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Abstract

The term structure of interest rates shows the relationship between yie!ds of zero-coupon

bonds and tbeir maturities. The empirical performance of the single-factor mode! of the affine

term structure models, sucb as Vasicek (1977) and Cox, Ingersoll, and Ross (1985), has not been

entirely satisfactory. The curve fitting methods, and particularly the spline method, used in

praetice to estimate the term structure are ad hoc and thus subject ta arbitrage opportunities.

Guo (1998) used the fundamental Partial DifferentiaI Equation (POE) for bond pricing ta derive a

linear discount function, which is consistent with no-arbitrage. He showed that this is the unique

linear solution to the POE. This solution, the exponential-polynomiaI mode! or EP model for

short, has n unobserved state factors that drive a stochastic discount process for pricing bonds

so as ta rule out arbitrage opportunities. In this thesis, we conduct an extensive cross-sectionaI

analysis of the EP model on two different data sets: prices for daily Treasury bills, notes and bonds

from the New York Federal Reserve Bank quotation sheets from July 1989 ta Oetober 1996, and

daily Canadian bills, notes and bonds prices for the time period from June 1992 ta May 1995.

We estimate the model by applying a rnjnjrniz.ation criterion. The cross-sectionaI analysis shows

that the EP mode! is able ta describe adequately the term structure of interest rates. For the

US data, we find tbat every term structure from the sampling period cao be fully represented

by eitber nine or ten state factors. Eigenvalue analysis indicates that the first three principal

components are underlying the term structure movements. We conduct a time series analysis

on the three principal components. They are found ta he best described by ARMA/GARCH

processes. We fonn two types of GARCR forecasts of the three principal components and test
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their out-of-sample performance. \Ve conclude that the three principal components are predictable

in a statistical sense. The use of an arbitrage strategy that attempts to take advantage of such

predictive power generates some economic profits. However given the relative small size of the

arbitrage profits, they will tend to vanish after transaction costs are considered.
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Résumé

La structure à terme des taux d'intérêt étudie la relation entre les rendements des obligations à

zéro-coupons et leurs maturités. Les test empiriques effectués sur les modèles à un seul facteur de

la structure à terme des taux d'intérêt, tel quelle modèle de Vasicek (1977) ou le modèle de Cox,

Ingersoll et Ross (1985) ont démontré que ces derniers ne décrivent pas adéquatement la courbe des

taux d'intérêt. Par ailletm\, les méthodes empiriques, telle que la méthode spline, sont généralement

dérivées d'une manière arbitraire et donc permettent la réalisation d'opportunités d'arbitrage.

Guo (1998) a utilisé l'Équation aux Différentielles Partielles pour l'évaluation des obligations,

afin de dériver une fonction d'actualisation linéaire qui soit consistante avec les conditions de non­

arbitrage. fi a démontré qu'une telle solution est unique. Cette solution, désormais dénotée modèle

exponentiel-polynomial (EP), décrit la fonction d'actualisation par n facteurs non observables.

Dans notre thèse, nous effectuons une étude empirique exhaustive sur le modèle EP. Pour cela,

nous utilisons deux bases de données distinctes. La première base de données est constituée de

prix journaliers américains sur les bons du trésor, notes et obligations, répertoriés par la Banque

Fédérale de New York. Elles couvrent la période de juillet 1989 jusqu'à octobre 1996. La seconde

base de données est constituée de prix journaliers de bons, notes et obligations du gouvernement

canadien. Ces données sont cueillies par la Banque du Canada. Elle s'étend de juin 1992 jusqu'à

mai 1995. Nous avons estimé le modèle en appliquant un critère de minimisation des erreurs au

carré. L'analyse en-section nous a permis de conclure que le modèle EP décrit adéquatement

la courbe des taux. Chaque structure à terme de notre échantillon américain est décrite par

neuf ou dix facteurs d'état. L'analyse des valeurs propres de ces facteurs nous indique que trois
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composantes principales sont essentielles pour expliquer la variation de la structure à terme. Par

ailleurs, nous avons démontré que les séries temporelles de ces trois composantes principales du

modèle EP, sont décrites par des processus AR..l\fA/GARCH. Ce résultat est intéressant dans le

sens où il est en accord avec des études précédentes sur le processus de certaines variables d'état

des modèles de structure à terme. Nous avons utilisé les processus en question pour construire

des prévisions hors-échantillon et étudier leur performance. Nous avons trouvé que les prévisions

des principales composantes à partir des modèles ARMA/GARCH contiennent des informations

substantielles. De plus, l'inclusion de r..es prévisions dans des stratégies d'arbitrage a permis de

générer des profits. Toutefois ces profits ne sont pas élevés et nous pensons qu:ils auront tendance

à disparaître après que les coûts de transaction soient pris en compte.
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Introduction

1.1 Term Structure of Interest Rates

The term structure of interest rates is an important subject in finance. In very

simple words, it shows the relationship between yields of zero-coupon bonds and

their maturities. In this chapter, we will use the following notation:

• P(x, t, T) denotes the price at date t of a discount bond with time T ta maturity.

The price is assumed ta depend on astate vector x. The bond pays one dollar

(in all states x) at date T = t + T. By definition

P(x, t, 0) = 1.

• D(x, t, T) denotes the discount function at time t. It corresponds to a discount

bond priee. It depends on astate vector x. It pays one dollar at date T = t+T.

• y(x, t, T) denotes the yield at time t on a bond of maturity T in state x. By

definition

( t )
_ logP(x, t, 7)

Y X, ,7 - -----­
T

for 7 > O. (1.1)

•
• r(x, t) denotes the short interest rate at time t, in state x. By definition,

r(x, t) == lim y(x, t, 7).
1"~O
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• f(x~ t. T + dt) denotes the forward rate with term 6t. It is derived from the

priees of two bonds maturing a tSt period apart, as follows:

(
P(x, t, T) )

f(x~ t, T + 8t) = log P( 6)'x, t, T + t
(1.2)

(1.3)

•

f is the rate of retum that one ean earn from (t + T) to (t + T + 8t), with a

long position in the (T + c5t)-period bond and a short position in the T-period

bond.

• F(t, T) denotes the instantaneous forward rate as seen at time t for a eontract

maturing at time T. By definition,

F(t, T) = lim f(x~ t, T + 8t)
ot-+-O

From definitions 1.1 and 1.2, one can deduce that yields are averages of forward

rates:
1 T-l

y(x~ t, T) = - L f(x, t,j).
T j=O

Thus~ the maturity structure of discount bonds ean be expressed in three equivalent

ways: priees, yields or forward rates. The use of yield curves is standard in monetary

poliey analysis in central banks and elsewhere. However, the use of forward rates,

among other indicators, has started to be used by sorne financial institutions (see

Svensson (1994)).

1.2 Motivation for Research

The subject of term structure is directly related to the bond market and real

econornic activity. Furthermore, it is used by central banks as an economic indi-

cator for setting monetary policy. Traditionally, it is believed that central banks

mainly affect short-term interest rates, sucb as yjelds on Treasury bills, whereas

real economic activity is more linked to yields on bonds with the same maturity as
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physical capitaL in the range of 10 to 20 years. Thus. it is important to understand

the factors which affect the yields on these securities with different maturities and

hence have a better understanding of the central bank role for affecting the state of

the economy and the stance of monetary policy.

~vIore recently~ a big push for term structure research has come from the world of

practice. which has experienced an explosion in interest rate derivative products. In

fact. a thorough understanding of the empirical properties of term structure becomes

more and more desirable because term structure conveys information about market

expectations for the behavior and future course of interest rates. This information

is essential for the pricing of interest rate-contingent daims.

Models of the term structure of interest rates range from simple curve fitting

techniques ta sophisticated theoretieal models. In 1977, Vasicek launched the study

of term structure models. His model and, later, one by Cox, Ingersoll, and Ross

(1985), focused on describing the dynarnies of the short rate. However sorne restric­

tions have been placed on the form of the stochastic process of the short rate in order

to derive dosed-form solutions for bond prices and the priees of contingent daims.

Unfortunately, tractable models sometimes have undesirable economic properties.

For instance, the assumption that interest rates follow an Ornstein-Uhlenbeck pro­

cess (e.g. in the Vasicek model) leads to a dosed-form solution for bond prices and

interest rate derivatives but allows negative interest rates. Other models such as

that of Heath, Jarrow, and Morton (1992) take into account the shape and the dy­

namies of the entire term structure. For this, the latter authors specify the current

term structure, which is considered as the underlying asset in this model, in terms

of forward interest rates. The derivation of results on the equivalent martingale

measure is easier with the forward rate specification than with the spot rate spec­

ification. However, the forward rate specification turns out ta be more difficult ta

implement. Even so, these bond price models have not been able ta explain ob-
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served term structures; see for instance Brown and Dybvig (1986), and Gibbons and

Ramaswamy (1993), and Kaushik and Morton (1994).

On another level, curve fitting techniques have been used to give a more practi­

cal way of describing the tenn structure. In 1975, McCulloch suggested the use of

polynomial spline models to estimate the tenn structure frOID observed treasury se­

curity priees. Later~ Vasicek and Fong (1982) proposed the exponential polynomial

spline function to estimate the term structure of interest rates. These techniques,

although useful in practice, have never been proved to be consistent with the ab­

sence of riskless arbitrage in the bond market. The latter feature is indeed the key

distinguishing point of term structure models.

Guo (1998) addresses this particular issue. He suggests taking the unspecified

Partial DifferentiaI Equation (PDE), previously derived by many authors, as a no­

arbitrage condition and determining if any linear discount function of the tenn

structure is consistent with no-arbitrage. His concern is whether the PDE has a

!inear solution. He shows that a linear model does exists, derives it, and shows its

uniqueness. His solution will be referred to as the exponential-polynomial (EP )

model of term structure.

The purpose of this thesis is to test the empirical performance of the EP model

and to study the implications of the empirical findings. We conduct an extensive

empiricaI analysis of this particular mode!. We test the ability of this model to

deseribe the observed term structure of interest rates by fitting it, first to 1805 daily

cross-sections of nearly 388,082 V.S. bonds over the period from 1989 to 1996, and

second to 800 daily cross-sections of nearly 60,667 Canaclian bond priees over the

period from 1992 to 1995. Henee, this study provides a comprehensive empirical

test of the EP term structure model using different data sets of traded bonds across

a broad maturity spectrum. Since our analysis is extensive, it will allow us to draw

important conclusions about the empirical tractability of the EP model and its
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potential use as a model for term structure.

1.3 Survey of the Literature

Various term structure models for interest rates have been suggested by aca­

demicians and practitioners since the early part of this century. There has been

many attempts to estimate it with various degrees of success. Durand (I942) was

among the first authors to study this subject. He measured the term structure of

interest rates by fitting a "smooth" curve to the average yields to maturity of the

observed securities. The technique he used for that purpose is based on hand fitting

and one can easily understand that any small error which occurs while fitting the

curve will he magnified, especially for long maturities, if the yield curve is used to

infer forward rates.

This literature survey is structured around two main classes in the term structure

literature: theoretical models and curve fitting models. The theoreticalliterature is

generally formulated in terms of general equilibrium or partial equilibrium approach.

It is concerned with the determination of stochastic processes that are suitable for

the state variables. Moreover, it is interested in the economic identification of the

state variables. On the other hand, the curve fitting literature is interested in fitting

model parameters to the data in order to determine the shape of the observed term

structure. So far, there is a wide gap between the methodologies and predictions

of the theoretical and curve fitting models. We will present a review of the best

known models in each class as weIl as a summary of their empirical performance in

describing the term structure of interest rates.

1.3.1 The theoretical models

This class of models constitutes the largest part of the development of the sub­

ject of term structure. Most of the theoretical contributions in this class can he



•
6

broadly induded in two categories. The first one was initiated by Vasicek (1977)

and then thoroughly developed by Cox~ Ingersoll, and Ross (1985) (hereafter CIR).

It emphasizes the description of the dynamics of the short rate. These tl-la models

and many variations of them. are referred ta as the single-factor models. Indeed~

they only use information 00 the short-term rate and ignore information from other

rates drawn from the yield curve. This category of models has been extended to

ioclude many of the term structure models that have been proposed so far. Brown

and Schafer (1993) call this category the affine yield class of term structure models.

They provide a complete description of this vast class. Later, Duffie and Kan (1996)

extended this category ta include the multifactor modeIs.

1.3.1.1 The affine class of term-structure models

The class of time homogeneous single factor models "have (these models) the

property that the yield curve at any point in time depends only on the state variable,

e.g. the short rate, and not on calendar timeh '. ~1any processes have been suggested

for the short term interest rate r(t). A general formulation frequently presented in

the literature is the following

dr(t) =K(l- r(t))dt + O'rrt/Jdz(tL (1.4)

•

where K is the "rate" of the mean reversion term, l the long term mean towards

which the short rate is puIled, Or the volatility of the short rate, and z(t) a standard

\Viener process. In this framework, Vasicek and CIR models are considered as special

cases of this class of short rate model. In fact, both models agree on having the

short-term interest rate as the only state variable. However, each model assumes a

different process for the short-rate. While Vasicek model is recovered from equation

1.4 by setting t/J equal to 0, CIR assumed that t/J = 1/2, which implies a square-root

lSee Brown and Schafer (l993).
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process. CIR showed that the price P(r, t, T) of an interest rate contingent daim

must satisfy

(1.5)

where Q is the "risk-adjusted" drift of the short rate process ( i.e., l'i.(l- Tet)) plus

a market risk premium). Pr(r, t, T) is the first partial derivative of P(r, t, T) with

respect to the variable T, Pt(r, t, T) is the first derivative of P(r, t, T) with respect to

t, and Prr(r, t, T) is the second derivative of P(r, t, T) with respect to r. Since the

zerû-coupon bond is considered as a contingent daim which pays 1 at maturity and

oelsewhere, then its price P(r, t, T) is obtained by solving equatioD 1.5 sucb that

P(r, i, 0) = 1. (1.6)

Many authors (induding Merton (1973), Vasicek and CIR) showed that the solution

for a zero-coupOD bond has this particular form

P(r, t, T) = A(T) exp-B(r)r(t) , (1.7)

•

where A(T) and B(T) are functions of time-tû-maturity, T 2. In equation 1.7, the

zero-coupon bond price is expressed as an exponential function of the short rate r.

From 1.7, the zero-coupon yield, y(r, t, T), is derived as

y(r, t, T) = -lfT(log[P(r, t, T)1) = -log(A(T))fT + B(T)r(t)/r. (1.8)

As can he seen from equation 1.8, the zero-coupon yield from this class is affine in

the short rate, r; hence, the Dame affine yield models.

Other models such as Chen and Scott (1992) or Longstaff and Schwartz (1992)

are considered as multifactor models from the affine dass of term structure models.

Most of the empirical tests conducted on the exponential affine class of models

have used various approximations for the short rate process in order to estimate

2See Appendix A page 197 for an explicit expression of A(.) and B(.) for the Vasicek and cm

models.
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the models. These approximations have led to biased and inconsistent parameter

estimates. Thus, in general, the empirical performance of these models has not

been entirely satisfactory. Indeed, Brown and Dybvig (1986), and Gibbons and

Ramaswamy (1993), two famous empirical studies on the CIR model, concluded that

the CIR model has poor parameter stability and produces unreasonable parameter

estimates (i.e., negative variances).

1.3.1.2 The no--arbitrage models of term structure

The second category of models contains no-arbitrage models. It was initiated

by Ho and Lee (1986) and then extended by Heath, Jarrow, and Morton (1992)

(hereafter HJ!vI). The general idea is ta take bond priees as inputs and then try

to price derivatives based on bond priees. Their mechanism for pricing interest

daims is similar to the Black-Scholes stock option pricing model with an arbitrage­

free argument as developed by Harrison and Kreps (1979) and Harrison and Pliska

(1981). Instead of reasoning from the short-rate, they choose the forward rate

process and a measure of its volatility. The process for the instantaneous forward

rate is written as

where Q and j3 are, respectively, the drift and the standard deviation of the forward

process, t is the current date, T is the maturity date and Wt is a \Viener process

at time t. At a first glance, the HJM model resembles the Vasicek model with the

important difference that we are dealing with forward rates rather than spot rates.

However, it turns out that using the forward rate is a more general approach ta

price bonds than using the short interest rate as the only state variable of the term

structure. Indeed, the short rate is a particular forward rate

•

dF(t, T) = a(t, T)dt + j3(t, T)dWt ,

F{t, t) = r{t).

(1.9)

(1.10)
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From equation 1.9, the forward rate ean also be written as

F(t, T) = F(O, T) + l 0(5, T)ds + ll3(s, T)dW.. (l.ll)

HJ~I used equation 1.9 to derive bond-priee processes as Ito processes whose drifts

and diffusions are in terms of (} and {j. They also derived sufficient conditions on

Q and 13 for the absence of arbitrage. The instantaneous forward rate F is said to

be Gaussian if Q and /3 are deterministic for each t and T. This condition implies

that the forward rates are normally distributed as well as the short rate. This

result relative to the Gaussian forward rate has been studied by many authors, and

specially when dealing with the option pricing of interest sensitive contingent daims

(see Jamashidian (1988)). The first comprehensive test conducted on the HJM model

is by Kaushik and Morton (1994). They assumed six alternative special cases of the

HJM formulation. These special cases are classified into two categories of models:

one-parameter models and two-parameter models. They used bond option prices

to compute implied volatilities. Their results indicate that the implied volatilities

from aIl six alternative special cases are unstable. Their empiricai study suggests

that the one-parameter models fit the term structure slightly less well than the two­

parameter models. However, the implied parameter values of the one-parameter

models are more stable over time than the ones implied from the two-parameter

models.

1.3.1.3 Recent developments in term structure models

Besides these two well-known approaches, there has been a growing number of

sophisticated approaches which have been developed in more recent years. Among

others, the "potential" approach which attempts to model the state-price density of

the short rate. In simple words, this approach models the intertemporal marginal

rate of substitution (IMRS) or pricing kernel, derived in a representative consumer

economy in which the consumer has specifie preferences. The potential approach
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\Vas first proposed by Constantinides (1992) and then by Flesaker and Hughston

(1995). Rogers (1997) and .Jin and Glassernlan (1998). This approach starts by

considering a consumer economy in which the representative consumer maximizes

expected discounted utility with constant discount factor p.

Et(/'OC e-pslJ(cs)ds).

where C"(.) is the consumers~s Von Xeumann-.\Iorgenstern preference function. and

Ct is the consumption rate at time t. In equilibrium, the time-t price of a contingent

claim that pays D units at future date s is

Zt is the marginal utility of optimal consumption at time t. It is also called the

pricing kernel or state-price density. It is expressed as

Z
_ _pt 8U

t - e ~
8C;

where c; is the optimal consumption process. The stochastic process followed by

the pricing kernel is described by the following equation (see Duffie (1992))

m

dZt = Zt( -r(t)dt - L ~jdllj(t) L
j=l

(1.12)

(1.13)

•

where r(t) is the short rate and 4>j(t) is the market price of risk associated with the

j-th random factor 1l'j(tL a standard Brownian motion. Therefore, if the pricing

kernel is modeled as
m

dZt = J1 zdt + L }"j(t)dH)"j(t),
j=l

then~ the short rate is r(t) = -Pz(t)/Zt and the market priee of risk tP)(t) =

- }~" (t)1Zt .

For instance~ Constantinides has modeled positive interest rates through an

explicit model of the pricing kernel. He defined the process of Zt in terms of
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UV + 1) independent processes. Xi(t), -i = 0, 1, ... , .N, and constants g, (75 and ai for

i =0, 1, ... ,N, as

(1.14)

The process Xi(t), i = 1 ... ,N, is assumed to be a continuous-time AR(I) process

defined as the stochastic integral

Xi(t) = xi(O)e-À,t + fa' eÀ.(t-s)dWi(s), i =0, ... , N, (1.15)

•

where .Ài > o. The (N + 1) Wiener processes are assumed to be rnutually indepen-

dent. Under sorne conditions that ensure the positivity of the nominal interest rates,

Constantinides derives the expression of a zero-coupon bond price as weIl as the ex­

pression of the short rate. The author daims that his model can (theoretically)

accommodate different shapes of the term structures. To our knowledge, however,

the empirical performance of the model has not been investigated.

1.3.2 The curve fitting models

Besides these theoretical models, many empirical term structure or curve-fitting

models have appeared. McCulloch (1975), Vasicek and Fong (1982) and Coleman,

Fisher, and Ibbotson (1992) are a few of them. The empirical rnodels usually start

from a pricing function relating bond prices to a discount function and other factors.

Then the discount function is approxirnated by an ad hoc functional forro. Finally,

the variables of the term structure function are estimated through an econometric

method. These models offer the advantage of being flexible. However their choice

is somewhat arbitrary and thus allow for possibilities of arbitrage. In chapter 3,

we will be interested in comparing the empirical performance of sorne curve-fitting

models. Here, we will review sorne of these curve-fitting modeis and will point out

their main drawbacks.
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1.3.2.1 Nelson and Siegel model

This model was first developed to fit only discount bonds. However, Bliss (1997)

uses the extended Nelson-Siegel method to fit the discount rate function directly to

bond priees (including coupon-bonds). In this model, the forward function can he

mathematically described by3

(1.16)

•

where t is the current time, T is the time ta maturity of a zero-coupon bond, and

(ao, al, a2, aa) are parameters ta be estimated. These parameters represent the cur­

rent state of the economy. This model has been widely used in practice. However,

it is not clear how it cao be included in an arbitrage-free framework.

1.3.2.2 The recursive method

This method is known on Wall Street as the "bootstrap". It infers the consecutive

forward rates J(t, T) iteratively from observed bond priees. It has been cIearly

formalized by Fama and Bliss (1987). Let us consider one simple example. For the

sake of exposition, we assume that there exists three distinct bonds Pi = 1,2,3.

Pl and P2 are two zero-coupon bonds with respective time to maturity Tl and T2

(Tl < T2). Pa is a coupon bond with a face value of F. It pays an anoual coupon, C,

at times Tl, 12 and Ta respectively (Il < '2 < la). The three forward rates J(t, Ti)

for i = 1, ... ,3, are the solution to the following system of equations

P e- l(t,TilT1
1 - ,

First, I(t, Id is extracted, then J(t, T2) and finally J(t, 'a). In this simple example,

it is assumed that there is ooly one unknown in the third equation. However, if

3 Here x is dropped from the functional notation for the forward rate.



•
13

for a gh'en bond priee there are several unknown forward rates ( this tends to be

encountered at the long end of the yield curve where observations are scarce) then

they will be expressed in terms of adjacent fonvard rates using linear interpolation.

Then. we solve for the unkno\vn forward rate \Vith an optimization procedure. In

general. the :\'ewton-Raphson method is used for that purpose. This method has

the disadvantage of depending on a huge number of parameters (i.e.. the extracted

forward rates).

1.3.2.3 McCulloch model

The objective of McCulloch (1975) was to estimate the discount function D(T)

from market prices4
• He suggested a method for fitting a smooth curve, the discount

function. br a cubic spline. First. he assumed that the discount function can be

written as [ol1ows

K

D(r) == 1+ L ,Bkfk(T)~
k=l

where fk( r) are functions specified such that

(1.17)

•

The Pk are unknown parameters to be estimated by linear regression. Equation

1.17 means that when the maturity of each bond is evenly divided into K intervals!

the discount function D(T) is approximated by a distinct cubic polynomial function

fk(.) over each interval. Usually, K is set to be equal to the nearest integer nearest

to VN. where lV is the number of bonds in the sample. The intervals are joined at

knots (or break points) in such a manner that the spline's first and second derivatives

are set equal at these points.

4For simplicity, t is dropped from the notation of D(t, T).
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According ta this rnethod, the priee of a bond j with rnaturity T and which pays

a discrete constant coupon Cj and has a face value of F, can be expressed as

M

Pi(t, T) = L Cj(J.Li)D(J.Li) + FD(T) + fi,
i=l

(1.18)

where fj is an error terrn. The symbol J.Li is the ith coupon payment date expressed

in terms of fraction of a year. With this notation, we have f.LM = T at maturity.

If we replace the discount function D in equation 1.18 by its representation in

equation(1.17), we obtain

(1.19)

where:

M

• Xo = F + L Ci (tLi)'
i=l

M

• Xk = L fk(f.Li)Cj(J.Li), k = 1 ... K.
i=l

In his paper, McCulloch replaced Pj(t, T) by the average of the bid and ask priees.

Then, he estimated the fJ's by the following rninimization procedure:

k= 1 ... ,K.

•

The Wj are weights computed as follows

2
Wj = (~a - p!r

where Pj and pJ are ask and bid priees of bond j, respectively. McCulloch chose ta

use the weighted least square method in order to prevent the estimates from being

affected by large errors that are solely caused by transaction costs.

Unfortunately, the forward curves produced by the models of McCulloch and

Vasicek and Fong tend to oscillate and reach negative values. To solve this problem,
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Shea (1985) suggested to use constraints on the splines and varying the number

of break points. Fisher, Nychka, and Zervos (1995) implernented sorne of these

suggestions.

1.3.2.4 Fisher et al. cubic spline model

Fisher, Nychka, and Zervos (1995) use spline functions to estimate the terrn

structure. However, instead of using regression splines as McCulloch did, they in­

troduced smoothing splines. The advantage of smoothing splines is that the number

and location of knots is chosen optimally rather than predetermined by the user.

Moreover, Fisher et. al choose to place the spline on the forward function instead

of the discount function. Their methodology minimizes what they calI a criterion

function specified as follows

(1.20)

•

where N is the number of bonds in the sample, D(r) the discount function, D(r)" the

second derivative of D(.), and ,\ a weight parameter. The second term in equation

1.20 is added in arder to penalize the roughness of the approximating discount

function D (r).

AlI these previously mentioned methods are based on curve fitting procedures.

They are designed to match bond price observations. It is not clear how they cao

be placed into a no-arbitrage framework.

1.3.3 Empirical studies of term structure

Empirical studies of term structure can he classified in three distinct categories:

• cross-sectional studies,

• time series studies,
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• density function estimation studies.

1.3.3.1 Cross-sectional Studies

Brown and Dybvig (1986) are considered to be the pioneers of this first category.

They tested the one factor crR model with U.S coupon-bearing bonds. They fltted

the yield curve by pooling data and kept the structural parameters constant for

several days. Under the one factor CrR model, the priee of a zero-coupon bond can

be written as

P(r, t, T) = A(T) exp-B(-r)r(t} , (1.21 )

where A(T) = fl(K., À, u) and B(T) = f2(K., À, u, 8), with fI and f2 being two specific

functions (see the details ofCIR model in Appendix A page 197). Brown and Dybvig

assumed that the market priee of a zero coupon bond, Pi, is the sum of a theoretical

price (here the CIR model) plus an error term. Thus,

To eonduct their cross-sectional study, they chose to minimize the SUffi of squared

errors defined as
n

St2 = ""( DIO - PI~IR)2 r . 1L- .&, lor l = ,... 1 n,
i=l

(1.22)

•

over the structural parameters K., À, u, 8 and the risk free rate r for n different

traded bonds at time t.

The Nonlinear Least Square (NLS) method that they used allows the estimation

of (K + À), 0" and the long rate l (defined in Appendix A), but the mean reversion

parameter K, the risk premium parameter À and the unconditional mean of the spot

rate (j are not separately identified. Since the short rate is also one of the estimated

parameters, Brown and Dybvig compared its successive values to the time series of

yields on two-week US bills. A systematic deviation was noted between the two
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series. Moreover~ they found that the CIR model lits generally the T-bills better

than longer Treasury issues.

Brown and Schaeffer, Barone, Cuoco, and Zautzik (1991), de Munnik and Schot­

man (1994) used a similar econometric approach but applied respectively to British,

Italian and Dutch data. Like others, they found in their empirical study of the CIR

model that it exhibits parameter instability. The results point to the need to include

more than one state variable in these models to be able to fully describe the term

structure.

More recently, Jordan and Kuipers (1997) presented an empirical study of the

CIR model as weIl as the Vasicek and Merton models. Their study is in the spirit

of Brown and Dybvig. However, it presents the advantage of using daily data over

a horizon of live years. The data consists of prices STRIPS for bonds ( a sort of

synthetically created zero coupon bonds of longer maturities than a year) and thus

avoid complications arising from estimating coupon bonds. Once again, the CYR

model was found to exhibit high parameter instability.

Chacko (1998) suggests the use of a technique based on Fourier transforms to

estimate affine term structure models (e.g., CIR model and Vasicek models). This

technique relies on maximum likelihood estimation. The author daims that it cao

separately estimate the risk premium parameter ( that we referred to as À in the

CIR model) while simultaneously estimating other parameters. Until now, we did

not encounter an empirical study that implemented this technique.

In general, the common criticism addressed at this category is that the models are

unable ta separate out the interest rate risk premium from the individual parameters

of the interest rate process. Moreover, this approach does not constrain the interest

rate parameters to be stable over time. Most of the empirical evidence indicates

that the parameters estimated with this technique are quite unstable.
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1.3.3.2 Density function estimation

This approach covers studies that usually infer information about the term struc­

ture from a specifie likelihood function.

Gibbons and Rama.swamy (1993) conducted an empirical test on the CIR model

using the Generalized Method of Moments (GMrvl). This method has the advantage

of avoiding assumptions relative to the stochastic process of the aggregate priee.

Their result eoncluded that parameter estimates from CIR model preclude a humped

shape for the term structure. Moreover, the estimated autocorrelation coefficient of

the short rate implied from CIR model was too small compared to the corresponding

sample autocorrelation coefficient computed from US T-bills priees.

Chen and Scott (1992) extended one-factor CIR model by including additional

factors which fol1ow square-root processes. For the estimation, they used the time

series of four distinct bond maturities. In order to derive the likelihood function of

the unobservable state variables, they expressed the underlying state variables in

terms of the observed bond priees and sorne errors terms. Their findings were in

favor of two or three state variables to fully characterize the movements of the term

structure.

Pearson and Sun (1994) used the conditional density of the state variables to

estimate and test a tw~factor extension of CIR mode!. Their idea is to infer the

conditional density of the unobservable state variables from the bond pricing for­

mula. For this, they use N observations of two different bonds available at different

points in time. Their results showed that estimates, based on bills ooly, imply

unreasonable large price errors for longer maturities.

The density function estimation methodology is theoretically attractive since

it includes all of the relevant information about the stochastic process and allows

separate identification of all model parameters. Unfortunately, from an empirical

point of view, it suffers from sorne drawbacks. For example, the difficulty with
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implementing the test procedure requires limited sampie sizes or simple treasury

securities such as short-term Treasury bills.

1.3.3.3 Time-series approach

Time-series studies are not as computationally burdensome as cross-sectional

studies. They start by assuming a stochastic process for the short rate. Then, using

sorne optimization technique, the parameters of such a process are estimated. Usu­

ally, this approach is used to validate whether interest rates follow the hypothesized

process. However, it provides no way to estimate the risk premium parameter, À.

Moreover, it ignores information available from bond prices and the estimated pa­

rameters may imply theoretical bond prices totally different from their observable

counterparts. One famous study in this category is that of Chan, KarolYi, Longstaff,

and Sanders (1992). They compared eight competing models of short-term interest

rate dynamics. AlI the models were nested within a framework that allows com­

parison among the models. Their study was interesting in highlighting the most

important features of the short rate process. However, their study is subject to

many criticisms especially with respect ta its use of the short rate. In fact, the short

rate is an unobservable variable and any empirical research on the time-series prop­

erties of the short rate typically requires a proxy. Thus, choosing the one-month

Treasury bill yield or the weekly Eurodollar rate as proxies for the short-rate is al­

ways a subjective choice that has an impact on the term structure models, see for

instance Chapman, Long, and Pearson (1999).

Table 1.1 presents a surnmary of sorne of the empirica.l studies of term structure

that are mentioned above.

In general, it seems that the theoretical development of term structure models

has followed a rapid path whereas their empirical testing and practical implemen­

tation have remained far behind. The curve-fitting models, although simple and
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empirically satisfactory. lack an underlying theory. In the next chapter, we will

present a term structure model proposed by Guo (1998) that is conceived in the

curve fitting spirit but that has the significant advantage of being a linear solu­

tion to the Partial Differential Equation of bond pricing and, hence~ has a strong

theoretical basis.

1.4 Organization of the thesis

The rest of this thesis is organized as follows. Chapter 2 presents a derivation of

the EP model developed by Guo. Chapter 3 describes the cross-sectional estimation

of the EP model using U.S bonds data. Chapter 4 reports the main results obtained

for the cross-sectional study using Canadian daily data set. Chapter 5 examines

the time series properties of the principal components of the state factors of the EP

mode!. Chapter 6 includes the out-of-sample results from the estimated principal

components. It also examines sorne arbitrage strategies that employ forecasts of the

three principal components. Finally, Chapter 7 summarizes the results and contains

concluding remarks.
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Brown and Dybvig (1986) U.S. TrcasuricH CIR NLS mode) rejccted

monthly data parameter instahility

Brown and Schaefer (1994) British CIR NLS model rejected

monthly data parameter instability

Cuaco et. al. (1991) Italian CIR NLS modcl rejected

monthly data parameter instahility

deMunnick and Shotman (1994) Dutch CIR NLS model rejcctcd

monthly data

Gibbons and Ramaswamy (1993) V.S. T-bills CIR GMM modcl partially rejected

monthly data unrealistic parameter estimates

Chen and Scott (1992) V.S. T-bills multifactor CIR MLE more than t.wo factors nceded

monthly data for term structure

Pearson and Sun (1994) V.S. T-bills two-factor CIR MLE model rejected

monthly data unrealistic pricf! errors

Jordan and Kuipers (1997) V.S. STRIPS CIR, Vasicek NLS poor out-of- sampIe performance

daily data and Merton and iterative GMM

Table 1.1: Summary of previolls ernpirical studies of tcrm structure models.

•

~
.......
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Chapter 2

A Linear Model for Term

Structure

2.1 Introduction

The concept of tenn structure is usually expressed in tenns of three functions

that are interrelated: the discount function, the discount rate function (zero-coupon

yield curve) and the forward function (forward-rate curve). The discount function,

which relates the zercrcoupon bond priees to different maturities, has been an im­

portant measure of the term structure of interest rates. Through the years, discount

functions have been estimated mostly with ad hoc smoothing techniques. The usual

practiee among authors is to select an approximating function for the discount func­

tion and then estimate the parameters of this function. Spline models were originally

brought to term structure estimation by McCulloch. Vasicek and Fong introduced

the exponential spline mode!. However, the emphasis was directed to the fitting

performance of the empirical models of term structure with little attention granted

to their consistency with the absence of riskless arbitrage in the bond market. In his

paper, Guo (1998) has raised this partieular issue. He derived an empirical linear
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model of the tenn structure consistent with the Arbitrage Pricing Theory (hereafter

the APT) of Ross (1976). First, l will present Guo's derivation of this model as a

solution of the fundamental Partial Differentiai Equation (PDE). Second, fol1owing

Guo's arguments, l will show the uniqueness of this solution. Finally, l will highlight

the relationship between this solution and a special version of the HJNI mode!.

2.2 The Exponential Polynomial (EP) Model

2.2.1 Notation

Here is the notation that is used in this chapter.

• D(x, T, t) is a zero-coupon bond price at time t. It pays one unit at the

maturity calendar date T.

• x(t) = [Xl (t) ... xn(t)] is astate vector.

• Xi(t) is the ith state factor.

Following McCulloch, the discount function has been modeled as a time-homogeneous

state factor mode!. It has the following general linear fonn:

•

n

D(x, T, t) - ho(T) + L Xi(t)gi(T),
i=l

D(x, T, T) l,

where:

• ho(T) is an arbitrary function of T, with ho(O) = 1.

• 9i (T) is a basis function designed to satisfy 9i (0) = 0 for i = 1 ... n.

(2.1)



•
24

This system of equations expresses the discount function as a linear combination

of future cash flows discounted by sorne functions gi(t), with the condition that the

discount function reaches the value 1 at maturity. Before presenting the exponential

polynomial model, l will briefly review the derivation of the fundamental PDE of

bond pricing.

2.2.2 The fundamental PDE

The fundamental PDE for bond pricing models has been derived by many au­

thors, e.g. Langetieg (1981) and Cox, Ingersoll, and Ross (1985). The PDE has been

a starting point for many equilibrium term structure models, including the multi-

factor model of Langetieg and the single factor models of Vasicek and CIR. The

differences between all these models stem from further assumptions made about the

identity of the state factors Xi (t), their stochastic processes and the market price of

risk. Guo has insisted on the use of the fundamental PDE as a way " ...to check if a

given model is consistent with no-arbitrage, regardless of how the model is derived."

Under the assumption of market perfection, Langetieg assumed that the state vector

follows a joint Ito process

dxi = J.Li (x( t), t )dt + {Ji (x( t), t)dzi :

where:

• J.li(x(t) , t) is the drift of the process.

• O"i(X(t), t) is the diffusion coefficient of the process.

• Zi is a standard Wiener process.

i = 1 .. . n, (2.2)

•
By applying Ito's formula, the instantaneous change of the bond priee is written

aD 1 n n 82D n aD n aD
dD(x, T, t) = (-ôt + -2 L L PijO"iO"j a .8 . + L J-li a---:- )dt +E (jia~dzÏ7 (2.3)

i=l j=l Xl x] i=l Xl i=l XI
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where Pij is the correlation coefficient between Xi and Xj. Equation 2.3 can be

simplified ta
_ n aD

dD(x, T, t) = Dtdt +~ (7i aXi dZi!

with the drift of the instantaneous change of the bond price expressed as

_ aD 1 n n ff2 D n aD
Dt = ~ +-2~LPij(7iaja 0a 0 +LJ1.i-a o·

Uf., i=l j=l Xl X J i=l Xl

(2.4)

Consider (n + 2) zero-eoupan bonds, equation 2.4 ean be expressed in vector form

as
n

dO = Dtdt + L aiDxidzi ,
i=l

where:

• D is a priee veetor of (n + 2) zero-coupon bonds of different maturities.

• fi is the vector drift.

• D Xi is the partial derivative veetor of D with respect to Xi.

(2.5)

•

At this stage, the fundamental PDE for bond pricing can be derived invoking

the APT theory. Consider a portfolio of (n + 2) zero-coupon bonds with a weight

vector wc. Assuming unrestrieted short sales, the vector of weight can be chosen

sucb that the portfolio requîres zero investment

w~D = 0,

and bears zero risk

In perfect markets (Le., no commissions, taxes,... ) and in equilibrium, Ross argues

that such a portfolio must earn a zero rate of return. Thus,



•
26

The above equality implies that the (n +2) vectors D, fit and D xp must he linearly

dependent (see Langetieg and CIR). In turn, this linear dependence implies that

there exists at most (n + 1) independent scalars such that

n

fit = cPo(x(t), t)D + L f/1i(X(t) , t)ai(x(t), t)Dxp

i=l

(2.6)

where cPo(x(t), t) can be interpreted as the instantaneous interest rate (short rate)

and cPi(X(t), t), i = l, ... , n, a market priee of risk related to the state factor Xi'

Thus, equation 2.6 implies that

1 n n éPD
:2 ~f; 8x;8xj U;j(t,x(t)) +

(2.7)

n aD aD
~ 8Xi (J.Li(X(t), t) - cPi(X(t), t)ai(x(t), t)) + 7ft - <Po(x(t), t)D = 0,

where aij is the covariance hetween Xi and Xj_ Equation 2.7 is the fundamental PDE

for bond pricing. It has the following boundary condition at maturity

D(x, T, T) = 1.

Ta further explain equation 2.7, let's denote

TJi(X(t), t) = J.Li(x(t), t) - rPi(X(t), t)ai(x(t), t). (2.8)

•

In equation 2.8, the market priee of risk for state factor 4>i, is replaced byan equiv­

aient expression. If we suhstitute the expression for 1]i in equation 2.7, the PDE

becomes

1 n n 82D n aD aD
"'o(x(t), t)D = :2~f; 8x;8xj U;j(x(t), t) +~ 8x; '7;(x(t), t) + aï· (2.9)

Having reviewed the derivation of the PDE, we now will present the exponential

polynomial model of Guo as a unique solution to the PDE 2.9.



•

•

27

2.2.3 The exponential polynomial solution and its unique-

ness

Here, the purpose is to derive expressions for both ho(T) and 9i(T) of equation

2.1, that are consistent with the absence of riskless arbitrage. For this, the PDE

will be the main equation. Taking the first order partial derivative of equation 2.1

with respect to the state factors Xi, we get

From the linearity of 2.1 in Xi, the second order partial derivative of D with respect

to the state factors vanishes
8D2
---0
aXi8x] - .

The partial derivative of D with respect to t is

aD aD , ~ '()8t = - ar = -ho(T) - ~Xi9i T ,
1=1

where the apostrophe denotes the derivative with respect to T. Substituting these

partial derivatives in equation 2.9 and re-arranging terms, we obtain

n

L HT1i(X(t), t) - 4>o(x(t), t)Xi]9i(T) - xig~(T)} - {4>o(x(t), t)ho(T) + h~(T)} = o.
i=l

(2.10)

At the beginning of this chapter, we claimed that the discount function has been

modeled as a time-homogeneous state factor function. Thus, equation 2.10 can be

simplified to

n

L ([T1i(X) -l/>o(x)xd9i(T) - xig~(T)} - {cPo(x)ho(T) + h~(T)} = O. (2.11)
i=l

Assume that the last term in braces in equation 2.11 is equal to ze~'o, i.e.,

{lPo(x)ho(T) + h~(T)} = 0,
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the solution ho(T) = e-~(x)T would be in contradiction with the linearity of the

discount function 2.1. In fact the exponent term rPo which represents the short rate

is not assumed constant. Thus in arder to be independent of the state factors Xi,

the basis function must be written as

i = 1, .... n~ (2.12)

where hi(T) is an arbitrary function with hi(O) = o. If we substitute expression 2.12

into equation 2.11, we get

n

L {[1Ji(X) - 4>o(x)xi]hi (T) - xih~(T)}
i=1

(2.13)
n n

{h~(T)[1 - ~ Xi] + ho (T)[4>o (X) + L[1]i(X) - 4>O(X)Xi]]} = o.
i=1 i=L

This equation is very important. It will allow us ta derive the expressions for ho(T)

and for hi (T). The necessary and sufficient condition that equation 2.13 holds for

any x is that both terms in braces equal zero. First, let the first SUffi be equal to

zero, then

(2.14)

Introducing the natural logarithm of hi(T), we obtain

(2.15)

Equation 2.15 is a differential equation. It can be solved subject ta (hi(O) = 1). The

unique solution ta this equation is

(2.16)

•
with the expression of Ài written as

(2.17)
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The discount function expressed in equation 2.1 is linear in x. Thus, .Ài(x) is required

to be a positive constant that is .Ài(x) =.Ài for aH x. From equation 2.17 the first­

order coefficient 1Ji(X) is the unique solution to the following equation

(2.18)

FoHowing similar reasoning as before, the expression for ho(T) can be derived from

the last braced term of equation 2.13 as

(2.19)

with the expression of .Ào written as

(2.20)

'\0 is required to be a positive constant. Simply substituting 2.18 into 2.20 the

expression for the coefficient l/Jo can he uniquely determined as

n

l/Jo = .Ào+ 2:(Ài - '\O)Xi·
i=l

(2.21 )

Having the exact expressions of ho CT) and hi CT) respectively, the linear discount

function can be expressed as foHows

where s is a variable time to maturity. Equation 2.22 is the unique linear solution

to the fundamental PDE derived by Guo. Since, the instantaneous (short) interest

rate is, by definition, nothing more than a Iimiting value of the zero-coupon discount

function, then from equation 2.22, the expression for the short rate r(xCt), t) can be

derived as

•

n n
D(x, 5, t) = (1 - L Xi)e-Ào(s-t) + L Xie-Ài(l-t) ,

i=l i=l

r(x(t), t) == ôD(~ s, t) 1.=1 = Ào + ~(>.; - >'o)x;o

(2.22)

(2.23)
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It is clear from equations 2.21 and 2.23 that (j>o is indeed the instantaneous interest

rate. It appears that the short rate is a linear combination of n unobservable state

factors. It is weIl known that the inBation rate or the real interest rate are sorne

factors inBuencing the short rate. However, at this stage of work, we are unable to

attribute any economic meaning to the state factors. Moreover, the exact nurnber of

these factors is not a theoretical matter, it must be empirically specified. In fact, the

model offers a wide latitude in defining the term structure problem. Vasicek defined

the term structure in terms of a single factor, the short rate. Brennan and Schwartz

(1979) suggested a two-factor specification, the short rate and the long rate. In

generaI, a multifactor specification is attractive in the sense it can match various

shapes of tenn structure over time. Unfortunately, a multifactor specification is

usually diflicult to irnplement. In the empirical part of this thesis, we will discuss

these issues further.

Equation 2.22 represents a linear discount function. Guo referred to it as the ex­

ponential polynomial (EP) model of tenu structure. Indeed, it describes the discount

function as a linear comhination of state factors discounted at different exponential

rates. The EP model is different from spline functions. It is an unconditionally

arbitrage-free model, derived as the unique linear solution to the fundamental PDE

of bond pricing. The EP model is defined on the entire maturity range of term

structure (5 E [0,00)). Unlike spline functions, it does not need ta be defined on

sorne subintervals. Moreover, as we will see in the foIIowing chapters, the EP model

cao easily be used for the empirical estimation of the term structure.

2.2.4 The exponential basis

In its expression, the EP model is related to the exponential spline model of Va­

sicek and Fang. However, the Vasicek aod Fong model is defined on two consecutive
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knots. It has the following expression

(2.24)

where:

• R denotes the asymptotic forward rate (long rate).

• i = 1, ... n. n is the number of knots.

If the subinterval is extended ta the entire maturity and the linear coefficients

are modified to satisfy the boundary condition (D(T, t) = 1), equation 2.24 would

he equivalent to the EP mode!. In the EP model, Guo specifies the exponential

parameters in a more flexible way than in equation 2.24:

).0 = R, Ài = li + R, i = 1, ... , n, (2.25)

where li, i = 1, ... , n are positive constants. The choice of li is motivated by sorne

empirical issues that we will discuss in the next two chapters. In general, we choose

a decreasing, or increasing, suite for li, and this is to avoid multicollinearity between

successive state factors. As the term to maturity goes to infinity, the discount

function tends to

n

D(x, 8, t) -+ (1 - L Xi)e- R(8-t) as S -+ 00.

i=l

(2.26)

Thus, the state factor R has an economic interpretation as the asymptotic forward

rate or the long rate. In sorne empirical studies R was fixed as the yield of a long­

maturity discount bond, see Brennan and Schwartz (1979). From expression 2.26,

it is clear that the state factors must satisfy the following constraint

•
n

2:Xi < 1.
i=l

(2.27)
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This constraint ensures the discount function to be strictly positive. Before con-

c1uding this chapter, we would like to show the relationship between the EP model

and an HJM specification.

2.3 Relation between the EP model and an HJM

specification

HJ!\'1 defined a family of forward rate processes as follows

f(t, T) - f(O, T) = l a(v, T)dv+~l 0";(v, T)dW;(v) for ail 0:$ t :$ T, (2.28)

where f(t, T) is the forward rate at time t, with maturity time T, Q and 0' are

respectively the drift and the volatility of the forward process, and the Wi are

independent standard Brownian motions.

HJM treat the variable T as the calendar maturity date. Instead of using this

notation, we will follow the term structure parametrization proposed by Musiela

(1994), Brace and Musiela (1994) and Guo (1997). We denote by fm(t, T) the forward

rate at time t with a relative maturity T defined as T = T - t. There is an obvious

relationship between the HJM forward rate J(t, T) and notation fm(t, T). Indeed:

f(t, T) = fCt, T + t) = fm(t, r).

Under this new notation, the HJM model 2.28 can be expressed as

for all T ~ 0, (2.29)

•
which simply involves replacing T by T. In what fo11ows, we will refer to this model

as the HJM model re-indexed to relative maturity. As specified in equation 2.29, the

HJM model is path-dependent. In other words, it permits the future term structure

to depend on the entire path of prices since the tenn structure is initialized. For
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instance. the interest rate at date t l may not only depend on its level at date ta (with

t l > to) but on previous levels along its path going all the \Vay back to the initial

date. Moreover, the interest rate at date t may not be sufficient for the determination

of aU the forward rates at date t. Thus, the knowledge of many points on the term

structure at date tare not always sufficient for the identification of other forward

rates at that time. This is called the path-dependency property. This property

together with the fact that there may not be a flnite number of state variables,

creates pricing difficulties. In particular lattice procedures may not recombine and

can become exploding.

In order to avoid the problem posed by path-dependency and exploding lattices,

HJM proposed a two-factor version of their general mode!. This special case has a

constant volatility long run factor UTO(t) and a spread factor Wi(t) with an expo-

nentially decaying volatility function. For convenience of notation, the subscripts of

the Brownian motions in equation 2.29 are replaced by

l-ro(v), ~Vl (V ), .•. , ll'k (v) .

The volatility functions are defined as

where ri is a parameter. The stochastic integrals in 2.29 can be solved explicitly,

because they are no longer expressed with respect ta the relative maturity T. Thus,

equation 2.29 can be simplified toI

(2.30)

The possibility that the drift function of the re-indexed HJM model vanishes is in

sharp contrast ta the original drift function in HJM. In the empirical section, we

IThe Brownian motions Wi(t) are initialized at zero by HJM.
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will show that the re-indexed HJM model can be teste<! by estimating a proxy of

the EP model and thus there is no need to stipulate the drift function.

In what remains we will show the close relation between the EP model and the

re-indexed HJM mode!. Under the EP framework, the yield function can be found

from the following transformation

y(x. s~ i) = ln D(x, 5, t)
s-t

s > t, (2.31 )

where y(.) is the yield function. The tirne-homogeneity of the discount function

allows the corresponding forward function to be obtained from one of the following

transformations:

8lnD
f(x, 5, t) = ----a;- = aD/BT

D ,for T = 5 - t. (2.32)

From equation 2.22, the EP model can be re-written as:

n

D(x, 5~ t) = e-R(s-t)[l + 2: xi(e-1i(,,-t) - 1)].
i=l

Or equivalently:
n

D(x, T) = e-RT[1 + L xi(e-I,T - 1)].
i=l

(2.33)

(2.34)

The EP forward function can be obtained using the transformation in equation

2.32
n

aln(l + L Xi (e- liT - 1))
f (x, T) = R l=-.·=....:..I _

aT
(2.35)

An interesting question can he asked at this stage. Does there exist variables ~i \Vith

i = 1, ... , n, such that

n n

1 + L Xi (e- liT
- 1) ~ exp[L çi(e-liT - 1)]?

i=l i=l

•
Or, equivalently, such that

n n

In[1 + 2: xi(e-1,T - 1)] ~ ~ çi(e-kr - 1)?
i=l i=l

(2.36)
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If yes~ then the EP forward function cao be approximated by a proxy forward

function denoted by
n

j(cp, i) = R +~ <pie-liT,
i=l

(2.37)

where 'Pi = ~ili, for i = l, ... , n. Hence the empirical existence of 'Pi would imply

the existence of ~i. Now ~ if we assume that2

then the forward function as defined from the EP model can be approximated­

subject ta the existence of CPi-by a proxy forward rate expressed as

n

j(r) = O"oWo(t) + LO"ie-liTWi(t),
i=l

(2.38)

•

which is no more than a simple fonn of the re-indexed HJM model in 2.30 with a

slightly different notation (i.e., 'Yi = li and k = n) and without a drift, (Le., with

o(v, T) = 0) .

2With this notation R and !Pi are seen as changing with respect ta time t.
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Chapter 3

Empirical Performance of the EP

Model: Results for U .S.

Government Bonds

This chapter presents the use of the EP model in an extensive cross-sectional

investigation involving data for U.S. governnlent bonds.

This investigation answers the following general question:

• Can the proposed EP model presented in Chapter 2, fit the observed term

structures?

By answering this question, we will he able ta know whether the state factors

of the EP model can he measured with constant exponential basis. Indeed, the

EP model describes the term structure space as a linear combination of sorne state

factors on a basis of exponential functions. These state factors are measured relative

to the basis. Thus, the validity of the EP solution will he related to the question of

constancy of the parameters of the basis over time.
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3.1 Notation

Here, we present the notation that we will use in this chapter.

• Pj{s, t) is the price of a semiannual coupon-bond j at time t, with S as the

calendar time to maturity. This bond has a face value of 100.

• Cj is the jth bond future cash flow (the annual coupon) paid at the calendar

date m q•

• q = 1, ... ,s. Note that ms = s at maturity .

• D(s, t) is the discount function. It relates the spot rates at different maturities.

It is aIso the price of a discount bond, which pays 1 unit at s and 0 at other

times.

In the absence of arbitrage opportunities, the value of the jth coupon bond at time

t is supposed to equaI the sum of the present values of ail its future cash flows

~

Pj(s, t) = Ci L D(mq , t) + 100D(8, t).
q=l

(3.1)

However, when it cornes to fit a set of market price data to a pricing relation, it

becomes necessary to include an error term to account for the difference between

actual and theoretical prices. Thus, the bond pricing relation can be expressed as

s

Pi(s, t) = Cj L D(mq , t) + 100D(s, t) + fi(s, t),
q=l

(3.2)

•

where fi(s,t) is an eITor term. Next, we discuss equation 3.2 and point out its mains

assumptions.

3.1.1 Assumption about the pricing relation and the errors

The error term represents the statistical error due to mode} approximation but

aIso accounts for other factors such as tax effects, transaction costs and measurement
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and mispricing errors. Predictable fj(S, t)'s suggest that there is additional infor­

mation that could be included in equation 3.2. Equation 3.2 makes two important

assumptions.

1. The pricing relation assumes that the price of a treasury security is solely

the sum of aIl the promised individual cash Oows. Unfortunately, the fric­

tionless markets assumption is not supported by the facts. Attempts to fit

discount functions to sets of government bond prices find that no discount

function, D, exists to exactly price all bonds, even when bid-ask spreads are

taken into account. However, many studies have showed that the existence of

disparities are real and not quotation errors. The term structure estimation

literature has sought ta explain these disparities in terms of friction sucb as

liquidity premia, taxes or short sale constraints. Indeed, these phenomena are

studied in Daves and Ehrhardt (1992). Other examples involving disparities

between short-term notes and bills have been studied in the U.S. treasury

market by Amihud and Mendelson (1991) and Kamara (1994). Beim (1992)

and Bliss (1997) find differential liquidity value at longer horizons. Constan­

tinides and Ingersoll (1984) and Jordan and Jordan (1991) investigate the role

of tax-timing options and Ronn (1987) finds tax-clientele efrects.

2. The error term assumes that measurement errors are additive in the price.

Sorne authors such as Jordan and Kuipers (1997) suggest that a proper spec­

ification of the errors should be in terms of the quoted yield-to-maturity, or a

function of the yield and priee. Other authors suggest a proportional rather

than an additive error terme Brown and Dybvig assumed that the error terms

fj are independent and identically distributed normal random variables. This

assumption is relatively strong. In fact, one can predict that since treasury

securities with different maturities are exchanged. with different frequencies
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the variance from quotation errors may differ with maturity. Moreover~ as­

suming that fj accounts for mispricing errors~ then errors will be related to

the treasury security price, implying that errors increase \\-;th maturity. In

the following, we will assume that the errors have zero expectation and are

independently distributed. We find the normality assumption very strong and

do not invoke it. Later in our empirical analysis we will check whether the

estimated errors are independently distributed or not.

In equation 2.22 from Chapter 2 , we showed that the solution to the fundamental

PDE is an exponential polynomial (EP) which we also showed to be the unique

Linear solution. Thus, the discount function cao be expressed as

n n
D(f3, 8, t) = (1 - L Pde-R(s-t) + L f3ie- Ài (s-t).

i=l i=l

(3.3)

Here, we change the notation slightly: The ith state factor of the EP model is now

denoted by Bi instead of Xi.

Equation 3.3 can be considered as a discrete version of the functional

fOC -ÀTD({3, s, t) = Jo (3(t, À)e d).,

where ;3(t,).) is normalized at each time point t as follows

10"''' fJ(t, A)dA = 1 for all t.

(3.4)

•

Now, assuming that (3(t,).) is non-negative for all ). at any time point t, then

D(j3, t, T) can be interpreted as the Laplace transform (moment generating func­

tion) of a random variable ,x that is defined by the probability measure /3(t, ,x). This

continuous representation is helpful for understanding our future empirical work.

From another perspective, equation 3.3 is similar to equation (7) of Vasicek and

Fong (1982). However, Vasicek and Fong divide the maturity range into several

intervals. Within each maturity interval and between two consecutive knots or
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breaks. a spline function. as a linear combination of three exponential functions. is

fitted ta the discount priee. The EP model is much simpler in the sense that it

does not use spline fnnctions. It is a linear combination of n exponential functions

defined on the entire maturity range of the discount priee. Ferguson and Raymar

(1998) used the Vasicek and Fong model without splines~ which is no more than the

EP model. Csing simulated data. they conclude that a six-factor EP specification

is a good description of the term structure (i.e.. n = 6).

A linear discount function is convenient for pricing coupon bünds. In facto it has

been shawn that a coupon bond is a linear combination of zero-coupon bonds. Sub­

stituting the discount function D(/3~ s~ t) in 3.3 into equation 3.2 and re-arranging

yields

s s n

PJ{s. t) = Cj L e-R(mq-t) + 100e- R(s-t) + Cj L L Bie-À,(mq-t)

q;::: 1 q;::: 1 i;::: 1

n s n

+100 L 3ie- À,(s-t) - C
J
L L Pie-R(mq-t)

i;:::l q=li;:::l

This last equation is very important because it expresses the priee of a coupon-bond

as a linear combination of the "hypothetical" priees: PjO and PJ. These priees are•

n

-100 L Sie-R(s-t) + fJ"

i;:::l

Let~s denote the following respective expressions by Pl and Pl.
s

Pjo(s~ t) = Cl L e-R(mq-t) + 100e-R(s-t)

q=l

s n n

P;(s! t) = Cj L L e-À,(mq-t) + 100 L e-À,(s-t)

q=li=l i=l

Substituting these two expressions in equation 3.5 gives

n

Pj ( S ~ t) - PjO ( s ~ t) = L Bi [P; (t s) - PjO ( t ~ s)] + f J •

i=l

(3.5)

(3.6)

(3.7)

(3.8)
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the present values of the cash flows of the bond discounted by the long rate R and

by the rate Ài respectively. where in essence R = Ào- See Appendix B page 200 for

details of the present value computation, including the handling of accrued interest.

3.2 Estimation procedure

Our estimation procedure fits equation 3.8 to the market data of bond priees.

The bond priee ?j(s, t) will be approximated by the simple average of the bid and

ask priees, plus accrued interest. Hence

where

• Ptf (s, t) is the average priee of the bond, with j = 1 ... , N .

• N is the oumber of treasury securities in each cross-sectional sample.

• A.Ij is the accrued interest that corresponds to security j, computed as follows

• te is the time to the oext coupon payment (expressed as a fraction of a half­

year).

Simplifying the notation, DOW equation 3.8 cao he written as

(3.9)

•
Let
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If we substitute the terms Yi and X} in equation (3.9), we obtain

n

Yi = L,BiX~ + fj for all j = 1, ... N.
i=l

Equation 3.10 can be written in matrix notation as follows

Y=Xj3+f.

(3.10)

(3.11 )

As we mentioned previously, the error terms € are assumed to be independently

distributed. However, we do not assume they are normal. Instead, their distribution

fonn will be the subject of an empirical investigation. For a cross-sectional study,

y is the (N xl) vector of observations on the dependent variable. {3 is the vector

of linear regression coefficients, X is the (N x n) matrix of observations on the

independent variables and € is the (N xl) vector of errors. The state vector ,B is

estimated by ordinary least square (OLS), yielding the estimate

(3.12)

•

The application of OLS to the above linear model does not require any assumption

about the probability distribution of the errors terms fi' The only assumptions

made about the fi were that they have zero expectations and are uncorrelated.

Indeed, since bonds of different maturities are traded with different frequencies, it

is anticipated that the variance of the errors li may vary with maturity. This fact

will be confirmed empirically.

3.3 The cross-sectional analysis

3.3.1 Data

Our data consist of daily prices on US Treasury bills, notes and bonds, for the pe­

riad from 27 July 1989 to 15 October 1996. The quotations are provided by the New
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York Federal Reserve Bank (NYFRB). Every daily sample consists of the bid and

ask quotes of the treasury securities at 3:30 P.M. Eastern Time. The cross-sectional

samples have an average of 215 observations (bills, notes and bonds). We excluded

two types of bonds from the data set: callable bonds and flower bonds (bonds with

special tax status). Unlike other studies, e.g. Bliss (1997), we did not eliminate

bills under one month to maturity from our samples. Indeed, as will be confirmed

by our in-sample results, the EP model does not "suffer" from the presence of such

securities. The time to maturity of each observation is computed as the difference

between the maturity date indicated by the NYFRB and the settlement date. The

basis year is 365 days. The yields to maturity (ytm) provided by the NYFRB are

computed assuming one business day delivery and at the bid ask average l
. These

yields to maturity are compared to our estimated yields to maturity from the EP

mode!.

3.3.2 Procedure

In order to compute the independent variables x~, we must specify the row vector

À = (À 1, ..• , Àn ), as weIl as the long-rate Ào = R . The parameters À/s are chosen

to make the basis exponential functions as distinct as possible in order ta avoid

extreme mniticollinearity in the OLS regression. The length of this vector depends

on the number of state factors chosen for the regression. For our U.S. data sample

we use from 8 to 9 state factors plus the long rate. This choice is motivated by

the quality of the cross-sectional fitting, assessed by criteria discussed later, as weIl

as the multicollinearity encountered among the distinct factors. We tested different

specifications for the À vector. For instance, when we use nine factors in regression

lin the Center for Research in Security Priees bond file, the ytms are computed assuming

two-business clay delivery. According to Duffie (1996), this assumption is incorrect. Instead, one

business clay must be assumed for delivery.



•
44

3.12, the cross-sectional fitting is always good, however in sorne samples, we notice

a high level of multicollinearity among the factors which translates into very large

values of the state factors. In those cases, using 8 factors seems to be a better

choice for the cross-sectional estimation. After many trials, we conclude that using

8 factors, or for some samples 9 factors plus the long rate, brings a better result in

terms of multicollinearity as weil as cross-sectional fitting. Setting Ài = li + R, then

we let the vector [ = (lb' .. ,[9) take the following component values

z: 1 2 3 4 5 6 7 8 9

•

l: 2.75 0.17 0.115 0.065 0.04 0.025 0.015 0.01 0.005

Here we note that we have chosen the vector l as a decreasing series of numbers.

1t is clear that empirical consideration alone guide our choice of À. However, as

we pointed out on page 39, the À vector is considered as a discrete approximation

to sorne continuous function. The connection between the discrete and continuous

representations of the model will be the subject of future research.

3.3.2.1 Optimization procedure

The cross-sectional estimation, using the EP model, of the term structure implies

the estimation of the long rate R as well as the other state factors {3i for i =

l, ... ,8, or 9. How are these factors estimated? We suggest to implement a two­

stage optimization procedure. We determine the optimal value of R in a first-stage

analysis. Then, in a second-stage analysis, the state factors {Ji of the model are

estimated as linear coefficients of regression 3.11. Here are the details of the two

distinct stages:

1. Let us consider again the following equation:

(3.13)
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Note that pj
M and Alj are picked from data available from the NYFRB, the Pjs

are computed using expressions in Appendix B. However, the computation of

pj
O requires a value of R. Thus, for eaeh sample we initialize R in the interval

[3.5% and 18 %]. This choice in particular is motivated by sorne empirical

signifieanee. The core OLS regression 3.11 is running repeatedly inside a loop

for the long rate. Each iteration will find the estimates of f3i' i = 1, ... ,n and

the pricing errors from the EP mode!. The root mean squared error (RMSE)

of the sample is computed as

RMSE=

•

where Pi is the estimated price from the EP model, and pj
M is the correspond­

ing bond market priee.

There is a wide ehoiee of measures to fit priees. Two measures are frequently

used in term structure studies. The mean absolute fitted-priee errors (MAE)

and the RMSE. In our study, we will define the short SRMSE as the RMSE

of aIl the bonds in the sample with maturity less than one year. Renee, we

ehoose the long rate R to minimize the SRMSE. We use a Golden Section

Search for this minimization.

At this stage, one can ask for the reason behind choosing R to minimize

the SRMSE. Our argument is the following: Almost all observations with

maturities less than one year are Treasury bills (zero-eoupon bonds) or notes

or bonds with just one or two coupon paYments left. Thus, the yields to

maturity of such securities, provided by the NYFRB, should coincide with

the estimated yield function in the absence of pricing errors. In other words,

the pricing errors of the short term securities (with maturities less than one

year) contribute little to the overall sampie RMSE. Thus, the accuracy of the
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estimation especially in the short range maturity range cannat be based solely

on the sanlple R~ISE. The SR~ISE is used to guide the choice of R. The

optimal choice of R must fit the short end of the yields and simultaneously

minimizes the SR:\lSE.

2. Given the optimal R. found in the previous step. aIl the ,pariables of equation

3.9 are no\\" computed. The OLS regression defined in equation 3.11 is no\\'

ready to be estimated. The state factors Bi ~s are the estimated coefficients of

this OLS regression. Thus, the Pi!S are chosen to minimize the sum of squared

errors. The RNISE as weIl as the SRMSE computed at this stage are retained

as results of the cross-sectional fitting.

3.3.3 Results

Our analysis of the cross-sectional results will be conducted from three perspec­

tives. First~ we will examine the general performance of the EP modei as measured

by the average price errors and the RMSE. Then, we present sorne specifie exam­

pIes as a demonstration of term structure estimation using the EP model. Along

with the term structure curves, we report the estimated state factors of each sarn­

pIe. These examples are chosen ta illustrate the abilitv of the EP model to model

various shapes encountered in reality. The CIR. model. for instance~ implies that

the yield curve attains only three shapes: uniformly rising, humped, and uniformly

declining. However! an examination of D.S. yield curves in the last 40 years reveals

inverted-humped yield curves as weIl. In the examples presented at the end of this

chapter~ one case (Figure 3.3) shows an inverted-humped yield curve. Finally, we

reserve a subsection to examine and discuss the residuals of the EP model.
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3.3.3.1 EP pricing results

From the examination of Table 3.1, we can conclude that the EP model fits

the Treasury coupon bonds weB. The average pricing error is less than 1 cent on

Treasury bonds with $100 of face value. The mean error is not the only criterion

for measuring model performance. Thus, we also report the RMSE and the MAE.

We can see that the average RMSE is less than 15 cents. The average MAE is less

than 5 cents. Since typical market spreads are between 20 cents to 30 cents, it is

clear from our results that the EP model fits the term structure, on average, within

the bid-ask range.

Figure 3.1 represents the evolution of the RMSE for all the daily cross-sectional

results. It can be noted that the RMSE ranges between 7 cents per $100 par value

to 27 cents per $100 par value, with an average RMSE near 14 cents per $100 par

value which is less than a round-commission for ordinary investors. In other studies

such that of McCulloch, an equivalent measure of the RMSE was faund ta be $2 per

$100 par value. Figure 3.2 depicts the evolution of the SRMSE. As we noted above,

the SRMSE is the root-mean squared error for all Treasury bills, notes and bonds

with a maturity less than one-year. In general, these securities are accurately priced

and thus provide a good check on the reliability of a mode!. As can be seen from

Figure 3.2, the SRMSE values range between 2 cents and 18 cents with an average

near 4 cents per $100 of value. This confirms our previous remark regarding the

performance of the EP model. However, the presence of sorne sharp spikes in the

evolution of the SRMSE can only be explained by data errors.

3.3.3.2 Examples of curve shapes

In arder to examine more closely the cross-sectional performance of the EP

model, we choose four cases representing different shapes of the term structure.

In Tables 3.2 to 3.5, we report, for each sample, the long rate R obtained from the
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adjustment procedure~ the short rate r as computed from equation 2.16 in Chapter

2, the l3i, for i = 1, ... n, the RMSE, the SRMSE and the i\IAE. We report the

standard errors of the estimates. These standard errors are infiated by the presence

of multicollinearity among the state factors. We note from these tables that standard

errors have been computed for all the state factors except for R. This is explained

by the fact that we use a two-stage optimization procedure. Thus, l3i's are estimated

in the second stage, conditional on R. Whereas R is estimated from the first stage

and is taken as a given quantity in the second minimization problem.

Figure 3.3 illustrates the estimated yield curve for the 31st of July 1989. It cao

he seen that the curve has an inverted hump. The CIR model fails ta capture such

a complicated shape. The EP models fits the term structure of that particular clay

using nine parameters plus the long rate. The RMSE for this day is around 16 cents

which is slightly larger than the average R~1SE for the whole sample. The short

end is fitted as accurately as the long end.

Figure 3.4 represents the cross-sectional fitting obtained for the sample of the

Ilth of January 1990. The yield curve in early 1990 was essentially fiat. For this

reason, the estimation was achieved using only eight factors plus the long rate.

Indeed, in such a term structure environment, fewer factors seem ta be needed. The

EP model has the advantage of accommodating various shapes of the term structure

with the ability to add or reduce a factor. Using only 8 factors means starting the

decreasing series from 2.75 and stopping at 0.01. Adding a factor corresponds to

using the last term of the series which is 19 = 0.005. The number of factors increases

for "complicated" shapes and diminishes otherwise.

Figure 3.5 illustrates the evolution of the yield curve as estimated from the EP

model for the sample of the 20th of December 1994. In late 1994, the V.S yield curve

showed one of the steepest short-term slopes ever observed in the Treasury market.

Using eight factors, the EP model fitted the term structure with a RMSE of around



•

•

49

10 cents. Thus the EP model seems ta traek satisfactorily the mean reversion of the

short rate without any need for an additional factor. ~loreover, it can he seen from

the same figure, that the estimated term structure is bending and capturing very

well the movement of the curve for the long maturities.

Figure 3.6 reports the estimated yield eurve for the sample of the 22nd of July

1996. It cao he seen that the curve is uniforrnly rising. For the long maturities, the

eurve is bending downward. This phenomenon is not specifie to the EP mode!. It

has been reported by many authors, without any reasonable explanation. Indeed,

bond dates for long maturities are relatively sparse with an average of about five

observations per sample for maturities greater than twenty years. Shea (1984) has

showed that fitting the curve at long matulity with few observations cao lead to

some fitting anomalies. The EP modeI is not compIeteIy immune but does not

encounter major problem. The estimated EP curve usually bends to capture all

of the movement of term structure in the very long run. This advantage of the

EP model is mainly the result of the flexibility provided by a variable number of

factors. By being able to add another factor ta the estimation, the long end of the

term structure can be estimated with more accuracy than any model with a single

state variable.

Through this list of examples, we examined the in-sample performance of the

EP mode!. Our general conclusion is that the EP model captures very weil the

different shapes of term structure encountered in reality. However, this superior

performance is sometimes achievOO at the cast of adding another factor or having

highly correlated factor estimates. In fact, the correlations between state factors

sometimes exceed 90% (see Table 3.10). Brown and Dybvig and Brown and Schaefer

reported eollinearity between parameters of the CIR mode!. Jordan and Kuipers also

notOO this phenomenon when they tested the CIR model with STRIPS data. One

way to reduce the collinearity is ta reduce the number of state factors. We have
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tried to fit the term structure for the same period using six factors only but this

reduction altered the quality of the in-sample results. Heuce, we condude that using

between eight and nine state factors plus the long rate. is necessary for obtaining a

reHable fit even if this is achieved at the expense of sorne collinearity in the state

factors.

3.3.3.3 Pricing errors

Our concern here is to study the pricing errors of the EP model. Our analysis

will be conducted with the objective of answering the fol1owing questions:

• Ho\\" are the pricing errors distributed for each cross-sectional sampIe ?

• Are the pricing errors independent within cross-sections?

Figures 3.7 to 3.10 present the distribut.ionai patterns of errors for the same

cross-sectional samples illustrated earlier. It appears from these figures that the

residuals do not systematically follow any systematic pattern. However, as it is

clear from severai figures, the residuais are more variable at longer maturities and

aiso exhibit sorne autocorrelation. The greater variability at longer maturity partly

reftects the fitting of R to short maturities. A carefui examination of the autocorre­

lation coefficients of the residuals allows us to have a better understanding of seriaI

dependence across maturities. In Figures 3.11 ta 3.14, we report the autocorrelation

coefficients of the residuais estimated from the EP model. The two boundaries rep­

resent the upper and lower two standard deviation confidence bounds, based on the

assurnption that aU autocorrelations are zero. The sarnples we report correspond

to the ones presented previously. The residuals from the cross-sectional estimation

of the 31st .July 1989 as well as the 20th December 1994 show sorne autocorrela­

tion. For the other samples, the autocorrelation is not significant. Among the 1805

daily cross-sectional samples, only 2.4% of them have one or two autocorrelation
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coefficients (out of 20 coefficients) outside the 95% bounds. This percentage can be

considered as small. Thus, our assumption about the independence of the errors is

tenable and the efficiency of our OLS estimator is assured.

In order to examine the independence of pricing errors, we group the pricing er­

rors into one-year maturity categories, the available maturities at each cross-section

are classified into 30 categories ( i.e., less than one year, one to two years~ ... , twenty

nine to thirty years). For each cross-sectional estimation, the mean of pricing errors

within each category of maturities is computed. This exercise is repeated for all

the categories and for all cross-sectional samples. Thus, we obtain for each matu­

rity category a series of mean pricing errors. We compute the mean and standard

deviation of each series. These results are summarized in Table 3.6 and in Figure

3.15.

It appears from these results that the residual errors are not independent within

cross-sections. Despite the fact that the average of the mean pricing errors as weIl

as their standard deviation are small, one can see from Figure 3.15 that there is a

curvilinear pattern in the pricing errors and pronounced departures from the zero

Hne. PriciIJg errors in the short end are minor, because R is fitted by minimizing

the SRMSE. However, the long end of the maturity range, with the exception of the

30-year maturity c1ass, shows overpricing ( positive errors). On the other hand, the

mid-maturity range shows underpricing (negative errors). This same phenomenon

was also reported by Brown and Schaefer when testing the CIR model with British

bonds. They also reported underpricing in the intermediate ranges of bonds. Jordan

and Kuipers observed similar pattern with CIR, Vasicek and Merton models when

using STRIPS data. However, all of these authors concluded that the pattern was

not related to the model but instead ta the structure of the bond market itself.

The cross-sectional estimation of the 1805 samples from 27 July 1989 ta 15 October

1996 allow us ta answer the question raised at the beginning of this chapter. After
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exarnining all of the in-sample results. we can confirm that the EP model, for this

time period and these types of securities, fits the observed term structure with the

same exponential basis. Every term structure pattern encountered during this period

can be adequately represented by the long rate R and eight or nine additional state

factors.

3.4 Comparison between the EP model and other

models in the literature

In this section, we compare our results in the previous sections with what has

been reported for empiricai tests of other term structure models in the literature.

Our comparison is more qualitative than quantitative. In other words, we do not

estimate other models using our V.S. bonds data and compare the results ta what

we obtained so far. Instead, we report what reported studies found with similar

data sets and try ta place our results in the context of this literature.

3.4.1 Sorne results from the theoretical models

In the last few years, sorne authors have become interested in comparing the

empirical performance of the theoretical models of term structure as well as the

curve fitting models of term structure. In general, the studies compare several

rnodels and report in-sample and out-of-sample results. Jordan and Kuipers (1997)

compared three term structure models: Vasicek, CIR and Merton. Their study is

based on Treasury coupon STRIPS prices and yields over the period 1990 through

1994. Sorne of their results are reported in Table 3.7. These results cannat he

compared directly to our results since they are obtained from a completely different

data set. However, they provide us with sorne indications of the range of pricing

errors for comrnon term structure models. The units of the price errors are dollars
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per $100 in face value of STRIPS. The R11SE is the time-series mean of daily cross­

sectional RMSE's. When testing the EP model, we reported a mean RMSE of 13.2

cents per $100 of face value of Treasury bauds obtained with 1805 samples. This

number is less than any R!\1SE of the three models reported in Table 3.7. Our

results are obtained using coupon bonds prices instead of STRIPS priees. This fact

would he expected to produce larger pricing errors. Indeed, most of the studies in

the literature used T-bills or STRlPS to avoid complications arising from estimating

pure discount rates from coupon bonds. The fact that the EP model yielded smaller

pricing errors overall, in more trying circumstances, suggests it is a superior mode!.

We cao also daim that the EP model offers the advantage of having a "small" RMSE

achieved using a simple linear estimation compared to the complexity required by a

nonlinear estimation of CIR or Vasicek or Merton models.

3.4.2 Sorne results frOID the curve fitting models

The first curve-fitting model ta be seriously tested is the cubic spline of Mc­

Culloch. Many drawbacks have been attributed to this model; in particular, the

instabilityobserved in the long forward rate. Although there is no economic theory

imposing a restriction on the oscillation of the forward rate, practitioners prefer to

have a model with stable forward rates.

Bliss has compared severa! curve-fitting models. He used the monthly CRSP

bond file from 1970 to 1995. His main finding is that the Mean Absolute Error

(MAE) for price errors is small in economic terms for almost an methods he ex­

amined, with the Unsmoothed Fama-Bliss method performing the best. It must be

noted that this method, in particular, is nothing more than a modified version of

the "bootstrap" technique (see Chapter 1), which cannat be considered as a model

but simply a curve-fitting technique with a high number of parameters. In Table

3.8, we report a representative sampIe of his results. Using the EP model, we get
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an :\IAE of 4.18 cents per $100 par "alue. This number is smaller than any of the

four models studied by Bliss. ~loreover. it can be seen from Table 3.8 that even the

smallest :\1:\.E among these rnodels is obtained through a model having between 42

and 163 parameters! Instead. the ~L-\.E of the EP model is obtained using 9 to 10

state factors.

Bekdache and Baum (1995) used the monthly CRS? government bond file and

C.S. Treasury STRIPS data ta compare the in-sample and out-of-sample perfor­

mance of six cun'e-fitting models, Their results indicate that the competitive mod­

els are very similar in terms of their in-sampIe performance~ especially for T-bills

priees. Table 3.9 presents the RMSE and ~1AE found with each model. Given that

the R!\-1SE and the :\1AE of the EP model are 13.2 cents and 4.18 cents per $100

par value respectively~ we can conclude that the EP still offers the advantage of

producing smaller pricing errors.

This completes our review of the empirical performance of sorne theoretical term

structure models and curve fitting methods. The review brings the following points

ta our attention:

• The evidence indicates that the EP model tends to produce smaller R~1SE

than many other term structure models in the literature.

• The EP model achieves a high degree of accuracy in tenns of in-sampIe results~

even when using samples of heterogeneous bonds.

3.5 Eigen analysis

A model with eight or nine state factors and a long rate may he necessary for

an accurate cross-sectional estimation of the term structure. However~ when mod­

eling interest contingent claims~ a large number of state factors can he burdensome.

For this reason, we would like to kno\\" whether the EP model cao be reduced to
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a parsimonious model having fewer factors. For this determination. we first start

by computing the variance-covariance matri..x of the nine factors and the long rate.

based on the time series derÏ\"ed in the previous section. Table 3.11 reports the

variance-covariance matrix of the state factors and the long rate. Table 3.12 reports

the eigenvalues as weIl as the eigenvectors. It appears that there are three eigenval­

ues that are significantly greater than the rest of the eigenvalues. The magnitude of

the first eigenvalue is much larger than the other two. The first principal component

explains 98.9% of the total variation~ the second component explaîns 0.9% and the

third component has a weight of 0.1% in the overall variation of term structure.

These three components have an explanatory power of 99.9% for aIl the term struc­

ture movements. The remaining 0.1 <té is shared by the other seven components.

Thus~ the term structure state factors appear to have just three main principal

components. The question is why are the rcmaining dimensions needed? It is the

need for accuracy and goodness of fit that explains the presence of more than three

factors in the EP mode!. The three factors are mainly needed to provide a "rough"

representation of the shape of the term structure. The remaining factors~ although

not significant in terms of explaining the \"ariance~ take into account the subtleties

of the term structure shape and help us to estimate an accurate yield curve. Zhang

(1993) conducted a factor analysis to determine the number of factors behind the

term structure evolution. He found that term structure is driven by three principal

factors. Nelson and Siegel suggested an interpretation for the three main factors

that drive the term structure: (1) the general interest rate leveL (2) the slope of the

yield curve and (3) the curvature of the yield curve. Recent developments in the

term structure models seem to retain the two-and three-factor models as reason­

able descriptions of reality 2. The one-state factor models~ such as those of CIR or

Vasicek~ although theoretically attractive. have '"ery poor cross-sectional estimation

2See for instance Subrahmanyam (1996).
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characteristics. Thus~ the EP model can be a possible candidate as a three-factor

mode!. Of course, the cross-sectional estimation properties of such a model must he

investigated.

3.6 Empirical relation between the EP model and

an HJM specification

In the previous chapter, we claimed that the forward function derived frOID the

EP model cao be approximated by a function which is no more than the re-indexed

HJM mode!. In this section, we will empirically test this daim and. present sorne

results. In Chapter 2, we showed that the EP forward function can be written as

n

a10(1 + L ,Bi (e-kr - 1))
1(;3, T) = R ----.;..i=-.,;l _

ai

Using the fact that

/(/3 ) - _ aD/ai
,T - D'

the EP forward function can also be written as

n n

Re-Rr - R L ;3ie- RT - L ;3i(li + R)e-Cli+R}T
1(;3, T) = i=l n i=l

e-RT [l + L ;3i(e-liT - l)J
i=l

(3.14)

(3.15)

On the other hand, we claimed that the EP forward function can be empirically

approximated by a proxy forward function given by

n

Î(rp, T) = R + L epie-liT,
i=l

(3.16)

•
which is no more than a simple form of the re-indexed HJM mode!.

Now, our objective is to estimate the 'Pi coefficients such that the sum of the

squared differences between the EP forward function and the proxy forward function
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is minimized. The empirical existence of the ;PiS implies the equivalence between

the EP forward function and the re-indexed HJ~I mode!. The 'Pi coefficients are

estimated following these steps. Once we run the OLS regression of the cross­

sectional estimation on equation 3.10 1 the set of estimates Rand /3 are obtained.

Then at each cross-sectional sample l the variables <Pi cao be estimated from the

following equation using the OLS regression

n

[g(T]) - R] = L <.pih~ + uJ for j = Il' . ·1 lV1

i=l

The forward errors can be defined as

g(Tj) - j(Tj) = Ûj for j = 1, ... llV,

(3.17)

(3.18)

•

Below we will present sorne examples of this close relation between the proxy forward

function (the re-indexed HJM model) and the EP forward function. Our empirical

investigation, using the same data set as before, shows that this difference is ex-

tremely small for aIl samples. As a result, we can daim that there exist coefficients

'Pil i = 1... , n, such that the EP forward function defined in 3.14 and the re-indexed

HJM model coincide. In Figures 3.16 to 3.19, we report two distinct curves: the

forward curve obtained from the EP model (solid Hne) and the proxy forward curve

(plus signs) which is obtained from equation 3.16. The difference between the EP

forward function and the proxy forward function is measured by the maximum dif­

ference between the two functions over the maturity range. We find the mean of

the maximum difference between the two functions 3.67 basis points. This empirical

finding is important because it confirms that the EP model and the re-indexed HJM

model can be reconciled in an empirical framework.
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3.7 Conclusion

In this chapter, WP examined the cross-sectional performance of the EP mode!.

The time series properties of the model and the state factors, in particular, remain

ta be developed further in later chapters.

The cross-sectional analysis, conducted on the U.S. Treasury bonds from 27 July

1989 ta 15 October 1996. concluded that the EP model is successful as a model

of the term structure of interest rates. This estimation of the EP parameters is

achieved while keeping the exponential basis constant. The EP model is a model

that lies "between" two categories, the theoretieal models and eurve fitting models.

It offers the advantage of simplicity: linear estimation instead of non linear one.

Moreover, the EP model is derived from the PDE of bond pricing and thus has a

strong theoretieal basis compared ta the eune-fitting models which are atheoretical

motivated solely by goodness of fit.

In Chapter 5 we will investigate the time series properties of the estimated state

factors and to what extent they cao be modeled by ARMA and GAReR proeesses.

In this chapter, we had the opportunity to present the empirical evidence for the

existence of a relationship between the EP model and a specifie version of the re­

indexed RJM mode!. This cao be viewed as preliminary evidence that the theoretical

term structure model as defined by HJM is inherently related ta the EP model..
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Figure 3.1: This figure represents the evolution of the daily RMSE for 1805 cross-sections. The

daily tenn structure is fitted using the EP model over the period 1989 through 1996. The RMSE

is measured in dollars for a $100 of face value.
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Figure 3.2: This figure represents the evolution of the daily SRMSE for 1805 cross-sections. The

daily S RMS E reports the daily RMS E of U.S Tre=lSury bills, notes and bonds with a rnaturity

less than one year. The daily term structure is fitted using the EP model Over the period 1989

through 1996. The SRMSE is measured in dollars for a $100 of face value.
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Figure 3.3: Cross-sectional estimation of the term structure for the 31st of July 1989. It shows

the yield as a function of maturity. The crosses are the yields-to-maturityas computed from the EP

model with state factors. The dots represent the yield-to-maturity as computed from the NYFRB.

The (OLS) regression used in this cross-sectional estimation is given by equation 3.12.
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Figure 3.4: Cross-sectional estimation of the term structure for the Ilth of January 1990. It

shows the yield as a function of maturity. The crosses are the yields-to-maturity as computed

from the EP mode!. The dots represent the yield-to-maturity as computed From the NYFRB. The

(OLS) regression used in this cross-sectional estimation is given by equation 3.12.
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Figure 3.5: Cross-sectional estimation of the tenn structure for the 20th of December 1994.

It shows the yield function in terms of the maturity. The crosses are the yields-to-maturity as

computed from the EP model. The dots represent the yield-to-maturity as computed from the

NYFRB. The (OLS) regression used in this cross-sectional estimation is given by equation 3.12.
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Figure 3.6: Cross-sectional estimation of the term structure for the 22nd of JuIy 1996. It shows

the yield function in terms of the maturity. The crosses are the yields-to-maturity as computed

from the EP mode!. The dots represent the yield-to-maturity as computed from the NYFRB. The

(OLS) regression used in this cross-sectional estimation is given by equation 3.12.
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Figure 3.7: Pricing errors from the cross-sectionaI estimation of the tenn structure for the 31st of

July 1989. The prieing errors are in dollars per SI00 par value. They are defined as i. = (P; _ p;M),

where p;M is the bond market priee and P; is the estimated bond priee from the OLS regression

3.12.



•

•

66

Figure 3.8: Pricing errors from the cross-sectional estimation of the term structure for the

llth of January 1990. The pricing errors are in dollars per $100 par value. They are defined as

i = (Pj - PjM), where pjM is the bond market priee and Pj is the estimated bond price from the

OLS regression 3.12.
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Figure 3.9: Pricing errors from the cross-sectional estimation of the tenn structure for the 20th

of December 1994. The pricing errors are in dollars per S!OO par value. They are defined as

i = (Pj - PjM), where PiM is the bond market priee and Pi is the estimated bond priee from the

OLS regression 3.12.
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Figure 3.10: Pricing errors from the cross-sectional estimation of the term structure for the

22nd of July 1996. The pricing errors are in dollars per 5100 par value. They are defined as

i. = (Pj - Pj
M ), where pjM is the bond market priee and Pj is the estimated bond price from the

OLS regression 3.12.
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Figure 3.11: Autocorrelation of the residuals of the term structure estimation for

the 31st of July 1989.
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Figure 3.12: Autocorrelation of the residuals of the term structure estimation for

the 11th of January 1990.
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Figure 3.13: Autocorrelation of the residuals of the term structure estimation for

the 20th of December 1994.
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Figure 3.14: Autocorrelation of the residuals of the term structure estimation for

the 22nd of July 1996.
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Figure 3.15: This figure represents the evolution of the pricing errors for 388,022 daily obser-

vations of V.S Treasury bills, notes and bonds for the period 1989-1996. The theoretical prices

of bonds are estimated from the EP mode!. Errors are differences between estimated and aetual

prices. The units of the pricing errors are dollars per $100 in face value. The mean and standard

deviation of series of daily mean pricing errors are computed for each maturity category. Center

point for each category is mean; whiskers represent one standard deviation bounds. For the sample

we used, there was no bond with maturity (17-18] years.
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Figure 3.16: This figure is from the 31st of July 1989. It illustrates the EP forward curve

(solid line) as described by equation (3.14) and the proxy forward curve (plus signs) described by

equation (3.17). The proxy forward function is closely related ta the HJM re-indexed mode!. In

this case the maximum error between the two functions is 9.253xl0-4
•
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Figure 3.17: This figure is from the Ilth of January 1990. It illustrates the EP forward curve

(solid line) as described by equation (3.14) and the proxy forward curve (plus signs) described by

equation (3.17). The proxy forward function is closcly related to the HJM re-indexed mode!. In

this case the maximum error between the two functions is 2.304xl0-4 •
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Figure 3.18: This figure is from the 20th of December 1994. It illustrates the EP forward curve

(solid line) as described by equation (3.14) and the prox}' forward curve (plus signs) described by

equation (3.17). The proxy forward funetion is cIosely related to the HJM re-indexed model. ln

this case the maximum error between the two functions is 1.021x10-4 •
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Figure 3.19: This figure is from the 22nd of July 1996. It illustrates the EP forward curve

(solid Hne) as described by equation (3.14) and the proxy forward curve (plus signs) described by

equation (3.17). The proxy forward function is closely related to the HJM re-indexed model. In

this case the maximum error between the two functions is 2.553xIO-4
•
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RMSE SR.\1SE .YA.E Mean

0.1322 0.0349 0.0418 -0.0046

Table 3.1: The priee errors are from 1805 daily cross-sections of 388,022 daily U.S

Treasury coupon bonds. The estimated priees are computed using the EP mode!.

Errors are measured as differenees between estimated and market priees. Errors

are in dollars per $100 par value. RMSE is the time series mean of the daily cross­

sectional R-\1SE. SRMSE is the time series mean of the daily cross-sectional SR!\1SE.

MAE is the time series mean of the daily MAE. Mean is the time series mean of the

daily mean pricing errors.

Cross-sectional R.esults Values Std. en

Date 7/31/1989 - -

Long rate (R) 0.0963 -

Sample 204 -

f31 -0.0283 0.0422

f32 0.1292 0.2538

f33 -0.2351 0.8801

f34 0.2517 2.3726

f3s -0.6525 5.5904

f36 4.1192 10.4226

f37 -16.0217 16.4522

f38 21.0846 13.7779

f39 -11.0262 4.3399

Short rate(r ) 0.0774 -
RMSE 0.1618 -
SRMSE 0.0495 -
MAE 0.0983 -

Table 3.2: Cross-sectional estimation results of the sample for the 31st of July 1989.
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Cross-sectional Results Values Std. err

Date 1/11/1990 - -
Sample 205 -

Long rate (R) 0.0575 -

fJI 0.0265 0.0265

fJ2 -0.1932 0.1352

t33 0.7594 0.3699

f34 -2.0587 0.7244

f3s 4.1142 1.1225

f36 -5.2355 1.2636

f37 3.5048 1.0098

138 -0.4574 0.4189

Short rate(r) 0.0780 -
RMSE 0.1446 -

SRMSE 0.0272 -
MAE 0.0843 -

Table 3.3: Cross-sectional estimation results of the sample for the I1th of January

1990.
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Cross-sectional Results Values Std. err

Date 12/20/1994 - -
Sample 213 -
Long rate (R) 0.0684 -

131 -0.0285 0.0184

f32 0.0056 0.0933

f33 0.2703 0.2519

134 -1.3009 0.4836

135 3.4946 0.7371

f36 -5.1937 0.8329

137 4.2260 0.6857

138 -1.2764 0.2939

Short rate (r) 0.0434 -
RMSE 0.0981 -
SRMSE 0.0515 -

MAE 0.0423 -

Table 3.4: Cross-sectional estimation results of the sample for the 20th of December

1994.
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Cross-sectioual ResuJts Values Std. err

Date 7/22/1996 - -
Sample 218 -

Long rate (R) 0.035

fll -0.0207 0.0145

(32 0.1338 0.0784

(33 -0.5967 0.2369

fl4 2.0100 0.5450

fls -5.8703 1.0976

/36 12.8337 1.7980

/37 -22.6783 2.5404

/38 19.7181 1.9903

/39 -5.3506 0.5816

Short rate (r) 0.0482 -

RMSE 0.0745 -
SRMSE 0.0216 -
MAE 0.0461 -

81

•

Table 3.5: Cross-sectional estimation results of the sample for the 22nd of July 1996.
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Maturity Category Mean Std. dey. Maturity category ~1ean Std.dev

0-1 -0.0038 0.0027 15-16 -0.1883 0.2366

1-2 0.0046 0.0144 16-17 -0.6911 0.1911

2-3 -0.0223 0.0237 17-18 na na

3-4 0.0170 0.0309 18-19 0.1990 0.0688

4-5 -0.0028 0.0399 19-20 -0.0082 0.1121

5-6 -0.0451 0.0691 20-21 -0.1018 0.0780

6-7 -0.0689 0.0721 21-22 -0.0704 0.1329

7-8 0.0462 0.0755 22-23 -0.0412 0.1325

8-9 0.0930 0.0840 23-24 -0.0195 0.1444

9-10 -0.1407 0.1282 24-25 0.0376 0.1414

10-11 0.0660 0.1496 25-26 0.0773 0.1473

11-12 -0.0163 0.1700 26-27 0.1044 0.1120

12-13 0.0059 0.2116 27-28 0.0881 0.1155

13-14 -0.0368 0.1869 28-29 0.0636 0.1724

14-15 -0.4042 0.2576 29-30 -0.3002 0.3262

Table 3.6: This table reports statistics on the pricing errors of the EP model. These

results are based on daily cross-sections over the period 1989-1996. The errors are

differences between estimated and actual priees. They are in dollars per $100 par

value. There is no bond with a [17-18] maturity during the sample period.

Madel Sample size Mean RMSE Median

Cffi(1985) 1250 0.020 0.203 -0.007

Vasicek(1977) 1250 0.011 0.183 -0.007

Merton(1973) 1250 0.046 0.328 0.018

Table 3.7: Results from Jordan and Kuipers(1997) .
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Model Sample size MAE number of parameters

Unsmoothed Fama-Bliss 312 0.057 42 - 163

McCulloch 312 0.118 7 -14

Extended Nelson and Siegel 312 0.181 5

Fisher, et al. cubic spline 312 0.101 2 -33

Table 3.8: Results from Bliss (1997).

Model Sample size RMSE MAE

Fisher, et al cubic spline 226-245 0.279 0.139

McCuIloch 226-245 0.283 0.137

Nelson and Siegel 116-120 0.415 0.267

Table 3.9: Results Crom Bekdache and Baum (1997) .
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{31 {32 {33 {34 {35 {36 /37 /38 fJ9 R

/31 1.0000 -0.9865 0.9511 -0.8976 0.8356 -0.7850 0.7457 -0.7256 0.6908 0.3730

/32 -0.9865 1.0000 -0.9875 0.9524 -0.9033 0.8580 -0.8189 0.7956 -0.7436 -0.4581

/33 0.9511 -0.9875 1.0000 -0.9877 0.9555 -0.9197 0.8842 -0.8597 0.7931 0.5369

f34 -0.8976 0.9524 -0.9877 1.0000 -0.9893 0.9673 -0.9397 0.9168 -0.8414 -0.5911

/35 0.8356 -0.9033 0.9555 -0.9893 1.0000 -0.9934 0.9764 -0.9576 0.8797 0.6153

/36 -0.7850 0.8580 -0.9197 0.9673 -0.9934 1.0000 -0.9941 0.9814 -0.9IUI -0.6055

/37 0.7457 -0.8189 0.8842 -0.9397 0.9764 -0.9941 1.0000 -0.9959 0.9418 0.5634

/38 -0.7256 0.7956 -0.8597 0.9168 -0.9576 0.9814 -0.9959 1.0000 -0.9669 -0.5099

{39 0.6908 -0.7436 0.7931 -0.8414 0.8797 -0.9101 0.9418 -0.9669 1.0000 0.3105

R 0.3730 -0.4581 0.5369 -0.5911 0.6153 -0.6055 0.5634 -0.5099 0.3105 1.0000

•

Table 3.10: Correlation matrix of the original series for the state factors {3i for i = l, ... , 9 and the long rate R.

()';)
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f31 f32 f33 /34 /J5 f36 /37 /lS f3g Il

f3l 0.0026 -0.0173 0.0623 -0.1613 0.3387 -0.5437 0.7231 -0.5321 0.1354 0.0003

f32 -0.0173 0.1176 -0.4346 1.1492 -2.4577 3.9895 -5.3306 3.9169 -0.9786 -0.0028

f33 0.0623 -0.4346 1.6470 -4.4600 9.7299 -16.0041 21.5402 -15.8396 3.9063 0.0122

f34 -0.1613 1.1492 -4.4600 12.3806 -27.6198 46.1491 -62.7639 46.3158 -11.3629 -0.0369

{35 0.3387 -2.4577 9.7299 -27.6198 62.9574 -106.8784 147.0647 -109.0871 26.7900 0.0866

f36 -0.5437 3.9895 -16.0041 46.1491 -106.8784 183.8552 -255.8702 191.0414 -47.3636 -0.1457

f37 0.7231 -5.3306 21.5402 -62.7639 147.0647 -255.8702 360.3393 -271.4145 68.6183 0.1898

/38 -0.5321 3.9169 -15.8396 46.3158 -109.0871 191.0414 -271.4145 206.1206 -53.2793 -0.1299

f39 0.1354 -0.9786 3.9063 -11.3629 26.7900 -47.3636 68.6183 -53.2793 14.7302 0.0211

R 0.0003 -0.0028 0.0122 -0.0369 0.0866 -0.1457 0.1898 -0.1299 0.0211 0.0003

Table 3.11: Variance-covariance rnatrix of the original series for the state factors {Ji for i == l, ... ,9 and the long rate R.

00
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CI C2 C3 C4 e5 e6 e7 Cs eg CIO

832.5474 8.2632 1.2730 0.0518 0.0113 0.0029 0.0011 0.0001 0.0000 0.0000

{31 0.8762 0.0702 -0.4527 0.0464 -0.1258 0.0391 0.0492 -0.0199 0.0067 0.0013

{32 0.4314 -0.0316 0.6144 -0.2832 0.5156 -0.1500 -0.2300 0.1084 -0.0454 -0.0099

fia 0.1886 -0.0784 0.5753 0.0238 -0.4783 0.2098 0.4935 -0.2904 0.1565 0.0399

fJ4 0.0867 -0.0692 0.2579 0.4443 -0.4620 -0.0262 -0.4204 0.4487 -0.3439 -0.1157

fi5 0.0424 -0.0477 0.0694 0.6078 0.1218 -0.3575 -0.2246 -0.2972 0.5172 0.2699

{36 0.0214 -0.0446 0.0166 0.4913 0.3768 -0.1081 0.4235 -0.1696 -0.4183 -0.4680

f37 0.0114 -0.0505 0.0106 0.2772 0.2960 0.4306 0.2641 0.3593 -0.1267 0.6576

{3B 0.0079 -0.0510 0.0110 0.1476 0.1727 0.6228 -0.1435 0.1807 0.5094 -0.4949

(39 0.0045 -0.0400 0.0088 0.0344 0.0421 0.4637 -0.4518 -0.6506 -0.3704 0.1252

R 0.0233 -0.9860 -0.1213 -0.0955 -0.0038 -0.0581 0.0050 0.0075 0.0027 0.0003

•

Table 3.12: Eigenvalues and eigenvectors for the variance-covariance nlatrix of the variables shown in the rows. The eigenvalucs

are in the first row of the table. The eigenvectors are in the columns below the corresponding eigcnvalues.
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Chapter 4

Empirical Performance of the EP

Model: Results for Canadian

Bonds

In this chapter, we test the empirical performance of the EP model using a

Canadian daily data set. We would like to answer the following question:

• Can the proposed EP model presented in Chapter 2, fit the observed term

structures?

In Chapter 3, we conclude for the period 1989-1996, that the EP model fully

describes the US term structures with eight or nine states factors plus the long rate.

Is this finding confirmed by the Canadian data?

We will adopt the same notation as in Chapter 3. Using the EP model, we

showed that the price of a coupon-bond cao he written as a linear combination of

sorne hypothetical prices:

• n

pj
M (s, t) + Alj - PjO(s, t) = L ~dPJ(t, s) - PjO(t, s)] + fj,

i=l

(4.1)
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where pM is a bond market priee, Alj is its acerued interest, PjO and Pl are hypo­
J

thetical prices and fj is an error term. Our objective in this chapter is ta fit equation

4.1 ta the Canadian data of bond priees. Equation 4.1 can be written as

n

Yj = L 8i X; + fj for aIl j = 1, ... , N,
i=l

(4.2)

where

•

lYJ = pr + AI; - PJ,
X l. = pi pO

J j - j'

As mentioned in Chapter 3 the error terms fj are assumed to be independently

distributed. Unlike Brown and Dybvig when estimating the CIR model, we do not

assume that the error terms are normally distributed. Instead, the error distribution

form will be subject of an empirical investigation.

The linear coefficients /3i of equation 4.2 will be estimated using ordinary least

square method.

4.1 Cross-sectional analysis

4.1.1 Data

In this study we use Canadian data set from the Bank of Canada. There are

nearly 60, 667 daily observations on Canadian bills, notes and bonds over the period

of 29th of June 1992 to 29th of May 1995, totaling 731 daily samples in all. The

cross-sectional samples have an average of 79 observations (bills, notes and bonds).

We excluded two types of bonds from the data set: bonds with options and bonds

with special features. The time ta maturity is eomputed as the difference between

the maturity date indicated by the Bank of Canada and the settlement date. The

basis year is 365 days. The yields ta maturity (ytm), as mid point yields, provided by

the Bank of Canada are used for comparison with the estimated yields ta maturity

from the EP mode!.
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4.1.2 Procedure

In this cross-sectional estimation, we follow the same procedure as we did with

the US data set. To compute the independent variables x~ of equation 4.2, we

must specify the row vector ,X = ('xl,"" Àn ) as well as the long rate Ào = R.

The parameters 'xi are chosen to make the basis exponential functions as distinct

as possible in order to avoid extreme multicollinearity in the OLS regression. The

length of this vector depends on the number of state factors chosen for the regression.

With the US data, we found that eight to nine state factors plus the long rate are

necessary to fit all the term structures in the sample. This choice is motivated by

the quality of cross-sectional fitting assessed by the RMSE or the SRMSE as weIl

as the multicollinearity encountered among the distinct factors.

For the Canadian data, we started the estimation using nine factors. We noticed

a high level of multicollinearity among the factors which translates to very large

values of the state factors. After many trials, we conclude that using six factors

plus the long rate brings a better result in terms of multicollinearity as weIl as cross­

sectional fitting. However, the values chosen for the À vector are different from the

ones used with the US data. In the Canadian case, the values of li which enter into

the computation of Ài are set to

t: 1 2 3 4 5 6

li: 0.2 0.3 0.5 0.8 1.3 2.1

This difference in the choice of the À vector cao be explained by the existence of

sorne structural differences between the Canaciian and the US market. At the end of

1992, the US Treasury market was the largest issuer of debt in the world, with over

$3 trillion of different type of bonds outstanding. This huge volume makes the US

Treasury market the most liquid in the world. At the same period, the govemment

of Canada issued $430 billions of debt as bills notes and bonds. Thus, compared to

the US Treasury market, the Canadian market has less volume and is less liquid.
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The long rate is chosen to minimize the SRMSE. Here, we defined. the SRMSE as

the RMSE for all bonds with maturity less than six months. Note that defining the

SR~1SE on a period of one year~ as we did for US data, does not alter the quality

of results. For the rest, we followed the same procedure as for US data. Below, we

discuss our results.

4.1.3 Results

Our analysis of the Canadian cross-sectional results will he conducted. from three

viewpoints. First, we examine the pricing performance of the EP mode!. Second,

we present sorne specifie examples showing the fitting properties of the EP term

structure mode!. We will emphasize on the difference in results between US and

Canadian data. Finally, we examine and discuss the residuals of the EP model as

obtained from Canadian data set.

4.1.3.1 EP pricing results

In Table 4.1, we report sorne statistics regarding the pricing results using the EP

model with Canadian data. The average pricing errors is less than 3 Canadian cents

on government bonds with $100 of face value. With US data this number was less

than 1 cent per $100 par value. Thus, based on the average pricing errors criterion,

the EP model provides a slightly better fitting of the US term structures than of

the Canadian ones.

The average RMSE is 44.3 cents per $100 of face value, and the average SRMSE

is 3.69 cents per $100 par value. The equivalent numbers for the US data are 16

and 3.49 cents per $100 par value, respectively. The RMSE is slightly higher in

the Canadian case than in the US case. Figure 4.1 represents the evolution of the

RMSE for all daily cross-sectional Canaclian samples. It can be noted that the

RM8E ranges between 7 to 95 cents per $100 par value with an average near 44
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cents. Moreover~ we can see from the same figure that the RMSE is decreasing in

magnitude over the study periode A sharp decrease, occurred at the beginning of

1994~ is most likely attributed to progress in the quality of data collection. The

new system has substantially improved the accuracy of Canadian bond priee data.

Several studies have considered the effect of quality of financial data on bond pricing.

For instance, Elton and Green (1998) studied the impact of quality of financial data

on tax and liquidity effects of term structure. They concluded that a significant

portion of liquidity and tax effects found by previous authors appears to be no longer

relevant because data problems influenced the calculations of the original estimates.

Figure 4.2 depiets the evolution of the SRMSE. As we mentioned previously, the

SRMSE is the RMSE for all bills, notes and bonds with a maturity less than six

months. As can he seen from this figure, the SRMSE values range between less than

1 cent ta 13.5 cents. This result is very similar ta the evolution of the SRMSE of

the US data. Thus, we conclude that the improvement of the Canadian bond data

benefited the long term securities more than the short ones.

4.1.3.2 Examples of curve shapes

A.lmost all of the yield curves are upward sloping during the study periode Iodeed,

this shape was very common during the early 1990s. An inverted term structure

shape was frequent during 1989 and early 1990; however, our data set does not caver

this period of time. We now look at term structure estimation for a sample of four

days. In Tables 4.2 to 4.5, we report for each sample, the long rate R obtained from

the adjustment procedure, the short rate as computed from equation 2.23, the esti­

mated f3i for i = 1, ... n, the RMSE and the SRMSE for each sample. In general,

the RMSE for all the examined samples are higher in magnitude compared to what

we obtain for the US samples. These examples confirm our general discussion about

the evolution of the RMSE.
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In Figure 4.3. we report the estimation of the term structure for the 2nd of July

1992. The curve has a slight inverted hump. The CIR model fails to capture such a

complicated shape. The EP model fits Canadian term structure of that particular

day using six state factors plus the long rate. The R~ISE for this day is around 84

cents which is larger than the average R~lSE of aIl Canadian samples. \Ve attribute

this large value to the poor quality of the data collection system of Bank of Canada

as weIl as to the lower liquidity of the Canadian bond market compared ta its US

counterpart.

Figure 4.4 represents the cross-sectional fitting obtained for the sample of the

30th of ~larch 1993. The curve is upward. Usiog six factors plus the long rate, the

EP model fits the term structure with a RN1SE of 66 cents. Moreover, it cao be seen

from this figure that the estimated term structure is bending and capturing very

weil the movement of the curve for the long maturities. Shea (1984) showed that

fitting the curve at long maturities with fe\\' observations can lead to sorne fitting

anomalies. The EP model does not encounter such problems with US data. Here,

with Canadian data~ the estimated EP curve bends to capture all of the movements

of term structure in the long run. As mentioned in Chapter 3, this advantage of

the EP model is mainly the result of the flexibility provided by a variable number

of factors.

Figure 4.5 reports the estimated curve of the 28th of September 1994. The curve

is uniformly rising. The R1vlSE of this sample is 16 cents. It is a dramatic decrease

compared to previous examples. As can be seen from Figure 4.1, a dramatic drop

in the values of the RMSE is noticeable around the beginning of year 1994. Since,

the average RrvlSE is around 20 cents per $100 of face value.

Figure 4.6 illustrates the evolution of the estimated yields ta maturity for the

sampie of the 1st of February 1995. The Canadian curve showed a steep short-term

slope. Using six factors plus the long rate, the EP model fits the term structure
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with a RMSE of near Il cents. As for the US example in Figure 3.5 of Chapter 3,

the EP model seems to track satisfactorily the reversion of the short rate without

any need for an additionaI factor.

Through the four examples, we examined the in-sample performance of the EP

model, using Canadian data. Our general conclusion is that the EP model captures

very well the different shapes of term structure encountered in reality. This superior

performance is achieved using only six state factors plus the long rate. With the

US data, the same estimation procedure required eight to nine factors plus the long

rate. This difference in the number of state factors is explained by the structural

differences between the two markets. The US bond market is the largest in the

world, it accounts a huge number of transactions per day. Thus, a large number of

factors is necessary to capture ail the movements of the US term structures. The

Canadian market is smaIler and less liquid. Six state factors plus the long rate are

sufficient to fully describe the movement of the term structures.

4.1.3.3 Pricing errors

Here we study the distribution of residuals from the estimation of the EP mode!.

Our analysis will be structured around two levels:

• The pricing errors for each cross-sectional sampIe.

• The pricing errors with cross-sections.

Figures 4.7 to 4.10 present residual plots of the four examples studied before. The

residuals are defined as the difference between the EP model priee and its market

counterpart. The residual plots show no systematic pattern except for the larger

scatter at maturities beyond about one year. To examine the residuals pattern more

closely, we calculate the autocorrelation coefficients of the residual series for each

cross-section. They are represented in Figures 4.11 to 4.14. The two boundaries
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represent the upper and lower standard deviation bounds, based on the assumption

that all autocorrelation coefficients are zero. They are 95% bands for individual

coefficients ik. The residuals from the cross-sectional estimation of the 2nd of July

1992 and of the 30th of March 1993 show, for one or two lags (out of 20 lags), sorne

autocorrelation. For the other samples, the autocorrelation is not significant. Only

3% of all the Canadian samples has autocorrelation outside the 95% bounds. This

percentage is small and hence OLS estimation conducted in the above cross-sectional

study appears to be adequate. For the US data, we find a percentage of 2.4% of

ail daily samples having autocorrelation coefficients outside 95% confidence interval.

From this perspective, the EP model is yielding similar results with both data sets.

Hence, we get the empirical confirmation that the assumption about independence

of the errors is tenable and the efficiency of our OLS estimator is assured.

In order to examine the independency of pricing errors, we proceed as follows:

First, the pricing errors are grouped into a one-year maturity categories, i.e., the

available maturities at each cross-section are c1assified into 30 categories: less than

one year, one to two years, ... , twenty nine to thirty years. For each cross-sectional

estimation, the mean of pricing errors within each category of maturity is computed.

We repeat this exercise for aIl categories of maturities and aIl 731 samples. Thus,

we obtain for each maturity category a series of mean pricing errors. In all, we

have 30 series of pricing errors. Second, we compute the mean of these series and

their standard deviations. The results are summarized in Figure 4.15 and Table

4.6. It appears from Figure 4.15 that the residuals errors are not independent with

cross-sections. Despite the fact that the average of the mean pricing errors as weIl

as their standard deviation are small, one cao see from Figure 4.15 that there is

a curvilinear pattern in the pricing errors and significant departures from the zero

lïne. The mean pricing errors in the short end are close to zero. The long end

shows sorne overpricing (positive errors), on average, but the bias is relatively small
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compared with what we found in US. data. The 21-year maturity range seems to

be the most distorted range with large negative pricing errors on average. For the

US. case, it was the 16-17 maturity range which suffered from underpricing. This

empirical finding confirms our argument regarding the existence of sorne structural

differences between the two markets. As for the US. market, we do not think that

the existence of sorne pattern in the pricing errors for Canadian data is a sign of

model inadequacy but rather a market-related issue.

4.2 Comparison between the EP model and other

models

In this section, we report on sorne empirical studies of term structure which have

used Canadian data. The purpose of this exercise is to compare the EP results

obtained with the Canadian data to what other authors have found. Once again,

this comparison is more qualitative than quantitative and is not intended to provide

a definite ranking of models.

Brennan and Schwartz (1979) studied Canadian monthly data. They used Cana­

dian Bankers' Acceptances and the average yields to maturity on Government of

Canada bonds with maturities more than 10 years as proxies for the instantaneous

interest rate and the long-term rate, respectively. Their data set covered a period

from 1964 to 1976. They postulated a model with two state variables: the short

rate and the long rate. However, they round evidence of the existence of a third

unknown state variable. The predicted returns for bond portfolios of different matu­

rities derived from their twa-factor model explained only about 50% of the variation

in actual returns within the sample period.

Bolder and Stréliski (1999) used a sample of 30 dates chosen to span the period

from 1989 to 1999. The dates were selected ta include 10 observations each from
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an upward-sloping, fiat, and inverted terrn structure environments. Three distinct

models were used:

• Nelson and Siegel (1987),

• Svensson (1994) which is an extension of the Nelson and Siegel model,

• Super-Bell model developed by Bell Canada in the 1960s.1

Their work is divided into two separate aspects: the estimation problem, i.e.,

the choice of the best yield curve model and the optimization of its parameters,

and the data problem i.e., the selection of the appropriate set of market data. In

the analysis of the estimation problem, three models were examined. Each of the

studied alternative is summarized in terms of goodness of fit, speed of estimation

and robustness of the results. According to their result, the Svensson model is

the best. At a second step, they considered the data problem. Three alternative

filtering settings were considered. Their final result encourages the filtering of data

(e.g. elimination of short term bonds, inclusion of certain bonds or not) for the

estimation of term structure. Unlike our estimation procedure, their estimation

was conducted in terms of yields instead of priees. The Bolder and Stréliski study,

although interesting, is restricted to only 30 dates. Moreover, the authors suggest

the use a data filtering in order to improve the term structure fit. However, in our

case, we use the EP model without filtering the data. As noted earlier in discussion

about the in-sample results, the EP model seems to produce larger pricing errors

for Canadian data compared to US. data. However, the errors are still, on average,

within any bid-ask spread. One plausible explanation for this phenomenon is the

relatively lower liquidity of the Canadian bond market in comparison to the US

market.

lSee Appendix A page 197 for more details about this mode!.
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4.3 Eigen analysis

The EP model specification we used with Canadian data assumes the existence

of six factors in addition to the long rate. However, we would like ta know whether

the EP model could be reduced ta a more parsimonious model with a limited nUffi­

ber of factors. Thus, we conduct an eigen analysis of the variance-covariance matrix

of the variables (/3ù i = 1, ... , n and R) given in Table 4.7. Table 4.8 presents the

eigenvalues and eigenvectors. On the light of these results, we conclude that there

are three eigenvalues which are significantly larger than the rest of eigenvalues. The

magnitude of the first eigenvalue is much larger than the other two. The first prin­

cipal component explains almost 84% of the total variation. The second component

contributes with a portion of about 14%, and the third component explains 1.7% of

the total variation of the term structure. These three components explains 99.7%

of the total variation of the term structure, whereas only 0.3% is explained by the

other components. Thus, the term structure state factors appear to possess just

three principal components. A natural question is why are the remaining dimen­

sions needed? It is the need for accuracy and goodness of fit that explains the

presence of more than three factors in the EP model. In general, three factors are

needed to capture a "rough" representation of the shape of the term structure. The

other factors, although not significant, in terms of explaining the variance, take ioto

account the subtleties of the ternl structure shape and provide us with an accurate

estimation of the yield curve. This result confirms our findings with the US. data

set. Once again, we are able ta daim that the EP model cao be simplified to a

three-factor mode!. As for the US. data, we suggest as Neslon and Siegel claimed,

that these three factors can have an intuitive interpretation: (1) the general inter­

est rate level, (2) the slope of the yield curve and (3) the curvature of the yield

curve. More and more term structure models seem to retain the two- and three­

factor models as plausible descriptions of reality (Le., see Balduzzi, Das, Foresi, and
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Sundaram (1996)). The EP model is a possible candidate as a three-factor mode!.

Further investigation about the time series properties of the EP model can confirm

our claim.

4.4 Empirical relation between the EP model and

an HJM specification

In this section, we present four examples which show the close relation between

the proxy model ( which is based on the EP model) and the re-indexed HJM mode!.

Our empirical investigation shows that this difference is extremely small for aIl

samples. The results support the earlier theoretical daim that there exist constants

rpi, i = 1 ... , n, such that the proxy yield function defined in Chapter 3 in equation

(3.16) and the re-indexed HJM model nearly coincide. Figures (4.16) to (4.19) show

two distinct curves: the fom ard curve obtained from the EP model (solid Hne) and

the proxy forward curve (plus signs). The maximum difference between the proxy

forward function and the forward function derived from the EP model is on average

in the range of 3.63 basis points for the study period. This result is similar to the one

obtained for the US. data set. Thus, we have the confirmation from both data sets

that the EP model can he empirically relaterl ta a specifie re-indexed HJM version.

4.5 Conclusion

In this chapter, we examined the cross-sectional performance of the EP model

using a Canadian data set.

In general, the main results obtained with this data set are in Hne with what we

found for US. data. The cross-sectional estimation conducted on a daily basis has

brought accurate results in terms of S RMSE. The specification we used includes
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the long rate and SLX state factors. The results suggest that the exponential basis

can he maintained at six factors during the estimation period. Finally, as with the

US. data, we \Vere able to show empirically that there exists a relationship between

the EP model and the re-indexed model of HJ M.
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Figure 4.1: This figure represents the evolution of the daily RMSE for 731 cross­

sections. The daily term structure is fitted using the EP model over the period 1992
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Figure 4.2: This figure represents the evolution of the daily SRMSE for 731 cross­

sections. The daily SRMSE reports the daily RMSE of Canadian bills, notes and

bonds with maturity less than six months. The daily term structure is fitted using

the EP model over the period 1992 through 1995. The SRMSE is measured in

dollars for a $100 of face value.
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Figure 4.3: Cross-sectional estimation of term structure for the 2nd of July 1992. It shows

the yields in terms of maturity. The crosses are the yields-to-maturity as computed from the EP

mode!. The dots represent the yield-to-maturity as reported from the Bank of Canada files. The

(OLS) regression used in this cross-sectional estimation is given byequation (3.12) .
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Figure 4.4: Cross-sectional estimation of the term structure for the 30th of March 1993. It shows

the yields in terms of maturlty. The crosses are the yields-to-maturity as computed from the EP

mode!. The dots represent the yield-to-maturity as reported from the Bank of Canada files. The

(OLS) regression used in this cross-sectional estimation is given by equation (3.12) .
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Figure 4.5: Cross-sectional estimation of the term structure for the 28th of September 1994. It

shows the yields in terms of maturity. The crosses are the yields-to-maturity as computed from

the EP mode!. The dots are the yields-to-maturity as reported from the Bank of Canada files.

The (OLS) regression used in this cross-sectional estimation is given by equation (3.12) .
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Figure 4.6: Cross-sectional estimation of the term structure for the Ist of February 1995. 1t

shows the yields in tenns of maturity. The crosses are the yields-to-maturity as computed from

the EP mode!. The dots represent the yield-to-maturity as reported from the Bank of Canada

files. The (OLS) regression used in this cross-sectional estimation is given by equation (3.12) .
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Figure 4.7: The pricing errors from the cross-sectional estimation of the term structure for the

2nd of July 1992. The pricing errors are in Candadian dollars per S100 of face value. They are

defined as fi = (Pi - PjM), where pj
M is the bond market price and Pj is the estimated bond price

from the OLS regression (3.12) .



•
107

1.5 ~

0.5 ~

o'" '"

-o.5~

-1

-1.5

5 10 15
maturity in years

20 25 30

•

Figure 4.8: The pricing errors from the cross-sectional estimation of the tenn structure for the

30th of March 1993. The pricing errors are in Canadian dollars per 1100 of face value. They are

defined as fj = {Pi - pr}, where pj
M is the bond market price and Pi is the estimated bond price

from the OLS regression (3.12) .
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Figure 4.9: The pricing errors from the cross-sectional estimation of the term structure for the

28th of September 1994. The pricing errors are in Canadian dollars per $100 of face value. They

are defined as Ei = (Pj - PjM), where PjM is the bond market priee and Pj is the estimated bond

priee from the OLS regression (3.12) .
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Figure 4.10: The pricing errors from the cross-sectional estimation of the term structure for the

lst of February 1995. The pricing errors are in Canadian dollars per $100 of face value. They are

defined as ~j = (Pj - PjM), where pjM is the bond market price and Pj is the estimated bond price

from the OLS regression (3.12) .
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Figure 4.11: Autocorrelation of the residuals of the Canadian term structure esti-

mation for the 2nd of July 1992.
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Figure 4.12: Autocorrelation of the residuals of the Canadian term structure esti-

mation for the 30th of tvlarch 1993.
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Figure 4.13: Autocorrelation of the residuals of the Canadian term structure esti-

mation for the 28th of September 1994.
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Figure 4.14: Autocorrelation of the residuals of the Canadian term structure esti­

mation for the lst of February 1995.
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Figure 4.16: This figure is of the 2nd of July 1992. It illustrates the EP forward curve (solid Hne)

as described by equation (3.14) and the proxy forward curve (plus signs) described by equation

(3.17). The proxy forward function is c10sely related to the HJM re-indexed mode!. In this case

the maximum error between the two functions is 18 x 10-4 .
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Figure 4.17: This figure is of the 30th of March 1993. It illustrates the EP forward curve (solid

Une) as described by equation (3.14) and the proxy forward curve (plus signs) described byequation

(3.17). The proxy forward function is closely related to the HJM re-indexed model. In this case

the maximum error between the two functions is 12 x 10-4 .
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Figure 4.18: This figure is of the 28th of September 1994. It illustrates the EP forward curve

(solid Hne) as described by equation (3.14) and the proxy forward curve (plus signs) described by

equation (3.17). The proxy forward function is closely related to the HJM re-indexed mode!. In

this case the maximum error between the two funetions is 3.04 x 10-4 •
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Figure 4.19: This figure is of the lst of February 1995. It illustrates the EP forward cun'e

(soUd line) as described by equation (3.14) and the proxy forward curve (plus signs) described by

equation (3.17). The proxy forward function is closely related to the HJM re-indexed mode!. In

this case the maximum error between the two functions is 1.65 x 10-4
.
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RMSE 5R.\1SE .\1.4E Mean

0.4431 0.0369 0.3016 -0.0258

Table 4.1: The priee errors are froID 731 daily eross-sections of 60,667 daily priees for

Canadian coupon bonds. The estimated prices are computed using the EP model.

Errors are measured as differences between estimated and market priees. R~1SE is

the time series mean of the daily cross-sectional RMSE. SRMSE is the time series

mean of the daily cross-sectional SRMSE. MAE is the time series mean of the daily

MAE. Mean is the time series mean of the daily mean priCÎng errors. Measurement

unit is dollars per $100 of face value.

Cross-sectional Results Values Std. err

Date 7/2/1992 - -

Sample 93 -

Long rate (R) 0.0692 -

81 3.3398 0.4633

82 -4.7029 0.1.2005

fJ3 2.4048 1.6094

fJ4 -0.6771 1.3818

fJ5 -0.0269 0.6976

86 0.0530 0.1724

Short rate(r) 0.0635 -
RM5E 0.8452 -
SRMSE 0.0644 -

M.4E 0.5704 -

Table 4.2: Cross-sectional estimation results of the sample for the 2nd of July 1992.
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Cross-sectional Results Values Std. err

Date 3/30/1993 - -
Sample 86 -

Long rate (R) 0.0659 -

{31 2.8763 0.3476

{32 -3.8745 0.9061

{33 1.7021 1.2197

(34 -0.3368 1.0630

f3s 0.0147 0.5461

f36 0.0025 0.1366

Short rate(r) 0.0467 -
RA/SE 0.6610 -

SRM5E 0.0412 -

M.4E 0.4437 -

Table 4.3: Cross-sectional estimation results of the sample for the 30th of March

1993.
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Cross-sectional Results Values Std. err

Date 9/28/1994 - -

Sample 78 -
Long rate (R) 0.0843 -

31 1.4292 0.1114

32 2.0972 0.2836

33 1.2284 0.3769

34 -0.4866 0.3290

35 0.0955 0.1681

36 -0.0219 0.0409

Short rate (r) 0.0441 -
R.\fSE 0.1668 -
SR.\fSE 0.0411 -
Af.4E 0.1250 -

Table 4.-1: Cross-sectional estimation results of the sample for the 28th of September

1994.
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Cross-sectional Results Values Std. err

Date 2/1/1995 - -
Sample 76 -

Long rate (R) 0.0836

31 1.6664 0.1070

32 -2.9762 0.2722

33 2.5894 0.3622

34 -1.5820 0.3190

35 0.5836 0.1675

36 -0.1151 0.0429

Short rate (r) 0.0700 -

R.\fSE 0.1638 -
SR.\fSE 0.0423 -

~\[AE 0.1318 -

Table --1.5: Cross-sectional estimation results of the sample for the Ist of February

1995.
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~laturity Category :\Iean Std. dev Maturity Category :\lean Std. dev

0-1 -0.0027 0.0095 15-16 0.0821 0.2919

1-2 -0.0373 0.0379 16-17 0.0890 0.2924

2-3 0.0059 0.0681 17-18 -0.5111 0.3568

3-4 0.0230 0.0842 18-19 -1.3066 0.6912

4-5 -0.2158 0.1721 19-20 -0.1322 0.1149

5-6 -0.3114 0.2881 20-21 0.0541 0.1723

6-7 -0.0590 0.3224 21-22 0.1067 0.2415

7-8 0.2201 0.2413 22-23 0.6375 0.4424

8-9 -0.0070 0.2405 23-24 na na

9-10 -0.1849 0.2612 24-25 na na

10-11 -0.3189 0.5184 25-26 0.1007 0.0549

11-12 -0.2889 0.4002 26-27 0.1178 0.1351

12-13 -0.1906 0.4344 27-28 0.1281 0.3667

13-14 0.2282 0.4076 28-29 0.3763 0.5830

14-15 OA130 0.4698 29-30 -0.0229 0.6220

Table ..1.6: This table reports statistics on the pricing errors of the EP mode!. These results

are based on Canadian daily cross-sections over the period 1992-1995. The errors are differences

between estimated and actual priees. Cnits of pricing errors are in Canadian dollars pel' $100 of

face value. There is no bond with rnaturities [23-24] and [24-25] years, during the sample period.

31 82 33 :34 Bs 86 R

31 0.6769 -0.9721 0.5845 -0.2599 0.0776 -0.0101 -0.0057

32 -0.9721 1.6098 -1.2727 0.7341 -0.2605 0.0429 0.0071

83 0.5845 -1.2727 1.4017 -0.9792 0.3819 -0.0693 -0.0025

84 -0.2599 0.7341 -0.9792 0.7422 -0.3015 0.0566 0.0002

8s 0.0776 -0.2605 0.3819 -0.3015 0.1260 -0.0243 0.0001

/36 -0.0101 0.0429 -0.0693 0.0566 -0.0243 0.0049 -0.0001

R -0.0057 0.0071 -0.0025 0.0002 0.0001 -0.0001 0.0001

Table 4.7: \"ariance-covarianee rnatrix of the original series for the

state factors Bi for i = 1, ... ,6 and the long rate R for Canadian data.
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3.8264 0.6336 0.0801 0.0013 0.0003 0.0000 0.0000

31 0.0270 0.0010 0.0213 0.5614 -0.4822 0.5823 -0.3347

32 0.0804 0.0055 0.1188 0.6084 -0.2180 -0.4174 0.6225

33 0.1963 -0.0181 0.3678 0.3945 0.4345 -0.3777 -0.5821

34 0.3431 -0.0795 0.5666 -0.0467 0.3657 0.5272 0.3755

:35 0.5094 -0.1730 0.3518 -0.3773 -0.6010 -0.2514 -0.1417

36 0.6924 -0.2562 -0.6344 0.1138 0.1898 0.0533 0.0249

R -0.3123 -0.9475 0.0534 0.0386 0.0177 -0.0073 0.0020

Table ·1.8: The eigem-alues are in the second row of the table. The eigenvec­

tors are in the columns below the corresponding eigenvalues. These results are

for Canadian data. "-e used the covariance matrix of the state factors Bi and

R to compute the eigen\"alues as weIl as the eigenvectors.
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Chapter 5

Time Series Analysis

5.1 Introduction

In the cross-sectional study of the EP model in Chapter 3~ we have extracted

the time series of ten state factors including the long rate R. AIl of them drive the

terrn str'Jcture of Înterest rates. These unobsenrable state factors were obtained as

estimated coefficients of a linear regression. The state factors in the EP model were

assumed to folIo\\" the following process:

dB = Q(B~ t)dt + 0'(3. t)dzt . (5.1)

Cnlike the majority of term structure models, the linear solution of the EP model

does Dot impose any restriction on the drift of these factors or on their diffusion.

Instead, the solution of the EP model was derived through an arbitrage argument

similar to the APT approach. At this stage, we would like to study the time series

properties of these state factors that were estimated in Chapter 3. Indeed, we showed

that the estimated state factors, the ,8 coefficients, were obtained from the following

• equation

Q - ('\" ,\,)-lX'
fJt - .i\, ...' Yt· (5.2)
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Equation 5.2 represents the connection between the estimated state factor vector Bt

and the vector of bond prices Yt . •X = (x;) is an (lV x n) matrix of present values

of bonds Pj discounted at a rate Ài • ~otice that in this equation, we introduced a

time-dependent notation. Our objective is ta study the time-series properties of the

(3 coefficients. This investigation is interesting for two reasons. First, it will allow

us to deepen our understanding of the processes behind the term structure models.

Second, it will allow us to investigate risky arbitrage strategies using the EP model.

5.2 Statistical description of the estimated time

.series

In this section, we summarize the main statistical findings relative ta the esti-

mated state factors. Our data set consists of daily estimation of ten state factors

from July 27, 1989 to October 15, 1996, for a total of 1805 observations. ~!ore-

o\'er. we can see that the state factor, 89 , is not included in all the cross-sectional

estimations. Indeed. the presence of this factor was necessary only in a certain en-

vironment. \Ve relate this factor to a more turbulent macroeconomic environment.

Table 5.1 reports the mean, standard deviation, skewness and kurtosis of the state

factors. Skewness measures the symmetry of the distribution around its mean and

kurtosis is a measure of how outlier-prone a distribution is, Le., the tail thickness of

the distribution. Figures 5.1. 5.2 and 5.3 show histograms of the values of the state

factors with superimposed normal density functions. It appears from these figures

that the state factors have different behaviors with different degrees of asymmetry

around the mean. After examining these histograms, the skewness and the kurtosis

coefficients of aH the estimated factors, it is obvious that the assumption of condi­

tionaHy normally distributed factors does not hold. ~Ioreover, it can he observed

from the same figures, that the distributions of the state factors /3i for i = 7, ... ,9
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have a high concentration of values at zero. For Pi and ,88 , this is explained by the

fact that the l'ole of these state factors, in the estimation procedure, is to capture

aH the fine subtleties of the term structure movements. Thus for relatively ··stable"

economical environments, their l'ole is barely needed and thereby their values are

close to zero. For 89 , this is explained by the fact that this factor is not included in

aU the cross-sections. Thus, its value is confined to zero each time we use only nine

factors instead of ten in the regression. For R, we restricted the lower boundary

value of this state factor to 3.5%, this is motivated by sorne economic significance.

Figures 5.4 to 5.6 report the time series evolution of aIl the state factors. It

seems from these figures that the evolution of an the state factors is governed by

sorne regular shifts in volatility. This causes each series to change dramatically at

sorne points in time. This phenomenon can also be observed in Figures 5.1. 5.2

and 5.3. Indeed. the distributions of these state factors, especially for higher order

factors. Le.. 3i . for i = 4, ... ~ 9 and R, appear to be bimodal. The occurrence of the

shifts and the bimodal distributions are the result of the same phenomenon. It is

related to our estimation procedure described in Chapter 3. \Ve believe that it is a

"mathematical artifacC induced by high multicollinearity among the components,

especially of higher arder Bi for i = 4, ... ~ 9, of the exponential basis of the EP model.

Thus. studying the original series of the state factors can he misleading. Indeed, we

might be inclined to model a shift which is nothing more than an "artifact" induced

by our previous estimation procedure. Instead, we suggest to study the distribution

of the eigen principal components of the state factors in the EP mode!. The principal

components are by definition orthogonallinear combinations of the state factors. In

this context~ orthogonality implies uncorrelated principal components. In Chapter

3. we conducted an eigen analysis from which we concluded that the EP model is

driven by three principal components. The relationship between the state factors
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and their centred principal components is defined as fo11ow5

Fe = E'(B - 1\feanL (5.3)

where B is a (10 x 1805) matrix containing the 10 state factors, Mean is a (10 x 1805)

matrix. Each raw of l\fean represents the mean of a state factor. E is the (10 x 10)

matrix of column eigenvectors ordered by the eigenvalues of B and Fe is a (10 x 1805)

matrix containing the principal components of the state factors. An apostrophe

denotes a matrix transpose. Each ro\\" of matrix Fe represents the series for a

principal componenL denoted by fi for i = 1. .... 10. The uncentred principal

components of the state factors are defined as fo11ows

F=E'B. (5.4)

Centred and uncentred principal components are connected by the following relation

F = Fe + E'J.\fean. (5.5)

•

The row elements of the second term in 5.5 are constant mean values that do not

influence the time series properties of the principal components and are in fact small.

Thus. we use the uncentred principal components instead of the centred principal

components. :\0"". our objective is to study the time series properties of the tirst

three uncentred principal components denoted by fI, /2 and 131, and attempt to

model them.

Figure 5. ï presents the time series of the three principal components. It is

obvious that these series are smoother and less erratic than the times series of

the original state factors. lvloreover, their distributions do not exhibit the bimodal

property observed with the original state factors. Figure 5.8 plots the corresponding

three histograms with superimposed normal density functions. It is clear from this

1In the remaining text, the uncentred principal components will be referred to as principal

components for short.
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figure that the principal components have different distributions than the original

state factors. First. the two-peak phenomenon is no longer present. Second, their

kurtosis and skewness are Dot similar ta those of the original state factors. Table 5.2

reports sorne descriptive statistics for the principal components series. The three

components have heavy tails relative to a normal distribution. For instance fI has

a kurtosis of 3.84 which is larger than 3. vVe study the times series of the three

principal cornponents in the next section.

5.3 Stationarity of the principal components

Traditionally. the exarnination of stationarity of a time series starts by computing

the sarnple autocorrelation function (SAF) as weIl as the sample partial autocorre­

lation function (SP:\.F). The SAFs are computed as fo11ows

T

L (Xt - Ï)(Xt-k - x)
• () t=k~lPk I = ---------T S 2

k = L2...20. (5.6)

where l is a general variable. T is the sample size. Ï is the mean of x~ and s the

sampIe standard de\Oiation of I. If the autocorrelation coefficients are nuU for k > q,

the variance of Pk (.) is

\ '(Pk) = T- 1(l + 2pî + ... + 2p~). (5.7)

•

The SPAF is calculated by fitting autoregressive rnodels of increasing orders: the

estimate of the last coefficient in each model is the sampIe partial autocorrelation,

Okk· Figure 5.9 iUustrates the evolution of the SAF for aIl the three principal com­

ponents. while Figure 5.10 presents the evolution of their SPAF. The shapes of the

S:\.F lead us to conclude that aIl three principal components have SAF that are ~'in­

finite in extenC, which is a behavior compatible with autoregressive modeJs. The

SPAF behavior seems to reach zero for certain lags in sorne principal components but
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reappears later on. However~ in general we are more inc1ined to consider the SPAF

to be finite in extent. The behavior of these two functions suggest the use of an

autoregressive mo\ing average AR~IA model as a representation of these principal

components. However ~ the fitting procedure cannot be applied until the stationarity

of the principal components is examined. Indeed, before suggesting any model to fit

the principal components, we start by checking whether the series are stationary or

not. thereby suggesting an order of integration. The stationarity of a series implies

the existence of one or multiple unit roots. The theory and practice of testing unit

roots haye been re"iewed by many authors 2. Here, we will present two types of

tests:

• The Phillips and Perron (1988) test for unit roots.

• The Augmented Dickey and Fuller (1979) test.

Consider the following OLS estimation of the following regression function:

ft = Q + Pft-l + Ut· (5.8)

where Ut is assumed to be Dormally distributed. The objective is to investigate

whether the series described by ft is stationary or DOt. Thus. we test the null hy­

pothesis: Ho : p == 1 against the stationary alternative Ha : p < 1. An obvious test

statistic is the usuai °t-ratio 0 of the estimate of (p - 1) to its estimated standard

error. Dickey and Fuller showed that this statistic does not have a Student's t distri­

bution. Instead the distribution, which is denoted by Til' has a specifie distribution

determined by Fuller (1976). Phillips and Perron (1988) generalize the unit root

test when the errors Ut are assumed to be white noise to the case when Ut is serially

correlated and possibly heteroskedastic as weIl. Hence

• ft - ft-l = tjJ(L )€h
--_._---------

2See for instance Hamilton (1994) and Harvey (1993) for a re\;ew of these tests.

(5.9)
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where
oc

w(L)€t = L 1jj€t-j!
.1=0

with E(€d = 0, E(l;) = a2 and E(lt€T) = 0 for t 1= T.· Phillips and Perron

proposed estimating equation 5.8 by OLS even when Ut is serially correlated and

then modifying the statistic to take into account the seriai autocorrelation and

potential heteroskedasticity in the disturbances 3. Dickey and Fuller presented an

alternative approach which accounts for seriai correlation by including higher-order

autoregressive terms in the regression Cunction:

p-1

~ft = Q + (/Jlft-l + L CPi+l~ft-i + lt·
i=1

The augmented Dickey-Fuller test statistic is computed as 'JJ

(5.10)

At this

•

stage. it must be mentioned that the augmented Dickey-Fuller test is, in theory,

only valid if the underlying process is indeed a finite autoregression. However, Said

and Dickey (1984) showed that the augmented Dickey-Fuller test could still be jus-

tified on asymptotic grounds. Descripth'e statistics such as the mean, standard

de\·iation and selected autocorrelation coefficients as well as stationarity test statis-

tics of the original and first difference series are reported in Table 5.3. \Ve can

see that the autocorrelation coefficients in the original time series of fI decay very

slowly. Those of the day-to-day change are generally small, except for Pl, and are

not consistently positive or negative. The results of the formaI augmented Dickey­

Fuller non-stationarity test with p = 4, as weIl as the Phillips-Perron test indicate

a strong rejection of the null hypothesis at the 5% significance level. Note that

both tests have the same critical value. These results imply that the stationarity of

the series is very likely. The same results are reported for the other two principal

components in Tables 5.4 and 5.5.

3See Hamilton (1994) section 1i.6 for an explicit formula of the adjusted statistics.
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5.4 Modelling the principal components of the

EP model

The results obtained in the previous section allow us to consider the three prin­

cipal components as stationary processes. Thus, we choose to model them by

AR~IA(p~q) models.

5.4.1 Fitting an ARMA(p,q) model

In this section. we fit an AR~1A(p~q) model to the principal component /1' \'·e

will follow the same estimation procedure for aU three principal components. An

AR~IA(p~q) process includes both autoregressive and moving average terms:

(5.11)

In a more compact way~ equation 5.11 can he rewritten as

(5.12)

where L is the lag operator. The stationarity condition of this process requires that

the roots of the characteristic equation

p . p-l . 0
X - <PlI - ••• - lfJp = , (5.13)

•

are less than one in absolute value. i.e.~ they lie within the unit circle. An alternative

way of expressing this condition is in terms of the lag operator

(5.14)

where the lag operator is simply replaced here with the scalar z. The stationarity

condition is that the roots of 5.14 should ail lie outside the unit circle. In otber

words. the absolute values of the roots of this equation must he strictly greater than
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one. If the stationaritv condition is satisfied. the AR~IA process turos out to he

coYariance stationary and both side of 5.12 can be divided by (I - (j)IL - ... - C1>pV)

to obtain

ft = Il + 1/J(L )ft~ (5.15)

where

w(L)
(1 + 8l L + ... + 8qLq)

- (1 - ethL - ... - dJpLP) ,
x

Llt'jl < 00,
j=O

Ji. = c/{l - 4>1 - f1>2 - ... - l!>p).

Hence. the stationarity of an AR~lA process depends entirely on the autoregres-

si\·e parameters (01. cP2 . .... (!)p) and not on the mo\ing average parameters (81,82 , .•• , 8q ).

The estimation of these AR~'IA(p.q) coefficients is obtained through the minimiza­

tion of the likelihood function using a Gauss-Xewton algorithme The results of the

estimation are summarized in Table 5.6. Since the orders p and q are unknown. we

suggest that the series caD be modeUed by sorne AR~IA process of reasonably lo\\"

order. Thus. we consider that p = 0..... 2 and that q = O..... 2. This choice of

orders may seem ad hoc. but for AR~IA rnodels fitted with p and q higher than 2.

we find that the added coefficients to be statistically insignificant. Table 5.6 reports

aU the estiraated parameters of the fitted AR~1A(p,q) models. The estimation of aIl

the models seems to imply reasonable values for the coefficients. For models with

autoregressive order p = 1, the estimates of the autoregressive coefficients 4>1 are

close to unity. For the models with p = 2~ the sum of both parameters 4>1 and 4>2

is close to unity. This phenomenon is reported by many financial time series. For

instance, for the AR(l) model, the estimate <Pl is less than 1, yet. the series is very

close to a random walk. i.e.. tfJ1 = 1.

There are different selection criteria that may be used to choose a model of ap­

propriate arder. The most popular ones are the Akaike (1974) Information Criteria

(AIC) and Schwarz (1978) criterion (BIC). BIC is strongly consistent since it deter-
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mines the true model asymptotically. whereas AIC favors overparametrized models.

L-sually. the criteria are used such that

AIC(p\ q*) = min AIC(p. q) for p = 1, ... P, and q = 1, ... Q.

From Table 5.6, we can see that both Ale and BIC select the pair of orders (1,1)

and (2.1). \\le select the AR~IA(L1) model because it is more parsimonious than

the AR!\IA(2,1) mode!. :\o\\'. the question arises: Can the selected model, i.e.,

AR!\IA(1.1). pass diagnostic checks on the residuals? To answer this question. we

examine the properties of the residuals ft of the estimated mode!. Figure 5.11

displays the sample SAF of the residuals for AR!vIA(Ll) with upper and lower 95~

confidence bounds that are based on the assumption that all autocorrelations are

zero beyond lag zero. :\ote here that the significance of the correlation coefficients

are being tested indi\"idually and not simultaneously. About one in 20 coefficients

would be expected to lie outside the bounds by chance uoder the hypothesis of

no autocorrelation. As two coefficients lie outside the bounds, it appears that the

residuals of the AR~L\(1.1) model exhibit little or no correlation. Thus, we can

consider this model as an adequate working mode!. Table 5.7 reports the results of

the AR~IA(p.q) models estimation for the principal components /2 and 13. After

suggesting different orders for p and q. we conclude that the AR!\1A(1)) model is

suitable for both principal components. The autoregressive coefficient 4Jl is 0.98 for

/2 and 0.97 for /3.

5.4.2 Testing for the presence of ARCH errors

Figure 5.12 presents a time series plot of the first differences of the three prin­

cipal components. It can be seen from the figure that the daily estimated values

are not homoskedastic. They are rather characterized by periods of tranquility fol­

lowed by periods of more turbulent movements (a phenomenon known as volatility
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clustering). \\-e have also seen previously that there may he a litde seriaI depen-

dence in the residuals of the AR!\L\.(l,l) mode!. Indeed, the Ljung and Box (1978)

portmanteau test for up ta the twentieth arder seriai correlation of f for the series

of fI equals 44.39, whereas the same test for the twentieth arder seriai correlation

in the squared errors equals 221.13. C'nder the null hypothesis of identically and

independently distributed principal components. both test statistics are asymptot­

ically the realization of a chi-square distribution with twenty degrees of freedom

(:t~o)' However. it must be noted that, in the presence of ARCH, the portmanteau

test for seriaI correlation in ft tends to over-reject. The presence of ARCH cao lead

to serious model mispecification if it is ignored. \\:"eiss (1984) showed that ignoring

ARCH will lead to the identification of AR1\.fA models that are overparametrized.

Therefore. before deciding on the adequacy of the fitted model, we test for the pres­

ence of ARCH in the residuals of the mode!. Engle (1982) suggested a test based

on the Lagrangjan multiplier (L:\1) in which the null hypothesis is that ft possesses

a constant conditional \'ariance against the alternative that the latter is given byan

ARCH(p) process.

This test is described as follows: First. the estimated residuals of the model are

sa\'ed and then EF is regressed on a constant and k of its lagged values:

(5.16)

•

The statistics T x R2
• from the regression of 5.16. converges in distribution to a X2

under the null hypothesis. It must be mentioned that sorne complications may arise

when the alternative is a GARCH(I,k) process. However, in practice, this test is more

useful in testing the squared residuals than determining whether the residuals follow

an ARCH or a GARCH process. The results of the LM test as weIl as the Ljung-

Box statistics of the squared residuals are reported in Table 5.8. According to those

results. the residuals of the AR~fA(L1) model are heteroskedastic. This is a first

indication that AR~IA(L1) is insufficient to capture the behavior of the principal
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component fI. \Ve applied the sarne test procedure on the principal components

f2 and f3. \\"e found that AR~IA(l.l) model is insufficient ta fully capture the

behavior of these two principal components.

5.4.3 ARMA(p,q)/GARCH(l,k) model

In arder ta indude the heteroskedastic aspect of the errors, we consider the

fo11owing model:

AR-'fA (1.1): fI - C + (1)lft-l + ft + 91ft-l~

GARCH(2.1): ht - K + Wlf~_l + olht - l + 02ht-2,

(5.1 i)

(5.18)

•

where ht is the conditional variance of ft. \\ïth this model, we still assume that

the mean of the process fo11ows an AR~IA(p.q) model however we allow the error

term ft to have sorne form of heteroskedasticity. Thus. the conditional volatility of

ft. as described by equation 5.18. is a GARCH(2.1) process. This model has been

used by various authors for different financial series. The results of the GARCH

estimation. for the principal component fI, are presented in Table 5.9. The coef­

ficients of the AR~lA(1.1)/GARCH(1.1) indicate that QI and WI are bath highly

significant at the conventional 5% level. ~Ioreover~ we note that the estimate of

(;"'1 + ad turns out to he very close ta unity. The same remark is also valid for

the AR~1A(1.1)/GARCH(2.1) where (Wl + 01 + (2) is close ta one. This result

is very similar ta other results using higher frequency financial data. Engle and

Bo11erslev (1986) called such a process an integrated GARCH(l,k), IGARCH(l,k) or

GARCH(l.d,k), where d = 1 is the arder of integration. In this dass of models, the

autoregressive polynomial equation modelling the variance in 5.18, has a unit root

and consequently a shock to the conditional variance is persistent in the sense that

it rernains important for future forecasts of aIl horizons. As noted in Bollerslev,

Engle. and ~elson (1994)~ the notion of "persistence" of a shock ta volatility within
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the ARCH class of models is even more complicated than the corresponding concept

of persistence (integration) in the mean for linear models (AR-\1A). However. the

same authors daim that the IGARCH models are strictly stationary and ergodic.

~evertheless. they suspect that the apparent persistence of shocks may he driven

by thick-tailed distributions of the errors rather than inherent non-stationarity.

In order to determine whether we have an integrated series or not, we computed

the t-statistics for the null hypothesis that (Wl + QI + (2) = 1 as weIl as for

(~'l + ad = 1. \re found that the nu11 hypothesis is rejected at the 5% signifi­

cance leyel for both cases. Thus~ we cannat accept the hypothesis that fI fo11ows an

IG:\RCH(l.k)) mode!. In our case. the GARCH(2.1) model seems to have a better

explanatory power compared to the GARCH(l,l). The likelihood ratio (LR) test.

which assesses the adequacy of a model relative to another nested model, is equal to

26.88 which is greater than xî at the 5% significance level. Thus. it seems that an

:\R}'I:\(1.1)/G:\RCH(2.1) is a good description of the empirical properties of the

first principal component fI' This result is confirmed by the results obtained from

the Ljung-Box portmanteau test on the squared residuals of the estimated param­

eters as weIl as the L}'l test. Those results are reponed in Table 5.10. The upper

plot in Figure 5.13 shows the evolution of the standardized residuals ( the residuals

dh'ided by their conditional standard de\·iation). They appear generally stable with

little clustering. The lower plot of the same figure shows the SAF of the squared

standardized residuals from the same AR~IA/GARCHmodel, with 95 %confidence

bands. It is clear from this figure that the SAF here shows no autocorrelation.

For the remaining t\\'o principal camponents~ we follow the same procedure as de­

scribed in the present section. Table 5.11 reports our findings. AlI three principal

camponents seem ta be weIl modelled by an A~\1A(1,1)/GARCH(2,1).

In summary. the AR:\IA/GARCH rnodels suggested for ail three principal campo­

nents do capture the seriaI temporal dependencies in the volatility of these factors.
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Thus~ the highly significant portmanteau test for seriaI correlation of the squared

residuals of the AR~lA(p~q)models drops dramatically for the squared standardized

residuals of all the AR~1A/GARCHspecification.

5.5 The properties of the estimated short rate

In Chapter 2, the short rate from the EP model was defined as a linear combi­

nation of all the state factors of the model. Since there is a large body of empirical

literature de\·oted to examining the time series properties of the short rate data~

we would like to study the process of the short rate inferred from the EP model.

Csually. the empirical research on the time series properties of any unobservable ecO­

nomic variable. such as the short rate, requires the specification of a prox)". Figure

5.14 Sl10\\"S the evolution of the short rate implied br the estimated EP model and

the evolution of the three-month T-bills yields. One can clearly see from this figure

that both series ha\·e very similar evolution. In generaL there is not a consensus

among authors regarding the choice of a proxy for the short rate. As Chapman.

Long. and Pearson (1999) concluded in their paper .....the proxy problem is ecO­

nomically significant. ..~~. In our case the proxy will be the irnplied short rate from .

the EP model. ~lany authors have tried to answer the following question: "\Vhat

is the process followed by the short rate?'~ Chan, Karolyi, Longstaff, and Sanders

(1992). Aït-Sahalia (1996). Duan and Jacobs (1998), Conley~ Hansen, Luttmer~ and

Scheinkman (1997), Jiang (1998), and Ahn and Gao (1999) are sorne of the studies

related ta the subject. The empirical findings regarding the process of the short

rate deals with two different aspects: the drift of the short rate and the diffusion

of the short rate. Regardless of the proxy used, aimost aU studies conclude that

the conditional volatility of the short rate exhibits heteroskedasticity. On the other

hand~ the estimation of the drift rernains imprecise and still ambiguous. Aït-Sahalia
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(1996) daims that the linearity of the drift irnposed in the literature, especially in

the affine models~ is the main source of misspecification. However, Ahn and Gao

daim that the drift function of sorne proxies of the short rate are consistent with

the assumption of linear drift. The EP model did not impose any restriction on the

drift or on the diffusion of the short rate. Our objective is to find a "good" model

which fits the EP implied short rate.

5.5.1 The stationarity of the short rate

In section 5.3. using the Phillips-Perron and the augmented Dickey-Fuller tests~

we conduded that the first three principal components of the EP model are station­

ary. The EP implied short rate is a linear combinations of the state factors. It is also

(approximately) a linear combination of the three orthogonal principal components

studied abo\"e. Given these findings~ we daim that the EP implied short rate must

follow a stationary process. In Table 5.12. we report sorne descriptive statistics for

the implied short rate. The results are slightly different from what we obtained sa

far for the principal cornponents. The null hypothesis of non-stationarity for the EP

irnplied short rate is rejected at the 10% significance level. For the principal compo­

nents~ we were able to reject the non-stationarity hypothesis at the 5% significance

level. This result is interesting in the sense that it can be compared to the findings

of other authors. Jiang (1998) and Aït-Sahalia (1996) tested the stationarity of two

different proxies of the short rate: the three-month Treasury bills rate and the 7-day

Eurodollar rate. 80th studies round a slight rejection of the null hypothesis. This

result explains the reason why the short rate, especially in macroeconomics, is usu­

ally modeled as having a unit root and hence a non-stationary process, as pointed

out by Conley~ Hansen, Luttmer. and Scheinkman (1997)
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5.5.2 A dynamic for the implied short rate

\·asicek (1977) assumed that the short rate can be written~ in a discrete frame­

work. as an AR(1) process

(5.19)

where ft "" .'V1D(O. (j2). This model is easy ta irnplement. However, empirical

evidence on the diffusion process of the interest rate goes against the assumptioD of

a constant volatility of the short rate. Sun (1992) gave a discrete time version of

the Cox. Ingersoll. and Ross (1985) model of bond pricing. He suggested that the

square root process can be approximated by

(5.20)

•

Despite the unusual form of the innovation. this relation is still considered as an

AR(l). Gibbons and Ramaswamy (1993) estimated the ciJ parameter of equation

5.20. The parameter âJ will he interpreted as the implied first order autocorrelation

coefficient. They found this ,·alue ta be very small~ 0.37~ compared ta the auto­

correlation coefficient of 0.95. computed from a series of CS Treasury bills rates.

~Ioreo'·er. Backus and Zin (1994) have showed that using an AR~fA(p,q) model for

the short rate can better accommodate the observable dynamic of the term struc­

ture. Figure 5.15 shows the evolution of the SAF and the SPAF of the EP implied

short rate. The SAF decays at a very slow pace. However, the SPAF has a behav­

ior similar to what is usually produced by an AR(p) model. Here, we will fit an

AR~lA(p.q) model to the EP implied short rate and analyze the results. Table 5.13

indicates that either an AR~IA(2,1) or an ARr..1A(2,2) is a good description of the

process of the short rate. The fitted models seem to be stationary. Our findings

seem ta head in the same direction as those found by Backus and Zin. We daim

that previous term structure models imposed sorne simplifying assumptions on the
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process followed by the short rate. Those assumptions do not necessarily capture aH

the movements occurring in the bond markets. A good specification of the short rate

process is a first step towards a better understanding of the term structure subject.

Both Vasicek and CIR models assumed an AR(I) model for the short rate process.

AR(l) is a special case of AR~IA(p~q). Hence, fitting the EP implied short rate

with an AR~IA(p,q) model assures a priori a better description of the short rate.

Xevertheless. we cannot conclude on the adequacy of the AR~1A models unless the

residuals of these models are checked. Figure 5.16 shows the evolution of the SAF

of the residuals of the AR~\'IA(2.1) and the AR~IA(2,2) models fitted for the EP

implied short rate. It appears that five autocorrelation coefficients lie outside the

bounds for both models. This c1early "iolates the hypothesis of no autocorrelation

of the residuals of the models. ~Ioreo'·er. the residuals of the AR~1Amodels must be

checked to deterrnine whether they exhibit heteroskedasticity. Results from Table

5.14 imply that the two selected AR~[A models may not be adequate for the short

rate. In facL the residuals of both models support the hypothesis of ARCH effects

in the residuals as weIl as autocorrelation. This finding leads to considering an

AR~IA/CARCH specification for the short rate. Table 5.15 summarizes the results

for a range of specifications. Civen the "alues of sorne coefficients~ it is dear that

the AR~IA(2.1) and AR~1:\.(2.2) are not adequate as models of the mean of the

short rate. Indeed, these two specifications imply non stationary processes. The

sum of their autoregressive coefficients is very close to one. For instance, the model

AR~L-\(2,1)/GARCH(1.1) implies a sum 4>1 +~2 = 0.9991. The hypothesis that this

sum is statistically different from one is rejected at the 5% level of significance. This

confirms the daim of \Veiss (1984) that the existence of ARCH effects may lead to

overparameterized AR:\fA models. On the contrary, AR~\'fA(1,1)/GARCH(L1) as

weIl as .-\R~L\.(1,1)/GARCH(2.1) seem to he plausible descriptions of the implied

short rate. Based on our estimation results, we find that the short rate exhibits
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heteroskedasticity and sorne persistence of volatility shocks. The result is in !ine

with that of Duan and Jacobs (1998) who concluded that the short rate follows a

GARCH( Ld)) process. In this notation, "d" is the arder of differencing of the series.

:\1uch of the analysis of financial time series considers the case when the order of

differencing is either O~ Le., the series is stationary, or 1, i.e., the series is integrated

of order one. Howe,-er, if '''li' is a non-integer, the series is said to be fractionally

integrated. Duan and Jacobs found that "cf' is statistically different from 0 and 1.

They reported that the series is fractionally integrated and thus concluded that the

short rate has a long memory component. In our case, the results in Table 5.16

support the adequacy of the AR~IA(1.1)/GARCH(2,1) model. Indeed, the residu­

als do not seem to be correlated or heteroskedastic. In Figure 5.1 i, we show a plot

of the SAF of the squared standardized residuals of the ARMA(1,1)/GARCH(1,1)

and AR~IA(1.1)/GARCH(2.1) models. \Ye notice that both models are adequate.

However. on the basis of the LR tesL we consider the AR~IA(L1)/GARCH(2,1)

as a better description of the series. \Ve tested whether the GARCH(2,1) model

for the "olatility of the short rate is integrated or note The hypothesis is slightly

rejected. This result implies that the order of integration is not equal to one_ In

a future study one must estimate the value of d to know whether the short rate is

fractionally integrated or not.

Thus, the EP implied short rate and the three principal components are described

by the same .-\R~I.-\/G.-\RCH model. The resuIt for the EP implied short rate is

not surprising as it is largely determined by the three main principal components.

In general. the findings here are encouraging and in !ine with the very recent

development in the term structure literature. Indeed, more and more authors (see for

instance Subrahmanyam (1996)) suggest the use of multi-factor models. Balduzzi,

Bertola, and Foresi (1996) suggest a three-factor model of term structure: the short

rate. the long-run mean of the short rate and the volatility of the short rate. They
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suggest that the volatility factor follows a GARCH process.

In Chapter 3, we gave ernpirical proof that the term structure is driven by more

than one factor. In our case ten state factors were necessary for a good fit. How­

ever, we showed through an eigen analysis that only three principal components

are needed to explain a large proportion of the term structure dynamic. In the

time series study, we found that aIl three principal components can be modelled by

an AR~IA(1))/GARCH(2!1)process. Our results confirm the idea that any term

structure model must allow for a rich dynamic which captures better the actual

evolution of the structure. The simplifying assurnptions made by previous terrn

structure rnodels are clearly no longer tenable.

5.6 The economic significance of the principal com­

ponents

The empirical in\'estigation of Chapter 3 found that daily CS term structures

over almost se\'en years can be estimated accurately by nine to ten state factors. \'"e

showed that these state factors have three principal components. \\te concluded that

the EP model is Iargely determined by three principal components. One question

rises: •. Are the three principal components of the EP model, econornically mean­

ingful?" State variables in other term structure models have been assumed ta be

the short rate or the long rate or the volatility of the short rate. Our suspicion is

that the principal components are correlated with macroeconomic variables which

influence the term structure movements. Our objective in this section is ta present

empirical evidence which confirms our suspicion.

In the literature. rnany authors have empirically showed that sorne macroeco­

nornic variables have an impact on interest rates and thereby on terro structure.

l'rich and \rachtel (1984L ~fcQueen and Roley (1993) reported that the Producer
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Price Index (PPI) has an impact on interest rates. Hardouvelis (1987) found signifi­

cant effeets for the Consumer Priee Index. the Trade Balance and the Cnemployment

Rates. Balduzzi, Elton~ and Green (1996) found that announcements about Durable

Goods Orders~ Initial Jobless Claims and Nonfarm Payrolls affect the three-month

bills priees. They also found that prices of medium and long maturity bonds are

affeeted by the CPI, Durable Goods Orders, Housing Starts, Initial Jobless Claims,

~onfarm Payrolls~ PPI~ Consumer Confidence~ ~ational Association of Purchasing

!\fanagers (XAP!vl) Index, New Home Sales and M2 median. Our objective is to

eheek whether the three principal eornponents are correlated with macroeeonomic

variables. Of course~ we do not expeet to find perfect correlation. ~evertheless~ the

presence of correlation would be evidenee of the connection between the principal

components and the real maeroeeonomic environment.

First. we start by ehoosing a basket of nine macroeconornic variables. \:Ve include

Housing Starts (HousingL Retail Sales (Retail). ~fonetary Aggregates ~11 and M2.

Yield of the Longest Bond (Long). the Federal Discount Rate (Fed)~ tl!e Producer

Price Index (PPI). the Consumer Priee Index (CPI) and Durable Goods (Dura­

Goods). The data on these variables are published by the Federal Reserve Bank

of Saint-Louis through their web site. Since most of these variables are published

monthly. we select from the three principal components the values that correspond

to the end of each month for the period between 1989 to 1996 (87 months). \Ve

eonstruct two matrices: an (87 x :l) matrix containing the monthly principal compo­

nents~ an (87 x 9) matrix containing the monthly data on macroeconomic variables.

5.6.1 Procedure

Our objective is to examine the relationship between the three principal com­

ponents of the state factors~ inferred from the EP model~ and the pool of macroe­

conornie variables using two procedures: simple correlation analysis and canonical
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correlation analysis.

5.6.1.1 Correlation analysis

\\:e compute the simple correlations between the logarithms of the macroeco-

nomic variables and:

1. the three principal components fi for i = 1,2,3,

2. the short rate r.

3. the long rate R.

Let fi denote the ith estimated state factor~ and Lj the logarithm of the jth

macroeconomic variable. Logarithms are used to reduce the scale of the raw data.

The simple correlation coefficient between any pair of these two types of variables

is computed using the following standard formula:

S(fi. I j )

rI] = s(fds(L j r for i = 1.2.3. and j = 1~ .... 9,

where
n

2:(fl.i -ld2

l=l

n - 1

n-l

•

n

2:(fl,i - !;.)(Ll,J - Lj )

1=1 cl 8~-------, an n = 7.
n-l

Table 5.17 reports the correlation matrix of the macroeconomic variables Li with

the three principal components, the short rate T and the long rate R. fI has a

relatively strong correlation with ~Il, PPI, and CP!. The principal components /2

and /3 as weIl as the long rate Rare highly correlated with Fed. The EP implied

short rate is highly correlated with Fed as weIl with Ml and M2. Moreover, the EP
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implied short rate is moderately related to aIl other macroeconomic variables, This

last result is perfectly predictable since the short rate is astate \'ariable intended to

capture the evolutior. of the economy,

Based on this table~ we cannot conclude if any macroeconomic variable is in­

fluencing one principal component in particular. Indeed. most of the correlation

coefficients with the principal components are of the same order~ therefore, big dif­

ferences among the principal components are not evident. In order to gain better

insight into the nature of the correlation between the principal components and the

macroeconomic variables. we conduct a canonical analysis.

5.6.1.2 Canonical analysis

Citrins (1984) defines the canonicai anal~'sis in the following terms: '~by canon­

icai correlation analysis. we mean a technique of multÏ\'ariate analysis which seeks

linear functions of two sets of variables with special properties in terms of correla­

tion irrespective of the nature of the \'ariables comprising either set.~~ Thus, the aim

here is to clarify the relationship between what is called. in the language of canonical

analysis. the two domains: the principal components and the pool of macroeconomic

\'ariables listed abo\'e, From the analysis we conduct. we will examine the signif­

icance of sorne coefficients and try to infer conclusions regarding the relationship

between the principal components and the macroeconomic variables,

First. we must mention that the analysis is performed on standardized data

(mean 0 and standard deviation 1). Second, Uk and Vk for k = 1,2,3, are defined

as linear combinations of fi and Lj variables, respectively. FinaIly, canonical pairs

(Uk~ Vk) are constructed to have maximum correlation between Uk and Vk, while

distinct pairs are constrained to he mutually uncorrelated.

Table 5,18 reports the correlation coefficients Tk (k = 1. 2, 3). It is evident that

the correlation between UI and VI is strong since Tl = 0.86. This suggests the exis-
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tence of a linear relationship between the principal components and macroeconomic

variables. The remaining rt (k > 1) decline until the smallest coefficient r3 attains

0.48. The strengths of the tirst three canonical correlations confirm the presence of

several linear relationships between the two domains.

The squared correlation coefficients r~ express the proportion of the variance

of the kth canonical variate Ut~ that is explained by its conjugate VI;, or vice versa.

From Table 5.18, we find that ri = 0.7452, which means that 74.52% of the variation

in the linear combination of the principal components specified by UI is attributable

to the variation in that particular linear combination of the macroeconomic variable

specified by VI' From the magnitudes of ri, r~ and r~, one cao deduce that the

overall relationship between the two domains is reasonably strong. \Ve rely on the

percentage attributable to the kth root, r~, as a way to determine the dimensionality.

From Table 5.18~ it can be deduced that the roots r~, for k = 1, 2, account for 84%

of the predictable variance. The inclusion of the third root necessarily increases this

percentage to 100~ because the effective dimensionality of the linear association

between the principal components and the macroeconomic variables is limited to

the smaller number of variables in each domain (three in this case). This result

implies that three linear relations may be considered to fully describe the effective

dimensionality of the linear association between the principal components and the

macroeconomic variables.

Table 5.19 reports different types of correlation of the principal components

with the canonical variates Ut and of the macroeconomic variables with Vt. The

intraset correlations (see the lower part of Table 5.19) measure the correlation of the

macroeconomic variables with the canonical variates Vt. For instance, we note that

the canonical variate VI is characterized principally by the macroeconomic variables~

Fed (O. 70) ~ ~n (-0.47) and CPI (-0.43). V2 is essentially a combination of Fed (0.36),

Long (0.30) and Dura (0.26). V3 is a contrast ofpercentage of MI (-0.19), Ret (-0.17)
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and CPI (-0.15). Of the three canonical variates~ VI is the strongest one. absorbing

about 169C (the variance extracted = 0.1582) of the total \'ariance associated with

the macroeconornic variables. The second canonical variate accounts for onl\- -t9é of

the total variance. The third canonical variate explains little of the total \"ariance

associated with the rnacroeconomic variables. Collectively. the t't account for about

22% of the total variance of the macroeconornic variables.

The intersE-t correlations are reported in the upper part of Table 5.20, They are

the correlations of the estimated state factors with the canonical variates t't. The

magnitude of the correlations of the principal components with 1.'1 shows that aIl

principal components are at least moderately related to L'l' Particularly. the tirst

canonical \'ariate of the macroeconomic variables domain is characterized by a pos­

itÎ\"e weight to aIl the principal components. Since. we concIude pre"iously that 1.'1

is highly related ta Fed. we can suggest that the principal camponents fI' 12 and 13

tend ta be positively associated with Fed. V2 is positively correlated with 12 (0.65).

while negatively carrelated with fI (-0.23) and f3 (-0.16). Knowing that 1.'2 is largely

related to Fed and Long. we can affirm that f2 is positÏ\"ely related to both Fed and

Long. The canonical \"ariate V3 is positively related to fI (0.32) and negatÏ\'ely re­

lated ta 13 (-0.3-t) whereas it is poorly related to 12' Since t'3 is negatÏ\'ely related

to JI1. then we can cIaim that fI and f3 are positively related to J[l.

Our findings show a strong link between the principal components of the state

factors of the EP model and the macroeconomic environment. as expected. ~Iore­

over. as suggested by our canonical analysis. it seems that sorne principal cornponents

are particularly related to the Federal Discount Rate, to the Yield of the Longes!

Bond and to ~Il. Part of these resuIts is plausible based on pre,"ious work in the

literature. Indeed. Brennan and Schwartz (1979) developed a term structure rnodel

where one of the state variables is the retum on the longest bond. Thus~ our results

confirm the relevancy of such variable but point to the presence of other factors that
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influence the term structure of interest rates. \Ve think that a continuation of this

investigation could include a wider choice of macroeconomic variables and will bring

a better confirmation of our preliminary results.

5.7 Conclusion

This chapter studies the time series properties of the principal components esti­

mated from the EP mode!. Our preliminary investigation revealed a mathematical

artifact in the distribution of the estimated state factors. This artifact is induced by

the high multicollinearity of the exponential components of the EP mode!. Thus. the

analysis focused on the first three principal components of the state factors. They

are orthogonal linear combinations of the state factors and explain up to 99.9% of

the total variation in the EP mode!. After conducting a time-series analysis on

these principal components~ we concluded that all of them are stationary processes

and can be described by a cornmon :\R).L\(1.1)/GARCH(2~1) mode!. This result is

interesting for seyeral reasons:

1. It confirms recent findings in the literature about the processes followed by

sorne state \"ariables of term structure models. See for instance BalduzzL Das~

Foresi. and Sundaram (1996). They use a three-factor tenu structure mode!.

One of the state variables~ the volatility term, is described by a GARCH

process.

2. The discovery that a common AR!vlAjGARCH model describes the principal

components of the state variables opens the door for a better understanding

of the term stru~ture. It suggests a possible use of the EP model in arbitrage

strategies. This idea~ in particular, will be investigated in the next chapter.

3. The short rate. defined as a linear cornbination of all the state factors of the
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EP model. is round to follow the same AR~IA/GARCH process. This result

confirms the widely held idea reported in the literature that the short rate

process is heteroskedastic.

4. Finally. in our attempt to attribute sorne specifie economic significance to the

principal components, we discovered that the three principal components are

related ta macroeconomic variables such as the Yield of the Longest Bond, the

moneta~· aggregate ~11 and the Federal Discount Rate. This result is very

promising because it shows that there is a relationship between the estimated

principal components of the EP model and macroeconomic indicators related

ta the Federal reserve policy (Federal Discount Rate) and ta monetaI}· policy

(~n). \Ye suggest this as a subject of a future research.
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Figure 5.1: These figures depict the distibution of the state factors with a superimposed normal

distribution for Bi for i = 1... ,4 estimated from 1805 cross-sections of US Treasury bills, notes

and bonds fit to the EP model for the period from 1989 ta 1996.

•



•
1.. ?tl_

distribution of 115 distribution of P6
200 300

250
150

200

100 150

100
50

50

0 0
-40 -20 0 20 40 -50 0 50

distribution of P7 distribution of Pe400

l

500

400
300

1

300r
200

2001
100

100~

1

0 0
40 60-100 -50 a 50 100 -40 -20 0 20

Figure 5.2: These figures depict the distribution of the state factors with a superimposed normal

distribution for 3 i for i = 5 ... ,8 estimated from 1805 cross-sections of US Treasury bills, notes

and bonds fit to the EP model for the period from 1989 to 1996.
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Figure 5.3: These figures depict the distribution of the state factors 9.ith a superimposed normal

distribution. for :39 and R estimated from 1805 cross-sections of 1.:"S Treasury bills. notes and bonds

fit ta the EP model for the period 1989 to 1996.
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Figure 5.4: These figures depict the evolution of the state factors Si for i = 1 ... ,4 estimated

from 1805 cross-sections of CS Treasury bills. notes and bonds fit ta the EP model for the period

from 1989 ta 1996.
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Figure 5.5: These figures depict the evolution of the state factors i3i for i = 5 ... ,8 estimated

from 1805 cross-sections of CS Treasury bills. notes and bonds fit ta the EP model for the period

from 1989 ta 1996.
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Figure 5.6: These figures depict the evolution of the state factors 89 and R estimated from 1805

cross-sections of CS Treasury bills. notes and bonds fit to the EP model for the period 1989 ta

1996.
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Figure 5.7: These figures depict the evolution of the principal components of the state factors

fi for i = 1.... 3 estimated from 1805 cross-sections of CS Treasury bills, notes and bonds fit to

the EP model for the period from 1989 to 1996.
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Figure 5.8: These figures depict the distribution of the principal components of the state factors

fi for i = 1... ,3 estimated from 1805 cross-sections of CS Treasury bills, notes and bonds fit to

the EP model for the period from 1989 ta 1996.
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Figure 5.9: These figures depict the evolution of the SAF of the principal components fi for

i = 1 .... 3 estimated from 1805 cross-sections of CS Treasury bills, notes and bonds fit ta the EP

model for the period 1989 to 1996. The two bands represent the upper and lower two standard

deviation 95% confidence bounds. based on the assumption that all autocorrelations are zero.
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Figure 5.10: These figures depict the evolution of the SPAF of the principal components of

the state factors ft for i = 1.... 3 estimated from 1805 cross-sections of US Treasury bills, notes

and bonds fit to the EP model for the period 1989 through 1996. The two bands represent the

upper and lower two standard deviation 95% confidence bounds, based on the assumption that all

autocorrelations are zero.
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Figure 5.11: This figure represents the evolution of the SAF of the residuals of the A~\1A(1,1)

model for the principal component fI .
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Figure 5.12: These figures depict the evolution of first differences of the principal components

fi for i = 1 ... , 3 of the state factors estimated from 1805 cross-sections of US Treasury bills, notes

and bonds fit to the EP model for the period 1989 to 1996.
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Figure 5.13: These figures illustrate the evolution of the standardized residuals and the SAF of

the squared standardized residuals of the AR..\IAjGARCH model for the principal component il .
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Figure 5.14: This figure presents the evolution of t'Wo time-series: the implied short rate ( solid

line) for the EP model estimated from 1805 daily cross-sections of l:.S Treasury coupons bonds

over the period of 1989-1996; the daily yields of three-months V.S T-bills (dots) .
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Figure 5.15: The SAF and the SPAF of the EP implied short rate.
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Figure 5.16: The SAF of the residuals of the AR.\fA(2,1) and AR.\iA(2,2) models for the EP

implied short rate.
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Figure 5.17: The SAF of the squared standardized residuals of two AR.\!A/GARCH models for

the EP implied short rate.
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factor mean std skev:ness kurtosis

31 0.0196 0.0510 0.0212 2.4136

82 -0.1435 0.3429 0.0535 2.3024

83 0.5097 1.2833 -0.1370 2.1994

84 -1.1045 3.5186 0.2397 2.2617

85 1.1424 7.9346 -0.3315 2.4347

86 0.8851 13.5593 0.4397 2.5403

87 -6.4032 18.9826 -0.6249 2.4935

88 7.8010 14.3568 0.8136 2.4099

39 -2.4429 3.8379 -1.1501 2.8346

R 0.0472 0.0177 1.4394 4.1407

Table 5.1: Descriptive statistics for series of 1805 observations on the estimated

state factors Bi for i = 1. ... ~ 9 and R.

Component mean std skewness kurtosis

fI 0.0018 0.0022 -0.5701 3.8413

h -0.0197 0.0327 -0.2710 2.9321

f3 -0.0044 0.0099 -1.1487 6.6558

Table 5.2: Descriptive statistics for series of 1805 on the first three principal com­

ponents fI for i = 1. .... 3.
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VarIables ~ Mean Std.Dc!v. Pl P3 PT Pu Pl~ Pl9

11.1 1805 0.0018 0.0022 0.9695 0.9419 0.8946 0.85440 0.8202 0.7869

h.l+l - Il.l 1804 -0.00006 0.0368 -0.2423 0.0005 -0.0363 -0.0220 -0.0380 -0.0296 0.0163

Augmented daily -3.2151

Dickey-Fuller

Pbillips-Perron -86.0466

statistics

Ho: rejeet at 95~

Sonstatlonary (criticaJ ~-a1ue=-2.86)

Table 5.3: Summary statistics of the first principal component fI-

Variables ~ Mean Std.Dev. Pl P3 P7 Pu PU Pl9

!:.I 1805 -0.0197 0.0327 0.9407 0.9083 0.8580 0.8243 0.7827 0.7449

12.1+1 - 12.1 1804 1.6135 x lO-5 0.0112 -0.3471 0.0006 ·0.0407 -0.0133 -0.0277 0.0062

Augmenu'd daily -3.7338

Dlckey. Fui 1er

Philiips- Perron -284.1847

statJstlcs

Ho: reJect at 95~

Sonstatlonary 1crJtlcal value;-2.86)

Table 5.4: Summary statistics of the second principal component 12.

Variables S Mean Std.Dev. Pl P3 P7 Pu PU PIQ

13.1 1805 -0.0044 0.0099 0.9192 0.8656 0.7974 0.7272 0.6633 0.6102

13.1+1 - 13.1 1804 -8.9677 x 10- 11 0.0039 -0.3401 -0.0507 0.0067 -0.0098 -0.0516 0.0828

Augmented daily -4.6674

Dickey-Fuller

Phillips-Perron -312.2564

stati.tics

Ho: reJeCt at 95%

Sonstationary (criticai value=-2.86)

Table ,J.\): Summary statistics of the third principal component f3 .
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~Iodel 4>1 C!>'2 81 (J2 C AIC BIC

AR.\lA(l.O) 0.9760 0.00004 -15.0745 -15.0714

(0.0056) (0.00001)

AR.\IA(2,O) 0.8057 0.1745 0.00003 -15.1248 -15.1187

(0.0230) (0.0229) (0.00001)

AR.\lA(O.l) 0.8340 0.00189 -13.2439 -13.2409

(0.01299) (0.00005)

AR.\IA(0.2) 1.0682 0.6309 0.0018 -13.7839 -13.7778

(0.01804) (0.01804) (0.00006 )

AR.\fA(l.l) 0.9858 -0.2288 0.00002 -15.1434 -15.1343

(0.0042) (0.0237) (0.00001)

AR.\IA (1.2) 0.9885 -0.2164 -0.0824 0.00001 -15.1391 -15.1330

(0.0039) (0.0238) (0.0238) (0.00001)

AR~IA(2.1) 1.2739 -0.2817 -0.5069 0.00001 -15.1432 -15.1341

(0.0806) (0.0792) {0.07473) (0.000008)

AR~fA(2.2) 0.7591 0.2264 0.0132 -0.1348 0.00002 -15.1419 -15.1297

1
(0.2534) (0.2500) (0.2520) (0.0592) (0.00001)

Table 5.6: Parameter estimates for the principal component fI from 1805 observa­

tions. The standard de\Oiation of the parameters are enclosed in parentheses.AIC is

the :\kaike Information Criterion and BIC is the Schwarz criterion.

Component Model 4>1 81 c Ale BIC

12 AR.\!A(l.l) 0.9841 -0.3221 0.0002 -9.1433 -9.1372

(0.0052) (0.0239) (0.0001)

h AR~lA(l.l) 0.9713 -0.3053 0.0001 -11.2001 -11.1940

(0.0064) (0.0242) (0.00006)

Table 5. ï: Parameter estimates of AR~IA models for the principal component /2

and 13' The standard deyiation of the parameters are enclosed in parentheses.
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order L~f test Ljung-Box test Critical Values

k =10 189.7554 197.0073 18.3070

k =15 195.3712 203.1289 24.9957

k =20 201.1191 217.7110 31.4104

Table 5.8: Test for the presence of ARCH effects in the residuals of the AR!vlA(l,l)

model for the principal component fI'

~odel QI Q2 -'1 K le: ID-Il CIl 81 c LogLlbhhood

GARCH(1.1. 0.9209 0.0600 1.5391 0.9725 -0.2187 0.0002 11190.2316

/0.0014) (0.00::1) (0.5492) (0.0012) (0.0135) (0.00011 )

GARCH(2.1, 0.497; 0.2479 0.1756 2.2321 0.9877 -0.2438 0.00002 11203.6765

(0.0098) (0.0119) (0.0149) (0.3323) (0.0036) (0.0236) (0.00001)

Table 5.9: Pararneter estirnates of the AR~I:\.fGARCHmodel for the first principal

cornponent fI'

order L~l test Ljung-Box test Critical Values

k = la 4.7548 4.6256 18.3070

k = 15 6.0609 5.7149 24.9957

k = 20 8.8663 8.7130 31.4104

Table 5.10: Test for the presence of ARCH effects in the residuals of the

AR~1A(1.1)/GARCH(2.1)model for the principal component fI,

Component AR~A(p.q)/ 01 0:;1 ""1
K le: lO-G ~1 91 c LogLllcehhood

GARCH(1.Ir.)

h (1.1 )/(2.1) 0.3313 0.S427 0.1135 1.6778 0.9863 -0.3829 -0.0002 S935.1037

(0.1093) (0.1017) (0.0149) (0.1897) (0.0041) (0.0231) (0.00012)

f:s (1.1 )/(2.1 ) 0.363{) 0.4662 0.1437 0.4807 0.9629 -0.3114 -0.0001 7722.0964

(0.1096) (0.1018) (0.0144) (0.07644) (O.OOSl) (0.0233) (O.OOOOS)

Table 5.11: Pararneter estimates of the ARIvIA/GARCH model for the principal

components fi. for i = 2.3.
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Variables S Mean Std.Dev. Pt P! P7 P11 Pl~ Pll~

,.. 1805 0.0503 0.0171 0.9886 0.9837 0.9759 0.9698 O.~ 0.9589

"/f~l) - ,., 1804 -2.011 E-005 0.0024 -0.3977 0.0744 -0.~S3 0.0102 -0.0237 0.0744

Augmented daily ·2.61

Dic:key-Fuller

Phillips-PerToli -67.24

statiniQ

Ho: reject at 90'11:

Sonstationary (critic:al value=-2.57)

Table 5.12: Summary statistics of the EP implied short rate.

~Iodel 4>1 02 (JI 62 C AIC BIC

AR.'vtA( 1.0) 0.9885 0.0005 -12.0295 -12.0264

(0.0033) (O.aOOl)

1 AR.\tA(2.0) 0.5979 0.3942 0.0004 -12.1972 -12.1911

(0.0216) (0.0216) (0.0002)

AR~tA(O.I) 0.89i4 0.0503 -9.2887 -9.2856

1 (0.0095) (0.00043)

AR.\tA(0.2) 1.2148 0.7087 0.0504 -9.9632 -9.9571

(0.015) (0.0158) (0.0004)

AR.\IA( 1.1) 0.9992 -0.34i7 0.000008 -12.2311 -12.2251

(0.0019) (0.0237) (0.0001)

AR.\IA(2.1) 0.9903 0.0085 -0.5048 0.000019 -12.2763 -12.2671

(0.0320) (0.0319) (0.0321) (0.00007)

AR.\IA(2,2) 0.1875 0.8106 0.3011 -0.4828 0.00002 -12.2836 -12.2714

(0.0244) (0.0245) (0.0309) (0.0233) (0.0001)

Table 5.13: Parameter estimates of the AR~1A model fitted to the EP implied short

rate r (original series) from 1805 cross-sectional samples.
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~Iodel Order L~f test Ljung-Box test Critical Values

AR.\IA(2,1) k = 10 280.3327 602.4590 18.3070

k = 15 297.6179 725.9694 24.9957

k =20 341.0450 978.8884 31.4104

AR.\IA(2,2) k =10 266.3816 569.0741 18.3070

k = 15 286.4189 705.8384 24.9957

k =20 329.3882 954.7532 31.4104

Table 5.14: Test for the presence of ARCH effects in the residuals of the models

:\R~I:\(2.1) and :\R~IA(2.2) fitted ta the EP implied short rate.

AR~'A(p.q)/ Ql 02 -'1 1 K x 10-6
"1 "2 81 //2 c LogL&ltdahood

GARCHII.kl

\ 1.11/11.1) 0.9296 0.0606 0.0174 0.9957 0.0002 8943.2221

(Û.OO291 {O.00491 (0.0003) (0.0008) (0.00004)

r1,11/(2.11 0.3928 0.4980 0.0909 0.0239 0.99585 ·0.4529 0.00023 8946.7807

(0.00251 (0.0073) (0.0005) (0.0007) (0.0205) (0.,)(1003)

12.11/11,1, 0.9261 0.0639 0.0137 1.2443 -0.2452 -0.6477 0.000147 8949.0487

10.00301 10.0050) (0.0034) (0.0041) (0.0041) (0.0128) (0.00002)

r:!.1 )/12.11 0.3685 0.5156 0.1058 0.0242 1.2361 ·0.2368 -0.64834 0.00014 8953.055.

10.0035) (0.0043) (0.0079) (0.0056) (0.0496) (0.0493) (0.0338) (0.00003)

12.21/11.11 0.9224 0.0675 0.0166 1.3913 -0.3924 -0.7987 0.0703 0.00011 8950.8727

'0.0032) 10.0054) (0.0037) (0.0110) (0.0110) (0.0135) (0.0194) (0.00002)

(2.2\/(2.1 ) 0.4025 0.4829 0.1044 0.02367 1.1462 -0.7470 -1.1740 0.2613 0.00004 8958.0422

10.0019) 10.0026) (0.0078) (0.0056) (0.0116) (0.0115) (0.0109) (0.0160) (0.0001)

Table 5.15: Parameter estimates of the :\R~IA/GARCH models fitted to the EP

implied short rate (original series) from 1805 cross-sectional samples.

arder LM test Ljung-Box test Critical Values

k =10 7.5511 8.0044 18.3070

k = 15 10.6334 10.6554 24.9957

k =20 15.3612 15.6247 31.4104

Table 5.16: Test for the presence of ARCH effects in the residuals of the

:\R!\IA(1~1)/G:\RCH(2,1)model for the EP implied short rate.
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Variahle I-Iousing Retail Ml M2 Long F(~d PPI CPI Dura-Goods

fi -0.1096 -0.3565 -0.4460 -0.3929 0.0822 0.3551 -0.4058 -0.4232 -0.2498

/2 0.1151 0.0734 -0.1710 -0.0526 0.3558 0.5799 -0.0780 -0.0739 0.2095

/3 -0.0507 -0.0938 -0.1707 -0.2604 0.0123 0.3537 -0.1930 -0.1970 -0.0383

r 0.1978 -0.4436 -0.6868 -0.6237 0.6333 0.9178 -0.6095 -0.6234 -0.2588

R -0.2367 -0.4620 -0.4973 -0.4934 0.5223 0.3514 -0.4974 -0.4954 -0.4037

•

Table 5.17: Sirnple correlation coeffidents hetween the prindpal eOlnponent.s, the short rate r and the long rate R and scle(~ted

macrocconomic variables bas(~d on monthly data 1989-1996.

......
~
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k Til: r 2 %tr C%le

1 0.8632 0.7452 50.80 50.80

2 0.7004 0.4906 33.45 84.25

3 0.4808 0.2312 15.75 100.00

Total - 1.4669 100.00 -

Table 5.18: Canonical correlation coefficients. Relationships between the first three

principal components and nine macroeconomic variables.

Canonical Ui U2 U3

Variate

ft 0.6567 -0.3381 0.6741

h 0.3399 0.9395 0.0415

h 0.6565 -0.2412 -0.7147

Var.Ext 0.3260 0.3517 0.3223

Canonical Vi t'2 V3

'"ariate

Hou -0.0590 0.1453 -0.0322

Ret -0.2677 0.1828 -0.1764

~11 -0.4761 -0.0010 -0.1983

~12 -0.4512 0.1111 -0.0876

Long 0.2068 0.3007 0.0713

Fed 0.7005 0.3626 0.0263

PPI -0.4262 0.0778 -0.1477

CPI -0.4387 0.0870 -0.1568

Dura -0.1057 0.2672 -0.1336

Var.Ext 0.1582 0.0415 0.0166

Table 5.19: Canonical analysis of principal components-macroeconomic variables.

Correlation between the original variables and the canonical variates.
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Canonical Vl V:z V3

Variate

ft 0.5669 -0.2368 0.3241

h 0.2934 0.6581 0.0200

h 0.5667 -U.1689 -0.3436

Var.Ext 0.2429 0.1726 0.0745

Canonical Ul U2 U3

Variate

Hou -0.0683 0.2075 -0.0670

Ret -0.3101 0.2609 -0.3669

~n -0.5516 -0.0014 -0.4124

~I2 -0.5227 0.1587 -0.1822

Long 0.2396 0.4293 0.1483

Fed 0.8115 0.5177 0.0546

PPI -0.4938 0.1110 -0.3072

CPI -0.5082 0.1243 -0.3261

Dura -0.1224 0.381-1 -0.2780

Var.Ext 0.2124 0.0846 0.0717

Table 5.20: Canonical analysis of principal components-macroeconomic variables.

Correlation between the original variables and the canonical variates. Dual of Table

5.19.
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Chapter 6

Out-of-Sample Results and

Arbitrage

In the pre\"ious chapter. we concluded that the principal components of the state

factors~ inferred from the EP mode!. follow GARCH processes that we have fully

identified. In theory~ the dependence implied by a GARCH model, means prediction

is possible. Our final objective is to investigate in practical terms, if useful prediction

is possible in economic terms.

First, we will construct two types of out-of-sample GARCH forecasts by using

past information on the principal components, available at the time the forecasts

are made. Then, we judge the forecasting performance of each series. Second, the

forecasting series will be used to determine whether we can exploit the predictive

power of the GARCH forecasts. In other words, we assess whether profits can he

generated from an arbitrage strateg)" involving the out-of-sarnple GARCH forecasts

of the three principal components of the EP model.
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In chapter 5~ we found that the principal components fi, for i = l, ... ~ 3, possess

the following type of AR~IA/GARCHprocess:

!t,i - c + tPl!t-l,i + ft + 81ft-l,i'

h t •i K + Wlf~_l,i + G:1h t - 1•i + G:2 ht-2.i.

(6.1)

(6.2)

•

5ince. we are dealing with models where time-dependent conditional heteroskedas­

ticity is present, it is not abvious how ta write the expression of the optimal forecasts

for the mean of such processes.

Saillie and Bollerslev (1992) determined the general expression of the optimal

forecasts in such a context. Applying their general formula to our case and going

through algebraic manipulations~we recover the expression for the optimal s-step­

ahead predictor of It.i as

Et (ft+5.d = c(1 + q)l + ... + d>~-l) + f/>~!t,i + 81d>~-lft.i' (6.3)

See Appendix D page 202 for the relevant technical development. Given this ex­

pression for the mean of the GARCR forecasts. we use the GAReR specification

identified in the previous chapter for each principal component and compute the

corresponding GAReR forecasts. \V'e estimate both roUing and updating GARCH

forecasts. The roUing forecast uses a constant sample size of 1604 observations for

each principal component. \Ve start the estimation procedure at January 1, 1996.

After making the forecasts for date (t + 1) using observations from (t - 1604) to

t. an the GARCR parameters are reestimated br adding the observation on day

(t + 1) and deleting the observation of day (t - 1604). Thus, from January 1 1996

to October 14 1996~ we re-estimate the GAReH process everyday using this roHing

procedure. In aH, we obtain 200 daily out-of-sample GARCH forecasts.

The updating procedure simply adds information as time progresses to construct

a forecast. Thus, we start the estimation procedure at time t, which corresponds to
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January 1 1996. Then~ we keep updating our sample with the most recent observa­

tions on the principal compon~nt. The last estimation of the G.-\RCH parameters

is based on 1804 observations.

The out-of-sample GARCH forecasts thus obtained are compared to the actual

principal components for the same 200-day period calculated frOID the principal

components as previously explained in chapter 5. Vle will try to answer the following

question: ~~Row weil do the projected future principal components predict their

actual valuesT' Specifically, are they efficient or biased estimates? It is obvious that

an ideal forecast model would produce estimates of the future principal components

that closely approxirnate the actual in-sample values. Figures 6.1 and 6.2 show

the evolution of the rolling GARCH forecasts and the updating GARCH forecasts,

respectively. Both types of forecasts are compared ta the evolution of the in-sample

estimates of the principal components. In general, the GARCH forecasts follow the

sarne evolution as their in-sample counterparts. This result confirms our findings

in chapter 5 ahout the rele\-ance of the GARCH processes followed by the three

principal components.

Forecasting performance of the two types of GARCH series is judged by comparing

the ability of the forecasts to predict the in-sample values of the principal compo­

nents. Comparisons are based on the mean erraI', defined as actual minus forecast,

(!vIE), the mean absolute error (~IAE) and the R~1SE. The resuIts of this test are

contained in Table 6.1. It is obvious {l'or.- .. l-.;: ";-hle that:

• The updating GARCH forecasts slightiy outperform the rolling GAReR fore­

casts for aIl three principal components under the ME criterion.

• The R~lSE and MAE criteria both indicate that updating and rolling GARCH

forecasts are quite similar for aIl three principal components.

~loreover. based on the ~1E criterion, it seems that bath types of GARCH fore-
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casts of the three principal components are slightly downward biased for fI and

f2 and upward biased for 13. However! given the relath-e size of the ~IE, we can

consider sucb bias as negligible. Fair and Shiller (1990) notOO that cornparing out­

of-sample forecasts using the R~fSE criterion has sorne limitations. Thus! further

insights into the difference between the two types of forecasts cao be obtained by

regressing the in-sample estimates on the out-of-sample forecasts:

ft = a + b!p,t + Ut, (6.4)

•

where fp.t is alternatiyely the rolling and the updating GARCH forecast. This type

of regression is often called ·~encornpassing regression'!. In particular, Hendry and

Richard (1982) and Fair and Shiller (1990) developed a rich literature ahout the

subject. The idea is the following: if a forecast equals the true expected value of

ft, then regressing in-sample values of the principal components on their expecta­

tions should produce regression estimates of 0 and 1 for a and b, respectively. Any

deviation from those \·aluf·s is interpreted as eyidence for bias and inefficiency in

the forecast. Equation 6A is fitted with OLS. In this type of equation, OLS is a

consistent estimator of the regression coefficients. ~1oreover, the forecast horizon of

one day coincides with the frequency of the sample we used. This will rule out any

dependency in the errors of the regression. Therefore. standard errors will not he .

underestimated when computed by OLS.

6.1.1 Interpretation of results

The results for the ··encompassing regression" on both forecasts are reported

in Tables 6.2 and 6.3. respectively. AlI of the estimated values of b are positive

and are significantly different from zero and from one at the 5% significance level.

However. the estimated values of b are very close to unity. For fI, f2 and f3! the

slope coefficients of the updating GARCH are 0.96,0.99 and 0.88, respectively_ This
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indicates that weights of the GARCH forecasts, even though different from one~ are

very significant and may represent a valuable source for predicting the future values

of the principal components of the EP model. For both types of GARCH forecasts,

the intercept is statistically significant for all principal components. The t-statistics

of the intercept terms for ft~ f2 and 13 using the rolling GARCH forecast are 3.5~

2.25 and 2.5~ respectively. ~evertheless~ none is large enough to he material. Thus,

there exists a bias in the GARCH forecasts but it is statistically small. Finally, the

adequacy of both GARCH forecasts is confirmed by the R2 statistics. For ail three

principal components fi, i = 1 ... ,3. the multiple determination coefficients R2 for

the rolling forecasts are 0.51. 0.65 and 0.52, respectively. These values are quite

large and indicate that the explanatory power of the GARCH model is satisfactory

for the three principal components. ~Iore than 50% of the variability in the actual

"alues is explained by the forecasts for each component. From previous results. we

can conclude that both types of forecasts are useful in conveying a large amount of

information about the future evolution of the principal components. Now, we would

like to know whether this statistical predictability can be exploited to generate

significant economic profits.

6.2 Arbitrage

Our previous results indicate that the principal components changes are pre­

dictable in a statistical sense. Of course, an accurate forecast is desirable, but

GARCH forecasts of the principal components might be used for trading even if the

forecasts are not totally accurate. Thus, the final question to he answered here is

whether the reported predictahility is large and persistent in order to he economi­

cally significant. In other words: "'Cao the GARCH forecasts he exploited to make

a material trading profit?"
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In Chapter 5. we mentioned that the principal components of the EP model are

related to the n state factors through the follo\\;ng relation:

F= E'B! (6.5)

where B is an (n x .\1) matrL'C of values for n state factors for Al days. E is an

(n x n) orthogonal matrix in which each column represents an eigenvector and F

is an (n x .\f) matri.x containing the resultant principal components. The above

relation is very important for it allows us to easily switch from the state factors of

the EP model to the principal components. \re also showed in Chapter 5 that the

following matrix equation eonneets the estimated matrix of state factors B and the

matrLx of bond prices }.

(6.6)

where }. = (YI ..... YM) is a matrLx of bond prices. Yi is a vector of bond priees of

the ith cross-sectional sample. Equations 6.5 and 6.6 imply that

(6.7)

Therefare. bond priees ean be mapped inta principal components. Since we eon-

cluded in Chapter 3 that only three principal components are needed to describe

the terffi structure~ equatian 6.7 can be written for a principal eomponent

f - E'( "..., V}-l v't - ~'\..'\. .'\. Yt· (6.8)

•

As the mapping of Yt to ft is many to one. it follows that a subspace of Yt maps

into any given ft. Equation 6.8 is very interesting since it implies that any principal

eomponent ft can be considered as a linear combination of the vector of bond prices

Yt (Le.. portfolio of bonds). Buying(selling) this portfolio is mathematically equiva­

lent to buying(selling) the eorresponding principal eomponents. It is also clear from

equation 6.8 how an indi\·idual bond portfolio would provide a derivative portfo­

lio of estimated principal components ft. !\loreover~ equation 6.8 shows that any
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derivative portfolio of the principal components can be connected ta the real bond

market. Thus. from a theoretical construct. i.e.. ft~ we cao switch ta a real portfolio

of bonds. Indeed.

Yt = PM•t - PO,t~

where p.\!,t is the average market priee of a bond j plus the accrued interest at time

t. PO,t is the cash flows of the same bond discounted at the long rate R at time

t. Thus. any portfolio of principal components cao be related back ta the set of

a\'ailable bonds.

~loreo\'er. when we studied the time series properties of the principal components

of the EP mode!. we found that ft is well described by a GARCH model of the

following form

ft = C + OIft-l + ft + (JI ft-b

ht - K + ~':l€;-l + Qlht - 1 + 0:2 ht-2'

(6.9)

(6.10)

Equation 6.9 is useful in predicting ft from ft-l. Given this relationship between

ft and ft-l and knowing that ft caIl ultimately be related to the bond market,

one can think of many ways ta generate profits. As an illustration~ \\Te consider a

deriyati\'e portfolio of the three principal components with weight vector Wt-l at

time t - 1. where each component weight Wt-l ~ for i = 1. 2, 3 is the number of nuits

of the corresponding principal component that is purchased for the portfolio at price

ft-l.i. In order to be considered as an arbitrage portfolio, the weights are selected

as follows

'fL't-l,lft-I,I + wt-I,2ft-1.2 + Wt-I,3ft-l,3 = o. (6.11)

•
This arbitrage portfolio requires no capital outlay. At time t, the value of this

portfolio will be

Wt-l.lft.1 + 'lL't-l.2ft,2 + wt-1.3ft,3 = Wt-I,ldft,l + Wt-l,2dft,2 + Wt-l,3dft,3' (6.12)
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where dft.i = ft.i - ft-l.i. \\~e want ta investigate empirically whether such a strate~'

will. on a\'erage, generate profits.

One possible choice for the arbitrage portfolio is to select a weight vector such

that:

Wt-l = !p.t-l - ft-b

where fp.t-l is the GARCH forecast made at time t - 1 for the principal component

ft on the next day. Since we showed that the GA.RCH forecasts contain substantial

information in predicting future principal components, this portfolio will probably

be a good candidate ta generate long-mn profits. As shawn later. this choice of

weights \'ery nearly satisfies condition 6.11 because the GARCH forecasts. even

if slightly biased. contain a substantial amount of information about the actual

principal components.

Belo\\". we implement this choice of weights. The trading strate~' we use to

assess potential arbitrage profits is based on the updating forecas! of the principal

component. At date (t - 1). GARCH forecasts of the principal compouent for clay

tare formed. If a principal component is predicted to increase (decrease) from day

(t - 1) ta day t. the deriyative portfolio is purchased (sold). At time (t - 1), the

inyestment outlay of the arbitrage portfolio must be close to zero. At time t. the

position is closed and the profit is computed. The priees of the derivative portfolio

will be determined from the actual principal component as estimated from the term

structure at time t. The trading profit is computed as

(6.13)

•
where the ft.i for i = l, ... ,3, are inferred from the term structure at day t, through

the EP mode!.

Table 6.4 contains a summary of the trading strate~' results. In this table,

we report the mean and the standard deviation of the daily portfolio cost, Also,
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we report the mean and standard de\-iation of the arbitrage profits realized. Note

that this strateg)· is repeated every day in the 200 samples of GAReR forecasts,

between January 2, 1996 to October 15. 1996. The mean cost of the portfolio is

$8.648 x 10-5, which is extremely smalL with a standard deviation of $0.00071.

The minimum and maximum define a small range close to zero. This indicates that

the arbitrage portfolio involved little outlay of capital at aImost no risk. The mean

profit for this sampling period is $0.26 . The standard deviation of this mean value,

$2.4604. indicates that the portfolio profits are far from certain. Nonetheless, mean

profit is relatively large. The worst loss realized during this period is $9.47 and the

best profit is $23.97. Apparently, trading on the basis of the principal components

predictions cannot produce consistent positive profits. However, we have empirical

evidence that, on average. the profits are significantly greater than zero, excluding

transaction costs. for the one day trading horizon.

However. to implement this arbitrage strateg)' on the actual bond market, we must

derive the principal components from the bond market. In theory, this is possibk

through relation 6.7. Second. the principal components ft must be "constructed!' in

the real bond market. Indeed, the state factors are a linear transformation of bond

prices Yt. Le., portfolio of bond prices Yt. In Chapter 3, we defined Yt as:

Yt = p.\!.t - PO,t,

where PAJ,t is the average market price of a bond j plus the accrued interest. Po t,

is the cash flows of the bond j di~(" Illnted at the long rate R at time t. PM,t can

be easily traded in the bond markpt a~ it is the average of the bid and ask prices of

bond j. However, PO,t is not available on the bond market and one must look for a

bond having sirnilar characteristics. Thus, the trading strategy we described above

is subject to sorne limitations imposed by reality and availability of bonds.

:\loreover. one can wonder whether the inclusion of transaction costs would elirninate

the arbitrage profits? Knowing that an average commission for individual investors
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is about 35 cents~ we have good reasons to suspect that the profits will be reduced

sharply by transaction costs with this one-day trading strateg)". Based on this

assumption. we cannot reject the efficiency hypothesis of the US bond market. From

a statistical standpoint. the GARCH forecasts appeared ta he powerful predictors

for the future principal components values. The magnitudes and accuracy of the

predicted changes were large enough to generate, on average, substantial profits.

However. given that the average size of these profits is about 26 cents, they will

tend to vanish after transaction costs are considered. Therefore the result does not

challenge the hypothesis that the bond market is informationally efficient.
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Figure 6.1: These figures depict the evolution of the principal components li, for i = 1.... 3.

estimated using the rolling forecast procedure. The dots are the GARCH foreeasts and the solid

lines are the actual principal components from the EP model for the period from JanuaI)" 2 1996

to October 15 1996.
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Figure 6.2: These figures depict the e\'olution of the principal components Ji, for i = 1 ... ,3.

estimated using the updating forecast procedure. The dots are the GARCH forecasts and the solid

lines are the actual principal components from the EP model for the period from January 2 1996

to October 15 1996.
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Principal ~IE ~IAE R!\1SE

Component (x 10-4 )

fI (rolling) 5.4138 0.0023 0.0029

fI (updating) 5.3750 0.0023 0.0031

f2 8.8919 0.0042 0.0062

7.9311 0.0042 0.0062

f3 -2.3241 0.0030 0.0043

-2.4860 0.0030 0.0043

Table 6.1: Comparisons between out-of-sample GARCH forecasts of the principal

components.

Statistics fI f2 f3

a 0.0007 0.0009 -0.0010

SE 0.0002 O.DOOO! 0.0004

b 0.9742 0.9915 0.8701

SE 0.0379 0.0228 0.0459

R2 0.5133 0.6534 0.5182

Table 6.2: In-sample estimates of the principal components regressed on rolling

GARCH forecasts. The equation used is (6.4): ft = a + bfp,t + Ut-
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Statistics fi /2 /3

a 0.0006 0.0008 -0.0009

SE 0.0002 0.0004 0.0004

b 0.9611 0.9885 0.8772

SE 0.0337 0.0226 0.0461

R2 0.5145 0.6506 0.5091

Table 6.3: In-sample estimates of the principal components regressed on updating

GARCH forecasts. The equation used is (6.4): ft = a + bfp,t + Ut·

1

~Ia"(imum :.\rbitrage Strate~· i ~lean Std. de,". ~[inimal value
1

1

Cost(in $) 8.6-!8x 10-5 0.00071 0.00001 0.0317
1
1

Profit(in $) 0.2597 2.4604 -9.4752 23.9706
1

Table 6.4: The trading strate~' is forrned on the basis of the updating out-of-sample

GARCH forecasts for the principal components of the EP mode!. The prediction

of principal component for day t is based on the GARCH forecast of day t - 1 for

the same principal component. The weights of the arbitrage portfolio are Wt-l =

fp.t-I - ft-l .
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Chapter 7

Conclusion

Since the appearance of the article of Durand in 1942, which suggested a hand

fitting of the term structure. many empirical and theoretical models have been pro­

posed for term structure estimation. ~IcCulloch (1975) and Vasicek and Fong (1982)

emphasized empirical estimation of the term structure. In other words, they came

up with a useful technique that attempts to replicate the shape of the term structure.

However. Langetieg (1981) and Cox. IngersolL and Ross (1985) have derived a no­

arbitrage condition known as the fundamental partial differential equation (PDE)

for bond pricing. Through their modeL they gave a solid theoretical understanding

of term structure. However. a wide gap still exists between theory and empirical

techniques for the estimation of term structure.

Guo (1998) poses the following question: ··Ooes the POE admit any linear solu­

tionT~ He proceeds ta show that the EP model, reproduced in Chapter 2, is the

only discount model ta he consistent with no-arhitrage. Ta a certain extent, this

model is equivalent to the Exponential Spline model of Vasicek and Fong (1982) but

without splines. Its solution can he written as a linear combination of exponential

functions. It has the main advantage of heing based on an arbitrage argument and

thus satisfying the fundamental PDE of bond pricing. The EP model can be stated
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• as fo11ows:
n n

D(3~ s. t) = (1 - L 3de- R(S-t) +1: (3i e-(R+I.)($-t).

i=l i=l

(7.1)

•

where D(3, s, t) is the discount function at time t of one monetary unit ta be re­

ceived at time 8 > t. R represents the long rate, (8 - t) is the time to maturity

and li are a selected series of decreasing (or increasing) values. Variables Pl, -.. , fJn

are state factors of the EP mode!. The fitting of the term structure is always ma..

tivated by the problem that there are few long-term treasury securities available

for fitting. The models of ~lcCulloch (1975) and Vasicek and Fang (1982) suggest

spline fitting techniques to represent this characteristic of the bond market_ As is

clear from equation 7.1. this feature is imbedded in the EP model. which allows the

discount function to decay at different rates. The EP model does not divide the ma-

turity range into subintervals for spline fitting. Instead, the component exponential

functions with larger exponential parameters decay faster than those \Vith smaller

parameters_ Cnlike cun-e fitting rnodels, such as ~fcCulloch (1975). Bliss (1997) and

others. the EP model is not an ad hoc function designed to fit the term structure

but. more interesting, is a theoretical model derived from the fundamental PDE

of bond pricing. Thus, the EP madel has the advantages of bath approaches; its

simplicity is very similar to empirical techniques presented in the literature and its

thearetical farm is consistent with the PDE of bond pricing. Is it the right candidate

for describing term structure: This is the question being answered in this thesis.

The research objective in this thesis is to conduct a cross-sectional and time-

series investigation of the EP model. The purpose is ta understand its cross-sectional

fitting properties as weIl as the time-series properties of its state factors, which drive

term structure.

In Chapter 3 and 4, we studicd the cross-sectional properties of the EP mode!.

Two different data sets were examined. One is provided by the XYFRB and consists

of daily CS T-bills~ notes and bonds priees. The second is from the Bank of Canada
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and contains daily prices of Canadian T-bills~ notes and bonds. Our first objective

was ta estimate the coefficients .Bi of the following regression model:

n

pif + .4Ij - PJ = L Pi(P! - PJ) + fj for j = 1... , l'l, (7.2)
i=l

where pif is the jth bond market price and Ali is the accrued interest corresponding

to the jth bond. p! and pJ are the present values of bond j discounted at rate (R+li )

and R. respectively. .V is the number of treasury securities in the cross-sectional

sample. In this equation~ the 8i' i = 1, ... , n are n state factors to he estimated.

The long rate R considered as a state factor is also estimated for each cross-sectional

sample. Both data sets provided solid evidence that, over the periods under study~

CS and Canadian term structures could be accurately estimated by the constant

exponential basis of the EP model. The fitting performance of the EP model was

found ta accommodate different shapes of the term structure curve, which is an

essential feature of every term structure model. Since that the exponential basis

is kept constant. the linear coefficients of the EP model can be considered as state

factors that reBect the varying economic conditions that determine term structure.

Both data sets confirmed the relevancy of the EP model. However, a different

expanential basis \Vas used far each data set. This is perfectly reasonahle because

CS and Canadian bond markets do not share exactly the same sets of state factors.

\"'evertheless. through an eigen analysis of the n state factors, we found using bath

data sets, that term structure variability is largely determined by three principal

components af the state factors. This result is consistent with the current tendency

of modeling the yield curve as being driven by at least three sources of uncertainty;

for instance Balduzzi, Das, Foresi, and Sundaram (1996) have presented a model

in this direction. ~'Ioreaver, Subrahmanyam (1996), in his review of the literature,

urges the academicians to think about models with more than two state variables.

In Chapter 5, we studied the time-series properties of the estimated state fac­

tors. '\:"e were also interested to know whether any economic significance could he
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attrihuted to these factors. First, we found that the state factors cannot he di­

rectly studied because they exhibit in their evolution sorne regular dramatic shifts

induced by high multicollinearity among the components of the exponential basis

of the EP mode!. Hence, we found it more useful to study the time series of the

principal components of the state factors. Our results show that the three principal

components are stationary and are adequately described hy ARMA/GARCH pro­

cesses. This result clearly indicates that the principal components inferred from the

EP model exhibit a heteroskedasticity pattern frequently observed in other financial

and economic time series. L"'nlike many previous models, the EP model does not

constrain the state variables to foUow any process in particular. Instead, it allows

a wide range of processes. This is, most probably, the principal reason behind its

accuracy in capturing aU the subtle movements of terro structure. Through a cor­

relation and canonical analysis, we show that the principal components are linearly

related to macroeconomic variables such as the Federal Discount Rate, the Yield of

the Longest Bond and the monetaI1' aggregate Yll. This result is very simiJar to

thase of Balduzzi. Elton. and Green (1996) who concluded that the term structure

of interest rates is affected by announcements for macroeconomic variables in the

CS ecanomy. \\'e also find that the process of the short rate, a linear combination

of aU the state factors of the EP model, is weU described by an AR~1A/GARCH

mode!. This result is in Hne with Duan and Jacobs (1998), who showed through an

equilibrium argument. that the short rate follows a GARCH mode!. More recently,

Ball and Torous (1999) presented empirical evidence that the volatility of the short­

term interest rates of several foreign countries including the US, is volatile, In this

sense, our results aiso confirm these findings.

The findings of Chapter 5, naturally led us to investigate the predictive power of

the GAReH forecasts of the principal components of the EP mode!. We assessed the

information content of the GARCH forecasts in predicting future values of the prin-
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cipal components. \Ve formed two types of forecasts: rolling forecasts and updating

ones. \Ve assessed the performance of these GA.RCH forecasts using encompae,s­

ing regression. \Ve find that for the three principal factors, the GAReR forecasts

are aimost unbiased and highly predictive. Finally, we tested whether the reported

prediction is economically significant. For this, we created a trading strategy that

attempts to take advantage of the informational content of the GARCH forecasts.

\Ve showed that the profits generated by this trading strategy, over a horizon of 200

days, are on average significantly different from zero. However, given the relatively

small size of the average profit, we have good reason to suspect that it would vanish

in the presence of transaction costs.

Gh'en aIl of our findings, we believe that the EP model is a promising candidate

as a linear model for term structure. hs accuracy in estimating the cross-sectianal

samples of two major data sets is strang evidence in tbis direction. ~Ioreover. the

EP model is found to be largely determined by three principal camponents that are

predictable. The time dependency of the three principal components is useful in

predicting the shape of the future term structure. This feature is highly important.

essential to e"ery term structure intended far practical use.
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Notes on Three Models of Term

Structure

A.l Vasicek model

In the \·asicek model (1977). the instantaneous spot risk-free rate, r(t). fo11ows

an Ornstein-Chlenbeck process:

dr(t) = K(8 - r(t))dt + adz(t). (A.1)

K > a is the mean reyersion parameter. 8 is the long-run average of the instantaneous

interest rate and a is the volatility parameter. z(t) a standard Brownian motion.

Yasicek derived the equilibrium yield to maturity y(r, t, r) for a zero-coupon bond

as

with l the yield on the bond with maturity T -+ x

a 2

Hm y(r, t, T) = l = ((J + À) - -22'
T~OC /fi,•

A(r)

B(r)

y(r, t, r) = .4(r) + B(r)r(t),

_ /(1 - B(7)) + (1 ~ e
3
-

U

)2 (72,
/fi, T

1 - e-ItT

KT

(A.2)

(:\.3)

(:\.4)
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with ,\ the market price of rlsk.

A.2 CIR model

In the CIR model (1985) ~ the short rate follows a square-root process:

dr(t) = K(O - r(t) )dt + u;;(i)dz(tL

where K, f) > 0 and u > 0 are constants.

(A.5)

•

CIR showed that the current price at time t of a zero-coupon bond which matures

at t + T and has a face value of one unit is given by the following expressions

P(r. t. T) .4(T)e-B(T)r(t) ~ (A.6)

[ 2-'eh+«+~)'/2 ] 2«8/'"
(:\.7).4(T) =

("Y + K + A)(e1'r - 1) + 2"'1

B(T)
2(e1''T - 1)

(:\.8)= (-, + ~ + À) (e.,T - 1) + 2"'(

) 1/2 (:\.9), = ((~ + À)2 + 2u2 •

2fdJ
(A.10)=

1+1(+'\

with 1 defined as the long rate and À the market priee of risk.

A.3 The Super-Bell model

The Super-Bell model is based on the paper of Bolder and Stréliski (1999). It

was developped by Bell Canada Limited in the 1960s. First, a par yield CUITe is

derived. A par yield curve is a series of yields that would be observed if the sampIe

of bonds were all trading at par value. The following regression is conducted:

This regression defines yield to maturity yield'T as a function of term to maturity T

and the coupon rate C. Once the coefficients of equation A.11 are estimated, a vector
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of par yield estimates is obtained through the following algebraic arrangement:

(:\.12)

Csing the vector of estimated par yields~ yi~ldT~ an additional regression is run to

yield the fitted equation

(A.13)

•

This last step is conducted in order to "smooth" the par yield curve~ obtained in

equation A.11.
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Appendix B

Theoretical Priees of the EP

Model

These details are adapted from Guo (1993). Here. we only present the closed­

form formula of the present value of a hypothetical price~ under the exponential base

e- Ào
• In the text we denoted this present "alue by ~o.

First. consider a standard semi-annual coupon bond with face value F~ maturity

T - t. and anoual coupon interest payment Cj' \Ve denote by p the total number

of hali-years

p == integer(2(T - t}).

Let te be the fraction of half-year to the nearest coupon interest payment

te = 2(T - t} - p.

The bond will have a total of (p + 1) cash flows at the following future time points

(in years)

at which the corresponding discount factors are
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For example. if T - t=15.3 years. then p = 30 half-years. te = 0.6 half year~ and

there \\;11 be a total of 31 cash Bows. The present value of the bond is

(B.1)

•

Ta separate the accrued interest. equation ( B.1) can be re-written as

C /2 C (e(l-tc P•o/2 1)pO = j (1 _ e->..o(T-t)) + Fe->"o(T-t) + -i -. (B.2)
) eÀo / 2 - 1 2 e>..o/2 - 1

If we take the first arder Taylor series approximation that (i.e.~ eX - 1 :::: x for small

Ixl). the last term in equation ( B.2) simplifies to

which is the accrued interest Alj defined in the text .
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GARCH Forecasts

Here we present a derivation of GARCH forecasts for an AR~[A(LI) process. Yt.

as fo11ows

Equation C.2 is set up in this manner so it is a particular case of equation 13 of

Baillie and Bollerslev (1992). Thus, following these authors, the optimal s-step

•

Yt = J.l + <PIYt-l + (}lft-l + ft·

Csing matrix notation. equation C.1 can be re-written as

where.

• }; = ( :: ).

.~=(:1 :).
• et is a 2 x 1 vector with 1 in the ith element and 0 elsewhere.

ahead predictor of Yt+s is equal to

k-l [-1

Et(Yt+s) = L, + L Ti.sYt-i + L Ài.lft-i!
i=O i=O

(C.I)

(C.2)

(C.3)
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where k and l are the arder of AR and ~vlA. respectively. For an AR~IA(l.l). the

previous equation cao be written as

Baillie and Bollerslev showed that

Ls - e~ (1 + ~ + ... + ~8-1 )elJ.l~

Ta.s ' <ils- el el·

Àa.s ' <ils- el e2..

Given the structure of ~. we can compute ~S as

(

S () 5-1)01 1CPI
<ps = .

o 0

Substituting the expression of ~s in l. T and À. we get

(CA)

(C.5)

(C.6)

(C.7)

TO.s

Ao.s

5
- °1'

LI 5-1
[JI01 .

(C.B)

(C.9)

(C.IO)

•

;\ow. replacing these new expressions in equation CA

E ( ) - [1· -S-l] AaS () 's-l
t Yt+s - J.l + 01 + ... + C>l + ~lYt + l'Pl ft-

which corresponds to equation 6.3 in Chapter 6. with a different notation.

(C.ll)
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