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1.1 Abstract 

Developmental and epileptic encephalopathies (DEEs) are a heterogenous group of 

epilepsies in which altered brain development leads to developmental delay and seizures, 

with the epileptic activity further negatively impacting neurodevelopment. Identifying the 

underlying cause of DEEs is essential for progress toward precision therapies. Here we 

describe a group of individuals with biallelic variants in DENND5A and determine that 

variant type is correlated with disease severity. We demonstrate that DENND5A interacts 

with MUPP1 and PALS1, components of the Crumbs apical polarity complex, which is 

required for both neural progenitor cell identity and the ability of these stem cells to divide 

symmetrically. Induced pluripotent stem cells lacking DENND5A fail to undergo 

symmetric cell division during neural induction and have an inherent propensity to 

differentiate into neurons, and transgenic DENND5A mice, with phenotypes like the 

human syndrome, have an increased number of neurons in the adult subventricular zone. 

Disruption of symmetric cell division following loss of DENND5A results from 

misalignment of the mitotic spindle in apical neural progenitors. A subset of DENND5A is 

localized to centrosomes, which define the spindle poles during mitosis. Cells lacking 

DENND5A orient away from the proliferative apical domain surrounding the ventricles, 

biasing daughter cells towards a more fate-committed state and ultimately shortening the 

period of neurogenesis. This study provides a mechanism behind DENND5A-related DEE 

that may be generalizable to other developmental conditions and provides variant-specific 

clinical information for physicians and families. 1  
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1.2 Résumé 

Les encéphalopathies développementales et épileptiques (EDE) constituent un groupe hétérogène 

d'épilepsies dans lequel une altération du développement cérébral peut entraîner un retard de 

développement et des convulsions – l'activité épileptique ayant un impact négatif supplémentaire 

sur le développement neurologique1. L’identification de la cause sous-jacente de la EDE est 

essentielle pour développer une thérapie personnalisée. Nous décrivons ici un groupe d'individus 

avec des variants bialléliques dans DENND5A et déterminer que le type de variant est corrélé à la 

gravité de la maladie. Nous démontrons que la protéine DENND5A interagit physiquement avec 

les protéines MUPP1 et PALS1, composantes du complexe de polarité apicale de Crumbs, qui est 

nécessaire à la fois à l'identité des cellules progénitrices neurales et à leur capacité à se diviser 

symétriquement. Les cellules souches pluripotentes induites dépourvues de DENND5A ne 

parviennent pas à subir une division cellulaire symétrique pendant l'induction neuronale et ont une 

propension inhérente à se différencier en neurones. De même, les souris transgéniques DENND5A, 

dont les phénotypes correspondent au syndrome humain, présentent un nombre accru de neurones 

dans la zone sous-ventriculaire adulte proliférative. La perturbation de la division cellulaire 

symétrique suite à la perte de DENND5A résulte d'un mauvais alignement du fuseau mitotique 

chez les progéniteurs neuraux apicaux. Un sous-ensemble de DENND5A est localisé dans les 

centrosomes, qui définissent les pôles du fuseau pendant la mitose. Les cellules dépourvues de 

DENND5A s'éloignent du domaine apical prolifératif entourant les ventricules, orientant les 

cellules filles vers un état plus engagé dans leur destin et raccourcissant finalement la période de 

neurogenèse. Cette étude fournit un mécanisme derrière le EDE lié à DENND5A qui peut 

également être généralisable à d'autres conditions de développement et fournit des informations 

cliniques spécifiques aux variantes pour les médecins et les familles. 
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2 Chapter 1: Introduction 

2.1 Developmental and Epileptic Encephalopathy 

Developmental and epileptic encephalopathies (DEEs) are a heterogenous group of 

epilepsies in which developmental delay is caused by both seizures and the underlying cause of 

the epilepsy. DEE is a relatively new term implemented in 2017 to highlight a key difference 

between DEE and epileptic encephalopathy: epileptic encephalopathy reflects how seizures 

adversely affect development, whereas DEE provides additional information indicating that 

developmental delay is also a direct result of the underlying pathology1. Disentangling which 

aspect plays a greater role in the clinical presentation of a child’s DEE can be challenging, but it 

is crucial to implement the most effective treatment paradigm as early as possible to mitigate 

adverse developmental effects. DEEs are generally difficult to treat and a poor prognosis typically 

accompanies a diagnosis, but antiseizure medication can improve developmental outcomes by 

reducing the frequency of these damaging events. Seizures typically appear during infancy or early 

childhood and prevent the acquisition of developmental skills or result in developmental 

regression2. 

Although DEE can be caused by a combination of gene variants and/or environmental 

factors such as congenital infections3,4, progress in understanding the underlying causes of DEE 

has been made primarily through studying monogenic cases. Disruptions in a wide variety of genes 

including those related to ion channels5-13, neurotransmitter regulators14, proton pumps15, 

endocytosis16,17, adapter proteins18, GTPases19, guanine nucleotide exchange factors20, GTPase-

activating proteins21, tubulin22, chromatin remodeling23, metabolism24-26, biosynthesis27, and 

transcriptional activators28, among others, have all been identified as causative factors. The sheer 
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scope of biological molecules and processes implicated in DEE underscores the challenges 

clinicians face when deciding the best course of treatment. Indeed, some common antiseizure 

medications can worsen seizures if an etiology is not prudently sought29. Generally, DEEs in which 

abnormal neuronal activity are the primary pathology have a better chance at successful 

pharmacological intervention, and DEEs accompanied by structural brain development pathology 

are associated with poorer developmental outcomes. 

2.1.1 Electrophysiological pathology 

Most DEEs with a genetic etiology involve pathogenic variants in genes, either inherited 

or arising de novo, encoding proteins directly involved with electrical transmission between 

neurons in the brain. Although DEE is often characterized by drug resistant seizures, some 

antiseizure medication can address the underlying cause of seizures and reduce their frequency 

and intensity. The most common and best studied monogenic cause of DEE is Dravet syndrome, 

in which mutations in the gene SCN1A, encoding a sodium channel subunit, often result in reduced 

sodium currents in GABAergic inhibitory interneurons and thus cause neuronal hyperexcitability 

and thus seizures30. A study examining the proteomic profiles of wild-type (WT) mice and a mouse 

model of Dravet syndrome prior to seizure onset, however, found that Dravet syndrome mice 

showed reduced protein expression in the guanine nucleotide exchange factor RASGRF1 and the 

Ca2+/calmodulin-dependent serine/threonine protein kinase CAMK2A, and upregulated 

expression of the signaling receptor VEGFR2 which promotes cell proliferation, survival and 

migration31,32. This suggests that altered intracellular protein dynamics inherent to individuals with 

SCN1A mutations contribute to altered development and the baseline developmental delay is 

exacerbated by the epilepsy, thus fulfilling the diagnostic criteria for a DEE. Children with Dravet’s 

syndrome tend to respond best to a pharmacological cocktail of clobazam or valproic acid with 
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stiripentol29. These medications are thought to function by enhancing both the export of 

intracellular excitatory glutamate and the import of extracellular inhibitory gamma-aminobutyric 

acid (GABA) 33, blocking voltage-gated sodium channels and inhibiting GABA degradation34, and 

prolonging the time that a GABA receptor is open34, respectively, effectively counterbalancing the 

hyperexcitability that is caused by SCN1A mutations. 

Another example of DEE with genetic ion channel-related pathology includes pathogenic 

variants in fibroblast growth-factor (FGF) homologous factor (FHF1), encoding a protein that 

binds to the C-terminus of a voltage-gated sodium channel subunit to regulate its inactivation10,35. 

FHF1 was recently found to also interact with FGF receptors directly, triggering signaling cascades 

important for cell survival during development 36. Thus, the pre-existing impacts of aberrant FGF 

signaling during neural development compound with those of sodium channel regulation and result 

in DEE when a child has pathogenic variants in FHF1. 

2.1.2 Structural brain pathology 

 When DEE etiology involves impaired brain development resulting in structural 

abnormalities, there is no longer an opportunity to intervene by the time gross abnormalities in 

brain morphology are detected. The goal of treatment is currently to reduce the burden of seizures 

to improve patient quality of life and safety2. Rather than altered neuronal excitability alone, 

seizures likely also occur due to aberrant connections between neurons because they are not in 

their appropriate numbers or positions. Children with a structural DEE etiology may therefore not 

respond as readily to antiseizure medications. However, the development of precision therapies 

for DEEs with a structural component is a new and exciting area of research with the overall goal 

of minimizing developmental delays in children whose genetic cause of DEE is identified. A study 

evaluating an mRNA silencing therapy administered to mice with dominant negative DNM1 
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variants, which are known to cause DEE and can result in brain abnormalities such as 

ventriculomegaly and reduced cerebral cortex volume17, found that a single dose administered to 

newborn mice significantly reduced seizure frequency, improved growth rate and motor abilities, 

and prolonged survival37. Understanding the functional effects of individual variants, then, could 

reveal avenues for drug discovery and gene therapy that may improve developmental outcomes 

when administered as early as possible. 

2.2 Cell polarity during development 

The establishment and maintenance of cell polarity is crucial throughout all stages of 

development. Polarization can be observed both at the cellular level, through differential 

distributions of proteins and organelles, as well as on the tissue level, where cell types and 

properties vary according to their position in the tissue. Polarization occurs along two major axes, 

apico-basal and planar, and is initiated by signaling events from molecules in the extracellular 

matrix (ECM) 38-41. On the tissue level, apical cell membranes orient themselves toward a central 

fluid-filled lumen42; in early cortical development, this manifests as polarized neuroepithelial cells 

(NECs) that secrete and respond to cerebrospinal fluid (CSF) dynamics from their apical 

membranes in the developing lateral ventricles43,44. The basement (basal) membrane of the 

neuroepithelium contacts the pial surface and is the site of neurogenesis45,46. Cells also develop 

intrinsic planar cell polarity characteristics, in which proteins and cellular features directionally 

orient themselves along an orthogonal axis within the same apico-basal plane, creating 

organization within a tissue47. A graphical summary of these cell polarization concepts using 

ependymal cells as an example, the cells that line the mature brain’s ventricles, is illustrated in 

Figure 1.1. Ependymal cells have motile cilia protruding from the apical membrane, which have 

basal bodies oriented in a uniform direction to properly direct CSF flow48. Although the two forms 
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of polarity during development are inextricably linked, the work done in this thesis relates 

primarily to apico-basal polarity and planar cell polarity will not be discussed further. 

Tight junctions (TJs) and adherens junctions (AJs) are cell adhesion protein complexes that 

both define the apical plasma membrane as well as connect adjacent cells within a tissue. TJs, the 

most apical cell-cell junctions that establish apicobasal polarity, provide a physical barrier that 

regulates the paracellular passage of water, ions, and solutes and are critical for the establishment 

of apical polarity49. TJs are required throughout the vasculature and choroid plexuses of the brain 

to maintain the integrity of the blood-brain and blood-CSF barriers, respectively50,51. TJ proteins 

are involved in the initial establishment of apicobasal polarization52-55 and AJs, slightly basal to 

TJs, control the size of the apical domain by preventing apical determinants from diffusing 

basolaterally56. 

In the context of cortical development, NECs, the stem cells of the nervous system, form a 

physical platform for the remainder of neural development to occur upon. The morphology of 

NECs is such that an apical process containing a primary cilium protrudes into the developing 

ventricle to uptake extracellular signaling molecules promoting stem cell proliferation and 

survival57,58, a basal process radiates outward and contacts the pial surface, and a cell body 

containing the nucleus between the two that undergoes rapid apically-directed migration before 

mitosis59. This cytoarchitecture allows for newborn neurons during neurogenesis to migrate 

basally along the processes into their locations in the cortical plate. Although NECs initially 

develop TJs to establish apico-basal polarity, they lose their TJs in favor of AJs prior to the onset 

of neurogenesis60-62.  

NECs primarily undergo symmetric divisions to increase the number of identical neural 

stem cells, but prior to radial glial differentiation some divisions are also asymmetric and 
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neurogenic, where one daughter cell self-renews to remain a neuroepithelial cell but the other is a 

newborn neuron or basal progenitor63. Transient changes in signaling molecules trigger this switch 

from symmetric to asymmetric division64 while NECs gradually change their gene expression 

profiles and transform into radial glial cells65, the primary neural progenitor cell type. Radial glia 

retain the characteristic cytoarchitecture that provides a track for newborn neurons to migrate 

along, and this architecture depends upon AJ integrity; disrupting AJs results in the retraction of 

radial glial process, thus impairing neuronal migration and leading to problems with cell 

proliferation and cortical lamination66-68. The proportion of symmetric versus asymmetric cell 

divisions increasingly favors asymmetric divisions as development continues until the pool of 

progenitors is depleted. Finally, the radial glial cells that remain at the apical surface once 

neurogenesis is complete transform into postmitotic apico-basally polarized ependymal cells that 

line the lateral ventricles69, some radial glial-like neural stem cells remain dormant in the 

subventricular zone (SVZ) to respond to potential future injuries70,71, and the remaining 

progenitors terminally differentiate into various glial or neuronal subtypes72. 

2.2.1 The Crumbs complex 

“Proteins comprising the apical membrane-defining Crumbs (Crb) complex in NECs 

include CRB2, MUPP1 (Multi-PDZ Protein 1, also known as MPDZ) or PATJ (Pals1-Associated 

Tight Junction Protein), and PALS1 [(Protein Associated With Lin7 1)] and have been extensively 

studied in their roles in cell polarization and tissue development73,74.” 75 The Crumbs (Crb) 

complex centers around a transmembrane CRB protein, with its short cytoplasmic C-terminal tail 

containing an ERLI-COO- motif tightly bound to PALS176. PALS1 is composed of two N-terminal 

L27 domains followed by a PDZ domain, an SH3 domain, and a noncatalytic guanylate kinase 

domain77. While the PDZ domain alone is sufficient to bind the cytoplasmic CRB tail, binding is 
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greatly enhanced with the PDZ-SH3-GUK domains present in tandem76. Through the most N-

terminal L27 domain of PALS1, either PATJ or MUPP1 bind via their L27 domain78. PATJ and 

MUPP1 are made up of an N-terminal L27 domain followed by up to 10 and 13 PDZ domains, 

respectively, depending on RNA splicing73. Both are scaffolding proteins that are known to 

stabilize tight junctions through direct interactions with the core TJ transmembrane protein 

Claudin179 and indirect interactions via ZO-3 with another TJ transmembrane protein 

Occludin80,81. 

Most research on the Crb complex focuses on the version of the complex containing PATJ 

rather than MUPP1, and the only study directly comparing the function of the two highly 

similar proteins concludes that PATJ is essential but MUPP1 is dispensable for establishing 

and maintaining tight junctions (TJs) 81. Ex vivo studies, however, reveal significant deficits 

in ependymal82,83 and choroid plexus epithelial cells84 upon loss of MUPP1, including a 

complete loss of PALS1 expression in ependymal cells of MUPP1 KO mice83. Although 

ependymal cells do not have TJs85 or stem cell properties86, they derive from TJ-containing 

NECs that gradually transition into radial glial cells that rely on abundant AJ protein 

expression to maintain their progenitor identity and ability to divide symmetrically60,87-89. 

Indeed, MUPP1 may differ from PATJ in that it preferentially stabilizes AJs over TJs81, 

which may suggest a radial glial-specific function for this complex during neural 

development. 75 

Figure 1.2 depicts the MUPP1-containing Crb complex. AJ proteins include junctional 

adhesion molecules (JAMs) and nectins, both of which bind MUPP1 with a greater affinity than 

PATJ. Conversely, MUPP1 binds TJ proteins with lower affinity than PATJ81. Additionally, nectin 

expression is highest in radial glial cells during development90. The lack of TJs and abundance of 
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AJs after the transition from NECs to radial glia, combined with the increased ability for MUPP1 

to bind AJ proteins and decreased ability to bind TJ proteins, may suggest a radial glial-dominant 

function for the MUPP1-containing Crb complex during development. 

2.2.2 Establishment of apical polarity 

The establishment of apical cell polarity depends on many co-occurring cellular events and 

protein-protein interactions. Several excellent reviews have been published regarding this process, 

which is also dependent upon antagonistic interactions with basolateral protein complexes73,91,92; 

however, this thesis will only discuss apical protein interactions. Put as simply as possible, PAR3 

associates with phosphatidylinositol (3,4,5)-trisphosphate (PIP3)-enriched plasma membranes and 

is bound by PTEN93,94, which catalyzes the conversion of PIP3 to phosphatidylinositol 4,5-

bisphosphate (PIP2)
 95. Par3-PTEN accumulate at the plasma membrane, resulting in an expanded 

PIP2- and PAR3-enriched domain94,96. A dimer containing PAR6 and atypical protein kinase C 

(aPKC) are recruited to the PAR3-enriched membrane and interacts with PAR3, forming another 

key apical polarity protein complex: PAR3-PAR6-aPKC97,98. CDC42 then binds PAR6, resulting 

in the activation of aPKC and subsequent phosphorylation of PAR3, which destabilizes the 

PAR3/aPKC interaction and excludes PAR3 from the apical complex97,99. With PAR3 excluded, 

PAR6 can then bind the C-terminal tail of CRB, which was brought to the plasma membrane via 

an unknown process, accumulating PAR6-aPKC to the apical plasma membrane100,101. With PAR6 

bound to CRB, aPKC is placed in the vicinity of the CRB tail and phosphorylates it102. The 

phosphorylated CRB tail excludes a competitive binding partner Moesin and binds PALS1 

instead103, forming the basis for the complete Crb complex at the apical plasma membrane. 

 The complexity of the establishment of apical cell polarity allows for multiple 

opportunities for regulatory mechanisms to intervene and prevent, reverse, or enhance the process. 
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For example, several phosphorylation steps are required for apical polarity to be established, and 

one can expect that a balance of phosphatases, kinases, and kinase inhibitors can alter the course 

and direction of events. Additionally, each protein in the Crb complex is capable of multiple other 

protein-protein interactions, likely contributing to substrate and binding site competition. For 

instance, at the level of the CRB protein alone, the C-terminal tail of CRB can bind either aPKC102, 

PAR6104, Moesin103, or PALS178. Additionally, PATJ regulates levels of CRB phosphorylation via 

competitive binding to aPKC102. Gate-dependent access to binding sites have also been 

established: a Phe residue, unique to the PALS1 PDZ domain when compared against other protein 

PDZ domains, can adopt a rotamer that prevents CRB access to the peptide-binding site of 

PALS1105. This complex biological process of establishing apical cell polarity is an essential 

component of tissue and brain development, and disruptions in many of the proteins mentioned 

above are associated with an array of neurodevelopmental disorders106-114. 

2.2.3 Symmetric versus asymmetric cell division 

Neural development requires both symmetric and asymmetric cell divisions at precise 

times to give rise to the various neuronal and glial cell types found throughout the brain. A 

symmetric division is one that gives rise to two identical daughter cells. Asymmetric divisions 

occur when there is an unequal distribution of cellular components between both daughter cells 

during mitosis and results in two cells with different fate potentials. Both neuroepithelia and radial 

glia are capable of both types of division, but the proportion of symmetric versus asymmetric 

division differs depending on the developmental timepoint115.  

There are several mechanisms that regulate which type of division a cell undergoes. These 

mechanisms can be either intrinsic, where features within a cell inherently promote a certain mode 

of division, or extrinsic, where extracellular elements influence how a cell divides. A dynamic 
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interplay between both intrinsic and extrinsic factors contributes to an organism’s development, 

but experimental paradigms controlling one aspect allows for a greater understanding of the other. 

An example of intrinsic factors influencing cell division is that apical AJ protein expression is 

required for the ability to undergo symmetric mitotic divisions and thus maintain their stem and 

progenitor cell identity60,87-89. Examples of extrinsic factors influencing the mode of cell division 

include changes in Notch signaling which switches neural stem cell division from symmetric to 

asymmetric64, and that lysophosphatidic acid promotes self renewal by upregulating apical 

junctional proteins116. 

2.2.3.1 Protein inheritance and cell fate 

Intrinsic mechanisms, such as the inheritance and expression of apical determinants, 

contribute to cell fate determination. Inheritance of the apical process of neuroepithelia or radial 

glia equates to the inheritance of apical proteins such as CRB2, PALS1, and PAR3. This inheritance 

is required to retain neural progenitor identity and self-renewal capacity, and their loss or lack of 

inheritance promotes premature cell cycle exit, neuronal differentiation, and/or cell death87,88,117-

119. The relationship between cell fate and inheritance of the basal process of progenitors is less 

clear; basal process inheritance has been associated with both neuronal and radial glial cell fate120-

123. This discrepancy may reflect the difficulties in determining which daughter cell truly inherits 

the process, as the basal process does not retract before cell division but instead remains attached 

to the pial surface and becomes extremely thin as cytoplasmic contents shift apically during 

mitosis120,124. 

2.2.3.2 Mitotic spindle orientation 

A major mechanism for cells to control the inheritance of apical determinants is to regulate 

the orientation of the mitotic spindle125. After chromosomes and the centrosome are duplicated 
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during the cell cycle and the nuclear envelope breaks down, the centrosomes orient themselves at 

opposite poles where three types of microtubules are nucleated that make up and stabilize the 

spindle: 1) Kinetochore microtubules physically interact with the chromosomes at the mitotic 

cleavage plane and form a structural basis for pulling sister chromatids apart; 2) Non-kinetochore 

microtubules separate sister chromatids from one another at the metaphase plate and help to 

stabilize the spindle structure; and 3) Astral microtubules project from the centrosomes in the 

opposite direction and contact the cell cortex, and thus are the primary determinants of spindle 

orientation126,127. This orientation can be planar (i.e. horizontal, not to be confused with planar 

polarity), perpendicular, or oblique (diagonal) to a reference surface such as an apical or basement 

membrane, and are typically assessed experimentally through staining centrosome markers such 

as γ-tubulin or centrin. 

Cell polarity proteins, the lateral LGN/NuMA complex in which LGN modulates NuMA 

binding to astral spindle microtubules, and dynein-driven pulling forces on these microtubules 

coordinate to instruct the orientation of cell division128-135. Many of these protein-protein 

interactions occur specifically during mitosis and competitive interactions, posttranslational 

modifications, or alternate protein localizations prevent their occurrence during interphase128,130. 

This reflects a high degree of control that can be influenced at various stages of development, and 

dysfunctional regulatory mechanisms may lead to disease states. 

 Polarity protein inheritance can further combine with the effects of extrinsic factors via the 

differential exposure of daughter cell membranes to the stem and progenitor cell biochemical niche 

that is the developing ventricle. For instance, PALS1 and PTEN inheritance coordinate the 

restriction of insulin-like growth factor 1 (IGF1) receptor localization to the apical membrane, 

allowing apical progenitors to receive maximal CSF-derived IGF signaling and sustain their 
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proliferative capacity136. Additionally, sonic hedgehog (Shh), another signaling molecule present 

in the CSF, is required for symmetric mitotic divisions and equal inheritance of apical determinants 

by promoting their recruitment to the centrosomes137,138. With an oblique or perpendicular mitotic 

spindle orientation, molecules such as IGF1 and Shh from the CSF reach each daughter cell in 

unequal proportions, and the cell that receives more signaling molecules retains more proliferative 

capacity than the other125. 

 Taken together, apicobasal polarity has a profound influence on the exit or continuance of 

the cell cycle, as well as the ultimate differentiated fate of mitotic cell progeny. A model is 

presented in Figure 1.3 to illustrate these developmentally critical cell division concepts. Apical 

progenitors, given their proximity to the stem and progenitor cell niche and expression of apical 

determinants, proliferate and self-renew more frequently than basal progenitors139,140. Basal 

progenitors may also symmetrically divide, but often both daughter cells are post-mitotic46, 

whereas symmetric division of apical progenitors ensures cell cycle maintenance139. 
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2.3 Objectives and Rationale 

Our lab previously published a brief description of 4 cases of children with microcephaly 

and epileptic encephalopathy from 2 consanguineous families with rare homozygous DENND5A 

variants, establishing a role for DENND5A during neurodevelopment141. Shortly thereafter, 

another lab conducting a clinical genomic study on children with intellectual disability mentioned 

two additional consanguineous families with rare homozygous DENND5A variants142. Neither 

study described these cases in detail nor examined the functional consequence of these variants. 

Following these initial publications, several physicians and genetic counselors reached out to us 

to inform us about their patients with DENND5A variants. To our surprise, many of these newer 

patients harbored missense variants that appear with relatively high allele frequency. 

My project was first and foremost to investigate the genotype-phenotype relationship 

between DENND5A variants and neurodevelopmental disease, using missense variants found in 

patients to guide our cell biological study. Consequently, an additional rationale for this project 

was to gain insight on the basic cell biological processes that DENND5A is involved in. Although 

we know that DENND5A functions as a guanine nucleotide exchange factor for Rab GTPases 

based on homology with other DENN domain-containing proteins143, that loss of DENND5A 

enhances ERK signaling and neurite outgrowth141, and that cell division144,145, migration144, and 

transferrin receptor recycling145 is affected when DENND5A is depleted, none of these studies 

investigated the precise impact that these processes have on development. For example, does 

enhanced neurite outgrowth in cultured neurons reflect increased or premature neuronal 

differentiation? Do the cell division abnormalities observed in cancer cell lines translate to the 

proliferative properties of neural progenitor cells, and if so, do they point toward over- or under-

proliferation? Is apoptosis, cell proliferation defects, and/or premature differentiation primarily 
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responsible for the observed microcephaly? These and many more questions remained unanswered 

and became the basis for my research. 

Finally, after years of communicating with clinicians and families, the importance of 

genetic counseling and the future potential for precision therapy in treating DENND5A-related 

DEE also became a driving force for all work done in this thesis. Although precision therapies for 

DEEs are currently rare, that does not mean they are impossible, as cutting-edge research found 

that a single dose of RNA-binding oligonucleotides administered to a mouse model of DNM1-

DEE after birth significantly improved developmental outcomes37. The distant possibility of 

ameliorating a future child’s epilepsy and/or developmental outcomes remains a key motivator for 

both myself and the families involved in this research, and basic cell biological research is a 

necessary prerequisite step. 
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2.4 Figures 

Figure 1.1 

  

Figure 1.1: Schematic illustrating apico-basal and planar polarity axes in the context of ependymal cells lining the 

lateral ventricle. Adherens junctions (AJs) connect adjacent cells at their apical membranes to create a paracellular 

barrier between the ventricle and brain parenchyma. The basal bodies of cilia orient themselves in a uniform direction 

along a planar axis to ensure directional cerebrospinal fluid (CSF) flow. 
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Figure 1.2  

Figure 1.2: Schematic showing the 

apical polarity Crumbs complex 

containing MUPP1. 
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Figure 1.3 

  

Figure 1.2: Schematic illustrating A, planar and B, perpendicular cell division of apical progenitor 

cells during cortical development and their effects on cell fate. 
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3.1 Introduction 

Homozygous pathogenic variants in DENND5A, a gene encoding a protein expressed at 

high levels in the brain during development, have previously been linked to DEE in four 

consanguineous families1,2. Many neurodevelopmental disorders have highly similar 

neuroanatomical features, making diagnosis based on radiological findings difficult. The 

previously reported DENND5A patients were noted to have a set of common brain abnormalities 

such as microcephaly, reduced cerebral cortex volume, calcifications, and enlarged lateral 

ventricles1, but these characteristics are unremarkable in the context of DEEs with a structural 

etiology and do not hold much diagnostic value. We thus sought to investigate the clinical 

phenotype among individuals with biallelic DENND5A variants in greater detail. Additionally, 

previous studies have only examined patients with homozygous DENND5A variants from 

consanguineous families1,2. While these studies are useful since variant pathogenicity is easier to 

decipher, our study also examines individuals with compound heterozygous variants in 

DENND5A, of which some variants are relatively common in the general population. 

We identified a cohort of 24 individuals from 22 families with biallelic DENND5A variants, 

including the individuals from the previous studies, and determined their clinical presentation 

through a phenotypic survey answered by their treating clinicians coupled with detailed 

neuroimaging analysis when possible. Severe cases from unrelated individuals show a cluster of 

neuroanatomical hallmarks that are, to our knowledge, unique to DENND5A-related DEE. We also 

provide clinical evidence that certain missense variants, currently classified as likely benign or 

variants of uncertain significance, should probably be re-classified as likely pathogenic. 

Conversely, we identify missense variants currently classified as variants of uncertain significance 

that we believe might be likely benign. The results of this study will provide genetic counselors 
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and physicians valuable information to reference when working with families and patients with 

DENND5A variants. 
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3.2 Results 

3.2.1 Human cohort summary 

Following our initial analysis of two families with homozygous variants in DENND5A2, 

we identified a cohort of 24 people (11 F, 13 M, mean age = 9.0 years, SD = 6.0) from 22 

families with biallelic DENND5A variants. Thirty unique DENND5A variants were 

identified across the 14 homozygous and 10 compound heterozygous individuals. Seven 

members of the cohort have at least one additional variant flagged as potentially causative.  

Table 2.1 summarizes each person in the cohort, including their participant IDs, gene 

variant(s), predicted American College of Medical Genetics and Genomics (ACMG) variant 

interpretations, allele frequencies obtained from the gnomAD v2.1.1 dataset 

(https://gnomad.broadinstitute.org), seizure types and response to anti-seizure medications, 

occipitofrontal circumferences (OFCs), calculated scores corresponding to neurological and 

developmental phenotypes, and developmental outcomes. Pedigrees are available in Figure 

S2.1 for participants 25-30, and some have affected family members not included in the 

cohort due to the unavailability of their clinical data. Pedigrees for participants 10, 15, and 

16 were published previously2. None of the DENND5A point mutations in the cohort were 

found in the homozygous state among 140,000 individuals on gnomAD, a database that 

removes individuals affected by severe pediatric disease, indicating that biallelic pathogenic 

variants are likely incompatible with normal development. Twenty-five of the variants are 

found in the coding sequence, 2 are copy number variants (exon 1-14 duplication 

[NC_000011.9:(9171749_9172227)_(9316934_9321244)dup] and exon 1 deletion 

[NC_000011.10:g. 9262758_9268826del]), and 3 are intronic variants located in splice sites 

(splice donor variants c.2283+1G>T and c.949+1G>A, and polypyrimidine tract variant 

https://gnomad.broadinstitute.org/
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c.950-20_950-17delTTTT). The coding variants span the length of the protein including 9 

in the DENN domain, 2 in the RUN1 domain, 6 in the PLAT domain, 4 in the RUN2 domain, 

and 4 in predicted linker regions between the folded modules (Fig. 2.1a). 3 

Complete phenotypic data for each member of the cohort is available in Source Data. The 

phenotypes observed in more than 50% of individuals with biallelic DENND5A variants 

were seizures (21/24), microcephaly (16/24), ventriculomegaly (15/24), hypertonia 

(14/24), cerebral hypoplasia (13/24), and hyperreflexia (13/24); Figure 2.1b). It is 

important to note that participants 8 (p.K485E/p.R1159W), 19 (p.P955L/p.T136R),  and 20 

(exon 1-14 dup) did not present with seizures. Participant 8 had a normal brain MRI and an 

autism spectrum disorder diagnosis requiring low levels of support, participant 20 

exhibited global developmental delay with a normal brain MRI, and participant 19 

presented with moderate intellectual disability but did not undergo neuroimaging. These 

observations suggest that these individuals do not have DENND5A-related DEE and that 

one or more of these variants may be benign or inherently less pathogenic. 3 

Seizures were reported in 20/23 individuals, with an average age of onset of 4.8 months 

(SD = 5.9). Seizures typically onset within the first year of life with one patient 

experiencing their first seizure at 2 years of age. A funnel chart showing the frequencies of 

commonly reported seizure types is presented in Figure 2.1c. Focal to bilateral tonic-clonic 

are the most prominent seizure type, diagnosed in 9 individuals. Focal tonic seizures 

followed in 7 reported cases, 4 of whom were known to have impaired awareness. Among 

the 6 individuals presenting with epileptic spasms, 3 had a generalized onset, 2 had a focal 

onset, and 1 had an unknown onset. Generalized tonic-clonic seizures were reported in 5 

individuals, as were focal clonic seizures. Three of the cases with focal clonic seizures had 
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documented impaired awareness. Three individuals had focal myoclonic seizures, of which 

2 cases had impaired awareness. In general, when the information was available, most 

focal seizures were accompanied by an impairment in awareness, with only one case 

retaining awareness. Seizures were generally drug resistant, but control was achieved in 6 

cases with variable antiepileptic treatment. Anti-seizure medications that helped, did not 

affect, and worsened seizures can be seen for each case in Table 1. 3 

  All cases of microcephaly in the cohort were primary, with no cases of secondary 

microcephaly reported. Although microcephaly appears to be a major feature of DENND5A-

related DEE, OFC percentiles ranged considerably (M = 18.5, Mdn = 2.9, SD = 30.2, Min = 

<1, Max = 97). A histogram depicting the distribution of known OFCs can be observed in 

Fig. 2.1d. One case (participant 1) of macrocephaly was reported, possibly secondary to their 

benign external hydrocephalus. Another case (participant 20) was noted to be “borderline” 

microcephalic with an OFC percentile of 4. Among the 7 individuals with normal OFCs, 6 

underwent neuroimaging and 5 had clinically significant reductions in gray and/or white 

matter, indicating that neurodevelopment was compromised in most cases even when head 

circumference was within normal limits. 3 

Failure to meet key developmental milestones was almost universal in the cohort, 

evidenced by the fact that all but one (participant 8; p.K485E/p.R1159W) presented with or 

had a history of global developmental delay. Among cohort members assessed after age 5, 

9 had a severe intellectual disability (ID), profound ID was reported for 3 individuals, 

moderate ID was observed in 2 cases, and one participant (8) had no ID. Within the cohort, 

15/24 (63%) were nonverbal, 7/24 (29%) were limited to single-word speech, and 2/24 

(8%) could speak in sentences. Eye contact was present in 11 of 24 cases (46%). Eight of 
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24 (33%) could walk independently and 11/24 (46%) were able to reach for and grasp 

objects. Motor skills were assessed via a scoring system across the group (section 3.8.1), 

where a low score corresponds to no or minimal motor skills. Motor capabilities were more 

severely affected in those with microcephaly (MMicro = 3.2, MNo micro = 7.2, SDMicro = 3.5, 

SDNo micro = 3.4, two-tailed Mann-Whitney U, Z = -2.55, p = .011; Fig. 2.1e). Additionally, 

those with biallelic missense variants in DENND5A (M = 7.4, SD = 3.7) had significantly 

higher motor scores compared to those with either biallelic frameshift or nonsense variants 

(M  = 3.5, SD = 3.7), as well as those with a combination of missense, frameshift, nonsense, 

intronic, or copy number variants (M = 2.9, SD = 3.0, Kruskal-Wallis H = 7.02, p = .03; 

Fig. 2.1f). 3 

MRIs or computed tomography (CT) scans revealed abnormalities in 20 of the 23 cases 

that underwent imaging. Normal MRIs were reported for participants 8, 20 and 26. We 

devised a scoring system (section 3.8.2) to analyze the extent of neurological phenotypes 

across the group and found that variant type influences neurological phenotype severity, with 

more abnormalities in individuals with biallelic frameshift or nonsense variants (M = 7.6, 

SD = 1.6) compared to those with both biallelic missense variants (M = 2.8, SD = 1.6, p = 

.0004) or another combination of variant types (M = 3.8, SD = 1.9, p = .002, one-way 

ANOVA, F(2, 20) = [12.996], p = .0002; Fig. 1g). No significant difference in neurological 

score was observed between those with biallelic missense variants and those with a 

combination of missense, nonsense, frameshift, intronic, or copy number variants (p = .657). 

Not all MR/CT images were made available, but all available images are presented in 

Figure 2.2 and Figure S2.2. Raw MRI data from 5 cases and raw CT data from 1 case were 

analyzed by a pediatric neuroradiologist. Of these cases, two unrelated individuals 
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(participants 5 and 14), both homozygous for DENND5A frameshift variants, showed a 

“complete” phenotype and had an interesting combination of neuroanatomical 

abnormalities. These include severe dysgenesis of the basal ganglia with an indistinct and 

dysplastic thalamic transition, diencephalic-mesencephalic junction dysplasia, and cortical 

malformations, particularly with pachygyria involving the occipital lobes, a reduced volume 

of the white matter with associated striatal and periventricular calcifications and 

ventriculomegaly, agenesis or severe dysplasia/hypoplasia of the corpus callosum, thin 

anterior commissure, and variable degrees of pontocerebellar hypoplasia (Fig. 2.2a-b). CT 

image analysis of another homozygous individual with severe DEE also revealed hypoplasia 

of the corpus callosum, mild cerebral hypoplasia, and lenticulostriate and periventricular 

calcifications (Fig. S2.2a). MRIs analyzed from two compound heterozygous cases that 

exhibited severe DEE showed relatively mild neuroanatomical phenotypes (participants 2 

and 18; Fig. 2.2c-d). Raw MRI data from additional compound heterozygous cases 

(participants 9 and 30) were not available, but isolated images revealed mild hypoplasia of 

the corpus callosum (Fig. S2.2b) and ventriculomegaly (Fig. S2.2c). Participant 8 with 

variants p.K485E/p.R1159W, who does not present with DEE, had a normal MRI with only 

mild inferior cerebellar vermis hypoplasia (Fig. S2.2d), providing further evidence for the 

benign or less deleterious nature of p.R1159W, but not p.K485E, since the latter variant was 

found in an individual with severe DEE and mild neuroanatomical phenotypes (participant 

2, p.K485E/p.R710H; Fig. 2.2c). 3 

DENND5A protein levels were determined in cell lines derived from 5 cohort members: 

3 from neural progenitor cells (NPCs) differentiated from iPSCs, and 2 from immortalized 

lymphoblasts, with homozygous and compound heterozygous as well as frameshift, 
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nonsense, and missense variants represented. Positive controls (i.e. cells derived from 

healthy donors) were used in both experiments, and iPSC-derived cells were additionally 

compared against a negative control cell line in which KO of DENND5A was generated 

with CRISPR/Cas9 using guide RNAs targeting exon 4. NPCs express SOX1, SOX2 and 

Nestin, affirming their NPC identity (Fig. S2.3). All patient-derived cells exhibit a 

reduction in DENND5A protein (Fig. S2.4a-b), supporting that disease phenotypes are a 

result of protein loss of function; however, the KO-validated DENND5A antibody 

recognizes a region of the protein more C-terminal to the stop codon of p.K205X. RT-

qPCR was thus performed, but a poor correlation between DENND5A mRNA and protein 

levels was observed as DENND5A mRNA expression from patient-derived cells did not 

differ significantly from controls (Fig. S2.4c-d). This includes NPCs with homozygous 

p.K850Sfs*11 variants, where the antibody can determine that a ~100 kDa truncated 

protein is not expressed because its epitope should still be detected, but mRNA levels were 

comparable to WT NPCs. When introduced into a FLAG-tagged DENND5A plasmid 

construct and overexpressed in HEK293T cells, p.K205X resulted in no detectable protein, 

indicating that even if a truncated protein is produced it is rapidly degraded (Fig. S2.4e). 3 

3.2.2 DENND5A KI mouse model 

We established a mouse model to determine how biallelic pathogenic variants in 

DENND5A affect development. 

A knock-in (KI) mouse model, homozygous for a frameshift variant 

(c.517_517delGA/p.D173Pfs*8) found in the first identified cases of DENND5A-related 

DEE1 (participants 15 and 16) and conserved in mice (Fig. 2.3a-b), exhibits anatomical and 

functional phenotypes consistent with those found in our human cohort. Immunoblotting 
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confirmed that full-length DENND5A protein is not expressed in KI mice (Fig. 2.3c); 

however, as in the case of K205X patient-derived cells, the validated DENND5A antibody 

has an epitope recognizing a region more C-terminal to the stop codon. RT-qPCR revealed a 

significant reduction in expression of DENND5A mRNA in KI mouse brains compared to 

WT (MWT = 1.0, MKI = 0.67, SDWT = 0.68, SDKI = 0.42, two-tailed Welch’s t(13.4) = 2.20, p 

= 0.046; Fig. 2.3d), suggesting nonsense-mediated RNA decay. Moreover, DENND5A 

protein tagged at the N-terminus with FLAG containing this mutation is degraded when 

overexpressed in HEK-293T cells (Fig. S2.3c), indicating that even if translated, the protein 

is likely degraded. In vivo 7T MRI scans revealed that DENND5A KI mice have significantly 

enlarged lateral ventricles (MWT = 4.8 mm3, MKI = 6.6 mm3, SDWT = 1.3, SDKI = 2.4, two-

tailed Mann-Whitney U, Z = -2.117, p = .034), consistent with ventriculomegaly (Fig. 2.3e-

f). KI mice also had lower mean and median relative brain sizes, but similar to our human 

cohort in which occipitofrontal circumference percentiles varied considerably, a high degree 

of variability was observed in the mice and the difference did not reach statistical 

significance (Fig. 2.3g). Finally, while spontaneous seizures were not observed in the KI 

mice, they show increased seizure susceptibility compared to WT when administered the 

potassium channel blocker 4-aminopyridine (MWT = 23.60, MKI = 11.67, SDWT = 2.97, SDKI 

= 7.20, two-tailed t(9) = 3.445, p = 0.007; Fig 2.3h). 3 
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3.3 Discussion 

Here we present a cohort of individuals with biallelic variants in DENND5A leading to a 

new form of DEE. Some key similarities and differences between DENND5A-DEE and other 

monogenic DEEs described in the literature can be noted. Although none of the 

neuroanatomical features that we report in DENND5A-DEE are unique to DEEs, we are 

unaware of any other monogenic DEE in the literature with the same specific combination 

of features as those observed here. A study examining fetuses with diencephalic-

mesencephalic junction dysplasias accompanied by developmental ventriculomegaly co-

presented with corpus callosum dysgenesis and pontocerebellar hypoplasia, but no 

microcephaly was reported and their ventriculomegaly was associated with hydrocephalus 

due to aqueductal stenosis, a feature not identified in our cohort44. There is also a 

considerable degree of phenotypic overlap between our cohort and one comprised of patients 

with pathogenic PCDH12 variants, but these patients lacked pachygyria and often co-

presented with ophthalmic abnormalities, in contrast to what was observed here45-47. Gyral 

simplification and calcifications are observed in cases with recessive variants in the tight 

junction protein-encoding OCLN gene, but severe basal ganglia or diencephalic and 

mesencephalic dysplasias were not reported and polymicrogyria, a key feature of OCLN 

mutations, is not observed in our study17. Variants in tubulin genes also result in overlapping 

phenotypes48, but our cases lack the classic dysgyria pattern and instead are typically 

observed in the context of occipital pachygyria and differ in that our cases are associated 

with calcifications. Moreover, it seems that our cases have more severe basal ganglia 

abnormalities when compared with the typical imaging presentations associated with 

TUBA1A, TUBB2A, TUBB2B, TUBB3, and TUBG149-51. Variants in LIS1, encoding a protein 
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involved in neuronal migration, results most frequently in a posterior gradient of 

lissencephaly, without calcifications, and variable degrees of corpus callosum size including 

thin, normal, and thicker than normal tracts52,53. In contrast, corpus callosum volumes were 

either normal, reduced, or absent with no cases of increased volume in our cohort. Finally, 

there is a selective involvement of the cortex added to the presence of periventricular 

calcifications, a unique feature that brings cytomegalovirus-induced brain malformations 

into the differential but aligns with pseudo-TORCH syndrome diagnostic criteria in the 

absence of congenital infection54,55. These differences in neuroradiological features suggest 

an interesting genotype-phenotype relationship that warrants further study … [and] our 

radiological findings combined with clinical information in Table 2.1 … provide physicians 

with valuable information to communicate with families and treatment teams on a case-by-

case basis. 3  

In addition to identifying radiological features specific to DENND5A-related DEE, we 

provided the first clinical evidence for the pathogenicity (or lack thereof) of certain missense 

variants. Detailed MRI analysis was performed on participants 2 (p.K485E/p.R710H) and 8 

(p.K485E/p.R1159W). That these two participants with very different phenotypes share a common 

variant, p.K485E, allows us to propose that p.K485E and p.R710H are likely pathogenic and that 

p.R1159W is likely benign: participant 2 exhibited mild brain abnormalities and severe DEE that 

requires aid for all aspects of daily living, whereas participant 8 had a normal brain MRI and an 

autism spectrum disorder (ASD) diagnosis requiring very low levels of support. Importantly, 

participant 8 also has a pathogenic heterozygous MYBPC3 variant and is compound heterozygous 

for variants of uncertain significance in HERC2, whereas participant 2 had no other gene variants 

flagged as potentially causative of disease. We believe that participant 8 is effectively heterozygous 



56 

 

for a pathogenic DENND5A variant (p.K485E), that p.R1159W is likely benign, and that their 

mild developmental phenotype may be caused by one or more of their other gene variants. While 

heterozygous pathogenic DENND5A variants do not result in developmental abnormalities, it is 

conceivable that a heterozygous DENND5A variant combined with variants in other genes could 

lead to ASD with a polygenic etiology. 

We believe ACMG classifications for several variants should be updated to pathogenic or 

likely pathogenic, especially p.R517W, p.K485E, p.D541G and p.R710H, as these variants 

are found in individuals with brain abnormalities, severe intellectual disability, infantile 

seizure onset, and no other flagged gene variants. The identification of additional 

DENND5A-related DEE cases will prove valuable for future clinical and biological studies 

and thus improved treatment options and prognostic information for health care providers 

and families. 3 

An important limitation to our study is that detailed MRI analysis was not possible for most 

cases. We relied on physician-completed questionnaires based on clinical neuroimaging reports for 

most of the cohort, resulting in a loss of detail. In addition, diagnoses based on neuroimaging may 

still prove difficult, as the cluster of radiological features was only identified in two unrelated 

individuals homozygous for frameshift variants. We suspect that other homozygous individuals 

also present with the same features, but detailed analysis was not possible with the provided CT 

images (participant 25) or questionnaire responses. However, the phenotypic spectrum – especially 

neuroanatomically – is expanded significantly with the identification of compound heterozygous 

individuals. Therefore, care must be taken to not exclude DENND5A-related DEE based on lack 

of radiological features alone. 
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For families in which one parent is aware they are a carrier of a pathogenic DENND5A 

variant, genetic counselors can recommend the other parent undergo genetic testing. When 

both parents are carriers, in vitro fertilization with preimplantation genetic diagnosis can be 

offered. However, the presence of DENND5A variants of unknown clinical significance does 

not necessarily equate to a devastating prognosis; 13% of our small cohort do not meet 

criteria for DEE or even experience seizures; p.R1159W, p.P955L, p.T136R, and/or exon 1-

14 duplication may be benign variants or variants that have less impact on development. The 

identification of additional DENND5A-related DEE cases will prove valuable for future 

clinical and biological studies and thus improved treatment options and prognostic 

information for health care providers and families. 3 
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3.4 Chapter 2 Figures and Tables 

3.4.1 Tables 
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3.4.2 Main Figures 

Figure 2.1 

 

 

 

 

Figure 2.1: DENND5A loss of function variants influence neurodevelopment. a, Schematic of DENND5A protein with all 

coding sequence variants identified in the study. Red = found in homozygous individuals, blue = found in compound 

heterozygous individuals. b, Venn chart showing the number of people with biallelic DENND5A variants exhibiting the 

most frequently reported phenotypes and the degree of phenotypic overlap between cohort members. c, Funnel chart 

showing the most common seizure types present in the cohort. d, Histogram depicting the number of individuals in a given 

OFC percentile range. Note that the exact OFC percentile is not known in every case. e, Quantification of motor scores 

from n = 16 individuals with microcephaly and n = 8 individuals without microcephaly. Each dot represents one person. 

Data are mean ± SEM. f, Quantification of motor scores from n = 8 individuals with biallelic missense variants, n = 8 

individuals with biallelic frameshift or nonsense variants, and n = 8 individuals with an allelic combination of frameshift, 

nonsense, missense, intronic, or copy number variants in DENND5A. Each dot represents one person. Data are mean ± 

SEM. g, Quantification of neurological scores from n = 8 individuals with biallelic missense variants, n = 8 individuals 

with biallelic frameshift or nonsense variants, and n = 8 individuals with an allelic combination of frameshift, nonsense, 

missense, intronic, or copy number variants in DENND5A. Each dot represents one person. Data are mean ± SEM. 



61 

 

Figure 2.2  

Figure 2.2: Cortical malformations, corpus callosum and anterior commissure dysgenesis, ventriculomegaly, basal 

ganglia dysgenesis, calcifications, and diencephalic/mesencephalic dysplasia are indicative of severe DENND5A-

related DEE. Sample MRI slices from unrelated individuals with a, homozygous p.Q1271R*67 variants (participant 5); b, 

homozygous p.S728Qfs*34 variants (participant 14); c, compound heterozygous p.K485E/p.R710H variants (participant 

2); and d, compound heterozygous c.2283+1G>T/p.K1007Efs*10 variants (participant 18) show many neuroanatomical 

phenotypes in common. Arrows = posterior gradient of pachygyria/lissencephaly; open arrows = severe basal ganglia 

dysmorphism; arrowheads = diencephalic/mesencephalic junction dysplasia; open arrowheads = periventricular, striatal, 

and diencephalic calcifications; small arrows = corpus callosum dysgenesis/agenesis; asterisks = cerebellar hypoplasia. 
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Figure 2.3 
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Figure 2.3: Animal models of DENND5A-DEE exhibit common phenotypes observed in the human cohort. a, 

Mice heterozygous (Het) for p.D173Pfs*8 express full-length DENND5A protein at half the levels compared to WT 

mice and homozygous knock-in (KI) mice express no full-length DENND5A protein. b, Relative brain DENND5A 

mRNA levels measured via RT-qPCR from n = 6 total mice. Experiments were performed in triplicate in 3 

independent experiments. Error bars = SEM. c, Sample images of WT and KI in vivo 7T MRIs. d, Quantification of 

pooled lateral ventricle volumes obtained through segmenting n = 10 mouse MRIs. Each dot represents one animal. 

X = mean. e, Quantification of relative brain volumes measured using MRI data from n = 10 mice (MWT = 1.03, 

MdnWT = 1.04, MKI = 0.97, MdnKI = 0.94, SDWT = 0.08, SDKI = 0.10, two-tailed Mann-Whitney U, Z = -1.361, p = 

.174). Each dot represents one animal. X = mean. f, Quantification of seizure latency after injection of 4-AP. 

Multiple independent experiments were performed with a total of n = 5 WT and n = 6 KI mice. Each dot represents 

one animal. X = mean. (g-j) Whole-mount in situ hybridization shows dennd5a mRNA expression at g, 0.75 hpf, h, 

24 hpf, i, 48 hpf and j, 72 hpf. Asterisks = brain; Ov = otic vesicle; Le = lens; RGC = retinal ganglion cells; Hb = 

hindbrain; H = heart; Cm = cephalic musculature. Scale bar = 0.2 mm. k, Sample images of control and F0 KO 

zebrafish head size. Dotted line marks the length of the head used in quantification. Scale bar = 0.2 mm. l, 

Quantification of head size in n = 60 larvae analyzed via two-tailed Mann-Whitney U test (MedControl = 100.432, 

MedF0 = 93.073, SDControl = 2.316, SDF0 = 3.728; Z = -9.206, p < .0001). Each dot represents one larva. Data are mean 

± SEM. m, Representative image of larva at 6 dpf immunostained with anti-SV2 (magenta) and anti-acetylated 

tubulin (green). Dorsal view, anterior to the left. HV = hindbrain ventricle. Dotted line outlines hindbrain ventricle 

area used in quantification. N, Quantification of hindbrain ventricle area in n = 6 larvae analyzed via two-tailed 

student’s t-test (MControl = 100, MF0 = 107.502, SDControl = 3.251, SDF0 = 6.386; t(10) = -2.564, p = 0.028). Data are 

mean ± SEM. Each dot represents one larva. 
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3.4.3 Supplementary Figures 

Figure S2.1 
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Figure S2.1: Extended pedigrees of consanguineous families demonstrate pathogenicity of select 

DENND5A variants. Pedigrees indicate affected (colored in) and unaffected (open) individuals in families 

carrying the variants a, c.3605delT/p.V1202Afs*52; b, c.623G>A/p.C208Y, c, c.949+1G>A, and d, 

c.3095G>C/p.R1032T and c.3116C>A/p.T1039N. Participants involved in the phenotypic study are indicated by 

their ID number, and the age at the time of death is indicated for a deceased individual in (a). 
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Figure S2.2 

 

Figure S2.2: Neuroimaging of other cases with DENND5A-related DEE show varying levels of phenotypic overlap. 

a, CT from a homozygous individual with the variant p.V1202Afs*52 (participant 25) shows mild cortical volume loss, 

ventriculomegaly, thin corpus callosum, and lenticulostriate and periventricular calcifications (arrowheads). b, MRI from a 

compound heterozygous individual with variants c.950-20_950-17delTTTT/p.R1078Q (participant 9) shows mild corpus 

callosum volume loss (arrow). c, MRI from a compound heterozygous individual with variants p.R1032T/p.T1039N 

(participant 30) shows enlarged lateral ventricles. d, MRI from a compound heterozygous individual with variants 

p.K485E/p.R1159W (participant 8) shows a normal MRI with mild inferior cerebellar vermis hypoplasia (asterisk). 
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Figure S2.3 

  

Figure S2.3: All established NPC lines express neural progenitor-specific markers. iPSCs differentiated into NPCs 

express a, SOX1 (green); b, SOX2 (green), and c, Nestin (red). Blue = DAPI. Scale bars = 20 µm. 
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Figure S2.4

 

  
Figure S2.4: DENND5A expression varies depending on the variant. DENND5A protein expression in a, NPCs and b, 

lymphoblasts. Relative DENND5A mRNA expression measured by RT-qPCR in c, NPCs and d, lymphoblasts. 

Measurements were made with 4 technical replicates on n = 3 independent samples. Data are mean ± SEM analyzed via 

Kruskal-Wallis tests with Bonferroni-corrected pairwise comparisons. c, Overexpression of FLAG-DENND5A mutagenized 

to contain several variants influences protein stability and expression levels in HEK293T. 
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3.8 Materials and Methods 

Participant Recruitment 

All materials and methods for participant recruitment and clinical data collection was 

approved by the McGill University Health Centre research ethics board (study 2021-6324) 

and the McGill Faculty of Medicine and Health Sciences institutional review board (study 

A12-M66-21B). We originally identified four individuals, one deceased and excluded from 

the cohort, from two consanguineous families with homozygous DENND5A variants1. 

Another two homozygous individuals were briefly described by Anazi et al. in 2017 and 
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were recruited into the study2. We identified an additional 23 individuals with DENND5A 

variants: 15 were brought to our attention by clinicians who reached out to us after 

performing diagnostic whole exome sequencing on patients; 5 were identified through 

physician-submitted GeneMatcher4 and ClinVar5 database entries; and 3 were identified 

through word-of-mouth of the study between clinicians that already completed the survey 

and their colleagues with other DENND5A cases. Individuals with one or more variants 

classified as benign were not recruited. Recruitment spanned approximately four years. Six 

individuals were excluded from the cohort and subsequent analysis: two did not meet 

eligibility criteria (both are heterozygous for a DENND5A variant, having only one affected 

allele); one was excluded due to death occurring prior to clinical data collection1; and three 

were excluded because the questionnaires were not returned. 3 

Phenotypic data collection and analysis 

Clinicians with patients harboring biallelic DENND5A variants completed an anonymized 

phenotypic questionnaire based on their patient’s most recent clinic visit. Available 

anonymized MRIs, CTs, and/or or official reports were contributed if the patient underwent 

neuroimaging for clinical purposes. Participants were assigned a numerical ID in the order 

in which their questionnaires were received. For intronic variant analysis, molecular 

consequences were predicted using Ensembl’s Variant Effect Predictor. 6 For those whose 

raw MRI or CT data were provided, an independent neuroradiologist re-analyzed the scans 

and completed the “Brain” section of the questionnaire without viewing the original 

submitted questionnaires. If responses to an item differed between the original clinician and 

the independent radiologist, the independent radiologist’s response was used for analysis. 

Data are missing if the presence of a phenotype is officially unknown. For occipitofrontal 
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circumference (OFC), if percentiles were not given directly from clinicians, percentile values 

were derived from the age- and sex-appropriate Word Health Organization tables 

(https://www.who.int/tools/child-growth-standards/standards/head-circumference-for-age). 

The OFC percentile for one person whose measurements were taken when they were above 

5 years old was derived from tables published in Adela Chirita-Emandi et al7. For calculating 

central tendency statistics, OFC percentiles given as a range (e.g. < 3 or < 1) were assigned 

a conservative numerical estimate (e.g. 2.9 for < 3, 0.9 for < 1). 3 

Establishment of cell lines 

The control induced pluripotent stem cell (iPSC) line AIW001-02 was derived from 

peripheral blood mononuclear cells of a healthy female donor (Caucasian, 48 years old). The 

AIW001-02 cell line was generated by using the CytoTune™-iPS 2.0 Sendai 

Reprogramming Kit (iPSQuebec Platform, Laval University). For knockout expression of 

human DENND5A, guide RNAs (gRNAs) were designed using an online tool 

(https://benchling.com). Both gRNA target sites are on DENND5A exon 4. Synthesized 

gRNAs were ordered from SYNTHEGO and transfection was performed following the 

manufacturer’s protocol. Single cell colonies were picked and amplified. Genomic DNA 

from the colonies was extracted with QuickExtract (Lucigen) and PCR was performed using 

Q5 High-Fidelity DNA Polymerase according to the manufacturer’s protocol (F: 

GAGGATCGCCAGTGAGTGTT; R: CCCCGAGCAGTTCAAAAACC). A 238 base pair 

deletion was confirmed by Sanger sequencing. 3 

Human fibroblasts from DENND5A cohort members were obtained by skin biopsy 

(participant IDs: 2 and 10) and renal epithelial cells (participant ID: 3) from a urine sample. 

Cells were reprogrammed to iPSCs by electroporation with episomal plasmids (pCXLE-
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hUL, pCXLE-hSK, and pCXLE-hOCT4) as previously described8. Generated iPSCs were 

functionally and genomically validated according to Hauser and Erzler9. 

Lymphoblasts were obtained from a healthy individual (control line) and two homozygous 

patients (participant IDs: 4 and 5). Cells were immortalized through use of the Epstein-Barr 

virus and generated in the lab of Dr. Fowzan Alkuraya. 3 

Cell culture 

iPSCs were cultured on hESC-qualified Corning Matrigel-coated tissue culture dishes in 

either TeSR-E8 medium (all patient-derived iPSC lines; STEMCELL Technologies) or 

mTeSR1 medium (AIW001-02 WT and DENND5A KO; STEMCELL Technologies) with 

daily medium changes and mechanical removal of differentiated cells. Cells were passaged 

using the ReLeSR Passaging Reagent (STEMCELL Technologies) once cultures reached 

approximately 70% confluency. 3 

iPSCs were differentiated to neural progenitor cells (NPCs) using the STEMdiff SMADi 

Neural Induction Kit (STEMCELL Technologies) with daily medium changes. Induced 

cultures were passaged using Accumax (Millipore Sigma) once cells reached 90-95% 

confluency, approximately once per week. After a two week induction period, NPCs were 

maintained in STEMdiff Neural Progenitor Medium (STEMCELL Technologies) on poly L 

ornithine (PLO)- and laminin-coated plates and passaged using Accumax once cultures 

reached 80-95% confluency, approximately once per week. 3 

Control and patient-derived Epstein-Barr virus-induced lymphoblastoid cell lines were 

obtained from the laboratory of Dr. Alkuraya. Cells were cultured in suspension in RPMI 

1640 medium (Gibco) supplemented with 15% fetal bovine serum (Wisent), 1% penicillin-
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streptomycin (Wisent), and 1% L-glutamine (Wisent). Cells were split 1:4 once confluency 

reached approximately 1 x 106 cells/ml. 3 

HEK293-T cells were cultured in DMEM high glucose (Fisher) supplemented with 10% 

bovine calf serum (Fisher), 1% L-glutamine (Wisent), and 1% penicillin-streptomycin 

(Wisent). 3 

Plasmid cloning 

DENND5A cDNA (Origene, SC121400) was cloned into the pCMV-tag2B vector to 

generate FLAG-DENND5A. GFP-DENND5A was made via subcloning DENND5A into the 

pEGFP-C1 vector. Patient variants and targeted residues for biochemical studies were 

introduced using the QuikChange Lightning site-directed mutagenesis kit (Agilent) 

following the manufacturer’s protocol. … All constructs were confirmed by Sanger 

sequencing. 3 

RT-qPCR 

RNA was extracted from NPCs and lymphocytes using the RNeasy kit (Qiagen) followed 

by cDNA synthesis using iScript Reverse Transcription Supermix for RT-qPCR (Bio-Rad). 

RT-qPCR was performed using SsoFast EvaGreen Supermix (Bio-Rad) with primers 

targeting human DENND5A (F: CTAAAGCCAGGGATGGTGCC; R: 

TTTCGGCATACATAGCATTCCT) and TBP (F: TGCACAGGAGCCAAGAGTGAA; R: 

CACATCACAGCTCCCCACCA). DENND5A levels were normalized to TBP levels and 

AIW001-02 WT NPCs or control lymphocytes. 3 

RNA from mouse brain tissue was extracted using RNeasy Lipid Tissue kit (Qiagen), 

followed by cDNA synthesis and RT-qPCR performed with the same reagents as above using 
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primers specific to the mouse genome for DENND5A (F: CAGTCGCTTCGCCGACTAT; R: 

GCACCATCCCTGGCTTTAGAA) and GAPDH (F: ACTCCACTCACGGCAAATTC; R: 

CCAGTAGACTCCACGACATACT). DENND5A levels were normalized to GAPDH levels 

in WT mice. 3 

Endogenous and transfected protein expression 

NPCs and lymphoblasts were harvested in lysis buffer (20 mM HEPES pH 7.4, 100 mM 

NaCl, 0.83 mM benzamidine, 0.5 µg/ml aprotinin, 0.5 g/ml leupeptin, 0.23 mM 

phenylmethylsulfonyl fluoride) containing 1X LSB. Mouse brains were homogenized in 

lysis buffer and incubated with 1% Triton X-100 for 15 minutes at 4°C, followed by 

centrifugation at 239,000 x g for 15 minutes at 4°C. For FLAG-DENND5A expression, 

plasmid DNA was transfected into HEK293T cells using the calcium phosphate method and 

cells were harvested after 24 hours in lysis buffer containing 1X LSB. Equal protein aliquots 

were loaded onto an SDS-PAGE gel and analyzed via Western blot using primary antibodies 

against DENND5A (ThermoFisher #702789, 2.5 µg/ml), FLAG (clone M2, Sigma-Aldrich, 

1:10,000), Hsc70 (clone 1B5, StressGen Biotechnologies Corp, 1:1:10,000), and β-actin 

(Clone C4, Sigma-Aldrich MAB1501R, 1:1000). 3 

Animal care and selection 

All mouse care and experiments in the study were approved by the Montreal Neurological 

Institute Animal Care Committee in accordance with guidelines set by the Canadian Council 

on Animal Care under ethical protocol number 5734. The experimental unit for this study is 

a single animal. Apart from selecting animals based on DENND5A genotype, no exclusion 

criteria were set for the experiments and both male and female animals were used. 3 
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Establishment of transgenic animal models 

KI mice were generated by the McGill Integrated Core for Animal Modeling. Two silent 

mutations were introduced in L168 and L169 (CTTGCT –> TTAGCA) as well as a deletion 

of 2 bp in G172 to introduce a frameshift and premature stop codon in exon 4 of the 

DENND5A mouse gene. Briefly, custom sgRNAs (Synthego), Cas9 protein (IDT, 

Cat#1081058) and ssODN (ultramer, IDT) were microinjected into the pronucleus of 

C57BL/6N mouse zygotes with concentrations of 50:50:30 ng/µl respectively. Embryos 

were subsequently implanted in CD-1 pseudopregnant surrogate mothers according to 

standard procedures approved by the McGill University Animal Care Committee. Founder 

pups (F0) were genotyped for evidence of a deletion of 2 bp in G172 and mated to wild-type 

C57BL/6N (Charles River) mice for three generations. The colony was maintained by sibling 

mating and by crosses to C57BL/6N mice every third generation. All genomic sequencing 

was performed using the Big Dye Terminator Ready Reaction Mix (ABI, Carlsbad, CA, 

USA) at the McGill and Genome Quebec Innovation Center (Primers: 

ACAAGGAATGCTCTCACTGC, CACACTCCGACATGCCTTCAT [417 bp]). Obtained 

sequences were analyzed using an online tool (https://benchling.com). 3 

4-aminopyridine induced seizure assay 

Mice were injected with the K+ channel blocker 4-aminopyridine (8 mg/kg, i.p.) (Sigma-

Aldrich, Canada) to induce seizures. If no seizures were observed after 30 min, they were 

re-injected with a half-dose of 4-aminopyrdine (4 mg/kg, i.p.). Animals that showed no 

seizures after the second dose were excluded from further analysis. Seizures were identified 

based on behavioral symptoms such as myoclonic activity of rear and forelimbs that evolved 
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to rearing and loss of balance. The latency (min) from the time of the last 4-aminopyridine 

injection and seizure onset was calculated. 3 

7 T small animal MRI 

Ten WT (3 males, 7 females, mean age = 114 days, SD = 12.9) and 10 KI (3 males, 7 

females, mean age = 108 days, SD = 10.3) for a total of 20 mice were employed for high 

resolution, pre-clinical MR imaging experiments. Data from four animals were excluded 

from analysis to restrict subjects to an age range of approximately 3-4 months for 

consistency. For in vivo structural MRI, mice were anesthetized with isoflurane, placed in a 

plastic bed and restrained with gauze pads to minimize the possible influence of motion 

artifacts. For the duration of each MRI scan, mice were maintained under isoflurane gas 

anesthesia at approximately 37°C using a warm air blower and respiration was monitored 

using a pressure pad. 3 

Imaging was performed using the 7 T Bruker Pharmascan (Bruker Biosciences, Billerica, 

MA), ultra-high field, pre-clinical MRI system of the McConnell Brain Imaging Centre at 

McGill University. The Pharmascan is equipped with an AVANCE II-model spectrometer 

and BFG-150/90-S shielded gradient system (Resonance Research Inc., Billerica, 

Massachusetts). Structural MR images were acquired using a 2D Rapid Imaging with 

Refocused Echoes (RARE) pulse sequence with the following parameters: effective echo 

time (TEeff): 30 ms, RARE factor: 8. In-plane resolution: 100 µm x 100 µm, slice thickness: 

300 µm and receiver bandwidth: 46875 Hz. The repetition time (TR) and the number of 

acquired slices were varied for two pairs of WT/KI mice in order to achieve greater slice 

coverage along the rostro-caudal axis (TR: 4000 ms to 4750 ms, number of slices: 40 to 50). 

The number of averages was varied to optimize total scan time for mouse imaging under gas 
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anesthesia. Lateral ventricles were manually segmented in each scan by a researcher blind 

to animal genotypes using the ITK-SNAP software (www.itksnap.org).10 and pooled lateral 

ventricle volumes were used for statistical analysis. 3 

Statistical Analysis 

Continuous data were analyzed for normality and homogeneity of variance using Shapiro-

Wilk tests (n < 50) or Kolmogorov-Smirnov (n ≥ 50) tests and Levene tests. Student’s t-tests 

were conducted when all assumptions were met. Welch’s t-tests were conducted when 

homogeneity of variance assumptions were not met. The nonparametric equivalent (Mann-

Whitney U test) was conducted when both normality of data and homogeneity of variance 

assumptions were not met. A p value of < 0.05 was considered statistically significant. Data 

were analyzed using SPSS, R version 4.1.2 with Companion to Applied Regression package 

version 3.0, and Tidyverse version 1.3.1 software. All statistical analyses included multiple 

replicates from several independent experiments. 3 

  

http://www.itksnap.org/
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3.8.1 Motor skills scoring system 

Item Scoring 

Able to reach/grasp objects +1 if positive 

Able to roll over +1 if positive 

Able to sit with support +1 if positive OR is able to sit 

without support 

Able to sit without support +1 if positive 

Able to stand with support +1 if positive OR is able to stand 

without support 

Able to stand without support +1 if positive 

Able to walk with support +1 if positive OR is able to walk 

without support 

Able to walk without support +1 if positive 

Muscle tone or spasm problems +1 if negative for all 

(hyperreflexia, spastic tetraplegia, 

clonus, and current 

hyper/hypotonia) 

Motor regression after seizure +1 if negative AND could perform 

one of the above behaviors in past 

TOTAL 10 

 

Scoring system used for quantifying motor abilities. A low score reflects minimal motor abilities, 

a high score indicates a high degree of motor capabilities. If a child’s ability to do a skill is 

unknown, it is counted as positive. 
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3.8.2 Neurological phenotype scoring system 

Item Scoring 

Seizures +1 if positive 

Reduced volume (cerebral or 

supratentorial parenchymal 

volume loss) 

+1 if positive 

Cerebellum abnormalities 

(hypoplastic vermis, reduced 

volume) 

+1 if positive 

Thalamus abnormalities (thalami 

fusion or reduced volume, massa 

intermedia prominence) 

+1 if positive 

Basal ganglia abnormalities 

(dysplasia or reduced volume) 

+1 if positive 

Calcifications +1 if positive 

Ventricle or CSF abnormalities +1 if positive 

White matter abnormalities 

(reduced corpus callosum or other 

white matter tract volume, delayed 

myelination or hyperintensity) 

+1 if positive 

Hemorrhage or ischemic event +1 if positive 

Cortical visual impairment +1 if positive 

TOTAL 10 

 

Scoring system used for quantifying neurological phenotypes. A low score corresponds to few 

neurological abnormalities, a high score indicates many neurological abnormalities. 
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4.1 Introduction 

 As described in Chapter 2, we have established, to the best of our knowledge, that biallelic 

pathogenic variants in DENND5A result in a structural DEE characterized by a unique combination 

of radiological features in severe cases. The pathogenic nature of frameshift and nonsense variants 

are rather obvious: patients lack all or part of DENND5A protein, and its absence affects 

intracellular processes essential for proper development. Both of the severe cases in our cohort in 

which neuroradiological signatures were identified were homozygous for frameshift variants. The 

individual with homozygous p.Q1271R*67 variants expresses substantially reduced DENND5A 

protein (Fig. 2.1e), but all protein that remains lacks a functional C-terminus due to the frameshift 

mutation. We did not obtain cells from the individual with homozygous p.S728Qfs*34 variants, 

but even in the unlikely scenario that nonsense-mediated mRNA decay or protein degradation does 

not occur, almost half of the DENND5A protein is missing. While a dominant negative effect due 

to certain variants is possible, it is more likely that DENND5A loss of function is responsible for 

disease states given the reduced protein levels in all tested patient-derived cells and the lack of or 

reduced protein levels when FLAG-tagged DENND5A containing frameshift and nonsense 

variants are overexpressed in mammalian cells. 

 The pathogenic nature of missense variants is less obvious. In fact, all missense variants 

found in our cohort are assigned a conservative American College of Medical Genetics and 

Genomics (ACMG) classification of likely benign or a variant of uncertain significance. While it 

is true that all individuals with missense variants tend to have milder neuroanatomical phenotypes 

compared to homozygous individuals with frameshift or nonsense variants, this does not always 

translate to better developmental outcomes. For example, participant 2 in our cohort, compound 

heterozygous for p.K485E and p.R710H which are both predicted to be likely benign or variants 



87 

 

of uncertain significance, presents with relatively mild neuroanatomical abnormalities but also 

severe DEE requiring assistance for all daily living activities. This individual also had no other 

gene variants flagged as potentially causative for their disease. Clearly, then, ACMG classifications 

for missense variants are unreliable without additional clinical or cell biological research. Missense 

variants found in patients with phenotypes overlapping with those harboring frameshift or 

nonsense variants provide a powerful starting ground for studying a gene’s function, as the patient 

can guide the cell biological study of identifying how and why a particular amino acid is essential. 

 DENND5A is a member of a family of minimally 25 proteins bearing a differentially 

expressed in normal and neoplastic cells (DENN) domain. 1,2 Via the DENN domain, these proteins 

function as guanine nucleotide exchange factors (activators) of Rab GTPases, master regulators of 

membrane trafficking. 1,3 In addition to the DENN domain, DENND5A has two RUN (RPIP8 

[RaP2 interacting protein 8], UNC-14 and NESCA [new molecule containing SH3 at the carboxyl-

terminus]) domains. RUN domains are protein modules often associated with GTPases in the Rap 

and Rab families. 4 Through the most N-terminal RUN domain (RUN1), DENND5A is an effector 

for the active form of Rab6, giving DENND5A the basis for its original name of Rab6-interacting 

protein 1 (RAB6IP1). 5-7 Through the more C-terminal RUN domain (RUN2), DENND5A 

interacts with sorting nexin 1, a protein involved in protein trafficking between endosomes and the 

trans-Golgi network. 8,9 No specific protein interaction or other function has been observed with 

the PLAT domain (Polycystin-1, Lipoxygenase, Alpha-Toxin) of DENND5A, a little-studied beta 

sheet protein module involved in protein-protein and protein-lipid interactions. 10 Full-length 

DENND5A also interacts with GTP-Rab11, but no specific binding site has been identified. 11 

Linker regions comprising strings of residues that are not predicted to form conserved tertiary 
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structures link the DENN-RUN1 and PLAT-RUN2 domains, but nothing is known regarding their 

involvement in protein-protein interactions. 

 Here we investigate protein-protein interactions with fragments of DENND5A, containing 

either the WT amino acid sequence or with individual missense variants introduced. A series of 

pulldown experiments in embryonic day 18 rat brain lysate followed by mass spectrometry were 

performed to identify novel protein-protein interactions, and to determine if these interactions are 

affected by missense variants found in the human cohort. While many novel protein-protein 

interactions were identified using various regions of DENND5A and previously discovered 

interactions were confirmed, we focus on one result and its subsequent biochemical and cell 

biological study. 
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4.2 Results 

4.2.1 Identification of interaction between DENND5A and MUPP1/PALS1 

To better understand molecular mechanisms regulating DENND5A function, 

we screened for binding partners using affinity purification with multiple regions and 

domains of the protein as bait. Mass spectrometry of [a GST-tagged peptide flanking the 

region linking the DENN and RUN1 domains] after incubation in embryonic rat brain lysate 

revealed members of the Crb polarity complex, MUPP1 and PALS1, as major DENND5A 

binding partners … (Fig. 3.1a-b). This interaction was confirmed with overexpressed 

proteins in HEK293T lysate (Fig. 3.1c). 12 

To elucidate which protein DENND5A binds to directly, we repeated the experiment with 

HEK293T lysate expressing either Pals1-FLAG, FLAG-MUPP1, or FLAG-MUPP1∆L27. 

MUPP1 binds PALS1 via its L27 domain, so deleting this region should exclude endogenous 

PALS1. However, the DENND5A GST-tagged peptide was able to bind both PALS1-FLAG and 

FLAG-MUPP1∆L27 when each were expressed alone (Fig. 3.1d-e), but the strongest and most 

reliable interaction was always observed when both were co-expressed (Fig. 3.1c). 

4.2.2 Structural analysis of the predicted DENND5A structure provides insight on the 

nature of the DENND5A-MUPP1/PALS1 interaction 

We [modeled] the predicted structure of DENND5A from AlphaFold13,14 and noted that 

residues R701, E707, H708, R710, and R716 involved in the interaction with the polarity 

proteins make hydrogen bonds with residues S10-A11, R273, R129, D598, and R716 of the 

DENN domain (Fig. 3.2a), respectively,  suggesting a conformational change may be 

necessary to expose the binding site for MUPP1/PALS1. In fact, full-length DENND5A has 
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limited interaction with these proteins (Fig. 3.2d). Because DENN domains are 

evolutionarily conserved protein modules that function as guanine nucleotide exchange 

factors for Rab GTPases3, we aligned the co-crystal structure of DENND1B and Rab35 with 

the predicted DENND5A structure and found that the predicted Rab enzymatic site in 

DENND5A [may be occluded] by interactions between the DENN and RUN1 … domains 

(PDB: 3TW815; Fig. S3.1a). In contrast, a conformational change is not necessary for the 

known DENND5A binding partner GTP-Rab6 to bind the RUN1 domain (PDB: 3CWZ6; 

Fig. S3.1b), suggesting that two functional conformations are both possible and necessary. 

We next examined the intramolecular interactions blocking MUPP1/PALS1 binding in the 

AlphaFold structure of DENND5A and observed a cluster of highly charged residues at the 

interface of the DENN and RUN1 domains (Fig. 3.2b), suggesting that the structure can be 

biochemically manipulated to expose both the Rab and Crb complex binding sites. To 

confirm this intramolecular interaction experimentally, we performed a pull-down assay with 

the GST-RUN1/PLAT domains as bait in HEK293T lysate expressing either full-length 

FLAG-tagged DENND5A or the isolated DENN domain (aa1-680). Both DENND5A 

constructs bind the RUN1/PLAT domain, with a slightly stronger interaction with the 

isolated DENN domain (Fig. 3.2c). Moreover, the DENN domain interaction was impeded 

with charge masking from higher salt concentrations (Fig. S3.1c). We then performed 

mutagenesis experiments targeting residues involved in the intramolecular interaction. 

Mutating E379 [of the DENN/RUN1 interface] resulted in a weak but present interaction 

between full-length DENND5A and Crb complex proteins, implying that DENND5A 

molecules were slightly skewed toward an open conformation (Fig. 3.2d). R710H, [which 

lies in the region linking the DENN domain and the RUN1 domain], is predicted to result in 
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the loss of a salt bridge to D598 of the DENN domain, potentially destabilizing the closed 

structure (Fig. S3.1d). Like what was observed upon disrupting the DENN/RUN1 

interaction, introducing the patient variant R710H also resulted in increased binding to 

MUPP1-FLAG and PALS1-FLAG (Fig. 3.2d). We conclude that DENND5A binds MUPP1 

and PALS1 in a conformation-dependent manner, and that R710H increases the likelihood 

that DENND5A will adopt an open configuration. (Fig. 3.2d). 12 
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4.3 Discussion 

 We provide evidence for an intramolecular interaction between the DENN and RUN1 

domains of DENND5A, and that this interaction must be disrupted for apical polarity proteins to 

bind DENND5A. Additionally, structural modeling shows that the steady-state conformation of 

DENND5A prohibits a Rab substrate from associating with the conserved enzymatic pocket of the 

DENN domain. This is consistent with experiments showing that another DENN domain protein, 

DENND3, makes intramolecular interactions to modulate its tertiary structure and regulate its GEF 

activity toward Rab1216. Similarly, we propose that conformational changes in DENND5A 

regulate both MUPP1/PALS1 binding as well as its GEF activity toward a Rab substrate. 

Because the DENND5A GST fusion peptide flanking R710H bound FLAG-MUPP1∆L27, 

we provide preliminary evidence that DENND5A binds one of the 13 PDZ domains of MUPP1. 

The peptide binding to PALS1-FLAG when it is expressed alone may indicate that complexes 

comprising PALS1-FLAG and endogenous MUPP1 were formed in vitro, and that PALS1-FLAG 

was detected via the GST-tagged peptide binding endogenous MUPP1. However, these data are 

uncertain and unclear. Repeating the pulldown in lysate expressing various MUPP1 and PALS1 

fragments can definitively clarify which protein DENND5A binds directly. 

The [low affinity] interaction between open full-length DENND5A and the apical polarity 

proteins may indicate that this occurs transiently in cells or only under specific 

circumstances. Indeed, the conformation-dependent nature of the interaction reflects the 

importance of these proteins remaining separate from each other under steady state 

conditions. … The biologically relevant mechanism for opening the DENND5A structure 

remains elusive, but possible candidates include posttranslational modifications or other 

currently unidentified protein-protein interactions. 12 
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4.4 Chapter 3 Figures 

4.4.1 Main Figures 

Figure 3.1 

 

 

 

  

Figure 3.1: DENND5A interacts with polarity proteins MUPP1 and PALS1. a, A recombinant 

GST-tagged peptide containing amino acids 700-720 of human DENND5A sequence was generated for 

use in pulldown experiments. The bolded residue corresponds to Arg710 that is affected in the cohort 

(R710H). b, Table indicating the number of peptides corresponding to MUPP1 and PALS1 found 

bound to each GST fusion peptide used in the pulldown/mass spectrometry experiment. c, 

Overexpressed human MUPP1- and PALS1-FLAG bind to GST-tagged DENND5A peptides. d, 

Pulldowns in lysate expressing only PALS1-FLAG results in reduced Pals1 binding to GST-tagged 

peptides upon introduction of the R710H mutation. e, Pulldowns in lysate expressing only full-length 

FLAG-MUPP1 or FLAG-MUPP1 lacking its L27 domain results in similar levels of binding in both 

WT and R710H GST-tagged peptides. 
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Figure 3.2  

Figure 3.2: Structural basis for the interaction between DENND5A and MUPP1/PALS1. a, Residues 

700-720 are shown in red in a space-fill model (left) and magnified view (right) of the predicted DENND5A 

protein structure from AlphaFold. Dotted lines indicate hydrogen bonds. b, The interface between the 

DENN and RUN1 domains of DENND5A comprise many charged residues. c, GST pulldown experiments 

show that FLAG-DENN and GST-RUN1/PLAT physically interact. d, Co-immunoprecipitations between 

GFP-DENND5A and MUPP1- and PALS1-FLAG show that DENND5A only binds the polarity proteins 

when the intramolecular DENN-RUN1 interaction is disrupted. 
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4.4.2 Supplementary Figures 

Figure S3.1 

  

  

Figure S3.1: Analysis of the predicted DENND5A structure indicates intramolecular interactions may 

regulate other protein-protein interactions. a, Structural alignment between the predicted DENND5A 

structure and PDB:3TW8 (gray, yellow). b, Structural alignment between the predicted DENND5A structure and 

PDB:3CWZ (gray, yellow). c, Pulldown experiment showing binding capacity between GST-RUN1/PLAT and 

FLAG-DENN domains of DENND5A under varying NaCl concentrations. d, The R710H variant found in the 

cohort and within the region that interacts with PALS1/MUPP1 results in the removal of two hydrogen bonds 

with D598 of the DENN domain. Dotted lines indicate hydrogen bonds. 
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4.7 Materials and Methods 

Plasmid cloning 

DENND5A cDNA (Origene, SC121400) was cloned into the pCMV-tag2B vector to 

generate FLAG-DENND5A. GFP-DENND5A was made via subcloning DENND5A into the 

pEGFP-C1 vector. Patient variants and targeted residues for biochemical studies were 

introduced using the QuikChange Lightning site-directed mutagenesis kit (Agilent) 

following the manufacturer’s protocol. FLAG-DENND5A DENN domain was made by 

subcloning aa1-680 of DENND5A into the pCMV-tag2B vector. GST-aa700-720 was made 

via oligo annealing followed by ligation into a pGEX-4T1 vector with a modified multiple 

cloning site (MCS). GST-RUN1/PLAT was created by subcloning DENND5A aa707-1090 

into the pGEX-6P1 vector. MUPP1 (MPDZ) was obtained from the Harvard Medical School 

plasmid collection (HsCD00352820). Untagged PALS1 (MPP5) in pDONR223 was 

obtained from Addgene (#23447) and subcloned into a pCMV3-C-FLAG vector to generate 

PALS1-FLAG. The vector backbone from PALS1-FLAG was then isolated and modified to 

include a custom MCS via oligo annealing and ligation in order to create restriction sites 

suitable for subcloning MUPP1 into the vector. MUPP1 was subcloned into this modified 

vector to create MUPP1-FLAG. 12 
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FLAG-MUPP1 and FLAG-MUPP1∆L27 were created by subcloning into a pCMV-tag2B 

vector. All constructs were confirmed by Sanger sequencing.  

Pulldown experiments 

500 mL flasks of bacteria were induced overnight at RT to express GST-tagged proteins 

using 500 µM IPTG when the optical density of the cultures at 600 nm reached 0.6. Bacteria 

were pelleted and resuspended in PBS + protease inhibitors pH 7.4. Resuspended bacterial 

cells were then sonicated 3 times for 5 seconds at 70% amplitude, followed by incubation 

with 1% Triton X-100 for 15 minutes. Bacterial cell lysate was then spun for 5 minutes at 

4°C at 11,952 x g. The supernatant was incubated with glutathione Sepharose beads pre-

washed 3 times in PBS for one hour at 4°C, and beads were then briefly spun down and 

washed 3 times in PBS + protease inhibitors to purify GST fusion proteins. The concentration 

of fusion proteins was determined by running on an SDS-PAGE gel accompanied by a BSA 

standard curve followed by Coomassie Brilliant Blue staining. Cell lysates were then 

harvested for incubation with GST fusion proteins.12 

For pulldown experiments with overexpressed proteins, HEK293-T cells were transfected 

using the calcium phosphate method with the appropriate plasmids and harvested the next 

day in lysis buffer. Cells were then sonicated once for 10 seconds at 20% amplitude, 

incubated in 1% Triton X-100 for 15 minutes at 4°C, and spun at 21 x g and 4°C for 15 

minutes in a tabletop centrifuge. The concentration of HEK293T supernatants were analyzed 

via a Bradford assay, and 1 mg/ml was incubated with 20 µg (GST-aa700-720) or 100 µg 

(GST-RUN1/PLAT) of fusion proteins for one hour at 4°C. Following incubation, beads 

were washed 3 times in buffer containing 1% Triton, eluted in 1X LSB, loaded onto an SDS-
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PAGE gel, and analyzed via Western blot using primary antibodies against FLAG (clone M2, 

Sigma-Aldrich, 1:10,000).12 

Mass spectrometry 

For the initial protein-protein interaction screen followed by mass spectrometry, 4 E18 rat 

brains were homogenized on ice in 1 ml lysis buffer per brain (20 mM HEPES pH 7.4, 150 

mM NaCl, 0.83 mM benzamidine, 0.5 μg/ml aprotinin, 0.5 μg/ml leupeptin, and 0.23 mM 

phenylmethylsulfonyl fluoride) with 10 strokes using a Caframo homogenizer at 1200 rpm. 

Tissue homogenate was then sonicated once for 10 seconds at 20% amplitude, incubated in 

1% Triton X-100 for 15 minutes at 4°C, and spun at 239,000 x g and 4°C for 15 minutes. 

Supernatant concentration was determined via a Bradford assay and 1 mg/ml was 

incubated with 50 µg GST-fusion protein overnight at 4°C. Following incubation, beads 

were washed 3 times in lysis buffer containing 1% Triton, then eluted in 1X Lammeli 

sample buffer (LSB). 12 

For each sample, proteins were loaded onto a single stacking gel band to remove lipids, 

detergents, and salts. The gel band was reduced with DTT, alkylated with iodoacetic acid, 

and digested with Trypsin. Extracted peptides were re-solubilized in 0.1% aqueous formic 

acid and loaded onto a Thermo Acclaim Pepmap (Thermo, 75 µM ID X 2cm C18 3 µM 

beads) precolumn and then onto an Acclaim Pepmap Easyspray (Thermo, 75 µM X 15cm 

with 2 µM C18 beads) analytical column separation using a Dionex Ultimate 3000  uHPLC 

at 250 nl/min with a gradient of 2-35% organic (0.1% formic acid in acetonitrile) over 2 

hours. Peptides were analyzed using a Thermo Orbitrap Fusion mass spectrometer 

operating at 120,000 resolution ( FWHM in MS1) with HCD sequencing (15,000 

resolution) at top speed for all peptides with a charge of 2+ or greater. The raw data were 
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converted into *.mgf format (Mascot generic format) for searching using the Mascot 2.6.2 

search engine (Matrix Science) against all rat protein sequences (Uniprot 2017). Search 

parameters for peptides > 5 residues were +/- 5 ppm on the parent ion and 0.1 amu on 

fragment ions. A fixed modification for carboxymethyl-Cysteine was used along with 

variable modifications of Oxidation (methionine) and deamination (asparagine/glutamine). 

At 99.0% protein and 95% peptide confidence, 1077 proteins (34,443 spectra)  were 

identified using 1 peptide (0.0% peptide FDR and 0.40% protein FDR). The database 

search results were loaded onto Scaffold Q+ Scaffold_4.8.6 (Proteome Sciences) for 

statistical treatment and data visualization. 

Co-immunoprecipitation experiments 

For co-immunoprecipitation experiments, HEK293-T cells were transfected using the 

calcium phosphate method, harvested in lysis buffer, and sonicated once for 10 seconds at 

20% amplitude, followed by incubation in 0.5% Triton X-100 for 15 minutes at 4°C. Cell 

lysate was then spun at 21 x g and 4°C for 15 minutes in a tabletop centrifuge, and 1 mg/ml 

of the resulting supernatant was incubated for one hour at 4°C with 25 µl ChromoTek GFP-

Trap Agarose magnetic beads pre-equilibrated 3 times in lysis buffer without Triton X-100. 

Beads were then washed 3 times in lysis buffer containing 0.05% Triton and then eluted in 

1X LSB for SDS-PAGE analysis and analyzed via Western blot using primary antibodies 

against FLAG (clone M2, Sigma-Aldrich, 1:10,000) and GFP (Invitrogen Cat# A-6455, 

1:20,000). 12 
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5.1 Introduction 

The balance of symmetric versus asymmetric cell division in the ventricular zone (VZ) and 

subventricular zone (SVZ) throughout cortical development is critical to obtain the ideal number, 

diversity, and positioning of neurons in the mature brain. Excessive symmetric division leads to 

an increased number of progenitors and over-proliferation and can result in a disorganized cortex, 

macrocephaly, and early death1,2. Excessive asymmetric division will prematurely deplete 

progenitor pools and lead to microcephaly, which can cause seizures and cell death3. Two major 

mechanisms that drive primary microcephaly concern centrosome dynamics and cell division, 

including mitotic spindle orientation and cell cycle exit5. Given the high prevalence of 

microcephaly in our human cohort, we wanted to test whether DENND5A is involved in 

differentiation, which reflects cell cycle exit, and/or the ability for the cells to divide symmetrically 

and increase the number of progenitors. 

Loss of DENND5A has previously been shown to result in cell division defects. A study 

examining DENND5A KD in HeLa cells observed an increase in cells arrested in metaphase 

leading to apoptosis or, if the cells passed the MAD2 spindle checkpoint, the generation of 

binucleated cells6. Another study examining MDCKII cystogenesis, the process of Madin-Darby 

canine kidney II epithelial cells forming a three-dimensional structure surrounding a central lumen, 

observed spindle formation abnormalities leading to disrupted lumen formation upon DENND5A 

KD7. Although both studies suggest a role for DENND5A in mitotic spindle formation or 

orientation, its implication on neural development is unknown. Li et al. 7 argue that DENND5A is 

a cancer-driving gene, and in some tissues this may be true as DENND5A mutations have been 

identified in cases of melanoma8. However, an implication of cancer is that cells over-proliferate 
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and excessively self-renew, but the microcephaly observed in our patient cohort and experience 

working with DENND5A KO cell lines disagree with this assumption. 

 A traditional way of assessing a cell’s ability to self-renew is to perform a neurosphere 

formation assay; however, the formation of neurospheres depends not only on intact self-renewal 

mechanisms but also the integrity of cell-cell adhesions. Given that DENND5A interacts with AJ 

proteins MUPP1 and PALS1, care should be taken when interpreting results. Additionally, the 

underlying clonality assumption of the assay, that individual spheres are genetically identical, has 

been disproven9. Finally, while self-renewal is an important stem cell-defining feature, it does not 

necessarily equate to symmetric cell division, because self-renewal can occur during asymmetric 

divisions as well10. 

A more reliable method to assess a cell’s ability to divide symmetrically in vitro is by 

measuring the axis of cell division in a neural rosette formation assay. Stem cells that are 

dissociated into a single-cell suspension and plated on a basement membrane-like surface in neural 

induction medium proliferate and spontaneously arrange themselves into polarized structures 

centered around a hollow lumen. Neural rosettes resemble neuroepithelial cells in the neural tube 

based on gene expression profiles, multilineage potential, morphology, cell polarization, and radial 

arrangement11,12. Symmetric divisions in this assay are identified by the parallel positioning of 

daughter cells (and therefore the mitotic spindle) relative to the lumen and equal inheritance of 

apical determinants. Conversely, a perpendicular orientation results in an asymmetric division in 

which only one daughter cell is in contact with the lumen and inherits apical determinants, whereas 

the other becomes detached from the apical surface and divides away from the center of the rosette 

(See Fig. S4.1 for an illustration of these differences). 
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By performing a neural rosette formation assay and examining differentiation phenotypes 

in vitro, extrinsic factors such as CSF composition in animal models that may influence cell fate 

and cell division are eliminated, since the culture media remains constant throughout each 

experiment and in each condition. Here, by controlling extrinsic factors, we test the hypotheses 

that intrinsic factors, namely the presence or absence of DENND5A, influence cell differentiation 

and the mode of cell division during development. We then test whether these phenotypes observed 

in vitro can also be observed ex vivo and examine the proportions of progenitors and post-mitotic 

neurons in the SVZ of WT and DENND5A KI mice. 
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5.2 Results 

5.2.1 Loss of DENND5A results in premature cell cycle exit and neuronal differentiation 

We observed that [AIW001-02] DENND5A KO NPCs grow slower than WT (Fig. 4.1a). 

Interestingly, a significant difference was observed even after 24 hours (MWT = 710, MKO = 

621, SDWT = 108.8, SDKO = 72.4, two-tailed t(18) = 2.168, p = .044), likely due to an 

increased number of apoptotic cells observed after plating KO cells. WT NPCs then rapidly 

increased in number whereas the number of KO NPCs remained relatively stable, producing 

a significant difference after 48 (MWT = 1008, MKO = 614, SDWT = 135.6, SDKO = 65.30, two-

tailed Welch’s t(12.96) = 8.30, p < .0001) and 72 hours (MWT = 1685, MKO = 683, SDWT = 

351.6, SDKO = 35.09, two-tailed Mann-Whitney U, Z = -3.78, p < .0001). 13 

Remarkably, after passaging newly-formed NPCs into neural progenitor maintenance 

medium, KO NPCs develop β-III tubulin-positive processes with neuronal morphology after 

one day, something rarely observed in WT NPCs (MWT = 10.67%, MKO = 47.29%, SDWT = 

13.5, SDKO = 21.1, two-tailed Mann-Whitney U, Z = -3.991, p < .0001; Fig. 4.1b-c). To 

determine if this premature differentiation phenotype translates to complex organisms 

lacking DENND5A, we examined the adult mouse subventricular zone, a region that 

normally retains GFAP-positive radial glia-like neural stem cells14 that are the primary 

source of newborn neurons in the adult SVZ15. KI mice have a significantly higher 

percentage of post-mitotic neurons expressing NeuN compared to WT (MWT = 39.6%, MKI = 

58.8%, SDWT = 6.7, SDKI = 6.6, two-tailed t(10) = -4.981, p = 0.001; Fig. 4.1d-g). While 

there is also a reduction in the mean proportion of GFAP-positive cells in KI SVZs, it did 

not reach significance (MWT = 43.3%, MKI = 31.9%, SDWT = 12.3, SDKI = 14.1, two-tailed 

t(10) = 1.486, p = 0.168). 13 
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5.2.2 DENND5A is required for neurosphere formation 

To assess the ability for NPCs to self-renew, we initially performed a neurosphere 

formation assay by plating between 5-100 NPCs per well in uncoated 96 well tissue culture dishes. 

WT NPCs consistently formed neurospheres of at least 50 µm after 2 weeks in culture, but no 

spheres were observed in DENND5A KO cultures regardless of the number of cells seeded (Fig. 

4.2), pointing toward a self-renewal deficiency in DENND5A KO cells. 

5.2.3 Loss of DENND5A misorients mitotic spindles 

 To completely remove the confounding variable of cell-cell adhesion deficits and assess 

with more confidence whether symmetric cell division is affected in DENND5A KO cells, we 

plated iPSCs on an adherent basement membrane-like substrate and measured the orientation of 

cell division in relation to the lumen in a polarized in vitro model of early neural development. 

WT and DENND5A KO iPSCs were plated at low density in neural induction medium and 

neural rosettes were allowed to form for up to 7 days. After 1 day in vitro (DIV), both WT 

and KO rosettes had maximal OCT4 expression, a marker of pluripotency, which rapidly 

declined by DIV 3 and was completely abolished by DIV 5 (Figure S4.2a). Expression of 

the NPC marker SOX2 was observed after 1 DIV, reached maximal levels at DIV 3, then 

slightly reduced and stabilized at DIV 5-7 (Figure S4.2b). This characterization is in line 

with rosettes generated from both iPSCs and embryonic stem cells using various neural 

induction protocols16-18. In general, there were many more WT rosettes formed per coverslip 

compared to KO. As in the NPC proliferation experiment, this may be due to the large 

amount of KO cell death observed at DIV 1, reducing the number of stem cells initially 

available for rosette formation. WT rosettes were considerably denser than KOs, but rosette 

diameter, lumen area, and lumen perimeter did not differ significantly (Figure S4.2c-e).  
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PALS1 localized apically in both WT and KO rosettes (Fig. 4.3a), suggesting DENND5A 

is not involved in trafficking MUPP1/PALS1 to the apical membrane. However, the axis of 

cell division in relation to the lumen differed (Fig. 4.3b). Because F-actin accumulates 

apically during rosette formation19 and outlines the cell borders of dividing cells, we used F-

actin as a convenient marker of the apical surface. We thus measured the mitotic spindle 

angle, defined as the angle between the cleavage plane and the nearest apical membrane 

(Fig. S4.3), considering only cells with normally condensed chromatin and both centrosomes 

marked by γ-tubulin visible in the same plane. Although this exclusion criteria omitted many 

cells in WT rosettes dividing symmetrically along the z-plane or above the lumen (Fig. 

S4.4a) as well as numerous observations of dividing cells with abnormally condensed 

chromatin in KO rosettes (Fig. S4.4b), the spindle angle among cells dividing within WT 

(M = 57.1°, Mdn = 65.4°, SD = 25.9) and KO (M = 26.0°, Mdn = 20.1°, SD = 19.0) rosettes 

differed significantly according to a two-tailed Mann-Whitney U test (Z = -7.122, p < .0001; 

Fig. 4.3c). An overwhelming majority of KO cells divided with spindle angles <45° (Fig. 

4.3d), indicating that DENND5A KO results in increased levels of oblique asymmetric cell 

divisions and the ability for apical progenitors to self-renew is severely compromised. 13 
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5.3 Discussion 

A limitation to our neurosphere formation experiment is that multiple cells per well were 

plated. This raises the risk that the observed spheres were not clonally derived from a single cell, 

but rather from multiple cells that were either inadvertently plated together as clusters, or that 

suspended cells in the medium grouped together prior to quantification. Indeed, unless a single 

cell per well is plated, the validity of the neurosphere assay to assess stem and progenitor cell self-

renewal on the basis of neurosphere size and number has been criticized, as these structures are 

highly motile even in the absence of agitation and are prone to fuse with other cells and spheres, 

thereby negating the assumption that each sphere is clonal and confounding results9. However, the 

complete absence of neurospheres from DENND5A KO NPCs strongly indicate a self-renewal 

deficiency in these cells. Moreover, the limitations of the neurosphere assay were overcome with 

our neural rosette formation assay, where we observed a significant reduction in symmetric 

division based on mitotic spindle orientation in DENND5A KO rosettes. 

“Our results suggest that DENND5A expression promotes stemness and its loss permits 

cell cycle exit and premature differentiation.” 13 Our in vitro experiments excluded the potential 

impact of extrinsic factors on cell division and differentiation dynamics and established that 

DENND5A is necessary and sufficient for progenitors to both retain their neural stem cell identity 

and to divide symmetrically. The ex vivo examination of the adult mouse SVZ complemented our 

in vitro results, confirming that premature neuronal differentiation also occurs in a complex 

organism with homozygous DENND5A variants identified in the human cohort. Future studies 

should explore embryonic cortical development in WT and KI mice. Measuring the mitotic spindle 

angle at the embryonic VZ and comparing progenitor and neuron populations at this stage of 
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development will provide a more definitive mechanism underlying microcephaly due to biallelic 

pathogenic DENND5A variants. 
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5.4 Chapter 4 Figures 

5.4.1 Main Figures 

Figure 4.1 

 

  

Figure 4.1: Loss of 

DENND5A results in 

premature neuronal 

differentiation. a, Graph 

showing the average 

number of NPCs counted 

per well of a 96-well plate 

24, 48, and 72 hours after 

plating equal numbers of 

cells. Data are derived 

from 10 technical 

replicates from n = 2 

independent experiments. 

Error bars = SEM. b, 

Immunostaining of β-III 

tubulin (green) and DAPI 

(blue) in NPCs one day 

after plating. Scale bar = 

50 µm. c, Quantification 

of the percent of β-III 

tubulin-positive cells per 

field. A total of n = 2267 

cells were analyzed from 

three independent 

experiments. Data are 

means ± SEM. d, 

Immunostaining of GFAP 

(red), NeuN (green), and 

DAPI (blue) in the SVZ of 

adult mice. LV = lateral 

ventricle. Scale bar = 100 

µm. e, Quantification of 

the percentage of cells per 

mm2 labeled by NeuN or 

GFAP from a total of n = 

4 mice. Data are means ± 

SEM. 
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Figure 4.2 

  

Figure 4.2: DENND5A KO NPCs are unable to form neurospheres. a, Representative images of neurospheres formed 

when 100, 75, 50, 25, or 5 cells were seeded per well of a 96 well plate. Scale bar = 50 µm. b, Quantification of the 

number of neurospheres ≥ 50 µm per well after 2 weeks in culture. 
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Figure 4.3 

 

  

Figure 4.3: A neural rosette formation 

assay reveals abnormal mitotic spindle 

orientations upon loss of DENND5A. a, 

PALS1 staining (green) shows an apical 

localization in both WT and KO neural 

rosettes. Scale bars = 50 µm. b, Sample 

images showing the orientation of apical 

progenitor cell division in WT and 

DENND5A KO rosettes. Green = Ki67, 

red = γ-tubulin, cyan = F-actin, blue = 

DAPI. Scale bars = 20 µm. Dotted lines 

outline the lumen. c, Quantification of 

mitotic spindle angles measured from n = 

85 WT and n = 81 KO dividing cells from 

2 independent experiments. d, Pie charts 

showing the proportion of dividing cells 

with mitotic spindle angles falling within 

various ranges. 
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5.4.2 Supplementary Figures 

Figure S4.1 

  

Figure S4.1: Illustration depicting the differences between symmetric and asymmetric cell divisions in the 

context of neural rosettes. 
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Figure S4.2 

  

Figure S4.2: WT and DENND5A KO neural rosettes differ in density and cell division properties, but not in marker 

expression or size. Expression of a, OCT4 and b, SOX2 during neural rosette development. Blue = DAPI, green = 

OCT4/SOX2. Scale bars = 20 µm. c, Average diameter of individual rosettes. n = 159 rosettes were analyzed from 2 

independent experiments. Data are mean ± SEM and analyzed via student’s t-test. d, Average lumen area of rosettes. n = 

294 rosettes were analyzed from 2 independent experiments. Data are mean ± SEM and analyzed via Mann-Whitney U 

test. e, Average lumen perimeter of rosettes. n = 294 rosettes were analyzed from 2 independent experiments. Data are 

mean ± SEM and analyzed via Mann-Whitney U test. 
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Figure S4.3

  

Figure S4.3: Illustration demonstrating spindle angle measurement method. Mitotic spindle angles were 

quantified based on Chilov et al.
 4

 and were defined as the angle between the plane of cleavage between two 

daughter cells and the nearest apical surface. 



117 

 

Figure S4.4  

Figure S4.4: 3D images generated from z-stacks of confocal images shows that 

WT cells excluded from analysis still divide symmetrically, and KO cells often 

exhibit abnormal spindles and abnormally condensed chromatin. a, 3D-rendered 

images of apical progenitors of WT neural rosettes. Blue = DAPI, green = Ki67, red = 

-tubulin, cyan = F-actin. Arrowheads indicate centrosomes, arrows indicate orientation 

of cell divisions, dotted lines indicate the lumen. b, 3D-rendered images of apical 

progenitors of KO neural rosettes. Blue = DAPI, green = Ki67, red = -tubulin, cyan = 

F-actin. Arrowheads indicate centrosomes, arrows indicate orientation of cell 

divisions, asterisks indicate abnormally condensed chromatin, dotted lines indicate the 

lumen. 
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5.7 Materials and Methods 

Establishment of cell lines 

The control induced pluripotent stem cell (iPSC) line AIW001-02 was derived from 

peripheral blood mononuclear cells of a healthy female donor (Caucasian, 48 years old). The 

AIW001-02 cell line was generated by using the CytoTune™-iPS 2.0 Sendai 

Reprogramming Kit (iPSQuebec Platform, Laval University). For knockout expression of 

human DENND5A, guide RNAs (gRNAs) were designed using an online tool 

(https://benchling.com). Both gRNA target sites are on DENND5A exon 4. Synthesized 

gRNAs were ordered from SYNTHEGO and transfection was performed following the 

manufacturer’s protocol. Single cell colonies were picked and amplified. Genomic DNA 

from the colonies was extracted with QuickExtract (Lucigen) and PCR was performed using 

Q5 High-Fidelity DNA Polymerase according to the manufacturer’s protocol (F: 

GAGGATCGCCAGTGAGTGTT; R: CCCCGAGCAGTTCAAAAACC). A 238 base pair 

deletion was confirmed by Sanger sequencing. … Generated iPSCs were functionally and 

genomically validated according to Hauser and Erzler20. 13 

Cell culture 
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iPSCs were cultured on hESC-qualified Corning Matrigel-coated tissue culture dishes in 

either TeSR-E8 medium (all patient-derived iPSC lines; STEMCELL Technologies) or 

mTeSR1 medium (AIW001-02 WT and DENND5A KO; STEMCELL Technologies) with 

daily medium changes and mechanical removal of differentiated cells. Cells were passaged 

using the ReLeSR Passaging Reagent (STEMCELL Technologies) once cultures reached 

approximately 70% confluency. 13 

iPSCs were differentiated to neural progenitor cells (NPCs) using the STEMdiff SMADi 

Neural Induction Kit (STEMCELL Technologies) with daily medium changes. Induced 

cultures were passaged using Accumax (Millipore Sigma) once cells reached 90-95% 

confluency, approximately once per week. After a two week induction period, NPCs were 

maintained in STEMdiff Neural Progenitor Medium (STEMCELL Technologies) on poly L 

ornithine (PLO)- and laminin-coated plates and passaged using Accumax once cultures 

reached 80-95% confluency, approximately once per week. Experiments examining β-III 

tubulin expression examined established NPC lines after one passage post-neural induction; 

all other experiments were performed using cells at passages 2-4. 13 

Neurosphere formation assay 

5, 25, 50, 75, or 100 NPCs per well of each condition were seeded into an uncoated 96-

well dish in STEMDiff Neural Progenitor Medium (STEMCell) with six replicates per experiment. 

50 µl media was added every 3-4 days, and 4X images were taken of the top, bottom, left, right, 

and middle of each well after 2 weeks in culture using the EVOS FLc microscope. Neurospheres 

at least 50 µm in diameter were identified using ImageJ and counted. Data are derived from two 

independent experiments. 
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Neural rosette formation assay 

iPSCs were gently dissociated into a single cell suspension and plated at low density 

(20,000 cells per well of a 24 well plate) onto PLO/Laminin-coated coverslips in neural 

induction media with SMAD inhibitor (STEMCELL Technologies #08581) containing 10 

µM Y-27632 on the day of plating. Medium was changed daily and cells were fixed after 1, 

3, 5, and 7 days in culture. Rosettes were stained and z-stack images in 0.5 µm increments 

were taken using the Leica SP8 confocal microscope. For lumen size analysis, z-plane 

images with the largest visible lumens were used for quantification followed by two-tailed 

student’s t-tests. For rosette diameter analysis, z-plane images with the widest phalloidin 

staining were used for quantification followed by a two-tailed student’s t-test. To analyze 

dividing cells within the rosettes, cells in metaphase, anaphase, and telophase were used for 

quantification. Mitotic spindle angles were measured as in Chilov et al., 20114 using 

ImageJ.13 

Immunocytochemistry 

Samples were fixed in 4% paraformaldehyde for 20 minutes at room temperature. Cells 

were permeabilized for 5 minutes in 0.1% Triton-X 100 and then blocked in 5% BSA and 

0.01% Triton-X 100 in PBS for 30 minutes at room temperature, followed by overnight 

incubation at 4°C with the following antibodies: OCT4 (ab19857, 1 µg/ml), SOX1 

(Invitrogen MA5-32447, 1:200), SOX2 (Abcam ab92494, 1:1000), Nestin (Invitrogen, 

MA1-110), β-III tubulin (Abcam ab52623, 0.1 µg/ml), Ki67 (Abcam ab15580, 0.5 µg/ml), 

γ-tubulin (Sigma-Aldrich T6557, 1:500), and Pals1 (Santa Cruz Biotechnology sc-365411, 

1:350). After primary antibody incubation, samples were washed twice with PBS then 

incubated with Alexa-conjugated secondary antibodies at 1:500 dilution and phalloidin at 
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1:1000 dilution for 1 hour at room temperature. Cells were then washed twice in PBS, 

incubated with DAPI at 1:5000 dilution for 10 minutes, washed twice in PBS again, and 

mounted onto glass slides. 13 

Animal care and selection 

All mouse care and experiments in the study were approved by the Montreal Neurological 

Institute Animal Care Committee in accordance with guidelines set by the Canadian Council 

on Animal Care under ethical protocol number 5734. The experimental unit for this study is 

a single animal. Apart from selecting animals based on DENND5A genotype, no exclusion 

criteria were set for the experiments and both male and female animals were used. 13 

Establishment of transgenic animal models 

KI mice were generated by the McGill Integrated Core for Animal Modeling. Two silent 

mutations were introduced in L168 and L169 (CTTGCT –> TTAGCA) as well as a deletion 

of 2 bp in G172 to introduce a frameshift and premature stop codon in exon 4 of the 

DENND5A mouse gene. Briefly, custom sgRNAs (Synthego), Cas9 protein (IDT, 

Cat#1081058) and ssODN (ultramer, IDT) were microinjected into the pronucleus of 

C57BL/6N mouse zygotes with concentrations of 50:50:30 ng/µl respectively. Embryos 

were subsequently implanted in CD-1 pseudopregnant surrogate mothers according to 

standard procedures approved by the McGill University Animal Care Committee. Founder 

pups (F0) were genotyped for evidence of a deletion of 2 bp in G172 and mated to wild-type 

C57BL/6N (Charles River) mice for three generations. The colony was maintained by sibling 

mating and by crosses to C57BL/6N mice every third generation. All genomic sequencing 

was performed using the Big Dye Terminator Ready Reaction Mix (ABI, Carlsbad, CA, 
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USA) at the McGill and Genome Quebec Innovation Center (Primers: 

ACAAGGAATGCTCTCACTGC, CACACTCCGACATGCCTTCAT [417 bp]). Obtained 

sequences were analyzed using an online tool (https://benchling.com). 13 

Immunohistochemistry 

Mouse brain sections were baked overnight at 60°C in a conventional oven. Samples were 

then deparaffinized and rehydrated in a series of xylene and ethanol washes, followed by 

antigen retrieval using citrate buffer (pH 6.0) for 10 minutes at 120°C in a decloaking 

chamber (Biocare Medical). Slides were then rinsed IHC buffer (PBS + 0.05% Tween-20 + 

0.2% Triton X-100) and blocked for 1 hour with Protein Block (Spring Bioscience), 

incubated with primary antibodies overnight at 4°C, and washed with IHC buffer followed 

by incubation with respective secondary antibodies (Invitrogen) for 1 hour at room 

temperature. Coverslip mounting was done using ProLong Diamond Gold Antifade 

Mountant with DAPI (Invitrogen) to stain nuclei. mages were acquired using Leica SP8 laser 

scanning confocal microscope. Quantification of the percentage of cells per mm2 labeled by 

NeuN or GFAP was based on three 10x magnification images per animal from a total of n = 

4 mice. Cells within 100 µm of the ependymal layer (excluding the ependymal cells) in 

which DAPI signal was also evident were considered. All measurements were done using 

ImageJ. 13 

Statistical Analysis 

Continuous data were analyzed for normality and homogeneity of variance using Shapiro-

Wilk tests (n < 50) or Kolmogorov-Smirnov (n ≥ 50) tests and Levene tests. Student’s t-tests 

were conducted when all assumptions were met. Welch’s t-tests were conducted when 
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homogeneity of variance assumptions were not met. The nonparametric equivalent (Mann-

Whitney U test) was conducted when both normality of data and homogeneity of variance 

assumptions were not met. A p value of < 0.05 was considered statistically significant. Data 

were analyzed using SPSS. … All statistical analyses included multiple replicates from 

several independent experiments. 13 

  



124 

 

5.8 References 

1. Groszer M, Erickson R, Scripture-Adams DD, Lesche R, Trumpp A, et al. Negative 

regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo. 

Science. Dec 7 2001;294(5549):2186-9. doi:10.1126/science.1065518 

 

2. Lehtinen MK, Zappaterra MW, Chen X, Yang YJ, Hill AD, et al. The cerebrospinal fluid 

provides a proliferative niche for neural progenitor cells. Neuron. Mar 10 2011;69(5):893-905. 

doi:10.1016/j.neuron.2011.01.023 

 

3. Gruber R, Zhou Z, Sukchev M, Joerss T, Frappart PO, et al. MCPH1 regulates the 

neuroprogenitor division mode by coupling the centrosomal cycle with mitotic entry through the 

Chk1-Cdc25 pathway. Nat Cell Biol. Sep 25 2011;13(11):1325-34. doi:10.1038/ncb2342 

 

4. Chilov D, Sinjushina N, Rita H, Taketo MM, Makela TP, et al. Phosphorylated beta-

catenin localizes to centrosomes of neuronal progenitors and is required for cell polarity and 

neurogenesis in developing midbrain. Dev Biol. Sep 1 2011;357(1):259-68. 

doi:10.1016/j.ydbio.2011.06.029 

 

5. Jean F, Stuart A, Tarailo-Graovac M. Dissecting the Genetic and Etiological Causes of 

Primary Microcephaly. Front Neurol. 2020;11:570830. doi:10.3389/fneur.2020.570830 

 

6. Miserey-Lenkei S, Waharte F, Boulet A, Cuif MH, Tenza D, et al. Rab6-interacting 

protein 1 links Rab6 and Rab11 function. Traffic. Oct 2007;8(10):1385-403. doi:10.1111/j.1600-

0854.2007.00612.x 

 

7. Li Y, Xu J, Xiong H, Ma Z, Wang Z, et al. Cancer driver candidate genes AVL9, 

DENND5A and NUPL1 contribute to MDCK cystogenesis. Oncoscience. 2014;1(12):854-865. 

doi:10.18632/oncoscience.107 

 

8. Yang M, Johnsson P, Brautigam L, Yang XR, Thrane K, et al. Novel loss-of-function 

variant in DENND5A impedes melanosomal cargo transport and predisposes to familial 

cutaneous melanoma. Genet Med. Jan 2022;24(1):157-169. doi:10.1016/j.gim.2021.09.003 

 

9. Singec I, Knoth R, Meyer RP, Maciaczyk J, Volk B, et al. Defining the actual sensitivity 

and specificity of the neurosphere assay in stem cell biology. Nat Methods. Oct 2006;3(10):801-

6. doi:10.1038/nmeth926 

 

10. Peyre E, Morin X. An oblique view on the role of spindle orientation in vertebrate 

neurogenesis. Dev Growth Differ. Apr 2012;54(3):287-305. doi:10.1111/j.1440-

169X.2012.01350.x 

 

11. Elkabetz Y, Panagiotakos G, Al Shamy G, Socci ND, Tabar V, et al. Human ES cell-

derived neural rosettes reveal a functionally distinct early neural stem cell stage. Genes Dev. Jan 

15 2008;22(2):152-65. doi:10.1101/gad.1616208 

 



125 

 

12. Wilson PG, Stice SS. Development and differentiation of neural rosettes derived from 

human embryonic stem cells. Stem Cell Rev. 2006;2(1):67-77. doi:10.1007/s12015-006-0011-1 

 

13. Banks E, Francis V, Lin S-J, Kharfallah F, Fonov V, et al. Loss of symmetric cell division 

of apical neural progenitors drives DENND5A-related developmental and epileptic 

encephalopathy. medRxiv. 2023-01-01 00:00:00 

2023;doi:https://doi.org/10.1101/2022.08.23.22278845 

 

14. Liu X, Bolteus AJ, Balkin DM, Henschel O, Bordey A. GFAP-expressing cells in the 

postnatal subventricular zone display a unique glial phenotype intermediate between radial glia 

and astrocytes. Glia. Oct 2006;54(5):394-410. doi:10.1002/glia.20392 

 

15. Garcia AD, Doan NB, Imura T, Bush TG, Sofroniew MV. GFAP-expressing progenitors 

are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat Neurosci. Nov 

2004;7(11):1233-41. doi:10.1038/nn1340 

 

16. Boroviak T, Rashbass P. The apical polarity determinant Crumbs 2 is a novel regulator of 

ESC-derived neural progenitors. Stem Cells. Feb 2011;29(2):193-205. doi:10.1002/stem.567 

 

17. Zhang XZ, Huo HQ, Zhu YQ, Feng HY, Jiao J, et al. Folic Acid Rescues Valproic Acid-

Induced Morphogenesis Inhibition in Neural Rosettes Derived From Human Pluripotent Stem 

Cells. Front Cell Neurosci. 2022;16:888152. doi:10.3389/fncel.2022.888152 

 

18. Fedorova V, Vanova T, Elrefae L, Pospisil J, Petrasova M, et al. Differentiation of neural 

rosettes from human pluripotent stem cells in vitro is sequentially regulated on a molecular level 

and accomplished by the mechanism reminiscent of secondary neurulation. Stem Cell Res. Oct 

2019;40:101563. doi:10.1016/j.scr.2019.101563 

 

19. Townshend RF, Shao Y, Wang S, Cortez CL, Esfahani SN, et al. Effect of Cell Spreading 

on Rosette Formation by Human Pluripotent Stem Cell-Derived Neural Progenitor Cells. Front 

Cell Dev Biol. 2020;8:588941. doi:10.3389/fcell.2020.588941 

 

20. Hauser S, Erzler M, Theurer Y, Schuster S, Schule R, et al. Establishment of SPAST 

mutant induced pluripotent stem cells (iPSCs) from a hereditary spastic paraplegia (HSP) patient. 

Stem Cell Res. Nov 2016;17(3):485-488. doi:10.1016/j.scr.2016.09.022 

  



126 

 

6 Chapter 5: Discussion 

6.1 Cell biological explanations for clinical phenotypes 

Our study has identified a cluster of neuroanatomical signatures that may distinguish 

DENND5A-related DEE from other monogenic DEEs. Table 5.1 summarizes 13 monogenic 

disorders mentioned throughout this thesis and compares the clinical similarities and differences 

between those disorders and DENND5A-related DEE. Differences between disorders are even 

more distinguishable by comparing the tissue expression of these genes and the effects on cellular 

processes when they are disrupted. Table 5.2 lists the same genes as Table 5.1 and compares their 

mRNA or protein expression on the tissue, cellular, and subcellular levels as well as their cell 

biological functions on key developmental processes that DENND5A is involved in. Interestingly, 

according to the Human Protein Atlas, DENND5A mRNA expression is detected ubiquitously in 

the adult brain with no obvious regions of enrichment that are consistent across datasets. 

DENND5A mRNA expression levels in specific brain regions have not yet been examined in the 

developing brain. 

The monogenic DEE with the highest degree of similarity to DENND5A-related DEE is 

caused by PCDH12 variants. PCDH12 cases experience seizure onset within the same age range 

as DENND5A cases, exhibit very similar gray and white matter abnormalities, show brain 

calcifications in the same regions, and have microcephaly and non-hydrocephalic 

ventriculomegaly1-5. However, as mentioned previously, a key difference is that pachygyria is not 

observed in PCDH12 cohorts. Additionally, microcephaly in PCDH12 cases can be either primary 

(present at birth) or secondary (develops progressively) 1,3,4, whereas in DENND5A cases it is 

always primary. PCDH12 patients also frequently exhibit comorbid ophthalmic abnormalities2,6, 



127 

 

which are not observed in our DENND5A cohort. Although blindness is observed in 7 DENND5A 

cases, it is almost always associated with a cortical visual impairment, and therefore is likely due 

to a lack of visual perception rather than dysfunction of the eyes. We hypothesize that cortical 

visual impairment is a result of the predominantly occipital pachygyria.  

Pathogenic OCLN variants also result in a DEE very similar to DENND5A-related DEE 

with some key differences. OCLN variants lead to a much more extensive calcification phenotype 

compared to DENND5A, which can be explained by the abundance of OCLN expression in blood 

vessels7. Compromised TJ integrity of blood vessel walls due to OCLN variants leads to increased 

permeability of the blood-brain barrier, and the resulting leakage is a primary cause of brain 

calcifications8. Additionally, polymicrogyria is a defining feature that always accompanies 

pathogenic OCLN variants9-12, whereas it is never found in DENND5A cases. However, the 

presence of a pool of OCLN at the centrosomes during cell division and its depletion resulting in 

impaired chromosomal alignment and a loss of planar spindle orientation remains intriguing13. 

Indeed, we have shown that DENND5A KO results in the same abnormalities. Preliminary 

evidence from another lab member shows that a small pool of overexpressed DENND5A 

colocalizes with γ-tubulin at the centrosome. This begs the question of whether DENND5A 

regulates spindle orientation in a similar manner as OCLN. OCLN binds directly to NuMa13, which 

under normal circumstances coordinates with dynein and plasma membrane-associated proteins to 

tightly align the mitotic spindle through pulling forces and tethering astral microtubules to the cell 

cortex14-19. DENND5A may also play a role in mitotic spindle assembly, as abnormal chromatin 

condensation was observed in many dividing DENND5A KO progenitors. However, the loss of 

planar spindle orientation in virtually all the remaining cells suggests a primary function in astral 

microtubule tethering. 
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Importantly, PALS1 deficiency also results in the loss of planar spindle orientation, but its 

relation to astral microtubules was not investigated20. Consistently, “microcephaly in PALS1 

conditional KO mice is due to neural progenitors prematurely exiting the cell cycle and undergoing 

asymmetric neurogenic cell divisions instead of symmetric proliferative divisions, resulting in the 

depletion of the progenitor pool and premature neuronal differentiation21.” 22 Our discovery of the 

interaction between DENND5A and PALS1, one of the earliest-identified and most extensively 

studied apical polarity proteins23, implies some degree of shared function. Mora-Bermúdez et al. 

showed that a decrease in the number of molecules that link astral microtubules to the apical cell 

cortex leads to a decrease in the number of apicobasal-specific astral microtubules, resulting in a 

weakened anchor between the spindle poles and the apical cell cortex and thus promoting an 

oblique or perpendicular spindle orientation24. We therefore hypothesize that DENND5A functions 

in this capacity; that the small pool of DENND5A at the centrosome radiates outward as apicobasal 

astral microtubules nucleate to link them with MUPP1/PALS1 at the apical cell cortex, promoting 

a planar spindle orientation. Future studies could quantify the number of astral microtubules in 

WT versus DENND5A KO dividing cells within rosettes. Ideally, identifying a specific antibody 

against endogenous DENND5A for use in immunocytochemistry would allow for direct 

observation of whether DENND5A tethers a subset of astral microtubules to the MUPP1/PALS1-

positive apical plasma membrane. The transient existence of astral microtubules during the cell 

cycle, combined with how only a small pool of DENND5A exists at the centrosome, also provides 

an explanation for the weak conformation-dependent interaction observed between DENND5A 

and MUPP1/PALS1. 

Symmetric planar divisions ensure not only that both daughter cells “remain in contact with 

the stem and progenitor cell biochemical niche found in the developing ventricle” 22, but also the 
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equal inheritance of apical determinants. The apical membrane of NPCs within neural rosettes is 

enriched in both cell junctional proteins as well as Golgi-associated proteins25-27. Because 

DENND5A is primarily a Golgi-localized protein28 and the Golgi is confined to the apical process 

of apical progenitors in punctate stacks rather than a ribbon structure29,30, one can speculate that 

“Golgi fragments containing DENND5A bound to PALS1/MUPP1 may thus ensure equal Golgi 

and AJ protein inheritance in both daughter cells of a dividing apical progenitor, affecting the 

resulting daughter cell fates.” 22 Progenitor cells that detach from the apical ventricular surface lose 

their stem cell niche contact and more readily differentiate31-33. We have shown that apical 

progenitors lacking DENND5A not only divide away from the apical surface, but they also have 

an intrinsic propensity to exit the cell cycle and differentiate, another well-established pathological 

mechanism underlying primary microcephaly34. 

We have already discussed in detail that the essential role of DENND5A in symmetric cell 

division and maintenance of progenitor stemness contributes to the pathogenesis of microcephaly 

upon DENND5A loss of function. The posterior gradient of pachygyria identified in our cohort is 

a distinct feature, even among other structural DEEs with pachygyria, that suggests DENND5A 

functions very early in development, as the occipital lobe of the cortex is among the earliest to 

develop and mature35,36. Even in cases where a posterior gradient of pachygyria was not identified, 

cortical visual impairments and reduced optic nerve volumes were common, accounting for a 

combined 11 cases out of the 23 we examined. Because DENND5A is involved with symmetric, 

proliferative cell divisions, this suggests DENND5A function is most essential in neuroepithelia 

and apical radial glia. A role for DENND5A in NECs or apical radial glia carries enormous 

implications, as they are both the structural basis for neurogenesis as well as the progenitors that 

give rise to most of the postmitotic neurons and glia in the cortex. A reduced number of mitotic 
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neuroepithelial cell divisions leads to a reduced number of radial glia and neurons. Genetic 

counseling, then, should be provided for anyone that is a known carrier of a pathogenic variant, as 

opportunities to intervene after birth are limited even if the pathological mechanism for 

DENND5A-related DEE is completely elucidated. 

Besides the significance of the posterior gradient of pachygyria, the presence of pachygyria 

itself is consistent with what is known about the cellular functions of DENND5A. Pachygyria and 

lissencephaly often arise due to abnormalities in cell migration during neurodevelopment37. 

Interestingly, DENND5A depletion results in increased cell migration38; as shown in Table 5.2, all 

other listed genetic causes of pachygyria/lissencephaly are due to reduced migration apart from 

MUPP139, encoding a binding partner to DENND5A. Enhanced migration of prematurely born 

neurons in the DENND5A-depleted developing brain could conceivably lead to both reduced brain 

volume and over-migration, manifesting as gyral simplification and a thin cortex. Classic 

lissencephaly due to variants in LIS1 lead to a thickened cortex with gyral simplification40-43, but 

cortical volume is reduced in volume in DENND5A patients. LIS1 variants also cause reduced cell 

proliferation44,45, but basal progenitors are disproportionately affected in this capacity46. The thick 

cortex in LIS1 patients likely reflects how apical progenitors still have the opportunity to self-

renew and proliferate, and migration deficits47-49 and reduced differentiation50,51 result in a 

disorganized cortex with an excessive number of cells. This contrasts with the apical progenitors 

of DENND5A patients, which preferentially divide asymmetrically and prematurely differentiate, 

resulting in a reduced overall number of neurons. Cell migration deficits in DENND5A cases, then, 

are probably not the primary cause of pachygyria but may contribute to cortex disorganization and 

seizures.  
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While our human cohort exhibited many overlapping phenotypes, another less common 

phenotype provides further evidence of abnormal apicobasal cell polarity. Participant 7 presented 

with periventricular gray matter heterotopias, which are accumulations of neurons in abnormal 

locations. Impaired AJs in radial glia causes their basal processes to retract, preventing neuronal 

migration and resulting in neuron aggregation near the ventricles52. Thus, defects in AJ assembly 

or maintenance in this patient may have resulted in the observed phenotype. 

The distinction of DENND5A as a polarity-related protein is consistent with clinical 

observations published previously. Human cases with pathogenic variants in CRB2 and MUPP1 

have been identified and exhibit ventriculomegaly and corpus callosum dysgenesis53-57, and 

patients with PALS1 variants show global developmental delay, microcephaly, and sometimes 

seizures58. Moreover, the phenotypes observed in our DENND5A-related DEE mouse model are 

consistent with those found in other mouse models targeting apical polarity proteins. MUPP1 KO 

mice have enlarged lateral ventricles59 and the cortex in PALS1 conditional KO mice, where PALS1 

was selectively depleted from cortical progenitors, fails to develop, thus leading to 

microcephaly21.22  

6.2 Role of DENND5A in membrane trafficking 

As speculated above, DENND5A may be “involved in properly positioning centrosomes 

to align them parallel to the apical membrane during mitosis,” 22 but its function likely does not 

end there. “The conformation-dependent [interaction between MUPP1/PALS1 and DENND5A at 

p.R710] may reflect a molecular mechanism to regulate the balance of symmetric versus 

asymmetric cell division during [development]”22, but the weakness of this interaction and the 

predominance of the steady-state closed conformation suggests that the work done in this thesis 

represents a small proportion of the extent of the biological functions of DENND5A.  An important 
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gap in our knowledge is the role of DENND5A in membrane trafficking, the primary focus of our 

laboratory. We somewhat arbitrarily chose to follow up on the MUPP1/PALS1 result among our 

numerous protein-protein interactions identified in our missense mutation-guided proteomic 

screens. Given that our lab specializes in membrane trafficking, for years we looked for evidence 

of DENND5A trafficking PALS1/MUPP1 throughout the cell. However, if anything we have 

provided evidence that DENND5A does not traffic PALS1/MUPP1. Apicobasal polarity appeared 

largely unaffected in multiple model systems: PALS1 still localized apically in DENND5A KD 

MDCK cysts, with larger PALS1 puncta concentrated at tight junctions (Fig. S5.1a). The 

distribution of MUPP1 puncta was less apically concentrated, but localization patterns did not 

appear to change upon DENND5A KD (Fig. S5.1b). Consistently, PALS1 still localized to the 

apical membrane in neural rosettes regardless of DENND5A depletion status (Fig. 4.3a and Fig. 

S5.2). In the context of the DENND5A/MUPP1/PALS1 interaction, it may be the case that the 

primary effect is one of cell division and protein inheritance, and that the trafficking of 

MUPP1/PALS1 to and from the apical membrane is mediated by other proteins independent of 

DENND5A. Perhaps if we had followed up on other novel protein-protein interactions identified 

in the proteomic screen we would have elucidated membrane trafficking pathways, but the cell 

division and differentiation phenotypes identified here enhance our understanding of the 

pathogenesis of microcephaly in DENND5A-related DEE, one of the defining clinical features of 

the disorder (Fig. 2.1b). 

Regardless, it remains true that DENND5A contains a DENN domain that functions as a 

guanine nucleotide exchange factor and is associated with several Rab GTPases. DENND5A binds 

both GTP-Rab6 and GTP-Rab1128,60,61. GTP-bound Rab6 localizes DENND5A to Golgi 

membranes and, importantly, can bind DENND5A regardless of its conformation (Fig. S3.1b). 
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This may allow for transient conformational shifts during cell division to allow DENND5A to bind 

both PALS1/MUPP1 at the cell periphery and Rab6-positive Golgi-derived vesicles to ensure 

proper spindle orientation and Golgi inheritance. Indeed, although DENND5A has been 

crystallized with co-expression of the Rab6A isoform62, Rab6C is a primate-specific and brain-

enriched isoform uniquely localized to centrosomes that controls cell cycle progression63. 

Microcephaly may be a primate-specific phenotype upon DENND5A depletion, because overall 

brain volumes of our KI mice did not significantly differ from WT (Fig. 2.3g). Future studies 

investigating DENND5A during cell division should therefore examine Rab6C to gain a greater 

understanding of the role of DENND5A and spindle formation, stabilization, or dynamism. 

RAB11 also seemed to be a promising interacting partner to study because it transports 

PALS1 to the apical membrane in zebrafish embryos64, but no RAB11 and PALS1 colocalization 

was observed in both MDCK cysts and neural rosettes regardless of DENND5A depletion status 

(Fig. S5.1a and Fig. S5.2), indicating that DENND5A is not involved in the RAB11-dependent 

trafficking of PALS1 from the Golgi to the apical plasma membrane. While there was an apparent 

decrease in overall RAB11 expression in DENND5A KD MDCK cysts (Fig. S5.1a), RAB11 

remained apically localized. No obvious changes in RAB11 staining were observed in the rosettes 

(Fig. S5.2). 

DENND5A also interacts with SNX1, a component of the retromer complex which 

transports cargo from endosomes to the Golgi65, via its C-terminal RUN domain66,67. A study in 

Drosophila discovered that CRB is recycled from the apical membrane to the Golgi via the 

retromer68. Although we did not assess CRB recycling directly due to difficulties finding a KO-

validated antibody and because CRB overexpression leads to problems with apicobasal polarity69, 

CRB and PALS1 are codependent and the localization/expression of one affects the 
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localization/expression of the other21,64,70,71. We thus interpret the lack of difference in PALS1 

staining in both WT and DENND5A depleted MDCK cysts and neural rosettes to reflect no 

difference in apical CRB expression as well, negating the hypothesis that DENND5A mediates 

CRB recycling through the retromer. 

Interestingly, we also have evidence from another lab member’s work that DENND5A is a 

GEF for Rab8 and Rab10, both of which have functions in ciliogenesis72,73, and that a small pool 

of overexpressed DENND5A localizes to the γ-tubulin-positive basal bodies of primary cilia. 

Primary cilia are microtubule-containing protrusions of the apical plasma membrane that directly 

contact the CSF in the developing ventricle and uptake growth factors and other signaling 

molecules to affect cell proliferation and stem cell maintenance. While DENND5A may not 

transport the Crb complex to or from the apical plasma membrane, it is possible that it mediates 

its transport or function within cilia and that we did not detect it, as CRB and PALS1 are also found 

at the basal bodies of primary cilia74,75 and cilia are typically 1-10 µm long76 and easy to overlook. 

Moreover, the presence of DENND5A at primary cilia is consistent with a centrosome positioning 

function during mitosis, as the short microtubules comprising cilia are nucleated from the 

centrosome and both primary cilia and centrosome positioning are important for proper 

neurodevelopment77. 
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6.3 Chapter 5 Figures and Tables 

6.3.1 Tables 
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Table 5.1 
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Comparison of clinical phenotypes in monogenic DEEs. Sources: DENND5A78,79, CRB253-

55,80, PALS158,81, MUPP156,57,82-84, OCLN9-12, DNM185-87, LIS140-43,88-91, PCDH121-6, TUBA1A92-98, 

TUBB2A99,100, TUBB2B97,98,101-109, TUBB398,110-132, TUBG1133-135. 
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Table 5.2 
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Comparison of cellular phenotypes upon mutation of monogenic DEE genes. Sources: 

DENND5A28,38,79, CRB227,80,136-139, PALS120,21,70,140, MUPP139,141-144, OCLN7,13,145-149, DNM1150-

155, LIS144-51,156-159, PCDH124,160,161, TUBA1A162-167, TUBB2A168-171, TUBB2B106,172-174, 

TUBB3120,170,175-179, TUBG1180-182. 
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6.3.2 Supplementary Figures 

Figure S5.1 

 

  

Figure S5.1: DENND5A KD does not result in obvious differences in PALS1/MUPP1 

localization in MDCK cysts. a, Immunoblotting confirms successful lentiviral knockdown of 

DENND5A in MDCK cells. b, PALS1, RAB11 and c, MUPP1 distribution, visualized via 

immunostaining, appears largely unaffected upon DENND5A KD in MDCK cysts. GFP channel 

confirms successful transduction of GFP-tagged control or DENND5A KD lentivirus. Scale bar = 10 

µm. 
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Figure S5.2 

Figure S5.2: PALS1 and RAB11 expression patterns appear similar in WT and DENND5A KO neural 

rosettes. Scale bar = 50 µm. 
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7 Chapter 6: Final conclusion and summary 

Our study provides evidence for the involvement of DENND5A in two well-known 

processes implicated in primary microcephaly: centrosome positioning during cell division 

and premature NPC cell cycle exit and differentiation1. We propose a disease model, 

presented in Figure 6.1, in which DENND5A-related DEE is driven by a significant 

reduction in symmetric cell divisions during early development due to the misorientation of 

cells away from the proliferative apical domain of the ventricular zone. This results in an 

imbalance of signaling molecules from the stem and progenitor cell niche to each daughter 

cell and unequal inheritance of apical determinants such as MUPP1 and PALS1, biasing one 

daughter cell toward a more fate-committed state2. Ultimately, the period of neurogenesis is 

shortened which leads to microcephaly and/or observable abnormalities in gray and white 

matter structures. The reduced volume of neurons likely leads to compensatory 

ventriculomegaly, and improperly positioned prematurely-born neurons that do not undergo 

apoptosis may form aberrant synaptic contacts resulting in seizures that can further adversely 

affect development.3 

The work done in this thesis demonstrates several significant contributions to knowledge in 

the fields of neurology and cell biology: 1) we provided the most detailed clinical description to 

date of individuals with biallelic DENND5A variants, including the first-ever description of 

compound heterozygous individuals and how their neuroanatomical phenotypes are generally 

milder than homozygous individuals, but does not necessarily correlate to a milder DEE; 2) we 

clarified that certain missense variants, currently classified as likely benign or variants of uncertain 

significance, are rather likely pathogenic; 3) we identified other variants, currently classified as 

variants of uncertain significance, are likely benign; 4) we identified a previously-unknown 
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protein-protein interaction between DENND5A and components of the heavily studied Crb 

complex; 5) we discovered that DENND5A must undergo a conformational change to bind both 

the Crb complex proteins and its Rab substrate; 6) we discovered that neural progenitor cells 

lacking DENND5A have an inherent and strong propensity to immediately differentiate into 

neurons; 7) we established that DENND5A is required for neural stem cells to divide symmetrically 

against an apical surface; and 8) the cell division and differentiation phenotypes explain the 

pathological mechanism behind microcephaly and ventriculomegaly ex vacuo in DENND5A-

related DEE. 

We anticipate that the implications of this research will be far-reaching and of interest to a 

multidisciplinary audience. Physicians will benefit from the phenotypic descriptions provided in 

our clinical study to refer carriers to genetic counseling and to communicate realistic expectations 

to families with children harboring biallelic DENND5A variants. Finally, cell biologists studying 

polarity or stem cell biology will no longer overlook DENND5A as a major regulator of stemness 

and self-renewal. 
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7.1 Figures 

Figure 6.1 
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Figure 6.1: DENND5A-related DEE disease model. a, Under healthy developmental circumstances, apical 

progenitors are able to obtain a spindle orientation parallel to the apical ventricular surface. This allows both 

daughter cells to receive equal exposure to the stem and progenitor cell niche as well as inherit equal proportions of 

apical determinants, such as MUPP1 and PALS1, producing two identical apical progenitors after mitosis. The 

expansion of the progenitor pool early in brain development allows for an ideal production of neurons from diverse 

lineages and contributes to healthy brain development. b, In the presence of biallelic pathogenic DENND5A 

variants, apical progenitors increasingly divide with a spindle angle perpendicular to the ventricular surface. This 

scenario only allows for one daughter cell to receive signaling molecules from the stem and progenitor cell niche 

and to inherit apical determinants, and the more basal daughter cell becomes either a basal progenitor or an 

immature neuron. Increased asymmetric cell division of apical neural progenitors during early development reduces 

the number of progenitors available for neurogenesis, resulting in a decreased overall number and diversity of 

neurons that contributes to microcephaly. This may contribute to abnormal neuronal connectivity, resulting in 

seizures that further adversely affect development, leading to DEE.  
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