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AVANT-PROPOS 

Quand la· vitesse d'écoulement à l'intérieur a'une 

enveloppe cylindrique à base circulaire, dont les extrémités 

sont encastrées ou libres, atteint une certaine valeur 

critique, l'enveloppe se met à vibrer spontanément et présente 

une forme correspondant à un second mode circonférentiel 

de vibration. 

Cette thèse décrit ce phénomène, apparemment 

nouveau, et propose une étude théorique. Bien que les vibra

tions observées soient typiquement non-linéaires, une théorie 

linéaire prédit de fa~on satisfaisante le comportement du 

système, pour des vitesses d'écoulement inférieures ou 

égales à celle du· seuil d'instabilité. Le modèle mathéma-

tique est basé d'une part sur les équations de voiles minces 

" de Flugge, permettant la description des mouvements de 

1 '.enveloppe , d'autre part sur une théorie classique d'écoule-

ment à potentiel de vitesse pour tenir compte du c~up1age 

avec les forces d'origine hydrodynamique. 

Cette théorie prédit l'existence de flambage et 

de vibrations dues à un couplage de modes, dans le cas d'une 

enveloppe encastrée à ses deux extremitési dans le cas d'une 

enveloppe encastrée-libre, des vibrations spontanées 

apparaissent. La théorie et l'expérience sont en accord 

qualitatif et quantitatif. 



ABSTRACT 

When the flow velocity in a circular cylindrical 

shell - either cantilevered or with both ends clamped -

exceeds a certain critical value, flutter of the shell in 

its second circurnferential mode develops spontaneously. 

This thesis describes this phenomenon, which is 

believed to be new, and presents a theory used for its study. 

Although the observed flutter is basically non~linear, a 

linear theory provides an adequate description of the behaviour 

of the system, to flow velocities up to and including the 

instability threshold. The mathematical model is based on 

" Flugge's shell equations for the description of shell motion 

and a classical, potential-flow theory to account for the 

coupled hydrodynamic forces. 

This theory predicts the existence of buckling 

instability and coup led-mode flutter in the case of clamped-

clamped shellsi for cantilevers, self-excited vibrations 

are predicted. Theory and experiment are both in qualitative 

and quantitative agreement. 
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CHAPTER l 

INTRODUCTION 

The following study is concerned with the flutter 

of cylindrical shells containing flowing fluide This 

phenomenon was accidentally discovered, in March 1969, by 

Dr. Paidoussis, who was performing experiments on lateral 

oscillations of tubular cantilevers conveying fluide 

This problem of lateral oscillations of flexible 

tubes conveying fluid is as follows: when the velocity of 

fluid flow in a tube, clamped at the upstream end and free 

at the other, is increased beyond a certain critical value, 

the system becomes uns table and small random perturbations 

grow into lateral oscillations of large amplitude. 

This problem has received considerable attention 

in the pasto In 1953, the Danish scientist, NiordsonÇl), 

investigated the vibrations of such a system, his aim being 

to estimate the natural frequencies of large steel tubes 

conveying water from the Aswan Dam to the power plant. He 

concluded that the natural frequencies of bending vibrations 

always decrease with flow velocity and that there exists 

a critical velocity corresponding to a buckling forro of 

instability. (Buckling means large deflection of the tube, 

without oscillation.) 

, 
.i 
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In 1961, Dr. T.B. Benjamin (2) , studying 

articulated pipe systems conveying fluid, was the first 

to report on the phenomenon of unstable oscillations, 

which is possible when such systems possess one free end. 

His analysis, dealing only with a small nurnber of degrees 

of freedom, was extended to continuously flexible pipes 

by ~r. M.P. paidoussis(3) whoestablished conditions.of 

stability for a cantilever pipe constrained to move in a 

horizontal plane. 

Thephenomenon of flutter was observed from the 

study of' such lateral oscillations .. It occurred in the 

following way: 

Consider a flexible rubber tube, clamped at one 

end and free at the other conveying air. If the velocity 

of air flow is increased, the tube will become unstable 

and oscillate laterally. If the velocity is increased 

further, aIl of a sudden the tube will vibrate in what 

appears to be a shell-type vibration. These particular 

vibrations are no longer lateral oscillations of the tube, 

but periodic deformations of the cross-section of the tube, 

superposed on the flexural instability. With shorter 

cantilevers, which are free of flexural instabilities up 

to high flow velocities, these shell-type vibrations can 

develop while the cantilever is still straight and stable 

, 
.. i 
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in flexure. 

The characteristic features of this flutter 

phenomenon are the following: 

1. Inception - the vibrations may develop 

spontaneously if the flow velocity is increased beyond 

a certain critical value; otherwise, they may be induced 

by pinching or disturbing the tube, in which case they 

occur in a range of flow velocities below the critical 

and persist to considerably lower flow velocities. 
\ . 

2. Shape - when vibrating, the free end cross

section presents a shape corresponding to the second 

circurnferentia1 mode of the shell with no f1ow. At low 

f10w ve1ocities, this shape is regu1ar (see photographs 

of a si1astic c1amped-free tube), whereas at higher f10w 

ve1ocities, it becomes rather wobbly. The amplitude 

is quite large and in the ensuing limit-cycle, the tube 

opening at the free end closes almost completely at the 

extremes of the cycle, the lips deforming alternately 

inward and outward. 

3. Location - the vibrations are concentrated 

near the free end and do not extend beyond a few diameters 

from it. 

4. Frequency - the frequency of vibration 

ranges between 100 Hz and 800 Hz, producing a shri11 sound 

which can be recorded with a microphone (see experimenta1 
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sound frequencies results). 

5. Velocity the critical velocities of air 

flow ·range between 30 ft/sec. and 100 ft/sec. for the tubes 

used, and the outlet pressure is the atmospheric pressure. 

The air flow is a fully-developed turbulent one, the 

Reynolds number being generally of order 10 4 . 

This phenomenon has thus been observed with a 

cantilever discharging air. Subsequent experiments indicated 

that it also'occurs when both ends of the tube are clamped, 

and here again, as in the clamped-free case, the visible 

deformations are concentrated near the downstream end of 

the tube. This phenomenon does not seem to occur with water. 

Experiments were carried out with wateri lateral oscillations 

were observed, but flutter did not happen. 

The problem of uns table oscillations of flexible 

tubes exposed to either an internaI or an external inviscid 

flow has received considerable attention in the pasto The 

flutter and aeroelastic stability of cylindrical shells in 

the stream of an inviscid fluid has also been considered 

by several authors incl~ding V.V. Bolotin(4) , J.W. Miles (5) , 

E.H. Dowell(6) and E.P. Kudryavtsev(7). Bolotin has studied 

the case of an infinitely long cylindrical shell, using 

potential flow theory. Although the equations are derived 

for various types of compressible gas flow (external and 
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internaI, subsonic or supersonic) ,the applications àre 

limited to external, supersonic flow. Miles has examined 

the supersonic flutter using Timoshenko's(8) shell 

equations. Dowell has considered both subsonic and 

supersonic flutter of infinitely long shells and discussed 

qualitatively the case of a shell of finite length; for 

this latter case, he has indicated that aerodynamic buckling 

will be the most important type of instability for external .. 
subsonic flow. Finally, Kudryavtsev has studied the 

flutter of elastic cylindrical co-axial shells of infinite 

length between which flows a compressible fluid, giving, 

as an example, sorne results in the case of an absolutely 

rigid outer shell. 

It seems, therefore, at least ta the author's 

knowledge, that the flutter in the case of internaI, 

subsonic flow in a cylindrical shell of finite length has 

not been reported and studied sa far. It is the aim of 

this research to describe and explain this apparently new 

phenomenon. 

-='-1 
.i 



CHAPTER II 

PROBLEM FORMULATION 

2.1 The Physical System 

Before an analytical study can be attempteà, 

a mathematical model encompassing the major physical 

characteristics of the system must be constructed. The 

physical system under consideration here consists of a 

flexible cylindrical tube and a subsonic air flow. The 

operative forces belong- to the following three classes: -

i) inertial forces; 

ii) elastic forces; 

iii) aerodynamic forces. 

The aerodynamic forces are not simply fixed driving forces 

which excite the elastic structure, but are directly 

affected by the elastic displacements. Therefore, the 

phenomenon under study takes on the specific features of 

an aeroelastic phenomenon, which justifies the name 

"flutter" given to it. 

are: 

Two major characteristics of the physical system 

i) non-linearity, 

ii) coupling. 

The system is non-linear because the vibrations have a 

large amplitude. Therefore, the equations governing the 

___ "..l.-
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vibrations of the shell are non-linear, as well as the 

fluid equations. There exists a coupling between the 

fluid and the tube. When the tube vibrates it deforms 

and thus influences the flow of the fluide Reciprocally, 

the fluid acts through its pressure on the wall and 

influences the vibrations of the tube. 

2.2 The Mathematical Model 

Based on the physical characteristics of the 

system, a mathematical model may now be constructed. 

Although this model should encompass aIl of the physical 

characteristics of the phenomenon, the complexity of the 

system necessitates sorne simplification, which of course, 

should be consistent with the physical situation. 

The principal difficulty arises from the 

non-linearity of the system. To study the fini te deflections 

of the tube, only a non-linear theory is applicable. Such 

theories exist, but they are not reliable as little 

attention has been devoted to them until recently, and 

moreover they involve complicated equations which can only 

be solved in simple cases. Therefore, it is clear that 

sorne drastic simplification has to be made. 

The important characteristics of the mathematical 

model will be taken as follows: 

1. We shall consider the limiting case of small 

vibrations. This means that we shall be able to describe 
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the behaviour of the system up to and including the 

threshold of instability. This simplification has been 

used to determine the conditions of stability in the 

case of lateral oscillations of cylindrical tubes 

conveying fluid, and has proven capable of predicting the 

onset of instability fairly weIl. The important 

consequences of this simplification are the foll-owing_; __ . 

i) a linearshell theory will be used; 

ii) the boundary conditions will be taken on 

the walls of the tube considered to be in 

an undeformed statei 

iii) the tube walls will be considered to be 

purely elastic with constant elastic properties 

(Hooke' s law). 

2. We shall consider the air flow as a potential 

and incompressible flow. This means the fluid is: 

i) non-viscous, 

ii) non-heat-conducting, 

iii) incompressible. 

We assume the laminar sub-Iayer to be of negligible 

importance. These assumptions of course, neglect certain 

physical effects, in particular possible secondary flows 

at the outlet in the case of aclamped-free tube, but it 

is felt that the model retains the essential physical 
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characteristics of the system and that neglected effects 

are secondary in importance. 



CHAPTER III 

BASIC EQUATIONS AND BOUNDARY CONDITIONS 

The basic characteristics of the mathematica1 

mode1 having been described, the present chapter proceeds 

as fo11ows: 

First, the fundamenta1 equations of cy1indrica1 

she11s are derived. This is fo11owed by the determination 

of the natura1 frequencies of cy1indrica1 she11s with ends 

either c1amped or free. The effects of f1uid f10w inside 

the tube are then introduced, fo11owed by the genera1 

solution corresponding to vibrations with f1ow. 

3.1 Fundamenta1 Equations of Cy1indrica1 She11s 

Thefundamenta1 equations of cy1indrica1 she11s 

are derived in three steps, as fo11ows: 

i) the equations of motion are obtained from a 

balance of the forces acting on sorne 

fundamenta1 e1ement of the medium considered; 

ii) the strain-disp1acement relations are obtained 

from a geometrica1 consideration of the 

process of deformation; 

iii) the stress-strain relations are provided by 

the 1aw of e1asticity (Hooke's 1aw). 

, 
_i 
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The solution of problems in the three-

dimensional theory of elasticity involves serious 

complications; thus simplifying assumptions consistent 

·with the behaviour of shells are needed. The basic 

assumptions.of the classical theory were proposed by 

Love(9) in 1888. They are the following: 

1. The thickness of the shell is small compared 

with the least radius of curvature of the reference surface; 

2. The strains and displacements are small, 

so that the quantities of second and higher-order magnitudes 

may be neglected in comparison with first-order terms in 

the strain-displacement relations; 

3. The component of stress normal to the 

reference surface is small compared with other normal 

components of stress; 

4. The normals to the undeformed reference 

~urface remain normal to the deformed reference surface 

and undergo no extension. 

The first assumption is the basic postulate of the theory. 

The second assumption, together with Hooke's law, ensures 

the linearity of the resulting differential equations. The 

third and fourth assumptions imply the neglect of transverse 

normal stress and transverse shear deformation. The 

classical the ory cf shells (Love's first approximation) is 

based on these four assumptions. 
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Severa1 additional theories have been proposed, 

in which these basic assurnptions are partia11y or 

completely modified. A theory which retains second-arder 

terms as compared ta unit Y in the stress resultants and 

strain-displacements relations, was derived by Flügge(IO), 

Lur' e and Byrne. This. imoroved form of·Leve 's fi~st·· 

approximation theory has the advantage of removing an 

inconsistency .. of the former; this inconsistency is that, 

except for the special cases of a spherica1 she11, a fIat 

plate or a symmetrica11y loaded she11 of revolution, the 

strains do not aIl vanish for sma11 rigid-body motions 

of the shell (see Appendix A). This is the theory we sha11 

use in our ana1ysis. 

In the case of a cy1indrical shell, the fundamenta1 

equations of this theory may be reduced ta three coup1ed 

1inear differential equations re1ating the three components 

of the displacement vector, and forming a system of the 

eighth order; therefore, the" solution will have sufficient 

arbitrariness to satisfy eight boundary conditions. 

Because of the cy1indrica1 nature of the system, 

a cylindrica1 polar coordinate system (r,6,x) will be 

employed, the origin being taken on the tube axis in the 

flow inlet cross-section. The shell is a1lowed radial, 

longitudinal and circurnrerentia1 displacement~ (w,u and v 

respectively, w being positive outward) 7 its physical 
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properties are defined by the density PSI Youngls 

modulus E and poisson's ratio v. The equations of motion 

of the shell walls may then be written: 

where the thickness h and radius a of the shell are contained 

in the coefficients k = h 2/l2a2 and y 2ps l-v2 
The = a -E-

symbols (_) 1 and (-) . are used for a d (-) and d (-) 
---ax -ae-' 

respectively. 

The boundary conditions are specified on the edges. 

If the edge is clamped, T,ve may specify that there is neither 

displacement nor rotation: 

U. ::. "" :. u:r -=- 0 =0 

In the case of a free edge, forces and moments rnay be 

arbitrarily given. But they are five, NX1 Nx61 MXI ~~6 

and Qx whereas we have only four constants of integration. 

It is usual to replace them by four essential forces and 

moments which are: 

i) the normal force Nx = 0 

ii) the bending moment Hx = 0, and 

iii) Kirchoff's effective shearing stress resultants 

, 
... i 
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S:x, = Q:x; + 1. ~Mx.e = 0 . a. 'ô6 

Tx. =. Nxe - Mx.e = 0 
a., 

showing the twisting moment Mxe to be statically equivalent 

to a tangential shearing force - Mie and a normal shearing 

l~ force a ae • These two relations may be obtained either 

by Hamilton's princip le or by geometrical considerations. 

As the equations of motion relate the three 

displacement vector cornponents, u, v and w, the boundary 

conditions must also be expressed in terrns of these cornponentsi 

this can be done using the following relations: 

Mx = .Q. <.u!+V\Y+2.H.C) - ~ ~" 
a.. a..~ 

~ e = .Q.. ( ,; -t- UY -+ vu! '\ + .!S.. <. U3+ \Ai 0) 
Cl. ' 0.3 

.Mex.:.Q. ~ tu: +1)"') + Js. ~ (0.: + ed-) 
a.. 2. 0..3 2. 

.Nx.e = Q. ~ (fi + u') + Js. l-21 ('\)1_ \1/.) 
0... 2. oJ 2-

Mx = .!S. (tJ:J"+?J ~ï- u! -v··.l) l Me = Js. (lJJ + \.Aloi- 2J \A7") 
0..1. . 0..1-

Max =- ~ l\-V)(\Jl'+~ -~); Mxe-=- J5.. Q_~)<.t.d0_-d) 
~ 2. 2. o..'a. 

Qx = .l- (M~ +M"sx.) i Qe = -L (M~ + M~e) a. a. 

3.2 Natural Frequencies of Clarnped-Clamped or Clamped-

Free Circular Cylindrical Shells 

Free vibrations are tirne-dependent vibra tory motions 
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set up in the absence of external loads. The free 

vibration analysis thus deals with a homogeneous system 

of pa.rtial differential equations ,..,i th homogeneous boundary 

conditions. These equations and boundary conditions may 

be written in the symbolic form 

.( 1 (u.., "', W') = y .fru.j-atl

.( ~ (LL, '\t, W' ) = 'Y ~~/'ôt'L. 
.{a (UJ, \t, le) = y ?J1..(fJ/O'c.'L. 
and 

2~ (u, .. '\T,~) = 0 
e 

Ù :: 

where the.( t: and j3-:. are differential operators. We may 

assume that space and.time variables are separable and 

that the displacements may be expressed in the ferm 
. t: c.c)t 

u..(e.,x"t) = tLQ (8,,?C.) e 
"'" (e, 'X" t) = "'0 (e J x.) .eiCAlC 

eCA)t 
te (9., 'X..Jt) = Wc (9 .. x) e." 

The system now becomes 

.(, (u..o, '\J' 0.) ",,"0) + ~ ().)~ ~o . = 0 

.{1.. (u..o .. ,,"0 , UYo) -t- j (J)1. 110 = 0 

J..3 (lLo J \to ., U1o) 1- -V (JJ'L. v:r 0 =- 0 

and 

B.; (u.o J \1 0, \Ar 0) -=- 0; li;. 1,2..) e •• J a 
and defines a boundary-value preblem ,..,here the natural 

frequencies are the eigenvalues and the normal modes of 

free vibration are the eigenfunctions of the problem. 
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The vibrations of a circular cylindrical shell 

rnay involve any nurnber, n, of waves distributed around 

the circumference and any nurnber of \'laves distributed 

along the length of a generator. The number of axial 

waves depends upon the end conditions of the cylinder; we 

shall denote by rn the n'umber of axial half-waves. 

In the case of hornogeneous boundary conditions, 

the modal frequency will be a function of a single value of 

~, and a general solution rnay be written in the following 

forrn: 

0...:. 

8 
~ :. LB-

- ~ J-=l 

uJ' = L (- exp rli (Àj 25. +'ne + ~t)l 
--1 J L ~ ~ 

Substit~tion of these expressions into the homogeneous 

differential equationo leads'to the following eighth-order 

characteristic equation for À.: 

l+ 1-1J -n'J.Ü+k.)-.rr- l+v
J A." 

2. 2.. 

2. 2-
'ri?.. + ~ X (\+~k)-J2. 

>'G+k(l- I~.., .. ~ 
and two relations defining A. and B. as funct~ons of C.: 

J J J 
. ., Bj :: ~j Cj 

=c 

, 
.-< 
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where 1+21 À')')('Yl+ 3-V À2.."k) -À f'TI1- I-V'À1.(1-t3k)-JtJrV+~(t_I-~'Y\?.)j 
o(j '::. ~~) 2.. \; 2. L '2. L 2.; 

[!.'l. + I~TI'l.( 1+ t..) - Jlj l '112. + '~ (1+31<.) -.n... "-] - (';.u À 'ri )2: 
Il '. "'+R. (x-- 1-2J -n2.)ll+v ,\2.'l1_ r X"+ 1-1J'Y\'l..(I+~)_Jl?.l 'Yl+ ~À'2- ~ 
f'J.:.(:-ù) 2.!..l 2.. L 2. J 2. 'Jl 

J and [>.'1. + '-:: TI"-(I-t 10.) - n.'] [,.;>. + ';." (1+31<.) _112"] - ('~ À." t 
...fl. 2. '::. Y w 1- ':. 0..2 Ps 1 ~2.I '2... (1)1-

Also, substitution of the assumed solutions 

into the homogeneous boundary conditions results in eight 

homogeneous equations in the eight unknown C.; for non
J 

trivial solution of these equations, the determinant of 

their coefficients must vanish, and this yields the 

frequency equation (see Appendix B) • 

It does not appear feasible to seek analytical 

expressions for the quantities Àj. Therefore, at this 

point in the analysis, a numerical evaluation of the 

solution is introduced. We now select a given shell 

(i.e. a, h, t, E, 'v, Ps are now known), a number of 

circumferential waves, n, and a set of boundary conditions 

at each end. The method of solution proceeds as follows: 

1. An initial estimate for the frequency w is 

taken and upon substitution into the characteristic 

equation the eight characteristic roots Àj (i = 1,2, ... ,8) 

are obtained; 

2. The assumed frequency w and the characteristic 

roots À. are substituted into the frequency equation; 
J 
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3. If the frequency equation is not satisfied, 

the triql value of tne frequency w is varied in a 

systematic way and the procedure is repeated until the 

frequency equation is satisfied. 

For a given wave pattern (fixed numbers of ,axial 

half-waves, m, and circumferential waves,n) there exist 

three nô:t.nral frequencies, corresponding to different 

amplitude ratios. The lowest value of w~ which corresponds 

to predominantly transverse motion of the cylindrical shell, 

is of greatest interest in our analysis (cf. Kraus(~1)p.307). 

It should also be noted that the number ofaxia,l 

half-waves, m, cannot be specified in advance; thus, it is de-

sirable to determine the modal s,h.ape.las ""'ell, asl.,the.' freqùency in 

each case, since there is an infinite number of frequencies 

for any fixed value of n. 

The theoretical results of this analysis will 

be presented and compared with experimental results in 

the following chapter. 

3.3 Influence of Fluid Flow 

(a) Pressurization and curvatureef'fects 

The' influence of fluid'flow manifests itself 

through forces acting upon the inner surface of the shell. 

These surface loadings per unit area of the reference 

surface are the longitudinal shear stress qx due to viscous 

.?-
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drag, and Pl' the stress due to internaI pressure. We 

shall also take into account the effect of changes of. 

curvature. 

Since we are interested in small perturbations 

of the shell from its static equilibrium position, we may 

write the forces and displacements in terms of a steady-

state component denoted by the subscript '0' and a small 

time-varying ~omponent denoted by the subscript 'l'. 

That is: 

U. ':. u.., ; \..ù - \J..j 0 + """1 

where the fact that Uo = V o = 0 has been utilized. The 

pressure Po is measured with respect to the atmospheric 

pressure. 

Upon substituting these quantities in the 

eqùations and separating zeroth order terms and first 

order terms, we obtain the following differential equations 

relating the time-varying displacements u l ' vI and wl 

(see Appendix C). 

" 1 V .. 1 2J /. / li v·· '", V I.J 0.., (/. ') ô'Lf.LJ 
lJ.., + ;. LL, + -';' "'1 +2JlJ. +R[2. LL, - W. + ;. LI.T. - 0 9 ""1 +1J.1. = Y 'àt:;2-



where 

69 == ~tN9o .i 6x. =- ~( Nxo ; 1P,. ~~l. a.P1 
The quanti ties '6 e and 61 are defined by the steady state 

equations 

and 

The pressure distribution is found by considering the. 

condition of equilibrium between the shearing stress 

resultant and the pressure forces 

-=-0 

Upon integration, and since the outlet pressure is zer·o, 

we obtain the pressure of the fluid acting on .the shell 

as a function of the x-coordinate. 

We may estimate the viscous shear stress by considering 

a fully-developed turbulent flow in a pipe. For air flow 

at ·60 feet per second in a .618 in. diameter pipe, the flow 

.. / 
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Reynolds number is 

Re - VD -v 
. Go ~o'bla 

"6 ~lo4 >(.12. 

so that the boundary layer ·is turbulent. Using experimental 

data (cf. ,sehlichting(12) ).,. we find qx of the order of 

2.6 xlO-2 psi. Thus for a rubber pipe with characteristics 

Cl.'nd. E. :: lao p s'; 

7' _s 6x. and b e are of the order of 10 or less. We may, 

therefore, neglect the quanti ties ~?C. and 'le except in thè 

last equation. At this stage, it is important to note 

that the steady state tensile forces N and Ne are xo 0 

functions of the x-coordinate.· This means we have 

·introduced non-constant coefficients in the last differential 

equation, so that supplementary simplification must later 

be made, if the method of solution outlined in §3.2 is to 

be used. 
(b) Equations of fluid flow 

We must now determine the time-dependent pressure 

exerted by the fluid on the shell and, therefore, solve 

the equations of fluid flow. As stated previously, we 

consider the fluid tobe incompressible and the flow to be 

irrotational so that it may be described by the potential 

equation: 
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where W is the velocity potential. The pressure p is 

given by Bernoulli 's equation. 

Aga:Ln we introduce steady ... state and time-

varying components 

lt-'o ": UX+ cp 
P - ~o + R 

V" _ U +~ 
7J'X. 

Va -=.0..L ~ 
A. 'ae 

VJt.. = ~ 
?).-'L. 

Here ~ is the perturbed potential and U is the free 

stream velocity in the axial direction under steady 

conditions. The boundary conditions at the wall of the 

shell require the matching of the radial velocities of 

the shell and the fluid. 

Assuming a separable solution of the forrn 

cp (..\.,6, ~,t) = R( .... ) e>q> Li. (X ~ + 'n&+ Cilt)] 
the solution may be expressed in terrns of the rnodified 

Bessel function of the first kind, I, and the displacernent 

w (see Appendix Cl; the pressure, Pl' is given by 

'L. 

Pa. 0 [~ + u ~J U)-

'Y\ + X 1",,+\ <.~) 'ôt 'ô 'X. 

I-n (À) 
A further refinernent involves taking into account the 

vibrations of the fluid (generally air) surrounding the 

, 
_ ooi 

0'/ 
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shell; this introduces an additional term involving the 

modified Bessel function of the second kind, K, and the 

displacèment w, as follows: 

We shall show later that the influence of the fluid 

surrounding the shell is negligible in comparison with 

that of the fluid flowing inside the shell. 

Before looking for a solution of the system of 

differential equations, it is of interest to examine the 

new terms introduced in the equations through the pressure 

term 

The first term may be identified with the inertia of the 

fluid in the tube; the factor e~ ( then plays the 
~+ ~ n+1 Al 

l \'\ (A) 

roleof a virtual mass per unit surface area for the fluid 

and is a function of the circumferential wave number, n, 

and the wave length, À. If this term is combined with 
~w 

the inertia of the tube Y 'ôe- , a virtual mass may be 

defined for the fluid-shell system. The third term, 

involving the second derivative of w with respect to x is 

"-' , , 
-l 



- 24 -

the centrifugaI pressure of the moving fluide It will 

tend to increase the curvature of the shell and therefore 

corresponds to a disturbing force. The middle term, 

involving the second derivative of w with respect to both 

x and t, may be identified with the Coriolis force of the 

moving fluidi it is dueto the rotation of the shell and 

tends to oppose its movement. 

3.4 General solution 

Let us now write the equations of motion, in 

non-dimensional form and includ~ the terms involving 

the pressure and the static tensile forces. We employ 

as the reference for length the radius a, for velocity 

LE / E's(l_2I .. ~I/L and for time a.tsQ-V"yE.J1~2. Hence we 

introduce the non-dimensional barred quantities defined 

as follows: 

- x. -x.=_;lL: 
. 0-

Whe:W'e, 

The quanti ties -re and 6'X. are already dimensionless since 

Nxoand Neo represent forces per unit length. 

-" l1..+ 

. The equations may now be written: 

- u.. + _"\)' +2J\A1 +1<. - u.-I-~ _.. '-tlJ -1· -1 '-ll-~ _ .. 
~ ~ ~ 

. 2. 7 (-/. -1) 
- Q')(, '" + Ul 

'-
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1P 

and 

1 
(-) -= 

- 25 -

• ê>(- ) - . , (-) 

E. - a.P 
h~ 

- ~-) 
'019 

. 
.) é e.x.t. = .Q:. 

h 
From hereon we shall drop the "bar" symbol specifying the 

dimensionless quantities. 

To proceed with the solution of the equations, 

it is now necessary to give particular attention to the 

term b'X., since as stated previously it is a linear function 

of x, introducing non-constant coefficients in the equations. 

We shall take it into account using a smoothing 'technique' 

replacing it by its average value over the length of the 

tube, S 17:... ct 'lt 
o 
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Once again, we look for a solution of the form 

u. = I. A.i eXI{li(À'X+"'f\e+.nt~ 

'\t ,. L. Bj e.xl'[li (À 'X +"'f\e+.nt~ 

ur = '[. Cj e.x.\{.:. <.}. x + Tl e +.nt ~ 

which leads to the characteristic equation 

The frequency equation (boundary conditions) is unchanged. 

Note - In the case of infinite wave-length, À = 0, and 

circumferential wave number n = l, corresponding 

to lateral oscillations, we obtain the following 

equations: 

+ B)(.o + C.XO =0 

=0 
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+ B (t-..ct) + c =0 

+B =0 

The solution is A :. 0 and B :. _ C ~ - C. 
1_ .n.'l. 

The displacements are therefore: 

u.. = 0 ,; "\T::. - W SIM. 6' Cos tot; 

W': =. - lN GJs e Cos c.ot 
The shell vibrates as a bearn, which rneans that· 

the cross-section of the shell rernains unchanged 

in the deformed state. The pressure force per 

unit length acting on the inside walls of the 

shell is: rr 
2.TI . '2.. \ r2.. 

F ~J p. CosS a.dS = - pa.
2

( ;t + U ~) (W Ces c.>C)J Ccs2.S d.S 
o· 0 

"L 

F =- - flTa?-( ~ + U~) (w c.,SOlt) 

This formula shows that the virtual rnass of the 

fluid in these lateral oscillations is 

per unit length 

which is a well-known result. 

', 
.i 



CHAPTER IV 

THEORETICAL RESULTS 

Here we are concerned with the study of the 

dynamics of thin circular cylindrical shells containing 

flowing fluide However, before proceeding with this, 

it is important to first study the free-vibration character-

istics of these shells in the absence of flow both to 

understand the fundamentals of the behaviour of a shell 

and to test themethod which is going to be the basis 

for the remainde·r of the analysis. Thus this chapter 

proceeds ~ith the study of free vibrations first in the 

absence of flow and then with flow. 
• .......... 1 

4.1 Free Vibration Characteristics of Clamped-Clarnped 

and Clarnped-Free Shells in Vacuo 

The rnethod for determining the natural frequen-

cies and modal shapes of circular cylindrical shells for 

given boundary conditions has been outlined previously. 

We now proceed to apply it to clamped-clamped and clamped-

free sheils, with particular attention to the first case, 

the study o·f which is quite detailed. 

(a) Clamped-Clamped Cylinders 

ch.". The boundary conditions . are u = v = \.". = 0 r - = 0 ox 
at both ends, x = 0 and x =~. For a given set of values 

of n, h/a, lia and v, the determinant ~ defining the 
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characteristic equation yields the eight roots Àj' 

j = 1, 2, •••. 8, which play the role of wave numbers; 

the determinant D defining the frequency equation yields 

the natural frequencies. 

The characteristic equation may be expressed 

in terms of the unknown À2 and constant,.real coefficients; 

the roots Àj are generally complex numbers but may take 

different forms, i.e. 

+ (a + ib) and + (p + iq) for 0 < Iwl < w-l 

+ ia, + ib and + (p + iq) for w-l < Iwl<wo 

+ ia, + b and + (p + iq) for Iwl > Wo 

where w-l and Wo ~re.well-defined values of the circular 

frequency w, independent of the boundary conditions, and 

a, b, p and q are real coefficients. The four values 

of Àj involving the coefficients a and b vary rather rapidly 

with the circular frequency, w, whereas the four values 

ot Àj involving the coefficients p and q are almost constant 

with w. Typical variations with w of the first set of 

roots Àj is shown on figure 3, for a particular tube made 

of silastic (kind of silicorie-rubber material). 

Correspondingly, the deterrninant D is either 

real, for w less than wo , or purely imaginary, for w larger 

than wo, because sorne roots Àj are multiple giving identical 

columns in the determinant D (see figure 4). These two 

values w-l and Wo have no physical significance because, 

once two roots Àl and À2 are identical, the general solution 
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can no longer be given by an expression of the type 

~À x t:i\1.:!:. a i.'\' ~ 
A, e 10: + A'1. e. Q. + ~ Aj e. ~ Q. 

J:3 
but rather by an expression of the type 

(, 1 1 .; >., .3. 8 t:).., .=. 
,A, + A2. x) e. a. + ~ Aj e ~ CL 

J:.3 
Therefore, the domain of natural frequencies is in the 

range for which the determinant D is purely imaginarYi 

the first frequency fI encountered in this domain corresponds 

to a first ax:i,.al mode of vibration, m = l, as may be checked 

by determining the corresponding modal shape. 

For comparison, the results obtained with this 

method are brought t~gether with results of other analytical 

approaches and experiments in figures 5 and 6. The lowest 

natural frequencies are plotted versus the circumferential 

wave-number, n, the parameter being the number of axial 

half-waves, m. 

Rayleigh's method(12) is a variational method 

which assumes an approximate solution satisfying the 

boundary conditions. "Sanders' theory" is a matricial 

approach using the the ory of Sanders(13). The experimental 

data were obtained by Koval and Cranch(14) for the results 

of figure 3 and by a NACA report(lS) for results of 

figure 4. 

We note that the different theoretiqal results 

agree closely with one another and with the experimental 

data, specially in the range where the frequency increases 

! 
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with the circurnferential wave-number, n, that is to say 

for large n. At the lowest values of n, the results 

obtained with the present method show an improvement in 

agreement with the experimental results. 

We next proceed to determine the modal shapes 

of vibration. To this end we simply solve the eight 

homogeneous equations with unknowns Cj' j = l, 2, ••.• , 8, 

corresponding to the eight boundary conditions, and expr~ss 

seven of these" unknowns as functions of the eighth one. 

Typical results are shown in figure 7; the 

radial, longitudinal and circurnferential displacements 

u, v, w, respectively, are plotted versus the abscissa x 

of the shell for the first three modes of vibration. 

r"t is of interest to note that the displacement u exhibits 

one more node than the displacements v and w, in each case. 

The complexity involved in the use of the shell 

equations must be tolerated for problems that require 

knowledge of the free-vibration characteristics of modes 

having several circumferential waves; in the case of 

bearn-type modes, n = l, on the other hand, considerable 

simplification may be introduced by considering the 

cylinder as a compact beam. It is therefore interesting 

to compare thé results obtained by these two approaches: 

by shell the ory and by beam theory. Typical results 

are shown in figure 8. The agreement is poor for short 

>---

.1 
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cylinders, the difference between the two results being 

of order 10% for a length/radius ratio of 26; it seems, 

therefore, that the extra complexity involved in the use 

of shell the ory is worth the effort for calculating the 

natural frequencies of thin cylindrical shells vibrating 

in a bearn-type mode. A more detailed comparison of shell 

and beam theories is given by K. Forsberg(16). 

We next examine a point .which will be of consider-

able importance in the subsequent analysis of the vibration 

characteristics of the cylinder with floWi namely, what 

is the effect, on the vibration characteristics, of incom-

pIete specification of the boundary conditions? For 

èxample, how would the calculated natural frequencies 

determined by specification of only four boundary conditions 

differ from those deterroined precisely by specification 

of aIl eight? 

As explained previously, the values of Àj' j = l, 

2, .•.• , 8, may be divided into two sets: four values 

which take different complex forms, depending on the value 

of the circular frequency, and four valués which keep 

always the same complex forro + (p + iq). It was found 

that the magnitude of the real part of these latter À1s is 

generally ten to twenty times larger th an the largest 

real part of the values of the first set. A typical result 

is the following: 

. :.r' 

1 
_1 
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0.13 

- 0.13 

0.52 i 

- 0.52 i 

À. = 
J 

+ 2.11 + 3.44 i 

+ 2.11 - 3.44 i 

- 2.11 + 3.44 i 

- 2.11 - 3.44 i 

corresponding to the point wl = 955 in figure 4. Conse

quently, the harmonies corresponding to the second set 

of Àj have much shorter wavelengths than those corres

ponding to the first set and their contribution to the 

modal shape must' be small. 

It therefore seems reasonable to consider only 

the first set of values Àj and reduce the nurnber of 

boundary conditions from eight to four, by dropping the 

conditions involving the longitudinal and circumferential 

displacements and keeping only those involving the radial 

displacement. This has been done and the results will 

now be compared with those of the more general approach. 

The values of the frequency corresponding to four boundary 

conditions are somewhat larger than the values corresponding 

to eight boundary conditions; the difference bet\veen the 

results is shown in percentage form in figure·g. The agree-

ment is fairly good for large lengthjradius ratios, showing 

that this sirnplified approach rnay be used 'di th success 
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only for relatively long cylinders. 

(b) Clamped-Free Cylinders 

The boundary conditions, in this-case, specify 

the displacements at the clamped end: 

aw u = v = w = 0 and -- = 0 at x = 0, ax 

and forces and moments at the free end: 

Nx = Sx = Tx = 0 and Mx = 0 at x = ~. 

The procedure for calculating the characteristics of 

free vibration is the same as before. 

The characteristic equation is independent of 

the boundary conditions, so that the particular values 

of the circular frequencies w_l and wo,are unchangp.d. As 

before, the determinant D is either real, for W less than 

wo' or purely imaginary, for w larger than wo. 

The results obtained by this method are compared 

with those obtained by other analytical approaches in 

figures 10 and Il. The method of Warburton and Higgs(17) 

makes use of Flügge's theory and is basically the same 

as the one we use here; it only differs in that it speci-

fies real displacements u, v and w instead of the more 

general complex forme "Sanders' theory" is the same 

matricial method referred to before. We see that the 

results agree very closely with one another. 

Typical results of the modal shapes are shown 

in figure 12. Again~ the shapes are similar to those of 

bearn-type vibration. It is of interest to note that the 

J 
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strain in the axial direction, ex 

at the free end. 

au 
= ax is practically zero 

The influence of incomplete specification of 

boundary conditions was also examined in this case, and in 

particular the possibili.ty of reducing the nurnber of 

boundary conditions from eight to four. Unfortunately, 

although it is possible to reduce that number at a clamped 

end, it is not possible to do the same at a free end and 

still obtain meaningfull results; no one condition having 

been found to be preponderant among the four classical 

ones: 

4.2 Vibration Characteristics in the Presence of Fluid 

Flow 

The influence of fluid flow manifests itself 

through forces coupled to the motions of the shell. These 

forces act mainly in the radial direction, as seen previously, 

and correspond to three types of forces: inertia forces, 

Coriolis forces and centrifugaI forces. The apparent mass 

of the fluid appears to be a function of the wave-number, 

À, through Bessel functions. 

At this stage, it is very important to note 

that, if we follow the method of solution used previously 

for determining the natural frequencies in the absence of 

flow, the characteristic equation, being transcendental 

in À, will have an infinite number of roots. This means 

that the complete solution is no longer a combination of 

'- 1 
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eight terms but is now an infinite series. The obvious 

difficulty lies in the fact that the number of boundary 

conditions is limited to eight. This method of solution 

is therefore not well adapted to the problem at hand, 

unless sorne further simplification can be made. Fortu~ 

nately, this is the case. The values of À which contribute 

most to the modal shapes are those with small modulusi 

larger real parts correspond to vibrations of shorter 
.. 

wavelength and larger imaginary parts correspond to vibra-

tions with increased damping. In practical terms, the 

modulus of the roots Àj' j = 1, 2, •••• 00, increase rapidly 

with j and the displacements may be adequately represente'd 

by the use of a finite series solution, corresponding 

to a truncated set of À's. We shal1 test the validity 

of this assumption in the case of clamped-clamped cylinders, 

in the next section. 

(a)- Clamped-Clamped Cylinders 

The first case to be studied was that of a 

clamped-clamped cylinder, as this presented the minimum 

of numerical difficulties in the computer solution because 

of the symmetry and simplicity of the boundary conditions. 

Moreover, this case was flexible in the sense that we could 

reduce the number of specified boundary conditions from 

eight to four and thus test the validity of the finite 

series simplification for the displacements, as referred 

to above. 
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The geometrical and physical characteristics 

of the cylindrical shell used in the calculations are 

as follows: 

length: R, = 8.00 in 

radius: a = 0.309 in 

thickness: h = 0.007 in 

shell density: Ps~ 3.08 10-2 lb/in3 

Young's modulus: E ~ 130 psi 

Poisson's ratio: v ~ 0.50 

They correspond to a rubber tube used in the experiments. 

The fluid flowing inside the shell is air. As the pressure 

along the tube is almost constant and equal to the atmos

pheric pressure, the air density is taken to be 

air density: p = 0.0765 lb/ft3 

The fluid outside the shell, and at rest at infinity, is 

also air. 

In the following numerical analysis the coef

ficient k = h 2/l2a2 (~ 4 x 10-5 ) was neglected in comparison 

wi th uni ty in the characteristic equation; ''le shall come 

back to this simplification shortly and question its 

validity. 

Four sets of calculations were performed to 

study the respective influences of, the specification 

of the boundary conditions (four or eight boundary condi

tions), the fluid flow outside the cylinder and the defini

tion of the Bessel functions. 

---- ~ 
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(i) The first set of ca~cu~ations was performed 

using the four-term displacement series corresponding to 

the four roots Àj with the sma~~est modu~i. According~y, 

the boundary conditions are ~imited to four, name~y 

W = 0 .-dW = 0 at both x = 0 and x = ~ . , dX 

The Besse~ functions were ~pproximated by the finite 

series 

_-=1. __ =- .1.(i- t) a.:ncl 
À Il\4~) 2. ,2-

1'\+ l'rl (>.) 

they are coherent with the va~ues of À. The resu~ts are 

presented for the first three axia~ modes of vibrations, 

m = 1, 2, 3, with the circumferential mode n equal to 2, 

(figure 13). 

With increasing flow ve~ocity the frequencies 

of the first, -second and third axia~ modes decrease with 

inqreasing flow velocity (figure ~3). They remain_real 

unti~, at sufficient~y high f~ow ve~ocities, they vanish 

in turn - at U - 0.58 and 0.606 in -the case of first 

and second axial modes - indicating the existence of 

buckling-type instabi~ities and imp~ying co~lapse of the 

she~l cross-section. At higher f~ow ve~ocities, the 

frequencies become purely imaginary and at Ü =" 0.607 the 

first and secon~ mode ~oci coalesce at symmetric points 

and the frequencies beco~e complex, indicating a coupled-

'-, 
1 

~_ .-1 



- 39 -

mode flutter (figure 14). It is noted that the interval 

of flow velocity between the ons et of static instability 

(buckling) and flutter is very small; buckling and flutter 
\ 

are practically coincident, and in that sense the theory 

may be considered to be in qualitative agreement with the 

observed behaviour, although, of course, strictly speaking 

the theory ceases being applicable beyond the threshold 

of the first buckling instability. 

(ii) The second set of calculations was performed 

using the eight-term displacement series corresponding to 

the eight roots Àj with smallest moduli. Accordingly, 

the eight classical boundary conditions were used, 

8w u = v = w = 0 • -- = 0 at both x = 0 and x = i , 8x 

the previous results serving as a guide and points for 

comparison. The Bessel functions were no longer approxi-

mated by second degree polynonials but defined by the full 

series, where a sufficient number of terms were retained 

to ensure a goodaccuracy. Results are presented in figure 

13, corresponding to the first two axial modes, m = l, 

2, and the second circumferential mode, n = 2. 

(iii) To evaluate the respective effect of 

the simplifications concerning the Bessel functions and 

the boundaryronditions, a third set of calculations was 

performed using the four-term displacement series, the 

Bessel functions being defined by the full series. Again, 

the results are presented in figure 13, for the first 
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two axial modes m = l, 2, and second circumferential 

mode, n = 2. We note that the variations in frequency vis-à-vis 

those o~ (i) are very small in aIl cases;thev are limited to 

approxirn.ately 2% for zero velocit.y and are practically non

existent at buckling velocity. Therefore, it seems that 

the first approach involving four boundary conditions 

and simplified Bessel functions is very satisfactory, 

in particular for the prediction of the buckling insta-

bility. 

.(iv) It is also of interest to studythe 

influence of the fluid outside the cylinder. It should 

be noted. that this fluid has no effect on the buckling 

velocity, because for buckling the frequency is zero and 

so is the inertia force which is the only force exerted 

by the outside fluid on the cylinder. Calculations were 

carried out assuming vacuum outside the cylinder and 

using the first simplified approach. The results (figure 

13) show a slight increase in frequency for velocities 

below the buckling velocity and no deviation in the zone 

of buckling, as expected. 

As stated previously, we have neglected the 

coefficient k = h 2/12a2 in comparison with unit y in the 

characteristic equation. This simplification is apparently 

valid when the coefficient k is small, as is the case 

for the preceding calculations where k is equal to 4 x 10-5, 

but in fact the magnitude of aIl the terms should be examined 

to decide whether this simplification is valid· or note 

-' 
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The dimension1ess frequency, n, is.of order 2 x 10-2 , the cir-

curnferentia1 "lave number" is equal to 2, the roots Àj have a 

modulus of order 2 x 10-1 and Poisson's ratio v is equa1 to 

0.5. Thus the terms involving the coefficient k are of the same 

order as n2 and, therefore, the coefficient k shou1d not be ne-

glected. Only for thinner shells, where k is srnall in compari

son with n2 , may it be neglecteà. A new set of results was ob-

tained this time without any simplification in the character-

istic equation and using four boundary conqitions and the full 

Bessel functions. The results are compared with the previous 

ones for the first three axial modes in figure 13. They show 

an increase in frequency of the order of 5% for zero velocity, 

,-

the buckling velocity being also slightly increased. Accordingly, 

al though the effect of neglecting k in comparison 'vi th uni ty is 

small, it should not be disregardeà. The previous results are 

thus slightly affected quantitatively but can still be relied 

upon. In the following calculations no simplification will be 

introduced in the full characteristic and frequency equations 

and the full Bessel functions will be used. 

Sorne further calculations for n other than n = 2 

have been conducted and the resu1ts are shown in figure 15. 

The next step in this analysis was to study 

the variations in instability thresholds with the length 

of the cylinder; more precisely, the onset of buckling 

instability was considered because it can be predicted 

by the present theory as a limiting case and it corresponds 

to simple calculations. Four boundary conditions are 

,. 
~ ", 
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used in these calculations. The dimensionless velocity 

corresponding to buckling is plotted versus the length/ 

radius ratio for the first two or three axial modes and 

the first, second· and third circumferential wave-nuIDbers 

(figure 16). It is noted that the curves tend to asymp-

totic values for large length/radius ratios. For n = 2 

and n = 3, there is an lI exchange ll of loci between the 

axial modes when two curves happen to cross each other; 

so that the lower portions of c.urves always correspond 

to first axial modes, the following upper to second 

axial modes, then third. 

For the case n = l, the numerical analysis is 

particularly simple as an explicit expression for the 

velocity corresponding to buckling may be obtained. In 

the case of buckling, the roots Àj' j = l, 2, 3,.4, are 

.simply 

Therefore, the solution takes the limiting form 

w = A + Bx + C cos Àl .~ + D sin Àl ~ 

Application of the boundary conditions 

w(o) = w(.R.) = 0 
dW dW 

and dX (0) = dX (.R.) = 0 

leads to the equation 

À,e. 
2.<1. 

_ À, t Cos À, e. ) S L'J\ 
2. a. 2. a. 

- 0 
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the solution of which if formed by the two sets of roots 

À~~ =. p1f .; p=- i,2.,... a.-nd M = 4·4934,., ,. 
2.0. 

The value Àl~= ~ corresponds to the first axial mode, -ra 
the value Àl~= 4.4934 cqrresponds to the second axial 

mode. The2~xplicit expression for the velocity is then 

obtained from the characteristic equation 

where the fact that n = 0 and n = l has been taken into 

account. Returning now to the examination of figure 16, 

the results show that for a short cylirider, the first 

instability occurs in the second circumferential mode, 

whereas above a certain length the first instability occurs 

in the first circumferential mode. These results will 

be compared with experimental ones. Finally, another 

point of interest is the variation of modal shapes with 

flow.velocity. The method of calculation and associated 

analysis are presented in Appendix D. The results are 

presented in figures 17 a, b, c, d, e and 18 a, b, c, d, e 

and correspond to m = land 2, and n = 2 throughout, for 

=--0 

different velocities ranging from zero to buckling velocitYi 
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each figure shows the time-dependence over half a period 

of the modal shapes in terms of u (x ,aft) , :v (x, a,t) and Vi (x, aft) • 

It is noted that the modes change their form with increasing 

velocity, the first mode at zero velocity exhibits a second 

mode shape just before buckling and the second mode at 

zero veloeity exhibits a third mode shape just before 

buckling. 

(b) Clamped-Free Cylinders 

For this particular 'set of boundary conditions 

a single approach was used. The solution was assurned to 

be an eight-term s'eries, coherent wi th the eight classica1 

boundary conditions, 

dW u = v = w = 0 = 0 at one end x = 0 
r ~x 

Nx = Sx = Tx = 0 , Mx = 0 at the other end x = ~. 

The influence of f1uid inside and outside the she11 was 

tàken into account, using the full expressions for the 

Bessel functions l and R. No simplification was introduced 

in the characteristic and frequency equations. 

The geometrical and physica1 characteristics 

of the cy1indrical she11 used in the ca1cu1ations were 

the same as before. Ca1cu1ations were do ne for the first 

two axial modes and for circumferentia1 modes equa1 to 

1, 2 and 3. The resu1ts are shown in figure 19; they 

present the variations of the dimensionless frequency 

in the frequency-plane (Argand diagram) with the, parameter 
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U, i.e. the dimensionless flow velocity. 

It is noted that the effect of flow for small 

values of U is to damp the system in aIl modes; the 

frequencies become complex with positive imaginary parts. 

For higher values of Ü, however, sorne of the modes (the 

second axial modes) become less damped and the corres

ponding frequency curves eventually cross the real axis, 

at points where the real parts are fini te, proving the 

existence of unstable vibrations. Sorne other modes (th~ 

first axial modes), on the contrary, become more damped 

with flow and the corresponding frequency curves reach 

the imaginary axis, at points where the imaginary parts 

are finite and positive, so that motion in these modes 

then becomes completelynon-oscillatory. The second 

axial modes become uns table before the first axial modes 

are damped without oscillations. The instability associated 

with the second axial modes correspond to flexural (beam

type) oscillations for n = land to flutter for n = 2 and 

n = 3. 

It is noted that these results are qualitatively 

similar to those presented by R.W. Gregory and M.P. paidoussis(3) 

in the simple case of flexural oscillations (n = 1). 

Next, the influence of the length of the cylinder 

on the onset of'instability was considered. Results 

presented in figure 20 show the variations of the critical 

velocities with the length/radius ratio, for the second 

axial modes corresponding to a = l, 2 and 3. The system 
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first becomes unstab1e in its second mode, n = 2, for short 

cy1inders; for long cy1inders, it first becomes unstab1e 

in its first mode, n = 1( as wou1d be expected. 

Cc) Physica1 Interpretation of the Theoretical 

Resu1ts 

At this point in the" ana1ysis, it is interesting 

to question the resu1ts just obtained and try to give a . 
physica1 interpretation of the phenomenon. In particu1ar, 

is there a simple argument to anticipate the theoretical 

resu1ts just derived and explain the differences between 

a system"with c1amped-c1amped tube and a system with 

c1amped-free tube? 

The basic "difference between these two systems 

is that the first one, with syrnmetrical c1amped end 

conditions, is conservative whereas the second, with asym-

metrical c1amped-free end conditions is not. By conserva-

tive we mean that during a continuous vibration the transfer 

of energy between f1uid and tube must have a zero average, 

or in other words, that the average supp1y of energy at 

in1et is the same as the average 10ss at outlet. 

It is interesting to define the energy accumu-

1ated or rejected by the overa11 system, i.e. the pipe and 

the f1uid enc10sed in it. Benjamin{2) considered this 

mechanism of energy transfer in the prob1em of articu1ated 

pipes conveying f1uid; in a motion over a time 0 to t 1 

which conc1udes with the system in its original state, if 

~' 
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the upstream end is clamped or simply supported, the 

energy gained by the pipes is 

J
t, 

.z. -.7 , 
A W = - MU (R + U c· R ) «t ; 

-;too 

R -
o 

where M is the mass per unit length of the contained 
~ ~ 

fluid and~ and R are the tangential and position vectors 

at the end of the last pipe. Let us recall the hypotheses 

which justify this formula: 

(i) The system considered has a finite number 

of degrees of freedom. 

(ii) A set of Lagrangian equations is found 

in terms of the energies of the fini te part of the overall 

system, i.e. the part comprising the pipes and the enclosed 

volume of fluid, and condensed into an appropriate state-

ment of Hamilton's principle which remains correct in the 

case of infinite freedom. 

(iii) The kinetic energy of the assembly of 

particles momentarily filling the pipes is expressed as: 

T' = Tl + T2 

where Tl is the kinetic energy contained at any tirne within 

the space enclosed by the pipes and the second term T2 is 

the time-dependent kinetic energy, correct to first order 

of (t ... to). 

It is important to note that the energy transfer 

cannot be related to the time rate of change of sorne 

'total energy' of the finite system, owing to the fact 
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that the time variable ~ is explicitly involved. 

Physically, the energy b.W is the rate of work 

·by the non-conservative part of· the hydrodynamic forces; 

the first term • 2 
r-1UR represents the average work done 

by the pipes against Coriolis reactions of the fluid, 

and the second term 
-+ 

2+ • 
MU T.oR represents the average 

work done by the pipes against the 'equivalent force' of 

the relative momentum flux M u2 out of the last pipe. 

So far we have assumed that the upstream end 

is clamped or simply supported, but we have not introduced 

the boundary condition at the downstream end. If this 

end is also clamped or simply supported, we have b.W = o. 

This means that vibrations can neither be damped nor 

amplified by the action of the flow; the hydrodynamic 

forces are then of purely conservative type. In terms 

of the complex frequency diagrams, the frequency of aIl 

the modes remains real with increasing 'velocity and follows 

the [Re (Q)]- axis toward the origine Thus, in the 

absence of frictional forces, the only possible form of 

instability is buckling. At the origin, the frequency 

locus bifurcates and the two branches continue along the 

positive and negative [Im (Q)]- axis. Thus, once buckling 

occurs, the centrifugaI force causes amplification of 

the deformation. Beyond that point, the the ory ceases 

beingl applicable, as additional non-linear.forces will 

come into effect. However, we may hope that the qualita-

tive prediction of this theory is still right after 

·1 



- 49 -

buckling. With a further increase of velocity, the first 

and second axial mode loci coalesce at symmetric points, 

and the frequencies become complex, indicating a coupled-

mode flutter; in practical terms theinterval of flow 

velocity between static instability (buckling) and flutter 

is very small and the theory may be considered to be in 

qualitative agreement with the observed behaviour. If 

the downstream end is free, the hydrodynamic forces are 

of non-conservative type.· When the velocity U is small, 

vibrations are damped since the first term in the inte-

grand predominates over the second and makes ~W negative. 

For sufficiently high velocity U, amplified vibrations _ -r 
are possible (~W > 0) provided the scalar product 1:. R 

has a negative average value; this means that for the 

greater part of a cycle the dm·mstream end of the pipe 

must slope backwards to the direction of motion of its 

free end and perform a 'dragging' sort of motion. This 

'dragging' motion is obtained with the second and fourth 

axial modes and indeed the theoretical results show that, 

at a sufficiently high velocity, the amplitude of vibration 

of the second axial mode is amplified whereas those of 

·the first and third axial modes are damped, whatever the 

circumferential mode may be. In this case, oscillatory 

instabilities are possible, independently of frictional 

forces. 

These general remarks provide a clear physical 

interpretation of the effects of the fluid upon the pipe. 
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Twe different forrns of instability are in evidence; one 

is terrned 'buckling' and the other is self-excited vibra-

tiens. 



CHAPTER V 

EXPERIMENTS 

5.1 Introduction" 

The experimental work described here was 

supplementary to the theoretical study. The aim was 

twofold: first, to study the dynamical behaviour oi 

flexible cylinders conveying fluid and confirm sorne of 

the leading ideas explained in the theoretical part; 

secondly, to measure the limits of stability i~ a number 

of cases, and compare them with the theoretical values. 

The experiments were conducted with circular 

cylinders of mean radius a, thickness h, length 2, density 

Ps and flexural rigidity EI, in a fluid of density P 

flowing with velocity U parallel to the rest position 

of the cylinder axis. One end of the cylinder was clamped, 

i.e. tied to a rigid tube, the other was either clamped 

or free. The cylinder was hanging down. No tension 

was applied externally. For comparison of the.experimental 

with the theoretical results, the following dimensionless 

pararneters were used: 

d · . 1 f ri -_ _w w~th W 0 __ 1 [p (~ j/2 ~mens~on ess requency. ~6. 2) 
Wo a S - v 

dimensionless flow velocity U = go with UO=[Ps(~ _ ,,2~1/2 

5.2 Apparatus 

The experiments vlere carried out \vi th tubes 

'-
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made of "silastic" or rl+bber. "Silastic" is a silicone 

rubber with physical characteristics defined by a Young's 

mOdulus,'E ~ 215 psi, a poisson's ratio, v ~ 0.47, and 

a density, Ps ~ 3.72 x 10-2 lb/in3 ; these cylinders were 

cast in specially prepar~d moulds. The rubber tubes 

\'lere made of latex rubber colostomy tubingi this material 

is characterized by E ~ 130 psi, v ~0.50 and Ps ~ 3.08 x 

10-2 lb/in3 • Typical dimensions of the tubes are given 

by the following data: 

{ 
mean radius, a = 0.28 in 

Silastic tubes thickness , h = 0.06 in 

length , R, = 2 in ta 10 in 

Rubber tubes 
{ 

mean radius, a = 0.309 in 

thickness, , h = 0.007 in 

length , R, =,1 in to 10 in 

For almost aIl the experiments air was used as the'fluid; 

sorne observations were made when the fluid was water. 

The apparatus consisted mainly of an air-compressor, 

flow-rators ta measure the rate of air-flow, valves, and 

connexions to fix the flexible tubes. For observation 

of the vibratingtubes and measurement of frequencies a 

stroboscope was used; it could be synchronized by any 

external periodic electrical signal; in the experiments 

this signal was given either by a variable frequency 

generator or transmitted by a microphone recording the 

sound produced by the vibrating tubes. This set-up allowed 

, 
J 
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"freezing" or slow-motion observation of the tubes. A 

schematic diagram of the experimental apparatus is pre

sented in figure 21. 

5.3 General Observations 

We first consider the clamped-free cylinders, 

because in this case, the downstream end of the cylinder 

is free and the deformations of its cross-section are 

directly observablefrom above, thus providing a simple 

way of determining the circumferential mode of vibration. 

In the experimental procedure the air-flow velocity is 

increased in small· steps, starting from zero. 

For a velocity below the flutter threshold, 

the first vibrations to appear correspond to the second 

circumferential mode. The amplitude of these vibrations 

is small, the end cross-section takes a quasi-elliptical 

shape and deforms alternately between two extreme positions. 

With increasing velocity the amplitude of these vibrations 

increases slightly until at a certain threshold the vibra

tions change and correspond then to a different circumfer

ential mode.. This mode corresponds to n = 4 for a rubber 

tube; for a silastic'tube, it is possible to observe 

vibration~ corresponding to n = 3. It should be noted 

that the sound of these vibrations is low and cannot be 

easily recorded. 

Increasing the velocity further, the flutter 

threshold i5 reached. Vibrations of large amplitude appear 

""" 
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in the region near the free end and are of diminished 

amplitude toward the clamped end. The shape of the 

free-end cross-section is irregular and becomes wobbly 

with increasing velocity: its lips twist alternately 

outward and inward and close the opening almost completely 

at the two extremes of the cycle. The cross-section of 

the free end exhibits a shape corresponding to the second 

circumferential mode of the shell w'ith no flow (see 

photographs). Reducing the flow velocit~~xr-e~A~p~e~r~-------------~ 

sists below the critical flow. 

The frequency of vibrations ranges between 

100 Hz and 800 Hz and increases with increasing flow 

velocity. The 'noise level is high; typical principal 

frequencies of the emitted sound, recorded with a 

microphone, are presented below for a silastic tube. 
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Velocity in 

Length 'ft/sec' 

R, in 'in' 19.0 22.1 25.2 29.2 33.2 37.1 

6 3·60 390 440 480 490 510 

8 340 410 425 480 490 510 

10 ? 395 410 450 480 500 
c.-:".....» 
Transition zone with superirnposed 

vibrations 

TABLE 1 - Principal sound ernitted (frequencies in Hz) 

for the flutter of a rubber tube (a = 0.309 in, 

h = 0.007 in). The flutter threshold is 

slightly higher than the velocities presented 

here. 
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In the case of re1ative1y thick she11s (si1astic 

tubes in particu1ar) and at high ve1ocities, interna1 

stresses cause heating of the materia1 and eventua11y 

rupture of the she11 near the downstream end. 

F1utter deve10ps spontaneous1y but it may also 

be induced at ve10cities lower than the critica1 by 

pinching or disturbing the tube. 

With a cy1inder c1amped at both ends, the 

characteristics of f1utter are the same as for a c1amped-

free cy1inder. For short cy1inders, a f1exura1 buck1ing 

(n = 1) appears before the f1utter. The vibrations in 

this case a1so, appear in the region near the downstream 

end. 

5.4 Measurements of the F1utter Thresho1ds 

The quantitative tests comprise measuring the 

air f1ow-ve1ocity at which flutter occurs, and comparing 

the theoretica1 and experimenta1 values. 
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Çlamped-c1amped ends 

.l.Jength, R- (in) Ve1ocity, U (ft/sec) Dimensionless v!31ocity, U 

g 63.2 , 65.5 .51 , .53 

8 63.2 , 65.5 .51 1 .53 

7 63.2 , 65.5 .51 , .53 

6 65.5 , 67.8 .53 , .55 

5 78.1 , 82.1 .64 , .67 
4 78.1 , 82.1 .64 , .67 

~lamped-free ends 

i..ength, R- (in) Ve1ocity, U (ft/sec) Dimensionless velocity, U 

10 40.3 , 41.2 .327 , .335 

9 40.3 , 42.2 .327 , .343 

8 38.3 , 42.2 .311 , .343 1 

7 38.3 , 42.2 .311 , .343 

6 40.3 , 42.2 .327 , .343 

5 40.3 , 44.2 .327 , .359 

4 38.3 , 42.2 .311 , .343 

3.5 36.3 , 38.3 .295 , .311 

3 36.3 , 38.3 .295 , .311 

2.5 36.3 , 40.3 .295 , .327 

2 38.3 , 40.3 .311 , .327 

1.5 38.3 , 40.3 .311 1 .327 

1 40.3 , 42.2 .327 , .343 

1 
! 

~ABLE 2 - Experimental resu1ts, corresponding to the two 
1 
1 

sets of boundary conditions for a rubber tube l 
i 

with fo11owing characteristics: 
i 
i 

a = 0.309 in , h = 0.007 in, 

E = 130 psi , v = 0.50 

1. 
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Comparison of these results withtheoretical 

ones is presented in figures 16 and 20~ ~ 

In the c"lamped-clamped case, the" theoretical 

results correspond to the threshold of buckling instabili

tiesi this is admissible, however, as we have shown that 

buckling and flutter instabilities are practical1y coinci

dent. The general agreement between the ory and experiment 

is good. As expected, the experimental results lie below 

the theoretical ones; the margin of discrepancy varies 

between 0 and 16%. The divergence may be due to secondary 

effects such as smallirreg~larities of the tube and the 

clamped ends. 

In the clamped-free case, the theoretical results 

are theinstabilities of the second axial modes as we 

have shown that they are the first to occur. "The agreement 

between theory and experiment is rather good for long 

tubes (~ larger than 5 in, i.e. ~/a > 16) where the margin 

is about 20%. For shorter tubes however, (~/a < 16), the 

divergence is ITt0re important, it may be due againto 

irregularities of the tube and the clamped end; moreover, 

secondary flows at the outlet suchas vorticesand eddies 

may also cause or, at least, affect the onset of, instabili

ties. Experiments were carried out with smoke instead of 

air, but no specific pattern or motion of the smoke could 

be "seen at the free end. ~'le do not here present any 

experimental results concerning the frequencies of vibra

tion of the shell. Such expcrim~nts wcre, however, carried 

'-
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out ,,,i th a rubber tube. Before flutter occurs, the tube 

vibrates in the fourth circumferential mode (n = 4) with 

very sma'll amplitude, vlhereas in the present study, 

theoretical results are given only for n = l, 2, 3. 

The frequencies are in ~he range (100 Hz, 120 Hz) and should 

correspond to the theoretical values for n = 4. After 

flutter occurs, it is difficult to measure the frequencies 

of vibrations, simply because several frequency components 

are present - except at very low velocities where the 

second circumferential mode is predominant. 

Although the apparatus was of the simplest kind, 

the experiments appeared to confirm the essential features 

of the dynamical problem predicted by the theory. On the 

who1e, the comparison between theory and experiment is 

reasonably favourable. 

- - 1' ,. 



CHAPTER VI 

CONCLUSION 

The existence of unstable vibrations of circular 

cylindrical shells conveying fluid has been established 

and the conditions of stability have been determined for 

sorne possible physical systems. 

Discussion of the stability of equilibrium has 

illuminated the remarkable _and basic difference between a 

system with clamped-clamped ends and one with clamped-free 

ends; it lies in the fact that the hydrodynamic forces 

on the tube are conservative when bath ends are clamped, 

whereas they are non-conservative when one end is free. 

This important property explains in particular the two 

different forms of possible instability. In the case 

of a tube with clamped-clamped ends, buckling instability 

appears first, as the system is of conservative typej 

bey and buckling, coupling bet'veen the first t\vO axial 

modes of vibration is predicted, giving rise ta a coupled-

mode flutter. In the case of a tube ,·li th clamped-free 

ends, instabili tyconsists of self-_exci ted vibrations, as 

the system is then of non-conservative typei in agreement 

with the conclusions drawn from the study of the stability 

of equilibrium, the system has been sho'h'n to become unstable 

first in its second axial mode, the tube performing then 

a "dragging" s0rt of motion. 

The conditions of stabilitv ~ave becn dotermined 

,-, 
.i 
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the most significant physical parameter. For short 

tubes, and whatever the end conditions 'may be, the 

system becomes unstable first in its second circurnfer-

ential mode, either by buckling for clamped-clamped end 

conditions or self-excited vibrations for clamped-free 

end conditions; for longer tubes, it first becomes unstable 

in its first circumferential mode, i.e. flexural or 

bearn-type buckling or vibrations; this behaviour is to be 

expected. The system is also more easily destabilized 

with increasing lengthjradius ratio. 

Another interesting property of the system 

under consideration is the exchange of stability loc1 

between axial modes with varying lengthjradius ratio, 

in the case of clamped-clamped tubes. At certain points 

different curves corresponding to buckling in different 

axial modes (fi.gure 1)5) converge and cross each otheri 

this rneans °that buckling and coupling bet\veen modes are 

then coincident and flutter is expected to happen with 

buckling. 

In connection with the phenornenon of flow-induced 

buckling, a complementary, simple method of approach t.vas 

used in the case of bearn-type buckling (n = 1) ~vhere 

the question of stability was conceived as a statical 

problem (page 42), the effects of the flow being then 

considered equivalent to the centrifugaI force of the 

moving fluid. This simple approach gives ironeàiate insight 

into the physical mechanism of buckling and s~o~s directly 
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the forces acting on the system. However, this approach 

cannot be extended to the general case, \"here a dynamic 

theory must be used. Moreover, it should be noted that 

a statical the ory- cannot predict the form of the equivalent 

mass of fluid acting on the walls of the pipe, which in 

our case is deduced from potential flow theory. 

The more interesting results of the general 

theory are those which illustrate the ro"le of the fluid 

as a source or sink of energy, just as the more' interesting 

experimental observations are concerned with this aspect. 

The experiments, although conducted with apparatus of a 

simple kind, appeared to confirm the essential features 

of the dynamical problem predicted by the theory. Strictly 

speaking, it cannot be expected that the behaviour of the 

system with increasing flow velocity can be predicted 

by the linear analysis beyond the point where instability 

first occurSi the amplitude of motion then grows to the 

extent that forces not considered in the analysis come 

into play. It was particularly interesting, therefore, 

that the predicted coup led-mode flutter instability for 

clamped-clamped tube materialized as the flo,", veloci ty 

increased beyond the point where buckling occurred. In 

this case, and for relatively short tubes, buckling and 

flutter instabilities in the second circumferential mode 

were practically coincident; for longer tubes, the first 

instability to occur was buckling in the first circum-

ferential mode, i.e. bearn-type buckling, followec1 ,dth 

'. 
1 
1 
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increasing flow velocity, by flutter instability, either 

with n = l or n = 2 or even both of them. In the case 

of clamped-free tubes, self-excited flutter appeq.red; . 

depending on the length of the tube, the modes n = l or 

n = 2 would appear separately, the mode n = 3 could also 

be excited with particular initial conditions. 

As mentioned in the introduction, these parti-

cular vibrations of an elastic tube had never been reported 

or studied hi:ëherto. The present paper provides a 

description and theoretical investigation of this problem. 

Although the proposed theory is involved and deals with 

cumbersome equations, the key to understanding the under-· 

lying physical mechanism remains the simple consideration 

of the stability of equilibrium whereby the basic difference 

between systems with clamped-clamped and clamped-free end 

conditions is introduced; this allows distinction between 

conservative and non-conservative systems and proves to be 

greatly enlightening as regards the physical side to the 

problem. 

Undoubtedly, this problem is worth supplementary . 

investigations. The influence of the thickness/radius ratio 

could first be studiedi this should be straightforward, as 

most of the results can be predicted. Similarly, the influ-

ence of the nature of the fluid could be studied; in particular, 

with water the nature of instabilities is different and 

i t would be int.eresting to examine the reasons ':or this 

behaviour. Also, and though it is perhaps a slight digres-

'-
j 
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sion from the main problem, it would be interesting te 

study the flow patterns and possible vortex generation 

at the free end of. a tube and see its pert~rbing influ-

ence on the stability of a clamped-free tube. 

Finally, in connectiqn with possible applica

tions of this problem,none is anticipated so far, but 

no doubt some will show up in the future. This study 

was aroused merely by scientific curiosity and its aim 

was simply to obtain a deeper understanding and knowledge 

in the mechanics of an intriguing physical phenomenon. 

', 
.. 1 
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APPENDIX A 

SMALL RIGID-BODY MOTIONS 

We wish to show that the strains resulting 

from rigid-body motions vanish for Flugge's theory. 

An arbitrary point in the space occupied by 

a thin shell is defined by the vector ...., 
R (o(. ,c(~".:f) :. A(<<., ,cCL) + 'S :rl(c(I,«1.) 

where :;c is the position vector of a corresponding poi.nt 

on the reference surface, ïi is the unit normal vector 

from the reference surface and j denotes the distance of 

the point from the corresponding point on the reference 

surface along ~ al and Œ2 are the parame tric lines of 

the reference 
-+ 
U (0{, ,ol1.,S) 

-t- ~ 
where t, ,t~ 

c(l 

surface. We now define a displacement vector 

- ~t ~ 
=. U, (O<bC:<1..,,'S)t)+Ua.(C<\JC<1.,,!) 2.. +W(oel,c(L.;S)-n 
are unit vectors along the lines al and a 2 • 

Ra 

1 
1 
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The assumption regarding the preservation of the normal 

element in a thin shell implies that the displacernents 

are linearly distributed across the thickness of the 

shell: 

U, (<<l"o{'1.,,!) :. IlI(oC1"oC,-) +1 ~1(o(l:Jo('1.,!':.o) 

U?- (o(I~oCt.~!) - ll2,. (ot.l"Clh.) +j' ~1.(o('Jo{1.." ';f-:.o) 

W (O<I."o('1.,,~) -= L\Y (o(l~ o{'1.) 
The rotations SI and S2 of tangents to the reference surface 

can be determined from the assurnption that aIl strains in 

the direction of the normal to the reference surface vanish 

\. e", = ~t'r\ = Y 2.'"" = 0 ) : 

{3, 

where RI' R2 are the principal radii.of curvature and Al' 

A2 are the coefficients in metric form of the reference 

surface. Using these notations and without neglecting 

'j/R~ with respect to unit y as is done in the classical 

theory, the strains are given by the following equations: 

_ .i 
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where: 

Let· us now· introduce sma11, constant, rigid-body motions; 

they are defined by the vectors 

For such motions, the disp1acement vector of points on the 

reference surface of the she11 is given by 
~ -. J ~ 
LL ":: A +.!l X "-

where 

Using the equations and 

stating that the motions are constant, and the classical 
~ ~ --.. "~ 

relations for the derivatives of t. ' t2,. , 'Y\ and J?.. with 

respect to al' 0. 2 ", the following relations may be deri ved: 



'08, :. _ ~1.. dA, _ A,~'n 
ôC<, A~ â~?. RI 

'0 cat. _ ~ êA, 
ô 0(. 1 A"1. '00(2. 

A,~, 
R, 

001.. oA. 
Az. ~ 

=-

- A4 -

~ _ ~'L ôA'L. 
''ào(2,. A. "00(, 

· â~~ _ A2. _ ft 'ôAL _ A~en 
) 'ô 0< '2., - AI Ô Cl( 1 R'l. 

· G>~, 
) '0«'2.., -

· J 

= - 00, "aA"l. 
A, '00(, 

A'l..(Ô1 

R2.. 

With the use of these relations it can be shown that the 

-' 
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o 
Ta obtain fd2.' we change the suffices l ta 2, 2 ta land 

w ta -w sa that: 
n n 

o 
~2. :. -~-n 

We therefore have 

@2. 
A,A2. 

'àA'1. +...L ~ _ ~, ôAL 

'00{, A2.. 'dc(2. A, A2.. 'OQ(2.. 

We replace the rotations f3 1 , f3 2 by w land w2 

We therefore have 

Similarly we can show that k, :. K2. =0 and e~ :. e: :. 0 
o 0 0 

The evanegcence of the coefficients el ' e1. ' k, ' K2.' '112-
o 

and KI~shows that .the strains vanish for small rigid-body 

motions. 



APPENDIX B 

NATURAL FREQUENCIES OF THIN CIRCULAR 

CYLINDRICAL SHELLS IN VACUO 

The poundary value problem consists of an 

eighth-order homogeneous system of three partial . 

differential eqûations 

aJ.' + 1-V Li: ~ l+v J"T'2J tJ. + k r 1-21 U:" - u,u'+ 1-2J u:J •• ] -= 0 
2. 2. L2. 2-

l+v u!" + "'J'. + I-v "(r" + lAre + Po r .~ (\-<.1) '\1" - 3-~ \)J'J. ] =. 0 
2. . 2.. L2. 2 

1... ri-Vi.. /II 3 v 1/. li •• ;] 
vu.! -\- '\Te + ur+ t<. ~ ll. - u.. - ;. \:r + V Ul +2.14+~::' 0 

and associated boundary conditions. [The symbols (-)' and 

(-). are used for a ~~-) and ~J-) respectivelYi 

k = h 2/l2a2 .1 

On a clamped edge, these boundary conditions are u = v = w = 0, 

dW/aX = 0, wher~as on a free edge, the four essential forces 

and moments are zero: Nx = Sx = Tx = 0, ~~ = O. Introducing 

the displacements, these latter conditions give: 

Nx.: o =) 

Mx.:.o => 
Sx. =0 => 
T'X. :.0 -:) 

u! + v'\)" + 2J U) - R,lJ.}" 
1. •• • 1 

OJ' +2JW'-2J\t-u.: 

III II' ) ,. • '2 ... \ /. 1" J". Il 
W' + \..2- 2) Lü - ~ '\1' + ..::!:t. u.. - u.. 

2.. 2-
u: + ",'+ R. (a -d - 2> \JI") . 

=0 

=() 

=0 

::.0 
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A general solution of the form 

is assurned. 

Substitution of these expressions in the 

differential system leads to three·linear, homogeneous equations 
1 

in the unknowns A., B. and C .• 
J J J 

Aj[t+ ~.na-(\+R.)-.1i]+Bj[ '1V À-nJ- ~ÀCj~-rR.(X-- ~'l'l'a.)] ;= 0 

A.i[\~21 À-n]+BjG'2-+ '-;! t(\+3P-)-.n.J-~Cj["tl+ 3;,V t'Y\k] =0 

AjÀ\:,-r R.(À~- '-~ n'2.~+Bj ln~ 3;} ~<nRJ-L, Cj~+Rt<..*+y\1.)~-2."t\1.+1-.rtJ :: 0 

where n'2.-= yu;': ctPs I-v'2.6)'l... 
E. 

For non-trivial solutions, the associated determinant 

must be zero, 
2.. 1. 2-)\ + ';: 'Y) (\+~) -..0: 

this is the characteristic equation and the solution is 

where 

~ À-n \-n+ ~ *'1'\ ~)- À &1.+ .!:fl<..\+~R)-JlJ~ 1" R(r-.'2-- ~ -n'1.~ 
[À2..+ '~ n1.(lTp.)-JlJ[-n'1.+ ': (H'Ô~)-n1.J- (\~ À y-
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The boundary condit;ions must nm" be satisfied. Let us 

take, for examp1e, the case of a she11 c1amped at both 

endsi this means 

U. -::. '\)':. UJ' :. 0 ; ÔW'/a?C.. -= 0 , a t both x = 0 and x = R. 

These conditions 1ead to a system of eight 1inear 

homogeneous equations in the unknowns C. (j = 1,2, ••• ,8) 
J 

8 
U. -=0 L «.. C: =0 . J.~ 

J:.l 

At :x.:.O 
'U :.0 ~ ~jCj =0 

u.) :.0 1: C· ,::0 
J 

7)~/ô~ :.0 2. À'C' =0 
~ l 

u... :.0 'ï:. <1" Cj expl\i Àj'G/a.) =-0 

tr -=0 'ï:. ~J C~ e,c.p(i. Àj e.{a. ) =0 

U.T :00 ï: c.j e.l<.p(t: Àj t/a.) ,::0 

ôtafa-t. -=0 L Àj Cj e)f.~( (. Àj lIa..) =0 

Again for non-trivial solutions the associated determinant 

must be zero, 

cC, 
~, 
! 
Àl 
C{, e.1.p <.~À, LIa.) 
~, e.xp~ >.,e./o.) 
exp(-:' x\~/a.) 
À, eY-.p(l.À,tfo..) 

• 

• 

• =0 
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this is the frequency equation. 

If the frequency w is a natural frequency, the 

frequency equation. will be satisfied. The solution of. the 

equations with unknowns C· will allow the complete 
J 

determination of the functions .. u(x, a, t), v(x, a,t), 

w(x, a, t) and, hence, the determination of the modal 

shapes. 

Summarizing, the determination of the natural 

frequencies of thin circular cylindrical shells involves 

the simultaneous solution of the characteristic and 

frequency equations, writ~en in determinantal form. There 

are several ways to tackle the numerical aspect of the 

problem. We chose a direct trial and error approach; 

this method requires the use of a digital computer. Copies 

of programs are given in Appendix E. 

-' 



APPENDIX C 

VIBRATIONS OF THE PIPE WITH FLOW 

C.I Pressurization and Curvature Effects 

In the derivation of the equations the change 

of curvature of the element was not considered; if we take 

it into consideration, the equations of equilibrium may 

be written 

where the normal and transverse shearing forces Qx. and Qe 

are governed by the equations: 
CL '()M'lt + raMe.:. _ "o..61x. + a. M~e -cr,," _ Me ('ô1.'\}' + 'dt.c)-'\ ': 0 

'ô x.. 'ô9 ~-x."" 'ëlx.ôe 'àx.) 

0. 'dM,.e _ 'OMs +a.Qe- a.M-x.. 'ël~ _ Me~('ô"l..v + 'âtb'\ :. 0 
'O-x.. 'Os 1>x:1.. ~ôe '().e.) 

Note The notation here is that used by Timoshenko[S]; 

in particular, w is changed to -w. 

If the forces and moments Nx ' Ne' are small 

in comparison with their critical values at which lateral 

buckling of the shell may occur, their effect on bending 

is negligible, and we can omit aIl terms containing products 

=0 

~I 
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of the resultant forces or resultant moments with 

derivatives of the small displacements u,v and w. 

In our case, the shell is very thin and collapses 

in the absence of internaI pressure; therefore, it is 

prudent to examine the influence of these particular terms. 

We assume that under the action of uniform internaI 

pressure the circular cylindrical shell remains circular 

and we consider·· small deflections from this uniformly 

compressed form of equilibrium. The stress resultants 

and couples are composed of steady components ~ue to 

pressurization and components due to deformation; but aIl 

resultant forces except Nx and Ne and aIl resultant couples 

are very small, and we can neglect the products of these 

with derivatives of the displacements u,~ and w, obtaining 

\l.., = u., . 
~ 

p :. Po+ r, 
N'X. ':. N'X.o + N 'X.1 

N'X.e= N-x.Ql 

, ., 
, 

Ne'::. Neo + Ne, 
M~ = M~i 

• 
• 

0..0 ": '\3"0 :. 0 

S'\Y\ce N 'X.90 :. 0 .i M~o -.: 0 j . . . 
A further refinement may be introduced by taking into 

consideration the stretching of the reference surface which 

amounts to replacing Ne by Ne (1 + ex) and p by 

p (\+e" )Q-\- ee) , where the strains eX. and e e .are gi ven 

by the relations 

,-, 
J 
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Thus, we introduce the following supplementary terms 

in the equations: 

1. First Equation: 

2. Second Equation: 

'\. ",. 

3. Third Equation: \~~'L (Neo+Nei)(\+-k ëS'è)~~ - -k ;~~)Q+ 'ë):.:) 
_ a. \-VL(JN10+ N:e. t'\ ( +":'a + -a'l..ttrl'\. 

E. h 'J\. 'ëI-.c..... '?J'X. .... j 

Practically, the shell remains cylindrical under steady 

pressurization, so that the term "OlJl'o/ax.is equal to zero. 

The zeroth-order equations are then 

oNxo + Q 
a?C. . 1 ?Co 

-=0 

'ONeo -0 
-aB 

Keo - o.p -= 0 

and the first order equations of motion are 

" • L r, V •• "', U ,. J '7 (/. ') 
l\., + '-: \.L, + ... + K. L -2. LL, - ur, + -2. W', - oe 'U", + "', 

(
.a ( 1/ ~?J l'J Il If' u!.-+ . . . · + R 2: ,-~) "'". - ;, lAT, + 6 x.. "ï 

,. ....r. '4 ···.1 7 (1·· '\ 
V l.t., + \T, + ~,+ K. L .. -+ \J "". + 2.~, + ""'~- be \,. \al +Ul', J 

" -tO - 6'X,1O', - a.. Il 

.. / 
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whe:re. 6& - \_v1- Nec . b-x. \_,,2- N'Xo - , - ----e.h E.h 

1P - l-vt. o..p, . '? - 0.2. fs 1_2.12-- J - -E.h E.h 

-The normal and transverse forces N~oandNeo are defined 

by the steady-state equations'which, upon integration, 

give: 

Nx,o -= 9x <. e.- x.) 
N 90 = a.. Po(x) 

The pressure distributionpo~) is found by considering the 

equilibrium of a srnall cylinder of fluid, of length ~x 

and radius a, i.e. 

(Po + ~;, d'X.) TI 0.1. - Po n ct- + 9'X. 2. na. c:hc. ': 0 

ôpo 2. 9 'X. =. 0 
'd'X. + a.. 

Since the out let pressure is zero, the integration leads 

to 

Eventually 6x. and 69 are defined as 

-= 2. ~x. 

where 9'X. is deterrnined experirnentally. 



'-, 
_._.i 
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C.2 Equations of Fluid Flow 

In cylindrical polar coordinates, the equation 

defining the flow perturbation potential ~ is 

The boundary conditions on the wall are 

VA.. - 'OW' + U ~ '04> - -'ô t: '" ')(. 'OJoa..-

Vs - .1 ~ ~t .h-=G.. - ""- '08 

V~ - U+ 'Ccp - ~~ 

We recall here that the boundary conditions are taken at 

h-::. a. , which means that we assume the displacements of 

the wall to be small and the shell to be thin. The pressure 

on the wall is given by Bernoulli's equation 

The square of the velocity may be written as follows: 

or V2. _ U2. (zeroth order term)+ 2. U ;~ (first-order term) 

+[(;:f+(± ~~~ +(~~)J (second-order termsl 
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Retaining only first-order terms we obtain 

or 

We assume a sep~rable solution of the form 

The derivative of cp with respect to.h. taken at the wall, 

is then 

where the boundary conditions on the wall were utilized. 

The function <p<.x, e, r, t) may then be expressed as 

R(""-) r ê)\A.t + U 'ê)lA)"J 
R' (0.) L ~ t: 'Q'X..h. : a. 

and similarly the pressure Plon the wall is 

p. (:x.,e, t) _ R(a.) ~ + ô W" 
2. \ --~ R'(Q.)l~ U~.J h=a. 

To obtain a solution of Laplace' s equation V~ ':;: 0 , we 

'-
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assume the function Sex,6,.t) to be of the form 

This assumption seems log:i.cal since we have already assumed 

a similar form for the displacement w. Upon substitution 

into Laplace's equation, we obtain 

=0 

=0 

Using the change of variables ~: ~A. , this equation 
a.. 

becomes 

crR , . "2-

~ - (\-:n..)R 0 
. -+- - ) 

'ô M'Z.. 'ci 'ô~ a~ 

its solution may be expressed in terms of Bessel functions 

of the first and second kind, of arder n, 

or in terms of the modified Bessel functions of the first 

and second kind, of order n (cf. watson(l8» 

This solution must be finite on the axis of the cylinder 

(r = 0); t~lis means we have to set 82 equal to zero, and 

.~-

_ .i 
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hence 

Now if we want to take into account the inertia of the 

fluid (of density ~~t ) outside the shell, the previous 

derivation is perfectly valide We simply have to set 

U equal to zero, as this fluid is at rest under steady 

conditions of the shell, and to impose that the solution 

be fini te at infini ty (r...,..oo), which means \oTe have to take 

BI equal to zero. In this case the solution is then 

R (A) -= B2. k'11 (~A.) 
Eventually, the pressure acting on the shell wall~ is 

defined as 

-~ 

Some further manipulation allows us to transform this 

expression to 

this last forro will be used in the differential equations 

of motion. 

At this stage, it is of interest to study the 
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case of long waves corresponding to small values of À 

with respect to unit y, and the limiting case of À equal 

to zero. The functions In(À) and Kn(À) are defined by 

the following series: 

\'lhere 

4'(1) =-y 
lV (1'1\+1):: t + ~+ ..... +~ - 't . 

straight forward manipulation leads to the follmving 

relations 

À ----
2.. (-n+') 

.2. .,., -
À 

In the limiting case of infinite wavelength (À~o), the 

pressure term is then 

and for a circumferential wave number, n, equal.to unit y , 

corresponding ta lateral (i.e. bearn-type) oscillations of 

,-
_ .i 
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the sheII, the pressure term is 



·'-. 
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APPENDIX D 

EIGENFUNCTIONS IN THE PRESENCE OF ·FLOW 

The general solution in complex form 

( 6 t) W(x) e int eina 
w x" = 

may be written as 

w(x,6,t) = [WR(x) +iWI(x)] [cos(nt+n6+'l:') +isin(nt+n6+'l:')] 

The complete solution. is the sum of six terms, such as the 

one above. These terms correspond to the six frequencies 

n Il , n 12 , n 2l , n 22 , n 3l .and n32 , solutions of the character

istic equation. These frequencies are symmetrical, in 

pairs, with respect to the frequency imaginary axis, which 

means that if njl' j = l, 2, 3 is of the form nx + i ny , 

then nj2' j = l, 2, 3 is of the form -nx + iny. Actually, 

we are only interested in the firstpair (nll , n12). Once 

we have the solution corresponding to n ll , it is easy to 

ohtain the solution corresponding to n1 2 . Changing 

n Il to n12 amounts to change 

n = nx + i ny to -Q = -n + iny, x 

À = Àx + i Ày to -~ -À x + iÀ y' 

W" = WR(x) + i WI (x) to ~'j = WR - iWI , 

U = UR(x) + i UI (x) to U = UR - iUI , 

V = VR(x) + i VI (x) to -V = -VR + VI . 
The solution is then in real form (real part of the complex 

solution) 
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'\'1 (x, e ,t) = .. W"R cos (nt + ne +'fl) - WI sin (nt + nS + 'fI) 

+ t·r oR cos (-nt + ne + 'f2) + NI sin (-nt + nS + 'f 2) 

u(x,e,t)= UR cos (nt + ne + 'fI) - U 
l 

sin (nt + nS + 'fI) 

+ UR cos (-nt + ne + 'f 2 ) + UI sin (-nt + ne + 'f 2 ) 

v(x,e,t)= VR cos (nt + ne + 'fI) - VI sin (nt + ne + 'fI) 

- VR cos (-nt + ne +·'f2 ) - VI sin (-nt + ne + 'f 2 ) 

To eliminate the phase angles 'fI and 'f 2 , we use the following 

change of variables: 

nT = nt + 'li, - 'f2 and nS= ne + 'f]. + 'f2 
2 2 

we then have 

w(x,e,t) = 2 (WR cos nT - WI sin nT) cos ne, 

u(x,e,t) = 2 (UR cos nT - U sin nT) cos ne, l 

v (x, e ,t) = -2(V sin nT R - V l cos nT) sin ne,. 

If we take the imaginary part rather than the real part, 

we. simply change [wT + ne] to [wT + ne - ~]. The solution 

of the boundary-condition equations provides the functions 

W(x) = WR + iWy , U(x) = .UR + iUy and V(x) = VR + iVy and 

the preceding relations define the modal shapes. The 

displacements u, v and w are plotted versus the length 

of the cylinder, over half aperiod; namely, at times t l , 

T T T 
t l + 12' t l + 6' ...... , t l + 2· They are normalized 

with respect to x, e and t, according to 



, 
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where the coefficient K appears ta be defined as 

Je. 2. 2-

k2. -= 2. TI bR<:X.) + 'Wx<:x.~ ct:" 
o . 



APPENDIX E 

NUMERICAL METHOD - PROGRAM SAMPLE 

The computation was carried out with the aid 

of the 360/75 IBM Computer of the McGill Computing Centre. 

As an example, we briefly describe a computer 

program which has been written for the calculation of 

the frequencies of a clamped-free shell conveying fluidi 

the numerical results are presented in figure 19. 

The program consists of the r~IN with the 

following subprograms: 

function CFREQ, 

function CDET, 

function CDLA, 

subroutine BESSEL. 

AlI calculations are carried out with double precision. 
, 

The MAIN program reads the data and predicts 

the points on the curve n(cr) using a three points prediction 

formula. 

The function subprogram CFREQ calculates the 

frequency in the range of two initial frequencies (CX, CY) 

and corresponding to a particular velocity UBAR. For a 

given frequency, COM, the eight characteristic roots, 

CL&~(I), l = 1, 2, .... , 8, aredetermined, using a 

classical secant method, and classified. Then the corres-

.1 

~I 
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ponding parameters, CALPHA(I) and CBETA(I) are calculated 

and the boundary conditions are applied to define the 

determinant of the frequency equation. As this deterrninant 

introduces exponential terms of large positive argument 

and also of large negative argument, great care was taken 

to rearrange it and obtain meaningful results. 

The function subprogram COET calculates the 

determinant of the frequency equation. The method used 

is basically the Gauss-Jordan reduction where the largest 

eligible term in the pivotaI column is selected. 

The function subprogram COLA defines and calcu-

lates the determinant of the characteristic equation; 

as this determinant is of order three, a direct expansion 

is used. 

The subroutine BESSEL calcula tes the modified 

Bessel functions of first kind, CBESI, and second kind, 

CBESK, with complex argument CLA. These functions are 

defined by series where a sufficient number of terms is 

retained to ensure a good accuracy. 

, 
J 



1 

1 

Î 

--' 

- E3 - ._--_._------_.-..... _._--_._-_._-_. __ ._---

c 

IMPLICIT COMPLEX*16(C)~REAL*8eA,B1D-H~O-Z) 
COMMON CI/ANU~ANUM~ANUP~AJALJAK,UHAKIEPSIISTEP,IN~L 
C Uf1MOl\.i 1 aUDY 1 Ne 
ÜlMENSlON CAM(60),DEL(60) 

C ~NPUT DATA 
C 

c 

KEAP (5,1000) A, AL,., HI E.I ANI), ROS, Ne 
1000 fURMAT(6010,3~(5) 

WRI1E(6,1100) A,AL,H,E,ANU,ROS,NC 
1100 fURMAT(6D12.5,.,I511) 

ÀK=H*H/12.0DO/A/A 
ANUM=(1.0DO~ANU)/2.000 
~NUP=(1.OOO+ANU)/2.0DO 
Cl=(O.OQO,l.OQO) 
cPSi=6,iJ .. 02 . 
L=1 
UBAR=O,OO 
~TEP=Ot05DO 

c ~ T ART 1 N G PO J NT 5 F (l R Til E C 1\ Leu LAT IlJ N [J F F R E QUE N CIE S 
C 

Cl=INlTIAL VALUE UF FREQUENCY 
ç 2 = IJ 1 F FER E N T LN 1 T 1 J\ ~ V A LUE 0 F . r R E Q U Hl C y 
CAM(1)=CF~EQ(Cl,C2) . 
UBAR:UlL'\R+srr:p 
Cl=CAIH1) 
ç2=CAMel)+(o.OOJO.200D-03) 
LAM(2)=CFREQ(Cl,.,C2) 
ÜEl(2)= STEP 
UBAR=UBAR+S1EP 
C 1 =CAI1( 2) 
ç2=CAMeZ)t(O,OO,O.200D-03) 
ÇAM(3)=tFREQ(Cl,C2) 
Ul;l(3)= STEP 
IP=4 

10 UBAR=UBAR+S1EP 
UE;LCIP)=STEP 
C 1= C A;H l 1-' -1 ) + r. E Le 1 r ) / DEL< 1 P - 2 ) ,~ ( ( [) [. L ( 1 P ) -;.. 0 E L ( 1 P - 1 ) + rl F. L ( J P - 2 ) ) 

11 0 E L ( 1 P ... 1 ) * ( UUH 1 P - l ) - C l'II 1( 1 P - 2 ) ) + ( D U. ( 1 P ) + DEL ( l P - l ) ) 
2 i ( 0 E L ( 1 P -1 ) + () EL ( 1 p - 2) ) * ( CArl ( 1 P - 3 j ... C M~ ( 1 p -1 ) ) ) 

C2=Cl+(O,lO-04,U,lO-04) 
~AM(IP)=CFRE;Q(CI/C2) 

IFCIN.EQ,lO.AND.IF.LT.4) GO TG 360 
IfCIN,EQ,lO) &U ru 10 
~P=lP+l 
IfCIP,EQ,22) G~ T~ 3~O 
~u T 0 1v 

3bJ ~TOP 
1:: ND 
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c 

CUMPLEX FUNCTION C~REQ*16(CX~Cy) 
IMPLICIT COMPLEX*16(C)~REAL*3(AIB.O-H~O~Z) 
ÇUMMON CI!ANIJ .. ,\N'JM~ANUP .. A/AL ... AK.JUdt\R .. EPSlJSTEP .. INJL 
ç OMI-10N/ BODY / Ne; 
~OMMON/HULD/CLAT(20),CDELTA"CU~JKaU~T 
UIMENSI~N CLA(40)"CDELC40) ... COMEGA(40),CV(40),CDA(32),CLAM(8), 

~CD(9)JCALPHA(3)"C.BETJ\(8)"CA(8,,8) 
ÇUMEGA(l.)=CX 
~W1EGA (2) =cy 
lF(~.NE.l) GU TU 410 

C !:iTARTING POINTS FUR THE CALCUl.ATlml OF LAt1BDAS 
C 

C 

ÇSA(l)=( O,540DO" O~72000) 
CBA(2)=( 0.550DO" 0.73000) 
CBA(3)=( 0,~40DO,-O.72noO) 
CSA(4)=( O.550DO .. ~O.730DO) 
CBA(5)=(~O,540DO .. 0,720DO) 
CBA(6)=(-O,550DO" O~73nDO) 
CSA(7)=(·O,540DO,-O.72000) 
CBA(8)=(-0,550DO ... -O.730DO) 
CBA~ 9)=( 0.790D+Ol, 0,840D+Ol) 
ÇBA(lO)=C O~HOOU+Oll Ot8~OD+Ol) 
CBA(11)=( O.790P+Oll~0,B40D+Ol) 

. CBA(12)=( O.800D+Ul,,-O.8~OD+Ol) 
CBA(13)=C-O~790U+Ol .. O~840D+Ol) 
~BA(14)=(-O,300Q+Ol, O.8~OD+01) 
CBAC1S):z(-O.7900+01""'O,,B40D+Ol) 
CBA(16)=(~O.~Q0D+Ol,,~o.a500+01) 
L.=2 

C ç U ~1 PUT A Tl CJ N 0 F l. Al"1 RDA S (U R (J (ll S ) 
C 

410 ~N=l 
400 CUM=COMEGA(I~) 

ç DE L T A=C o;~*cor'l 
~UUNT=l 

ij K L = 2*KU~JNT 
<;LA(1)=CBACKL-l) 
~L.A(2)=CBA(KL) 
ÇUEL(1)=COLA(CLAC1» 
WRITE(6,~004) CLA(l),COEL(l) 
tUE~(2)=CDL~(CLA(2» 
WKIfE(6,l004) CL~(2),cnEl(2) 
10=2 

2 ç LA ( 1 D + 1 ) = C L A ( ID) - CL> EL ( 1 0 ) ~l< ( C L/l ( ! 1) l - C li-\ ( 1 [) co 1 ) ) 1 ( r f) F L ( {lJ'-
1 COf:LCID ... l» 

CUELCIO.l)=tOLACCLA(ID+l» 
w R 1 r E ( 6, 1004) CL l', ( r D + 1 ) , C j) l L ( 1 n + l ) 

lOO~ ~URMAT(lH ,62X,4D15,8) 
C 
C CHECK UF CO~VERGf~CE 
C 

X=COELCIO+l) 

- '--_. 

1 



c 

- ES -

V=CI*COELCIO+l) 
Z=DSQRT(X**2+V**2) . 
IF(Z.LE.l.OU~14) GO TO 5 
X=CLA(ID+l)~CLA(IO) 
V=CI*CCLA(IU+l)-C~A(ID» 
i=DSQRT(X*X+V*V) 
~F(Z,LE~1,OUQ06) GO TO 5 
~U=lD+~ 
IFCID.LE.20) GO TO 2 
(;à TO 98 . 

C VALUES Of LAMBDAS 
C 

c 

~ CLAT(KOUNT) =CLA(IO+l) 
XK=CLAT(KOUNT) 
!K=~CI*C~AT(KUUNT) 
IF(UABS(XK).LT.l,U-04) XK=O.DO 
~F(DABSCYK)~LT.l.D-04) YK=O,DO 
~LAT(KU~NT)=XK+CI*VK 
NR::6 
WRITE(6~l005) CLAT(KOUNT) 

~005 rURMAT(lH ~80X.12f)15,8) 
ÇBA(KL~l)=CLAT(KOUNT) 
ÇSA(KL)=CLAT(KOUNT) +(O.0010C~O,DO) 
IF(KOUNT,EQ,NR)GO TO 100 
KlIUNT =KCJUNT+ 1 
üU lU 8 . 

9H WKITE(6 .. 100B) 
lOQU ~URMAT(6X~'CANNUT GET LAMBDAS" 

11l=ID-l 
GU Ta 5 

C ~LASSIFICATION UF THE LAMBDAS 
C 

100 UU 36 KK=l",NR 
XK=CLAT(KK) 
'(r<=-CI*Ct.AT(KK) . 
IK=NR 
UU 30 ~J=l .. W~ 
~F(KK.EQ.JJ) GO TU 30 
XJ=CLAT(JJ) 
If«XK-XJ),GT,l,D-04) GO TD 31 
i~(DABS(XK-XJ).GT.l.0~04) GU ru 30 
YJ=!'"Cr*CLAT(JJ) 
lF«YK-YJ),LT.1,O-04) GO T0 30 

31 !'K=IK-l 
3~ CUtHINUt; 

CLAM(IK)=XK+CI*VK 
30 <"UfHHWE 

w KIT E ( 6 .. 1 (': ():3 ) ( r. L i\ "1 ( 1 ) , 1 = 1 ~ r J K ) 
1003 ~URMAT(6X~2D15.8) 

C 
C KAT 1 0 5 L) F /, ( J ) / C ( J) i\ r· 1 D f; ( J ) 1 C ( j ) 
C 

,-

~---------- , 
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- E6 -

UO 200 15=1,8 
CO(1)=CLAM(IS)*CLAM{IS)+ANUM*~C*NC*(1,DO+AK)-COEL1A 
CD (2) =C I.l\M ( l S) *MIUPS,'CNC 
tD(3)=CLAMeIS)*(ANU+AK*(CLAM(IS)*CLAM(IS).ANUM*NC~NC». 
CO(4)=CD(2) 
ë D ( !) ) = C L M-I( 1 S ) * C l AI-l ( 1 S ) * A!~ lm * ( 1 • [10 + 3 • 00* A K ) + N C * Ne -C DEL T A 
CD(6)=NC+CLAMeIS)*CLAM(IS>*NC*AK*(3.DO-ANU)/2.00 
CD ( " ) =c 0 ( 3 ) 
CO(8)=CO(6) 
~OEN=CO(1)*CO(5) -CD(2)*CO(4) 
CALPHA(lS)=(CU(4)*CD(B)-C~(5)*CO(7»/CDEN *(OtOO~-l.DO) 
CBETA(IS~=(ÇO(2)*CO(7)-CO(1)*CO(8')/CDEN *(0,00,-1,00) 

200 CUNTINue 

C UOUNDARY CONDITIONS 
C 

~ H1P=O. DO 
UU 210 IR=l!B 
AREP=CLAM(IR) 
~IHP=-CI*CLAM(IR) 
AI HA=A 1 f'\P*AL lA 
CUEF=CDEXP(CI*AREP*A~/A) 
tA(i,IK)=CALPHA(IK) 
CA(2.dR)=CBETA( uq 
CA(3~IR'=(1~DO~O.DO) 
CA(4,IR)=CLAM(IR) 
CA ( 5 ~ 1 R ) = ( CAL P ~l td 1 R ) * C LAn ( IR)" C 8 E T A ( 1 R ) * N C * A N U 

l -Cl*(ANU+AK*ÇLAH(I~)**2»*CUEF 
CA(6,.IR)=(CALPHA(IR)*CLA!1(JK)+CBF.TA(IR)*NC*ANU 

l -Cl*(CI.AM( IR)**2+ i .jC*NC*M!!J) H'COEF 
CA ( 7 ~ 1 R ) = ( CAL PH A ( 1 R ) * ( C Ll\:'l( 1 R ) * * ~ -AN U 11 ~i N C * N C ) + ( l , 5 DO -0 • 51) 0 * AN U ) 
lr*CLAM(lR)*NC*CBETA(IR)-Cr*CLhH(IR)*(CI.AM(IRl**2+(Z.DO-A~U)* 
2 NC*nC»*CUI::F 
~ A ( e .. 1 R ) = ( CAL P H A ( 1 R ) *~! C + C 8 E= T A ( 1 R ) * ( 1 • DO + J • 00 * A 1< ) t" C. L Ar-'t ( 1 R ) 

l-3, OO*C 1 *AK*C LAt~ ( 1 R ) *NC ) *C UE r 
IF(AIMP,G~,C,ODO) GU TD 111 
~F(AIMP,LE.G,000) GO rn 212 

211 A14=1.OUO 
IF(AIMA,GE.60.0UO) A~8=0~QDO 
J F (A 1 t1A ,LE:. bO, O(ICo) A58=111:: XP (-1\ J ~,t\ ~ 
GO HI 213 

212 ~lMP=~I~P+AIMP 
A!>8=1.ClJO 
IF(AIMA,LE.-6C.OO) A14=0.DO 
1 F ( A 1 MA. G l • - (, ù • 0 [lO) J\ 1 4:: () E )< P { J\ H' f.. ) 

21~ CA(1,IR)=(A(1,IRlu~14 
CA(2,IR)=CA(2JIR)~~14 
CA(3,IK)=Ch(3JIR)~~14 

~A(411R)=CA(4JIRlu~14 
CA(~ .. IR)=tA(5JJR)u~5g 
C~(b,IR)=CA(6,TR)~h5R 
CA(1,lk)=CA(7,lRl*~5R 
t i\ ( il, [ R ) = (. A ( f,j ~ 1 f~ ) .;.. ,\ , g 

2 1 J L WH 1 j i U E . 

'-
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,F(~N.EQ.l) ST=-SlHP 
C 
C VALUE OF THE ~ETERHINANT OF THE BOUNDARV CONDITIONS 
C 

ZOJ BRIE=DEXP«~SIMP. ST >*AL/A) 
CV(IN)=CD~T(CA,B)*~RtE 
WRITE(6,l006) CV(I~)!COX,HC 

lOO~ tORMAT(6X,/4Dl~.6,I5111) 
IN=IN+l 
~F(lN.EQ,2) GU TO 400 
ç 0 M E GA ( 1 N ) ;: C il:i E GA ( l N-l ) - CV ( 11'1"'1 ) '- ( CV ( 1 N"'l ) - C V ( ! N - 2 ) ) * 

1<COMEGA(IN.l)-COMEGA(IH-2» 
X=CV(IN-l) 
V=C 1 *C V ( rr-~~ 1) 

l=DSQRT(X**2+V**Z) 
IF(Z,LT,l,O-03) GO TO 40 
X=COMEGA(!N)vCOMEGACIN-l) 
V=Cl*(CQMEGÀ(IN1-COHEGA(IN-l» 
L=DSQRT(X*X+V*V) 
IF(Z,lT,l,D-OS) GO TU 40 
I~(lN,EQ.IO) GO TU 42 
GO 10 4QO . 

40 WRITE(6,lOOl) CO~EGA(IN),EPSI,UaAR 
1001 tURMAT(lH ,60X,4ù15.6111) 

CFREQ=CJMEGA(IN) 
KETURN 

42 WRITE(6,l009) 
100? tURMAT(lH ,6X"l~=10') 

UBAR=U8AR-STEP 
STEP=STEP/2.DO 
KETURN . 
1:: ND 

'-
.1 
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COMPLEX FUNCTION COET*16CA,N) 
UIMENSION A(N~N),LC8),M(8) 
CUMPLEX*16 A,PIVOT,HO~O 
~EAL*8 CDAB~ 
~ NT E GER E t W " f{ 0 1'1 , COL" PlV R Ol'J " PlV COL 

C 
C DETERMINANT OF THE BClUNDARY CUNDITIONS 
C 

,L END =N .. l 
~DET=(l.OO,O.OO) 
DU 10 I:l"N 
1.. (n::: 1 

10 ~(q=I 
UO 100 LMt,T=bENO 
PIVOT=(O,DO"O.OO) 
UU 20 I=\..mn"N 
KOW=L(I) 
UU 20 J:oLl'INT"N 
CUL=M(J) 
IF(CDABS(PIVOTl,GE,CDABS(ACROW,COL») GO TO 20 
PIVRl1W=I 
PIVCOl.=,J 
P'I VUT=A (KUI'I" COL) 

20 ÇUNTINUE 
IF(PIVRUw,EQ.LMNT) GO TO 22 
CUET=-C:.JET 
KEEP=LCPIVRUW) 
~(PIVR04)=L(LMNT) 
~(U'lNT)=KE[P 

22 !F(PIVCOL.EQ.~MNT) GO TD 26 
CUET=-C;)ET 
~EEP=H(PIVCUL) 
~(PIVCUL);H(LMNT) 
ri ( L /'1 NT) = K E E P 

2~ CDET=CDET*PIVOT 
l~(CDAaS(PIVnr).E~,O.DO) GO ln 333 
JAUC,=LM'H+l 
p ~ V K mJ = L ( L ~IlH ) 
PlV ç D L = :1 ( Lt·1 NT) 
uu 100 I=JAUG,N 
KUW=\..(I) 
~ULU=A(RUW,PIVCUL)/PIvnr 
uu 100 J=JAUG,N 
L DL = ~1 ( J ) 

10 J A ( R rhl, CUL) = A ( l, m·l .. en L ) - H U UJ '"' A ( P r v P il\-: .. COL) 
~DET=CDET*A(PUW,CUL) 

33.:3 KETURN 
tND 
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c 
c 
c 

COMPLEX FUNCTION CDLA*16(ClA) 
. IMP~ICIT ·COMPLEX*16('C.),REAL*8(A .. f)ID-H .. O-Z) 

COMMON CI, A NU,,tIfHJl1 .. AhIUP .. AI AL.J AK .. UBAR", EPS 1 .. STEP .. 1 NI L 
ç UMM ON 1 aDOY 1 t!C 
ÇOMMON/rlOLD/C~AT(20)/CDEkTA .. CUM,KOUNT 
UJMENSliJN CP(9) 

OETERHINANT OF .Tl-lt: LJH1ADAS 

ÇALL BESS~L(CLA .. CBESI .. C8ESK) 
ÇD(l)=CLA*CLA+ANUM*NC*NC*(l.DO+AK)"COELTA 
CU(2)=Cl.A*ANUP*HC . 
CO(3)=CLA*CANU+AK*(CLA*CLA-ANUM*NC*NC» 
CD(4)=CO(2) 
ç 0 (5) =c L.A*C LA*ANUr-1* ( 1.00+ 3 ~ O()lî!A!<) +NC*NC-C DEL TA 
CD(6)=NC+CLA*CLA*NC*AK*(3.DO-ANU)/2.DO 
ÇO(7)=Ci)(3) 
CD(8)=CtH6) 
CO(9)=1.DO~CDELTA+AK*«CLA*ClA+~C*NC)**2-2~OO*NC*NC+l.no) 
1~EPSI*'CBES)*CCUM+UBAR*CL~)**2+C8ESK*COELTA) 
tDLA=CO(1)*CD(5}*CO(9)+CD(2)*CO(b)*CO(7)+CD(~)*CO(4)*C0(8) 

1;CO(1)*CO(6)*CO(B)-CO(2)*C0(4)*CC(9)-CD(3)*CO(5)*CD(7) 
IF(KaUNT.EQ~l) GD TO 2 
KM=KOUiH"l 
uu 4 J=l,K~1 

4 ÇULA=CDLA/(tLA-CLAT(J,) 
2 I<ETURN 

I:ND 

.• / 
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C 

~UBROUTINE HESSE~(CLA~CBESI~C6ESK) 
IMPLICIT COMPLEX*16.(C)~REAL*8(A/B,D-H~D-Z) 
ÇOMHON/üODY/NC 
Çl=(O.OOO~lt0DO) 
~!RC=l 
X=CLA 
V=Cl*CLA 
Z=DSQH.T(X*X+V*V) 
IF(Z,LT,l.D-02) GU TD 101 
tT=CL,A/2,OO 

t ~ BESSEL FUNCTION 
C 

C 
C 
C 

c 

1.0 CXX=(l.ODO,O.OOO) 
CBESI=(l,OOO~O.O~O) 

l 
l~ 

~2 

OU 1 lX=1",30 
CXX=CXX/IX/(NC+IX)*CT*CT 
A=CXX 
B=Cl*CXX 
XX=OSQRT(A*A+R*B) 
IF(XX.LE,1.OO~12) GO TO 18 
tSESI=C6ESI+CXX 
CONTINUE 
UO 32 1 Il= b l'JC 
ÇSESI=CBESI*CT/IB 
ÇUNIINUE 

~ BESSEL FUNCTIQH 

CYY=COLUG(CT)+O,o/7215664901533 
ÇZZ=(l.ODO,O,ODO) 
!F(NC.E~,l) GU ru 100 
uu 4 IY=2,NC 
CYv=cvv-O.500/IY 
CZZ=ClZ/IY 

4 (.UN1INUE 
100 tBE~K=CYV*czz 

UU !) IZ=1..,30 
(.yv=CYY-(1.DO/IZ+1,DO/(IZfNC»/2,OO 
czz=CZZ*Cl.CT/IZ/(IZ+NC) 
CVl=CYV*,CZZ 
A=CVZ 
H=Cl*CYZ 
YL=USWRT(A*A+ü*ü) 
iF(VZ.LE.l.OD-12) GU rn 20 
('dESK;:C'.lESK+CVZ 

:;, cmn H.UE 
20 CBE~K=caESK* (-1. r:O) ** (~!C+ l):::C r **~IC 

1 F ( I~ C • E .~ , 1) cnE: ~ K :; r fH~ s ~ .. l • 1.; 1) / 2 , t) C / C T 
1 F ( 1 .. C • E ~ • 2) CRE S K = Ci; F S ". + ( 1 • l) () / C T / (,1 - 1 • f"-~) l / -;: • r: D 
! F Ci ~ C • E .~ • :;) C B E 5 t( = ( ~ F S '<~ ( 2 • U C / C T :~ * 3 - 1 • ':)' j / C. T ~ cri ?: , Ù 1) ) /~ ,OC 

C KATlns .JF f)I:S~[L f!.l:-JCTliF·;S 
C 
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1 

IF(KTRC,EQ,2) GO TD 6 
NC=I'lC+\ 
KTRC=KTRC+l 
CBI=CBESI 
CBK=CBESK 
GU TD 10 

b NC=NC ... 1 
ÇRATI=NC+2~DO*CT*CBE~I/CBI 
tRATK=NC~2.DO*(T*CBESK/CBK 
ÇBESI=l,DO/ÇI{ATI 
CBESK=l,DO/CRATK 
RETURN 

lO~ ÇBESI=l,OO/NC· 
ÇBE~K=:!"'!l.DO/NC 
KëTURN 
I:;ND 

1. 
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Photographs showing the flutter of a silastic 

clamped-free tube 

(a = 0.28 in, h = 0.06 in, shutter-speed = 1/500) 
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Determinant (8-8) of the boundary conditions 

CLAMPED-CLAMPED SILASTIC TUBE 

Circumferential Mode n=2 

wl=929.4 
i 

Determinant 
is rea1 

FIGURE 4. 
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pure1y imaginary 
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Radius 0.28 in. 
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VARIATION OP THE DETEruiINANT OF THE BOUNDARY CONDITIONS, 6, 
VERSUS CIRCULAR FREQUENCY, FOR A SILASTIC TUBE WITH BOTH ENDS 
CLAMPED (n =2). 
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X Rayleigh 's Method . 

" O .. r:1ugge ' s Theory 

6 Experimental Data 

m=number of axial 
half-waves 
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a =3.0 in. 
R, =12.0 in. 
h =0.01 in. 
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NUl-13ER OF CIRCŒ1FEP.ENTIAL TdAVES, n 

NATU?,-'\L FiEQGENCIES OF A CLAI'1?ED-CLAJ1PED STEEL 
PIPE. 
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FIGURE 7 - Modal shapes for the first 

three axial modes of a c1amped-c1amped 

rubber tube. 
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FIGURE 12 - Modal shapes for the first 

two axial modes of a clamped-free tube. 
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FIGURE 13 - Variation of dimension1ess frequency, n, 
with dimension1ess ve1ocity, Ü, for the first three 

.. 
axia1 modes of a c1amped-c1amped rubber tube •. 
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FIGURE 15 - Variation of dimensionless frequency, n, 
with dimensionless velocity, Ü, for the first three 

éircumferential modes of a.clamped-clamped rubber 

tube (axial modes, m = 1, 2, also m = 3 for n = 2) • 

h/a = 2.27 x 10-2 

R-/a = 25.9 

'V = 0.50 

n = 1, 2 and 3 

m = 1, 2 and 3 
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FIGURE 16 - Variation of dimension1ess buck1ing ve1ocity, 

ÜB, with 1ength/radius ratio, for the first three circumfer

ential modes of a c1amped-c1amped rubber tube (axial modes, 

m = 1, 2, a1so m = 3 for n = 2). 
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FIGURES 17 a, b, c, d, e _.- Tirne-dependence of modal 

shapes over half a period, as function of dimensionless 

velocity, Ü. First axial mode at zero velocity of a 

clamped-clamped rubber tube. 
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FIGURES 18 a, b, c, d, ~ - Time-dependence of moda1 

shapes over half a period, as function of dimension1ess 

velocity, U. Second axial mode at zero ve10city of 

a clamped-clamped rubber tube. 

h/a - 2.27 x 10-2 

t/a = 25.9 

V = 0.50 

n = 2 
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FIGURE 19 - Typical Argand diagram of dimensionless 

frequency, n, as function of dimension1ess velocity, 

U, for a clamped-free rubber tube. First two axial 

modes for n = 1, 2, 3 and third axial mode for n = 2. 
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FIGURE 20. - VARIATION OF DIMENSIONLESS CRITICAL VELOCITY, Ü , RatiO ~/a 
WITH LENGTH/RADIUS RATIO FOR THE FIRST THREE C 
CIRCUMFERENTIAL MODES (SECOND AXIAL MODE, m = 2). 
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