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ABSTRACT

A general theory is presented to account for the
dynamics of submerged rigid towed bodies. The equations of
small lateral motions are derived for the general case of a
body of an arbitrary shape as well as for the special cases
of cylinder and gradually tapered body of revolution. The
criteria of stability are established from the equations of
motion.

Some experiments concerning the stability of rigid
bodies of revolution under axial flow are described and the
theory is tested. The theory is in general qualitative agree-
ment with the experimental observations. No attempt is made
presently to draw any definite conclusion on quantitative

comparison though quantitative data are obtained both from

theory and experiments.
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CHAPTER 1

INTRODUCTION

In towing operation of an underwater vehicle, the
consideration of the dynamic stability of towed vehicle is
quite important. Instabilities that may arise in the course
of towing operation can be of yawing, pitching or rolling
type or can be any combination of these three types. Usually,
any form of instability originates from coupled disturbance
created by aerodynamic and hydrodynamic forces associated
with the towed body. However, the geometric parameters of
towed body and of tow-rope may very well affect the stability
of the system. 1In either case, an investigation of the dyna-
mic stability of towed body is of practical importance.

The first substantive study on the subject was made
by Strandhagen, Schoenherr and Kobayashi (1)) in connection
with the towing operation of ships. 1In their paper, Strandhagen
et al. established the criteria for stability of a towed ship
and these are: (i) the point of attachment of the tow-rope
should be ahead of the center of pressure of both the static
lateral hydrodynamic and aerodynamic forces acting on the
ships; (ii) the ship should be stable untowed; (iii) if the
ship is not stable untowed, then a variation in the length
of tow rope should render stability of the ship while towed.

More recently, the stability of submerged towed
bodies has been studied by Richardson (2) , Patton and Schram

(3), Jeffrey (4), Schram and Reyle (5), and by many others.

Jeffrey's study indicates the relative significance of the




different modes of oscillation and the relative importance of
body design and cable configuration effects in each mode.
Richardson asserted that the modes of oscillation of a towed
body are essentially dependent on the body derivatives and
hence on the geometric parameters.

A somewhat different approach to this subject has
been motivated by the stability study of the Dracone flexible
barge. The analysis of the stability of Dracone barges was
first made by Hawthorne (6) . Later, the dynamics of flexible
slender cylinders in axial flow were studied by Paidoussis
(7), (8). He also studied the stability of submerged cylin-
drical bodies - both flexible and rigid (9), (10). 1In the
case of flexible slender cylinders, stability has‘been found
to be highly dependent on towing speed and both rigid-body
type instabilities and flexural instabilities have been shown
to exist. That the geometric parameters of the towed body
have some effects on the stability were also shown by Paidoussis.
It is of great interest, therefore, to study the stability of
towed bodies of variable geometric parameters.

In this paper, we shall derive the equations of
motion of a submerged rigid towed body of any arbitrary shape.
The derivation shall not follow that of Paidoussis. Instead,
we shall derive the equations from the classical force and
moment balance concept. The total force on the rigid body and

the total moment can be obtained by integrating the elemental

force and moment fields over the contour of the body. The

equations of motions thus obtained will be more general since




the shape of the body is fairly arbitrary. As special cases,
we shall also derive the equations of motion for a uniform
cylindrical rigid body and for a gradually tapered rigid body
of revolution. From the equations of motion thus obtained

for gradually tapered cylinders, we shall examine the criteria

of stability,




CHAPTER 2

EQUATIONS OF SMALL LATERAL MOTIONS IN AXIAL FLOW

We shall derive the equations of small lateral
motions of a slender rigid body of revolution, the general
shape of which is shown in Figure 1(a). Figure 1l(b), (c) and
(d) show three particular shapes of a rigid body of revolution,
for which cases the stability will be studied later on. The

general equation of motion will be presented in the form:

M + Cq + Kg = 0 (2.1)
where g = generalized co-ordinates
M = generalized inertia element
C = generalized damping element !
K = generalized stiffness element

The body is supported by a string (tow-rope) to prevent
it from being washed away downstream. It has a mass per unit
length of m(x), cross-sectional area S(x), and flexural rigidity
EI(x). The fluid is incompressible and has a uniform flow
velocity U parallel to the x-axis, which coincides with the
longitudinal axis of symmetry of the body in its static equi-
librium configuration. It is to be noted that the incompres-
sibility assumption is quite justified since the towed body is
to be immersed in axially flowing water.

The general problem of a rigid body in axial flow is
extremely complex in nature and in order to achieve any mean-
ingful solution to the problem, certain simplifying assumptions

have to be made. The general equations of motion will be de-

rived following these assumptions and hence any subsequent
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(a) Body of revolution of arbitrary contour

4 D,

(b) Cylindrical body of revolution

(c) Non-uniform body of revolution with

pointed tail

C TH

(d) Gradually tapered body of revolution

with pointed tail

Fig., 1 MODELS OF SUBMERGED RIGID TOWED
BODIES




analysis of the problem will be limited by the applicability
of the same,
We assume small lateral motion y(x,t) and assume
that all the spatial derivatives of y, namely, 3y/9x,
Bzy/ax2 and so on, to be very small so that no separation
occurs in cross-flow. Further, we assume that dS/dx and
d (EI) /dx are small; the first assumption ensures that no
separation occurs in axial flow and the first and second assump-
tions allow us to use the Euler-beam approximation to describe
the flexural forces, 1In addition to the above assumptions,
we consider that the time derivatives of the displacement
y (x,t) are small. The last assumption limits the scope of
the problem to a great extent and leads to a first order approx-
imation of the actual conditions. For most practical purposes,
however, this first order approximation is sufficiently precise.
The other set of assumptions to complete the list
comes from the following consideration. All motions are assumed
to take place within the (x,y)-plane which is taken to be hori-
zontal. The body is assumed to be neutrally buoyant and to have
uniform density. This is to ensure that at zero flow velocity
there are no constraining forces or moments in the y-direction
to keep the body along the x-axis. It is also assumed that
there is no internal dissipation in the course of subsequent
motions.

Let us now consider an elemental volume 8v of the body.

The force and moment systems acting on this elemental volume




are shown in Figure 2. FN and FL are ' the*normals and -l ong=
itudinal components of frictional forces per unit length,

Fa is the lateral inviscid hydrodynamic force per unit length,
FBL is the force per unit length that arises from the boundary

layer and sideslip effects, F,, is the boundary forces asso-

T
ciated with the elemental volume 6v(=wr2(x)6x). It is to be
noted that FT is a function of T, the axial tension of the
tow-rope.

We can now write the force and moment balance equa-

tions in the following form:

F; = FLCbSG)SX “+ (FkrfFA*’FBL?)SGABSX-JEETCOS@Eb( (252)

Fy = ~FLSwmO8x - (Fu+Fa+F 2Fr 5y
- A eL)Coseéx-s.;.Sw(sSX (2.3)

- M(x ?:\ﬂ
ey

e BE
M = -Fraéx+ (Fre a‘)(z@y«é%@))éx (2.4)

where z(x) is the normal distance from the mass center of the
elemental volume to the line of action of FT.
In principle, equations (2.2) to (2.4) can be summed

over all the elemental length to obtain the force balance and

moment balance equations for the system as a whole. Thus,

> Fx = 2 FLCos8Sx - Z(FN+FA+FBL)S\'»\ABS& (2.5)

- Z oFr Cos@ &x
X




T (axCaL{brce) Fat

 §
MB:U (FN + FA)
ot*

(a) Force and moment systems acting on the ridid body of

revolution

YA

5
W\%-g S (Fu+Fy)déx

t’\‘

» X

(b) Force and moment systems acting on an element of the

body

Fig., 2 DIAGRAM REPRESENTING FORCE AND MOMENT SYSTEMS




Z,ij = —'ZF\_SU;AGSX = ZLFN'l‘ FA‘f'FB;_)COSGSK

o X (5 2 )Bt‘x

Z M =
20 Fr 20) 8x & Z(Fﬁ?.a-‘f:)(z(x)»f $2))éx (2.7)

In the continuous case as 6 > 0, the discrete sums in equations

(2.5) to (2.7) can be replaced by definite integrals.

= L
zFx = Sb Fodx - SO(FM+ Fat Fm_j g_': Ax

4 (2.8)
oF
—jo 3-;:(05@4’% '
L B L
z:F"J 3 -So FL Sxd'x 3 SO(FN’“FA*'FBL)M Lo
- SL aFx S @ dx
6 oX
L L
ZES So Fr 2(")“"*Sot‘:r*i—i*)(%u)»rsux))dx i

The equations of motion can now be obtained by equating
the right hand sides of equations (2.8) to (2.10) to zero.

We have not yet specified the functional forms of the
hydrodynamic forces. Some of these functional forms are expressed
as material derivatives of displacement function and hence when
they are substituted back into above equations, the integrations
becomes very complicated. In order to simplify the situation

a little further, we need some added assumptions and these are:




(i) The boundary layer induced force field has 1little
effect in the course of motion of towed body and hence it can
be neglected throughout;

(ii) There is no side-slip in the course of motion;

(1ii) The integral of boundary forces over the whole length
can be equated to the axial force T of the tow-rope.
We now give the functional forms of the hydrodynamic
forces. The viscous forces, as proposed by Taylor (ll), and

elaborated by Paidoussis (7), (8), (12) are given by
= pell [ €sx) 2
s | /p(x) ) U (1)

Fu = 3 Cn US(X)/D@)]U [(W/at) tU (w/ax)] (@12}

where CT and CN are the coefficients associated with Fo and FN
respectively, and S(x) and D(x) are the cross-sectional area
and the diameter of the body at any distance x.

The axial force, T, at any distance x is given by (12)

Al 2 2 L X
V) = 3208V yereu™| [3p)ax  2.13)

where C2 is the form-drag coefficient.

The Yatexral inviscid force, FA’ represents the reac-

tion on the body of the force required to accelerate the fluid
around it and, as proposed by Lighthill (13) and later by

Paidoussis (lg), is given by
Fa= 5o [Co) +0ChTy- 0 L) ru ) (dr) 2

12 F

Let us now substitute the expressions for F N’ Fa

Lf

from above to equations (2.8) to (2.10) and carry out the




integrations. The equations of motion can thus be obtained as

%CT PUI S: (S(K)/'D(x)] Ax - %‘CN EU S: S_ﬁg:;)')[ _B_a:i- )) 2y gite

L 2
= PS,S(X) ﬁ%\:) +0(3)1y ;‘iax 3 ?UJL[G;J*U(%?‘)] (2.15)

(isx) el [ Tlsp =

9()

L =
-0 s [ B uE)T s ax - g I,L[(%‘i)w a_;x)] W
= 0

< (45) A - Tsap

4 et T 15 9] 20 - Lo § (S9)[E)+ o)

(M) TOTAL = (o (2.17)

£
The last of these equations is obtained by assuming

that the line of action of the axial force T passes through
the mass center of the body about which the moments of all the
forces have been taken,

The equations thus derived do not yield any informa-
tion in that form and to extract anything meaningful, we have
to do a non-dimensional analysis of the equations. This means
that we have to express these equations in terms of some non-
dimensional parameters that have definite physical meaning and
hence can be measured experimentally. However, before we step
into the non-dimensional analysis in Chapter 4, let us
rewrite the integrals of equations (2.15) and (2.16) in neater
form. Let us also try to find an explicit form of moment
equation  (2.17).

Refering to Figure 1(b), let us consider that there

are no viscous forces in the small segments of the nose-end and




the tail-end of the towed body. Let us also consider that
other fluid forces in these segments are multiplied by factors
fl and f2

approximation. Lastly, let us consider that the second order

to account for the departures from slender body

terms are negligible in these small segments. Carrying out
the integrations of (2.15) and (2.16) for the nose end of the

body over a length 2., where 2. is small compared to total

1l
body length, L, we get

il

(ZF’:)nos«—cna. = ‘T(O)Cosp
F2 = (2 Fg)

(2 1:89)

nose-end. = "'S'lS {PS&" )*U( )]'j
HPO LRI o G (e s - ML

2t
= "‘if’?ji SQ‘SG‘)dx - Spsu (2 + u-)

2X
- Sieu (P rul )5 'asau - & Bt"j 'S(x)dx - TSP

where o1 is the density of the materlal of towed body. Neglec-
2

ting the Jol g% dx term (in comparison to other terms in the
expression), we get
™Y -
F, = |- < 24 Y ., _~co
2 [&.Psbt - 5iesU(R v )-ps T X -TSwp ]

where Xq is defined by the relation
| Q.
x‘ = == S S(x)d.x
5 o
and S is the cross-sectional area at X=X the x-coordinate of

the center of gravity of the towed body.

Introducing the virtual mass M = pS and m = pSS, we

finally get

s G e TS0 rig] o




Similarly, carrying the integrations of (2.15) and

(2.16) for the tail end of the body over a length 22 where 22
is of the same order as %

1 and noting that there is no axial
tension at the tail-end, we get,

B
1= (ZFX)tau_ehd':O (2. 20)
Fy =
4 (Z F'b) tall-2nad
e 5 S{PSU Bt)*U(a/ax)]j
+ 2v ) ds i a-:ld d (2.21)
eu[St"'UBK (Zx }o\x L-e:n e X
=[x (Mf4m) 29 4 £ U (29, 23
[ (2 2- )gt“- 2 (St-ﬁ-U a-x>]x EL
where X, is defined by the relation
L
Xp = & [ S(x)dx
5 Jl-e,

We now write the equations of force balance for the
main body as

L--'-'a.

-2
2 Fx = FHF}"f FLa\x-S (FN'{‘FA)%:S dx =0
4 ol . (222)
ZF. Lt =21
A AR '(t.. R j‘“‘j (Fu+fa)dx
-t 20918
= S ZW\ 3:"5 ax = O ; )
L, ot*

For the main body, we shall only be interested in the

force balance in y-direction. Following Paidoussis (

can approximate equations (2.23) by

2), we

—_—

FE SFL ax-j(FN+FA)dx-5m dx =

™
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Oz,

¥y )

(&M*WQXPE°L= +~ﬂMU(}+U§f e
+ IMUT (q+g et E)Simp "‘(‘f‘;_Mi-m)x Rip )
; ¥ > 'x=L
- famu (2

¢ (BE S_x)'x-_l_ + S. -'-CTFS/ )tf".a_‘5 Ax

¥ S: $1en (™) u [C%y+ ol ®¥%x)7 + es L(%e) + 0 )%y
+ PV [(Bsﬂt),r U (33 )](ds)}dx *S m(x > 5 3 Ax

= 0
(2.24)

where T is replaced by % MU2(C1+C2+CT %—),Cl and C2 being the

form drag coefficients and D is the diameter at mass center.

In order to obtain the moment equation, we multiply

the force terms in equation (2.16) by x and carryout the inte-

grations in the manner described above. This gives
>
N (TP T e O (2 ;5)
) . o %20 ;l (Zt+ Uax ‘ =0

|
I MUt e oty
2 MUTL (Cireurer £)simp « Bamewdngl T2

Spmon (3, 02, 4 S e () o 2

£ 571 4 en (95) ULC%e) * U507+ £5 () + 0 m)]"s

,‘_?U\‘-(B'ﬁ J'rLJ( >}xo\m+gm()t)a; =0
(24525
where
4 L
Xa = BLL Sx'sti)dx and Xq-:. A S xS(x)dx




~ -

Equations (2.24) and (2.25) represent the equations
of motion of a submerged rigid towed body of any arbitrary

shape.
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CHAPTER 3

EQUATIONS OF MOTIONS FOR SPECIAL CASES

Silee Cvilinder

For a cylinder S is constant and hence dS/dx = 02
Also, due to the symmetry of the body, we can integrate the
force and moment terms in (2.24) and (2.25) from -L/2 to L/2

instead of from 0 to L. Then,

2y 2y
(51M+wm)x, 5},‘*\“‘% +fmu (v 2
Y >
+ MU CTP -/-:' e C‘€2M+\N\)7~7_ '5-:‘ \Kt.‘—/ = “‘Q_MU (a +U3g)\x‘

L
+ S |C1‘ (?S/D)U ?\ﬁd.rx + j ‘CN(PS)D) [33 + U ]de

= I

LIy

L 3 :
* § s L)+ v %))y Ax +f w\(x)- dx = o

"L[?. = ,l
(31)

L : -
= + = =
where CTP Cl + C2 CT 5 YN is the y-coordinate of the tow

point and s is the length of the tow rope. Also,

>y 2 v
~ ('Q\H*'\N\) xaL ;t-» ‘X: "L/-‘l_ " S'MUL (?t* 5 ;x)lﬁ: -4/

oy
+ (‘r'm+wl)x4'- e K=ty —-szUL(a‘ﬂ*U}S)l

\ L Y

x-Ly

LH_ Lh.
] aa () Vi T a 4§ e () u[ S v B Yra

=L, =
L],‘ e - L/,_
+ _S\_’ Ps \.L /3t)+U(3/3,)] y xdx + -Suwx(x) ot xdx = O
2

(S




For rigid-body motion, let us now take the generalized
coordinates to be the lateral displacement of the mass center,
yC and‘the angle that the body makes with the x-axis, ¢. The
displacement at any point will then be given by

y(x,t) = y_(x,t) + x¢(x,t) (3%.:3)

Substituting equation (3.3) into (3.1) and (3.2), we

obtain the equations of motion for a cylindrical body as

7 MUL
M+ X114 %252 ) +w (Laxex, )]y, + [39n =
. \ 2
s b S SRR S W W

% 0 _ £
+ W (X2-%)] P + MUL (2 _‘Z_.)q;

+[(5i-92) + Ller+en )3 ‘2::»;] M9 = o (3.4)

and,
-L LML (%35 -%q%2) + L (x3-%4)]4, - 2MUL(5+£,) 4,

7 ;i-"bMU" Crp Y + [MLz(l\'-1+ x3.f‘;_"4f=—)+ me (5 4+ ";_E_m)]d,

2 $.-F2 e 2anliy g $.+5
— "t NT (P +MUTL| - = Crp - TP -

(3.5)
Similar solutions were obtained by Paidoussis using the theory

of (12), namely

[M(L+ FFir%a$2) + wi(Le 22014, + [ien M_I_\;\.

5 \ A i
+ Mu (£, fz)] e +2bMU Crp 9e + l;'_ [V\ (x,-ﬁ-z_-x.h)

= lM(x.‘_-x‘)] C-P + MUL (7.*- ‘5_‘1‘;“") "P

2

e L Eioos
+[(t -f;)i—z(C-‘-i-cN)D 461 MUY = o o

and




ML (X050 =%282) + mL (%) -x3)] ¥, - S Mol (Bo+42) Y.

rs
=St 4 [ 4 MERERy g, Koyl

3.2 Non-uniform body of revolution with pointed tail

In this case we cannot consider the force and moment
systems at the tail end separately. We have to include them
in the force and moment systems of the main body. Therefore,
any term with f2 and X will not appear in the equations of
motion. Also, unlike the case of cylindrical body, we have to

integrate the force and moment terms, in this case, from 0 to

L. Equations (2.24) and (2.25) can now be written as

“(MErn) T, fimu (334 0 28]

X=0

A % Y L_ Ps 13y L
2 MUt Cre zN 5 So ey ( /D)U ;xd'x*'So{"iCNLPS/D)U a;gh_*u‘a\;\

+€5 LCA)+ U(%0)] "y + pu (%) + U (*¥hx) ] (5 )5

|
2%y
A SO‘W\(K> a—t"' Ax = o (3.6)
and
:1- ?‘ﬂ
_xaL(Mmm);tf\“o _-E‘MUL(N: )lwo

( 2 Y - ps AT

b (1L e ()20 0 22T s (%64 9 (%))

(-}

L >
ol UBI(ER s + (rO R xdx 0 G
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For rigid body motions, we take

5 e (3.8)
Ve Ay e O

where YN is the displacement of the nose-end and ¢ is defined
by equation (3.3). Substituting equation (3.8) into equations

(3.6) and (3.7), we get
(x, (Mfi+m) + xs(M-rm)]QN - Mut{ulch ’_:_)6+x.'.)t°ju

\ > 0
L mu'c - 2
+ L YN = LXg (M+m) @ - muL {3en o +2Xg (3.9)

+Xm]t..p - Myt ['f\*;; (CT+CN)+ X-,J(?: =

and
- [X3L(M‘§\+M) _ st(M+M)] EN - MUL [‘f\-%CN %q _..leﬂ;jn
. & 2 . 2 X
+{f>MU LCrpYn - LXy (M+w) ¢ - muL IR '1';1
+2x“+><|3]‘-? + ML 5 - E‘; (C-\-+c,;)-x‘°] =o0
(3i:1:05)
where

Wit B = Sﬁﬂ)
- S o P (x)
L
T ) 4s
4= S So d x A x




o=, So x(g'i)d"
Xn = -;—L,a_ SLx"S(x)dx
N\ S Lx S(x) i

L .
Xiz = L S x"(‘ls 4
sL? ), dx) X

(3. 11)

Equations (3.9) and (3.10) can be regarded as the
equations of motion for a non-uniform body of revolution with

: : /
pointed tail.

3.3 Gradually tapered body of revolution with pointed tail

The equations of motion in this case are exactly the
same as in previous cases. One additional simplification can

be made, however, due to the fact that S(x) and D(xX) are some

known functions of x, namely,

Plx) = =% o,

and

S(x) = :‘;_f' f: (L-x)* (3.12)

where DO d= thewalue sof Di(x) at x = 0.

Substituting equations (3.12) into (3.11), we get

L

L (L‘x)zdx

T Do~
4s\*

|1l

Xg

I
XE, = TEE?D°,S (L“’()‘ix
4s. °°
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SRk
X-, = __Do S (L—X)d”( = --29 Xg
4s8\.* ‘o DL
e 1
M T 2
8= D2 {@-x)" ax
4S5\ &
.
Xq = D Do S X(L=-x)dx
45> ‘o
,  ,L
xlo = -E_Do S X(L-X)dx = -D_?__xq
4512 ‘o DL 3 3)
Tl 5
Xy = D S x“(L-x) dx
4514 o
i
i = B R A (e d i
453 o
A
x\g = -_1_1_?° S x‘(L-X)dx = “D_o__x\‘z.
dsiis DL

The equations of motions are now given by (3.4) and

(3R L) where X1r oy

. ete. are given by ((3.13).

In matrix form

Xy (Mf(+m) + X5 (Mtw) - Lxg(Mew) '3»1

- X3 (Mfem) L+ Xg (M+m)L

-'Xy (M+w) @

-
mu (14 4 en %" ¢ %7)

i
-MUL (ECM )_;_;‘l +2Xg+ X“,)

-MUL (‘h-%cnéq _xlo)

= 20 8oy X y
MUL" (1 Cn ST+ 22X+ Xi3)

=




= DO

X
-—MU"(&\ + _z_:g(cT-\-CN) +X1)

In

woL (4 - ’;‘; (Cr+en) - X,0)

0 (3.14)

Comparing with equations (2.1), we can say

[M] =

(c]

(K]

=

X, '(M§\+ \M) + Xg (M+\M)

%3 (ME )L +xg (ML

f X
MU (i + 4 S+ X7)

~MuL (5, - L e ’fﬁ“ = %o

—an (M‘i' \m)

- xy, (M-Hm)-l

T ML (’!a_c-ﬂ pr_q +2%Xg+ X10)

-0 (400 X 4 2,4 X 1)

A
1) Mu’-cTP -MUI({. X, -1
Lo '+-Z-D (CT*CN)-r x,)
J 2 3 . (3515}
- MmULC Mu a
TP s (4:‘ z—g (ey *CN) - xlc’)-J
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CHAPTER 4

NON-DIMENSIONAL ANALYSIS

We shall now make an attempt to investigate the
dynamics and the stability of the towed body system. The
derivation of the frequency equation and its subsequent ana-
lysis constitute a major part of this investigation.

For the sake of simplicity, from here on, let us
only refer to the gradually tapered body of revolution with
pointed tail and the corresponding equations of motion. This,
by no means, limits the scope of the method of analysis that
will be presented below.

Having known [M], [C], and [K] from equations (3{15),

we can write the equations of motion as

g B L]
[M](.."‘ + [] SR R [N A0
@ @ @ 0 (4.1
For the homogeneous case without damping term, the
eigenvalues of the system is given by the determinantal equation

det {u[u] - [W]} =0 (4.2)

where u's are the eigenvalues, [U] is the unit matrix and [W] is
the inverse dynamical matrix and is equal to [M]“l[K].

This method of analysis is quite straight-forward for
undamped homogeneous systems and even for a damping homogeneous
system, provided that the equations of motion can be decoupleé.

A more appealing method of solving the general problem of (4.1),

however, is that of non-dimensional analysis.




Following Paidoussis (12), we define the following

non-dimensional quantities:

b4 X
£ = 3 - L T e ' 5
NE= =ty A = Py £ = b g T S0 and Mo = T for
T b R R R TR - o IR 1 LR A

It is to be noted that X-, Xjg and X3 are already non-dimensional
by definition and hence we can define
Xg = Xg for. sy =7, 10" and (13
Let us now consider the solutions of the form
n = He " and o = o™t (4.3)
where w is the dimensionless frequency defined as w = QL/U,
/
Q being the complex circular frequency of oscillation.
Substituting the non-dimensional parameters in equa-

tions (3.9) to (3.11) and noting that the assumption of neutral

buoyancy requires m = M, we get

(L (+50)+2%5] 0 + THi+secn® +4,]q v e

-2%g @ - tlzec,‘%q-\-zxs.\,xm]cb

73 {‘5\*%55@1"'('“)-\'7\’71‘?:0 (4.4)

and

{2%8 = %a(l-l' '5\)];( ) [‘F|"‘-|iecu q.q“xlo]l.l 4 Z-‘—-ACTPQ
~2%, @ - [lzec“xll*zxu*xm]‘\"

+[‘F|-§QG(CT+C|~J)QK1°](P: (o) e

Substitution of n = HeX®T and e palWT

now yields
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H [-— w”{%,(l-&--ﬂ) %2 153 + iwit'h + .‘_LG'CN'X,B*- x7}+éLACTP]

+ 3 [zw‘xs _wal.%ec,,‘?(,qﬂ-z‘)(,g-r?{..o}

= {‘fu -.E,_GCCT‘*CH) e + 7(.1}] =0
(4.6)

and
H (—- LoiiZ?(.g -y (14 'f\)} = Lw{h—lzé cﬂxq-xmg *'ZLACTP]
i § [zaf'?f.n N Lw{-’iéfu%m* 2% + 7(,.3}

4 {5, g AR GLAL) P S e

Or, in matrix form 7

7 11
- W, (1451 4 2%5§ +iwg Lecun 4y +§'s}+ SACe

on e
265 Ng - Lw { LN Xq+ 2%+ %o -{5‘4126(CT+C,4)1‘+7(,7}

-~ w"{‘z%,g - %(Hft)} -l {51 - -‘iécnl‘l-’f‘«:o} +2—'ACTP

20", - Lw{'i €CnZit 2%y, +‘X.‘3} —{5\ -3 € (C-‘--ECN)M-XW} _
o

Al °

CP 0

)]

(4.7a)
For non-trivial solutions of H and ¢, the determinant
of the coefficient matrix must be zero. This leads to a quartic

in w, namely

ag + aqw + azwz + a3w3 + a4m4 =) (4.8)




CHAPTER 5

STABILITY ANALYSIS

The dimensionless complex frequency w has been com-
puted numerically for different values of system parameters
using equation (4.8). Some of these values are shown in
Table T

In the case of a rigid body, the threshold of yawing
instability as defined by Paidoussis (12) implies w = 0. From

_—

equation (4.8), then, we get Qe 0. Now

_ Crp Ly
do = Z—A [{'.Fl 3_5 CCT"'CN)X«Q-XIO}*’{&I
+%€(CT+CN)’)(,,.+7L7}] A
_ GCqrp
S {2§\+ééccr+cn)(1b-xq)+(7(.7-110)}
Hence a, = 0 implies
?-T-P-{zf+le(c + C) (X, = Xg) + (Xo - =N
) il pt N TRAg A7 R0 BX1 0 EE E (5T

Equation (5.1) shows that the threshold of yawing
instability does not depend on A; neither does it depend on
CTP' This confirms the result found by Paidoussis (12) for
a cylindrical body. We can therefore find the critical value
of design parameter fl as a function of CT and CN’ namely

£ = % {2(x79 = x9) + e(Cqp + Cy) (Xg - Xg) (5::2)

The threshold of oscillatory instability can be deter-

mined from the solutions of equation (4.8). In general, the




TABLE T

Rigid body frequencies for €CT = 2.0
i N=E0 005 S C =01 0%, MEL =i = S

1 N 1 1
! ) =3

1.0 4.988 s 63 0.248-0.0161
0.8 4.513 -1.518 0.344+0.0021
0.6 3.961 -1.451 0.408+0.0211i
0.4 3.301 —1..346 0.445+0.0431
0.2 2.466 ~1.166 0.431+0.0761i
0.0 —0) L -0.690 0.181+0.848i

Rigid body frequencies for €CT = 02

A= 0 R01, eCy = 0.0, Cl =1 - f1

fl w W W

it 2 3
1.0 4.955 = 15208 0:238-0.1804
0.8 4.466 SLRIES S 0-283-051681
0.6 3.893 -1.024 0. 328-0.1581
0.4 S 20! =0 8a 05 376=051345
0.2 2.304 =05708 04 36=021018 95t
0. 0,533 -0.460 0:550+0,3461




roots of the equation, wj, will be complex. Also, since the
system has an infinite number of degrees of freedom, we have
an infinite set of frequencies, wj. If the imaginary compo-
nents of the frequencies, Im(wj) are all positive, then the
system will be stable, If, on the other hand, Im(wj) <07
then the system will exhibit instability in the jth mode. If
the corresponding real component of the frequency, Re(wj) is
equal to zero, the system will be unstable in the yawing sense;
if Re(w.) is not equal to zero, the system will be unstable

in the oscillatory sense. Hence, the threshold of oscillatory
instability implies Im(wj) < 0 and Re(wj) # 0.

Some stability diagrams (cf. Fig. 3-5) are constgpucted
using equations (5.1) and (5.2) to show the relative dependence
of stability on various system parameters.

Figures 3 and 4 show the thresholds of yawing and
oscillatory instabilities as functions of fl, eCrp and ECN for
a fixed value of A. Figure 5, on the other hand, shows the
stabilizing effect of A for a fixed value of eCN and for dis-
crete values of eC,,. The general procedure of construction of

it}

all these diagrams was as follows: (a) a set of values of fl’

N’ ECT, Cl and A were selected; (b) the complex frequencies,

w, were computed for the set of values in (a); (c) the critical

eC

values of f£,, eCg and A that meet the criteria of oscillatory

and yawing instabilities are located in fl—ecT or fl—A plane.
A close look at the stability diagrams reveals two

pronounced phenomena; the first being that the system is always

stable in the oscillatory sense for ECT = 0.0 and irrespective
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of the values of A and fl; and the second being that the more
streamlined a rigid body is in its nose-end, the less stable
itfis for larger ECT and for a fixed A. The reason behind the
first phenomenon is gquite evident because of the fact that the
absence of the lateral hydrodynamic forces will render the
system more stable. The reason behind the second phenomenon is
not known and the phenomenon itself is contrary to the intuitive
reasoning that the more streamlined the nose-end of a body is,
the more it is stable while towed.

In all the stability diagrams presented above, the
value of ECN has been taken to be equal to zero. This means
that there is no frictional force acting on the systems. pb—
viously, in a practical situation, this is not the case. Hence
the question may arise, what is the effect of ECN on the stability.
It has been found out that for only smaller values of ECN,
the system is susceptible to oscillatory instability:; for
larger values of eCy the system is almost always stable
irrespective of the other parameters, namely ECT and fl. The
last important observations that can be made from the stability
diagrams is that for very small values of fl (0O - 0.03), the
system is always stable for fixed values of eCT and ECN and
for any value of A, no matter how large it is.

Although A is not a controlling factor for yawing
instability, it definitely has a stabilizing effect on the system.
Table I shows the relative stabilizing effect of A for
ECN = 0.0 and ECT = 0.2. We notice that smaller value of A

(= 2.0) stabilizes the system for almost all values of fl; on

the other hand, larger value of A (= 10.0) destabilizes the




system for almost all values of fl. Tha'sy dsto say that ne
matter how poorly streamlined the nose-end of a rigid towed
body is, a shorter tow-rope will almost always render stability.
This can also be apparent from the following consideration.
Let the length of the tow-rope be very large com-
pared to the length of the body. Also, let the form drags
of the system be of finite small magnitudes. This means
CTP/A is very small and in the limiting case CTP/2A tends
to zero. Then for any arbitrary combination of the system

parameters fl’ C., and C the system will exhibit oscillatory

N ol
instability. On the other hand, systems which are not stable
in the oscillatory sense for some values of A can be rendered
stable for smaller values of A.

It is to be noted that the effect of other non-
dimensional geometric parameters besides A, namely, X1
Xor + « « 1 Xq3 On the stability of the system has not been
discussed in this paper. This, by no means, implies that
these parameters do not affect the stability. However, within
the scope of the present analysis, we have limited ourselves
to the stability study of a particular geometry and by doing
so any effect of the parameters Xl’ Xor « o -« Xl3 on the
stability has been eliminated. Incidentally, the values of
X1r Xor X7 3 have been computed numerically using equa-
tions (3.13) and using Simpson's rule of numerical integration.
Also, a program has been written to compute the numerical
values of the complex frequencies that are roots of the com-

plex polynomial represented by the left hand side of this

equation (4.8). The program is shown in the appendix.
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CHAPTER 6

EXPERIMENT

6,1 Apparatus

Experiments were conducted with a gradually tapered
rigid body of revolution as shown in Fig. 1(d). The body was
8 in., long and 0.5 in. maximum diameter and was made from ny-
lon 6,6 (8p. gr. 1.09-1.14) rod. The nose-end of the body
was 7/8 in. long and the contour was parabolic in shape.

The sharp pointed tail of the body was produced by a special
manufacturing technique. The design criteria of the body were
carefully chosen so that the finished body would be neutrally
buoyant sectionally. Though the exact result could not be’
achieved due to manufacturing difficulties, the body was

found to be neutrally buoyant as a whole.

The rigid body was held vertically inside an 8 in.
diameter glass test-section by a nylon string from a support.
The test-section was part of a water tunnel equipped with pump,
compressor, exhaust and other accessories. The nylon string
could be varied in length. The support was well designed to
prevent any separation in axial flow of water. All the tests
were carried out under fully developed turbulent pipe flow
conditions. All secondary flow effects were eliminated by
placing flow-straightening devices before the test-section.
The flow velocity was measured with an orifice. The maximum

flow velocity attained in this experiment was approximately

5 ft/sec,




6.2 General Observation

Experiments have been carried out for four values
gESNTSname 1y A== 34 S /s and 1 /408 s Tnsallcases,, at very
low flow velocities (u < 1.87), the system was stable. At
higher flow velocities (u > 1.87) yawing instability was
observed. 1In the intermediate flow range (2.9 < u < 3.45),
the system started oscillating in addition to yawing. The
oscillation was very irregular and it occassionally died down.
Mixed modes were suspected to be present in this flow range.
Also, the flow range was found to enlarge for different values
of A. For example, for A = 1, the flow range was 2.9 < u < 3.24
whereas for A = 1/2, the flow range was 2,9 < u < 3,.,32. Ak
even higher flow velocities, larger oscillation persisted and
predominated over yawing mode. The maximum amplitude of
oscillation was found to be increasing with decreasing A. For
example, at maximum flow velocity (u = 4,95), maximum amplitude
For A= e s e A7 5N Net,, sbex . Ao =03 /4 1 S8 ng tand v fer e AL =wivA2

15625 1n,

6.3 Results and Discussion
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