gibbons-Hawking boundary term
required for the well-posedness of the variational principle. One could easily include
a Gauss-Bonnet term to distinguish between the A-type anomalies and the central
charge of the dual CFT, as is done in [5], however for simplicity of exposition we
omit it here. The counterterm action Sct is included to cancel divergences that
arise as the regulator surface is taken to the boundary rUV → ∞. Finally, the
background Einstein equations determine the leading parameters M0 and M1 in
terms of geometric parameters [5]

M0 = −(d− 1)Md−1
Pl,d+1

[
Ḣ +

d

2
H2

]

M1 = −d− 1

2
Md−1

Pl,d+1Ḣ. (4.9)

We further restrict to the demixing limit where the Goldstone mode is weakly
coupled and the mixing with the gravity transverse-traceless modes can be neglected.
It was shown in [42] that in the simplest case where only the lowest-derivative oper-
ators are kept, the leading mixing terms with gravity could be neglected for energies
above Emix ∼

√
−Ḣ =

√
εH. This situation corresponds to a single bulk scalar field

with a slowly-varying potential (and in the case of spontaneously broken dS symme-
try, aligns with standard single-field slow-roll inflation) — this is the general class
of theories we intend to study. Thus in this ‘slow-flow’ approximation, we are free
to study the physics of the Goldstone mode while neglecting its mixing with metric
fluctuations. For energies much larger than the demixing scale, the action reduces
significantly to the following [42, 5]

Sπ = −(d− 1)M2
Pl,d+1

2

∫
drddx adḢ

(
π̇2 +

(∂iπ)
2

a2

)
+ . . . , (4.10)
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where (. . .) correspond to higher-derivative terms. We will suppress the (. . .) parts
for the rest of the paper. The statement that AdS isometries are weakly broken is
imposed by the assumption that the slow-flow parameter ε and all derivatives thereof
that appear in the Goldstone boson’s equation of motion (for instance, η = ε̇

Hε
) are

small everywhere in the spacetime. Following [5], this is what we refer to as the
‘slow-flow’ approximation.

AdS/CFT dictates that partition function of the bulk gravitational theory is
equal to the generating functional of a boundary quantum field theory. In particular,
we expect that the on-shell action for the Goldstone boson of the broken spacetime
symmetry in the bulk should be related to the effective action for the dilaton τ

encoding the broken conformal symmetry on the boundary

WQFT[τ ] = Son-shell
π [π|r=rUV ]. (4.11)

Anticipating the relationship between the boundary value of the Goldstone mode
and the boundary field theory’s dilaton field τ , which is dimensionless, it is useful to
introduce

π̂ = −Hπ (4.12)

such that the action in terms of π̂ is given by

Sπ̂ =
(d− 1)Md−1

Pl,d+1

2

∫
dr

dd
k

(2π)d
adε

(
˙̂π�k
˙̂π−�k +

k2

a2
π̂�kπ̂−�k + . . .

)
, (4.13)

where we have Fourier-transformed π̂(r, 
x) ≡ ∫
dd�k
(2π)d

ei
�k·�xπ̂�k(r) and the omitted terms

are sub-leading in the derivative expansion and thus drop out in the demixing limit.
The equation of motion for the Goldstone boson then reads

¨̂π�k +H(d+ η) ˙̂π�k −
(
k

a

)2

π̂�k = 0, (4.14)
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so that, assuming regularity of the Goldstone boson in the deep interior, the on-shell
action reduces to a boundary term:

Son-shell
π̂ =

(d− 1)Md−1
Pl,d+1

2

∫
dd
k

(2π)d
adεπ̂−�k∂rπ̂�k

∣∣∣∣∣
r=rUV

. (4.15)

4.3 A generalized adiabatic approximation scheme
It is useful to rewrite the equation of motion in Schrodinger form. This can be

done by defining
ψ(r) ≡

√
εadπ̂(r) (4.16)

to cast the equation of motion into[
d2

dr2
− p2(r, k)

]
ψ = 0, (4.17)

where

p2(r, k) ≡
(
k

a

)2

+H2

[(
d

2

)2

+ δ

]

δ = −d

2
ε+

d

2
η − 1

2
εη +

1

4
η2 +

1

2
κη . (4.18)

As δ encodes the deviation from AdS spacetime and accordingly is at least linear in
the ‘slow-flow’ parameters, it provides a useful perturbative handle when we assume
that the AdS isometry corresponding to boundary dilatations is weakly broken.

Here we develop a systematic method for solving the Goldstone boson’s equation
of motion in Eq (4.17). We are interested in solving this equation in the case where
the Hubble function H(r) is slowly varying so that the spacetime symmetry is weakly
broken. The solution is known exactly in the case of exact AdS, where the Hubble
function H(r) = L−1AdS is constant, a = eHr and δ = 0. The solutions in exact AdS
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are denoted by φi and solve the following differential equation

φ̈i = p20(r, k,H)φi

=

[
e−2Hrk2 +

d2

4
H2

]
φi, (4.19)

with the following functional form

φ1[r, k,H] = −
√
2πI d

2
(ky0) + i

√
2

π
eiπd/2K d

2
(ky0), φ2[r, k,H] = i

√
2

π
eiπd/2K d

2
(ky0),

(4.20)
where the I and K are the modified Bessel functions and y0 = e−Hr/H. The choice
of the normalization and the relative factors between the I and K are chosen so that
φ1 is purely e+ky0 and φ2 is purely e−ky0 as ky0 → ∞. This renders imposing the
boundary condition more convenient. Furthermore, the Wronskian is

Wx0 [φ1, φ2] =
2

x0

ieiπd/2 . (4.21)

where we’ve defined x0 = ky0.
In general, we can write a solution to Eq (4.17) as

ψ(r, k) = ci(r)φi[r, k,H(r)], (4.22)

where H has been promoted to a function of r and the sum on i is implicit. For
constant H, of course ci = constant will be a solution; for H slowly varying, the ci(r)

will be nearly constant, describing how the basis of instantaneous AdS solutions mix
with each other as r varies. To be clear, the instantaneous AdS solutions have the
following form

φ1[r, k,H] = −
√
2πI d

2
(ky) + i

√
2

π
eiπd/2K d

2
(ky), φ2[r, k,H(r)] = i

√
2

π
eiπd/2K d

2
(ky),

(4.23)
with

y ≡ 1

a(r)H(r)
≡ e−A(r)

H(r)
. (4.24)
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In particular, H(r) = ȧ
a
= Ȧ is no longer constant. Note that

dy

dr
= −yH[1− ε]. (4.25)

Substitution of this ansatz into the Schrodinger equation Eq (4.17) yields a
second-order differential equation for the ci(r). However, at this point the ci(r) are
still under-determined. For instance, even when H is constant there will be solutions
with ci non-constant. Inspired by the method of variation of parameters, we choose
to impose the following condition

ċiφi = 0. (4.26)

This imposes the condition that as r is varied, ċ is orthogonal to the chosen basis φ.
With this choice, the differential equation that the coefficients must satisfy simplifies
significantly:

ċi(r)φ̇i = −ci(r)H
2(r)

(−ε(y∂y + 2y2∂2
y) + εηy∂y + ε2y2∂2

y − δ
)
φi, (4.27)

where we’ve used the fact that the φi satisfy the instantaneous AdS wave equation4 .
This can be written compactly in matrix form

ċ = B · c,

B = −H2W−1
(

0 0

α1 α2

)
= − H2

detW

(
−α1φ2 −α2φ2

α1φ1 α2φ1

)
, (4.28)

where

αi =
[−ε(y∂y + 2y2∂2

y) + εηy∂y + ε2y2∂2
y − δ

]
φi, W ≡

(
φ1 φ2

φ̇1 φ̇2

)
. (4.29)

4 That is, (y∂y + y2∂2
y)φi = (k2 + d2

4
)φi.
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The αi are dimensionless and perturbative in a slow-flow. It is straightforward to
see that

detW = −2ieiπd/2H(r)(1− ε), (4.30)

so that

B(r)dr = − 1

2ieiπd/2(1− ε)2
dy

y

(
−α1φ2 −α2φ2

α1φ1 α2φ1

)
. (4.31)

Since the αi are dimensionless, and φ is a function of ky (which is dimensionless),
we define x ≡ ky and rewrite

∫
B(r)dr = − 1

2ieiπd/2

∫
dx

x(1− ε)2

(
−α1φ2 −α2φ2

α1φ1 α2φ1

)
. (4.32)

We will make frequent use of the dimensionless coordinate x.
This differential equation for the coefficients is readily solved by a radially-

ordered exponential

c(r) = R exp

{∫ r

r0

dr1B(r1)

}
c(r0). (4.33)

This is the main result of this paper. Note that B(r) vanishes when H is constant,
so that c(r) will be constant as well. It is straightforward to check that this solution
satisfies the condition (4.26). To find approximate solutions when H(r) is slowly
varying, we implement a Dyson series (as in time-dependent perturbation theory)

R exp

{∫ r

r0

dr1B(r1)

}
= 1+

∫ r

r0

dr1B(r1) +

∫ r

r0

dr1

∫ r1

r0

dr2B(r1)B(r2) + . . . (4.34)

The upshot is that this provides a systematic perturbative expansion as a solution for
the coefficients describing the mixing in the basis of ‘instantaneous’ AdS solutions,
since the αi are cleanly organized in powers of the slow-flow parameters. Let us
rewrite the Dyson series for c(r) in terms of V defined through

c(r) = [1 + V (r, r0)] · c(r0). (4.35)
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4.3.1 Imposing boundary conditions
Returning to our problem, we now impose the boundary conditions. We first

impose regularity in the deep interior, i.e.

lim
yIR→∞

π̂(yIR) = 0 ⇒ lim
yIR→∞

c1(yIR) = 0 (4.36)

such that

c1(y) = V12(y, yIR)c2(yIR)

c2(y) = [1 + V22(y, yIR)]c2(yIR) , (4.37)

where

V (y, yIR) ≡
(

V11(y, yIR) V12(y, yIR)

V21(y, yIR) V22(y, yIR)

)
. (4.38)

Following [5], the UV boundary condition relates the Goldstone scalar to the dilaton

π̂(yUV) = τ, (4.39)

which translates into

√
(yUVHUV )−dεUVτ = {φ1(yUV)V12(yUV, yIR) + φ2(yUV)[1 + V22(yUV, yIR)]} c2(yIR) .

(4.40)

Thus, the c1 and c2 that satisfy both the IR and UV boundary conditions are

c1(y) =

(√
(yUVHUV )−dεUVτ

φ2(yUV)

)
V12(y, yIR)

1 + φ1(yUV)
φ2(yUV)

V12(yUV, yIR) + V22(yUV, yIR)

≡
(√

(yUVHUV )−dεUVτ

φ2(yUV)

)
c̃1(y)

c2(y) =

(√
(yUVHUV )−dεUVτ

φ2(yUV)

)
1 + V22(y, yIR)

1 + φ1(yUV)
φ2(yUV)

V12(yUV, yIR) + V22(yUV, yIR)

≡
(√

(yUVHUV )−dεUVτ

φ2(yUV)

)
c̃2(y) . (4.41)
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Defining

Sπ|on-shell ≡
(d− 1)Md−1

Pl,d+1

2

∫
dd
k

(2π)d
Ibndy, (4.42)

the on-shell action can be written given in terms of the coefficient c̃1 and the basis
of solutions {φi} as

Ibndy = − εkd

Hd−1xd

[
x(1− ε)

(
c̃1
φ2∂xφ1 − φ1∂xφ2

φ2
2

)
+

∂xφ2

φ2

+

(
d

2
+

η

2

)]
τ�kτ−�k

∣∣∣∣
x=xUV

(4.43)

To recapitulate, we have imposed both the IR and the UV boundary conditions
without making any further approximations beyond the demixing limit. The remain-
ing task is to compute the c̃i via our adiabatic approximation scheme, making use of
the assumption that the AdS symmetry is weakly broken.
4.4 Application 1: holographic RG-improved two-point functions in weakly-

relevant flows
In this section, we will study holographic duals of weakly-relevant flows obtained

by deforming a CFTd by a nearly marginal operator O with dimension Δ = d − λ

where 0 < λ � 1. These flows have been studied in various contexts [44, 25, 45]. For
some relevant recent work in the context of a-theorem or holography, see [27, 40, 46,
47, 41].
4.4.1 Review of the field theory setup and results

The action of the perturbed theory is given by

S = SCFT + φ

∫
ddx O(x). (4.44)

The bare two and three-point functions of O in the CFT are given by

〈O(x)O(y)〉CFT =
GOO

|x− y|2(d−λ)

〈O(x)O(y)O(z)〉CFT =
GOOC

|x− y|d−λ|x− z|d−λ|y − z|d−λ , (4.45)
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where GOO is some normalization and C is the OPE coefficient. The beta function
of the renormalized coupling g is

β(g) = μ
dg(μ)

dμ
= −λg +

1

2
Ωd−1Cg2 +O(g3) , (4.46)

where Ωd−1 = 2πd/2/Γ(d/2). Since λ � 1, there exists a perturbatively controlled
IR fixed point at

g∗ ≡ 2λ

CΩd−1
. (4.47)

There existence of such a fixed point ensures that the coupling is perturbative
throughout the entire flow. Integrating the beta function with the boundary condi-
tion

lim
μ→∞

g(μ) = φμ−λ + . . . (4.48)

gives
g(μ) =

g∗
1 + g∗/(φμ−λ)

. (4.49)

The particular two-point function that we are after is the RG-improved/resummed
two-point function in a weakly relevant flow. One can either think of it as the solu-
tion to the Callan-Symanzik equation (such as discussed in [48, 47]) or a particular
resummation (akin to the leading-log resummation in QFT) of perturbation theory.
The latter was carried out in detail in [46, 47]. The resultant two-point function

〈O(x)O(0)〉 ≡ 〈O(x)O(0)eφ
∫
ddz O(z)〉CFT (4.50)
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is given in momentum space by5

odd d : 〈O(k)O(−k)〉′ = GOO
2−dΓ(−d

2
)

Γ(d)
πd/2 × kd−2λ

(1 + ξ)4
,

even d : 〈O(k)O(−k)〉′ = GOO

(
i
2

)d
πd/2

λΓ(d)Γ(d
2
+ 1)

× kd−2λ 3 + ξ

3 (1 + ξ)3
, (4.51)

where ξ ≡ k−λφ/g∗. We will show how to reproduce these correlators in the bulk
using the adiabatic scheme that we described in the previous sections to compute the
on-shell action of the Goldstone boson. Fourier-transforming the above correlation
functions gives the position-space RG-improved two-point function

all d : 〈O(x)O(0)〉 = GOO
x2(d−λ)

[
1 +

φxλ

g∗

]−4
. (4.52)

4.4.2 The bulk setup: slow-roll backgrounds in Einstein-scalar theories
Following [46, 47, 33, 34], here we will focus on the class of theories where

higher derivative operators are switched off in the Goldstone boson action. These
are theories with the Einstein gravity action and a single bulk scalar field with a
potential. The (Euclidean) action is

S = Md−1
Pl,d+1

∫
dd+1x

√
g

[
−R +

1

2
(∂Φ)2 + V (Φ)

]
. (4.53)

In the case of a domain-wall geometry

ds2 = dr2 + a(r)2δijdx
idxj, (4.54)

and assuming Φ only carries radial dependence, the Einstein equations reduce to

2(d− 1)Ḣ + Φ̇2 = 0, (d− 1)Ḣ + d(d− 1)H2 = V. (4.55)

5 Here the prime denotes that we have stripped the delta function and accompa-
nying factors of 2π from these momentum space correlators.
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It is convenient to view H as a functional of Φ and define

W (Φ) ≡ −2(d− 1)H(Φ) (4.56)

to reduce the equations of motion to be of first order form

W ′ = Φ̇

−1

2
(W ′)2 +

d

4(d− 1)
W 2 = V, (4.57)

where W ′ = dW
dΦ

. For example, in the case of an exact AdSd+1 spacetime with AdS
length LAdS, we obtain

W = −2(d− 1)/LAdS. (4.58)

The assumption of ‘slow-flow’ or softly-broken AdS isometry is to restrict our-
selves the potentials where we are allowed to expand W (Φ) near an AdS extremum
(with AdS length LUV ):

LUVW = −2(d− 1)− 1

2
a2Φ

2 +
1

3!
a3Φ

3 +O(Φ4), (4.59)

where we have conveniently shifted Φ such that this minimum occurs at Φ = 0. This
implies an expansion of V in Φ:

−L2
UV V = −d(d− 1) +

1

2
a2 (a2 − d) Φ2 +

1

3!
a3 (d− 3a2) Φ

3 +O(Φ4) . (4.60)

Now, from the standard AdS/CFT correspondence, one should identify

a2 (a2 − d) = Δ(Δ− d) ⇒ λ = d−Δ+ = a2 . (4.61)

The statement that λ � 1 is equivalent to the boundary RG flow being driven by a
weakly relevant scalar operator O of dimension Δ = d−λ. Such flows were reviewed
on the field theory side in section 4.4.1.

Now, standard AdS/CFT tells us that the OPE coefficient COOO ≡ C is related
to the cubic coupling in the bulk potential; one sees this by taking the ratio of the
coefficient of the three-point function to that of the two-point function [13]. In our
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case, with Δ = d− λ, this yields

C =
a3

Ωd−1
+O(λ) . (4.62)

Thus
LUVW = −2(d− 1)− 1

2
λΦ2 +

1

3!
Ωd−1CΦ3 +O(Φ4) . (4.63)

Now using W ′ = Φ̇, we obtain6

LUV Φ̇ = −λΦ + λΦ2/Φ∗ +O(Φ3) (4.64)

where we have defined
Φ∗ ≡ 2λ

CΩd−1
. (4.65)

One recognizes that the other AdS extremum is at Φ = Φ∗ with AdS length

LIR = H−1
IR = −2(d− 1)/W (Φ∗) ≈ LUV

[
1− λ

12(d− 1)
Φ2
∗

]
+O(λ4) . (4.66)

So in this setup we see explicitly that ΔL
LUV

∼ O(λ3) is suppressed — an assumption
that was made independently in establishing the slow-flow limit in the discussion of
the dilaton effective action in d ≥ 4 in [5]. In terms of the bulk scalar, the definitions
of the slow-flow parameters imply

ε = 2(d− 1)

(
W ′

W

)2

=
λ2Φ2

∗
2(d− 1)

[
Φ

Φ∗

(
1− Φ

Φ∗

)]2
+O(λ7)

η = −2λ

(
1− 2

Φ

Φ∗

)
+O(λ4)

ηκ = −4λ2 Φ

Φ∗

(
1− Φ

Φ∗

)
+O(λ5). (4.67)

6 The above equation is the dual of the field theory beta-function equation in
Eq. (4.46). The AdS fixed point Φ∗ is exactly the same as the IR fixed point g∗ in
the field theory.
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Notice that η ∼ O(λ) while ε ∼ O(λ4). The slow roll parameters ε and κ vanish at
both the UV and IR fixed points, while η takes on the asymptotic values of −2λ and
2λ+O(λ4), respectively.

Solving Eq. (4.64) with boundary condition Φ → φyλ as y → 0, we obtain Φ as
an expansion in the bare coupling φ:

Φ/Φ∗ =
1

1 + y−λΦ∗/φ
= φ

yλ

Φ∗
− φ2y

2λ

Φ2∗
+O(φ3). (4.68)

From the definition of η, this gives

η = −2λ

[
1− 2

1 + y−λΦ∗/φ
+O(λ4)

]
= −2λ

[
1− 2φ

yλ

Φ∗
+ 2φ2y

2λ

Φ2∗
+ . . .

]
. (4.69)

From now on we will only keep the leading-λ contributions and not explicitly write
out the higher O(λp) that have been dropped.
4.4.3 Setting up the adiabatic scheme

For the bulk setup, we consider the Einstein-scalar theories as discussed in
Sec. 4.4.2. It turns out to be convenient to choose the basis of instantaneous AdS
solutions {φi} in the adiabatic scheme to be the modified Bessel function solutions

φ2[r, k,H(r)] = Kd/2−λ(ky), φ1[r, k,H(r)] = Id/2−λ(ky) . (4.70)

The reason to do so is that these are the exact solutions of the equations of motion
near the boundary, so that in the φ → 0 limit, we automatically recover the CFT
two-point function kd−2λ. To see this, note that the equation of motion (4.18) can
be written near the boundary as{

d2

dr2
−H2

[(
k

aH

)2

+

(
d

2
− λ

)2

+O
(
φyλ

Φ∗

)]}
ψ = 0

{
x2∂2

x + x∂x −
[
x2 +

(
d

2
− λ

)2

+O
(
φyλ

Φ∗

)]}
ψ = 0. (4.71)

This choice will trivially modify some of the equations in the previous sections. Since
we are interested in the leading result in conformal perturbation theory, we choose
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to neglect terms that are subleading as λ → 0. For instance, we will take

αi =
d

2
ηφi +O(λ2) = dλ

[
1− 2

1 + y−λΦ∗/φ

]
φi +O(λ2) . (4.72)

At the end of the day, this ends up modifying the Dyson series for c through the
expression of B as in the following way:

∫
rIR

B(r)dr =

∫
∞

dy

y
α

(
−φ1φ2 −φ2φ2

φ1φ1 φ2φ1

)
+O(λ2), (4.73)

where
α ≡ −2dλ

[
1 + y−λΦ∗/φ

]−1
. (4.74)

4.4.4 The on-shell action
We are now well positioned to evaluate the on-shell action in Eq. (4.15). Re-

calling the definition (4.42), we write the on-shell action in terms of the coefficient
c̃1 and the basis of solutions {φi}

Ibndy = − kdε

Hd−1

{
1

xd−1 (1− ε)

[
∂xφ2

φ2

+
c̃1
xφ2

2

]
+

1

xd

(
d

2
+

η

2

)}
τ�kτ−�k

∣∣∣∣
x=xUV

(4.75)

where we have used the UV boundary condition

c̃2(xUV) = 1− c̃1(xUV)
φ1(xUV)

φ2(xUV)
(4.76)

together with the Wronskian of φ2 and φ1.
Denoting c̃

(p)
i as the contribution from the O(φp) term, collecting up to c̃

(2)
i , we

obtain

Ibndy

kdH−d+1
UV εUVτ�kτ−�k

= −d+ ηUV

2xd
UV

− 1

xd−1
UV

∂xφ2

φ2

− 1

xd
UV

1

φ2
2

(c̃
(1)
1 + c̃

(2)
1 + . . .) .(4.77)

The first term is analytic in xUV, so we shall ignore it since we are looking for
non-analytic xUV behavior which is appropriate for a two point function; the terms
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analytic in xUV = kyUV either vanish as the boundary is approached or diverge and
are to be cancelled by the addition of local covariant counterterms to the action. We
implicitly drop analytic terms in the following. The leading non-analytic piece of the
second term is7

− 1

xd−1
UV

∂xφ2

φ2

≈ −d
2−

d
2
+λ−1Γ

(
λ− d

2

)
2

d
2
−λ−1Γ

(
d
2
− λ

) (kyUV)
−2λ. (4.79)

Depending on the whether d is even or odd, the expansion in small λ is different,
and is given by

d odd : − 1

xd−1
UV

∂xφ2

φ2

=
2−d+1Γ

(
1− d

2

)
Γ
(
d
2

) (kyUV)
−2λ

d even : − 1

xd−1
UV

∂xφ2

φ2

= − 2
(
i
2

)d
λΓ

(
d
2

)2 (kyUV)
−2λ (4.80)

which together with the overall kd gives kd−2λ behavior.
The rest of the terms

− 1

xd
UV

1

φ2
2

(c̃
(1)
1 + c̃

(2)
1 + . . .) (4.81)

involve performing the nested integrals. The computation is non-trivial, however, the
resummation of all-orders can be done and is described in Appendix A. The result is

7 We make use of the small x expansion of the modified Bessel functions

φ2(x) ≈ xλ− d
2

[
2

d
2
−λ−1Γ

(
d

2
− λ

)
+ . . .

]
+ x

d
2
−λ

[
2−

d
2
+λ−1Γ

(
λ− d

2

)
+ . . .

]
(4.78)

where . . . are terms of x2 higher.
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the all-order
∑∞

m=1 c̃
(m)
1 obtained in Eq. (4.123) and Eq. (4.134) which resums into

odd d : c̃1(yUV) = −1

2
Γ

(
d

2

)
Γ

(
1− d

2

)[
(1 + ξ)−4 − 1

]
even d : c̃1(yUV) =

id

2λ

[
ξ + 3

3(ξ + 1)3
− 1

]
, (4.82)

where ξ ≡ k−λφ/Φ∗, and leads to

odd d : − 1

xd−1
UV

∂xφ2

φ2

− 1

xd
UV

1

φ2
2

(
c̃
(1)
1 + c̃

(2)
1

)
≈ 2−d+1Γ

(
1− d

2

)
Γ
(
d
2

) (kzUV)
−2λ × (1 + ξ)−4

even d : − 1

xd−1
UV

∂xφ2

φ2

− 1

xd
UV

1

φ2
2

(
c̃
(1)
1 + c̃

(2)
1

)
≈ − 2

(
i
2

)d
λΓ

(
d
2

)2 (kzUV)
−2λ × 3 + ξ

3(1 + ξ)3
.(4.83)

This implies the contributions to the on-shell action

odd d : Ibndy = −
(
εUVy

−2λ
UV

Hd−1
UV

)
τ�kτ−�k ×

d

πd/2
× 2−dΓ

(−d
2

)
Γ
(
d
2

) πd/2 × kd−2λ

(1 + ξ)4

even d : Ibndy = −
(
εUVy

−2λ
UV

Hd−1
UV

)
τ�kτ−�k ×

2
(
i
2

)d
λΓ

(
d
2

)2 × kd−2λ 3 + ξ

3(1 + ξ)3
. (4.84)

These match with Eq. (4.51), so the computation of the Goldstone boson’s on-shell
action indeed reproduces the RG-improved two-point function as computed in con-
formal perturbation theory. This is the main result of this section.
4.4.5 Reading off beta functions and anomalous dimensions

Having obtained the RG-improved two point functions from the Goldstone bo-
son’s on-shell action, we now proceed as in standard field theory to derive the beta
function and the anomalous dimension implied by the Callan-Symanzik equations
that RG-improved correlation functions satisfy.

In fact, the two-point functions obtained above are the bare two-point functions.
Let us denote their position-space version as 〈Obare(x)Obare(0)〉. In any dimension,
the relevant bare two-point function is given by

all d : 〈Obare(x)Obare(0)〉 = GOO
x2(d−λ)

[
1 +

φxλ

Φ∗

]−4
. (4.85)

68



It satisfies the Callan-Symanzik equation

[x∂x − λφ∂φ + 2(d− λ)] 〈Obare(x)Obare(0)〉 = 0 . (4.86)

This implies the following beta function and anomalous dimension for the bare op-
erator Obare and the bare coupling φ:

βφ = −λφ; γφ = −λ , (4.87)

which are all fixed by the classical scaling dimension of Obare which is Δ = d − λ.
The trace of the stress tensor is then

T = βφObare = −λφObare. (4.88)

Using the fact the stress tensor does not renormalize we deduce that

T = βg(μ)Oren = −λφObare (4.89)

where g(μ) is the renormalized coupling at some scale μ, corresponding to the renor-
malized operator

Oren ≡ Obare/
√
Z(g). (4.90)

We choose the renormalization condition to be

〈Oren(x)Oren(0)〉|x=μ−1 = GOOμ2d (4.91)

with 〈Obare(k)Obare(−k)〉|ξ=0 = GOOkd−2λ. From the explicit form of the two-point
function, this implies

√
Z = μ−λ

(
1 +

φμ−λ

Φ∗

)−2
. (4.92)

On the other hand, using Eq (4.90) and Eq (4.89),

βg = −λφ
√
Z (4.93)
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yielding

βg = −λ(φμ−λ)
(
1 +

φμ−λ

Φ∗

)−2
. (4.94)

From the definition of the beta function, we integrate to get

g(μ) =
Φ∗

1 + Φ∗/(φμ−λ)
, (4.95)

setting the boundary condition g → φμ−λ as μ → ∞. Inverting the relation between
g and φ

φμ−λ =
g

1− g
Φ∗

, (4.96)

and rewriting βg in terms of the renormalized coupling g, we obtain

βg = −λg +
λ

Φ∗
g2 +O(g3) (4.97)

which is the familiar result in conformal perturbation theory for weakly relevant
flows.

All together, in terms of the renormalized coupling g, the renormalized two point
function is given by

〈Oren(x)Oren(0)〉 = GOOμ2d 1

(μx)2(d−λ)

[
1− g

Φ∗

(
1− (μx)λ

)]−4
(4.98)

which is what is found in [48, 47]. It satisfies the Callan-Symanzik equations

[μ∂μ + β(g)∂g + 2γ] 〈Oren(k)Oren(−k)〉 = 0 , (4.99)

where
γ = −λ+ 2λ

g

Φ∗
+O(λ3) =

dβ

dg
. (4.100)

In this parameterization it is manifest that the anomalous dimension γ of the dual
operator flows between −λ in the UV to λ+O(λ4) in the IR.
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Upon identifying the RG scale μ with the bulk radial direction μ ∼ aH8 and the
running coupling with the bulk scalar field, one can read off the following relationships
between the parameters encoding the breaking of spacetime symmetry in the bulk
and the RG parameters on the boundary theory

β2(Φ) =

(
μ
dΦ

dμ

)2

= 2(d− 1)
ε

(1− ε)2
= 2(d− 1)ε+O(λ7)

γΦ =
dβ(Φ)

dΦ
=

1

2
η +O(λ4). (4.101)

In fact, it is easy to see that these relationships are explicitly realized in this setup
by comparing (4.67) with (4.97) and (4.100).
4.5 Application 2: reproducing the inflationary power spectrum
4.5.1 The on-shell action

In this section, we reproduce the power-spectrum in slow-roll inflation by making
use of our adiabatic approximation scheme and performing a Wick rotation to that
the background is weakly-broken de Sitter. The perturbation series is organized in
powers of the asymptotic boundary values (or, after Wick rotation, super-horizon
values) of the slow-roll functions (ε, η, κ, etc.).9

With this in mind, and restricting to d = 3, we are well positioned to evaluate
the on-shell action in Eq. (4.15). In this case, the basis of solutions is given by

φ1(x) =
ex(1− x)

x3/2
, φ2(x) =

e−x(1 + x)

x3/2
, (4.102)

8 This amounts to a choice of scheme on the boundary

9 In this bulk computation without a specific boundary dual in mind, we take
the inflationary approach and treat all slow-roll parameters as of the same order in
perturbation theory.
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leading to

Ibndy = k3

{
(1− ε)

[
2e2xUV

(1 + xUV)2
c̃1(xUV) +

1

xUV(1 + xUV)

]
−

(
3ε+ η

2x3
UV

)}
ετ�kτ−�k
H2

UV

∣∣∣∣
x=xUV

.(4.103)

Note that we still have not taken the xUV → 0 limit. Furthermore, no slow-flow
expansion has yet been made beyond imposing the demixing limit. As shown previ-
ously, to compute the coefficients c̃i, one employs the Dyson series expansion - see
Appendix C for some explicit calculations.

Employing our perturbative solutions for the coefficients and expanding near
xUV → 0, we find the following as the on-shell action for the Goldstone scalar

Ibndy =
ετ�kτ−�k
H2

UV
k3

{
1

xUV

[
1− η − ε+ ηκ+ η2 + ε2 + 3εη

]
− 1 + η [b− log xUV] + ε [2(b− 1)− 2 log xUV]

+ ηκ

[
−π2

12
− 1

2
(b− log xUV)

2

]

+ η2
[
−1− 1

2
(b− log xUV)

2

]
+ ε2

[−9 + 6(b− log xUV)− 2(b− log xUV)
2
]

+εη

[
−7− π2

6
+ 5(b− log xUV)− 3(b− log xUV)

2

]
+O(xUV) + . . .

}
,

(4.104)

where b = 2− log 2−γ and the omitted terms are at least cubic in slow-roll. We note
that all slow-roll parameters in the equation are in fact their values as xUV ≡ kyUV →
0. In the inflationary setting, we fix yUV and interpret this as the contribution from
superhorizon modes; while in AdS/CFT, we fix k and regard this as an evaluation
of the on-shell action on a cutoff surface near the boundary.
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4.5.2 The power spectrum
The on-shell action (4.104) can be cast in the following form

Ibndy =
ετ�kτ−�k
H2

UV
k3

{
−1 + bη + 2(b− 1)ε+ ηκ

[
−π2

12
− 1

2
b2
]
+ η2

[
−1− 1

2
b2
]

+ε2
[−9 + 6b− 2b2

]
+ εη

[
−7− π2

6
+ 5b− 3b2

]
+ . . .

}
× (kyUV)

−(ns−1)− 1
2
αs log kyUV + (divergent as yUV → 0), (4.105)

where

ns − 1 = −η − 2ε+ bηκ− 2ε2 + (2b− 3)εη,

αs = −2εη − ηκ. (4.106)

Following Maldacena’s prescription [49] and performing the usual Wick rotation x →
−ixdS, H → iHdS, we recover the following as the classical action for the solution in
a weakly-broken de Sitter background

iΓdS = −M2
Pl,4

∫
d3k

(2π)3
Ibndy(−ixdS, iHdS). (4.107)

dS/CFT tells us that the wavefunction of an asymptotically-de Sitter universe Ψ

is equal to the partition function Z of a CFT. Approximating the former by the
classical saddle, we have

〈T�kT�k′〉 =
δ2Z

δτ�kδτ�k′

∣∣∣∣
τ=0

∼ −2(2π)3δ(
k + 
k′)Ibndy(−ixdS, iHdS), (4.108)

where Ibndy = τ�kτ−�kIbndy. The gravitational wavefunction is expected to take the
form

Ψ =exp

{
1

2

∫
d3x1d

3x2〈T (x1)T (x2)〉τ(x1)τ(x2)+

+
1

6

∫
d3x1d

3x2d
3x3〈T (x1)T (x2)T (x3)〉τ(x1)τ(x2)τ(x3) + . . .

}
, (4.109)
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where T is the trace of the stress tensor of the UV CFT. Of course, correlation
functions are obtained by path integrating over the wavefunction, for instance 〈ττ〉 =
∫ Dττ2|Ψ[τ ]|2∫ Dτ |Ψ[τ ]|2 . We see that only the real part of iΓdS can contribute, and so there is a
natural mechanism by which the divergent terms proportional to 1

xUV
(which would

have been cancelled by the addition of local covariant counterterms to the action in
AdS) in Ibndy(−ixdS, iHdS) drop out. In particular, we see that

〈τ�kτ−�k〉′ =− 1

2Re〈T�kT−�k〉′
, (4.110)

where again the ′ indicates that (2π)3δ(
k + 
k′) has been omitted.
Now consider the following suggestively-named quantity

Δ2
S ≡ k3

2π2
〈τ�kτ−�k〉′

=
H2

UV

8π2M2
Pl,4ε

{
1 + bη + 2(b− 1)ε+ ηκ

(
π2

24
− 1

2
b2
)
+ η2

(
π2

8
+

1

2
b2 − 1

)

+ ε2
(
π2

2
+ 2b2 − 2b− 5

)
+ εη

(
7π2

12
+ b2 + b− 7

)
+ . . .

}
× (kydS)

(ns−1)+ 1
2
αs log kydS

≡ AS(kydS)
(ns−1)+ 1

2
αs log kydS . (4.111)

As remarked under (4.104), in the inflationary context this result is valid only in
the deep infrared. The amplitude AS is in exact agreement with the single-field
inflationary power spectrum of curvature perturbations evaluated at horizon crossing
to second order in slow-roll, while the power-law index ns − 1 (4.106) is consistent
with the inflationary spectral index to second order [50].
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Appendix A: Computations of c̃1 for bulk duals of weakly-relevant flows

Odd d

To extract the leading contribution to the coefficients describing the mixing within
the basis of instantaneous AdS solutions as λ → 0, it turns out that one only needs
to evaluate the x → 0 piece of (φiφj)(x) in the integral of B. The fact that the
leading solution for the coefficients describing the mixing between instantaneous
AdS solutions come from integrals over the bulk that localize near the boundary
is similar to the observation made in [51] in evaluating four-point functions using
Witten diagrams in a particular kinematic limit enabling a double OPE expansion.
With this simplification, ∫

B(r)dr = C

∫ x

∞

dx′

x′
α(x′) (4.112)

where the constant matrix C is defined as

C ≡
(
−φ1φ2 −φ2φ2

φ1φ1 φ2φ1

)∣∣∣∣∣
x=0

=
1

d

(
−1 a22

0 1

)
; a22 ≡ Γ

(
d

2

)
Γ

(
1− d

2

)
. (4.113)

The matrix C has the property that [C2q]12 = 0 and

[C2q+1]12 =
a22
d2q+1

;
[
Ck

]
22

= d−k. (4.114)

The nested integral is now easy to evaluate:∫ 0

∞

dx1

x1

α(x1)

∫ x1

∞

dx2

x2

α(x2) . . .

∫ x2k

∞

dx2k+1

x2k+1

α(x2k+1) . (4.115)
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Substituting the expansion of α in power series of ξ, we have10

(2dλ)k
∞∑

i1,...,ik=1

(−ξ)itot
∫ 0

1

dx1

x1

xλi1
1

∫ x1

1

dx2

x2

xλi2
2 . . .

∫ xk−1

1

dxk

xk

xλik
k

= (−2d)k
∞∑

i1,...,ik=1

(−ξ)itot

i1(i1 + i2)(i1 + i2 + i3) . . . (itot)
=

(2d)k

k!
log[1 + ξ]k(4.119)

where itot =
∑k

j=1 ij. We have set the λ = 0 after the integration. Summing over all
odd k = 2q + 1 gives

V12 = a22

∞∑
q=0

22q+1

(2q + 1)!
log [1 + ξ]2q+1 =

a22
2

[
(1 + ξ)2 − 1

(1 + ξ)2

]
. (4.120)

10 In practice, in extracting the 1/λ term in each integral in the nested integral, we
encounter integrals of the form∫ xm−1

∞
dxm xpλ−1

m f(xm) (4.116)

nested within ∫ 0

∞
dx1(. . .). (4.117)

To isolate the leading (1/λ) piece, it turns out that one only needs to care about the
region of the integration close to x = 0. This is very similar to how one isolates the
leading pole of, for instance, the gamma function Γ(n) as n → 0 from the integral
representation of the gamma function. This implies that we can introduce ε � 1
and split the outer-most integral

∫ 0

∞ dx1 into − ∫∞
ε

− ∫ ε

0
and drop the

∫∞
ε

piece since
this term will only contain subleading terms as λ → 0. For the rest of the nested
integrals, we similarly replace each integrand by∫ xm−1

ε

dxm xpλ−1
m f(xm) (4.118)

since 0 < xm−1 < ε. Within each integrand, since xm � 1, we can Taylor expand
the f(xm) as a power-series in xm.
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Similarly, summing over all k for V22 from k = 1 to ∞ yields

V22 =
∞∑
k=1

2k

k!
log [1 + ξ]k = ξ(ξ + 2) . (4.121)

Using

c̃1(y) =
V12(y, yIR)

1 + φ1(yUV)
φ2(yUV)

V12(yUV, yIR) + V22(yUV, yIR)
=

V12(y, yIR)

1 + V22(yUV, yIR)
(4.122)

we obtain
c̃1(yUV) = −a22

2

[
(1 + ξ)−4 − 1

]
(4.123)

as implied by conformal perturbation theory.
Even d

In even d, some care needs to be taken while evaluating φ2
2(x) near x = 0. It turns

out that there’s already a x2λ/λ leading term (without integration) in this expansion,
and that’s exactly what one wants in the even d case. Since the φ2

2 term only occurs
once in the nested integral, thus this will give the right powers of λ eventually. The
other φiφj(x) term has the same behavior near x = 0 as the odd d case.

Similarly to the odd d case,∫
B(r)dr =

∫ x

∞

dx′

x′
C(x′)α(x′) (4.124)

but now the matrix C(x′) is no longer constant, and is given by

C(x) ≡
(
−φ1φ2 −φ2φ2

φ1φ1 φ2φ1

)∣∣∣∣∣
x=0

=
1

d

(
−1 a22(x)

0 1

)
; a22 ≡

id
(
x2λ − 1

)
λ

.

(4.125)
The matrix C has the property that

[Ck(x)]22 = d−k, (4.126)
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while

[C(x1).C(x2) . . . C(x2q+1)]12 = − id

d2q+1λ

[
1 +

2q+1∑
j=1

(−1)jx2λ
j

]
(4.127)

[C(x1).C(x2) . . . C(x2q+2)]12 = − id

d2q+1λ

[
2q+2∑
j=1

(−1)jx2λ
j

]
. (4.128)

This implies that the computation of V22 is as before and gives

V22 =
∞∑
k=1

2k

k!
log [1 + ξ]k = ξ(ξ + 2) . (4.129)

We first carry out the nested integral for the xj-independent term (the first term
in Eq. (4.127)). This is easily obtained by the techniques of the previous subsection
to yield

− id

λ

22q+1

(2q + 1)!
log [1 + ξ]2q+1 , q = 0, 1, 2, . . . (4.130)

The rest of the terms in Eq. (4.127)) and Eq. (4.127)) and Eq. (4.128) combine into
a general integer powers of C. The calculation for these terms is slightly modified
from the previous sections to include an extra sum.

(2dλ)k
k∑

j=1

(−1)j
∞∑

i1,...,ik=1

(−ξ)itot
∫ 0

1

dx1

x1

xi1λ
1 . . .

∫ xj−1

1

dxj

xj

x
(ij+2)λ
2 . . .

∫ xk−1

1

dxk

xk

xikλ
k

= (−2d)k
k∑

j=1

(−1)j
∞∑

i1,...,ik=1

(−ξ)itot

i1(i1 + i2)(i1 + i2 + i3) . . . (itot) |ij→ij+2

(4.131)

where itot =
∑k

j=1 ij. We have set the λ = 0 after the integration. After some work
and collecting all the pieces, these become

dk

{ ∞∑
k=1

(
2k−1

k!
− (−1)k

3k!

)
logk(1 + ξ)−

∞∑
q=0

[
22q+1

(2q + 1)!
log2q+1(1 + ξ)

]}
. (4.132)
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Together with the constant term (and with all prefactors), the leading result as
λ → 0 resums into

V12 = − id

λ

∞∑
k=1

(
2k−1

k!
− (−1)k

3k!

)
logk(1 + ξ) =

id

2λ
[1 + (ξ + 2)ξ]

[
ξ + 3

3(ξ + 1)3
− 1

]
.

(4.133)
This implies

c̃1(yUV) =
id

2λ

[
ξ + 3

3(ξ + 1)3
− 1

]
, (4.134)

as required by the conformal perturbation theory result.
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Appendix B: The dilaton effective action for weakly relevant flows

Here we review the computations in [27] relating to the dilaton effective action
of weakly-relevant flows and show that making use of the RG-improved two-point
function is equivalent to integrating over momentum shells as is done in that paper.
Once the RG-improved two-point function is known, we will see below that it is
elementary to compute the coefficient of

∫
ddxτ� d

2 τ in the dilaton effective action.
In even dimensions, this establishes the a-theorem for weakly relevant flows.

Following [27, 26], in a general QFT, since the coupling of τ to matter to linear
order is τT μ

μ , the quadratic term (with derivatives) in the τ -effective action contains
a quadratic term:

〈e
∫
ddxτTμ

μ 〉QFT =
1

2

∫ ∫
τ(x)τ(y)〈T μ

μ (x)T
μ
μ (y)〉QFTd

dxddy + . . . (4.135)

In turn, the action contains 2n-derivative terms:

1

2(2n)!

∫
τ(x)∂μ1 . . . ∂μ2nτ(x)

[∫
(y − x)μ1 . . . (y − x)μ2n〈T μ

μ (x)T
μ
μ (y)〉QFTd

dy

]
ddx,

(4.136)
which reduce to the following by symmetry

Γ
(
d
2

)
22n+1Γ(n+ 1)Γ

(
d
2
+ n

) ∫ ddy|y|2n〈T μ
μ (x)T

μ
μ (y)〉QFT ×

[∫
τ(x)�nτ(x)

]
. (4.137)

Now suppose the QFT is deformed from a CFT by a relevant operator φObare. Then
the trace of the stress tensor is given by

T μ
μ = βφObare = −λφObare . (4.138)

The coefficient that we need to compute is then

Γ
(
d
2

)
22n+1Γ(n+ 1)Γ

(
d
2
+ n

)(−λφ)2
∫

ddy|y|2n〈Obare(y)Obare(0)e
φ
∫
ddzObare(z)〉CFT .

(4.139)
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In position-space, the RG-improved two-point function is given by

〈Obare(y)Obare(0)e
φ
∫
ddzObare(z)〉CFT =

1

|y|2(d−λ)
[
1 +

φ

g∗
|y|λ

]−4
. (4.140)

where we have chosen to normalize the Zamolodchikov metric in a particular way (ie.
we’ve set GOO = 1) and g∗ = 2λ

CΩd−1
. The integral can be be evaluated via analytic

continuation in λ, yielding

(−λφ)2
∫

ddy|y|2n〈Obare(y)Obare(0)e
φ
∫
ddzObare(z)〉CFT

= −
πg2∗(d− 2n)Ωd−1 ((d− 2n)2 − λ2) csc

(
π(d−2n)

λ

)(
φ
g∗

)
d−2n

λ

6λ2
, (4.141)

We are particularly interested in d-derivative terms in the dilaton effective ac-
tion. For even d and n = d/2, we have

β2
φ

∫
ddy|y|d〈Obare(y)Obare(0)e

φ
∫
ddzObare(z)〉CFT =

2

3C2Ω2
d−1

λ3 (4.142)

where we have used
g∗ = (2λ)/(CΩd−1) . (4.143)

All together, for even d, the d-derivative term in the effective action can be written
as: [

22−d

3dΓ(d+ 1)

λ3

C2Ωd−1

]
×

[
d

2

∫
ddx τ(x)�d/2τ(x)

]
. (4.144)

In weakly-relevant flows, this represents the leading d-derivative term in the dilaton
effective action - terms with d derivatives and additional factors of the dilaton are
suppressed as the deviation from marginality λ is taken to zero [27]. As a result, this
coefficient represents the leading contribution to the flow of the a-type anomaly for
RG flows induced by a deformation by a weakly relevant operator. For example, we
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have

d = 2 :

[
λ3

12C2Ω1

]
×

[∫
ddx τ(x)�τ(x)

]

d = 4 :

[
λ3

1152C2Ω3

]
×

[
2

∫
ddx τ(x)�2τ(x)

]

d = 6 :

[
λ3

207360C2Ω5

]
×

[
3

∫
ddx τ(x)�3τ(x)

]
.

(4.145)

82



Appendix C: Computations of c̃
(k,l)
i in slow-roll inflation

Computing c̃
(0,0)
i

Here we are denoting by c̃
(m,n)
i the contribution to c̃i at O(εmηn), where by ε and

η we mean their boundary values. Since each V is at least linear in the slow-roll
parameters, at this order, we have

c̃
(0,0)
1 (x) = 0 , c̃

(0,0)
2 (x) = 1 . (4.146)

Computing c̃
(1,0)
i

At this order

c̃
(1,0)
1 (xUV) = V

(1,0)
12 (xUV, xIR)

c̃
(1,0)
2 (xUV) = −φ1(xUV)

φ2(xUV)
V

(1,0)
12 (xUV, xIR) , (4.147)

where

V
(1,0)
12 (x, x0) =

1

2

∫ x

x0

dx1

x1

ε

(
−(2x2

1∂x1 + x1∂x1)φ2 +
3

2
φ2

)
φ2 . (4.148)

Now, in evaluating an integral such as

I(x) ≡
∫ x

x0

dx1ε(x1)
G(x1)

x1

,

we can integrate by parts

I(x) = ε(x′)
∫ x′

dx1
G(x1)

x1

∣∣∣∣∣
x

x0

−
∫ z

z0

dz1ε
′(x1)

∫ x1

x0

dx2
G(x2)

x2

= ε(x)

∫ x

x0

dx1
G(x1)

x1

+O(εη),

(4.149)
where we have used

ε′(x) = − εη

1− ε

1

x
∼ O(εη) . (4.150)
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Of course, this term contributes to c̃
(1,1)
1 , however we will drop the O(εη) contributions

for the rest of this section. Thus we have

I(x) = ε(x′)
∫ x′

dx1
G(x1)

x1

∣∣∣∣∣
x

x0

+ . . . (4.151)

and obtain

V
(1,0)
12 (xUV, xIR) =

1

2
ε(x)

∫ x dx1

x1

∣∣∣∣
xUV

xIR

(
−(2x2

1∂x1 + x1∂x1)φ2 +
3

2
φ2

)
φ2

= εUV

[
1

4
e−2xUV

(
3

x3
UV

+
6

x2
UV

+
3

xUV

+ 2

)
− Ei(−2xUV)

]

≡ 1

4
εUVf1(xUV), (4.152)

where in the second line we have taken xIR → ∞.
Thus, the solution for the coefficients at this order is

c̃
(1,0)
1 (xUV) =

1

4
εUVf1(xUV)

c̃
(1,0)
2 (xUV) = −φ1(xUV)

φ2(xUV)
c̃
(1,0)
1 (xUV) = −e2xUV

[
1− xUV

1 + xUV

]
c̃
(1,0)
1 (xUV) . (4.153)

Computing c̃
(0,1)
i

At the next order

c̃
(0,1)
1 (x) = V

(0,1)
12 (x, xIR)

c̃
(0,1)
2 (x) = −φ1(xUV)

φ2(xUV)
V

(0,1)
12 (xUV, xIR) + V

(0,1)
22 (x, xIR)− V

(0,1)
22 (xUV, xIR) .(4.154)

where upon defining r0 ≡ r(x0), we have

V (k,l)(x, x0) =

∫ r(x)

r0

dr′B(k,l)(r′) . (4.155)

We see that V
(0,1)
12 (x, xIR) is IR-finite and that +V

(0,1)
22 (x, xIR) − V

(0,1)
22 (xUV, xIR) =∫ r

rUV
B(0,1)(r′) and hence it’s independent of rIR, so it is IR-finite.
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To evaluate the on-shell action, we will need the {c̃i} at the boundary x = xUV:

c̃
(0,1)
1 (xUV) = V

(0,1)
12 (xUV, xIR)

c̃
(0,1)
2 (xUV) = −φ1(xUV)

φ2(xUV)
V

(0,1)
12 (xUV, xIR) . (4.156)

Explicitly,

V
(0,1)
12 (x, x0) = − 3

4
η(x)

∫ x′ dx1

x1

(φ2(x1))
2

∣∣∣∣∣
x

x0

(4.157)

where we have integrated by parts and dropped a term proportional to η̇ = Hηκ

since it is quadratic in slow-roll.
The integral is easily evaluated to be:

V
(0,1)
12 (x, x0) =

1

4
η(x)

[
−2Ei(−2x) +

e−2x(1− (x− 2)x)

x3

]∣∣∣∣
x

x0

.

(4.158)

Now we set x0 = xIR and take xIR → ∞ to obtain

lim
xIR→∞

V
(0,1)
12 (x, xIR) =

1

4
η

[
−2Ei(−2x) +

e−2x(1− (x− 2)x)

x3

]
≡ η

4
f2(x) , (4.159)

giving

c̃
(0,1)
1 (xUV) =

η

4
f2(xUV)

c̃
(0,1)
2 (xUV) = −φ1(rUV )

φ2(rUV )
c̃
(0,1)
1 (xUV) = −e2xUV

[
1− xUV

1 + xUV

]
c̃
(0,1)
1 (xUV). (4.160)

It is straightforward to generalize this procedure to higher order in slow-flow;
one must just be careful to collect all the terms that contribute at a given order.
Unfortunately, the matrix B is of mixed order in slow-flow, so at a given order, there
will be contributions from different terms in the Dyson series. We have worked out
the solutions up to quadratic order in slow-flow.

85



Appendix D: Leading corrections due to running speed of sound

Here we compute the leading corrections to the power spectrum and spectral
index due to running speed of sound cs by making use of our adiabatic approximation
scheme. The speed of sound is related to the parameter M2 in the general form of
the Goldstone action (4.7) via c−2s = 1 − 4M2

(d−1)Md−1
Pl,d+1Ḣ

. In particular, allowing for a
running speed of sound, the Goldstone boson action reduces in the demixing limit to

Sπ =
(d− 1)Md−1

Pl,d+1

2

∫
drddx ad

{
H2ε

c2s

(
π̇2 + c2s

(∂iπ)
2

a2

)
−H2ε(1− c−2s )

(
π̇3 + π̇

(∂iπ)
2

a2

)
+ . . .

}
.

(4.161)
Since the power spectrum can be computed from the quadratic part of the on-shell
action, for the moment we will be focusing on solutions to the homogeneous equation
of motion, namely

¨̂π�k +H(d+ η − 2s) ˙̂π�k −
(
csk

a

)2

π̂�k = 0, (4.162)

where we’ve defined π̂ = −Hπ as before, ignored terms that are subleading in the
demixing limit11 and defined

s ≡ ċs
Hcs

. (4.163)

To cast the equation of motion into Schrodinger form we now define

ψ = fπ̂ =

√
εad

cs
π̂. (4.164)

The Schrodinger equation of motion is then given by

ψ̈ −
(
f̈

f
+

(
csk

a

)2
)
ψ = 0, (4.165)

11 Which is now valid for energies much larger than Emix ∼ H
√
ε(c−2s − 1).
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where

f̈

f
= H2

(
d2

4
+

d

2
η − d

2
ε− 1

2
εη +

1

4
η2 +

1

2
ηκ− ds+ s2 − ηs+ εs− ss2

)

s2 ≡ ṡ

Hs
. (4.166)

This is the general form of the wave equation described in terms of the parameters
characterizing the deviation from AdS and the running of the speed of sound. From
here on we focus on the case d = 3. We will write the solutions to the equation of
motion (4.165) as before

ψ(r) = ci(r)φi(r), (4.167)

where now

φ1/2(r) =
e±kỹ(1∓ kỹ)

(kỹ)3/2
,

ỹ ≡ cs(r)

a(r)H(r)
. (4.168)

Note that now
dỹ

dr
= −Hỹ(1− ε− s). (4.169)

The differential equation satisfied by the coefficients is then modified to the
following

ċ = B′ · c, (4.170)

which is solved by a radially-ordered exponential as before. Now, we have that∫
B′ij(r)dr =

∫
dx

2x(1− ε− s)2
αj(x)εikφk(x), (4.171)

where x = kỹ = kcs/aH and

αi(x) =

[
ε

(
−x∂x − 2x2∂2

x +
3

2

)
− 3

2
η + εη

(
x∂x +

1

2

)
+ ε2x2∂2

x −
1

4
η2 − 1

2
ηκ

+s(−2x∂x − 2x2∂2
x + 3) + ηs+ εs(x∂x + 2x2∂2

x − 1) + s2(x∂x + x2∂2
x − 1)

+ss2(x∂x + 1)]φi(x). (4.172)
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We are now in a position to compute the Goldstone boson’s on-shell action to
leading order in s. We note that the boundary conditions are modified so that

c1(ỹUV)φ1(ỹUV) + c2(ỹUV)φ2(ỹUV) =

√
εcs

(ỹUVHUV)3
τ. (4.173)

We then find the following as the contribution of the homogeneous solution to the
quadratic part of the on-shell action

I
(2)
bndy =

a3ε

c2s
π̂∂rπ̂

∣∣∣∣
r=rUV

=

{
ψ(r)∂rψ(r)−H(r)

(
3

2
+

1

2
η − s

)
ψ2(r)

}∣∣∣∣
r=rUV

=

{
−xH(1− ε− s)(c1φ1 + c2φ2)(c1∂xφ1 + c2∂xφ2)−H

(
3

2
+

η

2
− s

)
(c1φ1 + c2φ2)

2

}∣∣∣∣
x=xUV

.

(4.174)

Employing our perturbative solutions for the coefficients and expanding near xUV →
0, we find the following as the on-shell action for the Goldstone scalar

I
(2)
bndy =

εcsτ�kτ−�k
H2

UV
k3

{
1

xUV
[1− η − ε]− 1 + η[b− log xUV] + ε[2(b− log xUV − 1)]

+s[b− log xUV − 2] +O(xUV) + . . .} . (4.175)

It is then straightforward to apply the methods of §4.5.2 to read off the correlation
function to next-to-leading order in slow-roll

〈τ�kτ−�k〉′ =
H2

UV

4εcsk3
{1 + bη + 2(b− 1)ε+ (b− 2)s+ . . .} (kỹdS)

ns−1. (4.176)

The amplitude corresponds (up to the usual factor of k3

2π2 ) to the leading correction
to the inflationary power spectrum due to the running speed of sound, and agrees
with what was found in [52]. Furthermore,

ns − 1 = −η − 2ε− s+ . . . (4.177)
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which agrees with the leading correction in s to the inflationary spectral index found
in [43].
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Chapter 5
Outlook

In this thesis we have recapitulated the relationship between the emergent radial
dimension in asymptotically AdSd+1 spacetimes and the renormalization group flow
of the dual QFTd. In particular, we have reviewed the derivation of renormalized field
theory correlation functions from gravity in asymptotically anti-de Sitter space and
introduced domain-wall geometries as the holographic realization of renormalization
group flows in the boundary field theory. We also presented a new method for com-
puting the on-shell action in an effective description of AdS domain-wall geometries,
particularly useful in the case of weakly broken AdS isometries. We demonstrated the
use of this approximation scheme by considering RG flows induced by deformation
by a weakly-relevant operator, and showed that we could compute the RG-improved
two-point function of the dual operator entirely from the bulk effective theory. We
also computed the on-shell action of the bulk effective theory in a generalized ‘slow-
flow’ setup in four dimensions, and showed that the naive Wick rotation reproduced
the inflationary power spectrum and spectral index at horizon-crossing to second-
order in slow-roll.

In chapter 4 we focused on the computation of the quadratic part of the on-shell
action for the Goldstone boson of the bulk effective theory in the interest of clarity
of exposition — this was sufficient to establish the a-theorem in the special case of
weakly-relevant flows and to reproduce the inflationary power spectrum. However,
it would be interesting to see if, by allowing for more nontrivial interactions of the
Goldstone boson (ie. generalizing the analysis beyond the case of a single scalar with
potential by accounting for the field-theory dependent coefficients {Mn} in (4.7) for
n ≥ 2), our method for the computation of the on-shell action in the bulk effective
theory could reproduce the classification of terms that appear in the dilaton effective
action [28] at all orders in derivatives. In particular, such an analysis might lend
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insight as to how to distinguish between non-vanishing on-shell Weyl-invariants and
terms corresponding to the flow of the conformal anomaly holographically. This
might lead to a more physical principle in the holographic description of field theory
anomalies, without having to make reference to a particular domain-wall geometry
or assume slow-flow.

As a result of focusing on the computation of the quadratic part of the Goldstone
boson’s on-shell action, we never strayed beyond the RG-improved two-point function
of the dual operator. By including the non-trivial bulk interactions mentioned above,
it would be interesting to use our method to compute higher-point RG-improved
correlation functions of the dual operator via this general effective framework. At
the level of soft-limits of the three-point function, it would be interesting to study
the constraints placed by the conformal Ward identity on the effective field theory of
holographic RG flows, directly analogous to the Maldacena consistency relations in
inflation [49, 43, 53]. At the level of the four-point function, it would be interesting
to see the holographic manifestation of the conformal block decomposition in the
context of the bulk effective theory [51, 54].

Finally, it is worth pointing out that our method for solving the Goldstone
boson’s equation of motion and evaluating the on-shell action applies equally well to
the effective field theory of inflation [42]. In fact, the computation in section 4.5 is
effectively a check of the effective field theory of inflation. Although it is doubtful that
there is any desire for such a result in the cosmology community, our method could
obviously be used to compute the inflationary observables such as the power spectrum
to arbitrary order in slow-roll. The example of the bulk dual of a weakly-relevant flow
given in section 4.4 does not quite correspond to standard slow-roll inflation upon
Wick rotation. In particular, we saw that ε ∼ O(λ4) while η ∼ O(λ), as observed in
previous studies of holographic cosmology [46, 47]. However, in standard slow-roll
inflation, ε and η are taken to be of the same order in perturbation theory. It would
be very interesting if we could use this effective framework to put more explicit
constraints on the field theory whose RG flow is the dual realization of slow-roll
inflation.
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