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ABSTRACT 

A general theory is presented to account for the 

dynamics of submerged rigid towed bodies. The equations of 

small lateral motions are derived for the general case of a 

body of an arbitrary shape as well as for the special cases 

of cylinder and gradually tapered body of revolution. The 

criteria of stability are established from the equations of 

motion. 

Some experiments concerning the stability of rigid 

bodies of revolution under axial flow are described and the 

theory is tested. The theory is in general qualitative agree­

ment with the experimental observations. No attempt is made 

presently to draw any definite conclusion on quantitative 

comparison though q uantitative data are obtained both from 

theory and experiments. 
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CHAPTER 1 

INTRODUCTION 

In towing operation of an underwater vehicle, the 

consideration of the dynamic stability of towed ve~icle is 

quite important. Instabilities that may arise in the course 

of towing operation can be of yawing, pitching or rolling 

type or can be any combination of these three types. Usually, 

any form of instability originates from coupled disturbance 

created by aerodynamic and hydrodynamic forces associated 

with the towed body. However, the geometric parameters of 

towed body and of tow-rope may very well affect the stability 

of the system. In either case, an investigation of the dyna-

mic stability of towed body is of practical importance. 

The first substantive study on the subject was made 

by Strandhagen, Schoenherr and Kobayashi (1) in connection 

with the towing operation of ships. In their paper, Strandhagen 

et al. established the criteria for stability of a towed ship 

and these are: (i) the point of attachment of the tow-rope 

should be ahead of the center of pressure of both the static 

lateral hydrodynamic and aerodynamic forces acting on the 

ships; (ii) the ship should be stable untowed; (iii) if the 

ship is not stable untowed, then a variation in the length 

of tow rope should render stability of the ship while towed. 

More recently, the stability of submerged towed 

bodies has been studied by Richardson (~) , Patton and Schram 

(3), Jeffrey (4), Schram and Reyle (5), and by many others. - - -
Jeffrey's study indicates the relative significance of the 
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different modes of oscillation and the relative importance of 

body design and cable configuration effects in each mode. 

Richardson asserted that the modes of oscillation of a towed 

body are essentially dependent on the body derivatives and 

hence on the geometric parameters. 

A somewhat different approach to this subject has 

been motivated by the stability study of the Dracone flexible 

barge. The analysis of the stability of Dracone barges was 

first made by Hawthorne (6). Later, the dynamics of flexible 

slender cylinders in axial flow were studied by Paidoussis 

(2), (8). He also studied the stability of submerged cylin­

drical bodies - both flexible and rigid (~), (10). In the 

case of flexible slender cylinders, stability has been found 
• 

to be highly dependent on towing speed and both rigid-body 

type instabilities and flexural instabilities have been shown 

to exist. That the geometric parameters of the towed body 

have some effects on the stability were also shown by Paidoussis. 

It is of great interest, therefore, to study the stability of 

towed bodies of variable geometric parameters. 

In this paper, we shall derive the equations of 

motion of a submerged rigid towed body of any arbitrary shape. 

The derivation shall not follow that of Paidoussis. Instead, 

we shall derive the equations from the classical force and 

moment balance concep t. The total force on the rigid body and 

the total moment can be obtained by integrating the elemental 

force and moment fields over the contour of the body. The 

equations of motions thus obtained will be more general since 
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the shape of the body is fairly arbitrary. As special cases, 

we shall also derive the equations of motion for a uniform 

cylindrical rigid body and for a gradually tapered rigid body 

of revolution. From the equations of motion thus obtained 

for gradually tapered cylinders, we shall examine the criteria 

of stability. 
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CHAPTER 2 

EQUATIONS OF SMALL LATERAL MOTIONS IN AXIAL FLOW 

We shall derive the equations of small lateral 

motions of a slender rigid body of revolution, the general 

shape of which is shown in Figure l(a). Figure l(b), (c) and 

(d) show three particular shapes of a rigid body of revolution, 

for which cases the stability will be studied later on. The 

general equation of motion will be presented in the form: 
. Mq + Cq + Kq = 0 (2.1) 

where q .... generalized co-ordinates 

M .... generalized inertia element 
) c .... generalized damping element 

K .... generalized stiffness element 

The body is supported by a string (tow-rope) to prevent 

it from being washed away downstream. It has a mass per unit 

length of m(x), cross-sectional area S(x), and flexural rigidity 

EI(x). The fluid is incompressible and has a uniform flow 

velocity U parallel to the x-axis, which coincides with the 

longitudinal axis of symmetry of the body in its static equi-

librium configuration. It is to be noted that the incompres-

sibility assumption is quite justified since the towed body is 

to be immersed in axially flowing water. 

The general problem of a rigid body in axial flow is 

extremely complex in nature and 1n order to achieve any mean-

ingful solution to the problem, certain simplifying assumptions 

have to be made. The general equations of motion will be de-

rived following these assumptions and hence any subsequent 
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(a) Body of revolution of arbitrary contour 

c _______ _______...) 
(b) Cylindrical body of revolution 

(c) Non-uniform body of revolution with 

pointed tail 

c===========--
(d) Gradually tapered body of revolution 

with pointed tail 

Fig. 1 MODELS OF SUBMERGED RIGID TOWED 

BODIES 

) 

·' 
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analysis of the problem will be limited by the applicability 

of the same. 

We assume small lateral motion y(x,t) and assume 

that all the spatial derivatives of y, namely, ay;ax, 
2 2 a yjax and so on, to be very small so that no separation 

occurs in cross-flow. Further, we assume that dS/dx and 

d(EI)/dx are small; the first assumption ensures that no 

separation occurs in axial flow and the first and second assump-

tions allow us to use the Euler-beam approximation to describe 

the flexural forces. In addition to the above assumptions, 

we consider that the time derivatives of the displacement 

y(x,t) are small. The last assumption limits the scope of 
• 

the problem to a great extent and leads to a first order approx-

imation of the actual conditions. For most practical purposes, 

however, this first order approximation is sufficiently precise. 

The other set of assumptions to complete the list 

comes from the following consideration. All motions are assumed 

to take place within the (x,y)-plane which is taken to be hori-

zontal. The body is ass umed to be neutrally buoyant and to have 

uniform density . This is to ensure that at zero flow velocity 

there are no constraining forces or moments in the y~direction 

to keep the body along the x-axis. It is also assumed that 

there is no internal dissipation in the course of subsequent 

motions. 

Let us now consider an elemental volume ov of the body. 

The force and moment systems acting on this elemental volume 
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are shown in Figure 2. FN and FL are the normal and long­

itudinal components of frictional forces per unit length, 

FA is the lateral inviscid hydrodynamic force per unit length, 

FBL is the force per unit length that arises from the boundary 

layer and sideslip effects, FT is the boundary forces asso­

ciated with the elemental volume ov(=nr2 (x)ox). It is to be 

noted that FT is a function of T, the axial tension of the 

tow-rope. 

We can now write the force and moment balance equa-

tions in the following form: 

F~: -FLS~e~"- (~..a+tA+~eL)CosaJ'x -~~T.s~ASx •x \ 

M --

- m(x) ~'1 Sx 
()le,'~-

( 2. 3) 

(2.4) 

where z(x) is the normal distance from the mass center of the 

elemental volume to the line of action of FT. 

In principle, equations (2.2) to (2.4) can be summed 

over all the elemental length to obtain the force balance and 

moment balance equations for the system as a whole. Thus, 

~~X= ~FLCos6h - 'L.(I=N+FA-tF13L)S""'6dx 

- ~ 'd_£r Cos~ ~X 
()X. 

(2.5) 
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y u 

(a) Force and moment systems acting on the ridid body of 

revolution 

y 

t------.-x 

(b) Force and moment systems acting on an element of the 

body 

Fig. 2 DIAGRAM REPRESENTTNG FORCE AND MOMENT SYSTEMS 

.--
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2:, F'j = -2: F\.. s~e S x - 2, ( FN-+ FA+ Fe,'-}Cos e ~x 

- ~ dfT S~~b)(- ?:~(x) t):'i 5X 
dX. ()t~ 

( 2. 6) 

In the continuous case as 8 + 0, the discrete sums in equations 

(2.5) to (2.7) can be replaced by definite integrals. 

( 2. 8) 

.. 
( l ~ 

.: -) Fl.. ~ ~ -
0 ~X. ( 2. 9) 

(2.10) 

The equations of motion can now be obtained by equating 

the right hand sides of equations (2.8) to (2.10) to zero. 

We have not yet specified the functional forms of the 

hydrody namic forces. Some of these functional forms are expressed 

as material derivatives of displacement function and hence when 

they are substituted back into above equations, the integrations 

become s very comp licated. In order to simplify the situation 

a little further, we need some added assumptions and these are: 
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(i) The boundary layer induced force field has little 

effect in the course of motion of towed body and hence it can 

be neglected throughout; 

(ii) There is no side-slip 1n the course of motion; 

(iii) The integral of boundary forces over the whole length 

can be equated to the axial force T of the tow-rope. 

We now give the functional forms of the hydrodynamic 

forces. The viscous forces, as proposed by Taylor (11), and 

elaborated by Paidoussis (2), (~), (12) are given by 

FL : ~ c,. [ es <~>; ll(x) l \J l (2.11) 

!=N = i CN [ f S(>') /plx)j U [ (~':lfa.t) + U' (21 ~/0')()1 
(~.12) 

where eT and eN are the coefficients associated with FL and FN 

respectively, and S(x) and D(x) are the cross-sectional area 

and the diameter of the body at any distance x. 

The axial force, T, at any distance xis given by (12) 

L 

\ (?1) = ~ Cz. fS(L) \T 
2

-+ i C.T fU ... f>< [ S(x)/1>(·0\) }::t X ( 2 .13) 

where e 2 is the form-drag coefficient. 

The lateral inviscid force, FA, represents the reac­

tion on the body of the force required to accelerate the fluid 

around it and, as proposed by Lighthill (13) and later by 

Paidoussis (12), is given by 

(2.14) 

Let us now substitute the expressions for FL, FN, FA 

from above to equations (2.8) to (2.10) and carry out the 
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integrations. The equations of motion can thus be obtained as 

- T Cos~ .:: o 

(2.16) 

(M) TOTAL = 0 (2.17) 

~ 

The last of these equations is obtained by assuming 

that the line of action of the axial force T passes through 

the mass center of the body about which the moments of all the 

forces have been taken. 

The equations thus derived do not yield any informa-

-
tion in that form and to extract anything meaningful, we have 

to do a non-dimensional analysis of the equations. This means 

that we have to express these equations in terms of some non-

dimensional parameters that have definite physical meaning and 

hence can be measured experimentally. However, before we step 

into the non-dimensional analysis in Chapter 4, let us 

rewrite the integrals of equations (2.15) and (2.16) in neater 

form. Let us also try to find an explicit form of moment 

equation (2.17). 

Refering to Figure l(b), let us consider that there 

are no viscous forces in the small segments of the nose-end and 
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the tail-end of the towed body. Let us also consider that 

other fluid forces in these segments are multiplied by factors 

f 1 and f 2 to account for the departures from slender body 

approximation. Lastly, let us consider that the second order 

terms are negligible in these small segments. Carrying out 

the integrations of (2.15) and (2.16) for the nose end of the 

body over a length ~ l' where ~l is small compared to total 

body length, L, we get 

where p is the density of the material of towed body. Neglec­
s 

Io.Q,l d 
ting the d~ dx term (in comparison to other terms in the 

expression) , we get 

~ d~~ ~ 
F2..:: ct,rs -t~ "'- f,esu(d~ +U~~ )-(J 5 ~-~ x, -'TS~AJ 

?> )t ax. \~ at"' ,... x ~ o 

where x
1 

is defined by the relation 

, re. )( , = - ) 5 ( x) c:lx 
5 0 

a nd S is the cross-sectional area at x=x the x-coordinate of c, 

the center of gravity of the towed body. 

Introducing the virtual mass M - pS and m -

finally get 

p S, we s 
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Similarly, carrying the integrations of (2.15) and 

(2.16) for the tail end of the body over a length £2 where £2 

is of the same order as £
1 

and noting that there is no axial 

tension at the tail-end, we get, 

where x
2 

is defined by the relation 

L 
><~ = J_ 5 S()()~"' 

~ L-t'Z.. 

(2.20) 

(2.21) 

We now write the equations of force balance for the 

main body as 

(2.22) 

(2.23) 

For the ma in body, we shall only be interested in the 

force bala nce in y-direction. Following Paidoussis (12), we 

can approximate equat ions (2.23) by 

L L 
f2. -t F4\ - ) FL. ~~ dX - J ( F~ +FA )c=.\)( -5 L ~ d_?''J d.x :. o 

0 ~ )( () 0 ~"'" 
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Or, 

(2.24) 

1 2 L 
where 1' is replaced by 2 MU (C 1+c 2+cT D) ,c1 and c 2 being the 

form drag coefficients and D is the diameter at mass center. 

In order to obtain the moment equation, we multiply 

the force terms in equation (2.16) by x and carryout the inte-

grations in the manner described above. This gives 

- ( t \ M+ Y'l\) X 3 L ~2 ~ ( - ~ 1 M U L ( ~~ + U !..~ '\ \ 
~\: )")\:. 0 )\: dX ) X::. o 

-\- {M \J~ L (~\+c.+ Cr .k) S\M. ~ + (-52 t-'\ +'M) XA L d_::y \ 
~ , )~ ~~L 

-h. MUL l ~ + u ~'!)I + t.!. eT (f!.;.,) u'a.x ~~ c:Mc 
'?Jt ~ )(. ~ = L o 2. ~~ ~ '( 

+ r-{ ~ CN ~ ~5/p) U [ (a~~t) T Ll (a~~ X)]+ f S [(a/at)+ U (3/ax)f~ 

where 

.t., 
~3 .: .!. ) X S lx) ~ x 

SL o 
and 

(2.25) 

L 

-x4 -:. .l. J .'( S (x) ~ x 
SL L-e 1 
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Equations (2.24) and (2.25) represent the equations 

of motion of a submerged rigid towed body of any arbitrary 

shape. 

I 
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CHAPTER 3 

EQUATIONS OF MOTIONS FOR SPECIAL CASES 

3.1 Cylinder 

For a cylinder S is constant and hence dS/dx = 0. 

Also, due to the symmetry of the body, we can integrate the 

force and moment terms in (2.24) and (2.25) from -L/2 to L/2 

instead of from 0 to L. Then, 

( 3. 1) 

where CTP 
L 

- Cl + c
2

+ CT D' YN is the y-coordinate of the tow 

point and s is the length of the tow rope. Also, 

( 3. 2) 
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For rigid-body motion, let us now take the generalized 

coordinates to be the lateral displacement of the mass center, 

Ye and the angle that the body makes with the x-axis, ~. The 

displacement at any point will then be given by 

y (x,t) = y (x,t) + x~ (x,t) c 
( 3. 3) 

Substituting equation (3.3) into (3.1) and (3.2), we 

obtain the equations of motion for a cylindrical body as 

. \_M ( L + ><d', + .X"l fz..) + W\ (1... H 1+ X1 )) ;c.+ n. '"' ~1.. 
( ]

• \ 2. 

+MU f\-.fl.) ~c+;-~~u Crp '1e T i [M (x1Jl.-x,S.,) 

-+ W\ (x 1 -x 1)] (i> + 1\1\UL ( '2.- -1\~h) cf 

~ - [(.f,- i2.) +- i<cr +eN)~ - t J Mul-cp ::. o 
I 

(3.4) 

and, 

( 3. 5) 

Similar solutions were obtained by Paidoussis using the theory 

of (12), namely 

[ M ( L + .,.., f I + )("1 f .z ) -+ W\ ( 1... + )( I .. l( 2.)] ~' + [ 1 c N 1'-
• ' '2. +Mu (f,-f2.)) 'jG. -t ih Mu c,P ~c.+~("' (x 1 fl.-x,f\) 

-t \V. l X 1-- X, ) 1 q, ~ M U l ( l - .f~ .f '1. ) cf 

+ [(.f,-f.,)+i (CT+CN) t- ~ .... ) 1\1\u .. ~::. o 
(3.4a) 

and 
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-1 [M L (X\ f \ - )( ~ ~ z..) + ~ \.. ()C. \ - -x.-.)) ~'- - ~ MU L.. ( -t \ + -f 2.) ~ t: 

-!: t-1\Jl.Crp ':1, + ..!. [Ml..-a.( ~ "" l)(,f,-+X1-S1..) + t.<u.L,.( L x1+x1.)] .. 
~ " 2 a 2. T ,., 11. + ~ cp 

+ MU L'l. [ f ~ -ll- + ! CN J: ] ~ + M l.ia. L (.i .!:: e,. p - .fl!. t'\..J ttJ- 0 '2.. ZC\ P 8 ~ 2 ,._ 

(3.5a) 

3.2 Non-uniform body of revolution with pointed tail 

In this case we cannot consider the force and moment 

systems at the tail end separately. We have to include them 

in the force and moment systems of the main body. Therefore, 

any term with f 2 and x 4 will not appear in the equations of 
I 

motion. Also, unlike the case of cylindrical body, we have to 

integrate the force and moment terms, in this case, from 0 to 

L. Equations (2.24) and (2.25) can now be written as 

and 

+ ~~\~eN (t'S/D) l ~':lt -t \J ~~] -+ fS [C"/at)+ \J ("~/~x))\ 

+ f U [ l 0-~ ) -t U ( ~ ~ )] (o\s ) ' X ~ X -t 5 L ..... (X) ~ ':\ X .:A l( .: 0 
~ t a" o\ )( J o 'd-t"" ( 3. 7) 
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For rigid body motions, we take 

y = Yn - x cp ( 3. 8) 

where yN is the displacement of the nose-end and 4> is defined 

by equation (3.3). Substituting equation (3.8) into equations 

( 3. 6) and ( 3. 7) , we get 

and 

where 

[x, (flllf,-.~) + Xs(M+w.)]~N + M1..1(-ft+1CN ~'+x1 J~., 
+ l MOl. CTP 'j ~ - L Xg ( N\ + W\) io _ MU L (.!. c Xq 

2 h .,. 2. ~ -p + 2. ><s (3.9) 

- [ X3 L (Mt, + ~)- Xg L ('1+ W\)] ~N - M\JL [7,- iCN ~q- 'XtbJ ~~ 

4 "" ~ ( ) •• ,. (1 'X + - M \J L C T p ~ N - L X H M + W\ <f - MU~ C.N ~ 2. 
2~ ~ p 

-t 1 )( 11 + ')( t ~ J <f + M V :a. L [ 5 I - i; ( C"T +CA!) -X I 0] <.f -: 0 

... 
=- l ~ .s ( )() a x 

s 0 

- :p ( L. [ .s ~)() J d. 
- S J o P (x) X. 

X'l = 

(3.10) 
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x,o - \ j~ x (~~)a)( - -SL 

L . 
0( ,, - - ) )( ~ S (x) a X - S L-a. 

0 

\. 

)(1'1. .. 1) ~ r~ c)() J c:( -
.S L2. o .1/ (X) ')( 

xt3 - \ ~.>(~ ( ~:) c:(x -
SL'1 

(3.11) 

Equations (3.9) and (3.10) can be regarded as the 

equations of motion for a non-uniform body of revolution with 

pointed tail. 

3.3 Gradually tapered body of revolution with pointed tail 

The equations of motion in this case are exactly the 

same as in previous cases. One additional simplification can 

be made, however, due to the fact that S(x) and D(x) are some 

known functions of x, namely, 

p (x) - L-x 
Oo - -L 

and 
S()() Tt 1.. 

~o ( L - )( ) '1. - -- 4 l2. 

where D is the value of D(x) at x = 0. 
0 

(3.12) 

Substituting equations (3.12) into (3.11), we get 

"'s 
rt '() '2. r L - _o (L-X)2.c:Ax -

4.5 \..~ 0 

L 

X{, - ~Do. ) (L-)() eA)( -
4SL 0 
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l(8 :: 

1- L 
)( \0 ... -~ l>o ~ X ( L. - lC) t:4 X :: -Do X" - -.. s '-3 0 J)L (3.13) 

"2. L 

~" - ~o ) x'l.(L-x)?. ~)( -
~ S L4\ 0 

L 

)(\'2. 
1t t>bo ~ x~(\..-x) d>' - -- "s \.3 0 

1-

The equations of motions are now given by (3.4) and 

(3.10) where x
1

, x
2

, ... etc. are given by (3.13). 

In matrix form 

., 

•• 
cp 
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' ,. - ...., u C-rp 
21) 

--

Comparing with equations (2.1), we can say 

[M)= 

[c] = 

-
[kJ = 

X\ {~.f\ +~)+X; (~+'M) 

MV (f, + 1 c~ ~- + X 7 ) 
2. l> 

t 2. 
- MU L C.Tf' 
2'.> 

(3.14) 

I 

(3.15) 
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CHAPTER 4 

NON-DIMENSIONAL ANALYSIS 

We shall now make an attempt to investigate the 

dynamics and the stability of the towed body system. The 

derivation of the frequency equation and its subsequent ana-

lysis constitute a major part of this investigation. 

For the sake of simplicity, from here on, let us 

only refer to the gradually tapered body of revolution with 

pointed tail and the corresponding equations of motion. This, 

by no means, limits the scope of the method of analysis that 

will be presented below. 

Having known [M], [C], and [K] from equations (3~15), 

we can write the equations of motion as 

( 4. 1) 

For the homogeneous case without damping term, the 

eigenvalues of the system is given by the determinantal equation 

de t { ll [ U] - [ W] } = 0 
( 4. 2) 

where ll'S are the eigenvalues, [U] is the unit matrix and [W] is 

-1 
the inverse dynamical matrix and is equal to [M] [K]. 

This method of analysis is quite straight-forward for 

undamped homogeneous systems and even for a damping homogeneous 

system, provided that the equations of motion can be decoupled. 

A more appealing method of solving the general problem of (4.1), 

however, is that of non-dimensional analysis. 
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Following Paidoussis (12), we define the following 

non-dimensional quantities: 

L 
' E: - D ' T 

- Ut and X 
L r 

Xr 
for 

L 

r = 1, . . . ' 6, 8, 9, 11, 12. 

It is to be noted that x
7

, x
10 

and x13 are already non-dimensional 

by definition and hence we can define 

X = x fors= 7, 10 and 13 
s s 

Let us now consider the solutions of the form 

and ( 4. 3) 

where w is the dimensionless frequency defined as w = nL/U, 
I 

n being the complex circular frequency of oscillation. 

Substituting the non-dimensional parameters in equa-

tions (3.9) to (3.11) and noting that the assumption of neutral 

buoyancy requires m = M, we get 

and 

[ ~ l ( l + f \) + 2 X, 5 ] ~ + L f \ + i E C ~ 'X,~ + 'X,7] ~ + J.. C T p ~ 
21\. 

- ~ 'Xg ({> - [ ~ E C ~ 'X, '\ "'" '2. 'Xg -\ ~ l o J Cp 

- [ f \ + ~b E ( C T + C N) ;. ~7 J Cf :: 0 ( 4. 4) 

[z X8 - x.3 (1-+ .f, )] ~ - [ f,- { E c .. x."'- A- 10 J ~ + i:A cTP 7. 

- '2 ?(. 11 if> - [ .!2 E C rJ X. ll. '+ z 'X 11 + "X. I !I J cf 

+ [.f l - iq ~ ( CT -t C N) • 'it\ 0 ] tp ::: 0 
(4.5) 

· . f H iwT d ~ ~ iwT Subst1tut1on o n = e an ~ = ~e now yields 
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-t ~ [ 2. c.u1. -x.8 - i..w \ ~ € c.., -x.., -+ 2. "X..s -t 7t ao J 
- {fa+ { E- (CT-~oc,..) 'X." -t it1}] :. o 

( 4. 6) 

and 

-+ ~ [ ?. c.u 'Z. it 11 - l.w{!EC.a'X- 11.-~o 2Xu+ 'ita3J 

+ { .f I -1 E (eT t Co~) ?\,'1 _ ?{,10 J] - 0 ( 4. 7) -
Or, . matrix form 1n I 

- Lo)1. t XI (• + ~.)-+ z Xs-} + i....., t-\. E Cto~ ?tc. +"'t1 + f,} + 1-A CTf' 

2.c.>"'-x.8 - i.."' 1. { ECN 'X.'l -t z-:t8 + 'X.1oJ- \_f1 -tie(CT-tCN)X-,.-~ox.1J 

- c..>1. t 2. 'X-8 - ~ ( t-+ fa)} - i..w tf1- i E c~ 'X. 1- 'X. to}-+ f ll. eTP 

2. r.>1. ?1. 11 - l.c.u { 1 E- c N -;(I"L + 2 'X 11 -t 'X. as J -p:, -~ E (eT t4J )~- 'X.11,J 

0 
--

D 

(4.7a) 

For non-trivial solutions of H and ~ ' the determinant 

of the coe fficient matrix must be zero. This leads to a quartic 

in w, namely 

- 0 ( 4. 8) 
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CHAPTER 5 

STABILITY ANALYSIS 

The dirnensionless complex frequency w has been corn-

puted numerically for different values of system parameters 

using equation (4.8). Some of these values are shown in 

Table I. 

In the case of a rigid body, the threshold of yawing 

instability as defined by Paidoussis (12) implies w = 0. From 

equation (4.8), then, we get a = 0. Now 
0 

o(o :: ~~ [ {ft -lE (CT +CN) A:.,- 'X.to} + { :f-1 

-t- i € (CT-+C~)~c. + ?{,7 J] I 

= ~~ {z1\+i€(CT+CN)(it"-A.q)+(Jt7-X 1o)J 
Hence a - 0 implies 

0 

Equation (5.1) shows that the threshold of yawing 

instability does not depend on A; neither does it depend on 

CTP. This confirms the result found by Paidoussis (12) for 

a cylindrical body. We can therefore find the critical value 

of design parameter f 1 as a function of CT and CN, namely 

(5.2) 

The threshold of oscillatory instability can be deter-

mined from the solutions of equation (4.8). In general, the 
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TABLE I 

Rigid body frequencies for sCT - 2.0 

f 1 A - 2.00, sCN = 0.0, c 1 - 1 - fl 

wl w2 w3 

1.0 4.988 -1.563 0.248-0.016i 

0.8 4.513 -1.518 0.344+0.002i 

0.6 3.961 -1.451 0.408+0.02li 

0.4 3.301 -1.346 0.445+0.043i 

0.2 2.466 -1.166 0.431+0.076i 

o.o -0.240 -0.690 0.181+0.848i 

Rigid body frequencies for se = 
T 

0.2 
I 

A - 10.0, sCN - 0. 0 ' cl - 1 - fl 

fl 
wl w2 w3 

1.0 4.955 -1.201 0.238-0.180i 

0.8 4.466 -1.123 0.283-0.169i 

0.6 3.893 -1.024 0.328-0.158i 

0.4 3.201 -0.891 0.376-0.134i 

0.2 2.304 -0.708 0.436-0.039i 

0.0 0.533 -0.460 0.550+0.346i 
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roots of the equation, w., will be complex. Also, since the 
J 

system has an infinite number of degrees of freedom, we have 

an infinite set of frequencies, · w .. If the imaginary compo­
J 

nents of the frequencies, Im( w.) are all positive, then the 
J 

system will be stable. If, on the other hand, Im(w.) < 0, 
J 

then the system will exhibit instability in the jth mode. If 

the corresponding real component of the frequency, Re(w.) is 
J 

equal to zero, the system will be unstable in the yawing sense; 

if Re( w.) is not equal to zero, the system will be unstable 
J 

in the oscillatory sense. Hence, the threshold of oscillatory 

instability implies Im( w.) < 0 and Re( w .) ~ 0. 
J J 

Some stability diagrams (cf. Fig. 3-5) are constFucted 

using equations (5.1) and (5.2) to show the relative dependence 

of stability on various system parameters. 

Figures 3 and 4 show the thresholds of yawing and 

oscillatory instabilities as functions of f 1 , £CT and £CN for 

a fixed value of A. Figure 5, on the other hand, shows the 

stabilizing effect of A for a fixed value of £CN and for dis­

crete values of £CT. The general procedure of construction of 

all these diagrams was as follows: (a) a set of values of f
1

, 

£CN, £CT, c1 and A were selected; (b) the complex frequencies, 

w, were computed f or the set of values in (a); (c) the critical 

values of f 1 , £CT and A that meet the criteria of oscillatory 

and yawing instabilities are located in f 1 - £CT or f 1 -A plane. 

A close look at the stability diagrams reveals two 

pronounced ph e nome na; the first being that the system is always 

stable in t h e oscillatory sense for £CT = 0.0 and irrespective 
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FIGURE 3. The effect of seT and f 1 on stability of the rigid 

body of revolution of FIG. l(d) with A= 2.0, 
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FIGURE 4. The effect of cCT and f 1 on stability of the rigid 

body of revolution of FIG. l(d) with c1 = 1 - f 1 

and cCN = 0.0 
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of the values of A and f
1

; and the second being that the more 

streamlined a rigid body is in its nose-end, the less stable 

it is for larger ECT and for a fixed A. The reason behind the 

first phenomenon is quite evident because of the fact that the 

absence of the lateral hydrodynamic forces will render the 

system more stable. The reason behind the second phenomenon lS 

not known and the phenomenon itself is contrary to the intuitive 

reasoning that the more streamlined the nose-end of a body is, 

the more it is stable while towed. 

In all the stability diagrams presented above, the 

value of ECN has been taken to be equal to zero. This means 

that there is no frictional force acting on the systems. pb­

viously, in a practical situation, this is not the case. Hence 

the question may arise, what is the effect of ECN on the stability. 

It has been found out that for only smaller values of ECN, 

the system is susceptible to oscillatory instability; for 

larger values of ECN' the system is almost always stable 

irrespective of the other parameters, namely ECT and f 1 . The 

last important observations that can be made from the stability 

diagrams is t hat for very s mall values of f 1 (0 - 0.03), the 

system is always stable for fixed values of ECT and ECN and 

for any value of A, no matter how large it is. 

Although A is not a controlling factor for yawing 

instability, it definitely has a stabilizing effect on the system. 

Table I shows the relative stabilizing effect of A for 

ECN = 0.0 and ECT = 0.2. We notice that smaller value of A 

(= 2.0) stabilizes the system for almost all values of f
1

; on 

the other h a nd, larger value of A (= 10.0) destabilizes the 
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system for almost all values of f
1

. This is to say that no 

matter how poorly streamlined the nose-end of a rigid towed 

body . 
lS, a shorter tow-rope will almost always render stability. 

This can also be apparent from the following consideration. 

Let the length of the tow-rope be very large corn-

pared to the length of the body. Also, let the form drags 

of the system be of finite small magnitudes. This means 

CTP/A is very small and in the limiting case eTP/2 A tends 

to zero. Then for any arbitrary combination of the system 

parameters f 1 , eN and eT, the system will exhibit oscillatory 

instability. On the other hand, systems which are not stable 

in the oscillatory sense for some values of A can be rendered 

stable for smaller values of A. 

It is to be noted that the effect of other non-

dimensional geometric parameters besides A, namely, x1 , 

x2' ... ' xl3 on the stability of the system has not been 

discussed in this paper. This, by no means, implies that 

these parameters do not affect the stability. However, within 

the scope of the present analysis, we have limited ourselves 

to the stability study of a particular geometry and by doing 

so any effect of the parameters xl' x2' ... xl3 on the 

stability has been eliminated. Incidentally, the values of 

. x13 have been computed numerically using equa-

tions (3.13) and using Simpson's rule of numerical integration. 

Also, a program has been written to compute the numerical 

values of the complex frequencies that are roots of the corn-

plex polynomial represented by the left hand side of this 

equation (4.8). The program is shown in the appendix. 
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CHAPTER 6 

EXPERI ENT 

6.1 Apparatus 

Experiments were conducted with a gradually tapered 

rigid body of revolution as shown in Fig. l(d). The body was 

8 in. long and 0.5 in. maximum diameter and was made from ny-

lon 6,6 (8p. gr. 1.09-1.14) rod. The nose-end of the body 

was 7/8 in. long and the contour was parabolic in shape. 

The sharp pointed tail of the body was produced by a special 

manufacturing technique. The design criteria of the body were 

carefully chosen so that the finished body would be neutrally 
I 

buoyant sectionally. Though the exact result could not be 

achieved due to manufacturing difficulties, the body was 

found to be neutrally buoyant as a whole. 

The rigid body was held vertically inside an 8 in. 

diameter glass test-section by a nylon string from a support. 

The test-section was part of a water tunnel equipped with pump, 

compressor, e xhaust and other accessories. The nylon string 

could be varied in length. The support was well designed to 

prevent any separation in axial flow of water. All the tests 

were carried out under fully developed turbulent pipe flow 

conditions. All secondary flow effects were eliminated by 

placing flow-strai ghtening devices before the test-section. 

The flow velocity was measured with an orifice. The maximum 

flow velocity attained in this experiment was approximately 

5 ft/sec. 
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6.2 General Observation 

Experiments have been carried out for four values 

of A, namely- A = 1, 3/4, 1/2 and 1/4. In all cases, at very .· 

low flow velocities (u < 1.87), the system was stable. At 

higher flow velocities (u > 1.87) yawing instability was 

observed. In the intermediate flow range (2.9 ~ u ~ 3.45), 

the system started oscillating in addition to yawing. The 

oscillation was very irregular and it occassionally died down. 

Mixed modes were suspected to be present in this flow range. 

Also, the flow range was found to enlarge for different values 

of A. For example, for A = 1, the flow range was 2.9 ~ u ~ 3.24 

whereas for A = 1/2, the flow range was 2.9 ~ u ~ 3.32. At 

even higher flow velocities, larger oscillation persisted and 

predominated over yawing mode. The maximum amplitude of 

oscillation was found to be increasing with decreasing A. For 

example, at maximum flow velocity (u = 4.95), maximum amplitude 

for A = 1 was 1.4375 in., for A = 3/4, 1.5 in. and for A= 1/2 

1.625 . 1n. 

6. 3 Results and Discussion 

Frequencies have been computed from the experiments 

for different flow velocities and for different tow-rope 

lengths. The data are presented in Table II following. 

The -oscillatory instability was found to persist over 

a wide range of flow velocities. This is contrary to what had 

been observed by Paidoussis (12) but in agreement to what had 

been observed ~y the same author (l), (8). A possible expla-



TABLE II 

Values of Frequency (rad/sec) 

Flow Velocity u (ft/sec) 
I 

A 
I 

2.65 3.24 3.75 4.19 I 4.59 I 4.95 

1 0.795 1.111 1.297 1.448 I 1.581 I 1.685 

3 1.084 I 1.336 I 1.526 I 1.664 I 1.783 -
4 w 

m 

I I I I I I 
I 

1 1.043 1.247 1.581 1.782 1.887 -2 

1 I I I 1.275 I 1.615 I 1.853 I 1.989 - -
4 

Other parameters of rigid body: 

f 1 = 1 - c1 = 0.8, eCN = 1, eCT = 1 

' 
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nation of this apparent contradiction can be derived from 

the fact that in the theory of (12), f 1 has taken to be equal 

to 1 whereas in the present analysis, f 1 assumes value much 

closer to 0.8. 
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CHAPTER 7 

CONCLUSION 

A general theory has been presented in this paper 

to account for the dynamics and hydrodynamic stability of 

submerged rigid towed bodies of any arbitrary shape. The 

derivation of the theory is different from that of Paidoussis 

(12); the difference being due to the fact that in the present 

analysis, the boundary conditions of the dynamic system have 

been incorporated under the integrals of motion. This renders 

the present theory more general and the theory of (12) can be 

considered as a special case of the present theory. 
I 

The dynamics and the stability of a gradually tapered 

body of revolution have been formulated as another special case 

of the new theory. Only t wo types of instabilities were found 

to be present as predicted by the theory and supported by the 

experimental evidences. These were yawing instability and the 

first mode oscillatory instability. No attempt has been made, 

however, to draw any definite conclusions regarding the quan-

titative comparison between theory and experiment. 

Perhaps, the most i mportant feature of the new theory 

is that it confirms the fact that the length of the tow rope 

does have no effect on the yawing instability of the towed 

body; a conclusion that has been reached by Paidoussis (12}. 

The theory also suggests that the absolute threshold of yawing 

instability d oe s not depend even on CTP. This is again in 

good agreement to that of (12). The relative stabilizing 
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effect of A as predicted by the theory was supported by the 

experimental observations. 

It has been shown in Chapter 5 that the streamlining 

of the nose-end of the towed body has a pronounced effect on 

the stability. In fact, contrary to the theory of (l2), stream-

lining of the nose-end makes the body less stable. To justify 

the above statement, we consider the work done, ~W, on the 

rigid body over one period of oscillation, t 1 , in much the 

same way as was done in (8). Thus 

t, 
6W = (t-1a) Muj [ ~-z.+U~~') dt, 

o x~o 

-1 Cot ~~~ j~ ('~\J) [ ~1+ U~'j 1] eh dt 
( 7. 1) 

The oscillation will be damped if ~W < 0 and it will be ampli-

fied or, the system will be unstable if ~W > 0. Now, for ar-

bitrary small U, equation (7.1) can be written as 

t 1 t, L 
Aw = (\-f,)MuJ ~"'cAt -lcNJ ( ~" ~-z.olxcic 

o N 1 o J0 D 
( 7. 2) 

• 
where y N is the value of y at x = 0. We note that if there 

is no viscou s force, then a well streamlined nose (f1 ~ 1) 

can at the best make ~W = 0. This means only a marginal 

stability can be ach i e ved. If, on the other hand, the viscous 

forces are present, then a perfectly streamlined nose-end 

(f
1 

= 1) will render stability to the body. Accordingly, we 

must conclude that well streamlining of the nose-end reduces 

the no rma l component of the viscous force drastically. This 

conclusion also supports why the oscillatory instabilities are 

indicated b y s maller values of ECN, namely 0 5 ECN 5 0.2. 
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We next consider if the above conclusion contradicts 

the other phenomenon cited in Chapter 5, namely, that for very 

small values of f 1 , the system is always stable for fixed 

values of ECT and ECN and for any value of A, no matter how 

large it is. We note that if f
1 

< 1.0, the first term of 

(7.2) is positive. We ask ourselves what happens to the second 

term. If we do the order of magnitude analysis of both terms 

in (7.2), we find that the second term is about twice as large 

in magnitude as the first term for very small f 1 and for rela­

tively small €CN. This implies ~W < 0 and hence the system 

is stable. 

The question still remains of how closely the th~ory 

can predict the dynamical behaviours of the system that are 

evidenced by the experiment. Contrary to the prediction of the 

theory that there is no oscillatory instability for A ~ 1, it 

has been found experimentally that the oscillatory instability 

exists for A ~ 1. We therefore seek to explain this contra­

diction. 

We consider the fluid stream as an infinite source 

of energy. Therefore, if the fluid forces, FL, FA and FN 

are very large, the energy gained by the towed body from the 

surrounding fluid will not balance the energy released by the 

towed body to the fluid. This will result in a non-equilibrium 

situation leading to an increasingly divergent motion, pre­

viously referred to as the yawing motion, of the towed body. 

This yawing motion manifests itself through the translation 

and rotation of the body about its static equilibrium position. 

Ideally, then, this type of divergent motion could give rise 
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to a large angular displacement causing an amplified yawing 

instability. However, the mechanism of yawing instability is 

much more complex. The complexity may arise from any form 

of non-linearity that may be inherent in the nature of fluid 

forces or it may arise from the non-conservative nature of 

the system at the free-end of the towed body. In either case, 

a disturbance is associated with the pure yawing motion. 

Accordingly, we must conclude that a pure yawing instability 

can hardly be observed in the course of motion. The conclu-

sion may be supported by the experimental evidence that mixed 

modes are present in the intermediate flow range. Let us 

now consider the various hydrodynamic forces acting on the
1 

body when ~ (=- ay; ax) is large. At this configuration, we 

consider the work done on the body by the surrounding fluid. 

Since there is a disturba nce associated with the yawing motion 

the work done will be slightly different from that given by 

equation (7.2). We, therefore, say that at some angle 

~ = ~max the work done on the body by the fluid forces will 

be balanced by the work done on the body by the disturbance. 

Hence the kinetic energy i mparted to the body at ~ = ~ max 

will be zero. This will result in an oscillatory motion. 

In all, then, we conclude that yawing instability manifests 

itself through the rotational and translational motion of the 

body; but a pure yawing type instability can hardly be ob-

served in the course of motion. 

The present theory can be extended to take into 

consideration any other form of hydrodynamic forces that may 
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be acting on the body. Also, the theory, presented in its 

generalized form can be extended to account for non-linear 

oscillation. These extensions, while fairly simple con­

ceptually, are mathematically tedious. 

The investigation is, by no means, complete lack­

ing mainly on the experimental side. Areas of more practical 

and of general interest that are yet to be covered are the 

following. What is the optimum shape of a submerged rigid 

towed body that can be operated stable over a reasonable 

speed limit? What are the most significant parameters to 

render the maximum stability to a towed body? Incidentally, 

these questions can be answered by the general theory that1 

has just been presented. 
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CT P. I L2=C Ri Ll+C,OQOlD O,,OOlDO) 
WR1TE (6,102 JAN GLE, ACN,ACT 
FOP. ! AT£ 15..<' PHt.. SE DIFFERE NCE = •,4Fl0.2,' DEGREES ACN = 

121 I AC T = t ,Fl0.2) 
\~ R T T E c 6 , 1 0 3 I A 1 
F[1R t1A T ( s x, I Al = ',Fl0.21 
WRI TE ( 6,356 ) CR 
F 0 ~ f·l AT C 8 F 1 2 • 3 ) 
11=1 
CO NTI Nll E 
C o ;~ T I NU E 
WR l TE<6,2 00 1) 
FORr iA TCl Hl l 
CO' TI NU E 

C DtH I NLJ E 
ST OP 
END 

~ 

"' 

C 0 ·~ P L E X F U I C T I 0 I C 0 E T * 1 6 ( C 0 t1 ) 
I M? LIC IT CO ~ PL E X*l 6 ( C l , REAL *8 (A , B ,D-H,O-Z> 
CC i-,1·\ 0 4 L, C N, 1\ C T, 1, F 1 , X l , X 3, X 5, X 6, X 7, X 8, X 9 1 X 1 0, X ll 1 X 121 X 13 
C C' . ' 1-1 Cl N I S T 0 R E I C ( 2 , 2 I 
Cl= (O. oo, . DOl 
XA= Xl* C . 0 O+Fl ) +Z. DO* XS 
xs~Fl+0.5 DO* c * 6+x7 
XC=C Al+ ACTI1( 2·DO* ALI 
XD=-2. D0 *..<8 
XE=- X10-z. no* B-0.5 O*AC N*X 9 
XF=- X7- Fl - . • 5LO* X6 * (AC +ACN I 
C <l ,l l = Cl*r O~ *<XA*CI*CO H + X B ) +XC 
C (1 ,2 ) = CI*CO~ * <XD*CI*CO M + X EI+XF 
XA=2. DO * 8- X3*( l. 00+F l ) 
XB= Xl0+ Q.5 .. 0* •'• C *X 9-Fl 
XC=< A l+ ' CT ~ /( 2. D O* A L) 
XD =-2. 00*-<1 1 
XE=- X13-2. o~..< ll- 0 · 5 D O * A C N *Xl2 
XF=F1- Y. l 0- 0 . 500* 9* CAC +ACT) 
C ( 2 , 1 ) = C I ..,. 0' * ( X * C I * C 0 1·\ + X B ) + XC 
c ( 2 I 2 ) :: c I * c 0 ~ * ( X D * c I * c 0 ~~ + X E ) + X F 
CDE T=C <1,l >*C< 2,2 >-C <l ,Z >* CC2J1) 
RE URN 
END 

•,FlO. 
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