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Abstract

The term structure of interest rates shows the relationship between yields of zero-coupon
bonds and their maturities. The empirical performance of the single-factor model of the affine
term structure models, such as Vasicek (1977) and Cox, Ingersoll, and Ross (1985), has not been
entirely satisfactory. The curve fitting methods, and particularly the spline method, used in
practice to estimate the term structure are ad hoc and thus subject to arbitrage opportunities.
Guo (1998) used the fundamental Partial Differential Equation (PDE) for bond pricing to derive a
linear discount function, which is consistent with no-arbitrage. He showed that this is the unique
linear solution to the PDE. This solution, the exponential-polynomial model or EP model for
short, has n unobserved state factors that drive a stochastic discount process for pricing bonds
so as to rule out arbitrage opportunities. In this thesis, we conduct an extensive cross-sectional
analysis of the EP model on two different data sets: prices for daily Treasury bills, notes and bonds
from the New York Federal Reserve Bank quotation sheets from July 1989 to October 1996, and
daily Canadian bills, notes and bonds prices for the time period from June 1992 to May 1995.
We estimate the model by applying a minimization criterion. The cross-sectional analysis shows
that the EP model is able to describe adequately the term structure of interest rates. For the
US data, we find that every term structure from the sampling period can be fully represented
by either nine or ten state factors. Eigenvalue analysis indicates that the first three principal
components are underlying the term structure movements. We conduct a time series analysis
on the three principal components. They are found to be best described by ARMA/GARCH

processes. We form two types of GARCH forecasts of the three principal components and test



their out-of-sample performance. We conclude that the three principal components are predictable
in a statistical sense. The use of an arbitrage strategy that attempts to take advantage of such
predictive power generates some economic profits. However given the relative small size of the

arbitrage profits, they will tend to vanish after transaction costs are considered.



Résumé

La structure a terme des taux d’intérét étudie la relation entre les rendements des obligations a
zéro-coupons et leurs maturités. Les test empiriques effectués sur les modeéles & un seul facteur de
la structure a terme des taux d’intérét, tel quel le modele de Vasicek (1977) ou le modéle de Cox,
Ingersoll et Ross (1985) ont démontré que ces derniers ne décrivent pas adéquatement la courbe des
taux d'intérét. Par ailleurs, les méthodes empiriques, telle que la méthode spline, sont généralement
dérivées d’'une maniére arbitraire et donc permettent la réalisation d’opportunités d’'arbitrage.
Guo (1998) a utilisé l’lf.‘.quation aux Différentielles Partielles pour 'évaluation des obligations,
afin de dériver une fonction d’actualisation linéaire qui soit consistante avec les conditions de non-
arbitrage. Il a démontré qu’une telle solution est unique. Cette solution, désormais dénotée modéle
exponentiel-polynomial (EP), décrit la fonction d’actualisation par n facteurs non observables.
Dans notre thése, nous effectuons une étude empirique exhaustive sur le modéle EP. Pour cela,
nous utilisons deux bases de données distinctes. La premiére base de données est constituée de
prix journaliers américains sur les bons du trésor, notes et obligations, répertoriés par la Banque
Fédérale de New York. Elles couvrent la période de juillet 1989 jusqu’a octobre 1996. La seconde
base de données est constituée de prix journaliers de bons, notes et obligations du gouvernement
canadien. Ces données sont cueillies par la Banque du Canada. Elle s’étend de juin 1992 jusqu’a
mai 1995. Nous avons estimé le modéle en appliquant un critére de minimisation des erreurs au
carré. L’analyse en-section nous a permis de conclure que le modéle EP décrit adéquatement
la courbe des taux. Chaque structure a terme de notre échantillon américain est décrite par

neuf ou dix facteurs d’état. L’analyse des valeurs propres de ces facteurs nous indique que trois



composantes principales sont essentielles pour expliquer la variation de la structure a terme. Par
ailleurs, nous avons démontré que les séries temporelles de ces trois composantes principales du
modeéle EP, sont décrites par des processus ARMA/GARCH. Ce résultat est intéressant dans le
sens ot il est en accord avec des études précédentes sur le processus de certaines variables d’état
des modeéles de structure 4 terme. Nous avons utilisé les processus en question pour construire
des prévisions hors-échantillon et étudier leur performance. Nous avons trouvé que les prévisions
des principales composantes a partir des modéles ARMA/GARCH contiennent des informations
substantielles. De plus, l'inclusion de ces prévisions dans des stratégies d’arbitrage a permis de
générer des profits. Toutefois ces profits ne sont pas élevés et nous pensons qu'ils auront tendance

a disparaitre aprés que les coiits de transaction soient pris en compte.
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Introduction

1.1 Term Structure of Interest Rates

The term structure of interest rates is an important subject in finance. In very
simple words, it shows the relationship between yields of zero-coupon bonds and

their maturities. In this chapter, we will use the following notation:

e P(z,t, ) denotes the price at date t of a discount bond with time 7 to maturity.
The price is assumed to depend on a state vector z. The bond pays one dollar

(in all states z) at date T =t + 7. By definition

P(z,t,0) = 1.

e D(z,t, ) denotes the discount function at time t. It corresponds to a discount

bond price. It depends on a state vector z. It pays one dollar at date T = t+7.

e y(z,t,7) denotes the yield at time ¢ on a bond of maturity 7 in state z. By

definition

_log P(z,t,7)
T

y(z,t,7) = for 7> 0. (1.1)

e 7(z,t) denotes the short interest rate at time ¢, in state z. By definition,

r(z,t) = limy(z, ¢, 7).
70



o

e f(z,t.7 + &t) denotes the forward rate with term &t. It is derived from the

prices of two bonds maturing a 4t period apart, as follows:

P(z,t,7)
. L, it) =1 —_—. 1.2

f(z.t.7 1) og(P(:c,t,T+6t)) (1-2)
f is the rate of return that one can earn from (¢ + 7) to (¢t + 7 + ét), with a
long position in the (7 + ét)-period bond and a short position in the r-period

bond.

e F(t,7) denotes the instantaneous forward rate as seen at time ¢ for a contract

maturing at time 7. By definition,

F(t, )= lei_r% f(z.t, 7+ 6t)

From definitions 1.1 and 1.2, one can deduce that yields are averages of forward

rates:
y(z.t,7) = = ¥ flz.t,5). (1.3)
=0

Thus, the maturity structure of discount bonds can be expressed in three equivalent
ways: prices, yields or forward rates. The use of yield curves is standard in monetary
policy analysis in central banks and elsewhere. However, the use of forward rates,
among other indicators, has started to be used by some financial institutions (see

Svensson (1994)).

1.2 Motivation for Research

The subject of term structure is directly related to the bond market and real
economic activity. Furthermore, it is used by central banks as an economic indi-
cator for setting monetary policy. Traditionally, it is believed that central banks
mainly affect short-term interest rates, such as yields on Treasury bills, whereas

real economic activity is more linked to yields on bonds with the same maturity as



physical capital. in the range of 10 to 20 vears. Thus, it is important to understand
the factors which affect the vields on these securities with different maturities and
hence have a better understanding of the central bank role for affecting the state of

the economy and the stance of monetary policy.

More recently. a big push for term structure research has come from the world of
practice, which has experienced an explosion in interest rate derivative products. In
fact, a thorough understanding of the empirical properties of term structure becomes
more and more desirable because term structure conveys information about market
expectations for the behavior and future course of interest rates. This information

is essential for the pricing of interest rate-contingent claims.

Models of the term structure of interest rates range from simple curve fitting
techniques to sophisticated theoretical models. In 1977, Vasicek launched the study
of term structure models. His model and, later, one by Cox, Ingersoll, and Ross
(1985), focused on describing the dynamics of the short rate. However some restric-
tions have been placed on the form of the stochastic process of the short rate in order
to derive closed-form solutions for bond prices and the prices of contingent claims.
Unfortunately, tractable models sometimes have undesirable economic properties.
For instance, the assumption that interest rates follow an Ornstein-Uhlenbeck pro-
cess (e.g. in the Vasicek model) leads to a closed-form solution for bond prices and
interest rate derivatives but allows negative interest rates. Other models such as
that of Heath, Jarrow, and Morton (1992) take into account the shape and the dy-
namics of the entire term structure. For this, the latter authors specify the current
term structure, which is considered as the underlying asset in this model, in terms
of forward interest rates. The derivation of results on the equivalent martingale
measure is easier with the forward rate specification than with the spot rate spec-
ification. However, the forward rate specification turns out to be more difficult to

implement. Even so, these bond price models have not been able to explain ob-



served term structures; see for instance Brown and Dybvig (1986), and Gibbons and

Ramaswamy (1993), and Kaushik and Morton (1994).

On another level, curve fitting techniques have been used to give a more practi-
cal way of describing the term structure. In 1975, McCulloch suggested the use of
polynomial spline models to estimate the term structure from observed treasury se-
curity prices. Later, Vasicek and Fong (1982) proposed the exponential polynomial
spline function to estimate the term structure of interest rates. These techniques,
although useful in practice, have never been proved to be consistent with the ab-
sence of riskless arbitrage in the bond market. The latter feature is indeed the key

distinguishing point of term structure models.

Guo (1998) addresses this particular issue. He suggests taking the unspecified
Partial Differential Equation (PDE), previously derived by many authors, as a no-
arbitrage condition and determining if any linear discount function of the term
structure is consistent with no-arbitrage. His concern is whether the PDE has a
linear solution. He shows that a linear model does exists, derives it, and shows its
uniqueness. His solution will be referred to as the exponential-polynomial (EP )

model of term structure.

The purpose of this thesis is to test the empirical performance of the EP model
and to study the implications of the empirical findings. We conduct an extensive
empirical analysis of this particular model. We test the ability of this model to
describe the observed term structure of interest rates by fitting it, first to 1805 daily
cross-sections of nearly 388,082 U.S. bonds over the period from 1989 to 1996, and
second to 800 daily cross-sections of nearly 60,667 Canadian bond prices over the
period from 1992 to 1995. Hence, this study provides a comprehensive empirical
test of the EP term structure model using different data sets of traded bonds across
a broad maturity spectrum. Since our analysis is extensive, it will allow us to draw

important conclusions about the empirical tractability of the EP model and its



potential use as a model for term structure.

1.3 Survey of the Literature

Various term structure models for interest rates have been suggested by aca-
demicians and practitioners since the early part of this century. There has been
many attempts to estimate it with various degrees of success. Durand (1942} was
among the first authors to study this subject. He measured the term structure of
interest rates by fitting a “smooth” curve to the average yields to maturity of the
observed securities. The technique he used for that purpose is based on hand fitting
and one can easily understand that any small error which occurs while fitting the
curve will be magnified, especially for long maturities, if the yield curve is used to
infer forward rates.

This literature survey is structured around two main classes in the term structure
literature: theoretical models and curve fitting models. The theoretical literature is
generally formulated in terms of general equilibrium or partial equilibrium approach.
It is concerned with the determination of stochastic processes that are suitable for
the state variables. Moreover, it is interested in the economic identification of the
state variables. On the other hand, the curve fitting literature is interested in fitting
model parameters to the data in order to determine the shape of the observed term
structure. So far, there is a wide gap between the methodologies and predictions
of the theoretical and curve fitting models. We will present a review of the best
known models in each class as well as a summary of their empirical performance in

describing the term structure of interest rates.

1.3.1 The theoretical models

This class of models constitutes the largest part of the development of the sub-

ject of term structure. Most of the theoretical contributions in this class can be
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broadly included in two categories. The first one was initiated by Vasicek (1977)
and then thoroughly developed by Cox, Ingersoll, and Ross (1985) (hereafter CIR).
It emphasizes the description of the dynamics of the short rate. These two models
and many variations of them, are referred to as the single-factor models. Indeed,
they only use information on the short-term rate and ignore information from other
rates drawn from the yield curve. This category of models has been extended to
include many of the term structure models that have been proposed so far. Brown
and Schafer (1993) call this category the affine yield class of term structure models.
They provide a complete description of this vast class. Later, Duffie and Kan (1996)

extended this category to include the multifactor models.

1.3.1.1 The affine class of term-structure models

The class of time homogeneous single factor models “have (these models) the
property that the yield curve at any point in time depends only on the state variable,
e.g. the short rate, and not on calendar time!”. Many processes have been suggested
for the short term interest rate r(t). A general formulation frequently presented in

the literature is the following
dr(t) = k(l ~ r(t))dt + o,r%dz(t), (1.4)

where « is the “rate” of the mean reversion term, [ the long term mean towards
which the short rate is pulled, o, the volatility of the short rate, and 2(¢) a standard
Wiener process. In this framework, Vasicek and CIR models are considered as special
cases of this class of short rate model. In fact, both models agree on having the
short-term interest rate as the only state variable. However, each model assumes a
different process for the short-rate. While Vasicek model is recovered from equation

1.4 by setting v equal to 0, CIR assumed that ¥ = 1/2, which implies a square-root

!See Brown and Schafer (1993).



-1

process. CIR showed that the price P(r,t,7) of an interest rate contingent claim

must satisfy
1
aP.(r,t,7) + By(r,t, T) + -2-0,2.P,,(r, t,7) —rP(r,t,7) =0, (1.5)

where a is the “risk-adjusted” drift of the short rate process ( i.e.,x({ — r(t)) plus
a market risk premium). P.(r,t,7) is the first partial derivative of P(r,¢,7) with
respect to the variable r, P,(r, ¢, 7) is the first derivative of P(r,t,T) with respect to
t, and P..(r,t,7) is the second derivative of P(r,t,7) with respect to r. Since the
zero-coupon bond is considered as a contingent claim which pays 1 at maturity and

0 elsewhere, then its price P(r,t,7) is obtained by solving equation 1.5 such that
P(r,t,0)=1. (1.6)

Many authors (including Merton (1973), Vasicek and CIR) showed that the solution

for a zero-coupon bond has this particular form
P(r,t,T) = A(T) exp~ Br®), (1.7)

where A(7) and B(r) are functions of time-to-maturity, 7 2. In equation 1.7, the
zero-coupon bond price is expressed as an exponential function of the short rate r.

From 1.7, the zero-coupon yield, y(r,t,7), is derived as
y(r,t,7) = —1/7(log[P(r, ¢, 7)]) = — log(A(7))/7 + B(7)r(t}/r. (1.8)

As can be seen from equation 1.8, the zero-coupon yield from this class is affine in
the short rate, r; hence, the name affine yield models.
Other models such as Chen and Scott (1992) or Longstaff and Schwartz (1992)
are considered as multifactor models from the affine class of term structure models.
Most of the empirical tests conducted on the exponential affine class of models

have used various approximations for the short rate process in order to estimate

2See Appendix A page 197 for an explicit expression of A(.) and B(.) for the Vasicek and CIR

models.



the models. These approximations have led to biased and inconsistent parameter
estimates. Thus, in general, the empirical performance of these models has not
been entirely satisfactory. Indeed, Brown and Dybvig (1986), and Gibbons and
Ramaswamy (1993). two famous empirical studies on the CIR model, concluded that
the CIR model has poor parameter stability and produces unreasonable parameter

estimates (l.e., negative variances).

1.3.1.2 The no-arbitrage models of term structure

The second category of models contains no-arbitrage models. It was initiated
by Ho and Lee (1986) and then extended by Heath, Jarrow, and Morton (1992)
(hereafter HJM). The general idea is to take bond prices as inputs and then try
to price derivatives based on bond prices. Their mechanism for pricing interest
claims is similar to the Black-Scholes stock option pricing model with an arbitrage-
free argument as developed by Harrison and Kreps (1979) and Harrison and Pliska
(1981). Instead of reasoning from the short-rate, they choose the forward rate
process and a measure of its volatility. The process for the instantaneous forward

rate is written as

dF(t,T) = a(t, T)dt + B(t, T)dW,, (1.9)

where o and f are, respectively, the drift and the standard deviation of the forward
process, t is the current date, T is the maturity date and W, is a Wiener process
at time ¢t. At a first glance, the HIM model resembles the Vasicek model with the
important difference that we are dealing with forward rates rather than spot rates.
However, it turns out that using the forward rate is a more general approach to
price bonds than using the short interest rate as the only state variable of the term

structure. Indeed, the short rate is a particular forward rate

F(t,t) = r(t). (1.10)



From equation 1.9, the forward rate can also be written as
t t
F(t.T) = F(0,T) + /0 a(s, T)ds + / B(s, T)dW.. (1.11)
0

HJM used equation 1.9 to derive bond-price processes as Ito processes whose drifts
and diffusions are in terms of « and 8. They also derived sufficient conditions on
a and 3 for the absence of arbitrage. The instantaneous forward rate F' is said to
be Gaussian if a and 3 are deterministic for each ¢t and T. This condition implies
that the forward rates are normally distributed as well as the short rate. This
result relative to the Gaussian forward rate has been studied by many authors, and
specially when dealing with the option pricing of interest sensitive contingent claims
(see Jamashidian (1988)). The first comprehensive test conducted on the HIM model
is by Kaushik and Morton (1994). They assumed six alternative special cases of the
HJ M formulation. These special cases are classified into two categories of models:
one-parameter models and two-parameter models. They used bond option prices
to compute implied volatilities. Their results indicate that the implied volatilities
from all six alternative special cases are unstable. Their empirical study suggests
that the one-parameter models fit the term structure slightly less well than the two-
parameter models. However, the implied parameter values of the one-parameter
models are more stable over time than the ones implied from the two-parameter

models.

1.3.1.3 Recent developments in term structure models

Besides these two well-known approaches, there has been a growing number of
sophisticated approaches which have been developed in more recent years. Among
others, the “potential” approach which attempts to model the state-price density of
the short rate. In simple words, this approach models the intertemporal marginal
rate of substitution (IMRS) or pricing kernel, derived in a representative consumer

economy in which the consumer has specific preferences. The potential approach
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was first proposed by Constantinides (1992) and then by Flesaker and Hughston
(1995). Rogers (1997) and Jin and Glasserman (1998). This approach starts by
considering a consumer economy in which the representative consumer maximizes

expected discounted utility with constant discount factor p.
m L d
Ei( [ e=P5L (c,)ds).
t

where {'(.) is the consumers’s Von Neumann-Morgenstern preference function. and
c; is the consumption rate at time ¢. In equilibrium, the time-t price of a contingent

claim that pays D units at future date s is

p(t) = E,(%D) for 0<t<s<oc.

t

Z, is the marginal utility of optimal consumption at time ¢{. It is also called the

pricing kernel or state-price density. It is expressed as

oU
— o=t
Zt =e act' .

where ¢} is the optimal consumption process. The stochastic process followed by
the pricing kernel is described by the following equation (see Duffie (1992))
m
dZ, = Z,(-r(t)dt — z 0;dW;(t)). (1.12)
j=1
where () is the short rate and ¢,(t) is the market price of risk associated with the
J-th random factor (t). a standard Brownian motion. Therefore, if the pricing

kernel is modeled as

dZ, = pzdt + Y Y;(t)dW,(t), (1.13)
j=1
then, the short rate is r(t) = —puz(t)/Z, and the market price of risk ¢;(t) =

_Yj(t)/ Z,.
For instance, Constantinides has modeled positive interest rates through an

explicit model of the pricing kernel. He defined the process of Z; in terms of
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(N +1) independent processes. z;(t), i = 0,1,..., N, and constants g, o and q; for

t=0,1,...,N, as

Z, = exp {—(g + 02—3) + zo(t) + i(:v,-(t) - a,-)2} . (1.14)

1=1
The process z;(t), ¢ = 1..., N, is assumed to be a continuous-time AR(1) process

defined as the stochastic integral
t
zi(t) = 2 (0)e™™ + / eM=gWi(s), i=0,...,N, (1.15)
0

where \; > 0. The (N + 1) Wiener processes are assumed to be mutually indepen-
dent. Under some conditions that ensure the positivity of the nominal interest rates,
Constantinides derives the expression of a zero-coupon bond price as well as the ex-
pression of the short rate. The author claims that his model can (theoretically)
accommodate different shapes of the term structures. To our knowledge, however,

the empirical performance of the model has not been investigated.

1.3.2 The curve fitting models

Besides these theoretical models, many empirical term structure or curve-fitting
models have appeared. McCulloch (1975), Vasicek and Fong (1982) and Coleman,
Fisher, and Ibbotson (1992) are a few of them. The empirical models usually start
from a pricing function relating bond prices to a discount function and other factors.
Then the discount function is approximated by an ad hoc functional form. Finally,
the variables of the term structure function are estimated through an econometric
method. These models offer the advantage of being flexible. However their choice
is somewhat arbitrary and thus allow for possibilities of arbitrage. In chapter 3,
we will be interested in comparing the empirical performance of some curve-fitting
models. Here, we will review some of these curve-fitting models and will point out

their main drawbacks.
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1.3.2.1 Nelson and Siegel model

This model was first developed to fit only discount bonds. However, Bliss (1997)
uses the extended Nelson-Siegel method to fit the discount rate function directly to
bond prices (including coupon-bonds). In this model, the forward function can be

mathematically described by®
f{t,7) =ag + (a) + aa7)e™ 7, (1.16)

where t is the current time, 7 is the time to maturity of a zero-coupon bond, and
(a0, a1, az,a3) are parameters to be estimated. These parameters represent the cur-
rent state of the economy. This model has been widely used in practice. However,

it is not clear how it can be included in an arbitrage-free framework.

1.3.2.2 The recursive method

This method is known on Wall Street as the “bootstrap”. It infers the consecutive
forward rates f(t,7) iteratively from observed bond prices. It has been clearly
formalized by Fama and Bliss (1987). Let us consider one simple example. For the
sake of exposition, we assume that there exists three distinct bonds P; = 1,2,3.
P, and P, are two zero-coupon bonds with respective time to maturity 71 and 7
(1 < 7). Psis a coupon bond with a face value of F. It pays an annual coupon, C,
at times 71, 7o and 73 respectively (1, < T, < 13). The three forward rates f(t,7:)

fori=1,...,3, are the solution to the following system of equations
P, = e-lttnin
P = e ftmm
P, = Ce/ttm)n { Ceftmin 4 (F 4 C)e~(tmim,

First, f(t, ) is extracted, then f(t,7;) and finally f(¢,73). In this simple example,

it is assumed that there is only one unknown in the third equation. However, if

3Here z is dropped from the functional notation for the forward rate.
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for a given bond price there are several unknown forward rates ( this tends to be
encountered at the long end of the yield curve where observations are scarce) then
they will be expressed in terms of adjacent forward rates using linear interpolation.
Then. we solve for the unknown forward rate with an optimization procedure. In
general. the Newton-Raphson method is used for that purpose. This method has
the disadvantage of depending on a huge number of parameters (i.e.. the extracted

forward rates).

1.3.2.3 McCulloch model

The objective of McCulloch (1973) was to estimate the discount function D(r)
from market prices'. He suggested a method for fitting a smooth curve, the discount
function. by a cubic spline. First. he assumed that the discount function can be

written as follows

«
D(r) =1+ Bfe(r). (1.17)
k=1

where fi(7) are functions specified such that

fk(0) =0.

The 3¢ are unknown parameters to be estimated by linear regression. Equation
1.17 means that when the maturity of each bond is evenly divided into K intervals,
the discount function D(7) is approximated by a distinct cubic polynomial function
f(.) over each interval. Usually, K is set to be equal to the nearest integer nearest
to v/N. where N is the number of bonds in the sample. The intervals are joined at
knots (or break points) in such a manner that the spline’s first and second derivatives

are set equal at these points.

1For simplicity, ¢ is dropped from the notation of D(t, 7).
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According to this method, the price of a bond j with maturity 7 and which pays
a discrete constant coupon C; and has a face value of F, can be expressed as

M
Pi(t,7) =Y Cj(p)D(w) + FD(1) +¢;, (1.18)

=1
where ¢; is an error term. The symbol y; is the ith coupon payment date expressed
in terms of fraction of a vear. With this notation, we have pps = 7 at maturity.

If we replace the discount function D in equation 1.18 by its representation in

equation(1.17), we obtain

Pj(t, T) = .¥0 + BI(XI + Ll) +... +ﬁK(XK + LK) + €5, (1.19)

where:

M
L] Xo = F+ECJ(,U,,)
i=1

M
® Xk = ka(l-‘i)cj(ﬂi), k=1...K.

i=1

o Ly=fi(r)F. k=1...K.

In his paper, McCulloch replaced P;(t,T) by the average of the bid and ask prices.

Then, he estimated the 8’s by the following minimization procedure:
N
n;inZ(uqe?) k=1...,K.

The w; are weights computed as follows

2
where P{ and P}’ are ask and bid prices of bond j, respectively. McCulloch chose to
use the weighted least square method in order to prevent the estimates from being
affected by large errors that are solely caused by transaction costs.

Unfortunately, the forward curves produced by the models of McCulloch and

Vasicek and Fong tend to oscillate and reach negative values. To solve this problem,
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Shea (1985) suggested to use constraints on the splines and varying the number
of break points. Fisher, Nychka, and Zervos (1995) implemented some of these

suggestions.

1.3.2.4 Fisher et al. cubic spline model

Fisher, Nychka, and Zervos (1995) use spline functions to estimate the term
structure. However, instead of using regression splines as McCulloch did, they in-
troduced smoothing splines. The advantage of smoothing splines is that the number
and location of knots is chosen optimally rather than predetermined by the user.
Moreover, Fisher et. al choose to place the spline on the forward function instead
of the discount function. Their methodology minimizes what they call a criterion

function specified as follows

N T
e+ A /0 D(r)"dr, (1.20)
=1

where N is the number of bonds in the sample, D(7) the discount function, D(7)" the
second derivative of D(.), and A a weight parameter. The second term in equation
1.20 is added in order to penalize the roughness of the approximating discount
function D(1).

All these previously mentioned methods are based on curve fitting procedures.
They are designed to match bond price observations. It is not clear how they can

be placed into a no-arbitrage framework.

1.3.3 Empirical studies of term structure

Empirical studies of term structure can be classified in three distinct categories:

e cross-sectional studies,

e time series studies,
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¢ density function estimation studies.

1.3.3.1 Cross-sectional Studies

Brown and Dybvig (1986) are considered to be the pioneers of this first category.
They tested the one factor CIR model with U.S coupon-bearing bonds. They fitted
the yield curve by pooling data and kept the structural parameters constant for
several days. Under the one factor CIR model, the price of a zero-coupon bond can

be written as

P(r,t,7) = A(r) exp~ B, (1.21)

where A(7) = fi(k, A, o) and B(7) = fa(k, A, 0,0), with f; and f, being two specific
functions (see the details of CIR model in Appendix A page 197). Brown and Dybvig
assumed that the market price of a zero coupon bond, P,, is the sum of a theoretical

price (here the CIR model) plus an error term. Thus,
P, = PF'™®(r,k,\,0,0) + €.

To conduct their cross-sectional study, they chose to minimize the sum of squared

errors defined as

Z(P PE™®Y for i=1,...,n, (1.22)

over the structural parameters x, A, o, § and the risk free rate r for n different
traded bonds at time ¢.

The Nonlinear Least Square (NLS) method that they used allows the estimation
of (k + A), o and the long rate [ (defined in Appendix A), but the mean reversion
parameter «, the risk premium parameter A and the unconditional mean of the spot
rate 6 are not separately identified. Since the short rate is also one of the estimated
parameters, Brown and Dybvig compared its successive values to the time series of

yields on two-week US bills. A systematic deviation was noted between the two
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series. Moreover, they found that the CIR model fits generally the T-bills better

than longer Treasury issues.

Brown and Schaeffer, Barone, Cuoco, and Zautzik (1991), de Munnik and Schot-
man (1994) used a similar econometric approach but applied respectively to British,
Italian and Dutch data. Like others, they found in their empirical study of the CIR
model that it exhibits parameter instability. The results point to the need to include
more than one state variable in these models to be able to fully describe the term

structure.

More recently, Jordan and Kuipers (1997) presented an empirical study of the
CIR‘model as well as the Vasicek and Merton models. Their study is in the spirit
of Brown and Dybvig. However, it presents the advantage of using daily data over
a horizon of five years. The data consists of prices STRIPS for bonds ( a sort of
synthetically created zero coupon bonds of longer maturities than a year) and thus
avoid complications arising from estimating coupon bonds. Once again, the CIR

model was found to exhibit high parameter instability.

Chacko (1998) suggests the use of a technique based on Fourier transforms to
estimate affine term structure models (e.g., CIR model and Vasicek models). This
technique relies on maximum likelihood estimation. The author claims that it can
separately estimate the risk premium parameter ( that we referred to as A in the
CIR model) while simultaneously estimating other parameters. Until now, we did

not encounter an empirical study that implemented this technique.

In general, the common criticism addressed at this category is that the models are
unable to separate out the interest rate risk premium from the individual parameters
of the interest rate process. Moreover, this approach does not constrain the interest
rate parameters to be stable over time. Most of the empirical evidence indicates

that the parameters estimated with this technique are quite unstable.



18
1.3.3.2 Density function estimation

This approach covers studies that usually infer information about the term struc-
ture from a specific likelihood function.

Gibbons and Ramaswamy (1993) conducted an empirical test on the CIR model
using the Generalized Method of Moments (GMM). This method has the advantage
of avoiding assumptions relative to the stochastic process of the aggregate price.
Their result concluded that parameter estimates from CIR model preclude a humped
shape for the term structure. Moreover, the estimated autocorrelation coefficient of
the short rate implied from CIR model was too small compared to the corresponding
sample autocorrelation coefficient computed from US T-bills prices.

Chen and Scott (1992) extended one-factor CIR model by including additional
factors which follow square-root processes. For the estimation, they used the time
series of four distinct bond maturities. In order to derive the likelihood function of
the unobservable state variables, they expressed the underlying state variables in
terms of the observed bond prices and some errors terms. Their findings were in
favor of two or three state variables to fully characterize the movements of the term
structure.

Pearson and Sun (1994) used the conditional density of the state variables to
estimate and test a two-factor extension of CIR model. Their idea is to infer the
conditional density of the unobservable state variables from the bond pricing for-
mula. For this, they use NV observations of two different bonds available at different
points in time. Their results showed that estimates, based on bills only, imply
unreasonable large price errors for longer maturities.

The density function estimation methodology is theoretically attractive since
it includes all of the relevant information about the stochastic process and allows
separate identification of all model parameters. Unfortunately, from an empirical

point of view, it suffers from some drawbacks. For example, the difficulty with
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implementing the test procedure requires limited sample sizes or simple treasury

securities such as short-term Treasury bills.

1.3.3.3 Time-series approach

Time-series studies are not as computationally burdensome as cross-sectional
studies. They start by assuming a stochastic process for the short rate. Then, using
some optimization technique, the parameters of such a process are estimated. Usu-
ally, this approach is used to validate whether interest rates follow the hypothesized
process. However, it provides no way to estimate the risk premium parameter, A.
Moreover, it ignores information available from bond prices and the estimated pa-
rameters may imply theoretical bond prices totally different from their observable
counterparts. One famous study in this category is that of Chan, Karolyi, Longstaff,
and Sanders (1992). They compared eight competing models of short-term interest
rate dynamics. All the models were nested within a framework that allows com-
parison among the models. Their study was interesting in highlighting the most
important features of the short rate process. However, their study is subject to
many criticisms especially with respect to its use of the short rate. In fact, the short
rate is an unobservable variable and any empirical research on the time-series prop-
erties of the short rate typically requires a proxy. Thus, choosing the one-month
Treasury bill yield or the weekly Eurodollar rate as proxies for the short-rate is al-
ways a subjective choice that has an impact on the term structure models, see for
instance Chapman, Long, and Pearson (1999).

Table 1.1 presents a summary of some of the empirical studies of term structure
that are mentioned above.

In general, it seems that the theoretical development of term structure models
has followed a rapid path whereas their empirical testing and practical implemen-

tation have remained far behind. The curve-fitting models, although simple and
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empirically satisfactory, lack an underlving theory. In the next chapter, we will
present a term structure model proposed by Guo (1998) that is conceived in the
curve fitting spirit but that has the significant advantage of being a linear solu-
tion to the Partial Differential Equation of bond pricing and, hence, has a strong

theoretical basis.

1.4 Organization of the thesis

The rest of this thesis is organized as follows. Chapter 2 presents a derivation of
the EP model developed by Guo. Chapter 3 describes the cross-sectional estimation
of the EP model using U.S bonds data. Chapter 4 reports the main results obtained
for the cross-sectional study using Canadian daily data set. Chapter 5 examines
the time series properties of the principal components of the state factors of the EP
model. Chapter 6 includes the out-of-sample results from the estimated principal
components. It also examines some arbitrage strategies that employ forecasts of the
three principal components. Finally, Chapter 7 summarizes the results and contains

concluding remarks.



Authors Data Model(s) Method Conclusion
Brown and Dybvig (1986) U.S. Treasuries CIR NLS model rejected
monthly data parameter instability
Brown and Schaefer (1994) British CIR NLS model rejected
monthly data parameter instability
Cuoco et. al. (1991) Italian CIR NLS model rejected
monthly data parameter instability
deMunnick and Shotman (1994) | Dutch CIR NLS model rejected
monthly data
Gibbons and Ramaswamy (1993) | U.S. T-bills CIR GMM model partially rejected
monthly data unrealistic parameter estimates
Chen and Scott (1992) U.S. T-bills multifactor CIR MLE more than two factors needed
monthly data for term structure
Pearson and Sun (1994) U.S. T-bills two-factor CIR MLE model rejected
monthly data unrealistic price errors
Jordan and Kuipers (1997) U.S. STRIPS CIR, Vasicek NLS poor out-of- sample performance
daily data and Merton and iterative GMM

Table 1.1: Summary of previous empirical studies of term structure models.

1¢



Chapter 2

A Linear Model for Term

Structure

2.1 Introduction

The concept of term structure is usually expressed in terms of three functions
that are interrelated: the discount function, the discount rate function (zero-coupon
yield curve) and the forward function (forward-rate curve). The discount function,
which relates the zero-coupon bond prices to different maturities, has been an im-
portant measure of the term structure of interest rates. Through the years, discount
functions have been estimated mostly with ad hoc smoothing techniques. The usual
practice among authors is to select an approximating function for the discount func-
tion and then estimate the parameters of this function. Spline models were originally
brought to term structure estimation by McCulloch. Vasicek and Fong introduced
the exponential spline model. However, the emphasis was directed to the fitting
performance of the empirical models of term structure with little attention granted
to their consistency with the absence of riskless arbitrage in the bond market. In his

paper, Guo (1998) has raised this particular issue. He derived an empirical linear
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model of the term structure consistent with the Arbitrage Pricing Theory (hereafter
the APT) of Ross (1976). First, I will present Guo’s derivation of this model as a
solution of the fundamental Partial Differential Equation (PDE). Second, following
Guo’s arguments, I will show the uniqueness of this solution. Finally, I will highlight

the relationship between this solution and a special version of the HJIM model.

2.2 The Exponential Polynomial (EP) Model

2.2.1 Notation

Here is the notation that is used in this chapter.

e D(z,T,t) is a zero-coupon bond price at time ¢. It pays one unit at the

maturity calendar date T.
o z(t) = [11(t)...za(t)] is a state vector.

e z;(t) is the ith state factor.

Following McCulloch, the discount function has been modeled as a time-homogeneous

state factor model. It has the following general linear form:

D T1) = ho(T)+ 3 zt)aT), (21)

D(z,T,T) = 1,
where:

® ho(T) is an arbitrary function of T, with hg(0) = 1.

e gi(T) is a basis function designed to satisfy ¢;(0) =0fori=1...n.
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This system of equations expresses the discount function as a linear combination
of future cash flows discounted by some functions g;(t), with the condition that the
discount function reaches the value 1 at maturity. Before presenting the exponential
polynomial model, I will briefly review the derivation of the fundamental PDE of

bond pricing.

2.2.2 The fundamental PDE

The fundamental PDE for bond pricing models has been derived by many au-
thors, e.g. Langetieg (1981) and Cox, Ingersoll, and Ross (1985). The PDE has been
a starting point for many equilibrium term structure models, including the multi-
factor model of Langetieg and the single factor models of Vasicek and CIR. The
differences between all these models stem from further assumptions made about the
identity of the state factors z;(t), their stochastic processes and the market price of
risk. Guo has insisted on the use of the fundamental PDE as a way “...to check ifa
given model is consistent with no-arbitrage, regardless of how the model is derived.”
Under the assumption of market perfection, Langetieg assumed that the state vector

follows a joint Ito process
dz; = p(z(t), t)dt + o:(z(t), t)dz, t=1...n, (2.2)

where:

o u;(z(t),t) is the drift of the process.

o oi(z(t),t) is the diffusion coefficient of the process.

® z; is a standard Wiener process.

By applying Ito’s formula, the instantaneous change of the bond price is written

oD 13 & a’D 2. 9D . dD

. dD(z,T,t) = (—Et— +5 ¥ PijUina—xigz—j + Zﬂig;;)dt + go'iaadzi, (2.3)

=1 j=1 =1
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where p;; is the correlation coefficient between r; and z;. Equation 2.3 can be

simplified to

_ n D
dD(.’L', T, t) = ngt -+ Z Uig?dzi, (24)
i=1 t

with the drift of the instantaneous change of the bond price expressed as

0D 1 &KE 02D . 8D
3t‘+§zzpi10iajm+zﬂi5;

i=1 j=1 i=1

Dl=

Consider (n + 2) zero-coupon bonds, equation 2.4 can be expressed in vector form
as

dD = D.dt + »_ 0;D;,dz;, (2.5)

=1

where:

e D is a price vector of (n + 2) zero-coupon bonds of different maturities.
e D is the vector drift.

e D,, is the partial derivative vector of D with respect to ;.

At this stage, the fundamental PDE for bond pricing can be derived invoking
the APT theory. Consider a portfolio of (n + 2) zero-coupon bonds with a weight
vector w,. Assuming unrestricted short sales, the vector of weight can be chosen

such that the portfolio requires zero investment
w,D =0,

and bears zero risk

w,Dy, = 0.

In perfect markets (i.e., no commissions, taxes,...) and in equilibrium, Ross argues

that such a portfolio must earn a zero rate of return. Thus,
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The above equality implies that the (n +2) vectors D, D, and Dy,. must be linearly
dependent (see Langetieg and CIR). In turn, this linear dependence implies that

there exists at most (n + 1) independent scalars such that
Dt = ¢0(I(t), t)D + Z ¢i(1'(t), t)O"-(I(t), t)Dxn (26)
=1

where @o(z(t),t) can be interpreted as the instantaneous interest rate (short rate)
and ¢;(z(t),t),i = 1,...,n, a market price of risk related to the state factor z;.

Thus, equation 2.6 implies that

(2.7)

(@(t),1) = 8:(a(t), Dou(z (1), ) + G — o@D = O,

where oy; is the covariance between z; and z,. Equation 2.7 is the fundamental PDE

for bond pricing. It has the following boundary condition at maturity
D(z,T,T) =
To further explain equation 2.7, let’s denote
m(z(t),t) = pi(z(t),t) — di(z(t), t)ai(z(t), 1). (2.8)

In equation 2.8, the market price of risk for state factor ¢;, is replaced by an equiv-
alent expression. If we substitute the expression for 7; in equation 2.7, the PDE

becomes

a., (z(t),t) + Z aDn,(z(t) t) + %? (2.9)

do(z(t) =%zj:i

Having reviewed the derivation of the PDE, we now will present the exponential

polynomial model of Guo as a unique solution to the PDE 2.9.
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2.2.3 The exponential polynomial solution and its unique-

ness

Here, the purpose is to derive expressions for both ho(7T) and ¢;(T") of equation
2.1, that are consistent with the absence of riskless arbitrage. For this, the PDE
will be the main equation. Taking the first order partial derivative of equation 2.1

with respect to the state factors z;, we get

oD
b?i = g;(T).

From the linearity of 2.1 in z;, the second order partial derivative of D with respect

to the state factors vanishes
oD? —0
dz;fz,

The partial derivative of D with respect to ¢ is

8D 8D n
= = 77 = ~ho(T) — )_zigi(T),
ot aT 0 ;

where the apostrophe denotes the derivative with respect to 7. Substituting these

partial derivatives in equation 2.9 and re-arranging terms, we obtain

S {[(z(0).8) = 9ol (0), DlaiT) — zigl(T)} ~ (Bo(z(t), Dho(T) + Ky(T)} =0.
) (2.10)

At the beginning of this chapter, we claimed that the discount function has been
modeled as a time-homogeneous state factor function. Thus, equation 2.10 can be

simplified to
Y {[m(2) — 6o(2)29i(T) — zigl(T)} - {Bo(2)ho(T) + ho(T)} = 0. (2.11)
i=1

Assume that the last term in braces in equation 2.11 is equal to ze:o, i.e.,

{#0(z)ho(T) + ho(T)} =0,
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the solution ho(T) = e ®*T would be in contradiction with the linearity of the
discount function 2.1. In fact the exponent term ¢y which represents the short rate
is not assumed constant. Thus in order to be independent of the state factors z;,

the basis function must be written as
9i(T) = hy(T) — ho(T). i=1,....n, (2.12)

where h;(T) is an arbitrary function with h;(0) = 0. If we substitute expression 2.12

into equation 2.11, we get
i:{[m(z) — ¢o(z)zi)hi(T) — z:h(T)} —
(2.13)

(BT = 3 2] + ho(T)[do(z) + > () — do(z)z]]} = 0.
=1

=1
This equation is very important. It will allow us to derive the expressions for ho(7T)
and for h;(T). The necessary and sufficient condition that equation 2.13 holds for
any r is that both terms in braces equal zero. First, let the first sum be equal to

zero, then

[n:(z) = do(x)zihi(T) — z;hy(T) = 0. (2.14)

Introducing the natural logarithm of A;(T), we obtain
dIn hi(T)/dT = [ni(z) — do(z)z:]/z:. (2.15)

Equation 2.15 is a differential equation. It can be solved subject to (h;(0) = 1). The

unique solution to this equation is
hi(T) = e~ M (2.16)
with the expression of A; written as

Ai(z) = ~[mi(z) — do(z)zi]/ s (2.17)
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The discount function expressed in equation 2.1 is linear in z. Thus, A;(z) is required
to be a positive constant that is A\;(z) = A; for all z. From equation 2.17 the first-

order coefficient n;(z) is the unique solution to the following equation
ni(z) = [po(z) — Ailz:- (2.18)

Following similar reasoning as before, the expression for ho(T) can be derived from

the last braced term of equation 2.13 as
ho(T) = e~ 7, (2.19)

with the expression of A written as

$o + zn:[ﬂi(-’f) — ¢o(z)x;]
A = =1 , (2.20)

n
I—ZI,;

=1

Ao is required to be a positive constant. Simply substituting 2.18 into 2.20 the
expression for the coefficient ¢y can be uniquely determined as
n
$o = Ao + ;(Ai — Ao) ;- (2.21)
Having the exact expressions of ho(7T") and h;(T") respectively, the linear discount
function can be expressed as follows
n n
D(z,s,t)=(1-)_ zi)e rol=t) 4 > ze” Nt (2.22)
i=1 i=1
where s is a variable time to maturity. Equation 2.22 is the unique linear solution
to the fundamental PDE derived by Guo. Since, the instantaneous (short) interest
rate is, by definition, nothing more than a limiting value of the zero-coupon discount
function, then from equation 2.22, the expression for the short rate r(z(t),t) can be
derived as

z,s,t)

r(z(t),t) = 6D(at ls=¢ = Ao + Zn:()‘i = Ao)i. (2:23)

=1
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It is clear from equations 2.21 and 2.23 that ¢, is indeed the instantaneous interest
rate. It appears that the short rate is a linear combination of n unobservable state
factors. It is well known that the inflation rate or the real interest rate are some
factors influencing the short rate. However, at this stage of work, we are unable to
attribute any economic meaning to the state factors. Moreover, the exact number of
these factors is not a theoretical matter, it must be empirically specified. In fact, the
model offers a wide latitude in defining the term structure problem. Vasicek defined
the term structure in terms of a single factor, the short rate. Brennan and Schwartz
(1979) suggested a two-factor specification, the short rate and the long rate. In
general, a multifactor specification is attractive in the sense it can match various
shapes of term structure over time. Unfortunately, a multifactor specification is
usually difficult to implement. In the empirical part of this thesis, we will discuss

these issues further.

Equation 2.22 represents a linear discount function. Guo referred to it as the ex-
ponential polynomial (EP) model of term structure. Indeed, it describes the discount
function as a linear combination of state factors discounted at different exponential
rates. The EP model is different from spline functions. It is an unconditionally
arbitrage-free model, derived as the unique linear solution to the fundamental PDE
of bond pricing. The EP model is defined on the entire maturity range of term
structure (s € [0,00)). Unlike spline functions, it does not need to be defined on
some subintervals. Moreover, as we will see in the following chapters, the EP model

can easily be used for the empirical estimation of the term structure.

2.2.4 The exponential basis

In its expression, the EP model is related to the exponential spline model of Va-

sicek and Fong. However, the Vasicek and Fong model is defined on two consecutive
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knots. It has the following expression

D(s,t) = ag + aje B9 4 067208 | gge7 3RO~ g€ sy, si], (2.24)

where:

e R denotes the asymptotic forward rate (long rate).
e i =1,...n. nis the number of knots.

® ag,a;,a,,as are linear coefficients.

If the subinterval is extended to the entire maturity and the linear coeficients
are modified to satisfy the boundary condition (D(T,t) = 1), equation 2.24 would
be equivalent to the EP model. In the EP model, Guo specifies the exponential

parameters in a more flexible way than in equation 2.24:
=R, s=L+R, 1=1,...,n, (225)

where {;,2 = 1,...,n are positive constants. The choice of /; is motivated by some
empirical issues that we will discuss in the next two chapters. In general, we choose
a decreasing, or increasing, suite for /;, and this is to avoid multicollinearity between
successive state factors. As the term to maturity goes to infinity, the discount
function tends to
n
D(z,s,t) = (1= Y_z;)e ™ as s - o0. (2.26)
i=1
Thus, the state factor R has an economic interpretation as the asymptotic forward
rate or the long rate. In some empirical studies R was fixed as the yield of a long-
maturity discount bond, see Brennan and Schwartz (1979). From expression 2.26,

it is clear that the state factors must satisfy the following constraint

iﬂ(L (2.27)
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This constraint ensures the discount function to be strictly positive. Before con-
cluding this chapter, we would like to show the relationship between the EP model

and an HJM specification.

2.3 Relation between the EP model and an HJM
specification
HJM defined a family of forward rate processes as follows
t n t
f(t.T) - £(0,T) = /0 o(v, T)dv+3 /0 o:(v, T)dWi(v) forall 0 <t <T, (2.28)
=1

where f(t,T) is the forward rate at time ¢, with maturity time T, a and o are
respectively the drift and the volatility of the forward process. and the W; are
independent standard Brownian motions.

HJM treat the variable T as the calendar maturity date. Instead of using this
notation, we will follow the term structure parametrization proposed by Musiela
(1994), Brace and Musiela (1994) and Guo (1997). We denote by fm (¢, 7) the forward
rate at time t with a relative maturity 7 defined as = T — ¢. There is an obvious

relationship between the HIM forward rate f(¢,T) and notation f,(¢, 7). Indeed:
f@&,T)=f(t,7+¢t) = fmlt, 7).
Under this new notation, the HJM model 2.28 can be expressed as
t n t
Fmlt,T) = fm(0,7) = [o (v, 7)dv + Y [ oi(v, 7)dWi(v) forall T3>0, (2.29)
i=170

which simply involves replacing T by 7. In what follows, we will refer to this model
as the HJM model re-indexed to relative maturity. As specified in equation 2.29, the
HJM model is path-dependent. In other words, it permits the future term structure

to depend on the entire path of prices since the term structure is initialized. For
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instance. the interest rate at date ¢, may not only depend on its level at date £y (with
t; > tg) but on previous levels along its path going all the way back to the initial
date. Moreover, the interest rate at date t may not be sufficient for the determination
of all the forward rates at date t. Thus, the knowledge of many points on the term
structure at date ¢t are not always sufficient for the identification of other forward
rates at that time. This is called the path-dependency property. This property
together with the fact that there may not be a finite number of state variables,
creates pricing difficulties. In particular lattice procedures may not recombine and
can become exploding.

In order to avoid the problem posed by path-dependency and exploding lattices,
HJM proposed a two-factor version of their general model. This special case has a
constant volatility long run factor Wy(¢) and a spread factor W;(t) with an expo-
nentially decaying volatility function. For convenience of notation, the subscripts of

the Brownian motions in equation 2.29 are replaced by
Wo(v), Wi(v), ..., Wi(v).

The volatility functions are defined as
oo(v,7) = oo,
oi(v,T) = o™ for i=1,...,k,
where v; is a parameter. The stochastic integrals in 2.29 can be solved explicitly,

because they are no longer expressed with respect to the relative maturity 7. Thus,

equation 2.29 can be simplified to!

fmlt,T) = fm(0,7) = /O (v, 7)dv + 5o Wo(t) + zk: o " TW(t). (2.30)

The possibility that the drift function of the re-indexed HIM model vanishes is in

sharp contrast to the original drift function in HIM. In the empirical section, we

! The Brownian motions W;(t) are initialized at zero by HJM.
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will show that the re-indexed HIM model can be tested by estimating a proxy of
the EP model and thus there is no need to stipulate the drift function.

In what remains we will show the close relation between the EP model and the
re-indexed HIM model. Under the EP framework, the yield function can be found

from the following transformation

y{zr.s.t) = —%(f—’tsl—g s >t, (2.31)

where y(.) is the yield function. The time-homogeneity of the discount function

allows the corresponding forward function to be obtained from one of the following

transformations:

8D  8D/dr
= - - - == —_— R 2
flz,s,1) ER D for r=s-t (2.32)

From equation 2.22, the EP model can be re-written as:

D(z,s.t) = e B[ 4+ 3 z;(e7H-9 —1)). (2.33)

=1
Or equivalently:
D(z,7) = e ®[1+ Y zi(e™t" - 1)). (2.34)
=1
The EP forward function can be obtained using the transformation in equation
2.32 .
dIn(1 + Zx,-(e“"’ -1))

flz,7)=R- i=18T . (2.35)

An interesting question can be asked at this stage. Does there exist variables &; with
1=1,...,n, such that
n n
1+ zi(e™ — 1) =exp[d_&(e 4" - 1)]?
=1 i=1
Or, equivalently, such that

In[1+ izi(e""' —1)] ~ zn:f,-(e"“' -1)? (2.36)
i=1

=1
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If ves, then the EP forward function can be approximated by a proxy forward

function denoted by

flo. 1) =R+ ™, (2.37)

=1

where ¢; = &l;, for i = 1,...,n. Hence the empirical existence of ¢; would imply

the existence of &. Now, if we assume that?

R = O'O“'O(t)~
@i = oWi(t),for i=1,...,n
then the forward function as defined from the EP model can be approximated-
subject to the existence of ¢;-by a proxy forward rate expressed as
. n
f(T) = JoWQ(t) + ZO’,‘C—l‘T"{/{(t), (238)
i=1
which is no more than a simple form of the re-indexed HJM model in 2.30 with a
slightly different notation (i.e., v; = l; and & = n) and without a drift, (i.e., with

a(v,7) =0).

2With this notation R and ; are seen as changing with respect to time ¢.



Chapter 3

Empirical Performance of the EP
Model: Results for U.S.

Government Bonds

This chapter presents the use of the EP model in an extensive cross-sectional

investigation involving data for U.S. government bonds.

This investigation answers the following general question:

e Can the proposed EP model presented in Chapter 2, fit the observed term

structures?

By answering this question, we will be able to know whether the state factors
of the EP model can be measured with constant exponential basis. Indeed, the
EP model describes the term structure space as a linear combination of some state
factors on a basis of exponential functions. These state factors are measured relative
to the basis. Thus, the validity of the EP solution will be related to the question of

constancy of the parameters of the basis over time.
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3.1 Notation

Here, we present the notation that we will use in this chapter.

P;(s,t) is the price of a semiannual coupon-bond j at time ¢, with s as the

calendar time to maturity. This bond has a face value of 100.

e Cj is the jth bond future cash flow (the annual coupon) paid at the calendar
date m,.
e g=1,...,s. Note that m, = s at maturity .

D(s, t) is the discount function. It relates the spot rates at different maturities.

It is also the price of a discount bond, which pays 1 unit at s and 0 at other

times.

In the absence of arbitrage opportunities, the value of the jth coupon bond at time
t is supposed to equal the sum of the present values of all its future cash flows
L]
Pj(s,t) = C; Y_ D(mg,t) + 100D(s,t). (3.1)
q=1
However, when it comes to fit a set of market price data to a pricing relation, it
becomes necessary to include an error term to account for the difference between
actual and theoretical prices. Thus, the bond pricing relation can be expressed as
s
Pi(s,t) = C; Y_ D(mg,t) + 100D(s, t) + ¢;(s, t), (3.2)
g=1
where €;(s.t) is an error term. Next, we discuss equation 3.2 and point out its mains

assumptions.

3.1.1 Assumption about the pricing relation and the errors

The error term represents the statistical error due to model approximation but

also accounts for other factors such as tax effects, transaction costs and measurement
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and mispricing errors. Predictable ¢;(s,t)’s suggest that there is additional infor-

. mation that could be included in equation 3.2. Equation 3.2 makes two important

assumptions.

1. The pricing relation assumes that the price of a treasury security is solely
the sum of all the promised individual cash flows. Unfortunately, the fric-
tionless markets assumption is not supported by the facts. Attempts to fit
discount functions to sets of government bond prices find that no discount
function, D, exists to exactly price all bonds, even when bid-ask spreads are
taken into account. However, many studies have showed that the existence of
disparities are real and not quotation errors. The term structure estimation
literature has sought to explain these disparities in terms of friction such as
liquidity premia, taxes or short sale constraints. Indeed, these phenomena are
studied in Daves and Ehrhardt (1992). Other examples involving disparities
between short-term notes and bills have been studied in the U.S. treasury
market by Amihud and Mendelson (1991) and Kamara (1994). Beim (1992)
and Bliss (1997) find differential liquidity value at longer horizons. Constan-
tinides and Ingersoll (1984) and Jordan and Jordan (1991) investigate the role

of tax-timing options and Ronn (1987) finds tax-clientele effects.

2. The error term assumes that measurement errors are additive in the price.
Some authors such as Jordan and Kuipers (1997) suggest that a proper spec-
ification of the errors should be in terms of the quoted yield-to-maturity, or a
function of the yield and price. Other authors suggest a proportional rather
than an additive error term. Brown and Dybvig assumed that the error terms
¢; are independent and identically distributed normal random variables. This
assumption is relatively strong. In fact, one can predict that since treasury

. securities with different maturities are exchanged with different frequencies
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the variance from quotation errors may differ with maturity. Moreover. as-
suming that ¢; accounts for mispricing errors, then errors will be related to
the treasury security price, implying that errors increase with maturity. In
the following, we will assume that the errors have zero expectation and are
independently distributed. We find the normality assumption very strong and
do not invoke it. Later in our empirical analysis we will check whether the

estimated errors are independently distributed or not.

In equation 2.22 from Chapter 2 , we showed that the solution to the fundamental
PDE is an exponential polynomial (EP) which we also showed to be the unique

linear solution. Thus, the discount function can be expressed as

D(B,s,t) = (1= 3 Bi)e Bl=t) £ 3 gre~M(s=0), (3.3)
i=1 =1
Here, we change the notation slightly: The ith state factor of the EP model is now
denoted by 3; instead of z;.

Equation 3.3 can be considered as a discrete version of the functional
D(8.s,t) = / B(t, N)e~*TdA, (3.4)
0
where 3(t, A) is normalized at each time point ¢t as follows
(o =]
/ B(t,\)dA =1 for all t.
0

Now, assuming that $(t,A) is non-negative for all )\ at any time point ¢, then
D(B,t,T) can be interpreted as the Laplace transform (moment generating func-
tion) of a random variable A that is defined by the probability measure B(t, A). This
continuous representation is helpful for understanding our future empirical work.
From another perspective, equation 3.3 is similar to equation (7) of Vasicek and
Fong (1982). However, Vasicek and Fong divide the maturity range into several

intervals. Within each maturity interval and between two consecutive knots or
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breaks. a spline function. as a linear combination of three exponential functions, is
fitted to the discount price. The EP model is much simpler in the sense that it
does not use spline functions. It is a linear combination of n exponential functions
defined on the entire maturity range of the discount price. Ferguson and Raymar
(1998) used the Vasicek and Fong model without splines. which is no more than the
EP model. Using simulated data. they conclude that a six-factor EP specification
is a good description of the term structure (i.e.. n = 6).

A linear discount function is convenient for pricing coupon bonds. In fact. it has
been shown that a coupon bond is a linear combination of zero-coupon bonds. Sub-
stituting the discount function D{3.s,t) in 3.3 into equation 3.2 and re-arranging
vields

) s n
Ps.t) = C;Y e Rime=t 4 100e~R6=0 1 ;57 GeMimat

q=1 q=11=1

+10023e -0 _ ¢, ZZB =R(mq~t)

g=11=1

—100)_ 3ie B 1 ¢, (3.3)

i=1

Let’s denote the following respective expressions by PJO and P].

P{(s,t) ,Ze Rtme=t) 1 100e~R(s—1) (3.6)

q__

=C; Zze-* t(me=t) +1002e*A +=) (3.7)

g=l:=1
Substituting these two expressions in equation 3.5 gives

Pj(s.t) — P)(s.t) = i 3:{Pj(t.s) — PJQ(t, s)] +¢,. (3.8)

This last equation is very important because it expresses the price of a coupon-bond

as a linear combination of the “hypothetical” prices: Py and P;. These prices are
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the present values of the cash flows of the bond discounted by the long rate R and
by the rate \; respectively, where in essence R = A;. See Appendix B page 200 for

details of the present value computation, including the handling of accrued interest.

3.2 Estimation procedure

Our estimation procedure fits equation 3.8 to the market data of bond prices.
The bond price P;(s,t) will be approximated by the simple average of the bid and

ask prices, plus accrued interest. Hence
Pj(s,t) = P]M(s, t) + Al
where
e PM(s,t) is the average price of the bond, with j =1..., N.
e N is the number of treasury securities in each cross-sectional sample.
e Al; is the accrued interest that corresponds to security j, computed as follows

Al = %(1 —t),

® t. is the time to the next coupon payment (expressed as a fraction of a half-

year).
Simplifying the notation, now equation 3.8 can be written as
P} + AL = P} = 3" 8,[P} - P +¢;. (3.9)
=1

Let

yi = BY+AL-P),
r; = PI-P)

J J
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If we substitute the terms y; and 7 in equation (3.9), we obtain
n -
yj=2ﬁil';+€j forall j=1,...N. (3.10)
=1
Equation 3.10 can be written in matrix notation as follows
Y =XB+e (3.11)

As we mentioned previously, the error terms ¢ are assumed to be independently
distributed. However, we do not assume they are normal. Instead, their distribution
form will be the subject of an empirical investigation. For a cross-sectional study,
Y is the (V x 1) vector of observations on the dependent variable. B is the vector
of linear regression coefficients, X is the (/N x n) matrix of observations on the
independent variables and ¢ is the (IV x 1) vector of errors. The state vector 8 is

estimated by ordinary least square (OLS), yielding the estimate
B=(X'X)"'X'Y. (3.12)

The application of OLS to the above linear model does not require any assumption
about the probability distribution of the errors terms ¢;. The only assumptions
made about the €; were that they have zero expectations and are uncorrelated.
Indeed, since bonds of different maturities are traded with different frequencies, it
is anticipated that the variance of the errors ¢; may vary with maturity. This fact

will be confirmed empirically.

3.3 The cross-sectional analysis

3.3.1 Data

Our data consist of daily prices on US Treasury bills, notes and bonds, for the pe-

riod from 27 July 1989 to 15 October 1996. The quotations are provided by the New
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York Federal Reserve Bank (NYFRB). Every daily sample consists of the bid and
ask quotes of the treasury securities at 3:30 P.M. Eastern Time. The cross-sectional
samples have an average of 215 observations (bills, notes and bonds). We excluded
two types of bonds from the data set: callable bonds and flower bonds (bonds with
special tax status). Unlike other studies, e.g. Bliss (1997), we did not eliminate
bills under one month to maturity from our samples. Indeed, as will be confirmed
by our in-sample results, the EP model does not “suffer” from the presence of such
securities. The time to maturity of each observation is computed as the difference
between the maturity date indicated by the NYFRB and the settlement date. The
basis year is 365 days. The yields to maturity (ytm) provided by the NYFRB are
computed assuming one business day delivery and at the bid ask average!. These
yields to maturity are compared to our estimated yields to maturity from the EP

model.

3.3.2 Procedure

In order to compute the independent variables z}, we must specify the row vector
A = (Ay,...,An), as well as the long-rate Ay = R . The parameters A;’s are chosen
to make the basis exponential functions as distinct as possible in order to avoid
extreme multicollinearity in the OLS regression. The length of this vector depends
on the number of state factors chosen for the regression. For our U.S. data sample
we use from 8 to 9 state factors plus the long rate. This choice is motivated by
the quality of the cross-sectional fitting, assessed by criteria discussed later, as well
as the multicollinearity encountered among the distinct factors. We tested different

specifications for the A vector. For instance, when we use nine factors in regression

In the Center for Research in Security Prices bond file, the ytms are computed assuming
two-business day delivery. According to Duffie (1996), this assumption is incorrect. Instead, one

business day must be assumed for delivery.
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3.12, the cross-sectional fitting is always good, however in some sampies, we notice
a high level of multicollinearity among the factors which translates into very large
values of the state factors. In those cases, using 8 factors seems to be a better
choice for the cross-sectional estimation. After many trials, we conclude that using
8 factors, or for some samples 9 factors plus the long rate, brings a better result in
terms of multicollinearity as well as cross-sectional fitting. Setting A; = [; + R, then

we let the vector [ = ({y,...,ls) take the following component values

t: 1 2 3 4 5 6 7 8 9

[: 275 017 0.115 0.065 0.04 0.025 0.015 0.01 0.005

Here we note that we have chosen the vector ! as a decreasing series of numbers.
It is clear that empirical consideration alone guide our choice of \. However, as
we pointed out on page 39, the X vector is considered as a discrete approximation
to some continuous function. The connection between the discrete and continuous

representations of the model will be the subject of future research.

3.3.2.1 Optimization procedure

The cross-sectional estimation, using the EP model, of the term structure implies
the estimation of the long rate R as well as the other state factors g; for i =
1,...,8, or 9. How are these factors estimated? We suggest to implement a two-
stage optimization procedure. We determine the optimal value of R in a first-stage
analysis. Then, in a second-stage analysis, the state factors §; of the model are
estimated as linear coefficients of regression 3.11. Here are the details of the two

distinct stages:

1. Let us consider again the following equation:

PM+ AL — P} =Y B[P} — P{] +¢;. (3.13)
=1
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Note that ij and A, are picked from data available from the NYFRB, the Pis
are computed using expressions in Appendix B. However, the computation of
P}‘ requires a value of R. Thus, for each sample we initialize R in the interval
[3.5% and 18 %)]. This choice in particular is motivated by some empirical
significance. The core OLS regression 3.11 is running repeatedly inside a loop
for the long rate. Each iteration will find the estimates of 8;,i =1,...,n and
the pricing errors from the EP model. The root mean squared error (RMSE)

of the sample is computed as

RMSE = | &=L , j=1...N,

where PJ is the estimated price from the EP model, and PJM is the correspond-

ing bond market price.

There is a wide choice of measures to fit prices. Two measures are frequently
used in term structure studies. The mean absolute fitted-price errors (MAE)
and the RMSE. In our study, we will define the short SRMSE as the RMSE
of all the bonds in the sample with maturity less than one year. Hence, we
choose the long rate R to minimize the SRMSE. We use a Golden Section

Search for this minimization.

At this stage, one can ask for the reason behind choosing R to minimize
the SRMSE. Qur argument is the following: Almost all observations with
maturities less than one year are Treasury bills (zero-coupon bonds) or notes
or bonds with just one or two coupon payments left. Thus, the yields to
maturity of such securities, provided by the NYFRB, should coincide with
the estimated yield function in the absence of pricing errors. In other words,
the pricing errors of the short term securities (with maturities less than one

year) contribute little to the overall sample RMSE. Thus, the accuracy of the
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estimation especially in the short range maturity range cannot be based solely
on the sample RMSE. The SRMSE is used to guide the choice of R. The

optimal choice of R must fit the short end of the yields and simultaneously

minimizes the SRMSE.

2. Given the optimal R. found in the previous step. all the variables of equation
3.9 are now computed. The OLS regression defined in equation 3.11 is now
ready to be estimated. The state factors 3;’s are the estimated coefficients of
this OLS regression. Thus, the 3;’s are chosen to minimize the sum of squared
errors. The RMSE as well as the SRMSE computed at this stage are retained

as results of the cross-sectional fitting.

3.3.3 Results

Our analysis of the cross-sectional results will be conducted from three perspec-
tives. First, we will examine the general performance of the EP model as measured
by the average price errors and the RMSE. Then, we present some specific exam-
ples as a demonstration of term structure estimation using the EP model. Along
with the term structure curves, we report the estimated state factors of each sam-
ple. These examples are chosen to illustrate the ability of the EP model to model
various shapes encountered in reality. The CIR model. for instance. implies that
the yield curve attains only three shapes: uniformly rising, humped, and uniformly
declining. However, an examination of U.S. yield curves in the last 40 years reveals
inverted-humped vield curves as well. In the examples presented at the end of this
chapter, one case (Figure 3.3) shows an inverted-humped yield curve. Finally, we

reserve a subsection to examine and discuss the residuals of the EP model.



3.3.3.1 EP pricing results

From the examination of Table 3.1, we can conclude that the EP model fits
the Treasury coupon bonds well. The average pricing error is less than 1 cent on
Treasury bonds with $100 of face value. The mean error is not the only criterion
for measuring model performance. Thus, we also report the RMSE and the MAE.
We can see that the average RMSE is less than 15 cents. The average MAE is less
than 5 cents. Since typical market spreads are between 20 cents to 30 cents, it is
clear from our results that the EP model fits the term structure, on average, within
the bid-ask range.

Figure 3.1 represents the evolution of the RM SF for all the daily cross-sectional
results. It can be noted that the RMSE ranges between 7 cents per $100 par value
to 27 cents per $100 par value, with an average RMSE near 14 cents per $100 par
value which is less than a round-commission for ordinary investors. In other studies
such that of McCulloch, an equivalent measure of the RMSE was found to be $2 per
$100 par value. Figure 3.2 depicts the evolution of the SRMSE. As we noted above,
the SRMSE is the root-mean squared error for all Treasury bills, notes and bonds
with a maturity less than one-year. In general, these securities are accurately priced
and thus provide a good check on the reliability of a model. As can be seen from
Figure 3.2, the SRMSE values range between 2 cents and 18 cents with an average
near 4 cents per $100 of value. This confirms our previous remark regarding the
performance of the EP model. However, the presence of some sharp spikes in the

evolution of the SRMSE can only be explained by data errors.

3.3.3.2 Examples of curve shapes

In order to examine more closely the cross-sectional performance of the EP
model, we choose four cases representing different shapes of the term structure.

In Tables 3.2 to 3.5, we report, for each sample, the long rate R obtained from the
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adjustment procedure, the short rate r as computed from equation 2.16 in Chapter
2, the §;, fori = 1,...n, the RMSE, the SRMSE and the MAE. We report the
standard errors of the estimates. These standard errors are inflated by the presence
of multicollinearity among the state factors. We note from these tables that standard
errors have been computed for all the state factors except for R. This is explained
by the fact that we use a two-stage optimization procedure. Thus, §;’s are estimated
in the second stage, conditional on R. Whereas R is estimated from the first stage

and is taken as a given quantity in the second minimization problem.

Figure 3.3 illustrates the estimated yield curve for the 31st of July 1989. It can
be seen that the curve has an inverted hump. The CIR model fails to capture such
a complicated shape. The EP models fits the term structure of that particular day
using nine parameters plus the long rate. The RMSE for this day is around 16 cents
which is slightly larger than the average RMSE for the whole sample. The short

end is fitted as accurately as the long end.

Figure 3.4 represents the cross-sectional fitting obtained for the sample of the
11th of January 1990. The yield curve in early 1990 was essentially flat. For this
reason, the estimation was achieved using only eight factors plus the long rate.
Indeed, in such a term structure environment, fewer factors seem to be needed. The
EP model has the advantage of accommodating various shapes of the term structure
with the ability to add or reduce a factor. Using only 8 factors means starting the
decreasing series from 2.75 and stopping at 0.01. Adding a factor corresponds to
using the last term of the series which is lg = 0.005. The number of factors increases

for “complicated” shapes and diminishes otherwise.

Figure 3.5 illustrates the evolution of the yield curve as estimated from the EP
model for the sample of the 20th of December 1994. In late 1994, the U.S yield curve
showed one of the steepest short-term slopes ever observed in the Treasury market.

Using eight factors, the EP model fitted the term structure with a RMSE of around
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10 cents. Thus the EP model seems to track satisfactorily the mean reversion of the
short rate without any need for an additional factor. Moreover, it can be seen from
the same figure, that the estimated term structure is bending and capturing very

well the movement of the curve for the long maturities.

Figure 3.6 reports the estimated yield curve for the sample of the 22nd of July
1996. It can be seen that the curve is uniformly rising. For the long maturities, the
curve is bending downward. This phenomenon is not specific to the EP model. It
has been reported by many authors, without any reasonable explanation. Indeed,
bond dates for long maturities are relatively sparse with an average of about five
observations per sample for maturities greater than twenty years. Shea (1984) has
showed that fitting the curve at long maturity with few observations can lead to
some fitting anomalies. The EP model is not completely immune but does not
encounter major problem. The estimated EP curve usually bends to capture all
of the movement of term structure in the very long run. This advantage of the
EP model is mainly the result of the flexibility provided by a variable number of
factors. By being able to add another factor to the estimation, the long end of the
term structure can be estimated with more accuracy than any model with a single

state variable.

Through this list of examples, we examined the in-sample performance of the
EP model. Our general conclusion is that the EP model captures very well the
different shapes of term structure encountered in reality. However, this superior
performance is sometimes achieved at the cost of adding another factor or having
highly correlated factor estimates. In fact, the correlations between state factors
sometimes exceed 90% (see Table 3.10). Brown and Dybvig and Brown and Schaefer
reported collinearity between parameters of the CIR model. Jordan and Kuipers also
noted this phenomenon when they tested the CIR model with STRIPS data. One

way to reduce the collinearity is to reduce the number of state factors. We have
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tried to fit the term structure for the same period using six factors only but this
reduction altered the quality of the in-sample results. Hence, we conclude that using
between eight and nine state factors plus the long rate. is necessary for obtaining a
reliable fit even if this is achieved at the expense of some collinearity in the state

factors.

3.3.3.3 Pricing errors

Our concern here is to study the pricing errors of the EP model. Our analysis

will be conducted with the objective of answering the following questions:

e How are the pricing errors distributed for each cross-sectional sample ?

e Are the pricing errors independent within cross-sections?

Figures 3.7 to 3.10 present the distributional patterns of errors for the same
cross-sectional samples illustrated earlier. It appears from these figures that the
residuals do not syvstematically follow any systematic pattern. However, as it is
clear from several figures, the residuals are more variable at longer maturities and
also exhibit some autocorrelation. The greater variability at longer maturity partly
reflects the fitting of R to short maturities. A careful examination of the autocorre-
lation coefficients of the residuals allows us to have a better understanding of serial
dependence across maturities. In Figures 3.11 to 3.14, we report the autocorrelation
coefficients of the residuals estimated from the EP model. The two boundaries rep-
resent the upper and lower two standard deviation confidence bounds, based on the
assumption that all autocorrelations are zero. The samples we report correspond
to the ones presented previouslv. The residuals from the cross-sectional estimation
of the 31st July 1989 as well as the 20th December 1994 show some autocorrela-
tion. For the other samples, the autocorrelation is not significant. Among the 1805

daily cross-sectional samples, only 2.4% of them have one or two autocorrelation
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coefficients (out of 20 coefficients) outside the 95% bounds. This percentage can be

considered as small. Thus, our assumption about the independence of the errors is

tenable and the efficiency of our OLS estimator is assured.

In order to examine the independence of pricing errors, we group the pricing er-
rors into one-year maturity categories, the available maturities at each cross-section
are classified into 30 categories ( i.e., less than one year, one to two years, ..., twenty
nine to thirty vears). For each cross-sectional estimation, the mean of pricing errors
within each category of maturities is computed. This exercise is repeated for all
the categories and for all cross-sectional samples. Thus, we obtain for each matu-
rity category a series of mean pricing errors. We compute the mean and standard
deviation of each series. These results are summarized in Table 3.6 and in Figure

3.15.

It appears from these results that the residual errors are not independent within
cross-sections. Despite the fact that the average of the mean pricing errors as well
as their standard deviation are small, one can see from Figure 3.15 that there is a
curvilinear pattern in the pricing errors and pronounced departures from the zero
line. Pricing errors in the short end are minor, because R is fitted by minimizing
the SRMSE. However, the long end of the maturity range, with the exception of the
30-year maturity class, shows overpricing ( positive errors). On the other hand, the
mid-maturity range shows underpricing (negative errors). This same phenomenon
was also reported by Brown and Schaefer when testing the CIR model with British
bonds. They also reported underpricing in the intermediate ranges of bonds. Jordan
and Kuipers observed similar pattern with CIR, Vasicek and Merton models when
using STRIPS data. However, all of these authors concluded that the pattern was

not related to the model but instead to the structure of the bond market itself.

The cross-sectional estimation of the 1805 samples from 27 July 1989 to 15 October

1996 allow us to answer the question raised at the beginning of this chapter. After
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examining all of the in-sample results, we can confirm that the EP model, for this
time period and these types of securities, fits the observed term structure with the
same exponential basis. Every term structure pattern encountered during this period
can be adequately represented by the long rate R and eight or nine additional state

factors.

3.4 Comparison between the EP model and other
models in the literature

In this section, we compare our results in the previous sections with what has
been reported for empirical tests of other term structure models in the literature.
Our comparison is more qualitative than quantitative. In other words, we do not
estimate other models using our U.S. bonds data and compare the results to what
we obtained so far. Instead, we report what reported studies found with similar

data sets and try to place our results in the context of this literature.

3.4.1 Some results from the theoretical models

In the last few years, some authors have become interested in comparing the
empirical performance of the theoretical models of term structure as well as the
curve fitting models of term structure. In general, the studies compare several
models and report in-sample and out-of-sample results. Jordan and Kuipers (1997)
compared three term structure models: Vasicek, CIR and Merton. Their study is
based on Treasury coupon STRIPS prices and yields over the period 1990 through
1994. Some of their results are reported in Table 3.7. These results cannot be
compared directly to our results since they are obtained from a completely different
data set. However, they provide us with some indications of the range of pricing

errors for common term structure models. The units of the price errors are dollars
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per $100 in face value of STRIPS. The RMSE is the time-series mean of daily cross-
sectional RMSE's. When testing the EP model, we reported a mean RMSE of 13.2
cents per $100 of face value of Treasury bouds obtained with 1805 samples. This
number is less than any RMSE of the three models reported in Table 3.7. Our
results are obtained using coupon bonds prices instead of STRIPS prices. This fact
would be expected to produce larger pricing errors. Indeed, most of the studies in
the literature used T-bills or STRIPS to avoid complications arising from estimating
pure discount rates from coupon bonds. The fact that the EP model yielded smaller
pricing errors overall, in more trying circumstances, suggests it is a superior model.
We can also claim that the EP model offers the advantage of having a “small” RMSE
achieved using a simple linear estimation compared to the complexity required by a

nonlinear estimation of CIR or Vasicek or Merton models.

3.4.2 Some results from the curve fitting models

The first curve-fitting model to be seriously tested is the cubic spline of Mc-
Culloch. Many drawbacks have been attributed to this model; in particular, the
instability observed in the long forward rate. Although there is no economic theory
imposing a restriction on the oscillation of the forward rate, practitioners prefer to
have a model with stable forward rates.

Bliss has compared several curve-fitting models. He used the monthly CRSP
bond file from 1970 to 1995. His main finding is that the Mean Absolute Error
(MAE) for price errors is small in economic terms for almost all methods he ex-
amined, with the Unsmoothed Fama-Bliss method performing the best. It must be
noted that this method, in particular, is nothing more than a modified version of
the “bootstrap” technique (see Chapter 1), which cannot be considered as a model
but simply a curve-fitting technique with a high number of parameters. In Table

3.8, we report a representative sample of his results. Using the EP model, we get
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an MAE of 4.18 cents per $100 par value. This number is smaller than any of the
four models studied by Bliss. Moreover. it can be seen from Table 3.8 that even the
smallest MAE among these models is obtained through a model having between 42
and 163 parameters! Instead. the MAE of the EP model is obtained using 9 to 10
state factors.

Bekdache and Baum (1995) used the monthly CRSP government bond file and
U.S. Treasury STRIPS data to compare the in-sample and out-of-sample perfor-
mance of six curve-fitting models. Their results indicate that the competitive mod-
els are very similar in terms of their in-sample performance, especially for T-bills
prices. Table 3.9 presents the RMSE and MAE found with each model. Given that
the RMSE and the MAE of the EP model are 13.2 cents and 4.18 cents per $100
par value respectively, we can conclude that the EP still offers the advantage of
producing smaller pricing errors.

This completes our review of the empirical performance of some theoretical term
structure models and curve fitting methods. The review brings the following points

to our attention:

e The evidence indicates that the EP model tends to produce smaller RMSE

than many other term structure models in the literature.

e The EP model achieves a high degree of accuracy in terms of in-sample results,

even when using samples of heterogeneous bonds.

3.5 Eigen analysis

A model with eight or nine state factors and a long rate may be necessary for
an accurate cross-sectional estimation of the term structure. However, when mod-
eling interest contingent claims, a large number of state factors can be burdensome.

For this reason, we would like to know whether the EP model can be reduced to
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a parsimonious model having fewer factors. For this determination. we first start
by computing the variance-covariance matrix of the nine factors and the long rate.
based on the time series derived in the previous section. Table 3.11 reports the
variance-covariance matrix of the state factors and the long rate. Table 3.12 reports
the eigenvalues as well as the eigenvectors. [t appears that there are three eigenval-
ues that are significantly greater than the rest of the eigenvalues. The magnitude of
the first eigenvalue is much larger than the other two. The first principal component
explains 98.9% of the total variation. the second component explains 0.9% and the
third component has a weight of 0.1% in the overall variation of term structure.
These three components have an explanatory power of 99.9% for all the term struc-
ture movements. The remaining 0.1% is shared by the other seven components.
Thus, the term structure state factors appear to have just three main principal
components. The question is why are the remaining dimensions needed? It is the
need for accuracy and goodness of fit that explains the presence of more than three
factors in the EP model. The three factors are mainly needed to provide a “rough”
representation of the shape of the term structure. The remaining factors, although
not significant in terms of explaining the variance, take into account the subtleties
of the term structure shape and help us to estimate an accurate vield curve. Zhang
(1993) conducted a factor analysis to determine the number of factors behind the
term structure evolution. He found that term structure is driven by three principal
factors. Nelson and Siegel suggested an interpretation for the three main factors
that drive the term structure: (1) the general interest rate level. (2) the slope of the
vield curve and (3) the curvature of the yield curve. Recent developments in the
term structure models seem to retain the two-and three-factor models as reason-
able descriptions of realitv 2. The one-state factor models, such as those of CIR or

Vasicek, although theoretically attractive, have very poor cross-sectional estimation

2See for instance Subrahmanyam (1996).
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characteristics. Thus. the EP model can be a possible candidate as a three-factor
model. Of course, the cross-sectional estimation properties of such a model must be

investigated.

3.6 Empirical relation between the EP model and

an HJM specification

In the previous chapter, we claimed that the forward function derived from the
EP model can be approximated by a function which is no more than the re-indexed
HJM model. In this section, we will empirically test this claim and.present some

resuits. In Chapter 2, we showed that the EP forward function can be written as

dIn(1 + ‘iﬁi(e"” —1))

f(B, 7y =R~ i=la~ : (3.14)
Using the fact that
f(6~ T) = _aD‘D/a‘rv

the EP forward function can also be written as

Re™® — RY Bie™® — ¥ Bi(li + R)e~ (¥R
i=1 i=1

f(B, 1) = (3.15)

n
e ®7[1 + ZB.-(e""'" —1)]
=1
On the other hand, we claimed that the EP forward function can be empirically
approximated by a proxy forward function given by
. n
flo.1) = R+ 3 pie™, (3.16)
i=1
which is no more than a simple form of the re-indexed HIM model.
Now, our objective is to estimate the ; coefficients such that the sum of the

squared differences between the EP forward function and the proxy forward function
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is minimized. The empirical existence of the ;s implies the equivalence between
the EP forward function and the re-indexed HIM model. The ¢; coefficients are
estimated following these steps. Once we run the OLS regression of the cross-
sectional estimation on equation 3.10, the set of estimates R and B are obtained.
Then at each cross-sectional sample, the variables ¢; can be estimated from the

following equation using the OLS regression

l9(r;) = Rl =3 wihi +u, for j=1,....N, (3.17)
=1
where g(Tj) = f(B’ Tj) and e 4% = h;

The forward errors can be defined as
g(TJ)_f(TJ)zﬂ’J for ]: 11-"?1\[7 (318)

where f('rj) = f((,&,-,rj).

Below we will present some examples of this close relation between the proxy forward
function (the re-indexed HIM model) and the EP forward function. Our empirical
investigation, using the same data set as before, shows that this difference is ex-
tremely small for all samples. As a result, we can claim that there exist coefficients
¥i,t =1...,n, such that the EP forward function defined in 3.14 and the re-indexed
HJM model coincide. In Figures 3.16 to 3.19, we report two distinct curves: the
forward curve obtained from the EP model (solid line) and the proxy forward curve
(plus signs) which is obtained from equation 3.16. The difference between the EP
forward function and the proxy forward function is measured by the maximum dif-
ference between the two functions over the maturity range. We find the mean of
the maximum difference between the two functions 3.67 basis points. This empirical
finding is important because it confirms that the EP model and the re-indexed HIM

model can be reconciled in an empirical framework.
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3.7 Conclusion

In this chapter, we examined the cross-sectional performance of the EP model.
The time series properties of the model and the state factors, in particular, remain
to be developed further in later chapters.

The cross-sectional analysis, conducted on the U.S. Treasury bonds from 27 July
1989 to 15 October 1996. concluded that the EP model is successful as a model
of the term structure of interest rates. This estimation of the EP parameters is
achieved while keeping the exponential basis constant. The EP model is a model
that lies “between” two categories, the theoretical models and curve fitting models.
It offers the advantage of simplicity: linear estimation instead of non linear one.
Moreover, the EP model is derived from the PDE of bond pricing and thus has a
strong theoretical basis compared to the curve-fitting models which are atheoretical
motivated solely by goodness of fit.

In Chapter 5 we will investigate the time series properties of the estimated state
factors and to what extent they can be modeled by ARMA and GARCH processes.
In this chapter, we had the opportunity to present the empirical evidence for the
existence of a relationship between the EP model and a specific version of the re-
indexed HJM model. This can be viewed as preliminary evidence that the theoretical

term structure model as defined by HIM is inherently related to the EP model..
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Figure 3.1: This figure represents the evolution of the daily RMSE for 1805 cross-sections. The

daily term structure is fitted using the EP model over the period 1989 through 1996. The RMSE

is measured in dollars for a $100 of face value.
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Figure 3.2: This figure represents the evolution of the daily SRMSE for 1805 cross-sections. The
daily SRMSE reports the daily RM SE of U.S Treasury bills, notes and bonds with a maturity
less than one year. The daily term structure is fitted using the EP model over the period 1989

through 1996. The SRM SE is measured in dollars for a $100 of face value.
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Figure 3.3: Cross-sectional estimation of the term structure for the 31st of July 1989. It shows
the yield as a function of maturity. The crosses are the yields-to-maturity as computed from the EP
model with state factors. The dots represent the yield-to-maturity as computed from the NYFRB.

The (OLS) regression used in this cross-sectional estimation is given by equation 3.12.
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Figure 3.4: Cross-sectional estimation of the term structure for the 11th of January 1990. It
shows the yield as a function of maturity. The crosses are the yields-to-maturity as computed
from the EP model. The dots represent the yield-to-maturity as computed from the NYFRB. The

(OLS) regression used in this cross-sectional estimation is given by equation 3.12.
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Figure 3.5: Cross-sectional estimation of the term structure for the 20th of December 1994.
It shows the yield function in terms of the maturity. The crosses are the yields-to-maturity as
computed from the EP model. The dots represent the yield-to-maturity as computed from the

NYFRB. The (OLS) regression used in this cross-sectional estimation is given by equation 3.12.



64

0.08 T T T T T
007 S R e ey |

0.06 - 4

0.05 h

rate

0.02r b

10 15 20 25 30
maturity in years

Figure 3.6: Cross-sectional estimation of the term structure for the 22nd of July 1996. It shows
the yield function in terms of the maturity. The crosses are the yields-to-maturity as computed
from the EP model. The dots represent the yield-to-maturity as computed from the NYFRB. The

(OLS) regression used in this cross-sectional estimation is given by equation 3.12.
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Figure 3.7: Pricing errors from the cross-sectional estimation of the term structure for the 31st of
July 1989. The pricing errors are in dollars per $100 par value. They are defined as é = (P; — PJM )y
where R,M is the bond market price and 15,- is the estimated bond price from the OLS regression

3.12.
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Figure 3.8: Pricing errors from the cross-sectional estimation of the term structure for the
11th of January 1990. The pricing errors are in dollars per $100 par value. They are defined as
¢ = (P; — PM), where P} is the bond market price and F; is the estimated bond price from the

OLS regression 3.12.
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Figure 3.9: Pricing errors from the cross-sectional estimation of the term structure for the 20th
of December 1994. The pricing errors are in dollars per $100 par value. They are defined as
€= (I-:’,- - Pj’" ), where PJ-M is the bond market price and PJ‘ is the estimated bond price from the

OLS regression 3.12.
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Figure 3.10: Pricing errors from the cross-sectional estimation of the term structure for the
22nd of July 1996. The pricing errors are in dollars per $100 par value. They are defined as
€= (Pj - PJ-M ), where ij is the bond market price and P’J is the estimated bond price from the

OLS regression 3.12.
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Figure 3.11: Autocorrelation of the residuals of the term structure estimation for

the 31st of July 1989.
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Figure 3.12: Autocorrelation of the residuals of the term structure estimation for

the 11th of January 1990.
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Figure 3.13: Autocorrelation of the residuals of the term structure estimation for

the 20th of December 1994.
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Figure 3.14: Autocorrelation of the residuals of the term structure estimation for

the 22nd of July 1996.



73

04 R T T T T 1
0.2+ + l } b
oF + + l l T l
- [ .
E -02
< ]
£
£ 04 . ;
-0.6¢ -1
—-08F -
-1 L 1 1 ' - I ]
0 5 10 15 20 25 30 35

Matunty (Years)

Figure 3.15: This figure represents the evolution of the pricing errors for 388,022 daily obser-
vations of U.S Treasury bills, notes and bonds for the period 1989-1996. The theoretical prices
of bonds are estimated from the EP model. Errors are differences between estimated and actual
prices. The units of the pricing errors are dollars per $100 in face value. The mean and standard
deviation of series of daily mean pricing errors are computed for each maturity category. Center
point for each category is mean; whiskers represent one standard deviation bounds. For the sample

we used, there was no bond with maturity (17-18] years.
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Figure 3.16: This figure is from the 31st of July 1989. It illustrates the EP forward curve
(solid line) as described by equation (3.14) and the proxy forward curve (plus signs) described by
equation (3.17). The proxy forward function is closely related to the HIM re-indexed model. In

this case the maximum error between the two functions is 9.253x10~4.
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Figure 3.17: This figure is from the 11th of January 1990. It illustrates the EP forward curve
(solid line) as described by equation (3.14) and the proxy forward curve {plus signs) described by
equation (3.17). The proxy forward function is closely related to the HIM re-indexed model. In

this case the maximum error between the two functions is 2.304x10~4.
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Figure 3.18: This figure is from the 20th of December 1994. It illustrates the EP forward curve
(solid line) as described by equation (3.14) and the proxy forward curve {plus signs) described by
equation (3.17). The proxy forward function is closely related to the HIM re-indexed model. In

this case the maximum error between the two functions is 1.021x104.
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Figure 3.19: This figure is from the 22nd of July 1996. It illustrates the EP forward curve
(solid line) as described by equation (3.14) and the proxy forward curve (plus signs) described by
equation (3.17). The proxy forward function is closely related to the HIM re-indexed model. In

this case the maximum error between the two functions is 2.553x107¢.



RMSE

SRMSE

MAE

Mean

0.1322

0.0349

0.0418

-0.0046

Table 3.1: The price errors are from 1805 daily cross-sections of 388,022 daily U.S
Treasury coupon bonds. The estimated prices are computed using the EP model.
Errors are measured as differences between estimated and market prices. Errors
are in dollars per $100 par value. RMSE is the time series mean of the daily cross-
sectional RMSE. SRMSE is the time series mean of the daily cross-sectional SRMSE.

MAE is the time series mean of the daily MAE. Mean is the time series mean of the

daily mean pricing errors.

Cross-sectional Results | Values | Std. err
Date 7/31/1989 - -
Long rate (R) 0.0963 -
Sample 204 -

B -0.0283 | 0.0422
Ba 0.1292 | 0.2538
Bs -0.2351 | 0.8801
Bs 0.2517 | 2.3726
Bs -0.6525 | 5.5904
Bs 4.1192 | 10.4226
Br -16.0217 | 16.4522
Bs 21.0846 | 13.7779
Be -11.0262 | 4.3399
Short rate(r) 0.0774 -
RMSE 0.1618 -
SRMSE 0.0495 -
MAE 0.0983 -

Table 3.2: Cross-sectional estimation results of the sample for the 31st of July 1989.




Cross-sectional Results | Values | Std. err
Date 1/11/1990 - -
Sample 205 -
Long rate (R) 0.0575 -
B 0.0265 | 0.0265
B2 -0.1932 | 0.1352
Bs 0.7594 | 0.3699
Ba -2.0587 | 0.7244
Bs 4.1142 | 1.1225
Be -5.2355 | 1.2636
Br 3.5048 | 1.0098
Bs -0.4574 | 0.4189
Short rate(r) 0.0780 -
RMSE 0.1446 -
SRMSE 0.0272 -
MAE 0.0843 -

Table 3.3: Cross-sectional estimation results of the sample for the 11th of January

1990.
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Cross-sectional Results | Values | Std. err
Date 12/20/1994 - -
Sample 213 -
Long rate (R) 0.0684 -
B -0.0285 | 0.0184
B2 0.0056 | 0.0933
B3 0.2703 | 0.2519
Ba -1.3009 | 0.4836
Bs 3.4946 | 0.7371
Be -5.1937 | 0.8329
Br 4.2260 | 0.6857
Bs -1.2764 | 0.2939
Short rate (r) 0.0434 -
RMSE 0.0981 -
SRMSE 0.0515 -
MAE 0.0423 -

Table 3.4: Cross-sectional estimation results of the sample for the 20th of December

1994.



Cross-sectional Results | Values | Std. err
Date 7/22/1996 - -
Sample 218 -
Long rate (R) 0.035

B -0.0207 | 0.0145
B2 0.1338 | 0.0784
Bs -0.5967 | 0.2369
Ba 2.0100 | 0.5450
Bs -5.8703 | 1.0976
Bes 12.8337 | 1.7980
Bz -22.6783 | 2.5404
Bs 19.7181 | 1.9903
Po -5.3506 | 0.5816
Short rate (r) 0.0482 -
RMSE 0.0745 -
SRMSE 0.0216 -
MAE 0.0461 -
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Table 3.5: Cross-sectional estimation results of the sample for the 22nd of July 1996.



Maturity Category | Mean | Std. dev. || Maturity category | Mean | Std.dev
0-1 -0.0038 | 0.0027 | 15-16 -0.1883 | 0.2366
1-2 0.0046 0.0144 16-17 -0.6911 | 0.1911
2-3 -0.0223 0.0237 17-18 na na

34 0.0170 0.0309 18-19 0.1990 | 0.0688
4-5 -0.0028 | 0.0399 19-20 -0.0082 | 0.1121
5-6 -0.0451 0.0691 20-21 -0.1018 | 0.0780
6-7 -0.0689 00721 21-22 -0.0704 | 0.1329
7-8 0.0462 0.0755 22-23 -0.0412 | 0.1325
89 0.0930 | 0.0840 || 23-24 -0.0195 | 0.1444
9-10 -0.1407 0.1282 24-25 0.0376 | 0.1414
10-11 0.0660 0.1496 25-26 0.0773 | 0.1473
11-12 -0.0163 0.1700 26-27 0.1044 | 0.1120
12-13 0.0059 | 0.2116 | 27-28 0.0881 | 0.1155
13-14 -0.0368 | 0.1869 || 28-29 0.0636 | 0.1724
14-15 -0.4042 0.2576 29-30 -0.3002 | 0.3262

Table 3.6: This table reports statistics on the pricing errors of the EP model. These
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results are based on daily cross-sections over the period 1989-1996. The errors are

differences between estimated and actual prices. They are in dollars per $100 par

value. There is no bond with a [17-18] maturity during the sample period.

Model Sample size | Mean | RMSE | Median
CIR(1985) 1250 0.020 | 0.203 | -0.007
Vasicek(1977) 1250 0.011 | 0.183 | -0.007
Merton(1973) 1250 0.046 | 0.328 0.018

Table 3.7: Results from Jordan and Kuipers(1997).



Model Sample size | MAE | number of parameters
Unsmoothed Fama-Bliss 312 0.057 42 - 163
McCulloch 312 0.118 7-14
Extended Nelson and Siegel 312 0.181 5
Fisher, et al. cubic spline 312 0.101 2-33
Table 3.8: Results from Bliss (1997).

Model Sample size | RMSE | MAE

Fisher, et al cubic spline 226-245 0.279 | 0.139

McCulioch 226-245 0.283 | 0.137

Nelson and Siegel 116-120 0.415 | 0.267

Table 3.9: Resuits from Bekdache and Baum (1997).
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B P Ba Ba Bs Pe Br Ps Ba R
By | 1.0000 | -0.9865 | 0.9511 | -0.8976 | 0.8356 | -0.7850 | 0.7457 | -0.7256 | 0.6908 | 0.3730

B2 | -0.9865 | 1.0000 | -0.9875 | 0.9524 | -0.9033 | 0.8580 | -0.8189 | 0.7956 | -0.7436 | -0.4581
Pa | 0.9511 | -0.9875 | 1.0000 | -0.9877 | 0.9555 | -0.9197 | 0.8842 | -0.8597 | 0.7931 | 0.5369
B4 | -0.8976 | 0.9524 | -0.9877 | 1.0000 | -0.9893 | 0.9673 | -0.9397 | 0.9168 | -0.8414 | -0.5911
Bs | 0.8356 | -0.9033 | 0.9555 | -0.9893 | 1.0000 | -0.9934 | 0.9764 | -0.9576 | 0.8797 | 0.6153
Be | -0.7850 [ 0.8580 | -0.9197 | 0.9673 | -0.9934 [ 1.0000 | -0.9941 | 0.9814 | -0.9101 | -0.6055
B7 | 0.7457 | -0.8189 | 0.8842 | -0.9397 | 0.9764 | -0.9941 | 1.0000 [ -0.9959 | 0.9418 | 0.5634
Ps | -0.7256 | 0.7956 | -0.8597 | 0.9168 | -0.9576 | 0.9814 | -0.9959 [ 1.0000 | -0.9669 | -0.5099
Be | 0.6908 | -0.7436 | 0.7931 | -0.8414 | 0.8797 | -0.9101 | 0.9418 | -0.9669 | 1.0000 | 0.3105
R | 0.3730 { -0.4581 | 0.5369 | -0.5911 | 0.6153 | -0.6055 | 0.5634 | -0.5099 | 0.3105 | 1.0000

Table 3.10: Correlation matrix of the original series for the state factors §; for i = 1,...,9 and the long rate R.
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5]
Pa
Bs
B
Bs
Be
B
Bs

J
R

B B2 Bs Pa Bs Be Br Bs Bo R
0.0026 | -0.0173 | 0.0623 | -0.1613 0.3387 -0.5437 0.7231 -0.6321 0.1354 | 0.0003
-0.0173 | 0.1176 | -0.4346 | 1.1492 -2.4577 3.9895 -5.3306 3.9169 -0.9786 | -0.0028
0.0623 | -0.4346 | 1.6470 | -4.4600 9.7299 -16.0041 | 21.5402 | -15.8396 | 3.9063 | 0.0122
-0.1613 | 1.1492 | -4.4600 | 12.3806 | -27.6198 | 46.1491 | -62.7639 | 46.3158 | -11.3629 | -0.0369
0.3387 | -2.4577 | 9.7299 |-27.6198 | 62.9574 | -106.8784 | 147.0647 | -109.0871 | 26.7900 | 0.0866
-0.5437 | 3.9895 | -16.0041 | 46.1491 | -106.8784 | 183.8552 | -255.8702 | 191.0414 | -47.3636 { -0.1457
0.7231 | -5.3306 | 21.5402 | -62.7639 | 147.0647 | -255.8702 | 360.3393 | -271.4145 | 68.6183 | 0.1898
-0.5321 | 3.9169 | -15.8396 | 46.3158 | -109.0871 | 191.0414 | -271.4145 | 206.1206 | -53.2793 | -0.1299
0.1354 | -0.9786 | 3.9063 |-11.3629 | 26.7900 | -47.3636 | 68.6183 | -53.2793 | 14.7302 | 0.0211
0.0003 | -0.0028 | 0.0122 | -0.0369 0.0866 -0.1457 0.1898 -0.1299 0.0211 | 0.0003

Table 3.11: Variance-covariance matrix of the original series for the state factors g; fori =1, ...

,9 and the long rate R.



B
P2
B
B
Bs
Be
P
Bs

Bo
R

€ €2 €3 €4 €5 €6 €7 €3 €y €10
832.5474 | 8.2632 | 1.2730 | 0.0518 | 0.0113 | 0.0029 | 0.0011 | 0.0001 | 0.0000 | 0.0000
0.8762 | 0.0702 | -0.4527 | 0.0464 | -0.1258 | 0.0391 | 0.0492 | -0.0199 | 0.0067 | 0.0013
0.4314 | -0.0316 | 0.6144 | -0.2832 | 0.5156 | -0.1500 | -0.2300 | 0.1084 | -0.0454 | -0.0099
0.1886 | -0.0784 | 0.5753 | 0.0238 | -0.4783 | 0.2098 | 0.4935 | -0.2904 | 0.1565 | 0.0399
0.0867 | -0.0692 { 0.2579 | 0.4443 | -0.4620 | -0.0262 | -0.4204 | 0.4487 | -0.3439 | -0.1157
0.0424 | -0.0477 | 0.0694 | 0.6078 | 0.1218 | -0.3575 | -0.2246 } -0.2972 | 0.5172 | 0.2699
0.0214 | -0.0446 | 0.0166 | 0.4913 | 0.3768 | -0.1081 | 0.4235 | -0.1696 | -0.4183 | -0.4680
0.0114 | -0.0505 | 0.0106 | 0.2772 | 0.2960 | 0.4306 | 0.2641 | 0.3593 [ -0.1267 | 0.6576
0.0079 | -0.0510 { 0.0110 | 0.1476 | 0.1727 | 0.6228 | -0.1435 { 0.1807 | 0.5094 | -0.4949
0.0045 | -0.0400 | 0.0088 | 0.0344 | 0.0421 | 0.4637 | -0.4518 | -0.6506 | -0.3704 | 0.1252
0.0233 | -0.9860 | -0.1213 | -0.0955 | -0.0038 { -0.0581 | 0.0050 | 0.0075 | 0.0027 | 0.0003

Table 3.12: Eigenvalues and eigenvectors for the variance-covariance matrix of the variables shown in the rows. The eigenvalues

are in the first row of the table. The eigenvectors are in the columns below the corresponding eigenvalues.
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Chapter 4

Empirical Performance of the EP
Model: Results for Canadian

Bonds

In this chapter, we test the empirical performance of the EP model using a

Canadian daily data set. We would like to answer the following question:

e Can the proposed EP model presented in Chapter 2, fit the observed term

structures?

In Chapter 3, we conclude for the period 1989-1996, that the EP model fully
describes the US term structures with eight or nine states factors plus the long rate.
Is this finding confirmed by the Canadian data?

We will adopt the same notation as in Chapter 3. Using the EP model, we
showed that the price of a coupon-bond can be written as a linear combination of

some hypothetical prices:

P]M(s,t) + Al - Pf(s, t) = i 6,~[P;'(t, s) — Pf(t, s)] + ¢;, (4.1)
=1
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where PJ.M is a bond market price, Al; is its accrued interest, P} and PJ‘ are hypo-
thetical prices and ¢; is an error term. Our objective in this chapter is to fit equation

4.1 to the Canadian data of bond prices. Equation 4.1 can be written as

yj=ZﬁiI;+€j forall j=1,...,N, (4.2)

=1

where
y = PM+AL-F,

7, = Pj-F}.
As mentioned in Chapter 3 the error terms ¢; are assumed to be independently
distributed. Unlike Brown and Dybvig when estimating the CIR model, we do not
assume that the error terms are normally distributed. Instead, the error distribution
form will be subject of an empirical investigation.

The linear coefficients 5; of equation 4.2 will be estimated using ordinary least

square method.

4.1 Cross-sectional analysis

4.1.1 Data

In this study we use Canadian data set from the Bank of Canada. There are
nearly 60, 667 daily observations on Canadian bills, notes and bonds over the period
of 29th of June 1992 to 29th of May 1995, totaling 731 daily samples in all. The
cross-sectional samples have an average of 79 observations (bills, notes and bonds).
We excluded two types of bonds from the data set: bonds with options and bonds
with special features. The time to maturity is computed as the difference between
the maturity date indicated by the Bank of Canada and the settlement date. The
basis year is 365 days. The yields to maturity (ytm), as mid point yields, provided by
the Bank of Canada are used for comparison with the estimated yields to maturity

from the EP model.



89

4.1.2 Procedure

In this cross-sectional estimation, we follow the same procedure as we did with
the US data set. To compute the independent variables :r; of equation 4.2, we
must specify the row vector A = (A,...,An) as well as the long rate Ay = R.
The parameters A; are chosen to make the basis exponential functions as distinct
as possible in order to avoid extreme multicollinearity in the OLS regression. The
length of this vector depends on the number of state factors chosen for the regression.
With the US data, we found that eight to nine state factors plus the long rate are
necessary to fit all the term structures in the sampie. This choice is motivated by
the quality of cross-sectional fitting assessed by the RMSE or the SRMSE as well
as the multicollinearity encountered among the distinct factors.

For the Canadian data, we started the estimation using nine factors. We noticed
a high level of multicollinearity among the factors which translates to very large
values of the state factors. After many trials, we conclude that using six factors
plus the long rate brings a better result in terms of multicollinearity as well as cross-
sectional fitting. However, the values chosen for the A vector are different from the
ones used with the US data. In the Canadian case, the values of [; which enter into

the computation of A; are set to

t: 1 2 3 4 5 6

i: 02 03 05 08 13 21
This difference in the choice of the A vector can be explained by the existence of
some structural differences between the Canadian and the US market. At the end of
1992, the US Treasury market was the largest issuer of debt in the world, with over
$3 trillion of different type of bonds outstanding. This huge volume makes the US
Treasury market the most liquid in the world. At the same period, the government
of Canada issued $430 billions of debt as bills notes and bonds. Thus, compared to

the US Treasury market, the Canadian market has less volume and is less liquid.



90

The long rate is chosen to minimize the SRMSE. Here, we defined the SRMSE as
the RMSE for all bonds with maturity less than six months. Note that defining the
SRMSE on a period of one year. as we did for US data, does not alter the quality
of results. For the rest, we followed the same procedure as for US data. Below, we

discuss our results.

4.1.3 Results

Our analysis of the Canadian cross-sectional results will be conducted from three
viewpoints. First, we examine the pricing performance of the EP model. Second,
we present some specific examples showing the fitting properties of the EP term
structure model. We will emphasize on the difference in results between US and
Canadian data. Finally, we examine and discuss the residuals of the EP model as

obtained from Canadian data set.

4.1.3.1 EP pricing results

In Table 4.1, we report some statistics regarding the pricing results using the EP
model with Canadian data. The average pricing errors is less than 3 Canadian cents
on government bonds with $100 of face value. With US data this number was less
than 1 cent per $100 par value. Thus, based on the average pricing errors criterion,
the EP model provides a slightly better fitting of the US term structures than of
the Canadian ones.

The average RMSE is 44.3 cents per $100 of face value, and the average SRMSE
is 3.69 cents per $100 par value. The equivalent numbers for the US data are 16
and 3.49 cents per $100 par value, respectively. The RMSEF is slightly higher in
the Canadian case than in the US case. Figure 4.1 represents the evolution of the
RMSE for all daily cross-sectional Canadian samples. It can be noted that the

RMSE ranges between 7 to 95 cents per $100 par value with an average near 44
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cents. Moreover, we can see from the same figure that the RMSE is decreasing in
magnitude over the study period. A sharp decrease, occurred at the beginning of
1994, is most likely attributed to progress in the quality of data collection. The
new system has substantially improved the accuracy of Canadian bond price data.
Several studies have considered the effect of quality of financial data on bond pricing.
For instance, Elton and Green (1998) studied the impact of quality of financial data
on tax and liquidity effects of term structure. They concluded that a significant
portion of liquidity and tax effects found by previous authors appears to be no longer
relevant because data problems influenced the caiculations of the original estimates.
Figure 4.2 depicts the evolution of the SRMSE. As we mentioned previously, the
SRMSE is the RMSE for all bills, notes and bonds with a maturity less than six
months. As can be seen from this figure, the SRMSE values range between less than
1 cent to 13.5 cents. This result is very similar to the evolution of the SRMSE of
the US data. Thus, we conclude that the improvement of the Canadian bond data

benefited the long term securities more than the short ones.

4.1.3.2 Examples of curve shapes

Almost all of the yield curves are upward sloping during the study period. Indeed,
this shape was very common during the early 1990s. An inverted term structure
shape was frequent during 1989 and early 1990; however, our data set does not cover
this period of time. We now look at term structure estimation for a sample of four
days. In Tables 4.2 to 4.5, we report for each sample, the long rate R obtained from
the adjustment procedure, the short rate as computed from equation 2.23, the esti-
mated §; fori =1,...n, the RMSE and the SRMSE for each sample. In general,
the RMSE for all the examined samples are higher in magnitude compared to what
we obtain for the US samples. These examples confirm our general discussion about

the evolution of the RMSE.
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In Figure 4.3. we report the estimation of the term structure for the 2nd of July
1992. The curve has a slight inverted hump. The CIR model fails to capture such a
complicated shape. The EP model fits Canadian term structure of that particular
day using six state factors plus the long rate. The RMSE for this day is around 84
cents which is larger than the average RMSE of all Canadian samples. We attribute
this large value to the poor quality of the data collection system of Bank of Canada
as well as to the lower liquidity of the Canadian bond market compared to its US

counterpart.

Figure 4.4 represents the cross-sectional fitting obtained for the sample of the
30th of March 1993. The curve is upward. Using six factors plus the long rate, the
EP model fits the term structure with a RMSE of 66 cents. Moreover, it can be seen
from this figure that the estimated term structure is bending and capturing very
well the movement of the curve for the long maturities. Shea (1984) showed that
fitting the curve at long maturities with few observations can lead to some fitting
anomalies. The EP model does not encounter such problems with US data. Here,
with Canadian data. the estimated EP curve bends to capture all of the movements
of term structure in the long run. As mentioned in Chapter 3, this advantage of
the EP model is mainly the result of the flexibility provided by a variable number

of factors.

Figure 4.5 reports the estimated curve of the 28th of September 1994. The curve
is uniformly rising. The RMSE of this sample is 16 cents. It is a dramatic decrease
compared to previous examples. As can be seen from Figure 4.1, a dramatic drop
in the values of the RMSE is noticeable around the beginning of year 1994. Since,

the average RMSE is around 20 cents per $100 of face value.

Figure 4.6 illustrates the evolution of the estimated yields to maturity for the
sample of the 1st of February 1995. The Canadian curve showed a steep short-term

slope. Using six factors plus the long rate, the EP model fits the term structure
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with a RMSE of near 11 cents. As for the US example in Figure 3.5 of Chapter 3,
the EP model seems to track satisfactorily the reversion of the short rate without
any need for an additional factor.

Through the four examples, we examined the in-sample performance of the EP
model, using Canadian data. Our general conclusion is that the EP model captures
very well the different shapes of term structure encountered in reality. This superior
performance is achieved using only six state factors plus the long rate. With the
US data, the same estimation procedure required eight to nine factors plus the long
rate. This difference in the number of state factors is explained by the structural
differences between the two markets. The US bond market is the largest in the
world, it accounts a huge number of transactions per day. Thus, a large number of
factors is necessary to capture all the movements of the US term structures. The
Canadian market is smaller and less liquid. Six state factors plus the long rate are

sufficient to fully describe the movement of the term structures.

4.1.3.3 Pricing errors

Here we study the distribution of residuals from the estimation of the EP model.

Our analysis will be structured around two levels:

e The pricing errors for each cross-sectional sample.

e The pricing errors with cross-sections.

Figures 4.7 to 4.10 present residual plots of the four examples studied before. The
residuals are defined as the difference between the EP model price and its market
counterpart. The residual plots show no systematic pattern except for the larger
scatter at maturities beyond about one year. To examine the residuals pattern more
closely, we calculate the autocorrelation coefficients of the residual series for each

cross-section. They are represented in Figures 4.11 to 4.14. The two boundaries
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represent the upper and lower standard deviation bounds, based on the assumption
that all autocorrelation coefficients are zero. They are 95% bands for individual
coefficients r. The residuals from the cross-sectional estimation of the 2nd of July
1992 and of the 30th of March 1993 show, for one or two lags (out of 20 lags), some
autocorrelation. For the other samples, the autocorrelation is not significant. Only
3% of all the Canadian samples has autocorrelation outside the 95% bounds. This
percentage is small and hence OLS estimation conducted in the above cross-sectional
study appears to be adequate. For the US data, we find a percentage of 2.4% of
all daily samples having autocorrelation coefficients outside 95% confidence interval.
From this perspective, the EP model is yielding similar results with both data sets.
Hence, we get the empirical confirmation that the assumption about independence

of the errors is tenable and the efficiency of our OLS estimator is assured.

In order to examine the independency of pricing errors, we proceed as follows:
First, the pricing errors are grouped into a one-year maturity categories, i.e., the
available maturities at each cross-section are classified into 30 categories: less than
one year, one to two years,..., twenty nine to thirty years. For each cross-sectional
estimation, the mean of pricing errors within each category of maturity is computed.
We repeat this exercise for all categories of maturities and all 731 samples. Thus,
we obtain for each maturity category a series of mean pricing errors. In all, we
have 30 series of pricing errors. Second, we compute the mean of these series and
their standard deviations. The results are summarized in Figure 4.15 and Table
4.6. It appears from Figure 4.15 that the residuals errors are not independent with
cross-sections. Despite the fact that the average of the mean pricing errors as well
as their standard deviation are small, one can see from Figure 4.15 that there is
a curvilinear pattern in the pricing errors and significant departures from the zero
line. The mean pricing errors in the short end are close to zero. The long end

shows some overpricing (positive errors), on average, but the bias is relatively small
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compared with what we found in US. data. The 21-year maturity range seems to
be the most distorted range with large negative pricing errors on average. For the
US. case, it was the 16-17 maturity range which suffered from underpricing. This
empirical finding confirms our argument regarding the existence of some structural
differences between the two markets. As for the US. market, we do not think that
the existence of some pattern in the pricing errors for Canadian data is a sign of

model inadequacy but rather a market-related issue.

4.2 Comparison between the EP model and other
models

In this section, we report on some empirical studies of term structure which have
used Canadian data. The purpose of this exercise is to compare the EP results
obtained with the Canadian data to what other authors have found. Once again,
this comparison is more qualitative than quantitative and is not intended to provide
a definite ranking of models.

Brennan and Schwartz (1979) studied Canadian monthly data. They used Cana-
dian Bankers’ Acceptances and the average yields to maturity on Government of
Canada bonds with maturities more than 10 years as proxies for the instantaneous
interest rate and the long-term rate, respectively. Their data set covered a period
from 1964 to 1976. They postulated a model with two state variables: the short
rate and the long rate. However, they found evidence of the existence of a third
unknown state variable. The predicted returns for bond portfolios of different matu-
rities derived from their two-factor model explained only about 50% of the variation
in actual returns within the sample period.

Bolder and Stréliski (1999) used a sample of 30 dates chosen to span the period

from 1989 to 1999. The dates were selected to include 10 observations each from
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an upward-sloping, flat, and inverted term structure environments. Three distinct

models were used:

e Nelson and Siegel (1987),

e Svensson (1994) which is an extension of the Nelson and Siegel model,

e Super-Bell model developed by Bell Canada in the 1960s.!

Their work is divided into two separate aspects: the estimation problem, i.e.,
the choice of the best yield curve model and the optimization of its parameters,
and the data problem i.e., the selection of the appropriate set of market data. In
the analysis of the estimation problem, three models were examined. Each of the
studied alternative is summarized in terms of goodness of fit, speed of estimation
and robustness of the results. According to their result, the Svensson model is
the best. At a second step, they considered the data problem. Three alternative
filtering settings were considered. Their final result encourages the filtering of data
(e.g. elimination of short term bonds, inclusion of certain bonds or not) for the
estimation of term structure. Unlike our estimation procedure, their estimation
was conducted in terms of yields instead of prices. The Bolder and Stréliski study,
although interesting, is restricted to only 30 dates. Moreover, the authors suggest
the use a data filtering in order to improve the term structure fit. However, in our
case, we use the EP model without filtering the data. As noted earlier in discussion
about the in-sample results, the EP model seems to produce larger pricing errors
for Canadian data compared to US. data. However, the errors are still, on average,
within any bid-ask spread. One plausible explanation for this phenomenon is the
relatively lower liquidity of the Canadian bond market in comparison to the US

market.

1See Appendix A page 197 for more details about this model.
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4.3 Eigen analysis

The EP model specification we used with Canadian data assumes the existence
of six factors in addition to the long rate. However, we would like to know whether
the EP model could be reduced to a more parsimonious model with a limited num-
ber of factors. Thus, we conduct an eigen analysis of the variance-covariance matrix
of the variables (5;,7 = 1,...,n and R) given in Table 4.7. Table 4.8 presents the
eigenvalues and eigenvectors. On the light of these results, we conclude that there
are three eigenvalues which are significantly larger than the rest of eigenvalues. The
magnitude of the first eigenvalue is much larger than the other two. The first prin-
cipal component explains almost 84% of the total variation. The second component
contributes with a portion of about 14%, and the third component explains 1.7% of
the total variation of the term structure. These three components explains 99.7%
of the total variation of the term structure, whereas only 0.3% is explained by the
other components. Thus, the term structure state factors appear to possess just
three principal components. A natural question is why are the remaining dimen-
sions needed? It is the need for accuracy and goodness of fit that explains the
presence of more than three factors in the EP model. In general, three factors are
needed to capture a “rough” representation of the shape of the term structure. The
other factors, although not significant, in terms of explaining the variance, take into
account the subtleties of the term structure shape and provide us with an accurate
estimation of the yield curve. This result confirms our findings with the US. data
set. Once again, we are able to claim that the EP model can be simplified to a
three-factor model. As for the US. data, we suggest as Neslon and Siegel claimed,
that these three factors can have an intuitive interpretation: (1) the general inter-
est rate level, (2) the slope of the yield curve and (3) the curvature of the yield
curve. More and more term structure models seem to retain the two- and three-

factor models as plausible descriptions of reality (i.e., see Balduzzi, Das, Foresi, and
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Sundaram (1996)). The EP model is a possible candidate as a three-factor model.

Further investigation about the time series properties of the EP model can confirm

our claim.

4.4 Empirical relation between the EP model and
an HJM specification

In this section, we present four examples which show the close relation between
the proxy model ( which is based on the EP model) and the re-indexed HIM model.
Our empirical investigation shows that this difference is extremely small for all
samples. The results support the earlier theoretical claim that there exist constants
@i, t = 1...,n, such that the proxy yield function defined in Chapter 3 in equation
(3.16) and the re-indexed HJM model nearly coincide. Figures (4.16) to (4.19) show
two distinct curves: the forward curve obtained from the EP model (solid line) and
the proxy forward curve (plus signs). The maximum difference between the proxy
forward function and the forward function derived from the EP model is on average
in the range of 3.63 basis points for the study period. This result is similar to the one
obtained for the US. data set. Thus, we have the confirmation from both data sets

that the EP model can be empirically related to a specific re-indexed HIJM version.

4.5 Conclusion

In this chapter, we examined the cross-sectional performance of the EP model
using a Canadian data set.

In general, the main results obtained with this data set are in line with what we
found for US. data. The cross-sectional estimation conducted on a daily basis has

brought accurate results in terms of SRMSE. The specification we used includes
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the long rate and six state factors. The results suggest that the exponential basis
can be maintained at six factors during the estimation period. Finally, as with the
US. data, we were able to show empirically that there exists a relationship between

the EP model and the re-indexed model of HIM.
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Figure 4.1: This figure represents the evolution of the daily RMSE for 731 cross-
sections. The daily term structure is fitted using the EP model over the period 1992

through 1995. The RMSE is measured in dollars for a $100 of face value.
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Figure 4.2: This figure represents the evolution of the daily SRMSE for 731 cross-
sections. The daily SRMSE reports the daily RMSE of Canadian bills, notes and
bonds with maturity less than six months. The daily term structure is fitted using
the EP model over the period 1992 through 1995. The SRMSE is measured in

dollars for a $100 of face value.
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Figure 4.3: Cross-sectional estimation of term structure for the 2nd of July 1992. It shows
the yields in terms of maturity. The crosses are the yields-to-maturity as computed from the EP
model. The dots represent the yield-to-maturity as reported from the Bank of Canada files. The

{OLS) regression used in this cross-sectional estimation is given by equation (3.12).
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Figure 4.4: Cross-sectional estimation of the term structure for the 30th of March 1993. It shows
the yields in terms of maturity. The crosses are the yields-to-maturity as computed from the EP
model. The dots represent the yield-to-maturity as reported from the Bank of Canada files. The

(OLS) regression used in this cross-sectional estimation is given by equation (3.12).
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Figure 4.53: Cross-sectional estimation of the term structure for the 28th of September 1994. It
shows the yields in terms of maturity. The crosses are the yields-to-maturity as computed from
the EP model. The dots are the yields-to-maturity as reported from the Bank of Canada files.

The (OLS) regression used in this cross-sectional estimation is given by equation (3.12).
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Figure 4.6: Cross-sectional estimation of the term structure for the 1st of February 1995. It
shows the yields in terms of maturity. The crosses are the yields-to-maturity as computed from
the EP model. The dots represent the yield-to-maturity as reported from the Bank of Canada

files. The (OLS) regression used in this cross-sectional estimation is given by equation (3.12).
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Figure 4.7: The pricing errors from the cross-sectional estimation of the term structure for the
2nd of July 1992. The pricing errors are in Candadian dollars per $100 of face value. They are
defined as €; = (15, - PJM ), where PJ-M is the bond market price and PJ is the estimated bond price

from the OLS regression (3.12).
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Figure 4.8: The pricing errors from the cross-sectional estimation of the term structure for the
30th of March 1993. The pricing errors are in Canadian dollars per $100 of face value. They are
defined as €; = (P; — PM), where PM is the bond market price and P; is the estimated bond price

from the OLS regression (3.12).
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Figure 4.9: The pricing errors from the cross-sectional estimation of the term structure for the
28th of September 1994. The pricing errors are in Canadian dollars per $100 of face value. They
are defined as €; = (Isj - PJM ), where P}“ is the bond market price and 15_,- is the estimated bond

price from the OLS regression (3.12).
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Figure 4.10: The pricing errors from the cross-sectional estimation of the term structure for the
1st of February 1995. The pricing errors are in Canadian dollars per $100 of face value. They are
defined as €; = (P, —~ PM), where PM is the bond market price and F; is the estimated bond price

from the OLS regression (3.12).
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Figure 4.11: Autocorrelation of the residuals of the Canadian term structure esti-

mation for the 2nd of July 1992.
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Figure 4.12: Autocorrelation of the residuals of the Canadian term structure esti-

mation for the 30th of March 1993.
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Figure 4.13: Autocorrelation of the residuals of the Canadian term structure esti-

mation for the 28th of September 1994.
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Figure 4.14: Autocorrelation of the residuals of the Canadian term structure esti-

mation for the 1st of February 1995.
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Figure 4.15: This figure shows the variation in pricing errors with maturity for 60,667 daily
observations of bills, notes and bonds of Canadian governement for the period 1992-1995. The
theoretical prices of bonds are estimated from the EP model. Errors are differences between
estimated and actual prices. The units of the pricing errors are dollars per $100 in face value. The
whiskers represent one standard deviation bounds on the time series means of the pricing errors
within the respective maturity class. For the sample we used, there was no bond with maturities

[23-24] years and [24-25] years.
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Fligure 4.16: This figure is of the 2nd of July 1992. It illustrates the EP forward curve (solid line)
as described by equation (3.14) and the proxy forward curve (plus signs) described by equation
(3.17). The proxy forward function is closely related to the HIM re-indexed model. In this case

the maximum error between the two functions is 18 x 10-4.
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Figure 4.17: This figure is of the 30th of March 1993. It illustrates the EP forward curve (solid
line) as described by equation (3.14) and the proxy forward curve (plus signs) described by equation
(3.17). The proxy forward function is closely related to the HJIM re-indexed model. In this case

the maximum error between the two functions is 12 x 104,
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Figure 4.18: This figure is of the 28th of September 1994. It illustrates the EP forward curve
(solid line) as described by equation (3.14) and the proxy forward curve {plus signs) described by
equation (3.17). The proxy forward function is closely related to the HIM re-indexed model. In

this case the maximum error between the two functions is 3.04 x 10~4.
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Figure 4.19: This figure is of the st of February 1995. It illustrates the EP forward curve
(solid line) as described by equation (3.14) and the proxy forward curve (plus signs) described by
equation (3.17). The proxy forward function is closely related to the HIM re-indexed model. In

this case the maximum error between the two functions is 1.65 x 10~4.



RMSE | SRMSE

MAE

Mean

0.4431 0.0369
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Table 4.1: The price errors are from 731 daily cross-sections of 60,667 daily prices for

Canadian coupon bonds. The estimated prices are computed using the EP model.

Errors are measured as differences between estimated and market prices. RMSE is

the time series mean of the daily cross-sectional RMSE. SRMSE is the time series

mean of the daily cross-sectional SRMSE. MAE is the time series mean of the daily

MAE. Mean is the time series mean of the daily mean pricing errors. Measurement

unit is dollars per $100 of face value.

Cross-sectional Results | Values | Std. err
Date 7/2/1992 - -
Sample 93 -
Long rate (R) 0.0692 -

By 3.3398 | 0.4633
B, -4.7029 | 0.1.2005
B3 2.4048 1.6094
Ba -0.6771 | 1.3818
Bs -0.0269 | 0.6976
Bs 0.0530 | 0.1724
Short rate(r) 0.0635 -
RMSE 0.8452 -
SRMSE 0.0644 -
MAE 0.5704 -

Table 4.2: Cross-sectional estimation results of the sample for the 2nd of July 1992.
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Cross-sectional Results | Values | Std. err
Date 3/30/1993 - -
Sample 86 -
Long rate (R) 0.0659 -

B 2.8763 | 0.3476
B2 -3.8745 | 0.9061
B3 1.7021 1.2197
Ba -0.3368 | 1.0630
Bs 0.0147 | 0.5461
Bs 0.0025 | 0.1366
Short rate(r) 0.0467 -
RMSE 0.6610 -
SRMSE 0.0412 -
MAE 0.4437 -

Table 4.3: Cross-sectional estimation results of the sample for the 30th of March

1993.



Cross-sectional Results | Values | Std. err
Date 9/28/1994 - -
Sample 78 -
Long rate (R) 0.0843 -

3 1.4292 | 0.1114
32 2.0972 | 0.2836
33 1.2284 | 0.3769
3s -0.4866 | 0.3290
35 0.0955 | 0.1681
Js -0.0219 | 0.0409
Short rate (r) 0.0441 -
RMSE 0.1668 -
SRMSE 0.0411 -
MAE 0.1250 -
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Table 4.4: Cross-sectional estimation results of the sample for the 28th of September

1994.



Cross-sectional Results | Values | Std. err
Date 2/1/1995 - -
Sample 76 -
Long rate (R) 0.0836

3 1.6664 | 0.1070
3, -2.9762 | 0.2722
33 2.5894 | 0.3622
34 -1.5820 | 0.3190
s 0.5836 | 0.1675
3s -0.1151 | 0.0429
Short rate (r) 0.0700 -
RMSE 0.1638 -
SRMSE 0.0423 -
MAE 0.1318 -
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Table 4.5: Cross-sectional estimation results of the sample for the 1st of February

1995.



Maturity Category | Mean | Std. dev || Maturity Category | Mean | Std. dev
0-1 -0.0027 | 0.0095 § 15-16 0.0821 | 0.2919
1-2 -0.037 0.0379 || 16-17 0.0890 ;| 0.2924
2-3 0.00539 { 0.0681 | 17-18 -0.5111 | 0.3568
34 0.0230 | 0.0842 || 18-19 -1.3066 | 0.6912
45 -0.21538 | 0.1721 || 19-20 -0.1322 | 0.1149
3-6 -0.3114 | 0.2881 | 20-21 0.0541 | 0.1723
6-7 -0.0590 | 0.3224 | 21-22 0.1067 | 0.2415
7-8 0.2201 | 0.2413 [} 22-23 0.6375 | 0.4424
89 -0.0070 | 0.2405 || 23-24 na na
9-10 -0.1849 | 0.2612 | 24-25 na na
10-11 -0.3189 | 0.5184 | 25-26 0.1007 | 0.0549
11-12 -0.2889 | 0.4002 | 26-27 0.1178 | 0.1351
12-13 -0.1906 | 0.4344 || 27-28 0.1281 | 0.3667
13-14 0.2282 | 0.4076 | 28-29 0.3763 | 0.3830
14-15 0.4130 | 0.4698 | 29-30 -0.0229 | 0.6220

123

Table 4.6: This table reports statistics on the pricing errors of the EP model. These results

are based on Canadian daily cross-sections over the period 1992-1995. The errors are differences

between estimated and actual prices. Units of pricing errors are in Canadian dollars per $100 of

face value. There is no bond with maturities {23-24] and [24-25] vears, during the sample period.

3
32
33
B4
Bs
36

R

3 32 3a 34 36 R
0.6769 | -0.9721 | 0.5845 | -0.2599 | 0.0776 | -0.0101 | -0.0057
-0.9721 | 1.6098 | -1.2727 | 0.7341 | -0.2605 | 0.0429 | 0.0071
0.5845 | -1.2727 | 1.4017 | -0.9792 | 0.3819 | -0.0693 | -0.0025
-0.2599 | 0.7341 | -0.9792 | 0.7422 | -0.3015 | 0.0566 | 0.0002
0.0776 | -0.2605 | 0.3819 | -0.3015 | 0.1260 | -0.0243 | 0.0001
-0.0101 | 0.0429 | -0.0693 | 0.0566 | -0.0243 | 0.0049 | -0.0001
-0.0057 | 0.0071 | -0.0025 | 0.0002 | 0.0001 | -0.0001 | 0.0001

Table 1.7: Variance-covariance matrix of the original series for the

state factors 3; for i = 1,...,6 and the long rate R for Canadian data.
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31
32
33
34
3s
36
R

e €a es €4 €5 €g €7
3.8264 | 0.6336 | 0.0801 | 0.0013 | 0.0003 | 0.0000 { 0.0000
0.0270 | 0.0010 | 0.0213 | 0.5614 | -0.4822 | 0.5823 | -0.3347
0.0804 | 0.0055 | 0.1188 | 0.6084 | -0.2180 | -0.4174 | 0.6225
0.1963 | -0.0181 | 0.3678 | 0.3945 | 0.4345 | -0.3777 | -0.5821
0.3431 | -0.0795 | 0.3666 | -0.0467 } 0.3657 | 0.5272 | 0.3735
0.5094 | -0.1730 | 0.3518 | -0.3773 | -0.6010 | -0.2514 | -0.1417
0.6924 | -0.2562 | -0.6344 | 0.1138 | 0.1898 | 0.0533 | 0.0249
-0.3123 1 -0.9475 | 0.0534 | 0.0386 | 0.0177 [ -0.0073 | 0.0020

Table 4.8: The eigenvalues are in the second row of the table. The eigenvec-

tors are in the columns below the corresponding eigenvalues. These results are

for Canadian data. We used the covariance matrix of the state factors 3; and

R to compute the eigenvalues as well as the eigenvectors.



Chapter 5

Time Series Analysis

5.1 Introduction

In the cross-sectional study of the EP model in Chapter 3. we have extracted
the time series of ten state factors including the long rate R. All of them drive the
term stricture of interest rates. These unobservable state factors were obtained as
estimated coefficients of a linear regression. The state factors in the EP model were

assumed to follow the following process:
d3 = a(3.t)dt + o(3.t)dz,. (5.1)

Unlike the majority of term structure models, the linear solution of the EP model
does not impose anyv restriction on the drift of these factors or on their diffusion.
Instead, the solution of the EP model was derived through an arbitrage argument
similar to the APT approach. At this stage, we would like to study the time series
properties of these state factors that were estimated in Chapter 3. Indeed, we showed
that the estimated state factors, the 3 coefficients, were obtained from the following

equation

B = (X'X)"' X"y (5.2)
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Equation 5.2 represents the connection between the estimated state factor vector 5,
and the vector of bond prices y;. X = (:r§-) is an (N x n) matrix of present values
of bonds P; discounted at a rate A;. Notice that in this equation, we introduced a
time-dependent notation. Our objective is to study the time-series properties of the
3 coefficients. This investigation is interesting for two reasons. First, it will allow
us to deepen our understanding of the processes behind the term structure models.

Second, it will allow us to investigate risky arbitrage strategies using the EP model.

5.2 Statistical description of the estimated time
series

In this section, we summarize the main statistical findings relative to the esti-
mated state factors. Qur data set consists of daily estimation of ten state factors
from July 27, 1989 to October 15, 1996, for a total of 1805 observations. More-
over. we can see that the state factor. 3. is not included in all the cross-sectional
estimations. Indeed. the presence of this factor was necessary only in a certain en-
vironment. We relate this factor to a more turbulent macroeconomic environment.
Table 5.1 reports the mean, standard deviation, skewness and kurtosis of the state
factors. Skewness measures the symmetry of the distribution around its mean and -
kurtosis is a measure of how outlier-prone a distribution is, i.e., the tail thickness of
the distribution. Figures 5.1, 5.2 and 5.3 show histograms of the values of the state
factors with superimposed normal density functions. It appears from these figures
that the state factors have different behaviors with different degrees of asymmetry
around the mean. After examining these histograms, the skewness and the kurtosis
coefficients of all the estimated factors, it is obvious that the assumption of condi-
tionally normally distributed factors does not hold. Moreover, it can be observed

from the same figures, that the distributions of the state factors 8; fori =7,...,9
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have a high concentration of values at zero. For 3; and s, this is explained by the
fact that the role of these state factors, in the estimation procedure, is to capture
all the fine subtleties of the term structure movements. Thus for relatively “stable”
economical environments, their role is barely needed and thereby their values are
close to zero. For 8g, this is explained by the fact that this factor is not included in
all the cross-sections. Thus, its value is confined to zero each time we use only nine
factors instead of ten in the regression. For R, we restricted the lower boundary

value of this state factor to 3.5%, this is motivated by some economic significance.

Figures 5.4 to 5.6 report the time series evolution of all the state factors. It
seems from these figures that the evolution of all the state factors is governed oy
some regular shifts in volatility. This causes each series to change dramatically at
some points in time. This phenomenon can also be observed in Figures 5.1. 5.2
and 5.3. Indeed. the distributions of these state factors, especially for higher order
factors. i.e.. 3;. for i = 4,....9 and R, appear to be bimodal. The occurrence of the
shifts and the bimodal distributions are the result of the same phenomenon. It is
related to our estimation procedure described in Chapter 3. We believe that it is a
“mathematical artifact™ induced by high multicollinearity among the components,
especially of higher order 3; for: = 4, .. .. 9, of the exponential basis of the EP model.
Thus. studying the original series of the state factors can be misleading. Indeed, we
might be inclined to model a shift which is nothing more than an “artifact” induced
by our previous estimation procedure. Instead, we suggest to study the distribution
of the eigen principal components of the state factors in the EP model. The principal
components are by definition orthogonal linear combinations of the state factors. In
this context. orthogonality implies uncorrelated principal components. In Chapter

3. we conducted an eigen analysis from which we concluded that the EP model is

driven by three principal components. The relationship between the state factors
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and their centred principal components is defined as follows
F. = E'(B — Mean). (5.3)

where B is a (10 x 1805) matrix containing the 10 state factors, Mean is a (10 x 1805)
matrix. Each row of Mean represents the mean of a state factor. E is the (10 x 10)
matrix of column eigenvectors ordered by the eigenvalues of B and F, is a (10 x 1805)
matrix containing the principal components of the state factors. An apostrophe
denotes a matrix transpose. Each row of matrix F_ represents the series for a
principal component. denoted by f; for 1 = 1..... 10. The uncentred principal

components of the state factors are defined as follows
F =E'B. (5.4)

Centred and uncentred principal components are connected by the following relation

(S]]
(S]]
~—

F = F. + E'Mean. (5.

The row elements of the second term in 3.5 are constant mean values that do not
influence the time series properties of the principal components and are in fact small.
Thus. we use the uncentred principal components instead of the centred principal
components. Now. our objective is to study the time series properties of the first
three uncentred principal components denoted by f,, fo and f3!, and attempt to
model them.

Figure 5.7 presents the time series of the three principal components. It is
obvious that these series are smoother and less erratic than the times scries of
the original state factors. Moreover, their distributions do not exhibit the bimodal
property observed with the original state factors. Figure 5.8 plots the corresponding

three histograms with superimposed normal density functions. It is clear from this

'In the remaining text, the uncentred principal components will be referred to as principal

components for short.



129

figure that the principal components have different distributions than the original
state factors. First. the two-peak phenomenon is no longer present. Second, their
kurtosis and skewness are not similar to those of the original state factors. Table 5.2
reports some descriptive statistics for the principal components series. The three
components have heavy tails relative to a normal distribution. For instance f; has
a kurtosis of 3.84 which is larger than 3. We study the times series of the three

principal components in the next section.

5.3 Stationarity of the principal components

Traditionally. the examination of stationarity of a time series starts by computing
the sample autocorrelation function (SAF) as well as the sample partial autocorre-

lation function (SPAF). The SAFs are computed as follows

T
Z (¢ — Z)(T-k — T)

- t=k-1 5 -
pr(r) = T4 . £=1,2.20. (5.6)

where 1 is a general variable. T is the sample size. Z is the mean of z. and s the
sample standard deviation of z. If the autocorrelation coefficients are null for k£ > g,

the variance of pi(.) is
Vige) =T (1428 + ...+ 252). (5.7)

The SPAF is calculated by fitting autoregressive models of increasing orders: the
estimate of the last coefficient in each model is the sample partial autocorrelation,
Okk. Figure 5.9 illustrates the evolution of the SAF for all the three principal com-
ponents. while Figure 5.10 presents the evolution of their SPAF. The shapes of the
SAF lead us to conclude that all three principal components have SAF that are “in-
finite in extent”. which is a behavior compatible with autoregressive models. The

SPAF behavior seems to reach zero for certain lags in some principal components but
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reappears later on. However, in general we are more inclined to consider the SPAF
to be finite in extent. The behavior of these two functions suggest the use of an
autoregressive moving average ARMA model as a representation of these principal
components. However. the fitting procedure cannot be applied until the stationarity
of the principal components is examined. Indeed, before suggesting any model to fit
the principal components, we start by checking whether the series are stationary or
not. thereby suggesting an order of integration. The stationarity of a series implies
the existence of one or multiple unit roots. The theory and practice of testing unit
2

roots have been reviewed by many authors . Here, we will present two types of

tests:

e The Phillips and Perron (1988) test for unit roots.

e The Augmented Dickev and Fuller (1979) test.
Consider the following OLS estimation of the following regression function:
ft=a+pfio +u. (5.8)

where u; is assumed to be normally distributed. The objective is to investigate
whether the series described by f; is stationary or not. Thus. we test the null hy-
pothesis: Hy : p = 1 against the stationary alternative H, : p < 1. An obvious test
statistic is the usual ‘t-ratio’ of the estimate of (p — 1) to its estimated standard
error. Dickey and Fuller showed that this statistic does not have a Student’s t distri-
bution. Instead the distribution, which is denoted by 7,,. has a specific distribution
determined by Fuller (1976). Phillips and Perron (1988) generalize the unit root
test when the errors u, are assumed to be white noise to the case when u, is serially

correlated and possibly heteroskedastic as well. Hence

fo— fior =v(L)e, (5.9)

2See for instance Hamilton (1994) and Harvey (1993) for a review of these tests.
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where
oc
'U/'(L)ft = Z Uj€—jz.
i

with E(e;) = 0, E{€?) = o® and E(ee€,) = 0 for t # 7. Phillips and Perron
proposed estimating equation 5.8 by OLS even when u, is serially correlated and
then modifying the statistic to take into account the serial autocorrelation and
potential heteroskedasticity in the disturbances 3. Dickey and Fuller presented an
alternative approach which accounts for serial correlation by including higher-order

autoregressive terms in the regression function:

p-1
Afi=a+o1fic1 + Y 0iaAfii + e (3.10)

i=1

The augmented Dickev-Fuller test statistic is computed as 7, = Ei%ﬁ‘ At this
stage. it must be mentioned that the augmented Dickev-Fuller test is, in theory,
only valid if the underlying process is indeed a finite autoregression. However, Said
and Dickey (1984) showed that the augmented Dickey-Fuller test could still be jus-
tified on asymptotic grounds. Descriptive statistics such as the mean, standard
deviation and selected autocorrelation coefficients as well as stationarity test statis-
tics of the original and first difference series are reported in Table 5.3. We can
see that the autocorrelation coefficients in the original time series of f, decay very
slowly. Those of the day-to-day change are generally small, except for p;, and are
not consistently positive or negative. The results of the formal augmented Dickey-
Fuller non-stationarity test with p = 4, as well as the Phillips-Perron test indicate
a strong rejection of the null hypothesis at the 5% significance level. Note that
both tests have the same critical value. These results imply that the stationarity of

the series is very likelv. The same results are reported for the other two principal

components in Tables 5.4 and 35.5.

3See Hamilton (1994) section 17.6 for an explicit formula of the adjusted statistics.
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5.4 Modelling the principal components of the
EP model

The results obtained in the previous section allow us to consider the three prin-
cipal components as stationary processes. Thus, we choose to model them by

ARMA(p.q) models.

5.4.1 Fitting an ARMA(p,q) model

In this section. we fit an ARMA(p.q) model to the principal component f,. We
will follow the same estimation procedure for all three principal components. An

ARMA(p.q) process includes both autoregressive and moving average terms:
fi=c+or1fisi+.. .+ 0pfrpte+bi61+ ...+ 6B (5.11)

In a more compact way. equation 3.11 can be rewritten as

(S]]

(1=01L—...—0,L7)fy=c+(1+6,L+...+6,L%¢, (5.12)

where L is the lag operator. The stationarity condition of this process requires that

the roots of the characteristic equation
P - -~ 9, =0, (53.13)

are less than one in absolute value, i.e., they lie within the unit circle. An alternative

way of expressing this condition is in terms of the lag operator
1 —61z2—@e2® —... = ¢p2” =0, (5.14)

where the lag operator is simply replaced here with the scalar z. The stationarity
condition is that the roots of 5.14 should all lie outside the unit circle. In other

words. the absolute values of the roots of this equation must be strictly greater than
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one. If the stationarity condition is satisfied. the ARMA process turns out to be

covariance stationary and both side of 5.12 can be divided by (1— 1L —... —0,L?)
to obtain
fi=pu+v(l)e. (5.15)
where 1+ 6L 8.1
- _ (+6L+...+6,
';(L) T (l-&L—-...—e,L?)
9 Z |Uj| S oc,
=0
(v = dl-e-e—...- 0y

Hence. the stationarity of an ARMA process depends entirely on the autoregres-
sive parameters (0. @s. . - . . @p) and not on the moving average parameters (6;.6,. . . ..
The estimation of these ARMA(p.q) coefficients is obtained through the minimiza-
tion of the likelihood function using a Gauss-Newton algorithm. The results of the
estimation are summarized in Table 5.6. Since the orders p and g are unknown. we
suggest that the series can be modelled by some ARMA process of reasonably low
order. Thus. we consider that p = 0..... 2 and that ¢ = 0..... 2. This choice of
orders may seem ad hoc. but for ARMA models fitted with p and q higher than 2.
we find that the added coefficients to be statistically insignificant. Table 5.6 reports
all the estimated parameters of the fitted ARMA(p,q) models. The estimation of all
the models seems to imply reasonable values for the coefficients. For models with
autoregressive order p = 1, the estimates of the autoregressive coefficients ¢, are
close to unity. For the models with p = 2, the sum of both parameters ¢, and ¢,
is close to unity. This phenomenon is reported by many financial time series. For
instance, for the AR(1) model, the estimate ¢, is less than 1, vet. the series is very
close to a random walk. i.e.. ¢; = 1.

There are different selection criteria that may be used to choose a model of ap-
propriate order. The most popular ones are the Akaike (1974) Information Criteria

(AIC) and Schwarz (1978) criterion (BIC). BIC is strongly consistent since it deter-
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mines the true model asvmptotically. whereas AIC favors overparametrized models.

Usually. the criteria are used such that
AIC(p*,q¢") =min AIC(p.q) for p=1,...P, and ¢=1,...Q.

From Table 5.6. we can see that both AIC and BIC select the pair of orders (1.1)
and (2.1). We select the ARMA(1.1) model because it is more parsimonious than
the ARMA(2.1) model. Now. the question arises: Can the selected model, i.e..
ARMA(1.1). pass diagnostic checks on the residuals? To answer this question, we
examine the properties of the residuals é, of the estimated model. Figure 5.11
displays the sample SAF of the residuals for ARMA(1.1) with upper and lower 95%
confidence bounds that are based on the assumption that all autocorrelations are
zero beyond lag zero. Note here that the significance of the correlation coefficients
are being tested individually and not simultaneously. About one in 20 coeflicients
would be expected to lie outside the bounds by chance under the hypothesis of
no autocorrelation. As two coefficients lie outside the bounds, it appears that the
residuals of the ARMA(1.1) model exhibit little or no correlation. Thus, we can
consider this model as an adequate working model. Table 5.7 reports the results of
the ARMA(p.q) models estimation for the principal components f, and f;. After
suggesting different orders for p and gq. we conclude that the ARMA(1,1) model is
suitable for both principal components. The autoregressive coefficient ¢, is 0.98 for

f2 and 0.97 for f3-

5.4.2 Testing for the presence of ARCH errors

Figure 3.12 presents a time series plot of the first differences of the three prin-
cipal components. It can be seen from the figure that the daily estimated values
are not homoskedastic. They are rather characterized by periods of tranquility fol-

lowed by periods of more turbulent movements (a phenomenon known as volatility
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clustering). We have also seen previously that there may be a little serial depen-
dence in the residuals of the ARMA(1,1) model. Indeed, the Ljung and Box (1978)
portmanteau test for up to the twentieth order serial correlation of € for the series
of f, equals 44.39, whereas the same test for the twentieth order serial correlation
in the squared errors equals 221.13. Under the null hypothesis of identically and
independently distributed principal components. both test statistics are asymptot-
ically the realization of a chi-square distribution with twenty degrees of freedom
(x3,).- However, it must be noted that, in the presence of ARCH, the portmanteau
test for serial correlation in ¢, tends to over-reject. The presence of ARCH can lead
to serious model mispecification if it is ignored. Weiss (1984) showed that ignoring
ARCH will lead to the identification of ARMA models that are overparametrized.
Therefore. before deciding on the adequacy of the fitted model, we test for the pres-
ence of ARCH in the residuals of the model. Engle (1982) suggested a test based
on the Lagrangian multiplier (LM) in which the null hypothesis is that €; possesses
a constant conditional variance against the alternative that the latter is given by an
ARCH(p) process.

This test is described as follows: First. the estimated residuals of the model are

saved and then €? is regressed on a constant and k of its lagged values:
E=ag+a1€  +...+€__+e. for t= T (5.16)
¢ — Qo 1€ . t—k €. lOr =1,...., 1. .

The statistics T x R?. from the regression of 3.16. converges in distribution to a x2
under the null hypothesis. It must be mentioned that some complications may arise
when the alternative isa GARCH(l,k) process. However, in practice, this test is more
useful in testing the squared residuals than determining whether the residuals follow
an ARCH or a GARCH process. The results of the LM test as well as the Ljung-
Box statistics of the squared residuals are reported in Table 5.8. According to those
results. the residuals of the ARMA(1.1) model are heteroskedastic. This is a first

indication that ARMA(1.1) is insufficient tc capture the behavior of the principal
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component f;. We applied the same test procedure on the principal components
f» and f;. We found that ARMA(1.1) model is insufficient to fully capture the

behavior of these two principal components.

5.4.3 ARMA (p,q)/GARCH(l,k) model

In order to include the heteroskedastic aspect of the errors, we consider the

following model:

ARMA (1 1) : fl = c+ (D'.fg_l + € + 916:_1, (517)

G."lRCH(Q. 1) : hg = K+ Lu']ftz_l + alhg_l + aght_g, (5.18)

where h, is the conditional variance of ¢;,. With this model, we still assume that
the mean of the process follows an ARMA(p.q) model however we allow the error
term ¢, to have some form of heteroskedasticity. Thus. the conditional volatility of
€;. as described by equation 5.18. is a GARCH(2.1) process. This model has been
used by various authors for different financial series. The results of the GARCH
estimation. for the principal component f;, are presented in Table 5.9. The coef-
ficients of the ARMA(1.1)/GARCH(1.1) indicate that o; and w, are both highly
significant at the conventional 5% level. Moreover. we note that the estimate of
(wy + a;) turns out to be very close to unity. The same remark is also valid for
the ARMA(1.1)/GARCH(2.1) where (w; + a; + a3) is close to one. This result
is very similar to other results using higher frequency financial data. Engle and
Bollerslev (1986) called such a process an integrated GARCH(l,k), IGARCH(Lk) or
GARCH(l.d.k), where d = 1 is the order of integration. In this class of models, the
autoregressive polvnomial equation modelling the variance in 5.18, has a unit root
and consequently a shock to the conditional variance is persistent in the sense that
it remains important for future ferecasts of all horizons. As noted in Bollerslev,

Engle. and Nelson (1994), the notion of “persistence” of a shock to volatility within
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the ARCH class of models is even more complicated than the corresponding concept
of persistence (integration) in the mean for linear models (ARMA). However. the
same authors claim that the IGARCH models are strictly stationary and ergodic.

Nevertheless. theyv suspect that the apparent persistence of shocks may be driven

by thick-tailed distributions of the errors rather than inherent non-stationarity.

In order to determine whether we have an integrated series or not, we computed
the t-statistics for the null hvpothesis that (w; + a; + a3) = 1 as well as for
(wi +0o;) = 1. We found that the null hypothesis is rejected at the 5% signifi-
cance level for both cases. Thus, we cannot accept the hypothesis that f; follows an
IGARCH(l.k)) model. In our case, the GARCH(2.1)} model seems to have a better
explanatory power compared to the GARCH(1.1). The likelihood ratio (LR) test.
which assesses the adequacy of a model relative to another nested model, is equal to
26.88 which is greater than y? at the 5% significance level. Thus, it seems that an
ARMA(1.1)/GARCH(2.1) is a good description of the empirical properties of the
first principal component f,. This result is confirmed by the results obtained from
the Ljung-Box portmanteau test on the squared residuals of the estimated param-
eters as well as the L\ test. Those results are reported in Table 5.10. The upper
plot in Figure 5.13 shows the evolution of the standardized residuals ( the residuals
divided by their conditional standard deviation). They appear generally stable with
little clustering. The lower plot of the same figure shows the SAF of the squared
standardized residuals from the same ARMA/GARCH model, with 95 % confidence
bands. It is clear from this figure that the SAF here shows no autocorrelation.
For the remaining two principal components, we follow the same procedure as de-
scribed in the present section. Table 5.11 reports our findings. All three principal

components seem to be well modelled by an ARMA(1,1)/GARCH(2,1).

In summary. the ARMA/GARCH models suggested for all three principal compo-

nents do capture the serial temporal dependencies in the volatility of these factors.
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Thus. the highly significant portmanteau test for serial correlation of the squared
residuals of the ARMA(p.q) models drops dramatically for the squared standardized

residuals of all the ARMA/GARCH specification.

5.5 The properties of the estimated short rate

In Chapter 2, the short rate from the EP model was defined as a linear combi-
nation of all the state factors of the model. Since there is a large body of empirical
literature devoted to examining the time series properties of the short rate data.
we would like to study the process of the short rate inferred from the EP model.
Usually. the empirical research on the time series properties of any unobservable eco-
nomic variable. such as the short rate, requires the specification of a proxy. Figure
5.14 shows the evolution of the short rate implied by the estimated EP model and
the evolution of the three-month T-bills vields. One can clearly see from this figure
that both series have very similar evolution. In general, there is not a consensus
among authors regarding the choice of a proxy for the short rate. As Chapman,
Long. and Pearson (1999) concluded in their paper “..the proxy problem is eco-
nomically significant...”. In our case the proxy will be the implied short rate from
the EP model. Many authors have tried to answer the following question: “What
is the process followed by the short rate?” Chan, Karolyi, Longstaff, and Sanders
(1992). Ait-Sahalia (1996). Duan and Jacobs (1998), Conley, Hansen, Luttmer, and
Scheinkman (1997), Jiang (1998), and Ahn and Gao (1999) are some of the studies
related to the subject. The empirical findings regarding the process of the short
rate deals with two different aspects: the drift of the short rate and the diffusion
of the short rate. Regardless of the proxy used, almost all studies conclude that
the conditional volatility of the short rate exhibits heteroskedasticity. On the other

hand, the estimation of the drift remains imprecise and still ambiguous. Ait-Sahalia
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(1996) claims that the linearity of the drift imposed in the literature, especially in
the affine models, is the main source of misspecification. However, Ahn and Gao
claim that the drift function of some proxies of the short rate are consistent with
the assumption of linear drift. The EP model did not impose any restriction on the
drift or on the diffusion of the short rate. Our objective is to find a “good” model

which fits the EP implied short rate.

5.5.1 The stationarity of the short rate

In section 5.3. using the Phillips-Perron and the augmented Dickey-Fuller tests,
we concluded that the first three principal components of the EP model are station-
ary. The EP implied short rate is a linear combinations of the state factors. It is also
(approximately) a linear combination of the three orthogonal principal components
studied above. Given these findings, we claim that the EP implied short rate must
follow a stationary process. In Table 5.12. we report some descriptive statistics for
the implied short rate. The results are slightly different from what we obtained so
far for the principal components. The null hypothesis of non-stationarity for the EP
implied short rate is rejected at the 10% significance level. For the principal compo-
nents. we were able to reject the non-stationarity hypothesis at the 5% significance
level. This result is interesting in the sense that it can be compared to the findings
of other authors. Jiang (1998) and Ait-Sahalia (1996) tested the stationarity of two
different proxies of the short rate: the three-month Treasury bills rate and the 7-day
Eurodollar rate. Both studies found a slight rejection of the null hypothesis. This
result explains the reason why the short rate, especially in macroeconomics, is usu-
ally modeled as having a unit root and hence a non-stationary process, as pointed

out by Conley, Hansen, Luttmer. and Scheinkman (1997)
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5.5.2 A dynamic for the implied short rate

Vasicek (1977) assumed that the short rate can be written, in a discrete frame-

work. as an AR(1) process
re=0(1— @) + dri_; + oeq. (5.19)

where ¢, ~ NID(0.0%). This model is easy to implement. However, empirical
evidence on the diffusion process of the interest rate goes against the assumption of
a constant volatility of the short rate. Sun (1992) gave a discrete time version of
the Cox, Ingersoll. and Ross (1985) model of bond pricing. He suggested that the

square root process can be approximated by
re=0(1—-0)+or_ + z\rf_let. (3.20)

Despite the unusual form of the innovation. this relation is still considered as an
AR(1). Gibbons and Ramaswamy (1993) estimated the ¢ parameter of equation
5.20. The parameter o will be interpreted as the implied first order autocorrelation
coefficient. They found this value to be very small, 0.37., compared to the auto-
correlation coefficient of 0.95, computed from a series of US Treasury bills rates.
Moreover. Backus and Zin (1994) have showed that using an ARMA(p,q) model for
the short rate can better accommodate the observable dvnamic of the term struc-
ture. Figure 5.15 shows the evolution of the SAF and the SPAF of the EP implied
short rate. The SAF decays at a verv slow pace. However, the SPAF has a behav-
ior similar to what is usually produced by an AR(p) model. Here, we will fit an
ARMA(p.q) model to the EP implied short rate and analyze the results. Table 5.13
indicates that either an ARMA(2,1) or an ARMA(2,2) is a good description of the
process of the short rate. The fitted models seem to be stationary. Our findings
seem to head in the same direction as those found by Backus and Zin. We claim

that previous term structure models imposed some simplifving assumptions on the
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process followed by the short rate. Those assumptions do not necessarily capture all
the movements occurring in the bond markets. A good specification of the short rate
process is a first step towards a better understanding of the term structure subject.
Both Vasicek and CIR models assumed an AR(1) model for the short rate process.
AR(1) is a special case of ARMA(p.q). Hence, fitting the EP implied short rate
with an ARMA(p,q) model assures a priori a better description of the short rate.
Nevertheless. we cannot conclude on the adequacy of the ARMA models unless the
residuals of these models are checked. Figure 5.16 shows the evolution of the SAF
of the residuals of the ARMA(2.1) and the ARMA(2,2) models fitted for the EP
implied short rate. It appears that five autocorrelation coefficients lie outside the
bounds for both models. This clearly violates the hypothesis of no autocorrelation
of the residuals of the models. Moreover. the residuals of the ARMA models must be
checked to determine whether they exhibit heteroskedasticity. Results from Table
3.14 imply that the two selected ARMA models may not be adequate for the short
rate. In fact, the residuals of both models support the hypothesis of ARCH effects
in the residuals as well as autocorrelation. This finding leads to considering an
ARMA/GARCH specification for the short rate. Table 5.15 summarizes the results
for a range of specifications. Given the values of some coefficients, it is clear that
the ARMA(2.1) and ARMA(2.2) are not adequate as models of the mean of the
short rate . Indeed, these two specifications imply non stationary processes. The
sum of their autoregressive coefficients is very close to one. For instance, the model
ARMA(2,1)/GARCH(1.1) implies a sum ¢, + ¢, = 0.9991. The hypothesis that this
sum is statistically different from one is rejected at the 5% level of significance. This
confirms the claim of Weiss (1984) that the existence of ARCH effects may lead to
overparameterized ARMA models. On the contrary, ARMA(1,1)/GARCH(1.1) as
well as ARMA(1,1)/GARCH(2.1) seem to be plausible descriptions of the implied

short rate. Based on our estimation results, we find that the short rate exhibits
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heteroskedasticity and some persistence of volatility shocks. The result is in line
with that of Duan and Jacobs (1998) who concluded that the short rate follows a
GARCH(1.d.1) process. In this notation, “d” is the order of differencing of the series.
Much of the analysis of financial time series considers the case when the order of
differencing is either 0. i.e., the series is stationary, or 1, i.e., the series is integrated
of order one. However, if “d” is a non-integer, the series is said to be fractionally
integrated. Duan and Jacobs found that “d” is statistically different from 0 and 1.
They reported that the series is fractionally integrated and thus concluded that the
short rate has a long memory component. In our case, the results in Table 5.16
support the adequacy of the ARMA(1.1)/GARCH(2,1) model. Indeed, the residu-
als do not seem to be correlated or heteroskedastic. In Figure 5.17, we show a plot
of the SAF of the squared standardized residuals of the ARMA(1,1)/GARCH(1,1)
and ARMA(1.1)/GARCH(2.1) models. We notice that both models are adequate.
However. on the basis of the LR test, we consider the ARMA(1.1)/GARCH(2.,1)
as a better description of the series. We tested whether the GARCH(2.1) model
for the volatility of the short rate is integrated or not. The hypothesis is slightly
rejected. This result implies that the order of integration is not equal to one. In
a future study one must estimate the value of d to know whether the short rate is

fractionally integrated or not.

Thus, the EP implied short rate and the three principal components are described
by the same ARMA/GARCH model. The result for the EP implied short rate is

not surprising as it is largely determined by the three main principal components.

In general. the findings here are encouraging and in line with the very recent
development in the term structure literature. Indeed, more and more authors (see for
instance Subrahmanyam (1996)) suggest the use of multi-factor models. Balduzzi,
Bertola. and Foresi (1996) suggest a three-factor model of term structure: the short

rate, the long-run mean of the short rate and the volatility of the short rate. They
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suggest that the volatility factor follows a GARCH process.

In Chapter 3, we gave empirical proof that the term structure is driven by more
than one factor. In our case ten state factors were necessary for a good fit. How-
ever, we showed through an eigen analysis that only three principal components
are needed to explain a large proportion of the term structure dynamic. In the
time series study, we found that all three principal components can be modelled by
an ARMA(1.1)/GARCH(2,1) process. Qur results confirm the idea that any term
structure model must allow for a rich dynamic which captures better the actual
evolution of the structure. The simplifving assumptions made by previous term

structure models are clearly no longer tenable.

5.6 The economic significance of the principal com-
ponents

The empirical investigation of Chapter 3 found that daily US term structures
over almost seven vears can be estimated accurately by nine to ten state factors. We
showed that these state factors have three principal components. We concluded that
the EP model is largely determined by three principal components. One question
rises: “ Are the three principal components of the EP model, economically mean-
ingful?” State variables in other term structure models have been assumed to be
the short rate or the long rate or the volatility of the short rate. Our suspicion is
that the principal components are correlated with macroeconomic variables which
influence the term structure movements. Our objective in this section is to present
empirical evidence which confirms our suspicion.

In the literature. many authors have empirically showed that some macroeco-
nomic variables have an impact on interest rates and thereby on term structure.

Urich and Wachtel (1984), McQueen and Roley (1993) reported that the Producer
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Price Index (PPI) has an impact on interest rates. Hardouvelis (1987) found signifi-
cant effects for the Consumer Price Index. the Trade Balance and the Unemployment
Rates. Balduzzi, Elton, and Green (1996) found that announcements abeut Durable
Goods Orders, Initial Jobless Claims and Nonfarm Payrolls affect the three-month
bills prices. They also found that prices of medium and long maturity bonds are
affected bv the CPI, Durable Goods Orders, Housing Starts, Initial Jobless Claims,
Nonfarm Payrolls. PPI, Consumer Confidence, National Association of Purchasing
Managers (NAPM) Index, New Home Sales and M2 median. Our objective is to
check whether the three principal components are correlated with macroeconomic
variables. Of course, we do not expect to find perfect correlation. Nevertheless, the
presence of correlation would be evidence of the connection between the principal
components and the real macroeconomic environment.

First, we start by choosing a basket of nine macroeconomic variables. We include
Housing Starts (Housing), Retail Sales (Retail). Monetary Aggregates M1 and M2.
Yield of the Longest Bond (Long). the Federal Discount Rate (Fed). the Producer
Price Index (PPI). the Consumer Price Index (CPI) and Durable Goods (Dura-
Goods). The data on these variables are published by the Federal Reserve Bank
of Saint-Louis through their web site. Since most of these variables are published
monthly. we select from the three principal components the values that correspond
to the end of each month for the period between 1989 to 1996 (87 months). We
construct two matrices: an (87 x 3) matrix containing the monthly principal compo-

nents, an (87 x 9) matrix containing the monthly data on macroeconomic variables.

5.6.1 Procedure

Our objective is to examine the relationship between the three principal com-
ponents of the state factors, inferred from the EP model, and the pool of macroe-

conomic variables using two procedures: simple correlation analysis and canonical



correlation analysis.

5.6.1.1 Correlation analysis
We compute the simple correlations between the logarithms of the macroeco-

nomic variables and:

1. the three principal components f; for i = 1,2, 3,
2. the short rate r.

3. the long rate R.

Let f; denote the ith estimated state factor, and L; the logarithm of the jth
macroeconomic variable. Logarithms are used to reduce the scale of the raw data.
The simple correlation coefficient between any pair of these two types of variables

is computed using the following standard formula:

s(fi. L;)
ry=—r——. for t=1.23. and j=1.,.... 9,
1= S(f)s(L,) 7

where

i fh_

e —_T—
Z qu
S2(Lj) = = n—1
Z(f[l ft LI.J L)
s(fi.L;) = m— , and n = 87.

Table 5.17 reports the correlation matrix of the macroeconomic variables L; with
the three principal components, the short rate r and the long rate R. f; has a
relatively strong correlation with M1, PPI, and CPI. The principal components f;
and f3; as well as the long rate R are highly correlated with Fed. The EP implied

short rate is highly correlated with Fed as well with M1 and M2. Moreover, the EP
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implied short rate is moderately related to all other macroeconomic variables. This
last result is perfectly predictable since the short rate is a state variable intended to
capture the evolutior: of the economy.

Based on this table, we cannot conclude if any macroeconomic variable is in-
fluencing one principal component in particular. Indeed. most of the correlation
coefficients with the principal components are of the same order, therefore, big dif-
ferences among the principal components are not evident. In order to gain better
insight into the nature of the correlation between the principal components and the

macroeconomic variables. we conduct a canonical analysis.

5.6.1.2 Canonical analysis

Gittins (1984) defines the canonical analysis in the following terms: “by canon-
ical correlation analysis. we mean a technique of multivariate analysis which seeks
linear functions of two sets of variables with special properties in terms of correla-
tion irrespective of the nature of the variables comprising either set.” Thus, the aim
here is to clarifv the relationship between what is called. in the language of canonical
analysis. the two domains: the principal components and the pool of macroeconomic
variables listed above. From the analysis we conduct. we will examine the signif-
icance of some coefficients and try to infer conclusions regarding the relationship
between the principal components and the macroeconomic variables.

First. we must mention that the analysis is performed on standardized data
(mean 0 and standard deviation 1). Second, u; and v, for £ = 1,2,3, are defined
as linear combinations of f; and L, variables, respectively. Finally, canonical pairs
(uk.vi) are constructed to have maximum correlation between u; and v, while
distinct pairs are constrained to be mutually uncorrelated.

Table 5.18 reports the correlation coefficients r, (k = 1.2.3). It is evident that

the correlation between u, and v, is strong since r, = 0.86. This suggests the exis-
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tence of a linear relationship between the principal components and macroeconomic
variables. The remaining ry (k > 1) decline until the smallest coefficient r3 attains
0.48. The strengths of the first three canonical correlations confirm the presence of

several linear relationships between the two domains.

The squared correlation coefficients rZ express the proportion of the variance
of the kth canonical variate u;, that is explained by its conjugate v, or vice versa.
From Table 5.18, we find that r? = 0.7452, which means that 74.52% of the variation
in the linear combination of the principal components specified by u, is attributable
to the variation in that particular linear combination of the macroeconomic variable
specified by v,. From the magnitudes of r?, r3 and r, one can deduce that the
overall relationship between the two domains is reasonably strong. We rely on the
percentage attributable to the kth root, r2, as a way to determine the dimensionality.
From Table 5.18, it can be deduced that the roots rf, for k = 1, 2, account for 84%
of the predictable variance. The inclusion of the third root necessarily increases this
percentage to 100% because the effective dimensionality of the linear association
between the principal components and the macroeconomic variables is limited to
the smaller number of variables in each domain (three in this case). This result
implies that three linear relations may be considered to fully describe the effective
dimensionality of the linear association between the principal components and the

macroeconomic variables.

Table 5.19 reports different types of correlation of the principal components
with the canonical variates u; and of the macroeconomic variables with v.. The
intraset correlations (see the lower part of Table 5.19) measure the correlation of the
macroeconomic variables with the canonical variates v;. For instance, we note that
the canonical variate v, is characterized principally by the macroeconomic variables,
Fed (0.70). M1 (-0.47) and CPI (-0.43). v, is essentially a combination of Fed (0.36),
Long (0.30) and Dura (0.26). v; is a contrast of percentage of M1 (-0.19), Ret (-0.17)
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and CPI (-0.13). Of the three canonical variates, v; is the strongest one. absorbing
about 16% (the variance extracted = 0.1582) of the total variance associated with
the macroeconomic variables. The second canonical variate accounts for only 4% of
the total variance. The third canonical variate explains little of the total variance
associated with the macroeconomic variables. Collectively. the v, account for about

22% of the total variance of the macroeconomic variables.

The interset correlations are reported in the upper part of Table 5.20. They are
the correlations of the estimated state factors with the canonical variates v,. The
magnitude of the correlations of the principal components with ¢, shows that all
principal components are at least moderately related to v,. Particularly. the first
canonical variate of the macroeconomic variables domain is characterized by a pos-
itive weight to all the principal components. Since. we conclude previously that
is highly related to Fed. we can suggest that the principal components f;. f> and f;
tend to be positively associated with Fed. v is positively correlated with f» (0.65).
while negatively correlated with f, (-0.23) and f3 (-0.16). Knowing that v, is largely
related to Fed and Long. we can affirm that f, is positively related to both Fed and
Long. The canonical variate v is positively related to f; (0.32) and negatively re-
lated to f3 (-0.34) whereas it is poorly related to f;. Since r; is negatively related

to M 1. then we can claim that f; and f; are positively related to 1.

Our findings show a strong link between the principal components of the state
factors of the EP model and the macroeconomic environment. as expected. More-
over. as suggested by our canonical analysis. it seems that some principal components
are particularly related to the Federal Discount Rate, to the Yield of the Longest
Bond and to M1. Part of these results is plausible based on previous work in the
literature. Indeed. Brennan and Schwartz (1979) developed a term structure model
where one of the state variables is the return on the longest bond. Thus. our results

confirm the relevancy of such variable but point to the presence of other factors that
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influence the term structure of interest rates. We think that a continuation of this
investigation could include a wider choice of macroeconomic variables and will bring

a better confirmation of our preliminary results.

5.7 Conclusion

This chapter studies the time series properties of the principal components esti-
mated from the EP model. Our preliminary investigation revealed a mathematical
artifact in the distribution of the estimated state factors. This artifact is induced by
the high multicollinearity of the exponential components of the EP model. Thus. the
analysis focused on the first three principal components of the state factors. They
are orthogonal linear combinations of the state factors and explain up to 99.9% of
the total variation in the EP model. After conducting a time-series analysis on
these principal components, we concluded that all of them are stationary processes
and can be described by a common ARMA(1.1)/GARCH(2,1) model. This result is

interesting for several reasons:

1. It confirms recent findings in the literature about the processes followed by
some state variables of term structure models. See for instance Balduzzi. Das,
Foresi. and Sundaram (1996). They use a three-factor term structure model.
One of the state variables, the volatility term, is described by a GARCH

process.

o

The discovery that a common ARMA/GARCH model describes the principal
components of the state variables opens the door for a better understanding
of the term structure. It suggests a possible use of the EP model in arbitrage

strategies. This idea, in particular, will be investigated in the next chapter.

3. The short rate. defined as a linear combination of all the state factors of the
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EP model. is found to follow the same ARMA/GARCH process. This resuit

confirms the widely held idea reported in the literature that the short rate

process is heteroskedastic.

. Finally. in our attempt to attribute some specific economic significance to the
principal components, we discovered that the three principal components are
related to macroeconomic variables such as the Yield of the Longest Bond, the
monetary aggregate M1 and the Federal Discount Rate. This result is very
promising because it shows that there is a relationship between the estimated
principal components of the EP model and macroeconomic indicators related
to the Federal reserve policy (Federal Discount Rate) and to monetary policy

(M1). We suggest this as a subject of a future research.
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Figure 5.1: These figures depict the distibution of the state factors with a superimposed normal
distribution for 3; for i = 1...,4 estimated from 1805 cross-sections of US Treasury bills, notes

and bonds fit to the EP model for the period from 1989 to 1996.
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Figure 5.2: These figures depict the distribution of the state factors with a superimposed normal
distribution for 3; for i = 5...,8 estimated from 1803 cross-sections of US Treasury bills, notes

and bonds fit to the EP model for the period from 1989 to 1996.
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Figure 5.3: These figures depict the distribution of the state factors with a superimposed normal
distribution. for 3¢ and R estimated from 1805 cross-sections of US Treasury bills, notes and bonds

fit to the EP model for the period 1989 to 1996.
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Figure 5.4: These figures depict the evolution of the state factors 3; for i = 1...,4 estimated
from 1805 cross-sections of US Treasury bills. notes and bonds fit to the EP model for the period

from 1989 to 1996.



B, series Bg senes

2000 0 500 1000 1500 2000

Figure 5.5: These figures depict the evolution of the state factors 3; for i = 5...,8 estimated
from 1805 cross-sections of US Treasury bills. notes and bonds fit to the EP model for the period

from 1989 to 1996.
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Figure 5.6: These figures depict the evolution of the state factors 35 and R estimated from 1805
cross-sections of US Treasury bills. notes and bonds fit to the EP model for the period 1989 to

1996.



1, senes 'z senes
0.01 0.1
0.05
0.005
0
0
-0.05
-0.005 -0.1
.01 -0.15
0o 0 500 1000 1500 2000 0 500 1000 1500 2000
I'3 senes
0.04
0.02
0
-0.02
-0.04
-0.06
-0.08
0 500 1000 1500 2000

Figure 5.7: These figures depict the evolution of the principal components of the state factors
fifori=1...,3 estimated from 1805 cross-sections of US Treasury bills, notes and bonds fit to

the EP model for the period from 1989 to 1996.
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Figure 5.8: These figures depict the distribution of the principal components of the state factors
fifor i =1...,3 estimated from 1805 cross-sections of US Treasury bills, notes and bonds fit to

the EP model for the period from 1989 to 1996.
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Figure 5.9: These figures depict the evolution of the SAF of the principal components f; for
t=1....3 estimated from 1805 cross-sections of US Treasury bills, notes and bonds fit to the EP
model for the period 1989 to 1996. The two bands represent the upper and lower two standard

deviation 95% confidence bounds, based on the assumption that all autocorrelations are zero.
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Figure 5.10: These figures depict the evolution of the SPAF of the principal components of
the state factors f; for i = 1....3 estimated from 1805 cross-sections of US Treasury bills, notes
and bonds fit to the EP model for the period 1989 through 1996. The two bands represent the
upper and lower two standard deviation 95% confidence bounds, based on the assumption that all

autocorrelations are zero.
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Figure 5.11: This figure represents the evolution of the SAF of the residuals of the ARMA(1,1)

model for the principal component f;.



162

at,
0.1
0.05
0
-0.05
-4 -0.1
0 500 1000 1500 2000 0 500 1000 1500 2000

o 500 1000 1500 2000

Figure 5.12: These figures depict the evolution of first differences of the principal components
fifori =1...,3 of the state factors estimated from 1805 cross-sections of US Treasury bills, notes

and bonds fit to the EP model for the period 1989 to 1996.
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Figure 5.13: These figures illustrate the evolution of the standardized residuals and the SAF of

the squared standardized residuals of the ARMA/GARCH model for the principal component fi-



164

0-09 T T T T T ] T T L

008 .

| )

0.07} - 8
o006 1
s
- N
72} )

-]
-] It : =
€005+ J

004f 1

003} drl s ! R J

0.02 1 I 1 L 1 1 1 1 1

0 200 400 600 800 1000 1200 1400 1600 1800 2000

sample observations

Figure 5.14: This figure presents the evolution of two time-series: the implied short rate ( solid
line) for the EP model estimated from 1805 daily cross-sections of U.S Treasury coupons bonds

over the period of 1989-1996; the daily yields of three-months U.S T-bills (dots).
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Figure 5.15:

The SAF and the SPAF of the EP implied short rate.
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SAF of the residuals of ARMA(2.1) for the short rate
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Figure 5.16: The SAF of the residuals of the ARMA(2,1) and ARMA(2,2) models for the EP

implied short rate.
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SAF of the residuals of ARMA(1,1/GARCH(1,1) for the implied short rate
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Figure 5.17: The SAF of the squared standardized residuals of two ARMA/GARCH models for

the EP implied short rate.
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factor | mean std skewness | kurtosis
3 0.0196 | 0.0510 | 0.0212 2.4136
B -0.1435 | 0.3429 | 0.0535 2.3024
33 0.5097 | 1.2833 | -0.1370 | 2.1994
84 -1.1045 | 3.5186 | 0.2397 2.2617
Bs 1.1424 | 7.9346 | -0.3315 | 2.4347
Bs 0.8851 | 13.5593 | 0.4397 2.5403
B+ -6.4032 | 18.9826 | -0.6249 | 2.4935
Bs 7.8010 | 14.3568 | 0.8136 2.4099
39 -2.4429 | 3.8379 | -1.1501 | 2.8346
R 0.0472 | 0.0177 1.4394 4.1407

Table 5.1: Descriptive statistics for series of 1805 observations on the estimated

state factors 3; fori =1.....9 and R.
Component | mean std | skewness | kurtosis
h 0.0018 | 0.0022 | -0.5701 3.8413
fa -0.0197 | 0.0327 | -0.2710 2.9321
fa -0.0044 | 0.0099 | -1.1487 6.6558

Table 5.2: Descriptive statistics for series of 1805 on the first three principal com-

ponents f; fori=1..... 3.
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Variables N Mean Std.Dev. 51 #3 4 43} A1s (%)
N 1805 0.0018 0.0022 0.969%5 0.9419 0.8946 0.8544 0.8202 0.7869
Srav1 = f1e 1804 -0.00006 0.0368 -0.2423  0.0005  -0.0363  -0.0220  -0.0380 -0.0296  0.0163
Augmented daily -3.2151

Dickey-Fuller

Phillips-Perron -86.0466

statistics

Hg: reject at 95%

Nonstationary

(critical vajue=-2.86)

Table 3.3:

Summary statistics of the first principal component f;.

Variables N Mean Std.Dev. - 3 -1 s11 p1s s
fa. 1808 -0.0197 0.0327 0.9407 0.9083 0.8580 0.8243 0.7827 0.7449
Ja.041 = f2.2 1804 1.6135 x 10~% 0.0112 -0.3471 0.0006 -0.0407 -0.0133 -0.0277 0.0062
Augmented daily -3.7338

Dickey-Fuller

Phtllips-Perron -284.1847

statistics

Ho: reject at 95%

Nonstationary

teritical value=-2.86)

Table 5.4: Summary statistics of the second principal component f5.

Variables N Mean Std.Dev. P P2 A7 p13 p1s [30)
fax 1805 -0.0044 0.0099 0.9192 0.8656 0.7974 0.7272 0.6633 0.6102
face1 = f3x 1804 -8.9677 x 10~¢ 0.0039 -0.3401 -0.0507 0.0067 -0.0098 -0.0516 0.0828
Augmented daily -4.6674

Dickey-Fuller

Philiips-Perron -312.2564

statistics

Hp: reject at 95%

Nonstationary (critical value=-2.86)

Table 5.53: Summary statistics of the third principal component f3.
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Model o O 6 82 c AIC BIC

ARMA(1.0) | 0.9760 0.00004 | -15.0745 | -15.0714
(0.0056) (0.00001)

ARMA(2,0) | 0.8057 | 0.1745 0.00003 | -15.1248 | -15.1187
(0.0230) | (0.0229) (0.00001)

ARMA(0.1) 0.8340 0.00189 | -13.2439 | -13.2409
(0.01299) (0.00005)

ARMA(0.2) 1.0682 | 0.6309 0.0018 | -13.7839 | -13.7778
(0.01804) | (0.01804) | (0.00006 )

ARMA(1.1) | 0.9838 -0.2288 0.00002 | -15.1434 | -15.1343
(0.0042) (0.0237) (0.00001)

ARMA(1.2) | 0.9885 -0.2164 | -0.0824 | 0.00001 | -15.1391 | -15.1330
(0.0039) (0.0238) | (0.0238) | (0.00001)

ARMA(2.1) | 1.2739 | -0.2817 | -0.5069 0.00001 | -15.1432 | -15.1341
(0.0806) | (0.0792) | 0.07473) (0.000008)

ARMA(2.2) | 0.7591 | 0.2264 | 0.0132 | -0.1348 | 0.00002 | -15.1419 | -15.1297
(0.2534) | (0.2500) | (0.2520) | (0.0592) | (0.00001)

Table 5.6: Parameter estimates for the principal component f; from 1805 observa-

tions. The standard deviation of the parameters are enclosed in parentheses. AIC is

the Akaike Information Criterion and BIC is the Schwarz criterion.

Component Model o1 8, ¢ AIC BIC

fa ARMA(L.1) | 0.9841 | -0.3221 0.0002 -9.1433 | -9.1372
(0.0052) | (0.0239) | (0.0001)

fa ARMA(1.1) | 0.9713 | -0.3053 0.0001 -11.2001 | -11.1940
(0.0064) | (0.0242) | (0.00006)

Table 5.7: Parameter estimates of ARMA models for the principal component f,

and f;3. The standard deviation of the parameters are enclosed in parentheses.



order | LM test | Ljung-Box test | Critical Values
k=10 | 189.7354 197.0073 18.3070
k=15 195.3712 203.1289 24.9957
k=20 | 201.1191 217.7110 31.4104
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Table 5.8: Test for the presence of ARCH effects in the residuals of the ARMA(1,1)

model for the principal component f;.

Model a; az -y K x 10”8 o1 ) € Loglikelihood

GARCH(1.1» 0.9209 0.0600 1.5391 0.9725 -0.2187 0.0002 11190.23t6
{0.0014) (0.0021) (0.5492) €0.0012) {0.0135) (0.00011}

GARCH(2.1,) 0.4977 0.2479 0.1756 2.2321 0.9877 -0.2438 0.00002 11203.6765
(0.0098) (0.0119) (0.0149) (0.3323) (0.0036) {0.0236) (0.00001)

Table 5.9: Parameter estimates of the ARMA/GARCH model for the first principal

component f;.

Table 3.10:

order | LM test { Ljung-Box test | Critical Values
k=10 | 4.7548 1.6256 18.3070
k=15 6.0609 5.7149 24.9957
k=20 | 8.8663 8.7130 31.4104

Test for the presence of ARCH effects in the

ARMA(1.1)/GARCH(2.1) model for the principal component f,.

residuals of the

Component | ARMA(p.q)/ ay az vy K x10”° o1 -1 c LogLikelthood
GARCH(l,k)
fa (1,1)/(2.1) 0.3313 0.5427 0.1135 1.6778 0.9863 -0.3829 -0.0002 5935.1037
(0.1083) {0.1017) {0.0149) (0.1887) {0.0041) (0.0231) {0.00012)
fs (1.1)/(2,1) 0.3630 0.4662 0.1437 0.4807 0.9629 -0.3114 -0.0001 7722.0964
(0.10986) (0.1018) (0.0144) (0.07644) {0.0051) (0.0233) {0.00005)

Table 5.11: Parameter estimates of the ARMA/GARCH model for the principal

components f;. for 1 = 2.3.
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Variables N Mean Std.Dev. M I3 -2 A1 s s1e
re 1805 0.0503 0.0171 0.9886 0.9837 0.9759 0.9698 0.9635 0.9589
Tleel) — Tt 1804 -2.011E-005 0.0024 -0.3977 0.0744 -0.0453 0.0102 -0.0237 0.0744
Augmented daily -2.61

Dickey-Fuller

Phillips-Perron -67.24

statistics

Hy: reject at 9O%

Nonstationary (critical value=-2.57)

Table 5.12: Summary statistics of the EP implied short rate.

Model 0 o 6, 6, c AIC BIC
ARMA(1.0) | 0.9885 0.0005 | -12.0295 | -12.0264
(0.0033) (0.0001)
ARMA(2.,0) | 0.5979 | 0.3942 0.0004 | -12.1972 | -12.1911
(0.0216) | (0.0216) (0.0002)
ARMA(0.1) 0.8974 0.0503 -9.2887 | -9.2856
(0.0095) (0.00043)
ARMA(0,2) 1.2148 | 0.7087 0.0504 -9.9632 | -9.9571
(0.015) | (0.0138) | (0.0004)
ARMA(L.1) | 0.9992 -0.3477 0.000008 | -12.2311 | -12.2251
(0.0019) (0.0237) (0.0001)
ARMA(2,1) | 0.9903 | 0.0085 | -0.5048 0.000019 | -12.2763 | -12.2671
(0.0320) | (0.0319) | (0.0321) (0.00007)
ARMA(2,2) | 0.1875 | 0.8106 | 0.3011 | -0.4828 | 0.00002 | -12.2836 | -12.2714
(0.0244) | (0.0243) | (0.0309) | (0.0233) | (0.0001)

Table 5.13: Parameter estimates of the ARMA model fitted to the EP implied short

rate r (original series) from 1805 cross-sectional samples.



Model Order | LM test | Ljung-Box test | Critical Values

ARMA(2,1) | k=10 | 280.3327 602.4590 18.3070
k=15 | 297.6179 725.9694 24.9957
k=20 | 341.0450 978.8884 31.4104

ARMA(2,2) | k=10 | 266.3816 569.0741 18.3070
k=15 | 286.4189 705.8384 24.9957
k=20 | 329.3882 954.7332 31.4104
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Table 5.14: Test for the presence of ARCH effects in the residuals of the models

ARMA(2.1) and ARMA(2.2) fitted to the EP implied short rate.

ARMA(p.q)/ a) a2 -l K x 108 o1 02 8y .2 ¢ LogLikelrhood

GARCH(l,k}

(1.13/01.1) 0.9296 0.0606 0.0174 0.9957 0.0002 8943.2221
(G.0029) (0.0049) (0.0003) (0.0008) (0.00004)

(1.1)/(2.1} 0.3928 0.4980 0.0909 0.0239 0.99585 -0.4529 0.00023 8946.7807

(0.0025} } (0.0073) {0.0005) (0.0007) (0.0205) (0.00003)

(2.1)/(1.1) 0.9261 0.0639 0.0137 1.2443 -0.2452 -0.6477 0.000147 8949.0487
(0.0030) (6.0050) (0.0034) (0.0041) | (0.0041) (0.0128) (0.00002)

(2.1)/(2.1) 0.3685 0.5156 0.1058 0.0242 1.2361 -0.2368 -0.64834 0.00014 8953.0557
10.0035) (0.0043) (0.0079) (0.0056) (0.0496) (0.0493) {0.0338) {0.00003)

(2.23/01.1) 0.9224 0.0675 0.0166 1.3913 -0.3924 -0.7987 0.0703 0.00011 8950.8727
10.0032) (0.0054) (0.0037) (0.0110) (0.0110) (0.0135) (0.0194) (0.00002)

(2.21/(2.1) 0.4025 0.482¢ 0.1044 0.02367 1.7462 -0.7470 -1.1740 0.2673 0.00004 8958.0422
(0.0019} (0.0026) (0.0078} (0.0056) {0.0116) (0.0115) (0.0109) {0.0160) (0.0001)

Table 5.15: Parameter estimates of the ARMA/GARCH models fitted to the EP

implied short rate (original series) from 1805 cross-sectional samples.

Table 3.16:

order | LM test | Ljung-Box test | Critical Values
k=10 7.5511 8.0044 18.3070
k=151 10.6334 10.6554 24.9957
k=20 | 153612 15.6247 31.4104

Test for the presence of ARCH effects in the residuals of the

ARMA(1,1)/GARCH(2,1) model for the EP implied short rate.




Variable | Housing | Retail M1 M2 Long Fed PPl CPl | Dura-Goods
fi -0.1096 | -0.3565 | -0.4460 | -0.3929 | 0.0822 | 0.35561 | -0.4058 | -0.4232 -(.2498
fa 0.1151 | 0.0734 | -0.1710 { -0.0526 | 0.3558 [ 0.5799 | -0.0780 | -0.0739 0.2095
f3 -0.0507 | -0.0938 | -0.1707 | -0.2604 | 0.0123 | 0.3537 | -0.1930 | -0.1970 -0.0383
T 0.1978 | -0.4436 | -0.6868 | -0.6237 | 0.6333 | 0.9178 | -0.6095 | -0.6234 -0.2588
R -0.2367 | -0.4620 | -0.4973 | -0.4934 | 0.5223 | 0.3514 | -0.4974 | -0.4954 -0.4037

Table 5.17: Simple correlation coefficients hetween the principal components, the short rate r and the long rate R and selected

macroeconomic variables based on monthly data 1989-1996.

vLl
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k rr 2 Ftr C%

1 0.8632 | 0.7452 | 50.80 | 350.80

2 0.7004 | 0.4906 | 33.45 | 84.25

K} 0.4808 | 0.2312 | 15.75 | 100.00
Total - 1.4669 | 100.00 -

Table 5.18: Canonical correlation coefficients. Relationships between the first three

principal components and nine macroeconomic variables.

Canonical uy us u3
Variate

h 0.6567 | -0.3381 | 0.6741
f2 0.3399 | 0.9395 | 0.0415
fa 0.6565 | -0.2412 | -0.7147

Var.Ext 0.3260 | 0.3517 | 0.3223

Canonical U1 v U3
Variate

Hou -0.0390 | 0.1433 | -0.0322
Ret -0.2677 | 0.1828 | -0.1764
M1 -0.4761 | -0.0010 | -0.1983
M2 -0.4512 | 0.1111 | -0.0876
Long 0.2068 | 0.3007 | 0.0713
Fed 0.7005 | 0.3626 | 0.0263
PPI -0.4262 | 0.0778 { -0.1477
CPI -0.4387 | 0.0870 | -0.1568
Dura -0.1057 | 0.2672 | -0.1336

Var.Ext 0.1582 | 0.0415 | 0.0166

Table 5.19: Canonical analysis of principal components-macroeconomic variables.

Correlation between the original variables and the canonical variates.
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Canonical v v2 vz
Variate
h 0.5669 | -0.2368 | 0.3241
f2 0.2934 | 0.6581 | 0.0200
fs 0.5667 | -U.1689 | -0.3436
Var.Ext 0.2429 | 0.1726 | 0.0745
Canonical u U u3
Variate
Hou -0.0683 | 0.2075 | -0.0670
Ret -0.3101 | 0.2609 | -0.3669
M1 -0.5516 | -0.0014 | -0.4124
M2 -0.5227 | 0.1587 | -0.1822
Long 0.2396 | 0.4293 ; 0.1483
Fed 0.8115 | 0.5177 | 0.0546
PPI -0.4938 | 0.1110 | -0.3072
CP1 -0.5082 | 0.1243 | -0.3261
Dura -0.1224 | 0.3814 | -0.2780
LVar.E‘.xt 0.2124 | 0.0846 | 0.0717

Table 5.20: Canonical analysis of principal components-macroeconomic variables.
Correlation between the original variables and the canonical variates. Dual of Table

3.19.



Chapter 6

Out-of-Sample Results and
Arbitrage

In the previous chapter. we concluded that the principal components of the state
factors. inferred from the EP model. follow GARCH processes that we have fuily
identified. In theory. the dependence implied by a GARCH model, means prediction
is possible. Our final objective is to investigate in practical terms, if useful prediction

is possible in economic terms.

First, we will construct two types of out-of-sample GARCH forecasts by using
past information on the principal components, available at the time the forecasts
are made. Then, we judge the forecasting performance of each series. Second, the
forecasting series will be used to determine whether we can exploit the predictive
power of the GARCH forecasts. In other words, we assess whether profits can be
generated from an arbitrage strategy involving the out-of-sample GARCH forecasts

of the three principal components of the EP model.
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6.1 Forecasting using GARCH processes

In chapter 5, we found that the principal components f;, fori =1,...,3, possess

the following type of ARMA/GARCH process:

fti = c+ofimite + 0161, (6.1)
hei = K+we | +ahe 1+ ahea;. (6.2)

Since. we are dealing with models where time-dependent conditional heteroskedas-
ticity is present, it is not obvious how to write the expression of the optimal forecasts
for the mean of such processes.

Baillie and Bollerslev (1992) determined the general expression of the optimal
forecasts in such a context. Applying their general formula to our case and going
through algebraic manipulations, we recover the expression for the optimal s-step-

ahead predictor of f,; as
Ei(fresi) =c(l+ 01+ ...+ 0{7") + 0} fri + 0107 eri. (6.3)

See Appendix D page 202 for the relevant technical development. Given this ex-
pression for the mean of the GARCH forecasts. we use the GARCH specification
identified in the previous chapter for each principal component and compute the
corresponding GARCH forecasts. We estimate both rolling and updating GARCH
forecasts. The rolling forecast uses a constant sample size of 1604 observations for
each principal component. We start the estimation procedure at January 1, 1996.
After making the forecasts for date (¢ + 1) using observations from (¢t — 1604) to
t. all the GARCH parameters are reestimated by adding the observation on day
(t + 1) and deleting the observation of day (¢t — 1604). Thus, from January 1 1996
to October 14 1996, we re-estimate the GARCH process everyday using this rolling
procedure. In all, we obtain 200 daily out-of-sample GARCH forecasts.

The updating procedure simply adds information as time progresses to construct

a forecast. Thus, we start the estimation procedure at time ¢, which corresponds to
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January 1 1996. Then. we keep updating our sample with the most recent observa-
tions on the principal component. The last estimation of the GARCH parameters
is based on 1804 observations.

The out-of-sample GARCH forecasts thus obtained are compared to the actual
principal components for the same 200-day period calculated from the principal
components as previously explained in chapter 5. We will try to answer the following
question: “How well do the projected future principal components predict their
actual values?” Specifically, are they efficient or biased estimates? It is obvious that
an ideal forecast model would produce estimates of the future principal components
that closely approximate the actual in-sample values. Figures 6.1 and 6.2 show
the evolution of the rolling GARCH forecasts and the updating GARCH forecasts,
respectively. Both types of forecasts are compared to the evolution of the in-sample
estimates of the principal components. In general, the GARCH forecasts follow the
same evolution as their in-sample counterparts. This result confirms our findings
in chapter 5 about the relevance of the GARCH processes followed by the three
principal components.

Forecasting performance of the two types of GARCH series is judged by comparing
the ability of the forecasts to predict the in-sample values of the principal compo-
nents. Comparisons are based on the mean error, defined as actual minus forecast,
(ME). the mean absolute error (MAE) and the RMSE. The results of this test are

contained in Table 6.1. It is obvious fror “*': = hle that:

e The updating GARCH forecasts slightiy outperform the rolling GARCH fore-

casts for all three principal components under the ME criterion.

e The RMSE and MAE criteria both indicate that updating and rolling GARCH

forecasts are quite similar for all three principal components.

Moreover. based on the ME criterion, it seems that both types of GARCH fore-
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casts of the three principal components are slightly downward biased for fi and
f» and upward biased for f;. However, given the relative size of the ME, we can
consider such bias as negligible. Fair and Shiller (1990) noted that comparing out-
of-sample forecasts using the RMSE criterion has some limitations. Thus, further
insights into the difference between the two types of forecasts can be obtained by

regressing the in-sample estimates on the out-of-sample forecasts:
fi=a+bfp+u, (6.4)

where f,, is alternatively the rolling and the updating GARCH forecast. This type
of regression is often called “encompassing regression”. In particular, Hendry and
Richard (1982) and Fair and Shiller (1990) developed a rich literature about the
subject. The idea is the following: if a forecast equals the true expected value of
fi, then regressing in-sample values of the principal components on their expecta-
tions should produce regression estimates of 0 and 1 for a and b, respectively. Any
deviation from those valucs is interpreted as evidence for bias and inefficiency in
the forecast. Equation 6.1 is fitted with OLS. In this type of equation, OLS is a
consistent estimator of the regression coefficients. Moreover, the forecast horizon of
one day coincides with the frequency of the sample we used. This will rule out any
dependency in the errors of the regression. Therefore. standard errors will not be -

underestimated when computed by OLS.

6.1.1 Interpretation of results

The results for the “encompassing regression” on both forecasts are reported
in Tables 6.2 and 6.3. respectively. All of the estimated values of b are positive
and are significantly different from zero and from one at the 5% significance level.
However. the estimated values of b are very close to unity. For f;, f, and f3. the

siope coeflicients of the updating GARCH are 0.96, 0.99 and 0.88, respectively. This
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indicates that weights of the GARCH forecasts. even though different from one, are
very significant and may represent a valuable source for predicting the future values
of the principal components of the EP model. For both types of GARCH forecasts,
the intercept is statistically significant for all principal components. The t-statistics
of the intercept terms for f,. f» and f3 using the rolling GARCH forecast are 3.5,
2.25 and 2.5, respectively. Nevertheless, none is large enough to be material. Thus,
there exists a bias in the GARCH forecasts but it is statistically small. Finally, the
adequacy of both GARCH forecasts is confirmed by the R? statistics. For all three
principal components f;, i = 1....3. the multiple determination coefficients R? for
the rolling forecasts are 0.51, 0.65 and 0.52, respectively. These values are quite
large and indicate that the explanatory power of the GARCH model is satisfactory
for the three principal components. More than 50% of the variability in the actual
values is explained by the forecasts for each component. From previous results. we
can conclude that both types of forecasts are useful in conveying a large amount of
information about the future evolution of the principal components. Now, we would
like to know whether this statistical predictability can be exploited to generate

significant economic profits.

6.2 Arbitrage

Our previous results indicate that the principal components changes are pre-
dictable in a statistical sense. Of course, an accurate forecast is desirable, but
GARCH forecasts of the principal components might be used for trading even if the
forecasts are not totally accurate. Thus, the final question to be answered here is
whether the reported predictability is large and persistent in order to be economi-
cally significant. In other words: “Can the GARCH forecasts be exploited to make

a material trading profit?”
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In Chapter 5. we mentioned that the principal components of the EP model are

related to the n state factors through the following relation:
F=EB, (6.5)

where B is an (n x M) matrix of values for n state factors for M days. E is an
(n x n) orthogonal matrix in which each column represents an eigenvector and F
is an (n x M) matrix containing the resultant principal components. The above
relation is very important for it allows us to easily switch from the state factors of
the EP model to the principal components. We also showed in Chapter 5 that the
following matrix equation connects the estimated matrix of state factors B and the

matrix of bond prices Y

B=(X'X)"'X'Y. (6.6)

where Y = (y;.....yar) is a matrix of bond prices. y; is a vector of bond prices of

the ith cross-sectional sample. Equations 6.5 and 6.6 imply that
F=FE(X'X)'X'Y. (6.7)

Therefore. bond prices can be mapped into principal components. Since we con-
cluded in Chapter 3 that only three principal components are needed to describe

the term structure, equation 6.7 can be written for a principal component
fi=E'(X'X)"' X'y, (6.8)

As the mapping of y; to f, is many to one. it follows that a subspace of y, maps
into any given f;. Equation 6.8 is very interesting since it implies that any principal
component f, can be considered as a linear combination of the vector of bond prices
y; (i.e.. portfolio of bonds). Buving(selling) this portfolio is mathematically equiva-
lent to buying(selling) the corresponding principal components. It is also clear from
equation 6.8 how an individual bond portfolioc would provide a derivative portfo-

lio of estimated principal components f;. Moreover, equation 6.8 shows that any
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derivative portfolio of the principal components can be connected to the real bond
market. Thus. from a theoretical construct. i.e.. f;. we can switch to a real portfolio

of bonds. Indeed.

Y = Py — Po,t-,

where Py, is the average market price of a bond j plus the accrued interest at time
t. P, is the cash flows of the same bond discounted at the long rate R at time
t. Thus. anv portfolio of principal components can be related back to the set of
available bonds.

Moreover. when we studied the time series properties of the principal components
of the EP model. we found that f, is well described by a GARCH model of the

following form

fi = c+o1fi1 +e€ + b€y, (6.9)

hy = K+ &J]Gf_i + ajh;—1 + aohy_s. (610)

Equation 6.9 is useful in predicting f; from f,_;. Given this relationship between
ft and f,_; and knowing that f, can ultimately be related to the bond market,
one can think of many ways to generate profits. As an illustration, we consider a
derivative portfolio of the three principal components with weight vector w,_; at
time t — 1. where each component weight w,_,, for ¢ = 1,2, 3 is the number of units
of the corresponding principal component that is purchased for the portfolio at price
fi—1:. In order to be considered as an arbitrage portfolio, the weights are selected

as follows

u‘z-l.lfz—m + wt—l,2ft—1.2 + wt-1.3ft-l,3 =0. (6-11)

This arbitrage portfolio requires no capital outlay. At time ¢, the value of this

portfolio will be

W11 fry + We12fi2 + W1 3ft3 = we—1adfey + Wiy 2df 9 + Wy—1,3dfe 3, (6.12)
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where df,; = fii— fi-1.. We want to investigate empirically whether such a strategy
will. on average, generate profits.

One possible choice for the arbitrage portfolio is to select a weight vector such
that:

W1 = fp.t-l — fe-1.

where f, -1 is the GARCH forecast made at time t —1 for the principal component
f: on the next day. Since we showed that the GARCH forecasts contain substantial
information in predicting future principal components, this portfolio will probably
be a good candidate to generate long-run profits. As shown later. this choice of
weights very nearly satisfies condition 6.11 because the GARCH forecasts. even
if slightly biased. contain a substantial amount of information about the actual
principal components.

Below. we implement this choice of weights. The trading strategy we use to
assess potential arbitrage profits is based on the updating forecast of the principal
component. At date (t — 1). GARCH forecasts of the principal compouent for day
t are formed. If a principal component is predicted to increase (decrease) from day
(t — 1) to day t. the derivative portfolio is purchased (sold). At time (¢ — 1), the
investment outlay of the arbitrage portfolio must be close to zero. At time t. the
position is closed and the profit is computed. The prices of the derivative portfolio
will be determined from the actual principal component as estimated from the term

structure at time t. The trading profit is computed as

T = W1 fe1 + Wemr2fe2 + W13 fr3. (6.13)

where the f,,; fori =1,....3, are inferred from the term structure at day ¢, through
the EP model.
Table 6.4 contains a summary of the trading strategy results. In this table,

we report the mean and the standard deviation of the daily portfolio cost. Also.

-
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we report the mean and standard deviation of the arbitrage profits realized. Note
that this strategy is repeated every day in the 200 samples of GARCH forecasts,
between January 2. 1996 to October 15. 1996. The mean cost of the portfolio is
$8.648 x 10~5, which is extremely small. with a standard deviation of $0.00071.
The minimum and maximum define a small range close to zero. This indicates that
the arbitrage portfolio involved little outlay of capital at almost no risk. The mean
profit for this sampling period is $0.26 . The standard deviation of this mean value,
$2.4604. indicates that the portfolio profits are far from certain. Nonetheless, mean
profit is relatively large. The worst loss realized during this period is $9.47 and the
best profit is $23.97. Apparently, trading on the basis of the principal components
predictions cannot produce consistent positive profits. However, we have empirical
evidence that. on average. the profits are significantly greater than zero, excluding
transaction costs. for the one day trading horizon.

However, to implement this arbitrage strategy on the actual bond market, we must
derive the principal components from the bond market. In theory, this is possible
through relation 6.7. Second. the principal components f, must be “constructed” in
the real bond market. Indeed. the state factors are a linear transformation of bond

prices y,. i.e., portfolio of bond prices y,. In Chapter 3. we defined y, as:
Yt = Py — Py,

where Py, is the average market price of a bond j plus the accrued interest. Py,
is the cash flows of the bond j discounted at the long rate R at time t. P, can
be easily traded in the bond market as it is the average of the bid and ask prices of
bond j. However, P, is not available on the bond market and one must look for a
bond having similar characteristics. Thus, the trading strategy we described above
is subject to some limitations imposed by reality and availability of bonds.

Moreover. one can wonder whether the inclusion of transaction costs would eliminate

the arbitrage profits? Knowing that an average commission for individual investors



186

is about 35 cents. we have good reasons to suspect that the profits will be reduced
sharply by transaction costs with this one-day trading strategy. Based on this
assumption. we cannot reject the efficiency hvpothesis of the US bond market. From
a statistical standpoint. the GARCH forecasts appeared to be powerful predictors
for the future principal components values. The magnitudes and accuracy of the
predicted changes were large enough to generate, on average, substantial profits.
However. given that the average size of these profits is about 26 cents, they will
tend to vanish after transaction costs are considered. Therefore the result does not

challenge the hypothesis that the bond market is informationally efficient.
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Figure 6.1: These figures depict the evolution of the principal components f;, for i =1....3,
estimated using the rolling forecast procedure. The dots are the GARCH forecasts and the solid

lines are the actual principal components from the EP model for the period from January 2 1996

to October 15 1996.
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Figure 6.2: These figures depict the evolution of the principal components f;, for i = 1...,3.
estimated using the updating forecast procedure. The dots are the GARCH forecasts and the solid

lines are the actual principal components from the EP model for the period from January 2 1996

to October 15 1996.



Principal ME MAE | RMSE

Component | (x107%)

fi(rolling) 5.4138 | 0.0023 | 0.0029

fi(updating) | 5.3750 | 0.0023 | 0.0031

fa 8.8919 | 0.0042 | 0.0062
7.9311 | 0.0042 | 0.0062

fa -2.3241 | 0.0030 | 0.0043
-2.4860 | 0.0030 | 0.0043
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Table 6.1: Comparisons between out-of-sample GARCH forecasts of the principal

components.

Statistics |  f; f2 f3

a 0.0007 | 0.0009 | -0.0010
SE 0.0002 | 0.0004 | 0.0004
b 0.9742 | 0.9915 | 0.8701
SE 0.0379 { 0.0228 | 0.0459
R? 0.5133 | 0.6534 | 0.5182

Table 6.2: In-sample estimates of the principal components regressed on rolling

GARCH forecasts. The equation used is (6.4): f, =a+ bfp, + u.
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Statistics h fa f3

a 0.0006 | 0.0008 | -0.0009
SE 0.0002 | 0.0004 | 0.0004
b 0.9611 | 0.9885 | 0.8772
SE 0.0337 | 0.0226 | 0.0461
R? 0.5145 | 0.6506 | 0.5091

Table 6.3: In-sample estimates of the principal components regressed on updating

GARCH forecasts. The equation used is (6.4): f; =a + bfp + u;.

Arbitrage Strategy Mean Std. dev. | Minimal value | Maximum '
Cost(in §) 8.648x107° | 0.00071 0.00001 0.0317 E
Profit(in $) 0.2597 2.1604 -9.4752 23.9706

Table 6.4: The trading strategy is formed on the basis of the updating out-of-sample
GARCH forecasts for the principal components of the EP model. The prediction
of principal component for day ¢ is based on the GARCH forecast of dayv ¢t — 1 for

the same principal component. The weights of the arbitrage portfolio are w,_; =

fp.t-l - ft—l-



Chapter 7

Conclusion

Since the appearance of the article of Durand in 1942, which suggested a hand
fitting of the term structure. many empirical and theoretical models have been pro-
posed for term structure estimation. McCulloch (1975) and Vasicek and Fong (1982)
emphasized empirical estimation of the term structure. In other words, they came
up with a useful technique that attempts to replicate the shape of the term structure.
However. Langetieg (1981) and Cox. Ingersoll, and Ross (1985) have derived a no-
arbitrage condition known as the fundamental partial differential equation (PDE)
for bond pricing. Through their model. they gave a solid theoretical understanding
of term structure. However. a wide gap still exists between theory and empirical

techniques for the estimation of term structure.

Guo (1998) poses the following question:“Does the PDE admit any linear solu-
tion?” He proceeds to show that the EP model, reproduced in Chapter 2, is the
only discount model to be consistent with no-arbitrage. To a certain extent, this
model is equivalent to the Exponential Spline model of Vasicek and Fong (1982) but
without splines. Its solution can be written as a linear combination of exponential
functions. It has the main advantage of being based on an arbitrage argument and

thus satisfving the fundamental PDE of bond pricing. The EP model can be stated
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as follows:

D(3.s.t) = (1 -3 3;)e R0 4+ 3~ giem(RHhIs=0), (7.1)
=1

i=1
where D(3.s,t) is the discount function at time t of one monetary unit to be re-
ceived at time s > t. R represents the long rate, (s — t) is the time to maturity
and /; are a selected series of decreasing (or increasing) values. Variables 5, ..., 5n
are state factors of the EP model. The fitting of the term structure is always mo-
tivated by the problem that there are few long-term treasury securities available
for fitting. The models of McCulloch (1975) and Vasicek and Fong (1982) suggest
spline fitting techniques to represent this characteristic of the bond market. As is
clear from equation 7.1, this feature is imbedded in the EP model, which allows the
discount function to decay at different rates. The EP model does not divide the ma-
turity range into subintervals for spline fitting. Instead, the component exponential
functions with larger exponential parameters decay faster than those with smaller
parameters. Unlike curve fitting models, such as McCulloch (1975). Bliss (1997) and
others. the EP model is not an ad hoc function designed to fit the term structure
but. more interesting, is a theoretical model derived from the fundamental PDE
of bond pricing. Thus, the EP model has the advantages of both approaches: its
simplicity is very similar to empirical techniques presented in the literature and its
theoretical form is consistent with the PDE of bond pricing. Is it the right candidate
for describing term structure? This is the question being answered in this thesis.

The research objective in this thesis is to conduct a cross-sectional and time-
series investigation of the EP model. The purpose is to understand its cross-sectional
fitting properties as well as the time-series properties of its state factors, which drive
term structure.

In Chapter 3 and 4, we studied the cross-sectional properties of the EP model.
Two different data sets were examined. One is provided by the NYFRB and consists

of daily US T-bills, notes and bonds prices. The second is from the Bank of Canada
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and contains daily prices of Canadian T-bills, notes and bonds. Our first objective

was to estimate the coefficients §; of the following regression model:
. . . n . .
Piy+ Al =P} =) 3:(P! — P])+¢ for j=1...,N, (7.2)
=1

where P}, is the jth bond market price and AI” is the accrued interest corresponding
to the jth bond. P/ and P} are the present values of bond j discounted at rate (R+1;)
and R. respectively. N is the number of treasury securities in the cross-sectional
sample. In this equation, the 5;,i = 1,...,n are n state factors to be estimated.
The long rate R considered as a state factor is also estimated for each cross-sectional
sample. Both data sets provided solid evidence that, over the periods under study,
US and Canadian term structures could be accurately estimated by the constant
exponential basis of the EP model. The fitting performance of the EP model was
found to accommodate different shapes of the term structure curve, which is an
essential feature of every term structure model. Since that the exponential basis
is kept constant. the linear coefficients of the EP model can be considered as state
factors that reflect the varying economic conditions that determine term structure.
Both data sets confirmed the relevancy of the EP model. However, a different
exponential basis was used for each data set. This is perfectly reasonable because
US and Canadian bond markets do not share exactly the same sets of state factors.
Nevertheless, through an eigen analysis of the n state factors, we found using both
data sets, that term structure variability is largelv determined by three principal
components of the state factors. This result is consistent with the current tendency
of modeling the yield curve as being driven by at least three sources of uncertainty;
for instance Balduzzi, Das, Foresi, and Sundaram (1996) have presented a model
in this direction. Moreover, Subrahmanyam (1996), in his review of the literature,
urges the academicians to think about models with more than two state variables.

In Chapter 5, we studied the time-series properties of the estimated state fac-

tors. We were also interested to know whether any economic significance could be
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attributed to these factors. First, we found that the state factors cannot be di-
rectly studied because they exhibit in their evolution some regular dramatic shifts
induced by high multicollinearity among the components of the exponential basis
of the EP model. Hence, we found it more useful to study the time series of the
principal components of the state factors. Our results show that the three principal
components are stationary and are adequately described by ARMA/GARCH pro-
cesses. This result clearly indicates that the principal components inferred from the
EP model exhibit a heteroskedasticity pattern frequently observed in other financial
and economic time series. Unlike many previous models, the EP model does not
constrain the state variables to follow any process in particular. Instead, it allows
a wide range of processes. This is, most probably, the principal reason behind its
accuracy in capturing all the subtle movements of term structure. Through a cor-
relation and canonical analysis, we show that the principal components are linearly
related to macroeconomic variables such as the Federal Discount Rate, the Yield of
the Longest Bond and the monetary aggregate M1. This result is very similar to
those of Balduzzi. Elton. and Green (1996) who concluded that the term structure
of interest rates is affected by announcements for macroeconomic variables in the
US economy. We also find that the process of the short rate, a linear combination
of all the state factors of the EP model, is well described by an ARMA/GARCH
model. This result is in line with Duan and Jacobs (1998), who showed through an
equilibrium argument. that the short rate follows a GARCH model. More recently,
Ball and Torous (1999) presented empirical evidence that the volatility of the short-
term interest rates of several foreign countries including the US, is volatile. In this

sense, our results also confirm these findings.

The findings of Chapter 5, naturally led us to investigate the predictive power of
the GARCH forecasts of the principal components of the EP model. We assessed the

information content of the GARCH forecasts in predicting future values of the prin-
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cipal components. We formed two types of forecasts: rolling forecasts and updating
ones. We assessed the performance of these GARCH forecasts using encompass-
ing regression. We find that for the three principal factors, the GARCH forecasts
are almost unbiased and highly predictive. Finally, we tested whether the reported
prediction is economically significant. For this, we created a trading strategy that
attempts to take advantage of the informational content of the GARCH forecasts.
We showed that the profits generated by this trading strategy, over a horizon of 200
days, are on average significantly different from zero. However, given the relatively
small size of the average profit, we have good reason to suspect that it would vanish
in the presence of transaction costs.

Given all of our findings, we believe that the EP model is a promising candidate
as a linear model for term structure. Its accuracy in estimating the cross-sectional
samples of two major data sets is strong evidence in this direction. Moreover. the
EP model is found to be largely determined by three principal components that are
predictable. The time dependency of the three principal components is useful in
predicting the shape of the future term structure. This feature is highly important.

essential to every term structure intended for practical use.
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Appendix A

Notes on Three Models of Term

Structure

A.1 Vasicek model

In the Vasicek model (1977). the instantaneous spot risk-free rate, r(t). follows

an Ornstein-Uhlenbeck process:
dr(t) = k(0 — r(t))dt + odz(t). (A.1)

x > 0 is the mean reversion parameter.  is the long-run average of the instantaneous
interest rate and o is the volatility parameter. z(t) a standard Brownian motion.
Vasicek derived the equilibrium yield to maturity y(r,¢,7) for a zero-coupon bond
as

y(r.t,7) = A(7) + B(7)r(t), (A.2)

_ p—KkT\2
A(r) = I(1-B(7))+ %)—02, (A.3)
1—e™"

KT

with [ the vield on the bond with maturity 7 — oc

0,2

Tlirglcy(r,t,r) =l=(0+A)- 502
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with A the market price of risk.

A.2 CIR model
In the CIR model (1983). the short rate follows a square-root process:

dr(t) = (8 — r(t))dt + o/r(t)dz(2). (A.5)

where k£, § > 0 and o > 0 are constants.
CIR showed that the current price at time ¢ of a zero-coupon bond which matures

at t + 7 and has a face value of one unit is given by the following expressions

P(r.t.7) = A(r)e”Br®), (A.6)
1 QmelTHRHAIT/2 2x6/0* (A7)
A (v+r+A)(e=1)+29 o

2(e" - 1)
= . A8
B() (v+rx+A)(e™—1)+2y (4.8)
v = ((k+A2+20%)" (A.9)
2k0
_ . A.10
: YK+ A ( )

with [ defined as the long rate and A the market price of risk.

A.3 The Super-Bell model

The Super-Bell model is based on the paper of Bolder and Stréliski (1999). It
was developped by Bell Canada Limited in the 1960s. First, a par yield curve is
derived. A par yield curve is a series of vields that would be observed if the sample

of bonds were all trading at par value. The following regression is conducted:
yield. = ag+0;1(7) +aa(t?) + a3(m3) + a4 (7%°) +as(log 7) + a6 (C) + a7 (CT) (A.11)

This regression defines vield to maturity yield, as a function of term to maturity 7

and the coupon rate C. Once the coefficients of equation A.11 are estimated, a vector
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of par vield estimates is obtained through the following algebraic arrangement:

- 2 - 2 - 3 ~ 0.5 2
yzéld, _ Oo+01(1)+02(7’ )+?z3(r)+a4(7 )+05(10gT). (‘%12)
1 — a6 — d7(7)

Using the vector of estimated par vields, yiéld,, an additional regression is run to

vield the fitted equation
yield, = &g + &, (7) + Go(72) + 3(73) + &u(t°%) + as(log 7). (A.13)

This last step is conducted in order to “smooth” the par vield curve, obtained in

equation A.11.



Appendix B

Theoretical Prices of the EP
Model

These details are adapted from Guo (1993). Here. we only present the closed-
form formula of the present value of a hyvpothetical price, under the exponential base
e~*. In the text we denoted this present value by P).

First. consider a standard semi-annual coupon bond with face value F, maturity
T —t. and annual coupon interest payment C;. We denote by p the total number
of half-vears

p = integer(2(T —t)).

Let t. be the fraction of half-vear to the nearest coupon interest payment
te=2(T —-t) - p.

The bond will have a total of (p + 1) cash flows at the following future time points
(in vears)

t/2.t./2+1/2.t./2+1.....t./2+p/2,
at which the corresponding discount factors are

e~ Mote _o=dolte/2+1/2) o=Mo(te/2+1)
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For example. if T — t=15.3 vears. then p = 30 half-vears. t. = 0.6 half vear, and
there will be a total of 31 cash flows. The present value of the bond is

—(p+1)Ao/2
1 —e /2

J 9

<~

| + Fe~ %), (B.1)

To separate the accrued interest. equation ( B.1) can be re-written as

PO _ CJ/2

A ero/2 _ ]

_ _ _ _ C e(l—tc)AO/2 —_ 1)
(1 — e~2olT=1) 4 Fe=doT '>+?’( . (B2)

If we take the first order Taylor series approximation that (i.e., e* — 1 ~ r for small

|x|). the last term in equation ( B.2) simplifies to

CJ(]- - tc)
2

which is the accrued interest AJ ; defined in the text.



Appendix C

GARCH Forecasts

Here we present a derivation of GARCH forecasts for an ARMA(1,1) process. y;.

as follows

yr = p+ 01ye-1 + 0161 + €& (C.1)

Using matrix notation. equation C.1 can be re-written as

Y = pe; + BY,_, + (e; + er)eq. (C.2)
where.
o1 = Yt
€
o, 6
« &= 1 Oy
0 0

® ¢, isa 2 x 1 vector with 1 in the ith element and 0 elsewhere.

Equation C.2 is set up in this manner so it is a particular case of equation 13 of
Baillie and Bollerslev (1992). Thus, following these authors, the optimal s-step

ahead predictor of y;., is equal to

k-1 (-1
Ei(yess) = ts + Z TisYt—i + Z Ai s€t—is (C.3)

=0 1=0
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where k and [ are the order of AR and MA. respectively. For an ARMA(1.1). the

previous equation can be written as
Et(yt-HI) =15+ Tosle + )‘O.sfb (C'4)

Baillie and Bollerslev showed that

b = ef(I+®+...+ 8" Neypu. (C.5)
Tos = 6’1‘1)561. (CG)
Aos = €1P%es. (C.7)

Given the structure of . we can compute &° as

o — Oi Bloi—l
0 0

Substituting the expression of ®° in :. 7 and A, we get
g p g

s = pll+or+...+0(7', (C.8)
Tos = OT' (Cg)
/\0_5 = 910‘1‘-1. (CIO)

Now. replacing these new expressions in equation C.4
Et(yt+s) = ,U.[l +0;+...+ O'Tl] + ¢‘;yg + 01¢i-1€g. (Cll)

which corresponds to equation 6.3 in Chapter 6, with a different notation.
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